
mrIJIJO'lI-(!
·M·5035, VOLUME II

USER'S REFERENCE MANUAL (U)
FOR

COMPILER, MONITOR SYSTEM·2 (CMS·2)
FOR USE WITH AN/UYK·1 COMPUTER

COMPILER, ASSEMBLER, AID INSTRUCTION REPERTOIRE

FLEET COMBAT DIRECTION SYSTEMS SUPPORT ACTIVITY

San Diego, California 92147

THIS CHANGE SHOULD BE INCORPORATED INTO TilE
BASIC PUBLICATION. DESTROY SUPERSE~ED PAGES.

REVISED: 16 NOVEMBER 1973
CHANGE: 16 AUGUST 1976

LIST OF EFFECTIVE PAGES

M-5035
Change 5
Volume n

Insert latest changed pages; disp'ose of superseded pages in accordance with applicable
regulations.

NOTE: On a changed page, the portion of the text affected by the latest change is in­
dicated by a vertical line, or other change symbol, in the outer margin of the page.

Total number of pages in this manual is 681 consisting of the following:

Page
No.

tChange
No.

Page
No.

tChange
No.

Title •.
A - D ••
1 • • • • •

ii Blank
iii - v •.
vi
vii ••
viii
viliA

. .

viiiB Blank . .
ix
x. .. · . .
xi
xii •••
xiii
xiv
xv ••
xvi . . .

. .

xvii - xviii • • •
11-1-1 - 11-1-9.
n-1-10 Blank.
11-2-1 •••••• · .
II-2-2 - 11-2-24 •
11-2-25 - 11-2-26
II-2-27 •••••

• •

II -2 -28 Blank •
II-3-1 - II-3-3 ••••
11-3-4 ••
11-3-6 ~ •••••••
II-3-6 ••
11-3-7.
II-3-8 ••
II-4-1 ••••

· ..
· .

..

. .

. .

. . .

· . · . · . · ...
· . · . · ... · ...

· .

· . · .

· . · . · . .
• •

. .

4
5
o
o
o
3
5
4
4
4
4
5
'0
3
2
5
o
2
4
o
o
4
o
4
o
o
o
3
o
1
3
o
o

II-4-2 ••
II-4-3 ••
II-4-4 - 11-4-6.
11-4-7 - II-4-16 •.•
11-4-17 •
II-4-18.

..
n-4-18A - II-4-18B
II-4-19 - II-4~20

II-4-21 - II-4-22
II-4-23 - n-4-24 ••.
II-4-25.
11-4-26.
II-4-27.

. .

II-4-28.
II-4-29 - II-4-33
II-4-34.
II-4-35 ••.
II-4-36 ••••
II-4-37 - II-4-40
II-4-41 - II-4-42
II-4-43 - IT-4-59
II-4-60 •••••••
II-4-61 - 11-4-62
II-4-63 •••
11-4-64.
II-4-65 ••.
II-4-66.

. .

. .

. . .
. . . .
. ..

.

. . .
II-4-67 - II-4-68
IT-4-68A ••••••
II-4-68B Blank
II-4-69 ••
II-4-70.

.

II-4-71 - II-4-72

t zero in this column indicates an original page.

A

3
o
3
o
'5
o
3
o
5
o
5
o
5
2
o
5
o
3
o
2
o
3
2
3
o
5
o
5
5
5
5
o
5

M-5035
Change 5
Volume IT

LIST OF EFFECTIVE PAGES (contd)

Page
No.

II-5-1 - II-5-2 ••
II-5-2A •••••
II -5 -2 B Blank
II-5-3.
11-5-4 ••
11-5-4A.
1I-5-4B Blank
II-5-5 ••••

.

II-5-6 ••
11-5-7 •.

.
II-5-8 - II-5-10
11-5-11 - II-5-12
II-5-13 ••••••••

tChange
No.

· . · ..

• •
· .
· .

· ..
11-5-14 - II-5-17
II-5 -18 •••
11-5-18A ••
1I-5-18B Blank ••
11-5-19 - II-5-20

..........
II-5-21 •••••
II-5-22. ..
U-5-23 - U-5-25 •••
11-5-26 - II-5-27 ••••••
II-5-28 •.
II-5-29.
II-5-30.

.
II-5-31 ... I1 ... 5-32
II-5-33 - 11-5-38.

...
... . .

II -5 -3 9-. II -5 -40. • • •
II-5-41 - II-5-44. •••••••
II-5-45 - II-5-46 ••••
II-5 -47 •••••••

· .. · . · .

· .
· . ·
· . · .

U-5-48 - II-5-79
II -5 -80 Blank. • •
II-6-1 - II-6-4 ••
II-6-5 - 11-6-7 ••
II-6-8 - II-6-9 ••

.. · .

II-6-10 •••••••
II-6-11 - U-6-15
II-6-16.
II-6-17 •••

. . .

. . .

4
4
4
3
4
4
4
3
1
2
o
3
1
o
5
5
5
5
o
5
o
3
o
5
o
5
o
3
o
3
o
4
4
o
2
o
4
o
1
2

Page
No.

R-6-18 - II-6-22
II-6-23.
II-6-24 •.•• ' •••••
11-6-25 •• ; •.
II-6-26.
11-6-27 •.
II-6-28.
II-6-29 - II-6-30
II-6-31 •••••••
11-6-32 - IT-6-34
II -6-35 •...•
II-6-36 Blank.
II-7 -1 - 11-7 -3 ••
II-7-4 - II-7-5 ••
II -7 -6 - n -7 -7 • •
H-7-8 ••
H-7-9 ••
H-7-10.
n-7-11.
ll-7-12.
II-7-12A - 1I-7-12B
U-7 -13 - II-7 -16
II-7-17.
II-7-18 ••
1I-7-19. . .
U-7-20 - n-7-21
II-7-22.
II-7-23.,' •
II-7"':24.
II-7-24A •.
II-7-24B ••
II-7-25 - II-7-26
II-7 -27 •..
II-7 -28 ••.
TI-7-29.
TI-7-30.
II-7-30A ~ 1I-7-30F'
II-7 -31 - II-7 -33 •.
11-7 -34 Blank
II-8-1 - 11-8-2 •.
II-8-3
II-8-4 - ll-8-5 ••

tZero in this collU1lJ1 indicates an original page.

B

tChange
No.

.
. . .

.
. ...
· ..

· ...
· ..

· ...
· .. · ..

. ..

· ...
· .. · . . · · .. · ..

·

. . .

...

o
2
o
1
o
2
1
o
1
o
3
3
o
5
4
5
o
5
2
3
4
o
2
o
2
o
3
5
4
4
5
3
o
2
1
5
5
5
5
o
1
o

M-5035
Change 5
Volume n

LIST OF EFFECTIVE PAGES (contd)

Page
No.

n-S-6 •.••••••

tChange
No.

IT-S -7 - IT-S-ll ' •••••••••
IT-S-12 Blank ••.•••••••.••
ll-9-1 •••••.••••••••••••
IT-9-2 - IT-9-3 ••••••••••••
U-9-4 • •••••••••••••••••
U-9-5 - ll-9-6 ••••.••••.••
ll-9-7 •••••.••••••••••••
IT-9-8 ••••••••••••••••••
IT-9-9 - IT-9-l6 •••••••••••
11-9-17 ••••• " •••.••••••••
IT-9-lS - n-9-2l ••••••••••
IT-9-22 Blank ••••••••••••
IT-lO-l - IT-lO-2 ••••••••••
IT-IO-3 •••••••••••••••••
IT-lO-4 - IT-lO-5 ••••••••••
IT-lO-6 - IT-IO-lO ••••••••••
IT-lO-ll
IT-lO-12 - IT-lO-13 •••••••••
IT-lO-14 Blank •••••••••••
IT-ll-l ~ IT-ll-lO ••••••••••
IT-II-II - IT-ll-l2 •••••••••
IT-11-13 - ll...;11-14 •••••••••
IT-ll-l4A - IT-11-14B •••••••
ll-11-15 - ll-11-22 •••••••••
IT-11-23 ••••••••••••••••
IT-l1 ~24 •••••• " ••••••••••
ll-11-25
11-11-26 " •• o ••••••• " •••••••

, IT-11-26A - IT-11-26B •••••••
II-11-27 -IT-11-3l
ll-11-32 - n-11-49 •••••••••
IT-11-50 •••• " •••••••••••
11-11-51 - ll-11-69 •••••••••
IT-l1"-70 ••••• " •••••••••••
IT-11-7l - n-11-74 •••••••••
IT-11-75 - IT-11-76 •••••••••
IT-11-77 - II-II-SO •••••••••
11-11-81 ••• eo ••••••••••••

IT-11-82 - IT-ll-S3 •••••••••
n-11-84 ••••••••••••••••

3
o
o
~
o
2
1
3
o
2
o
2
o
3
o
5
o
3
o
o
o
1
3
3
o
1
5
3
5
3
o
2
5
2
5

'2
5
2
5
2
5

Page
No.

tChangc
No.

11-12-5 ,•. ~~~ ..
11-12-6 - 11-12-34•.. ~ ~ ..
11-12-35 - 11-12-50
11-12-51 - 1I-12-54 ..••. ~ .. ~.
11-12-55 .•............. ~ •.. ~ ... ~~
11-12-56 , .•...
11-12-57 - 11-12-68 .••••.....
11-12-69 - 11-12-72 .•••... ~ ..
11-12-73 - 11-12-78 ••••.•.. ~.
11-12-79 - 11-12-82 ..•••.....
11-12-83
11-12-84
11-12-85 - 11-12-88 .•.•..•...
11-12-89•...••• ~ .•...
11-12-90 - 11-12-94 ..••......
11-12-95 - 11-12-110 ..•......
A-I•...•....•••...•...
A - 2 ••••••••••••••••••••••••..
A-3 •••••••••••••• ~ •••••••••.•
A -4 Blanl<: •••••••••••••••• t! •••

B-1 - B~2 ••••••••.••••••••.•. "
B-3
B- 4 - B- 6 ••••••••••••••••••••
B- 7 ••••••••••••••••••••••••••
B-8 - B-12 .•.....•...••......
B-13 - B-14•....•......
B-15 - B-16•....••......
B-17 - B-18•......
B-19 - B-20 ~ •......
B- 21 •••••••••••••••••••••.•••
B-22 - B-28•.....••......
C -1 ••••••••••••••••.••••.•..•
C-2 - C-6 •••••••••••• ~ ••••••.
D-1
D-2
E-1 - E-2 •••••••••••••• ill ••• ~.
E-3 - E-4 ••••••••••••••••••..
E- 4A •••••••••••••••••••••••••
E-4B Blank
E- 5 - E-6 ~ .•......
E- 7
E-8 •••••••••••••••••••••••• , ••
E-9 - E-10 •...•.....•.. ,
E -lOA ••••.•••••••• ~ __ • • ~ . • , • • .0

E -1 DB ••••••••••••••• ~ .• ill •• _ •• II!,

E-l1 •..... e

E-12 - E-14 .•........••......
n -12 -1 - IT -12 -4 • • • • • • • • • • 0 E -15 - E -17•..•.. ~ • . ~

t Zero in this column indicates an original page.

c

5
o
1
o
5
o
1
o
1
o
1
5
1
5
1
o
2
o
5
5'
o
5
o
5
o
5
o
5
o
5
o
o
3
5
2
3
5
5
5
5
4
3
4
4
5
5
3
5

M-S03S
Change 5
Voltune II

LIST OF EFFECTIVE PAGES (contd)

Page
No.

tChange
No.

E-18
E-20
F-l
F-2
G-l
H-l

~ E-19 .. , ~f!i .•• , •• 4t.,.,
- E-24 ~ ~ .. .

••• - •••••••• , I! •• , •••. ~

•••••••• ' •••• ~ , II.

- G-8 , ..
•••••••••••••.•.••• II! •• lilt •• , ••

H - 2 BlaI1k t! .• , f!i • .. _", ~ ... ~ • • •

1-1 - 1-3 ..•.....•.•.••.•. , ••
1-4 ~.,
1-5 - 1-24 ,, ..
1-25 , ••.•• ·0 •.•••.•••

1-26 - 1-30 .•.••..•...••.••.•
1-31
1-32 - 1-34 ••.•.•...•••••. ~ ••
1-35• _.tt. .. ~ ..
1-36 Blank ..•...•.•.••••.•..•
K-1 - K-IS
K-16 Blank ••.•••••••••••

2
3
o
5
o
3
o
2
5
2
5
2
5
2
5
5
5
5

Page
No"

t zero in this column indicates an original page.

D

tChange
No.

FOREWORD

M-5035
Volume II

This is,.Revision 1 of Volume II of the two volume User's Reference Manual for

Compiler Monitor System (CMS-2) for use with AN/UYK-7 Computer. This

volume contains a description of the languages recognized by the Compiler and

Assembler, including a comprehensive description of macro generation. It

also contains a complete functional description of the AN/UYK-7 Computer

Instruction Repertoire. (Volume I describes the Monitor, Loader, Librarian,

Peripheral Utilities, and System Operation.)

Revision 1 incorporates changes 1, 2, and 3 to the original document (NA VSHIPS

0967-028-0060). The reader will find the changed pages clearly indicated through­

out the volume.

A document related to Volume II is the Compiler Monitor System-2(CMS-2)

User's Reference Manual, Volume I, M-5012. This document describes the

CMS-2 language as it is used in the preparation of programs for the CP-642B­

hosted CMS-2/XCMS-2 compilers.

i/ (ii blank)

RECORD OF CHANGES

I
CHANGE DATE TITLE OR BRIEF

NO. DESCRIPTION

i i'i

M-5035
Volume II

-1
ENTERED BY I

----.-J
i
I

I

I
t

M-5035
Volume II

Paragraph

1.1
1.2
1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.2.5
1.3.2.6
1.3.2.7
1.4
1.4.1
1.4.2
1.4.3

2.1
2.2
2.2.1

2.2.1.1
2.2.1.2
2.2.1.3
2.2.2
2.2.2.1
2.2.2.2
2.2.2.2.1 .
2.2.2.2.2
2.2. :~
2.3
2.:~. 1
2.:~.1 • 1

2.:i.l.2
2 .:~. 2
2.:~.2.]
2.:~. 2.2
2.3.2. :i

TABLE OF CONTENTS

Ti tIe

SECTION 1
INTRODUCTION

Purpose and Scope
Applicable Documents
System Capabilities

Hardware Requirements.
Software Components

Monitor
Object Code Loader
Librarian
Peripheral Utilities
Compiler
Assembler
System Tape Generator

System Operation
System Load and Initiation
Standard Input Processing
Standard Output Processing

SECTION 2
INTRODUCTION TO THE CMS-2 LANGUAGE

Major Features of CMS-2
Program Structure

Organization and Classification of
Identifiers
Forward and Backward References
Local and Global Definitions
External References and Definitions

CMS-2 Elements
System Data Designs
System Procedures

Local Data Designs
Procedures

Range of Identifiers
Declarative Statements

Program Structure Declaratives
Procedure Structure Declaratives and

Linking
Reentrant System Procedures

Data D(~(:1arations
Swi tch(~s
Variables
Tables

iv

I 1 ~1-1
11-1-2

. 11 -l-:J
11-1-3
11-1-5
II -1-6
11-1-6
11-1-7
11-1-7
11-1-7
11-1-8
11-1-8
11-1-0
11-1-0
11-1-9
11-1--9

11-2-1
11-2-1

11-2-3
11-2-3
11-2-3
11-2-4
11-2-5
11-2-7
11-2-8
11-2-9
11-2-9
11-2-9
11-2-10
11-2-10

11-2-13
11-2-14
1 I-2-}()
11-2-17
11-2-17
11-2-17

Paragraph

2.3.2.4
2.3.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6

3.1
3.2
3.2.1
3.2.2
3.2.2.1
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4
3.3
3.4
3.5
3.5.1
3.6

4.1
':l.l.l
4.1.2
4.1.3
4.1.4
4.1.5

4.1.6

TABLE OF CONTENTS (Continued)

SECTION 2
(Continued)

Arrays
Compiler Directive Declaratives

Uynamic Statements
Expressions
Statement Operators
Special Operators

High-Level Input/Output Statements
Program Debug Facilities

SECTION 3
BASIC DEFINITIONS

CMS-2 Alphabet
Symbols

Operators
Identifiers

Statement Label
Constants

Numeric Constants
Hollerith Constant
Status Constants
Boolean Constants

Delimi ters
Statements
Comments

Special Comments
Source Card Format

SECTION 4
DECLAR AT IVES

Program Structure Declaratives
System Declarative (SYSTEM)
Head Declarative (HEAD)
End Head Declarative (END-HEAU)
System Data Design Declarative (SYS-UU)
End System Data Design Declarative

(END-SYS-DD)
System Procedure Declarative (SYS-PROC)

v

M-5035
Volume II

11-2-20
11-2-20
11-2-24
11-2-24
11-2-24
11-2-25
11-2-26
11-2-27

11-3-1
11-3-1
11-3-2
11-3-2
11-3-3
11-3-3
11-3-3
11-3-4
11-3-5
11-3-6
11-3-6
11-3-6
11-3-6
11-3-7
11-3-8

II-4-1
II-4-2
II-4-2
11-'1-~}

11-4-4

11-4-4
11-4-5

M-5035
Volume II
Change 3

Paragraph

4.1.,7

4.1.8
4.1.9
4.1.1U

4.1.11

4.1.12

4.1.13

4.1.14

4.1.15
4.2
4.2.1

I 4.2.1.1
4,,2.2
4.2 .. 3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.8.1
4.2.8.2
4.2.8.3
4.2.9
4.2.10
4.2.10.1
4.2.10.1.1
4.2.1U.l.2
4.2.10.1.3
4.2.10.1.4
4.2.11
4.2.11.1
4.2.11.1.1
4.2.11.1.2
4.2.11.2
4.2.11.2.1
4.2.11.2.2
4.2.11.2.3

TABLE OF CONTENTS (Continued)

SECTION 4
(Continued)

Reentrant System Procedure Declarative
(SYS-PROC-REN) 11-4-6

Local Data Design Declarative (LOC-DD) 11-4-6
Local Data Design Declarative (END-LOC-DD) 11-4-7
Automatic Data Design Declarative

(AUTO-DO) 11-4-7
End Automatic Data Design Declarative

(END-AUTO-DD)
Procedure (PROCEDURE) and End Procedure

(END-PROC) Declaratives
Function (FUNCTION) and End Function

(END-FUNCTION) Declaratives
End System Procedure Declarative

(END-SYS-PROC)
End System Declarative (END-SYSTEM)

Data Declarations
Variable Declaration (VRBL)

Parameter Declaration (PARAMETER)
Table (TABLE) Declaration
Field (FIELD) Declaration
Item-Area (ITEM-AREA) Declaration
Subtable (SUB-TABLE) Declaration
Like-Table (LIKE-TABLE) Declaration
End-Table (END-TABLE) Declaration
Packing Rules

No Packing (NONE)
Medium Packing (MEDIUM)
Dense Packing (DENSE)

Overlay (OVERLAY) Declaration
Data Referencing

Table Referencing
Whole Table Referencing
Item Referencing
Field Referencing
Item-Area Referencing

Transfer Declaratives (Switches)
Statement Switch (SWITCH) Declaratives

Index Swi tch
Item Switch

11-4-8

11-4-8

11-4-11

11-4-13
11-4-14
11-4-14
11-4-15
II-4-18A
11-4-19
11-4-25
11-4-30
11-4-31
11-4-34
11-4-35
11-4-37
11-4-38
11-4-38
11-4-39
11-4-40
11-4-44
11-4-44
11-4-45
11-4-45
11-4-47
11-4-49
11-4-50
11-4-50
11-4-50
11-4-53

Procedure Swi tch (P-SW1TCIf) Declaratives 11-4-55
Index Procedure Swi tch 11-4-55
Double Procedure Switch 11-4-56
Item Procedure Switch 11-4-58

vi

Paragraph

4.2.11.3
4.2.12
4.2.13
4.3
4.3.1
4.4
4.4.1
4.4.2
4.4.3

4.4.4
4.4.5

5.1
5.1.1
5.1.1.1

5.1. 2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5~2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4

TABLE OF CONTENTS (Continued)

Title

SECTION 4
(Continued)

Switch Referencing
Local Indexes
Data (DATA) Declaration

Control Declaratives
Mode (MODE) Declaration

System Linkage
External Definition (EXTDEF) Operator
External Reference (EXTREF) Operator
Transient Reference (TRANSREF)

Operator
Local Definition (LOCREF) Operator
Applications of EXTDEF, EXTREF and

TRANSREF

SECTION 5
DYNAMIC STATEMENTS

Expressions
Arithmetic Expressions

Fractional Significance in Fixed-
Point Operations

Relational Expressions
Boolean Expressions
Literal 'Expressions

Functional Modifiers
Absolute Value (ABS) Modifier
Bit (BIT) Modifier
Character (CHAR) Modifier
Count (CNT) Number of Bits·
Core Address (CORAD) Modifier
File Position (FIL) Modifier
Record Position (POS) Modifier
Record Length (LENGTH) Modifier

Procedure Linking
Procedure Call
Function Call
Return (RETURN) Statement
Executive (EXEC) Statement
Procedure Switch Call

Replacement Statements

vii

M-5035
Change 5
Volume II

11-4-59
11-4-59
11-4-61
11-4-62
11-4-63
11-4-64
11-4-65
11-4-66

11-4-66
11-4-67

11-4-68

11-5-2
11-5-2

11-5-3
11-5-5
11-5-6
11-5-8
11-5-9
11-5-10
11-5-10
11-5-12
11-5-13
11-5-14
11-5-14
1r-5-15
11-5~15
11-5-15
11-5-16
11-5-18
11-5-19
11-5-22
11-5-23
11-5-26

I

M-5035
Volume II
Change 4 _

Para&!:a}2h

5.4.1
5.4.1.1
5.4.1.2
5.4. 1.3
5.4.1.4
5.4.1.5
5.4. 1. 5. 1

5.4. 1. 5. 2

5.4.1. 5.3

5.4.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2
5.5.3
5.6
5.6.1
5 .. 6.2
5 0 6.2 .. 1
5.6.2.2
5.6 0 2.3
5.6.2.4
5.6.3
5. 6~ 4
5.6.5
50 6.6
5.7
5.7.1
5.7.2
5.7 .. 2.1
5.7 .. 2.1.1
5.7.2.1.2
5.7.2.103
5.7.~.2

5.7.2.3

TABLE OF CONTENTS (Continued)

Title Page

(Continued)

Assignment (SET) Statement II-5-26
Arithmetic Assignment Statement II-5-27
Literal Assignment statement II-5-31
Status Assignment Statement II-5-32
Boolean Assignment Statement . II-5-33
Multiword Assignment Statement II-5-35

Multiword Table-to-Table Assignment
Statement II-5-35

Multiword Item-to-Item Assignment
Statement II-5-36

Single Word-to-Multiword Assignment
Statement II-5-36

Exchange Statement (SWAP) II-5-38
Shift (SHIFT) Operation II-5-39
Pack (PACK) Operation II-5-40

Control Statements 11-5-41
GOTO Statement Name II-5-41
GOTO Switch Name II-5-42
STOP Statement II-5-45

Decision Statements II-5-45
Logical Decision Statement IT-5-46
Table Search statement II-5-48

FIND Statement II-5-48
Search Decision Statement II-5-50
Table Search Format II-5-51
Table Search Examples II-5-52

Validity Decision Statement . II-5-54
Parity Decision Statement' II-5-55
ELSE Statement II-5-56
Nested Decision Statements II-5-58

Statement Blocks IT-5-59
BEGIN Block II-5-60
VARY Block II-5-61

VARY Statement IT-5-62
Index Clause II-5-64
WHILE Clause U-5-65
UNTIL Clause IT-5-66

Resume (RESUME) Statement II-5-66

End Vary Statement (END) II-5-67

viii

ParagraEh

5.7.2.4
5.703
5.7.3.1
5.70 3. 2
5.7.3.3

6.1
6.1.1

TABLE OF CONTENTS (Continued)

Title
(Continued)

Examples of VARY Blocks
FOR, Block

FOR Statement
Value Block
FOR Block Examples

SECTION 6
INPUT/OUTPUT STATEMENTS

Input/Output Operations
INPUT Statement

viliA/ viiiB Blank

1\'1-5035
Volume II
Cha~e' 4

Page

II-5-67
II-5-72
II-5-73
II-5-76
11-5-77

II-6-1
II-6-4

Paragraph

6.1.2
6.1. 3
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.5
6.5.1
6.5.2
6.6
6.7
6.8
6.8.1
6.8.2

7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.1. 4
7.4.2
7.4.2.1
7.4.2.2
7.4.3
7.5
7.5.1
7. 5.2

TABLE OF CONTENTS (Continued)

Title

SECTION 6
(Continued)

OUTPUT Statement
FORMAT Declaration

Encode and Decode Operations
Nonstandard File Control

FILE Declaration
OPEN Statement
ENDFILE Statement
CLOSE Statement

Device State Checking
Device Positioning

Positioning by Files
Positioning by Records

File and Record Position Determination
Record Length Determination
Device Identification Operations

DEFID Statement
CHECKID Statement

SECTION 7
COMPILE-TIME SYSTEM FACILITIES

Accessing the Compiler
Major and Minor Headers
Options Header Statement

SOURCE Option
OBJECT Option
LISTING Option
MONITOR Option
NONRT Option
Two-Level Diagnostics
MODEVRBL Option
STRUCTURED Option

Allocation Header Statements
Pooling statements

LOCDPOOL Statement
TABLEPOOL Statement
BASE Statement
DATAPOOL Statement

EQUALS Statement
Defining a Tag
Establishing Relative Locations

NITEMS Statement
Library Retrieval Header Statements

LIBS Statement
Retrieval Selection Statements

ix

M-5035
Volume II

Change 4

11-6-7
II-6-8
II-6-15
II-6-18
II-6-20
II-6-24
II-6-24
II-6-26
II-6-26
II-6-28
11-6-28
11-6-30
II-6-31
II-6-32
II-6-33
11-6-33
II-6-35

II-7-1
II-7-3
11-7-5
11-7-6
II-7-7
II-7-10
II-7-11
11-7-12
II-7 -12
11-7 12
1I-7-12A •
1l-7-12B
II-7-12B
11-7-14
II-7-16
II-7-17
II-7-18
II ... 7 -19
11-7-20
11-7-21
11-7-22
11-7-22
II-7-23
11-7-23

I

M-5035
Change 5
Volume II

Paragraph

7.5.3

7.5.4
7.5.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.5.1
7.6.5.2
7.6.5.3
7.6.5.4
7.6.6
7.6.7
7.6.8

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.2.1
9.2.2
9.2.2.1
9.2.2.2
9.2.2.3
9.2.2.4
9.2.2.5
9.2.2.6
9.2.3
9.2.4
9.2.5
9.2.6
9.3

TABLE OF CONTENTS (Continued)

Title

SECTION 7
(Continued)

. Correcting Elements During Library
Retrieval

DEP Statement
Key Specification

Miscellaneous Header Statements
SYS-INDEX Statement
MEANS Statement
EXCHANGE Statement
DEBUG Statement
CSWITCH Declarations

CSWITCH Selection Declaration
CSWITCH Brackets
CSWITCH Deletion
CSWITCH Example

EXECUTIVE Statement
CMODE Statement
SPILL Statement

SECTION 8
DEBUG STATEMENTS

Display Statement
Snap Statement
Range Declaration
Trace Statement
Procedure Trace (PTRACE)

SECTION 9
DIRECT CODE

Direct Code Statement Format
Direct Code Statement Repertoire

Direct Code Directives
Constants

Decimal Numbers
Octal Numbers
Floating-Point Numbers
Character Strings
Scaled Decimal Numbers
Scaled Octal Numbers

