
Supervisor

Environment: 90/25, 30, 30B, 40 Systems

L
H UP 8075 Rev 3



This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional

. )
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd., King of Prussia, Pa,, 19406.

©1974, 1975, 1976, 1977 — SPERRY CORPORATION PRINTED IN U.S.A.



PUBUcAflONs
UPDATE

Operating Systern/3 (0S13)

Supervisor

User Guide

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (OS/3) Supervisor User Guide”, UP-8075 Rev. 3.

This update documents the following changes for release 8.0:

Enhancement of the OC STXIT routine

• Restrictions to the monitor routine

• Expansion of the Soft-Patch Symbiont debugging aid

• Enhancement of the job accounting facility

This update also includes minor technical corrections to material applicable to the supervisor prior to release 8.0.

Copies of Updating Package A are now available for requisitioning. Either the updating package only, or the
complete manual with the updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8075 Rev. 3—A. To receive the complete manual, order UP-8075
Rev. 3.

Mailing Lists Mailing Lists ADO, AOl, 18, 18U, 19, l9U, 20, 2OU, Library Memo for
BZ, CZ and MZ 21, 21 U, 75, 75U, 76, and 76U UP-8075 Rev. 3—A

(Package A to UP-8075 Rev. 3,
75 pages plus Memo)

September, 1982



I.



User Guide

UP4035 Rev, 3

This Library Memo announces the release and availability of “SPERRY UNIVAC® Operating System/3 (OS/3)
Supervisor User Guide”, UP.8075 Rev. 3.

This revision of the OS/3 Supervisor User Guide completely replaces revision 2 and all its updates. For release 7.1 of
05/3, two new enhancements to the supervisor which this revision documents are:

Support of checkpoint files on SAT tapes; and

Workstation logging.

All other changes represent corrections to material that is applicable before release 7.1.

Destruction Notice: If you are going to OS/3 release 7,1, use this revision and destroy all previous copies. If you are
not going to OS/3 release 7.1, retain the copy you are now using and store this revision for future use.

Copies of UP8075 Rev. 2, Updates A, B and C will be available for 6 months after the release of 7.1. Should you
need additional copies of this edition, you should order them within 90 days of the release of 7.1. When ordering the
previous edition of a manual, be sure to identify the exact revision and update packages desired.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists
BZ, CZ and MZ

Mailing Lists 18, 18U, 19, 19U, 20, 20U, 21, 21U,
75, 75U, 76 and 76U

(Covers and 357 pages)

Library Memo for
UP8075 Rev. 3

Operating System,...

Supervisor

September, 1981





8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A
UPDATE LEVEL PAGE

PSS 1

PAGE STATUS SUMMARY

ISSUE: Update A — UP-8075 Rev. 3
RELEASE LEVEL: 8.0 Forward

11 1 Orig.
2 A
3,4 Orig.
5 A
6 Orig.
7,8 A
9 Orig.
10 A
11,12 Orig.

Index 1 thru 10 Orig.
11 thru 13 A
14, 15 Orig.

User Comment
Sheet

All the technical changes are denoted by an arrow (-0.-) in the margin. A down ward pointing arrow ( f ) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow ( 4) is found. A horizontal arrow (-0.-) pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

Page Update
Part/Section Number Level

• Page Update . Page Update
Part/Section Number Level Part/Section Number Level

Cover/Disclaimer Orig. PART 4
Title Page Orig.

PSS 1 A
8 1 thru 6 Orig.

Preface 1, 2 Orig. 7 A
8 thru 48 Orig.

Contents 1 Orig. 49 A
2, 3 A 50 thru 63 Orig.
4thru6 Orig.
7, 8 A 9 1 thru 22 Orig.
9,10 Orig. 23 A

24 thru 26 Orig.
PART1 27 A

Title Page Orig. 28 Orig.
29 A

1 1 thru 3 Orig. 30 thru 34 Orig.
35 A

2 1 thru 8 Orig. 36 thru 42 Orig.
9 A 43 A
10,11 Orig. 44,45 Orig.

46,47 A
3 1 thru 10 Orig. 48 thru 57 Orig.

11 A 58,59 A
12 Orig. 60thru 63 A

PART 2
Title Page

10
Orig.

1 thru 23 Orig.

4 lthru3 A
4 Orig.
5 A
6 thru 14 Orig.
15 A
16 thru 18 Orig.
l9thru22 A
23 thru 28 Orig.
29 A
30 thru 34 Orig.
35 thru 37 A

5 1 thru 18 Orig.

6 1 thru 7 Orig.
8 A
9 thru 24 Orig.
25 A
26 thru 55 Orig.
56,57 A
58 thru 63 Orig.

PART 3
Title Page Orig.

7 1 thru 22 Orig,

New pages





8075 Rev, 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

PSS 1

PAGE STATUS SUMMARY

. Page Update
Part/Section Number Level

Cover/Disclaimer

PSS 1

Preface 12

Contents I thru 10

PART 1
Title Page

1 lthru3

2 lthrull

3 lthrul2

PART 2
Title Page

4 lthru37

5 lthrul8

6 lthru63

PART 3
Title Page

7 lthru22

PART 4
Title Page

3 lthru63

J lthru59

10 1 thru 23

11 lthrul2

Index 1 thru 15

User Comment
heet

ISSUE: UP8O75 Rev, 3
RELEASE LEVEL: 7,1 Forward

Page-- UpdatePage Update
Part/Section Number LevelPart/Section Number Level

All the technical changes are denoted by an arrow (+-) in the margin. A downward pointing arrow ( + ) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow (-) pointing to
a line indicates a technical change in only that line, A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions,



I



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
Preface 1

UP-NUMBER - UPDATE LEVEL PAGE

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of the
SPERRY UNIVAC Operating System/3 (OS/3). This manual specifically describes the OS/3
supervisor and its effective use. Its intended audience is the novice programmer with a
basic knowledge of data processing, but with limited programming experience, and the
programmer whose experience is limited to other than SPERRY UNIVAC systems.

Prerequisite to the use of this manual is a general knowledge of the OS/3 assembler, job
control, and data management.

Two other manuals are available that cover the supervisor; one is an introductory manual and
the other is a programmer reference manual (PRM). The introductory manual briefly describes
the supervisor and its facilities. The PRM provides the characteristics of OS/3 supervisor
in skeletal form and is intended as a quick-reference document for the programmer
experienced in the use of the supervisor.

This user guide is subdivided into the following parts:

‘ PART 1. INTRODUCTION

Introduces the supervisor in terms of what it is, what it does, how it is structured, and how
it is used. This part also states the general conventions for writing macro instruction
statements which request services of the supervisor.

• PART 2. PHYSICAL INPUT/OUTPUT CONTROL

Describes the macro instructions and techniques by which you may write your own
routines to control input/output devices and disk storage space, and to process
sequential as well as random access files on disk.

• PART 3. MULTITASKING

Describes the macro instructions and techniques bywhich your program may execute in a
multitask and multijob environment.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 Preface 2

UP-NUMBER UPDATE LEVEL PAGE

w PART 4. SUPERVISOR SERVICES

Describes the macro instructions and techniques bywhich you may request other services
of the supervisor such as program loading, job and task termination, storage displays, etc.

Each of the foregoing parts consists of one àr more sections that cover the different aspects of
the subject matter covered in each part.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 Contents 1

UP-NUMBER UPDATE LEVEL PAGE

Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. INTRODUCTION

1. CONCEPT AND ORGANIZATION

1.1. GENERAL 1—1

1.2. FEATURES 1—2
1.2.1. Modularity 1—2
1.2.2. Minimum Main Storage Requirements 1—2
1.2.3. Multijobbing and Multitasking Capability 1—3
1.2.4. Minimum Operator Intervention 1—3

2. SUPERVISOR INTERFACES

2.1. INTERRUPT HANDLING 2—1

2.2. MODULAR FUNCTIONS 2—2
2.2.1. Task Control 2—2
2.2.2. Physical Input/Output Control 2—2
2.2.2.1 Execute Channel Program Processor Module 2—2
2.2.2.2. PUB Control Module 2—3
2.2.2.3. Queue Control Module 2—3
2.2.2.4. Address Adjustment Module 2—4
2.2.2.5. Channel Scheduler Modules 2—4
2.2.2.6. Interrupt Module 2—4
2.2.2.7. lOST Processor Module 2—4
2.2.2.8. Channel Interrupt Processor Modules 2—5
2.2.2.9. Error Control Module 2—5
2.2.2.10. Error Editing Root Overlay 2—5
2.2.2.11. Device Sense Analyzer Overlay 2—5
2.2.2.12. Error Reply Overlay 2—5



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A Contents 2

UP-NUMBER UPDATE LEVEL PAGE

2.2.3. Transient Management 2—5
2.2.4. Console Management 2—6
2.2.5. Workstation Manager 2—6
2.2.6. Resource Allocation 2—6
2.2.7. Timer and Day Clock Services 2—7
2.2.8. Program and Machine Error Control 2—7
2.2.9. Spooling Operations 2—7
2.2.10. Diagnostic and Debugging Aids 2—8
2.2.10,1. Monitor and Trace 2—8
2.2.10.2. Snapshot Display of Main Storage 2—8
2.2.10.3. Main Storage Dumps 2—8
2.2.10.4. Standard System Error Message Interface 2—9
2.2.11. Automatic Volume Recognition 2—9
2.2.12. Main Storage Consolidation 2—9
2.2.13. Rollout/Rollin 2—10
2.2.14. Cochanneling 2—10
2.2.15. Disk Seek Separation 2—11
2.2.16. Error Logging 2—11
2.2.17. Interactive Services 2—11

3. MACRO INSTRUCTION CONVENTIONS

3.1. GENERAL 3—1

3.2. FORMAT ILLUSTRATION AND STATEMENT
CONVENTIONS 3—1

3.3. USE OF THE ASSEMBLER CODING FORM 3—5
3.3.1. Label Field 3—6
3.3.2. Operation Field 3—7
3.3.3. Operand Field 3—7
3.3.4. Comments Field 3—7
3.3.5. Continuation Column 3—7
3.3.6. Sequence Field 3—8

3.4. MACRO INSTRUCTIONS 3—8
3.4.1. Declarative Macro Instructions 3—8
3.4.2. Imperative Macro Instructions 3—8
3.4.3. Summary of Supervisor Macro Instructions 3—8

3.5. PROGRAMMING CONSIDERATIONS FOR MACRO INSTRUCTIONS 3—8

PART 2. PHYSICAL INPUT/OUTPUT CONTROL

- 4. PHYSICAL INPUT/OUTPUT CONTROL SYSTEM (PIOCS)

4.1. GENERAL 4—1

4.2. PHYSICAL I/O CONTROL 4—2
4.2.1. General 4—2
4.2.2. General I/O Usage Requirements 4—4
4.2.3. Generate Buffer Control Word (BCW) 4—5
4.2.4. Generate Channel Command Word (CCW) 4—15
4.2.5. Generate Command Control Block (CCB) 4—18
4.2.6. Generate Physical Input/Output Control Block (PIOCB) 4—24
4.2.7. Read File Control Block (RDFCB) 4—26
4.2.8. Execute Channel Program (EXCP) 4—28



8075 Rev. SPERRY UNIVAC Operating System/3 A Contents 3

UP-NUMBER UPDATE LEVEL PAGE

4.3. INPUT/OUTPUT SYNCHRONIZATION 4—30
4.3.1. Wait for I/O Completion (WAIT) 4—31
4.3.2. Multiple I/O Wait (WAITM) 4—32

4.4. BLOCK NUMBERED TAPE FILES 4—33
4.4.1. Block Number Field 4—33
4.4.2. Tape Restrictions 4—35
4.4.3. Input/Output Buffer 4—35
4.4.4. Processing 4—35
4.4.5. PIOCS Requirements and Options 4—38 .-

5. DISK SPACE MANAGEMENT

5.1. GENERAL

5.2. DISK SPACE MANAGEMENT ROUTINES 5—2
5.2.1. Allocate Routine 5—2
5.2.2. Extend Routine 5—3
5.2.3. Scratch Routine 5—3
5.2.3.1. Scratch Entire File 5—4
5.2.3.2. Scratch by Prefix 5—4
5.2.3.3. Scratch All by Date 5—4
5.2.4. Rename Routine 5—4
5.2.5. Obtain Routine 5—4

5.3 DISK MACRO INSTRUCTIONS 5—5
5.3.1. Assign Space to a New Disk File (ALLOC) 5—5
5.3.2. Assign Additional Space to an Existing Disk File (EXTEND) 5—7
5.3.3. Scratch a Disk File (SCRTCH) 5—9
5.3.4. Rename a Disk File (RENAME) 5—10
5.3.5. Access VTOC User Block (OBTAIN) 5—12

5.4. DISKETTE SPACE MANAGEMENT ROUTINES 5—14

5.5. DISKETTE MACRO INSTRUCTIONS 5—14
5.5.1. Assign Space to a New Diskette File (ALLOC) 5—14
5.5.2. Scratch a Diskette File (SCRTCH) 5—16
5.5.3. Obtain Diskette Label Information (OBTAIN) 5—17

5.6. SPACE MANAGEMENT ERROR CODES 5—18

6. SYSTEM ACCESS TECHNIQUE

6.1. GENERAL 6—1

6.2. DISK SAT FILE ORGANIZATION AND
ADDRESSING METHODS 6—1

6.2.1. PCA Table Entries Used in Addressing 6—1
6.2.2. Block Addressing by Key 6—3
6.2.3. Block Addressing by Relative Block Number 6—3
6.2.4. Disk Space Control 6—4
6.2.5. Record Interlace 6—5
6.2.5.1. Interlace Operation 6—6
6.2.5.2. Lace Factor Calculation 6—8
6.2.6. Accessing Multiple Blocks 6—8



8075 Rev. 3
UP-NUMBER I

6.3.
6.3.1.
6.3.1,1.
6.3.1.2.
6.3.2.
6.3.3.
6.3,3,1.
6.3.3.2.

SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL j PAGE

6—10
6—10
6—12
6—13
6—14
6—17
6—18
6—18

Contents 4

6.5. SAT FOR TAPE FILES

6.6.
6.6.1.
6.6.2.
6.6.2.1.
6.6.2.2.
6.6.3.

6.7.
6.7.1.
6.7.2.
6.7.3.

6.8.
6.8.1.
6.8.2.

SYSTEM STANDARD TAPE LABELS
Volume Label Group
File Header Label Group

First File Header Label
Second File Header Label

File Trailer Label Group

TAPE VOLUME AND FILE ORGANIZATION
Standard Tape Volume Organization
Nonstandard Tape Volume Organization
Unlabeled Tape Volume Organization

TAPE SAT FILE INTERFACE
Define a Magnetic Tape File
Define a Tape Control Appendage

(OPEN)
(GET)
(PUT)
(WAITF)

(READE/READH)
(SEEK)
(CLOSE)

6—19
6—19
6—20
6—21
6—22

6—23
6—24
6—24

6—25

6—26
6—27
6—29
6—29
6—31
6—33

6—37
6—38
6—42
6—44

6—45
6—45
6—46

6.9.
6.9.1.
6.9.2.
6.9.3.
6.9.4.
6.9.5.
6.9.6.

6.10.
6.10.1.
6.10.2.
6.10,2.1.
610.2.2.

7.1. GENERAL
7.1 .1. Multijobbing and Multitasking

(OPEN)
(GET)
(PUT)
(WAITF)
(CNTRL)
(CLOSE)

6—51
6—51
6—52
6—53
6—54
6—54
6—55

6—56
6—57
6—57
6—58
6—58

7—1
7—1

DISK SAT FILE INTERFACE
Define a New File

Filelocks
Shared Filelock Capability

Defining a Partition
Processing Partitioned SAT Files

Processing Blocks by Key
Processing by Relative Block Number

(DTFPF)

(PCA)

6.4. CONTROLLING YOUR DISK FILE PROCESSING
6.4.1. Open a Disk File
6.4.2. Retrieve Next Logical Block
6.4.3. Output a Logical Block
6.4.4. Wait for Block Transfer
6.4.5. Read by Key Equal/Read by Key Equal

or Higher
6.4.6. Access a Physical Block
6.4.7. Close a Disk File

(HDR1)
(HDR2)

(SAT)
(TCA)

CONTROLLING YOUR TAPE FILE PROCESSING
Open a Tape File
Get Next Logical Block
Output Next Logical Block
Wait for Block Transfer
Control Tape Unit Functions
Close a Tape File

BLOCK NUMBER PROCESSING
Facilities Required for Block Number Processing
Specifications for Block Number Processing

Initialized Processing
Noninitialized Processing

PART 3. MULTITASKING

7. MULTITASKING



5

7.1,1,1, Primary Task 7—2
7,1.12. Subtask 7—2
7.2. TASK MANAGEMENT 7—2
7.2.1. General 7—2
7.2.2. Task Creation 7—3
7.2.3. Task Prior[ty 7—4
7.2,4. Task Termination 7—4
7.2,5, Queue Driven Task 7—4
7.2.6. Hierarchical Structure 7—4

7,3, TASK MANAGEMENT MACRO INSTRUCTIONS 7—5
7.3.1. Generate an Event Control Block (ECB) 7—6
7.3.2, Create an Additional Task (ATTACH) 7—9
7.3.3. Terminate a Task (DETACH) 7—10
7.3.4. Yield Until Task Completion (TYIELD) 7—11
7.3,5. Reactivate a Task (AWAKE) 7—1 2
7,3.6. Change a Priority (CHAP) 7—13

7,4, TASK SYNCHRONIZATION 7—15

7.4.1. General 7—15
7.4.2. Wait for Task Completion (WAIT) 7—16

7.4.3. Multiple Task Wait (WAITM) 7—17

7.4.4, Activate the Waiting Task (POST) 7—18
7,4,5, Deactivate a Task (TPAUSE) 7—20
7.4.6. Reactivate a Task (TGO) 7—21

PART 4. SUPERVISOR SERVICES

8. PROGRAM MANAGEMENT

8.1. GENERAL 8—1

8.1 .1. Program Initiation and Loading 8—1

8.2. PROGRAM LOADER 8—2

8.2.1. Block Loader 8—2

8.2.2. Relocation 8—3

8.2.3. Library Search Order 8—4

8.2.4. Read Pointer for Repetitive Loads 8—4

8.2.5. Loader Error Processing 8—5

8,2,6. Load a Program Phase (LOAD) 8—5

8,2,7, Load a Program Phase and Relocate (LOADR) 8—7

8,2.8. Locate a Program Phase Header (LOADI) 8—9

8,2,8,1, Program Phase Header 8—10

8.2.9. Load a Program Phase and Branch (FETCH) 8—11

8.3. PROGRAM TERMINATION 8—12

8,3,1, Normal Termination 8—13

8.3,2. Abnormal Termination 8—13

8.3,3, Printout 8—13

8.3.4. EndofJob Step (EOJ) 8—13

8,3,5. Cancel a Job (CANCEL) 8—14

8.4. TIMER SERVICES 8—15
8,4,1, Date and Time Facilities 8—16

8.4.1.1. Current Date 8—16

8.4.1.2. Time of Dày 817

8.4.1.3. Get Current Date and Time (GETIME) 8—17



System/3
UPDATE LEVEL J PAGE

6

8.4.2, Timer Interrupt Facilities 8—21
8.421 Set Timer Interrupt (SETIME) 8—22
8,4,2.2. Continue Processing Until nterrupt 8—23

8.42.3. Wait for Interrupt 8—25
8.4,2.4, Cancel a Previous Timer Interrupt Request 8—25

8.5. PROGRAM LINKAGE 8—26
8.5.1. Linkage Register Conventions 8—26
8.5,2. Linkage Procedure 8—27
8.5.3. Register Save Area 8—28
8.5.4. Call a Program (CALL/VCALL) 8—29
8.5.5. Generate an Argument List (ARGLST) 8—31
8.5.6. Save Register Contents (SAVE) 8—31
8,5,7. Restore Registers and Return (RETURN) 8—33

8.6. ISLAND CODE LINKAGE 8—35
8,6.1. Attaching Island Code to a Task (STXIT) 8—36
8.6.11. Attaching Program Check, Abnormal Termination,

and Interval Timer Island Code 8—36
8.6,1.2, Attaching Operator Communication Island Code 8—37
8.6.2. Detaching Island Code From a Task (STXIT) 8—39
8.6.3. Island Code Entrance 8—40
8.6.4. Island Code Exit (EXIT) 8—41

8.6.4.1. Exiting from Program Check and Operator Communication
Island Code 841

8.6.4,2, Exiting from Interval Timer Island Code 8—41
8.6.4.3. Exiting from Abnormal Termination Island Code 8—42
8.6.5. Program Check 8—43
8.6.6. Abnormal Termination 8—46
8.6.7. Interval Timer 8—48
8.6.8. Operator Communication 8—49
8.6,9. Use of Island Code With Multitasking 8—52
8,6,9,1. Program Check and Interval Timer With Multitasking 8—52
8.6.9.2, Abnormal Termination With Multitasking 8—54
8.6.9,3. Operator Communication With Multitasking 8—54

8.7. SYSTEM INFORMATION CONTROL 8—54
8.7.1. Get Data From Communication Region (GETCOM) 8—55
8.7.2. Put Data Into Communication Region (PUTCOM) 8—56
8.7,3. Get Data From System Control Tables (GETINF) 8—56

8.8. CONTROL STREAM READER 8—58
8.8.1. Embedded Data 8—59
8,8.2. Reading Embedded Data 8—59
8.8.3. Get File From Control Stream (GETCS) 8—60
8.8.4. Rereading Embedded Data 8—62
8.8.5. Reset Control Stream Reader (SETCS) 8—62
8.8.6. Minimizing Disk Accesses 8—63

9. DIAGNOSTIC AND DEBUGGING AIDS

9.1. STORAGE DISPLAYS 9—1
9,1,1. Snapshot Dumps (SNAP/SNAPF) 9—1
9.1.2. Normal Termination Dumps (DUMP) 9—5
9.1.3. Abnormal Termination 9—10



8075 Rev. 3
SPERRY UNIVAC Operating System/3

A Contents 7

UP-NUMBER UPDATE LEVEL PAGE

9.2. CHECKPOINT AND RESTART CAPABILITY 9—10
9.2.1. How to Generate Checkpoint Records (CHKPT) 9—12
9.2.2. Using Magnetic Tape as the Checkpoint File 9—14
9.2.3. Using a SAT Disk or Tape as a Checkpoint File 9—15
9.2.3.1. Estimate Space Requirements for a Disk Checkpoint File 9—16
9.2.3.2. Define, Open, and Close a SAT Checkpoint File (DDCPF, DCPOPN,

DCPCLS) 9—17
9.2.4. Processing PIOCS Files (DCFLT) 9—18

9.3. MONITOR AND TRACE CAPABILITY 9—22
9.3.1. How to Call the Monitor Routine 9—23

9.3.1 .1. Monitoring From the Beginning of the Job 9—23

9.3.1.2. Monitoring After Execution Begins 9—25

9.3.2. Monitor Input Format 9—27

9.3.3. Defining What You Want to Monitor 9—29

9.3.4. Specifying Options 9—31

9.3.4.1. Storage Reference Option (S) 9—32

9.3.4.1 .1. Program Relative Address (fR) 9—32
9.3.4.1 .2. Base/Displacement Address (/D) 9—34
9.3.4.1 .3. Absolute Address (ABS) 9—34
9.3.4.2. Instruction Location Option (A) 9—35
9.3.4.3. Instruction Sequence Option (I) 9—36
9.3.4.4. Register Change Option (R) 9—37
9.3.4.5. No Option Specified? You Get a Default 9—37
9.3.5. Specifying Actions 9—38
9.3.5.1. Display Actions 9—38
9.3.5,1.1. Register Display (DR) 9—39
9.3.5.1 .2. Storage Display (D/,S) 9—40
9.3.5.1.3. Default Display 9—42
9.3.5.2. Halt Action (H) 9—43

9.3.5.3. Quit Action (Q) 9—44

9.3.6. Cancel of Monitor

9.4. SYSTEM DEBUGGING AIDS 9—45
9.4.1. Supervisor Debug Option 9—48
9.4.2. Mini Monitor 9—53
9.4.3. Console Debug Options 9—54
9.4.4. Transient Management Halts 9—56
9.4.5. Symbiont Halt 9—56
9.4.6. Shared Code Halts and Pauses 9—57
9.4.7. Soft-Patch Symbiont (PT) 9—58

9.4.7.1. Soft-Patching Using Card Input 9—58
9.4.7.2. Soft-Patching Using Console Input 9—60
9.4.7.3. Using the PT Command 9—61
9.4.7.4. Cancelling the PT Symbiont 9—61
9.4.7.5. PT Symbiont Error Messages 9—62

10. MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

10.1. GENERAL 10—1
10.1.1. The Canned Message File 10—3
10.1 .1 .1. Canned Messages 10—3
10,1.1.2. Inserting Variable Characters in a Canned Message 10—3
10.1.2. The System Log 10—6



8075 Rev. 3

UP-NUMBER

10.2.
10.2.1.
10.2.2.
10.2.3.

SPERRY UNIVAC Operating System/3 A Conteñts8
UPDATE LEVEL PAGE

10—6
10—6
10—9
10—14

USER-OPERATOR COMMUNICATION
General
Display a Message to the Operator (OPR)

11. OTHER SERVICES

11.2.
11.2.1.
11.2.2.
11.2.2.1.
11 .2.2.2.
11.2.3.

11.3.
11.3.1.
11.3.2.
11.3.3.
11.3.4.

11—2
11—3
11—4
11—4
11—5

11—6
11—6
11—6
11—7
11—8
11—9

11—11
11—11
11—11
11—11
11—12

USER COMMENT SHEET

FIGURES

-- 4—1.
4—2.
4—3.
4—4.
4—5.
4—6.
4—7.
4—8.
4—9.

6—1.
6—2.
6—3.
6—4.

4—3
4—7
4—10
4—13
41 6
4—17
4—22
4—25
4—34

6—2
6—3
6—6
6—7

MESSAGE AND LOGGING MACRO INSTRUCTIONS
Write to the Log
Display a Message and Write to the Log
Get a Canned Message

10.3.
10.3.1.
10.3.2.

(WTL)
(WIlD)
(GETMSG)

11.1.
11.1.1.
11.1 .1 .1.
11.1 .1.2.
11.1.1.3.
11.1.1.4.
11.1 .1 .5.
11.1.2.
11.1.3.

10—17
10—17
10—19

11—1
11—1
11—1
11—2

SPOOLING
General

Initialization
Input Reader
Spooler
Output Writer
Special Functions

To Use Spooling
Create a Breakpoint in a Spool Output File

JOB ACCOUNTING
General
Accounting Data

Job Step Level Data
Job Level Data

Data Printout

SYSTEM ACTIVITY MONITOR
General
Monitor
Report Producing Program
System Activity Monitor Statistics

(BRKPT)

INDEX

3—63—1. 9000 Series Assembler Coding Form

Relationship of Basic PIOCS Macro Instructions

Buffer Control Word (BCW) Format for Integrated Disk Adapter
Buffer Control Word (BCW) Format for Integrated Peripheral Channel

Buffer Control Word (BCW) Format for Multiplexer Channel

Channel Command Word (CCW) Format for Selector Channel
Channel Address Word (CAW) Format
Command Control Block (CCB) Format
Physical I/O Control Block (PIOCB) and File Control Block (FCB) Format

Tape Block Number Field Format

Partition Control Appendage (PCA) Table Format
Record Formats for Disk Devices
Definition of Interlace Variables
Interlace Accessing



8075 Rev. SPERRY UNIVAC Operating System/3 Contents 9
UP-NUMBER UPDATE LEVEL PAGE

Define the File (DTF) Table Format
Tape Volume 1 (VOL1) Label Format for an EBCDIC Volume
First File Header Label (HDR1) Format for an EBCDIC Tape Volume

Second File Header Label (HDR2) Format for an EBCDIC Tape Volume

Tape File EOF1 and EOV1 Label Formats for EBCDIC Tapes

Tape File EOF2 and EOV2 Label Formats for EBCDIC Tapes

Reel Organization for EBCDIC Standard Labeled Tape Volumes
Containing a Single File

6—12. Reel Organization for EBCDIC Standard Labeled Tape Volume:
M ultifile Volume With End-of-File Condition

6—13. Reel Organization for EBCDIC Standard Labeled Tape
Volumes: Multifile Volumes With End-of-Volume Condition

6—14. Reel Organization for EBCDIC Nonstandard Volumes Containing a Single File

6—15. Reel Organization for EBCDIC Nonstandard Multifile Volumes

6—16. Reel Organization for Unlabeled EBCDIC Volumes
6—17. Tape Volume 1 (VOL1) Label Format for an EBCDIC Volume With Block Numbers

6—18. First File Header Label (HDR1) Format for an EBCDIC Tape Volume With
Block Numbers

6—19. Second File Header Label (HDR2) Format for an EBCDIC Tape Volume With Block

Numbers
6—20. Tape File EOF1 and EOV1 Label Formats for Block Numbered EBCDIC Files

6—21. Tape File EOF2 and EOV2 Label Formats for Block Numbered EBCDIC Files

7—1. Event Control Block (ECB) Format 7—8

Examples of GETIME Macro Instruction

Example of SETIME Macro Instruction
Register Save Area Format
Example of Program Check Island Code Linkage Using Symbolic Addresses

Example of Program Check Island Code Linkage Using Register Addresses

Example of Abnormal Termination Island Code Linkage Using Symbolic

Addresses
8—7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses

8—8. Example of Operator Communication Island Code Linkage Using Symbolic

Addresses
8—9. Example of Operator Communication Island Code Linkage Using Register

Addresses
8—10. Example of Discrete Program Check Island Code for Each Task in a Job Step

8—11. Example of Common Program Check Island Code for All Tasks in a Job Step

9—1. Monitor Input Format 9—29

10—1. Canned Message Buffer Formats

10—2. Insertion of Variable Characters in a Canned Message

Relationship of Spooling Devices and Programs

Job Accounting Table Format
Job Accounting Record Printout Format

TABLES

3—1. Supervisor Macro Instructions 3—10

6—1. Tape Volume 1 (VOL1) Label Format, Field Description
for an EBCDIC Volume

6—5.
6—6.
6—7.
6—8.
6—9.
6—10.
6—11.

6—9
6—28
6—30
6—32
6—34
6—36

6—39

6—40

6—41
6—42
6—43
6—44
6—59

6—60

6—61
6—62
6—63

8—1.
8—2.
8—3.
8—4.
8—5.
8—6,

8—19
8—24
8—28
8—44
8—45

8—47
8—48

8—50

8—51
8—52
8—53

11—1.
11—2.
11—3.

10—4
10—5

11—2
11—7
11—10

6—29



8075 Rev. 3 SPERRY UNIVAC Operating System/3 Contents 10

UP-NUMBER UPDATE LEVEL PAGE

6—2. First File Header Label (HDR1), Field Description 6—31
6—3. Second File Header (HDR2), Field Description 6—33
6—4. Tape File EOF1 and EOV1 Labels, Field Description 6—35
6—5, Tape File EOF2 and EOV2 Labels, Field Description 6—37

8—1. Register Save Area 8—29

9—1. Checkpoint/Restart Error Codes 9—13
9—2. Summary of Actions and Program Information Printed 9—45
9—3. Summary of System Debugging Aids 9—46

10—1. Summary of Message Macro Instructions 10—2

11—1. System Activity Monitor Statistics 11—12



•0 —
I
- -l 0 C C

, 0 z





8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 1—1

UP-NUMBER UPDATE LEVEL PAGE

1. Concept and Organization

1.1. GENERAL

The SPERRY UNIVAC Operating System/3 (OS/3) Supervisor (supervisor) is the component
that operates with problem programs (user programs) to provide the central control necessary
for optimum and continuous utilization of the system hardware and software. It provides the
control, interface, coordination, and allocation of hardware and controlsthe initiation, loading,
executing, and termination of user jobs. The efficient and flexible capabilities provided by the
supervisor are particularly useful for small to medium sized disc-oriented computing systems.

Within the context of this manual the following definitions apply:

Job
A total processing application comprising one or more processing steps. Each job is
divided into job steps (programs) that are executed serially. With the exception of
disk space, resources are allocated on a job basis.

Job Step
The unit of work associated with one processing program. Ajob step is an executable
program consisting of one or more tasks that requires a specific amount of the
hardware resources of the system.

Task
A unit of work capable of competing with other tasks for control of the central
processor. A task is a logical point of control rather than a physical set of instructions.
Each job step has at least one task and may create additional tasks (subtasks) all
of which compete independently for processor time.

Multitasking
The concurrent processing of manytasks asynchronously. Multitasking applies to the
switching of processor control among two or more tasks on a priority or rotational
basis. Job steps with more than one task are capable of using multitasking.

Mu Itijobbing
The concurrent scheduling, loading, and execution of more than one job at a time.
This term is not synonymous with multitasking.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 12

UP-NUMBER UPDATE LEVEL PAGE

1.2. FEATURES

1.2.1. Modularity

The supervisor is designed around control modules, each representing functions or services to
be provided. At system generation time, a supervisor program is produced with modules
modified and combined to provide the specific combination of capabilities to meet the
requirements and restrictions of the particular user installation and applications.

1.2.2. Minimum Main Storage Requirements

The modular design of the supervisor keeps the resident main storage requirement to a
minimum. Modules that are frequently used and constitute an integral part of the supervisor
are called resident routines because they require permanent residence in main storage.
Modulesthat are not continuously required and are nottime critical to normal job execution are
called transient routines and are kept on the system resident disk storage These transient
routines are located and loaded from disk into main storage only when needed, and
executed as an extension of the requesting program

The following modules are always part of the resident supervisor(except for timer and day clock
services which are optional):

Supervisor Interface
The points at which control is passed to the supervisor by means of the supervisor call
(SVC) instruction interrupt.

Task Switcher
The hub of the supervisor this routine controls allocation of the processor based
upon internal priorities.

Transient Management
Schedules, locates, and loads the noncritical transients which perform the
nonresident supervisor functions.

Supervisor Overlay Scheduler
Schedules critical supervisor overlays,

Physical Input/Output Control
Controls the dispatching, queueing, and interrupt processing for all I/O devices
directly connected to the system

Timer and Day Clock Services
Provides system clock and timer activities control.

Error Control
Handles unresolved I/O, machine check, and program check interrupts; schedules
user island code subroutines or overlay functions to handle errors appropriately.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Other modules may be selected for inclusion within the resident supervisor at system
generation. Such modules as clock control will be either resident or not available; whereas,
most modules will be either resident or transient, depending upon system generation options.

1 .2.3. Multijobbing and Multitasking Capability

The supervisor provides multijobbing and multitasking capability through the submission of job
control streams which represent the jobs to be performed. In multijobbing environments, from
one to seven user jobs may be executed concurrently, with the jobs consisting of a series of job
steps (programs). The job steps are executed in a serial manner within each job. Job steps may
have from 1 to 256 tasks capable of executing concurrently with other tasks within the job step
or system.

1 .2.4. Minimum Operator Intervention

Operator intervention is kept to a minimum. Operating in conjunction with the job control
system, the supervisor provides efficient control of the multijobbing environment. Most error
situations are handled by the supervisor and by user-supplied error routines, so that an
operator usually is not required to initiate error recovery procedures.





8075 Rev. 3 SPERRY UNIVAC Operating System/3 21

UP-NUMBER UPDATE LEVEL PAGE

2. Supervisor Interfaces

2.1. INTERRUPT HANDLING

The OS/3 Supervisor is informed of an event, either within the supervisor complex or
external to it, by an interrupt, Interrupts may be enabled (allowed> or disabled (held pending)
to avoid simultaneous interrupts and to service interrupts based on their relative priorities.
Upon recognizing an interrupt, the executing task is suspended and program control is
transferred to the appropriate interrupt handler, The interrupt handler analyzes the cause of
the interrupt and activates the appropriate interrupt servicing routine.

There are six classes of interrupts by which control is returned to the supervisor:

• Supervisor call

• Interval timer

• Input/output

• Program errors

• Hardware errors

• Operator request

Of these six, the supervisor call and operator request interrupts provide the user with an
interface to the supervisor and, therefore, the operating system. The rest of the interrupts are
handled by the specific routines which are described on the following pages.

Tasks have access tothe supervisorvia the supervisorcall (SVC) instruction which is generated
within system macro instructions. These supervisor macro instructions provide the access and
generate the parameter list associated with the desired function.

The service interrupt routine (SVC decode) determines what function is being requested and
passes control to the appropriate resident module. If the function is nonresident, then control is
passed to transient management and the overlay is loaded from the system resident disk.

The operator request interrupt allows the operator to initiate supervisor action or to answer a
previously asked question from the console or a workstation. The attention interrupt causes the
loading of the operator communication overlay, which allows the operator to enter the
command or response.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
22

UP-NUMBER UPDATE LEVEL PAGE

2.2. MODULAR FUNCTIONS

2.2.1. Task Control

Up to seven user jobs can be activated by the job scheduler for concurrent execution. Job steps
consist of one or more tasks which are asynchronously executed based on internal priority.

Each job step has one primary task generated by the system. This task is deleted at the
termination of the job step. When it is desirable to establish additional tasks for the program,
supervisor requests are provided to attach additional tasks. Facilities to synchronize and detach
tasks are also provided.

The allocation of processor time to a task is based on a system switch list which contains

information about switching priorities. The number of priorities is a parameter in the supervisor

generation (SYSGEN).

2.2.2. Physical Input/Output Control

The physical input/output control system (PIOCS) is structured in function-oriented modules.
This allows a user to have the minimUm usage of resident main storage needed for a particular

configuration. The following is a brief description of the functions performed by each of these

modules.

2.2.2.1. Execute Channel Program Processor Module

The execute channel program (EXCP) processor is a primary module of PIOCS together with the
hardware interrupt processor. These modules access the remaining functional modules to
complete their task.

The EXCP module receives control from the SVC decode routine, validates the request, queues
the request, and conditionally executes the request based on channel anddeviceavailability.

The modules accessed by the EXCP processor include the relocation module, the physical unit
block (PUB) control module, the queue control module, and the various channel scheduler

modules.

In the case of certain error conditions, it relinquishes primary control to the hardwarejnterrupt

module.

The diagnostic adapter module interface and the error logging module interface is optional.

The standard entrance to the EXCP module is the SVC interrupt routine processing the EXCP
imperative macro instruction.

The standard exit of the module is the switcher.

The module exits to an error control routine in the event of a failure in the validation checks
performed by the module.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
2—3

UP-NUMBER UPDATE LEVEL PAGE

The module accesses various special purpose modules in performing its function. These
modules include:

• Physical unit block (PUB) control module

This module is accessed when the request is first submitted to validate the existence of the
device being called. It is also accessed after retrieval of a CCB from the I/O queue. This is to
validate that the contents of the CCB have not been inadvertently altered in the interim
period between the time it is first submitted and the time it is retrieved from the I/O queue
for execution.

• Queue control module

This module is accessed by the EXCP module to place the request in the I/O queue; to
retrieve a request from the I/O queue; and, in the case of program errors detected by the
channel schedulers, to delete a request from the I/O queue.

• Channel scheduler modules

There is a unique module for each channel type which performs the functions necessary to
prepare a request for the start I/O operation. This includes the set-up of the low storage
buffer control words (BCW) and the command address word (CAW),

2.2.2.2. PUB Control Module

The PUB control module has a number of primary functions:

• Verification of a PUB associated with a CCB

• Location of the device associated with a hardware interrupt

• Location of the device associated with the execution of an REXCP imperative macro
(answered operator communication)

• Location of a device with an interrupt held in abeyance in a communication environment

2.2.2.3. Queue Control Module

The queue control module is responsible for the maintenance of the queue list module. This
includes adding to the I/O queues, searching and retrieving from the I/O queues, and deletion
from the I/O queues. A queue head address is maintained for the system and each job for each
I/O path (i.e., integrated disk adapter, each selector channel, each integrated peripheral
subchannel, and each multiplexer subchannel). Requests are queued first-in, first-out by
priority within the queue for the job. Retrieval from a given job queue is in the sequence
in which the CCBs are queued.

The selection of the CCB to be executed among the queue heads is accomplished by
scanning the queue heads from the last executed queue head in a circular direction looking
for the highest priority CCB to be executed. This scan takes the first encountered job if two
CCBs of equal priority are detected during the scan.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 2—4

UP-NUMBER UPDATE LEVEL PAGE

2.2.2.4. Address Adjustment Module

The CCW data address adjustment module converts all addresses in a command chain to
absolute form prior to issuance of the start I/O (SIC) command to the hardware. The addresses
are converted to relative form prior to returning the command chain to the caller. The module is
accessed by the selector scheduler module to create absolute addresses, and by the selector
interrupt module to create relative addresses.

2.2.2.5. Channel Scheduler Modules

The various channel scheduler modules prepare a command for execution on a particular
channel. This function includes thevalidation of the command as it applies to a unique channel,
and the preparation of the channel’s fixed low order storage locations. Additionally, they
present a transparent interface to systems users. The integrated channel format is converted to
multiplexer or selector channel format.

2.2.2.6, Interrupt Module

The interrupt modules perform processing common to the handling of all interrupts. These
functions include:

accessing the I/O status tables (lOST) for an interrupt to be processed;

accessing the PUB control module for the device associated with the interrupt;

transferring control to the particular channel interrupt processing for further processing of
solicited interrupts;

alerting the console manager for console unsolicited interrupts;

alerting automatic volume recognition (AVR) for other unsolicited interrupts;

processing of answered console error communications for I/O; and

final processing of a CCB, which includes posting the CCB and transferring control to the
EXCP processing module for further commands.

2.2.2.7. lOST Processor Module

The module performs the maintenance of the I/O status tables. This involves processing an
interrupt, setting the verification indicator, updating the soft status tables pointer, and
presenting an interrupt to be processed to the interrupt module.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 2—5

UP-NUMBER UPDATE LEVEL PAGE

2.2.2.8. Channel Interrupt Processor Modules

The various channel interrupt processor modules perform functions unique to particular
channels. They also access the common error control module on the occurrence of an error
condition.

2.2.2.9. Error Control Module

This module performs error processing functions common to all error conditions. This includes
processing an error action table of a particular channel and alerting the error editing transient
when an operator communication becomes necessary.

2.2.2.10. Error Editing Root Overlay

This overlay performs preliminary processing common to all I/O error messages to the
operator. The device and channel address, the device status, the channel status, and the sense
information are prepared in a canned message format. The reply options are validated and
prepared. The appropriate device or channel error mnemonic sense analysis is then called as
an overlay.

2.2.2.11. Device Sense Analyzer Overlay

These various critical overlays convert the sense information of a particular error into an
English language message to the operator. The operator communication critical overlay is then
called to output the message to the operator.

2.2.2.12. Error Reply Overlay

This overlay processes an answered I/O error communication to the operator. It validates the
reply and prepares resident control to perform final processing of the message reply.

2.2.3. Transient Management

Transient management consists of two routines, the transient scheduler and the transient
loader. The transient scheduler receives control and executes as a supervisor criticalfunction.
It allocates a transient area and schedules the transient loader to receive control as the task
associated with this transient area. The transient loader computes the disk address based
upon the transient identifier and initiates a read of the transient. Upon normal completion
of the read, control is passed to the transient.

The transients will either request the overlay of themselves with subsequent phases or release
the area when finished processing. The transient loader performs the read of the overlay or
yields control to the task switcher.

Transient management is designed to locate a transient and load in a very efficient manner,
requiring only one access to the disk. In addition, it supports serially reusable and private
copy transients in order to gain additional efficiencies by reducing disk I/O accesses.



System/3
LEVELj PAGE

2.2.4. Console Management

Console management provides for the displaying of messages on the CRT screen with
responses and commands coming from the operator. The screen images are rolled upward with
new display lines or operator input appearing on the bottom of the screen. These routines
selectively delete messages not requiring responses from the top of the screen.

Console management is nonresident and is loaded as an overlay when requested. These
requests come either as an SVC instruction from a program or as an attention interrupt from the
operator.

2.2.5. Workstation Manager

The workstation manager provides the interface between the physical input/output control
system and the workstation user. Workstations operate in either a workstation mode or system
mode, In the workstation mode, the workstation operator communicates with a program to
which the workstation has been allocated. In the system mode, the workstation communicates
with the operating system. Mode selection is made from the workstation. However, a request
for mode change may be initiated by the system. When operating in the system mode, the top
two lines displayed on the workstation screen are dedicated for messages. Workstation
messages to the system are displayed on the first line and system messages to the workstation
on the second line. In the system mode, an interface similar to that of a system console is
provided to the workstation user.

2.2.6. Resource Allocation

Resources are allocated by the supervisor or job control on a job basis. Main storage and
devices are allocated at job initiation for the job’s duration. Normally, disk storage should
be allocated at job initiation. However, the capability is provided to allocate or extend
permanent and temporary files on a dynamic basis during execution of a job step.

Disk space management routines provide an efficient and completely automatic space
accounting and maintenance feature, which relieves you of the responsibility of knowing
the precise contents of disk volumes. The routines also permit resolution of competing
demands for allocation and establishment of standard interfaces.

Disk space management consists of service routine sets that allocate space to files on disk
volumes. This is accomplished by maintaining the volume table of contents (VTOC),
through standard procedures, for all files: system, temporary, and permanent.

The routines maintain the VTOC by creating control records for new files and deleting control
records forfiles removed from the volume. When a file is created, unused space is found for it by
searching the appropriate records in the VTOC, allocating the space as extents of the file, and
removing it from free space. When a file is deleted, the control record for the file is removed
from the VTOC; the extents previously assigned to the file are then available for allocation.

Job control requests a main storage job region at job initiation. This region is capable of
satisfying the main storage requirements of any job step within the job. Job control determines
the main storage necessary for the largest job step in addition to that needed by the operating
system for this job. This amount of main storage is requested from the supervisor if all device
requirements are satisfied.



8075 Rev. SPERRY UNIVAC Operating Systeml3 2—7

UP-NUMBER UPDATE LEVEL PAGE

Devices are allocated to job steps and particular volumes as the job steps are initiated The
supervisor is not involved in device allocation to jobs.

2.2.7. Timer and Day Clock Services

The system hardware contains a high resolution timer. An interface is provided to allow a task
to request an interrupt after any time period greater than 1 millisecond. The calling task may
specify the wait interval in milliseconds or seconds.

The time of day is provided by a simulated day clock. In addition to providing the time to
programs upon request, this time is used by the supervisor for time stamping of log messages
and job accounting entries.

2.2.8. Program and Machine Error Control

Any error which causes a program interrupt is examined to determine the type of interrupt with
the appropriate action being taken.

An interface is provided for processing error information by means of user-supplied island
code. Island code is a closed subroutine, having the entry point defined to the supervisor by
various action macro instructions, and is given control upon the occurrence of certain
contingencies. Standard actions are initiated in the absence of user code. If the unrecovered
error is in the system the system will terminate that task which initiated the action resulting in
the error.

If any requester of a supervisor function provides a set of parameters which are inconsistent or
invalid, the requester is abnormally terminated.

2.2.9. Spooling Operations

The supervisor uses a spooling technique which consists of a set of routines that buffer data
files for low speed input and output devices to a direct access storage device. There are three
types of routines used for spooling operations: job control stream and card disk readers,
supervisor printer/punch spooling cooperative, and output printer/punch writers. In
addition, you can utilize the data conversion utilities for converting slow speed media to
high speed devices or reverse.

Output writers are provided for online devices, as well as those used in a remote batch
environment. This allows user jobs to be unaware of whether they are operating with real
devices or spooled files.

Input readers are provided for local subsystems which are normally used as batch mode input
devices. The user job is required to discern whether data files were submitted as control stream
embedded data, or spooled input, or input from unit record device.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 28

UP-NUMBER UPDATE LEVELJ PAGE

2.2.10. Diagnostic and Debugging Aids

Diagnostic and debugging aids provided in the supervisor include monitor mode, snapshot
display of main storage, main storage dumps, standard system error message interface,
uniform error responses to user programs and program checkpoint restart. Descriptions of
these aids are provided in the following subsections.

2.2.10.1. Monitor and Trace

The monitor routine enables you to trace the execution of a program by a hardware
monitor interrupt so that errors can be located and corrected. You can monitor an entire
task or part of a task. In your input to the monitor routine, you can specify actions to be
performed at specific points in the program. The monitor routine interrupts each
instruction before it is executed and tests for the conditions specified in your monitor
input. For each condition, you can request a monitor printout of current program
information (PSW contents, next instruction to execute, etc), and continue program
execution under monitor control, suspend program execution, or continue program
execution without monitor intervention.

2.2.10.2. Snapshot Display of Main Storage

The capability is provided for requesting a partial storage printout at given points in a
program by means of a SNAP or SNAPF macro instruction within the program itself. It is
also possible to enable or disable these dumps at run time by means of job control. This
enables a program to be tested without recompilation to include and disable SNAP or
SNAPF requests.

2.2.10.3. Main Storage Dumps

A main storage dump may be provided for programs under the following conditions:

Abnormal termination dump for user job provides a main storage dump of the region in
hexadecimal plus a formatted display of error codes, job-oriented tables, and supervisor
information to assist the user in debugging.

Program or operator request dump provides an orderly capability for the operator or any
program to request a main storage dump in the same format as the normal termination
dump.

System failure dump. This is a program intended for use when, for some unexplained
reason, the operating system performs abnormally.



8075 Rev. SPERRY UNIVAC Operating System/3 A 2—9

UP-NUMBER UPDATE LEVEL PAGE

2.2.10.4. Standard System Error Message Interface

An error message service routine provides complete and specific error messages without
requiring each system module to contain alphanumeric error information. This routine locates
the message in a disk file and transfers control to the system console handler for message
display or system logging.

2.2.11. Automatic Volume Recognition

Automatic volume recognition allows the console operator to premount magnetic tapes
and disk packs before the devices are required for a job step. This reduces time lost due to
job step setup and console responses. The automatic volume recognition function is
performed during supervisor initialization and as a result of an attention interrupt being
received from an online I/O device. This attention interrupt is caused by physically
activating the device online, or, in the case of a device that does not have an attention
interrupt capability, by the operator issuing an AVR console command.

Using the physical unit block (PUB) for the devices, automatic volume recognition checks
to see if the required tape and disk volumes are already mounted. In addition, it performs
special processing to handle unique characteristics of various devices. For example, when
required at supervisor initialization, it distinguishes between an 8418 disk pack with high
density and an 8418 disk pack with low density or an 8416; it performs special interrupt
processing for the 841 5 disk; it identifies an 0776 printer configured as an 0770 printer. It
then marks the device type in the PUB for that device. It also distinguishes between block
numbered and unnumbered tapes. If a tape is not at Ioadpoint, it rewinds the tape so that
it can read the label and the volume serial number.

The automatic volume recognition function displays console messages to the operator to
indicate such conditions as a disk or tape not prepped, an I/O error, or a duplicate volume
serial number.

A system generation option incorporates a retry on the attention interrupts feature in the AVR
function. This permits automatic retry of a recoverable error when an attention interrupt is
received on a printer, card reader, or card punch that has an unanswered PIOCS error message.
The operator can initiate the recovery retry at the device by placing it online, instead of having to
return to the console to respond to the error message.

2.2.12. Main Storage Consolidation

Main storage consolidation is a system generation option that repositions jobs and
reallocates space in main storage so that enough contiguous space can be made available
when needed to hold the next job to be initiated. This reduces fragmentation of main
storage and permits a job to be run that requires more contiguous space than is currently
available without consolidation.



8075 Rev. SPERRY UNIVAC Operating Systeml3
2—10

UP-NUMBER UPDATE LEVEL PAGE

When a job or a symbiont terminates, the next job to be run is evaluated to determine
whether there is enough space available or whether main storage consolidation is
necessary and which jobs must be moved. If this job is scheduled and consolidation is
required, the jobs are moved down one by one, starting with those farthest from the
supervisor. Each job to be moved is brought to an idle state, then moved down. Addresses
are adjusted and the job is reactivated. When all these jobs have been moved, the next
scheduled job is read in and initiated.

Main storage consolidation does not move symbionts because they do not have an
associated relocation register. Nor does main storage consolidation move jobs with open
interfaces to the integrated communications access method (ICAM), because these jobs
may be reading or writing directly into or out of user main storage. This restriction is
minimized if ICAM is loaded first, then ICAM user jobs next, in order to retain the
maximum continuous main storage region for further allocation.

2.2.13. Rollout/Rollin

The rollout/rollin function is a system generation option that temporarily transfers jobs-
from main storage to disk to make room for a job with a preemptive scheduling priority.
Jobs currently in main storage are suspended and written to the job’s run library. The
preemptive job is then read into main storage and initiated. As enough space becomes
available, the rolled-out jobs are read back into main storage and allowed to continue
processing.

When a job or a symbiont terminates and there is a preemptive job in the job queue the
preemptive job is evaluated to determine whether there is enough existing main storage
available, or whether main storage consolidation or rollout is necessary to make space
available. If the job is scheduled and rollout is required, the rollout function brings each
job marked for rollout to an idle state, delinks the TCBs from the switch list, and writes the
job’s image from the job region to disk. These rolled-out jobs have asterisks appended to
their names on the top line of the display on the system console. If the needed I/O devices
are available, the preemptive job is read into the freed main storage and initiated.

As space becomes available and if there are no other preemptive jobs, the job scheduler
tries to bring in the rolled-out jobs one by one The job slots and I/O devices remain in
effect from the time the jobs were rolled out. The job scheduler ignores any jobs on the
high- or normal-priority job queues until all of the rolled-out jobs have been rolled back in
and reactivated.

2.2.14. Cochanneling

Cochanneling is the capability of accessing a single peripheral device through either of

two physica[ paths. Under OS/3, it provides for the support of both the dual access and

dual channel capabilities of the 90/30 hardware.

Dual access cochanneling permits simultaneous I/O operations (read/read, read/write,

write/write) on any two devices using two control units and two selector channels. Each

input/output device is connected to both control units, one control unit on each selector

channel. Depending on the control units used, dual access cochanneling is applicable to



8075 Rev. 3 SPERRY UNIVAC Operating System/3 2—11
UP-NUMBER - UPDATE LEVEL PAGE

SPERRY UNIVAC 8414, 8424, 8425, 8430, and 8433 Disk Subsystems and UNISERVO 10, 12,
16, and 20 Magnetic Tape Subsystems on selector channels.

Dual channel cochanneling provides for nonsimultaneous access to a single control unit from
either of two selector channels. The devices are connected to one control unit, which is
connected to both selector channels. When one channel is busy, the second channel is used to
access the device, thereby avoiding a waitfor the busy channel. Depending on the control units
used, dual channel cochanneling is applicable to SPERRY UNIVAC 8414, 8424, 8425, 8430,
and 8433 Disk Subsystems, and UNISERVO 10, 12, 14, 16, and 20 MagneticTape Subsystems
on selector channels.

2.2.15. Disk Seek Separation

This feature provides for the execution of seek commands to the requested devices before
executing the data transfer command, thereby freeing the I/O channel during the device
positioning time. This is accomplished by executing seek commands to all devices that
have queued requests whenever the channel is free (channel end status received). The
data transfer (reads and writes) on the channel are executed as soon after the positioning
of the head (device end status) is completed.

Seek separation will increase the number of I/O requests that can be completed in a given
time frame when multiple devices are in use on a channel. It will not change the

sequence of a job I/O request, but it may change the sequence of various job I/O requests
with regard to execution.

2.2.16. Error Logging

The error logging function records hardware errors for later statistical and historical use by
Sperry Univac customer engineers. It is a default feature of all OS/3 supervisors above
the minimum PIOCS configuration and can be turned on and off, and suspended and
resumed, by system console commands. At the time the error occurs, pertinent
information is stored temporarily in the error log file on the system resident volume. The
customer engineer can read these records from the error log file into main storage for
processing and permanent record, assisting him in maintaining customer equipment.

2.2.17. Interactive Services

If your OS/3 system has workstations, they can be used as input and output devices by

means of interactive services. This feature lets you use workstations with either system or
user programs. These services include:

• Interactive job control

• Interactive data utilities

• General editor

• Screen format services

• Interactive command set





8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

3.1. GENERAL

3. Macro Instruction Conventions

The OS/3 provides a complement of macro instructions to facilitate service requests
between a user program and the supervisor. This set of macro instructions is available
only when using the assembler language and cannot be directly evoked when using -

higher-level languages.

Conventions used in this manual to illustrate the supervisor macro instruction formats and
some general rules for writing macro instruction statements are contained in 3.2.

General rules and conventions for writing programs using the SPERRY UNIVAC 9000
Series assembler coding form are contained in 3.3.

3.2. FORMAT ILLUSTRATION AND STATEMENT CONVENTIONS

The general format of a macro instruction is:

n A symbolic name can appear in the label field. It can have a maximum of eight
characters and must begin with an alphabetic character.

m The appropriate macro instruction mnemonic must appear in the operation field and
identifies the operation or service requested.

• When parameters are specified in the operand field, they must be positional
parameters or keyword parameters as required by the particular function.

• Parameters must not be separated by blanks.

• Assembler rules regarding blank columns and continuation of the operand field must
be followed

LABEL tOPERATI0N

symbolic
name

macro
mnemonic

parameters



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 3-2

UP..NUMBER UPDATE LEVEL PAGE

The conventions used to delineate the supervisor macro instructions are as follows:

• Capital letters, commas, parentheses, and equal signs must be coded exactly as
shown.

Examples:

R
ALL
(1)
SIZE=

• Lowercase letters and words are generic terms representing information that must be
supplied by the user. Such lowercase terms may contain hyphens and acronyms (for
readability) Acronyms that form part of the variable symbolic name remain
capitalized.

Examples

symbol
start-addr
number-of-bytes
param-1
CCB-name

• Information contained within braces represents mandatory entries of which one must
be chosen.

Examples:

(PC
IT
tAB

$ input-area
‘I. (1)

• Information contained within brackets represents optional entries that (depending
upon program requirements) are included or omitted. Braces within brackets signify
that one of the specified entries must be chosen if that parameter is to be included

Examples:

[,entry-nurnber]
[,R]

CCB-name
HALL }L (1
[,ERRORsymbol]
[,WAIT=YES]



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

The optional entries (1) and (0) refer to registers 1 and 0. The optional entry (r) refers
to a register (other than 1 or 0) to be designated by you in the macro instruction
statement. For example, the instruction:

LABEL LOPERATIONt OPERAND
1 10 16

I I

Specifies the input area (positional parameter 1) as WORK and the error address
(positional parameter 3) as ERRADDR. It also specifies that, at the time this macro
instruction is executed, register 0 will contain the number of records to be read
(positional parameter 2).

Note the use of the shaded entry 1, which means that an entry of one as the number
of records is assumed if you omit positional parameter 2; and the shaded entry 80,
which means a record image of 80 bytes is to be read if you omit positional
parameter 4.

3.3. USE OF THE ASSEMBLER CODING FORM

To convert your written program to a form that can be conveniently inputted to the
computer, your written work is keypunched into 80-column cards. To make the job of the
programmer, keypunch operator, and any other person who may reference this program
easier, there are conventions for writing and reading programs and reference materials. A
useful tool is the 9000 Series assembler coding form. (See Figure 3—i.)

Theoretically, you could write your program on a plain sheet of paper, as long as you
observe the assembly language formatting rules. Using an assembler coding form,
however, will ease the job, both for you and for the keypunch operator, who must prepare
the punched card deck from your written program.

The paragraphs that follow describe the conventions and rules that apply to the use of this
form. Following these rules will result in a stylized assembly listing that is easy to read
and use, in addition to ensuring that your program executes properly. The assembler user
guide, UP-8061 (current version) gives a detailed description of how to use the coding
form. However, some of the rules and conventions are included here for your convenience.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 3—8
UP-NUMBER

UPDATE LEVEL PAGE

-

3.3.6. Sequence Field

Columns 73 through 80 may be used for entering sequence numbers. This is done by
assigning consecutive numbers to each line of coding and is useful for reassembling the
card deck if it should be dropped. It is good practice to number the lines in multiples of 10,
or even 100. This allows you to insert additional coding lines without having to renumber
the cards when they have been keypunched prior to the modification. Some programmers
use letters in addition to the numbers. This is useful in identifying the deck from which
cards have come if they have been removed for any reason.

3.4. MACRO INSTRUCTIONS

3,4.1. Declarative Maàro Instructions

Declarative macro instructions generate nonexecutable code sequences in the user
program and are used to allocate areas in main storage containing control information for
various system services.

3.4.2. Imperative Macro Instructions

Imperative macro instructions generate executable code sequences in the user program.
These code sequences make up the interface between the user program and the
supervisor. Imperative macro instructions are used to request services of the supervisor or
to direct the operation of the user program.

3.4.3. Summary of Supervisor Macro Instructions

Table 3—i. is a list of the OS/3 supervisor macro instructions and a brief statement of the
service performed by each. In this list, ARGLST, BCW, CCW, CCB, PIOCB, DTFPF, PCA,
SAT, TCA, ECB, DDCPF, and DCFLTare declarative macro instructions; the remainder are
imperative macro instructions. Complete descriptions of the macro instructions are
contained in Sections 4 through 11 of this manual in the same functional groups as
indicated in the table.

3.5. PROGRAMMING CONSIDERATIONS FOR MACRO INSTRUCTIONS

When the assembler encounters a macro instruction, it generates machine code, which is
called inline expansion code. This code can consist of machine instructions and machine
data. Data, in turn, may consist of constants defined by the macro instruction at assembly
time and reserved main storage, which is not used until program execution time.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

A macro instruction, especially if it is a request to the supervisor for some service, will
usually generate a supervisor call (SVC) instruction. When the program is later executed,
the SVC will either be processed by the resident supervisor, or a transient will be called.
The actual processing of the request is then performed by the supervisor; the inline
expansion code generated by your program is normally just used to set up parameters.
Because SVC instructions are processed in the supervisor region and not in your program
region, you can use macro instructions freely, without having to allocate extra main
storage to your job.

Of the 1 6 general registers available to assembler programs, registers 2—1 3 are generally
left unchanged by macro instructions. Registers 0 and 1, however, are the principal means
by which data and program control are passed between user programs and macro
instructions. Consequently, these two registers cannot be counted upon to remain
unchanged during execution of any macro instruction. If it is important to keep intact the
data in either of these two registers, you should save the data in main storage before calling
the macro instruction and load the data back into the register afterwards. In addition to
registers 0 and 1, SAT macro instructions (Section 6) and program linkage macro
instructions (8.5) change registers 14 and 15. Most other macro instructions, though, leave
these two registers intact.



LATE PAGE

Table 3—1 Supervisor Macro Instructions (Part 1 of 3)

PHYSICAL INPUT/OUTPUT CONTROL SYSTEM

Physical Input/Output Control

BCW Generate buffer control word.
CCW Generate channel command word,
CCB Generate command control block.
PIOCB Generate physical input/output control block,
RDFCB Read file control block.
EXCP Execute channel program.

Input/Output Synchronization

WAIT Wait for one or all input/output requests to complete.

WAITM Wait for one of several input/output requests to complete.

SPACE MANAGEMENT

Disk

ALLOC Assign space to a new disk file or to an existing disk file.

EXTEND Assign additional space to an existing disk file.

SCRTCH Deallocate one or more disk files.

RENAME Rename a disk file.

OBTAIN Access VTOC user block.

Diskette

ALLOC Assign space to a new diskette file.

SCRTCH Deallocate a diskette file.

OBTAIN Obtain diskette label information.

SYSTEM ACCESS TECHNIQUE (SAT)

Disk SAT

DTFPF Define a partitioned file.

PCA Define a partition control appendage.

OPEN Open a disk file,

GET Retrieve next logical block.
PUT Output a logical block.
WAITF Wait for block transfer.

READE Search track by key, equal.
READH Search track by key, equal or higher.

SEEK Access a physical block.

CLOSE Close a disk file,

Tape SAT

SAT Defines magnetic tape file.
TCA Define a tape control appendage.

OPEN Open a tape file.
GET Get next logical block.
PUT Output next logical block,

WAITF Wait for block transfer.
CNTRL Control tape unit functions.

CLOSE Close a tape file.



8075 Rev.3 SPERRY UNIVAC Operating System/3 A 3—11
UP-NUMBER UPDATE LEVEL PAGE

Table 3—1. Supervisor Macro Instructions (Part 2 of 3)

MULTITASKING

Task Management

ECS Generate an event control block.
ATTACH Create and activate an additional task.
DETACH Terminate a task normally.
TYIELD Deactivate a task.
AWAKE Reactivate an existing nonactive task.
CHAP Change the priority of a task.

Task Synchronization

WAIT Wait for a task request to complete.
WAITM Wait for one of several task requests to complete.
POST Activate the waiting task.
TPAUSE Deactivate one or more tasks other than the issuing task.
TGO Reactivate one or more tasks other than the issuing task.

PROGRAM MANAGEMENT

Program Loader

LOAD Load a program phase and return control.
LOADR Load a program phase, relocate address-constants, and return control.
LOADI Locate a program phase and store its phase header in a work area.
FETCH Load a program phase and branch.

Job and Task Termination

EOJ Terminate a job step normally.
CANCEL Terminate a job abnormally.

Timer Services

GETIME Obtain current time and date.
SETIME Set an elapsed time counter for the requesting task.

Program Linkage

CALL/VCALL Call a program.
ARGLST Generate an argument list.
SAVE Save register contents.
RETURN Restore registers and return.

Island Code Linkage

STXIT Link to island code subroutine.
EXIT Exit from island code subroutine.



8075 Rev. SPERRY UNIVAC Operating System/3 3—12

UP-NUMBER UPDATE LEVEL PAGE

Table 3—i. Supervisor Macro Instructions (Part 3 of 3)

PROGRAM MANAGEMENT (cont)

System Information Control

GETCOM Retrieve data from job communication area.
PUTCOM Place data into job communication area.
GETINF Retrieve data from system control tables.

Control Stream Reader

GETCS Retrieve embedded data file submitted in job control stream.
SETCS Reset pointer to embedded data file.

DIAGNOSTIC AND DEBUGGING

Storage Displays

SNAP/SNAPF Print out portions of main storage and return control.
DUMP Print out the job main storage and terminate the job step.

Checkpoint Facility

+ CHKPT Record a checkpoint.
DDCPF Define a SAT checkpoint file.
DCPOPN Open a SAT checkpoint file.
DCPCLS Close a SAT checkpoint file.

4 DCFLT Generate a file list table.

Monitor and Trace

1/ OPTION TRACE Monitor from start of job.
(This is a job control statement, not a macro instruction.)

MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

WTL Write a message into system log file.

—- WILD Write a message into system log file after displaying on system console or workstation.

GETMSG Retrieve message from canned message file.

OPR Display a message on system console or workstation.

OTHER SERVICES

Spooling

BRKPT Create a breakpoint in a spool output file.



PART 2. PHYSICAL INPUT/OUTPUT
CONTROL





8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A 4—1

UP-NUMBER UPDATE LEVEL PAGE

+
4. Physical Input/Output Control

System (PIOCS)

4.1. GENERAL

The resident supervisor of OS/3 contains a set of routines called the physical input/output
control system (PIOCS) that controls the activity between the processor and all peripheral
devices connected to the mutliplexer, selector, and integrated channels. These input/output
(I/O) channels operate independently of the processor and allow I/O operations on a channel
to overlap with processing and with operations on other I/O channels.

PIOCS:

B schedules I/O requests to maintain optimum I/O throughput without burdening the
problem program;

• initiates I/O operations;

B tests for error or other exceptional conditions pertinent to the actual physical transfer of
data; and

• activates error recovery procedures in the event of peripheral device errors.

Problem program interface to the IOCS is provided at two levels: data management (logical I/O
control system) and PIOCS macro instructions.

Data management routines substantially reduce programming effort, especially for jobs
requiring a great amount of I/O processing. The routines, by handling the foregoing I/O
functions for the programmer automatically, enable you to concentrate on the logical record,
because the applicable PIOCS macro instructions are contained in the data management
macro routines and you need only limited knowledge of the peripheral device. The data
management macro instructions are described in the data management user guide, UP-8068
(current version>.

The use of the PIOCS macro instructions may be advantageous for certain programs, which,
because of unique I/O devices, need to control the actual handling of the data to be read or
written. To use PIOCS macro instructions, you must have an in-depth knowledge of the
particular peripheral device and its control requirements. At the PIOCS level, the problem
program is responsible for performing functions such as:



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A 4—2

UP-NUMBER UPDATE LEVEL PAGE

constructing the actual I/O commands processed bythe device as well as constructing the
control blocks used by PIOCS for issuing the I/O order;

• ensuring the desired sequence of I/O commands bythe proper use of I/O synchronization

macro instructions;

• blocking/deblocking logical records;

• alternating I/O buffer areas;

• detecting wrong-length records;

• handling end-of-file (EOF) or end-of-volume (EOV) conditions;

• processing labels;

• translating ASCII data to EBCDIC on input, or EBCDIC data to ASCII on output; and

• handling unique error conditions.

4.2. PHYSICAL I/O CONTROL

4.2.1. General

Detailed tabular information pertaining to each request must be supplied if the problem
program is to communicate effectively with the IOCS facilities of the resident supervisor
through the PIOCS macro instructions.

The following PIOCS macro instructions are available for establishing the tabular information
and for requesting services of the supervisor and the IOCS:

• Table generation macro instructions (declarative)

BCW
Constructs a buffer control word (BCW), which is used by the integrated I/O channels
and multiplexer channel.

ccw
Constructs a channel command word (CCW) which is used by the selector I/O

channel and the physical device.

CCB
Constructs a command control block (CCB), which is used as a bidirectional

communications medium between the problem program and the IOCS routines in the
supervisor.

PIOCB
Constructs a physical input/output control block (PIOCB), which is used as a buffer
for file control blocks (FCB) containing file and device information that is compiled by
job control at the time the job control stream is processed.



8075 Rev. 3

UPNUMBER
SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL PAGE

• Service request macro instructions (imperative)

RDFCB
Reads a file control block (FCB), which completes the PIOCB with information
compiled at job execution time by job control. (The RDFCB macro instruction must be
executed prior to any service for an associated PIOCB.)

EXCP
Requests execution of a channel program. The EXCP macro instruction initiates the
PIOCS routine. Before this instruction can be executed, you must construct an I/O
control packet that consists of a CCB, a CCW or a BCW, and a PIOCB.

The relationship of the basic PIOCS macro instructions is illustrated in Figure 4—1.

Figure 4—1. Relationship of Basic PIOCS Macro Instructions



8075 Rev. SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

4.2.2. General I/O Usage Requirements

The users of I/O facilities are required to perform certain prerequisites for I/O communication.
These include:

• Description of the file to the operating system through DVC, LBL, or LFD statements.

• Description of the file to the data management system through file description tables and
file control routines.

Description of the file to the operating system is through job control statements which describe
the device to be used, the volume which contains the file, and the logical name assigned to the
file.

Description of the file to the data management system includes the option of linking to a
standard data management file control module, using a resident module, or assembling and/or
linking a special tailored module with the user program.

The file description table must be included with the user program.

The macro instructions used in the I/O system are best described at the levels at which they are
employed.

a User level macro instructions

The execution of imperative macros (EXCP, RDFCB, SWAP) results in control being passed
to the appropriate control routine within the operating system. You specifythe name of the
file, which is the name that was assigned to the file control block by an entry in the label
field of the PIOCB macro instruction.

Example:

RDFCB MASTER
EXCP FILEIN
WAIT FILEIN

FILEIN CCB
MASTER PIOCB

The PIOCB declarative macro instruction reserves an area which is the repository of the file
control block. The name assigned to the PIOCB must be a duplicate of the character string in the
LFD job control statement.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 45

UP-NUMBER UPDATE LEVEL PAGE

• Data management level macro instructions

Execution of the imperative I/O macro instructions results in the data management file
control routine reducing your macro to a new level of imperative macro instructions. These
include the RDFCB (read file control block), the EXCP (execute channel program), and the
WAIT (wait for channel program completion) macro instructions.

The primary parameter to the EXCP and WAIT macro instructions is the CCB. The CCB
macro provides the ability to specify a particular command to a particular device.