Data Expressions
Literals
Direct Constant Entries
Instruction Expressions

Processing Conventions

x

Page

II-7-24B
11-7-25
11 ... 7-25
II~7-27

11-7-27
11-7-27
·11-7-28
11-7-29
11-7-30
11-7-30
II-7-30A
lI-7-30B
II-7-30B
11-7-31
11-7-32
11-7 ... 32

11-8-2
11-8-5
11-8-7
11-8-9
11-8-11

11-9-1
11-9-2
11-9-2
11-9-6
11-9-6
11-9-7
11-9-7
11-9-8
11-9-9
11-9-9
11-9-10
11-9-11
11-9-11
I1-9-i2
11-9-15

Paragraph

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.1.1
11.1.1.1
11.1.1.2
11.1.1.2.1
11.1.1.2.2
11.1.1.2.3
11.1.1.2.4
11.1.1.2.5
11.1.1.2.6
11.1.1.2.7
11.1.1.3
11.1.1.4
11.1.1.4.1
11.1.1.4.2
11.1.1.5
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9
11.1.9.1
11.1.9.2
11.1.10
11.1.11
11.1.12
11.1.13
11.2
11.2.1

TABLE OF CONTENTS (Continued)

Title

SECTION 10
COMPILER OUTPUTS

Source Listing Format
Source and Mnemonic Listing Format
Local Cross-Reference Listings
Global Cross-Reference Listing
Symbol Analysis Format
Compiler Error Summary

SECTION 11
ASSEMBLER

Assembler Functions
Input Language Structure

Label
Statements

Fields
Subfields
Omission of Subfie1ds
Statement Continuation
Statement Terminatioti and Notes
Blank Card Images
Language Structure Summary

Notations Used In This Section
Coding Control Statements

Comments
. Printer Page Control

Directives
Addressing Sections
Segmentation
Assembly Base Addresses
Conditional Assembly
Library Usage
Macros
Expressions
Assembler Generation

Full-Word
Half-Word

Temporary Storage
Assembler Output
Assembly Ti~e Allocation
Linking

Control Card
Start Assembly (ULTRA)

xi

M-5035
Change
Volume II

11-10-1
11-10-2
11-10-4
11-10-5
11-10-6
11-10-12

11-11-1
11-11-2
11-11-2
11-11-5
11-11-5
11-11-5
11-11-5
11-11-6
11-11-6
11-11-6
11-11-6
11-11-7
11-11-7
11-11-7
11-11-7
11-11-8
11-11-8
11-11-8
11-11-9
11-11-9
11-11-10
11-11-10
II-II-II
11-11-11
11-11-11
11-11-11
11-11-11
11-11-12
11-11-12
11-11-12
11-11-12
11-11-12

I

I

M-50a5
Change 3
Volume II

Paragraph

11.2.2
11.2.3
11.2.4
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.1.4
11.3.2
11.3.2.1
11.3.2.2

11.3.2.3
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.3.4
11.3.3.4A
11.3.3.5
11.3.3.6
11.3.3.7
11.3.3.8
11.3.3.9
11.3.3.10
11.3.3.11
11.3.3.12
11.3.3.13
11.3.3.14
11.3.3.15
11.3.3.16
11.3.3.17
11.3.3.18
11.3.3.19
11.3.3.20
11.3.3.21
11.3.3.22
11.4
11. 4.1
11.4.1.1
11.4.1.2

TABLE OF CONTENTS (Continued)

SECTION 11
(Continued)

Stop Assembly (OFF)
Disable Object Output Code (OFO)
Sample Deck Using Control Cards

Source Statements
Label Field

Labels
Address Counter Declaration
Leading Asterisk (*)
Half-Word Instruction.Labels

Operation Field
Processor Instruction Mnemonics
Input/Output Controller Command

Mnemonics
Directive Mnemonics

Directives
ABS Directive
BYTE Directive
CHAR Directive
DO Directive
EMBED Directive
END Directive
EQU Directive
EVEN, ODD Directives
FORM Directive
LCR Directi ve
LIBS Directive
LIB Directive
LINK Directive
LIST, ELIST, and NOLIST Directives
LIT Directi ve
LLT Directive
PXL Directive
RES Directive
RF$ 'Directive
SEGEND Directive
SETADR Directive
WHD Directive
TAGTBL Directive

Mac ro Sta tement s
MACRO and END Directives

Para forms
Starred Labels Within Macros

xU

1I-11-14B
1I-11-14B
11-11-15
11-11-15
11-11-15
11-11-16
11-11-18
11-11-18
11-11-18
11-11-19
11-11-20

11-11-20
11-11-20
11-11-21
11-11-21
11-11-21
11-11-22
11-11-23
II -11-25
11-11-26
II-11-26A
II-11-26B
11-11-27
11-11-28
11-11-29
11-11-29
11-11-31
11-11-32
11-11-33
11-11-34
11-11-35
11-11-35
11-11-36
11-11-37
11-11-38
11-11-39
11-11-40
11-11-40
II -11-40
II -11-42
11-11-45

11.4.1.3
11.4.2
11.4.2.1
11.4.2.2
11.4.3
11.4.4
11.4.4.1
11.4.4.2
11.4.4.3

11.4.4.4
11.4.4.5
11.4.4.6
11.5
11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.7
11.7.1
11.7.2
11.7.2.1
11.7.2.2'
11.8
11.8.1
11.8.1.1
11.8.1.1.1
11.8.1.1.2
11.8.1.1.3
11.8.1.1.4
11.8.1.1.5
11.8.1.1.6
11.8.1.1.7
11.8.1.1.8
11.8.1.2
11.8.1.2.1
11.8.1.2.2
11.8.1.2.3

TABLE OF CONTENTS (Continued)

SECTION 11
(Continued)

Operand Field
Other Macro-Oriented Directives

NAME Directive
GO Directive

Summary of Macro Usage
Special Consideration When Coding Macros

Comments
Labels on a Macro Reference Line
Address Counter Declarations Within a

Macro
Externalizing Labels
Macro Reference Lines
Complex Macros

Address Counter Declarations
Expression Statements

Labels
Address Counter
Decimal Number
Octal Number
Floating Point Number
Fixed Point Number

Data Modes
Literals
Data Words

Constants
Character Strings

Operators
Symbols

Arithmetic Operators
~~ (Positive Exponentiation)
*- (Negative Exponentiation)
*1 (Binary Exponentiation or Scaling)
* (Arithmetic Product)
I (Arithmetic Quotient)
II (Covered Quotient)
+ (Arithmetic Sum)
- (Arithmetic Difference)

Logical Operators
** (Logical Product)

, ++' (Logical Sum)
-- (Logical Difference)

xiii

M,-5035
Change 2

Volume II

1 I -11-~5
lI-11-J6
11-11-16
11-11-48
11-11-49
II-II-50
I I-II-50
11-11-50

11-11-:11
11-11-31
II-II-53
II-l1-~3
II-II-54
11-11-35
II-II-56
II-II-56
II-ll-!l7
II-II-57
11-11-:18
II-II-59
II-II-59
II-II-59
11-11-60
11-11-60
11-11-61
11-11-62
11-11-63
11-11~65

11-11-65
11-11-65
11-11-66
11-11-66
11-11-67
11-11-67
11-11-67
11-11-67
11-11-68
11-11-68
11-11-68
11-11-68

I

M-5035
Volume II
Change 5

Paragraph

11.8.1.3
11.8.1.3.1
11.8.1.3.2
11.8.1.3.3
11.8.2
11.8.3
11.8.4
11.9
11.9.1
11.9.2
11.9.2.1
11.9.2.2
11.9.2,.3
11.9.2.4
11.9.2.5
11.9.2.6
11.9.2.7
11.9.2.8
11.9.2.9
11.9.2.10
11.9.2.11
11.9.3
11.9.4
11.9.4.1
11.9.4.2
11.9.4.3
11.9.4.4
11.9.4.5
11.10
11.10.1
11.10.2
11.10.2.1
11.10.2.2
11.10.3
11.10.4
11.11
11.12

12.1
12.1.1
12.1.1.1

TABLE OF CONTENTS (Continued)

Title --
SECTION 11
(Continued)

Conditional Operators
= (Equal)
> (Greater Than)
< (Less Than)

Operator Priorities
Parenthetical Grouping
Re10catabi1ity

Assembler Outputs
Side-Sy-Side Listing,
Error Codes

Express i on (E)
Duplicate (D)
Undefined (U)
Instruction (I)
Relocation (R)
Truncation (T)
Overflow (0)
Name (N)
Level (L)
Floating Point (F)
Warning (W)

Generation Formats
Listing of Labels

Level 0
Leve 1 1
LLT Sample Listing
Undefined Labels
Cross Reference Listing

Assembler Diagnostics and Status
Assembly Errors
Assembler Internal Errors

Core Overflow
Level Overflow

Library Call Errors
Peripheral Errors

Source Deck Organization
Special Considerations

SECTION 12
INSTRUCTION REPERTOIRE

AN/UYK-7 Computer Functions
Register Format and Usage

Program Address Register

xiv

11-11-68
11-11-09
11-11-69
11-11-69
11-11-70
11-11-71
11-11-71
11-11-73
11-11-73
11-11-73
11-11-73
11-11-73
II -11-74
lI-11-74
11-11-74
11-11-74
11-11-74
11-11-74
11-11-75
Ir-11-75
U-11-75
11-11-15
11-11-76
11-11-76
11-11-76
11-11-76
11-11-76
11-11-77
11-11-77
11-11-77
II -11-79
11-11-79
11-11-79
11-11-79
II -11-79
11-11-80
11-11-83

11-12"'1
11-12-2
11-12-2

Paragraph

12.1.1.2
12.1.2
12.1.2.1
12.1.2.2
12.1.2.3
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.7.1
12.2.7.2
12.3
12.3.1
12.3.2
12.3.3

12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.9
12.3.10
12.3.11
12.3.12
12.4
12.4.1
12.4.2
12.4.3
12.4.4

12.4.5
12.4.6
12.4.7
12.4.8
12.4.9
12.4.10
12.4.11

M-5035
Volume II

TABLE OF CONTENTS (Continued)

SECTION 12
(Continued)

Addressable Registers, Control Memory
Modes of Operation

Interrupt State
Task State
Active Status Register

AN/UYK-7 Instruction Formats
Format I Instructions
Format II In~tructions
Format III Instructions
Format IV-A Instructions
Format IV-B Instructions
Indirect Word
I/O Commands Formats

Normal Mode
ESI Mode

Symbolic Conventions
f - Function Code Designator
a - Arithmetic Code Designator
k - Operand Interpretation Code

Designator
b - Index Register Code Designator
i ~ Indirect Address Code Designator
~. - ~ase Register Code Desig~ator
y - Operand Code Designator
f2t f3, f4, - Subfunction Code Designators
m - Shift Counter Field .
m - Monitor Interrupt Cod~ Designator
c - Chain Flag Code Designator
j - Channel Number

Computer-Instruction Repertoire
Load and Store Instructions
Arithmetic Instructions
Jump Instructions

. Instructions Involving Comparison
Operations

Instructions Involving Logical Operations
Shift Instructions
Instructions Referencing Control Memory
Interrupt Handling Instructions
Miscellaneous Instructions
Extension Mnemonics
Input/Output Instructions

xv

11-12-3
11-12-8
11-12-8
11-12-8
11-12-9
11-12-12
11-12-12
11-12-13
11-12-13
11-12-14
11-12-14
11-12-15
11-12-16
11-12-16
11-12-17
11-12-17
11-12-17
11-12-17

11-12-22
11-12-25
11-12-25
11-12-25
11-12-25
11-12-20
11-12-26
11-12-26
11-12-26

. 11-12-20
11-12-26
11-12-3S
11-12-41
II -12-~*>

11-12-57
11-12-02
11-12-68
11-12-71
11-12-79
11-12-84
11-12-92
11-12-98

M-5035
Change 2
Volume II

Paragraph

TABLE OF CONTENTS (Continued)

Title

APPENDIX A
CHAR ACTER CODES

APPENDIX B
SUMMARY OF SYSTEM STATEMENTS

APPENDIX C
SUMMARY OF SERVICE ROUTINE CALLING SEQUENCES

APPENDIX 0
CMS-2 COMPILER RESERVED WORD LIST

APPENDIX E
COMPILER ERROR MESSAGES AND LIMITS

APPENDIX F
SUMMARY OF ASSEMBLER ERROR CODES

APPENDIX G
AN/UYK-7 CONDENSED REPERTOIRE

. APPENDIX H
CMS-2 SYSTEM TAPE DUPLICATION

APPENDIX I
SYSTEM MODIFICATION

CMS-2 KEYWORD INDEX

xvi

A-I

B-1

C-1

D-l

E-l

F-1

G-l

H-1

I-I

Figure

I-I
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

:.!-<)

2-10
2-11
2-12
2-13
2-14
5-1
6-1
7-1

11-1
11-2
11-3
11-4

ll-S
11-6
11-7

1l-B

11-9

11-10

M-5035
Ch H n~Jf' 4
Volume II

L1 ST OF 1 LUJSTH AT] ONS

Ti t Ie

Typical Minimum Configuration
CMS-2 Compile-Time System
Structuring of Data Designs and Proceuurps
Source Deck Forms
System Procedure Design
Range of Program Identifiers
CMS-2 Program Structure Declaral ivps
A Compile-Time System Struc1un~
Statement Execution Flow Involvin~l Pro(,t't\url'

Calls
Table Structure
Fi('lt! Assignments for a Tablp
Tab 1 (' S tor age S eq U(~ncp
Parent Table Relationships
A Three-Dimensional Array
Array S 1 or age Sequenc(~
VARY Flow
Input/Output Data Flow
Element s of a Compi le-Timt' Sys tern
Assembler Pass 1 Data Flow
Assembler Pass 2 Data Flow
Sample Deck Using Control Cards
Sample Deck to Assemble ,Load, and EXt'cUl1'

a Single Program
Sample Cr os s -He f e f('ncp Li s 1 i n~1
Source Dt'ck Oruanizalion for a Singlt' Prouram
Source Deck Organization for Asst'mblinu

Using Library Input
Source Deck Organization for Two or Mort'

U(~ppnden t ('roU rams 0 r S(~gn1t'n t s
Source Dpck Organizat ion for Two or ~lorl'

Independent Programs or S(~~)ml'nt s
Source Deck Assembly Tinw Allocat ion

~

I 1-1--1
11-2-·1
1 1 -~-()
11-2-7
11-:2-0
}1-:2-1u
11-:2-1]
11-:2-1:2

11-:2-1'-1
II-:2-HI
II-:2-1q
Il-:2-Jt}
J l-:2-:2J
I 1-:2-:2:2
11-:2-:2:{
I 1-.-)- 63
I 1 -()-:~
11-7-:2
11-11-:1
I 1-11--1
11-11-1.-)

I 1-11-1 -;-
1I-II-7t'
II -1 1 -{,I)

I I-II U I

11-]]-l\:2

I I -I 1 -tl:2
I 1 -1 I _n:~

I

M-5035
Change 4
Volume II

Table

4-1
4-2

• 5-1
5-2
5-3
5-4
6-1
7-1
9-1

11-1
11-2
11-3
11-4
12-1

12-2
12-3
12-4
12-5

12-6

12-7

LIST OF TABLES

Ti tie

Examples of Variable Declarations
Examples of Type-a Fields
Arithmetic Operators
Relational Operators
Boolean Operators
Truth Table
CMS-2 Operating System Standard Files
Equals Expression Summary
Instruction Sub-field Valid Forms
Operators and Priorities of Operators
Data Modes for Operator Items
Relocation of Binary Items
Single and Double Precision Expressions
Central Processor Control Memory Address

Assignments
AN/UYK-7 Computer Modes of Operation
Active Status Register
Instruction Repertoire Symbol Definitions
General Operand Interpretation (Memory To

A r i t h me tic)
General Operand Interpretation (Arithmetic

To Memory)
General Operand Interpretation (Normal

Replace Instruction Interpretation)

xviii

11-4-20
11-4-32
11-5-2A
11-5-6
11-5-6
11-5-8
11-6-2
11-7-20
11-9-19
11-11-6e l
11-11-65
11-11-72
II~11-72

11-12-4
11-12-8
11-12-9
11-12-19

11-12-23

11-12-23

11-12-24

M-5035

SECTION 1

INTRODUCTION

1.1 PURPOSE AND SCOPE

This user's reference manual contains the information required by programmers and

operators who wish to use or control the operation of the Compiler-Monitor System

(CMS-2) developed for use with the AN/UYK-7 Computer. Univac Systems Programming

Group developed this system for the Department of the Navy, Naval Ship Systems

Command, under contract number N00024-70-C-1142.

This manual consists of two volumes with contents as follows:

Volume I - Moni tor, Loader, Librarian, Peripheral Utilities, and System
Operation - contains descriptions of command formats
recognized by the Monitor, Loader, Librarian, and
Peripheral Utilities. This volume also contains

descriptions of calling sequences required to reference

Monitor service routines and descriptions of operator

commands recognized by the CMS-2.

Volume II - Compiler, Assembler, and Instruction Repertoire - contains a

description of the languages recognized by the Compiler

(both high level and low level) and the Assembler,

including a comprehensive description of macro generation.

Volume II also contains a complete functional description

of the AN/UYK-7 Computer ~nstruction repertoire.

While this manual contains comprehensive descriptions of command syntax,

calling sequences, and messages generated by various components of the system,

detailed descriptions of the functions performed by each component, the inter­

faces between the components, and functions performed by the hardware are all

beyond the scope of this manual.

11-1-1

M-5035

1~2 APPLICABLE DOCUMENTS

The following documents augment the content of this manual to provide a

complete description of the Compiler-Monitor System 2 (CMS-2) developed for the

AN/UYK-7 Computer:

NAVSHIPS 0967-029-5430

Program Specification for

Compiler-Monitor System

for use with the AN/UYK-7

Computer.

NAVSHIPS 0967-029-5440

Program Design Plan for

Compiler-Monitor System

for use with the AN/UYK-7

Computer.

NAVSHIPS 0967-051-6291

AN/UYK-7 Digital Data Computer

Un j \' ac DSn Doc umen t, P X 3699A

UNIVACu 1532 Input/Output

Console Technical Description

Univac DSD Document, PX 3662

UNIVAcID 1540/1541 Magnetic

Tape IJnits Technical Description

11-1-2

Consists of" five parts containing

the basic functional specifications

for each of the five major com­

ponents in the system:

Part 1 - Compiler

Part 2 - Librarian

Part 3 - Monitor

Part 4 - Loader

Part 5 - Peripheral Utilities

Consists of five parts containing

the detailed descriptions of

functions performed by each of the

five major components in the system:

Part 1 - Compiler

Part 2 - Librarian

Part 3 Monitor

Part 4 Loader

Part 5 - Peripheral Utilities

Contains the hardware description

of the computer used by the system.

Contains the hardware description

of the I/O console used by the

system.

Contains the hardware description

of the magnetic tape units used

by the sys tern.

Univac OPO Document, UP2543, Rev I,

UNIVA& 1004 Card Processor Reference

1.3 SYSTEM CAPABILITIES

M-5035

Contains the hardware description

of the card reader, card punch,

and high-speed printer used by

the system.

CMS-2, also referred to as the system, provides optimum utilization of the

AN/UYK-7 Computer and associated peripherals in a serial batch proces'sing

environment. The system is user oriented and designed to optimi~e the

capabilities,of the system for all users. Its major features are:

1. Provides the simplest possible operational characteristics

consistent with the full utilization of the system.

2. Provides a simple yet flexible means of generating, storing, and

updating computer programs at the individual installation.

3. Provides a broad and easily utilized system of program construction,

manipulation, and debugging aids.

1.3.1 Hardware Requirements

The system operates on an AN/UYK-7 Computer and its associated peripherals.

The ~inimum equipment required to efficiently operate the system consists of:

I. AN/UYK-7 Computer with 3 memory banks.

2. UN IV AcE> 1004 Card Reader, Punch, and Printer or equlv·alent.

3. Six UNIVAOV 1240 or 1540 Magnetic Tape Transports or equivalent.

4. UNIVAC® 1532 Input/Output Console and Keyboard or equivalent.

Figure 1-1 illustrates a typical minimum configuration.

11-1-3

M-5035

1532 I/O
Console and
Keyboard

AN/UYK-7
Computer
with 48K
of Memory

I
I
I
I
I
t r----
I
I
I
I
I L ___ _

1004 Card Reader
Punch, and
Printer

* Optional
addition

Figure 1-1. Typical Minimum Configuration

.I 1-1-4

M-5035

1.3.2 Software Components

A s~ftware component of CMS-2 is a program which is designed to perfQrm a

specific function (e.g., compile a program, build a library) using an

external data-base (e.g., source, object code). The component is designed

to operate under the Monitor (a component that performs control functions)

which determines its final operational allocation and provides it with a

centralized input/output capability. Thus, a component represents a module

in the system which may be tailored to operate ·under the Executives with .
little anticipated change in the logic. These changes would necessarily

reflect the idiosyncrasies of the particular executive, notably in the area

of the Executive call. CMS-2, for the initial development, consists of the

followi ng components:

1. Monitor

2. Object Code Loader

3. Librarian

4. Peripheral Utilities

5. Compiler

6. Assembler

7. System Tape Generator

The system utilizes magnetic tape as the system storage medium. The tape

format effectively provides the features which follow:

1. Efficient run time retrieval of programs.

2. Independent system initialization.

3. Potential system expansion.

4. Total system delivery.

5. Complete sys!~em update, maintenance and reproduction.

The system storage medium consists of two parts: 1) the operational library

and 2) the system library.

11-1-5

M-5035

The operational library contains the Monitor and components which make up the

system; in addition, it contains directory information required for locating

programs on the operational library, for relocatable loading (not initruction

modification), and for initating execution. This library occupies the first

file on the system tape and is wiitten in a format compatible with the NDRO .

bootstrap routine. The Monitor and the directory information are loaded when

the bootstrap routine is initiated from the computer control console. This

provides the independent system initialization.

The system Library contains the following:

1. Object code of all run time routines (implicit) 0

2. Object .code of all intrinsic built-in routines.

J. Object code of Monitor and all components.

4. Compools of selected data designs for Monitor and components.

1.3.2.1 Monitor

The Monitor (described in Volume I, Section 2) is a serial batch processing

operating routine utilizing a single AN/UYK-7 unit processor. Major functions

available through the Monitor are requested by the user through control cards

described in Volume I, Section 2. The Monitor includes the Centralized Input!

Output Module which supports I/O on the various devices attached to the

AN/UYK-7. The Monitor also provides for handling of all classes of processor

interrupts and interfaces to allow user programs to access vital interrupt

inform~tion (e.g., flo~ting point error). The Monitor is responsible for

retrieval of components from the operational library on the system storage

medium (system tape). It also maintains system core allocation algorithm.

1.3.2.2 Object Code Loader

The Object Code Loader (described in Volume I, Section 3) pe~forms instruction

modification to object code produced by the CMS-2 Compiler and CMS-2

Assembler. The Lvclder allows optimum code to be generated by the AN/UYK-7

language processors by combining independently compiled program segments

under a common base register or registers, thus reducing the number of base

register manipulation instructions which must be executed •

.11-1-6

M-5035

1.:\.2.:\ l.ibrarian

The Librarian (described in Volume I, Section 4) provides a convenien.t, f!asy­

to-use method of storing, ~etrieving, and updating both source statements and

rclocatable object code. The Librarian is capable of u~dating (i.e., adding.

deleting, changing) both entire elements or individual items within an element.

1.3.2.4 Peripheral Utilities

The Peripheral Utilities (described in Volume I, Section 5) provide a

variety of functions for manipulating data files on the peripheral devices.

These functions include:

1. Position specified magnetic tape at the start of a file (designated

by a file mark).

2. Position specified magnetic tape at the start of a record within

a file.

3. Transfer tape data into memory (read tape).

4. Transfer memory data onto tape (write tape).

5. Compare the contents of two tapes and print out any differences.

1.3.2.5 Compiler

The Compiler (described in Volume II Sections 2 through 10) accepts both high

and low level languages. The high level language is statement oriented and

the low level is computer instruction mnemonic oriented. These languages

describe the desired program, and the Compiler generates object code data that

the Object Code Loader places into memory as an executable program. The

Compiler input is called source code and the Compiler output is called object
code.

lI-I-7

M-5035

1.3.2.6 Assembier

The Assembler (described in Volume II, Section 11) accepts a computer instruc­

tion mnemonic oriented language that gives the programmer absolute control of

the structure of his program. In addition, the Assembler provides programmers

with a level of assistance beyond that normally associated with ~n assemblf!r

class of language processors. The assembler accepts programmer definitions

of pseudo-operations (called Macros) and then uses the definition whenever

tht> programmer references the pseudo-operations. As with the Compiler, the

Assembler input is called source code and the Assembler output is called

obj ec t code.

1.3.~.7 System Tape Generator

The System Tape Generator (described in the System Programmer's Manual),

provides an easy-to-use method of updating system tapes that have a directory

scheme identical to the CMS-2 tape. The System Tape Generator accepts input

that contains the necessary data to change tape directory information (e.g.,

number assigned to a new, component, names of 'new records. names of records to

be deleted), and then, in conjunction with the Object Code Loader, generates

a new system tape complete with required directories.

1.4 SYSTEM OPERATION

System operation consists of initiating the system, preparing inputs to the

system, and accepting outputs.

1.4.1 System Load and Initiation

System loading is initiated using the AN/UYK-7 Magnetic Tape Hardware Bootstrap

Program. The resident Monitor is loaded at a specified location dependent on'

the number of operable memory banks currently available. The necessary allo­

cation-dependent words in the resident Monitor are then initialized. The

Monitor's data and the operational library directory for the Monitor are then

loaded from the system tape, and the Monitor requests the current time, date,

operating mode (open or closed shop), and standard selections of input/output

devices. Any other flags or variables maintained by the Monitor and requiring

initialization are preset.

11-1-8

M-5035

1.4.2 Standard Input Processing

Once initiated, the Monitor starts reading card image data from the select(~d

standard input device. This device is normally the card reader; howf~'/('r, Ihc

Monitor accepts commands to process data from either magnetic tape or t.he I/O

console as standard input data. In each of these cases, the input data must

be in card image format.

The data read from the standard input device consists of:

1. Monitor control cards which contain commands to the Monitor inclu(ting

commands to load and activate other system components or user programs.

2. Inputs to an activated system component or user program which contain

both commands to the program and input data to be processed by the

program.

In general, when the Monitor pas~es control to either an(Ither system component

or user program, the component or program (as applicable) starts reading data

from the standard input devices; for example, the card images following the

image commanding the Monitor to load and activate the Compiler make up the

source code input to the Compiler. On the other hand, most of the card images

following the image commanding the Monitor to load and activate the Librarian

are commands to the Librarian directing its manipulation of data stored on

magnetic tape.

1.4.3· Standard Output Processing

The system has three basic outputs:

I . Standard output consisting of object code cards normally produeed on

the card punch. The Monitor accepts a command to place this data on

magnetic tape in obj ec t code card image format instead of punchiny

cards.

2. Hardcopy output consisting of high-speed printer-oriented data, such

as program listings, normally produced on the UNIVAC\!!) 1004 High

Speed Printer. The Monitor accepts a command to place this data on

magnetic tape in printer format instead of printing the data.

3. Console messages consisting of up to 72 characters of operator­

oriented data (request to mount a tape) typed out on the I/O console.

II-I-9/II-I-IO Blank

SECTION 2

I~TROUUCTION TO TilE CMS-2 LANGUAGE

~.l MAJOR fE~rURES Of CMS~2

M-5035
Change ·t

CMS-2 is a problem-oriented compiler language developed to meet the needs of

real-time data processing and scientific applications. Its major featur\~s

are described below:

a • C MS-2 permits program modularization and adherence

to the concepts of structured programming.

b. Input to the CMS-2 Compiler is statement-oriented, rather

than card-oriented o The source card format is free-form

and may be arranged for user convenience.

c. A broad range of data types is definable in CMS-2. These

types include fixed-point, floating-point, Boolean,

Hollerith (character), and status.

d. CMS-2 permits direct reference to, and manipulation of,

character and bit strings.

e. Programs may include segments of symbolic machine language,

referred to as direct code.

The remainder of this section presents a number of definitions, discusses

various concepts fundamental to the CMS-2 language, and presents a summary of

the specific capabilities of the language.

2.2 PROGRAM STRUCTURE

A CMS~2 program is composed of an orderly set of statements. These statements

are composed of various symbols that are separated by delimiters. Three

categories of symbols are processed: operators, identifiers, and constants.

The operators are language primitives assigned by the Compiler to indicate

11-2-1

I

M-5035

specific operations or definitions within a program. Identifiers are the

unique names assigned by the programmer to data units, program elements, and

statement labels. Constants are known v~lues, and may be numeric (decimal or

octa}) , Holleri th strings, status values, or Boolean.

CMS-2 statements are written in a free format and terminated by a dollar sign.

Several statements may be written on one card, or one statement may cover

many cards. A statement label may be placed at the beginning of a statement

for reference purposes.

Tht! c~llection of program statements developed by the programmer for input to

the CMS-2 Compiler is known as the source code for a program and is composed

of the following two basic types of statements:

1. Declarative statements - Provide basic control information to

the Compiler and define the structure

2. Dynamic statements

of the data associated with a particular

program.

- Cause the Compiler to generate execut­

able machine instructions (object code)

for a program.

These instructions, when executed at program run time, manipulate the data

to solve the desired problem.

Declarative statements defining the data for a program are grouped into units

called data designs. Dat~ designs consist of the precise definition of

temporary and permanent data storage areas, input areas, output areas, and

special data units such as program switches. The dynamic statements that

cause manipulation of data or express calculations to solve the programmer's

problems are grouped into procedures. These data designs and procedures

may be further grouped or classified to form elements of a CMS-2 program.

At compile-time, the CMS-2 Compiler recognizes a system as any collection of

program ~l~ments that may be compiled as an entity independent of any inter­

facing proyram elements. A compile-time system may comprise an entire

eXf!Cut jon package or j t may be only a small part of a large program.

11-2-2

M-5035

Before presenting any further discussion concerning the classification and

grouping of procedures and data designs into elements and the combining of

these elements to form systems, several concepts fundamental to the CMS-2

language must be explored.

2.2.1 Organization and Classification of Identifiers

The CMS-2 Compiler uses several conventions to classify data definitions and

program identifiers that are defined in a user's program. These techniques

assist the programmer in structuring his program and simplify the development

and maintenance of the programs.

2.2.1.1 Forward and Backward References

The order in which definitions and references to these definitions appear in

the source input to the Compiler is quite important. All data units are

defined in data designs. Within the data design where it is defined, an

identifier may generally be referenced either before it is defined (a forward

reference) or after it is defined (a backward reference). However, references

to data from outside a data design can only be backward; that is, the data

must have already been defined before it can be referenced. Since data

definitions always appear in data designs, and since data references usually

appear in procedures, procedures generally fOllow the data designs defining

the data referenced by the procedure.

References to statement labels within procedures and calls to procedures may

be forward or backward, but must obey the following local/global limita­

tions.

2.2.1.2 Local and Global Definitions

The Compiler further structures the referencing of identifiers by classifying

all identifiers in a program as either local or global. Local definitions

are those identifiers that can be referenced only from within the system

element where they are defined. Global definitions are those identifiers

that can be referenced both from inside the element where defined and from

outside by subsequent system elements in the source input stream.

11-2-3

M-5035

Figure 2-1 is a pictorial representation of a CMS-2 compile-time system con­

sisting of three elements: A, B, and C. Since a definition in the CMS-2

language is said to be local if it is valid only within a single element of

the system, any definition valid within element B of Figure 2-1 is said to

be local to element B. A global definition in the system of Figure 2-1 is

valid within elements A, B, and C.

An alternative definition of the term "system" can be derived from this local­

global concept, i.e., a system is the largest global area within a CMS-2

compilation.

System

Figure 2-1. CMS-2 Compi Ie-Time System

2.2.1.3 External References and Definitions

The CMS-2 Compiler provides the capability of compiling one or more elements

of a large system independently. For. example, all three elements of the

system of Figure 2-1 could be compiled together as a single compile-time

system. Alternatively, elements A and B could be compiled together as a

11-2-4

M-5035

eompi l(~-timc system and then element C could be compi led separately as another

compil(!-time syst(~m. The compiler-produced output in each case is the computf!r­

executable instructions (object code) for the various system elements. Later,

the object code for element& A, B, and C may be combined by a relocatable

linking loader program and executed together.

Presumably, there is some cross-referencing of data and procedures between

the three elements of our example. In order to compile element C separately,

any references made by element C to definitions in elements A and B must be

handled in a special manner by the Compiler and the Loader. References of

this type are called external references because they involve definitions

that are external to element C and, in this case, external to the compile-

time system as well. Those definitions in elements A and B that are referenced

externally by element C are called external definitions because they are

definitions that are available to elements external to A and B.

There are various ways in which definitions and references may be declared

external. In some cases the Compiler will automatically treat a definition

or a reference as being external. In other cases, external references and

definitions must be explicitly declared by the programmer.

It should be noted that only global definitions may be externally referenced

or defined. Local definition~ are never valid outside, or external to, the

element in which they are defined.

2.2.2 CMS-2 Elements

As described in the previous paragraphs, data designs may be grouped OT

classified to form elements, of a CMS-2 program. One or more elements then

make up a co~pile-time system. The ordering and content of program elements

is subject to the rules governing range and classification of definitions.

The two types of elements within a compile-time system are system data designs

and system procedures. System data designs contain global data definitions.

System procedures contain one or more procedures and may also include local

data design packages. A local data design, as the name implies, contains

data definitions that are local to the system procedure in which the local data

11-2-5

M-5035

design appears. This structuring of data designs and procedures into program

elements within a system is illustrated in Figure 2-2.

I System

System Procedure ~ System Data Design

Procedure Local Data Design

Figure 2-2. Structuring of Data Designs and Procedures

The hi~rarchy shown in Figure 2-2 indicates that, within a system, system

data designs are equal in importance to system procedures; they are the

program elements of a system. Keeping in mind the restrictions against

forward referencing, a source deck may take various forms, as illustrated

in Figure 2-3.

The technique illustrated in Figure 2-3 (A) is dften used i~ constructing a

program. Since definitions within a system data desi9n are global to the

balance of the system, system procedures may appear in any order following

the system data design(s) defining the referenced data. Interspersing data

designs and procedures as in Figure 2-3 (8) (e), however, has an advantage,

especially in a large system, of maintaining data definitions in meaningful

groups close to the associated procedures.

Note that Figure 2-3 illustrates several examples of a compile-time system,

but these systems might be only a small part of an entire execution patkage.

In addition, each compile-time system of Figure 2-3 might be further broken

doWn into two or more compile-time systems. In this manner, corrections

may be made to a particular system procedure, which may then be recompiled

without compiling the entire execution package again.

11-2-6

M-5035

System
Data Design

System
D~ta De~ign

System Procedure

System Procedure System Procedure System
Data Design

System System Procedure, System
Data Design System Procedure

System Procedure System Procedure System
Data Design

System Procedure System Procedure System Procedure

~

A B C

Figure 2-3. Source Deck Forms

System data designs and system procedures are the smallest program units that

may be compiled individually. A compile-time system may consist of a single

system data design or system procedure, but it cannot consist of a single

local data design or procedure.

2.2.2.1 System Data Designs

Data designs contain descriptions of the attributes of the various data units

(e.g., tables and,variables) and their relationship to each other. As the

Compiler processes these descriptions, it assigns and reserves core storage

locations for subsequent references to the data units. Data designs may

contain value information as well, which will cause the Co~piler to generate

object code to preset the data.

11-2-7

M-5035

Definitions within a system data design are global to the system. They are

all automatically externally defined by the Compiler. There is, therefore,

no need to specifically externally define any data within a system data

design.

2.2.2.2 System Procedures·

System procedures are composed of procedures and local data designs. A

system procedure usually contains one procedure with a name identical to that

of the system procedure name. This procedure is known as the prime procedure

of that system procedure. The prime procedure entry point is automatically

externally defined by the Compiler and is global to the system. Other system

procedures, and data designs may reference prime procedures at will. Thus,

the prime procedure of a system procedure is considered a global procedure

(hence, the term system procedure).

A system procedure may contain more than one procedure, as illustrated in

Figure 2-4.

"' Local Data Design

Procedure A

Procedure B

Local Data Design

Procedure C
..I

Figure 2-4. System Procedure Design

> System
Procedure

For example, the system procedure of Figure 2-4 contains three procedures and

two local data designs. If this system procedure were named "B", procedure B

would be the prime procedure of the system procedure and its name would be

11-2-8

M-5035

global to the entire system. However, procedures A and C, along with the

data units of the two data designs, would be local to the system procedure

and could not be referenced from outside the system procedure.

2.2.2.2.1 Local Data Designs. The difference between system data designs

and local data designs is that, while system data design definitions are

global to the system and automatically externally defined, local data design

definitiops are local to the system procedure within which they are contained;

any necessary external definitions must be explicitly indicated within the

data design. In addition, a local data design may not be compiled separately

from its associated system procedure.

The local data design is intended to be used for the definition of data units

referenced only by the procedures within its system procedure. The use of

local data designs reduces the possibility of duplication of data names in a

large system because of their limited range of definition.

2.2.2.2.2 Procedures. Procedures contain CMS-2 statements and machine­

language statements. They may not contain data definitions or data values

for previously defined data. Procedures contain the statements from which

the Compiler generates the instructions that actually perform the steps

necessary to the solution of the problem. They must be included withiri a

system procedure element at compile-time.

2.2.3 Range of Identifiers

As can be seen from the previous discussions, the organization of CMS-2

statements into system data designs and system procedures to form the

elements of a program is closely related to the rules concerning classification

of identifier definitions and references. These rules on the range of

identifiers (i.e., local/global definitions and forward/backward references)

are summarized i'n Figure 2-5.

11-2-9

M-5035

Global

Local

Identifiers

Prime Procedures

Data defined in a
System Data Design

Local Procedures

Data defined in a
Local Data Design

Range Within Which
They Can Be Referenced

Throughout the compile-time system.

Within thnt system data design
and in all system elements that
follow.

Within the same system procedure.

Within that local data design and
the remainder of the system procedure
containing t.he local data design.

All Statement Labels Within the system procedure.

Figure 2-5. Range of Program Identifiers

2.3 DECLARATIVE STATEMENTS

The CMS-2 declarative statements provide the Compiler with information about

program structure and"data element definitions. Declaratives generally do not

result in executable code. Declaratives are classified in three categories:

pr"'.lr~:-;l structure declaratives, data declaratives', and Compiler directive

(or program control) declaratives.

2.3.1 Program Structure Declaratives

ln the development of a CMS-2 program, the dynamic and data definition state­

ments arc organized into procedure and data design packages. CMS-2 program

structure declaratives are used to define the source program organization by

specifically delimiting the structure type as shown in Figure 2-6. An

exampl(~ of the correct organization of program structure declaratives for a

compile-time system is presented in Figure 2-7.

11-2-10

Beginning Delimiter

SYSTEM

SYS-UU

SYS-PROC

LOC-DD

PROCEDURE

FUNCTION

SYS-PROC-REN

AtrTO-DD

HEAD

Ending Delimiter

ENO-SYSTEM

ENU-SYS-OO

END-SYS-PROC

END-LOC-DD

END-PROC

END-FUNCTION

END-S YS-PROC

END-AlITO-DD

END-HEAD

M-5035

. Delimits a compile-time system

Oelimits a system data design
within a compile-time system

Delimits a system procedure
within a compile-time system

Delimits a local data design·
within a system procedure

Delimits a procedure within a
system procedure

Delimits a function within a
system procedure

Delimits a reentrant system
procedure within a compile­
time system

Delimits a reentrant data design
within a reentrapt system
procedure

Delimits a header package within
a compile-time system

Figure 2-6. CMS-2 Program Structure Declaratives

11-2-11

,....
......
I
N
I
N

11 15 20 25 30 35 40

S'AJ~ PI LIEI ISlt,SIT, E,MI ,.it I I , I I I
I I IN, £, A Ll, £$, , , , I I I I I I I

I I I I I I '''''iT-I/,DIN,S, 15IDlul~CIEI ~
I I , I I I I I (,III bt -IH,E' I AI)' 1.$1 , ,

l>IA,T1A1),E,C-1 Is,t,SI-I),l, pt., 1 I I ,

, , 1 I I I IVI~,8tL., ,V,t,A,R, $1 I

I I I I I 1 IE IWI:bI-ISI'fISI-~I)1 'I
U,B),R"IC, ISli1SI-,P,IC"o,G, 1$1 I , , , I , I 1

I I I I I IP,~,D'c.,E' I)'''' ,R,EI kJ,PLJ>,A ,TIE, I~I
I I , I Is IElll IY IEIAIRI I,.jOI "I ~1711t ,$,

I I IRltITIUI~INII!' I I , , I I I I I I

IFIIIIJ>'-IPIRIOICI IUlp,l),AITI" ~I I

IE,IIIl>I-Rly,SI-IPIRlo lc, 1$1 I I I

IE ,N,J>,-,S 1'1 ISjT ,["" I ,$, , I , I I I

1 Major
Header

System Data Design

System
Procedure

Figure 2-7. A Compile-Time System Structure

Compile­
Time
System

::;:
I

U1
o w
U1

M-5035

2.3.1.1 Procedure Structure Declaratives and Linking

The dynamic statements that describe the processing operations of a program

are grouped into blocks of statements called procedures. The overall

purpose of a program, its design, and to some extent, its size, influence

the programmer's decision as to whether one or several procedures will be

declared. The transfer of program control from one procedure to another

requires the observance of procedure linking rules for such transfers.

The concept of procedure linking may best be described by posing a situation

from which those linking requirements desirable for use by a programmer may

be derived. As a program design develops, it becomes apparent to the

programmer/designer that there is a requirement to execute a given set of

statements at several points (within several procedures) in the total program.

As ~ach of these points is encountered, it would be advantageous to have a

program control capability of branching to a common routine (procedure),

processing, and returning to the next instruction following the program

control branch point (or procedure call). Along with this procedure call

should be a capability of simultaneously and automatically passing that

data, from the calling procedure to the called procedure where the data

is processed. This automatic data transfer is defined as input of para­

meters, that is~ data input to the called procedure from the calling pro­

cedure.

Upon completion of processing by the called procedure, it also should be

possible to automatically pass the results of the processing from the called

procedure to the calling procedure when program control is returned to the

calling procedure. This is defined as output of parameters, that is, data

output to the calling procedure from the called procedure.

Additionally, there should be a capability of specifying an instruction

address (statement label) to which the called procedure may transfer program

control in the event it does not perform its normal processing due to invalid

input data or processing checks indicating invalid or illogical results.

This is defined as an abnormal exit (abnormal return).

11-2-13

M-5035

The foregoing is the capability available to provide linkage among all

procedures. Furthermore, all or part of these linkage capabilities may be

used, depending upon the requirements of the program •. The syntactical

requirements for defining a procedure and making a procedure call are

presented in Sections 4 andS, respectively. Figure 2-8 is a schematic

representation of the procedure linkage concept.

2.3.1.2 Reentrant System Procedures

Certain programming applications require that one or more of the procedures

comprising the program package or system f6r that application be structured

such that they may be shared by more than one task concurrently. Procedures

of this type are said to be reentrant procedures.

The principal characteristic of a reentrant routine is that it must be divided

into two logically and physically distinct parts: a constant part and a

variable part. The constant part (instruction part) is loaded into memory

once and services all tasks requiring this routine. One copy of the ~ariable

part (data area) belongs to each task that is being serviced. This copy is

usually created (that is, it is allocated memory space) when the task is

initiated.

Within the CMS-2 language, a programmer has the capability of declaring a

system procedure to be reentrant. In this case, the object code generated

by the Compiler for all procedures within this system procedure will be

invariant (constant) under execution. In addition, a special type of local

data design called an automatic data design may be declared within a reentrant

system procedure. An automatic data design is used for the definition of

temporary storage and procedure parameters used by the reentrant procedures

within the system procedure. Within a reentrant system procedure, the

Compiler automatically performs the required separation of the constant part

(procedures) and the variable part (automatic data designs). Multiple copies

of the variable part may then be loaded into m~mory along with a single copy

of the constant part and the reentrant system procedure may be executed

simultaneously by more than one task or central processor.

1I-2~14

Procedure M
Entry --... - -, CMS-2

I Dynamic I Statements ~

Procedure B Call

Next inst. after call

I •
Procedure G Call

Next inst. after call

;
I
I
I
1
t
I
I
I
I
I

Procedure F Call

Next inst. after call

I
I
I
I
I
I
t
I
I
I
I
I
I
I

.J

r·
I
I
t
I

Return
4---

I
.. t---------...J

Entry
r--" ,

I I
I
I

I-J

R

I

• I
I

eturn J ---....

M-5035
Procedure B

~
~---------------------~

Procedure G

- -,
•

~
I

Procedure R Call

I
I Next inst. after call
I
I
I

·1
I
I

~.I-J

E ntry Procedure F
i-

~

.. "' } I Tes t Sequence
.~

Branch to Abnormal
I Sequence or
I Continue with
I Normal Sequence
I
I Norma 1 I
L!!£.t.E!..

I
~. J

Abnor­
mal
eturn R

~

r-
Abnormal I

• Processing I
Sequence I

I
I·

.-~----____ -.J

Procedure R

Entry
I-------,
~

I
Return t
----, I

L_r-J

-. ..,
I
I
I
I
I
I
I

_.J

Figure 2-8. Statement Exe~ution Flow Involving Procedure Calls

11-2-15

M-5035

It must be clearly understood that the Compiler provides only this separation

capability. The responsibility for loading these programs into memory and

allocating space for automatic data designs is properly a function of loaders,

monitors, and executive programs. Furthermore, the CMS-2 language and

Compiler provides the capability, through this separation function, of

implementing such sophisticated programming te~hniques as recursion and

reentrance after suspension. However, much of the responsibility for this

type of programming must be borne by the programmer/designer and the executive

program for the application.,

2.3.2 Data Declarations

Data declarations by the programmer define the format, structure, and ord~r .
of data elements within a compile-time system. The three major data types

are as follows:

1. Swi tches:

a. Statement switches.

b. Procedure switches.

2. Variables:

a. Computational:

1. Integer.

2. Fixed-point.

3. Floating-point.

b. Non-computational:

1. Hollerith.

2. Boolean.

3. Status.

3. Tables:

a. One-dimensional.

b. Multidimensional (array).

c. Subtables.

11-2-16

M-5035

d. Like-tables.

e. Item areas.

f. Fields.

2.3.2.1 Switches

Switches provide for the transfer of program control to a specific location

within a compile-time system. Switches contain a set of identifiers, or

switch' points, to facilitate program transfers and branches. The switch

points represent program addres~es of statement labels or procedure names.

Transfer of control to a particular switch point is usually determined by

the value of a programmer-supplied index.

2.3.2.2 Variables

A variable is a singular piece of data. It may be one bit or multiple bits

or words. A variable may be preset to a desired value within the definition

statement. The variable may contain a constant value or its value may

continuously change during program execution. Multiple variables ~aving

identical attributes may be defined in a single declarative statement. Data

types th~t may be specified fora variable are arithmetic (fixed- or floating­

point), Holleri th(character string), status (defined states of condi tion), or

Boolean (true or false). An initial value, or preset, may be specified for

the variable in the declarative statement.

2.3.2.3 Tables

Tables hold ordered sets of identically structured information. The common

unit of data structure in a table is the item. An item consists of k computer

words where k Js selected by the'programmer or Compiler. A table may contain

n items, where n is programmer selected. Thus the size of the table in

number of required computer words for st~rage becomes the product of nand k.

A table structure is illustrated in Figure 2-9.

11-2-17·

M-5035

Item 0

1

2

3

4

n

Word 0 Word 1 Word.2

Figure 2-9. Table Structure

11-2-18

Word k

M-5035

Items may be subdivided into fields. Fields are the smallest subdivision

of a table. A field may be a partial word, a full word, or a multi-word

subdivision. Data types that may be specified for a field are arithmetic

(fixed- or floating-point), Hollerith (character string), status (defined

states of condition), or Boolean (true or false). Field~ may overlap each

other. Data may be preset into a field. An example of field assignments

is illustrated in figure 2-10.

Word 0 Word 1 Word 2
(y y

Item 2 I I I,
t \..

Field A \ Field B
'~--------~T--------~~

Field C

Figure 2-10. Field Assignments for a Table

CMS-2 tables may be defined as horizontal or vertical. This specification by

the programmer dictates the manner in which the table words will be stored in

core. The words of a horizontally declared table are stored such that words

o of all items are ~tored sequentially, followed by words I of all items, etc.

The words of a vertically defined table are stored such that all words of

item 0 are siored sequentially, followed by all words of item 1, etc. Figure

2-11 illustrates the storage pattern for horizontal and vertical storage.

Word 0 Word 1 Word 2 Word o. Wor.d 1 Word 2

Item 0
Item 0

Item I
Item 1

Horizontal Storage Vertical Storage

Figure 2-11. Table Storage Sequence

11-2-19

M-5035

The CMS-2 table structure also allows the programmer to define a subset of

adjacent items within a table as a subtable. The programmer may also allocate

outside the table a working storage area, designated as an item-are~which will

automatically take on the same field format as that defined for the table

items. Additionally, the programmer may declare tables kno~n as like-tables

having identical field format as the parent table but having a different

number of items. Figure 2-12 illustrates these ~escribed relationships to

the parent table.

2.3.2.4 Arrays

An array is an extension of the table concept for storing ordered sets of

identically structured information previously defined as items. Arrays may

be conceptually visualized as rows, columns, and planes of items. An example

of an array (three-dimensional) is presented in Figure 2-13. As with tables,

the basic structural unit of an array is the item. The array item may

consist of k computer words with fields defined as desired. The pattern

for storage of an array within core is illustrated in Figure 2-14.

2.3.3 Compiler Directive Declaratives

Certain CMS-2 declarative statements specify control information to the

Compiler. These declaratives direct Compiler action as to allocation mode,

listing options, system index registers, program debug features, base number­

ing system interpretation, data pooling requirements, and the computer mode of

operation within which the designated program is expected to run. These

declarative statements may be located in major headers if the control applies

to the entire compile-time system, in minor headers if the control applies

to a system element, or within a system element. The rules for placement

and range of effective action for the individual declaratives are defined

fully in Section 7.

11-2-20

Parent
Table

M-5035

Item 0

I

2

3

4

5

Subtahle
6

7

8

I I II I I Item-Area

Like-Table

2

3

Figure 2-12. Parent Table Relationships

II~2-21

Subtable

M-5035

Column 0 Column 1 Column 2

Row 0

1 \

. / , \
2 \ \

I I \ \
I ~o\ umn 0 Column 1 Column 2

3 I / \ '.

Plafe p Row 0 \\ ,.
/ /

/ 1 ,\
/ / .

/ /
2 \\ , /

I / ,
/ / 3 \

" /
,

\

/ / \ ,Plane 1 , / \ \
/ / \ ,

/ , \ \
I I , \

I / , \
/ / , \

I / \ \ , /
\ \ ,

/ ,
/ \ \ ,

/ Item 1, 2, 0 \ \

Word l' Word k

Figure 2-13. A Three-Dimensional Array

11-2-22

r

r

Row 0

1

2

Plane 0

Column 0 Column 1

, r
Word Word Word Word

o 1 2 3

Repeat the pattern with next plane, commencing at
Row 0, Column 0, Word O.

Figure 2-14. Array Storage Sequence

11-2-23

M-5035

M-5035

2.4 DYNAMIC STATEMENTS

CMS-2 dynamic statements specify processing operations and result in executable

code generation by the Compiler o A dynamic statement consists of an operator

followed by a list of operands and additional operators. An operand may be a

single name, a constant, a data-element reference, or an expression.

2.4.1 Expres s ions "

Arithmetic expressions may include standard addition, subtraction, multiplica­

tion, and division operators, as well as exponentiation, mixed-mode values,

and inline redefinition of the scaling of fixed-point numbers. An algebraic

hierarchy of operation evaluation is used. A relational expression performs

a comparison between two similar operands as specified by a relational

operator. There are four types of comparisons available:

1. Arithmetic, involving the comparison of signed arithmetic values

(fixed, floating, or mixed).

20 Hollerith, involving a left-to-right, character-by-character

comparison.

3. Boolean, involving single bit comparisons.

4. Status, involving the comparison of status values.

Arithmetic operators used in CMS-2 are + (addition), - (subtraction),

/ (d i vis ion), ~~ (m u 1 tip Ii cat ion),)!c)!¢ (e xp 0 n e n t i a t ion), and •• (i n 1 i n esc ali n g) •

Relational operators are EQ (equal), NOT (not equal), LT (less than), GT

(greater than), LTEQ (less than or equal) and GTEQ (greater than or equal).

Boolean operators used in CMS-2 are AND, OR, XOR (exclusive or) and COMP

(logical not). A CMS-2 expression may include algebraic, relational, and

Boolean operators.

2.4.2 Statement Operators

The CMS-2 statement operators allow the programmer to write his program in an

easy-to-Iearn, problem-oriented language. Major CMS-2 operators and their

functions are summarized on the following page.

11-2-24

Op(~rat()r

SET

SWAP

(;OTO

IF

VARY

FINU

PACK

SHIFT

FOR

Function

M-5035
Change -!

Per f () r m sea 1 c u 1 ali 0 n sur ass i U n s a val u t' t 0 () n f! 0 r m 0 rt~
d a tau nit s • The ass i g n nH' n t may 11 ear i t h mel ie, II 0 lIe r i t h ,
.status, Boolean,' ur multi-word.

Exchanges the contents uf two data units.

Alters program flow directly or via a statement switch.

Expresses a test situation for conditional execution of
one or more statements.

Establishes a program loop to repeat execution of a
specified group of statements.

Searches a table for data that satisfies specified conditions.

Transfers bit strings into a data area.

Shifts a string of bits.

Selectively executes one of a set of statement
blocks based on the value of a controlling expression.

2.4.3 Special Operators

Special operators are available in CMS-2 to facilitate references to data
\

structures and operations on them. These operators and their functions ate

summarized below.

Operator Function

BIT

CHAR

COR AD

ABS

POS, FIL

LENGTH

eNT

CAT

To reference a string of bits in a data element.

To reference a character string.

To reference a core address.

To obtain the absolute value of an expression.

To pOSition a magnetic tape file.

To obtain an input/output file length.

To obtain a count of bits set.

To concatenate character strings.

11-2-25

I

M-5035
Change 4

HIGH-LEVEL INPlH/OlJfPlJr STATEMENTS

CMS-2 high-level input/output (I/O) statements permit the program to communicatt

with various hardware devices while running in a non-real-time environment

under a Monitor system. When CMS-2 I/O statements are used by the programmer,

the Compiler generates specific calls to run-time routines that must be

loaded wit.h the user's program. The run-time routines are designed to link

with the Monitor system and communicate with its I/O drivers. I/O declarative

and dynamic statement operators and their associated functions are summarized

below.

Operator

FILE

OPEN

CLOSE

OIHPlJr

FORMAT

ENCOUE

DECODE

EI\UF 1 I.E

CIILCKIU

LJEF llJ

Function

Defines the environment and pettinent information concerning
an input or output operation, and reserves a buffer area
for record transmission.

Prepares an ~xternal device for I/O operations.