4.2.3. Generate Buffer Control Word (BCW)

Function:

The BCW macro instruction generates a buffer control word which providesthe hardware
parameter interface to the integrated disk adapter, integrated peripheral channel, f
multiplexer channel, and the integrated line adapters for use by the PIOCS routines. Also,
the BCW macro instruction provides you with a limited device-independent interface
across selector channel devices. In this case, the PIOCS routines construct a CCW chain
by using the information provided in the BCW. The formats of the BCW are shown in +
Figures 4—2, 4—3, and 4—4.

Note that the BCW of formatting commands sent to the 8411 and 8414 disk
subsystems must specify a single record.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL tOPERATION t OPERAND

symbol BCW device-cmd- code [,data-addr] [,data-flag]
[,data-byte-count] [,repl-addr] [,repl-flag]
[,repl-byte-count] [,control-flag]

Label:

symbol
Specifies the symbolic address of the buffer control word. This name is used to refer
to the BCW.

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the I/O
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, 1 6 bytes containing 0’s are reserved for the BCW, and the assembly listing
will contain an error note.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

data-addr
Specifies the symbolic address of the data being transferred. This is the active
buffer for the system console and the integrated line adapters. For the
read/punch, it is the address of the punch output buffer. This parameter is
required if data is being transferred to or from storage.

If omitted, the data address field in the BCW is set to 0’s, and the assembly listing will
contain an error note.

Positional Parameter 3:

data-flag
Specifies the flag byte associated with the address of the active buffer. This is
written in the form X’xx’ as follows:

For the integrated disk adapter:

X’40’ Indicates a search operation is to be performed on an entire
cylinder rather than a track.

X’80’ Indicates no data to be transferred.

For the integrated peripheral channel:

X’20’ Indicates no data to be transferred. (This entry can also be used
for the multiplexer channel.)

X’80’ Indicates a replacement operation is to be performed. If this
entry is used, positional parameters 5, 6, and 7 are also
required.

If omitted, X’OO’ is assumed, indicating normal operation as specified by the device
command code, data address, and data byte count fields in the BCW.

Positional Parameter 4:

data - byte-count
Specifies the number of bytes to be transferred or the number of sectors to be
transferred for a sectored IDA device.

If omitted, zero is assumed. For a search on the integrated disk adapter, this indicates
the maximum number of bytes or sectors are to be transferred; and for a read or a
write, this indicates no data is to be transferred. For the integrated peripheral
channel, this indicates the maximum number of bytes are to be transferred.

NOTE:

Positional parameters 5, 6, 7, and 8 apply only to the integrated peripheral channel.



8075 Rev. 3
UP-NUMBER

BCWO

BCW 1

BCW2

BCW3

re

SPERRY UNIVAC Operating Systemf3
4—7

UPDATE LEVEL PAGE

Bits Allocation Function

0—7 Command code Command code to be executed by IDA; bits 0—3
must be zero

8 UnassIgned; must be set to zero

9—11 Key 3-bit field containing storage protection key

12 Unassigned; must be set to zero

13—31 Address Storage address on which command operates

command 0 key 0 address

0 7 8 9 11 13 13 31

skip multitrack dLrectjOn stop read

count

47j414950511255 63

condition

0 - 0 Sk 0 4 0 head address 0 4 0

64 69 $ 79 80 8 84 87 8889 90 96

calibrate

0 4 w 0 absolute cylinder address record no 0 4 0

9697 101 102 111 112 119 120 124142k 127

Figure 4—2, Buffer Control Word (BCW) Format for Integrated Disk Adapter (Part 1 of 3)



I SPERRY UNIVAC Operating System/3 [
_____

Bits Allocation Function

32—47 Unassigned; must be set to zero

48 Skip sentinel Set with read data command to indicate data

transfers inhibited to main storage;

set with search/read commands to indicate

search begins at index

49 Muititrack sentinel Set to 1 with search/read command to indicate

search limited to cylinder boundaries rather

than singie track

50 Direction sentinel If 1, specifies accessor moves in direction of

decreasing cylinder numbers

51 Stop read Stop read command on record that causes error

52—54 Unassigned; must be set to zero

55—63 Count On search/read commands — number of bytes to

be searched

On data read or Write commands — number of

records to be processed

64—69 Unassigned; must be zero

70—79 Seek difference magnitude During seek operation, specifies magnitude of

difference between accessor present position and

desired position

80—83 Unassigned; must be set to zero

84—87 Head address 4-bit field specifying current operation head

address

88,89 Track condition Condition of track where operation acts

90—95 Unassigned; must be Set to zero

Figure 4—2, Buffer Control Word (BCW) Format for Integrated Disk Adapter (Part 2 of 3)



4—98075 Rev. 3 SPERRY UNIVAC Operating System/3
UPDATE LEVELUP-NUMBER PAGE

Bits Allocation Function

96 Recalibrate Set to 1 — accessor reoriented and moved to

cylinder 0; overrides bits 71—79 and 50

97—101 Unassigned; must be set to zero

102—111 Absolute cylinder address Final position of accessor after completed
seek or recalibrate

112—119 Record number Number of record where operation is performed

or initiated

120—124 Unassigned; must be set to zero

125—127 Programmer offset Bit 125 = 1 Programmed offset used for command

Bit 125 0 Programmed offset not used; bits
126 and 127 ignored

Bit 126 = 1 Major offset

Bit 126 = 0 Minor offset

Bit 127 = 1 Offset away from hub

Bit 127 = 0 Offset toward hub

LEGEND:

System supplied data

Data supplied by the user via the macro instruction that directs the supervisor to generate the control

block

Figure 4—2. Buffer Control Word (BCW) Format for Integrated Disk Adapter (Part 3 of 3)



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4—10

BCWO

BCW1

command code 0 key(a) 0 address(a>

0 7
8

11 12 13 31

BCW2

BCW3

f 0 1 0 key(r> 0 address(r>

6465 7 73 7 7677 95

Bits Allocation Function

0—7 Command code Field accessed by PC during SlO instruction

8 Unassigned; must be set to zero

9—11 Key (a) 3-bit field containing I/O storage protection key

12 Unassigned; must be set to zero

13—31 Address (a> Allows IPC to reference any byte in main storage
during data transfer sequences

Bit 31 0 Most significant byte of
addressed half word

Bit 31 = 1 Least significant byte of
addressed half word

c

(r)

32

jt I c t

I frI 04.0-0 count(rl (a> 0 (a> 0-*.—0 count(a)

334 35 37j38 47 48 495061 53 54 63

Figure 4—3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel (Part 7 of 3)



4—118075 Rev. SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGEUP-NUMBER

Bits Allocation Function

32 c (a) Specifies data chaining operations when set to 1

33 Unassigned; must be set to zero

34 t (a) Single control bit used with c(a) bit:

c(a) = 0 and t = 0 Use a fields for current
data transfer sequence
(no data chaining)

cIa) = 0 and t = 1 Terminates control

c(a) = 1 and t 0 Use a fields for current
data transfer sequence
(data chaining initial a
and r setting)

cIa) = 1 and t 1 a fields depleted; replace
ment operation required

t(a) and cIa) = 1:

f = 0 Terminates with buffer
wraparound error

f = 1, c(r) = 1 or 0, Terminates normally

t(r) — 1

f = 1, c(r) = 0, Normal data transfer;
t(r) = 0 no chaining

f = 1, c(r) =1, Normal data

t(r) 0 transfer with chaining

35—37 Unassigned; must be set to zero

38—47 Count (r) Byte count required for all data transfer
operations

48 c (a) Specifies data chaining operations when set to 1

49 Unassigned; must be set to zero

50 t(a) Same as for bit 34

51—53 Unassigned; must be set to zero

54—63 Count (a) Byte count required for all data transfer
operations

Figure 4—3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel (Part 2 of 3)



8075 Rev, 3 SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL I 4—12

PAGEUP-NUMBER

Bits Allocation Function

64 f (flag bit) indicates to IPC that current contents of
r fields are valid for replacement operation

65—72 Unassigned; must be set to zero

73—75 Key (r) 3bit field containing I/O storage protection key

76 Unassigned; must be set to zero

77—95 Address (r) Allows IPC to reference any byte in main storage
during data transfer sequences

Bits 31 and 95 0 Most signif (cant byte of
addressed half word

Bits 31 and 95 1 Least significant byte of
addressed half word

96— 127 Unassigned; must be set to zero

LEGEND:

System supplied data
= Data supplied by the user via the macro Instruction that directs the supervisor

to generate the control block
a = active
c = chaining
f = flag

= replacement
t = transfer

Figure 4—3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel (Part 3 of 3)



8075 RevS 3

UP-N UMBER

Bcw0

BCW1

BCW2

BCW3

SPERRY UNIVAC Operating System/3 4—13

UPDATE LEVEL PAGE

Bits Allocation Function

0—7 Command code Specifies operation to be performed by device
and channel

8 Unassigned; must, be set to zero

9—i 1 Key Contains i/O storage protection key

12 UnassIgned; must be set to zero

13—31 Data address Allows multiplexer channel to reference any
byte in main storage during data transfer
sequences

32—47 Unassigned; must be set to zero

48 w w 0 Input operation (read)
w I Output operation (write)

49 m m 0 AscendIng address (forward sequence>
m I Descending address (reverse sequence>

50 t t 0 Transfer data
t 1 Termination of data transfer

51—63 Byte count Cortains’byte count required for all data transfers

64— 127 UnassIgned; must be set to zero

LEGEND:

‘ System-supplied data
Data supplied by the user via the macro instruction that directs the supervisor to generate the control
block

command code 0 key oJ data address

0 789 lIt. 13 31

0.. .. .. ... ..‘:‘:‘.....Owmt bytecount

32
..,,,,,,,.,, 47.48495051 63

Figure 4—4. Buffer Control Word (BCW) Format for Multiplexer Channel



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
4—14

UPDATE LEVEL PAGE

Positional Parameter 5:

repl-addr
Specifies the symbolic address of the second buffer area. This is the replacement
buffer for the system console and the line adapters. For the read/punch, it is the
address of the input buffer.

When the byte count decrements to zero during a data transfer operation, this
address replaces the data address specified in positional parameter 2.

Positional parameter 3 (data-flag) must be X’BO’.

Positional Parameter 6:

repl-flag
Specifies the flag byte associated with the address of the replacement buffer.
When the byte count decrements to zero during a data transfer operation, this flag
byte replaces the data-flag specified in positional parameter 3. To continue the
replacement operation, this entry must be X’80’.

Positional parameter 3 (data-flag) must be X’80’.

Positional Parameter 7:

repl-byte-count
Specifies the number of replacement bytes to be transferred. When the byte count
decrements to zero during a data transfer operation, this byte count replaces the
data byte count specified in positional parameter 4.

Positional parameter 3 (data-flag) must be X’BO’.

Positional Parameter 8:

control-flag
Specifies the control flag for communication devices associated with the line
adapters of the integrated peripheral channel. Details of this parameter and its use
will be supplied later.

Examples of BCW usage:

LABEL L?OPERATION/ OPERAND
1 10 16

ARt.I.ihk._±_ Ckl ,:;A1R 8ø4 LjL_i_

I I I I .jjL.L_ —
._j I - I

DDbiT - ,REAI , IbAREAi2,4,So’
4 I 41 4 4 Ii III 1 I

PRUb.4I I 1 — 4,4I44ATRE.48I ,I4l2 1 I

I I I I I — II 4 — I Ill I III 4 I

— p I I I I I I

I.

2.

3.



8075 Rev. SPERRY UNIVAC Operating Systeml3
A 4—15

UP-NUMBER UPDATE LEVEL PAGE

Explanations:

1. Read one 80-column card in EBCDIC mode.

2. Read/punch 80-column card in EBCDIC mode. Punch buffer is IOAREA1 ; read buffer
is IOAREA2.

3. Print 132 positions and advance one line.

4. Read one sector on 841 6/1 8 disk.

NOTE:

The cylinder half word (BCW name+ 12), the head address byte (BCW name+ 10), and the
record (sector) number byte (BCW name+14) can be set statically by use of the ORG
assembler control directive, or dynamically via instruction execution.

4.2.4. Generate Channel Command Word (CCW)

Function:

The CCW macro instruction generates a channel command word which provides the
hardware parameter interface to the selector channels for use bythe PIOCS routines. The
format of the CCW is shown in Figure 4—5. The format of the CAW, which contains the
first CCW address, is shown in Figure 4—6.

The supervisor can only handle command chains on selector devices through two
levels of transfer in channel (TIC) within command chain. This limitation is due to the
lack of hardware address relocation on CCWs and the need to have a software
function perform the absolutizing and relativizing of CCW addresses.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL tOPERATION tx OPERAND

symbol CCW [device-cmd-code] [,data-addr] [,flagl
[,data-byte-countl

Label:

symbol
Specifies the symbolic address of the channel command word. This name is used
to refer to the CCW.



8075 Rev. SPERRY UNIVAC Operating System/3 4—16

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the I/O
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, eight bytes containing 0’s are reserved for the CCW, and the assembly
listing will contain an error note.

data address
command code 0 0 (Next CCW address if

TIC command)

0 7 8 1 13

oJ byte count

31

3 333435 4 48 63

Bits Allocation Function

0—7 Command code Specifies operation to be performed by device
and channel

8—12 Unassigned; must be set to zero

1 3—31 Data address Address of location in main storage into or from

which first byte of data is transferred

32 Unassigned; must be set to zero

33 cc (chain command flag) When valid ending device status received, new

CCW fetched and operation specified by new

command code initiated

34 cli (suppress length indication flag) If set to 1, incorrect length condition not

indicated to program; if cc = 1 also, command

chaining not suppressed

35—47 Unassigned; must be set to zero

48—63 Byte count Byte count required for all data transfer

operations

LEGEND:

System supplied data
Data supplied by the user via the macro instruction that directs the supervisor to generate the control

block

Figure 4—5. Channel Command Word (CCW) Format for Selector Channel



4—118075 Rev. 3
SPERRY UNIVAC Operating Systeml3

UPDATE LEVEL PAGEUP-NUMBER

key 0 I 0 first CCW address

0 2 3 1213 31

Bits AUocation Function

0—2 Key I/O storage protection key used by channel for
all storage accesses of data and CCWs

3—12 Bitssettozero

13—31 First CCW address Controls I/O operation initiated by SlO
instruction

LEGEND:

System-supplied data

Figure 4—6. Channel Address Word (CA W) Format

Positional Parameter 2:

data .add r
Specifies the symbolic address of the data being transferred. This parameter is
required if data is being transferred to or from storage.

If omitted, the data address field in the CCW is set to 0’s, and the assembly listing will
contain an error note.

Positional Parameter 3:

flag
Specifies the flag byte associated with the address of the buffer. This is written in
the form X’xx’ as follows:

X’20’ Indicates incorrect data length to be suppressed.
X’40’ Indicates command chaining.
X’60’ Indicates both of above.

If omitted, X’OO’ is assumed, indicating normal operation as specified by the device
command code, data address, and data byte count fields in the CCW.

Positional Parameter 4:

data.-byte-count
Specifies the number of bytes to be transferred.

If omitted, zero is assumed, resulting in a maximum data transfer.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
4—18

UP-NUMBER UPDATE LEVEL. PAGE

Examples:

Search key equal/read data (for a following update) on 8414 disk.

LABEL tOPERATIONt OPERAND COMMENTS
1 10 16

CL ‘(,TADDR,
AtriL cw± -

i ( ‘ Search key equal
-J__J_L__LJ__1__L_

xw eet each andi ID f not correct record

I I
giq Readdata

Format write a data record on 8414 disc.

L I

x Lj each on pracedseg record

‘s’i I Repeat search If not correct record
4LJ -..-I

-

writ

. i — iii ii ii I II II II II

The 218-byte buffer definedas IQAREA 1 contains an 8-byte count field, a 1 0-byte key fieki, and
a 200-byte data field.

4.2.5. Generate Command Control Block (CCB)

Function:

The CCB macro instruction generates a command control block which serves as a link
between the PIOCB and the BCW or the CCW. There must be at least one CCB macro
instruction for each type of I/O peripheral device to be controlled by physical I/O macro
instructions. An active CCB pertains to one I/O request at a time; therefore, each
outstanding I/O request must have a unique CCB. The format of the CCB is shown in
Figure 4—7. This is a declarative macro instruction and must not appear in a
sequence of executable code.

Format:

LABEL 1I OPERATION Ls OPERAND

symbol CCB PIOCB-name, ( BCW-name
‘ PUB-entry-number

CCW-name,
.

r ferror-option
L woo’



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 4—19

UP-NUMBER UPDATE LEVEL PAGE

Label:

symbol
Specifies the symbolic address of the command control block. This name is used to
refer to the CCB.

Positional Parameter 1:

PIOCB-name
Specifies the symbolic address of an associated physical input/output control block
generated by the PIOCB macro instruction. (The address furnished will be modified by
this macro instruction to be the address of the PUB address within the PIOCB.)

Positional Parameter 2:

BCW-name
Specifies the symbolic address of a BCW.

CCW-name
Specifies the symboIicaddress of a CCW, or a list of CCWs if command chaining is
used.

When you use data management macro instructions, the BCWs and CCWs are generated
automatically. When using PIOCS macro instructions, you must specify each BCW and
CCW according to the I/O functions desired.

Positional Parameter 3:

PU B-entry-number
May be 0, 2, 4, 6, 8, 10, 1 2, or 14 indicating one of eight 2-byte fields in the PIOCB
containing the absolute address of the PUB for the device involved in the I/O
operation. (Zero indicates the first entry, 2 the second, 4 the third, etc.)

If omitted, zero is assumed (indicating the first PUB address).



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 4—20

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 4:

error-option
Specifies error acceptance options elected at assembly time. This is written in the
form X’xx’ as follows:

XOO’ Indicates that no error conditions are acceptable to the problem
program.

X’Ol’ Block number area is reserved in buffer.
X’02’ Reserved for system use.
X’04’ Reserved for system use.
X’08’ Indicates system access CCB. Device independence can be achieved

by furnishing a BCW for an integrated peripheral.
X’lO’ Indicates a diagnostic request. Reserved for system use.
X’20’ Indicates that, following the normal error recovery attempts by the

supervisor, those errors classified as unique are acceptable to the
problem program. See note 1.

X’40’ Indicates that all unrecoverable error conditions are acceptable to the
problem program following the normal error recovery attempts by the
supervisor. See note 2.

X8O’ Indicates user has own error code. No recovery will be attempted by
the supervisor, and device status and sense are communicated to the
user in the CCB.

NOTES:

Accept Unique Errors (byte 3, bit 2). Unique errors may be considered as
recoverable errors. The meaning of unique errors is different for different
devices.

For a disk, unique error means record not found. Your program may expect that
certain records you are looking for in a file may not be there. An example of this is
an update-addprogram. If the record is found, it is updated; if it is not found, it is
added to the file. In this case, you should set the accept unique errors bit (byte 3,
bit 2) in the CCB. If you receive a no record found condition (byte 2, bit 3), PIOCS
will retry the error twice. If the record is still not found and the CCB is marked to
accept unique errors, no error message is displayed on the console and control is
returned to your program with the no record found bit set in the CCB.

For tape, unique error means a tape that is busy rewinding. If you issue an
EXCP to a magnetic tape which is rewinding, the CCB will be returned with
the unique error bit (byte 2, bit 2) set. This occurs whether or not accept
unique errors is set in the CCB. The EXCP should be reexecuted until the
status does not occur. At that time, the EXCP is considered completed.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 4—21

UP-NUMBER UPDATE LEVEL PAGE

For printers, unique error means character mismatch. This means that there
is no match between a code in the load code buffer (LCB) and a character in
the print line buffer. When you generate the LCB for your printer, you may
choose whether or not to report character mismatches. If you choose not to
report character mismatches, they will be ignored and no console error
message will be displayed. If the LCB is generated so that character
mismatches are to be reported and a character mismatch occurs, an error
message will be displayed on the console. If the accept unique errors bit is
set in the CCB, the options on the error message will be R (retry) or /
(ignore).

If the operator responds I, control will be returned to your program with the
unique error bit set in the CCB. If the accept unique errors bit is not set, the
options on the error message will be R (retry) or C (cancel).

There are no unique errors for readers andpunches. Note that, except for tape, if
a unique error occurs and the CCB Is not marked to accept unique errors, PIOCS
will treat the unique error as an unrecoverable error.

2. Accept Unrecoverable Errors (byte 3, bit 1). If you set this bit in the CCB and
an unrecoverable error occurs, the console message will appear with the R
(retry) and U (accept unrecoverable) options. If the operator responds R, the
command will be retried, If the operator responds U, control will be returned
inline following the command, and the unrecoverable error bit (byte 2, bit 1)
will be set in the CCB. If you do not set the accept unrecoverable bit in the
CCB and an unrecoverable error occurs, the console message will appear
with the R (retry) and the C (canOel) options. After successive retries, if the
error still is unrecoverable, the operator may choose to respond C and the
job will be cancelled.

If omitted, the entry X’OO’ is assumed, indicating that no error conditions are
acceptable to the problem program.

The CCB is used to communicate with the functional IOCS routines executing the I/O
operations. The generated CCB forms the logical connection between the PIOCB and the CCW
or the BCW. The PIOCB references the actual peripheral device and the CCW or the BCW
defines and controls the function of the particular device and its data transfer. The CCB also
specifies user options pertinent to the I/O request in the event of an error, and reflects the
status of the request. When the related I/O interrupt occurs, the IOCS also stores status
information pertinent to the interruption in the associated CCB.

Because the CCB serves as a 2-way communications medium between the IOCS and the
problem program, it is used for one active I/O request at a time; therefore, every active I/O
request must have a unique CCB.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 4—22

UPDATE LEVEL PAGE

control byte 1 I/O error count transmission byte control byte 2

TCB address

or next CCW address

CCB link I address®

or residual CCW byte count

CCW address

PIOCB pointer (PUB address)

sense byte 0 sense byte 1 sense byte 2 sense byte 3

sense byte 4 sense byte 5 device status channel status

___

® During the I/O command execution, bytes 4—7 contain the address of the TCB associated with this CCB. At I/O

command termination, PIOCS inserts the address of the next CCW in the chain.

During I/O command execution, bytes 8—il contain the address of the next CCB in the chain atthis job level. At I/O

® command termination, PIOCS inserts the number of bytes remaining in the CCW byte count (when the I/O command

terminated) into bytes 10 and 11.

0 1 2 3Byte

0

4

8

12

16

20

24

NOTES:

Figure 4—7. Command Control Block (CCB) Format (Part 1 of 2)



8075 Rev. 3

i

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

423

PAGEUP-NUMBER

Byte Length Content

0 1 Control byte 1
Bits 0-2 Reserved

3 1 Ignore block numbers

4 Reserved

5 1 = CCB ri wait condition
6—7 Reserved

Binary count of errors encountered processing the CCB

2 1 Transmission byte

Bit 0 0 CCR in process

1 = CCB processed

1 1 = Unrecoverable error

2 1 Unique error
3 1 = No record found
4 1 Unit exception

5 1 = Block numbers not equal

6 1 Track end

7 1 Cylinder end

3 1 Control byte 2
Bit 0 1 = User error recovery

1 1 = Accept unrecoverable errors
2 1 Accept unique errors
3 1 Diagnostic CCB. Reserved for system use
4 1 = System access CCB
5 Reserved
6 Reserved
7 1 = Block number area reserved

4—? 4 During I/O command execution, full-word address

of TCB associated with this CCB
or

At I/O command termination, full-word address

of next CCW if not at end of command chain

6-11 4 During I/O command execution, full-word address

of next CCB
or

10—il 2 At I/O command termination, bytes remaining in

CCW byte count when I/O command was terminated

12—15 4 Full-word address of firtt CCW

16—19 4 Address of PIOCB entry which contains the half-word

address of PUB associated with this CCB

20—23 4 Sense bytes 0 through 3

24,25 2 Sense bytes 4 and 5

26 1 Device status

Bit 0 1 = Attention

1 1 Status modifier

2 1 = Control unit end

3 lBusy

4 1 Channel end

5 1 = Device end

6 1 Unit check

7 1 = Unit exception

27 1 Channel status

BitO 0
1 1 Incorrect length

2 1 = Program check
3 1 = Invalid address
4 1 Channel data check

5 1 = Interface control check

6 1 = Channel control check

7 1 Buffer terminate

Figure 4—7. Command Control Block (CCB) Format (Part 2 of 2)



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 424

UPNUMBER UPDATE LEVEL PAGE

4.2.6. Generate Physical Input/Output Control Block (PIOCB)

Eu nct ion:

The PIOCB macro instruction generates a physical I/O control block which provides a
buffer into which the RDFCB will transfer the FCB which contains file and device
information defined in the job control stream. The format of the PIOCB is shown in
Figure 4—S. This is a declarative macro instruction and must not appear in a
sequence of executable code.

Format:

LABEL EOPERATIONL OPERAND

(MAX
symbol PIOCB FCB-length

U. 16

Label:

symbol
Specifies the symbolic address of the physical I/O control block. This name is used to
refer to the PIOCB. The characters appearing in this name become the 8-byte
character string (file name) generated in the first eight bytes of the PIOCB and used as
a search key by the RDFCB macro instruction to locate the file control block.

Positional Parameter 1:

MAX
Specifies that an area is to be reserved within the PIOCB large enough to contain the
complete FCB including the 8-byte file name. The size of the FCB area is stored as a
binary constant in the 2-byte FCB length field in the PIOCB followingthefile name.

FCB -length
Specifies the number of bytes to be reserved within the PIOCB for the FCB. The size
may be from 1 6 to 256 bytes. This option is used to limit the size of the PIOCB for the
purpose of reading partial file control blocks.

If omitted, a minimum size PIOCB of 16 bytes is generated, allowing for storage of
the file name, the FCB-length, and only the first six bytes of the file control block
data. These six bytes contain the 4-byte device type code and the absolute address
of the physical unit block for the device assigned to the file.

Error-free use of space management functions (for example, those provided by the
ALLOC and SCRTCH macro instructions) requires a fairly complete FCB. When you
issue an RDFCB and PIOCB macro instruction combination to read the FCB into main
storage, do not use the default value (1 6 bytes) in the PIOCB macro instruction.
Instead, either specify the necessary FCB length or, for maximum safety, use the
MAX parameter.

The PIOCB macro instruction is used to generate physical I/O control blocks. These blocks
serve as repositories for file and device information previously compiled by job control at the
time the job control stream was evaluated. This information is stored in the form of a file control
block. File control blocks are stored in the job run library on the system resident direct access
device.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

4—25

PAGE

At assembly time, the PIOCB macro instruction provides main storage space for the following
information:

Eight-byte file name (search key)

An 8-byte character string is generated within each physical I/O control block. This
character string is required by the RDFCB macro instruction to obtain the file control block.
The characters in this 8-byte search key are identical to the characters appearing as the
label of the PIOCB macro instruction.

a I 2

FCB length device typo

device typo contf PUB I address

PUB 2 address PUB 3 address

PUB 4 address PUBS address

PUB 6 address PUB 7 address

PUB B address

bytes 19—44 of file identifier

file serial nomber
vol seq no.

vol. seq. no. coot) creation date

expiration date eotent count

eotent storage length eotent storage start address

bytes 1 —lB of file identifier

file type

reserved option codas seconthry allocation

reserved (15 bytesl

flats

ovmber of number of

PUB

addresses volumes

vol 1 VSN or EBB pointer

xvi 2—22 VSN or EBB pointer entries

vol 23 VSN or EBB pointer for pointer so neot PCBI

file name

Byte

a

B

12

16

26

24

29

32

52

56

60

64

65

72

76

92

56

100

112

116

120

124

24B

252

Figure 4—8. Physical I/O Control Block (PIOCB) and File Control Block (FCB) Format (Part 1 of 2)



8075 Rev. 3 SPERRY UNIVAC Operating System/3
4—26

UP-NUMBER UPDATE LEVEL PAGE

NOTES:

1. Physical I/O control block (PIOCB) refers to the buffer area generated by the PIOCB macro instruction. File control block

(FCB) refers to the file control data read into the buffer area by the RDFCB macro instruction. Minimum PIOCB includes bytes

0 to 15; maximum PIOCB includes bytes 0 to 255.

2. Bytes 1 18 to 255 consist of a 6-byte field for each volume which contains either a 6-byte volume serial number (VSN) or a 4-

byte extent request block (ERB) pointer if the volume was not allocated at the time the FCB was built. If there are more than
23 volumes, the last field contains a pointer to the next FCB.

Figure 4—8. Physical I/O Control Block (PIQCB) and File Control Block (FCB) Format (Part 2 of 2)

Half-word length field

A 2-byte field immediately follows the 8-byte search key. This field contains a binary count
of the number of bytes reserved for the file control block. This binary count ranges from a
minimum of 1 6 to a maximum of 256. Altering the contents of this half-word field is not
recommended since the field defines the size of the PIOCB and is used as the requested
length of the rile control block. The RDFCB macro instruction transfers onlythe number of
bytes equal to this size or less.

Part or all of a file control block

A 2-byte field is reserved for each device that is allocated to a file. A maximum of eight
fields is permitted. The first 2-byte field is referred to in positional parameter 3 of the CCB
macro instruction (4.2.5) as PUB-entry-number zero, the second field as entry two, the
third field as entry four, and the fourth field as entry six, etc. Following the successful
completion of an RDFCB macro instruction, these PUB address fields contain the absolute
addresses of the physical unit blocks that identify the assigned devices. Device
assignments indicated in the file control block are made by job control from the
parameters in the LFD and DVC statements. Thus, the RDFCB macro instruction, in
conjunction with the PIOCB macro instruction, dynamically links the problem program
with the device allocations made by job control.

4.2.7. Read File Control Block (RDFCB)

Function:

The RDFCB macro instruction locates and transfers the file control block into the physical
I/O control block in main storage.

Format:

LABEL tOPERATI0N OPERAND

(PIOCB-name error-addr
[symbol] RDFCB 1 (1) } [‘ { (r)



8075 Rev. 3
UP-NUMBER F

SPERRY UNIVAC Operating System/3
4—27

UPDATE LEVEL PAGE

Positional Parameter 1:

PIOCB-name
Specifies the symbolic address of the physical I/O control block. These characters
appear in the first eight bytes of the PIOCB and are used as a search key to identify the
desired file control block.

(1)
Indicates that register 1 has been preloaded with the address of the PIOCB.

Positional Parameter 2:

error-add r
Specifies the symbolic address of an error routine to be executed if an erroroccurs.

(r)
Specifies that register n (other than 0 or 1) has been preloaded with the address of the
error routine.

If omitted, the calling task will be abnormally terminated if an error occurs.

The RDFCB macro instruction is used to locate the file control block and read it into the physical
I/O control block in main storage. To accomplish this function, positional parameter 1 of the
RDFCB macro instruction must be the address of a physical I/O control block that contains an
8-byte character string identifying the desired file control block This character string is used
when locating the file control block. Any references to a physical I/O block, by means of an
EXCP macro instruction, before the device assignment fields are filled by the RDFCB macro
instruction results in a software validation error. Therefore, each physical I/O block should be
initialized by RDFCB macro instruction before the block is referenced by an EXCP macro
instruction. Figure 4—1 shows the interrelationship among the command control block, buffer
control word, physical I/O control block, file control block, and physical unit block.

Examples:

1. Read file control block for logical file INFILE and return control to symbolic address
ERROR if error occurs.

LABEL txOPERATIONA OPERAND A
1 10 16

!II

j_i_Li_i - -

I —
—

tiiLJ_L -
-

I I I I . (.I . Q,I—I(’1Fi’1)
I I I I I — I I I — I I I I

Ii I I I I — II’ I — I

t%i4FI.1LI I I I I —



8075 Rev, 3 SPERRY UNIVAC Operating System/3
4—28

UP-NUMBER UPDATE LEVEL PAGE

2. Read file control block for logical file INFILE and return control to symbolic address
error.

LABEL IOPERATIONA OPERAND
1 10 16

j- -

-

J_L__LJ____L,_L_L,_ ,.L,.L,,L.,.,L.. , ,L_L,LJ,L,J.L,L..J L.. L.!

LL

J1LJ

-

li -

-

42.8. Execute Channel Program (EXCP)

Function:

The EXCP macro instruction requests that an I/O operation be executed by the physical
I/O control system.

Format:

LABEL Is OPERATION Is OPERAND

[symbol] EXCP { CCB-name [,C]

Positional Parameter 1:

CCB-name
Specifies the symbolic address of the CCB.

(1)
Indicates that register 1 has been preloaded with the address of the CCB.

Positional Parameter 2:

C
Specifies that the I/O request is conditional on the peripheral device not being shared
with another job running in the system. This enables you to issue conditional seek
commands when running in a multijobbing environment.

If omitted, the I/O request is assumed to be unconditional.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A
4—29

UP-NUMBER UPDATE LEVEL PAGE

The EXCP macro instruction communicates directly with the I/O scheduler for the purpose of
submitting I/O requests to the system. Before the EXCP macro instruction is executed, you
must construct an I/O packet consisting of the following:

• Use a CCB macro instruction to define the CCB.

• Use a PIOCB macro instruction to define the physical I/O control block.

• Use one or more CCW macro instructions or a BCW to construct the channel program.

• Use an RDFCB macro instruction to identify the I/O device and to obtain file information
specified by job control.

Linkage between these components is as follows:

• The EXCP macro instruction passes the address of the CCB to the PIOCS routines.

• The address of a 2-byte field in a physical I/O control block is stored in the CCB. This field
contains the address of the PUB for the peripheral device concerned.

• The address of the first CCW or BCW is stored in the CCB.

• Each CCW or BCW contains the address of an input/output data area.

Whenever an EXCP macro instruction is executed, the I/O request counter in the task control
block of the requester is incremented and a status indicator in the CCB is set to signify that the
order is outstanding. Control is returned to the calling program immediately by the supervisor
with the degree of completion of this I/O order uncertain. You must use the WAIT orWAITM
macro instruction for synchronization with this I/O.

An EXCP issued to a magnetic tape which is rewinding will result in the posting of the
CCB with unique error status. The EXCP should be reexecuted until the status does not
occur. At that time the EXCP is considered completed.



8075 Rev. SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

4.3. INPUT/OUTPUT SYNCHRONIZATION

Macros are available that provide the means bywhich a taskcan await the completion of one or
more outstanding I/O operations. Specifically the task can await one, several, or all

outstanding f/Os; however, the I/O being waited for must have been requested by the task
doing the waiting.

Tasks are waited by setting a unique wait bitwithin thattask control block(TCB). These wait bits

signal the switcher that this task is nondispatchable and indicate the reason for the wait. Upon
clearing the wait bits, the task becomes dispatchable and can be activated.

Two macro instructions are available for I/O synchronization:

• WAIT

Wait for one or all I/O requests to complete.

• WAITM

Wait for one of several I/O requests to complete.

These macro instructions can also be used (with different parameters) to synchronize a task
with the execution of other tasks. For I/O synchronization, the macro instruction references a
CCB; and for task synchronization, the macro instruction references an event control block.

Task synchronization is described in 7.4.

It must be remembered when you use these macro instructions that only the task having
executed an I/O request can await its completion; and when you await a task, it is not valid to

await the executing task.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 4—31

UP-NUMBER UPDATE LEVEL PAGE

4.3.1. Wait for I/O Completion (WAIT)

Function:

The WAIT macro instruction temporarily suspends program execution until a specified I/O
operation is completed (or until all I/O operations in the task are completed). If the related
operation is completed, control is returned to the point immediately following the WAIT
macro instruction. If the operation is not complete, the task is placed in a wait state and
control is passed to another task.

Format:

LABEL tOPERATIONt OPERAND

[symbol] WAIT { } [ { branch-addr 1]

Positional Parameter 1:

CCB-name
Specifies the symbolic address of the CCB to be tested for completion.

(1)
Indicates that register 1 has been preloaded with the address of the CCB.

ALL
Specifies that the I/O counter in the task control block is tested instead of the status
byte in the CCB. If no orders are outstanding, the problem program continues
execution with the instruction following the WAIT macro instruction. If I/O orders are
outstanding, the program is suspended until the I/O counter is zero (indicating all
orders are completed).

Positional Parameter 2:

branch -add r
Specifies the symbolic address to which program control is transferred if the
requested I/O operation is completed and an exception has occurred. The cause of
the exception is posted in the appropriate CCB.

NO TE:

When using a label as positionalparameter2, the contents ofregister 15 are not alteredby
the WAiTmacro instruction even though transfer ofcontrolmayoccur. Also, it/s assumed
that the base register coverage is provided/n the problem program to permit branching to
this alternate address.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 4—32

UP-NUMBER UPDATE LEVEL PAGE

(15)
Indicates that register 1 5 has been preloaded with the branch address.

If omitted, the WAIT macro instruction tests for complete or incomplete status without
testing for exceptions. If ALL is specified aspositional parameter 1 ,this parameter must be
blank,

The WAIT macro instruction is written in the problem program at the point where
processing cannot logically proceed until either the completion of related I/O requests
initiated by the EXCP macro instruction or synchronization with another task. When
utilized for I/O, the WAIT macro instruction is executed in reference to a single CCB or
to the I/O counter in the task control block. If the related I/O operation is completed,
control is returned immediately and processing continues without interruption. If the I/O
operation is not complete, the task is placed in a wait state and program control is
passed to another task. As each I/O operation is completed, the interrupt servicing
routine posts the CCB as complete, decrements the I/O counter in the task control block
and clears the wait bit so that control can be returned by the program switching routine.
When a task being awaited completes, the waiting task is reactivated and control is
returned to the point of interruption (immediately following the WAIT macro instruction
that resulted in the delay).

Examples:

LABEL L\OPERATONt OPERAND
1 10 16

1LLLLLJ_ - RRCcaL,1LLLJJILLI

ii_jii_ii_ —

JiAI cL(JL5JILLLilJLJJ

JLL WA

4.3.2. Multiple I/O Wait (WAITM)

Function:

The WAITM macro instruction temporarily suspends program execution until any one of
several I/O operations specified by the instruction is completed. Upon completion of one
of the I/O operations, control is returned to the program at the point immediately following
the WAITM macro instruction, with register 1 containing the address of the CCB
associated with the I/O operation. The appropriate wait indicators will be cleared with
regard to the unfinished I/O operation.

Format:

LABEL OPERATONI OPERAND

(CCB-name-1 ,CCB-name-2 [,...,CCB-name-n]
[symbol] WAITM list-name

((1)



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Positional Parameter 1:

CCB-name-1 ,CCB-name-2,[,. . .,CCB-name-n]
Specifies the symbolic addresses of the CCBs to be tested that are associated
with the I/O operations to be awaited. At least two CCBs must be specified.

list-name
This is a single entry which specifies the symbolic address of a list containing
full-word addresses of CCBs associated with the I/O operations to be awaited.
The byte following the last full word must be nonzero to indicate end of table.

(1)
Indicates that register 1 has been preloaded with the address of the list of CCB
addresses.

NO TE:

The WA ITM macro instruction also may specify a combination of CCB and ECB addresses
as parameters. See also the multiple task wait macro instruction described in 7.4.3.

When this macro instruction is executed, each referenced CCB is marked as being awaited.
Upon completion of a marked CCB, the waiting task is activated and the remaining CCBs that
are marked as being awaited are cleared.

The WAITM macro instruction always requires more than one event to be tested If only one
event is to be tested, use the WAIT macro instruction.

4.4. BLOCK NUMBERED TAPE FILES

OS/3 can process magnetic tapes with or without block numbers. The use of block
numbers reduces the possibility of incorrect tape positioning and therefore incorrect tape
processing. This is especially helpful for error recovery on read and write commands and
in restarting at a checkpoint.

4.4.1. Block Number Field

When the block numbering capability is being used, all blocks on tape except tape marks
will include a 3-byte block number field as the first three bytes of the block. This 24-bit
block number field consists of a 4-bit tape mark counter and a 20-bit block number
counter. The block number counter reflects the number of blocks (including tape marks)
written; the tape mark counter reflects the number of contiguous preceding tape marks
since the last data block. The format of the block number field is shown in Figure 4—9.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 4—34

UPDATE LEVEL PAGE

Block Number Field

Fi&d Bit Description

Tape mark counter 0 0 = Preceding block is not a tape mark
1 = Preceding block is a tape mark

1—3 All zeros if bit 0 0

0 to if bit 0 1. Number of
contiguous preceding tape marks
(modulo 8)

Block number counter 0—19 Tape block number in binary

Figure 4—9. Tape Block Number Field Format

The first block on tape that is not a tape mark will contain a block number field with a
block count of 1 plus the number of tape marks that preceded it. This block number count
is incremented by 1 for each block and tape mark on the tape. If a volume contains more
than one file, the count is continued from the preceding file on the volume and the blocks
are consecutively numbered to the end of the tape.

All label, data, and checkpoint blocks are counted and numbered; tape marks do not
contain a block number field and are counted only. When a tape mark is written, the block
number is incremented but is not written. When a tape mark is read, the count is merely
incremented because there is no number to check.

During input, the 3-byte actual block number (including the tape mark counter) in the
physical block is checked against the expected block number. If there is a mismatch,
appropriate error recovery is performed. Use of the tape mark counter in the block number
field will have no effect on block numbered tapes that were written without the tape mark
counter by an earlier supervisor. On input tapes, the first data block after a tape mark will
indicate whether or not the tape contains a tape mark counter in the block number field. If
there is a tape mark counter in the block number field of this block, it is assumed there
are tape mark counters throughout the entire tape and these will be checked. If there is no
tape mark counter in this block, it is assumed there are none throughout the entire tape
and this field (bits O—3) will not be checked. On output tapes, all block numbered tapes
will be written with a tape mark counter as part of the block number. The counter will
contain a nonzero value only in the first data block following one or more tape marks.

Tape Mark Block Number Counter
Counter



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A
UP-NUMBER UPDATE LEVEL PAGE

4.4.2. Tape Restrictions

The 3-byte block number fields are added to standard labels on block numbered tapes. The
three bytes precede the label identifier (VOL1, HDR1, etc.) making the label 83 bytes long.
This is true for tapes written in ASCII as well as EBCDIC. Note that in the case of ASCII
tapes, the 83-byte label is nonstandard. It can be used for internal processing, but cannot
be used for information interchange. Block number processing will be exactly the same for
both EBCDIC and ASCII tape files. Tape label formats for block numbered EBCDIC tapes
are shown in Figures 6—17 through 6—21.

Block numbers will be volume dependent and file independent. Files on a volume and
volumes in a multivolume file must be all numbered or all unnumbered, not mixed.

Block number processing is available for magnetic tapes on selector or multiplexer
channels. These may be 9-track tapes, or 7-track odd parity tapes operating in data
conversion mode. Block size of 7-track tapes operating in data conversion mode must be a
multiple of 3.

4.4.3. Input/Output Buffer

When processing block numbered tapes you must reserve a 4-byte storage area
immediately preceding your input/output area for supervisor processing of the block
number. This 4-byte block number area, and the input/output area, must be aligned on a
full-word boundary. Do not include these four bytes in either the location or the block size
of the input/output area.

Block numbers will be checked when reading in either direction. When reading backward,
you must be sure your input/output area is large enough to hold the entire block of data.
If the data is truncated on a backward read, the block number will be lost and incorrect
positioning of the tape may result.

4.4.4. Processing

A number of software components are affected by block number processing; these include
system generation, tape preparation, job control, automatic volume recognition, PIOCS, data
management, and system access technique (SAT) on tape files. Several control tables in main

___

storage are also affected, including the systems information block (SIB), the device PUB trailer,
and the CCB. These tables contain fields that are updated and bits that are set, tested, and
cleared to reflect user options and processing events.

PIOCS will perform block number processing for data management, tape SAT, and EXCP-level
PIOCS users. A general description of required and optional parameters and processing
performed is contained on the following pages. Details pertinent to PIOCS users are contained
in 4.4.5. Details of the requirement for tape SAT are contained in 6.5 to 6.10 of this manual. For
data management details, refer to the data management user guide, UP-8068 (current
version).



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 4—36

UP-NUMBER UPDATE LEVEL PAGE

The supervisor must be configured to process block numbered tapes, in which case, the
generated supervisor can process both numbered and unnumbered tapes. A bit in the SIB
is set to indicate that the supervisor supports block numbering. If the supervisor does not
have the block numbering capability, only unnumbered tapes can be processed; otherwise,
misalignment and possible truncation of data will result because of the block number field.

To use the block numbering capability of the supervisor, you must also reserve a 4-byte storage
area, aligned on a full-word boundary, immediately preceding the input/output area. If you are
a data management user, you indicate that you have reserved this 4-byte area by using the
BKNOYES parameter in the DTFMT macro instruction. If you are a tape SAT user, you dothis

-+ by using the BKNO=YES parameter in the TCA macro instruction. If you are a PIOCS user at the
EXCP level, you must also indicate that you have reserved the 4-byte area by setting a bit in the
CCB (4.4.5).

You have the option not to use block number processing even though the supervisor has
the capability and you have indicated there is a block number field preceding the
input/output area. If you enter N as the first parameter in the VOL job control statement,
block numbers will not be written on output tapes and will be ignored if present on input
tapes.

Automatic volume recognition will read and store volume serial numbers and will set
appropriate bits in the PUB trailer to indicate whether or not it is processing standard
labeled tapes and block numbered tapes.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be adjusted
accordingly for backward reads. When the tape is read in either direction, the block number
read from tape is stored in the PUB trailer and compared with the expected block number. If
there is no discrepancy (and no other errors), control is returned to the user program. If there is

- a discrepancy, PIOCS attempts to find the correct block by moving the tape backward or forward
the number of blocks implied by the discrepancy. If the correct block is found,control is returned
to the user. If the correct block cannot be found, the tape is left positioned where it was on the
last attempt and an error message is sent to the console.

When processing control macros, block number processing will not be performed, because
no data transfer is involved. However, for commands involving single blocks (FSB, BSB),
the block number count will be updated.

On block numbered tapes, CCW chains with more than one tape movement command and
multiblock BCW commands can be processed only through the first tape movement
command.

44.5. PIOCS Requirements and Options
-

PIOCS users at the EXCP level have an additional requirement. Before issuing any EXCP macro
instruction for a block numbered tape, you must set byte 3, bit 7, in the CCB. This indicates that
the 4-byte block number field preceding the input/output buffer has been reserved. If this bit is
not set, the job will be cancelled.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A
UP-NUMBER UPDATE LEVEL PAGE

You can request that block numbering be ignored on input tapes by setting byte 0, bit 3, in
the CCB before issuing an EXCP. In this case, block numbered tapes will be read, but the
block numbers will not be verified. You must set this bit each time you want to ignore
block number processing on a read.

Another option available at the PIOCS level is to accept unrecoverable errors. You can dothis by
setting byte 3, bit 1, in the CCB. You don’t have to reset this bit for each EXCP; it need only be set
once and stays set.

On a read, if PIOCS detects a variance between the expected block number and the actual block
number and is unable to resolve this variance after 10 retries, a console message is issued. If
byte 3, bit 1 (accept unrecoverable errors) is set, the console message gives the operator
opportunity to request a retry or accept the error. If retry is requested but is still unsuccessful,
the operator will again be asked to request a retry or acceptthe error. If he acceptsthe error (or if
he first requests retry and it is still unsuccessful), PIOCS sets byte 2, bit 1 (unrecoverable error).
PIOCS then sets byte 2, bit 0, to indicate that CCB processing is complete and returns control to
your program. On input, you should test byte 2, bit 5, after the WAIT is executed to ensure that
the correct block has been processed.

If byte 3, bit 1 (accept unrecoverable errors) was not set, the operator has the option only
to request a retry or cancel, If retry is requested but is still unsuccessful, the operator will
again be asked to request a retry or cancel.

On a write, if byte 3, bit 1, is set and the tape cannot be positioned correctly, a console
message gives the operator the opportunity to accept the error or cancel. If this bit is not
set, he must cancel.





8075 Rev. 3 SPERRY UNIVAC Operating System/3 5—1

UP-NUMBER UPDATE LEVEL PAGE

5. Disk Space Management

5.1. GENERAL

Space management comprises a group of routines that provide an efficient and completely
automatic disk and diskette space accounting capability. These routines relieve you of the
responsibility of knowing the precise contents of disk and diskette volumes. These routines
also resolve competing demands for space allocation and establish standard interfaces
with your other programs as well as job control, utility, and service programs.

Using job control statements in your job stream at run time, you can enter the information
required by these routines as parameters in your job control statements. For example,
within your device assignment set you can use the EXT job control statement to allocate
space to a new disk or diskette file or to extend a disk file You can use the SCR
statement to deallocate (scratch) a disk or diskette file.

Some of these functions can also be requested within your program. The following macro
instructions are available:

• ALLOC*

Allocates files.

• EXTEND

Extends files already allocated (disk only).

• SCRTCH*

Scratches files that are no longer needed.

• RENAME

Renames files (disk only).

• OBTAIN

Retrieves label and extent information.

Macro instructions for systems software use only



8075 Rev. 3 SPERRY UNIVAC Operating System/3
5—2

UP-NUMBER UPDATE LEVEL PAGE

For disk file processing, you may use all five of these macro instructions; for diskette file

processing, you may use only ALLOC, SCRTCH, and OBTAIN. Diskette space management

macro instructions are a compatible subset of the disk space management macro

instructions. Although the formats are the same, there are some differences due to the

different labelling patterns and physical characteristics. For convenience, disk and diskette

macro instructions are described separately in this manual.

5,2. DISK SPACE MANAGEMENT ROUTINES

The disk space management routines are transient service routines. Allocation is

accomplished by maintaining the volume table of contents (VTOC) through standard

procedure for all files: system, temporary, and those considered permanent by the user.

The VTOC is a permanently allocated, unmovable file which exists on every disk volume.

The VTOC is addressed by the standard volume label and is included in a disk volume by

the disk volume initialization program. The VTOC file comprises a control block, or set of

control blocks, for each file on the volume and for all unused space on the volume. Refer

to the data management user guide, UP-8068 (current version> for the formats and

description of the VTOC and disk file labels.

The disk space management routines maintain the VTOC by creating control blocks for

new files and deleting control blocks for files removed from the volume. When a file is to

be created, unused space is found for it by searching the appropriate blocks in the VTOC,

allocating the space as the extents of the file, and removing the amount from free space.

When a file is deleted, the control block for the file is removed from the VTOC; the extents

previously assigned to the file are again available for allocation.

Both disk space management and the system access technique (SAT> allocate file space

according to the characteristics of the device. Also, in the case of the 8418 Mod I disk

subsystem, allocated file space is based on 400 cylinders; while on the 8418 Mod II disk

subsystem, allocated file space is based on 800 cylinders.

5.2.1. Allocate Routine

The allocate routine assigns space to a new file or an existing file. After the validity of the

request is ensured, the allocate routine locates space on the disk by using a format 5 label

in the VTOC that satisfies the request. The routine then removes the definition of the
available space from the format 5 label and assigns it to the requesting file. If the

requesting file is new, a format 1 label and format 2 label, along with any needed format 3

labels, are created and placed in the VTOC.

For a new split cylinder file, the allocation of the primary member results in the creation of

a format 1 label, a format 2 label, a format 3 label (all physical extent information for a

split file is kept in a common format 3 label), a format 6 label (all internal bookkeeping for

a split file; e.g., available heads and format 1 pointers, are kept in a common format 6

label). Allocation of subsequent members to the split file results in only the creation of

format 1 and format 2 labels. Note that because all physical extent information about a

split file is kept in a common format 3 label, the file limit is 13 extents (the limit is 1 6 for a

nonsplit cylinder file). Note also that the acquisition of more space for an already existing

split file, via the ALLOC macro instruction with the OLD parameter, must be requested for

the primary member of the file.



8075 Rev, 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

The services of the allocation routine are requested through the ALLOC macro instruction.
Allocation is performed on a volume-by-volume basis; the inputs to the allocate routine for
each file are the file control blocks (FCBs) of the file, or 8-byte file name. In the case of
multivolume files, the volume sequence number must be set in register 0 by your calling
program. The FCB must include a pointer to the extent request block (ERB); in a
multivolume file, there is one ERB for each volume. The first FCB has 22 ERR pointers.
When more than 22 volumes are allocated to this file, the first FCB has a next FCB
pointer.

Special considerations are given to allocations for run libraries which are created by job control
for each job. The FCB and accompanying ERB are in main storage with the pointer to the ERB

filled with zeros. The disk space management then assumes that the ERR immediately
follows the FCB in storage.

5.2.2. Extend Routine

The extend routine assigns additional space to a file after that file’s initial space allocation
has been exhausted. This secondary allocation (or extension) is handled automatically for
data management by the system access technique (SAT), which provides a common
interface to all disk subsystem types. When split files are extended, all files which belong
to the same group are also extended. Any member of the split file, primary or subsequent,
may be dynamically extended. The dynamic extension of a split file results in a new
physical extent entry in the appropriate format 3 label. To avoid exceeding the limit of 1 3
extent entries, a secondary allocation increment greater than 1 should be considered for
heavily used (and extended) split files.

The request for extension is made through the EXTEND macro instruction. When the file
exhausts its initial allocation of space, data management calls the extend transient routihe
and the space (if available) is allocated in amounts specified by the secondary allocation of
the format 1 label of that file.

The extend routine always tries to assign space contiguous to the last space assigned to a
file. This minimizes the number of separate extents required. If this attempt fails or if
insufficient space is available, then space is assigned by first fit. For example, if four
cylinders are requested, the space is assigned from the first format 5 extent encountered
that has at least four cylinders.

In the event that there is not sufficient space available to satisfy the extension increment
specified in the format 1 label with contiguous space, disk space management will allocate the
largest extent possible. If more space is required after a partial extension, additional extent
requests can be made, as required.

5.2.3. Scratch Routine

The scratch routine deallocates disk space from a file and makes it available for future
use. Scratch, after ensuring that the request is valid, removes the extents from format 1 or
format 3, and records and updates format 5 records. The extent freed is placed in the
correct position of the format 5 records, which are in ascending seqeunce. Format 1, 2,
and 3 records are deleted from the VTOC and replaced with format 0 records if a file is
scratched.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Scratching a member file of a split cylinder file results in the deletion of the corresponding
format 1 and format 2 labels. Because the physical space allocated to the file is common
to all its members, the space is returned to free space only when the last member of the
file is scratched. At that point, the format 5 and format 6 labels are also deleted from the
VTOC. Note that scratching the primary member of the split file will prevent the
acquisition of new space for the file via ALLOC OLD.

There are three basic scratch routines available:

• scratch entire file;

• scratch files by prefix; and

• scratch all expired files.

5.2.31. Scratch Entire File

The VTOC is searched for a format 1 label that matches the 44-byte physical ID retrieved
from the FCB. That entire file is then scratched.

5.2.3.2. Scratch by Prefix

The ability to scratch certain files which have identification fields beginning with the first four
characters specified in a SCRTCH macro instruction parameter also is available. This allows
you to deallocate temporary work files by a single call on space management routines. The
characters $Y$ cannot be included in this prefix; this prevents you from scratching system files
by mistake.

5.2.3.3. Scratch All by Date

This function permits you to scratch all files which have passed an expiration date that was
included in the format 1 label expiration date field. The expiration date is compared to the date
supplied by you; each format 1 label expiration date field is compared to this date and if it has
expired, the file is scratched and that space is now available for reallocation.

5.2.4. Rename Routine

The rename routine allows you to apply a new file ID to a format 1 label. You can rename any file
except a system scratch file ($SCR). The RENAME macro instruction initiates the rename
routine.

5.2.5. Obtain Routine

The obtain routine allows you to access any block of the VTOC. The obtain routine is
initiated by using the OBTAIN macro instruction; you have to provide the 8-byte file name,
the absolute disk address of the block to be accessed, or have the FCB in main storage.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP.NUMBER UPDATE LEVEL PAGE

5.3. DISK MACRO INSTRUCTIONS

The imperative macro instructions available to you with disk space management are:
ALLOC, EXTEND, SCRTCH, RENAME, and OBTAIN. The ALLOC, EXTEND, and SCRTCH
macro instructions are concerned with basic space accounting (allocating, extending, and
deleting file space), while the RENAME and OBTAIN macro instructions provide support
operations to allow you to change file ID and to access certain VTOC information. The
following paragraphs give you a detailed description of each macro instruction.

NO TE:

ALLOC and SCRTCH macro instructions are limited to system software use only.

5.3.1, Assign Space to a New Disk File or to an Existing Disk File (ALLOC)

Function:

The ALLOC macro instruction assigns space to a new file or to an existing file.
Allocation is performed on a volume-by-volume basis. For each volume of a file, the
inputs to the allocate routine are the file control block (FCB) of the file and the
corresponding extent request block (ERB), if required.

Format:

LABEL tOPERATIONz OPERAND

ç FCB-name
[symbol] ALLOC filenarne-addr } [ { erroracicir,]

vol-seq-no,OLD,NOFCB
(0) 5

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block.

filename-addr
Specifies the symbolic address of an 8-byte area in main storage in which you
have stored the file name (as listed on the LFD job control card of the file). NOFCB
must be entered as positional parameter 5.

(1)
Indicates that register 1 has been preloaded with the address of the file control block,
or the address of the file name if NOFCB has been entered as positional parameter 5.

Positional Parameter 2:

error-addr
Specifies the symbolic address to which control is transferred if an error is
encountered.



8075 Rev. 3
UP-NUMBER

(r)

5—6
UPDATE LEVEL PAGE

Indicates that a register (other than 0 or 1) has been preloaded with the error address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file to be allocated.

If omitted, the value 1 is assumed.

Positional Parameter 4:

OLD
Specifies that an old file is extended with information contained in the specified
FCB and ERB rather than with the EXTEND macro instruction.

If omitted, a new file is assumed.

Positional Parameter 5:

NOFCB
Specifies that positional parameter 1 refers to a file name instead of an FCB. In this
case, space managementwill issue an RDFCB macro instruction to read the FCB from
the run library into the transient area.

If omitted, it is assumed that positional parameter 1 refers to an FCB and that you have
issued an RDFCB macro instruction for this file.

(0)

Examples:

Indicates that register 0 has been preloaded with the information for positional
parameters 3, 4, and 5:

Bit

22 1 = NOFCB

23 1 = OLD (See positional parameter 4.)

24—31 Volume sequence number.

LABEL £.OPERAT1ONi OPERAND
10 16

t I I L__LL_L__i LJI....L...

I I I — L. JIL.LJ ‘J LL. LJJ.L I I J LL.__________

4LILOC I LL..LJLH

SPERRY UNIVAC Operating System/3

I I I



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

5.3.2. Assign Additional Space to an Existing Disk File (EXTEND)

Function:

The EXTEND macro instruction allows you to assign additional space to a Sequential
Access Method (SAM) or a System Access Technique (SAT) file after its initial
allocation of space has been exhausted. The extend routine is called by data
management, or any user, only after the file runs out of space; the additional space,
if available, is allocated in increments specified at the time of primary allocation.

Format:

LABEL tOPERATION1 OPERAND

FCB-name
[symbol] EXTEND {filenarneacicir} [ { error..addr}]

{Oi}{volsno} [,FCBCORE]}]

(0)

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block.

filename-addr
Specifies the symbolic address of an 8-byte area in main storage in which you
have stored the file name (as listed on the LFD job control card) of the file to be
extended.

(1)
If FCBCORE is entered as positional parameter 5 or if bit 6 of register 0 is set to
1, indicates that register 1 has been preloaded with the address of the file
control block.

If positional parameter 5 is omitted, indicates that register 1 has been preloaded
with the address of the file name.

Positional Parameter 2:

error-add r
Specifies the symbolic address to which control is transferred if an error is
encountered.

(r)
Indicates that a register (other than 0 or 1) has been preloaded with the error address.

If omitted, the calling task will be abnormally terminated if an error occurs.



8075 Rev. SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 3:

01
Specifies that the file is a SAM file.

80
Specifies that the file is a SAT file.

Positional Parameter 4:

vol-seq-no
Specifies the volume number of a multivolume file to be extended.

If omitted, the value 1 is assumed.

Positional Parameter 5:

FCBCORE
Specifies that positional parameter 1 refers to the address of an FCB. This
assumes you have issued an RDFCB macro instruction for this file.

If omitted, it is assumed that positional parameter 1 refers to the address of a file
name. In this case, space management will issue an RDFCB macro instruction to read
the FCB from the run library into the transient area.

(0)
If filename-addr was specified as positional parameter 1, indicates that register 0
has been preloaded with the following information:

Bit

1 6—23 File type

24—31 Volume sequence number

If FCB-name was specified as positional parameter 1, indicates that register 0
has been preloaded with the following information:

B it

6 1 = FCBCORE

16—23 File type

24—31 Volume sequence number

This is an alternative to entering FCBCORE as positional parameter 5, and
assumes that you have issued an RDFCB macro instruction for this file:



5—98075 Rev. 3
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGEUP-NUMBER

Examples:

LABEL AOPERATIONA OPERAND A
10 16

I &IX.1(_J..[Dl (i :) I, (i I

I I I I I I I J

I lLWiE-iN FcisINMe,,{,a,F.rstREI —

5.3.3. Scratch a Disk File (SCRTCH)

Function:

The SCRTCH macro instruction allows you to deallocate one or more files, identified
by the 44-byte file ID, and make that space available for future use. Do not issue the
SCRTCH macro instruction to a file that is currently open.

Format:

LABEL AOPERATIONA OPERAND

PREFIX
[symbol] SCRTCH FCB-name ALL }1 [ error-addr (]

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block (FCB) in main storage.

(1)
Indicates that register 1 has been preloaded with the address of the FCB in main
storage.

Positional Parameter 2:

ALL
Specifies that all files whose expiration date has been exceeded are to be
deallocated. The expiration date must be included in the 3-byte expiration date
field of the FCB.

PREFIX
Specifies that all files that have the specified 4-byte prefix are to be deallocated.
The 4-byte prefix must be placed in bytes 76—79 of the FCB.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
5—b

UP-NUMBER UPDATE LEVEL PAGE

(0)
Indicates that register 0 has been preloaded with the following information:

Bit

24—31 Hexadecimal function code:

Code Interpretation

00 Scratch file.
82 Scratch all by date.
83 Scratch by prefix.

If omitted, the file specified by the 44-byte file ID in the FCB is scratched.

Positional Parameter 3:

error-addr

Specifies the symbolic address that receives control if an error is encountered.

(r)

Indicates that a register (other than 0 or 1) has been preloaded with the address
of the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

Examples:

LABEL AOPERATIONl OPERAND
1 10 16

i

i I I I I I I I I

i ii SCRTC I I I I

5.3.4. Rename a Disk File (RENAME)

Function:

The RENAME macro instruction permits you to assign a new physical file name to any
file except a system scratch file. This is accomplished by specifying the new name to
be used in place of the file ID as contained in the format 1 label. Do not issue the
RENAME macro instruction to a file that is currently open.

Form at:

LABEL LOPERATIONI OPERAND

[symbol] RENAME
{Paijt} [ {errcr.)adclr}] [, {voI.s;.no}]

,[FCBCORE]



8075 Rev. 3 SPERRY UNIVAC Operating System/3 511

UP-NUMBER - UPDATE LEVEL PAGE

Positional Parameter 1:

param-list
Specifies the symbolic address of a parameter list containing the 8-byte file
name (as listed on the LFD job control card) and a new 44-byte file identifier. If
positional parameter 4 is specified, the parameter list also contains a 3-byte
symbolic address for the FCB.

(1)
Indicates that register 1 has been preloaded with the addressof the parameter list.

Positional Parameter 2:

error-addr
Specifies the symbolic address to which control is transferred if an error is
encountered.

- (r)
Indicates that a register (other than 0 or 1 ) has been preloaded with the error address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file to be renamed.

If omitted, the value 1 is assumed.

Positional Parameter 4:

FCBCORE

Specifies that the FCB is in main storage. The symbolic address of the FCB is
contained in the parameter list whose address is specified by positional
parameter 1.

If omitted, the FCB is read from disc by using the 8-byte file name contained in the
parameter list.

Examples:

LABEL XOPERATlONL. OPERAND

11 -
--- -

JLL_LH - E ZRL



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 5—12

UP-NUMBER UPDATE LEVEL PAGE

5.3.5. Access VTOC User Block (OBTAIN)

Function:

The OBTAIN macro instruction allows you to access any user block in the VTOC. You
must first construct the parameter list which specifies the file, the particular area of
the VTOC that is of interest to you, and the address of a buffer in main storage where
you want the retrieval data stored.

Format:

LABEL IOPERATION OPERAND

[symbol] OBTAIN {Pat11} [ {erroraddr}] [ {vol seq no}]

[,FCBCORE]

Positional Parameter 1:

param-list
Specifies the symbolic address of a parameter list containing the following:

Bytes 0—7
An 8-byte file name (as listed on the LED job control card).

Byte8
Function code of the requested service for the disk pack containing the
volume sequence number specified by positional parameter 3:

Code Interpretation

00 VOL1 address in form Occchhrr
01 Format 1 address in form Occchhrr
02 Format 2 address in form Occchhrr
03 Format 3 address in form Occchhrr
04 Format 4 address in form Occchhrr
05 Format 5 address in form Occchhrr
06 Format 6 address in form Occchhrr
80 Contents of VOL1 label
81 Contents of format 1 label
82 Contents of format 2 label
83 Contents of format 3 label
84 Contents of format 4 label
85 Contents of format 5 label
86 Contents of format 6 label
87 Contents of format 1—6 label record located at the disk

address which is in the first word of the buffer in the form
Occchhrr

NO TE:

Addresses in the form Qccchhrr are in discontinuous binary, where ccc is
the cyllnder number, hh is the head number, and rr is the record number.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

Bytes 9—i 1
Buffer address of the storage area into which the addresses or label
contents requested through byte eight are loaded. For codes 00 through
06, the first word of the buffer contains the disk address of the label
record. For code 87, you must store the disk address (in the form
Occchhrr) of the label desired in bytes 0 through 3 of this buffer area.

Bytes 12—i 5

Symbolic address of the FCB in main storage. This field is required only
if positional parameter 4 is specified.

(1)
Indicates that register 1 has been preloaded with the address of the parameter
list.

Positional Parameter 2:

error-add r
Specifies the symbolic address to which control is transferred if an error is
encountered.

(r)
Indicates that a register (other than 0 or 1) has been preloaded with the error
address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file from which you retrieve the
VTOC information.

If omitted, a value of 1 is assumed.

Positional Parameter 4:

FCBCORE
Specifies that the FCB is in main storage. The address of the FCB is contained
within bytes 12—15 of the parameter list whose address is specified by
positional parameter 1.

If omitted, space management reads the FCB from disk, using the 8byte file name
contained in the parameter list.

Examples:

LABEL AOPERATIONL OPERAND
1 10 16

-1—P4
i

_____

I I L I 1

L



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UPNUM8ER UPDATE LEVEL PAGE

5.4. DISKETTE SPACE MANAGEMENT ROUTINES

The diskette space management routines are transient service routines. Space management
is accomplished by maintaining information on the index track about the volume and files on
the diskette. The index track on physical tack 0 has a fixed format. This track is divided into
26 sectors with each sector 128 bytes long. Sectors 1 through 6 are reserved for physical
information. Sector 7 is referred to as the volume label and is used to describe the diskette
volume. Sectors 8 through 26 are referred to as file labels and define the files recorded on
cylinders 1 through 74 of the diskette. Refer to the data management user guide, UP-8068
(current version> for the format and description of the diskette file labels.

5.5. DISKETTE MACRO INSTRUCTIONS

Of the five macro instructions available for space management, only ALLOC, SCRTCH, and
OBTAIN may be used for diskette space management. Also, you will note some variations

in the parameter specifications. For example, the fourth parameter of the ALLOC macro
instruction and the second parameter of the SCRTCH macro instruction are not used, and
you can choose from only two types of label information in the first parameter of the
OBTAIN macro instruction,

5.5.1. Assign Space to a New Diskette File (ALLOC)

Function:

The ALLOC macro instruction assigns space on the diskette to a new file. The
increments of allocation are sectors (128 bytes per sector). After ensuring the request
is valid, the allocate routine locates space on the diskette by reading the index track
and calculates the available space on the volume from user file labels 8 through 26.
The routine then writes a new file label on the index track to allocate space to the file.

Format:

LABEL AOPERATIONL OPERAND

[symbol] ALLOC
(FCB-name 1 1’ (error-acldr
‘ filename-addr ‘

_‘
r

( (1> )

volseq-no NOFCB

L’t

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 5—15

UP-NUMBER UPDATE LEVEL PAGE

filename-addr
Specifies the symbolic address of an 8-byte area in main storage in which you
have stored the file name (as listed on the LED job control card of the file).
NOFCB must be entered as positional parameter 5.

(1)
Indicates that register 1 has been preloaded with the address of the file control
block, or the address of the file name if NOFCB has been entered as positional
parameter 5.

Positional Parameter 2:

error-addr
Specifies the symbolic address to which control is transferred if an error is
encountered.

(r)
Indicates that a register (other than 0 or 1) has been preloaded with the error
address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file to be allocated.

If omitted, the value 1 is assumed.

Positional Parameter 4:

This parameter is not applicable, but a comma must be entered in this position if
positional parameter 5 is used.

Positional Parameter 5:

NOFCB
Specifies that positional parameter 1 refers to a file name instead of an FCB. In
this case, space management will issue an RDFCB macro instruction to read the
FCB from the run library into the transient area.

If omitted, it is assumed that positional parameter 1 refers to an FCB and that you
have issued an RDFCB macro instruction for this file.

(0)
Indicates that register 0 has been preloaded with the information for positional
parameters 3, 4, and 5:



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
5—16

UP-NUMBER UPDATE LEVEL PAGE

Bit

22 1 = NOFCB

23 0 = new allocation

24—31 Volume sequence number

5.5.2. Scratch a Diskette File (SCRTCH)

Function:

The SCRTCH macro instruction deallocates diskette space for a file and makes it
available for future use. After ensuring that the request is valid, the scratch routine
searches the file labels for a file identifier (17 bytes> that matches the first 17 bytes of
the 44-byte file ID retrieved from the FCB. If a match occurs, the file’s extent is
scratched by marking the file label ‘deleted’. Do not issue the SCRTCH macro
instruction to a file that is currently open.

Format:

LABEL tOPERATION OPERAND

[ymbolj SCRTCH { FCB-name } [ { erroraddr)]

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block (FCB) in main storage.

(1)
Indicates that register 1 has been preloaded with the address of the FCB in main
storage.

Positional Parameter 2:

This parameter is not applicable, but a comma must be entered in this position if
positional parameter 3 is used.

Positional Parameter 3:

error-addr
Specifies the symbolic address that receives control if an error is encountered.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 5—17

UP-NUMBER UPDATE LEVEL PAGE

(r)
Indicates that a register (other than 0 or 1> has been preloaded with the address
of the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

5.5.3. Obtain Diskette Label Information (OBTAIN)

Function:

The OBTAIN macro instruction retrieves the volume label or any file label on the
index track. After ensuring that the request is valid, the obtain routine locates the
requested label and returns it in a buffer area in main storage. You must construct a
parameter list which specifies the type of label requested and gives the address of
your buffer.

Format:

LABEL tOPERATIONL OPERAND

(param-list 1 r error-addr fl 1 (vol-seq-no
[symbol] OBTAIN 1 (1) c L 1 (r) fj [‘ I

[,FCBCO RE]

Positional Parameter 1:

param-list
Specifies the symbolic address of a parameter list containing the following:

Bytes 0—7
An 8-byte file name (as listed on the LFD job control card).

Byte 8
Function code specifying the type of label requested.

Code Interpretation

80 Contents of index track label 7
81 Contents of index track label for the file name specified

bytes 0—7

Bytes 9—11
Buffer address of the storage area into which the label contents are to
be loaded. This buffer must be at least 128 bytes.

Bytes 12—15
Symbolic address of the FCB in main storage. This field is required only
if positional parameter 4 is specified.



I SPERRY UNIVAC Operating System/3 f UPDATE LEVEL PAGE

(1)
Indicates that register 1 has been preloaded with the address of the parameter
list.

Positional Parameter 2:

error-addr
Specifies the symbolic address to which control is transferred if an error is
encountered.

(r)
Indicates that a register (other than 0 or 1) has been preloaded with the error
address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file.

If omitted, a value of 1 is assumed.

Positional Parameter 4:

FCBCORE
Specifies that the FCB is in main storage. The address of the FCB is contained
within bytes 12—15 of the parameter list whose address is specified by positional
parameter 1.