Deactivates a specified file and its external device, if
appropriate.

Directs an input operation from an external device to a
FILE buffer area.

Directs an output operation from a FILE buffer area to an
external device.

Defines the desired conversion between external data blocks
and internal data definitions.

Uirects transformation of data elements into a common area,
with conversion in accordance with a specified FORMAT.

Directs unpacking of a common area and transmittal to data
uni ts as speci f ied by a FOHMAT declarat ion.

Plac('s an (~nd-()f-file mark on appropriate recording mediums.

lJi Tf~e t scheck! nlj an III header or 1 abe I on a fi Ie.

lJ i Tf ~ e 1 s the 0 u t put of a n IlJ }1(~ cJ d (~ ron a f j 1 e •

I J -2-:!()

M-5035

2.l) PROGRAM DEBUG F ACILIT IES

CMS-2 debug statements may be placed in the source language of a user's

program to assist in program checkout. These statements may reference any

data units defined within the system. Machine code is generated by the

Compiler to call on run~time debug routines. The debug routines communicate

with the Monitor system during program execution to print the desired checkout

data onto the system output device (high-speed printer).

Five program checkout statements are provided. Output code is generated only

if the corresponding statements are enabled in the program header information.

A programmer may then control and select the debug tools as needed. The debug

operators and their functions are summarized below.

Operator

DISPLAY

SNAP

RANGE

TRACE

PTRACE

Function

Causes the contents of machine registers and/or specified
data units to be formatted and printed on the system output.

The contents of a data unit are printed and stored. Sub­
sequent executions cause a printout only when the data
contents are modified.

A high and low value are specified for a data unit. Each
tihte the data is modified in the program, a message is
printed if the value falls outside the range.

A printout is generated for the execution of each CMS-2
statement between TRACE and END-TRACE boundaries.

Each CMS-2 procedure call encountered in the program being
executed is identified by calling and called procedure
names.

11-2-27/II-2-28 Blank

M-5035

SECTION 3

BASIC DEFINITIONS

A CMS-2 program consists of an ordered set of sentences composed of symbols

and delimiters. The symbols and delimiters are formed using characters from

the CMS-2 alphabet.

3.1 CMS-2 ALPHABET

The CMS-2 alphabet consists of letters, digits, and marks as described below:

a. Letter - One of the 26 letters of the English alphabet, A

through Z, written in capital letter form.

b. Digi t

c. Mark

3.2 SYMBOLS

- One of the ten Arabic numerals, 0 through 9.

- Any additional special character that may be input

to the Compiler via the Monitor I/O routines. The

commonly used marks that have significance to the

CMS-2 Compiler are listed below, along with their

common name:

+ (pI us)

(minus)

/ (slash)

~:: (asterisk)

(decimal point, period)

(left parenthesis)

) (right parenthesis)

$ (dollar sign)

(comma)

(prime)

~ (space)

(space)

CMS-2 symbols are composed of strings of one or more letters, digits, or marks

from the CMS-2 alphabet. There are three types of symbols:

1. Operators - Indicating operations or specifications.

2. Identifiers - Names by which programs reference their

environment.

3. Constants - Words that represent unchanging values (constants

in the mathematical sense).

11-3-1

M-5035

3.2.1 Operators

Operators are symbols that denote an action or delineation to the Compiler.

They :ell the Compiler "what to do" or "what it is" as opposed to other

symbols that tell "where it is" or "how much it is".

The following symbols are examples of CMS-2 operators; the symbols are divided

into five categories:

Arithmetic Relational Boolean Dynamic Declarative

+ EQ AND PROCEDURE TABLE

LT OR FIND FIELD

I GT COMP SET LOC-DD

A special class of operators provides machine control interface. These symbols

are entirely machine dependent. For the AN/UYK-7 Computer, these symbol s are:

KEYl, KEY2, KEY3, STOP, STOPS, STOP6, and STOP7.

3.2.2 Identifiers

Identifiers are ::Jrbitrary names used to label various units of a CMS-2 program

so that these units may be referred to by unique names. A name is composed of

from one to eight letters and digits; the first character of a name must be a

letter o All CMS-2 identifiers (except statement labels, procedure names, and

abnormal exits) must be defined by or within a data declaration, which assoc­

iates the identifier with its specific attributes.

In order to prevent ambiguities in the sotirce input for a CMS-2 program, the

Compiler does not allow the programmer to declare or define identifiers that

duplicate operator symbols in the CMS-2 language. Appendix D presents a list

of those symbols which are reserved words. These reserved words are not

available to the programmer for use as identifiers. In addition, any programmer

expecting to make use of CMS-2 run-time routines (high-level debug, input/

output, or mathematical routines) should avoid the use of identifiers beginning

with the characters "RT". This will prevent possible conflict at load time

with global identifiers defined and referenced within the CMS-2 run-time
library.

11-3-2

3.2.2.1 Statement Label

A statement label is a special identifier in a CMS-2 program; the statement

label is used to label a dynamic statement. A statement label derives its

definition by context, since it is always followed immediately by a period.

When reference is made to the statement label during an operation within the

program, the period is omitted and the label is then known as a statement

name. More than one statement label may be applied to a dynamic statement.

NOTE

Statement labels may appear only on dynamic
statements. Hence, the period following a name
signifying a statement label may be used only
between the PROCEDURE and END-PROC declarations
and may never be used with direct code statement
labels.

3.2.3 Constants

A constant denotes a value that is known at compilation time. CMS-2 programs

m~nipulate the following four types of data:

1. Numeric values consisting of rational numbers.

2. Hollerith or literal values consisting of strings of characters

from the CMS-2 alphabet.

3. Status values consisting of independent sets of arbitrarily

named conditions.

4. Boolean values consisting of the two values: true or false.

3.2;3.1 Numeric Constants

A numeric value, positive or n~gative, may be represented by a de£imal or

octal constant as described below:

1. Decimal - Consists of one or more base-IO digits (0-9). This

is the normal mode of the Compiler. The number

enclosed in parentheses, preceded by the letter D,

is also acceptable and may be used when a non-decimal

mode is specified to the Compiler (see Section 7).

11-3-3

M-5035
Change 3

2. Octal - Consists of one or more base-8 digits (0-7) enclosed·

in parentheses and preceded by the letterO.

These constants may be preceded by a plus sign if positive and must be preceded by a

minus sign if negative.

A radix point appearing within or at the beginrting of the constant identifies the constant

as a mixed number or fraction. The number of fractional bits attributed to the constant

equals:

1. 3. 2*n+l truncated to an integer, if constant is decimal, or

2. 3 *n, if constant is octal

where n is the number of fractional digits. If the radix point is omitted or occurs at

the end of the constant, it identifies the constant as an integer (whole number).

Examples

a. -94

b. 0(77)

c. 88.1

d. -O(.64)

(negative decimal integer)

(positive octal integer)

(positive mixed decimal number)

(negative octal fraction)

e. -0(492.3) (negative mixed decimal number)

To avoid writing many zeros, it is sometimes convenient to express a very large or·

very small numeric constant as a coefficient multiplied by an exponent.

Examples

.00023a .238
-'. 108

-3 o (. 23E-3) a. = ',' =
r.

b. 180000°10 1810
-'. 10

J 18E5 = .,' =

1500°10 1.510
-'. 104 - 1.5E4 c. = ',' -

d. 730°8 7.38
-'. lOa 3 O(7.3E3) = '., =

Both the coefficient and the exponent must have the same Dase. If the number is octal,

it must be preceded by the 0 descriptor.

3. 2. 3. 2 Hollerith Constant

A Hollerith constant is composod of a string of characters e~closed by parentheses and

preceded by the descriptor H.

11-3-4

Examples

1. H(NOTNOW)

2. H(REWINDilil)

3 • H ()) LAST)

M-5035

In the second example, the two blanks are considered part of the constant.

The third example illustrates the use of a right parenthesis as part of

the constant within a string of characters. Each right parenthesis must

be represented by two consecutive right parentheses since the ~tring is

terminated by a single right parenthesis. Encoding this constant results

in the characters:

) LAST

Any character, including blank, is a valid character in the Hollerith

set and may be used in source programs to construct character-string

constants.

NOTE

If a Hollerith constant appears as the last term of a
parenthesized expression, at least one blank must
separate the right parenthesis signifying the end of
the Hollerith constant from the right parenthesis
signifying the end'of the expression.

3.2.3.3 Status Constants

A status constant is a mnemonic used to describe one of the possible values of

a data unit. The Compiler assigns a unique value (beginning with zero) to each

status constant that is associated with a data unit. In subseque~t statements,

as the programmer sets and tests the data unit using the mnemonic, the Compiler

sl~bstitutes the assigned value to differentiate possible conditions. Status

constants must be,uniqu~ fo~ a given data unit but may be reused for other

data units.

A status constant may be composed of any characters of the CMS-2 alphabet with

the exception of a single prime (f). The status constant may have the same

number of characters as an identifier. Status constants are always enclosed

by single primes, as illustrated on the following page.

11-3-5

M-5035
Change 1

'REPAIR'

'STANDBY'

'ALERT'

'AIRBORNE'

3.2.~.4 Boolean Constants

A Boolean constant denotes one of the logical values of Boolean algebra (true

or false) and is represented as a binary integer:

Logical

True

False

3.3 DELIMITERS

Binary

I

o

Blanks serve to separate symbols in a CMS-2 program. When used as a separator,

a single blank accomplishes the same result as a ~equence of two or more

blanks. All marks described in paragraph 3.1 may be used as delimiters.

Some marks, such as $, have unique delimiting uses. When a mark appears

between two CMS-2 symbols, blanks are not needed as separators although they

may be used if desired.

J.,I STATEMENTS

CMS-2 statements are dynamic and declarative and ~re composed of a string of

symbols and delimiters. In general, a declaration defines a structural con­

figuration of data and a dynamic statement defines the processing operation

that manipulates the data. All CMS-2 statements are terminated by a dollar

sign ($). More than one statement may appear on one card and a statement may

be continued on several cards. Null statements are recognized by the compiler

when a statement terminator is immediately followed by a statement terminator

and is otherwise syntactically correct.

3.5 COMMENTS

ComnH'nts, jnlf!nd{~d as eJarifyinu text, havp no oper"ational f'ff(!(:t on a prourarn

and may he included in either of the following two ways.

11-3-6

M-5035
Change 3

1. Within a statement by enclosing the comment within two

consecutive single-prime symbols, as illustrated below:

VRBL Z I"NTEGER" 14 "BITS" S"IGNED" $

NOTE

A symbol may not be broken by this type of comment;
i.e., V"A"R"IA"BL"E" would not result in the symbol
VRBL.

2. As a separate statement the use of the operator, COMMENT:

COMMENT THIS ROUTINE COMPUTES SQUARE ROOTS $

NOTE

A dollar sign may be expressed within either type of comment
by coding it as two consecutive dollar signs.

3.5.1 Special Comments

Comments beginning in card column 11 (the first column of the statement field)

are treated as special cases by the Compiler. If the statement is one of the

following, the Compiler performs the indicated action on the listing:

COMMENT6«EJECT $

COMMENT 6((LINE~!; $

COMMENT6((SKIPn $

Action

Eject to the top of the next listing page.

Print a line of asterisks (*).

Skip n lines, where n is a number from 1 to 9.

If a comment statement beginning in card column 11 is not one of the special

indicators, the Compiler replaces the word COMMENT with a single asterisk (*)

in column II and lists the comment after skipping a line.

Input:

COMMENT THIS IS AN EXAMPLE $

Output:

::; Till S IS AN EXAMPLE $

These special commenls allow programmers to produce listings that have a

greater narrative format. than list.ings without t.he special comments feat.ure.

11-3-7

3.6 SOURCE CARD FORMAT

All CMS-2 source cards contain a card identification field and a statement

field. The card identification field occupies columns 1 through 10; the

statement field occupies columns 11 through 80.

Card columns 1 through 10 have no operational effect on the Compiler. However,

the suggested use of the card identification field is as follow~:

a o Columns 1 through 4 - Program identification.

b. Columns 5 through 8 - Card sequence number.

c. Columns 9 through 10 - Insert number.

The statement field has a free format. Statement labels, operands, operators,

etc", may occur anywhere in columns 11 through 80. Each statement is terminated

with a $. There can be more than one statement per card or a statement may

require several cards o No continuation card indicator is needed when a CMS-2

statement exceeds one card. The statement continues in columns 11 throu~h 80

of each succeeding card until a dollar sign is encountered. If a symbol or

contiguous string of characters is to span two cards', the first part must end

in column 80 of card 1 and the second part must start 1n column 11 of card 2.

For example, if the eight-character symbol STMTLABI is started in .column 78

of one card, the remaining five characters must begin in column 11 of the

next card.

While packing of statements on cards reduces the size of the input deck, the

CMS-2 Compiler does not format the listing of the input statements o Packed

statements will ~ppear in the same form on the listing.

11-3-8

M-5035

SECT ION ;1

DECLARATIVES

The CMS-2 declarative statements provide the Compiler with information about

program structure and data element definitions. Declaratives generally do not

result in executable object code. Declaratives may be divided into three

groups: program structure declaratives, data declaratives, and control

declaratives.

LL I PROGRAM STRUCTURE DECLARAT IVES

The following program structure declaratives are used to define the organization

of a CMS-2 program:

a. SYSTEM and END-SYSTEM statements delimit a compile-time systemo

b. HEAD and ENU-HEAD statements delimit headers within a compile­

time system.

c. SYS-DD and END-SYS-DD statements delimit a system data design

within a compile-time system.

d. SYS-PROC (or SYS-PROC-REN) and END-SYS-PROC statements delimit

a system procedure within a compile-time system.

eo LOC-DD and END-LOC-DD statements delimit local data designs

within a system procedure.

f. AurO-DO and END-AUTO-DD statements delimit automatic data

designs within a system procedure.

g. PROCEDURE and END~PROC statements delimit procedures within a

system procedure.

h. FUNCTION and END-FUNCTION statements delimit functions within

a system procedure.

Each of these statements is discussed in detail in the following paragraphs

in the order in which they generally occur in a CMS-2 source program (see

Section 2 for further information on program organization).

II-4-1

I

M-5035
Change 3

4.1.1 System Declarative (SYSTEM)

The SYSTEM declarative specifies the beginning of ac6mpile~time system. This

must always be the first statement of a CMS-2 source program.

Format

name SYSTEM key-specification comments $

Explanation

Name

SYSTEM

The identifier by which this system is known.

Declares a compile-time system to be known by the

identifier above.

I Key specification Optional (see Section 7 for explanation).

I

I

Comments Programmer remarks. Optional.

'1.1.2 Head Ueclarati ve (HEAU)

The HEAD declarative serves to identify a group of major or minor Compiler

control statements •. The major header control statements of a compile-time

systpm must immediately follow the SYSTEM declarative and must be terminated

with an ENU-HEAU declarative. Minor header control statements immediately

-precede the system data design or system procedure to which they apply.

Since the HEAD declarative is primarily for library control purposes, its

use in source input to the Compiler is generally optional (see Section 7 for

further information on the HEAD statement).

Format

n arne HEAD key-specification comments $

Explanation

Name The identifier by which this header is known.

HEAU Declares a major or minor header.

Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional.

11-4-2

M-5035·

-1.1.:3 End Head Declarative (END-HEAD)

This declarative terminates a major or minor header within a compile-time

system. Its use is required after major header control statements but is

optional after minor header control statements.

Format

END-HEAD name $

~xplanation

END-HEAD Declares the end of a header.

Name The header identifier. Optional.

Example

:S:A:~:Pt:£: : : ~~f:r:~b~:~s:o:u:~c:£: ,: : : : : :: : : : :
I I I IE~I~I-IHIEIAI~ /41 I I I I / I I I I I I I I

I I I I I I I I I I I I

I I I I

I I I I I I

11-4-3

I

I

M-5035
Change 3

401.4 System Data Design Declarative (SYS-DD)

This declarative specifies the beginning of a collection of data element

definitions that are global to the system; that is, these data elements are

known to all system procedures that follow in the compile-time system. A

system data design is a basic element of a CMS-2 program.
/'

Format

name SYS-DD key-specification comments $

Explanation

Name The identifier by which this system data design is known.

SYS-DD The system data design declarative.

Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional.

4.1 0 5 End System Data Design Declarative (END-SYS-DD)

This declaration terminates a system data design'within a compile-time system.

Format

END-SYS-DD name $

Explanation

END-SYS-DD Declares the end of a system data design.

Name The identifier by which this system data design is known.

I 1-4-4

M-5035
Change 3

,t.l.() Sys\('JI1 ('fue('dlH .. J)e(~lara'ivc (SYS-I'HOC)

Syslt'1ll proepduf{'s consist of one or more procedures or functions and mr:ly

contain one or more local data designs. A system procedure is a basic ('lement

of a CMS-2 program.

F urmn 1

name SYS-PROC key-specification comments $

Explanation

Name

SYS-PROC

Thp idpntifier by which the system procedure is knowno

. 11. also identifies the prime procedure wi t.hin the sys tem

procedure.

Initiates a system procedure consist.ing of local da1a

designs and procedures.

Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional

Examples

!SlUiter, Is ItISI-IPI~IOCI ,t' I I I I I I I I I I I I I I I J 1 I I

11-4-5

•

•

M-5035
Change a

4. 1. 7 Reentrant System Procedure Declarative (SYS-PROC-REN)

This declarative specifies the beginning of a special type of system procedure known as a

reentrant system procedure. The generated code produced by the Compiler for all

procedures within a reentrant system procedure is invariant under execution (see Section 2

for a further explanation of reentrant code). A reentrant system procedure consists of one

or more procedures and may contain one or more local data designs or automatic datadesigns.

Format

Name SYS-PROC-REN key-specification comments $

Explanation

Name The identifier by which the sy stem procedure is known. It also

identifies the prime procedure within the system procedure.

SYS-PROC-REN Initiates a reentrant system procedure.

Key specification Optional (see Section 7 for explanation).

Comments Programmer remarkso Optional.

4. 1. 8 Local Data Design Declarative (LOC-DD)

This declarative specifies the beginning of a set of data element definitions that are valid

only within the system procedure in which this local data design appears. Such data

elements must be defined in a local da!a design before they may be referenced by a dynamic

statement within a procedure.

Format

name LOC-DD comments $

Explanatlon

Name

LOC-DD

Comments

The identifier by which the local data design is known. Optional.

The name has relevance when LQCDDPOOL is requested. The

user must provide a LOC-DD name at compile time if he wants

to reference the pooled local data design by AC name atloadtime.

Declares the start of a local data design.

Programmer remarks. Optional.

11-4-6

M-5035

4.1.9 Local Data Design Declarative (ENU-LOC-DU)

This dpelarative specifies the end of a local data design within a system

proc~dure.

Format

END-LOC-DD name $

Explanation

END-LOC-DD

Name

Declares the end of a local data design.

The identifier by which the local data design is known.

Optional.

4.1.10 Automatic Data Design Declarative (AUTO-DU)

This declarative specifies the beginning of a set of data element definitions

that are valid only wi~hin, thG reentrant system procedure in which this auto­

matic data design appears. An automatic data design may appear only within a

reentrant system procedure (i.e., it must follOW a SYS-PROC-REN declaration).

All formal input and output parameters and temporary data storage areas used

by .reentrant procedures that follow must be declared between the AUTO~DU and

END-AUTO-DD declarativcs. The allocation for these data areas must be provided

dynamically prior to or during execution; hence, automatic d~ta designs may

not contain switch definitions or preset data.

Format

name AUTO-DD comments $

Explanation

Name.

AurO-DD

Comments

The idenlifipr by which the automatic data design is

known~

Declares the start of an automatic data design within a

reentrant system procedure.

Programmer remarks. Optional.

11-4-7

M-5035

NOTE

Automatic data designs are functionally similar to local
dat a designs except t hat they may be used only wi thin a
reentrant system procpdure and may not contain preset
data or switches. Automatic data designs should contain
the definit ions of all data units that are modified during
execution of reentrant procedures. Local'data designs
may be used within reentrant system procedures for
defining switches and preset data that are not modified
during execution.

4.1.11 End Automatic Data Desiqn Declarative (END-AUTO-DD)

This declarative specifies the end of an automatic data design within a

r e (~n t ran t s y s tern p roc e d u r e •

Format

END-AurO-DD name $

Explanation

END-AurO-DO

Name

Declares the end of an automatic data design.

The identifier by which the automatic data design is

known.

4.1.12 Procedure (PROCEDURE) and End Procedure (END-PROC) Oeclaratives

A procedure is the bBsic organizational unit of dynamic statements in a CMS-2

program; it establishes the rules of data manipulation in processing a problem.

Procedures specify a se<tuence of operations which appear only once in the

source program but which may be invoked at various points throughout the

program. 'The PROCEDURE declarative specifies the beginning entry point of a

procedure and supplies further identifying information to the Compilero The

end of the procedure is indicated by the ENU-PROC declarative. Procedures may

be called by name from other procedures within the same system procedure, or

from other system procedures if the procedure is externally defined. Procedures

may h:JVf~ input, output or (~xit param(~tprs, whieh are passpd from or 1.0 th(~

calling procedure.

1I-4~8

M-5035

Format

PROCEDURE name INPUT formal-parameters OUTPUT

formal-parameters EXIT abnormal-exit-name{s} $

steps of the procedure

END-PROC name, $

Explanation

PROCEDURE

Name

INPlIT

Formal Parameters

Delimits (with associated END-PROC) a·procedure

and establishes an entry point for the procedure.

An identifier by which the procedure is referenced.

Optional. Specifies that the list of formal para­

meters that follows is Jnput to the procedure.

Optional. Data unit names separated by commas.

They are input or output parameters that have been

previously defined in a data design. They establish

the structure of parameters and provide a legality

check on procedure calls. Formal parameters may be

variables, system indexes, entire tables, like­

iables, subtables, or item areas. They may not be

subscripted data units, expressions, constants or

functionally modified data units. A formal para­

m~ter may not be a LOC-INDEX. (See paragraph 4.2.2,

Example 5 for an explanation of the allowable use

of the CORAD operator in 'the formal parameter list.)

11-4-9

M-5035

OUTPUT

EXIT

Abnormal Exit Name(s)

ENU-PROC

Example

Optional. Specifies that the list of formal

parameters that follows is output as a rpsult

of the procedure operation.

Optional. Specifies tha t one or more abnormal

exit names follow.

Optional. Identifies the abnormal exit(s).

Abnormal exit names appear ohly as operands of a

RETURN operation within the procedure and must be

unic(ue. If more than one is specified, they

must be separated by commas.

Specifies the end of the procedure identified

by name.

lPIR,OIc..IE~IUIRI£1 ,TiEIStTI I' I~IP!U tr, I viiI,! IVI2, ,DUITIPIIA ITI ,V,A,LIWI£,
I I I I I I I I I , I I , I ,E,X, 'iTl 18111.l1'l,i", ,B,IIJJ),V~ I, , I , I I I

(steps of procedure)

In t hi s example, the name of the procedure is TEST. It has two forma'l

input parameters, VI and V2, which will contain input values when the

procedure is entered. The formal output parameter, VALUE,will be set

appropriately by the procedure prior to returning to the calling program.

The two abnormal (!xi t parameters requif(~ alternative rpturn points in the

calling program t.o be specified when procedure TEST is called. Refer

to Sc'c:tion;; for furthpr informalion on pro(~('dun~ Galls.

11-4-1U

M-5035

·l.l.l~~ Function (FUNCTION) and End Function (ENU-FUNCTION) Ueclaratives

The function is a special class of procedure. While a procedure call has a

specific CMS-2 statement form (see Section 5), the function is called

implicitly by using its name in a dynamic statement in much the same way as

a data unit is referenced (see Section 5). The steps of the function are

delimited by the FUNCTION and END-FUNCTION declarations. A function must have

at least one input parameter and always results in a single output value. The

function must specify a data unit name or an expression as a parameter on a

RETURN statement to indicate the output value (see Section 5). A function

may be the prime procedure or the only procedure of a system procedure if

desired.

Format

FUNCTION name (formal input parameters) type $

steps of the function

END-FUNCTION name $

Explanation

FUNCTION Specifies the beginning of a function definition.

Name The identifier used to reference the function.

Formal Input Parameters The names of variables, tables, like-tables,

subtables, or item-areas that have been previously

defined in a data design. A function must have

at least one formal input parameter; if more

than one is specified, they must be separated

by commas.

11-4-11

M-5035

Type Optional. Specifies the attributes of the output value of

the function. When this information is omitted, the attributes

of the output value are determined by the implied mode of the

Compiler for variables (a signed 16-bit integer, unless

superseded by a MODE declaration). When specified, the

type parameter must be one of the following:

F F10ating-point value

B Boolean value

H followed by the number Hollerith value having the

of characters indicated number of characters

(not to exceed eight)

S fOllowed by a list of Status value that can assume

status constants separated any of the states corresponding

by commas to the listed status constants

A followed by the total Fixed-point value

number of bits (not to

exceed 64), the designator

S or U (signed or unsigned) ,

and the number of fractional

bits

I followed by the total

number of bits (not to

exceed 64), and the desig­

nator S or U (signed or

unsigned)

11-4-12

Integer value

M-5035

Steps of the Function CMS-2 dynamic statements that ~erform the

operations of the function.

EN 0 -F UNCT ION Specifies the end of the function definition.

Example

In this example, the output value of the function isa signed 32-bit

integer that depends on the value of the input parameter AZM.

4.1.14 End System Procedure Declarative (END-SYS-PROC)

This declarative specifies the end of a system procedure.

Format

END-SYS-PROC name $

Explanation

END-SYS-PROC

Name

Declares the end of the system procedure.

The name of this system procedure assigned by the SYS­

PROC statement.

11-4-13

M-5035

4.1.15 End System Declarative (ENU-SYSTEM)

This statement declares the end of a compile-time system.

Format

END-SYSTEM name $

Explanation

END-SYSTEM

Name

4.2 DATA DECLARATIONS

Declares the end of the preceding system.

The name of the system assigned by the SYSTEM

statement o

Data declarations define the structure and order of data elements within a

compile-time system and provide a means for referencing these elements. A

thorough understanding of data declarations is necessary to write efficient

and accurate CMS-2 programs.

There are five major types of data declarations in CMS-2:

1. Variables.

2. Tables (together with fields, item-areas, subtables,' and

like-tables) •

3. Indexes.

4. Swi tches •

5. Files.

These declarations, with the exception of files, are. discussed in the following

paragraphs. Files are described in Section 6 wi th the input/output statements·.

Within any range of definition, no two data elements may have the same name.

A name defined in a system data design may not be duplicated within the

compile-time system (or within any system to be loaded simultaneously in

which the name is externally defined). A data definition made within a local

data design or a statement label specified within a procedure may not be

duplicated within that system procedure.

11-4-14

M-5035

An ('xception is made for'fields. The definition of a field is always local

to a table. A field name may not be duplicated within the same t.able, but may

apP<'a,r in as many tables as desired.

4.2.1 Variable Declaration (VRBL)

,A v a ria b 1 (' i s a sin g 1 e qua n t. i t Y 0 fda t a • The v a ria b 1 e n am e ide n t i fie s a <J i ve n

location containing the quantit.y of data. A variahl(~ may contain a constant

value or its value may continually change during program execution. The data

may occupy one bit, part of a word, one whole word, or many words.

Variables may be any of the following six data types:

1. Integer

} 2. Fixed-Point

~3 • Floating-Point

Computational

4. Boolean

} 5. Hollerith

6. Status

Non-computational

Format

VRBL name(s) type (R) ini tial-value V(x,y) ,$

Explanation

VRBL,

, Name(s)

Indicates that the definition of one or more variables

follows.

A unique identifier by which the variable is referenced.

Multiple names (maximum 25) may be specified by separating

them with commas and enclosing the list in parentheses.

The Compiler then allocates locations for each of the

names according to the descript~on (implirid or specific)

that follows.