If omitted, space management reads the FCB from disk, using the 8-byte file name
contained in the parameter list.

5.6. SPACE MANAGEMENT ERROR CODES

Errors that occur during processing of your disk and diskette space management macro
instructions cause a transient routine to be called into main storage. This error transient
overlay routine places an appropriate error code into register 0, depending upon the type of
error. If the error is not catastrophic (one that necessitates termination of your program),
control is then switched to your error-handling routine (through the error-addr parameter of
your macro instructions). If you do not include an error handling routine in your program,
your task is terminated and control is returned to the supervisor.

The system messages programmer reference, UP-8076 (current version) contains a list of
space management error codes and their interpretation.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
6—i

UP-NUMBER UPDATE LEVEL PAGE

6. System Access Technique

6.1. GENERAL

The OS/3 includes several data management packages that allow you to process a wide
variety of file types in several different ways. System access technique (SAT) is a
specialized block level device handler that provides great efficiency in handling disk and
tape files.

This section provides you with a brief functional description of SAT operation techniques,
and an explanation of the interface that is available to modify SAT operation or to
construct your own handler modules.

SAT techniques and macro instructions to define and control disk files are described
starting at 6.2. SAT techniques and macro instructions to define and control tape files are
described starting at 6.5.

6.2. DISk SAT FILE ORGANIZATION AND ADDRESSING METHODS

SAT files may be segmented into logical parts called partitions with each partition having
distinct physical and logical characteristics. Each partition is defined by a PCA macro
instruction, which generates a partition control appendage to the DTF file table. Up to
seven partitions may be defined within a single file.

6.2.1. PCA Table Entries Used in Addressing

The addressing of physical blocks being accessed from a partition is controlled by two
entries in the partition control appendage (PCA) table in main storage. A PCA table (Figure
6—1) is created for each partition processed and is used as a reference by the program.
The two entries in the PCA table that affect addressing are:

• Current ID

• End of data ID

The current ID is the starting address of the logical partition or the address of the current
block being processed.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
6—2

UP-NUMBER UPDATE LEVEL PAGE

The end of data ID is the last logical block of the partition.

When you open your file with the OPEN macro instruction, the current ID and end of
data ID for each partition in the file referenced are initialized to the start and end of that
partition. When sequential processing (SEQ keyword parameter) is performed, successful
completion of the GET and PUT macro instructions results in the current ID being
incremented to the next physical block of the partition. This incrementation, which occurs
after the wait, continues until the end of data ID is encountered; this indicates that all
blocks in a file have been processed.

Provisions are also made to allow you to access blocks in other than sequential method.
The current ID is the same address as the label of your PCA (partition). This is a 4-byte
field containing a right-justified hexadecimal number representing the block to be
referenced relative to the first block of the partition.

When first initialized, this field contains a 1 corresponding to the first block of the partition. If
you wish to access a particular individual block, you must load the relative block number into
the PCA address; this causes the current ID to reflect the block you want to access.

Byte 0 1 2

0

4

8

12

16

20

24

28

32

current ID

max relative block

logical blocks/track

PCAID EODID

I/O count IOAREA/address

block size vefsectors/bock

lace factor/key length unit of store

DTF address

PCA flags EOD address

PCA FLAGS

0 Format write 4 Verify required/initial allocation
1 Interlace 5 No extension permitted
2 SEQ = Yes 6 Interlace adjust/keyed data
3 Write verify 7 LBLK specified

Figure 6—7. Partition Control Appendage (PCA) Table Format



8075 Rev. 3 SPERRY UNIVAC Operating System/3
6—3

UP-NUMBER UPDATE LEVEL PAGE

When searching by key (READE and READH macro instructions) you must know the relative
address of at least one block on the track you wish to search. Once again, when you open the
file, the current ID and end of data ID of the partition are intialized. However, you must initialize
the current ID to the relative block address of a block on the track you wish to search, Next, you
place the key for which you want a match (or match and higher> into the first key length bytes of
the I/O buffer area. When you issue the READE or READH macro instruction, a search of the
track begins. A successful search results in the current ID field being loaded with the address of
the block retrieved by the match. If the SEQ keyword parameter was specified in the PCA
macro instruction, the address contained in the current ID field will be the block just read plus 1.

When using the SEEK macro instruction, there is no updating of the PCA table entries. In this
case, after the file is opened, place the relative block number of any block on the track you want
to access into the current ID field of the PCA.

6.2.2. Block Addressing by Key

Blocks are addressed either by key or by relative ID. You create a partition using keyed data
blocks (Figure 6—2) by specifying the KEYLEN keyword parameter of the PCA declarative
macro instruction. The key is placed in the first part of the I/O buffer area and is left-justified;
when the PUT macro instruction is issued, the block is then written from the I/O area and to
disk by PIOCS. To read data blocks by key, place the key ID into the first key length area of
I/O buffer area. The instruction to read allows you two options. First, you can access a
specific block by using the READE macro instruction which searches for a matching

(, (equal) key; this block is then read into the I/O area for you to process. You can use the
) READH macro instruction where the key is placed in the first part of the I/O buffer area.

As the block with the matching key or higher is located, that block is read into the I/O
buffer area.

6.2.3. Block Addressing by Relative Block Number

When you address by relative block number, the current ID field of the PCA will contain the
relative block number of the current block being referenced. (The first block of each partition is
relative block 1, the second is 2, etc.> Load the relative block number of the block you wish to
access, then issue a GET macro instruction to read the block ora PUT macro instruction to write
the block.

WITH KEYS

count key data

c K 0

Figure 6—2. Record Formats for Disk Devices (Part 7 of 2)



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—4

UPNUMBER UPDATE LEVEL PAGE

WITHOUT KEYS

data

LEGEND:

C = Count field length (8 bytes). Count field is used only by data management.
K = Key field length (3—255 bytes)
D = Data field length
B = Block length (< track length and cannot span track boundaries)

Figure 6—2. Record Formats for Disk Devices (Part 2 of 2)

6.2.4. Disk Space Control

Space required for new files is allocated and scratched using the standard disk space
management routines. Requests for temporary disk space are handled through job control;
space allocated in this manner is released at the end of job step.

Allocation of disk space to your partitions is on a serial basis; first, the partition 1 space
requirements are filled from the first available tracks of the extents, then the other
partitions are satisfied in sequence.

Specify the initial space allocation to a partition using the SIZE keyword parameter of the PCA
macro instruction. This is represented as a percentage value of the overall file.

To calculate the SIZE entry, use the following formula:

SIZE
= BLKSIZE x Percentage

Total

For example, if you have a file requiring three partitions, as follows:

Partition 1

Block size is 1024 bytes. Approximately 40% of the blocks in the file are this size.

Partition 2

Block size is 256 bytes. Approximately 50% of the blocks in the file are this size.

Partition 3

Block size is 768 bytes. Approximately 10% of the blocks in the file are this size.

NOTE:

Block size is specified for each partition by the BLKSIZE keyword parameter in the
PCA macro instruction.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 65

UP-NUMBER UPDATE LEVEL PAGE

Then, divide the result of each BLKSIZE times the percentage value by the total for all the
partitions If necessary round the resu Its so that the total for all partitions does not exceed 100
percent. Use this value as the specification for the SIZE keyword parameter in the PCA macro
instruction for the partition.

Partition No. BLKSIZE Percentage Result SIZE

1 1024 40 40960 67

2 256 50 12800 21

3 768 10 7680 12

Total 61440 100

If all the blocks in your file are of equal size and each partition will contain the same
number of words, you would simply use the percentage of the overall file with the SIZE
keyword entry. For example, if your file consisted of three partitions, each containing the
same number of blocks of the same size, the entry in the PCA macro instruction for each
partition of the file would be SIZE33.

Dynamic allocation is given as a unit of store (UOS keyword parameter). The unit of store is a
percentage of secondary allocation and cannot exceed 100 percent. The total of secondary
allocation is given by an EXT job control statement. If you do not use the SIZE keyword
parameter to specified initial space allocation the initial allocation to the partition is equal to
the percentage specified in the UOS keyword parameter. When the UOS keyword parameter is
not specified, no extension to your file can be made. When you do not specify either the SIZE or
UOS keyword parameter, an amount of disk space equal to 1 percent of your files is
allocated to the partition.

Once the file is established and you have specified a UOS, the partition can be extended by this
percentage. This occurs each time your PUT macro instruction references a block beyond the
current maximum block address for the partition. If the new allocation cannot satisfy the
current PUT macro instruction demands, an errorwill be indicated. However, partitionswill not
be extended beyond the volume on which the file resides.

6.2.5. Record Interlace

Record interlace is a technique available to you that reduces the effects of rotational
delay when processing partitioned files, accessed sequentially. The interlace function is
optional and, when specified, is completely controlled by SAT.

During file creation, the interlace function automatically arranges the physical records
(blocks> in the file so that several blocks can be accessed during one disk rotation and, at
the same time, provides the necessary interval between block accesses (time frame>. This
time frame is based on a lace factor specified in the LACE keyword parameter when you
define a partition by using the PCA macro instruction (6.3.2>. When the file is opened by
the OPEN macro instruction this lace factor is applied to the performance of the particular
device type being used.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

The lace factor determines the spacing of sequential blocks on the track; a lace factor of 4
results in the next logical block occurring at a minimum interval of 4 blocks. Calculation of
the lace factor is described in 6.2.5.2.

Figure 6—3 illustrates some of the factors involved in accomplishing interlace:

Number of physical blocks on each track

I/O time (time required to input or output a block)

Sector time (average interval available to each block)

Time frame (time between block accesses)

Track

Physical Block Number 1 2 3 4 5 6 7 8 9 10

Logical Block Number 1 6 4 9 2 7 5 10 3 8

I/O Sector
Time Time

Logical Blocks Read
or Written During First L 1 2 3

Disk Revolution

Time Frame

Figure 6—3, Definition of Interlace Variables

6.2.5.1. Interlace Operation

Figure 6—4 illustrates the advantage of interlace accessing. For example, assume that a
file contains ten 1024-byte blocks per track and the disk subsystem being used has a
rotational speed of 21.4 ms per revolution. If the blocks were stored sequentially on the
track in contiguous locations, it would require ten revolutions to sequentially access all ten
blocks, or a total of 214 ms (exclusive of head positioning and latency for initial access).
However, using an interlace factor of 4, all ten blocks could be accessed in 81 .32 ms
because the last block would be retrieved before completion of the fourth disk revolution.
This performance can be obtained only if your required time between block accesses is not
more than the actual time frame.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

When an uppercase portion of a parameter is underlined, only that portion need be
coded. For example:

PR: xv

can be coded as either P:12 or PR:12.

An ellipsis (series of three periods) indicates the omission of a variable number of
entries.

Example:

CC B-name-i ,...,CCB-name-n

An optional parameter that has a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified by you with no adverse
effect, it is considered inefficient to do so. For easy reference, when a default
specification occurs in the format delineation it is printed on a shaded background If
by parameter omission, the operating system performs some complex processing
other than parameter insertion, it is explained in an “if omitted” sentence in the
parameter description.

Example:

rjs
L1M

R Positional parameters must be written in the order specified in the operand field and
must be separated by commas. When a positional parameter is omitted, the comma
must be retained to indicate the omission, except for the case of omitted trailing
parameters.

Examples:

Assume that LOAD is a supervisor macro instruction with one mandatory
positional parameter (phase-name) and four optional positional parameters (load
addr, error-addr, and R):

Format:

LABEL tOPERATiONi OPERAND

[symbol] LOAD { phase-name } [ { load-addr 7]
[ ,(erroraddr1>1 [,R] [,DA]
L ( (r) )j

Macro instruction statements might be written:

LABEL £DPERATION1 OPERAND COMMENTS
10 16

I
I jI_A

I—I

A La_±_



8075 Rev 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

A keyword parameter consists of a word or a code immediately followed by an equal
sign, which is, in turn, followed by a specification. Keyword parameters can be
written in any order in the operand field. Commas are required only to separate
parameters.

Examples:

Assume that PCA is a supervisor macro instruction with two mandatory keyword
parameters (IOAREA1 and BLKSIZE) and nine optional keyword parameters
(EODADDR, FORMAT, KEYLEN, LACE, LBLK, SEQ. SIZE, UOS, and VERIFY):

Format:

LABEL OPERATIONt OPERAND

[symbol] PCA IOAREA1=area-name
,BLKSIZE=n
[,EODADDR=endofdat&addr]
[,FO R MAT=NO]
[,KEYLEN=n]
[,LACEn]
[,LBLKn]
[,SEQ=Y ES]
[,Sl ZE=n]
[,UOSn]
[,VERIFY=YES]

Macro instruction statements might be written:

LABEL PERATON OPERAND £4 COMMENTS

1 10 16 72

EL J A 4LEARE4, t =256,E4EEt4At4E,i
i. i

L 14 1LL_I_.L_LJ_L J LLJ. I ± 4 4 1

I I_i f_r 4 4 1 1

AREA I -Th..IAREA1LJS I

The option to use register preloading is indicated by a register number enclosed in
parentheses and may be shown as (1), (0), (15), or (r). This indicates that, instead of
entering a symbolic address or a value as the parameter in the macro instruction, you
intend to load the designated register with the required data prior to the execution of
the macro instruction. For example, in the format illustration:

LABEL AOPERA1iONt OPERAND

[symbol] GETCS number-of-records
{InPut-area}[{ ()

f error-addr r I
L’. (r) fJ [‘.8O



6—7
8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

Without Interlace With Interlace

Physical Block No. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

LogicalBlockNo. Ii 1213141561 I 8191101 1 6141 9121 I 511013181
Revolution

No.

1 Dl Dl El Dl
2 El El El

El El Dl El
Logical Blocks [1] Dl El
Read or Written
During Each
Disk Revolution

6

Dl
8 Dl
9 Dl

10 Dl

Figure 6—4. Interlace Accessing

Successful interlace operation requires that the I/O orders must be issued within a
specific time frame. The lace factor, therefore, determines how blocks are to be spaced on
the track to ensure that the actual time frame (which includes both user and SAT
overhead) is equal to or greater than your estimate of required time between block
accesses.

A lace factor of 4 means that the blocks will be spaced in sufficient intervals (every 4th
block) to produce an actual time frame that is equal to or greater than the estimated
required time frame.

To calculate the lace factor, use the formula described in 6.2.5.2. Although the formula is
based on the use of the 8416 disk subsystem, all lace factor calculations must be
performed by using this formula, regardless of the actual disk subsystem being used.
When the file is opened by the OPEN macro instruction, the specified lace factor will be
applied to the performance of the particular disk subsystem being accessed. If necessary,
SAT will adjust the lace factor to the capacity and speed of the specific device so that a
similar time frame will be maintained for interlaced files processed on all supported disk
subsystems.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 6—S

UP-NUMBER UPDATE LEVEL PAGE

6.2.5.2. Lace Factor Calculation

The lace factor is calculated in two steps by using the following formula:

BLKSIZE -

256
x .535 = Calculated Sector Time

Required Time Frame -

2. . + 1 (rounded high) Lace Factor
Calculated Sector Time

For example, if you are using a block size of 1024 bytes, first calculate the sector time in
milliseconds:

1. x.535”2.l4ms

Then calculate the lace factor using an estimate of the processing time required between
block accesses. For this example, let us use a required time frame estimate of 7.48 ms:

2. = 3.49 + 1 = 4.49 rounded to 4

The result is a lace factor of 4. In the PCA macro instruction statement for this partition,
enter the keyword parameter LACE=4.

NOTE:

When the time frame exceeds 21.4 ms, it should be divided by 21.4 and the remainder
should be used as the time frame in the foregoing calculation.

6 2 6 Accessing Multiple Blocks

When you are engaged in sequential processing (SEQ=YES specified in PCA macro
instruction), you can read or write more than one block with each SAT imperative macro
instruction that is issued. This is done by specifying the number of blocks you wish to access
together by using the LBLK keyword parameter of the PCA macro instruction. However, when
you use multiple buffer accessing, be certain that your I/O buffer area has enough contiguous
space to contain the blocks. Also, if you are creating the partition by using the format write
option, (FORMAT=NQ), an additional 8-byte area, used to construct the count field, must
Immediately precede the first buffer area During Input operations fewer than the requested
number of blocks may be read if the end of data ID is encountered The I/O count field (bytes 44
and 45) of the DTF (Figure 6—5) will contain the numb.er of buffers not acted upon.

Normally, SAT makes a single reference to PIOCS for the number of blocks requested. If an end-
of-track condition is enccuntered for any block other than the last block of the request, SAT

._.. makes an additional reference to PIOCS to access the next track. For interlaced files, SAT
makes one reference to PIOCS for each block requested. If an end-of-block condition is
encountered on the last, or only, block requested, an information bit will be set in the error
status field (byte 50, bit 0, of the DTF) to indicate the last block on that track has been accessed.

The LBLK keyword parameter specifies the number of blocks required, within a range from 1 to
255; however, the total size of the buffer cannot exceed 32,767 bytes.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL f PAGE

0 2 3Byte

0

4

8

12

16

20

24

28

36

40

44

48

52

56

60

64

68

72

76

Ba

84

88

92

control 1 I/O error count transmission byte control 2

next CAW

residual byte count reserved

CCW address

PIOCB address

sense byte 0 sense byte i sense byte 2 sense byte 3

tense byte 4 sense byte 5 denice status channel status

filename

ef lags numr of nols current vol no.

current PCA address

/0 coune DTF type code

DTF type code Iconti function code error flags

IOCS module address

err msg code error exit address

command code current I/O address

current block size reserved sectors/block

reserved current head reserved

current cylinder current sector reserved

address of extent storage

‘CA count allocation ncr share flags ext table entries available

tracks per cylinder

file low head file high head

PCA ID 1 address of PCA 1

f
PCA ID 7 address of PCA 7 (if present)

Figure 6—5. Define the File (DTF) Table Format (Part 1 of 2)



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3
6—10

UPDATE LEVEL PAGE

0 Open
1 Wait required

2 WAIT=Yes
3 Sector type disk
4 F2 active
5 No extension made

6 FCB not found

7 Multiple /O permitted

Bit 0

2
3
4

5
6
7

Search wait required
Cylinder alignment

Format entered by extend
Reserved
Library lock required

FCB in core
Single mount
Unassigned space available

ERROR FLAGS

Bit 0 Access to last record on track
1 Invalid ID
2 Invalid PCA
3 Hardware error
4 Reserved
5 Reserved

6 Reserved
7 Reserved

Bit 0 I/O complete
1 Unrecoverable error
2 Unique unit error
3 No record found
4 Unit exception
5 Reserved
6 End of track
7 End of cylinder

Figure 6—5. Define the File (DTF) Table Format (Part 2 of 2)

6.3. DISK SAT FILE INTERFACE

Interface with SAT files is through declarative and imperative macro instructions. The DTFPF
declarative macro instruction is used to define your overall file structure, while a separate PCA
declarative macro instruction is required to define each of the partitions which make up a
particular file.

The imperative macro instructions allow you to control file activity; the set of imperative macro
instructions varies slightly, depending upon the type of accessing you specify. The following
paragraphs describe these interfaces in detail.

6.3.1. Define a New File (DTFPF)

When organizing your partitioned file, you must assign a unique name (filename> to the file and
describe certain operating characteristics as well as physical characteristics of your file. This is
accomplished by the define the file partitioned file (DTFPF) macro instruction which creates a
table in main storage (Figure 6—5) that can be referenced by the system.

This is a declarative macro instruction and must not appear in a sequence of executable code.

Format:

[,ALINE=YESJ
[,ERRORsymbol]
[,EXTENTSn]
[,FCB=YES]
[,LIBUP=Y ES]
[,WAIThY ES]

MODULE FLAGS

BitByte I

Byte 2

Byte 1

Byte 2

LABEL

filename

LOPERATION t

DTFPF

OPERAND

PCA1 =partition-name

,PCA7=partition-name]
(EXC ‘1
EXCR I

,ACCESS= SRDO? j
(SRD )j



SPERRY UNIVAC OeratingSy_11

The DTFPF macro instruction provides up to six operating/physical characteristic
specifications and allows you to name from 1 to 7 file partitions. In its most abbreviated
form, the DTFPF macro instruction contains only the required partition names (one for each
PCA macro instruction> supplied by using the PCA1 through PCA7 keyword parameters. For
file operation, these keywords must be specified in sequence with no intervening keywords
missing. The remaining six keyword parameters, when not specifically listed in your DTFPF
macro instruction, assume a predetermined value or condition (default). These keyword
parameter defaults are as follows:

Keyword Default

ALINE PCAs start on track boundaries.

ERROR Program will terminate when a major file error occurs.

EXTENTS No extent table will be generated with the DTFPF macro instruction,

FCB The file control block (FCB), which controls file I/O, is placed into the
transient area of main storage during file open operations.

LIBUP or The file being accessed cannot be written into, This is a readonly lock
ACCESS for the file,

WAIT You must issue a WAITF macro instruction after each I/O operation
(GET, PUT, READE, or READH).

The default values and characteristics applied to your file partition represent the most common
usage. However, you have the option of specifying your own parameters for these keywords.
This enables tailoring the file to suit your own particular needs. For example, you may want to
use your own error routine to handle file errors. The following options are available:

When creating a file, you can have your PCAs start and end on cylinder boundaries by
specifying ALINE=YES in your DTFPF macro instruction.

m When you want the program to branch to your own error routine when a file error occurs,
provide the address (symbol) of the error routine by specifying ERRORsymbolic address,

An extent table can be generated for you if you specify the EXTENTS keyword parameter.
When your DTFPF macro instruction references one of the standard system library
files ($Y$LOD, $Y$SRC, $Y$MAC, $Y$OBJ, or $Y$JCS), you must use the EXTENTS
keyword parameter to specify the number of extent entries you want to be allocated,
The number of extents required is calculated by added the number of extents
allocated (to the file) to the number of partitions in the file.

When standard system libraries are being accessed, 1 9 extents are recommended to
be specified as EXTENTS19.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—12

UP-NUMBER UPDATE LEVEL PAGE

File control blocks (FCBs) are used to make information available about a file or
partition to the system. Normally, the FCB is placed in the transient area when the
OPEN macro instruction is issued. However, you may place an FCB in the I/O area
specified in the PCA macro instruction for the first or only partition of the file. This area
address is specified by the IOAREA1 keyword parameter of the PCA macro instruction
(6.3.2).

There are several ways to request a specific type of filelock. If you use LIBUP=YES,
when the file is opened, it is reserved for exclusive use of the job step until it is
closed. No access by any other task will be permitted.

You can request the same type of filelock using the ACCESS=EXC keyword parameter
entry instead of LIBUP=YES. The ACCESS parameter provides an expanded filelock
capability with more options available (see 6.3.1.1).

Normally, you must issue a WAITF macro instruction after each I/O function to assure
completion of the input or output operation and to set particular status bytes in the DTFPF
reference table. However, you can have SAT initiate this waiting period by specifying
WAIT=YES. When specifying the WAIT keyword parameter, you dont have to use the
WAITF macro instruction.

6.3.1 .1. Filelocks

The use of filelocks enables you to restrict access to your files. A filelock is applied when a
file is opened and remains in effect until it is closed, You can choose the specific type of
restriction you want for a file during the execution of your job step. For example, you may
want exclusive use of the file, or you may want to permit other tasks to read but not write.

The files that may be locked and the type of filelock processing performed are determined
by a combination of system generation, job control, and SAT options. The FILELOCK
parameter at system generation (refer to the system installation user guide, UP-8074
(current version) specifies the type of filelocks available and the types of files affected. The
LIBUP (6.3.1) or ACCESS (6.3.1.2) parameter in your DTFPF macro instruction, specifies
the type of lock you want to be applied to that file. The LBL job control statement assigns a
lock ID to your user file (refer to the job control user guide, UP-8065 (current version)), and
the ACCESS parameter in the DD job control statement at run time adds or changes the
ACCESS parameter in the DTFPF.

For SAT disk files, if the LIBUP or ACCESS DTF keyword parameters are not used, the file
is locked as read only. Therefore, any attempt to output to the file results in a DM14 error
message (invalid imperative macro/macro sequence issued). To avoid this situation and to
prevent reassembling the DTF, you can place a //DD ACCESSEXC job control statement
anywhere between the DVC and LFD statements for the file in question. This statement, at
open time, causes the file to be marked as exclusively dedicated to the requesting DTF and
thereby removes any restrictions as to the type of operation you can perform while
preventing concurrent use of the file by other jobs.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
6—13

UP-NUMBER UPDATE LEVEL PAGE

6.3.1 .2. Shared Filelock Capability

The ACCESS parameter provides a greater filelock capability than the LIBUP parameter.
They should not be used together. If both appear in the same DTFPF, the ACCESS
parameter supersedes LIBUP. The ACCESS options can only be used if FILELOCKSHARE
was specified at system generation. The filelock options available with ACCESS are:

ACCESS=EXC

Requests exclusive use of the file. You may read, update, and extend the file. No
access is permitted by any other task. This type of filelock is the same as that
requested by the LIBUPYES parameter entry.

ACCESS=EXCR

Requests exclusive-read use of the file. You may read, update, and extend the file.
Other tasks may also read the file, but may not write.

ACCESS=SRDO

Requests shared-read-only access to the file. You intend only to read the file. Other
tasks may also read the file. No writing is permitted. This type of filelock is the same
as the default of LIBUP.

ACCESS=SRD

Requests shared-read access to the file. You intend to read the file. Other tasks may
read, update, or extend the file.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—14

UP-NUMBER UPDATE LEVEL PAGE

6.3.2. Defining a Partition (PCA)

Once your file is defined and each file partition is listed by using the PCA1 through PCA7
keyword parameters of the DTFPF macro instruction, the characteristics of each partition
appendage must be described. This is done by using the partition control appendage (PCA)
macro instruction.

This is a declarative macro instruction and must not appear in a sequence of executable code.

Format:

LABEL tOPE RATION Ls OPERAND

partition- PCA BLKSIZEn
name ,IOAREA1=symbol

[,EODADDR=symbol]
[,FORMAT=NO]
[,KEYLENn]
[,LACE=n]
[,LB L Kn]
[,SEQ=Y ES]
[,SIZEn]
[,UOS=nl
[,VERIFY=YESJ

The partition name for a particular PCA macro instruction is the same as that assigned by
the PCAn keyword parameter in the DTFPF macro instruction. The keywords allow you to
specify up to 10 operating and physical characteristics for each partition; these
characteristics are placed in a PCA table in main storage together with a current ID and end
of data ID. In its most abbreviated form, it is required only that you specify the size, in bytes,
of the blocks in the partition (BLKSIZEn) and the address of an input/output area where
the blocks are going to be processed (lOAREAlsymbol), The size of the I/O area is the
same as the BLKSIZE specification. The remaining keywords, when not specifically listed,
assume their default conditions as follows:



8075 Rev. 3 SPERRY UNIVAC Operating System/3 615

UP-NUMBER UPDATE LEVEL PAGE

Keyword Default

EODADDR When the GET macro instruction accesses the block with the relative
block number equal to the end of data ID for that partition, SAT assumes
there is no end of data routine for this partition and indicates that an
invalid ID has been requested.

FORMAT Space allocated to the partition on 8411, 8414, and 8430 disk
subsystems is preformatted. This is used when writing new files in
which each block is written in format (count field followed by either a
data field or a key field and data field).

KEYLEN Assumes blocks will not be referenced by key.

LACE Assumes that no interlace is to be applied. LACE and FORMAT keyword
parameters are mutually exclusive.

LBLK One block (the size as specified in the BLKSIZE keyword parameter)
comprises one logical block (LBLK1).

SEQ The file is not treated as a sequential file and you must provide the 4-byte
current ID field at the address of the PCA being referenced for each I/O
request (WRITE ID and READ ID macro instructions).

SIZE The new file partition being defined requires one percent of the total file
allocation (SIZE=1).

UOS The Unit Of Store (secondary allocation of disk space) has a value of 1.

VERIFY No verification (parity check) of block writing is performed.

The default values of the PCA macro instruction represent the most common usage. However,
you have the option of specifying your own parameters for these keywords. Certain keywords
are interrelated; the following are some examples:

Some of these are mutually exclusive, like the FORMAT and LACE keyword parameters
since you cannot use format write (WRITE ID) and interlace simultaneously.

• Some are required together, like the SEQ and EODADDR keyword parameters.

• The LACE keyword parameter must be specified for interlace files. The lace factor is based
upon the 841 6 disk subsystem and is adjusted by SAT for all other disk subsystems.

• The SIZE keyword parameter is applicable only to files being created.

• The BLKSIZE, IOAREA1, and the LBLK keyword parameters are also interrelated.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 616

UP-NUMBER UPDATE LEVEL PAGE

Usersupplied options to the PCA macro instruction keywords are as follows:

When specifying blocksize (BLKSIZE keyword parameter), also specify the size of the I/O
area. When using 8416 disk subsystem, specify this value in multiples of 256 since
this is the size of the fixed sectors on that device. The multiple buffer keyword
parameter (LBLK) specifies the number of blocks that can fit within this I/O area.

If specifying sequential file processing (SEQYES), inform the program at which point file
processing should terminate. This is done by specifying the end of data (EODADDR)
keyword parameter address. When the GET macro instruction accesses the block with the
relative block number equal to the end of data lDforthat partition, SATtransfers control to
the address specified by the EODADDR keyword parameter.

If loading your file on a device where the space allocated is not preformatted
(FORMAT=NO), a format write command is issued by SAT for each PUT macro instruction
that references a relative block number equal to the end.-of-data address of the partition
being accessed. A data write command is issued by SAT for each PUT macro instruction
that references relative block numbers less than the current end of data address.

This means that data written in the area outside the existing file partition area is written as
a new file while those within the existing file partition are written as update records.

The address of the input/output area needed to process records is specified by the
IOAREA keyword parameter. The length of this area is specified by the BLKSIZE keyword
parameter.

When you have interlaced creation or retrieval of sequential files, specify the LACE
keyword parameter to achieve most efficient processing. This value is computed for the
8416 disk subsystem and is modified by SAT to make other disk subsystems conform
to a similar access pattern. A thorough discussion of interlace operation and
computation is provided in 6.2.5.

Under certain circumstances, you may desire to retrieve more than one physical block to
construct one logical block. In this case, specify the block size through the BLKSIZE
keyword parameter. The LBLK keyword parameter would then specify the number of
physical blocks within the logical block. For example, assume that your physical blocks
are 256 bytes long and that you must have four of these to make upyour logical block.

PHYS CAL B LOCK

256 256 256 256

LOGICAL BLOCK

The following would be specified:

B LKS IZE=256
LBLK=4



8075 Rev. 3 SPERRY UNIVAC Operating System/3
6—17

UP-NUMBER UPDATE LEVEL PAGE

a When you wish to process a file sequentially, you can specify SEQ=YES. When the OPEN
macro instruction is issued, the open transient routine sets the current ID field to relative
block 1 of the partition. Each subsequent GET or PUT macro instruction that is issued will
transfer the next block in sequence to or from main storage. The current ID is updated after
each GET or PUT macro instruction has been waited.

Random processing of the sequential file can be achieved as well as sequential processing
of random portions of the file by supplying the new value in the current ID field before any
GET or PUT macro instruction is issued.

a At the time that you are organizing your file, specify the space required for the partition in
the terms of a percentage of the overall file allocation. For example, if your file contained
four partitions of equal size, you would specify SlZE25.

a If you feel that additional space may be needed to expand your file partition, specify this
space in increments called units of store (UOS). A unit of store is a percentage of
secondary allocation.

Each time an attempt is made to write a block with a relative block number larger than the
current maximum for the partition, a unit of store is added to the partition. For example,
suppose that you had a secondary allocation of 10 cylinders and you wished to add 2
cylinders to your partition each time you needed more space. You would specify: UOS20
since 2 cylinders are 20 percent of your secondary allocation.

If the block chosen to be added to the partition exceeds the unit of store, an invalid ID
indication would be returned to the error field in your DTFPF table in main storage.

• If writing records to disk and you wish to be certain that the block written is complete
and accurate, use the VERIFY=YES option. The blocks are check-read for parity. An
additional disk rotation must be allowed for the verification process.

a If blocks are to be addressed by key, use the KEYLEN keyword parameter to specify
the length (3 to 255 bytes) of the key field in formatted records.

6.3.3. Processing Partitioned SAT Files

Once you have established your file on disk (that is, you have issued DTFPF and PCA
macro instructions to describe and name your file), use the imperative macro instructions
to open, control, and close your file processing. These macro instructions are universal,
but are normally grouped according to their use as follows:

a Processing Blocks by Key — OPEN, PUT, WAITF, READE/READH, SEEK, CLOSE

a Processing Blocks by Relative Number — OPEN, GET, PUT, WAITE, SEEK, CLOSE

The following paragraphs give a brief functional description of these imperative macro
instructions, This description is followed by listing these macro instructions in 6.4 and includes
a detailed description of their parameters and characteristics.



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL

6.3.3.1. Processing Blocks by Key

Macro Instruction Function

OPEN Initiates the open transient routine and identifies the file (as listed
in the DTFPF macro instruction) to be processed.

PUT Identifies the file and partition to be accessed. Issues the write for
the indicated block.

WAITF Identifies the file and ensures completion of the current I/O. If the
current I/O was a successful READE or READH, it places the ID of
the block accessed in the current ID field. Updates the current ID
by 1 if the SEQYES keyword parameter was specified.

READE Initiates the search for a block by key of a particular track. You
must place a relative block number, that is on the track to be
searched, in the current ID field of the PCA table. You must also
place the key of the block to be accessed in first key length bytes of
the buffer area.

READH Same as for READE except that the search is for a block that is
equal to the key specified or higher than the key.

SEEK Initiates movement of the disk heads to a particular track or
disk. It is your responsibility to place the relative address of a
block on that track in the current ID field of the PCA table.

CLOSE Identifies the file. After the file processing has been completed or
when the end of data ID has been detected, it initiates the
transient file close routine.

6.3.3.2. Processing by Relative Block Number

Macro Instruction Function

OPEN Initiates the open transient routine and identifies the file (as listed
in the DTFPF macro instruction) to be processed. Initializes the
start ID entry in the PCA tables of the file.

GET Identifies the file and partition to be accessed. Issues the read for
the indicated block.

PUT Identifies the file and partition to be accessed. Issues the write for
the indicated block.

WAITF Identifies the file and assures completion of the current I/O.
Updates the current ID by 1 if the SEQYES keyword parameter
was specified.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—19

UP-NUMBER UPDATE LEVEL PAGE

Macro Instruction Function

SEEK Initiates movement of the disk heads to a particular track on
disk. It is your responsibility to place the relative address of a
block on that track in the current ID field of the PCA table.

CLOSE Identifies the file. After the file processing has been concluded or
when the end of data ID has been detected, it initiates the
transient file close routine.

6.4. CONTROLLING YOUR DISK FILE PROCESSING

After you have specified the details of the file and partition you wish to access through the
declarative macro instructions, the imperative macro instructions described in the following
paragraphs actually control your file accessing. The sequence of these macro instructions for a
particular type of processing is listed in 6.3.3.1 and 6.3.3.2, together with a brief description of
their function.

6.4.1. Open a Disk File (OPEN)

Function:

The OPEN macro instruction opens a file defined by the DTFPF and PCA macro instructions
so that it can be accessed by the logical IOCS.

Format:

LABEL ISOPERATION OPERAND

[symbol] OPEN { filename-i [,...,filename-n]

Positional Parameter 1:

filename-i
Specifies the symbolic address of the DTFPF macro instruction in the program

corresponding to the file to be opened.

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF macro

instruction.

Positional Parameter n:

filename-n
Successive entries specifythe symbolic addresses of the DTFPF macro instructions in

the program corresponding to the additional files to be opened.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

Use this form (for example, OPEN FILE1, FILE2) when more than one lockable file
is to be accessed by a single task. This opens all the files named and applies the
required read or write locks at the same time.

Multiple open should be used to open more than one file when filelock is
involved to prevent a lockout between two programs contending for the same
file. If any one file on an OPEN macro instruction cannot be opened because of
lock, then none of the files will be opened. In such a case, if an error address
had been specified in the DTF of the first file that failed, control returns to that
error address. An 88 (lock failure> occurs in the DTF error code (byte 56 of the
DTF file table>. If no error address was specified, all files specified by the OPEN
macro instruction are deactivated pending the closing of those files by the
locking program. This also produces a DM88 (writing for lock) console message.

After the file has been defined by the DTFPF and PCA macro instructions, you must issue an
OPEN macro instruction to initialize the file before any other access can be made. Use the GET
macro instruction to access the first (or next) data block.

The transient routine called by the OPEN macro instruction allocates disk space to each of
the partition control appendages from the VTOC file extents; these areas are then
preformatted if necessary. If too little disk space has been allocated to a file to satisfy all
PCA requirements, partitions requiring space may be extended during processing.

6.4.2. Retrieve Next Logical Block (GET)

Function:

The GET macro instruction reads a logical block from disk into main storage and
makes it accessible for processing. The address into which the data is read is
specified in the associated PCA macro instruction by the keyword parameter
IOAREA1.

Format:

GET

Positional Parameter 1:

filename
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being read.

LABEL L2 OPERATION A

[sym boll

OPERAND

jfilename
‘ $ PCA-name

k (1) 1 ‘ (0)



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 6—21
UPDATE LEVEL PAGE

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

Positional Parameter 2:

PCA-name
Specifies the symbolic address of the PCA macro instruction associated with the
partition to be accessed.

(0)
Indicates that register 0 has been preloaded with the address of the PCA macro
instruction.

PCA Table Content:

The OPEN macro instruction initializes the current ID field in the PCA table to the start ID of
the partition. If the SEQ keyword parameter in the PCA macro instruction is used, the
current ID field will be updated after each GET macro instruction has been waited.

If the SEQ keyword is not used, or random access is desired, it is your responsibility to
preload the current ID field with the relative ID of the data block to be read. The current ID
field is located at the address (label) of the PCA being referenced. This is a 4-byte field and
contains a right-justified hexadecimal number representing the number of the block
(relative to the first block in the partition) to be read.

6.4.3. Output a Logical Block (PUT)

Function:

The PUT macro instruction writes a logical block from main storage to disk. The main
storage address from which the data is written is specified in the associated PCA
macro instruction by the keyword parameter IOAREA1.

Format:

filename
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being written.

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

LABEL 12 OPERATION

[symbol] PUT

Positional Parameter 1

OPERAND

5 filename
(1) i’

PCA-name
(0)



8075 Rev, 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 I 6—22
UPDATE LEVEL PAGE

Positional Parameter 2:

PCA-name
Specifies the symbolic address of the PCA macro instruction associated with the
partition to be written.

(0)
Indicates that register 0 has been preloaded with the address of the PCA macro
instruction.

PCA Table Content:

The OPEN macro instruction initializes the current ID field in the PCA table to the start ID of
the partition. If the SEQ keyword parameter in the PCA declarative macro instruction is
used, the current ID field will be updated after each PUT macro instruction has been
waited.

If the SEQ keyword is not used, or random access is desired, it is your responsibility to
preload the current ID field with the relative ID of the data block to be written. The current

ID field is located at the address (label) of the PCA being referenced. This is a 4-byte field

and contains a right-justified hexadecimal number representing the number of the block

(relative to the first block in the partition) to be written.

6.4.4. Wait for Block Transfer (WAITF)

Function:

The WAITF macro instruction ensures that a command initiated by a preceding GET, PUT,
READE, or READH macro instruction has been completed. When completed, the error
status field contains the error status information pertaining to the I/O request. It is your
responsibility to check these bits, which are in bytes 50 and 51 of the DTF table.

If the keyword parameter WAIT=YES was not specified in the DTFPF macro instruction,
the WAITF macro instruction must be issued after a GET, PUT, READE, or READH macro
instruction and before another imperative macro instruction is issued for that file.

[symbol]

Positional Parameter 1

filename
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being accessed.

Format:

LABEL tOPERATION

WAITF

OPE RAND

J filename
1 (1)



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 623

UP-NUMBER UPDATE LEVEL PAGE

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

6.4.5. Read by Key Equal/Read by Key Equal or Higher (READE/READH)

Function:

The READE and READH macro instructions initiate a search by key for a block having a key
equal to or equal and higher to the key specified.

Format:

LABEL t2OPERATIONt OPERAND

(READE1 (filenamel (PCA-name[symbol]
1READHJ ‘ (1) f ‘ <I. (0)

Positional Parameter 1:

filename
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being processed.

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

Positional Parameter 2:

PCA-name
Specifies the symbolic address of the PCA macro instruction associated with the
partition to be accessed.

(0)
Indicates that register 0 has been preloaded with the address of the partition to be
accessed.

PCA Table Content:

After a successful search, the current ID entry in the PCA table is updated to reflect
the relative number of the record retrieved. However, if SEQ=YES has been specified
in the PCA macro instruction, the current ID field in the PCA table will be the relative
block number plus 1.



8075 Rev. 3
UP-N UMBER

SPERRY UNIVAC Operating Systeml3 6—24

UPDATE LEVEL PAGE

6.4.6. Access a Physical Block (SEEK)

Eu nction:

The SEEK macro instruction initiates movement of the disk read/write head to the
position specified in the current ID field of the PCA. This is a 4-byte field which
contains a right-justified hexadecimal number representing any block number on the
track (relative to the first block in the partition) to which head movement will be
initiated, It is your responsibility to store the desired relative block number in this
field.

Format:

Positional Parameter 1:

filename

(‘I)

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being accessed.

Indicates that register 1 has been preloaded with the address of the DTFPF
macro instruction.

Positional Parameter 2:

PCA-name
Specifies the symbolic address of the PCA macro instruction associated with
the partition to be accessed.

(0)
Indicates that register 0 has been preloaded with the address of the PCA macro
instruction.

6.4.7. Close a Disk File (CLOSE)

Function:

The CLOSE macro instruction performs the required termination operations for a file.
Once the CLOSE macro instruction has been issued for a file, only the OPEN macro
instruction may reference that file.

LABEL t OPERATION i

[symbol] SEEK

OPERAND

f filename (PCA-name
‘k (1) f ‘< (0)



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 6—25

UP-NUMBER UPDATE LEVEL PAGE

Format:

LABEL LOPERATIONt OPERAND

(filename-i [,..,filename-n]
[symbol] CLOSE ()

*ALL

Positional Parameter 1:

filename-i
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file to be closed.

(1)
Indicates that register 1 has been preloaded with the address of the DTFPF
macro instruction.

*ALL

Specifies that all files currently open in the job step are to be closed.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the DTFPF macro
instructions in the program corresponding to the additional files to be closed.

6.5. SAT FOR TAPE FILES

The OS/3 tape system access technique (TSAT) is a generalized input/output control system
that provides a standard interface to PIOCS for magnetic tape subsystems. It performs the basic
functions of a tape data management system and provides block level I/O for sequential tape
files.

Interface with TSAT files is through declarative and imperative macro instructions. You
use the SAT and TCA declarative macro instructions to define the characteristics of the file
and the data management technique to be used to process the file. The SAT macro
instruction creates the DTF table for the file, and the TCA macro instruction creates the
appendage to the table. These macro instructions are described in 6.8. You use the OPEN,
GET, PUT, CNTRL, WAITF, and CLOSE imperative macro instructions to control file
processing. These are described in 6.9.

All files processed by TSAT are written in a forward direction, and can be read forward
and backward. The CNTRL macro instruction initiates nondata operations on the device
and can be issued whether or not the file is open.

To use TSAT, you must observe tape label conventions (described in 6.6> and tape volume
and file organization conventions (described in 6.7).

If you are processing block numbered tapes, you must also observe the special
conventions applicable to these tapes. Requirements and processing for block numbered
tapes are summarized in 6.10.



SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

6.6. SYSTEM STANDARD TAPE LABELS

Magnetic tapes may be labeled or unlabeled, and a labeled tape may contain either
standard or nonstandard labels. You indicate this using the FILABL parameter in the TCA
macro instruction. TSAT assumes that tapes have standard labels. If nonstandard labels
exist on input files, TSAT bypasses them.

All standard tape labels are in blocks of 80 bytes and are always recorded at the same
density as the data. The first three bytes of each label identify the type, and fourth byte
indicates its position within the group. For example, VOL1 indicates this is the first volume
label for this file.

For block numbered tapes, each label includes a 3-byte block number field as the first
three bytes of the label, making the label 83 bytes long.

There are five tape label groups; three are required and two are optional. The tape label
groups are:

• Volume label group VOL

• File header label group HDR

• User header label group (optional) UHL

• File trailer label group EOF or EOV

• User trailer label group (optional) UTL

TSAT does not process user header (UHL) or user trailer (UTL) labels. No provision is made
for creating these labels on output files; if they exist on input files, TSAT bypasses them.

TSAT label processing is limited to one volume label (VOL1), two file header labels (HDR1
and HDR2), and two file trailer labels (EOF1 and EOF2 or EOV1 and EOV2). No provision is
made for creating additional labels on output files; if they exist on input files, TSAT
bypasses them.

Tape label formats for block numbered files are shown in Figures 6—17 through 6—21.
Tape label formats for files without block numbers are shown in Figures 6—6 throUgh
6—10 and are described on the following pages.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 627

UP-NUMBER UPDATE LEVEL PAGE

6.6.1. Volume Label Group

A volume label group consists of a single volume label (VOL1). The VOL1 label identifies
the tape reel, and it is used to check that the proper reel is mounted. When a tape is first
used at an installation, its volume serial number (VSN) and other volume information, as
shown in Figure 6—6, are specified by parameter cards supplied to a standard utility
routine that writes the label. The serial number is also written on the exterior of the reel
for visual identification.

If you want logical IOCS to prep the volumes of a standard labelled file, INIT must be
specified as a parameter of the LED job control statement associated with that file. Logical
IOCS will then prep the volumes from the information supplied on the associated VOL and
LBL job control statements.

When you issue an OPEN macro instruction to an output tape, its open-and-rewind
options are executed first, and then the tape is checked to see if it is at the load point. If it
is at the load point, the VOL1 label is read (if in a nonprepping mode) and the volume
serial number is checked and saved for use in the file header labels (HDR1 and HDR2).
The tape is then positioned so that the volume labels are not destroyed, and no further
volume label processing is performed.

If the output tape is not at the load point after the open-and-rewind options are performed,
TSAT assumes that the tape is positioned between the two ending tape marks of the
previous file or just prior to the HDR1 label of an existing file. In either case, no volume
label checking or creation is performed.

For an input tape, the OPEN transient first executes the open-and-rewind options and then
checks to see whether the tape is at the load point. If it is, the VOL1 label is read and the
volume serial number is used to check the file serial number in the appropriate file header
or trailer label. The tape is then positioned to the proper file header or trailer label as
specified in the file sequence number field of the associated LBL job control statement,
and no further volume label processing is performed.

If the input tape is not at the load point after the open-and-rewind options are performed,
TSAT assumes that the tape is positioned between the two ending tape marks of a
previously created file or just prior to the HDR1 label of an existing file. In either case, no
further volume label processing is performed.

When any volume label is encountered during the processing of a CLOSE macro
instruction for an input tape and you have specified READ=BACK in the TCA macro
instruction, the label is bypassed without processing.

The format of the volume label is shown in Figure 6—6. The fields are described in Table
6—1.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 6—28

UPDATE LEVEL PAGE

Generated by TSAT or reserved for system expansion.

Written by TSAT from user-supplied data.

Bytes

LEGEND:

Figure 6—6. Tape Volume 1 (VOL 1) Label Format for an EBCDIC Volume



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—29
UP-NUMBER UPDATE LEVEL PAGE

Table 6—1. Tape Volume 1 (VOL 1) Label Format. Field Description for an EBCD!C Volume

Field Initialized By Bytes Code Description

Label Tape prep 0—2 EBCDIC Contains VOL to indicate
identifier that this is a volume label

Label number Tape prep 3 EBCDIC Always 1 for the initial
volume label

Volume serial Tape prep 4—9 EBCDIC Unique identification number
number assigned to this volume by

your installation, TSAT
expects 1- to 6-alphanumeric
characters, the first of which
is alphabetic

Volume TSAT 10 EBCDIC Reserved for future use by
security installations requiring

security at the reel level.
Currently blank

(Reserved) ‘-‘‘ 11—20 E8CDIC Contains blanks (4016)

(Reserved) 21—30 EBCDIC Contains blanks (4016)

(Reserved) 31—40 EBCDIC Contains blanks (4016)

Owner 41—50 EBCDIC Unique identification of the
identification owner of the reel: any

combination of alphanumerics

(Reserved) 51—79 EBCDIC Contains blanks (4016)

NOTE:

For ASCII files, Bytes 0—36 of a VOL1 label have the same significance as shown in the preceding
example. Bytes 37—50 indicate the owner identification field. Bytes 51—78 are blank and are
reserved for future standardization, Byte 79 indicates the label standard level, and when set to 1
indicates formats on this volume meet the American National Standard, X3.27—1 969.

6.6.2. File Header Label Group

The file header label group consists of two labels: the file header 1 label (HDR1) and the
file header 2 label (HDR2).

6.6.2.1. First File Header Label (HDR1)

The first file header label (HDR1), which identifies the file, is written at the beginning of
each file. The HDR1 label is required and has the fixed format shown in Figure 6—7; its
fields are described in Table 6—2. All fields in the HDR1 label may be specified in the job
control stream.

For input files, all fields up to and including the system code in the HDR1 label are
checked against values specified in the LBL job control statement. Only those fields for
which values have been supplied are checked. However, if you specified READ=BACK in
the TCA macro instruction, the HDR1 label is bypassed without processing. For multifile
input volumes, you should specify the file sequence number in the LBL job control
statement to ensure proper tape positioning.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 630

UP-NUMBER UPDATE LEVEL PAGE

For output files, the tape must be positioned properly before the files can be opened. On
file open, the expiration date in the HDR1 label is checked against the current or actual
calendar date to determine if the associated file has expired. If the file has expired, the
tape is positioned so that the old HDR1 label is written over. The new HDR1 label is set up
from values specified by the LBL job control statement and is written on the tape.

Bytes

0 1 2 3

0 H D A 1

4

8

file identifier
12

erialnumber

24 volume

28 . .
. sequence number file .

32 .
. sequence number generation

36 .

. number version .

_EZE
48

expiration date

52

unused

60 ‘

system code

72 I
I reserved

76

LEGEND:

Generated by TSAT or reserved for system expansion.

Written by TSAT from user-supplied data.

number

Figure 6—7. First File Header Label (HDR1) Format for an EBCDIC Tape Volume



8075 Rev. 3 I SPERRY UNIVAC Operating System/3 I I 6—31

UP-NUMBER I

______________________________________________

I UPDATE LEVEL PAGE

Table 6—2. First File Header Label (HDR 1). Field Description

Field Bytes Description

Label identifier 0—2 Contains HDR to indicate a file header label el

Label number 3 Always 1

File identifier 4—20 A 17-byte configuration that uniquely identifies

the file. It may contain embedded blanks and is

left-justified in the field if fewer than 17 bytes

are specified.

File serial number 21—26 The same as the VSN of the VOL1 label for the

first reel of a file or a group of multifile reels

Volume sequence 27—30 The position of the current reel with respect

number to the first reel on which the file begins.

This number is used with multivolume files only.

File sequence number 31—34 The position of this file with respect to the

first file in the group

Generation number 35—38 The generation number of the file (0000—9999>

Version number of 39—40 The version number of a particular generation

generation of a file

Creation date 41—46 The date on which the file was created, expressed

in the form YYDDD and right-justified. The

leftmost position is blank.

Expiration date 47—52 The date the file may be written over or used

as scratch, in the same form as the creation

date

File security indicator 53 Reserved for file security indicator. Indicates

whether additional qualifications must be met

before a user program may have access to the file.

0 = No additional qualifications are required.

1 = Additional qualifications are required.

(Unused> 54—59 Unused field, containing EBCDIC 0’s

System code 60—72 Reserved for system code, the unique identification

of the operating system that produced the file

(Reserved> 7379 Reserved field, containing blanks (4016>.

6.6.2.2. Second File Header Label (HDR2)

The second file header label (HDR2) acts as an extension of the HDR1 label and is a
required label. Unless the HDR2 label was created by the OS/3 or OS/7 operating system
as indicated in the system code field of the HDR1 label the HDR2 label is Ignored by
TSAT. Figure 6—8 shows the format of the HDR2 label; Table 6—3 describes its fields.



6—328075 Rev. 3 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGEUP-NUMBER

I\H D R 2

record format
block length

record length

reserved

Bytes

0 2 3

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

printer control
character

reserved

LEGEND

LI
Generated by TSAT or reserved for system expansion.

Written by TSAT from user-supplied data.

Figure 6—8. Second File Header Label (f-IDR2) Format for an EBCDIC Tape Volume



6—338075 Rev. 3 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGEUP-NUMBER

Table 6—3. Second File Header Label (HDR2). Field Description

Field Bytes Description

Label identifier 0—2 Contains HDR to indicate a file header label

Label number 3 Always 2

Record format character 4 Character Meaning

D Variable-length (ASCII). with length
fields specified in decimal

F Fixed-length
S Spanned
U Undefined
V Variable-length (EBCDIC), with length

fields specified in binary

Block length 5—9 Five EBCDIC characters specifying the maximum
number of characters per block

Record length 10—14 Five EBCDIC characters specifying the record length for
fixed-length records. For any other record format, this
field contains Os.

(Reserved) 15—35 Reserved for future system use

Printer control 36 One EBCDIC character indicating which control character
character set was used to create the data set.

ASpecial (ASA) control character present
D=Device independent control character present
M’l BM control character present
USPERRY UNIVAC control character present

(Reserved) 37—79 Reserved for future system use

NOTE:

For ASCII files, bytes 0—14 of a HDR2 label have the same significance as shown in the preceding
example. Bytes 50 and 51 indicate the buffer offset field which must be included in the block
length. All other fields are recorded as ASCII spaces.

6.6.3. File Trailer Label Group

The file trailer label group Comprises either of two pairs of labels, depending on whether
the reel Contains an end-of-file or an end-of-volume Condition. In the first Condition, the
first label of the pair is the EOF1 label, in a format identical to the HDR1 label; the second
label is the EOF2 label. Its format is identical to the HDR2 label. In the end-of-volume
condition, these labels are the EOV1 and EOV2 labels; again, the formats of these labels
are identical to their counterparts in the file header label group, HDR1 and HDR2.

The contents of the EOF1 and EOV1 labels are identical to the HDR1 label except for the
label identifier, label number, and block count fields. The contents of the EOF2 and EOV2
labels are identical to the HDR2 label except for the label identifier and label number
fields.

When you issue an OPEN macro instruction to an input tape file, with READ=BACK
specified in the TCA macro instruction, the OPEN transient checks the fields in an EOF1 or
EOV1 label against the values you have specified in the LBL job control statement. This
processing is similar to that of the HDR1 label.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

6—34

UPDATE LEVEL PAGE

Figure 6—9 illustrates the format of the EOF1 or EOV1 label, Table 6—4 summarizes the
contents of its fields, Figure 6—10 illustrates the format of the EOF2 or E0V2 label; Table
6—5 presents the contents of its fields.

LEGEND:

Written by TSAT from user-supplied data.

system code

reserved

Bytes

0 1 2

label
label identifier number

3

file identifier

serialnumber

volume,

. . sequence number file

, . . sequence number generation

. , , number version

. number

expiration date

block count

Generated by TSAT or reserved for system expansion.

Figure 6—9. Tape File EOF1 and EOV1 Label Formats for EBCDIC Tapes



6—358075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Table 6—4 Tape File EQF1 and EOV1 Labels, Field Description

Field Bytes Description

Label identifier 0—2 Indicates that this is a file trailer label;
contains EOF for an end-of-file label,
or EOV for an end-of-volume label

Label number 3 Always 1

File identifier 4—20 A 17-byte configuration that uniquely identifies

the file. It may contain embedded blanks and is

left-justified in the field if fewer than 17

bytes are specified.

File serial number 21—26 The same as the VSN of the VOL1 label
for the first reel of a file or a group of

multifile reels

Volume sequence number 27—30 The position of the current reel with respect
to the first reel on which the file begins.
This number is used with multivolume files only.

File sequence number 31—34 The position of this file with respect to the
first file in the group

Generation number 35—38 The generation number of the file (0000—9999)

Version number of 39—40 The version number of a particular generation
generation of a file

Creation date 41 —46 The date on which the file was created, expressed
in the form VYDDD and right-justified. The left
most position is blank.

Expiration date 47—52 The date the file may be written over or used as

scratch, in the same form as the creation date

File security indicator 53 Reserved for file security indicator. Indicates
whether additional qualifications must be met before
a user program may have access to the file.

0 = No additional qualifications are required.

1 = Additional qualifications are required.

Block count 54—59 In the first file trailer label, indicates the
number of data blocks: either in this file of

a multifile reel, or on the current reel of a
multivolume file. TSAT checks the block
count for input files or writes the count for

output files.

System code 60—72 Reserved for system code, the unique identification

of the operating system that produced the file

(Reserved) 73—79 Reserved field, containing blanks (4016)



8075 Rev. 3

UPN UMBER

Bytes

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

SPERRY UN I VAC Operating Systeml3 6—36

UPDATE LEVEL PAGE

0 1 2

label
label identifier number

record format block length
character

recordlength

reserved

N

‘

reserved

LEGEND:

Generated by TSAT or reserved for system expansion.

Written by TSAT from user supplied data

Figure 6—1O, Tape File EQF2 and EQV2 Label Formats for EBCDIC Tapes



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—37

UP-NUMBER UPDATE LEVEL PAGE

Table 6—5. Tape File EOF2 and EOV2 Labels. Field Description

Field Bytes Deacription

Label identifier 0—2 Indicates that this is a file trailer label; contains
EOF for an end-of-file label, or EOV for
an end-of-volume label

Label number 3 Always 2

Record format character 4 Character Meaning

D Variable-length (ASCII). with length
fields specified in decimal

F Fixed-length
S Spanned
U Undefined
V Variabe-length (EBCDIC(, with

length fields specified in binary

Block length 5—9 Five EBCDIC characters specifying the maximum
number of characters per block

Record length 10—14 Five EBCDIC characters specifying the record length
for fixed-length records. For any other record
format, this field contains Os.

( Reserved) 15—35 Reserved for future system use

Printer control 36 One EBCDIC character indicating which control
character character set was used to create the data set.

A Special (ASA) control character present
D Device independent control character present
M IBM control character present
U SPERRY UNIVAC control character present

(Reserved) 37—79 Reserved for future system use

6.7. TAPE VOLUME AND FILE ORGANIZATION

As was stated earlier, magnetic tape files processed by TSAT must observe certain label
conventions. These were described in 6.6. Magnetic tape files must also observe
conventions as to volume and file organization. The following paragraphs and figures
describe the organization of files and volumes with respect to standard labeled,
nonstandard labeled, and unlabeled files used with OS/3 tape sequential acccess method
(SAM). Except where noted otherwise, these conventions also apply to tape files used with
TSAT.

Remember that TSAT assumes only standard labeled files, TSAT bypasses user header
labels, user trailer labels, and nonstandard labels. These labels are included in the
following figures and descriptions only to show their relative location within the various
volume organizations.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—38

UP-NUMBER UPDATE LEVEL PAGE

6.7.1. Standard Tape Volume Organization

A standard volume has standard labels, required tape marks, and is capable of being
processed by the logical IOCS. Figures 6—11, 6—12, and 6—13 illustrate the reel
organization for standard volumes with either an end-of-file (EOF> or end-of-volume (EOV)
condition. The logical IOCS assumes that the labels appear in the order shown. A volume
processed by TSAT will end in either an end-of-file or end-of-volume label group (EOF1
and EOF2 or EOV1 and EOV2) followed by two tape marks. The second tape mark signifies
that no valid information follows.

User header (UHL) and user trailer (UTL) labels are optional. Tape SAM permits you to
specify a special label handling routine to process these labels. If you do not specify such
a routine, the optional labels are simply bypassed. However, with TSAT, you cannot specify
your own label handling routine for optional labels. TSAT always bypasses these labels,
and your program is not made aware of them.

On output operations no provision is made in TSAT for the creation of additional volume
labels, file header labels, or file trailer labels. If these additional labels exist on input files,
TSAT bypasses them.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating Systeml3 6—39

UPDATE LEVEL PAGE

WITH END-OF-FILE CONDITION WITH END-OF-VOLUME CONDITION

LEG END:

Contents supplied by user.

Required and generated by TSAT.

Generated by TSAT user supplies content for certain fields.

Generated by user at his option. Content is at users option except for content of 4-byte label ID fields. User is

limited to eight UHL and eight UTL. Bypassed by TSAT.

Figure 6—11. Reel Organization for EBCDIC Standard Labeled Tape Volumes Containing a Single File



0’fU8075 Rev. SPERRY UNIVAC Operating System/3
UPDATE LEVEL j PAGEUPNUMBER

VOL1 label

HDR1 label of file A

-

HDR2 label of file A

taPemark\

data blocks
offleA

taPemark\

EOF1 label of fle A

EOF2 label of file A

U\
HDR1 label of fle B

HDR2 label of file B

aPemark\

, data blocks
, fofleB

tapemark

EOF1 label of file B

EOF2 label of file B

\\\\\\\\\
tape mark

taPemark\

LEGEND:

Content supplied by user,

Required and generated by TSAT.

Generated by TSAT; user supplies content for certain fields,

NOTE:

Assume that file B completes on this volume.

Figure 6—12. Reel Organization for EBCDIC Standard Labeled Tape Volume: Multifile Volume With End-of-File Condition



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 641

UP-NUMBER j UPDATE LEVEL PAGE

VOL1 label

HDR1 label of file A

HDR2 label of file A

tape mark

data blocks
of file A

tape mark

i EOF1 label of file Ar
. EOF2 label of file A

tape mark

HDR1 label of file B

HDR2 label of file B

tape mark

F data blocks
, offileB

‘
‘%

tape mark

EOV1 label of file B

EOV2 label of file B

tape mark

tape mark

HDR2 label of file B

\\ tape mark

data blocks
‘ offileB

tape mark

EOF2 label of file B

EOF2 label of file B

I ta

HDR1 label of file C

HDR2 label of file C

IJ
data blocks

offileC

tape mark

-----------

EOV1 label of file C

EOV2 label of file C

M\ tape mark
‘

! tape mark

LEGEND:

Content supplied by user.

Required and generated by TSAT.

Generated by TSAT; user supplies content for certain fields.

NOTE:

Assume that file C is not completed on reel 2, but carries over (like file B) onto another volume.
If file C were completed on reel 2, its EOV1 and EOV2 labels shown here would be replaced with
EOF1 and EOF2 labels.

Figure 6—13. Reel Organization for EBCDIC Standard Labeled Tape Volumes: Multifile Volumes With End-of-Volume
Condition

REEL 1 REEL 2

VOL1 label

HDR1 label of file B



8075 Rev. 3

UP-NUMBER
SPERRY UN I VAC Operating Systeml3

UPDATE LEVEL PAGE

6.7.2. Nonstandard Tape Volume Organization

A nonstandard volume is any volume that has nonstandard labels and is capable of being
processed by the logical IOCS. Figures 6—14 and 6—15 illustrate the reel organization for
nonstandard volumes.

Nonstandard user header and trailer labels (UHL and UTL> are optional. These may be of
any format, length, or number because they are handled by the user’s label routine. When
processing tapes using tape SAM, the address of the user’s label handling routine to
process nonstandard labels is usually specified, in which case the tape mark following the
UHL may be omitted. It is required only if label checking is to be omitted or a read-
backward operation is specified. If nonstandard labels appear on an input file but are not
to be checked when the file is read, the user omits specifying the address of his label
handling routine — but the tape mark must be present.

The tape mark following the data blocks is required and is written by logical IOCS, which
also writes two required tape marks after the UTL, if they are present. If the optional UTL
are not present, logical IOCS writes only one additional tape mark after the one following
the data blocks. This second tape mark is always present when this file is the only file or
the last file on the reel. It is overwritten by the next file to be written on a multifile
volume.

LEGEND:

Contents supplied by user.

Required and generated by TSAT; only two tape marks follow data blocks if UTL are not present.

Generated by TSAT unless user specifies TPMARK=NO required only if label checking is omitted or
user specifies READ=BACK.

Presence, content, format, and number entirely at user’s option. Bypassed by TSAT.

Figure 6—14. Reel Organization for EBCDIC Nonstandard Volume Containing a Single File



8075 Rev. 3

UPNUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6—43

Always present; written by TSAT

LEG END:

Content supplied by user.

Required and generated by TSAT; only two tape marks follow data blocks of last file on volume

if UTL are not present.

D Generated by TSAT unless user specifies TPMARKNO required only if label checking is omitted

or user specifies READBACK.

Presence, content, format, and number entirely at user’s option. Bypassed by TSAT.

Figure 6—15. Reel Organization for EBCDIC Nonstandard Multifile Volume



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating Systeml3 6—44

UPDATE LEVEL PAGE

6.7.3. Unlabeled Tape Volume Organization

An unlabeled volume is any volume that has no labels and is capable of being processed
by the logical IOCS. The user specifies FILABL=NO, or omits this parameter in the TCA
macro instruction, to indicate an unlabeled volume or file. A tape mark is expected or
written by logical IOCS preceding the data blocks unless the user has specified
TPMARK=NO in the TCA macro instruction.

Figure 6—16 illustrates the reel organization for unlabeled volumes. The tape mark
following the data blocks is required on both single-file and multifile volumes and is
supplied by TSAT on output operations. A second tape mark is always written by TSAT
following the last or only file on each volume and is overwritten by the next file to be
written on a multifile volume.

LEGEND:

Content supplied by user.

Required and generated by TSAT; two tape marks follow data blocks of last file on volume.

Generated by TSAT unless user specifies TPMARKN0 required only when user specifies
READ=BACK,

pemarktape mark

data blocks

tape mark

tape mark

SINGLE-FILE VOLUME

data blocks J
offileA 1—’

tape mark

I!.,
data blocks

of file B

; 4
tape markliii tape mark

MULTIFILE VOLUME

Figure 6—16. Reel Organization for Unlabeled EBCDIC Volumes



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—47

UP-NUMBER UPDATE LEVEL PAGE

Format:

LABEL tOPE RATION t OPERAND

TCA-name TCA IOAREA1=area-name
,B LKS I Z E=n

[,BKNO=YES]

[,CKPTR EC=YES]

F _5NORWD
L1CJl RWD

[,EOFADDR=end-of-data-addr
r (STD

,FILABL= NSTD
[ (NO

[,LBLKn]

[,OPRW=NORWD]

READ-1FORWARD
L’ 1BACK

F UNLOAD
L1M)_

. NORWD

[,TPMAR K=NO]

[,TYPE F LE=OUTPUT]

Label:

TCA-name
Specifies the symbolic address of the TCA table generated by this macro
instruction. This must be the same name specified in the TCA parameter of the
SAT macro instruction for this file.

Keyword Parameter IOAREA1:

IOAREA1 =area-name
Specifies the symbolic address of an input/output area in main storage where
the blocks are to be processed. The size of this area is specified in the BLKSIZE
keyword parameter.

When processing block numbered tapes (BKNO=YES), you must reserve a 4-byte
storage area immediately preceding your input/output area for supervisor
processing of the block number. The 4-byte block number area and the
input/output area must be aligned on a full-word boundary. Do not include these
four bytes as part of the IOAREA1 specification.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—48

UPNUMBER UPDATE LEVEL PAGE

Keyword Parameter BLKSIZE:

BLKSIZE=n
Specifies the size in bytes of the area in main storage named by the IOAREA1
keyword parameter.

When processing block numbered tapes (BKNO=YES), you must reserve a 4-byte
storage area immediately preceding your input/output area. Do not include these
four bytes as part of the BLKSIZE specification.

If you are reading input tapes backward (READ=BACK), your BLKSIZE
specification must accommodate the largest block on tape, otherwise the data at
the beginning of the block may be lost, If the data is truncated on a backward
read of a block numbered file, the block number field will be lost and incorrect
positioning of the tape may result.

Keyword Parameter BKNO:

BKNO=YES
Specifies that you have reserved a 4-byte storage area, aligned on a full-word
boundary, immediately preceding your input/output area. Do not include these
four bytes as part of either the IOAREA1 specification or the BLKSIZE
specification. Processing of block numbered tape files is described in 6.10.

Keyword Parameter CKPTREC:

CKPTR EC=YES
Specifies that any checkpoint records occurring in an input tape file are to be
bypassed by TSAT. In this case, your BLKSIZE specification in the TCA macro
instruction must equal or exceed the length of a header or trailer label of the
checkpoint set.

In OS/3 tape files, the first and last blocks of a checkpoint dump begin with the
following:

//LxCH KPTL//nnttCsss

where:

n n
Is the number, in binary, of image records plus control blocks, less 1,
not including the header or trailer labels.

tt
Is the total number, in EBCDIC, of checkpoint records following the
header label, including the trailer label; tt is 00 in a trailer label.

C
Is a constant, coded in EBCDIC as shown.

sss
Is the serial number of the checkpoint, in EBCDIC.

If omitted, any checkpoint records occurring are accepted as data by TSAT and your
program must include the coding to recognize them.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—49

UP-NUMBER UPDATE LEVEL PAGE

Keyword Parameter CLRW:

CLRW=NORWD
Specifies that a tape is not to be rewound when a file is closed.

C LRW=RWD
Specifies that a tape is to be rewound without interlock when a file is closed.

If omitted, the tape is rewound with interlock when a file is closed, which causes the
tape to be unloaded from the take-up reel.

Keyword Parameter EOFADDR:

EOFADDR=end-of-data-addr
Specifies the symbolic address of your end-of-data routine to which TSAT
transfers control when the tape mark following the last block of input data is
sensed. This keyword parameter is required for all input files. The optional
spelling, EDDADDR, of this parameter is also acceptable.

Keyword Parameter FILABL:

F I LAB L=STD
Specifies that a tape contains standard labels.

F I LAB L=N STD
Specifies that a tape contains nonstandard labels. These labels are not checked
by TSAT. No provision is made in TSAT to create this type of label.

FILABL=NO
Specifies that labels are undefined or absent.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—50
UP-NUMBER UPDATE LEVEL PAGE

Keyword Parameter LBLK:

LBLK=n
Specifies the number of physical blocks (of the length specified in the BLKSIZE
keyword parameter> comprising a logical block. The entry for n specifies the
number of contiguous buffers supplied at the address specified by the IOAREA1
keyword parameter. Use this parameter when you want to act upon more than
one physical block to construct one logical block.

If omitted, one physical block comprises one logical block (LBLK1).

Keyword Parameter OPRW:

OPRW=NORWD
Specifies that a tape is not to be rewound before labels are checked during the
processing of the OPEN macro instruction. When read-backward processing is
specified, NORWD is assumed. This keyword parameter must not be used if the
REWIND keyword parameter is specified. If both are used, they are mutually
exclusive.

If omitted, the tapes are rewound at open time.

Keyword Parameter READ:

READ=FORWARD
Specifies that an input file is to be read forward.

READ=BACK
Specifies that an input file is to be read backward. If this is specified, you are
limited to a single volume file. Also, your BLKSIZE specification must
accommodate the largest block on tape.

If omitted, read forward is assumed.

Keyword Parameter REWIND:

REWIND=UNLOAD
Specifies that a tape is to be rewound to load point at open time, and rewound
with interlock at close time or when an end-of-volume condition is encountered.

REWIND=NORWD
Specifies that a tape is not to be rewound at open time, and is to be positioned
between the two file marks at close time.

If omitted, the OPRW or CLRW parameters are selected.

Keyword Parameter TPMARK:

TPMARK=NO
Specifies that, for output files with nonstandard labels or no labels, logical IOSC
is not to write the tape mark that normally separates header labels from data. In
this case, it is your responsibility to distinguish between header labels and data.
In a multifile reel environment, this keyword parameter should not be used for
files that are to be processed backward.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

6—51

UPDATE LEVEL PAGE

Keyword Parameter TYPEFLE:

TYPE FLE=O UTPUT
Specifies that this is an output file.

If omitted, an input file is assumed.

6.9. CONTROLLING YOUR TAPE FILE PROCESSING

There are six imperative macro instructions available for controlling your tape file
processing using TSAT:

• OPEN

Opens a tape file.

• GET

Gets the next logical block.

• PUT

Outputs the next logical block.

• WAITF

Waits for block transfer.

• CNTRL

Controls tape unit functions.

• CLOSE

Closes a tape file.

6.9.1. Open a Tape File (OPEN)

Function:

After the file has been defined by the SAT and TCA declarative macro instructions,
the OPEN macro instruction must be issued to initialize the file before any other
access can be made. This macro instruction validates the DTF and TCA tables and
performs any required tape positioning functions.

Format:

LABEL 1OPERATION OPERAND

J filenamel [,.,filename-n]
1 (1)

[symbol] OPEN



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UPNUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

filename-i
Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file to be opened.

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the SAT macro instructions
in the program corresponding to the additional files to be opened.

6.9.2. Get Next Logical Block (GET>

Function:

The GET macro instruction reads a logical block from tape into main storage and
makes it accessible for processing. The address into which the data is read is
specified in the associated TCA macro instruction by the keyword parameter
IOAREA1,

Format:

LABEL OPERATIONI OPERAND

[symbol] GET {filenarne} {TCAname

Positional Parameter 1:

filename
Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file being read.

(1)
lndcates that register 1 has been preloaded with the address of the SAT macro
instruction.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 6—53

UPDATE LEVEL PAGE

Positional Parameter 2:

TCA-name
Specifies the symbolic address of the TCA macro instruction associated with the
partition to be accessed.

(0)
Indicates that register 0 has been preloaded with the address of the TCA macro
instruction.

When a GET macro instruction is issued for a SAT file, the contents of registers 14, 13,
and 12 are saved in three consecutive full words whose address is in register 13.

6.9.3. Output Next Logical Block (PUT)

Function:

The PUT macro instruction writes a logical block from main storage to tape. The main
storage address from which the data is written is specified in the associated TCA
macro instruction by the keyword parameter IOAREA1.

Format:

[symbol]

Positional Parameter 1:

filename
Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file being written.

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter 2:

TCA-name
Specifies the symbolic address of the TCA macro instruction associated with the
partition to be written.

(0)
Indicates that register 0 has been preloaded with the address of the TCA macro
instruction.

When a PUT macro instruction is issued for a SAT file, the contents of registers 14, 13,
and 12 are saved in three consecutive full words whose address is in register 13.

LABEL LOPE RATION

PUT

OPERAND

5 filename
1 (1)

5 TCA-name
I’l (0)



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—54

UP-NUMBER UPDATE LEVEL PAGE

6.9.4. Wait For Block Transfer (WAITF)

Function:

The WAITF macro instruction ensures that a command initiated by a preceding GET or
PUT macro instruction has been completed. When completed, the error status field
contains the error status information pertaining to the I/O request. It is your
responsibility to check these bits, which are in bytes 50 and 51 of the DTF table.

If the keyword parameter WAIT=YES was not specified in the SAT macro instruction,
the WAITF macro instruction must be issued after a GET or PUT macro instruction
and before another imperative macro instruction is issued for that file.

Format:

LABEL IOPERATIONL OPERAND

[symbol] WAIT F f filename
k (1)

Positional Parameter 1:

filename
Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file being accessed.

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

6.9.5. Control Tape Unit Functions (CNTRL)

Function:

This macro instruction initiates nondata operations on a tape unit. All tape control
functions may be issued whether or not the file is open. Do not issue a WAITF macro
instruction following a CNTRL macro instruction.

Format:

LABEL L2OPERATIONL OPERAND

[symbol] CNTRL
{filename} code

,

,



8075 Rev. 3 SPERRY UNIVAC Operating System/3 6—45

UP-NUMBER UPDATE LEVEL PAGE

6.8. TAPE SAT FILE INTERFACE

Each file to be processed by TSAT must be predefined by two declarative macro
instructions:

SAT

Defines a TSAT magnetic tape file.

• TCA

Defines a tape control appendage.

The SAT macro instruction describes the physical characteristics of the file, and the TCA
macro instruction describes the logical attributes of the file.

6.8.1. Define a Magnetic Tape File (SAT)

This is the DTF macro instruction for TSAT files. The assembler also accepts the name
DTFPF; however, the name SAT is used here to avoid confusion between the DTF macro
instruction for disk SAT files and tape SAT files.

Function:

The SAT macro instruction defines a magnetic tape file to be processed by SAT. It
generates a DTF table in main storage containing the file name and operating and
physical characteristics of your file that can be referenced by the system.

This is a declarative macro instruction and must not appear in a sequence of
executable codes.

Format:

LABEL LOPERATIONt2 OPERAND

filename SAT TCA=TCA-name
[,ERROR=error-addr]
[,FCB=YES]
[,WAIT=YES]

Label:

filename
Specifies the name used to identify the file. This is the same as the 8-character
name in the LFD job control statement.

Keyword Parameter TCA:

TCATCA-name
Specifies the symbolic address of the TCA for the file. This name must be
entered in the label field of the corresponding TCA macro instruction describing
the tape control appendage.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6-46
UPNUMBER UPDATE LEVEL PAGE

Keyword Parameter ERROR:

ERROR=error-addr
Specifies the symbolic address of your error routine that receives control if an
error occurs.

If omitted, the job is abnormally terminated if an error occurs.

Keyword Parameter FCB:

FC B=YES
Specifies that before issuing the OPEN macro instruction, you have placed the
FCB for this file in the I/O area specified by the IOAREA1 keyword parameter of
the TCA macro instruction associated with this file, instead of in the transient
area where it is normally placed.

If omitted, the FCB, which controls file I/O, is placed into the transient area of main
storage during file-open operations.

Keyword Parameter WAIT:

WAIT=YES
Specifies that TSAT is to issue the required WAITF macro instruction after each
I/O function (GET, PUT). This initiates a waiting period to assure completion of
the input or output operation and sets certain status bytes in the DTF table.

If omitted, you must issue a WAITF macro instruction after each I/O operation.

6.8.2. Define a Tape Control Appendage (TCA)

Function:

The TCA macro instruction defines the logical attributes of a magnetic tape file to be
processed by TSAT. It generates a tape control appendage to the DTF table for the file.

This is a declarative macro instruction and must not appear in a sequence of
executable code.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 655

UP-NUMBER

-

UPDATE LEVEL PAGE

Positional Parameter 1:

filename
Specifies the symbolic address of the corresponding SAT macro instruction in the
program.

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter 2:

code
Is a mnemonic 3-character code specifying the tape unit function to be
performed:

BSF Backspace to tape mark*

BSR Backspace to interrecord gap*

ERG Erase gap (writes blank tape)

FSF Forward space to tape mark*

FSR Forward space to interrecord gap*

REW Rewind tape

RUN Rewind tape with interlock (unloads tape)

WTM Write tape mark

6.9.6. Close a Tape File (CLOSE)

Function:

The CLOSE macro instruction performs the required termination operations for a file;
for example, construction of the EOF label group. Once the CLOSE macro instruction
has been issued for a file, only the OPEN macro instruction may reference that file.

Format:

LABEL LOPERATIONL OPERAND

[symbol] CLOSE { filename-i [,...,fi lename-n] }

Applies only to input files.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 56

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

filename-i
Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file to be closed.

(i)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the SAT macro instructions
in the program corresponding to the additional files to be closed.

610. BLOCK NUMBER PROCESSING

TSAT can process magnetic tapes with or without block numbers. The use of block
numbers reduces the possibility of incorrect tape positioning and, therefore, incorrect tape
processing. This is especially helpful for error recovery on read and write commands and
for restarting at a checkpoint.

—0- Processing of block numbered tapes for TSAT files will be executed by PIOCS. The general
requirements and processing are the same as detailed for PIOCS in 4.4.1 to 4.4.4. Some of
these are noted here for convenience.

• When the block numbering capability is being used, all bloóks on tape except tape marks
will include a 3-byte block number field as the first three bytes of the block. This 24-bit
block number field is composed of a 4-bit tape mark counter and a 20-bit block number
counter. PIOCS uses both of these counters when reading and writing block numbered
tapes. The format of the tape block number field is shown in Figure 4—9.

• The first block on tape that is not a tape mark will contain a block count of 1 plus the
number of tape marks preceding it.

• Block numbers are incremented sequentially by 1 All label data and checkpoint
blocks are counted and numbered Tape marks are counted but no number is written

• For both EBCDIC and ASCII tapes, the 3-byte block number field is added to a
standard label immediately preceding the label identifier (VOL1, HDR1, etc.), making
the label 83 bytes long. The 83-byte ASCII label is nonstandard for information
interchange. Tape label formats for block numbered EBCDIC tapes are shown in
Figures 6—17 through 6—21.

• Block number processing will be exactly the same for both EBCDIC and ASCII tape
files.

• Block numbers will be volume dependent and file independent. If a volume contains
more than one file, the block count is continued from the preceding file on the volume
and the blocks are consecutively numbered to the end of the tape.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 6—57

UP-NUMBER UPDATE LEVEL PAGE

i Files on a volume and volumes in a multivolume file must be all numbered or all
unnumbered, not mixed.

The 7-track odd parity tapes operating in convert mode may be block numbered if the
block size is a multiple of 3.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be adjusted
accordingly for backward reads. When the tape is read in either direction, the block number
read from tape is stored in the PUB trailer and compared with the expected block number. If
there is no discrepancy (and no other errors) control is returned to the user program. If there is a
discrepancy, PIOCS attempts to find the correct block by moving the tape backward or forward
the number of blocks implied by the discrepancy. If the correct block is found, control is returned
to the user If the correct block cannot be found the tape is left positioned where it was on the
last attempt and an error message is sent to the console.

6 10 1 Facilities Required for Block Number Processing

To process block numbered tape files, three conditions (called preliminary conditions) are
required:

1. So that the generated supervisor can process both numbered and unnumbered tapes,
you must operate with a supervisor configured to process block numbered tapes.

2. You must reserve a full-word aligned, 4-byte storage area immediately preceding your
input/output area for supervisor processing of the block number. Do not include these
four bytes as part of either the address or the length specifications (IOAREA and
BLKSIZE keyword parameters of the TCA declarative macro instruction).

3. You must indicate to TSAT that you have reserved the 4-byte block number area by
specifying BKNOYES in the TCA macro instruction (6 8 2)

If these three preliminary conditions exist, you may then control block number processing
through either job control (JCL) or automatic volume recognition (AVR). This permits you to
leave the 4-byte storage area and the BKNO parameter in your program even though you
may at times be processing unnumbered tapes.

6.10.2. Specifications for Block Number Processing

Several factors determine when and how block number processing isemployed. If a tape
is not at load point when the file is opened, the file will be handled according to the
specifications existing when the tape was opened at load point. Therefore, you cannot
have both numbered and unnumbered files on the same volume.

If a tape is at load point when it is opened, processing will proceed as described on the
following pages.

The various methods of tape file processing can be divided into two categories: processing
with tape initialization, and processing without tape initialization. These will be referred to
simply as initialized or noninitialized processing.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 6—58

UP-NUMBER UPDATE LEVEL PAGE

6.10.2.1. Initialized Processing

Initialized processing includes:

• TPREP utility routine processing, described in the system service programs user
guide, UP-8062 (current version>;

• processing output files with standard labels (FILABL=STD specified in the TCA macro

instruction> and PREP specified in the VOL job control statement; or

• processing input or output files with nonstandard labels (FILABL=NSTD) or no labels
(FILABLNO specified in the TCA macro instruction).

For initialized processing, you control the presence or absence and the processing of block
numbers by the first parameter of the VOL job control statement as follows

You Specify Preliminary Conditions Result

Nothing All present Block number processing

Some missing No block number processing

N Ignored No block number processing

6.10.2.2. Noninitialized Processing

Noninitialized processing includes:

• processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction>, but without PREP specified in the VOL job control statement; or

• processing input files with standard labels (FILABL=STD specified in the TCAmacro
instruction)

For noninitialized processing, TSAT ignores the first parameter of the VOL job control

statement. Instead, the specification is obtained from the tape content (which was

detected by AVR>, as follows:

Tape Content Preliminary Conditions Result

Block numbers All present Block number processing

Some missing No block number processing

No block numbers Ignored No block number processing

For processing of multivolume files, you must ensure that all volumes have (or do not
have> block numbers. You cannot mix numbered and unnumbered volumes within a file.



8075 Rev. 3

UP-NUMBER

Bytes

76

SPERRY UNIVAC Operating System/3
6—59

UPDATE LEVEL PAGE

80

NOTE:

LEGEND:

Generated by TSAT or reserved for system expansion.

Written by TSAT from user supplied data

The first three bytes (bytes O—2) of the tape file label contain a 24-bit block number field. The contents of the remainder of
the VOL1 label are the same as described in Table 6—1, except that each field is offset three bytes.

Figure 6—17. Tape Volume 1 (VOL 1) Label Format for an EBCDIC Volume With Block Numbers

0 1 I 2 3

block number V

0 L 1

volume serial number

volume
security

‘

reserved

\\

reserved

reserved

I

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

owner identification

reserved



8075 Rev. 3
UP-NUMBER

Bytes

SPERRY UNIVAC Operating System/3
6—60

UPDATE LEVEL PAGE

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

LEGEND:

Generated by TSAT or reserved for system expansion.

Written by TSAT from user supplied data

0 1 I 2 3

“ block number H

\\\
ç\ D R 1

file identifier

file serial number

volume.

. sequence number file.

. sequence number generation.

. number version number

creation date

expiration date

file security

\ system code

reserved

NOTE:

The first three bytes (bytes O—2) of the tape file label contain a 24-bit block number field. The contents of the remainder of
the HDR1 label are the same as described in Table 6—2, except that each field is offset three bytes.

Figure 6—18. First File Header Label (HDR1) Format for an EBCDIC Tape Volume With Block Numbers



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 6—61

UPDATE LEVEL PAGE

Bytes

0 I 1 2 3

block number H

.
record format

\ D R 2
character

block length

record length

N
\.

‘ p

\\N reserved

\
\ printer control
‘ character

‘‘: ‘‘

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

\\ç

\\\‘

reserved

‘‘

UI
\\ \\

80

LEGEND:

Generated by TSAT or reserved for system expansion.

El Written by TSAT from user supplied data

NOTE:

The first three bytes (bytes 0—2) of the tape file label contain a 24-bit block number field. The contents of the remainder of
the HDR2 label are the same as described in Table 6—3, except that each field is offset three bytes.

Figure 6—19. Second File Header Label (HDR2) Format for an EBCDIC Tape Volume With Block Numbers



8075 Rev. 3

UP-N UM8 ER
SPERRY UN I VAC Operating System/3 6—62

UPDATE LEVEL PAGE

80

LEGEND:

Generated by TSAT or reserved for system expansion.

El Written by TSAT from user supplied data

Bytes

0 I 1 I 2 3

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

block number label.
\\\\

.
. identifier label

number

file identifier

file serial number

volume.

. . sequence number file.

. . .sequence number generation.

. . .number version number

creation date

-

expiration date

\\
file security

block count

\
\‘ \S \

\‘
system code

reserved

NOTE:

The first three bytes (bytes 0—2) of the tape file label contain a 24bit block number field. The contents of the remainder of
the EOF1 and EOV1 labels are the same as described in Table 6—4 except that each field is offset three bytes.

Figure 6—20. Tape File LEOF1 and EOV1 Label Formats for Block Numbered EBCDIC Files



LEGEND:

Generated by TSAT or reserved for system expansion.

[El Written by TSAT from user supplied data

NOTE:

The first three bytes (bytes 0—2) of the tape file label contain a 24-bit block number field. The contents of the remainder of
the EOF2 and EOV2 labels are the same as described in Table 6—5, except that each field is offset three bytes.

Figure 6—2 1. Tape File EOF2 and EOV2 Label Formats for Block Numbered EBCDIC Files

8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

6—63

UPDATE LEVEL PAGE

Bytes

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80



C )



PART 3. MULTITASKING





8075 Rev. 3 SPERRY UNIVAC Operating System/3 71
UP-NUMBER UPDATE LEVEL PAGE

7. Multitasking

7.1. GENERAL

7.1 .1. Multijobbing and Multitasking

The SPERRY UNIVAC 90/30 Data Processing System can concurrently process from one
to seven jobs, each job consisting of one or more job steps (programs) which are
executed serially. A job step will also have one or more tasks which may be executed
concurrently. This capability allows you greater flexibility in attaining maximum use of
the system’s resources.

Multijobbing consists of scheduling multiple jobs (up to seven) for concurrent execution.
The allocation of processor time to these jobs is based on a system switch list which
contains information regarding task priorities, synchronization, and I/O utilization. While
one job is awaiting the completion of an external event (such as completion of an I/O
request), the operating system activates another job that is ready to ensure optimum
utilization of the processor’s capabilities. Since the majority of programs require support
other than processing instructions, multijobbing provides an effective method for you to
reduce processor idle time and increase system productivity (throughput).

Multitasking is the concurrent execution of multiple tasks. Because every job has at least
one task to which control of the processor is dispatched, the term multitasking is
sometimes applied (from the point of view of the task switcher within the supervisor) to
the concurrent execution of several jobs each having one task. However, multitasking, as
used here, refers to the concurrent execution of several tasks asynchronously within a
given job step. Multitasking enables you to overlap processing with external occurrences
within a program to obtain maximum throughput in the same manner as the system
achieves optimum utilization using multijobbing.



SPERRY UNIVAC Oingste 2

7111. Primary Task

Every job step submitted to OS/3 is established as a primary task. A task is the lowest
viable entity that can compete for processor time, OS/3 permits up to 256 tasks per job.
The switch list has the capacity to allow you to specify up to 60 levels of processing
priority for tasks. The maximum number of task priority levels that the supervisor will
recognize is established at system generation time. The technical limit is 60; however, a
more practical limit of 3 to 1 5 is sufficient to achieve a high degree of processor
utilization. When a task is interrupted to perform external processing (external to the
instruction processor), it frees the processor and OS/3 searches the switch list for the
highest priority task that is not waiting for an external event to be completed. This task
could be in the same job or it could be from any other job currently being processed.

7.1.1.2. Subtask

OS/3 has another level of multitasking which may occur within a job step. The primary
task is capable of initiating other tasks, called subtasks, within the job step. Primary
tasks and subtasks are simply two categories of tasks; each is processed in the same
manner. However, the primary task is automatically initiated into the multitasking
environment by OS/3 at job step initiation, while subtasks must be created by the
program in the job step. Subtasks can be given the same priority as the primary task or
they can have a lower priority. Thus, a job step may consist of a primary task and
several subtasks, all of which compete independently for processor time.

7.2. TASK MANAGEMENT

7.2.1. General

The supervisor is designed with multitasking capability which isutilized by the supervisor
and extended to the user through macros. In a multitasking environment, several tasks
may compete for control of the processor on a priority basis.

A task is defined as a point of control within an environment which is capable of
utilizing the processor asynchronously with other tasks. It refers to a level of control only
and not the physical code itself.

Every task, regardless of the code the task executes, will be identified to the supervisor
by a task control block (TCB). The TCB contains or points to all control information
associated with a task. This includes register/program status word save areas and other
task-oriented information.

Each job step has a task (and thus a TCB) inherited at job step initialization from job
control which is referred to as the primary task. Additional tasks may be attached as
subtasks and cause additional TCBs to be created to identify the new tasks to the
supervisor. The primary task is considered to represent the job step. As such, any
termination, normal or abnormal, of this task will cause the job step to terminate.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 7—3
UP-NUMBER UPDATE LEVEL PAGE

Additional tasks (subtask, other than primary) are created by the ATTACH macro
instruction which causes task management to create a TCB and initialize it with the
attaching task’s environment. Once a subtask has been created it is entered on the
switch list to compete for the processor control on a priority basis. Each task competes
independently for the processor. When the switcher gains control, it selects the highest
priority nonwaited task and dispatches control. A task is nonwaited (active) if it can use
the processor and waited (not active) if some event must take place before the task can
use the processor.

A subtask terminates when a DETACH macro instruction is executed for that task or an
error occurs which prevents the task from successfully completing its work. A DETACH
in behalf of the primary task is interpreted as an end-of-job step (8.3.4). When a subtask
terminates normally, a completion code is posted within the task’s event control block
(ECB) which can be examined by the attaching task to determine the result of the task
processing. If a subtask terminates abnormally, an error code is posted for examination
by the attaching task, and control is passed to the abnormal termination island code.

All tasks of a job have all the capabilities of the primary task; that is, a task can create
additional tasks of its own and perform all communication functions with these tasks.
The exception is that unsolicited operator messages can only be accepted at the job step
level.

7.2.2. Task Creation

Task creation is performed by the ATTACH macro instruction, which causes entry into the
attach function to create a subtask. The code to be executed by the task specified on the
ATTACH macro instruction call must be in main storage, within the user region, when the
ATTACH macro instruction is issued.

The number of tasks which may be created by a user is limited to the number designated to job
control with a maximum of 255 subtasks. The space for creation of task control blocks is
reserved by job control when the job region is established. The number of possible
simultaneous tasks must be specified as a parameter on the JOB statement in the job control
stream.

Tasks may create other subtasks in a pyramidal fashion with a limit of four total or three
subtask levels. This hierarchical structure is not intended to provide a means of task
synchronization. This structure is composed of subtask families so that when a subtask
terminates, the family it has created is also terminated.

When a task is created, the originating task must pass the address of an area in the
user storage to be used as an event control block (ECB) for the newly created task. This
ECB address is placed in the newly created task’s TCB and may be considered as an
extension to the TCB for the purpose of task synchronization by user. The separation of
the ECB and TCB is a system requirement since a TCB cannot be addressed by the user
programs.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 7—4

UP-NUMBER UPDATE LEVEL PAGE

7.2.3. Task Priority

When a primary task is created, job control assigns it a dispatching (switch list) priority
as requested on the job control EXEC statement. Any subtask created by the primary task
or other subtask can have a priority based on the primary task priority as specified on
the ATTACH call. The attaching task may request the same or a lower priority for the
new subtask.

7.2.4. Task Termination

A task executes a DETACH macro instruction to cause entry into the task termination
function for processing. The DETACH function determines whether the DETACH was
executed from abnormal termination island code to determine if termination was normal
or abnormal. For normal termination, the ECB for that task is posted by the termination
routines and all tasks in the subtask family of this task are terminated.

Task control posts completion codes for the terminating task, notifies any other task
awaiting the completion of the terminating task, and unlinks the TCB from the system.
The task termination routines recognize the TCB for a primary task and treat that as a
job step termination (EOJ).

An abnormally terminating task is one that executed a CANCEL either intentionally or
imposed by the system. Task control when processing an abnormally terminating task,
posts the task’s ECB, and activates abnormal termination island code under the primary
task but in behalf of this task.

7.2.5. Queue Driven Task

The AWAKE function is provided for queue driven tasks to allow for better
synchronization and less overhead. AWAKE can only be issued to a task which has been
previously created by ATTACH. If the AWAKE function is addressed to a nonexistent task
(no ATTACH), an abnormal termination is initiated. The AWAKE is utilized to activate an
existing but idle task.

The queue driven task continues to process until it has exhausted all queue entries and
then can execute the TYIELD macro instruction to mark itself nondispatchable until
further queue entries have been made. Each time an AWAKE macro instruction is
executed, the addressed task will be removed from the idle state. This is accomplished
whether the task is idle or active and will permit a task to be dispatched.

7.2.6. Hierarchical Structure

Subtasks are attached as members of task families providing a hierarchical structure
similar to a pyramid. This structure provides the family naming conventions which allow a
task to terminate and have all its subtasks also terminated. The hierarchy is not imposed
as a restriction to task synchronization or control. Therefore, tasking functions may
reference across family lines. Additionally, this structure has no relationship to the
dispatching priority.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

The internal subtask naming convention consists of a concatenation of the physical TCB
(within the job) and the attaching task’s name. The numbering of the subtasks should be
random rather than sequential. For example, if a task named X’0102’ attaches two
subtasks, these might be named X’Ol 0205’ and X’Ol 0209’, or X’Ol 0203’ and X’Ol 0207’.

7.3. TASK MANAGEMENT MACRO INSTRUCTIONS

Task management macros provide the interface by which jobs can create and control a
multitasking environment. Each job step by definition has at least one task, which is
referred to as the primary task. The following macros allow for the creation, activation,
deactivation and deletion of additional tasks within a job step.

The user must inform job control via job control statements of the maximum number of
tasks that can be created for a job step. This allows job control to reserve the main
storage required for TCB within the job’s prologue. Likewise, you must provide storage
for and control of the ECBs. These ECBs are 2-word (8 bytes) fields which task
management utilizes to communicate with the user to allow for task synchronization and
to identify the task. You can look at the information but should not write into these
words which are unique to a given task. The primary task doesn’t have an ECB and is
identified by an ECB address of zero.

The following macro instructions are available for multitasking:

ECB

Generates an event control block for task identification and status.

‘ ATTACH

Creates and activates an additional task.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

7—6

UPDATE LEVEL PAGE

Terminates a task normally.

Reactivates an existing nonactive task.

7.3.1. Generate an Event Control Block (ECB)

Function:

The ECB macro instruction generates and initializes an event control block. The
event control block is used by task management to identify a task and to indicate
status to the other tasks within a job step. The current status of the associated task
is reflected by bits within the ECB (Figure 7—1).

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

There are no parameters for the ECB macro instruction.

The ECB is utilized to communicate between task management and the job step. The
following programming considerations and conditions are set into the ECB.

1. The ATTACH macro specifies an ECB when the task is created. The specified ECB is
linked to the TCB and is reserved for this task until this task is detached.

2. As with I/O, only one task can wait for a given command control block (CCB) or
ECB. However, unlike I/O, which allows only the task that submitted the CCB to
wait for it, task management allows only one of the other tasks to wait for the task
which is identified by the ECB.

I DETACH

• WIELD

Deactivates a task.

• AWAKE

• CHAP

Changes the relative priority of a task.

LABEL

[symbol]

OPERATION t

ECB

OPERAND



8075 Rev. 3

U PN UMBER
SPERRY UNIVAC Operating System/3 71—7

UPDATE LEVEL PAGE

3. A primary task does not have an ECB associated with it, therefore, the primary task
cannot be awaited. This task can synchronize with I/O by utilizing the WAIT and
WAITM macros and can synchronize with other tasks by the AWAKE and TYIELD
macros.

Example:

2

LABEL tIOPERATIONI OPERAND COMMENTS
1 10 16

Pi4]4 TARI1
I!1!Il! tL I t i4 4 4 -

I I J_IL...L J. I_L. I I 4 I 1 1 1 1 1_L1_ I

lJ TrAc
II I I•l I I I I I - I I I

I I I I I

i_LJ__1L.L_L Ai.tii .L_LIIJJL LJLJ_L LJ.LJLLLJLJLJLI L_______

Jl_LLJ_IJ LL J LLJLLJ LL-L

JJ..L.L.LL...L ir I I I 1 I

I I 11I I J I 1 1 I I I I 1 I 4 I... -4 L..l I I I L

L1_L_L Lt_LL L LL_LJ LLLJL LLJ1JLJLI L -

:c:LL1 LL I 1At tRE
L4L L L -J LiJI I 1 - -

.L_1__LJ_LL_1_ JL.LJ_ 1414111 - - LJ. LJJLLI -

1,1111 E1AC ECBi1111i11 1I1

4

g

Explanation:

1. Line 1 attaches a subtask whose ECB name is ECB1. The ,subtask will begin
execution at the address of START. If the priority of PRIMTASK is two, the
priority of the subtask being attached is four.

2. At line 2, the primary task gives up control until the subtask is completed.

3. Line 3 generates the ECB called ECB1 associated with the subtask. Note that
this macro does not appear in a sequence of executable code.

4.&5.

Lines 4 and 5 represent the beginning and ending of the subtask execution.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 7—8

UP-NUMBER UPDATE LEVEL PAGE

BYTE 0 1 2 3

o control byte attaching task’s ID activity byte unused

4 address of TCB waiting for this ECB

Byte

o Control Byte

Bit 0 1 This is an ECB,

1—4 Not used

5 1 = This task completion is being awaited.

6—7 Not used

1 Attaching Task’s ID

Task identification number of task with which this ECB is associated. This ID number is not related to subtask

name. It is the number of the TCB counting from the job step TCBwhich is number 0.

2 Activity Byte

Bit 0 0 = Task is active in that it has not executed either a TYIELD or DETACH macro.

1 = Task is idle in that it has executed a TYIELD or DETACH macro.

1—6 Not used

7 1 = Task has abnormally terminated and should be detached.

3 Unused

4—7 Address of TCB which is awaiting completion of the task with which this ECB is associated.

Figure 7—1. Event Control Block (ECB) Format



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

7.3.2. Create an Additional Task (ATTACH)

Function:

The ATTACH macro instruction creates and activates a task desiring control of the
processor. It generates an additional task control block and enters the task onto the
switch list.

Format:

LABEL IOPERATIONI OPERAND

[symbol] ATTACH {ECB-name} { entry-point-name

r (error-addr’l 1
[1 (r) fj

Positional Parameter 1:

ECB-name
Specifies the symbolic address of the ECB used to identify and control this task.

(1)
Indicates that register 1 has been preloaded with the address of the event
control block.

Positional Parameter 2:

entry-point-name
Specifies the symbolic address of the point in the program at which this task
will receive control. The coding to be executed for the task must be in main
storage when the ATTACH macro instruction is issued.

(0)
Indicates that register 0 has been preloaded with the address of the entry point.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine to receive control if an error
occurs.

(r)
Indicates that the register designated (other than 0 or 1) has been preloaded
with the address of the error routine.

If omitted, the task will be abnormally terminated if an error occurs.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

7—10

UPDATE LEVEL PAGE

Positional Parameter 4:

n
Specifies a value to be added to the switch list priority of the originating task.
This raises the dispatching priority value resulting in a lesser priority for the task,
(The higher the priority number, the lower the priority) The result is assigned as
the switch list priority of the new task unless it exceeds the limit of this system,
in which case the highest number (lowest priority> for this system is used,

The use of this parameter always results in a lesser priority. There is no way to
attach a task with a priority higher than that of the primary task.

If omitted, the new task will be created at the same priority as the originating task.

Example:

LABEL OPERATON OPERAND COMMENTS
1 10 16

aa_s_1LL. Lj . a_c_LiL rJ a -
- a £ - -

I, ac -- -- - - -

JLLcLJL LLLL J_rJL_itJ_Lua_JiL_ r - 1 _r

aLL -

LL 1ML tuRi4 x CA E JF EX

Attach a task identified by the event control block named ECBI. The subtask will
receive control at the instruction whose address is labeled ENTRYPT. If an error is
encountered during the execution of the ATTACH macro instruction, control will be
transferred to the error processing routine labeled ERROR. The dispatching priority
of the newly created task will be two greater than that of the originating task.

7.3.3. Terminate a Task (DETACH)

Function:

The DETACH macro instruction terminates a task by delinking the TCB from the
switch list and returning the TCB to the job’s free TCB queue. If this macro
instruction is executed by the primary task, it will be interpreted as an end of job
step. All subtasks of the task being detached will also be detached,

This macro instruction also clears all I/O locks for the task.

Format:

ETR>t U?AL< EKET_

LABEL OPERATION OPERAND

[{ECB-name}] [ { error.addr}]
[symbol] DETACH



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 7—11

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

ECB-name
Specifies the symbolic address of the event control block of the task to be
detached.

(1)
Indicates that register 1 has been preloaded with the address of the ECB.

If omitted, indicates that the task issuing the DETACH instruction is terminating. No
task other than the primary can terminate the primary task.

Positional Parameter 2:

error-addr
Specifies the symbolic address of an error routine to be executed if an error
occurs.

(r)
Indicates that the register designated (other than 0 or 1) has been preloaded
with the address of the error routine.

If omitted, the executing task will be abnormally terminated if an error occurs.

Example:

LABEL tOPERATIONi OPERAND
1 10 16

‘ — Di.Lc1 ECBi:ERbiRi

- -

— I L LI .1 LJ I i i i,

L I Ii II!

EC4E11 i — 1
gRb,R i — I I I I I

Detach the task identified by the event control block labeled ECB1. If an error occurs
during the DETACH macro instruction, transfer control to error processing routine
labeled ERROR.

7.3.4. Yield Until Task Completion (WIELD)

Function:

The TYIELD macro instruction relinquishes control of the processor and sets the TCB
in a waiting state. The ECB is tested and if there is a task awaiting the yielding
task, the waiting task is activated.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3
1—12

UPDATE LEVEL PAGE

The TYIELD macro instruction is used in combination with the AWAKE macro
instruction which reactivates a task made dormant by the TYIELD macro instruction.

Format:

LABEL

[symbol]

A OPERATION A

TYIELD

OPE RAND

There are no parameters for the TYIELD macro instruction.

7.3.5. Reactivate a Task (AWAKE)

Function:

The AWAKE macro instruction reactivates a task made dormant by a TYIELD macro
instruction. It clears the TYIELD bit within the wait bytes of the TCB regardless of
whether or not the task is idle, thereby activating the task to receive control of the
processor from the switcher.

Format:

[symbol]

Positional Parameter 1:

ECB-name
Specifies the symbolic address of the event control block of
reactivated.

(1)

the task to be

Indicates that register 1 has been preloaded with the address of the ECB.

If omitted, or if this macro instruction is executed with a zero address in register 1,
the primary task will be taken out of a TYIELD condition.

LABEL AOPERATION A

AWAKE

OPERAND

r JECB-name
U (1) 1



8075 Rev. 3

UP-NUMBER

Examples:

SPERRY UNIVAC Operating Systeml3 7—i 3

UPDATE LEVEL PAGE

4.

LABEL AOPERATIONA OPERAND
I 10 16

L . LLLL_LJ_L_L1_1 JLLA LL

LL1

L_

LLLL WEL

Explanations:

Examples 1 and 2 will take the primary task out of a TYIELD condition.

Examples 3 and 4 indicate that the task identified by the ECS named ECB1 will be
taken out of a TYIELD condition.

7.3.6. Change a Priority (CHAP)

Function:

The CHAP macro instruction changes the dispatching priority of the task issuing the
instruction. The number (either positive or negative) entered as the operand is added
to or subtracted from the current dispatching priority of the task (specified by the
switch-priority parameter in the EXEC job control statement). This changes the
dispatching priority value, resulting in a lesser or greater priority for the task. A
positive value will lower the priority; a negative value will raise the priority. This
macro instruction does not change the priority to a specific level; instead, it adjusts
the priority relative to the level under which it is executed.

The highest priority level to which you can change is to the original priority of the job

2.

S. 4wA

ZLIL
LLJL1 i_ -

LL_1 J 1I

LLJ .

L_1_i_i_LLt L,

WêKE{ i AK1U8MKi

step.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

7—1 4

The lowest priority level to which you can change depends upon the number of
priority levels specified by the SUPGEN keyword parmaeter PRIORITY. See the system
installation user guide/programmer reference, UP-8074 (current version>.

If you try to raise or lower the priority beyond the specified boundaries, the system
will automatically stop at the highest (or lowest> priority level with no error,

Format:

I,

2.

n

(1)

Specifies a value to be added to or subtracted from the dispatching priority for
the task in order to change its priority. To lower the priority, use a positive
number; to raise the priority, use a negative number.

Indicates register 1 has been preloaded with either a positive or negative
increment.

To lower priority:

W4’P,

Change the dispatching priority of the task by two. This will raise the dispatching
priority value by two, which will result in a priority two less than the current priority.
Both examples perform the same function.

LABEL tOPERATION t

[symbol] CHAP

Positional Parameter 1:

OPERAND

(n
(1)

Examples:

LABEL L\OPERATONA OPERAND
I____________ 10 16

L .t . i .

J_1_LJ_L..j i.

LL..JL LLL . LLiL

- ... 1



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 7—15

UPDATE LEVEL PAGE

To raise priority:

LABEL tOPERATIONs OPERAND
10 16

I I I I I i — I ii — I I I I I I I I I

I
— C..iI—l141P — I I I I I 1 I I I

i Ii I — I I — I I I I I I I I I

I I I Ii I — I — I I I I I

I I,=1i(—3’) I I I

I I — I I I I I

Change the dispatching priority of the task by three. This will lower the dispatching
priority value in the negative direction by three, which will result in a priority three
more than the current priority. Both examples perform the same function.

7.4. TASK SYNCHRONIZATION

7.4.1. General

Task synchronization provides a task with a means of waiting for one or more other
tasks. The waiting task is awaiting the completion of the specified task or tasks which is
signaled by the deactivation of an awaited task or by the execution of the POST macro
instruction.

Tasks are waited by setting a unique wait bit within that TCB. These wait bits signal the
switcher that this task is nondispatchable and indicate the reason for the wait. Upon
clearing the wait bits, the task becomes dispatchable and can be activated.

I.

2.



8075 Rev. 3 SPERRY UMVAC Operating SystemI3 7—16
UP-NUMBER UPDATE LEVEj’AGE

The ECB address, which is specified as a parameter to task management macros, points
to an event control block which allows for task to task synchronization. The ECB format
is compatible with the first two words of I/O CCBs as far as the WAIT and WAITM
macro instructions are concerned. These macros are utilized to synchronize tasks in a
manner similar to I/O synchronization.

When the performance of a task is dependent on any other task or tasks, the tasks
involved may synchronize themselves via the ECB associated with a task from the
ATTACH macro instruction. The ECB is posted with a completion code when a task
terminates or executes the TYIELD macro instruction. The ECS is specified on a WAIT and
WAITM instruction in order to hold processing of an issuing task until the awaited task
either terminates or issues a POST macro instruction.

Several macro instructions are available for task synchronization:

WAIT

Wait for a task request to complete.

WAITM

Wait for one of several task requests to complete.

POST

Activate a waiting task.

TPAUSE

Deactivate a task.

TGO

Reactive a task.

A WAIT or WAITM macro instruction suspends execution of the issuing task, A POST
macro instruction reactivates the suspended task.

A TPAUSE macro instruction deactivates a task other than the issuing task. A TGO macro
instruction reactivates a task (other than the issuing task) deactivated by a TPAUSE macro
instruction.

The WAIT and WAITM macro instructions can also be used (with different parameters) to
synchronize a task with its I/O. For task synchronization, the macro instruction references
an event control block; and for I/O synchronization, the macro instruction references a
command control block. I/O synchronization is described in 4.3.

7.4.2. Wait for Task Completion (WAIT)

Function:

The WAIT macro instruction temporarily suspends program execution until the
specified task is completed or executes a POST macro instruction in behalf of the
waiting task. If the related task is completed, control is returned to the point



8075 Rev. 3
UP-N UMBER

SPERRY UNIVAC Operating System/3 7—17
UPDATE LEVEL PAGE

immediately following the WAIT macro instruction. If the awaited task is not complete,
the issuing task is placed in a wait state and control is passed to another task.

The ECB indicates the status of the task. When a WAIT macro instruction is issued, the
issuing task relinquishes control until the ECB is marked complete or until a POST macro
instruction is executed by the awaited task in behalf of the waiting task.

Format:

WAIT

Positional Parameter 1:

ECB-name

(1)

Example:

Specifies the symbolic address of the event control block to be tested for completion.

Indicates that register 1 has been preloaded with the address of the event control
block.

LABEL \OPERATION

7.4.3. Multiple Task Wait (WAITM)

Function:

OPERAND

1i it

The WAITM macro instruction temporarily suspends program execution until any one
of several tasks specified by the instruction is completed or executes a POST macro
instruction in behalf of the waiting task. Upon completion of one of the tasks,
control is returned to the program at the point immediately following the WAITM
macro instruction, with register 1 containing the address of the event control block
associated with the completed task.

Format:

tOPERATION OPERAND

(ECB-name-1,ECB-name-2[,...,ECB-name-n]
list-name

( (1)

LABEL OPERATION i.

[symbol]

OPE RAND

JECB-name
1L (1) 1

L.ABE L

[symbol] WAITM



UP..NUMBER [ SPERRY

Positional Parameter 1:

ECB-name-1 ,ECB-name-2,..., ECB-name-n
Specifies the symbolic addresses of the event control blocks to be tested that are
associated with the tasks to be awaited. At least two ECBs must be specified.

list-name
This is a single entry which specifies the symbolic address of a list containing full-
word addresses of ECBs associated with the tasks to be awaited. The byte following
the last full word must be nonzero to indicate end of list.

(1)
Indicates that register 1 has been preloaded with the address of the list of ECB
addresses.

NOTE:

The WA/TM macro instruction may a/so specify a combination of ECB and CCB addresses
as parameters. See also the multiple I/O wait macro instruction described in 4.32.

When this macro instruction is executed, each referenced ECB is marked as being awaited.
Upon completion of a marked ECB, the waiting task is activated and the remaining ECBs that
are marked as being awaited are cleared.

The WAITM macro instruction always requires more than one event to be tested, If only one
event is to be tested, use the WAIT macro instruction.

7.4.4. Activate the Waiting Task (POST)

Function:

The POST macro instruction activates the waiting task without requiring the awaited
task to terminate. When the POST macro instruction is issued by a task, the task
waiting on the event completion which was posted will be reactivated at the point
immediately following the WAIT or WAITM macro instruction.

Format:

LABEL tOPERATIONA OPERAND

[symbol] POST



0

4
-

CD

4
-,

U
)

0
4
-’

4
-r

0
C

4
-

:C
D

a
)

W
E

C
C

D1
0C

Da
C

0
4-
.C

1

C
C

D

O
W

4
-’

)
_

0
0

U
)

-

C
Q

)0
0Q

L
.

C
O

W
C

£
L

.
4

-

C
I)Q

0
0

4
-.

-
U

)

>
-

0
0

I—0
W

C
D

CD>C
C

I)
(D

O4
-’

C
-U

)
CD

0
’
-

a)
-

W
U

)

I—

U
)

a)a2CD

L
i’



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 7—20
UP-NUMBER UPDATE LEVEL PAGE

7,4.5. Deactivate a Task (TPAUSE)

Function:

The TPAUSE macro instruction causes a specified task to be deactivated until a
subseqeunt TGO macro instruction is issued to reactivate that task. This permits
better control of task synchronization within a job. The TPAUSE macro instruction can
also be used to deactivate all tasks of a job step other than the issuing task. When
used, no other task, even if it had a higher priority or pending island code activation,
can possibly interrupt the task and take control.

Format:

LABEL LOPERATION t OPERAND

[symbol] TPAUSE (ECB-name) [ ( error-addr
ALL H. (r)

( (1) iL (

Positional Parameter 1:

ECB-name
Specifies the symbolic address of the event control block of the task to be
activated.

ALL
Specifies that all tasks of the job step are to be deactivated. Note that the calling
task is not acted upon in this case.

(1)
Specifies that register 1 has been preloaded with the address of one or more
addresses pointing to the ECB’s controlling the task to be deactivated. The last
address in the list must have the X8O’ bit set in the high-order byte to indicate
the termination of the list.

Positional Parameter 2:

error-addr
Specifies the symbolic address of an error routine to be executed if an error
occurs.

(r)
Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

An error is returned to the user if the address or addresses passed do not point to a valid
ECB, the ECB does not point to an attached TCB, or the ECB points to the calling task.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 7—21
UP-NUMBER UPDATE LEVEL PAGE

7.4.6. Reactivate a Task (TGO)

Function:

The TGO macro instruction reactivates a specified task or tasks deactivated by a
previous TPAUSE macro instruction. The TGO macro instruction can also be used to
reactivate all tasks of a job step (other than the isusing task) previously deactivated by
TPAUSE. If the TYIELD parameter is specified, the issuing task also relinquishes
control of the processor.

Format:

LABEL tOPERATIONL OPERAND

[symbol] TGO (ECB-name) ( error-addr) 1 E ,TYIELD
. ALL ‘I’ (r)
t (1) )[ (

Positional Parameter 1:

ECB-name
Specifies the symbolic address of the event control block of the task to be
activated.

ALL
Specifies that all tasks of the job step are to be reactivated. Note that the calling
task is not acted upon in this case.

(1)
Specifies that register 1 has been preloaded with the address of one or more
addresses pointing to the ECBs controlling the task to be activated. The last
address in the list must have the X’BO’ bit set in the high-order byte to indicate
the termination of the list.

Positional Parameter 2:

error-addr
Specifies the symbolic address of an error routine to be executed if an error
occurs.

(r)
Specifies that the designated register (other than 0 or 1) has been pre loaded with
the address of the error routine.

An error is returned to the user if the address or addresses passed do not point to a valid
ECB, the ECB does not point to an attached TCB, or the ECB points to the calling task.



8075 Rev. SPERRY UNIVAC Operating Systeml3 7-22
UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 3: C
WIELD

Specifies that the WIELD function Is to be performed on the issuing task at the
end of the TGO processing. If you use this parameter, the effect is exactly as if
you had coded a TGO followed Immediately by a WIELD. If you had done that,
however, your task could have been Interrupted between the TGO and WIELD
macro instructions and possibly lose control to another task. This parameter
eliminates that possibility and the WiELD takes effect immediately.

0

0



PART 4 SUPERVISOR SERVICES





I SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL PAGE

8. Program Management

8.1. GENERAL

Although the supervisor of the OS/3 manages the system resources for efficient overall
operation, management of problem program resources is performed by the individual
programs. The supervisor assists the program in using its allocated main storage space
and allotted processor time by providing services that, when invoked by certain macro
instructions, support flexibility in program design and economy of program execution.

The services are:

• Program initiation and loading

Dynamic allocation of main storage at job initiation.

Dynamic loading of program modules.

• Program termination

Orderly release of system resources assigned to a problem program.

8.1 .1. Program Initiation and Loading

Before a program is actually brought into main storage for execution, job control has already
built the prologue for the job. The supervisor is responsible for locating and loading the proper
program or segment. The supervisor uses the job prologue area for communication between
job control and itself. The supervisor accesses information in the prologue and also enters
information in the prologue area.

The supervisor must then:

• Assign relocation register number and value

• Set proper storage protection keys in key storage

Load program into main storage for execution



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UPNUMBER UPDATE LEVEL PAGE

Link user job step at proper execution priority

‘ Pass control to task switcher

8.2. PROGRAM LOADER

The program loader is responsible for locating and loading program modules or overlays output
by the linkage editor in the form of phases. A load module phase may be thought of as a program
segment that can perform one or more specific processing operations. The following macro
instructions are available:

• LOAD

Load a phase and return control.

LOADR

Load a phase, relocate address constants, and return control.

• LOADI

Locate a phase and return its phase header in a work area.

• FETCH

Load a phase and give it control.

The use of these macro instructions is described on the following pages.

In addition, the loader is capable of modifying data in any phase of a problem program whenever
that phase is loaded. The job control ALTER statement is used to specify such changes to the
loader.

8.2.1. Block Loader

The LOAD, LOADR, LOADI, and FETCH macro instructions handle both standard load
modules, which are loaded by the regular program loader, and block modules, which are
loaded by the block loader, an extension of the program loader. The program loader reads
one sector at a time from disk, and then moves this data one record at a time to the user
job region in main storage, The block loader reads an entire track of data at a time directly
into the user job region in main storage. You can take advantage of the faster block loader
by using the BLK control statement in the system librarian to convert a load module phase
from the standard load module format to block format (described in the system service
programs user guide, UP-8062 (current version>>. This may be done at any time before the
job is executed and there is no need to specify in the macro instructions loading the phase
whether the load module phase is in the standard format or in block format.



8075 Rev. SPERRY UNIVAC Operating System/3 83

UP-NUMBER UPDATE LEVEL PAGE

8.2.2. Relocation

The loader can perform positive or negative relocation on 8-bit, 16-bit, 24-bit, or 32-bit
fields as specified by the relocation list dictionary (RLD) information in the text/RLD
records of the load module.

Because of the relocation register, user programs do not require relocation of address
constants (A-cons) when the phase is located at the address at which it was linked. If an
alternate load address is specifed on LOAD or LOADR, however, the loader handles it as
follows:

• LOAD

No relocation is performed. You must ensure that the phase being loaded is self
relocating.

• LOADR

Relocation is performed on all A-cons specified by the linker which refer to addresses
in that same phase. A-cons which point inside another phase are not relocated since
the loader has no way of knowing where that phase was loaded.

The following examples illustrate when the loader performs relocation:

User Program
Macro Call Relocation

LOAD NAME No

LOADR NAME No

FETCH NAME No

LOAD NAME,ALTAD No*

LOADR NAME,ALTAD Yes

FETCH NAME,ENTPT No

*phase being loaded should be self-relocating.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
8—4

UPNUMBER UPDATE LEVEL PAGE

8.2.3. Library Search Order

The default order of search employed by the loader is:

1. Load library file ($Y$LOD)

2. Temporary job run library file ($Y$RUN)

If the temporary job run library file ($Y$RUN) is specified on the EXEC job control card, the
order of search is:

1. Temporary job run library file ($Y$RUN)

2. Load library file ($Y$LOD)

If an alternate library is specified on the EXEC job control card, the order of search is:

1. Alternate load library

2. Load library file ($Y$LOD)

3. Temporary job run library file ($Y$RUN)

To minimize search time, the loader always begins searching a library at the last root
phase loaded from that library for that job. This means that it is generally more efficient
to link modules together than to create a series of smaller, separately linked load modules.

8.2.4. Read Pointer for Repetitive Loads

Another way to minimize search time is to reduce the need for a directory search. This can
be done by using a read pointer for repetitive loads of a particular load module. When the
disc address (DA) optional parameter is used with the LOAD, LOADR, or FETCH macro
instruction, the 8-byte EBCDIC phase name in the user program (possibly within the
macro-generated code) is overwritten with a read pointer during the first execution of the
macro. This read pointer contains the relative disk addressof the phase being loaded. The
next execution of the same macro call uses this read pointer to find the phase, instead of
performing a directory search.

With the DA option, only the first load of a module requires a directory search, All
subsequent loads of the same module use the read pointer and do not have to repeat the
directory search. In this case, the larger the directory, the more efficient the use of the
read pointer.

When using the DA option, you must be certain that the module is not being updated by
another job at the same time that it is being loaded by your job; otherwise, an error will
result. Remember, the DA option may be used only with the LOAD, LOADR, and FETCH
macro instructions, and should only be used for repetitive loads of the same module. It is
not available for use with the LOADI macro instruction. If you do not wish to add the DA
capability to an assembled program, there is no need to reassemble.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

8.2.5. Loader Error Processing

When an error is detected by the loader, a binary error code is set up in register 0. If an
error address was specified, the macro-generated code branches to that address. If no
error address was specified (or if the call was a FETCH), the calling task is abnormally
terminated.

The 4-byte error code set up in register 0 has the following format:

Byte 0 = EBCDIC A, R, or L specifying whether the error occurred while
loading from alternate, run, or load library respectively.

Bytesl,2 = 0

Byte 3 = Binary error code. For descriptions, refer to the system messages
programmer/operator reference, UP-8076 (current version).

8.2.6. Load a Program Phase (LOAD)

Function:

The LOAD macro instruction locates a program phase in a load library on disk, loads it
into main storage, and transfers control to the calling program immediately following
the LOAD macro instruction.

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the entry-point address. This
entry point address is determined at linkage edit time. If an alternate load address is
provided (positional parameter 2), the load point address specified to the linkage editor
is overridden and the phase is loaded at the specified address. This new override
address is returned in register 0.

This macro instruction does not relocate address constants regardless of whether an
alternate load address is specified (positional parameter 2).



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Form at:

LABEL LOPERATIONL OPERAND

[symbol] LOAD { phase-name } [ { Ioad-addr } ] [ .{ error-addr }] [,R [,DAI

Positional Parameter 1:

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1 -

to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

(1)
Indicates that register 1 has been preloaded with the addrt3ss of the 8-character
phase name.

Positional Parameter 2:

load-addr
Specifies the symbolic address at which the phase is to be loaded.

(0)
Specifies that register 0 has been preloaded with the load address.

If omitted, the program phase will be loaded at the address specified by the linkage
editor.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that is to be executed if a load
error occurs.

(r)
Specifies that the designated register (other than 0 or 1) contains the address of
the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 4:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3.).



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A 8—7

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

8.2.7. Load a Program Phase and Relocate (LOADR)

Function:

The LOADR macro instruction locates a program phase in a load library on disc, loads
it into main storage, and transfers control to the calling program immediately
following the LOADR macro instruction.

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the job-relative entry-point
address. This entry point address is determined at linkage edit time. If an alternate
load address is provided (positional parameter 2), the load point address specified to
the linkage editor is overridden and the phase is loaded at the specified address. This
new override address is returned in register 0.

The format and operation of the macro instruction is identical to the LOAD macro
instruction except that all address constants in the phase are relocated if an alternate
load address is specified (positional parameter 2).

This macro instruction is used to load a phase at an address other than that at which

it was linked.

Format:

LABEL LOPERATIONL2 OPERAND

[symbol] LOADR {Phase-name}[ { loadaddr)][ {error-addr)][ R][ DA] *-

Positional Parameter 1:

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1 -

to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

(1)
Indicates that register 1 has been preloaded with the address of the 8-character

phase name.

Positional Parameter 2:

load-addr
Specifies the symbolic address at which the phase is to be loaded.

(0)
Specifies that register 0 has been preloaded with the load address.

If omitted, the program phase will be loaded at the address specified by the linkage

editor.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that is to be executed if a load

error occurs.

(r)
Specifies that the designated register (other than 0 or 1) contains the address of

the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 4:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be

overwritten with a read pointer during the first execution of this macro

instruction. This read pointer is used to find the phase on the second and all

subsequent executions of this macro instruction.

This option is designed to reduce the search time for separately linked load

modules which are loaded repeatedly. When using this option, you must ensure

that there is no possibility of another job deleting or moving the load module you

are trying to load. For example, if another job uses the librarian to pack the

library, this may cause a load error in your job. If you can be sure this doesn’t

happen, you may be able to reduce considerably the load time for some modules,
particularly in large libraries.

If omitted, a search is performed on the phase name specified in positional parameter

1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—9

UP-NUMBER UPDATE LEVEL PAGE

8.2.8. Locate a Program Phase Header (LOADI)

Function:

The LOADI macro instruction locates the header record of a program phase and
stores it in a work area.

You may then examine the information contained in the program phase header to
determine if it is desirable to load the program phase. If the phase is to be loaded,
you must use one of the other load instructions to load the program phase.

The format of the phase header record is shown in 8.2.8.1,

Format:

LABEL iOPERATIONL OPERAND

[symbol] LOADI { phase-name } {work.areaaddr } [ {workarea.lenth}]

[{erroraddr }] [,R]

Postional Parameter 1

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1 -

to 6-character user-assigned alias phase name of the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

(1)
Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

work-area-addr
Specifies the symbolic address of the area in main storage where the phase
header is to be placed.

(0)
Specifies that register 0 has been preloaded with the work area address.

Positional Parameter 3:

work-area-length
Specifies the number of bytes of the phase header that are to be placed in the
work area.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
8—10

UP-NUMBER UPDATE LEVEL PAGE

If omitted, the value 1 is assumed. This specifies that the portion of the phase
header up to and including the phase load address and the phase length is to be
placed in the work area.

Positional Parameter 4:

error-addr
Specifies the symbolic address of an error routine that is to be executed if a load
error occurs.

(r)
Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 5:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

8.2.8.1. Program Phase Header

The format of the phase header is as follows:

Bytes Contents

0,1 Systems use

2 Phase number

3,4 System flags

5—B Phase load address (linker assigned)

9—1 2 Phase length

13—20 Phase name (linker assigned)

21—23 Date (packed decimal — yymmdd)

24—26 Time (packed decimal — hhmmss)

27—30 Module length

31—38 Alias phase name

39—68 Comments



8075 Rev. 3 SPERRY UNIVAC Operating System/3 811

UP-NUMBER UPDATE LEVEL PAGE

8.2.9. Load a Program Phase and Branch (FETCH)

Function:

The FETCH macro instruction locates a program phase in a load library on disk, loads
it into main storage, and transfers control to the address specified in the phase
transfer record, unless an alternate address has been specified (in positional
parameter 2).

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the job-relative entry point
address. This entry point address is determined at linkage edit time. If an alternate
entry point address is provided (positional parameter 2), the entry point address
specified to the linkage editor is overridden and the phase is given control at the
specified address. This new entry point address is returned in register 1.

Format:

LABEL I2OPERATIONA OPERAND

[symbol] FETCH { phase-name } [ {entrvPointname }] [,R][,DAI

Positional Parameter 1:

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1 -

to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

(1)
Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

entry-point-name
Specifies the symbolic address of the point in the program at which control is to
be passed after a successful load.

(0)
Indicates that register 0 has been preloaded with the entry point address.

If omitted, control will be passed to the address specified in the phase transfer record.



8075 Rev. SPERRY UNIVAC Operating System/3
8—12

UPNUM8ER UPDATE LEVEL PAGE

Positional Parameter 3:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

Positional Parameter 4:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all

subsequent executions of this macro instruction.

If omitted, a search is performed on the phase name specified in positional parameter

1 each time this macro instruction is executed, and the 8-byte phase name is not

overwritten.

8.3. PROGRAM TERMINATION

The program termination macro instructions cause the system facilities assigned to a job

or to a task to be relinquished for assignment to other jobs or to other tasks. When

terminating a task, the EOJ, CANCEL, and DETACH macro instructions will also clear all

I/O locks for the task.

The following macro instructions are available:

• EOJ

Causes normal job step termination,

• CANCEL

Causes abnormal job termination and prints out the job main storage.

There are two other macro instructions used for job and task termination:

• DETACH

Causes normal termination of a task (7.3.3).

• DUMP

Causes normal job step termination in addition to printing out the job main storage
(9.1.2).



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 813

UP-NUMBER UPDATE LEVEL PAGE

8.3.1. Normal Termination

Normal program termination is requested by means of the EOJ or DUMP macro
instructions, the DUMP operator command, or the self detaching of a primary task. This
implies normal completion of the job step and continuation of the job. These functions
will allow all task and I/O to idle down prior to terminating the program and passing
control to the next phase of job control.

The termination of a job step which has open data files will cause an immediate
cancellation of the job.

The DUMP macro instruction provides a printout of the contents of the job region.
Subsequent to printing the region the DUMP transient routine overlays itself with the end-
of-job step transient routine which provides normal job step termination.

The DUMP console command sets the job step to execute its own DUMP macro
instruction.

8.3.2. Abnormal Termination

Abnormal job termination can be requested by you through the CANCEL macro instruction,
by the operator through the CANCEL command, or as a result of a system detected error.
The latter case includes: systems function errors with no error address specified, program
exception errors without program check island code, and unrecoverable hardware errors.

The cancel function detaches all subtasks, delinks all outstanding I/O and waits for all
outstanding system functions to be completed. It provides a printout of the contents of the
job region if the DUMP option was specified on the OPTION statement, and either there is
a printer assigned to this job or there is a printer available.

8.3.3. Printout

Both the CANCEL and DUMP macro instructions provide for a printout of the contents of
the job main storage which will occur if a printer was assigned to the job using the DVC
and LED job control statements, or is available for assignment, and the DUMP, JOBDUMP,
or SYSDUMP parameter was specified in the OPTION job control statement. Otherwise,
both macro instructions will execute normally; however, no printout will occur.

8.3.4. End-of-Job Step (EOJ)

Function:

The EOJ macro instruction causes normal job step termination. It terminates a
primary task or a subtask. If an EOJ macro instruction is issued from a primary task
with active subtasks, all subtasks are terminated. If an EOJ macro instruction is
issued from a subtask, only the subtask and any subtasks it created are terminated.

This macro instruction also clears all I/O locks for the task.



814

Format:

TZoIIEOJ

There are no parameters for the EOJ macro instruction.

The EOJ macro instruction is used to cause normal job step termination, It is usually
invoked by the job step task after aB attached subtasks have been detached and all data
files have been closed. Job control is then loaded in the problem program area to
prepare the next scheduled job step, or to terminate the job if it is the last job step of
the job.

The EOJ macro instruction may be used to force subtask termination for the job step. If
a subtask encounters a fatal (abnormal termination> error condition before the EOJ
function receives control, the job may be cancelled (depending on the existence and
function of an abnormal termination island code routine). An EOJ macro instruction
executed by a subtask is treated as a request for the DETACH macro instruction
function.

Error Conditions:

The job will be cancelled if errors which prevent normal termination are encountered
by the EOJ routine. A hexadecimal error code is provided for display in the diagnostic
storage dump produced by the CANCEL function. The error codes and their meaning
are shown in the system messages programmer/operator reference, UP-8076
(current version).

8.3.5. Cancel a Job (CANCEL)

Function:

The CANCEL macro instruction causes abnormal termination of a job. It terminates
the current job step, prevents execution of any remaining job steps for that job,
detaches all subtasks, delinks all outstanding I/Os, and waits for all outstanding
system functions to complete.

This macro instruction also displays an abnormal termination message on the
operator console indicating which job is being terminated and the error code defining
the error. Unless NODUMP is entered as positional parameter 2, this macro
instruction provides a diagnostic storage dump of the job region similar to that
produced by the DUMP macro instruction. (See 9.1 .2 for details of the dump printout.)

This macro instruction also clears all I/O locks for the task.

Format:

LABEL A OPERATION A OPERAND

[symbol] CANCEL errorcode[{ (0)



8075 Rev. 3 SPERRY UNIVAC Operating System/3 815

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

error-code
Specifies a 1 - to 3-digit hexadecimal error code to be displayed on the system
console and included in the diagnostic storage dump.

(0)
Indicates that register 0 has been preloaded with the error code.

If omitted, the error code is set to binary zero.

Positional Parameter 2:

NODUMP
Specifies no dump regardless of the dump options specified in the OPTION job
control statement.

The CANCEL macro instruction is used to cause abnormal job termination when error
conditions are encountered which prevent further processing. The abnormal job
termination function may be requested by you through the CANCEL macro instruction,
by the operator through the CANCEL command, or as a result of a system detected
error.

If an error occurs during the execution of a macro instruction, control will be passed to
the error routine if an error address was specified or, if none was specified, to the
abnormal termination island code if it is present. The use of island code permits you to
take additional action prior to terminating the task or job step which is in error.

Error Conditions:

A number of conditions may exist when the cancel routine is entered, however, the
error code displayed in the diagnostic storage dump will always represent the original
cause of entry to the abnormal termination function.

A printout is produced if:

the DUMP, JOBDUMP, or SYSDUMP option was specified via job control; and

the CANCEL macro instruction does not specify NODUMP;

a printer was assigned to the job or is available.

8.4. TIMER SERVICES

During execution of a job, you may want to record the date and time that an event occurred,
for example, the date a credit was posted to an accounts receivable record, the date and
time a message was received from a remote communications terminal or the date and time
a job step was completed. You can do this by using the GETIME macro instruction.



At times you may want to request an interrupt to your program after a specified interval.
For example, you may wish to allow 30 seconds for a response from a terminal, and if no
response is received within that time, branch to another subroutine or to another task. You
can do this by using the SETIME macro instruction.

The date capability is always available. The GETIME macro instruction can be used to
obtain the date even if the timer services module is not part of the resident supervisor.

Day clock and timer facilities are optional functions which must be requested during system
generation. For full use of the GETIME macro instruction, and to use the SETIME macro
instruction, the timer services module must be resident. For example, if the statement
TIMER=MAX was specified at system generation, the timer services module is included in
the generated operating system and stored in the resident supervisor portion of main
storage. This allows you to use the GETIME macro instruction (for both date and time) and
the SETIME macro instruction.

8.4.1. Date and Time Facilities

8.4.1.1, Current Date

The current date is placed in the systems information block (SIB) by the operator during
initial program load. The date is automatically advanced each day at midnight unless the
supervisor was configured at system generation time not to update. In that case, the
operator must change the date through a console command. This date is referred to herein
as the system date to distinguish it from the job date.

SIB

mdate

There is a date for each job, which is stored in the preamble for the job. This is the date you
get when you use the GETIME macro instruction. Normally, the job date is the same as the
system date. However, you can change it using the SET job control statement which
changes the date for your own job and does not disturb the system date or the job dates for
other jobs being processed. For example, if your application calls for statements to be
produced on the fifteenth of each month but no processing was done that day because of a
holiday or because of machine maintenance, you could change the job date in the preamble
the next day from 1 6 to 1 5 so that the statements and other records produced will show the
date the job was intended to be run.

Job Preamble

job date



I SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL PAGE

8.4.1.2. Time of Day

If the timer services module is resident, the GETIME macro instruction gives you the time
along with the date. The current time of day is maintained by a simulated day clock in the
SIB. This day clock specifies the amount of time that elapsed since midnight. The clock can
show a maximum of 99 hours and may be permitted to run past midnight if jobs were
processing at that time. The time of day is automatically reset at midnight along with the
date unless the supervisor was configured not to update. Otherwise, the operator must
reset the clock each day. A common use of the clock is to record the time of day a job was
run and to calculate the length of time required to run it. The job log you receive with your
listing shows the start and stop times for your job steps. The run time could be used to
charge an account number, or to invoice your department for the computer time required
to run your job.

SIB

ock

8.4.1.3. Get Current Date and Time (GETIME)

Function:

The GETIME macro instruction obtains the calendar date and the current time of day
from the simulated day clock function of the supervisor. The date is returned in
register 0, and the time is returned in register 1. If the timer services module is not
part of the resident supervisor, the contents of register 1 are unpredictable.

Format:

LABEL tsOPERATONL OPERAND

[symbol] GETIME LI M
[is

Positional Parameter 1:

M
Specifies that the current time of day is to be expressed in milliseconds in binary

representation.

S
Specifies that the current time of day is to be expressed in packed decimal format.

If omitted, the parameter S is assumed.



8075 Rev. SPERRY UNIVAC Operating System/3 818

UP-NUMBER UPDATE LEVEL PAGE

The current calendar date is returned in register 0 expressed in packed decimal in the
form:

Oyymmdd+

where:

yy = year

mm = month

dd=day

The high-order half byte is always zero, and the low-order half byte is the sign, which is
always positive.

The current time of day is returned in register 1. If you write this macro instruction
with the S parameter or with no parameter, the time is expressed in packed decimal
format in the form:

Ohhmmss+

where:

hh = hours

mm = minutes

ss = seconds

The high-order half byte is always zero, and the low-order half byte is the sign, which is
always positive,

The following entries:

j LABEL zOPERATlONL OPERAND
[1 10 16

I I I I I i i I

or

I I tEIEj I I I I I I I I I

return the date and time in registers 0 and 1 in packed decimal format. You can then
store the contents of these registers, and edit the fields for a printout of the date and
exact time that an event occurred.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3
8—19

UPDATE LEVEL PAGE

For example, let us assume you want to print the date and exact time a job step is

completed. Each of the subroutines shown in Figure 8—1 gets the date and time from

the job preamble and the SIB, unpacks and edits them into buffers, then prints the

contents of the buffers.

.

-.---,_____

jo2j,i

LABEL PERATION OPERAND COMMENTS
1 ID 16 72 80

1. i ilE] F -,., Rnd1e rete- P anjtiI-i
2 -r ‘— 4-t-’ c i-- Aic

L iLiVK

5 UFE1±I2(&),WZ(A4.’),

6. ______
FFE9,X’EQ’ IlFfl..,

7. F
a I I
q 1LLL IFFER—f-27C/I 1 I

III

iL I .
2. Lc E E1 JfiE±&
13 LL EE -i-& Iasat. 1ahQ
14 E±g,ci’ ‘. LJ_JJL.L

15
16. WJ tJJL
l? 13 (Iz) FFER I 14, / j ±LjLr LJL..iJJ

IS LLLJ.J MLL L4C L J_ZLL
lq. ,

,i E:_L.

I t__ .. JJ_L

I .LI..L.j..1 J_..___Li, -II

.Lr..L..L..i..J_EJf.L..L..L I I

alI ,1rai s1 ‘•

Lt TORSTIN I

as Ek TLdSVEI JNPR.iK rtrr

a4 aC) ArMK4,p FER.i.

5 Ittl1,Sy;F.. TQRESIjSVE,j tiL

a6I

Wf 3UFFERl

a1 LLI_LL tUFFR IP.R,tNT, TiE
jj J i J

iI_L___L_ LJ.

I

______________________ I, .

3c1jLfFE 1) NtWtALti 7t LjNJ(&± LL

31. 1fJSI L i i3 flflE tA O fiB l±.L.LJ

a ThMSI flIME MilSi< IFORJ8i1 qq.qq,. ,gg,

LLjL

Figure 8—7. Examples of GET/ME Macro Instruction

Let us assume the GETIME macro instruction was executed October 24, 1977 at 30

seconds after 9:30 A.M. The job date from the preamble would be returned in register

0, and the time from the day clock in the SIB would be returned in register 1. The

registers would contain:

Preamble SIBjob date day clock

Register 0 07 71 02 4C Register 1 ( 00 ( 93 j 01 3C



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—20

UP-NUMBER UPDATE LEVEL PAGE

Following execution of line 7, BUFFER contains:

1111(7(7111012141 I 1019131011131

Following execution of line 18, BUFFER contains the date (year/mon/day) and the time
(hours.min.sec):

77 / 0 / 2[ 4 [ o 9. 3 o. Ii

The date and time are printed:

77/10/24 09.30.13

If the subroutine in lines 21—--32 is executed with the original contents of registers 0
and 1, BUFFER2 will contain the following after execution of line 27:

[l l /
11101 l 214

[j0 1 l 101 Ii I
and will print the same date and time as the subroutine of lines 1—20.

If you write this macro instruction using the M parameter, the date is expressed in
packed decimal in register 0, but the time is expressed in milliseconds in binary
representation in register 1. For example, if the following macro instruction were
executed at 10 seconds after midnight, September 26, 1977, registers 0 and 1 would
contain:

I LABEL L\OPERATIONL OPERAND
[1 10 16

I I

(07 70(92 (6C Register 1 (00 00 ( 27 ( 10



8075 Rev. 3 I SPERRY Uhlivac Operating System/3
8—21

UPDATE LEVEL PAGE

8.4.2. Timer Interrupt Facilities

The timer services module also enables you to request a scheduled timer interrupt in the
requesting task. Using the SETIME macro instruction you may request an interrupt after any
time period greater than 1 millisecond. You may:

• continue processing the task until the interrupt, then transfer control to the task’s timer
island code;

• suspend processing the task until the interrupt, then continue with the next instruction;
or

• cancel a previous SETIME request.

The time interval requested in the SETIME macro instruction is added to the current time of
day to calculate the time when the interrupt is scheduled to occur, and this SETIME
expiration time is stored in the task control block (TCB).

TCB

SETIME expiration time

timer island code address



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 8—22

UP-NUMBER UPDATE LEVEL PAGE

If timer island code is to be executed, a STXIT macro instruction must have been previously
issued to link the island code to this task. Timer island code is described in 8.6. If no timer
island code is present, or if the interrupt request was cancelled, the interrupt is ignored.
There may only be one set of timer island code per task.

If the task is to be suspended, the next available task in the switch list is executed. When
the interrupt occurs, control is returned to the next instruction in the task immediately
following the SETIME macro instruction.

8.4.2.1. Set Timer Interrupt (SETIME)

Function:

The SETIME macro instruction requests a scheduled timer interrupt in the requesting
task and continues executing the requesting task. When the specified time interval
elapses, the task’s timer island code (as specified by a STXIT macro instruction) is
executed.

Note that in this case the STXIT macro instruction must have been previously issued to
set up timer island code for this task. There may be only one set of timer island code
per task.

If written with the WAIT parameter, this macro instruction requests a timer interrupt
and suspends execution of the requesting task until the timer interval elapses. At this
time, the task resumes execution with the next instruction following the SETIME macro
instruction.

This macro instruction cancels any previous SETIME request if entered with no
parameters.

Format:

LABEL tOPERATlONL -
OPERAND

[symbol] SETIME
[{timeInterval]

[,WAIT]

Positional Parameter 1:

time-interval
Specifies the interval of time that must expire before the interrupt is generated.
This interval is expressed either in seconds or milliseconds depending on the entry
in positional parameter 3. The maximum value that may be entered as positional
parameter 1 is 4O95. To specify a value greater than 4095, enter (1) as
positional parameter 1 and preload register 1 with the required time interval
value.

(1)
Indicates that register 1 has been preloaded with the time interval value.

If omitted, any previous SETIME request for this task is cancelled, preventing the
scheduled interrupt.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 823

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

WAIT
Specifies that the problem program is to relinquish control until the specified time
interval expires, at which time control is returned to the point immediately
following the SETIME macro instruction.