11-4-15

M-5035

Type Optional. May be one of the following:

F Floating-point

B Boo lean var i able

H, followed by the Hollerith variable having

number of characters (not the indicated number of

to exceed 132) chara~ters

5, followed by a list of Status variable that c~n

status constants separated assume any of'the states

by commas ' corresponding to the listed

A, followed by the total

number of bits (not to

exceed 64), the designator

5 or U (signed or unsigned) t

and thp number of fractional

bits

I, followed by the total

number of bits (not to

exceed 64), and the desig-

nator 5 or U (signed or

unsigned)

status constants

Fixed-point variable

Integer variable

In the absence of a precedin~ MODE declarative statement

and in the absence of one of the above listed data type

specifications, the Compiler will imply and allocate the

data type as 'a signed 16-bit integer.

NOTE

The descriptors H, A and 1 m~y be followed by
tags representing the various numeric para­
meters. Tag is defined in Section 7 under the
EQlIALS definition.

11-4-16

1.

(R)

Ini tia'l Value

V(x,y)

Examples

M - 5035
Change 5

Optional. Only meaningful when the floating-point

data type is specified. If specified, it indicates thaI

AN/UYK-7 floating-point instructions with rounding arf'

to be used for arithmetic operations on this variable.

Optional. The variable(s) may be preset with this

parameter. If more than one variable is defined by the

declaration, all will be preset to the same value. If

specified, this parameter consists of a P followed by a

constant (see Example 4, below). The constant must be a

value compatible with the variable structural definition.

If the variable is computational, the constant may b~

any numeric constant.

Optional. Specifies that the variable is to be preset

to the preceding specified initial value parameter

according to the magnitude and bit position contained

within the parentheses. The initial value will be

computed using the magnitude assigned by the x-paramet~r

to th~ bi,t posi tion assigned by. the y-parameter (see
Example 10). The magnitude must not exceed 15 bits.

The variable CHARS is a Hollerith variable (H) consisting of 80

characters.

I I I I I I I I I I II I I

The variable CTR is identified as being a fixed-point variable (A).

There are 24 unsigned bits. (U); 12 of them are fractional bi~s.

3. I V 1-. 8, L I I c., TI & ~ "'I II I (I I J I I I I I I I J I I I I I I I I ,

The variable in this example is named CTR2 and will be assigned by

the Compiler the implied mode and attributes of a signed 16-bit integer.

1.1-4-17

I

M-5035

The variable FLOAT is a floating-point variable. The descriptor P

indicates that the initial value of the variable is -17.77 octal.

The variables CTR, eTRI, CTR2, PTRI are all fixed-point (A). They each

contain 24 unsigned bits and 12 fractional bits. The initial value of

all the variables is 0 as indicated by the descriptor P.

The variable INTR is an unsigned integer variable of 5 bits.

I I I I I I I I

The variable BOOL is a Boolean variable initially set to the true (1)

condition.

8. I VI & ~ L; ~ ~ 51 ,5, I', F ;14 , L, L,' I, I' ,L ,0, 'II,' 'J " ,E,M I P IT Il'" IP, I', FI U I L I L ,'I i,

9.

The variable GAS is a status variable that may assume the three states

FULL, LOW, and EMPTY. The Compiler will assign values to these three

states and assign these values to the variable as it subsequently

encounters these states in conjunction wi t,h the variable GAS (for example,

see the SET statement). The variable will be preset to the value'

associated with FULL.

N()te that the states of a status variable are always enclosed within

sinylc primes.

The variable FLT is a floating-point variable. (R) specifies that

those AN/UYK-7 instructions providing floating-point operations with

rounding are to be used.

10.

M-5035
Change 3

Variable COURSE is an unsigned integer variable, eight bils long. The

variable is to be preset with the value 112.5. V(180,7) specifies that

bit 27 is to represent 180. From this specification, bit 26 = 90,
543 2 = 45, 2 = 22.5, 2 = 11.25, etc. Thus, to preset the value to

112 0 5 requires bits 26 and 24 to be set (90 + 22.5 = 112.5), as

illustrated below.

27 26 25 24 23 22 21 2°

0 1 0 1 0 0 0 0

I 2 0

The internal represen t'ati on will be the octal number 120. See Table

4-1 'for further examples.

4.2.1.1 Parameter Declaration (PARAMETER)

The PARAMETER statement declares a variable as in the VRBL declaration but in

addition associates with it registers to be used for parameter passage on any call

to a procedure (does not apply to function calls) with a formal parameter defined via

this PARAMETER statement.

-,

NOTE

The PARAMETER declaration is designed to accommodate
users with previously assembled sets of utility routines
that require specific A-registers for input parameters
and which output results in specific A-registers. Because
of this intended use the compiler does not assume the
responsibility for destruction of partial results held in
A-registers when formal input or output lists in the
progedure declaration contain a mix of PARAMETER

, variables and normal variables t or when expressions are
used as actual parameters when calling a procedure with

,PARAMETER variables in its formal input list.

II-4-18A

M-5035
Change 3

Format

PARAMETER name type (R) initial-value V(x,y) , register-number $

Explanation

PARAMETER Indicates that the definition of a variable follows.

Name

Type

R

Initial Value

The explanation of these terms are given in

paragraph 4.2.1 for the VRBL declaration.

Type may not specify more than two words.

V(x,y)

Register Number An integer (0-7) or an EQUALS tag having a

value (0-7).

Example

A comparison of the code generated when using the PARAMETER statement and

that generated when using the VRBL statement:

PARAMETER X I 32 S, 0 $
PARAMETER Y I 32 S, 6 $

Procedure declaration:

PROCEDURE P INPUT X OUTPUT Y$
SA AO,X,K3 .
LA A6, Y,K3
END-PROC

Procedure call:

P INPUT A OUTPUT B $
LA AO,A,K3
LBJ B6,P
SA A6, B,K3

ll-4-18B

VRBL X 132 S $
VRBLYI32S$

PROCEDUREP INPUT X OUTPUT Y $

END-PROC

P 1NPUT A OUTPUT B $
LA AO,A,K3
SA AO,X,K3
LBJ B6, P
LA AO, Y,K3
SA AO, B,K3

M-5035

4.2.2 Table (TABLE)· Declaration

A table is an ordered set of data consisting of e<lual ~nd ~djacent subsets

(basic units) called items. There is no limit to the number of items within

a table.

All items of anyone table contain exactly the same number of words and have

the same data structure o Items are identified sequentially within a table,

the first item number being 0 and the last n-l, where n equals the number of

items. Art optional counter (the major index) which is Compiler-allocated

with maintenance responsibility residing with the programmer, may be specified.

If maintained, it will contain the actual number of items within the table that

contains meaningful data at any given time.

A one-dimensional table is arranged in either a vertical or horizontal align­

ment. The vertical table arrangement of data permits rapid searches on selected

words of anyone item. The horizontal table arrangement of data permits rapid

searches on one word or one field of all items.

11-4-19

I-t
I-t
I

w:::.
I

N o

TABLE 4-1. EXAMPLES OF VARIABLE DECLARATIONS

FORMAT OF VARIABLE DECLARATIONS

TYPE OF Initial Preset
VARIABLE VRBL Name(s) Data Type Rounding Value Scaling $

Integer VRBL INTA I 5 U [X P 0(12345) $
VRBL (INTB, INTC) I 16 S $
VRBL INTO I INTDBITS U $
VRBL INTE I 8 U P 1.25 V (.25,0) $

Floating- VRBL FLTA F A $
Point VRBL FLTB F (R) P 12.75 $

VRBL FLTC F P 15E9 $

F ixed- VRBL FIXA A 12 S 4 [X $
Point VRBL (FIXB, F IXC) A FIXBITS U FIXFRAC P 0 $

Boolean VRBL BOOLA B [X A $
VRBL BOOLS B P I $
VRBL (BOOLC, BOOLD) B P 0 $

Status VRBL STA S 'LOW', 'MEDIUM', 'HIGH' C>< e><: $
VRBL (STB, STC, STD) S 'NONE', 'ONE', 'FEW', -'MANY' P 'NONE' $

Hollerith . VRBL HOLA H 7 [X P H(ABCO) [X $
VRBL HOLB H HOLCHAR $
VRBL (HOLC, HOLD) H 1 $

Implied VRBL IMPL C>< $
_L-

NOTES

1. Tags such as INTDBITS, FIXBITS, FIXFRAC, and HOLCHAR may be used as indicated but must be assigned
integer values by an EQUALS declaration.

3:
I

U'1
o
w
U1

2. If the type of variable is implied (type-structure omitted) the attributes of the variable are determined
by the implied mode of the Compiler to be a signed l6-bit integer, unless superseded by a MODE declaratio~

M-5035
Change 5

A multidimensional table (array) is stored forward in memory, in order of

increasing absolute locatiori, with the leftmost subscript (which represents

the row or item) varying most rapidly. Thus, a two-dimensional array may be

said to be stored in a columnar fashion. All the defined subcomponents of a

g i,' e n tab Ie (f i e Ids , . sub tab I e s, I ike - tab I e.s, and item -are as) m u s t bed e fin e d

bet\\ecn the TABLE declaration and its associated END-TABLE declaration. Sub­

tables and like-tables are not allowed as subcomponents of an array. Sub-

tables, like-tables, and item-areas cannot be included in a table that is

variable in length or that uses indirect addressing (INDIRECT).

In the following discussion of table format. the term tag is indicated as an

option to specify integer values for the various parameters associated with

the declaration of a table. When this option is exercised, the value supplied

by the tag must be provided by an EQUALS declarative (see Section 7).

Format

TABLE name storage-type words-per-item or packing~descriptor

INDIRECT number-of-items or dimensions major-index-name $

Explanation

TABLE

Name

Storage Type

Words~per-Item

Specifies a TABLE declaration.

An identifier unique to the TABLE.

Specifies the storage alignment desired according

to one of the following types:

H Horizontal arrangement

V Vertical arrangement

A Array arrangement in n-dimensions

An integer constant or tag that specifies the num­

her of words contained in each item. This value

cannot be o.

11-4-21

I

M-5035
Change 5

Packing Descriptor

INDIRECT

Specifies that the Compiler will compute the

number of words per item necessary to contain the

specified fields, as follows:

Descriptor

NONE

MEDIUM

DENSE

(data type)

Result

Each field is assigned at least a

full word.

Each field is assigned the smallest

available, directly referable word

fragment that will hold the data.

Fields wil~ be packed by the Compiler

in a dense manner, making optimum use

of all bits in a word.

The Compiler will assign the number

of words required to accommodate

the attributes of the specified data

type (see explanation under FIELD

declaration for data type). This

parameter permits referencing a

single piece of data by item. Field

declarations must specify starting

bit and word number when used with

typed-item tables.

Optional. Specifies that the table is indirectly

referenced. Furthermore, no core allocation is

made, the names and definitions are preserved, and
\

the core allocation can be accomplished dynamically.

II-4-22

2.

Number of I t(~ms

Dimensions

Major Index Name

Examples

M-5035

An int.eger or tau that sl)(~eifif~s the maximum

number of items in the table.

Integers and/or tags, separated by commas, which

specify the array dimensions (a maximum of 7).

Optional. Defines a unique identifier containing

the current number of items in the table as main­

tained by the user. If the major index name is

specified, the Compiler uses it to determine the

current number of items in the table containing

data when searching or moving the table. Use of

a major index is restricted to V- and H-type tables.

Specification of a major index name constitutes

a definition of it as a data unit (signed 16-bit

variable); consequently, it cannot appear in any

other data declarative statement.

In this example, the table named DICT is a horizontal table with three

words per item, 500 items, and a major index named ALPHA. At run time,

ALPHA contains the current number of items as set dynamically by the

program.

, I I I

The table named IONS is a vertical table with 1,200 items and is to be

densely packed~ The Compiler comp~tes the words per item based on the

number and size of the defined fields and performs the dense packing~

3. ,T,II,B, L,E; I I JIt;~Yj ,/I, "S; 6.1 I ,3", It, ;$, I 1 J 1 I I I I , I , I

In this example, an array, ARY, contains five words in each item. Its

dimensions are 2 by 3 by 4, or 24 items.

11-4-23

This example defines an array, RAY, of which each item contains two

words. Its dimensions are 2 by 3 by 4, or 24 items. The word INDIRECT

indicates that no core allocation is to be made. All references to

table RAY will be made by indirect addressing.

Following is an example of the use of INDIRECT and a major index.

Assume that a procedure processes data tables of fixed format and

varying lengths up to a maximum of 100 ehtrfes. The data design

associated with the procedure contains a table declaration:

This declaration specifies a horizontal table of two words per item 100

items maximum, that h~s not been allocated core storage. The table has.

a major index JI, which will contain the a.ctual·number of items at run­

time as provided by the dynamic source statements. This declaration may

be accompanied by FIELD declarations as desired.

The procedure itself might require as input the location of the calling

. program's data table and the number of items in the following table:

The calling procedure puts data in its associated data table. The

procedure OUTDO is then called:

where MYBUF is the name of the caller's data buffer which has a structure

compatible wi th TABA, and BUFITEMS contains the number of i terns in MYBUF.

The procedure OUTDO thus has its TABA defined dynamically as the user's

data table for this operation of OUTDO. Each, subsequent request for

OUTDO would provide simi lar entry condi tions (see Section 5).·

11-4-24

6. TABLE TRACK V 1 0 $

M-5035
Change 5.

The table TRACK is vertical with one word per item. TRACK is a "null"

table because it is declared with zero items. No core locations will

be reserved.

7. TABLE FLOATDAT V (F) 1000 $

Table FLOATDAT has been declared vertical and 1,000 items long; the

type of data associate~ with the table is floating-point. The Compil~r

will assign two words per item. References to the table may be by item

. -and the Compiler will utilize the declared data type (floating-point).

8. Following is an example of the use of tags within a table declaration:

NUMWORDS EQUALS 1023 $

NUMITEMS EQUALS 25 $

TABLE LARGE V NUMWORDS INDIRECT NUMITEMS $

In the above example, the names NUMWORDS and NUMITEMS represent 1023

ahd 25 respectively. The statement is interpreted as:

TABLE LARGE V 1023 INDIRECT 25 $

The table LARGE is arrpnged vertically, with 1,023 words per item and

25 items. Dynamic core allocation is specified by the INDIRECT

specifier.

4.2.3 Field (FIELD) Declaration

The items of a given table may be further subdivided into units called fields.

Field configurations are identical for all items of a given table. A field

may occupy a partial word, a whole word, or more than one word. A field

defined as part of a word must be wholly contained within that word; i.e.,

it may not cross word boundaries. A field occupying more than one word will

11-4-25

M-5035

be allocated an integral number of words. Multiword fields are not permitted

in horizontal tables. Field defihitions within an item are completely inde­

pendent of one another and may, therefore, overlap. It is not necessary for

all of the dat~ within an item to be completely defined by fields. A field

name is always associated with a particular table, like-table, subtable or

item-area.

Format

There are two basic formats for defining fields:

1. Type a

FIELD name data-type (R) word-location starting-bit-position

initial-value V(x,y) $

2. Type b

FIELD name data-type (R) initial-value V(x,y) $

Explanation

FIELD

Name

Data Type

Specifies the FIELD declaration.

The identifier used to reference the field within the

table. Field names are local to the table within which

they are defined. The same names may, therefore, be

used for fields within various tables. The same name

may not be duplicated within the same table definition.

Descriptor

F

B

H followed by the

number of characters

(not to exceed 132).

S followed by a list

of status constants

separated by commas.

11-4-26

Meaning

Floating-point field.

Boolean field.

Hollerith field having the

indicated number of characters.

Status field, which can have any

of the states from the list.ed

status constants.

(R)

Word Location

St.arting Bit

Position

Initial Value

Ucscriptor

A followed by the

number of bits (not

to exceed 64), des­

ignator s/u (signed

or unsigned), and the

number of fractional

bits.

1 followed by the

number of bits (not

to exceed 64) and

the designator S/U

(signed or unsigned).

Fixed-point field.

Integer field.

NOTE

M-5035
Change 5

If the data type specification is omitted, the
field will be assigned the implied mode (i.eo,
by a MODE declaration or Compiler-provided
signed 16-bit integer).

Optional. This parameter is meaningful only when a

floating-point data type is specified. If specified,

it indicates that AN/UYK-7 floating-point inst.ructions

with rounding are to be used for arithmetic operations

of this field.

An integer or tag indicating the word of the item in which

the field occurs. This value must not be greater than 255. I
An inte~er or tag specifying the most significant

bit oi sign bit of the field. In an n-bit word, the

positions are numbered from left (n-l) to right (0).

Optional. This field may be preset with this parameter.

If specified, this parameter consists of a P followed

by one or more constants. These constants must be a

value compatible with the data type specified for the

II~4-27

M-5035
Change 2

1.

V(x,y)

field. A series of constants, up to a maximum of 255,

separated by commas, may be specified for mUltiple oc­

currences of the field. Constants may be enclosed in

parentheses and preceded by a repeat factor.

Optional. This parameter specifies that the field is

to be preset to the preceding specified initial value

parameter according to the magnitude and bit position

contained within the parentheses. The initial value

will be computed using the magnitude assigned by the

x-parameter to the bit position assigned by the y­

parameter (see Example 6). The magnitude must not exceed

. 15 hi ts.

Type-a fields are used when the programmer wishes to specify the field

location within an item (programmer packing).

Type-b fields are used to permit packing to be controlled by the packing

designator used in the TABLE declaration (Compiler packing).

The data type may be omitted for both type-a and type-b fields to specify

use of the implied data type of the Compiler. The implied data type is the

inherent mode of the Compiler (a signed l6-bit integer) or is specified

in a MODE declaration.

Examples of Type-a Fields

,fj/IEtL~ I I I6p.Qt.. .A I .4t 1,0, ,$, I I I I , I I I I I I I , I I I

The Boolean field, BOOL, occupies the rightmost bit of the second word

(word 1) of the item.

In this example,the Hollerith type field, HOLL, has 120 characters. It

is located in word 2 of the item and starts in bit position 31. It is

implied that this is a multiword field requiring the necessary number

of words to contain the 120 characters. (HOLL would not be allowed in a

horiZontal table.)

11-4-28

M-5035

:~ . ,iii , EjL..~
,. I I I I ,

J!,TiA,T, 5, ,',&ElJjEjC.,T, '", " yt,ctc,e'iBn' " ,
I J I , , " 'tftO)LJ.b,'", ,',6.1'IXI'J I~' ,1, ~,

J

J

4.

The status type field, STAT, may contain only the status constants

'REJECT', 'ACCEPT', 'HOLD', or 'FIX'. It is located in word 4 of the

item and starts in bit position 2.

In this example, the field ARITH is a signed fixed-point data type having

24 bits, four of which are fractional. It is located in word 0 of the

item and starts in bit position 23.

5. Ii A §'1A I I ~~,HtIt'J>J '£ ,45) tf, , I I 1 I I I I , I , , , , I I I

The field MDHWD starts in bi t 15 of word 2 of each i tern. Its type is

implied by the Compiler or a MODE declaration and must not conflict with

the starting bit 15.

In this example, field MATH is a signed integer, 12 bits long, starting

at bit 26 of word 1. The first occurrence of this field is to be preset

to the value of 30 with bit 2
8 of the field representing the magnitude

of 12. The result of the preset assignment will show an Qctal represent­

ation of 1200' in the field, as illustrated below:

f Word Q'

I
31 26

Word 1

15

I ?~ I I 0 I 1 I ° I 1 I 0 I ° I u I 0·1 0 I 01 ° 1
Sign Bit t T

"

11-4-29

\
o

~ Octal

O. = 0.046875)0
1 = ° .09~\75

.~

2
2
2 2 = 0.1875

3 == 0.375 }
4 == 0.75 0
5 == 1.5

2
2
2

6 == 3 }
7 = 6 . 2
8 = 12

2
2
2

9= 24 }
10 == 48 1

2
2

M-5035

8.

In this example, field FARITH is a floating-point data type, two words

long, starting at bit 31 of word O. The (R) signifies that arithmetic

operations using this fieid must employ floating-point instructions .with

rounding. Note that a floating-point field must never be defined in a

horizontal table since the AN/UYK-7 floating~point format requires two

adjacent computer words.

Examples of Type-b Fields

1 1 II I I I I ,/f/,EjLtA ,8iOJgL, ,8. ~ I I I I I I , , I , , I I J

This is a Compiler-packed Boolean type field. The associated table must

have a packing descriptor.

The integer field VALUE will be allocated or packed according to the

packing descriptor specified in the table declaration. The first

occurrence of this field in an item will be preset to -145, the next

three occurrences will be preset to 19, and the following 4 occurrences

will be preset to 73.

See Table 4-2 for further examples.

4.2.4 Item-Area (ITEM-AREA) Declaration

An item-area is a data set with a structure identical to that of an item of

the associated (parent) table, with the same number of words and the ~ame

field configuration. There may be any number of item-areas associated with

a parent table, but they are physically separated from the table. The item­

area is a convenient working storage area, assigned by the Compiler, where· a

single item of a table may be temporarily stored for examination, manipulation,

or accumulation of data.

11-4-30

1.

M-5035

Format

ITEM-AREA area-name(s) $

Explanation

ITEM-AREA

Area Name(s)

Examples

Specifies the ITEM-AREA declaration.

The unique name or names, separated by commas, of

areas of working storage. Each area has the same

format as an item of the parent table; therefore,

only the name of each item-area associated with the

parent table need be specified.

I rA I I

A single item-area named BUFFI is defined.

There are three item-areas named BUFF2, WORKl, and WORKST.

4.2.5 Subtable (SUB-TABLE) Declaration

A subtable is a set of adjacent items, wholly contained within the parent

table. Its item size and field configurations are identical with those
!

defined for the parent table. Except that it lies within the confines of the

parent table, a subtable is itself a table having its own optional major index

and stipulated maximum number of items. Subtable definitions within a parent

table ~re independent of one another and may overlap. Subtables may only he

defined for single-dimensional tables (horizontal or vertical tables).

Format

SUB-TABLE name initial-item-number-of-parent-table

maximum-number-of-items-in-subtablemajor-index-name $

11-4-31

......

.......
I

A
I
W
I\:

TABLE 4-2. EXAMPLES OF TYPE-a FlEWS
, I

FOR~lAT OF FIELD OECLARAT ION

Start In1 ti a 1
TYPE OF FIELD FIELD Name Data Type Rounding Location Bit Values Scaling $

Integer FIELD INTA I 5 U L 2 15 P3(lO) $
FIELD INTB I 64 S INTBWL INTBST P 0 V(l,O) $

Floating Point FIELD FLTA F 1 31 ~ 1 $

Fixed Point FIELD FlXA A 6 U 2 ~ I 0 5 \ / $
FIELD FIXB A 32 S 16 F IXBLOC 31 P 9.548 $

Boolean FIELD BOOLA B \/ 1 0 V $
FIELD BOOLB B 0 BOOLBBIT P 1,0,1 $

Status FIELD STA S 'ON', 'OFF' A 1 14 P 'ON' /\ $

Hollerith FIELD HOLA H 40 / \ 3 31 / \ $
FIELD fiOLB H 3 ° 28 P H(ABC) $

Implied FIELD IMPLA V \ 1 15 V \ $
- ------

NOTES

1. Tags such as INTBWL, INTBST, FIXBLOC, and BOOLBBIT may be used as indicated but must be assigned
integer values by an EQUALS declaration.

2. If the type of field is implied, the attributes of the field are determined by the implied mode
of the Compiler to be a signed 16-bit integer, unless superseded by a MODE declaration.

3. If a field starts in the middle of a word, it must be wholly contained within that word--it may not
cross word boundaries.

~

::3:
I

<J'1
o
W
(J'1

1.

2.

Explnnat.ion

SUB-TABLE

Name

M-5035

S P e c i fie s a SUB -TAB LE dec 1 a rat. ion.

A unit{ue identifier by which the

subtable is referenced.

Initial Item Number of iJarcnt Table Establishes the base item of the

subtable by specifying the item

number of the table at which tht'

subtable is to start. The number

can be either an integer or a tag

predefined by an EQUALS statement.

Maximum Number of Items in Subtable Either an integer or a tag that

specifies the size of the subtable.

Major Index Name

Examples

Optional. Specifics the name of

the major index of the subtable.

If used, it is handled in the same

manner as the major index of a

table (see paragraph 4.2.2).

In this example, the subtable named BLIP starlsat the initial item

number 4 of the parent table and is 20 items long.

The characteristics of subtable SCAN are defined by means of tags whose

values are supplied by the EQUALS declaration. OVAL provides the initial

item number, and ROUND, the number of items. SPOOK is the name of the

maj or index.

11-4-33

I

M-5035
Change 5

4.2.6 Like-Table (UKE-TABLE) Declaration

The like-table serves the same purpose for an entire table or specified number of

items of the table as the item-area does for an item of the table. Like-tables have

configurations identical to the tables that they duplicate. The use of like-tables

allows the elimination of duplicate field definitions when defining multiple tables

with identical formats. LIKE-TABLE must be enclosed within the TABLE and END­

TABLE brackets to which the same field definitions apply. A LIKE-TABLE is valid

in single dimension tables only.
Format

LIKE-TABLE name number-of-items major-index-name $

Explanation

LIKE-TABLE

Name

Number of Items

Specifies that a LIKE-TABLE specification follows.

A unique identifier by which this table is referenced.

Optional. An integer or tag specifying the maximum

number of items in the table. If this parameter is

omitted, the number of items of the like-table will be

the same as the number of items of the parent table.

Major Index Name Optional. Specifies the name of the major index of

the like-table. This parameter, if used. is handled

in the same manner as the major index of a table (see

paragraph 4.2.2).

Example

jTjJt, it L,E, J~TiRIK, ,V, ,JJ2s ",go, rf, , I l I , I 1 ·1 I I I , , I I I I

I I , I I 1 , I I -I I I , I 1 I I I I I

IL" ,I<, c,-,T,A,JIL,§ ,SiT tR,lS 3, 1$1
,Ei'M]),· ,7jAi!':JEi ,M,ll~ ,I<, ,.$ I J I I

In Ihis f!xtJnlplf' , ttlP likc'-Iah,lp STRK is cleeJarpd to hav(\ the identical

format and field declarations as the parent table MTRK, except that it

has only three items.

11-4-34

M-5035

4.2.7 End-Table (END-TABLE) Declaration

The END-TABLE declaration terminates the declaration of elements of the table

identified between the TABLE and END-TABLE declarations. All the defined sub­

components of a given table (FIELD, SUB-TABLE, LIKE-TABLE, and ITEM-AREA) must

be defined between the table declaration and its associated END-TABLE

declaration.

Format

END-TABLE table-name $

Explanation

This operation terminates the declaration of elements of the table

identified between the TABLE and END-TABLE declarations.

Examples

2. An example of the various table options and the resulting space allocation

may best serve to illustrate the options. For purposes of the example,

assume that the Compiler is generating code for a six-bit machine. One

computer word contains bits designated 0 through 5 as:

5 I 4 3 2 1 o

11-4-35

M-5035
Change 3

The following input:

I
ITi~L,Ei I I TI£i SI1i IVI I~ tJI I1iEjS ITI4N~1 til I 1 1
1~/IEiL~ I IVI~L.IUIElil I~ 131 ,~ 1°1 ,31 ~I II I
Iii" §L~I 1 I v'1~ !:t~,EI~1 I~ 131 I~I I °1 '~I ~ J
,El 'I £tL~ I I IVI~lllAl £1 31 r3 I~ lUI I~ I~ £!I I I

,
15 TIEIMI-IA-I~I~AI i'11i1"',P1 1'$, I II I I I I

,
tSl~If3t-ITIAI81 LI E, IS, ~IB1TIE, ~TI ~ I~ 1$1 I I I
I~ II ~Ei""ITj4181 ~IEI ILI'I~Ej1j I I~I I~ I I 1
IEi",bl- I7jAI8, LIE I ITj§§TI 1$1 1 I I I I I I I I J

produces the following in core:

J 4 3 2 1 c
Word 0

} Item 0 Word 1
Word 0

} Iteml
Table

Word 1

Sub- I Word 0
} Item 2 TEST

table Word 1

SUB- Word 0
} Item 3 TEST Word 1

Word 0
} Item 4

Item-
Word 1
Word 0

Area } Item-Area
TE~lP

Word 1
Word 0

} Item 0 Word 1
Word 0

} I tern 1
Like- Wora 1

Table Word 0
} I tern 2 LIKET .'. Word 1

",

Word 0
} Item 3 Word 1

Word 0
} I tern 4 . Word 1

11-4-36

M-soas

Note the following facts in conjunction with the resultant area:

1 •. Table TEST is a vertical table (all words of an item are

together) of five items of two words each.