If omitted, the requesting program retains program control. When the time interval
expires, the timer island code is activated.

Positional Parameter 3:

M
Specifies that the time interval entered as positional parameter 1 is expressed in
milliseconds.

S
Specifies that the time interval entered as positional parameter 1 is expressed in
seconds.

If omitted, the parameter S is assumed.

8.4.2.2. Continue Processing Until Interrupt

If you omit the WAIT parameter, the task retains program control and continues processing
at the instruction immediately following the SETIME macro instruction. When the time
interval elapses, the timer island code for this task is executed. For example, the
instruction:

LABEL z2OPERATIONA OPERAND t2
1 10 16

E I

J._LLJi_L_._ hie<t I I

- 1 i — I I I I I I

iii ii — I Ii

I I I I I — •I — I I I I

or

I I I — iE.1t’ SQ I I I I

I I —
oV’I

II I — ‘Iii — ill1 Ii ii I

I I I 1 I — III I I Ii I II

I I III •1 I II I I

requests a timer interrupt in 30 seconds. The task continues processing until the 30-second
time interval elapses; then the timer island code is executed.



8075 Rev. 3

UP-NUM8ER
SPERRY UNIVAC Operating System/3

8—24

UPDATE LEVEL PAGE

If you want to specify an interval smaller than a second, the instruction:

LABEL AOPERATIONIi OPERAND t2
1 10 16

I
2o,,1i I I

I ir)S’’—LJI,J”IOrI

1111111 IIII - IIIIIIIIIIIIIIIiIIIIIIIIIIIIII

1111111 - IIII - I i L_L

._.,J._....i...,..._L_.._..L....._l...__J_......i.._._ — 1 i — I I I I I I

requests a timer interrupt in 200 milliseconds. The task continues processing until the 200-

millisecond time interval elapses; then the timer island code is executed.

Figure 8—2 is an example of the use of the SETIME macro instruction to request an

interrupt in 25 seconds so that a time limit of 25 seconds can be placed on the computation

that follows,

cIMEFL& EU rsi’r WELL TiME ELi? I

-

LABEL &)PERATIONLI OPERAND COMMENTS

1 10 16 72

I. TF’E XIA
-

25 ECQ

2. JJ j_L -

3 jrALIM TtME HLJPTL
4. fThcL] [L

6. iJ1 F 2 -‘

7 Je] LFC

8 i Lj.L.L_L.iL
q. .tF RLME iL-IMIJ HA l8EE iEXC&2LlJ I

(o. 1ET 1 LA JA Sfl c’ T&N’4t CStE

ij.,, c/9
.

-

114. •J,1 jjjJjj_[jJ JjjJ

s

lb. 1f jP’8Acj.Ii .1

L,t J’
I&,I, eTcL’

.Ii_J_L .LLJ.i. jjj1ti.juijijj)i_ JJ -I

• .L.J_.LJ.L1_1_ LJ_L_J i_LJ._._I._LL Jt iL .I..r_L -1

‘ ill II ‘I II,j ii I j.....__j..j.....LJ__j_____j__..j.j.,.J.__.J._ —t

Lq. pjçr -

I i

21 jIcL] t -i

. IRg ERR ME AE , iLLL

23 .1..L....I.±_ J...L...LJ_ “ . J_J._L_L_]__LJ.LJ_.LI__L_I_.L J.L.LI_J._L .

24 II, •I.II II, ilIaJ a

26 ii •__________j,_____ lI,I;, I. II Ii I III I ii ii

2b “tIMERI ILA bTE AC5LMTEO 1l4Ei4 ItIME EL1 iL - a

2’T. ‘tJI41oct FLL. i a

2 II IE11’ FiL I I I -

2. ,j,, ‘LIII.I Ia

I II ,j,,,.4.,,,.,,.,j.. fr’REI,I 111111111 I, I I

CAJ -

EA, UIRiE 1J.

jQQ jIji a
Si.
32.
33- a

Figure 8—2. Example of SET/ME Macro Instruction



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 8—25

UPDATE LEVEL PAGE

Line 4 links the timer island code (lines 27 to 29) which sets a flag when the time interval
expires. Line 6 requests an interrupt in 25 seconds and the compute routine (lines 8 to 1 6)
is entered. Line 1 8 is the normal exit which occurs if computation is completed before the
time elapses. Lines 20 to 25 are the error routine which is executed if the time elapses
before the computation is completed.

8.4.2.3. Wait for Interrupt

If you use the WAIT parameter, the task suspends processing and program control is
transferred to the next available task. When the time interval elapses, program control is
returned to the next instruction in the task immediately following the SETIME macro
instruction. For example, the instruction:

LABEL LOPERATIONt OPERAND
1 10 16

O,’(AUT
II’

.-

._.j.......t_......1..._._1_..__l____.I___...l_._._ — _.1_____..I...._.J.....__.i__.__ — I

- ‘1 i I I I I

requests a timer interrupt in 30 seconds. The task is suspended until the 30-second time
interval elapses, then processing continues with the next instruction. This instruction could
be used following a message to the console operator or a question to a user at a remote
terminal allowing a period of time (in this case, 30 seconds) to reply or to enter additional
data.

8.4.2.4. Cancel a Previous Timer Interrupt Request

To cancel a previous timer interrupt request, simply use the SETIME macro instruction
without parameters. For example:

I I

I I I I

I iE1T1IME

Line 1 requests activation of interval timer island code in 300 milliseconds. Line 6 cancels the
request.

2.
3.

5.

i I I rs1r.1Icli OII)I I

i I I I — I I I

_I_I III I — •I II — I I

II II ii — I II

SIEIT1Iitb’E I



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

8.5. PROGRAM LINKAGE

A program may consist of several phases or routines produced by an assembler, compiler, or
other language translator, and then combined by the linkage editor. Control can be passed
from one routine to another within the program. This is referred to as direct linkage.
Linkage can proceed through as many levels as necessary. During the execution of a job
step, a routine (referred to as the calling program) passes control to another routine (the
called program>, which can in turn become the calling program passing control to a third
routine (the called program>, etc. This branch and linking process requires that the contents
of certain registers be saved, then restored, so that control can be returned to the calling
program.

The following macro instructions are used for direct linkage:

• CALL/VCALL

Calls a program module and gives it control.

• ARGLST

Generates an argument (parameter) list.

• SAVE

Saves the contents of specified registers.

• RETURN

Restores registers and returns control.

The CALL and VCALL macro instructions can also be used to pass parameters from the
calling program to the called program.

8.5.1. Linkage Register Conventions

During the direct linkage process, certain registers are used for specific purposes to avoid
conflicts in register use. These registers and their uses in the linkage procedure are:

• Register 0 — Reserved for system use

I Register 1 — Parameter or parameter list register

Register 1 is used for passing parameters between linked programs (each parameter is
four bytes long and is aligned on a word boundary). This register is loaded with the
parameter to be passed, or, in the case of a parameter list, the address of the first
parameter in the list. The last parameter in a parameter list has its sign bit set to 1.

• Register 2 through 1 2 — Free registers

These registers are never used or referenced by the direct linkage macro instructions.

• Register 13 — Save area register

If a save area is provided for the called program by the calling program (for temporary
register storage), the address of the save area, which must be aligned on a full-word
boundary, is loaded in register 13 by the calling program.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—27

UP-NUMBER UPDATE LEVEL PAGE

Register 14— Return address register

This register is loaded by the calling program with the address to which control should
be returned following the execution of the called program.

Register 15 — Entry point register

This register is loaded by the calling program with the address of the entry point in the
called program. This register can be used to provide initial addressability in the called
program.

8.5.2. Linkage Procedure

The calling program establishes direct linkage with another program by means of the CALL
or VCALL macro instruction. If registers are used in the called program (other than 0, 1, and
1 5), the SAVE macro instruction must be used to save their content. The RETURN macro is
used to return control to the calling program.

The calling program is responsible for the following:

Loading register 13 with the address of a 72-byte save area (if one is required by the
called program). The save area must be aligned on a full-word boundary.

Loading the parameter register, if necessary.

Loading register 14 with the return address.

Loading register 15 with the entry point in the called program.

The called program is responsible for the following:

Saving the content of all registers used by it, with the exception of registers 0, 1, and
15 which are considered volatile. The contents of registers are saved in the area
addressed by register 1 3.

Following its execution, the called program must reload the saved registers and
transfer program control to the return address loaded in register 14 by the called
program.

You can have the CALL, VCALL, SAVE, and RETURN macro instructions perform the linkage
functions for you. Or if you prefer, depending on how you code the parameters in the SAVE
and RETURN macro instructions, you can perform some of these functions yourself.

If you use the SA parameters in the SAVE and RETURN macro instructions, the macro
establishes a save area and loads the address of the save area into register 1 3. If you do not
use the SA parameters, you must establish the save area in the calling program and load
the address of the save area into register 1 3 before issuing the CALL or VCALL macro
instruction -

If you use the COVER and COVADR parameters in the SAVE macro instruction, the macro
loads the base register addresses. If you do not use the COVER and COVADR parameters,
you must perform your own base register loading.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

8.5.3. Register Save Area

A save area is established by one program (the calling program) for use by a second program
(the called program). If the called program finds it necessary to use any of registers 2
through 14 thereby destroying their contents, the called program must store the original
contents of these registers in the save area provided by the calling program, before using
them. The called program itself can be a calling program, and must provide a save area for
its called program (the third program in the chain). Any number of programs can be chained
together in this manner. It is not necessary to have a save area in the last program of a
chain.

Standard register save areas are used with the CALL, VCALL, SAVE, and RETURN macro
instructions. Note that this register save area is different from the save area used with
island code linkage for register and PSW storage (described in 8.6),

The format of the register save area is shown in Figure 8—3, and further explained in Table
8—1.

Word Byte Content

1 0 RESERVED FOR SYSTEM USE

2 4 SAVEAREABACKWARDLINKADDRESS

3 8 SAVE AREA FORWARD LINK ADDRESS

4 12 CALLING PROGRAM RETURN ADDRESS

5 16 CALLED PROGRAM ENTRY POINT ADDRESS

6 20 REGISTER 0

7 24 REGISTER 1

8 28 REGISTER 2

9 32 REGISTER 3

10 36 REGISTER 4

11 40 REGISTERS

12 44 REGISTER 6

13 48 REGISTER 7

14 52 REGISTER 8

15 56 REGISTER 9

16 60 REGISTER 10

17 64 REGISTER 11

18 68 REGISTER 12

NOTE:

Each word in the save area is aligned on a full-word boundary.

Figure 8—3, Register Save Area Format



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—29

UP-NUMBER UPDATE LEVEL PAGE

Table 8—i. Register Save Area

Word Content

1 Reserved for system use.

2 If zero, indicates the first save area of a chain. Otherwise, this is the address of the save area used by the
calling program which is located in the higher level program that called the calling program. For example,
bytes 4—7 of SAVE B (a save area in program B for the use of program C) contains the address of SAVE A
(a save area in program A for the use of program B>. It is the responsibility of the calling program to store
the backward link address in this field from register 13 before loading the current save area address in
register 13.

3 If zero, indicates the last save area in a chain, Otherwise, this is the address of the save area in the most
recently called program. It is the responsibility of this called program to Store the save area address in this
field before calling a lower level program.

4 The address in the calling program (as loaded in register 14)to which control is to be returned. This address
must be stored in this field by the called program if that program intends to alter the contents of register
14.

5 The entry point address of the called program (as stored in register 15> to which control is to be transferred.
This address must be moved to this field by the calling program.

6 to 8 A storage area provided to contain the contents of registers 0 through 12. The called program determines
the number of registers, if any, to be saved,

8.5.4. Call a Program (CALL/VCALL)

The CALL and VCALL macro instructions pass control from a program to a specified entry
point in another program. They are written in the calling program to establish linkage with
a called program. CALL is used to establish a direct linkage with a program already in main
storage. It loads an A-type address constant, and branches. VCALL is used to establish a V
CON type linkage with a program not necessarily in main storage. It loads a V-type address
constant, and branches. No SVCs are generated by either macro instruction.

The CALL or VCALL entry point need not have a manually coded EXTRN. All other labels
used on these calls, which appear outside the assembly, must have manually öoded
EXTRNs.

You can use positional parameter 2 of the CALL or VCALL macro instruction to pass
parameters from the calling program to the called program. In this case, you can enter the
parameters themselves, enclosed in parentheses; the macro expansion will generate a
parameter list in the required format. Or, you can enter the address of a parameter list
defined elsewhere in your program in the format required by the macro.

Another convenient method is to use the ARGLST macro instruction to generate this list
( for you. You then enter the symbolic address of the macro call as positional parameter 2 of

the CALL or VCALL macro instruction.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 8—30
UP-NUMBER UPDATE LEVEL PAGE

Format:

LABEL 12OPERATION1 OPERAND

(entry-point r ((param-1,..,param-n)
[symbol]

{L 7
. (15) } [ list-cress }

Positional Parameter 1:

entry-point
Specifies the symbolic address of the entry point in the called program to which
program control is to be given.

(15)
Indicates that register 1 5 has been preloaded with the address of the called
program.

Positional Parameter 2:

(param-1 ,. ..,param-n)
Specifies one or more parameters to be passed to the called program. These
parameters are written enclosed in parentheses, and are included in the CALL or
VCALL macro expansion in the same sequence as entered on the call line. Each
parameter is considered as one full word and is aligned on a full-word boundary.
The three low-order bytes of each generated word contain the address of a
parameter. To mark the end of the parameter list, the sign bit of the last
parameter in the list is set to 1. The address loaded in register 1, prior to control
being transferred to the called program, is the address of the first parameter in
the list.

The parameter entries can represent actual values. However, for compatibility
with higher-level languages, this parameter is usually used to pass address
constants to the called program.

list-address
Specifies the symbolic address of a user-defined parameter list. You can define
the list in the required format, or you can use the ARGLST macro instruction to
generate the list for you.

(1)
Indicates that register 1 has been preloaded with the address of the parameter list.

If omitted, no parameters are assumed.



8—318075 Rev. 3 i SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL PAGEUP-NUMBER

Examples:

LABEL LsOPERATONL OPERAND
1Q 16

i — dlAL.1L — TEST2I(Al 1 AI.DIR2 >

— — D.IAt.t_ 7IE.4S7l I1s—7—,.DI

I I — CI9IILIL..I — S..ZNI)I(lII I

I — :.I/k1L11_1
—
i)1I(i) I I I

I liii — Ii I — III II I

8.5.5. Generate an Argument List (ARGLST)

The ARGLST macro instruction generates an argument list (list of parameters) in the
format required by the CALL/VCALL macro instruction.

This is a declarative macro instruction and must not appear in a sequence of executable
code.

Format:

LABEL L2xOPERATIONt OPERAND

symbol ARGLST param-1,...,param-n

Positional Parameter 1:

symbol
Specifies the symbolic address of the generated parameter list. This name can be
used in the CALL/VCALL macro instruction to refer to the parameter list.

param-1 param-n
Specifies one or more parameters to be included in the parameter list generated
by this macro.

Example:

s1T,DIR AI’GL5 T ARI1 ,IAIbIII2I) I.D13

I I I I I I

8.5.6. Save Register Contents (SAVE)

The SAVE macro instruction is written at the entry point of the called program. It saves the
contents of the calling program registers, loads one or more base registers, establishes
addressability, and sets the linking pointers of the save areas. All code is generated inline
with no inner subroutine calls or SVCs.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—32

UP-NUMBER UPDATE LEVEL PAGE

Format:

LABEL tOPERATIONL — OPERAND

r (r
[symbol] SAVE [(rl,r2)] [,T] ,COVER (rl,r2,...,rn)

L (i5:

[,COVADR= { [,SA=savearea-name]

Positional Parameter 1:

(ri ,r2)
Specifies that the registers designated in rl through r2 are to be saved in the
calling program save area. The registers are always stored in their respective
fields of the save area. For example, if register 2 is specified, it is stored in word 8.
All combinations of valid rl and r2 register addresses are acceptable. If ri > r2,
the register addresses wrap around from 15 toO. If register 13 is included within
this range, it is ignored. However, if the SA keyword parameter is coded, the
contents of register 1 3 are stored in the save area specified.

If omitted, no registers are saved by this parameter.

Positional parameter 2:

T
Specifies that if the return and entry point registers (14 and 15) are not saved by
positional parameter 1, these registers are to be stored in the calling program save
area in words 4 and 5.

If omitted, registers 14 and 15 are not saved by this parameter.

Keyword Parameter COVER:

The COVER and COVADR keyword parameters are used to establish addressability.
The values specified by COVADR are loaded in the registers specified by COVER.

COVER=r
Specifies the register designated as base register for the called program.

COVER(r1 ,r2,. . .,rn)
Specifies the registers to be designated as base registers. A total of nine registers
can be designated.

If omitted, register 15 is assumed to be the base register.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—33

UP-NUMBER UPDATE LEVEL PAGE

Keyword Parameter COVADR

COVADR=base-addr
Specifies the base address for the called program. If only one register is specified
by the COVER keyword parameter, this base address is loaded in that register. If
several registers are specified by the COVER keyword parameter, they are
successively loaded with 4096 increments of COVADR. A USING statement is
generated indicating the base address and all cover registers, regardless of
whether this parameter is specified or omitted.

If omitted, the base address is assumed to be the address of this SAVE macro
instruction, that is, the contents of the location counter at the time this macro
instruction is assembled.

Keyword Parameter SA:

SA=savearea-name
Specifies the symbolic address of a 72-byte register save area. This address is
loaded into register 13 after register 13 (which is assumed to contain the address
of a previous save area if there is one) is stored in word 2 of the save area. This
process provides linkage to a higher level save area if there is one.

If omitted, register 13 is unaltered.

Examples

LABEL LOPERATIONLX OPERAND
1 10 16

‘1J8 (&,d)
LLJJ_LL -

- I

- j
1

8.5.7. Restore Registers and Return (RETURN)

The RETURN macro instruction is written at the exit point of the called program. It restores
the contents of the calling program registers, branches back to the calling program, and
reserves storage for the current save area. All code is generated inline with no inner
subroutine calls or SVCs.

Format:

LABEL A OPERATION A OPERAND

[(rl,r2)] [,T] [,sA={ savearea-name
[symbol] RETURN



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 8—34

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

(rl,r2)
Specifies that the registers designated in ri through r2 are to be restored from the
calling program save area. The address of the save area is assumed to be in
register 1 3. All combinations of valid ri and r2 register addresses are acceptable.
If ri > r2, the register addresses wrap around from 1 5 to 0. If register 1 3 is
included within this range, it is ignored. However, if the SA parameter is coded,
register 1 3 is reloaded from word 2 of the save area before the registers are
restored.

If omitted, no registers are restored by this parameter.

Positional Parameter 2:

T
Specifies that if the return and entry point registers (14 and 15) are not restored by
positional parameter 1, these registers are to be restored from the calling program
save area (words 4 and 5).

If omitted, registers 14 and 15 are not saved by this parameter.

Keyword Parameter SA:

The SA keyword parameter creates a 72-byte save area, or else it indicates that you
have created the save area elsewhere in the routine. It reloads register 1 3 (from word
2 of this program’s save area) with the pointer to the calling program’s save area. It
generates a branch via register 14 as the last executable instruction.

SAsavearea-name
Specifies the symbolic address of a 72-byte register save area to be created by this
macro instruction.

SA=*
Specifies that you have defined a save area elsewhere in the routine.

If omitted, a save area is not created by this macro instruction, and register 1 3 is
unaltered.

Examples:

LABEL LOPERATIONL OPERAND
10 16

E’.lt%.1I (i1..1,1iz1)1 II I I I

;——L_11:t4.il I II I I I

rii ( i’-1, 12),I I I I



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

8.6. ISLAND CODE LINKAGE

As you know, there are six levels of interrupts in OS/3. Two of these interrupts are handled
by system routines; however, there are four interrupts that you must handle yourself. These
interrupts are:

1. Program Check — An operation in your program causes a program check interrupt,
such as an addressing error, arithmetic overflow, or operation exception.

2. Interval Timer — A time interval, which you specified using the SETIME macro
instruction (WAIT parameter omitted), elapses.

3. Abnormal Termination — An error occurs that makes continuation of your program
impossible.

4, Operator Communication — The operator entered an unsolicited message at the system
console or workstation.

To handle these interrupts, you must write closed routines, called island code, and link
these routines to tasks in your program. When one of these interrupts occurs, the
supervisor stores the contents of the program status word (PSW) and general registers, and
then transfers control to your island code routine. If you elect to resume processing the
interrupted task, the supervisor uses this stored information to return control to the task at
the point of interrupt.

The purpose of the program check, interval timer, and operator communication island code
routines is to handle program contingencies or to notify your program that the interrupt has
occurred. In the case of abnormal termination, the function of your island code routine is to
terminate either a task or a job step rather than the entire job (normal procedure for
abnormal termination if there is no abnormal termination island code routine).

The supervisor provides two macro instructions that automatically generate the linkages
between your island code routine and your program. The macro instructions are:

STXIT

Attach and detach your island code routine.

• EXIT

Exit from your island code routine.

You must use the STXIT macro instruction in your program to attach your island code
routines to your tasks. You use the EXIT macro instruction in your program check, interval
timer, and operator communication island code routines to return control to the interrupted
task. Do not use the EXIT macro instruction in the abnormal termination island code
routine. Instead, use:

• a DETACH macro instruction to detach the task;

• a DUMP or EOJ macro instruction to terminate the job step; or

• a CANCEL macro instruction to terminate the job.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 836

UP-NUMBER UPDATE LEVEL PAGE

8.6.1. Attaching Island Code to a Task (STXIT)

You use the STXIT macro instruction to attach island code routines to a task. An important
point to remember is that STXIT only sets up the linkage, it does not call in the island code
routine. Control passes to the island code routine only when the interrupt for which it was
written occurs.

There are two formats for the STXIT macro instruction. One is for program check, abnormal
termination, and interval timer island code routines; and one is for operator communication.

8.6.1 .1. Attaching Program Check, Abnormal Termination, and Interval Timer
Island Code

Function:

This form of the STXIT macro instruction establishes or terminates linkage between
your task and the user island code routine specified by the parameters. If only
parameter 1 is supplied, the previous linkage with the island code specified is.
terminated.

If a program check or an abnormal termination condition occurs for which no linkage is
provided, the task is terminated. If the task is a primary task, the entire job is
terminated; if it is a subtask, only the subtask is terminated.

If a timer interrupt occurs for which no linkage is provided, the interrupt is ignored.

Format:

The format for the STXIT macro instruction when it is used for program check,
abnormal termination, or interval timer island code linkage is:

LABEL OPERATION OPERAND

[symbol] STXIT {B} [ {ent7Ioint} {savaea}]

Positional Parameter 1:

PC
Establishes linkage with the program check island code routine.

AB
Establishes linkage with the abnormal termination island code routine.

IT
Establishes linkage with the interval timer island code routine.

If only positional parameter 1 is specified, the previous linkage with the particular user
island code routine is terminated; otherwise, a linkage is established.



8075 Rev. 3
UPN Li MB ER

SPERRY UN! VAC Operating Systeml3 8—37
UPDATE LEVEL PAGE

Positional Parameter 2:

entry- point
Specifies the symbolic address of the entry point of the user island code routine
that processes the interrupt.

(1)
Indicates that register 1 has been preloaded with the address of the entry point.

If positional parameters 2 and 3 are omitted, the previous linkage with the island code
specified in positional parameter 1 is terminated.

Positional Parameter 3:

save-area
Specifies the symbolic address of an 18-word save area for PSW and general
register storage. This save area must be aligned on a full-word boundary. The
format for the save area is:

(0)

Byte

0

8

68T

Indicates that register 0 has been preloaded with the address of the save area.

If positional parameters 2 and 3 are omitted, the previous linkage with the island code
specified in positional parameter 1 is terminated.

As you can see from the format, parameters 2 and 3 are indicated as being optional. They
are shown this way only because these parameters are omitted when you use the STXIT
macro instruction to detach an island code routine (8.6.2). Remember, when attaching an
island code routine, you must specify parameters 2 and 3; when you detach an island code
routine, you must omit them. Examples of the STXIT macro instruction for program check,
abnormal termination, and interval timer, are shown in 8.6,5, 8.6.6, and 8.6.7.

8.6.1 .2. Attaching Operator Communication Island Code

Eu nction:

This form of the STXIT macro instruction establishes or terminates linkage between
your task and the operator communication island code specified by the parameters. If
only parameter 1 is supplied, the previous linkage with the operator communication
island code is terminated.

If an unsolicited console message interrupt occurs for which no linkage is provided, the
interrupt is ignored.

register save area
(registers 0—15)



8075 Rev. 3

UP-NUMBER

Format:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The format for the STXIT macro instruction when it is used for unsolicited operator
communication linkage is:

[symbol]

Positional Parameter 1

Oc
Establishes linkage with the operator communication island code routine.

If only positional parameter 1 is specified, the previous linkage with the operator
communication island code routine is terminated; otherwise, a linkage is established.

Positional Parameter 2:

entry-point
Specifies the symbolic address of the entry point of the operator communication
user island code routine that processes the interrupt.

(1)
Indicates that register 1 has been preloaded with the address of a 4-word table
containing parameters 2, 3, 4, and 5 in the following format:

Byte

0

4

8

12

Positional Parameter 3:

save-area
Specifies the symbolic address of an 18-word save area for PSW and general
register storage. This save area must be aligned on a full-word boundary. The
format for the save area is:

Byte

0

8

LABEL t OPERATION

STXIT

OPERAND

o [ { entry-point,save-area,msg-area,length

save area address

entry point address

message area address

message area length

register save area

68 T (registers 0—15)



8075 Rev. SPERRY UNIVAC Operating System/3 839

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 4:

msg-a rea
Specifies the symbolic address of an input area reserved for unsolicited messages
from the operator.

Positional Parameter 5:

length
Specifies the length (in bytes) of the message area. The size of the area can be
from 1 to 60 bytes; any message exceeding the specified length is truncated, while
any message smaller is left-justified and space-filled.

8.6.2. Detaching Island Code From a Task (STXIT)

Function:

This form of the STXIT macro instruction terminates linkage between your task and the
user island code routine specified by the parameter.

Format:

LABEL iOPE RATION t2 OPERAND

(PC
AB

[symbol] STXIT lIT
roc

Positional Parameter 1:

PC
Terminates linkage with the program check island code routine.

AB
Terminates linkage with the abnormal termination island code routine.

IT
Terminates linkage with the interval timer island code routine.

OC
Terminates linkage with the operator communication island code routine.

The specific island code routine remains in the program, but it is not entered the next time
that type of interrupt occurs. Later in the program, if you want to attach the island code
routine again, use the STXIT macro instruction with the same parameters or with other
appropriate parameters. You may want to link another set of island code to the same task, in
which case you would detach the old routine and attach the new. Remember, except for
program check and interval timer island code in a multitasking environment, there can only
be one current island code routine of one type in a job step, that is, one island code routine
of one type currently linked to the task.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 840

UP-NUMBER UPDATE LEVEL PAGE

8.6.3. Island Code Entrance

As we have described earlier, you attach your island code routine with the STXIT macro
instruction, specifying the type of island code routine, the routine’s entry point, and a save
area. When the event occurs for which your routine was written, the instruction being
executed at that time completes, and the PSW and the general register contents are stored
in the save area. Control is then transferred to your island code routine. If the last
instruction in the routine is an EXIT macro instruction, the supervisor uses the stored PSW
and general register contents to return control to the interrupted task at the instruction
following the point of interrupt.

Program check, abnormal termination, and interval timer island code routines receive
control under the task control block (TCB) of the task, or subtask, causing the interrupt.
Operator communication island code routines receive control under the TCB of the primary
task. When your island code routine is activated, the contents of the PSW and the register
save area of the TCB are moved to the island code routine’s save area. Your island code
routine should not change entries in this save area. If it does, the state of the system and
your program are different after the interrupt is processed than it was before the interrupt
occurred. You may not be able to resume program execution or you may get erroneous
results. Floating point registers are undisturbed from the time of interrupt; however, any
changes made during island code routine execution are returned to the interrupted task.

For abnormal termination, interval timer, or operator communication island code
processing, registers saved by the system in an island code save area should never be
depended upon or changed by your job. Usually it makes no difference; however, if two or
more interrupts for different types of island code are received at about the same time, an
island code save area may not have your PSW and registers, but rather another island
code’s PSW and registers. These rules do not apply to the PC island code. It is always safe
to look at the PC island code PSW and register save area.

Your island code routines are given control by the task switcher even though the associated
task is in a wait state. This override waits (e.g., wait for I/O synchronization, wait for
interval timer, task pause, PAUSE console commands) is referred to as island code override
and remains in effect during island code execution.

For example, assume that you have written an island code routine to handle operator
communications, your task has issued a wait for an I/O operation, and the operator enters
an unsolicited message at the system console. The island code routine is entered
immediately, regardless of whether the wait has been completed. When you exit from the
island code routine, the island code override is removed; but if the I/O wait is still set,
your program cannot return to the interrupted task until the I/O operation has completed.

As you know, the purpose of an island code routine is to handle an interrupt immediately.
Consequently, functions that cause a task to be put in a wait state (WAIT macro
instruction and certain data management imperative macro instructions such as GET or
PUT, TYIELD macro instruction, SETIME macro instruction) should not be placed in an
island code routine. If they are, they can defeat the purpose of the island code routine;
that is, they prevent an interrupt from being handled immediately. To illustrate this,
assume that you included a wait in an island code routine and it was followed by an EXIT
macro instruction. Control would be immediately transferred to the interrupted task even
though the wait in the island code was still set. If another interrupt occurred, control is not
transferred from your task to your island code routine until the wait within the island code
routine is completed.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3 8—41
UPDATE LEVEL PAGE

8.6.4. Island Code Exit (EXIT)

At the close of your island code routine, you can:

• use the EXIT macro instruction to return control to the interrupted task; or

• use the DETACH, EOJ, DUMP, or CANCEL macro instruction to terminate the task.

The normal procedure for program check, interval timer, and operator communication island
code is to return control to the interrupted task. You do this by coding the EXIT macro
instruction as the last executable instruction of the island code routine.

8.6.4.1. Exiting from Program Check and Operator Communication Island Code

Function:

This format of the EXIT macro instruction is used for program check and operator
communications island code. The macro instruction terminates the user island code
routine, restores the contents of the registers and the PSW, and returns program
control to the point immediately following the interrupt. This macro instruction must
be the last executable instruction within the island code routine.

Format:

OC

Specifies that exit is from the program check island code routine.

Specifies that exit is from the operator communications island code routine.

8.6.4.2. Exiting from Interval Timer Island Code

Function:

This format of the EXIT macro instruction is used for interval timer island code. The
macro instruction terminates the user island code routine, restores the contents of
the registers and the PSW, and returns program control to the point immediately
following the interrupt. If positional parameter 2 is specified, the internal timer is set
to the specified value before program control is returned to the task. When the
specified time interval elapses, the timer island code is again executed. This macro
instruction must be the last executable instruction within the island code routine.

LABEL OPERATION

[symbol] EXIT

Positional Parameter 1:

PC

OPE RAND

_I PC
bc

Format:

LABEL tOPERATON t

[symbol I EXIT

OPERAND

IT [{timerinterval }] r.’ M I
(1) Lbsf]



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Positional Parameter 1:

IT
Specifies that exit is from the interval timer island code routine.

Positional Parameter 2:

timer-interval
Specifies the interval of time that must expire before the timer island code is
again activated. This interval is expressed either in seconds or milliseconds,
depending on the entry in positional parameter 3. The maximum value that may
be entered as positional parameter 1 is 4O95. To specify a value greater than

4O95, enter (1) as positional parameter 1 and preload register 1 with the
required time interval value.

The effect of this parmaeter is the same as if you had issued your own SETIME
macro instruction immediately before the EXIT. If you had done that, however, an
interrupt occurring between the SETIME and EXIT macro instructions could
possibly take control away from you long enough for your SETIME to expire and
cuase an error (referenced island code in busy state). To avoid this possibility,
you should only reset the interval timer either when the EXIT macro instruction
is issued or by a SETIME macro instruction issued outside the timer island code.

(1)
Indicates that register 1 has been preloaded with the time interval value.

If omitted, the interval timer is reset by this macro instruction.

Positional Parameter 3:

M
Specifies that the time interval entered as positional parameter 2 is expressed in
milliseconds.

S
Specifies that the time interval entered as positional parameter 2 is expressed in
seconds.

If omitted, parameter S is assumed.

8.6.4.3. Exiting from Abnormal Termination Island Code

You do not have the option to return to the interrupted task from abnormal termination

island code. However, you do have a choice of four macro instructions. You may use the

DETACH, EOJ, DUMP, or CANCEL macro instruction. The use of these macro instructions

to terminate abnormal termination island code is described in 8.6.6.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 8—43
UP-NUMBER UPDATE LEVEL PAGE

8.6.5. Program Check

Your program check island code routine receives control as the result of a hardware
program check interrupt. The island code routine gains control at the entry point specified in
the STXIT macro instruction in your program that linked the island code to the task. At this
time, the least significant eight bits of register 0 contains an error code, and register 1
contains the address of the event control block (ECB) of the task causing the interrupt. A
value of zero in register 1 indicates a primary task, otherwise it is the address of the ECB of
a subtask. All other registers are as they were when the task was interrupted.

The program check error code returned in register 0 does not necessarily indicate an error
condition since occurrences such as arithmetic overflow can cause the interrupt. These
codes, which range from hexadecimal 01 to OF, are listed and described in the system
messages programmer/operator reference, UP-8076 (current version).



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—44
UP-NUMBER - UPDATE LEVEL PAGE

Program check island code enables you to take some corrective action so that a program
check interrupt does not cause abnormal termination of the job step. You can take whatever
action is necessary to correct the situation, then return to the interrupted task by executing
the EXIT macro instruction.

If a program check interrupt is caused by a task for which there is no program check island
code routine, or the island code routine was detached using a STXIT macro instruction with
only the first parameter, the task enters abnormal termination island code with an error
code of hexadecimal 20. If there is no abnormal termination island code to handle the
situation, the task is abnormally terminated. When the task is a primary task, the entire job
is terminated; when it is a subtask, only the subtask is terminated.

Now let us look at how you would use the STXIT macro instruction with symbolic addresses.
Figure 8—4 illustrates this.

2.
S.
4.

6.
9:

_____ ____________________________________

a
q.
(.

_________ _____ ________________________________________

I .

5r(

______ ____ _________________________

q.

___ _______________________

61.

_________ ______________________________________

62.

__________ ______ _________________________________________

*

LABEL AOPERATIONA OPERAND A
1 10 16

pIIIlI

. LLLJL - ILLL LJJ_L_L_L_L_LLI.J ii .i LJ.I..LLLLLLLL

-

I — I I I I

Fi
.J_.._.t_._..1_.I_._I....J..__.L_ — — I I I

J_ -
•lIII -

I iii i . 1•1 I iii I I I i I_II_

R XEr1.IJiJJJtL

-
•III - IIIIIIIIIIIIIIIIIIIIIIIIIIIII

I - LJ_L__I_ -

-
III -

1’1FL...1 I R1I,EcA I I

— I I I

._L_J._J___1___1__J____1
I

..._.I____j____i____I_____j_____I..._.J_.__ — •1 i — I I I I

I I I

P1c111 — — I I

Figure 8—4. Example of Program Check Island Code Linkage Using Symbolic Addresses



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating Systeml3 8—45

UPDATE LEVEL PAGE

In this example, we’ve coded a program check STXIT in line 6. The entry point address is
AROVFL and the save area address is PCi The STXIT macro instruction is not part of the
island code routine, nor does it call the island code routine. It only attaches the island code
routine to the task. The island code routine is coded in lines 57 through 61. You should
place the island code routine in the nonexecutable portion of your program. Nothing,
however, prevents you from coding it inline in your program. If you do this, you must
unconditionally branch around the island code routine. The reason for this is that you want
the island code routine executed only when a program check interrupt occurs, not every
time it is encountered in the main line of your program. Line 62 reserves the main storage
save area needed by the island code routine.

From the format, you can see that you can also code STXIT using register addresses instead
of symbolic addresses. Let!s take a look at the same program using the alternate method of
coding STXIT, as shown in Figure 8—5.

2.

4.
5

7.
8.
q.
I0.

i2.

q.
éo.

‘3,
64,

LABEL tsOPERATiONA OPERAND

10 16

— 1...iR1 — ?1.:lr.?ri
I I I I I I I

I) Ii ii — I I I ii I II I Ii

liii Ii I ii — II III ill II I ii I ii

II I Ii I — •Ii ii — iii ii I I
—

I I I I I

I I -

— 1.._1A1
— 1,AR\!FI..._ I I I

I — L....iA — ?:I,I’1_II I I I I I I

— — I I I I

— I — I I I I

iiiil III — 1,111 II I Ii III II ii

1111111 - •IIiI -

- -

I I I I — 1.4 — I I

— 1 — I I I I. I_I .iL,l_I.1 I I I I

I II I I ii I — I I Iii I I1

I I — I ii II I I Ii I

AR1\111i_. — Ci — I I I

I I I I I i — •I i — I I I I I I I I
iand coáe -oire.

i I — 1 — I I I I I

. I I ilii iii — I I I ii

— E’<3.1 — P1c.1 I I I I I

i — — I I I I I I I I

Figure 8—5. Example of Program Check Island Code Linkage Using Register Addresses



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

Except for three lines of coding, the programs are identical. In order to use register
addresses in the STXIT macro instruction, you must preload them. Register 1 must be
preloaded with the entry point address (line 6) and register 0 with the save area address
(line 7). When you code the STXIT macro instruction in line 8, you simply write the register
numbers as shown in the format.

When the STXIT macro instruction is encountered, the supervisor takes the addresses in
registers 0 and 1 and stores them in a control table. These entries in the control table are
referenced when the interrupt occurs and the island code routine is needed. Once the
addresses in the registers are stored, these registers are freed. It is advisable to code the
load address instructions immediately preceding the STXIT macro instruction because
these registers are frequently used by the system and their contents are dynamic. Other
than the exceptions just noted, the points brought out in the previous example about
island code routine placement and reserving main storage still apply.

8.6.6. Abnormal Termination

Abnormal termination island code is similar to program check island code in that an
interrupt can occur at any time during the execution of the task; however, the action to be
taken differs radically. Your program check island code routine must return control to the
interrupted task; your abnormal termination island code routine cannot.

Abnormal termination island code receives control when a task enters cancel processing.
The cancel can be either intentional (execution of a CANCEL macro instruction) or
unintentional, as with a system imposed cancellation due to a software detected error. This
permits you to intervene to prevent the abnormal termination of a job. For example, the
operating system can abnormally terminate a job because of a physical IOCS error. Instead,
you may prefer to terminate the job step in error, but process the next job step of the job.
Or, in the case of a subtask causing the abnormal termination interrupt, you may want to
detach only the subtask in error, and continue processing the remaining active subtasks or
the primary task.

Your abnormal termination island code gains control at the entry point specified in the
STXIT macro instruction that linked the island code routine to the job step. At this time, the
least significant 12 bits of register 0 contain an error code, and register 1 contains the
address of the ECB of the task causing the cancellation. A value of 0 in register 1 indicates a
primary task, otherwise, it is the address of the ECB of a subtask.

The error codes that may cause cancellation are listed and described in the system
messages programmer/operator reference, UP-8O76 (current version). Because you cannot
return to the interrupted task, you cannot use the EXIT macro instruction to exit from
abnormal termination island code. Instead you may use any of the following macro
instructions to terminate the task:

• DETACH

Terminate the task or subtask normally.

• EOJ

Terminate the job step normally.



8075 Rev, 3 SPERRY UNIVAC Operating Systeml3 8—47

UP-NUMBER UPDATE LEVEL PAGE

DUMP

Print out the job region contents and terminate the job step normally.

CANCEL

Print out the job region contents and terminate the job abnormally.

The EOJ macro instruction is described in 8.3.4, CANCEL in 8.3.5, DUMP in 9.1.2, and
DETACH in 7.3.3.

If an abnormal termination interrupt is caused by a task for which there is no abnormal
termination island code routine, or the island code routine was detached, the task is
abnormally terminated. If the task is a primary task, the entire job is terminated; if it is a
subtask, only the subtask is terminated.

If a program check interrupt is caused by a task for which there is no program check island
code routine, or the island code routine was detached, the task enters the abnormal
termination island code routine with an error code of hexadecimal 20. If there is no
abnormal termination island code routine or the island code routine was detached, the job is
abnormally terminated.

Figure 8—6 is an example of how you use the STXIT macro instruction to attach abnormal
termination island code routine to your task. Note that in this case we have chosen to use
the DUMP macro instruction to exit from the island code routine.

LABEL txOPERATIONL OPERAND
1 10 16

L

2.

S.
-

4 - I%II IlII LJ1JI L I i___________________

s. jmc:t-r I I
b. — I. L Lj,

T I I I II I

S II I II I

rAFIL,?AiRMIIIH
. I I I — ‘I I — II I I I

. L.1_.LL_J_J_J__i1_J_J_J__ I I I I I

. I II I I

I I Iii

{.(. — I I — I I I I I

— I I

— ‘I I — I I I I I

I I I I I

I I — I I I

Figure 8—6, Example of Abnormal Termination Island Code Linkage Using Symbolic Addresses



8075 Rev. SPERRY UNIVAC Operating Systeml3 8—48
UP-NUMBER UPDATE LEVEL PAGE

In this example, we’ve coded an abnormal termination STXIT macro instruction in line 5.
The entry point address is ABENTRY and the save area address is ABSAVE. As we
mentioned earlier, the STXIT macro instruction is not part of the island code routine. The
island code routine, which is coded in lines 40 through 44, is executed only when an
abnormal termination interrupt occurs. Line 45 reserves the main storage save area needed
by the island code routine.

8.6.7. Interval Timer

Your interval timer island code routine receives control as the result of a timer interrupt
requested by a SETIME macro instruction in your program written without the WAIT
parameter.

When the time interval specified in the SETIME macro instruction elapses, your interval
timer island code routine gains control at the entry point specified in the STXIT macro
instruction that linked the island code routine to the task. At this time, register 0 is cleared
to 0, and register 1 contains the address of the ECB of the task for which the time interval
elapsed. A value of 0 in register 1 indicates a primary task, otherwise, it is the address of
the ECB of a subtask. All other registers are as they were when the task was interrupted.

To exit from your interval timer island code routine, use the EXIT macro instruction to return
to the interrupted task.

Remember, there must be a SETIME macro instruction without the WAIT parameter to
request an interval timer interrupt, and a STXIT macro instruction in the same task to attach
the task to the island code routine that handles the interrupt. If an interval timer interrupt
occurs in a task for which there is no interval timer island code routine, or the interval timer
island code routine was detached, the interrupt is ignored.

Figure 8—7 is an example of the use of the SETIME, STXIT, and EXIT macro instructions
with an interval timer island code routine.

LABEL tOPERATIONE OPERAND COMMENTS
1 10 16 72_

(• ciAK2. jiI L Li L 1..
2. c.ca..rj..ra . rr [ r-1iLs_i i__i I Lafl s I .. a_. I . L
3 CtE T HM.VL It t.
4. (DJL]

6. iriEkET( FIVE L £

r( F CMPUmE £Lb .1LL±L L LitJ

8, Fj iL JjL —

q• T E IF RIME L-I1IT N4 r5EE EXCE1D
(a. IMEFL4A tET IF FL& Sfl T ]LMD C&tE
I (. Ll_L,l.j tL1J A,L.c 1E iFL-Ai .E
, I I I •III 1) ii £.j1 1... 1 CL L

I J_1 -

I, .11111, ._______ I .I i

I
(b. iMF.IiTE - LP iAC..jIF L ._1 I -

I’T. IR4A IT £.Ltj IA I iiI
8 TXt1 CtD i. I i ii,i.j,I

I I I ‘I I 11111111 I

e,((r ou+r
I I ‘I I 1 IlIlilIllIlIl I_.1,.i.,L_4I.,lt._i_,__1__,_L,I,_ —

1 Lfl LJJ

Figure 8—7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses (Part 1 of 2)



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A 8—49
UP-NUMBER UPDATE LEVEL PAGE

LABEL AOPERATONA OPERAND A - COMMENTS
1 10 16 72

Lq. I -cATinFT ME LtJA LAi?SE
2—

2.1. jjj I .J 1n111

.Lj tk1.1 ERRY L L I -- -t ± -

2. I

-J-j.

j I
24. iii •____

- t

2.5 . I I I V I — 1 I I

Li LLIALi . 4KEg ftlME LAPiE
.1i1EI,41D::;t IJLII4jJIIIIIj1Li_VI1IVIIIi_LI!LLiIViJII41IIEIIV[I!III1

-

I I 1FiLA L±Li i a_t rL_L Lnn L.. 1 i I tn n t

.rn_j.±Lr.r X1I4T1 tL± ill: I an i r1 LIIfl LII
i

25
2’l.

0.

3’.
32.
33

-.C,AJ I V

____iiIL

EQUIiEiD I I

______

1L±i1 II 1111 Ilr 1±

E1EFL _V -L I I I I. I n_t I

Figure 8—7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses (Part 2 of 2)

In this example, the SETIME macro instruction (line 6) requests a timer interrupt in 25
seconds so that a time limit of 25 seconds can be placed on the computation (lines 8 to 1 6)
that follows. The STXIT macro instruction (line 4) attaches the interval timer island code
routine (lines 27 to 29) to the task. The routine sets a flag when the time interval expires.
The ST.XIT macro instruction is used again (lines 18 and 21) to detach the island code
routine. The EXIT macro instruction (line 29) returns control from the island code routine to
the interrupted task. Line 1 8 is the normal exit from the compute loop, which occurs if
computation is completed before the timer elapses. Lines 20 and 25 are the error routine
which is executed if the time elapses before the computation is completed. Line 31 defines
the save area needed when the interrupt occurs.

8.6.8. Operator Communication

Your operator communication island code routine receives control when the operator enters an
unsolicited message at the system console or workstation. He does this by typing the job
number and a zero, followed by the message text- For additional details of the operating
procedure at the system console or workstation, refer to the appropriate operations handbook
for your system.

You can use the WTLD and OPR macro instructions to corn municate with the operator. In these
cases, your program displays a message on the system console or workstation and requests a
reply. However, the use of operator communication island code routines permits the operator to
enter a message for the attention of your program at anytime during the execution of a job step
without being prompted by your program. He could enter one of several predefi ned messages to
acknowledge an event or a condition external to your program, for example, an infrequent
request for statistics at the end of a particular job step.

The island code routine gains control at the entry point specified in the STXIT macro instruction
that linked the island code routine to the job step. At this time, register 0 contains the length
(including the character under the cursor) of the message entered by the operator. Register 1
contains either a zero, indicating that the operator communication was initiated at the console,
or a negative sign, indicating that the operator communication was initiated at the workstation.
(Register 1 would not contain an ECB address because operator communication island code
routines always execute under the primary task TCB.)



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL

8—50

PAGE

To exit from operator communication island code, use the EXIT macro instruction to return

to the interrupted task.

If the operator attempts to enter an unsolicited message for a job step for which there is no

operator communication island code routine, or the island code routine has been detached,

the message is rejected.

Figure 8—8 is an example of the use of the STXIT and EXIT macro instructions for operator

communication island code routine using symbolic addresses. The general operation is

similar to that described for program check (8.6.5). However, you will note that, in addition

to the entry point and save area, the STXIT macro instruction also specifies a message area

and message length.

Following the format, the STXIT macro instruction in line 21 specifies that it is attaching an

operator communication island code routine (OC). The island code routine’s entry point is

SYSCON, the save area address is OC1, and the message from the system console is stored

in a reserved 60-byte area whose address is OPRMSG.

L.

2L’

90.

q1

LABEL tOPERATIONx OPERAND
10 16

—
— 13,Rrl’ I I I I I

._l_.__J____J___..L_... — I I I I I I I

II I — I II II II Ii ii II iii ii

I I I ii — I I I I I

I I - $rtxa.T - I I

— ‘I i — I I I I I I I I I

i I — 1 — I I I I I I I I I

I — 111111111111 ii III 111111111

I I I I

II uI — 1 I II II II

i&and code -ou1ine
II I I I ._ Ii I III I It 1111 I l_J.__._.J___

I I I I I i — ‘I — l I I I I I I I

I I I — — I I I I

i I — I I I I I I

— — (SF I I I I I I

Figure 8—8. Example of Operator Communication Island Code Linkage Using Symbolic Addresses



8075 Rev. 3
UP-N U MB ER

SPERRY UNIVAC Operating System/3
LPATE LEVEL PAGE

Figure 8—9 is an example of how your program would look if you elect to use register
addresses instead of symbolic addresses. The load address instruction in line 21 places
the address of a 1 6rnbyte area, called OCSETUP, into register 1. The format of this area is:

Byte

0

4

8

12

What we have done is taken the last four parameters of the STXIT OC format and converted
them to a short table. This short table is referenced as the (1) parameter in line 22. Line 93
reserves the main storage area for this table. Note that in the table the save area address is
the first field and the entry point address is the second field. Do not confuse this with how
these parameters are listed in the STXIT macro instruction if you are using symbolic
addresses. Remember also that at the time the operator communication interrupt occurs,
this 16-byte field (OCSETUP) must contain the appropriate addresses and message area
length.

LABEL A0PERATIONA OPERAND A
1 10 16

i 1...R1 I I I I I I I I I I I I I

1111111 - - I

1111111 - •lIII - IIIIIL 1,L± t II LI I I.

1111111 - •IIII
-

I L L1 I i IIIIlIIIIIIIIII

i I I I I 1 I I I I I

I I I I —

.iT_1)(I1..1
— c.1,(i ) I I I I

11111 I I .11 — 111111111 I II I I I

I liii II lIlT — III 11111111111 I III 11111 III I

III III 111 — 111111111 11111111111 III 1111 I

YIDlP4 I - I - R511 PMS*I3 I I I I I I I I I I I I

1111111 111 — II Ill I III I III I II I I

I I I I I I I — 1 I I I — I I I I I I I I I I I I

..I_..i__1..___..I._....__.l....1...._..J._ — I I I I I I I I I I I I I I I I I I I I I I I

LLL(I 111111 II IlIll II I

CL1I lilT — II I III I IllillIlIll I I I I

I II lIlT III II Till III 111111 I

— I I 1I6I I I I I I I I I I I I I I I I I

save area address

entry point address

message area address

message area length

1.

21.
22.

7S.

Figure 8—9. Example of Operator Communication Island Code Linkage Using Register Addresses



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 8—52
UPDATE LEVEL PAGE

8.6.9. Use of Island Code With Multitasking

8.6.9.1. Program Check and Interval Timer With Multitasking

In a multitasking environment, you can specify discrete program check and interval timer
island code routines using a separate STXIT macro instruction in each task to link the task to
its island code routine.

Figure 8—10 depicts a job step with three tasks (the primary task and two subtasks). The
ST)(IT macro instruction in each task specifies a separate island code routine, and a
separate save area. Note that upon exit, control returns to the interrupted task at the point
of interrupt.

PRIMARY TASK

PRIMTASK.

STXIT PC,ICR,SAVE

SAVE DS 1SF

SUBTASK 1

SUBTASK1

STXIT PC,ICR1 ,SAVEA

SAVEA DS 18F

SUBTASK2

STXIT PC,ICR2,SAVEB

SAVEB DS 18F

INTERRUPT
I

RETURN
4

INTERRUPT
I

RETURN
I

INTERRUPT
I

RETURN
4

ISLAND CODE ROUTINE

ICR

EXIT PC

ISLAND CODE ROUTINE

ICR1

EXIT PC

ISLAND CODE ROUTINE

ICR2

EXIT PC

Figure 8—10. Example of Discrete Program Check Island Code for Each Task in a Job Step



I SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL

You can also use a common program check island code routine or a common interval timer
island code routine for all the tasks within a job step. In this case, you use a separate STXIT
macro instruction for each task to link the task to the common island code routine,
specifying the same entry point but with a different save area for each task. When you use
a common island code routine, the island code routine must be reentrant, that is, it can’t
make any changes to itself or to its common parts.

Remember, this common island code routine can be entered from any of its associated tasks
and program control returns to the interrupted task via the EXIT macro instruction. Also,
make sure you don’t disturb the affected save area because the task environment must be
restored so that control can be returned to the interrupted task.

Figure 8—11 shows how all the tasks in a job step (in this case, a primary task and two
subtasks) could use a common island code routine. The STXIT macro instruction in each
task specifies the same entry point; however, each STXIT specifies a separate save area.
When a program check interrupt occurs in any of the tasks, control is transferred to the one
island code routine. Upon exit, control returns to the interrupted task at the point of
interrupt.

PRIMARY TASK

PRIMTASK.

INTERRUPT
STXIT PC,ICR,SAVE

RETURN

SAVE DS 18F

SUBTASK 1
ISLAND CODE ROUTINE

SUBTASK1.

ICR

STXIT PC,ICR,SAVEA INTERRUPT

RETURN
4

EXIT PC

SAVEA DS 18F

SUBTASK 2

SUBTASK2.

INTERRUPT
STXIT PC,ICR,SAVEB

RETURN

SAVEB DS 18F

Figure 8—11. Example of Common Program Check Island Code for All Tasks in a Job Step



RJIb Key. SPERRY UNIVAC Operating Systeml3 —b4

UP-NUMBER UPDATE LEVEL PAGE

8.6.9.2. Abnormal Termination With Multitasking

There can be only one abnormal termination island code routine current in a job step at any
one time. You can use a STXIT macro instruction in any task to attach the island code
routine. The abnormal termination island code routine is associated with the job preamble;
however, it may be entered from any task in the job step.

If several tasks in a job step are each causing an abnormal termination interrupt, these
cancellation requests are queued for entry into the one abnormal termination island code
routine for the job step.

You can have several abnormal termination island code routines in a job step (for example,
one for each overlay), but only the routine linked by the current ST)(IT macro instruction is
effective when an interrupt occurs. In this case, each succeeding STXIT macro instruction
supersedes the previous one, and you do not have to issue a STXIT macro instruction to
detach each previous island code routine.

8.6.9.3. Operator Communication With Multitasking

There can be only one operator communication island code routine current in a job step at
one time. You can use a STXIT macro instruction in any task to attach the island code
routine. The operator communication island code routine is associated with the primary
TCB; however, it may be entered at any time regardless of which task is processing at the
time the operator enters the job number and a zero at the system console to cause an
operator communication interrupt.

Multiple activations of an operator communication island code routine are not possible. If
the island code routine is executing, it must exit before it can be reentered. If the island
code routine is handling an operator communication interrupt when the operator attempts
to enter another unsolicited message for the same job step, the later unsolicited message is
rejected.

As is the case with an abnormal termination island code routine, you can have several
operator communication island code routines in a job step, but only the code linked by the
current STXIT macro instruction is effective when an interrupt occurs.

8.7. SYSTEM INFORMATION CONTROL

Each problem program is assigned a variable-length storage area within the program region
which is known as the job prologue and contains the job preamble and task control blocks.
You can retrieve or read information from the job prologue only through the supervisor. In
addition, you can establish, change, or cancel information only within the 12-byte
communication region.of the job preamble. You cannot alter any other part of the contents
of these critical storage areas. The communication region is most commonly used to pass
information from one job step to the next; 1 2 bytes of data can be stored by one job step
and retrieved by subsequent job steps associated with the same job. The user program
switch indicator (UPSI) can be retrieved using the GETCOM macro instruction or set using
the PUTCOM macro instruction. The UPSI is the last byte in the 12-byte communication
region in the job preamble and is tested by a subsequent SKIP job control statement. The
job control user guide, UP-8065 (current version) contains a description of the UPSI bit
values, how to set and change the bits, and how to use the UPSI to branch around JCL
statements.



8075 9ev. 3

UPNUMBER
SPERRY UNIVAC Operating Systeml3 8—55

UPDATE LEVEL PAGE

The following macro instructions are provided to assist you in accessing these restricted
storage areas:

GETCOM

Retrieves the contents of the 1 2-byte communication region from within the job
preamble.

PUTCOM

Writes a 12-byte character string into the communication region within the job
preamble.

GETINF

Retrieves information from the SIB, PUBs, TCBs, or preamble.

8.7.1. Get Data From Communication Region (GETCOM)

Function:

The GETCOM macro instruction retrieves the contents of the 1 2-byte communication
region from within the job preamble and stores it in an area specified in positional
parameter 1:

[symbol]

Format:

Positional Parameter 1

to-addr

(1)

Specifies the symbolic address of a 1 2-byte area in main storage to which the
contents of the communication region is to be moved.

Indicates that register 1 has been preloaded with the address of the area in main
storage.

LABEL Ls OPERATION

GETCOM

OPERAND

5 to-addr
k (1)



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—56
UP-NUMBER UPDATE LEVEL PAGE

8.7.2. Put Data Into Communication Region (PUTCOM)

Eu nctio n:

The PUTCOM macro instruction moves the contents of a 1 2-byte area in main storage
specified in positional parameter 1 to the communication region within the job
preamble.

Format:

LABEL AOPERATI0NA OPERAND

[symbol] PUTCOM
{frornaddr }

Positional Parameter 1:

from-addr
Specifies the symbolic address of a 12-byte area in main storage containing the
data characters to be moved into the communication region within the job
preamble.

(1)
Indicates that register 1 has been preloaded with the address of the area in main
storage.

8.7.3. Get Data From System Control Tables (GETINF)

Function:

The GETINE macro instruction retrieves data from the task control block (TCB), systems
information block (SIB), physical unit block (PUB), or the job preamble and stores it in a
work area in main storage specified in positional parameter 2.

NO TE:

If you use the GETINF macro instruction in your program, you must reassemble your
program upon every major release of the system software.

Format:

LABEL AOPERATIONA OPERAND

(TCB”

[symbol] GETINF
{workarea } ,number-of-bytes,displacement

PUB)



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—57

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 1:

TCB
Specifies that the data requested is from the job task control block.

SIB
Specifies that the data requested is from the systems information block.

PRE
Specifies that the data requested is from the job preamble.

PUB
Specifies that the data requested is from the physical unit block. In this case,
register 1 must be preloaded with the address of the PUB or with the identifying
number of the PUB. The PUB identifying number is its position within the PUBs
specified at SYSGEN. That is, the first PUB is 0, the second PUB is 1, and so on.
Positional parameter 2 must specify work-area, not (1).

Positional Parameter 2:

work-area
Specifies the symbolic address of the work area in the problem program to which
the data is to be moved. This area must be large enough to contain the data
requested.

(1)
If positional parameter 1 is TCB, SIB, or PRE, indicates that register 1 has been
preloaded with the address of the work area.

Not valid if positional parameter 1 is PUB since register 1 already contains the
address of the PUB or the identifying number of the PUB.

Positional Parameter 3:

number-of-bytes
Specifies the number of bytes of data requested.

Positional Parameter 4:

displacement
Specifies the displacement, that is, the number of bytes from the beginning of the
table to the beginning of the data requested.



UO]5 Rev. 3 SPERRY UNIVAC Operating Systeml3 8—5w
UPNUMBER UPDATE LEVEL PAGE

8.8. CONTROL STREAM READER

The control stream reader allows you to access data that was entered into the system with
the job control stream. This provides a convenient method to handle small quantities of
input that would normally have been handled as a card or diskette file. Because the data is
embedded within the job control stream, there is no need to define a card file, nor is a
device assignment set required for the card reader.

This embedded data might consist of transactions or changes to be processed against a
master file, source code or control statements to be processed by a utility routine; or it
might consist of PARAM job control statements to introduce parameters that can be used
during program execution. Refer to the job control user guide, UP-8065 (current version)
for a description of statements within embedded data.

When job control reads the job stream, it stores the embedded data in compressed form in
the job’s run library file. During the execution of the job step, this file is read into main
storage and may be accessed by GETCS macro instructions (8.8.3) in your program. The
requested records are expanded to their original form and stored in an input area you
spec ify.

You can retrieve one or more records at a time from your embedded data file, and you can
retrieve records from more than one set of embedded data belonging to the same job step.
Images are read sequentially from the start of the entire data file. However, you can alter
the sequence or reread data by using the SETCS macro instruction (8.8.5).

Except for PARAM statements, each retrieved record is an exact image of the source
statement, which may be from 1 to 1 28 bytes. Thus, you can read 80- or 96-byte images
from punched cards or 128-bytes images from diskette.

NOTE:

Although PARAM and other job control statements may be handled as part of an
embedded data set, they must still observe the job control statement conventions.
Remember that job control statement information cannot extend past character position
71, and that position 72 is used to indicate continuation of a statement.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 8—59

UP-NUMBER UPDATE LEVEL PAGE

8.8.1. Embedded Data

Embedded data is delimited by a pair of /$ (start-of-data) and /* (end-of-data) statements.
They must follow the EXEC statement in the control stream or, if used, any PARAM
statements. Note that PARAM statements are considered to be a part of the data set that
follows. For example:

// EXEC
// PARAM
// PARAM
/$

Data
Set
1

/*

// PARAM
/$

Data
Set
2

/*

/$

Data
Set
3

/*

8.8.2. Reading Embedded Data

If you are reading one record at a time from this embedded data file, the first GETCS
macro instruction executed retrieves the first PARAM statement of data set 1, the second
retrieves the second PARAM statement, the third retrieves the /$ statement, the fourth
retrieves the first data card, etc.



Bulb
SPERRY UNIVAC Operating System/3 8—60

UP-NUMBER UPDATE LEVEL PAGE

Following the successful execution of a GETCS macro instruction, program control is
returned to the issuing program at the point immediately following the GETCS macro
instruction. Register 0 and 1 will contain:

RO — The binary count of records retrieved.

— 016 if a /* that terminates a data set is the first image in the input area.

— OOFFFFFF16 when all embedded data images have been read.

Ri — The reread pointer (8.8.4). When passed to the SETCS macro instruction
(8.8.5), it allows you to reread embedded data at this pointer.

If two or more records are requested by a single GETCS macro instruction, the first
occurrence of a real /* image terminates the control stream reader function. The /* is not
returned until the next GETCS macro instruction call, at which time register 0 is set to
zero and register 1 contains the reread pointer. On subsequent GETCS macro instruction
calls, the /* image is always returned; however, control is not returned to the error
address specified since it is not an error.

Since control streams may themselves be embedded data, the GETCS macro instruction
indicates the end of a data set by signalling which end-of-data (/*) image actually
terminates the data set. This is referred to as a real /* image as opposed to an embedded
/* image. An embedded /* image is treated like any other image.

8.8.3. Get File From Control Stream (GETCS)

Function:

The GETCS macro instruction retrieves embedded data images and control statements
that were entered in the system through the job control stream. You can retrieve one
or more data images at a time from your embedded data file. The images may be from
1 to 128 bytes in length and may be obtained from more than one set of embedded
data belonging to the same job step. Except for PARAM statements, each retrieved
record is an exact image of the source statement. PARAM statements appear
according to standard JCL conventions.

Images are read sequentially from the start of the entire data file. You can alter the
sequence or reread data by using the SETCS macro instruction.

Format:

LABEL t2OPERATIONL OPERAND

[symbol] GETCS

{ input-area }
[{numberrecords}]

F jerror-addrl>] [ f
L 1. (r) Li L t80



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL

Positional Parameter 1:

input-area
Specifies the symbolic address of an input area in main storage that is to receive
the records or records. When more than one record is requested at a time, as
each record is retrieved from the control stream, it is stored in contiguous byte
locations beginning with this address. This area must be large enough to contain
the retrieved records. The record image size is specified in positional parameter
4.

(1)
Indicates that register 1 has been preloaded with the address of the main storage
input area.

Positional Parameter 2:

number-of-records
Specifies the number of records requested.

(0)
Indicates that register 0 has been preloaded with the number of records
requested.

If omitted, one record is assumed.

Positional Parameter 3:

error-add r
Specifies the symbolic address of an error routine to be executed if an error
occurs.

(r)
Indicates that register r (other than 0 or 1) has been preloaded with the address of
the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

Positional Parameter 4:

n
Specifies the size of the data images to be retrieved. To retrieve the entire
record, make sure this value equals the data stream record size.

If images smaller than n were originally written, the returned image will be left-
justified and the remainder of the input area filled to the right with spaces. If
images larger than n were originally written, only the number of bytes specified
in this parameter will be returned and the remaining bytes in the data stream
record will be ignored.

If omitted, 80-byte images are retrieved. If smaller images were originally written, the
returned image will be left-justified and space-filled to the right. If larger images were
originally written, only the first 80 bytes will be returned.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 8—62
UP-NUMBER UPDATE LEVEL PAGE

8.8.4. Rereading Embedded Data

Following execution of a GETCS macro instruction, register 1 contains a full-word reread
pointer consisting of the data set number, record displacement, and block number for the
first record of the data just retrieved. If you intend to reread data, store this pointer in
main storage and use the address of the pointer as parameter 1 of a SETCS macro
instruction. A succeeding GETCS macro instruction will read the same data into your
embedded data input area.

The pointer is advanced for every GETCS issued. If one image is requested, the pointer will
point to the location in the data file of the record just returned. If more than one image is
requested (parameter 2 of the GETCS macro instruction), the pointer will point to the
location in the data file of the first record of the group of records just returned. For
example, if an execution of a GETCS macro instruction has just returned five images, the
reread pointer would point to the first image in the data file, not the fifth.

8.8.5. Reset Control Stream Reader (SETCS)

Function:

The SETCS macro instruction alters the sequence in which a subsequent GETCS
macro instruction retrieves embedded data images from the job control stream. To do
this, you may back up the GETCS pointer, skip backward or forward to the start of any
embedded data set, or resume sequential reading of the data file at the beginning of
the next data set.

Format:

LABEL iOPERATIONt OPERAND

pointer
data-set-no r c R ìi r ç error-addr

[symbol] SETCS (1) L’ s JJ [‘
NEXT

Positional Parameter 1:

pointer
Specifies the symbolic address of a full word embedded data file pointer provided
by a previous GETCS macro instruction.

Upon successful completion of a GETCS macro instruction, control is returned to
the program at the point immediately following the GETCS macro instruction, and
register 1 contains a pointer to the last set of data images read from the embedded
data file in the run library. When passed to the SETCS macro instruction, it allows
embedded data to be reread starting at the pointer. Note that the pointer points to
the first data image.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 863

UP-NUMBER UPDATE LEVEL PAGE

data -set- no
The number of the embedded data set from which subsequent GETCS macro
instructions are to retrieve data images. Data sets are numbered sequentially
starting with 1,

(1)
Indicates that register 1 has been preloaded with either the 4-byte GETCS pointer
itself or with a data set number.

NEXT
Indicates that subsequent GETCS macro instructions are to retrieve data images
starting at the beginning of the next data set.

Positional Parameter 2:

R
Specifies that the entry in positional parameter 1 is the address of the reread
pointer provided by a previous GETCS macro instruction.

S
Specifies that the entry in positional parameter 1 is a data set number.

If omitted, the parameter S is assumed.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine to be executed if an error
occurs.

(r)
Indicates that register r (other than 0 or 1) has been preloaded with the address of
the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

8.8.6. Minimizing Disk Accesses

The job control stream embedded data reader operates as a transient within the supervisor
and is called by the GETCS macro instruction. The transient is not replaced in main
storage unless absolutely necessary. It can recognize whether or not the same user is
recalling it. If so, there is no need to reread the embedded data file from disk unless the
final record of the data file block was returned for the previous call. This reduces disk
accesses while reading the embedded data.

Note that the use of a D option as positional parameter 4 is no longer more efficient than
a GETCS without the D option. The D option is still supported even though it is pointless to
use it If your program contains GETCS macro instructions with the D option it need not
be changed.



(



8075 Rev. 1 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

9. Diagnostic and Debugging Aids

9.1. STORAGE DISPLAYS

Most programs don’t run properly on the first try. Sometimes, there may only be minor
coding errors, but other times, there may be logic errors. Coding errors are relatively easy
to find, but logic errors tend to be elusive. This is why Sperry Univac has provided a
method of obtaining printouts of main storage areas. These printouts are commonly called
dumps.

Dumps are most helpful when you, not the operating system, control when they occur.
This control is available through four macro instructions: CANCEL (8.3.5), SNAP, SNAPF,
and DUMP. For any of these macros, however, a dump is not provided if:

a printer is not assigned to the job; or

an OPTION job control statement with the DUMP, JOBDUMP, or SYSDUMP
parameter is not present in the job to override the default NODUMP condition of job
control.

9.1 .1. Snapshot Dumps (SNAP/SNAPF)

A snapshot dump is, by definition, a selective dynamic dump performed at various times in
a run. The SNAP macro instruction produces this type of dump. It gives you a picture of
the job’s 1 6 general registers as well as selected areas of main storage.

There are really two macro instructions for obtaining snapshot dumps: SNAP and SNAPF.
Each macro instruction performs the same function, except that the SNAPF macro
instruction is used in the spooling environment. To simplify this discussion, whenever we
mention the SNAP macro, we also mean the SNAPF macro instruction.

By using job control, you can initiate or suppress snapshot dumps at run time. You don’t
have to recompile a program in order to dump or not dump, since the SNAP macro
instruction is only effective when combined with an OPTION job control statement (using
the DUMP, JOBDUMP, or SYSDUMP parameter) in the job step in which you want the
dump to occur. If the program is run without this OPTION job control statement, the SNAP
macro instruction is bypassed.



OUIO hey. S1’IKHY UNIV?i operating ystemi
UP-NUMBER UPDATE LEVEL PAGE

A hexadecimal printout of the general registers and the job’s main storage area is always
given when the SNAP macro instruction executes. Program-relative addresses are listed
on the left and absolute addresses are listed on the right. After the SNAP macro
instruction executes, normal processing of the program continues. Control is returned to
the instruction immediately following the SNAP macro instruction.

The SNAPF macro instruction works the same way as the SNAP macro instruction, but it
allows you to direct the snapshot dump to a specified allocated printer or to a spool file via
a virtual printer. In a spooling environment, you can use the SNAPF macro to direct
snapshot dumps to a spool file other than the job log file. This enables you to obtain the
printed output prior to job termination by using the spool breakpoint feature or closing the
file.

The formats of the SNAP and SNAPF macro instructions are:

LABEL IOPERATIONt OPERAND

(SNAP 1 ic start-addr- 1 ,end-addr-1 [,...,start-addr-n,end-addr-n]
[symbol]

‘kSNAPFf (1)

Either symbolic addresses or general register 1 can be used to indicate the areas to be
dumped. To use symbolic addresses, you code the starting address (start-addr parameter)
and the ending address (end-addr parameter) for each area you want dumped, up to a
maximum of 50 separate areas per SNAP macro instruction.

If you use the SNAPF macro instruction, register 0 must be preloaded with the address of
either an allocated printer or a virtual printer physical unit block (PUB), as obtained from
execution of either a data management OPEN or a read file control block (RDFCB) macro
instruction.

Remember, when using symbolic addresses, an even number of parameters must be used
(start and end).

For example, if you coded the SNAP macro instruction like this:

I LABEL tOPERATiONt2 OPERAND
1 10 - 16

I [r&i I I I
—---- —-----

First Second
Area Area



8075 Rev 3
UP$’JUMBER

SPERRY UNIVAC Operating System/3 9—3
UPDATE LEVEL PAGE

and placed it in your program like this:

(0). • 1313(0(3 (30)- 4)1043 400*7 44 5o0+CF 5141(041

you would get the following dump when you executed the program (provided you used an
OPTION DUMP job control statement):

SOAP 80 SNAPSYMA Al 0)30404

General
8105 13.-? C301W1W20 303404 0310)00)30 1W00)000

Registers
NESS B—F 000033023) 011000000 00001(000 0(3000070 0000311331) Io0000SO 000800)10 00000000

TAG1-TAG2
SNAP 008(04 TO 106000

00(3408 04 (3302133 811046000 40

TAG3-TAG4 { SNAP 006000 TO 006001

Notice that the SNAP macro instruction is placed before the instruction areas to be
dumped.

If you code a large number of addresses to be dumped, the processor time to access the
addresses for the dump will increase. But, it takes less time if you access these addresses
from a general register. You preload register 1 with the address of a predefined list of one
or more address pairs (full word) specifying the areas to be dumped. The leftmost bit of the
last ending address must be set to 1 (X’BO’) to indicate the end of the list to the routine
that interprets the SNAP macro instruction.