2. Item-area TEMP is allocated' two words just like the items of

table TEST.

3. Like-table LIKET is allocated five items identical to the items

of table TEST.

4. Subtable SUBTEST exists within table TEST, occupying items

2 and 3.

5. Field VALUEI (~) and VALUE2 (~) are identified with

word 0 of every item within the table, like-table, and item­

area. Notice the overlapping of the fields (~).

6. Field VALUE3 (II1II) is identified with word I of every item

within the table, like-table and item-area.

7. Subtable SUBTEST does not exist within the like-table LIKET

at the corresponding position (*) because there is no way for

the Cnmpiler to differentiate between the two subtables.

4.2.8 Packing Rules

A~ fields and variables are defined in data declaration statements, the

programmer specifies various attributes of the data units. These attributes

are- used by the Compiler to determine the proper allocation of these data units

consistent with the AN/UYK-7 memory structure and addressing scheme. When

Compiler packing of fields is specified in a table declaration, or when

allocation of variables is'performed by the Compiler, a set of rules governs

the manner in which the fields'and variables are packed into AN/UYK-7 memory

words.

Three different packing algorithms are used by the Compiler: no packing,

medium packing, and dense packing. In the descriptions of these algorithms

that follOW, the term magnitude is used to refer to the number of bits required

to represent an arithmetic'data unit (lor A type) excluding the sign bit.

For example, a signed 32-bit integer (I 32 S) has 31 magnitude bits; an

unsigned 32~bit integer (I 32 U) has 32 magnitude bits.

11-4-37

M-5035

NOTE

In the case of no packing or medium packing, when a
programmer specifies the number of bits in a field
or va~iable, the Compiler will guarantee a data unit
allocation of at least that number of bits~ additional
magnitude bits may be provided. Hence, the length
specification of an arithmetic data unit,should
always be regarded as the minimum number of bits
required to contain that data unit. For all types
of packing, multiword data units must always start
in bit 31 of a word.

4.2.8.1 No Packing (NONE)

No packing applies only to fields in tables declared with the NONE packing

descriptor. Such fields will be packed as follows:

Boolean (B) and

Status (S)

Hollerith (H)

Floating-point (F)

Fixe~-point (lor A)

Packing

Allocated a full-word.

Allocated the least number of full-words required

to contain the specified number of characters

(four characters per word).

Allocated two full-words.

Allocated one full-word if the magnitude is less

than 32 bits; allocated two full-words if the

magnitude is less than,64 bits.

4.2.8.2 Medium Packing (MEDIUM)

Medium packing applies to all variables and all fields in tables declared with

the MEDIUM packing descriptor. Medium packing is performed as follows.

11-4-38

Boolean (B) and

Status (S)

Hollerith (H)

Floating-point (F)

Fixed-point (lor A)

M-5035

Packing

Allocated a quarter-word.

Allocated the least number of full-words required

to contain the specified number of characters

(four characters per word) if greater than two

characters; allocated a quarter-word if one

character; allocated a half-word if two characters.

Allocated two full-words.

Allocated a quarter-word if unsigned and less

than nine bits in magnitude; allocated a half­

word if less than 16 bits in magnitude; allocated

a full word if less than 32 bits in magnitude;

allocated two full words if less than 64 bits in

magnitude. Illustrating these rules: an I 8 U

receives a quarter-word; an I 7 S, I 8 S, 1 15 U,

or I 16 S receives a half-word; an I 16 U or

I 32 S receives a full word; an I 32 U or I 64 S

receives two words; and an I 64 U is illegal.

4.2.8.3 Dense Packing (DENSE)

Dense packing applies only to fields in tables which are programmer-packed, to

tables declared with the DENSE packing descriptor, or to variables that are

overlayed (see paragraph 4.2.9). Dense packing is performed ~s follows:

~

Boolean (8)

Status (5)

Packing

Allocated a single bit.

Allocated the number of bits required to hold the

largest status constant (e.g., if seven states are

defined, three bits would be allocated).

M-5035

~

Hollerith (H)

Floating-point (F)

Fixed-point (lor A)

Packing

Allocated the number of quarter-words required to

contain the specified number of characters if

less than five; otherwise, allocated the required

integral number of words.

Allocated two full-words.

Allocated the number of bits required to contain

the data unit if less than 32 bits in magnitude;

otherwise allocated two full-words.

4.2.9 Overlay (OVERLAY) Declaration

The OVERLAY statement allows the user to control the allocation of variables

and fields which are to be densely packed by the Compiler. If the OVERLAY

involv(~s fields, the OVERLAY statement must folloW the associated field

declarations within the TABLE, END-TABLE brackets. If the OVERLAY involves

variables, it implies dense packing, and the OVERLAY statement must fOllow

the associated data declarations within the data design.

Any number of fields or variables can be named, separated by commas, on the

right side of an OVERLAY. All are allocated consecutive storage space in the

order in which they are named, subject to the following restriction: a field

or a variable defined as part of a word will be allocated so that it is

wholly contained within a word. Compatibility in size is the programmer's

responsibility.

Any number of OVERLAY statements are permitted and names may appear in more

than one OVERLAY statement but logical inconsistencies must be avoided.

Programmer confusion in using the OVERLAY statement can be avoided by inter­

preting the word OVERLAY in this statement as meaning "overlay with."

When using OVERLAY, the following rules apply:

1. If the data unit name is not a field, the variable list must not

include fields.

2. If the data unit name is a field, all of the names in the field

list must be fields; only fields within the same table may be

overlayed.

11-4-40

M-5035
Change 2

~ ~ 0 1ft he 0 v e rIa y 1 i s t e xc f ~ cds l he s i z e 0 f t hI! d n t nun i t be i n U

overlayed, a warning message is output by the Compiler; however,

the data allocation will still be performed.

4. All nonfield OVERLAYs must be outside table definition brackets

but within the data design. Field OVERLAY's must be within the

tahle brackets~

5. All names within an overlay must be previously defined within

the data design.

6. A name cannot be used more than once on the right side of an

OVERLAY statement.

7. If a name is to appear on the right side of one OVERLAY and to

the left side of another OVERLAY, the statement containing the

name on the right side must be declared first.

Format

data-unit-name OVERLAY variable-list or field-list $

Explanation

Data Unit Name

OVERLAY

Variable List

Field List

The name of a variable, table, field, like-tabl(~,

item-area or subtable.

I n d i cat est hat the v a ria b leo r fie I d list tot h (' rig h t

of the operator is to overlay the data unit to the

left of the operator.

Contains the names of one or more variables, tables,

like-tables or item-areas, separated.by commas.

Contairls the names of one or more fields separated

by commaso

11-4-41

M-5035
Change 2

Example

,e, LS, Tj Ee1a.DJ), lS,y,S,-J)J),,$. , I , , 'J " " , , , , , " I ,Y1
I • J IV.8B,L, ,A,C,F, tB ,Sj,ti,~. I. I I J , , J I I at

I . I I J I VI R, 8, L, ,A,C,G, ttl lSi I U I ~, , I· I I I I I I " I ~

11-4-42

M-5035

The results of statements 2 through B would be:

ACF ACG
ABD ABE

AAC

----------------~~--------------~ Same Word

The results of statements 9 through 11 would be:

I c I 0 I ElF I G I H I I I J I K I LIM I N I 0 I p I Q I R I SiT I u I V Iw I X I y I z I

PVRBL

Same Word

In the above example, a series of flags (Boolean variables) have been

declared so that they occupy a single variable (word). This might be

advantageous if it is frequently necessary to check to see if all flags

are cleared. Also, ~ince all flags are 60ntained in a single variable,

they can be quickly passed on procedure or function calls. Such packing

results in more object code when data is manipulated, and care must be

exercised in weighing the advantages gained over the resulting disadvantage~

The results of statements 13 through 16 would be:

INTF FRACF

I FIXPT

11-4-43

M-5035

4.2.10 Data Referencing

Uata units are referenced in their entirety by name (identifier), a specific

occurrence of an n-dimensional unit by name and subscripts, or a particular

part of a data unit by use of a functional modifier. Variables and lists

(tables,subtables~ like-tables and item-areas), when treated as entities,

are referenced by name only. Each of these data units has its own unique

name, as established in a declaration. Fields, items, and words are always

referenced with their associated table, item-area, like-table, or subtable.

Because of this, a field name by itself is never meaningful. To identify the

subdivision of a larger data unit, the additional descriptive information is

enclosed in parentheses after the name of the larger data unit.

All lists are indexed (or subscripted) from 0 thro~gh N-l, where N equals the

number of entries. Thus, entry 0 is the first entry in the list, .entry 1 is

the second entry, etc.

4.2.10.1 Table Referencing

Tables may be accessed in a variety of ways:

a. Whole table referencing:

1. Set every word of the given table to the specified value.

2. Set every word of one table to the value of the corresponding

word in another table.

b. Item referencing - Set an item of the given table to the

specified value(s).

c. Field referencing (where a word is a special case of afield

corresponding to one word) - Set the given field to the

specified value.

The method of addressing may also be determined by the category into which

the table falls:

a. Horizontal or vertical (one-dimensional).

b. Array (multidimensional).

11-4-44

M-5035

4.2.10.1.1 Whole Table Referencing

1.

Format

name

Explanation

Name The name of the table, subtable, or like-table.

Examples

(See paragraph 5.4 for rules applicable to multiword set statements.)

, PI 6 T, I T, AI 8 LJ .1, ,Ti 9 ,Si I ,-A I I I , I I , , I J I I I

For this example, every word of TABLI will be set to 5.

I I I I , I I I , I

In this example, every word of TABLI will be set to the value of the

corresponding word of TABL2. If TABL2 is longer than TAHLI, the

transfer of values will stop at the end of TABLI. If TABL2 is shorter

than TABLl, the transfer of values will stop at the end of TABL2, with

the excess words of TABLI unaffected.

4.2.10.1.2 Item Referenc~ng. There are two ways to address items, depending

on the type of table in which the items occur:

1. Horizontal or vertical (one-dimensional):

Format

name(i)

Explanation

Name

i

The name of the table, subtable, or like-table.

The item indicator. It may be a data unit, tag, constant,

or arithmetic expression.

11-4-45

M-5035

a.

Examples

All words of the first item (0) of TABLI will be set to 5.

The words of the i tern of TABLI indicated by the value of VAL will be

set to 5.

2. Array (multidimensional):

Format

name (d l , d
2

, ••• , d
7

)

Explanation

Name

d.
1

Examples

The name of an array.

The index corresponding to the associated dimension of the

table. The number of indexes specified must correspond to

the number of dimensions of the table (at least I but no

more than 7). Each index may be a constant, tag, data

unit, or arithmetic expression.

Column 0 Column I

a. TABLI
Item 0 Item 0

Item I

Item 2 Item 2

131~n 17jAaL1.t1(1/1, III)' !rtO 1;$1 " I I I I I I I I I I I I I I

All the words of item I in column I (the shaded area) of TABLI

will be set to 5.

11-4-46

h.

M-5035

Column 0 - Column 1

TABLI Column I
Item 0 ,----

I
Item 0

Item I l-----
I

I Item I

Item 2 t-----

Level 0

Level 1

All the words of item 2 in column 1 of level I (the shaded area)

of TABLI will be set to 5.

4.2.10.1.3 Field Referencing. There are two ways in which fields may be

addressed, depending on the type of table in which the fields occur:

1. Horizontal or vertical (one-dimensional):

Format

name(i,f)

Explanation

Name

i

f

The name of, the table, subtable, or like-table.

The item indi'cator. It may be a data unit, constant,

tag or arithmetic expression.

The field indicator. To specify a field previously

defined within the table, f must be the field name. A

word is a'speeial type of field which may be indicated

by a constant, data unit, tag, or arithmetic expression.

II-4-47

M-5035

a.

Examples

The predefined field FLD of item 2 of TABLI will be set to 5~

Word 1 of item 2 of TABLI will be set to 5.

2. Array (multidimensional):

Format

name (d l' ••. , d n ' f)

Explan'ation

Name

d.
1

f

Examples

The name of the table.

The index corresponding to the associated dimension of

the table, as previously described.

The field indicator. To specify a field previously

defined within the table, f must be the field name. A

word is a special case of field that may be indicated by

a constant, data unit, tag or arithmetic expression.

The contents of BUFLAG will be placed in the field FLAG of item 2 in

column 1 of level 1 of TABLI.

Word 1 of item I of column 0 will be set to 5.

11-4-48

c. g.Ein I iTi"IJ~!(~:VlTj",8~MtG)lfj!:tl:!'!I),,'fi4bt)1 Plol 101 ~l

d.

I

The contents of field FLO of the item represented by the expression

2~~ABl(I,FLDl) will be set to O.

~~~~~~~~~~~~~~~~~~~~~~Whole table. 

~~-.~~~~~~~~~~~~~~~~~~~ 
Item 4. 

~t...,;",A.~ ...................................... ~ ........ "",,"","~~""--iIoooooooio __ """"""-~~~ Fie Id F LD 0 fIt em 4. 
Word 2 of item specified 