Borrowing from the example we just used, we’ll alter it to set TAG1 through TAG4 in a
predefined list, load the symbolic address of this list into general register 1, and instruct
the SNAP macro instruction that this register contains the address by coding:

F LABEL &PERATIONt OPERAND

!1 . :io 16

I I I I

P800

2 8133)3

000(7 4 944404

001)33 11
00310)10 056))
000002
0310302 Nip) 60)0
0003)36 ClC2C3C4904A404,
00313)00 04(60708

0000)2
(303131)3 2700
000l4 4830 6026
200038 00000028
0001130 00000033
(300020 3000004)
0033029 631
00)3020 000040
000028 1)831)
0)131020 321)3 60)0

5(3881 0
84144 6,0
ONION •,3,

I, •*16
AC CL6A8CII
SC CL9EFI,44’
184+ TAN) _TSt.2fl4*l.TAr.M

6333)C 03)3130 03001

002030
000030
000030
000039
0000330
000038
0001)38

8 8+

A 90

10528 A 108
4 11*
4 2+
0 3*
4 9,

8 (4+
0 6*

IT 1A6(

48 T47
N (9+

4 23I.TA3I
00038 4 31)2

4 22+
4 23+
+ 49*

25
26 45+

8 27+T43
001)8 0 28*

0)103) A 29*
00039 A 3)1+

A 33+

45(3 6036
00
000058
0426
0207 6302

-

Oil
0,9

1 •*49)*
8(0801)
4(145?)
Al 1803)
3• 5314

AL) (38093
29 SNAP 541
BRANCII.819) •89ANC8,12
0(11
0,9

344(94/)

8’ 440’
AL) (04(13
38 ISSUE 930
800)8) .484.08+48009 00304 000)36

38 S
((lOP
8AL

00
00
00
30
Soc
+30
IN EN

CHOP
820
+8).
SC
LIE

SOC
(8310
0431

OC

1903

44(8

ILOSI
SC

Soc
0113

(35
SOC

000040
020090 5810 6)36
000049 9220 303)
000098 58F)) 3034
000U4C 3500

000040
000090 5830 63)6
000052 0827

000069
0130004 0*34

I,.— First Area
to Dump

J
Second Area
to Dump

vu’
ITTIUI SET ALISNIIL4T
3,4410011 (040 838, 016(8480 *089155
99)ll,A’20’ SET 000(111W COO)-
10,521,1131480405800 0118948 (/0
39,35 LISP TA COMMON
801

0 33+t45l
003)8 A 39.

* 36+
38

* 37+
4 38+

1,44)801) 1083 938, FILENAME 4008655
39 ISSUI_ SE

041
26

000900 58)08334 920)4331 0401)3039 001006 026CF0



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

and inserting it in your program.

LOL • ((I(Jf_t I 1000 8016 A0002 I 50 5J* F ST ATLMLNT

0000 A

000(348
00,100)6
040009
00,11)9 0000(60164
000 08 (06151102,1
‘(00 I 01 0000030
000110 60
0001 600(131
0000(60
000 Id 00)00)09,4

0

49

96
87

89

9’

I 92

L±
99
449

F
40 CL7l
oS F
00 7016
tt TT’Ts
Ut 4174924
Ut AITAU3I
Ut A’*U’

Ut 40311809
180 6406,8

141 OUT I

Designates the predefined list of areas to be dumped. The entire list is referenced as LIST. TAG1 through TAG3
are defined as full-word address constants (DC A). The X’80’ sets the leftmost bit of TAG4 to 1 (80 = 1000
0000). The remaining three bits of TAG4 are specified by L3.

Loads the address of LIST into general register 1.

0 Is the SNAP macro instruction, indicating that general register 1 contains the address of the list of the areas to
be dumped.

The dump obtained is identical, in desired content, to the dump that was obtained using
symbolic addresses. The execution time for the program using register 1 was reduced. The
only differences in the output listings are minor, and do not affect the use of the dump as
a debugging aid. They are:

OU0000
0000(60 061
000002
054502 9700 6010

0000(66 (lL2C3t99U9909u
600001 1 506C71 4

000012 9110 6102

STA4IT

401.4
50 I N C.

6.0

1*16
CL A’ A’) CU’

cLo’0r644’

HOISt 40044 1)4000

2 (56)9

00012 9 (4644)C8

00100

:
II TA),)

2 TAI,?

A 11*
0 9*T4,7

1(0028 0 (9*

8 (6*

8 (1*
A (44*

646(9 1)6(044 (006(6 (9

f7T (.1
A 21*0863

160(19 8 22*
1(1(611 4 23*

((4031 A 20*
O 20*

1, 27*1460
((0114 8 244*

9 29*
3(6

8 31*

1(0,1016

01(6(4(6 ((AID
000018 0703 6(0(0

011)40 II 1(70,)
004,020
000020 9610 6020
((11,6(629 60

Oth()(19 ((00698
00,4020 0126
00(4028 0207 66(04

00-103(6
06(1011% 9441% 8116
((0,1039 922 1031
(3000314 HAlo ((39
0006(31 0010

000(130
004030 0810 HIll
100(402 ((427

(100099

(4,9

51480 II)

US 09
001 29 SNAP 501
OUt 99A(lC4l*8191,49A1.CH*I1

1,000 lOT

(000

I. -06
((AL I,’*9.2I

UI 9’RO’

Ut 013106(01
SOt 38 155)11 5C
HOC (1008) ,*64OSC(,*9
HUT OUT
tr 30101 SIT 811689181

1 I ,A 0(61) LOA0 *IS • H 11100*4 400HLS

lVT 99111,4’70 SET FUNCTION 1006

.
IS,974 • II 1(600 AUDI OF (((9949 I/O

((ALl 19.10 INK TO CuNHO(1

Ut 00)0)
1 I .181001 I 1740 *II, 1110AM) 4008095

SOC 39 1554(1 5(
101
OS 39

-I First Area
I,

to Dump

Second Area
to Dump

0

540r

4400

LIST

NOTES:

The program-relative and absolute addresses differ for each method used.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

The listing produced by either method aligns on a double-word boundary. Because
different inline expansion codes are generated by the different uses of the SNAP
macro instruction, there is a difference in the addresses of the areas to be dumped.
So, the listings may be slightly different (as they are in our two examples). You will
always get the exact area you want, but you can also receive the generated code of
the instruction before or after the area to be dumped, depending on where the
double-word alignment begins.

( SAP AT SATTATAl AT

General ALAS A—i iOUjJA U)UAAFTi r555 UflUTOtI OUiLJ5Atj UAAUUUAU SJSUu*AI AAUOOUOO

Registers
STAT 5 1 SAUAA] AAAUUOUU flUfl TA 1 OAOTTUS nun,3uro 1wunujc )uOAuAAA uOOAW.AJTI

STTSP AC.TT TA ATTACAT

TAG1 —TAG2
AJASTS AiLTAA-A, ATTTLJ iSA 45 44J6CC8

(TTACLT1 TA 4TSLLL

TAG3—TAG4s
OUTT’TLO SSTJ&l 4. 9)4J1531 SAT ASiA TAStES

Another benefit of using general register 1, rather than symbolic addresses, is when there
is a large string of addresses. If you wanted to remove one of the addresses, and it was
not at the end of the string, youwould have to change the entire line that contains the
address. By using a predefined list, you only have to remove the DC instructions defining
the symbolic addresses.

If you code the SNAP macro instruction without any parameters,

LABEL L\OPERATIONI2 OPERAND

i i 116
I I

only the contents of the 1 6 general registers are printed.

NOTE.

The contents of general register 1 are destroyed by the SNAP or SNAPF macro instruction.
If you want to record the true contents of the register, store it in a field within the area of
main storage to be dumped. Also, if you do not specify full-word addresses, the nearest
haif-word location to the left of the specified address is used.

9.1.2. Normal Termination Dumps (DUMP)

A normal termination dump of main storage differs from a snapshot dump in that it prints
out the entire contents of the job region or all main storage, not just selected areas. The
DUMP macro instruction causes this, and it is inserted in place of and acts as an EOJ
macro instruction (8.3). This means your job step runs to normal completion. Therefore, a
DUMP macro instruction terminates a job step without cancelling it, unless, of course,
something is wrong with your program.



SPERRY UNIVAC Operating System/3 -

UP-NUMBER UPDATE LEVEL PAGE

Just as with the SNAP macro instruction, you can initiate or suppress the dump at run
time through the OPTION job control statement. However, with the DUMP macro
instruction, there are three types of dump available: SYSDUMP, JOBDUMP, and DUMP.
Only one feature is functional per job step, and their hierarchy is in the order just stated.
In other words, if both SYSDUMP and JOBDUMP are specified, only SYSDUMP is
effective.

The specific meaning of each type of dump is explained in the system service programs
user guide, UP-8062 (current version). But briefly, they can be summarized as follows.

The DUMP feature gives you:

• The job’s last executed program status word (PSW) and an identification code
indicating the source of the dump;

• the job’s 1 6 general registers;

• the job’s prologue area with the preamble and task control blocks (TCB); and

• the job’s program region.

The SYSDUMP feature provides a method of determining why the system terminated
abnormally, which entails:

• a translation of the state of the entire operating system into charts and texts; and

• a hexadecimal dump of all of main storage.

The JOBDUMP feature is basically the same as the DUMP feature, except that the dump
listing is also translated from hexadecimal to a more easily readable, English-language
version of the dump. Additionally, whenever you want to use the JOBDUMP feature, you
must place the following device assignment set in your job control stream:

1 10 20 30 40 50

j”’ ,“ D’C. 2io I I I I I I I I

i” i’ iPR.i..1rt I I I I

If this device assignment set is missing, the dump given is of the module (program) called
JOBDUMP, not of your module.

For DUMP and SYSDUMP, a printer must be assigned to the job, but the LFD job control
statement does not have to have a file name of PRNTR; the file name is what you have
specified on your DTF macro instruction for the job’s print file.

If an OPTION job control statement is not present in the control stream, the DUMP macro
instruction acts as an EOJ macro instruction (8.3.4). The OPTION job control statement
must appear in the job step in which you want the dump to occur.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

For example, if you assemble, link edit, and execute your load module, and you want the
dump to occur when you execute your load module, you place the OPTION job control
statement in the job step that executes your load module, not in the one that assembles or
link edits.

The format of the DUMP macro instruction is:

LABEL LoPERATIONL OPERAND

r (identification-code
[symbol] DUMP I (0)

L( 0

The identification-code parameter is a 1 - to 4-byte hexadecimal code you assign within the
program to indicate the source of the dump. If you use all four bytes, it can consist of four
alphabetic characters, eight numeric characters, or, since each byte can hold one
alphabetic character or two numeric characters, any combination that equals four bytes.
Examples of this are:

• 12345678

• A123456

a AB1234

• ABC12

• ABCD

One of the reasons for using an identification code is to uniquely identify the load module
producing the dump. This serves as an identifier, which can be used for easy reference
when several different dumps are involved.

If we used an identification code of ABCD in the DUMP macro instruction, like this:

LABEL iOPERATtONz OPERAND
1 - 10 16

I Iui I jcD I I I I



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

and used an OPTION JOBDUMP job control statement, the identification code would show
up here (note also the program status word):

TASK CONTI1OL AL/CR I

TASK CONTHUL BLOCK AT ALIDRESS 00&b0U
TASK KEY I
NEXT TEll ADDAE5S TYRAnT
BACKHAND LINK A/DRESS • VORSUO
5/B TASK VERTICAL IL) • 0)11)00/
SUB TASK COUNT — U

BAIT FDA THANSIENT
OUTSTANDING I/O AEGUESTS • U
TASK SNITCH PRIORITY • 2fl
OREAMIILE BODIlESS 00650))
TRANSIENT ID/VOL COVE IN
NC” AU/KISS • 000000
TIMEN VOLUE • /0U,,00

TASK ROW

PSW PROGAAM STATUS •URD • COIKUDI) 7nUV’NFA
PRONRAM KEY I WHICH IS JOB DUMP
STOlEN MODI

CHARACTER MODE IS LACOIF
RESISTEA SET IS PR0)LEM
PNUCE550H STATE IS PRUKIEM
OPERATION RODE IS NATIVE
MONITON RUDE IS OFF

INTIRUPT COOL • IN
CONUTTIUN CUTE 3
INSTRUCTION AUORESS • 00)INFA
NUN/EAO INSTHUCTTDN LEISTA IT HYTES)
UPII4ATI04 SOC DUMP IN5TR/CTTUN 0A1))

identification

_________

MEG U HE I REs 2 HEN 3

Cod 0000ALICD OUL,00SUV 00000/on
MEG H HE, 9 VES A HEN V

U0000000 00/00000 000)/Uon U/OUT/U))

• TCA •

Identification Code
OUU000•IOOU6SO0 00U00200 JUD 500 00000/00 0900T)U0Q U00U6*00 IROUUUUO 0000/DUO

DUUUZO COINODIA 7UUUO’AFA U/DONNED 00000500 000110000 00300/00 /000))TI/V U000U000

OUUOND..N0000IBZ 00000000 /0000000 00000/00 U0000000 UUU0000T) 00000UUU 000UU000

0000HO.-NOUUOIEE N0000lNI, 00000000 7)0000/UT OO)TVOUOV 0000/000 00000000 0000/DUO

0000AO—0000000U VD000000 0000000T 0000000/ 00000/00 000000U0 00CR INTO UOUUOIUU

0000A0—0000UNCC UD/U0000 /000007)0 00/00000 U000000TT 00000000 00000/VU 00U0000U

0000C0—000U000T UUo00000

and here:

VU 2 HEN 3 HEN N RIb S
000/0 OUT 00000000 OWl/OUT)) /00/0/00

HE), A HEN A HEN C R),
/00/V /Ufl OTTO /0000 1100000W) /00/00/0

JOB USE)) CORN

here:

HEN N RE S oE), H OF), 7
UU/o0000 OOU0000)) 501)01402 000000I)T

HE, I RE,, 0 ES U HEN F
Oflflo0000 10/00000 N/ITO/SIC 5000057 H

• 006500

• 006520

• 006550

• A 006560

• 006580

A 0065N0

EN N HEN 7
‘401)0/5/2 /00001)0)3

EN F HEN F
N0000NEC N0000NEN

‘HOOLEM NEGISTLH5

IdentificatiorI__151
Code

110/U/U))))

AL), I
0)10/ON 0))

HE), 9
000/00/0

I I



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating System/3 9—9

UPDATE LEVEL PAGE

If we used the same DUMP macro instruction (with identification code ABCD), but used an
OPTION SYSDUMP job control statement, the identification code and the PSW again
appear in the task control block (TCB) area and register 0 of the problemregisters of the
portion of the dump belonging to the particular program (job step) that issued the DUMP
macro instruction.

If an OPTION DUMP job control statement was used, it would appear as:

Just to see what
example using an
AB1 234:

an alphanumeric identification code printout looks like, here is an
OPTION DUMP job control statement with an identification code of

identification
Code

USOFI 1)00 OUIIP

___________________ __________

PS, OT l0(L84.upT 6110hl700008F4 j [((*106 rOOF .L20o8.iJ 01) *00* 006000

P001)1)8 [*101.6*19 ‘“‘ A
6(1,5 0—7 00U00T1 l0i,lSiR( 001(00000 (1(011000 000000(10 0,11,00000 80001402 00000olIiJ

*1(56 11—F OIHJL)OOIJ 0(104000 000110000 09000000 0011001100 00000000 900008(1 1100009(6

Identification
Code

30*1 PF118H8LE
FFFCIII1 C9(9(197 909o 080 00000068 006008

(FF020 (13,11,1,2,,) 061* OFII 030(10203 0’.C(IFI(

FFF(90 0Ol1,JUOoO 1)000 000 00011(105,4 t*SH(19E’4

FFFCOO ‘*1)4040111 o76UHSC 004(001w qoF7*6F0

FFFCII,1 0t10000,,0 00000000 000110)0,1 00401(00

00008800 0000U000

00007458 00000o)J0

00000000 0000U000

OOF201I1U 00000000

00780601 OAF00000

00000000 u11000000

000)1)3)80 00000o01

0001)0000 00000000

0000qcno

760)16(10

05409000

F IFSU000

08F00119)

00000000

0 00000110

00000(100

0000000(3

00000000

00l31J01l0fl

00000000

000001,00

0000(1000

00000 EL

11011071)88

00000000

11011)10000

0000000)

1100001)00

10(100000

0011011000

00006800

00000000

000U00)J0

90001)000

‘l,,)IUOUIII)

FFFC 00 01100030) 007o800 11001 001)0 0110011000

FFF000 011i00l,,0 000000(10 0011’ 3001) 0000110011

[FF010 01)000000 01(000000 01(01 (001) 000011000

((CoO
FFF11l,( I 0IIJJO6,,1( 000(10200 201)’ 600 000110000

FFFO2O CIJIoO,JIl1 70010u9F8 00011*11(0 0(100900(1

FFF080 401100902 000oi,000 00000000 0000lOOll

[FF160 ‘4130009611 8000118( 6 0011(10000 0(10001(00

[FF10 I).).JllOOolJ 0001(1000 00((l)0000 001)011000

[FF000 OU0009C 0110000011 00000UOI) 000011000

[FF000 00l)00000 00000000

01)6900

0061120

006990

006860

(1(16980

0069*1)

(1069(0

0068(0

006600

006520

006580

006560

008680

008680

0065(0

I 800U000

00000(100

00000)100

00000000

0060) E01)

0000000(1

00000000

00000U00

1)0000000

008)0000

fl0000000 00000000 00000000

Identification
Code

05111 4113 1108*

_________________ _________

P(1 UT II3TEOFIUPT lL0I60fll(170000’4F0I [840* rOOF I0084*l23111
P1101114(1 P11111.06(4 14[,,S

11(16 j 0”uO 500 oonn1000 1000,0110

611,0 14 U(1110,,U (1(10 011101000 I 0000llIll,,

01*) *01,6 1006500

(l011113)000 11,000000 800009,42 00000,,00

0l191l111]fl(1 00(10000)100111.1

100 P860,1)10

4 [[(lu CIC2F 47 [iF’, 0111 (10(10(01114 00(10100(1

F FF1111 030502,,) 00(4 IJFII 03000000 (),,C’4F(FII

I FFC’4U I1,lil000oO 01100 000 1lU(1110(lbd [gSppS(4

FFFC8I1 ‘40,90110,11 0781,1180 0CJ’400SIl’ 41F7FUF1.

[FF000 110I108110(l 090000011 0,1(2010) (1,19(1 0(111Identification
Code

psw

[[[(0)1

[FF100

F F F CF II

011)0000 I

10(1)013) 11

OIllIlo50011

0I(71,)10110

O11ll001100

001l1I0000

900U09E1

0000841110

1100o7856

00000000

0UF20100

ijlI7oijJlI)

0OO000U

000004 140

00000(1110

0(100110011

(flO1lll11111,

j000l11l1I

000 (00)

(lOll 0(111

00111 1003

Tolls

FFF 00 1011086.,1) lJ000321l0 7001 01,, (1olJorlll(fl,

[[[(120 j Cli) 800)0 !111l11I184 6 008*11234 j 00(1(1100))

FFFO’10 ‘401)1)39,,? 0(11111(11100 000110111)3 3000llflllII

Ff Fl80 1100009,,( ‘41111,111’4F8 l13lJl1l1lll1.l 1)0110(11100

I11110’lCOU

760)1600

208090013

F IF *0000

,IAFIIIIII9C

00(100000

00001)11110

u01lo’Ill0O

001(011000

00001)11011

0011000011

III) fl (10000

00000000

00000000

))l(1(l10,,1o0

01)0001w 0

LIAFOUUIIO

0(1000600

00000002

01)000000

00(107098

OoLlUI)000

0o800000

11011113001

01(000000

1(00000011

10100000

9000680))

Il1,l000lJ0

00)1001)00

0 1101)000

1)1,1,900

01)8920

006990

u06980

108880

106400

((064(0

(106400

1106500

008520

006540

(106560

I o000II0U 000000(10

0001)0000 00000000

00000000 00000o00

00000000 0000001,0



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

You can preload register 0 with the identification code in the same manner as you load
the list of symbolic addresses for the SNAP or SNAPF macro instruction. By using register
0, you save on execution time and conserve main storage space.

If you don’t specify an identification code, either on the DUMP macro instruction or by
preloading it in register 0, an identification code of binary zeros is supplied by the
operating system.

NOTE:

A main storage dump and normal termination can also be requested by the console
operator entering the DUMP command at the system console. The results are the same as
for a DUMP macro instruction included within your program.

9.1.3. Abnormal Termination

A main storage dump can also be obtained by using the CANCEL macro instruction (8.3.5).
However, in this case, the issuing program is terminated (and any subsequent programs in
the job). This macro instruction terminates the issuing program when error conditions are
encountered that prevent further processing.

A main storage dump and abnormal termination can also occur when the operating
system performs abnormally. This is known as a system failure dump.

The functions of the CANCEL macro instruction can also be obtained by the console
operator entering the CANCEL command at the system console.

9.2. CHECKPOINT AND RESTART CAPABILITY

Hardware and software malfunctions, can cause your job to terminate before its normal
completion. Another reason for termination could be that the operator cancelled your job
because a high-priority job required all the facilities of the computer. If the job is small,
you can rerun it without any really great loss. But, what if it is a long or complex job,
where rerunning the job could increase both processing time and cost, thereby reducing
productivity? OS/3 has provided the checkpoint facility, which allows you to periodically
record the operational status of your job.

The capability to generate checkpoint records is a function of the supervisor, and the
capability to use these checkpoint records to restart a job is a function of job control
(through the RST job control statement).

You might want to create a checkpoint record at some specific occurrence, such as the
end of a magnetic tape reel in a multivolume input file, or after processing a specific
number of records. Some people prefer to generate the checkpoint record at fixed time
intervals, say, every 15 minutes (by using the SETIME macro instruction to set a timer
interrupt).



8075 Rev. 3 SPERRY UNIVAC Operating System/3 911

UPNUM8ER UPDATE LEVEL PAGE

Macro instructions are available to define, open, and close files for checkpoint records.
These macro instructions are used in various combinations, depending on whether your
check-point record file and data files are on magnetic tape or disc, and whether you are
using data management or the physical input/output control system (PIOCS) to process
the data files,

The checkpoint and restart facilities are effective if you are sequentially updating magnetic
tape or disc files (using the sequential access method — SAM) where data is not being
overwritten. However, checkpoint records are not valid if you are processing disc data files
and are updating using either the indexed sequential access method (ISAM) or the direct
access method (DAM). Also, do not take a checkpoint if a diskette data set is open or a file
is open that used the file control block (FCB) in main storage feature.

A checkpoint is not effective if it is taken on a job with an open diskette data set, as there
is no mechanism for repositioning the diskette upon restart. A user issuing checkpoints
and using an open file with the FCB in main storage feature may receive errors on
attempting a restart, as the file is not guaranteed to be available.

When a checkpoint is taken, a series of records are written to a checkpoint file on either
magnetic tape or disc. These records contain the data needed to restart the job, which
includes:

the checkpoint header;

the job preamble;

the primary TCB (and any subtask TCBs);

the remainder of the prologue;

a list of the files open when the checkpoint was taken; and

your program.

Each checkpoint is assigned a serial number, which is contained in a checkpoint header
record along with the checkpoint file name, job name, and job step number. This
information is displayed on the system console and written to the system log. When you
want to restart from a checkpoint, you enter this information as parameters on the RST job
control statement.

When you restart the job, it is reestablished to a condition functionally identical to the
condition at the time the checkpoint was reached. In this way, you do not have to rerun
the entire job; just the part that was not completed.

However, if the cause of the failure is in your program, the same error will reoccur.

When you use the restart facility, the job is returned to the status it held when the
checkpoint occurred. Tape files are repositioned to the point at which they were, and
control is returned to the program at the address specified by the checkpoint.

It is not practical to try to reposition data cards in the card reader when restarting from a
checkpoint. However, if you want to use the checkpoint facility with card files, you can
enter the cards as embedded data in the job control stream and use the GETCS macro
instruction to access the data.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

NOTE:

The LFD job control statement in the device assignment set for the checkpoint file must
not contain the INIT parameter. This parameter causes the file to be written from the
beginning of the file. In other words, the checkpoint records afready existing on the file
will be overwritten.

In order to restart a job, you must reenter the original control stream with an RST job
control statement, which must appear as the first job control statement of your job control
stream. Of course, all the files needed to complete the job must be available, along with
the file that contains the checkpoint records. For information on how to use the RST job
control statement, see the job control user guide, UP-8065 (current version>.

9.2.1. How to Generate Checkpoint Records (CHKPT)

A series of checkpoint records are generated each time a (CHKPT) macro instruction is
executed in a program. These records must be written to either a magnetic tape file

...- (defined by a DTFMT or DDCPF macro instruction>, or a disk file (defined by a DDCPF
macro instruction>. The use of these macro instructions and those needed to open and
close the file are discussed later in this section (along with how the CHKPT macro
instruction is used in connection with these other macro instructions). The format of the
parameters of the CHKPT macro instruction is:

LABEL L2\OPERATIONL OPERAND

[symbol] C H KPT filename [,restart-addr] [,l ist-name] [,error-add r]

All the parameters of this macro instruction are positional parameters.

The filename parameter specifies the symbolic address of the macro instruction that
defines the checkpoint record file. This macro instruction is either a DTFMT macro

—* instruction for a magnetic tape, or a DDCPF macro instruction for a magnetic tape or a
disk. The value specified for this filename parameter is also the value you use for the
filename parameter of the LED job control statement in the device assignment set that

defines the checkpoint file in the job control stream.

The restart-addr parameter is used to supply the symbolic address of an instruction in your
program that is to receive control when restarting the program from the series of records

taken by the execution of this CHKPT macro instruction.

You can have more than one CHKPT macro instruction in a program. Assume, for
instance, that your job could be broken down realistically into two separate processing
functions: first, it has to read 10 tape volumes as input; and second, it then updates a
master disk file with the data that was on these 10 tape volumes. You could open the
checkpoint file, take checkpoint records, and then close the checkpoint file in the first step
(tape-in>, and then you could open, take checkpoint records, and close another checkpoint
file when updating. In this way, you do not go through the series of code for tape-in if the
restart is to affect only the update portion of the program. You also will not need tape
drives that can be used by other jobs (thus you can omit the device assignment set for the

tape-in).

If you omit the restart-addr parameter, the instruction immediately following the CHKPT
macro instruction receives control.



UR / SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The next parameter, fist-name, is used only when working with PIOCS files. It specifies
the symbolic address of the DCFLT macro instruction that generates a list of files in your
program that are accessed via PIOCS.

If an error occurs during the execution of the CHKPT macro instruction, the job, by default,
is terminated abnormally. However, you can place an error routine in your program to
override this abnormal termination and continue processing without the checkpoint. The
error-addr parameter is used to specify the symbolic address of this error routine. In this
way, if an error does occur, the error routine receives control; no abnormal termination
occurs. After the execution of a CHKPT macro, the checkpoint routine checks register 0,
which contains the checkpoint status, and which is, in effect, an error code. If the error
code is equal to 0, it means the checkpoint completed successfully, and processing of the
job continues. If the code is other than 0, the error routine (or abnormal termination, if an
error-addr parameter is not used> receives control. The possible checkpoint error
conditions and error codes that may occur are listed in Table 9—1. Also listed are the
possible restart error conditions and codes that may occur when trying to restart the job.

Table 9—1. Checkpoint/Restart Error Codes

Error
code Description

(in Hexadecimal)

checkpoint Error Codes

AO Checkpoint file is not opened.

Al Unrecoverable I/O error while writing a checkpoint record

A2 Checkpoint record cannot fit in checkpoint file.

NOTE:
If the checkpoint record cannot fit, an attempt is made to write it at the start of the checkpoint
file, If it still does not fit, this error code is returned.

A3 Illegal parameter specified on checkpoint macro

Restart Error Codes

A4 Unrecoverable I/O error while reading checkpoint file

A5 At restart, processor could not locate designated checkpoint.

A6 At restart, processor could not position data tape files; unrecoverable I/O error.

A7 At restart, processor determined that supervisor was not compatible with the supervisor at the time of the
checkpoint.

A8 At restart, processor determined that hardwareincompatibilities existed between the system at checkpoint.
time and the system at restart time.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9—14

UP-NUMBER UPDATE LEVEL PAGE

Once again, if you do not provide a checkpoint error routine in your program and do not
supply its symbolic address with the error-addr parameter of the CHKPT macro instruction,
the job terminates abnormally (if an error occurs), and the following message is displayed
at the system console:

JCO3 JOB jobname TERMINATED ABNORMALLY.ERR CODE number

where number corresponds to the error code listed in Table 9—1. (These error codes are
also listed in the system messages programmer/operator reference manual, UP-8076
(current version).

9.2.2. Using Magnetic Tape as the Checkpoint File

If a magnetic tape is to receive your checkpoint records, you can define the checkpoint file
one of two ways:

As a sequential access method (SAM) file using the DTFMT macro instruction; or

• As a tape SAT file using the DDCPF macro instruction.

The definition and use of a tape SAT file is discussed in 9.2.3. This section discusses the
use of a SAM tape file. To use a SAM tape file you have to use the DTFMT data
management macro instruction to define the file. Two requirements of this macro
instruction when defining a checkpoint file are:

• It must indicate that standard labels are being used (FILABL=STD keyword
parameter).

• The block size (BLKSIZE keyword parameter) must be at least 80 bytes to meet the
requirements of data management. If you omit the BLKSIZE parameter, data
management assumes 256 bytes.

You can also intersperse data records with the checkpoint records on this file.

The DTFMT macro instruction does not generate executable code, so you must locate it in
your program separate from your BAL instructions and imperative macro instructions.

Before the checkpoint file can be accessed (first execution of the CHKPT macro instruction
for the file), you must open the file using the OPEN macro instruction. After the last
execution of the CHKPT macro instruction, you must close the file using the CLOSE macro
instruction. These macro instructions are fully explained in the data management user
guide, UP-8068 (current version). It is advisable to become familiar with them before you
attempt to structure a magnetic tape checkpoint file.

Here is a skeletal example, which shows basically what parameters the CHKPT macro
instruction agrees with in regard to the other instructions in your program when using
magnetic tape.



9—158075 Rev. 3 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGEUP-NUMBER

LABEL AOPERATIONA OPERAND A
10 16

j_L - iLLiLjL±.

-
I.II

- I I I i ±

— I I I I I I I
I I I

I I iii — 11 I — Iii I I

I I I I — i I — I I I I I I I

I I I — II I I — I I I I I
(your e.ri r riev roA4ne)

s1e.,1cJT1(l — I I — I I III I iii I I I

I I liii I — II I I it

.t_______.1___i.__.__. I II Ii I I ii I

IIIII I’III -

(i+rud- a.., -prorarn it’b Deøy irc4fart’e)
lALLLJ -

I I liii I — I — iiil iii I ii

I’III - I

ijit Iii I’ii i — ii iii iii II III Iii Ii

._E.IL._1E :)‘•1ArpIB1 I I I

II ii I I — Ii ii — I I I I Ii i

I I I I’i i I • I I I I I I

III I I I — I’i — I I I II III I I II

1111111 III -

1111111 IIII -

IIIIII I•II -

...i.._....1..._.J.....I...__..l....._L.._..i._. — 1i I — I I I I I

- Ft IL TDLK6lIE=1aIO

9.2.3, Using a SAT Disk or Tape as a Checkpoint File

In addition to using a SAM file on magnetic tape to receive checkpoint records, you can
use a SAT file on disk or tape. As many checkpoint records as will fit are recorded in the
disk space you allocate for the file (with an EXT job control statement). When the space is
exhausted, a wraparound, in effect, takes place: the checkpoint records are written at the
beginning of the file, over the existing records, thus losing those checkpoint records taken
earlier, For this reason, you cannot intersperse any of your data with checkpoint records
on disk, since you could lose data if wraparound occurs.

With SAT tape files, as with disk SAT files, you cannot mix checkpoint and data records on
the same file.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 9—16

UP-NUMBER UPDATE LEVEL PAGE

9.2.3.1. Estimate Space Requirements for a Disk Checkpoint File

Each checkpoint consists of a series of 256-byte records of the following type:

Checkpoint
Data Records

Checkpoint header 1

Prologue
Preamble 1
TCB n (1 TCB record per task)
Remainder of prologue n f — remaining size

256

File list 1

User program n user program
256

Using this list, you can estimate the minimum disk space requirements. The total amount
of space required depends on the size of your program. For example, assume your program
consisting of one task occupies 8192 bytes of main storage plus a prologue of 1024 bytes.
The checkpoint records would consist of the following:

Checkpoint
Data Records Bytes

Checkpoint header 1 256

Prologue
Preamble (1 record — 256 bytes)
TCB (1 record — 256 bytes)
Remainder of prologue (2 records — 512 bytes)

Total prologue 4 1024

File list 1 256

User program 32 8192

Totals 38 9728

Thus, a checkpoint for this program would consist of 38 records of 256 bytes each, or a
total of 9728 bytes. If you were using an 841 6 or an 8418 disk subsystem, one entire
checkpoint would fit on a single track (each track can hold 40 records).

If you allocate only one track, each checkpoint taken would overwrite the preceding
checkpoint. To avoid doing this, you must allocate at least twice the minimum space
required, which in this case is approximately two tracks. The current checkpoint would
then overwrite the records recorded from an earlier checkpoint, while the most recent
checkpoint would always be available.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 9—17

UPDATE LEVEL PAGE

* 9.2.3.2. Define, Open, and Close a SAT Checkpoint File (DDCPF, DCPOPN,
DCPCLS)

When employing a SAT checkpoint file, a different group of macro instructions are used to
define, open, and close the file. We will now explain each.

In order to define a SAT checkpoint file, use the DDCPF macro instruction (versus the
DTFMT macro instruction used for SAM tape>. As you can see in the format, there are no
parameters associated with this macro instruction.

There is only a filename in the label field. Just as with the DTFMT macro instruction, this
filename is the symbolic address and is used as positional parameter 1 (filename) of both
the CHKPT macro instruction and the LED job control statement.

Since the DDCPF macro instruction does not generate executable code, it must be placed
separate from your BAL instructions and imperative macro instructions.

Use the DCPOPN macro instruction to open the SAT checkpoint file (before the execution
of the CHKPT macro instruction). It has this format:

The filename parameter specifies the symbolic address of the DDCPE macro instruction
that defines the checkpoint file. You can also preload this address in general register 1,
and you indicate this by coding (1) in place of the filename parameter.

To close a SAT checkpoint file, use the DCPCLS macro
CHKPT macro instruction is executed>, The format is:

A OPERATION A

DCPCLS j filename
k (1) 5

instruction (after the last time the

The two parameter choices, filename or (1), have the same meaning as the parameters of
the DCPOPN macro instruction: filename is the symbolic address of the DDCPE macro
instruction, and (1) indicates that the address is stored in general register 1.

Here is an example, showing the relationship between the parameters of the CHKPT
macro instruction and the new macro instructions we just discussed.

LABEL A OPERATION A

filename DDCPF

OPERAND

LABEL A OPERATION A

[symbol] DCPOPN

OPERAND

(filename
5 (1) 1

LABEL

[symbol]

OPERAND



9—i 8
8075 Rev. SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE
UP-NUMBER

LABEL tOPERATION OPERAND

1 10 16

— lc..Prc 1CIcDlgk

I I I I i — li — I I I

I I — lt — I I I I I

I I I I I — li i —
I

I I I — Il—41I<P11 — I I

1111111 — I•i i_ — 1 Iii liii

._._i_..___i____.j.__.....i___.I___._i_..._..i.___ — I•i i — I I I

II 1 I i I

, Cry b r recbvy rbu+ne)
‘—..irr.jli I — Ii — I [iii Ill iii liii

I iiil II — lI II — I•i liii I thu thu Ii

III I I — lti I —
11111 II I

I i — 1 — I

ETAtR1Ti -

n ujhe,* frbqarn r’9 I I

liii Ii I — Ii II — ._._L_.L..J_.._...J._..._J..j_._.J I It II 11111 liii

iiii ii I•i ii — Ii lii itt iii iii iii liii ii

II liii I — I•Ii I — tIll 1111111111 lIlt 111111111 Ii

I I I — )IC.PCI..., ICIIIDI:l:hSIICI I I

11111 lilt ill ili lIlt 111111111

1111111 — III — liii tilt liii I 11111111111111

1111111 — 1i ii till lilt I lilt liii ii III till

— I —

III Ii — 1i — IIIIIIIIIIIIIII1IIII 1111111

1111111 — liii — it lii 1 lii Ii liii ii

1111111 — 1i it — tilt Ii ill 111111111111111111

Ii’uDIIl(.u I )fD.Pr—_ I I

9.2.4. Processing PIOCS Files (DCFLT)

The checkpoint routine uses a file table list to identify the files open when the checkpoint

occurs (thus indicating in the checkpoint record which files are needed to restart from this

checkpoint). If you use data management files, the list is automatically generated and

maintained by data management in the job prologue. However, if you are using PIOCS,

you have to generate the file table list by using the DCFLT macro instruction in your

program. The generated list locates the file definitions known as phsyical input/output

control blocks (PIOCB) for all the files accessed via PIOCS. This list is required for the

repositioning and other file-related activities when restarting the checkpointed job.

(Remember, data management does this automatically, but PIOCS does not so you have to

use this macro instruction only with PIOCS files.)



8075 Rev. 3
UPNUMBER

SPERRY UNIVAC Operating Systeml3 9—19

UPDATE LEVEL PAGE

The DCFLT macro instruction is declarative, just like the DTFMT and DDCPF macro
instructions; it does not generate executable code. So, it must be placed separate from
your BAL instructions and imperative macro instructions.

The format of the DCFLT macro instruction is:

Before explaining the parameters, we will mention the coding conventions you have to
follow when using this macro instruction. For disc PIOCS files, each parameter must be
enclosed by parentheses, such as: (disk-PIOCB-i). For tape files, each parameter consists
of a group of three subparameters. Each group of subparameters must be enclosed by
parentheses, and each subparameter within the group must be separated by a comma,
such as: (tape-PIOCB-l, tmc-i, bc-i). If more than one PIOCS file is used, each
parentheses-enclosed parameter is separated from the next parentheses-enclosed
parameter by a comma. For example, if you used one disk file and two tape files, assigned
the values Di to the disk file, and assigned Ti, TMC1, BC1 to the parameter group for the
first tape file and T2, TMC2, BC2 to the parameter group for the second tape file, it would
be coded as:

Notice every parameter is enclosed by parentheses.

The list-name in the label field is the symbolic address of the PIOCS file list table. This is
also used as the list-name parameter (positional parameter 3) of the CHKPT macro
instruction.

The disk-PIOCB parameter specifies the symbolic address of a PIOCB for a disk file in your
program. You can have from 1 to n number of entries of the disk-PIOCB parameter, with n
depending on how many disk files are used in the program.

The tape-.PIQCB subparameter dDes for tape files what the disk-PIOCB parameter does for
disk files. It specifies the symbolic address of a PIOCB for a tape file in your program. And
just as for disk, you can have from i to n number of entries of the tape-PIOCB
subparameter (and its associated subparameters), with n again depending on the number
of tape files being used.

LABEL tx OPERATION t

list-name DCFLT

OPERAND

J(disk-PIOCB-1)
(tape-P I OCB- 1 ,tmc- 1 ,bc- 1)

rJ,(...),(disk-PIOCB-n)
Li ,( ),(tape-PIOCB-n,tmc-n,bc-n)

commas separating parameters

commas separating subparameters of a group



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating Systeml3

9—20

UPDATE LEVEL PAGE

For every PIOCS tape file, there are also two other subparameters needed to complete the

parameter group: tmc and bc. The tmc subparameter specifies the symbolic address of a

half word in the program where you keep a binary count of the tape marks read between

the tape load point and the current position of the tape (used to reposition the tape to the

correct file when restarting). The bc subparameter specifies the symbolic address of a full

word in the program where you keep a binary count of the blocks (physical data records>

read from the most recent tape mark to the current tape position (used to position the tape

to the correct data record of the file when restarting). For instance, suppose you were

already processing the second file on a tape (which would be past the fourth tape mark)

and were at the tenth data record. This could be shown as:

If a machine error occurred at this time, you would want to reposition the tape to this

point when restarting the job. You would not want to read all the data from tape mark 1 to

tape mark 2 and from tape mark 2 to data block 10. By looking at the storage areas in your

program referenced by the ti-nc and bc parameters, the checkpoint routine knows where to

reposition the tapes.

Entries for disk and magnetic tape files can be interspersed, such as:

I LABEL tOPERATlONzs OPERAND

p_ 10 16

D1iFLTrf j(ri ,-rivci ‘),1CDi )I,(IT2.,TMCZ ,rsc.z1)
tape entry disk entry tape entry

FOUR TWO

RI
HEADS

AT RECORD 10
OF FILE 2

LEGEND:

VOL1
HDR1
HDR2
EOF1
EOF2

Volume label 1
File header label 1
File header label 2
End of file label 1
End of file label 2



8075 Rev. 3
UP.NUMBER

SPERRY UNIVAC Operating System/3
9—21

UPDATE LEVEL PAGE

Here is an example (with the macro instructions needed to open, close, and define the
checkpoint file>, showing the relationship of the parameters of the DCFLT macro
instruction to the CHKPT macro instruction and the macro instructions used by PIOCS.
Routines accessed by the restart-addr and error-addr parameters and also the end of job
(EOJ) instruction are not shown.

2.

3.

4

LABEL AOPERATIONi OPERAND
1 10 16

— c.itfrc I 1 I

II — 1•1 — II ii I I I

Ill lii — l•i ii — ii I II II I ii

Iii ii — Iii — I Ii I I

— Z.I1—l<Pi— — I I I

- I - JLJ.LJJ_JLLLLLJJ.L.LL_J1tLJ.J.__LJJ_L_LLLLJ

III

JLLJ_ I I i I I Li LL I

)1iPCiL 3 IILicA ,

III I 1 — II — 1.1 II iii’ I Iii

Hit J_J_LLLILI LlItI IJ._LJ_LJLLJ__L_LH II ItJLJfj

t lit - lti t - LI1J.i ii LJLJLLI ii IiiiLjjji

— )FD1Ct’F — I I I I I I I I

;zLt1rr - )iC1FL.T (rpIrIDhlI)I,I(rnI-rI7ITlMIcNTI,fSr.&cIrI)1,

1•Iii I — ‘iti&C.f — I I I I I

‘itiDtl I — ‘IIc3 — I I I I

— Plt1C. — I I I I I I I I

Fi%11C.II.Il
— )l i -

— L..2. I I I I I __t_ i

— — I I I I I

1. Generates
PIOD2).

a file list table for one tape file (TIOT) and two disk files (PIOD1 and

2. Constructs a PIOCB for the tape file.

3, Constructs a PIOCB for one of the disk files.

4. Constructs a PIOCB for the other disk file.

5. Defines a storage area of one half word to keep a count of the tape marks read.

6. Defines a storage area of one full word to keep a count of the data records read
since the last tape mark was encountered.



8075 Rev. SPERRY UNIVAC Operating System/3 9—22

UP-NUMBER UPDATE LEVEL PAGE

9.3. MONITOR AND TRACE CAPABILITY

Another means of debugging a program is the monitor routine. It enables you to track (or
trace) the execution of a program (by using a hardware interrupt) so that errors can be
found and fixed. As input, you provide monitor statements that indicate the type of
diagnostic action to be performed at a specific point in the program.

The monitor routine interrupts each instruction before it is executed, and tests whether
any of the following test conditions are stated in the monitor statement input and have
been met by the instruction.

• A specified storage location is referenced (or the data stored at that location is
changed).

• A specified location in the program is reached.

• A specific sequence of instructions occurs.

• A specified register is changed.

If any of these conditions are met, you get a printout of various types of program
information, depending on which display option you chose. This is summarized in Table
9—i.

Then, you can:

• continue executing the program under monitor control;

• suspend program execution; or

• continue the normal execution of the program without intervention from the monitor
routine.

Depending on how you call the monitor routine into main storage and the choice of
actions you select, an entire task or only part of a task can be monitored.

To activate the monitor routine, you must ensure that the following provisions are met:

• The monitor routine must be in main storage.

• The monitor bit in the PSW must be set.

• The task to be monitored, location options, and actions must be specified to the
monitor routine.

• A printer must be available.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 9—23

UP-NUMBER UPDATE LEVEL PAGE

9.3.1. How to Call the Monitor Routine

There are two ways to call the monitor routine into main storage. Which one you use
depends on whether you want to trace instructions from the beginning of the job or wait
until after the job begins executing.

Whenever you use the monitor routine, keep this in mind: it occupies 3K bytes of main
storage. If you specify the minimum main storage as a parameter of the JOB control
statement, make sure you do not overestimate the storage size needed by your job,
because it is possible that there might not be enough main storage available for the
monitor when you combine your job needs plus the 3K bytes needed by the monitor.

Another point to remember: the monitor routine cannot be run in a strict spooling
environment, because the job being monitored always requires the sole use of a printer.
You can accomplish this through the addr parameter of the DVC job control statement
which, in effect, dedicates a printer strictly to this job. It’s coded immediately following the
logical unit number (separated by a comma). Every device has a hardware address number
associated with it. Your site manager can provide you with the number you need. (In most
cases, however, this number can be physically found on the device itself, generally on
some type of label.) This number is then coded in the device assignment set for the print
file in your job.

Assume the printer you want to dedicate has a hardware address number of 170. Using
20 as the logical unit number, the DVC job control statement would be:

1 10 20 30 40 50

,‘ 10 I I I

I

It is also recommended that the job be run as the first job immediately after the system is
intialized (initial program load) to ensure that the job is scheduled; otherwise, you might
have to wait for the job to be scheduled, depending on the work load.

9.3.1.1. Monitoring From the Beginning of the Job

If you want to begin monitoring with the first instruction executed, you must call the
monitor routine into main storage before the job to be monitored is run. In this case, the
monitor input is entered as embedded data in the control stream.

The system operator types MO at the system console, which brings the monitor routine into
main storage. The monitor initializes itself and awaits activation.



8075 Rev, 3 SPERRY UNIVAC Operating System/3
9—24

UP-NUMBER UPDATE LEVEL PAGE

If YOU want to use the monitor beginning with the first instruction of the program, you
must enter the monitor statements as embedded data in the job control stream. The job
step that contains the program to be monitored must include an OPTION job control
statement with the TRACE parameter specified. This parameter activates the monitor
routine by setting the monitor bit in the PSW and creates a link between this job step and
the monitor statements. If the OPTION job control statement is not present in the proper
job step (the one with the monitor statements— — the one you want to trace), it will not
activate the monitor routine because an OPTION job control statement is effective only in
the job step in which it is encountered. As soon as the program begins executing,
monitoring begins, and it continues until the program completes or until the monitor is
deactivated by meeting the conditions that accompany a 0 action (9.3.5.3).

The control stream you submit when you want to monitor from the beginning of the job
would look something like this:

1 10 20 30 40 50

\ I II I I I I I

I I I I I’I I I I I I I I
4v.8 a4€dnv71e r’+c4

I I I I I I I I I I I I I I I_i
an4 anj 4+iey’ nece,’irj

Z I I I I I I I I I

‘ S°’ cc7nIit,I te.t’n,n+’
I III iii I I I I II Ii

I I II I I I I I I I I

lI I I I I I

I I II I I I I I I I I I I I I I

. L_I t’lLJrL_LLLJ L LJLJ

4
(/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

\ t7(1JhDY u1put’cpIneàs.,’ I I I I I I I

— I ‘? 2.1 I I I I

I I I I I I I
! / I - A

II I I I I I I I I I I I I I I

I I I I I I I I

any c-Z
‘P1. II I I I II II I ii I I I

nee4 b.j -tha
I I I I I I I I I I I I I I

“i I I I I I I I I I I I I I I I I

. I I I I I I I I

I/ tr4, I I



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9—25

UP-NUMBER - UPDATE LEVEL PAGE

1. Is the JOB control statement, which must be present at the beginning of every
job.

2. Represents the device assignment sets and any other job control statements you
might need to define the requirements for the job.

3. Is the OPTION job control statement indicating you want to monitor the job step.
It is placed before the EXEC job control statement for the job step.

4. Calls the program from a library and initiates its execution.

5. Shows where you place the monitor statements. They are enclosed by the /$
and /* job control statements (start of data and end of data). The monitor
statements, in effect, are data for this job, but their presence does not affect
processing of any other data for this job.

6. Indicates where you would place any PARAM job control statements that pertain
to this job step: after the monitor statements, but before any other card data
files.

7. Is the start of data, card data file, and end of data.

8. Ends the job and terminates the card reader operations. Of course, there could
be more job steps than this, but for the sake of brevity, we have shown only a
single-job-step job.

9.3.1.2. Monitoring After Execution Begins

It should be noted that, when the monitor is in use, it executes several instructions of its
own for every monitored instruction in the program. For a large program, this could
require excessive amounts of processor time, expecially if the problem area is at the end
of the program. (If it is at the beginning of the program, a Q action can be used to
deactivate the monitor after the necessary data is obtained. The Q action is described in
9.3.5.3.) However, once you determine the particular area in which the problem exists, you
can limit the monitor activities to this portion of the program. You do this by initiating the
monitor routine via a console type-in after the job begins execution, and then entering the
monitor statements through the card reader (or the system console if a card reader is not
available). This requires some form of communication between you and the console
operator, either oral or written.

The executing program must be temporarily suspended so the monitor can be activated
before the area of code to be monitored is passed. There are three different methods for
doing this.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9—26
UP-NUMBER UPDATE LEVEL PAGE

First, if YOU have an instruction in the program that you do not need for this execution, you
can use the ALTER job control statement to change that instruction to a supervisor call
(SVC) for the YIELD routine. This changed instruction must be at a point in the program
before the area to be monitored. The ALTER job control statement would look something
like this:

1 10 20 30 40 50

/1 AL_TR pIh4e— ram74re64,Xia4’ I I

The ALTER job control statement and its parameter are explained in the job control user
guide, UP-8065 (current version). The X’0A04’ (positional parameter 3) is what replaces
the existing instruction and makes it an SVC instruction for the YIELD routine. It causes
the program to halt at the address on the ALTER job control statement. You tell the
operator to have the monitor statements ready in the card reader. When the program
halts, the operator types in 00 MO R, which activates the monitor routine. (This acts just
like the TRACE parameter of the OPTION job control statement.) The monitor statements
are then read into the system, and the program named on the monitor statement is
matched against all the programs currently executing, until it arrives at the proper
program (this applies to all three methods). In 9.3.2, we explain the format for the monitor
statement input, which applies to input entered after execution begins or as embedded
data in the control stream. However, it should be noted that when monitor statements are
entered after execution begins, no /$ or /* job control statements are needed to enclose
the monitor input. Since all the job control statements are read before execution, an
OPTION TRACE job control statement is not included in that control stream to activate the
monitor. If you examine the control stream shown in 9.3.1 .1 used to activate the monitor
from the beginning of the job, you will see the difference between it and the following
control stream used only to start the job and alter an instruction in your program. (It does
not activate the monitor; a console type-in does.)

1/ ALTeR pJhae-name,X’IAO4’ I

I I

I II I I I I

I I I1 I I I

civ a5Ienmen4 Iná c’+hyra 3a4 n-fro i-a42rner+3
I I I I I

I II I I I I

II I

I I’I I I

/1 EEC IpIrI.rm-IramIeI I I

‘I,”I I

‘II I I I I I

lk.
¶ I I I

—,,

I I I
,f’

Il” I I



8075 Rev. SPERRY UNIVAC Operating System/3 A
927

UP-NUMBER UPDATE LEVEL PAGE

The explanation for each job control statement is the same as for the corresponding job
control statement in 9.3.1 .1. Notice the absence of an OPTION job control statement and
the monitor statements, and the presence of the ALTER job control statement.

After the monitor statements have been read, the operator must issue the GO command,
using the same job name as that on the JOB control statement. This resumes program
execution under monitor control.

The second method for suspending the executing program is the use of an OPR macro
instruction with a REPLY parameter (10.3.2). By placing it in a location near the area you
want to monitor, you can use the halt when the program is suspended and the message it
generates to instruct the operator to activate the monitor. Once again, the operator must
have the monitor statements ready in the card reader (no /$ or /*) He then enters 00 MO
R, to activate the monitor. After the monitor statements have been read, he enters the
reply you requested with the OPR macro instruction to resume processing under monitor
control. The monitor input is exactly the same as when using the first method. That is, no
/$ or /* enclose it, and an OPTION TRACE job control statement is not submitted in the
control stream. (And, in this case, no ALTER job control statement is submitted.)

The third method is to instruct the operator to type in the PAUSE command at some specific
place in the program execution. This could be after a certain time limit has expired, or when a
certain milestone is reached, such as the end of an input tape file. The operator places the
monitor statements in the card reader and, when the system halts, types 00 MO R to activate
the monitor routine. After the monitor statements are read, he finally types GO and the job
name from the JOB control statement to resume program execution under monitor control.
When activating the monitor in this way, the *pphase..name entry cannot be used to specify
the type of taskto be monitored. Use eitherthe *Ujobname or *s=symbiont..name entry in the
monitor input deck. These entries to the monitor input format are described in 9.3.3.

There might be a situation when there is no card reader available to read in the monitor
statement (or no keypunch readily available to prepare the monitor statements). If this is
the case, the operator can type in 00 MOC at the system console. The C indicates to the
system that the monitor statements are going to be input via the console, not via a card
reader. (This applies to entering the monitor statements during all three methods of
suspending program execution.> In this way the operator can enter the task, options, and
actions at the console. He enters one card at a time, a line on the screen corresponding to
a card in the monitor statement input, and indicates the end of each card by pressing the
TRANSMIT key. After all monitor statements are sent, he enters the GO command
followed by the job name.

9.3.2. Monitor Input Format

The monitor statements define what to monitor (task>, when to monitor (option), and what
to do when you monitor (action). This applies to monitor statements submitted via the
control stream as embedded data before the job begins, and to the monitor statements
used by the operator after program execution was begun. (Remember, the /$ and /* job
control statements are only needed when the monitor statements are submitted as
embedded data.)



8075 Rev. SPERRY UNIVAC Operating Systeml3
9—28

UP-NUMBER UPDATE LEVEL PAGE

For the program you want to monitor, only one task can be specified. It must be coded as
the first monitor statement of the input, and no options or actions can share this card with
the task. These tasks are explained in 9.3.3. For the task, however, you can specify up to
1 5 different options. (Each option must be on its own card; no two options can be present
on the same card.) Each option can specify as many actions as will fit on a single card. A
space must be used to separate the option from the first action on the card, and each
succeeding action is separated from the previous action by a semicolon (;).

So, if you want to specify one option and one action, it would be coded as:

1 10 20 30 40 50

iriI ii’1i iaicr’rIi iI1i I I I I I I I I I

If you wanted three different options, each with two actions, it would be coded as:

.r’iii _‘ir1L...I i I.tc(—i1_i. fl—Il Ll_..i
.....

I

LfiI...- IZ.L.La.r*’ ifli.i’ b.1..i..?9i.fl

Ipri—I I r—3 aI.rfi r— 1 IIa .fi sir1— ‘Z..1

The last card used in the monitor input stream is a $ card. (Do not confuse this with the
/$ job control statement, which indicates start of data.)

So, the order of a monitor input stream is:

• the task statement;

• the first option statement with its actions;

• any other option statements and their actions; and

• the $ card.

The options are described in 9.3.4, and the actions are defined in 9.3.5.

Figure 9—1 shows the format of the monitor statements.



8075 Rev. 3
UP-NUMBER

NOTES:

SPERRY UNIVAC Operating System/3 A 9—29

UPDATE LEVEL PAGE

1. If no option is specified, the monitor routine assumes a default option (9.3.4.5) and default display (9.3.5.1.3).

2. If no action is specified, the monitor routine produces a default display (9.3.5.1.3). Also, remember that the first
action is separated from the option by a blank space, and any succeeding actions are separated from the previous
action by a semicolon.

Figure 9—1. Monitor Input Format

9.3.3. Defining What You Want to Monitor

The task you want to monitor can be one of four types:

1. Your entire program

2. A certain phase of your program

3. A symbiont, which is a system utility routine

4. A transient, which is an OS/3 routine that is nonresident and is called into a

I task

First
Monitor

Statement

* Ujobname
*Pphasname

*Ssymbiont..name

number
}

option i first II succeeding

______________

action actions

Succeeding
Monitor

Statements

— DtR [n[_Rn]]

DzR [n[_Rn
((PR:xv)

DS[Lnn] (B/D:bddd)
((ABS:xv)

Hccc

Q

DzS[LnnJ

Hccc

Q

transient area when needed.



8075 Rev. 3
UP-N U MB ER

SPERRY UNIVAC Operating System/3
9—30

UPDATE LEVEL PAGE

In this format:

* U=jobname

*p_phase name

*S=symbjontname

*T=transientnumber

you can see that each type has its own specification, and each type is preceded by an
asterisk.

If you want to monitor all the phases of your program, use the *Ujobname entry. The
jobname is the same as the jobname parameter on the JOB control statement.
(Remember, if you have the operator enter the monitor statements after the program has
started, you can limit monitoring to a part of the job step; otherwise, the job step is
monitored from the beginning.>

For example, if the JOB control statement is:

10 20 30 40 50

.‘[/ 3b C.ib I I I I I

the monitor task statement would be:

I I I I I

Since a program can consist of more than one phase, it can be useful to use the specific
phase name with the *p_phase..name entry. (A program can also have more than one
phase.) If you want to monitor a phase, you have to know its name. The names of the
phases used in a program are listed on the allocation map provided by the linkage editor.
(Remember, operator input can limit the monitor to a portion of a phase.)

If the phase name you want is this:

LOO HOIIULE — LUELOL)

PHASE NAHEI TRAN5 USDA FLU), LAUEL

LANLODDU NOSY. — NOD)
START lIP AUTOINCL)IIILD ELEMENTS —

— 75/TO/Os 05.59 — PRAITE
PlAN I TIE
UP NC OH 7
UPNCOII)I
UPUCOHI
UPACOMU
OP%COIIZ
UPRC0MS
SPACOIIY
DPNCOM3

ALLOCATION HAl

LNY OIl, HIADOR L,,TA IINJ ORE)

UUUUI)IJUU 0005CR 000005CC

SIZE — 00000511.

TYPE 15117

OAJ

CSECT DI OLIU00000 OULIUUAAF 000009110 0(11)000011

ENTRY UI 000000110 000000011

ENTRY 01 U0000000 00U00001)

ENTRY UI 000000uU 00000000

ENTRY UI 00000000 0001)0000

ENTRY (II 000000uO 00000001)
ENTRY UI 00000UuU 00000000

ENTRY U I 00)011000 00000000

ENTRY UI 00000000 00000000



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 9—31
UP-NUMBER UPDATE LEVEL PAGE

the monitor task statement is:

1 10 20 30 40 50

I I I I I I

To monitor a symbiont, you have to obtain its name from the system load library file
(SYSLOD), and use the *S=symbiont..name entry. For example, the name of the system
utility symbiont (SU) is SL$$SU. To monitor it, you would code

4IIUjOL 1 1 ,j I I i I I 1, ii

as the monitor task statement.

Every transient has a decimal number associated with it. A list of these decimal numbers
is maintained by the supervisor, If you want to monitor a supervisor transient your
program is using, your Sperry Univac systems analyst can help you in determining
the number of the transients you need. Once you have obtained it, you use it in the
* Tztransientnumber entry. If, for example, the transient number is 24, you would code
the monitor task statement as:

NOTE:

If the job or symbiont you want to monitor has one primary task and one or more subtasks,
you can monitor only the primary task.

9.3.4. Specifying Options

The second and succeeding cards used for monitor statements specify options and actions;
that is, points in the program where one or more actions are to be taken by the monitor
routine, and what is to occur.

The first entry in each of these cards specifies the option. This may be followed by one or
more actions to be performed at the specified location (or else a default action applies).
These actions are described in 9.3.5. In this discussion, all the options are discussed first,
then the actions. You can tie the appropriate options and actions to a task to obtain your
desired result.

If there are duplicate or overlapping options, only the first one specified is processed at
execution time. For example, if the same instruction location is specified by two separate
cards, the monitor routine performs the actions requested on the first card for that
location, then executes the instruction. The second card is never considered for that
location, even if the actions are totally different.

Options may be specified in any sequence; there is no need to list them according to any
pattern. Remember, in the case of duplicate or overlapping options, only the first option is
processed.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9—32

UP-NUMBER UPDATE LEVEL PAGE

There are four types of option you can specify, using the following format:

((PR:xv)
S ‘(B/D:bddd)

((ABS:xv)

A(PR:xv) [Rnn]
I (xmcd)
R(n)

The S option is used for storage reference, the A option for instruction location, the I
option for instruction sequence, and the R option for register change. Each, along with its
associated parameters, is discussed in the following paragraphs.

9.3.4.1. Storage Reference Option (S)

This option requests the monitor routine to take action when the specified storage location
is referenced or the data at that location is changed. There are three ways to express the
location in a storage reference option:

1. Program relative (PR)

2. Base/displacement (B/D)

3. Absolute (ABS)

9.3.4.1 .1. Program Relative Address (PR)

The format for the storage reference option using a program relative address is:

S(PR :xv)

The xv is the address, and can consist of from one to six hexadecimal characters, in the
range 016 to FFFFFF16. Notice that it is separated from the PR by a colon. For example:

1 It) 20 30 40 50

I I I

Since this format is shown with an underline under the P, you could also code it as:

I I I I I

This is explained in the statement conventions.



8075 Rev. 3
UP-N UMBER

SPERRY UNIVAC Operating System/3 9—33

UPDATE LEVEL PAGE

In this example, this option is selected if program execution reaches an instruction that
references storage at program relative address 43C. The location specified need not be the
first byte of a field. For example, a move instruction from location 42E for 18 bytes would
be detected because the specified program relative address 43C falls within the field
moved (42E to 43F).

For your program, a phase of your program, or a symbiont, a program-relative address is
relative to the start of the load module. In other words, the address in the assembly listing
must be added to the link origin (LNK ORG) address for the control section (CSECT) of your
program. This shows up in the allocation map produced by the linkage editor.

For example, if you wanted to monitor from address 2A in this program listing:

000000 0060
000002
000002
000006
000001
00001 2

0200 6
000016 flAb
000218 0203 600*

000018 0700
000020
000020 9510 6026
000028 80
000025 000o8*
000028 0*26

address —.————————..fs2o7 6012

000030

2 8EIN

00012 ‘4 R605CH

02108 7

A 9*
A 10’

II 1809
12 1*07

A 13.
A l4.TAG7

00028 A IS’
A 16.
A 170
* 18.

19
21) 0*1,9

A 21.TAGI

START U
OALR 6,0
05195 ‘.6
B “lb
UC CL8ARCU’
DC CL’4’EFSH’
LA l,LIST
SNAP (I)
US 19*
SvC 29 SNAP 5*9.
PVC ARANCH.8b’lb,,)OAN(*O.l1
OPEN OUT
CROP 0.9

EQU
AHL
DC
01
SAC
SAC
PUT
OC

you would have to look at the allocation map for the LNK ORG of the CSECT (4B0):

LOAO 000011 — LNKLOO

PHASE SARI TRANS 8000 FLAG LAAEL
LNRLO9)O0 4OD. — ROOT
•.0 START OF AUTO—INCLODIO ELEIOENTS —

— 75/lU/VT 05.59 — P9*101
P88101
0P6CO947
OPRCOIIC9
UP8LO,Yb
DP$C0116
OPRCOM2
0581095
0581099
OP$COM3

•.0 EsO OF AUTO—ISCLUUED ILIKENTS —

— 76/03/lI 00.33 — PROS
‘PROS

OUT
OOTC
OUTI

ALLOCATION HAP •.

and add them together, producing 4DA as the program relative address. This applies to
both single-phase and multiphase load modules. However, with the multiphase modules,
additional considerations are necessary. One phase can overlay another phase, so the same
program relative address can be used in more than one phase. In order to monitor the
correct phase, you should use the *p_phase..name entry discussed in 9.3.3.

If you want to monitor a transient routine, the address is relative to the start of the

label for the phase

LOC. OBJECT COOl 00001 ADOR2 LINE SOURCE STATERENT

‘9710 8010
CIC2C3ClIUTU9O8U
CSC6C7CA
‘4110 6101

600C 00008 00001

6008 00019 00006

A’80’
AL3 (OUT)
38 15501 0*C
501(81.08*59.0*8
OUT
00(01 SIT *1100991ST

SIZE 000005CC

TYPE 1510 LNE 008 *16000 LEUAIH
00000000 000008CY 000UUSCC

0,2
SECT 01 00000000 000008*1 00000800 00000000

11,05) UI 00000000 00000000

ENTRT UI 10000000 000001)00

ENTRY 01 00000000 00000000
ENTRY 01 00000000 00000000
ENTRY III 00000000 00000U00

ENTRY UI 00000000 001100000

INTRO 01 000000110 00000000

ENTRY 01 00000000 00000000

080
YSECT 01 000008001 14300059.8 00000IIC 9)0000000

ENTRY UI 00000’IFA 00000015

ENTRT 01 009900518 00000UO*

ENTRY 01 00000530 9)00099080

*00008*0

transient.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
UP-NUMBER UPDATE LEVEL PAGE

Another important point to note is that when using the storage reference option for a
program relative address, you frequently will obtain two groups of monitor output for a
given option. The first printout is produced just before the execution of the instruction that
references the location. This may be either a read or write type of reference. The second
printout is produced on the next instruction, but only if the data at that location has been
changed. This may appear to be superfluous and even confusing (the second instruction
shown will probably not even reference the area), so this printout should be considered as
only a changed data confirmation.

The real value of this second printout comes in those cases where the data is not changed
directly, so no reference (first printout) occurs at all. This includes cases of areas changed
by execute instructions (EX), supervisor call instructions (SVC), I/O operations, and
occasionally even supervisor or symbiont routines running concurrently. So, in any case
where a storage reference option printout seems invalid (the instruction printed does not
reference the data location), check the preceding instruction in your program for an EX or
SVC instruction or an I/O operation.

9.3.4.1.2. Base/Displacement Address (B/D)

To use the base/displacement address method for the storage reference option, you need
this format:

S(B/D;bddd)

Here, the b is the base register, and the ddd is the displacement; b can range from 016 to
F16, and ddd can range from 00016 to FFF16. For example, if you used:

20

I I I I

I

an instruction that contains a storage reference of 4B29 must occur to make the monitor
take action. In other words, for this option to be effective, your program must have a
storage reference using base register 4 and a displacement of B29. Notice the colon
separating the B/D from 4B29.

9.3.4.1.3. Absolute Address (ABS)

You use this type of option primarily when you are using system symbiont or transient
routines that can refer to locations that are outside of their area. But you might also find it
applicable to your program as well. It uses this format:

S (ABS :xv)

The xv is the absolute address, and can consist of one to six hexadecimal characters, in
the range of °16 to FFFFFF16.



8075 Rev. SPERRY UNIVAC Operating System/3 A 9—.35

UP-NUMBER UPDATE LEVEL PAGE

For example, if YOU want the monitor routine to take action when the program reaches an
instruction that references storage at absolute address 34AE, YOU would code:

1 10 20 30 40 50

I I I I I I I I I

9.3.4.2. Instruction Location Option (A)

This option requests the monitor routine to take action when the specified instruction
location is reached. Just as with the storage reference option, it uses the program relative
address. However, you can also add a range to continue this monitor action for a specific
number of bytes. It has only one format:

A(PR:xv) [Rnn]

The xv is the 1 - to 6-hexadecimal-character program relative address (016 to FFFFFF16). If
the program reaches an instruction at this location (program relative), monitor action
begins. You can also continue monitor action for this option for a length of up to 255 bytes
by specifying a range (Rnn). The allowable values for this rarge field are 0216 to FF16.

For example, if you coded either:

(—p : c.oZ) i I ..•...,..•,. I

or

I I I I I I I I I I I I

the monitor takes action for this option if the instruction at program relative address is
reached.

If you coded (notice the convenient form P instead of PR):

I I I I I

monitor action begins when the instruction at program relative address C02 is reached,
and continues for 14 bytes (OE). This means the monitor action is to continue until
program relative address ClO is reached. Note that you must use two hexadecimal
characters for the range even when it can be expressed in one. In the last example, if the
leading 0 of OE was omitted, and it was coded as this:

I I I I I I I I I I I I I

monitoring would continue for 224 bytes to program relative address CE2.



I SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

9.3.4.3. Instruction Sequence Option (I)

This option requests the monitor routine to take action when the exact instruction

sequence specified is reached. The monitor routine compares the machine code specified

in the option entry to the actual instruction sequence of each instruction to be executed in

the program being monitored, and takes action when an exact match occurs. The format

for the instruction sequence option is:

I (xmcd)

The xmcd stands for hexadecimal machine code. It may consist of from 2 to 64

hexadecimal characters (1 to 32 bytes). This is the value you want compared to the actual

machine code being processed.

There are three different types of machine code sequences you can select:

• A single instruction

• Just the operation code of an instruction

• A string of instructions

For example, if you want nonitor action to start when a supervisor call instruction for

supervisor routine 31 occurs (SVC 31 in machine code = OA1 F), code it as:

Il(b0AhuF)

10 20

I

If you want monitor action whenever any branch on condition instruction is reached
(hexadecimal code = 47), you would code:

I I I I I I I I I I I I I I

But if you want monitor action to occur whenever the following sequence of instructions

occur (even though we are showing a series of inline expansion codes):

LA).. WIJLCT C3OE OTAHI *071)2 LINE SOUACF STOILMLNI

flU1JAJtI I PoO, STOAT 1

UU0 660 2 III ATO .AL1) 6 .o

7021102 3 65166 • .0

0U1UU2 17F2 6210 hAUl? 1 hUANCU 1) ••16

06201)6 CIC2C3CU’hrI4U A o,C CLA • ATICU’

OhJ21 CSC6C7CA 6 AC CLEESI)’

OUIItTI? 9II *122 1301114 7 LA I,LIST
A SNAP III

000670 (,626 A 10. SoC 3* ISSUE S.C

701)02* t207 AIhFo 6074 011044 110)176 9 447C OAF IN •000r,Cu•9

1)) 1.1,9 FlIT 0111

OUU3)) A 2ITAC.1 AC 0740) 5L7 ALII,NHCIIT

0)03)) bAIl bIb 60110 A 22. 1 I..AIfl)ITI LUAU 61$, FILENAME *000135

1)h0U36 922 1031 )lh13JI A 23• 1401 ‘49114.X’20’ SET FUNCTION COAL

0Uo030 SRH bOil 1101139 A 2’IA 1 16.621,11 LOAD *1)00 OF COMMON I/O

OIJIIO3C OSLE A 25. 0*10 14,15 LIST) TO CoMMA),

/8 TAl,A CLOSE 001

0000JE A 27,TAG AC OYII.II

00003E SIIIU 611$ OLIIIR A 28. L l.AI6UTI L000 4110, FILENaME *008(55

01)01192 11*27 A 29. SVC 39 ISSUE SIC



8075 Rev. SPERRY UNIVAC Operating System/3 9—37

UP-NUMBER UPDATE LEVEL PAGE

you would code it as:

1 10 20 30 40 50

Q1cI 1 Z.2oI ..3I 5SjppL I I I

9.3.4.4. Register Change Option (R)

This option requests the monitor routine to take action whenever a specified register is
changed. It has only one format:

R(n)

The n is the hexadecimal number of the registers to be checked. Since this monitor action
is triggered by the comparison of the current register contents to its previous contents, the
instruction displayed when the change occurs will be the instruction following the
instruction that caused the change. This is similar to the storage reference option for a
program relative address (9.3.4.1 .1>, which also occurs after the storage location changes.
(Remember, it is possible to get two displays from a single storage reference option: one
before and one after the area changes.)

For example, if you want monitor action to take place whenever the contents of register 10
change, you would code:

I 1 1 I 1 1

Since the contents of registers are changed frequently during the course of most
programs, the register change option may produce a large amount of display printout.

9.3.4.5. No Option Specified? You Get a Default

If you omit the option specifications (if your monitor input consists only of the *jJ, *p *

or *T card, and the $ card), the monitor routine interrupts each instruction in the task
before its execution and prints out pertinent information at that point in the program. The
processor then executes the interrupted instruction (identified on the printout as the NEXT
INST). The succeeding instruction is then interrupted, the printout produced, and the
instruction executed. This interrupt, printout, and execution pattern is performed for each
instruction processed. This could require excessive processor time and could produce a
huge printout of unneeded information. Therefore, you would use the default option only
for special cases.

The program information printed is the same as for the default display described in
9.3.5.1.3, except that there is no option mentioned on the printout, since one is not
specified.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
9—38

UP-NUMBER UPDATE LEVEL PAGE

9.3.5. Specifying Actions

Action entries follow the option entry on the monitor statements. They share the same
card; option is specified first, then any actions. Actions for an option must be completely
specified on one card; no continuation to the next card is permitted. If there are duplicate
or overlapping options, only the first one specified is processed, and any action specified
on this second card for the same option is never considered.

There are four different types of actions DAB, DAS, H, or Q (plus a default), as shown in
this format:

DAR [n[_Rn]]

((PR:xv)
DAS[Lnn] (B/D:bddd

((ABS:xv)
Hccc
Q

NO TE:

If no action is specified, the monitor routine produces a default display (9.3.5. 1.3).

The DAB and DAS actions (for display register or display storage) print out program
information, including specified registers (DAB) or storage (DAS), and continue monitor

processing.

The H action (for halt) prints out the program information and suspends the job until it is

told to continue.

The 0 action (for quit) prints out the program information, then deactivates the monitor
routine so that processing can return to normal.

If you omit an action entry, the monitor routine produces a default printout of program
information (including changed registers and storage) and continues monitor processing
until the end of the program.

9.3.5.1. Display Actions

There are two types of display specifications: register display (DAR) and storage display

(DAS). But the addition of a default display provides you with the capability of having three

types.

The three display actions have similar functions; that is, program information is printed,

then the instruction causing the printout is executed, and program processing continues
under monitor control. The printouts are basically the same, except for a few minor
differences, depending upon the type of display action requested.



8075 Rev, 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

9.3.5.1.1. Register Display (DLR)

If you select this type of action, you get the following items:

1. The jobname, TCB address, and program base address. Since this information does
not change during the course of program execution, it is given only for the first option
that causes a printout. Remember, you can have up to 15 different options; it would
be senseless to print any information about the program that does not change.

2. PSW contents

3. Next instruction to execute (which is the instruction causing the printout)

4. Option causing this printout

5. The contents of the specified general registers (four bytes)

After this printout is given, the instruction executes and the program continues processing
under monitor control (that is, all remaining instructions are traced to see if they match
any other options that might have been specified.

You can cause one or more general registers to print by selecting one of three ways to
display a register. The format shows the three different types (combined into one format):

DLR [n[—Rn]]

DL.R, which prints the contents of all 1 6 general registers

DLRn, which prints a specific register, with n being the hexadecimal number (0—F) of
the register you want

DLRn—Rn, which allows you to print a consecutive number of registers. The first n
indicates the first register (0—F), and the second n indicates the last register (0—F).

For example, if you wanted to display register 15 when the program reaches a program
relative address based on the instruction at assembly address 2A in this listing (remember,
the assembly address (2A) must be added to the LNK ORG address, which in this case is
4B0, to obtain the program relative address — 4BA):

LOC. OBJECT CODE ADORI 600P2 LINE SOURCE 5TATEMENI

000000 I P800 51681 U
000000 0560 2 8EAN 6618 6,0
000002 3 USING ‘.6
000002 ‘17F0 6010 00012 BRANCH B •I6
000006 CIC2C3C4IO8u8080 S DC CLB’ABCO’
00000E CSC6C7C8 6 DC CL’l’EFSH’
000012 OIlS 6102 00108 7 LA 1.1101

B SNAP III
000016 A 9* 55 OH
000016 0610 A ID. SOC 29 SNAP 5*1..
000018 0203 6006 600C 00006 0000E II TAG! HOC BR8RCH*8U41,ARANCH,IJ

12 TAb? OPEN OUT
DOODlE 0700 A 13* CROP
000020 A (8*TAG7 EQU
000020 OSlO 6026 00028 A IS. 8AL I,*l’40)
000028 80 A 16* DC U’bO’
000025 000088 A 17* DC *13(0011
000028 0*26 A IS. SOC 38 ISSUE SAC

address [DuO2A 0207 60F2 6008 00058 OUj 19 HOC AUF(A(,ARANCH*O
20 tAb PUT OUT

000030 A 21.1*63 L(C 01(0) SET ALIGNMENT
000030 5810 6(16 0011$ A 20* 1 l,’A(OUTl LOAD .18, *(oEt,891 ADORESS



9—408075 Rev. 3 f SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGEUP-NUMBER

you would code:

1 10 20 30 40 50

IA(4IA) 1D R1F I I I I I I I I I

and your monitor printout would look like this:

Option Job Name TCB Address Program Base Address

Causing
Printout \ I

Pool TOO 1500— 000140101 TCI4—LfllllJ1O(jU 0.00 0. — 00110000

OPT lIP “lIT I .000 This is also the instruction
PS.. C I61J26 000lI1lDA hOOT IIOT — 171210110

Program
-

causing the printout.
Status j
Word register 1 5

If, for the same program, you coded:

I(PRI:II.1.IDIAI’)I ID1 I I I I I I I I I I I I I I I

The contents of all 16 registers (plus items 1 through 4) are displayed, like this:

MONiTOR uSrR— 0001400E3 TC110(T007000 p.800P. — 0000RDOT)
OPTION .001 i.L0C.Ip.001400I
PS. C0l61026 00000I400 000T INST 020160F24OO4

RU— OU00006I RI— 80000408 02— 00000000 03— 00000000 IlI4 OIIUOU000 RN— 00000000 46— 14I3000I402 117— 00000000

00— 00000000 149— 00000U00 06— 00000000 14— 00000000 RC 1.411000000 b— 00000000 Re.. UU00001.IA HI — 00000000

Both of these examples would have continued monitoring for the option until the end of
the job. However, if you add a quit action (Q, which will be explained in 9.3.5.3) you would
have obtained the same printout and discontinued monitor control. This holds true for all
options. If you want to monitor only a specific area or instruction, it is advisable to end the
option with a quit action, so additional processor time is not wasted by having the monitor
search when there is nothing left to find. Coded with a quit action ending the option in the
last example, it would have looked like:

Ill R4711 I I I

Notice that a semicolon is used to separate the actions.

9.3.5.1.2. Storage Display (DLxS)

Most of the information provided by a storage display type of action is similar to that of a
register display (9.3.5.1 .1): you get items 1, 2, 3, and 4. However, item 5 is different; the
storage display action prints out the contents of specified storage locations.

After the printout is given, the instruction executes and program processing continues
under monitor control.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9—41

UP-NUMBER
- UPDATE LEVEL PAGE

You can specify up to 256 consecutive bytes of main storage with a length option, or the
monitor prints (by default) 8 consecutive bytes starting at the specified storage location.

Just as in displaying registers, the storage display action has three different types, but
each is shown in its own format, because of their diverse range of actiàns:

DAS[Lnn](PR :xv)

DLsS[LnnJ(B/D : bccc)

DAS[LnnJ(ABS :xv)

Each one has a length option, shown as Lnn, which allows you to specify how many
consecutive bytes of main storage you want displayed. L indicates that this is a length
specification, with nn as the length, in the range of 0116 to FF16 (allowing you to display
256 bytes).

The item after each length expresses the method in which you want to display a specified
location in main storage. They have the same format and meaning as the storage
reference options explained in 9,3.4.1, but are not to be confused as to function (action
versus option):

(PR:xv) is used to display a main storage area starting at a program relative address.

• (B/D:bddd) displays a main storage area using base/displacement.

• (ABS:xv) displays storage starting at an absolute address.

The xv is the address for program relative and absolute addressing locations, in the range
of 016 to FFFFFF16.The bddd is for the base displacement method, where b indicates the
number of the base register (the range is 016 to F16), and ddd is the displacement (in the
range of 00016 to FFF16).

For an example of the option, we will use an instruction sequence (I) to prevent any
confusion that might initially arise by seeing similar codes (such as a program relative
option (PR> and a storage display action starting at a program relative address) on the
same line:

1 10 20 30 40 50

t(’L4..7’) D1 I I I I I

This displays 20 bytes (1416) starting at program relative address 3C. This happens
whenever any branch condition is reached in the program (hexadecimal code 47).



8075 Rev. 3 SPERRY UNIVAC Operating System/3
9—42

UP-NUMBER UPDATE LEVEL PAGE

If you want to display eight bytes (default) starting at the address using base register 1 and
a displacement of 829 whenever any branch condition is reached, you would code:

I_CL4i_) cPI11?..q)I I I I I5

If you want to display the default eight bytes starting at absolute address 35AE whenever
any branch condition is reached, code:

II(I47I) 461A1)1 I i i L I , 1, , i,i

If you wanted only four bytes at absolute address 35AE whenever any branch condition is
reached, code:

) tsiSi s) I

Notice that you must use two hexadecimal characters for the length even when it can be
expressed in one.

The following example uses a program relative option and a program relative address for
the action:

ILC Di

When the instruction at program relative address 2A is reached, a storage display of eight
bytes starting at program relative address 3C is produced.

9.3.5.1.3. Default Display

You can omit the action specification; that is, you can enter an option without specifying
any particular action you want taken when the monitor option becomes effective. In this
case, the monitor routine prints out items 1, 2, 3, and 4 listed in 9.3.5.1.1, and (items 5
and 6):

5. The contents of any general registers that were changed since the last printout was
given. If this is the first action taken by the monitor routine for this program, the
present contents of all the general registers is printed.

6. The contents of the storage locations referenced by the instruction causing the
printout.

The instruction causing the printout is then executed, and program processing continues
under monitor control.



A I
8075 Rev. 3 I SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL f PAGE

For example, assume that the following option statement was the only input to the
monitor routine (and the task statement):

1 10 20 30 40 50

I I I I

When the program reaches an instruction that references an address using base register 4
and a displacement of B29, a default display is given.

Remember, you can also get a default by omitting the option statement (9.3.4.5.). The only
difference between the default display caused by omitting the option and the default
display caused by omitting the action is that the omission of the option means that the
option causing the display is not printed.

9.3.5.2. Halt Action (H)

This action, like the other actions, prints out items 1, 2, 3, and 4 (detailed in 9.3.5.1 .1). It
then prints a halt message on the system console and suspends program execution until a
reply from the console operator allows execution to continue.

The halt message sent to the system console has the following format:

HALT ccc. TYPE-IN GO jobname TO RESUME

Program execution is then suspended until the operator issues the GO command followed
by the job name (same as that on the JOB control statement). You can then provide the
operator with special instructions about what to do before entering the GO command,
such as taking a main storage dump. After he completes these special instructions, and
enters the GO command, the instruction causing the halt is executed, and program
processing continues under monitor control.

The format for the halt action is:

H ccc

The ccc is a 3-character EBCDIC code that you specify to identify the halt, and corresponds
to the ccc in the halt message displayed to the operator.

For example, assume that your JOB control statement has a job name of 1WESTMON, and
uses the following monitor statement:

I I I I 1_IjJ



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP.NUMBER UPDATE LEVEL PAGE

When the program reaches the instruction at program relative address 1B4, the monitor
routine prints out the program information and displays the following message on the
system console:

HALT DMP TYPE-IN GO TWESTMON TO RESUME

You would instruct the operator to take your desired action when he sees this message. In
this case, assume it is a dump. After issuing the DUMP command (and a dump of main
storage is given), the operator would then type:

GO TWESTMON

to reactivate the interrupted job. The instruction at program relative address 1 B4 is then
executed, and program processing continues under monitor control.

9.3.5.3. Quit Action (Q)

The quit action (Q) prints out items 1 through 4 and nothing else. The instruction causing
the printout is then executed, and program processing continues without any further
monitor intervention (pertaining to the option to which this action applies).

This action is useful when you want to monitor a problem area in the beginning of your
program, and then exit from the monitor routine without tracing all the remaining
instructions in the program (thus not wasting execution time).

The format for the quit action is:

Q

For example, if you coded:

[ 10 20 30 40 50

IQ I

the monitor routine would print out the program information when program execution
reaches the instruction at program relative address Fl 8. This instruction is then executed,

and program processing continues without monitor intervention.

When the quit action is not used as one of the actions for an option, monitor processing
continues until the end of the job step.

Table 9—2 summarizes the program information that is displayed by each action.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

Table 9—2. Summary of Actions and Program Information Printed

Action

Program Information Printed Display Display
Default Halt Quit

Register Storage Oil (H) (Q)
(OR) (OS)

Job name x x x x x

TCB address* x x x x x

Program base address x x x x x

PSW contents x x x

Next instruction to execute x x x x x

Option causing this printout x x x x x

Contents of specified registers x

Contents of specified storage x

Contents of changed registers x

Contents of referenced storage x

HALT message x

*These items are included for only the first option that causes a printout.

9.3.6. Cancel of Monitor

If the monitor routine is terminated abnormally, either by a CANCEL command or by a
program exception within the monitor routine, all programs requesting the monitor routine
will continue normal program processing without any type of monitor intervention. The
monitor routine itself will dump and leave the system. A CANCEL command should not be
issued while transcent monitoring is in progress.

9.4. SYSTEM DEBUGGING AIDS

Several debugging aids are built into the OS/3 supervisor to aid in solving system
problems which cannot be identified through a normal SYSDUMP. These aids are useful
only with some knowledge of the internal supervisor structure and are therefore not
intended for general use. This section is provided for informational purposes only.

Table 9—3 summarizes the debugging aids described on the following pages.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL

9—46

PAGE

-

+

+

+

Table 9—3. Summary of System Debugging Aids (Part 1 of 2)

Function Use Console Command Results

Pseudo monitor To identify the routine changing SET HA,PM,address HPR code 99130202 (Press

a particular byte [job-name] RUN to continue.)

Resident monitor To identify the instruction SET HARMaddress HPR code 99130404 (Press

changing a particular byte [,iob-namel RUN to continue.)

Mini monitor To identify the instruction MM value,address, HPR code 991200 (Press

changing a particular byte RTUE RUN to continue.)

Verify bytes O—B To identify the routine destroying Included in supervisor HPR code 99130303 (Press

low-order storage debug option RUN to continue.)

History tables To provide some recent history in Included in supervisor Continuous updating of

SYSDUMPs debug option resident tables

Halt on transient load To halt if and when a particular SET HA,TL,hex-id HPR code 990C0C (Press

transient is loaded RUN to continue.)

Halt on transient caIl To halt if and when a particular SET HA,TChex-id HPR code 990C00 (Press

transient is called RUN to continue.)

Halt on transient exit To halt if and when a particular SET HA,TE,hex-id HPR code 990C0E (Press

transient exists RUN to continue.)

Halt on shared code To halt if and when certain (or SE HA,SCrimoclule- 1 991 DOl (Press RUN to

call all) shared code modules are name continue.)

called. LI prefix. J
Halt on shared code To halt if and when certain (or SE HA.SR r. module- 1 991002 (Press RUN to

return all) shared code modules name continue.)

return. L prefix. J
Halt on shared code To halt if and when certain (or SE HA,SE r module- 1 991 003 (Press RUN to

return with error all) shared code modules name continue.)

return with error. L prefix. J
Halt on symbiont load To halt if and when a particular SET HA,SYidnh HPR code 997C (Press RUN

symbiont (or symbiont phase) is to continue.)

loaded

Pause on shared code To pause a task if and when SE PA,SC module- 1 SE25 console message (Enter

caIl certain (or all) shared code I name j to continue.)

modules are called. L prefix. J
Pause on shared code To pause a task if and when SE PA,SR r module- 1 SE25 console message (Enter

return certain (or all) shared code name I jc:. to continue.)

modules return. L prefix. J
Pause on shared code To pause a task if and when SE PA SE r module 1 SE25 console message (Enter

return with error certain (or all) shared code name to continue.)

modules return with error. L prefix. J
Supervisor debug option required at IPL



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3 A 9—47

UPDATE LEVEL PAGE

Table 9—3. Summary of System Debugging Aids (Part 2 of 2)

+

+

Function Use Console Command Results

PIOCS debug option To identify checksum errors or SET DE,l0 HPR code 990F
internal PIOCS problems

Transient debug option To halt on transient errors (100-1 FF) SET DE,TR HPR code 99080800

Loader debug option To halt on loader errors (52-5F) SET DE,LD HPR code 991500 (Press
RUN to continue.)

Shared code To halt on errors detected SET DE,SC HPR 990809 on shared code
debug option during the execution of errors (Press RUN to take a

shared code. SYSDUMP and to continue.)
HPR 991 30A when dynamic
buffer pool links are
destroyed.

Dynamic buffer To halt on dynamic SET DE,DB HPR code 991 30D
debug option* buffer overflow

Screen format To take a snapshot dump SET DE,INO Writes snapshot dump
coordinator of all input and output to job log
input/output buffer blocks when using
debug option the screen format coordinator

Screen format To take a snapshot dump SET DE,FS Writes snapshot dump
coordinator of the format block; the to job log or system
format/input/output input buffer (on input printer
debug option operations); the output

buffer (on output opera
tions) blocks; and, if
errors occur, the screen
format coordinator blocks

Reset pause options Resets all SE PA commands SE PA,OFF None

Reset halts Resets all SE HA commands SE HA,OFF None

Reset debug options Resets all SE DE commands SE DE,OFF None

Supervisor Debug option required at IPL.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9—48

UP-NUMBER - UPDATE LEVEL PAGE

94.1. Supervisor Debug Option

The supervisor debug option is set at initial program load (IPL) time by entering D as the

final character (following the comma) of the initial IPL message. This is described in the

operations handbook. Use of this D option causes the supervisor being loaded to be

- expanded in size to support the supervisor debug option.

The following functions are provided:

- • A normal halt (HPR code 99130101) between IPL and supervisor initialization. This

allows changes to be made to the supervisor (via the maintenance panel) prior to

loading the supervisor initialization load module. Normally, however, you should

simply press the RUN switch on the maintenance panel to continue.

4
A pseudo monitor to detect when any byte within the supervisor has been changed.

When activated this function checks the byte on every interrupt and on every pass

through the switcher. When the byte is changed, the supervisor halts (HPR code

99130202) without restoring the original contents of the byte. If you want to

continue, press RUN. The new value becomes the original value and the supervisor

halts if the byte is changed again.

‘ The console command to activate the pseudo monitor is:

SET HA,PM,address[,job-name]

where address is the address of the byte to be monitored either absolute (no job-

name specified> or relative to the preamble of a currently active job if you specify one

with job-name. After the pseudo monitor is activated you use this same command to

change the address of the byte being monitored.

Verification of low-order main storage (locations 0—B) on every interrupt and every

pass through the switcher. When changed, the supervisor saves the incorrect setting,

restores the correct setting and halts (99130303). Although you may continue past

this HPR by pressing RUN, you should take a SYSDUMP here to determine why these

bytes are being altered.

m A resident supervisor monitor to detect when any byte in main storage has been

changed. When activated, this function checks the byte upon executing every

instruction in supervisor critical code (interrupt processing), transients, symbionts, and

+ job control. The only code not monitored is code being executed under a key other

than 0 (i.e., user jobs). Monitoring user jobs is unnecessary because the hardware key

protection feature of the processor prevents user jobs from destroying any part of the

supervisor.

When the specified byte is changed, the resident monitor halts (99130404) without

restoring the original contents. The double word at location 80 contains the PSW at

the time the byte was changed. If you want to continue, simply press RUN. The new

value becomes the original value and the supervisor will halt if the byte is changed

again.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

The console command to activate the resident monitor is:

SET HA,RM,address[,job-namej

where address is the address of the byte to be monitored either absolute (no job-
name specified> or relative to the preamble of a currently active job if you specify one
with job-name. After the resident monitor is activated, you use this same command to
change the address of the byte being monitored.

When using the resident monitor, you may notice that the operating system is
performing slower than it normally would. This is because the software is now
executing approximately 8 instructions for every previous 1. For this reason, it is
advisable to use the resident monitor for short periods of time.

The resident supervisor monitor must not be used when either the standard monitor
(9.3) or the mini monitor (9.4.2) is active.

History tables that provide the following information:

— Critical Event History Table. This shows the last 1 6 critical events that occurred
in the supervisor and the value in the interval timer register (ITR) at the time they
occurred. These are listed in 4-byte entries as follows:

Byte 0 = EBCDIC event code:

I (XC9’) = Interrupt

S (X’E2’) = Switcher call

T (X’E3’) = Task given control by switcher

L (X’D3’) = Transient load

o (X’D6’) = Transient issued a call for an overlay

R (X’D9’) = Transient release

Byte 1 Interrupt type:

Event Code Byte 1 contents

Interrupt type as follows:

0=1/0

1 = machine check

2 = program check

3=SVC

4 = timer



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

9—50

Event Code Byte 1 contents

S Switcher entry point as follows:

F (X’C6’) if fast switcher

N (X’D5’) if normal switcher

A (X’Cl’) if alternate switcher

T How task was given control as follows:

XOO’ if task given control from switcher

C (X’C3’) if task given control by SCALL LPSW

R (XD9’) if task given control by SRETURN LPSW

L,O,R Unused

Bytes 2—3 = Value in ITR when event occurred. The ITR decrements once
every millisecond.

— Dynamic Buffer Management History Table. This shows the last 1 6 requests to
either obtain a buffer (GETBUF) from a dynamic buffer pool (DBP) or release a
buffer (FREEBUF). These are listed in 8-byte entries as follows:

Byte 0 = EBCDIC G (X’C7’) if GETBUF
= EBCDIC F (X’C6’) if FREEBUF

= Buffer address

= Buffer characteristics:

Bits 0-1 = 0

Bit2 = 1 indicates buffer is allocated,
and bits 5—7 indicate the software
using the buffer.

= 0

= 1 if buffer is under storage
protection

= 5 if shared code local storage
4 if data management buffer

= 3 if external TCB
= 2 if stack frame or list buffer
= 1 if shared code
= 0 if none of the above

Bytes 1—3

Byte 4

Bit 3

Bit 4

Bits 5—7

4



UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Bytes 5—7 = Buffer size, in bytes, if GETBUF

= TCB address if FREEBUF

— TCB History Table. This shows the absolute addresses of the last 6 TCBs given
control by the switcher. If the switcher gives control to the same task which had
control prior to an interrupt, the TCB address is not listed again.

— Interrupt History Table. This shows the PSW (8 bytes) at the time of the last 8
interrupts. Bits 4—7 of each PSW are set to an interrupt ID, as follows:

0 = lOST interrupt
1 = Machine check interrupt
2 = Program exception interrupt
3 = SVC interrupt
4 = Timer interrupt

— Alternate Transient History Table. This shows the transient IDs of the iast 12
transients loaded from the alternate transient file ($Y$TRANA). This table would
normally be all zeros.

— Transient History Table. This shows the transient IDs (12 bits) of the last 32
transients loaded by transient management. These are listed in 2-byte entries,
with the high order 4 bits containing the transient area number (0 means
supervisor overlay area (SOA).) Reused transients are not included.

The history tables previously described reside near the end of the supervisor. They can be
easily identified in a SYSDUMP by the CSECT names, as follows:

ENTRYTIM — Critical event history table

DYNBUFFR — Dynamic buffer management history table

LOWCORE — Correct and altered contents of the low order 1 2 bytes in main
storage

LASTTCBS - TCB history table

OLDPSWS — Interrupt history table

ALTTRANS — Alternate transient history table

TRANIDS — Transient history table

The entries in each table are always arranged from the oldest (lower addresses) to the
newest (higher addresses). Following is an example of a history table maintained by the
supervisor debug option.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 9—52
UPDATE LEVEL PAGE

Critical event
history table

•. EPTRY7IM CSECJ. SV%0SCr PHASE A*

C00T6D—C9C30165 £2000162 C9200182 [2030180 E300019F C90301F E20C019[ C9CVC1E2 •I... S...!. ..S...T...1...S...!...—01220

0OO78—E2C0O180 C 0 178 [2000175 [3000175 D301017 09003171 £20t0170 [30001EF S...!...S...T...L...P...S...1..?—012260

Timer value
Interrupt type (if event type1; lOST interrupt)
Event type (linterrupt)

Dynamic buffer management
history table

¶0S7C’ PHASE ***

C702190 2’OODl9S 0702118C 2’ODCCEC G HE 6,......€ 012280

C7IZ1PAE 2(’33lA8 C601F[90 250117200 *F 6 .F.,, 012280

C10186k0 250100028 07022810 21000288 *F •F 6 6 0122CC

07030610 21009880 *6 F F I.E 0122EV

TCB address (for FREEBUF)
Buffer type (shared code local storage)
Buffer address
F”=FREEBUF

Current contents of low order main
storage bytes 0—B (example

a S 7 C P H A S E . shows no change)

a 012300

Altered contents (if different)

Interrupt history table
(interrupt IDs in PSW

r H A S r are circled)

r00112056 03040000 600000AE *0 C C 4—012340

00312056030000103 01012C56 * C 012360

Most recent interrupt

Alternate transient

AITTPAAAS ccFci, scos30 PHASE

0008AC—aOrE*000 000000100 00020000 00000000 ocoooror 0000010100 00000010 0Qt[ACCC * ...,,—012380

Transient history table (example,/_shows activity in transient areas
#O(SOA), #1, and #2)

Transient area
Table entry

TANTDS csrci. svsns:r PHASE ss TransientlD

CIJOICO.2S16?719 25842218 269C26E3 20422212 21372800 248C276F Zoe*1C19 1101 CC *...R 7 012380

CtlLi4Er—16’1160S 160710119 16001601 16050614 OSF3OSE1 5F3423 OEFSO714 06141607 •.J.i.P J.e...3...T...6 P012300

ccoca—-33rtacso 000tAOi2O [A020 0000*000 L00E*630 r[AQ’ 30r60fl OCJOEA000 * 012360

In addition to the history tables at the end of the supervisor, the supervisor debug option
causes a shared code history table to be added to the end of all task control blocks. The
EBCDIC names of the last eight shared code modules called on behalf of this task are
listed, with the most recent eight-byte load module name always last (i.e., highest
address).

*** 0N8UFFP CSECT, 5!

0007*0—C? 021500 24000208 C7’217E0 24000108

000?C0—C6021300 25017200 C602C670 25017200

0007[0—C6019360 25017200 06018680 25017200

000800-k71022*[C 12513000701 C622AE0 25017200

local storage)
Buffer address
G=GETBUF

•*• LrwCoEE CS[CT, 5!

000820 060570 LI7FOO3CD 20?286[0 000EAllOC

Correct contents

.,. isrrcss csrcT, 5Y0S30C PHASE *4* ,————TCBhistorytable

000843—OOrEA000 00208028 0000.9D2& 0QJ0A28 00008029 ‘0008028 00008028 000EA000 • 012320

.** OLOPSAS CSECT, SY

030860—03 040030 40008882 03080001 430’888C

00C8D—CD’t0C00 002020*0 C30#CD01 401000058

i OS 3.

00303000

c0000000



SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAG:

9.4.2. Mini Monitor

The mini monitor is a small, specialized version of the standard monitor described in 9.3. It
is intended for system debugging only and does not replace the standard monitor
symbiont.

The mini monitor can monitor any one byte in main storage during execution of user,
transient, or supervisor resident code and will halt when the specified byte is changed. It
is called by the MM console command.

Format:

MM value,address,RTIJE

Positional Parameter 1:

value
A 2-character hexadecimal value that specifies the correct contents of the byte
being monitored.

Positional Parameter 2:

address
Specifies the absolute main storage addres of the byte to monitor. This must be
specified as a 5-character hexadecimal value (zero fill on the left>.

Positional Parameter 3:

RTUE
Flags that specify how the mini monitor is to function. Any combination of 1 to 4
characters may be specified:

R — Monitor resident code, including I/O, program exception, supervisor call
(SVC), and interval timer interrupt processing.

T Monitor transients, including the supervisor overlay area (SOA>.

U Monitor user jobs and symbionts active at the time MM was keyed in.

E - Instead of halting when the specified byte is changed, the halt wll occur
when the monitored byte equals the value specified in positional parameter 1.

The mini monitor HPR code is 991 2. The monitor interrupt old PSW (low memory location
8O-87) contains the address of the instruction that immediately follows the instruction
that altered the byte. If the byte was altered by code not being monitored, the halt will
occur at the first monitored instruction.

Once the mini monitor is called, it cannot be turned off or changed except by again loading
and initializing the system. Only one version of the mini monitor can be executed at a time
and it cannot be run with the standard monitor in main storage or with the resident
monitor.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 9-54

UP-NUMBER UPDATE LEVEL PAGE

Because execution time of monitored code is increased by a factor of about 9, use of the
mini monitor should be limited. It is advisable to make the MM keyin as near to the
suspected problem as possible.

You may have noticed that the mini monitor offers many of the same features as the
pseudo monitor and the resident supervisor monitor. All can monitor resident (critical)
code and transients (including SOA). The differences are:

u Mini Monitor

— This monitor has the additional ability to halt when a byte is changed to a
specified value.

— User jobs can be monitored (if the absolute address of the job is known).

- Impact on the system can be minimized by monitoring only certain TCBs. For
example, you could monitor resident interrupt processing without monitoring
transients, symbionts, or user jobs.

‘ Resident Supervisor Monitor

The monitor can be turned off or changed easily with no necessity to IPL again.

New tasks being created (e.g., new symbionts or new job control TCB5) will
automatically be monitored.

‘ Pseudo Monitor

— All the advantages of the resident monitor except that the byte is only checked
on interrupts and switcher calls.

— The impact on the system is unnoticeable. You can monitor over a long period of
time.

9.4.3. Console Debug Options

A number of debug options that can be set by console commands are available for

supervisor debugging:

PIOCS debug option. Causes system halt (HPR code 990F) on any CCB checksum
error or program check during PIOCS. The console command is:

SET DE,IO

• Transient debug option. Causes system halt (HPR code 9908) on any transient error
(i.e., error normally producing a lxx error code). This is useful because normal
recovery from a lxx error code often causes the offending transient to be overlaid by
other transients. The console command is:

SET DE,TR



8075 Rev. SPERRY UNIVAC Operating Systeml3 9—55
UP-NUMBER UPDATE LEVEL PAGE

Loader debug option. Causes system halt (HPR code 991 5) whenever the loader
detects any error other than 51 (module not found). A SYSDUMP taken at this halt
will provide useful information in determining the exact cause of any loader error
(52—SF) which cannot otherwise be diagnosed. The console command is:

SET DE,LD

Shared code debug option. Causes system halt (HPR code 990809) on any error f
detected by the system during execution of dynamic shared code. The system will also
halt (HPR 991 30A) if the dynamic buffer pool linkages are destroyed during execution
of shared code. The console command is:

SE DE,SC

Dynamic buffer debug option. Causes system halt (HPR code 991 30D) whenever the
supervisor debug option detects the alteration of any of the last 32 bytes of any
dynamic buffer, usually caused by dynamic buffer overflow. The console command is:

SE DE,DB

f
Screen format coordinator input/output debug option. Writes a snapshot dump of all
input and output buffer blocks present while using the screen format coordinator. The
console command is:

SET DE,lNO

Screen format coordinator format/input/output debug option. Writes a snapshot
dump of the following control structures:

— the format block

— the input buffer, on input operations

— the output buffer, on output operations

— the screen format coordinator blocks, if an error occurs.

The console command is:

SET DE,FS

To turn off all debug options, the console command is:

SE DE,OFF



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 9—56

UP.NUMBER UPDATE LEVEL PAGE

9.4.4. Transient Management Halts

When trapping a system problem, it is often desirable to halt the processor whenever a
particular transient or supervisor overlay is loaded into main storage. Every transient is
uniquely identified with a transient ID. By using this ID (in hexadecimal>, you can cause
the system to halt in any of three ways:

1. Halt on transient load. The SE HA,TL console command causes an HPR 990C0C
whenever transient management loads the specified transient or overlay into a
transient area. The halt occurs less than 10 instructions before the transient is given
control, and you can continue normally by pressing RUN. Note that this halt occurs
only when a transient has just been loaded from SYSRES. A few transients can be
reused; the halt will, therefore, occur only when the transient is initially loaded.

2. Halt on transient call. The SE HA,TC console command causes an HPR 990C0D
whenever a transient or overlay calls the specified transient as an overlay. For
example, if transient 200 processes errors by overlaying transient 204, the SE
HA,TC,204 command causes a halt before transient 204 is loaded on top of transient
200.

3. Halt on transient exit. The SE HA,TE console command causes an HPR 990C0E
whenever a specified transient or overlay exits, either by releasing the transient area
or by calling an overlay.

All three halts described can be set simultaneously, if desired, but only the last SET
command of each type is recognized. When the halts occur, problem register 15 can be
used to find the address of the transient area involved. Refer to the operations handbook
for instructions on reading problem registers.

The halt on transient load is available on all supervisors. Halt on transient call and exit
require use of the supervisor debug option at IPL.

9.4.5. Symbiorit Halt

The SE HA,SY console command causes an HPR 9970 whenever a particular symbiont or
phase of a symbiont is loaded. This could be useful when debugging a particular symbiont.

To halt whenever a specific symbiont is loaded, simply key in SE HA,SY,id where id is the
2-character symbiont id (e.g., RU,Fl,PR,SU). To halt when a phase other than the root
phase is loaded, key in SE HA,SY,idnn where nn is the decimal EBCDIC phase number
(00-99).

The HPR occurs less than 10 instructions prior to the symbiont phase being given control.
To continue normally, press RUN.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

f
9.4.6. Shared Code Halts and Pauses

SET console commands are available to interrupt or halt processing when shared code
modules are called or when they return. These commands allow the operator to request
an interrupt or halt on the call or return for:

a specific module

• a specific group of modules which have a common prefix; or

• all modules.

The format of these commands is:

SE JHA, SC r.fprefix.

IPA) SR L Iname
SE

The first and second parameters form individual commands which are discussed in the
following paragraphs. The third parameter determines what modules these commands
affect. You specify an individual module by its full name, a module group by its prefix
followed immediately by a period, or all modules by omitting the parameter completely. For
example, the command SE HA,SC,DM. would cause an HPR upon a call to any module
whose name begins with DM.

You can continue past any HPR resulting from these commands by pressing RUN. The
supervisor debug option is required at IPL time for all of these functions. The individual
commands are:

• Halt on shared code call. The SE HA,SC command causes an HPR of 991 DOl when a
module is called.

• Halt on shared code return. The SE HA,SR command causes an HPR of 991 D02 when
control returns from a module.

• Halt on shared code return with error. The SE HA,SE command causes an HPR of
991D03 when control returns from a module with an error condition.

B Pause on shared code call. The SE PA,SC command interrupts processing and
displays the following message when a module is called:

SE25 SC PAUSE ON shared-code-name. CONTINUE? (Y, HELP)

This message shows which shared code module has been called. A reply of Y causes
processing to resume. A reply of HELP displays the following information: the job or
symbiont name, the name of the calling module, the TCB address, the base address of
the calling module, and the local store address.



8075 Rev. SPERRY UNIVAC Operating System/3 A 9—58

UP-NUMBER UPDATE LEVEL PAGE

Pause on shared code return. The SE PA,SR command interrupts processing and

displays the SE25 message when control returns from a module by execution of the

SRETURN macroinstruction. If requested to, this command displays the same shared

code information as SE PA,SC does except that it shows what module is being

returned to rather than what module called the shared code.

• Pause on shared code return with error. The SE PA,SE command interrupts

processing and displays the SE25 message when control returns from a module in

which an error has occurred. If requested to, this command displays the same shared

code information as SE PA,SR does.

9.4.7. Soft-Patch Symbiont (PT)

The PT symbiont is used to temporarily patch transients (transient overlays), load modules, and

shared code modules at the time they are loaded in main storage (soft patch) instead of

permanently patching the disk (hard patch). This is useful if you want to test a patch to see if it is

effective before hard-patching or if you want to trap a problem by temporarily applying a patch.

To use the PT symbiont, you must have included the supervisor debug option at IPL time.

When initiated, the PT symbiont builds a patch table from input read from cards or keyed in from

the console. The PT symbiont then locks itself into the supervisor so it can scan this table on

every load of a transient, load module, or shared code module. During this scan, if the module

name matches an entry on the patch table, the specified patches are applied. These patches are

temporary. Patches to transients remain in effect until the PT symbiont is cancelled. Load and

shared code modules that are loaded in main storage while the PT symbiont is active remain

patched until reloaded.

The PT symbiont is also used to apply patches to the resident supervisor; however, these

patches remain in effect until you IPL the system again.

9.4.7.1. Soft-Patching Using Card Input

When using card input to soft-patch, you must create the card deck containing the desired

patches. Once prepared, the deck is placed in the system reader prior to initiating the PT

symbiont. The input deck Consists of four card types:

1. The first card is provided for compatibility purposes. It is necessary when using the

transient patch (TRNPAT) program, which applies core to transients.

Format:

1D=R

The card must have a 1 in column 1, followed by a blank in column 2, and then D=R.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 9—59
UP-NUMBER UPDATE LEVEL PAGE

2. The second card defines the type and the id (or name) of the module to be patched. The
form of this card depends upon the module type.

Formats:

2 T=decimal-id (for transients)

2 S=module-name (for shared code modules)

2 L=module-name (for load modules — the load module can be the resident
supervisor, a symbiont, or a module loaded from a user
library)

2 O=module-name (for resident supervisor modules specifying the csect or
object module name — this format can only be used when
operating in a mixed or CDI mode environment)

In all the formats, a 2 must appear in column 1, followed by a blank in column 2. Each
module to be patched must be defined with one of these cards.

3. The third card defines the patch. Each card contains only one patch, and the patch is
applied only to the module specified in the preceding 2 card.

Format:

P addr,patch

A P must appear in column 1, followed by a blank in column 2. Starting in column 3, the
hexadecimal address (relative to the start of the transient or module phase to be patched)
is entered. The address must be within the module specified or the card will be ignored.
The address is followed by a comma and then the patch. (The patch is also given in
hexadecimal, and embedded blanks are not permitted.) The patch character string can be
any length, though the entire P entry must fit on one card (or one line of the console, if
using console input).

More than one patch can be made to a module by entering more than one P card. All
patches to be applied to a given module should be specified in successive P cards following
the 2 card that defines the module.

4. The last card signifies the end of the patches. The symbols are entered in columns 1 and 2.

Format:

/*



UP-NUMBER
SPERRY UNIVAC Operating Systeml3 UPDATE LEVEL PAGE

9-60

The following is a sample deck of cards:

1 D=R Can be eliminated if not using TRNPAT
2 L=MYSAL Defines a load module MYSAL
P 1A,47000000 Defines a patch to be applied to MYSAL
2 T=1539 Defines a transient

12A,4780F2E49966 } Defines two patches to be applied to the transient

2 S=MYSHRCOD Defines a shared code module MYSHRCOD
P 24,07C0 Defines a patch to be applied to MYSHRCOD
2 O=SM$DEBUG Defines an object module SM$DEBUG
P 27,FF Defines a patch to be applied to SM$DEBUG
/* Indicates the end of the patches

Once the card deck is created and placed in the system reader, initiate the PT symbiont by

keying in the following command from the console:

PT

Once initiated, the PT symbiont accepts the patches on the card deck from the system reader

and applies them to the specified modules as they are loaded.

9.4.7.2. Soft-Patching Using Console Input

Soft-patching can also be accomplished by entering the required input directly from the

keyboard of the system console. When using this method, the PT symbiont must be initiated

before entering any input To initiate the PTsymbiont, key inthefollowing console command:

PTC

Once initiated, the PT symbiont solicits input from the system console. The input you key in is

entered in the same card-image format as that of the four card formats described in 9.4.7.1 . The

PT symbiont builds a patch table from your input and applies the patches as the specified

modules are loaded.

There are some optional features available to you when soft-patching directlyfrom the console.

For example, you can key in the following console command to initiate the PT symbiont:

PMdev-addr] C

This form of the command not only solicits patch input from the console, but it also punches that

input on the device specified. The card deck produced contains the patches that you can reuse

at some later time.
IL



SPERRY UNIVAC Operating Systeml3 UPDATE LEVEL PAGE
9-61

You can also enter all the information for a single patch as part of the PT command format when
patching from the system console. The following is the format of this option:

T,transient-id
PT S,shared-code-module-name ,addr,patch

L,load-module-name
O,object-module-name

Although this form eliminates the need of separate entries for 2 and Ptype card-image inputs, it
can only be used to make a patch at one location (module address). To patch more than one
location, use one of the other forms of the command, or key in this form one time for each
location to be patched.

Examples:

PT L,MYSAL,1 A,47000000
PT T,440,FO,45A0F220
PT S,MYSHRCOD,24,07C0
PT O,SM$DEBUG,27,FF

NO TE:

The object-module-name entry can only be used in systems with mixed or CDI mode
environments.

9.4.7.3. Using the PT Command

Whether you use card input or console input, you can enter the PT symbiont command more
than once and the input is simply added to the end of the patch table. In addition, any
combination of the various forms can be used. For example, you can key in PT and a patch table
is built from the card input. Later in the same session, you can key in PT C and enter additional
patches. These additional patches are added to the existing patch table.

9.4.7.4. Cancelling the PT Symbiont

Regardless of how the input is entered, the PT symbiont can be cancelled at anytime by keying
in the following console command:

CA PT,S,N

Cancelling the PT symbiont eliminates all the patches entered, except those that changed the
resident supervisor. (These will remain in effect until you perform the IPL again.) Shared code
and load modules that were loaded while the PT symbiont was active will remain patched until
reloaded. Subsequent loads of modules, however, will not be patched.



SPERRY UNIVAC Operating System/3 UPDATE LEVEL PAGE
9—62

9.4.7.5. PT Symbiont Error Messages

Error messages are produced by the PT symbiont and appear on the console screen. The
following is a list of the error messages that might occur, the condition that caused the error,
and the corrective action to be taken.

PTO1 TWO 2 IMAGES IN A ROW

Two 2 cards have been entered in a row. This is invalid because a module has been
specified to be patched, but no patches have been entered. The first 2 card is ignored, and
the PT symbiont continues. This could result in incorrectly applied patches. To avoid this,
cancel the PT symbiont, correct the input deck, and begin a new PT symbiont session.

PTO2 INVALID CHARACTER STRING, CHARACTER ON CARD

A non hexadecimal digit (other than O—9 and A—F) was entered in a field requiring a
hexadecimal digit. This message is also produced if an odd number of characters was
entered for a patch (patches cannot be half bytes in length). Cancel the PT symbiont,
correct the input deck, and begin a new PT symbiont session.

PTO3 PATCH TABLE OVERFLOW — SOME PATCHES LOST

Too many patches have been entered. There is a limited amount of space that can be
allotted to the patch table, and the PT symbiont will stop accepting input when this limit is
exceeded. This could result in a patch table that contains only part of the patches you
intended to apply. To avoid this, cancel the PT symbiont. Limit the number of soft patches
you enter, and begin a new PT symbiont session.

PTO4 INVALID PT — NEEDS SUPV DEBUG OPTION SET AT IPL

The supervisor debug option, which is required if the PT symbiont is used, was not
specified at IPL time. The PT command is ignored, and the symbiont cannot be initiated.
You must IPL the supervisor again, specifying the debug option; then begin a new PT
symbiont session.

PTO5 PUNCH SPECIFIED BUT NO CONSOLE INPUT

The form of the PT command specifying a punch device was used, but the input was not
specified as coming from the console. This will occur if the C following the device address
was notentered. The PTcommand is ignored underthiscondition. Reenterthecommand,
including the final C.



SPERRY UNIVAC Operating System/3 UPDATE LEVEL PAGE
9—63

PTO6 csectname NOT FOUND

The object module or csect name specified on the 2 0= card was not found on the
supervisor currently loaded. The 2 0= card and all the P cards until the next 2 card are
ignored. If an incorrect object module or csect name was entered, you can enter the correct
name later in the session and the input will be added to the patch table.

PTO7 SYSRDR NOT AVAILABLE

The form of the PT command used requires the system reader device, but in this case it is
unavailable. The PT command is ignored. When the system reader becomes available,
reenter the command.

PTO8 INVALID INPUT FORMAT

An error was made in entering the information for a patch on a single line from the
console. The PT command is ignored under this condition. Check to make sure that all
commas are in the right place, and reenter the command.





8075 Rev. 3 SPERRY UNIVAC Operating System/3 101

UP-NUMBER UPDATE LEVEL PAGE

10. Message Display, Logging, and
Operator Communication

101. GENERAL

Successful operation of a computer system requires constant communication. You use job
control statements, assembler instructions, and supervisor macro instructions to tell the
CPU what to do, and how and when to do it. The operating system tells the operator what to
do, and tells you what was done and when. The operator gets a message from the
supervisor (or from you) and answers a question or performs an action.

OS/3 provides several methods by which you can communicate with the operating system
and with the console operator. These consist of a system log, display to the operator, and a
canned message file, which can be used singly or in combination.

A system log file is maintained by the supervisor spooling function. Job logs are subfiles of
the system log file and receive all log and accounting information for the job including
messages you write to the log using macro instructions in your program. (See Section 11 for
a description of spooling, job logs, and job accounting.)

In addition to the system log, the spooling function maintains a console log, which is a
record of all messages and operator replies involving the system console. If your system
has workstations, the spooling function can also maintain a log for each of these,
recording the activity between that workstation and the system.

You can use message display/logging in one of three ways:

• You can display a message to the operator at the system console or to a workstation
if your system has workstations. The message may be for information only, or you
may request a reply by the operator or workstation user. The message normally goes
to the same device — console or workstation — as the one from which the job was
initiated. The message and any replies are written to the appropriate console or
workstation log if one is configured.

• You can make an entry in the system log for subsequent output to a high-speed
printer.

• You can combine a display and a system log entry. In this case, the message
displayed and any reply from the operator are written to the system log, and also to
the appropriate console or workstation log if configured.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 102

UP-NUMBER UPDATE LEVEL PAGE

You can display or log a message either from main storage or from a file of “canned”
messages maintained on disk by the supervisor. The canned message file is a set standard
message identified by canned message numbers that may be used by any BAL program,
and may be examined, printed, displayed, logged, etc. A canned message may also contain
blanks which are replaced by variable characters from a buffer whose address is specified
as a parameter in a macro instruction. If a canned message is specified and there are user
supplied variable characters, these characters are automatically inserted into the canned
message before the completed message is displayed, logged, or stored in your specified
buffer area.

You may need a canned message for some output other than display or log. In this case you
can retrieve it from the canned message file, with or without variable characters, and store
it in a buffer specified in your program.

There are four macro instructions you can use to retrieve, log, or display messages; these

are:

m WTL

Writes a message into the system log file.

‘ WTLD

Writes a message into the system log file after displaying it on the system console or
workstation.

• GETMSG

Gets a message from the canned message file.

• OPR

Displays a message to the operator on the system console or workstation. The
message is also written to the console log or workstation log if one is configured.

The WTL, WTLD, and GETMSG macro instructions are described in 10.2. The OPR macro
instruction is described in 10.3. Table 10—i shows some of the options and characteristics
of these four macro instructions.

Table 10—1. Summary of Message Macro Instructions

Message From Output To Message

Macro Length

Name Main Canned Job System Main

Storage Message File Log Console* Storage Maximum Default

WTL x x x 120 60

WTLD x x x x 60or120* 60

OPR x x x 60 60

GETMSG x x 120 60

Output also to console or workstation log if configured at system generation.

*Maximum 60 characters if operator reply is requested; maximum 120 characters if operator reply is not requested.



8075 Rev, SPERRY UNIVAC Operating Systeml3 10—3

UP4’JUMBER UPDATE LEVEL PAGE

10.1.1. The Canned Message File

The canned message file is a contiguous data set embedded within the supervisor transient
file. This is a file of generalized messages used by all operating system modules for display,
logging, error notification, etc. The generalized messages are added to the canned message
file included with a release of the system. Each message is assigned a canned message
number by the message file librarian. This 2-byte number identifies the message and
specifies its position within the file, and is used by the macro instructions to locate the
message within the file.

10.1.1.1. Canned Messages

An important advantage of the use of canned messages is that communication can be
standardized between the operating system, the operator, and you. Messages and job log
entries can be standardized within your job step and your job, and throughout the entire
installation. Also, it keeps the amount of main storage required in your program for messages
and log entries to a minimum. This is especially beneficial when your program contains many
messages, particularly long ones.

For each of the four macro instructions mentioned earlier, the first parameter specifies the
address of a buffer in main storage. This buffer contains either the actual message, or the
number of the canned message. If the buffer contains a message, this is the information
displayed or logged. If the buffer contains a canned message number, the routine gets this
message from the file of canned messages.

10,1.1.2, Inserting Variable Characters in a Canned Message

If you use a canned message in which variable characters are to be inserted, the buffer also
contains the actual insert characters. In this case, you create the canned message so that
an underline (EBCDIC hexadecimal code 6D) represents a byte into which a character is to
be inserted. The macro instruction routine scans the canned message from left to right and,
when an underline is found, moves a character from the string of insert characters in the
buffer to this position in the message. The next character in the string replaces the next
underline in the message, etc. This process continues until either an EBCDIC hexadecimal
08 is found in the character string or the length of the canned message has been scanned.

Messages that are not intended for the system console can contain a maximum of 1 20
characters after any variable characters have been inserted (WTL and GETMSG macro
instructions). Messages intended for the system console or workstation, but not the system log,
are limited to 60 characters (OPR macro instruction with or without a request for a reply).
Messages to be logged and displayed are limited to 60 characters if a reply is requested, and
1 20 characters if a reply is not requested (WTLD macro instruction).

The format for the canned message buffer is shown in Figure 10—i. The insertion of
variable characters from the buffer into a canned message is pictured in Figure 10—2.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating Systeml3
10—4

UPDATE LEVEL PAGE

Buffer Format for Canned Messages Without Insert Characters:

Byte

Byte 0 1 2 3 4

$

canned

/ Ic
... Imessage number

First character of the buffer; indicates that this buffer pertains to a canned

message. If any other type of message must start with a dollar sign, two dollar

signs are required at the beginning of the message buffer.

canned message number
The (1 6 bit> canned message number as a binary value.

ts(space)

c

X’08’

A space in byte 3 indicates there are no characters to be inserted into the canned

message.

A slash in byte 3 indicates there are characters to be inserted into the canned

message.

If present, the characters to be inserted into the canned message are contained in

the buffer starting at byte 4.

Hex code ‘08’ used to terminate the character string.

0 1 2 3

r $ ‘

I I 1
I canned I
I message number I
I I I

Buffer Format for Canned Messages With Insert Characters:

n
X’08’

Figure 70—7. Canned Message Buffer Formats



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating Systeml3

10—5

UPDATE LEVEL PAGE

CANNED MESSAGE

BUFFER

Figure 10—2. Insertion of Variable Characters in a Canned Message



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
10—6

UP-NUMBER UPDATE LEVEL PAGE

10.1.2. The System Log

The system log file is a set of subfiles (job logs) within the system spoolfile that receives all
job log and accounting information for each job. The job log includes all system console
messages to the operator generated by the operating system; for example, device
assignments and any reply entered by the operator. The log should contain any information
which you may find pertinent to your job’s execution. At a minimum, the log should contain
a concise message for all errors encountered and all milestones passed. You use the WTL
and WTLD macro instructions to write messages to the log file.

The job accounting portion includes accounting information generated by the operating
system for the job, such as the number of input/output operations, CPU time charged to the
job, etc.

Log file entries are destined for a printer and therefore are limited to 120 characters per
line. Each print line is considered to be a logical record within the log file. Each record
contains control information defining whether the record is a logged message or an
accounting record. Normally, the log for a job is printed on a high speed printer as soon after
job termination as possible, although printing of a job log can be initiated before the job
terminates. (See 11 .1.) The log can also be retained on magnetic tape for later printing or
use.

10.2. MESSAGE AND LOGGING MACRO INSTRUCTIONS

10.2.1. Write to the Log (WTL)

Function:

The WTL macro instruction writes a message to the system log file for subsequent
printing on a high speed printer. The message may be either currently in main storage
or retrieved from the canned message file. If you specify a canned message, the macro
instruction routine inserts any user-supplied variables into the message before writing
it to the log. The format of the canned message buffer is shown in Figure 10—1. The
insertion of variable characters is illustrated in Figure 10—2.

Because messages written to the log are destined for the printer, they are limited to a
maximum of 120 characters. Each message occupies one print line or less than a line.
Normally, job logs are printed as soon after job termination as possible. However,
printing of a job log can be initiated before job termination. (See 11 .1.)

Format:

LABEL tOPERATIONt OPERAND

[symbol] WTL {buffaddr} [{ msg-Iength }] [ {error..addr}]



8075 Rev. 3
UPN U MB ER

SPERRY UNIVAC Operating System/3
10—7

UPDATE LEVEL PAGE

Positional Parameter 1

buff-addr
Specifies the symbolic address of the message to be logged. This may be either the
address of a buffer area in main storage containing the complete message or the
address of a buffer area in main storage containing the canned message number
and any variable characters to be inserted.

(1)

If a canned message is specified, the buffer must be at least four bytes long (See
Figure 10-—i.) The first character in the canned message buffer must be a dollar
sign ($), Do not use a dollar sign as the beginning character of any other type of
message.

Indicates that register 1 has been preloaded with the address of the message area.

Positional Parameter 2:

msg-length
Specifies the length in bytes of the message to be logged. For canned messages,
this specifies the length of the completed message including any inserted variable
characters. Maximum length for the completed message is 1 20 bytes.

(0)
Indicates that register 0 has been preloaded with the length of the message.

If omitted, a length of 60 bytes is assumed.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that receives control if an error
occurs.

(r)3
Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Following is an example of how the WTL macro instruction can be used to log a message
from main storage.

Example:

LABEL IOPERA1iONt OPERAND COMMENTS
1 10 16

L
2 -

£iJ F I F I

C.1 C1UWfl MPLrn F1R SRA11 C TI1N1 FFFPF11L

3

4



8075 Rev. 3
UP-NUMBER

SPERRY UN I VAC Operating System/3
UPDATE LEVEL PAGE

10—8

Line 1 writes a message consisting of 38 characters from main storage location BUFOUT1
to the log. If an error occurs during execution of this macro instruction, control is transferred
to line 5, which specifies a normal job step termination. Line 6 defines a 38-byte output
buffer containing the output message.

Assume that the same message ‘COUNT COMPLETED FOR BRASS CASTING DEPT’ is
message number 89 in the canned message file. You can log this message using a buffer of
only four bytes, as shown in the following example.

Example:

IIIIII

LABEL tOPERATION1X OPERAND
1 10 16

I. I I

3
4 iI- - slII -

5 — lCI I I I I I I

‘2 LLJd_LJ_t (L2LL_LLL_LLJI_L

7

2

Line 1 logs a message specified in the output buffer BUFOUT2, which in this case contains

the canned message number ‘89’. Thus we can write a 39-byte message using a buffer in

the program of only four bytes. In this example, we have omitted parameter 3, which means

the task is abnormally terminated if an error occurs. Lines 5, 6, and 7 define the 4-byte

output buffer.

Suppose we want to use the same canned message to refer to several departments, such

as: BRASS CASTING, BRONZE CASTING, SHOT BLASTING, PAPER BOX SLITTING, etc. We

can store the variable characters, in this case BRASS CASTING, in the output buffer. These

characters will be inserted into the locations marked by underlines in canned message

number 90, which looks like:

COUNT COMPLETED FOR DEPT

After the variable characters have been inserted, the following message is logged:

COUNT COMPLETED FOR BRASS CASTING DEPT



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
10—9

UPNUMBER UPDATE LEVEL PAGE

Following is an example of how we can write a 45-byte message using a buffer in the
program of only 17 bytes.

Example:

LABEL z2OPERATIONt OPERAND
1 10 16

I, N1L
2 - - L

IIIi iLL

4 -

5Pj1F1br
‘ LLJt

7 J_ILJLJI_

S i_tiLj_j_ L
q. J_L_L_LLLJ_ LL - JLJLLLI_lI_1L_LLLLJJLLL

Line 1 writes canned message 90 with a length of 45 bytes to the log. Lines 5 to 9 define
the 1 7-byte output buffer.

Other WTL macro instructions in the program can use the same canned message,
substituting an output buffer containing another department name, such as: BRONZE
CASTING, SHOT BLASTING, etc, as we described earlier.

10.2.2. Display a Message and Write to the Log (WTLD)

This macro instruction operates in a manner similar to the WTL macro instruction in that you
specify a message from ma in storage or a canned message with or without variable characters.
However, the message to be logged is first displayed on the system console or workstation.
Also, there is the additional capability to request a reply by the operator. In this case, you can
specify a second buffer to receive the operator’s reply.

Function:

The WTLD macro instruction writes a message to the system log file for subsequent
printing on a high speed printer and simultaneously displays the message on the
system console or workstation for operator reply or information. The message may be
either currently in main storage or retrieved from the canned message file. If you
specify a canned message, the macro instruction routine inserts any user-supplied
variables into the message before the visual display and writing to the log. The format
of the canned message buffer is shown in Figure 10—i. The insertion of variable
characters is illustrated in Figure 10—2,



8075 Rev. 3 SPERRY UNIVAC Operating System/3 10—10

UP-NUMBER UPDATE LEVEL PAGE

Because messages written to the log are destined for the printer, they are limited to a
maximum of 120 characters. Each message occupies one print line or less than a line.

Messages are displayed on the console or workstation 60 characters per line, with
messages longer than 60 characters occupying two lines.

When an operator reply is requested, do not use a message longer than 60 characters
because the reply will be written with the message to the system log file making a total
of 1 20 characters.

Normally, job logs are printed as soon after job termination as possible. However,
printing of a job log can be initiated before job termination. (See 11 .1.)

Format:

LABEL tOPERATION OPERAND

[symbol] WTLD { buffaddri } [{
msg-length }] [ { error-:ddr

r 1 r (buff-addr-21 Jbuff-length-2
REPLY J [‘1 (r)4 j> ‘ (r)5

Positional Parameter 1:

buff-addr-1
Specifies the symbolic address of the message to be logged and displayed. This

may be either the address of a buffer area in main storage containing the complete

message, or the address of a buffer area in main storage containing the canned

message number and any variable characters to be inserted.

If a canned message is specified, the buffer must be at least four bytes long. (See
Figure 10—1.) The first character in the canned message buffer must be a dollar
sign ($). Do not use a dollar sign as the beginning character of any other type of
message.

If the message to be displayed is a canned message with a reply but positional
parameters 5 and 6 are omitted, the reply will overlay this buffer area for the
number of bytes specified in positional parameter 2.

(1)
Indicates that register 1 has been preloaded with the address of the message
buffer area.



8075 Rev.3 SPERRY UNIVAC Operating Systeml3 1011

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

msg-length
Specifies the length in bytes of the message to be logged and displayed. For
canned messages, this specifies the length of the completed message including
any inserted variable characters. If REPLY is specified in positional parameter 4
but positional parameter 5 and 6 are omitted, this is the length of the reply.
Maximum length for the completed message is 1 20 bytes. If an operator reply is
requested, maximum length is 60 bytes. Similar to the OPR macro instruction, a
minimum of 60 characters is displayed and logged when a canned message is
specified.

(0)
Indicates that register 0 has been preloaded with the length of the message buffer
area or the length of a canned message reply.

If omitted, a length of 60 bytes is assumed.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that receives control if an error
occurs.

(r)3
Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Positional Parameter 4:

REPLY
Specifies that a reply is required from the operator. Program control is not
returned to the problem program until the operator’s reply is received, written to
the log, and available in the appropriate buffer area. The message text of the reply
is stored beginning at the first byte of the buffer area specified in positional
parameter 5 for the length specified in positional parameter 6. If parameter 5 is
omitted, then the buffer area specified in positional parameter 1 is overlayed for
the length specified in positional parameter 2.

The maximum length of a reply is limited to 60 bytes or to the length of the
message buffer, whichever is smaller. Replies that exceed the length of the
message buffer area are truncated. If the reply is shorter than the message buffer
area, the remaining positions in the buffer area are space filled.



1 0—i 2
8075 Rev. 3 SPERRY UNIVAC Operating System/3

OP-NUMBER UPDATE LEVEL PAGE

After the reply is received, the message and the reply are written to the system log
file.

If omitted, the message is logged and displayed and no reply is expected.

Positional Parameter 5:

buff-addr-2
Specifies the symbolic address of a buffer area in main storage that is to receive a
reply from the operator.

This parameter gives the caller the option of specifying an output buffer that will

not be destroyed by an incoming reply.

If REPLY was not specified in positional parameter 4, this field is ignored.

(r)4
Specifies that the designated register (other than 0 or 1) has been preloaded with

the address of the buffer area in main storage that is to receive a reply from the

operator.

If omitted and REPLY was specified in positional parameter 4, any reply will overlay the
buffer area specified in positional parameter 1 for the length specified in positional

parameter 2.

Positional Parameter 6:

buff-length-2
Specifies the length in bytes of the buffer area specified in positional parameter 5.
Length may be from 1 to 60 bytes.

This parameter must be present if positional parameter 5 was specified.

(r)5
Specifies that the designated register (other than 0 or 1) has been preloaded with
the length of the buffer area specified in positional parameter 5.

If omitted and positional parameter 5 was specified, the macro instruction does not

execute.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 1O13

UP-NUMBER UPDATE LEVEL PAGE

In the foflowing example we see how you might use the WTLD macro instruction.

Example:

LABEL EOPERATlONL1 OPERAND COMMENTS
1 10 — 16

LLLi I I

a L . .La - .J I_ — I — jaa ± L I I

I I I i I i I

± 1 I

_LJL_LL_i WjI.L
s I

7 -±__ LI IJI LJ.II aL ± I I L L .1

- ‘LL 1_1_j± LL_IJL_I I_I I _ -LI. I I I.

q LJLLLLL lA’JiilP Ljjj L IL I I LI 11 I I I

..L..L..L..J..L.L IJLI.L.L LI..iL4

II I.I_L_j_LL_L L1LL JI.LL II LJ_L. iL1 Ii±Li .L I I I I. i I i i

12 ± ILIJI. II 1I. I 1± 1 1 .I I I I I

13. I. J-_L U I_U I_r LI i_i I- L

H I I i I L 1 i I I I I L .1 I i

16 •

I ± I I I I I I I I I I I I IL I I I I

I? 1 L - I I_LI.I U I I U I I I L I I. I U I L I I

jg
ThL I .L JIU4$ LUIEIDULLI I_L I I I .1 .1 1 i I I I I I

l Ek1im IL. _UMbLll NLIi?I\L QLQiI I LzPr 161 t A NP1 Hi81-YS1
o gçj1

lRfyff,7 E IJT ER R PLAC.ENENT UE&F S’T’ I I U I I.

z’ L I L_U I_J -LJ_ I_I _L_U_ L_j_I J_ I I_U_U I I I i L U I _L

a JEUJ_L 4_J_L i I_LUJLJL_i_L L_LLL I .L1 .L I. _I I_LI I. I I_U I I_I L± I I - -I L I L I U .L U-

For simplicity, assume all the messages are from main storage, and no error addresses are
specified. Line 1 of the example displays and logs a 1 5-byte message from the buffer area
BUFOUT4. The message is defined in line 18. Because parameters 4, 5, and 6 are omitted,
no operator reply is expected.

Line 5 displays and logs a 50-byte message from the buffer area BUFOUT5 and instructs
the operator to mount a special printed form on a printer. The message is defined in line
1 9. Again, because parameters 4, 5, and 6 are omitted, no operator reply is expected.

Line 9 displays and logs a 24-byte message from the buffer area BUFOUT6 and requests a
reply of Y or N. The message is defined in line 20. Because no input buffer is specified
(parameters 5 and 6>, the reply will appear on the screen and in the first byte of the
BUFOUT6 buffer area.

Line 14 displays and logs a 47-byte message from the buffer area BUFOUT7 and requests
a reply. The message is defined in lines 20 and 21 with the actual drawing number
displayed having been moved to the output area by line 13. A 39-byte input buffer for the
reply is defined in line 23.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
10—14

UP-NUMBER UPDATE LEVEL PAGE

10.2.3. Get a Canned Message (GETMSG)

This macro instruction operates in a manner similar to the WTLD macro instruction, except
that its use is limited to canned messages and there is no display or log capability. However,
after bringing a canned message into main storage with the GETMSG macro instruction,
and perhaps making some modification, you can still log or display the message using a
WTL, WTLD, or OPR macro instruction.

Function:

The GETMSG macro instruction retrieves a message of variable length from the system
canned message file, inserts the variables if any are furnished, and stores the
completed message in the specified buffer area in main storage. This receiving buffer
area is specified either in positional parameter 5 or 1 and must be large enough to
contain the completed message text which can be from 1 to 1 20 characters in length.
The format of the canned message buffer is shown in Figure 10—1. The insertion of
variable characters is illustrated in Figure 10—2.

Format:

LABEL Is OPERATION OPERAND

[symbol] GETMSG
Jbuff-addr-1} [{ [{ error-addr]

E (buff-.addr-2 (buff-Iength-2 I.
[ ‘ 1 [‘ < (r)4 I’ (r)5 5

Positional Parameter 1:

buff-addr- 1
Specifies the symbolic address of a buffer area in main storage containing the
number of the canned message to be retrieved and any variable characters to be
inserted into the message.

The first character in the canned message buffer must be a dollar sign(s). If any other
type of message must start with a dollar sign, two dollar signs are required at the
beginning of the message buffer.

If positional parameter 5 is blank, the retrieved message will overlay this area for
the length specified in positional parameter 2.

(1)
Indicates that register 1 has been preloaded with the address of the message
buffer area.



10—15
8075 Rev. 3 SPERRY UNIVAC Operating Systeml3

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

msg-length
Specifies the length in bytes of the message to be retrieved from the canned
message file. Length may be from 1 to 1 20 bytes.

(0)
Indicates that register 0 has been preloaded with the length of the buffer area.

If omitted, a length of 60 bytes is assumed.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that receives control if an error
occurs.

(r)3
Specifies that the designated register (other than 0 or 1> has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Positional Parameter 4:

This parameter is not applicable, but a comma must be entered in this position.

Positional Parameter 5:

buff..addr-2
Specifies the symbolic address of a buffer area in main storage that is to receive
the retrieved message from the canned message file.

This parameter gives the caller the option of specifying another buffer that will not
destroy the original.

(r)4
Specifies that the designated register (other than 0 or 1> has been preloaded with
the address of the buffer area in main storage that is to receive the retrieved
message.

If omitted, the retrieved message will overlay the buffer area specified in positional
parameter 1 for the length specified in positional parameter 2.

Positional Parameter 6:

buff-Iength-2
Specifies the length in bytes of the buffer area specified in positional parameter 5.
Length may be from 1 to 120 bytes.



8075 Rev. 3

UP-NUMBER
SPERRY UNIVAC Operating Systeml3 10—16

UPDATE LEVEL PAGE

This parameter must be present if positional parameter 5 was specified.

(r)5
Specifies that the designated register (other than 0 or 1) has been preloaded with
the length of the buffer area specified in positional parameter 5.

If omitted and positional parameter 5 was specified, the macro instruction does not
execute.

As an example of how to use the GETMSG macro instruction, suppose you wish to get a
canned message and move it to an output area to be printed, This is shown in the following
illustration using the same canned message (message 90) that we used earlier for one of
the WTL macro instructions.

Example:

3 IiIII

‘--

LABEL AOPERATIONA OPERAND A
1 10 16

I111i11 &ELTh
2. i W1iVO.

. IIIlII

5 i . 1 i I I I

G.1u1fluma_ - LLJLL±

7.
-

8
. LJ_LL.LL_L - LL.J -

I . . I I

U.
- ic

12 “III

13 1111111 •III

IL - III -

15 I - iE1T1M4(.1lJF1u’r1, )I ) LiFlIL224L5 I

It — M1Vt. — P II.’1’T2I C I5) I L. FIit 2..1 I I

)7. I I I - 1 i
- jIi, Li

I iii III IIIIIIIIIIIIIIIIIIIII

lq I
— .I_..j.....j.. —

2 l_.)Fl—iI’t’g ,_c . I

‘Z
—

)tC..1 i X.L._2gIO’ I

I I I I —

— CI I I

‘2, I I I I I I — )C..i —

2 I I I I — )iC1 — (‘018I’I I I I I

‘24 L.,J1FI.1l21 C...’—f5 I I



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 10—17

UP-NUMBER - UPDATE LEVEL PAGE

Line 1 of the example refers to the buffer area (BUFOUT8), which specifies the canned
message number 90. Because a second buffer is not specified (parameters 5 and 6 are
omitted), the macro instruction retrieves message 90 from the canned message file,
inserts the variable characters BRASS CASTING, and stores the completed 45-byte
message in main storage starting at the first byte of BUFOUT8. Lines 5 to 11 define the
45-byte output buffer BUFOUT8. Line 7 defines the canned message number 90, line 9
defines the insert characters BRASS CASTING’ and line 11 defines an additional 28 bytes
to increse the size of the buffer to 45 bytes to accommodate the completed canned
message. For our example, line 2 moves the completed message in BUFOUT8 to a work
area (PRINT1) where it can be edited and printed.

As you can see, when used this way the GETMSG macro instruction overwrites the buffer
specifying the canned message number and insert characters. If you want to avoid this,
then you specify a second buffer area. Line 15 does this by specifying BUFIN2 as
parameter 5 with a length of 45 bytes (parameter 6). The macro instruction stores the
completed message in this buffer area and line 3 moves it from BUFIN2 to a work area
PRINT2. Lines 20 to 24 define a 1 7-byte output buffer BUFOUT9. Line 21 defines the
canned message number 90, and line 23 defines the insert characters BRASS CASTING.
Line 25 defines the second buffer area (BUFIN2), which receives the completed message.

10.3. USER-OPERATOR COMMUNICATION

10.3.1. General

The operating system communicates with the system operator via WTLD macro instructions
within the modules of the supervisor and other system elements. When the message is
displayed at the system console, it is automatically prefixed with a job identification (ID) number
and a message increment number.

The operating system communicates with the workstation (system mode) through the top two
lines displayed on the workstation screen. The first line displays messages from the
workstation operator to the system, the second line displays messages from the system to the
operator. Changing from workstation mode to system mode is done by the workstation operator
by means of a control on the workstation. The system can request the operator to place the
workstation into system mode by means of a visual display and an audible signal at the
workstation. When the mode control is set to system mode, the two top lines displayed on the
workstation screen are stored and redisplayed when the workstation mode is restored.

A message from the system includes the job identification number of the program for which the
message is issued, a type code, and one blank, The message type code is: a blank for an
information message, a question mark for a message requiring a reply, and an asterisk for a
message requiring an action. A description of the three types of messages follows:

Information

This type of message is issued when information is passed to the operator for his
information and for inclusion in the system log, as, for example, notification of normal
job termination.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
10—18

UP-NUMBER UPDATE LEVEL PAGE

— Reply

This type of message is issued when the operating system reaches a point in its
processing where a reply to a question (perhaps a choice between alternate courses of
action> must be made by the operator before processing can continue. For example, the
operator may be asked to decide whether to retry an error recovery procedure or to
abort the user program.

The job/message ID of this type of console message is followed by a question mark(?). A
question is not deleted from the console screen until it has been answered.

For a workstation, the job number and question mark must precede any workstation
response to a reply message.

Action

This type of message is used when operator intervention and assistance are required
before processing of the requesting task can continue. For example, the console operator
may be requested to mount a disk pack or turn on power to a device.

The job/message ID of this type of message is followed by an asterisk (*) An action
message is not deleted from the screen until the operator has complied with the
request and reactivated the job with a GO command.

When in system mode, the operator can acknowledge a reply or action message without
answering the message immediately. If he does this, the next pending information message is
displayed and it too can be acknowledged. When all system information messages are
acknowledged, the original reply or action message is redisplayed and can be answered. The
operator can make any keyin while a message remains unanswered. However, remaining
messages requiring an answer are not displayed until the first message is answered.