~~~--W+~~--~~~~~--~~~--~~~ by INDI. 
~~~~~~~~~~~~~~~~ __ ~~~~~ Field FLD of item 0 in 

col. 1. 
~&..:.;I.....I..WL...::~ ....... ~;;;;..a.;;;~"""-~;;;;"'.....L.i""'-"""""-I~~~"&'-'~"""'''''''' Word spec i f i ed by TAG 1 0 f 

NOTE 

of item specified by 
INDI of column specified 
by IND2 of level speci­
fied by IND3. 

The interpretation of the referencing is governed 
by the structure declared in the TABLE declarative. 

4.2.10.1.4 Item-Area Referencing. An item-area is addressed by its name. 

The name alone addresses the total item. A field specification may be 

included to address a field or word. 

Format 

name 
. or 

name (f) 

Explanation 

Name 

f 

The name of an item-area. 

The field indicator. To specify a field previously 

defined within the parent table, f must be the field 

name. A word is a special case of field that may be 

indicated by a constant, data unit, tag, or arithmetic 

expression. ,f 
11-4-49 



M-5035 

Examples 

I. 

Every word of ITEMA will be set to 5. 

2. 

Field FLD of ITEMA will be set to 5. 

Word 2 of ITEMA will be set to O. 

4.2.11 Transfer Declaratives (Switches) 

The transfer declaratives allow the establishment of switches for determining 

indirect linkage within procedures and for transferring control from one 

procedure to another. There are two classes of transfer declaratives: 

statement switches and procedure switches. 

4.2.11.1 Statement Switch (SWITCH) Declaratives 

The statement switch is a collection of statement labels to which control may 

be transferred, depending on various conditions encountered during processing. 

For purposes of identificati6n and selection, the switch is a unit identified 

by a switch name. Since statement switch'es are collections of statement 

labels, and since statement labels are always local to the system procedure 

in which they are defined, switch declarations must fall within local data 

design (LOC-DD) brackets. There are two types of statement switches: index 

and item. 

4.2.11.1.1 Index Switch. The index switch defines a transfer of control 

that is determined by a user-supplied index. 

11-4-50 



M-5035 

Format 

SWITCH name switch-point, switch-point, ---, switch-point $ 

Explanation 

SWITCH Specifies the 'beginning of a swi tch defini tion. 

Name An identifier used to reference the switch. 

Switch Points One or more statement names separated by commas. 

The switch points of a given switch ~re accessed by use of an index (see 

paragraph 5.5). The value of this index is within the range 0 through 

n-l, where 0 corresponds to the first switch point and n is the number 

of switch points. 

The program must, include validity checking of the index if there is a 

possibility of the index having a value outside the switch range. 

Example 

This declaration defines switch BPX with switch points 51, 52, 53, and 

54. A reference to switch BPX transfers program control to one of four 

statements labeled 51, 52, 53, or 54 depending upon a numerical input of 
I 

0, 1, 2, or 3, respectively. 

Two switches may be defined simultaneously by specifying two names for each 

switch point. In declaring these switches, a separate statement is required 

for each pair of switch points. The list of switch-point statemertts is 

delimited by an END-SWITCH declaration. The second switch name and associated 

switch points may be omitted and the result used as an alternate form for 

defining a single index switch. 

11-4-51 



M-5035 

Format 

SWITCH name-a, 'name-b $ 

switch-point ,switch-point $ 

switch-point ,switch-point $ 

END-SWITCH name-a, name-b $ 

Explanation 

SWITCH 

Name-a 

Name-b 

Switch Point 

END-SWITCH 

Specifies the beginning of a switch definition. 

An identifier used to reference the left column of 

switch points. 

Optional. An identifier used to reference·the right 

column of switch points. 

A statement name. 

Specifies termination of the switch definition. 

In referring to the switch with name-a, the index specifies one of the 

switch points in the left column. Switch points in the right column 

are selected by use of name-b 'and an index. The program must include 
• validity checking of the index if there is a possibility of an index 

outside the range 0 through n-l. 

Examples 

I. I!!tWl/lrl'IH, IFILI/lf,,1 ,FU .. IO,PI #1 I I I 
Irp",6',L. 1E"1" 18,ol£.jT, ,$, , 

In this example, the SWITCH declaration generates two independent 

switches, FLIP and FLOP. A reference to swi tch FLOP wi 11 transfer 

11-4-52 



2. 

M-5035 

program control to the statement BOLT or the statement SWCH, depending 

upon a numerical input of 0 or I, respectively~ 

The number of switch points in the left-hand column may be greater than 

the number in the right-hand column. In this case, only one statement 

name is specified. 

Switch SWI may be referenced by index values of 0, 1, 2 and 3. 

Switch SW2 may use index values of 0, I or 2. 

I ·1 

4.2.11.1.2 Item Switch. The item switch defines switch points that are 

accessed by a constant as specified in the definition. The Compiler performs 

a compare between the value of the variable name contained in the switch 

statement and the constants of the definition. Control will then be trans­

ferred to the switch point that corresponds to the matching constant. 

Validity checking of the data unit name is not necessary as program control 

will continue with the next instruction if a match is not found. This m~ans, 

however, that the instruction sequence following must be applicable toa not­

found condition. The variable specified in the item switch declaration must 

be defined prior to its reference in the switch declaration and must not 

exceed two words in length. 

11-4-53 



M-5035 

Format 

SWITCH name (variable-name) $ 

constant, switch-point $ 

constant, switch-point $ 

END-SWITCH name $ 

Explanation 

SWITCH 

Name 

Variable Name 

Constant 

Switch Point 

END-SWITCH 

Example 

Specifies the beginning of a switch definition. 

An identifier used to reference the switch. 

The name of a variable whose value is to be compared 

against the list of constants in the left-hand column. 

A CMS-2 constant of two words or lesS in length. This 

constant must agree in type with the variable. 

A statement name. 

Specifies the termination of the switch. 

This declaration defines switch SWOFF with switch points ELEMENf, UNCOND, 

and DONE. A reference to switch SWOFF will transfer control to one of 

these switch points, depending upon the value of the variable named 

FINISH. If FINISH is equal to H(TERM) , control will transfer to the 

statement DONE •. 

11-4-54 



M-5035 

4.2.11.2 Procedure Switch (P-SWITCH) Declaratives 

The P-SWITCH is a collection of procedure names to which a call may be made, 

depending on conditions encountered during execution. The list of procedure 

names identifies the procedures accessible by the switch.; Procedure switches 

are declarations, and can fall within the data design brackets (SYS-DD or 

LOC-DD) or may stand alone (i.e., within a SYS-PROC but outside a LOC-DD or 

procedure). There are three types of P-SWITCHes: index procedure, double 

procedure, and item procedure., 

4.2.11.2.1 Index Procedure Switch 

Format 

P-SWITCH name INPUT formal-parameters OUTPUT 

formal-parameters $ 

switch-point $ 

switch-point $ 

END-SWITCJ:I name $' 

Explanation 

P-SWITCH 

Name 

INPUI 

OUTPUT 

Specifies the P-SWITCH declaration. 

The identifier by which the p-switch is referenced. 

Optional. Specifies that formal input parameters 

for each p-switch procedure follow. 

Optional. Specifies that formal output parameters 

for each p-switch procedure follow. 

Formal Parameters A list of names (single identifiers), separated by 

commas, which are to be input or output to the 

procedures. 

Il-4-55 



M-5035 

Switch Point The name of a 'procedure ~ccessible by the switch. The 

switch points are indexed by a value within the range 

END-SWITCH 

o through n-l, where 0 corresponds to the first switch 

and n equals number of switch points. The program must 

include validity checking of the index if it can exceed 

the range 0 through n~l (see paragraph 5.5). 

Specifies the termination of the switch. 

This declaration allows the use of input and output parameter transfers. 

If formal parameters are specified, they must be identical for every 

procedure of the p-switch. No abnormal exits are allowed. Transfer to 

the procedures specified is activated by a procedure-switch linking 

statement (see paragraph 5.3). 

Example 

IEI"I~IWI-'I TI C.IH I ITIRd 1&-1 IIIN1PI"'Ti 18 tIJ 16-~ IS II .])1 rl 10 I UIT1 tJl Ii ITi ISIDjLI ifl 

I ISIIINI III I I I I 1'1 I' I I I I 
-I (!P.5 1 1$1 II I 1 1 I I I I 
I ITi~NJlfl I I 1 I I I I 1 I I I I 
I IfiM.b "IS 1"'1' I rlc..lw-I ITIRI/I6-1 I~ I I I, 

This declaration defines procedure switch TRIG whose input parameters ate 

ANG and SIDE and whose output parameter is SOL. A reference to switch 

TRIG transfers control to one of the procedures SIN, COS or TAN, depending 

upon a numeral index of 0, 1 or 2, respectively. 

4.2.11.2.2 Double Procedure Switch. Two procedure switches may be defined 

in a single declaration. 

11-4-56 



M-5035 

Format 

P-SWITCH name-a, name-b $ 

switch-point, switch-point $ 

switch-point, switch-point $ 

END-SWITCH name-a, name-b $ 

Explanation 

P-SWITCH 

Name 

Specifies a P-SWITCH declaration. 

The name of a procedure. A switch point is indexed 

by a value within the range of 0 through n-l where 

n is the number of switch points. 

END-SWITCH Specifies the termination of the switch. 

Multiple procedure switch declarations do not allow formal input or 

output parameters. Name-b and associated switch points define a second 

procedure switch. 

Example 

'PI-O,WIIIT,tt .. 1 If,LIAI,Nlfl,1 lTiRe"" 1M I=' I I l 
I IAII IRI ,I I I IRIA" ,L, I If, I I " 

I rFIOI61 I 1$1 1 I I I I I I I 1 I I 1 I I I I I I I 

This declaration defines independent procedure switches PLANE and TRAIN. 

A reference to switch PLANE will transfer program control to one of the 

procedures AIR, PROP or FOG depending upon a numerical input of 0, I or 2, 

respectively. 

11-4-57 



M-5035 

4.2.11.2.3 Item Procedure Switch 

Format 

P-SWITCH name (variable-name) INPUT formal-parameters 

OUTPUT formal-parameters $ 

constant, procedure-name $ 

constant, procedure-name $ 

END-SWITCH name $ 

Explanation 

P-SWITCH 

Name 

Variable Name 

INPur 

OUTPUT 

Formal Parameters 

Constant 

Procedure Name 

END-SWITCH 

Specifies a P-SWITCH declaration. 

An identifier used to reference the P-SWITCH. 

The name of a variable whose value is to be 

compared against the list of constants in the 

left-hand column. When a match is found, the 

procedure that is paired with the constant will 

be accessed. 

Optional. Specifies that the names which follow 

are the formal iriput parameters. 

Optional. Specifies that the names which follow 

are the formal output parameters. 

A list of the formal names, separated by commas, 

of the input and output parameters • 

. Any allowable CMS-2 constant of two words or 

less. This constant must agree in type with 

the variable. 

Identifies the procedures accessible by the 

swjtch. 

Specifics the termination of the list of procedure 

names. 

11-4-58 



M-5035 

Example 

I I I I I I I /. I / I I I I 

A procedure switch linking statement would invoke the procedure item 

switch. This would cause the contents of the variable MTYPE to be 

compared against the list of constants in the LINK procedure switch 

table. A match generates a procedure call to the procedure associated 

with the constant. The formal parameters are ADDR and RESLT. 

4.2.11.3 Switch Referencing 

Statement switches (index and item) are referenced by a GOTO statement. 

Paragraph 5.5 provides examples of such referencing. Procedure switches 

(P-SWITCH) are referenced by a procedure switch call. Paragraph 5.3 provides 

examples of such referencing. 

4.2.12 Local Indexes 

Identifiers may be used to refer to machine index registers within the range 

of a procedure by means of index declaration statements. Two types of 

indexes may be declared: system indexes and local indexes. 

System indexes are global identifiers that must be declared in a major .header 
(see Section 7). 

Local indexes are declared for use within a procedure by means of the LOC­
INDEX statement. 

11-4-59 



M-5035 
Change 3 

Format 

LOC-INDEX name(s) $ 

Explanation 

LOC-INDEX Indicates that the following name or names are to 

refer to the Compiler-assigned index register(s) • 

Name An identifier(s) of the index register(s). It must 

not be previously defined in a data declaration. This 

name can be an actual (not a formal) parameter in a 

procedure call. Multiple names are separated by 

commas. 

The declaration should immediately follow the PROCEDURE statement. 

Examples 

The following conventions apply to declaration and use of indexes: 

1. Two index registers (B6 and B7) are reserved for Compiler use and will 

never be assigned to a user-declared index. 

2. Five index registers (Bl through BS) maybe assigned specific data names 

by SYS-INDEX statements. 

3. Up to five index registers may be assigned by the Compiler for use in a 

procedure by LOC-INDEX statements. 

4. The sum of the number of index registers assigned by LOC-INDEX and 

SYS-INDEX statements ·will never exceed five. 

5. There is no restriction on the number of local indexes which may be 

defined by LOC-INDEX statements. However, if index registers are .not 

available, temporary locations in memory will be assigned. 

6. In non-arithmetic operations the CompUer manipulates index registers as 

IS-bit, unsigned, integer data units. When index registers are used as 

operands in arithmetic expressions, AN/UYK-7 sign bit considerations 

require that the result of the expression must not exceed 15 bits in magnitude. 



M-5035 
Cha ngf~ 2 

4.2.13 Data (DATA) Declaration 

A. DATA declaration may be used to assign a preset value to a previously defined 

data unit. EQUALS tags may be used to represent numeric constants (see Section 

7). 

Format 

NOTE 

The DATA declaration is accepted by the AN/UYK-7 CMS-2 
Compiler to provide additional compatibility with other 
CMS-2 compilers. However, its implementation is not 
fully compatible with other CMS-2 language implementations; 
nor can its continued existence in this or future CMS-2 
implementations be assured. It is strongly recommended 
that the variable and field preset capability and the 
extensive direct code preset features available with 
this compiler be used in place of the DATA declaration. 
Each DATA declaration generates full word preset values; 
no partial word variables should be preset via the DA.TA 
declaration. 

name DATA" constant-a constant-b $ 

E~planation 

Name 

Constant-a 

Constant-b 

An i~entifier of a table, subtable, variable, liketable, or 

item-area. After the first declaration, name is optional when 

presetting sequential words of a multiword data unit. When 

presetting these units, a user must be aware of the word allo­

cation format (see Example 2 on the following page). 

A numeric integer constant, Hollerith constant, 6r tag assigned 

as an initial value for the named data unit. If name identifies 

a variable, the type of this constant must agree wi th the type 

of the variable. 

Optional. A numeric integer constant or tag that is used when 

a dual preset value may be applied to a data unit. When con­

stant-b is specified, constant-a assigns a value to the upper 

halfword of the data uni t and constant-b assigns a value to the 

lower halfword of the named data unit. Constant-b is not allow­

ed when constant-a is Hollerith. 

11-4-61 



M-5035 
Change 2 

A numeric constant may be followed by a scaling specifier (a comma folluwed by 

a positive integer constant). The scaling specifier must be given if the pre­

set value is to have any fr~ctional precision. 

Examples 

1. I MCJ I 14AM 1211 btl I I I I I II I I I I I I I I I I I I II I 

The whole word, referenced by the data unit name TAC, has an initial 

preset value of 77. 

2. One DATA declaration per data unit name presets only the first word of 

the unit. To preset several or all words, the following format is 

employed, using. table DICT as an example: 

LlUiOv IDAITI6t 1-1,,1It t$1 

MTL4 I~ ·101 Iii I· 

MrlA 1I1II I 1$1 

The first word of table DICT has an initial value of -64. The second 

word has an initial value of 7 in the upper half and 0 in the lower half. 

The third word has an initial preset value of 11. When using this method 

of table presetting, the user must be concerned with word allocation 

format so that a data reference will give the proper preset value. 

I I I I I I I 

This declaration will preset the Hollerith variable HOLVB with the char­

acters TWOWDS (left-adJusted with two trailing blanks). 

4.3 CONTROL DECLARATIVES 

A variety of declaratives are available for use in specifying various Compiler 

control information. Most of these declarations control allocation or code 

generation on an element-wide basis. They appear primarily in major or minor 

headers, and are therefore described in Section 7. The MODE declaration is 

closely related to the data declaration process and is therefore described 

in the following sections. 

11-4-62 . 



M-5035 
Change 3 

4. 3. 1 Mode (MODE) Declaration. 

The MODE declaration defines the format of variables and fields for which no 

attributes are declared. A MODE declaration may appear within headers or data 

designs; it overrides the Compiler-inherent mode. When a mode declaration appears 

in a major header, it remains in effect throughout the system compile. When it 

appears in a minor header or within a data design, it remains· in effect throughout 

that element or Wltil another MODE declaration is encoWltered. In conjunction with 

the MODEVRBL option (see Section 7), the MODE VRBL declaration is also permitted 

within procedures and functions. 

1. 

Format 

MODE VRBL description $ 

MODE FIELD description $ 

Explanation 

MODE 

VRBL 

FIELD 

Description 

Examples 

Specifies the MODE declaration. 

A variable MODE declaration. 

A field MODE declaration. 

The format as specified in VRBL or FIELD declarations 

(see p~rag~aphs 4.2.1 and 4.2.3). Specifying an initial~ 

value is allowable in a variable MODE declaration. 

I Af().,If., I " IV,~,B,L, 8, 2N, JII, ,/3, 4, " , J I ' ,., , , I 1· I , 

If the example were included in a data design, all succeeding variables 

within the data design that contain no attribute specification would 

adhere to the format A 24 U 13 until the next variable MODE is 

encountered. All variables would be fixed-point with a length of 24 

bits and unsigned, with 13 fractional bit positions to the right of the 

binary point. 

ll-4-63 

I 



M-5035 

2. ,rt(O,.b, Ej J 

, Till-",l, 6 
IF, I,EjLJ~ ,,1, J,lI ,S, 1/'" ,$." , I , , J , , I 
It-pie,A, L, T,lt-,I( ,NI .. ~i, lip p, IL,OI'-ir,~ r1, J 

ITt &!'tfli 0, tt, ,3 ,A-I ,5, ,D, ,'.3,1,,$, I, , , , , , , , , J , , I I I 

Ix,4 "" I I I , I , , , , " 1 I , , , 1 , , , , &tJ ,3,.L1 c$. 
,F,I,t:,Lt,b, Ii,; I I .;31 ,-I,L ,~ 
I FII, f:,yl>, llif, I ·1 I (II ,3,L ,.$, 
I I I·' I I I 1 I I I I 1 

:':N~:~~A:6IL:E: :L:O:C:A:~T:R:K: i: : : : : : : I : : : : : : : : : I :: : : : 
In this example, fields Xl, Yl and TI have undeclared data-type attributes; 

therefore, the MODE-declared attributes of A 32 S 16 would be assigned 

to each. Note that it is still necessary to specify the word location 

and starting bit for those three fields since Compiler packing was not 

specified. 

4.4 SYSTEM LINKAGE 

System linking is the process by which program information known to one basic 

CMS-2 element. may be communicated to another basic element. It may be 

required when the information is local to a system procedure within a SYSTEM 

or unknown because the elements were compiled under different SYSTEM headers. 

The following items may be linked between two basic elements: 

a. Tables (and associated items). 

b. Variables. 

c. P-switches. 

d. Procedures. 

e. Functions. 

f. Files. 

11-4-64 



M-5035 
Change 5 

The capability to link the above items between and within basic CMS-2 elements is pro­

vided by the EXTREF, EXTDE¥, TRANSREF, or LOCREF operators. This capability 

eliminates the need to expand the local concept of certain items and/or include entire 

elements within SYSTEM compiles 'when only a few unknown items are referenced. 

Because segments containing items 'a through f can be linked at load time, it is 

unnecessary to externally reference a procedure (unless it has input/output parameters 

or exits) or to define a procedUre in a segment in order to call it in that segment. . 

Although the compiler will not flag such an "undefined" procedure, the loader will do 

so if that procedure remains undefined at load time. 

4.4.1 External Definition (EXTDEF) Operator 

The name and associated declaration following the operator EXTDEF is to be 

considered as global so that it may be referenced within any basic element 

of any SYSTEM compilation. 

1. 

Format 

(EXTDEF) identifier-identification $ 

Explanation 

EXTDEF. Specif ies an external defirii tion. 

Identifier-Identification A symbol and its associated definition defined 

totally within this SYS-PROC. 

Examples 

, (,f,Xi T .), £, F,) I I V ,& e. LI ,x, I Fj r@ I I I I I I I I I I I I I I I I , I I I 

This example specifies that VRBL X, defined in a LOC-DD of the SYS-PROC, 

is referenced by other SYS-PROC's and is to be considered global. 

This example declares that variables XX, YY. and ZZ within this SYS-PROC 

are global floating-point data units. 

ll-4-65 

I 



M-5035 

4.4.2 External Reference (EXTREF) Operator 

The declaration following the operator EXTREF defines an item that is 

physically located in another SYS-PROC or SYS-OO and is referenced within 

the current SYS-PROC. Allocation of the item will not occur in the SYS-PROC 

being compiled, but the definition to provide the necessary element compati­

bility will be applied. 

Format 

( E XTR EF ) ide n t i fie r - ide n t i fie a t ion $ 

Explanation 

EXTREF 

Identifier-Identification 

Example 

Specifies an external reference. 

A symbol and its associated identification 

that is referenced from, but not located within, 

th is SYS-PROC. 

I I I I I I , 1 I I 

This example specifies that VRBL FI is used within this SYS-PROC, but is 

physically located in another SYS-PROC or SYS~DO. 

4.4.3 Transient Reference (TRANSREF) Operator 

The declaration following the operator TRANSREF defines an item that is 

physically located in another SYS-PROC or SYS-OD that cannot be assigned a 

permanent base register. References made to this item will result in the load 

of a transient base register to cover the referenced SYS-PROC or SYS-DD. The 

definition furnished ~ill be applied to provide the necessary element compati­

bility. 

Format 

(TR ANSR EF ) ide n t i fie r - ide n t i f i cat ion $ 

11-4-66 



Explanation 

TRANSREF 

Identifier -Identific ation 

Examples 

Specifies a transient reference. 

M-5035 
Change 5 

A symbol and its associated identification 

that is referenced from, but not located 

within, this SYS-PROC. 

4.4.4 Local Definition (LOCREF) Operator 

The procedure or function declaration following the operator LOCREF is considered 

local to the system procedure in which it is contained, so that forward references to the 

procedure or function receive proper parameter linkage. The declaration containing 

the (LOCREF) modifier must appear in a local data design prior to the procedure or 

function.containing the local forward reference. Formal parameters m'll:-st be defined 

prior to the declaration. 

1. 

Format 

(LOCREF) procedure or function declaration $ 

Explanation 

LOCREF Spe~ifies a local procedure or function declaration. 

Example 

,vIK,8ILI IVI ({d , ,I, I~I lUI l1, t t , , I I I , I I I I I I I I t 

, , 
This example specifies that procedure PRA is a procedure local to the system 

procedure and is called locally within this system procedure. Its formal input 

is VB!. 

11-4-67 



'M-5035 
Change 5 

4.4.5 Applications ofEXTDEF, EXTREF, and TRANSREF 

1. ,fb I I I I I II IS if ,s'-JP,i~ 99 .#1 I I il I I I I I J 

: G~kk:E:f~: :~~~~: ~~~: \16 4 :~IJ: ~: : : : : : : : : : : : : 
:{:~~~:~:~F~: :~:~~:~:A:~~~lb~~~S: ~ 1°: :3t: :$; ::: : 

lrITIE,"tI-I,+IRlfIAJ !S,u,MIBJ ,$, J 

I I J J ., I J I I I I I I I 

I I I I -I I I I I I I I I I , I J 

-T able SUM is linked between syste m procedure A and system procedure B. Since the 

field defintion for SUM! is included in the table deSCription, SUM! is also linked be­

tween A and B. A reference to SUM (0, SUM!) in either system procedure will access 

the same data unit. 

Subunits of tables, such as like-tables, subtables, and item-areas are not automati­

cally linked between system procedures. In this example, a reference to SUMB will 

access different data units. However, linkage can be achieved for subunits of tables. 

Item-area SUMA is externally defined in system procedure A and externally referenced 

in system procedure B, thus providing the ability to reference the same data unit from 

either system procedure. 

An externally referenced table must have the same field definitions as that of the ex .... 

ternally defined table. Only like-tables, subtables and item-areas may be added or 

n-4-68 



M-5035 
Change 5 

deleted from the definition. As an example of this, SUML can be included in system 

procedure B without being in system procedure A as long as it has the same attributes 

as table SUM. 

n -4-68A/ll-4-68B (Blank) 





M-5035 
Change 5 

IEirJdJ I I , ,IS,)',SJ-I/3R,o,c, )B,., .s,r,BRi/etblE"tR, 1.t1!~"4f(I,,,/1 IIi I I I 

(:E~~~ :~:E:F~: :~ %:~~~:!~:r5 ~ : : : : : : : : : :: : : : : : : : : : : :: : : 
(1§)l,T1t'2-.,f,F-3), IV,&6t4 IP,2t111 If, , I I 1'" I I"" J I ",! •• I'll 

I I I I , I , I IV I R 18, '-i Iff ,it "1 Lt J I I I I I I I I ·1, I I I I I 1 I t I , I , , I I 

(:~:t~:g:E:f:): :;:~~~:~~:i~:~ ~:L:P~:~ :/:~p:uM :i,i: ~U:T:P:U~: ~ P:i :~: 
J I IEIN,.b, -, L,gc'-lb}J> I Iii I I 1 I I , , 
, I ,."., , I 1 I I I It, I I , I I , I , I I I , I , I , 

, I I II " I I I I I I I I I I I , , I , I I I t I , , I 

I I I ') ., I I I' I " I', I I I I I , I I I I I 

I I I " I , I I , I I I I I , I , I I I I I I I I , J 

I I J I I I I L ,0, C l-ll?tl?1 1$, 'I I., I 1 , I J I I I J 

( , Ej ~ ,r ,:b JE, F ,), I \II Il, S,l, I P I g., , F, 1$. I I I I I , I ' 'I', I , I I I 

, , I I I I I , IE:N;A-.L,O,C,-,'b.)1 tt, I I , , , ,. , I 1 , I , I , 1 , I I I I , , 1 I 

, , I , I I I· I I I I·,. I I. , , I I , I I I I , , I I , I I I 

I I ,', I I I • , , I I , 1 , I' I, I I , I 

I I I I 

I I • I I I I I I 
t ,., I I I I I 

Procedure ALPHA is in SYS-PROC HAND. SYS-PROC BETA initiates a procedure 

call to ALPHA by means of ALPHA INPUT Al OtrrP11f A2$. To indicate this 

cross-referencing to the Compiler, procedure ALPHA and its associated 

formal parameters, variables PI and P2, are flagged as external references 

in SYS-PRDC flPTA and as external definitions in SYS-PROC HAND . 
• 

II-4-69 

I I 

I I 



M-5035 

:3. ,AI Is ,y,S,Tj EjM, ,$, 
I I I,·, , , , I , , I 
, I I , I ,., , 1 , 1 " ", J 

,Ey('~IP, , , , , IS,'I15,-,P,RIOIY , ITt., .plo,E, 171~I~JY 1'7,0, tI" "I 

: (:~&A:N:~~:~f:) ;:~:;:tL: 1:l:A~S: :A: :3:i is: II;': :$: : : ; : : : 
I (1' Ej K, T I & § F,), I , I VI R, 8, 1.., I Fi; I Fi ,$ I , , I I 

, I I ,., I , I 1 I II I , I I , 

I , I ,., 1 I I , I , I I , I I , I , 

I , 

I I', I , I , I I I I I I I , 

I , ,. I '-I I I 'I , , , I I , I , I , I I 
I , I , , 1 J 

, I I 
II " I . I", , , I , I I I , , I. 
1 I , I I ,., I , . I I " I I I I 

I J 

I , 

I ,., , I I I, I I I ,., , I 

I I -'I , I I I I I , I I I , , 
, , 

, ,I I • " I I I I I , I I I I , 

I I I " I . I I 1 I I , ,I I , 

I , 

, I 

I ,'1 II " J I I I I J I I I ., 

I I·' II I , I I I J I I , , J , 

I I I , I I I 
I " II , , , I 1 , I J I , I I I I 
I I ., J I I I I I I I I I I I I J I 

, I , I I 

When SYSTEM A was compiled, the programmer ant.icipated using two variables 

from different SYS-IJU's in SYSTEM B that would not be covered under the 

11-4-70 



M-5035 
Change 5 

same base register. This capability allows assigning a base 

register to one SYS-DD when SYSTEM A is loaded for execution and a 

transient register to the ot~er SYS·DD. It was not necessary to 

attach the operator EXTDEF to the variables in SYSTEM B since 

they are within SYS-DD's and, hence, global. 

Use of the TRANSREF and EXTREF operators allows the Compiler to 

generate the appropriate object code for SYSTEM A. The allocation 

is ,determined by the system Loader. 

4. SPCX 

(LOCREF) 

(LOCREF) 

SYS ... PROC $ 

LOC-DD $ 

VRBL VX1 A 16 S 10 $ 

PROCEDURE PRXl OUTPUT VXI $ 

VRBL VX2 H 2 $ 

FUNCTION FNX2 (VX2) 

VRBL (VA3, VA4) A 

VRBL (HAS ,HA6) H 

• 
• 

END-LOC-DD $ 

PROCEDURE PRCAl $ 

• 
• 

PRXI OUTPUT VA3 $ 

• 
• 

32 

4 $ 

H 4 $ 

S 24 $ 

11-4-71 



M-S03S 
Change S 

SET HAS TO FNX2(HA6) $ 

• 
• 

END-PROC PRCAI $ 

PROCEDURE PRXI OUTPUT VXI $ 

• 
• 

END-PROC PRXI $ 

FUNCTION FNX2 (VX2) H 4 $ 

• 
• 

END-FUNCTION FNX2 $ 

• 
• 

END-SYS-PROC SPCX $ 

Procedure PRXI and function FNX2 are local to system procedure 

SPCX; both are called prior to their definition by procedure 

PRCAI. Including the declarations in the local data design prior 

to PRCAI permits m6re accurate error checking and generation for 

their parameter passage with respect to scaling and type. 

II-4-72 



SECTION 5 

DYNAMIC STATEMENTS 

M-5035 
Change 4 

Dynamic statements specify processing operations within procedures and 

functions. They perform calculations, manipulate data, and direct control of 

the program. 

This type of statement consists of an operator followed by a list of operands 

and additional operators. An oper~d may be a single name, a constant, a data 

unit reference or an expression. Expressions may be arithmetic, Boolean, 

relational, or literal. 

Dynamic statements have two possible forms: simple and compound. A simple 

statement comprises a single dynamic statement followed by its statement 

terminator ($). A compound statement consists of two or more dynamic 

statements, each separated by the connector THEN, followed by a single 

$ statement terminator. 

With the exception of decision statements (Paragraph 5. 6), there are no 

restrictions on the number or types of dynamic statements which may be 

compounded. With this exception, the connector THEN is exactly equivalent to 

the terminator $. 

Example 

The compound statement 

SET A TO B THEN PROCA INPUT X 

THEN L2. SET E TO F THEN GOTO Ll $ 

is equivalent to the simple statements: 

SET A TO B $ PROCA INPUT X 

$L2. SET E TO F $ GOTO Ll $ 

11-5-1 



I 

M"':5035 
Change 4 

Simple. and compound statements may also be· grouped into a statement block by 

the formation ofa BEGIN, VARY, or FOR block (Paragraph 5.7). Statement 

blocks are required in order to nest decision statements (Paragraph 5. 6. 6). 

5.1 EXPRESSIONS 

The arithmetic, Boolean, relational, and literal expressions used in dynamic 

statements are described in the following paragraphs. 

NOTE 

Variables, constants, local and system indexes, field 
references, typed item references, item word references, 
function references, and functionally modified data 
units may be used as operands in CMS-2 expressions. 
Tables, sub-tables, like-tables, and untyped item 
references may not be used as expression operands. 

5.1.1 Arithmetic Expressions 

An arithmetic expression consists of two or more arithmetic data units or 

constants (operands) connected by arithmetic operators. The operators and 

their hierarchy of execution are defined in Table 5-1. Operations involving 

the level-l operators are evaluated first, followed by evaluation of operators 

of levels 2 and 3. 



TABLE 5-1. ARITHMETIC OPERATORS 

HIERARCHY OF 
EXEClITION OPERATOR FUNCTION 

1 - Unary minus 

1 ~~~~ Exponentiation 

2 ~c Multiplication 

2 / Division 

3 + Addition 

3 - Subtraction 

M-5035 
Change 4 

If expressions involve more than one operator of the same hierarchy, execution 

is performed from left to right in the order in which the operators are 

encountered. For example, A*B/C is evaluated as (A*B)/C. The one exception 

to this rule occurs with ~xpressions involving the exponentiation and unary 

minus operators (level-I). In this case, e~ecution proceeds from right to 

lefl. For example, -X**-Y is equivalent to -(X**(-Y), unless X is a 

constant in which case the sign is part of the constant. Note that the unary 

minus is the only operator that may directly follow another operator. 

Example 

A+B::~/D~~*3 is evaluated in four steps: 

1. B~:<C 

2. D::'*3 

3. The result of Step 1 divided by the result of Step 2. 

4. A plus the result of Step 3. 

When operations are specified by parentheses, those within the innermost 

parentheses are performed first. 

Example 

D*«A+B)**C) is evaluated in three steps: 

1. A+B 

2. The result of Step 1 raised to the power of C. 

3. D multiplied by the result of Step 2. 

II-5-2A/II-5-2 B Blank 





M-5035 
Change 3 

Arithm(~tic operations are performed in one of two mod(!s: floatinu-point or 

fixed-point. Floating- and fixed-point dutu units may he mixed within nn 

expression. However, an operation is performed in fixed-point mode only if 

both operands are fixed-point. Exponentiation involving a scaled exponent 5s 

performed in floating-point mode. 

The radix point of a fixed-point operand is determined by a data declaration 

or by an in-line definition. Using an in-line definition, the radix point is 

specified following the operand with the scaling specifier ( •• ). An in-line 

definition overrides a data-declaration definition. 

Example 

A •• 5+B •• 7 

In this example, A has a radix point of 5 and B'has a iadix point of 7. 

Only an integer constant, an EQUALS tag, or a name defined in a MEANS 

declaration may follow the scaling specifier. An in-line definition is valid 

only for a particular reference. Any succeeding operand reference utilizes 

the radix point definition of the data declaration unless the radix point is 

again defined in-line. 

Precision of fixed-point arithmetic operations is dependent upon the function 

of the statements. 

5. 1. 1. 1 Fractional Significance in Fixed-Point Operations 

The rules for determining fractional significance in operations between two fixed-point 

operands A and Bare described below. A~ operand m~1 be a data unit, a constant 

or the result of a subexpression. The radix point of a data unit is the number of 

fractional bits defined in the data declaration or the in-line defined scaling specifier. 

The radix point of a mixed or fractional constant equals: 

1. 3. 2*n+1 truncated to an integer, if constant is decimal, or 

2. 3 *n, if constant is octal 

.,. -

where n is the number of fractional digits. The radix point of an iI!ter!1!ediate result 

or subexpression is determined by application of the scaling ruJes.-

11-5-3 



M-5035 
Change ·4 

In the discussion of scaling rules, the following abbreviations are used: 

Abbreviation 

x 

y 

z 

min(x,y) 

Meaning 

Radix point of A. 

Radix point of B. 

Radix point of receptacle in a replacement 
statement, or radix point of simulated 
receptacle in relational expression or 
programmer supplied override value. 

The smaller value of x and y. 

I For relational expressions, FOR-expressions, or replacement statements with floating-point 

receptacles, the following are applied to determine the radix point of the simulated receptacle. 

1. If x " 0 and y -:F 0, then z = m1n(x, y). 

2. If x = 0 and y = 0, then z = O. 

3. If neither of the above is true, then z equals the nonzero scale factor (x or y, 

whichever' is nonzero). 

The . pr~ammer may override the Compiler determined value' of z by enclosing an 