Normally, the console operator replies to a message from the system. However, he can also
communicate with the system without any prompting or direction. This type of
communication is called an “unsolicited message” from the operator. If the operator enters
an unsolicited message for a job, control is passed to the job step’s operator communication
island code, which is a routine you must write to handle a specific event. If there is no
island code for this job step, or the island code is busy, the unsolicited message is ignored.
This is described in 8.6 under the headings relating to operator communication. The
operator/system console communications procedure is described in the appropriate
operations handbook for operators, UP-8072 (current version>.

The action type message is reserved for use by the operating system. However, you can use
the WTLD macro instruction to display and log a message for operator information or to
request a reply from the operator.

You can also display a message to the operator without making an entry in the system log.
In this case, you would use the OPR macro instruction.



8075 Rev. SPERRY UNIVAC Operating Systeml3 10—19
UP-NUMBER UPDATE LEVEL PAGE

10.3.2. Display a Message to the Operator (OPR)

This macro instruction operates in a manner similar to the WTLD macro instruction except
that the message is only displayed and not written to the system log. In this way you
would keep the size of the log file and subsequent printout to a minimum. You would use
the WTLD macro instruction to display messages that require an entry in the log, and use
the OPR macro instruction to display messages to the operator that you feel do not require
a log entry. However, it the system has a communications output printer (COP) at the
console and you use an OPR macro instruction to display a message to the operator, this
message will also be printed on the COP. Also, the OPR message, and any reply, will be
written to the console log if one was configured at system generation.

For a system with workstations, the system message line of the master workstation is the
default destination for all WTLD/OPR macros. The master workstation is normally the
workstation which has initiated the job or symbiont.

Function:

The OPR macro instruction displays a message on the system console or workstation for
reply or information. The message may be either currently in main storage or retrieved
from the canned message file. If you specify a canned message, the macro instruction
routine inserts any user-supplied variables into the message before the visual display. The
format of the canned message buffer is shown in Figure 1 O—1 . The insertion of variable
characters is illustrated in Figure 10—2.

Use this macro instruction for communication with the operator. Upon execution, program
control is released until either the message is displayed, the reply is transferred to the
appropriate buffer, or an error is encountered.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 10—20

UP-NUMBER UPDATE LEVEL PAGE

Format:

LABEL zOPERATIONL2 OPERAND

[symbol] OPR
{buffaddr1}

[{mS9..lenth}]

[ {error..addr}]

[,REPLY] [ {buffddr2}] [{buff-len:th-2}l

Positional Parameter 1:

buff-addr- 1
Specifies the symbolic address of the message to be displayed. This may be either
the address of a buffer area in main storage containing the complete message or
the address of a buffer area in main storage containing the canned message
number and any variable characters to be inserted.

If a canned message is specified, the buffer must be at least four bytes long. (See
Figure 10—1 .) The first character in the canned message buffer must be a dollar sign
($). If any other type of message must start with a dollar sign, two dollar signs are
required at the beginning of the message buffer.

If the message to be displayed is a canned message with a reply, but positional
parameters 5 and 6 are omitted, the reply will overlay this buffer area for the
number of bytes specified in positional parameter 2.

(1)
Indicates that register 1 has been preloaded with the address of the message
buffer area.

Positional Parameter 2:

msg-length
Specifies the length in bytes of the message to be displayed. For canned
messages, this specifies the length of the completed message including any
inserted variable characters. If REPLY is specified in positional parameter 4, but
positional parameters 5 and 6 are omitted, this is the length of the reply.

Maximum length is 60 bytes.

(0)
Indicates that register 0 has been preloaded with the length of the message buffer
area or the length of a canned message reply.

If omitted, a length of 60 bytes is assumed.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 10—21
UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that receives control if an error
occurs.

(r)3
Indicates that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Positional Parameter 4:

REPLY
Specifies that a reply is required from the operator. Program control is not
returned to the problem program until the operator’s reply is received and
available in the appropriate buffer area. The first nonblank character of the
message text of the reply is stored, beginning at the first byte of the buffer area
specified in positional parameter 5 for the length specified in positional parameter
6. If parameter 5 is omitted, then the buffer area specified in positional parameter
1 is overlayed for the length specified in positional parameter 2.

After the reply is received, register 0 contains the number of characters typed by
the operator, including the character under the cursor.

The maximum length of a reply is limited to 60 bytes or to the length of the
message buffer, whichever is smaller. Replies that exceed the length of the
message buffer area are truncated. If the reply is shorter than the message buffer
area, the remaining positions in the buffer area are space filled. If the reply is all
spaces, the buffer will be space filled.

If omitted, the message will be displayed and no reply expected.

Positional Parameter 5:

buff-addr-2
Specifies the symbolic address of a buffer area in main storage that is to receive a
reply from the operator,

This parameter gives the caller the option of specifying an output buffer that will
not be destroyed by an incoming reply.

If REPLY was not specified in positional parameter 4, this field is ignored.

(r)4
Specifies that the designated register (other than 0 or 1> has been preloaded with
the address of the buffer area in main storage that is to receive a reply from the
operator.



8075 Rev. SPERRY UNIVAC Operating System/3 10—22

UP-NUMBER UPDATE LEVEL PAGE

If omitted and REPLY was specified in positional parameter 4, any reply will overlay the
buffer area specified in positional parameter 1 for the length specified in positional
parameter 2.

Positional Parameter 6:

buff-Iength-2
Specifies the length in bytes of the buffer area specified in positional parameter 5.
Length may be from 1 to 60 bytes.

(r)5
Specifies that the designated register (other than 0 or 1) has been preloaded with
the length of the buffer area specified in positional parameter 5.

If omitted and positional parameter 5 was specified, a length of 60 bytes is assumed.

There are three ways in which the OPR macro instruction differs from the WTLD macro
instruction. These are:

1. You cannot write to the system log; you can only display a message.

2. The length of the message to be displayed cannot exceed 60 bytes.

3. If you set up a second buffer to receive the operator reply (parameter 5), but omit the
buffer length (parameter 6), the macro instruction assumes a length of 60 bytes. (With
the WTLD macro instruction, if the second buffer is specified (parameter 5), the length
(parameter 6) must also be specified, else the macro instruction does not execute.

Following is an example of how to use the OPR macro instruction. In this case we’ve used
the same parameters as for the WTLD macro instruction example.



8075 Rev. 3
UP-NUMBER

Example:

SPERRY UNIVAC Operating System/3 10—23
UPDATE LEVEL PAGE

LABEL AOPERATIONA OPERAND COMMENTS
1 1D 16

iFbu1L
, I I

1J_JiI_L1 - iI L.

1 ‘I — I

I — I I I

._l..._J.....J.....i...._I......L_._L._ I I

— ._.i.._I______L__l_._J_____l._._I_. •1 — I I I I

7. ±1 LLII IjIjj tLI

8 — .i..__.___._____ — I I I I I

— l’V1.1 i
— I I I

DIP1R1 I - UFuIT 1L(.71 31,1REiPIL1Y1UIFt14 I I’4 I I

-

I I

tiJIi -

; iJ&_ — C1 II.II 1I11D1Y’1?1 IY Dig It’J1 ‘ I

lFJ1TJL III

P lII

It F1LU -
IIII -

3.

II.

q

II.
12

i3
111

Assume that all the messages are from main storage, and also assume that no error

addresses are specified. Line 1 of the example displays a 1 5-byte message from the buffer

area BUFOUT4. The message is defined in line 14. Because parameters 4, 5, and 6 are

omitted, no operator reply is expected. Line 5 displays a 24-byte message from the buffer

area BUFOUT5 and requests a reply of Y or N. The message is defined in line 15. Because

no input buffer is specified (parameters 5 and 6), the reply will appear on the screen and in

the first byte of the BUFOUT5 buffer area.

Line 10 displays a 47-byte message from the buffer area BUFOUT6 and requests a reply.

The message is defined in lines 16 and 17 with the actual drawing number displayed having

been moved to the output area by line 9. A 40-byte input buffer for the reply is defined in

line 18.





8075 Rev. 3 SPERRY UNIVAC Operating Systeml3
11—1

UP-NUMBER UPDATE LEVEL PAGE

11. Other Services

11.1. SPOOLING

11.1.1. General

Spooling is the technique of buffering data files for low speed input and output devices to a
high speed storage device independently of the program that uses the input data or.
generates the output data. Data from card readers or from remote sites is stored on disk
for subsequent use by the intended program. Data output by the program is stored on disk
for subsequent punching or printing. The spooling function also handles diskette files. It
treats input from diskette as though it were from a card reader, and output to a diskette as
though it were to a card punch. In this description of spooling, any reference to a card
reader, card input, or card file also includes diskette input; any reference to a card punch,
card output, or card file also includes diskette output. The data management user guide,
UP-8068 (current version) shows the formats for diskette records.

Spooling enhances system performance by releasing large production programs and system
software from the constraint of the slower speed devices, thereby freeing the main storage
occupied by these programs sooner; and by driving the slower speed devices at their rated
speed on a continuous basis, thereby making full use of the devices during the time that is
normally lost to systems overhead or to job steps not using printers.

The spooling function comprises five elements: initialization, input reader, spooler, output
writer, and special functions. These elements are described on the following pages. Figure
11—1 gives a simplified picture of the relationship between the slow and high speed
input/output devices and the software components of the spooling function and the
supervisor.

11 .1 .1 .1. Initialization

Spool initialization provides for the establishment, data recovery, or reestablishment of the
spoolfile at supervisor initialization. Based on system generation parameters or operator
specified options at supervisor initialization, it allocates the spoolfile and builds the system
spool control table, or it recovers an existing spoolfile. In the case of an existing spoolfile, it
clears the file, recovers closed subfiles, or recovers and closes all subfiles.



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 A

UPDATE LEVEL

11 —2

PAGE

11.11.2. Input Reader

Using PIOCS the input reader reads cards from a real card reader or records from a diskette and

writes these images to the spoolfile via a virtual card reader and the spooler. It closes the

previous subfile if one exists and opens a new subfile. A given input reader can handle only one

card reader or diskette at a time; however, any number of input readers can be active.

11.1.1.3. Spooler

The spooler is the hub of the spooling package and is linked as part of the resident supervisor. It

provides record level input and output to and from the spoolfile for each element in the system

needing access to that file. It intercepts all input/output commands to virtual printer, punch,

and card reader devices, and accesses the disc when necessary using the system access

technique (SAT) for accesses to the spoolfile. All input/output requests (EXCP macro

instructions) addressing virtual devices are trapped and routed to the spooler for processing

rather than PIOCS. The spooler supports both reads and writes to virtual devices while

simulating the action of PIOCS as far as error handling, page spacing, and synchronization are

concerned. It allocates tracks to subfiles and maintains control of the user’s spool control

tables, It can handle any number of print, punch, and read files simultaneously, including

multiple files per job.

Figure 11—1. Relationship of Spooling Devices and Programs



I

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

1 1 .1 .1 .4. Output Writer

The output writer reads data from the system spoolfile and prints or punches this data on
the physical devices. As an alternative, it can output this data to disk or tape, which then
may be reintroduced at a later time to the output writer as input (rather than using the
spool file as input), or for processing at a later time by the user.

PUNCH FILE—-—-----—————-ø —PUNCH FILE OUTPUT

PRINT FILE I- OUTPUT —PRINT FILE OUTPUT

LOG FILE

_________________

WRITER —LOG FILE OUTPUT

OUTPUT WRITER TAPE OR DISK*- - REDIRECTED OUTPUT TO TAPE OR DISK-ø

The output writer configures itself dynamically to the printer or punch assigned, thereby
keeping main storage requirements to a minimum. It is loaded automatically whenever
there are files to be printed or punched and there is a printer or punch available. As with the
input reader, a copy of the output writer can handle only one printer or punch. However, for
every printer or punch on a system, there can be a version of this element running that
device.

A number of capabilities and options are available:

Processing may be handled in either burst or nonburst mode.

The operator may refine burst mode by selecting a subcriteria.

A maximum of 255 copies of a given file may be printed or punched.

Subfiles may be retained after they have been printed or punched.

Printer or punch output may be initially assigned, or redirected, to tape.

The output writer determines which file to process based on criteria entered at system
generation, or later by an Operator system command or function to the output writer by the
operator. For example, let us assume nonburst was specified at system generation. This
means an output subfile cannot be printed or punched until after the job has terminated and
the job log has been closed. Also, each job’s output is handled as a continuous entity. The
operator can change this to burst mode processing, which means that an output subfile can
be printed or punched after it has been closed, or after a breakpoint has been created (see
1 1 .1 .3), and does not have to wait until the job has terminated. He can specify file selection
by various criteria such as first-in/first-out by device type, account number, job number,
etc. Operator commands and responses are described in the appropriate operations
handbook for your system.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

If a system is generated with the block numbering capability, the output writer will always
create output tapes with block numbers. When the output tape is reintroduced as input,
the input commands will be issued with the assumption that there is a block number. This
means that tapes created with block numbers by the output writer cannot be reintroduced
into a system without block numbering. Also, tapes created by the output writer on a
system that does not have the block numbering capability cannot be reintroduced into a
system that does have block numbering. If an operator attempts to print or punch from a
spool tape that is not compatible with the system, the output writer will be terminated and
an INPUT SPOOL TAPE INVALID message will be displayed.

The tape or disk file created by the output writer may be accessed by a user-written
program. For example, a printer output file can be placed on tape to allow it to be further
processed by a microfiche processor to create a microfiche copy. The formats of redirected
output files on disk or tape can be found in the spooling and job accounting concepts and
facilities, UP-8869 (current version).

1 1 .1 .1 .5. Special Functions

There are a number of special functions, such as open, close, find, delete, that can be used

by symbionts accessing the spoolfile but are not available for use by user programs.

However, the breakpoint function is available to user programs and to the operator. A

breakpoint is the closing and reopening of a spool subfile to permit output to the physical

device to start before the job step terminates. For example, if a spool subfile is getting full, a

message to the operator notifies him of this so that he can create a breakpoint to the output

file. The user program can also create a breakpoint by using the BRKPT macro instruction

(described in 11 .1 .3).

11.1.2. To Use Spooling

At system generation, you can select:

a no spooling;

• output spooling only;

• input/output spooling; or

• input/output and remote batch spooling.

Also, you can specify first-in/first-out processing in the nonburst mode, or accept the

burst mode, which is the default condition. This can be changed later or qualified by the

operator.

Statements input to job control enable it to set up the files, buffers, linkages, and control
tables by which the spooling functions are performed. If the system does not have the
spooling function, these job control statements are ignored.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 11—5

UP-NUMBER UPDATE LEVEL PAGE

Job control options for spooling are entered using the JOB, SPL, DATA, and DST job control
statements. These are described in the job control user guide, UP-8065 (current version).
Initialization options are also entered by the system operator. These are described in the
appropriate operations handbook for your system.

There are no changes required to a user program to use spooling. You can define your files
using either data management macro instructions, or PIOCS macro instructions. A job that
runs on a nonspooling system will also run on a spooling system, and vice versa. If you usethe
BRKPT macro instruction in your program, it will be ignored if your job is run on a nonspooling
system.

NOTE:

Spooling always permits redirected output to tape. To redirect output to disk, however, you
must include dynamic buffer management either explicitly or using other parameters at
system installation time.

11 .1 .3. Create a Breakpoint in a Spool Output File (BRKPT)

Function:

The BRKPT macro instruction creates a breakpoint in a printer or punch spoolfile. It
closes and reopens the subfile as it is being generated by the spooler. Each segment
created at this breakpoint is considered a logical subfile so that output to the physical
device can be started prior to job step termination.

If this macro instruction is included in a program executing in a system that does not
have the spooling capability, the macro instruction is ignored.

Format:

LABEL LOPERATION OPERAND

(filename

[symbol] BRKPT 1ccBnamej

Positional Parameter 1:

filename
Specifies the symbolic address of the DTF macro instruction in the program
which defines the file in which a breakpoint is to be created. Use this parameter
if you are using data management macro instructions to define and access the
file.

CCB-name
Specifies the symbolic address of the command control block (CCB) associated with
the file in which the breakpoint is to be created. Use this parameter if you are using
PIOCS macro instructions to define and access the file.

(1)
Specifies that register 1 has been loaded with the address of the DTE macro
instruction or CCB associated with the file to be breakpointed.



8075 Rev. 3 SPERRY UNIVAC Operating System/3
11—6

UP-NUMBER UPDATE LEVEL PAGE

11.2. JOB ACCOUNTING

11.2.1. General

The job accounting package consists of resident routines which are linked with the
supervisor and elements of the job step processor at system generation time. These routines
provide a count of the facilities utilized by each job step during its execution within the
system. The message logging facility of the spooling function transfers this data from main
storage to disk as part of the output spoolfile. The output writer prints the job step and job
values as part of the normal message log output for each job. Optionally, the output writer
can write the accounting information to a standard SAM magnetic tape file for offline
processing by user-developed accounting routines or by OS/3 data utility routines. You
can assign an account number using the JOB job control statement which is carried along
with the accounting records. This enables you to accumulate statistics from the SAM file
for computer time and resources charged against an account number, which could
represent a project, department, cost center, etc. The job accounting function requires the
use of the spooling package and the optional timer facilities. These must be included at
system generation time. Also, the job accounting versions of SVC decode and the switcher
must be included within the supervisor at link edit time.

11 .2.2. Accounting Data

Accounting data is accumulated in a job accounting table (Figure 11—2) in the job prologue.
Fields in this table serve as counters for job step and job statistics.

Byte 0 1 2

0 count of SVCs in job step

4 Count of SVCs in job

8 count of transient calls in job step

12 count of transient calls in job

16 CPU time used by job step

20 CPU time used by job

24 length of largest job step (in bytes)

28 time of day that job step started

32 time of day that job started

36 accumulated time of day of all job steps

Figure 11—2. Job Accounting Table Format (Part 1 of 2)



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A 11—7
UP-NUMBER UPDATE LEVEL PAGE

Byte 0 1 2 3

40 count of EXCPs in job

44 count of I/Os not fitting in device count table

48 switch priority not used termination code of job step

52 logon time in milliseconds

56 number of commands issued

60 number of files accessed

64 number of non-PUB spooled I/Os

68 PUB acctg ID count of EXCPs to that PUB

1.
(device count table — one entry for each device)

PUB acctg ID count of EXCPs to that PUB

Figure 11—2. Job Accounting Table Format (Part 2 of 2)

11.2.2.1. Job Step Level Data

Counters in the job accounting table are dynamically incremented during job step execution.
The following data is collected for each job step:



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A 118

UP-NUMBER UPDATE LEVEL PAGE

a Central processor time

This consists of the total time in milliseconds charged to tasks of this job or
supervisor tasks working for this job. This means that all supervisor overhead, such
as processing SVCs and the processing of supervisor tasks is charged to the
requesting job. Supervisor idle (wait> time is not charged to any job.

a Total SVCs executed

This consists of the total number of SVCs executed by the job’s tasks or by supervisor
tasks working in behalf of the job.

• Total transient functions

This consists of the total number of transient functions executed by the job’s tasks or
by supervisor tasks working in behalf of the job. This does not include overlays to
transients.

a Total I/O requests

This consists of the total number of I/O requests executed for each device by the job’s
tasks or by supervisor tasks working in behalf of the job. I/O requests per device
include spooling activity in terms of the number of cards read from the spool file and
print lines written to the spool file by this job step.

In addition to the counts dynamically maintained in the job accounting table, the job step
processor furnishes the following values for job step accounting:

• Total wall clock time required for the job step to execute. This does not include time
during which the job step was rolled out, nor does it include the period between the
time a checkpoint was taken and the job step was restarted from the last checkpoint.

a Total main storage into which programs were loaded by the loader.

This value represents only that amount of main storage used by the job step as
recorded by the loader, and does not include the prologue or those available areas
within the job region which are used but not for loading.

• Initial switch priority of the job step.

• Termination code of the job step. Normal termination code is 000.

a Value of the User Program Switch Indicators (UPSI) at job step termination.

11.2.2.2. Job Level Data

Some of the data collected for the job steps of a particular job is totalled for the job’s
accounting record. In addition, data is collected on the job level which cannot be acquired by
just summing the job step values. That data which is collected solely for the job is recorded
at job termination time and consists of the following:

• Size of the largest job step.



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 119

UP-NUMBER UPDATE LEVEL PAGE

Job date

This is the date from the job preamble representing the date the job was run.

• Total job main storage including prologue.

• Total wall clock time for the job, including all of the job step processor overhead.

Wall clock time is defined as the point in time when a job is initiated to execute up to
the point in time when the job termination message is displayed, and does not include
spool time.

• Total wall clock time for all job steps.

This is a sum of the total wall clock time for each job step and does not include job
control time.

• Total CPU time for all job steps.

This is a sum of the CPU time for each job step and does not include job control time.

• Total SVC count for all job steps.

This is a sum of the SVC counts for each job step and does not include job control
counts.

• Total transients called for all job steps.

This is a sum of the transients called by the job steps and does not include job control
counts.

• Total I/O count for all job steps.

This is a sum of the I/Os executed by the job steps and does not include job control
counts.

11.2.3. Data Printout

When printing the job’s log, the output writer also prints the accounting records for that job.
Also, the output writer can write all the job log records to a magnetic tape for offline
processing, or only the log records, or the accounting records. This gives you the ability to
create a system log file and a system accounting file for subsequent statistical processing
and evaluation. Figure 11—3 shows the format of the job accounting record printout.



C -o U > -f m r m m r -a 0

0

0

Jo
b

H
e
a
d
e
r

S
p

o
o

l
H

e
a
d

e
r

S
te

p
H

e
a
d
e
r

D
ev

ic
e

C
o
u
n
ts

Jo
b

T
o
ta

ls

S
1
rZ

Y
+

U
N

IV
A

c
Pm

N
TE

R
FO

R
M

A
T

C
H

A
R

T
16

0
PR

IN
T

PO
SI

T
IO

N
S

A
PP

L
IC

A
T

IO
N

.
.
.
.
.
.
.
.
.

.
.

T
Y

PE
O

F
PR

IN
T

E
R

.
.
.

—
.
.
—

—
.
-
-

PR
O

G
R

A
M

M
E

R
D

A
T

E

0
S

n
,.

.‘
.5

5
5

S
n

0
0

12
0

0
13

2
.n

n
14

4
no

16
0

.

q
I
_

_
J
jE

jo
b
-n

6
n
o

A
C

T
N

.
x

o
A

SS
TI

9E
O

o
E

,n
eR

Y
o
?C

U
o
]n

n
S

.D
yT

O
IS

(P
L

U
S

5
O

0
o

$Y
IE

!P
R

PL
6G

V
E

)
y

,7
..
n

,I
4

lO
t

en
’.

k
jh

m
O

N
O

S
—

.
-
—

1.
02

&
o

h
.s

n
o

.p
n

m
v
v
.r

.S
%

.
.
.

.
.

.
.

c.
.._

.L
P

.D
.

—
•L

FD
lJ

A
M

I
FO

PI
4

66
14

—
n
n
n
,

T
o
&

s
—

5
X

1
O

s
5
S

0
,

5
1
6

1P
n
n

-
—

-
h
E

S
S

ç
I
j
r
E

P
n

n
O

(5t
n

)
U

S
S

0
5
5
o
0
6
0
X

L
Y

T
E

S
E

L
A

P
S

E
D

h
4
6
L

C
L

D
C

K
4
E

n
I
h

U
S
.
j

1
5

5
4

L
SU

C
6
L

L
5
o
o
o
o
o
.n

o
6
o

A
h
E

s

L
cI

..
U

.
1

E
R

i
C

o
)
E

n
56

5
iT

C
H

-P
R

I&
R

IT
Y

.n
s

2
P

u
T

I4
E

0
5
1
0

n
I
n
h
:
5
n
1
11
6
A

6
5
!E

6
T

A
L

L
S

X
o
n

0
0

(
0

A
r
h
-
:

C
I,

3
!u

P
tI

s
.E

.T
rt

..
A

n
.R

..
..

.
.
.

-
.

.
I

.
.

.

-
I
-
-

.1
h
h
.
n

:;
::

:
E

E
C

P
S

4
S

o
I
o

n
n

n
AI&

&
.t

a
a

.
n

o
n

,
o

0
n

n
s
o

0
.;

A
4

a
o

n
o

o
n
n
n

.
1:

.
:

:
:
t
.
:
:
:

6(
21

E
5

C
(A

rt
S

5
E

5
n

.*
i6

s
jx

B
Y

tS
T

E
1E

L
E

L
A

PS
E

D
V

IL
L

C
L

O
C

K
T

t
l
4

E
h

h
,
’

1L
s
.
o
t

f
r

T
O

O
51

C
C

1
L

i.
S

6
n
n
n
O

o
s

A
h
o
o
:
c
.s

—
*

I. N N 0

C
o

U
o —

U
01 C/
) -o m C C
,

0 -N 6-
4-

yALL

•C
L

0C
61

ri
ns

E
O

L
L

C
lE

F
S

h
h
.
-
,
:

5s
.
o
;
j

l8
f.

T
R

A
R

S
I

U
T

C
N

L
L

C
0

0
5

0
5

0
o0

5
A

h
h
:,

.n
,:

0
5

CL
t3

T
Ø

T
A

L
P

L
I
T

i
6F

.A
LL

S
T

E
P

S
.

E
c
P

••
S

N
X

S
n

•
s
N

•
6

.
:::

.
:1.

-
.

.
V

V
V

F
-

-
.

.

V
-
i
,

V
.
’
:

.

.
.

..
i

1.

.

.
.

.
.

V

:
‘
‘

.
.

.

—
—

—
—

—
—

.
,
.
.

..
—

n
—

,.
—

.0
..
—

—

4
.

.
.

.
.

-
.

.
.
4

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

-‘
-‘

‘-
--

ft
--
,

.
.
.

.
.

.
.

,
.

i...
::

::
:I

!
::

::
:”

::
:

V

.

.
:
.
:

.
.
.
:
.
.
.

:
.

::
:!

:
:
.:

::
.

:.
I

:
.

j
..
:

I
.

.
-

:.
.
.
:
:
:

:..
z:

:
:I

J
::

±
:

::
::

::
:

-

-
—

-
.

.
:
:
:
z
L

0
:

::
::

::
.:.

::
::

::
:

.
.

.
‘S

V
.
:
-
-

V

“—
i—

—
—

.
.

.
.

.
.

-
—tt

I..
.

,
,
,
.
.

‘
‘
V

,
—

t
1
4

t
—

.
—

-
.
.

U
0
1

1
5
0
5

1-4
.

IT

F
ig

ur
e

1
1—

3.
Jo

b
A

cc
o
u
n
ti

n
g

R
ec

o
rd

P
ri

n
to

u
t

F
o

rm
at

II

b
.

>



8075 Rev. 3 SPERRY UNIVAC Operating System/3 11—il

UPNUM8ER UPDATE LEVEL PAGE

11.3. SYSTEM ACTlVY MONITOR

11.3.1. General

The system activity monitor, a component of OS/3, is a system performance measurement
tool. The activity monitor collects and presents information which aids in locating system
bottlenecks, optimizing job mixes, and modifying system variables to improve performance.
Details of the activity monitor are covered in the OS/3 operations handbook, UP8O72 (current
version).

The activity monitor consists of two major components: the monitor, and the report producing
program.

11.3.2. Monitor

The activity monitor gathers, displays, and records the OS/3 performance statistics. The
monitor is an OS/3 symbiont that is loaded by the system operator who also requests the class
or classes of statistics to be measured, and at what intervals they are to be displayed and/or
recorded. At the expiration of the operator specified interval, the requested statistics are
displayed on the system console and/or recorded in an output file. If the requested measures
are recorded, a report producting program can produce offline performance reports. The
monitor is made up of three functional parts as follows:

1. Monitor control establishes the run time operation interface and linkage with the OS/3
operating system and provides the console interface for operator control of the monitor.

2. The data collector gathers the measured data. (Probes and software points for
measurement are established in the OS/3 operating system to provide the desired
measurements.) At run time, all or a selected set of the probes are activated by monitor
control, and when a selected probed software path is executed, a linkage is made from that
point into the data collector to gather the data needed for the measurement.

3. Output task is the part of the monitor that outputs the collected measurement data at fixed
timed intervals. At activity monitor load time, the operator specifies an output mode which
is either display, recording, or both. The system activity monitor display mode providesfor
a statistical subset to be edited, formatted, and then displayed on the system console.
Recording mode provides for all data collected to be written to an output file.

11.3.3. Report Producing Program

The report producing program provides a means of recording the measurement data collected
by the monitor data collector and written to the output file specified. This package runs as a
batch job and provides offline data reporting capabilities. It includes time and data selection
along with statistical and histogram type output reports.



8075 Rev. 3 SPERRY UNIVAC Operating System/3 11—12
UP-NUMBER UPDATE LEVEL PAGE

11 .3.4. System Activity Monitor Statistics

Table 11—1 shows the statistics and measurements that the system activity monitor provides.
The table is divided into four classes representing the categories under which measurements
are selected. The number of occurrences that are presented in conjunction with the interval
time enables presentation of rates of activity for the various classes. These rates provide good
insight into the use and loading of the various OS/3 facilities.

Table 11—1 System A ctivity Monitor Statistics

C’ass Statistics Provided

CPU Idle time
Wait on IC time
Task CPU time

10 By channel:

Number of SlOs issued
Number of SlOs queued
Number of retries

Main Storage Number of:

Active jobs
Jobs completed
Main storage blocks available
SVCs called
Transients called
Transient areas available

Communications By line, number of:

Input messages
Output messages
Retransm issions
Polls
Messages to a communication
user program
Messages from a communication
user program



8075 Rev. 3 SPERRY UNIVAC Operating System/3 i Index 1

UP-NUMBER UPDATE LEVEL PAGE

Index

Term Reference Page Term Reference Page

A description 3.3 3—5
Fig 3—1 3—6

Abnormal termmation abel field 33.1 3—6
description 83.2 8—13 operand field 3.3.3 3—7
dumps 9.1.3 9—10 operation field 3.3.2 3—7

sequence field 33.6 3—8
Abnormal termination island code

attaching 8.6.1.1 8—36 ATTACH macro instruction
description 8.6.6 8—13 function 7.32 7—9
example using symbolic addresses Fig. 8—6 8—45 multitasking 7,3 7—5
exiting 8.6.4.3 8—42 task creation 7 2.2 7—3
multitasking 8.6.9.2 8—54

Automatic volume recognition

Absolute address (ABS) 9.3.4.1.3 9—34 description 2.2.11 2—9
interrupt module function 2.2.2.6 2—4

Accounting See job
accounting. AWAKE macro instruction

function 7.3.5 7—12
Action messages 10.3.1 10—18 multitasking 7.3 7—6

queue driven task 7.2.5 7—4
Actions, monitor statements

description 9.3.5 9—38 B
display (0) 9.3.5.1 9—38
halt (H) 9.3.5.2 9—43 Base displacement address (B/D) 9.3.4.1 2 9—34
quit (Q) 9.3.5.3 9—44
summary Table 9—2 9—45 BCW

format for integrated disk adapter Fig. 4—2 4—7
Activate waiting table (POST) 7.4.4 7—18 format for integrated peripheral channel Fig. 4—3 4—11

Activity monitor 11.3 11—11
format for multiplexer channel Fig. 4—4 4—13
function 4.2.1 4—2

Address adjustment module 2.2.2.4 2—4
4.2.3 4—5

Block addressing

ALLOC macro instruction by key 8.2.2 8—3

disk 5.3.1 55 by relative block number 8.2.3 8—4

diskette 5.5.1 5—14
Block level device handler 6.1 6—1

Allocate routine, disk 5.2.1 5—2
Block loader 8.2.1 8—2

ALTER statement 9.3.1.2 9—25
Block modules 8.2 8—2

ARGLST macro instruction 8.5.5 8—31
Block number processing, TSAT

Assembler coding form description 6.10 65(
comments field 3.3.4 3_7 facilities required 6.10.1 6—5
continuation column 3.3.5 3—7



sRRvuMvAcoperatingsystem/3
jUPDAELG:

Term Reference Page Term Reference Page

Block number processing, TSAT (cont) Canned message file
initialized 6.10.2.1 6—58 buffer formats Fig. 10—1 10—4
noninitialized 6.10.2.2 6—58 description 10.1.1 10—3

inserting variable characters 10.1.1.2 10—3

Block numbered tape files Fig. 10—2 10—5

block number field 4.4.1 4—33 messages 10.1.1.1 10—3
Fig. 4—9 4—34

description 4.4 4—33 CAW Fig. 4—6 4—17

input/output buffer 4.4.3 4—35
physical IOCS requirements 4.4.5 4—36 CCB
processing 4.4.4 4—35 format Fig. 4—7 4—22

tape restrictions 4.4.2 4—33 function 4,2 1 4—2
4.2.5 4—18

Block numbers, relative See relative
block number. CCW

format for selector channel Fig. 4—5 4—16

Block transfer, wait 6.4.4 6—22 functon 4.2.1 4—2

6.9.4 6—54 4.2.4 4—15

Blocks Channel address word (CAW) Fig. 4—6 4—17

accessing multiple 6.2.6 6—8
accessing physical 6.4.6 6—24 Channel command word (CCW) See CCW

logical See logical blocks.
output logical 6.4.3 6—21 Channel interrupt processor modules 2.2.2.8 2—5

retrieve next logical 6.4.2 6—20
wait for transfer 6.4.4 6—22 Channel program, execute 4.2.8 4—28

Branch, FETCH macro Channel program processor module 2.2 2 1 2—2

instruction 8.2.9 8—11
Channel schedular modules 2.2.2 5 2—4

Breakpoint function 11.1.1.5 11—4
11.1.3 11—5 Channels

integrated peripheral See integrated

BRKPT macro nstruction 11.1.3 11—5 peripheral channel
multiplexer See multiplexer

Buffer control word (BCW) See BCW. channel.
selector See selector

Buffer format, earned message 10.1 1.2 10—3 channel

Fig. 10—1 10—4
CHAP macro instruction

Buffering data files, spooling 1111 111 function 7.36 7—13
multitasking 7.3 7—6

Buffers, 1/0 4.4.3 4—35
Characters, canned messages 10.1.1.2 10—3

Fig. 10—1 10—4

c Fig 10—2 10—5

CALL macro instruction Checkpoint and restart capability

function 8.5.4 8—29 description 92 9—10

program linkage 8.5 8—26 error codes Table 9—1 9—13
generating checkpoint records 9.2.1 9—13

CANCEL macro instruction processing PIOCS files 9.2.4 9—18

abnormal termination 8.3.2 8—13 using magneti tape as a

function 8.3 8—12 checkpoint file 9.2.2 9—14

8.3.5 8—14 using SAT disk or tape as a

monitor 9.3.6 945 checkpoint file 9.2.3 9—15

Cancel processing 8.6.6 8—46 Checkpoint dump 6.8.1 6—45



I index 38075 Rev. 3 SPERRY UNIVAC Operating System/3 I I
UP-NUMBER j UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Checkpomt Ne Data management level macro
defme, open, and close, SAT 923.2 9—17 instructions 42.2 4—5magnetic tape, SAM 92.2 9—14
magnetic tape, SAT 9.2.3 9—15 Date
SAT disk 9.2.3 9—15 current See currentspace reqwrements, disk 9.2.3.1 9—16 date.

scratch aW 5.2.3.3 5—4Checkpomt records, generatmg 9.2.1 9—12
Date and time facilities See timerCHKPT macro instruction 9.2.1 9—12 services,

CLOSE macro instruction Day clock
disk processing 6.4.7 6—24 description 2.2.7 2—7magnetic tape processing 6.9.6 6—55 time of day 8.41.2 8—17

CNTRL macro instruction 6.9.5 6—54 DCFLT macro instruction 9.2.4 9—18

Cochanneling 2.2.14 2—10 DCPCLS macro instruction 9.2 3.2 9—17

Coding form, assembler See assembler DCPOPN macro instruction 9.2.3.2 9—17
coding form,

DDCPF macro instruction 9.2.3.2 9—17Command control block (CCB) See CCB.
Debugging aids See diagnostic andComments 3.3.4 3—7 debugging aids

Communication operator See operator Declarative macro instructions 3.4 1 3—8
communication.

Communication region Defaults, monitor routine
get data (GETCOM) 8.7.1 8—55 display action 93.5.1.3 9—42
put data (PUTCOM) 8.7.2 8—56 options 9,3,4,5 9—37

Define the tile (DTF) Fig. 6—5 6—9Console management 2.2.4 2—6

DETACH macro instructionContinuation column 3.3.5 3—7
function 7.3.3 7—10
multitasking 7.3 7—6Control stream reader

description 8.8 8—58 program termination 8 3 8—12
task termination 7 2.4 7—4embedded data 8.8.1 8—59

8.8.2 8—59
8.8.4 8—62 Device command code

get file 8.8.3 8—60 BCW 4.2.3 4_S
minimizing disk accesses 8.8.5 8—62 CCW 4.2.4 4—15
reset 8.8.5 8—62

Device sense analyzer overlay 2.2.2.11 2—5
Control tape unit functions (CNTRL) 6.9.5 6—54

Diagnostic and debugging aids
Counters, job accounting table 11.2.2.1 11—7 checkpoint/restart 9.2 9—10

description 2.2.10 2—8
Current date main storage dumps 2.2.10,3 2—8

description 8.4.1 1 8—16 monitor and trace 2.2.10.1 2—8
get (GETIME) 84.1,3 8—17 9.3 9—22

normal termination dumps 9.1.2 9—5
snapshot dumps 2.2.10.2 2—8

D 9.1.1 9-1
standard system error message

interface 2.2.10.4 2—9Data
accounting See lob accounting. storage displays 9.1 9—1
embedded See embedded

data. Disk accesses minimizing 8.8.6 8—63



index 4
8075 Rev. 3 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Disk adapter, ntegrated See ntegrated DTF Fig. 6—5 6—9
disk adapter.

DTFMT macro instruction 92.1 9—12
Disk devices, record formats Fig 6—2 6—3

DTFPF macro instruction 6 3.1
Disk I/O dispatching by head 2215 2—11

DUMP macro instruction
Disk SAT files description 8.3 8—12

access a physical bock normal termination 8.3.1 8—13
(SEEKi 64 6 6—24 9 1 2 9—5

close (CLOSE) 6,4.7 6—24
controlling processing 6.4 6—19 Dumps
detimng new 6.3.1 6—10 abnormal termination 2.2.10.3 2—8
defining partition 6.3.2 6—14 9.L3 9—10
interlace 63 6—10 normal termination 9.1.2 9—5
opening (OPEN) 6 4.1 6—18 program or operator request 2.2.10,3 2—8
organization and addressing 6.2 6—1 system failure 2.2 10.3 2—8
output a logical block (PUT) 6 4 3 6—21
processing 633 6—17 DVC job control statement 9.3,1 9—23
process:ng partitioned 6.3.3 6—17
read by key equal or higher Dynamic allocation 6.2.4 6—5

(READE/READHj 64.5 6—23
retrieve next logical block

(GET) 64.2 6—20 E
using s checkpoint file 9.2.3 9—15
wat for block transfer ECB macro instruction

(WAiTE) 64.4 6—22 format Fig. 7—1 7—8
function 7,3.2 7—6

Disk seek separation 2.2 15 2—11 general 72.1 7—3
multitasking 7 3 7.5

Disk space control 6 2 4 6—4
Embedded data

Disk space management description 8.8.1 8—59
allocate routire 5.2.1 5—2 reading 8.8.2 8—59
description 5.1 5—1 rereading 8.8.4 8—62
error codes 5.6 5—18
extend routine 5 2 2 5—3 End of-data (/*) job control statement
macro instructions 5.3 5—5 control stream embedded data 8.8.3 8—60
obtan routine 5.2.5 5—4 monitor input 9.3.1.1 9—23
rename routine 5.2.4 5—4 9.3.1.2 9—25
scratch routine 5.2.3 5—3

End-of-file (EOF)
Diskette space management description 6 6.3 6—33

description 5.4 5—14 field description Table 6—4 6—35
error codes 5.6 5—18 Table 6—5 6—37
macro instructions 5.5 5—14 label format Fig. 6—9 6—34

Fig. 6—10 6—36
Displacement address 9.3 4.1.2 9—34

End-of-job step 8.3.4 8—13
Display act ons

default 9.3.5.1.3 9—42 End-of-volume (EDV)
descrpron 9.3.5.1 9—38 description 6.6.3 6—33
regster 9.3.5.1.1 9—39 field description Table 6—4 6—35
storage 9.3.5.1.2 9—40 Table 6—5 6—37

label formats Fig. 6—9 6—34
Displaying messages See message Fig 6—10 6—36

display. Fig. 6—13 6—41

Displays. storage See storage Entry point address 8.6.8 8—49
displays.



Index 5I SPERRY UNIVAC Operating Systeml3
UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

EOF1 and EOF2 labels See file F
trailer labels.

FCB
EOJ macro instruction format Fig. 4—8 4—25

function 8.3.4 8—13 general 4.2.1 4—2
general 8.3 8—12 location 4.2.7 4—26
normal termination 8.3.1 8—13

Features 1,2
EOV1 and EOV2 labels See file

trailer labels. FETCH macro instruction 8.2.9 8—il

Error acceptance options 4.2.5 4—18 File control block (FCB) See FCB.

Error codes File header labels
checkpoint/restart Table 91 913 first (HDR1) 6.6.2.1 6—29
disk space management 5.6 5—13 Fig. 6—7 6—30
program loader 8.2.5 8—5 Fig. 6—18 6—60

second (HDR2) 6.6.2.2 6—31
Error control, program and machine 2,2.8 2—7 Fig. 6—8 6—32

Fig. 6—19 6—61
Error control module 2.2.2.9 2—5

File organization
Error editing root overlay 2.2.2.10 2—5 disk SAT 6.2 6—1

tape SAT 6.7 6—3
Error logging 2.2.16 2—11

File termination operations 6.4.7 6—24
Error message interface, standard

system 2.2.10.4 29 File trailer labels
description 6.6.3 6—33

Error reply overlay 2.2.2.12 2—5 EOF1 and EOV1 field descriptions Table 6—4 6—35
EOF1 and EOV1 formats Fig. 6—9 6—34

Error status field 6.4.4 622 Fig. 6—20 6—62
EOF2 and EOV2 field descriptions Table 6—5 6—37

Event control block EOF2 and EOV2 formats Fig. 6—10 6—36
format Fig. 7—1 7—8 Fig. 6—21 6—63
generating 7.3.1 7—6
program check 8.6.5 8—43 Filelocks 6.3.1.1 6—12

Exception branching 4.3.1 4—31 Files
assign space 5.3.1 5—5

EXCP 2.2.2.1 2—2 5.3.2 5—7
checkpoint See checkpoint

EXCP macro instruction 4.2.1 4—3 file.
4.2.8 4—28 defining new 6.3.1 6—10

disk SAT See disk SAT files.
EXCP processor 2.2.2.1 2—2 processing PIOCS 9.2.4 9—18

renaming 5.3.4 5—10
EXEC job control statement 9.3.1.1 9—23 scratching 5.2.3 5—3

5.3.3 5—9
Execute channel program (EXCP) processor 2.2.2.1 2—2 spooling 11.1.1 11—1

4.2.8 4—28 tape See tape
files.

EXIT macro instruction tape SAT See tape
functions 8.6.4.1 8—41 SAT files.

8.6.4.2 841 First file header label See HDR1
general 8.6 8—35 label.

EXTEND macro instruction 5.3.2 57 Format illustrations 3.2 3—1

Extend routine 5.2.2 5—3



8075 Rev. 3 SPERRY UNIVAC Operating System/3
Index 6

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Format write option 6.2.6 6—8 Information control See system
information control.

G Information messages 10.3.1 10—17

Generate buffer control Initial space allocation formula 6.2.4 6—4
word (BCW) 4.2.3 4—5

Initialized block number processing 6.10.2.1 6—58
GET macro instruction

disk processing 6.4.2 6—20 Input format, monitor 9.3.2 9—27
magnetic tape processing 6.9.2 6—52 Fig. 9—1 9—29

GETCOM macro instruction 8.7.1 8—55 Input/output buffer 4,4.3 4—35

GETCS macro instruction 8.8.3 8—60 Input/output control system,
physical See PIOCS.

GETIME macro instruction
example Fig. 8—1 8—19 Input/output synchronization 4.3 4—30
function 8.4.1.3 8—17
timer services 8.4 8—15 Input reader 2.2.9 2—7

11.1.1.2 11—2
GETINF macro instruction 8.7.3 8—56

Instruction location option (A) 9.3.4.2 9—35
GETMSG macro instruction

function 10.2.3 10—14 Instruction sequence option (I) 9.3.4,3 9—36
general 10.1 10—2

Table 10—1 10—2 Integrated disk adapter, BCW
format Fig. 4—2 4—7

H Integrated peripheral channel,
BCW format Fig. 4—3 4—10

Halt action (H) 9.3.5.2 9—43
Interactive services 2.2.17 2—11

Hardware program check interrupt 8.6.5 8—43
Interfaces

HDR1 label disk SAT files 6.3 6—10
description 6.6.2.1 6—29 standard system error message 2.2. 10.4 2—9
field descriptions Table 6—2 6—31 supervisor See supervisor.
formats Fig. 6—7 6—30 tape SAT files 6.8 6—45

Fig. 6—18 6—60
Interlacing

HDR2 label accessing Fig. 6—4 6—7
description 6.6.2.2 6—31 definition of variables Fig. 6—3 6—6
field descriptions Table 6—3 6—33 lace factor calculation 6.2.5.2 6—8
formats Fig. 6—8 6—32 operation 6.2.5.1 6—6

Fig. 6—19 6—61 record 6.2.5 6—5

Header, program phase Interrupt handling 2.1 2—1
format 8.2.8.1 8—10
locate 8.2.8 8—9 Interrupt levels 8.6 8—35

Hierarchical structure, tasks 7.2.6 7_4 Interrupt module 2.2.2.6 2—4

Interrupt servicing routine 4.3.1 4—31

Interrupts, timer 8.4.2 8—21

ICAM, main storage consolidation 2.2.12 2—9
Interval timer island code

Imperative macro instructions 3.4.2 3—8 attaching 8.6.1.1 8—36
description 8.6.7 8—48



8075 Rev. 3
UP-NUMBER

SPERRY UNIVAC Operating System/3 Index 7

UPDATE LEVEL PAGE

See island
code hnkage.
See program linkage.

8.5.2 8—27

8.5.1 8—26

8.2.6 8—5

See program
loader.

8.2.5 8—5

8,2,8 8—9

8.2.7 8—7

6.9.1 6—51

Reference Page

42.6

9.3.1.2

11.2.2.2

8.6.9.2

8,7

11.2.2.1

6.2.2
6.33.1
6.4.5

4—24

9—26

11—8

8—54

8—54

11—7

6—3
6—18
6—23

Term Reference Page

Interval timing island code (cont)
example Fig. 8—7 8—48
exiting from 8.6.4.2 8—41

‘0 completion, wait 4.3.1 4—31

I/O scheduler 4.2.8 4—28

I/O status tables (lOST) See lOST.

usage requirements 4.2.2 4—4

I/O wait, multiple 4.3.2 4—32

lOST
description 2.2.2.7 2—4
interrupt module 2.2.2.6 2—4

Island code linkage
abnormal termination 8.6.6 8—46

Fig. 8—6 8—47
attaching to a task 8.6.1 8—36

8.6.1.1 8—36
8.6.1.2 8—37

description d8.6 8—35
detaching from a task 8.6.2 8—39
entrance 8.6.3 8—40
exit 8.6.4 8—41

8.6.4.1 8—41
8.6.4.2 8—41
8.6.4.3 8—42

interval timer 8.6.7 8—48
Fig. 8—7 8—48

multitasking 8.6.9 8—52
operator communication 8.6.8 8—49

Fig. 8—8 8—50
Fig. 8—9 8—51

program check 8.6.5 8—43
Fig. 8—4 8—44
Fig. 8—5 8—45

user-supplied 2.2.8 2—7

Job
cancel 8.3.5 8—14
definition 1.1 1—1
end-of-job step 8.3.4 8—13

job accounting
data 11.2.2 11—6
data printout 11.2.3 11—9
description 11.2.1 11—6
job level data 11.2.2.2 11—8
job step level data 1L22,1 11—7
record printout format Fig. 11—3 11—10
table format Fig. 11—2 11—7

3.3.1 3—6

See tape labels.

Term

Job control device assignments

Job control statement

Job level data

Job preamble

Job prologue

Job step level data

K

Keys
block addressing
processing blocks
READE/READH macro instructions

L

Label field, coding form

Labels, tape

Lace factor
calculation
description

LBL fob control statement

LFD lob control statement

Library search order

Linkage
island code

program

Linkage procedure

Linkage register conventions

LOAD macro instruction

Loader, program

Loader error processing

LOADI macro instruction

LOADR macro instruction

Lockable file

6.2.5.2
6.2.5

6.6.1

6.6.1

8.2.3

6—8
6—5

6—27

6—27

8—4

J



8075 Rev. 3 SPERRY UNIVAC Operating System/3
Index 8

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Logging dumps 2.2.10.3 2—8
description 10.1 10—1 minimum requirements 1.2.2 1—2
macro instructions 10.2 10—6 snapshot display 2.2.10.2 2—8
system log 101.2 10—6

Message display
Logical blocks description 10.1 10—1

output 6.4.3 6—21 operator (OPR) 10,3.2 10—19
6.9.3 6—53 user-operator communication 10.3.1 10—17

retrieve next 6.4.2 6—20
6.9.2 6—52 Message macro instructions

display and write to the log
Logical I ‘0 control stream 4.1 4—1 (WTLD) 10.2.2 10—9

get a canned message
(GETMSG) 10 2.3 10—4

M summary Table 10—1 10—2
write to the log (WTL) 10.2 1 10—6

Macro instruction conventions
coding form 3.3 3—5 Messages
format illustration and statement canned See canned

conventions 3.2 3—1 message file.
user-operator communication 10.3.1 10—17

Macro instructions
checkpoint/restart 9.2.1 9—12 Modular functions

9.2.3.2 9—17 automatic volume recognition 2.2.11 2—9
control stream reader 8.8 8—58 cochanneling 2.2.14 2—10
controlling tape file processing 6.9 6—51 console management 2.2.4 2—6
date and time facilities 8.4.1 8—16 diagnostic aids 2.2.10 2—8
declarative 3.4.1 3—8 disk seek separation 2.2.15 2—11
disk space management 5.3 5—5 error logging 2.2.16 2—11
imperative 3.4.2 3—8 main storage consolidation 2.2.12 2—9
island code linkage 8.6 8—35 physical input/output control 2.2.2 2—2
logging See logging, program and machine error control 2.2.8 2—7
message See message resource allocation 2.2.6 2—6

macro instructions. rollout/rollin 2.2.13 2—10
operator communication 10.3.2 10—19 spooling 2.2.9 2—7
physical I/O control 4.2.1 4—2 task control 2.2.1 2—2

Fig. 4—1 4—3 timer and day clock services 2.2.7 2—7
processing blocks by key 6.3.3.1 6—18 transient management 2.2.3 2—5
processing blocks by relative workstation manager 2.2.5 2—6

block number 6.3.3.2 6—18
program linkage 8.5 8—26 Modularity 1.2.1 1—2
program loader 8.2 8—2
program termination 8.3 8—12 Modules
storage display 9.1 9—1 function 2.2 2—2
summary 3.4.3 3—8 main storage requirement 1.2.2 1—2

Table 3—1 3—9
system information control 8.7 8—54 Monitor, activity 11.3 11—11

tape SAT file interface 6.8 6—45
task management 73 75 Monitor and trace capability

task synchronization 7.4.1 7—15 absolute address (ABS) 9.3.4.1.3 9—34

timer interrupt facilities 8.4.2 8—21 base displacement address (B/D) 9.3.4.1.2 9—34
calling a monitor routine 9.3.1 9—23

Magnetic tape, using as cancel of monitor 9.3.6 9—45

checkpoint file 9.2.2 9—14 description 2.2.10.1 2—8
9.3 9—22

Main storage display actions 9.3.5.1 9—38

consolidation 2.2.12 2—9 instruction location option (A) 9.3.4.2 9—35

disk checkpoint files 9.2.3.1 9—16 instruction sequence option (I) 9.3.4.3 9—36
monitor input format 9.3.2 9—27

Fig. 9—1 9—29



8075 Rev. 3 SPERRY UNIVAC Operating System/3 Index 9

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Monitor and trace capability (cont) Noninitialized block number
monitoring after execution begins 9.3.1.2 9—25 processing 6102.2 6—58
monitoring from beginning of job 9.31.1 9—23
no option specified 9.3.4.5 9—37 Nonstandard tape volumes
program relative address (PR) 9.3.4.1.1 9—32 organization 6.7.2 6—42
register change option (R) 9.3.4.4 9—37 reel organization, multifile
specifying actions 9.3.5 9—38 volume Fig. 6—15 6—43
specifying options 9.3.4 9—31 reel organization, volume
storage reference option (S) 9.3.4.1 9—32 containing a single file Fig. 6—14 6—42
See also system debugging aids.

Normal termination dumps 8.3,1 8—13
Monitor routine 9.3.1 9—23 9.1.2 9—5

Multifile input volumes 6.6.2.1 6—29
67.2 6—42 0

OBTAIN macro instruction
Multifile volumes disk 5.3.5 5—12

nonstandard Fig. 6—15 6—43 diskette 5.5.3 5—17
standard tape Fig. 6—12 6—40

Fig. 6—13 6—41 OPEN macro instruction
disk file 6.4.1 6—19

Multijobbing general 6.2.1 6—2
capability 1.2.3 1—3 lace factor 6.2.5 6—5
definition 1.1 1—1 6.2.5.1 6—7
description 7.1.1 7—1 tape file 6.9.1 6—51
environment 4.2.8 4—28
See also multitasking. Operand field 3.3.3 3—7

Multiple blocks, accessing 6.2.6 6—8 Operation field 3.3.2 3—7

Multiple buffer accessing 6.2.6 6—8 Operator communication, user
description 10.1 10—1

Multiple I/O wait (WAITM) 4.3.2 4—32 10.3.1 10—1]
display message (OPR) 10.3.2 10—19

Multiple task wait (WAITM) 7.4.3 7—16
Operator communication island code

Multiplexer channel, BCW format Fig. 4—4 4—13 attaching 8.6.1.2 8—39
description 8.6.8 8—49

Multitasking examples Fig. 8—8 8—50
abnormal termination 8.6.9.2 8—54 Fig. 8—9 8—51
capability 1.2.3 1—3 exiting 8.6.4.1 8—43
definition 1.1 1—1 multitasking 8.6.9.3 8—54
description 7.1.1 7—1
environment 8.6.2 8—39 Operator intervention, minimum 1.2.4 1—3
island code 8.6.9 8—52
macro instructions 7.3 7_5 OPR macro instruction
operator communication 8.6.9.3 8—54 function 10.3.2 10—19
primary task 7,1.1.1 7—2 general 10.1 10—2
program check and interval timer 8.6.9.1 8—52 monitor routine 9.3.1.2 9—26
subtask 7.1.1.2 7—2
See also task management and OPTION job control statement 9.3.1.1 9—23

task synchronization. 9.3.1.2 9—26

Options, monitor routine
N instruction location (A) 9.3.4.2 9—35

instruction sequence (I) 9.3.4.3 9—36
Nondlspatchable task 4.3 4—30 none specified 9.3.4.5 9—37

register change (R) 9.3.4.4 9—37
specifying 9.3.4 9—31
storage reference (5) 9.3.4.1 9—32



8075 Rev. 3 SPERRY UNIVAC Operating System/3 I Index 10

UPDATE LEVEL PAGEUP-NUMBER

Term Reference Page Term Reference Page

Output, logical block Preemptive scheduling priority 2.2.13 2—10
(PUT) 6.4.3 6—21

6.9.3 6—53 Prefix, scratch 5.2.3.2 5—4

Output writer tape format 11.1.1.4 11—4 Primary task 7.1.1.1 7—2

Output writers 2.2.9 2—7 Printout
11.1.1.4 11—3 job accounting record 11.2.3 11—9

Fig. 11—3 11—10
program termination 8,3.3 8—13p

Priority, task 7.2.3 7—4
PARAM job control statement 8.8.3 8—60 7.3.6 7—13

9.3.1.1 9—23
Program and machine error

Partition control appendage (PCA) 6.2.1 6—1 control 2.2.8 2—7
Fig. 6—1 6—2

Program check island code
Partitioned SAT files, processing 6.3.3 6—17 attaching 8.6.1.1 8—36

common, all tasks in a job step Fig. 8—11 8—53
Partitions 6.3.2 6—14 description 8.6.5 8—43

discrete, each task in a job step Fig. 8—10 8—52
PAUSE console command 9.3.1.2 9—26 examples Fig. 8—4 8—43

Fig. 8—5 8—45
PCA Fig. 61 6—2 exiting from 8.6.4.1 8—41

multitasking 8.6.9.1 8—52
PCA macro instruction

description 6.2 61 Program initiation and loading 8.1.1 8—1
function 6.3.2 6—14

Fig. 61 62 Program linkage
call a program 8.5.4 8—29

Phase header format 8.2.8.1 8—10 description 8.5 8—26
procedure 8.5.2 8—27

Physical block, accessing 6.4.6 6—24 register conventions 8.5.1 8—26
register save area 8.5.3 8—28

Physical input/output control 4.2.1 4—2 Fig. 8—3 8—28
Table 8—1 8—29

Physical unit block (PUB) 2.2.2.2 23 restore registers and return 8.5.7 8—33
save register contents 8.5.6 8—31

P10GB Fig. 4—8 4—25

Program loader
P10GB macro instruction 4.2.1 4—2 block loader 8.2.1 8—2

4.2.6 4—24 description 8.2 8—2
error processing 8.2.5 8—5

PIOCS library search order 8.2.3 8—4
block numbered tape files load a program phase (LOAD) 8.2.6 8—5
description 2.2.2 2—2 load a program phase and relocate
file processing 9.2.4 9—18 (LOADR) 8.2.7 8—7
input/output synchronization 4.3 4—30 locate a program phase headerI/O usage 4.2.2 (LOADI) 8.2.8 8—9macro instructions, relationship Fig. 41 read pointer, repetitive loads 8.2.4 8—4modular functions 2.2.2 2—2 relocation 8.2.2 8—3physical I/O control 4.2.1 4—3
requirements and options 4.4.5 4—36 Program management

control stream reader 8.8 8—58
PIOCS files, processing description 8.1 8—1

(DCFLT) 9.2.4 9—18

POST macro instruction 7.4.4 7—18



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 A Index 11

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Program management (cont) READH macro instruction 62.1 6—3
initiation and loading 8.1.1 8—1 6.4.5 6—23
island code linkage 8.6 8—35
linkage 8.5 8—26 Record interlace
loader 8.2 8—2 description 6.2.5 6—5
system information control 8.7 8—54 interlace operation 6.2.5.1 6—6
termination 8.3 8—12 lace factor calculation 6.25.2 6—8
timer services 8.4 8—15

Register addresses
Program phase operator communication island

header 8.2.8.1 8—10 code Fig. 8—9 8—51
load 8.2.6 8—5 program check island code Fig. 8—5 8—45
load and branch 8.2.9 8—11
load and relocate 8 2.7 8—7 Register change option (R) 9.3.4.4 9—37
locate header 8.2,8 8—9

Register display action 9.3.5.1 1 9—39
Program relative address (PR> 9.3.4.1.1 9—32

Registers, program linkage
Program termination conventions 8.5.1 8—26

abnormal 8.3.2 8—13 restore and return 8.5.7 8—33
cancel a job 8.3.5 8—14 save, contents 8.5.6 8—31
description 8.3 8—12 save area 8.5.3 8—28
end-of-job step 8.3.4 8—13
normal 8.3.1 8—13 Relative block number
printout 8.3.3 8—13 block addressing 6.2.3 6—-3

processing blocks 6.3.3.2 6—19
PT symbiont 9.4.7 9—58

Relocation 8.2.2 8—3
PUB 2.2.2.1 2—3 8.2.7 8—7

2.2.2.2 2—3
Relocation list dictionary (RLD) 8.2.2 8—3

PUT macro instruction
disk processing 6.4.3 6—21 RENAME macro instruction 5.2.4 5—14
magnetic tape processing 6.9.3 6—53 5.3.4 5—10

PUTCOM macro instruction 8.7.2 8—56 Repetitive loads 8.2.4 8—4

Reply messages 10.3.1 10—17

Report producing program 11.3.3 11—11

Queue control module 2.2.2.1 2—3 Resident routines 1.2.2 1—2
2.2.2.3 2—3

Resource allocation 2.2.6 2—6
Queue driven task 7.2.5 7—4

Restart facility See checkpoint
Quit action (Q) 9—44 and restart capability.

Restore registers and return 8.5.7 8—33

RETURN macro instruction
RDFCB macro instruction 4.2.1 4—3 function 8.5.7 8—33

4.2.7 4—26 program linkage 8.5 8—26

Reactivate a task 7.3.5 7—12 Rewind to load point 6.8.2 6—50

Read by key equal 6.4.5 6—23 Rewind with interlock 6.8.2 6—50

Read pointer, repetitive loads 8.2.4 8—4 RLD 8.2.2 8—3

READE macro instruction 6.2.1 6—3 Rollout/rollin 2.2.13 2—10
6.4.5 6—23



8075 Rev. 3 I SPERRY UNIVAC Operating System/3 I A I Index 12

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

S SETCS macro instruction 8.8.5 8—62

SAT SEflME macro instruction

block number processing 6.10 6—56 continue processing until interrupt 8.4.2.2 8—23

controlling disk file processing 6.4 6—19 example Fig. 8—2 8—24

controlling tape file processing 6.9 6—51 function 8.4.2.1 8—22

description 6.1 6—1 interval timer 8.6.7 8—48

disk file interface 6.3 6—10 timer services 8.4 8—15

disk file organization and
addressing methods 6.2 6—1 Shared filelock capability 6.3.1.2 6—13

system standard tape labels 6.6 6—26
tape file interface 6.8 6—45 SIB 8.4.1.1 8—16

tape files 6.5 6—25
tape volume and file organization 6.7 6—37 SNAP macro instruction 9.1.1 9—1

See also disk SAT files
and tape SAT files. SNAPF macro instruction 9.1.1 9—1

SAT macro instruction 6.8.1 6—45 Snapshot display 2.2.10.2 2—8

Save area, register 8.5.3 8—28 Snapshot dumps 9.1,1 9—1

Fig. 8—3 8—28
Table 8—1 8—29 Soft-patch symbiont

cancelling the symbiont 9.4.7.4 9—61

Save area address 8.6.8 8—49 description 9.4.7 9—58
error messages 9.4,7.5 9—62

SAVE macro instruction patching from a single entry

function 8.5.6 8—31 on the cosole 9.4.7.2 9—60

program linkage 8.5 8—26 producing a card deck from
the console 9.4.7.2 9—60

Scratch routine, disk using card input 9.4.7.1 9—58

description 5.2.3 53 using console input 9.4.7.2 9—60

scratch all by date 5.2.3.3 54 using multiple forms of

scratch by prefix 5.2.3.2 5_4 the command 9.4.7.3 9—61

scratch file 5.2.3.1 5—4
Space assignment

Scratching files 5.2.3.1 5—4 existing file 5.3.2 5—7
5.3.3 5—9 new file 5.3.1 5—5

SCRTCH macro instruction Space control, disk 6.2.4 6—4

disk 5.3.3 5—9
diskette 5.5.2 5—16 Spooler 11.1.1 3 11—2

Spooling
Search order, library 8.2.3 8—4 breakpoint in output file 11.1.3 11—5

Second file header label See HDR2 label.
description 2.2.9 2—8
initialization 11.1.1.1 11—1

SEEK macro instruction 6.2.1 6—2
input reader 11.1.1.2 11—2
output writer 11.1,1,4 11—3

6.4.6 6—24 relationship of devices and programs Fig. 11—1 11—2

Seek separation, disk 2.2.15 2—10
special functions 11.1 1.5 11—4
spooler 11.1.1.3 11—2
use 11.1.2 11—4

Selective dynamic dump 9.1.1 9—1

Standard load modules 8.2 8—2
Selector channel, BCW

format Fig. 4—5 4—16 Standard system error message interface 2.2.10.4 2—9

Sequence field 3.3.6 3—8 Standard tape labels

Service request macro instructions
system 6.6 6—26

(imperative> 4.2.1 43
tape volume organization 6.7.1 6—38



8075 Rev. 3 SPERRY UNIVAC Operating System/3 A index 13

UP-NUMBER - UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Standard tape volume organization System access technique See SAT.
description 6.7.1 6—38
multifile volume with System activity monitor 11.3 11—11

end-of-file Fig. 6—12 6—40
multifile volumes with System debugging aids

end.of-volume Fig. 6—13 6—41 history tables 9.4.1 9—48
volumes containing a single file Fig. 6—11 6—39 mini monitor 9.4.2 9—53

pseudo monitor 9.4.1 9—48
Start-of-data (1$) lob control statement resident supervisor monitor 9.4.1 9—48

control stream embedded data 8.8.3 8—60 summary Table 9—3 9—46
monitor input 9.3.1.1 9—23

9.3.1.2 9—25 System control tables 8.7,3 8—56

Statement conventions 3.2 3—1 System information block (SIB) 8.4.1.1 8—16

Storage display action 9.3.5.1.2 9—40 System information control
description 8.7 8—54

Storage displays get data from communication region 8.7.1 8—55
abnormal termination 9.1.3 9—10 get data from system control tables 8.7.3 8—56
checkpoint and restart 9.2 9—10 put data into communication region 8.7.2 8—56
description 9.1 9—1
monitor and trace 9.3 9—22 System library file 6.3.1 6—14
normal termination dumps 9.1.2 9—5
snapshot dumps 9.1.1 9—1 System log 10.1.2 10—6

Storage reference option (5) 9.3.4.1 9—32 System standard tape labels See tape labels,
system standard,

STXIT macro instruction 8.6 8—35
8.6.1 8—36

T
Subtask 7.1.1.2 7—2

Table generation macro instruction
Supervisor (declarative) 4.2.1 4—2

description 1.1 1—1
diagnostic and debugging aids Section 9 Tape block number 4.4.1 4—33
disk space management Section 5 Fig. 4—9 4—34
interrupt handling 2.1 2—1
job accounting 11.2 11—6 Tape control appendage (TCA) See TCA macro
macro instructions Section 3 instruction.
main storage requirements 1.2.2 1—2
message display and logging 10.1 10—1 Tape data management system 6.5 6—25

10.2 10—6
modular functions See modular Tape files, block numbered 4.4 4—33

functions.
multijobbing and multitasking 1.2.3 1—3 Tape format, output writer 11.1.1.4 11—4

Section 7
operator communication 10.3 10—17 Tape labels, system standard
operator intervention 1.2.4 1—3 description 6.6 6—26

PIOCS Section 4 file header 6.6.2 6—29

program management Section 8 file trailer 6.6.3 6—33
spooling 11.1 11—1 nonstandard 6.7.2 6—42
system access technique Section 6 standard tape volumes 6.7.1 6—38

unlabeled 6.7.3 6—44
Symbolic addresses volume 6.6.1 6—27

abnormal termination island
code Fig. 8—6 8—47 Tape restrictions 4.4.2 4—33

interval timer island code Fig. 8—7 8—48
operator communication island code Fig. 8—8 8—50
program check island code Fig. 8—4 8—44



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 Index 14

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

Tape volume and file organization Timer Interrupt facilities
description 6.7 6—37 cancel previous request 8.4.2.4 8—25
nonstandard 6.7.2 6—42 continue processing until interrupt 8.4.2.2 8—23
standard 6.7.1 6—38 description 8.4.2 8—21
unlabeled 6.7.3 6—44 set (SETIME) 8.4.2.1 8—22

wait for interrupt 8.4.2.3 8—25
Tape volume label group 6.6.1 6—27

Timer services
Task control 2.2.1 2—2 current date 8.4.1.1 8—16

description 2.2.7 2—7
Task control block (TCB) 7.2.1 7—2 8.4 8—15

get current date and time
Task management (GETIME) 8.4.1.3 8—17

creation 7.2.2 7—2 Fig. 8—1 8—19
7.3.2 7—9 interrupt facilities See timer interrupt

description 7.2 7—2 facilities.
7.2.1 7—2 time of day 8.4.1,2 8—17

generate event control block 7.3.1 7—6
hierarchical structure 7.2.6 7—4 TPAUSE macro instruction 7.4.5 7—20
macro instructions 7.3 7—5
priority 7.2.3 73 Trace See monitor and trace

7.3.6 7—13 capability.
queue driven task 7.2.5 7—4
reactivate a task 7.3.5 7—12 Trace job control option 9.3.1.1 9—23
termination 7.2.4 7—4

7.3.3 7—10 Transient loader 2.2.3 2—5
yield until task completion 7.3.4 7—11

Transient overlay 2.2.3 2—5
Task switches 8.6.3 8—40

Transient
Task synchronization management halts 9.4.4 9—56

activate waiting task 7.4.4 7—18 routines 1.2.2 1—2
deactivate task 7.4.5 7—20 scheduler 2.2.3 2—5
description 7.4 7—15

7.4.1 7—15 TYIELD macro instruction
multiple task wait 7.4.3 7—17 function 7.3.4 7—11
reactivate task 7.4.6 7—21 multitasking 7.3 7—6
wait for task completion 7.4.2 7—16

Tasks U
attaching island code 8.6.1 8—36
definition 1.1 11 Unit of store 6.3.2 6—15
detaching island code 8.6.2 8—39

Unlabeled tape volume
TCA macro instruction 6.8.1 6—45 organization 6.7.3 6—44

6.8.2 6—46 Fig. 6—16 6—44

TCB 7.2.1 7—2 Unsolicited message 10.3.1 10—18

Termination, program See program User-operator communication 10.3.1 10—17
termination.

User program switch indicator (UPSI) 8.7 8—54
Termination dumps

abnormal 9.1.3 9—10
normal 9.1.2 9—5 V

TGO macro instruction 7.4.6 7—21 Variable characters, canned
messages 10.1.1.2 10—3

Time of day 8.4.1.2 8—17 Fig. 10—2 10—5
8.4.1.3 8—17



8075 Rev. 3 SPERRY UNIVAC Operating Systeml3 Index 15

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

VCALL macro’instruction
function 8.5.4 8—29
program linkage 8.5 8—26 WAIT macro instruction

I/O synchronization 4.3.1 4—31
VOL job control statement 6.6.1 6—27 task synchronization 7.4.2 7—16

Volume labels, description 6.6J 6—27 WAIT parameter, SETIME
macro instruction 8.4.2.2 8—23

Volume recognition, automatic 2.2.11 2—9 8.4.2.3 8—25

Volume serial number (VSN) 6.6.1 6—27 WAITF macro instruction
Fig, 6—6 6—28 disk processing 64.4 6—21

magnetic tape processing 6.9.4 6—54
Volume table of contents (VTOC) See VTOC.

WAITM macro instuction
Volumes I/O synchronization 4.3.2 4—32

nonstandard tape See nonstandard task synchronization 7.4.4 7—17
tape volumes.

standard tape See standard Workstation manager 2.2.5 2—6
tape volume
organization. WTL macro instruction 10.2.1 10—6

10.1 10—2
VOL1 label Table 10—1 10—2

description 6.6.1 6—27
field description Table 6—1 6—29 WTLD macro instruction 10.2.2 10—9
formats Fig. 6—6 6—28 10.1 10—2

Fig. 6—17 6—59 Table 10—110—2

VTOC
description 2.2.6 2—6
disk space management 5,1 5—1
user block access 5.3.5 5—12





I srrErv4uNIVAc

I USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

P/ease note: This form is not intended to be used as an order blank.

(Document Title)

(Document No) (Revision No.) (Update No.)

Comments:

c

c
0

I From:

I (Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
I Thank you for your cooperation



FOLD I

111111 NOPOSTAGE
NECESSARY

IF MAILED
INTHE I

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.21 BLUE BELL, PA.

_________

lo
POSTAGE WILL BE PAID BY ADDRESSEE

_____________

a
SPERRY UNIVAC

_________

ATTN.: SYSTEMS PUBLICATIONS
I

P0. BOX 500

_____________

BLUE BELL, PENNSYLVANIA 19424 I

FOLD I