expression within parenthesis followed by the scaling specifier ( .. ) and then specifying the 

desired value of z. 

Example 

(A+B/C+D) •. 5 

This specifies that each operation within the parentheses will be performed in 

accordance with the scaling rules for fixed-point arithmetic with "z" equal to 5. 

The scaling rules for fixed-point arithmetic are now described' as follows: 

1. Addition and Subtraction (A.:!: B) 

a. If x = y, the radix point of the result is x. 

b. If min(x,y) is greater than z, the radix point of the result ismin(x,y). 

c. If neither rule a nor .,rule b is true, the radix point of the result is z. 

11-5-4 



M-5035 
. Change 4 

2. Multiplication (A *B) 

a. No alignment prior to multiplication in relational expressions. 

b. If x is greater than Z, and A is the result of a previous multiplication, 
operand A is aligned to Z prior to the multiplication. If y is greater 
than z, and B is the result of a previous multiplication, operand B is 
aligned to Z prior to the multiplication. 

c. The radix point of the result (product) is the sum of the radix points of 

the operands after application of rule a or rule b. 

3. Division (A/B) 

a. If y is greater than z, then B is aligned to z prior to the division. 

h. A is aligned to y + Z so that the result (quotient) will have scaling 

equivalent to z. 

4. Absolute value and complementation 

a. There is no adjustment of scale factors; i. e., the scaling of the result 

equals the scaling of the operand. 

5. Exponentiation 

a. There is no adjustment; i. e., scaling of the result equals 

(exponent)*(operand scallng). 

If·botb operands are constants, such as in addition, subtraction, multiplication and 

division, the above rules apply with the follOWing consideration. Each of the constant 

operands has a user implied radix point as described at the beginning of this discussion. 

The rules produce an implied radiX point for the result. On the other hand, constants 

are converted within the compiler to double precision binary constants with maximum 

precision. Attributed to each internal representation of the constant is the compiler 

generated radix point. Compiler evaluation of the constant expression is performed 

in strict double precision mode. The scaling rules applied to the compiler generated 

. radix points yield a compiler radix point for the result of the constant expression. If 

the resultant radix point derived from the user implied radii is greater than the 

resultant radix point derived from compiler generated radii, then the final radix point 

for the evaluated constant expression is the compiler resultant radix point; otherwise. 

_ it is the resultant user implied radix point. 

II-5-4A/II-5-4B mank 





5.1.2 Relational Expressions 

M-5035 
Change 3 

A relational expression performs a comparison between two operands via 

rational operators (see Table 5-2). If an operand of a relational expression is an 

arithmetic expression, the operations of the arithmetic expression are executed 

first. Comparisons between two arithmetic operands will be performed in fixed­

point mode only if both operands are fixed-point. When comparisons are made 

between Hollerith operands, the shorter operand determines the number of 

character s to be compared. If one of the Hollerith operands is a constant, the 

necessary blank filling on the right is made to form equal length operands. A 

relational expression always results in a Boolean true or false value. 

Example 

(A+B+C)*D EQ E+F 

This expression is evaluated by comparing the result of (A+B+C)*D with 

the result of E+F. 

11-5-5 

I 



M-5035 
Change 1 

OPERATOR 

EQ 

NOT 

LT 

GT 

LTEQ 

GTEQ 

TABLE 5-2. RELATIONAL' OPERATORS 

OPERAND TYPES 
DEFINITION COMPARED 

Equal Arithmetic, Status, 
Hollerith, Boolean 

Not equal Arithmetic, Status, 
Hollerith, Boolean 

Less than Arithmetic, Status, 
Hollerith 

Greater than Arithmetic, Status, 
Hollerith 

Less than or equal to Arithmetic, Status, 
Hollerith 

Greater than or equal to Arithmetic, Status, 
Hollerith 

5.1.3 Boolean Expressions 

A Boolean expression consists of two or more operands connected by Boolean 

operators. The operands can be considered bit strings, i.e., a string of 

one or more consecutive bits, each having the Boolean value true or false, 

which is internally represented as 1 or 0 respectively. Operator definitions 

and hierarchy of evaluation are defined in Table 5-3. 

TABLE 5-3. BOOLEAN OPERATORS 

HIERARCHY OF 
EXECurION OPERATOR DFFINITION 

1 COMP Complement or negation 

2 AND Logical multiply or intersection 

3 OR Logical add or union 

3 XOR Logical difference or exclusive OR 

II-5~ 



M-5035 
Change 2 

If llool(~an operations are contained within parentheses, the innermost operation 

is executed first. 

Example 

vi, I PIg, 1 1c.ett,P,(,A ,tttNJ>IGS, (Je, IC,),), IA,N#l 14 

The expression is evaluated as follows: 

1. B or C 

2. A AND the result of Step 1 

3. COMP the result of Step 2 

4. The result of Step 3 AND C 

5. A OR the result of Step 4 

Operands associated with logical operations in a Boolean expression may be of 

any type (i.e., Hollerith, numeric, status, or Boolean) or they may be 

relational expressions. If no Boolean operators are used, the operand of a 

Boolean expression must be a Boolean variable, Boolean constant, Boolean 

function, Boolean functional modifier, or a relational expression. If two 

operands result in bit strings of lengths a and b, where a and b are not 

equal, the length of each bit string is assumed to be the maximum of a and b 

with the shortest bit-string filled with zeros on the left. All bit strings 

are right-justified before the binary Boolean operations are performed. In 

arithmetic operations, bit-strings are assumed unsigned, fixed-point data with 

no scaling. I 

The primaryluse of Boolean expressions is in IF and FIND statements, which 

select stat ment execution options based on relational comparisons. The 

Booleanexp ession is also useful for manipulating bit strings and assigning 

values to B data units. 
i 

When the value of a relational expression is used as an operand in a Boolean" 

expression, each bit .of the required bit string for the operand is. assigned 

the value true (1) or false (0). When a Boolean data unit is used as an 

operand in a Boolean expression, it is always assumed to be a single bit in 

length. If the functional modifier BIT specifies a single bit of a data unit, 

that d~ta unit is considered a Boolean operand. 

11-5-1 



M-5035 

When relational and Boolean operators are mixed in a Boolean expression, the 

relational operations are performed first and the resultant Boolean values are 

evaluated according to the Boolean operators. 

Example 

1. A LT B (true or false) 

2. C EQD (true or false) 

3. (result of 1) AND (result of 2) 

The results of Boolean operations can be shown in a truth table. "Referring 

to Table 5-4, the A and B" columns represent the assignment of truth values 

for these variables. The remaining columns show the truth values "resulting 

from the Boolean operations. For example, if A and B are both false 

(represented internally as 0) then COMP B would be true", A AND B would be 

false, A OR B would be false, and A XOR B would be false. 

TABLE 5-4. TRillH TABLE 

A B COMPB A AND B Ai OR B XOR 

0 0 1 0 0 0 

0 I "0 0 I I 

I 0 1 0 I I 

I I 0 I I 0 

5.1.4 Literal Expressions 

A literal expression is similar to other expressions in that it specifies a 

single literal value expressed in terms of literal operators and associated 

operands. The operands that are allowed with literal expressions are: fields" 

and variables typed as Hollerith, Hollerith functions, the functional modifiers 

BIT and CHAR, and Hollerith constants. 

11-5-8 



M-5035 

The operator allowed in a literal expression is CAT (concatenation). Whpn 

Used, it places the rightmost character of the left operand adjacent to the 

leftmost character of the operand on its right. 

Example 

Assume the following variables have been declared with associated initial 

values: 

then M CAT E CAT SCAT S CAT A CAT G CAT E is equivalent to the Hollerith 

value, MESSAGE. 

5.2 FUNCTIONAL MODIFIERS 

Functional modifiers facilitate easy reference to various parts of data 

structures or indicate an operation to be performed on data. They are 

designated as open and/or closed functions. An open function reference 

generates instru~tions that are compiled in-line. A closed function requires 

references .at run-time to Compiler-supplied routines loaded with the user's 

program. The following formats define the allowable functional modifiers: 

a. ASS (data uni t) 

b. BIT (index, index) (data uni t) 

c. BIT (i ndex) (data unit) 

d. CHAR (index, index) (data uni t) 

e. CHAR ( index) (data uni t) 

f. CNT (data unit) 

g. COR AD (data unit) 

h. FIL (file-name) 

i. LENGTH (file-name) 

j • POS (file-name) 

11-5-9 



r-5035 

5.~.1 Absolute Value (ABS) Modifier 

ADS is used for referencing th(~ absolute value of a data elempnt or ari thmt't ie 

expression; it is an open function. 

1. 

2. 

Forma t 

ABS (d a tau n i U 

E xp 1 a n.a t ion 

ABS 

Data Unit 

Examples 

Specifies an absolute value operation on the specified 

element. 

A data unit or arithmetic expression. 

I I I 1 I I I I I J I I I I , , J , I I I 

The example refers to the absolute value of the variable ALPHA. 

f!,§S. GCIL.tAI5ISI(.s,:rI'~E J~J I I I I I , I I I I J , I I , I 

This example refers to the absolute value of the field, SIZE,· in the 

item-area CLASS. 

5.2.2 Bit (BIT) Modifier 

BIT is used to reference a string of one or more bits in a data unit. Data 

unit bits are numbered with bit 0 specifying the leftmost bit. This function 

may be open if the starting bit and length specifications are positive integer 

constants and do not require movement across a word boundary. 

Format 

BIT (starting-bit,number-of-bits) (data-unit) 

Explanation 

BIT Indicates t.hat. bit speeificatio~s for a data clem(~nl 

f (I J ] ow. 

IJ-~-lO 



Starting Bit 

Number of Bits 

Data Unit 

Examples 

M-5035 
Change 3 

A numeric constant, data unit, or arithmetic expression. 

This bit specifies the initial hit position of the string. 

Optional. A numeric constant, data unit, or arithmetic 

expression. It specifies the number of bits in the string. 

If this option is omitted, the number of bits is assumed to be 1. 

The name of a data unit. The data unit cannot be a system 

or local index. 

The string begins in bit 0 (the leftmost bit) and is five bits long. 

ALPHA is the name given to the variable by a previous declaration. 

This bit string begins in bit 6 and is six bits long. The table (subtable 

or like-table) is BETA, the item index is N, and the field referenced is 

SUM. In this example, assume that field SUM has been defined such that 

it~occupies bits 27-16 of a table word. Thus, the bit reference applies 

to word bits 21-16, as illustrated below: 

,... Field SUM .. I 

I, I 
31 30 : 27 25· 20 16'15 

t 

Starting bit 
specified in the 
BIT n~ference 

II-5-11 

I 



I 

M-5035 
Change 3 

3. 

This example specifies the single bit in bit-position 6 of variable 

ALPHA. 

This bit string begins in the position specified by the variable START. 

Its length is determined by the value of the variable LENGTH. The table 

(subtable or like-table) is BETA. The item index is N, and the field 

referenced is SUM. 

J.~.~3 Character (CHAR) Modifier 

CHAR is used to reference a string of characters in a data unit. Data unit 

characters are numbered with 0 specifying the leftmost character. This 

fonctionmay be open if the character string specifications are positive 

integer constants and do not require movement across a word boundary. 

Format 

CHAR (starting-character ,number-characters) (data-uni t) 

Explanation 

CHAR Indicates that character specifications for the 

data element follow. 

Starting Character A numeric constant, data unit, or arithmetic 

expression. It specifies the initial character 

po sit ion 0 f the s t ring. . 
I 

Number Characters Optional.' A numeric constant, data unit, or 

Data Unit. 

arithmetic expression. It specifies the number of" 

characters in the string. If this option is not 

specified, the number ~f characters is assumed to 

be 1. 

The nnmf! of a dn t. C1 un it. The data unit cannot be a 

system or local index. 

11;...5-12 



Examples 

M-5035 
Change 1 

1. Ie., hiA,& d,t) ,3,) I (I~I Ej Tj /IdA" !Si 14 !IIIj ) I) I I I I I I I I I I I 

I 

The character string begins in character position 1 and is three 
, . 

characters long. The table (subtable or like-table) is BETA, the item 

is 4, and the field referenced is SUM. This example can be vi~ualized 

like Example 2 for BIT, t'he difference being that this uses character 

counts where there are eight bits per character. 

This character string begins in character position I and is one character 

long. Tbe table (subtable or like-table) is BETA, the item index is N. 

and the field referenced is SUM. 

5.2.4 Count (CNT) Number of Bits 

CNT furnishes the count of the number of bits set (equal to 1) in the specified 

data element. CNT results in an integer value and may be used in a numeric 

or status expression. This is an open functiono 

Format 

CNT (one-word data-unit) 

Explanation 

CNT 

One-word ' 
data-unit 

Example 

Specifies the counting of bits set to 1 in the designated 
I 

data unit. 

The name of a data unit contained in one word. 

I I I 

The number of bits that are set in field FLDPOS of item XX of table TBLE 
will be counted. 

II -5-13 



M-5035 

5.2.5 Core Address (CORAD) Modifier 

CORAD is used to reference the core address of a data element. It is an open 

function. 

Format 

CORAD(data-unit or statement-name) 

Explanation 

COR AD 

Data Unit or Statement Name 

Specifies the core address of the following 

data element or statement name. 

A data unit or statement identifier. 

NOTE 

.The CORAD modifier always results in an unsigned, 
16-bit value which represents the SY address of the 
data uni t or statement· name referenced. Under no 
circumstances will CORAD result in an la-bit absolute 
address. 

5.2.6 File Position (FIL) Modifier 

FIL is used for file positioning. See Section 6 for usage examples. This 

is a closed function. 

Format 

FIL (name) 

Explanation 

FIL 

Name 

Specifies the positioning of a device to a 

{}articular file. 

The identifier of a file. 

11-5-14 



M-5035 

:i.:!o7 Reeord Position (paS) Modifier 

POS is used for record positioning. This is a closf~d function. See paragraphs 

6.S.1 and 6.5.2 for usage examples. 

Format 

POS(name) 

Explanation 

POS 

Name 

Specifies the position of a file named within the 

parentheses. 

The identifier of a file o 

° 5•2•8 Record Length (LENGTH) Modifier 

LENGTH is used to determine the length of the last record of an input or 

output operation; it is a closed function. See paragraph b.7 for usage 

examples. 

Format 

LENGTH (n arne) 

Explanation 

LENGTH Specifies the length of a record for the file named. 

Name The identifier of a file. 

5.3- PROCEDURE LINKING 

Procedure linking is accomplished through the procedure call, function call, 

the procedure swi tch call, and the return statement. This capabili ty provides 

for program segmentation and increased efficiency through the elimination of 

statement duplicationo Paragraph 4.1.12 gives instructions for declaring a 

procedure. 

11-5-15 



M-5035 

5.3.1 Procedure Call 

A procedure call establishes transfer of control to a named procedure and may 

assign actual parameter values to the formal parameters defined in the procedure 

declaration. 

All procedure input parametl)r linking is accomplished by transferring the 

values contained in the actual input parameters of the calling statement to 

tllP formal input parameters of the called procedure declarative statement. 

That is, an actual parameter and its corresponding formal parameter are 

usually (iistinct programmer-declared data units allocated to different 

locations in core. Therefore, modification of a formal input parameter in 

the procedure does not affect the value of the actual input parameter in the 

calling procedure. Procedure output parameter linking is accomplished by 

transferring the values contained in the formal output parameters of the 

called procedure's declarative statement to the actual output parameters 

specifi(~d in the calling statement upon procedure return. If an actual 

param(~ter is omitted" or if the same data unit is specified as both the actual 

paramct(~r and the corresponding formal parameter, no transfer of values is 

performed. Addresses of data units may be transferred (simulating a call by 

name) by using the CORAD operator (see paragraph 5.2). 

Format 

name INPUT actual-input-parameter(s) OUTPlH 

actual-output-parameter(s) EXIT statement-name(s) $ 

Explanation 

Name 

INPUT 

Act ua] Input I'aramnler(s) 

Identifies the procedure to be executed. 

Optional. Specifies that the following list 

of actual parameters is to be input to the 

named procedure. ' 

Constants, data units, or expressions that 

f(~pJaGP ttw Gorrt!sponding formal input para­

meter valuns during execution of the nam£!d 

, T ~ .. , 



M-5035 

procedure. Actual parameters must agrf~e in 

type with formal parameters. Mult.iple para­

meters are separated by commas. There must 

be a one-to-one correspondence with the formal 

parameters defined in the called procedure's 

declarative statement (see note below). 

OUTPUT Optional. Specifies that the list of actual 

parameters following are the outputs from the 

named procedure. 

Actual Output Parameter(s) Data units whose values are replaced by the 

corresponding formal output parameter values 

after execution of the named procedure. 

Actual parameters must agree in type with 

formal parameters. Multiple parameters are 

~eparated by commas. There must be a one-to­

one correspondence with the formal parameters 

defined in the called procedure's declarative 

statement (see note below). 

EXIT Optional. Specifies the statement name(s) 

that follow are abnormal exit reentry points. 

Statement Name An identifier that replaces the corresponding 

formal exit name during execution of the 

named procedure. Program control is trans­

ferred to the named statement if a RETllRN 

(see paragraph 5.3.3) referencing the formal 

exit name is executed. 

NOTE 

If tbe same data unit is specified as both the actual 
parameter and the corresponding formal parameter, no 
transfer of values is performed. Alternatively, if 
an actual parameter is omitted from the calling state­
ment. no transfer of values is perfo~med. In this case, 
the position of the actual parameter in the parameter 
list must be maintained with a comma. 

11-5-17 



M-5035 
Change 5 

Since the passing of parameters involves a passing of actual values, if the designated 

parameter is a table, subtable, etc., the entire table, subtable, etc., is actually 

transferred into the procedure receptacle. The procedure must, therefore, provide a 

receptacle of sufficient size. Any excess beyond the receptacle size is truncated. 

The CORAD modifier and the IN DmE CT table opt~on may be used when a table is 

specified as a procedure parameter and it is desirable not to have the entire table 

passed (see paragraph 4.2.2). 

Examples 

NOTE 

It is not legal to use status constants as actual input or 
output parameters for forward reference procedures 
(procedures which are called before they are formally 
defined or declared with an EXTREF or LOCREF 
modifier). Furthermore, a local procedure may not 
be forward referenced before its local formal para":' 
meters are defined or declared, regardless of the 
parameter types. 

1. tl,X,., I I , , IT,EjS,T,R, tI;tJ,p,Utra ,0, Q,tJjr,p,U,TJ ly~Il,S, ,$, I I I, 

The statement AX will call the procedure TESTR. INPlIT specifies that 0 

will be passed to TESTR as the actual ~nput parameter value. The actual 

parameter CLAS will receive the output value from procedure TESTR. 

:! • 18, Call, C, 6 H, P, \:\TJ ,11 I P,~, ' ') tA, P", ,o,y T Ie. LA, Tj ~ MIA g1 E; 
I , , , I . ,E,x,r, Tj I , A, T I~' ~ I I I I , , , ". I ,I, I , 

The procedure RCAC is to be called. API and AP3 are the first and third 

actual input parameters. The actual parameter IMAGE will contain the 

output from procedure RCAC. If an abnormal exit is taken from RCAC t 

reentry to the calling procedure will be at the statement labeled AT3. 

IT-5-18 



M-5035 

procedure. Actual parameters must aurp(! in 

type with formal parameters. Multipl(~ parn­

meters are separated by commas. There must 

be a one-to-one correspondence with the formal 

parameters defined in the called procedure's 

declarative statement (see note below). 

OUTPUT Optional. Specifies that the list of actual 

parameters following are the outputs from the 

named procedure. 

Actual Output Parameter(s) Data units whose values are replaced by the 

corresponding formal output parameter values 

after execution of the named procedure. 

Actual parameters must agree in type with 

EXIT 

formal parameters. 

separated by commas. 

Multiple parameters are 

There must be a one-to-

one correspondence with the formal parameters 

defined in the called procedu~e'~ declarative 

statement (see note below). 

Optional. Specifies the statement name(s) 

that follow are abnormal exit reentry points. 

Statement Name An identifier that replaces the corresponding 

formal exit name during execution of the 

named procedure. Program control is trans­

ferred to the named statement if a RETllHN 

(see paragraph 5.3.3) referencing the formal 

exit name is executed. 

NOTE 

If the same data unit is specified as both ~he actual 
parameter and the corresponding formal parameter, no 
transfer of'values is performed. Alternatively, if 
an actual parameter is omitted from the calling state­
ment, no transfer of values is performed. In this case, 
the position of the actual parameter in the parameter 
list must be maintained with a comma. 

11-5-17 



M-5035 
Change 5 

Since the passing of parameters involves a passing of actual values, if the designated 

parameter is a table, subtable, etc., the entire table, subtable, etc., is actually 

transferred into the procedure receptacle. The procedure must, therefore, provide a 

receptacle of sufficient size. Any excess beyond the receptacle size is truncated. 

The CORAp modifier andthe INDmECT table option may be used when a table is 

specified as a procedure parameter and it is ~esi!able not to have the entire table 

passed (see paragraph 4.2.2). 

Examples 

NOTE 

It is not legal to use status constants as actual input or 
output parameters for forward reference procedures 
(procedures which are called before they are formally 
defined or declared with an EXTREF or LOCREF 
modifier). Furthermore, a local procedure may not' 
be forward referenced before its local formal para­
meters are defined or declared, regardless of the 
parameter types. 

1. A,x,.,·, I , , IT,EjS,T,R, ,JijNIP,Utr, ,0, Q,U,T,P,U,TI ,yLtR,S, ,$, , I I I 

The statement AX will call the procedure TESTR. INPlIT specifies that 0 

will be passed to TESTR as the actual input parameter value. The actual 

parameter CLAS will receive the output value from procedure TESTR. 

:!. IR,C,tl,y otJ,P,'1T J ,A,P,;" ..,tA,P'31 ,O,YT,5lA,Ti ;tj~Ag,€j 
I , , ,., ,E,x,r, Tj I I R,T '~J ~ I , I I " , I " I I I , I 

The procedure RCAC is to be called. API and AP3 are the first and third 

actual input parameters. The actual parameter IMAGE will contain the 

output from proc.edure RCAC. If an abnormal exi t is taken from RCAC t 

reentry to the calling procedure will be at the statement labeled AT3. 

II-5-18 



5. 3. 2 Function Call 

M-5035 
Change 5 

A function call establishes transfer of control to a named function and assigns one or 

more values to the formal input parameters of the function. A function call may appear 

in dynamic statements or expressions; it resembles conventional mathematical func­

tion notation. 

Format 

name (actual-input-parameter, ••.. , actual-input-parameter) 

II-5-18A/IT-5-18B (Blank) 





Explanation 

Name 

M-5035 
Change 5 

Actual input Paramcters(s) 

The name of the function to be executed. 

Specifies each actual input to the function. 

There must be at least one specified; multi­

ple parameters are separated by commas. 

Example 

The function call for the function TAN is TAN(AX, AY). AX and AY are the actual 

i~ut parameters to be used as the values of the form al input parameters of the 

function. The function is evaluated and provides the value specified to complete 

the operation of the SET statement. 

NOTE 

It is not legal to.use status constants as acutal input 
parameters for forward reference functions (functions 
which are called before they are form ally defined or 
declared with an EXTREF or LOCREF modifier). 
Furthermore, a local function may not be forward 
referenced before its local formal parameters are 
defined or declared, regardless of the parameter 
types. 

5.3.3 Return (RETURN) Statement 

The RETURN statement is a transfer of control operation used within a given proce­

dure or function to exit from that procedure or function. There are three types of 

RETURN statements for procedures: a normal RETURN, an abnormal RETURN, and 

a conditional RETURN, dependent on a hardware key setting. All procedures should 

have at least one normal RETURN statement. However, a RETURN statement may be 

omitted if it immediately precedes the END-PROC declaration. There is only one type 

of return for a function. 

Format 

RETURN statement-name special-condition $ 

RETURN (expression) ,$ 

11-5-19 



M-5035 
Change 5 

l. 

Explanation 

RETURN 

Statement Name 

Special Conditions 

Expression 

Examples 

Causes a norm3J. transfer back to the statement 

following the procedure -linking operation of the 

calling procedure or function. 

Optional. Must be the same name as one of 

those follOwing the EXIT definition in the proce­

dure declaration and effects an abnormal trans­

fer of control to a labeled state ment of the calling 

procedure or function. A one-to~ne corresporid­

ence is established between EXIT names specified 

in the c all and those specified in the declaration 

to effect this transfer. 

Optional. Specifies any of the special hardware 

conditions defined for the target machine~ For 

the ANfUYK-7, these are KEYl, KEY2, KEY3, 

STOP, STOP 5 , STOP 6 , and STOP7 (see para­

graph 7.3.4 for simulating these speci al condi..; 

tions). 

Any legal data name or CMS-2 expression. This 

format is reserved for returning from a function. 

The Compiler will process the expression and 

return the result to the calling procedure. 

I 1 ,. 1 I 1 1 I I I I 

This is thp normal type of ret.urn. Control is transferred back to the 

JI r IIt'l'eI" r t' I hill (' II I I t'dIII'DA'n: • 

11-5-20 



2. 

M-S035 

Jf,l3tg"E.1~U,~,Ei JR,E,4J) , O,u,T,PfllT, It!BD, ,EjX,rJT, ,E;9F,$/ 
I j ,., ii' I , I J , I I 'J I 

J J I·' , I , , " I I , 

JRIEjr,U, ~w. III I I , I I , , 

I , I·, I , , I J J I , I. I I J 

I I I 
I I ·1 

The RETURN EOF statement results in a return to the alternate reentry 

statement corresponding to the parameter EOF in the procedure call. 

In this case, the output parameter value is not transferred. 

3. I&E,1iu.K.ttI ,s;r )0, R ,$, , 
I I I I l~l I I I I I , , I 

IS,,- lo,p,S, ,$, 

These are examples of special condition returns. The first example 

results in an unconditional halt with the return executed after oper­

ator intervention. The second example results in a stop if key 5 is 

set, with the return executed after operator intervention; otherwise 

the return is executed. 

4. IR,EiT,U.iaN, I .s;rle-,p,9, I ISaT,9P~ ,1, I I , I , I , I , , I " I 

In this example, if key 5 is set, a halt will occur. After operator 

intervention, the return will be made through STEP9 to the controlling 

procedure or function. Otherwise, a return through STEP9 is executed 

without halting. 

5. JgIEJljij~,,vI' ~XI Itl Itt ,+, ,Z), ,$1 , I I I , , I I , I. I I , , I , 
In this example of a return from a function, the expression X+Y+Z will 

be evaluated and returned to the calling procedure as the output value 

of the funct.ion. 

11-5-21 



I 

M-5035 
Change 5 

5.3.4 Executive (EXEC) Statement 

This statement provides an interface with an executive program. A call to an 

executive program is generated and a parameter is placed in the appropriate 

register for the executive program to access. The parameters required by the 

e~ecutive program are spe~ified by the particular ,system. This statement 

merely provides the interface capability. 

I. 

Format 

EXEC parameter-I, parameter-2 $ 

Explanation 

EXEC 

Parameter I 

Parameter 2 

Examples 

Causes a call to an executive program (generation of an 

XS instruction). 

A parameter required by the executive program to inform 

it ~s to wh~t action is to be taken (this parameter is 

specified by the particular system). This parameter will 

appear in the SY portion of the XS instruction. 

Optional. A parameter that will be loaded into machine 

register AO prior to execution of the XS instruction. 

?l ~ tiC, , tLS(·, t$, I I , I I I I I I I I I I I I I I I I ' , I ' 

This example provides code 15 to the executive program and requests the task 

associated with code 15 to be performed (i. e., generates an XS 017 instruction). 

2. .Q"& Ef'1 I ,.451 ',I Vl~ ,BtbX, I ti I I I I , I I I I I I I , I I I I 

This example provides the contents of VRBLX to the executive program 

through task register AO. This data unit may either instruct the 

executive program to perform a specific task. or may contain a core 

address for the executive program to access for its instructions. (This 

generated instruction is dependent on the particular system that is 

imp 1 c~mt~n tHd) • 

11-5-22 



M-5035 

:i.:\.:i l'roct'dure Switch Cnll 

A procpdun\ switch call t~stahlis}ws a procedure link by specifyi'n~J a transf(~r 

of control to one of the proc(~dures named in the procedure swi tch declarat ion 

(see paragraph 4.2). Actual paramt!ters nrc assigned to formal parameters 

named by the declaration. 

The index value of the procedure switch call determines which procedure within 

the declaration is to be called. If the value of the switch index is outsidp 

the range of allowablc values, control may be transferred to the named statemt~nt 

via the INVALIU operator. Allowable index values are 0 through n-l, where n is 

the number of switch points. If the user does not use the INVALID o~tion, it 

is his responsibility to see that the index is within the range of the switch. 

If the procedure switch is defined with formal input and output parameters, 

actual input and output parameters must be included in the procedure switch 

call, as in a normal procedure call. 

Format 

name USING index INVALID statement-name INPUT 

actual-paramcters OUTPUT actual-parameters $ 

Explanation 

Name 

USING 

Index 

INV ALIU 

The identifier of a previously defined P-SWITCH. 

Specifies that the following index indicates the 

procedure to be called. This parameter is not 

used in a procedure item switch call. 

A data unit, constant, or arithmetic expression 

whose integer value determines the procedure to be 

called. This parameter is not used in a procedure 

item switch call. 

Optional. Specifies that the procedure linkage 

should be accomplished only if the switch index is 

valid. 

11-5-23 



M-5035 

Statement Name 

INPUT 

Actual Parameter 

OffiPm 

Actual Parameter 

Identifies the statement to which control is 

transferred if the invalid condition is met. 

Optional. Specifies that the list of actual para­

meters following are the inputs to the named pro­

cedure switch. 

A data unit, constant, or expression that replaces 

the corresponding formal input parameter during 

execution of a procedure referenced by the 

procedure switch call. Multiple parameters are 

separated by commas. 

Optional. Specifies that the list of parameters 

following are to contain the outputs from the 

named procedure. 

A data unit that is replaced by the corresponding 

formal output parameter after execution of a 

procedure referenced by the procedure switch call. 

Multiple parameters are separated by commas. 

11-5-24 



M-5035 

Example 

The following declaratives are referenced in t.he procedure switch call. 

IVd<t6ILI I " IC,ABtA ,ii, t=£.$1 I I I , I J I I , I , 'I I I I I I I I 1 I 

1111111 

, I I ,- J I I 
I ,-, 

I I I I , I I I I I I ,-" I 1 , I I I I I I , I I I , I I 1 I I I I I 

In this example, the procedure switch JCCARD is used to enter a procedure 

using K as an index. STEPI is the statement to which control will be 

transferred if the index value is out of range for the switch. The 

actual input value to the p,rocedure called is defined by the actual 

parameter IMAGE. The actual output value, is specified by the parameter 

ORDER. The second statement would result in exactly the same action 

through the call to the procedure item switch ICARD. 

11-5-25 

I I 

I 1 

I I 



I 

M-5035 
Change 3 

;-).4 REPLACEMENT STATEMENTS 

Replacement statements provide for the transfer of data from one dat.a unit 

to another, permit performance of algebraic (both Bool(~an and numeric) 

manipulations according to a predefined hierarchy, and provide for the 

simullan(~ous exchange of values between ciat a uni 1.s • 

.1.4.1 Assignm(~nt (SET) Statement 

Upon execution of an assignment statement, the value of the right term is 

transferred to one or more specified dat.a units. The four types of assign­

ment statements arc: arithmetic, lit.eral, status, Boolean, and multiword. 

Format 

SET receptacle(s) TO right-term $ 

Explanation 

SET 

Receptacle(s) 

TO 

Right Term 

Specifies that one or more receptacles follow, to 

which data from the right term is to be transferredo 

A data element that is to receive a new value. 

Multiple receptacles that are to receive the same 

value may be specified, and are separated by commas. 

The receptacle type may be arithmetic, literal, 

status, or Boolean. 

Specifies that the right term follows. 

A data clement or expression. Evaluation of the right 

term results in a signle value. The right term must 

agree in lype (arithmetic, Hollerith, status, or 

Boolean) with the receptacle. 



Examples 

]. ,S,E,T, I tAl I ,Tig I ,B , 1$, I I I I , I I I 

The value of A is replaced by the value of B. 

The values of A and B are replaced by the value of C. 

5.4.1.1. Arithmetic Assignment Statement 

I I 

M-5035 
Change 3 

The value specified by the right term in an arithmetic statement must be an arithmetic 

expression, which may include numeric functions and functional modifiers. The 

receptacle must be an arithmetic data unit. The following rules must be observed. 

11-5-27 

I 



M-5035 

1. When the value designated in the right term is specified to 

greater precision than that defined by the receptacle, the 

excess precision is truncated. 
') .... When the value is specified to less significance than that 

defined by the receptacle, the most significant bits will be 

filled with the sign bit if the field is signed.· If the field 

is unsigned, the bits will be filled with zeros. 

:~. When the value is specified to less precision than that defined 

by the receptacle, the least significant bits will be set to 

zeros or ones. 

4. When the value has greater significance than that accepted by 

the receptacle, the most significant bits of the value may be 

lost, depending on the actual number of bits allocated to the 

receptacle. 

~. The mode of the receptacle defines the replacement as flo~ting­

or fixed-point. 

6. Any arithmetic expression in the right term involving both a 

floating- and fixed-point data unit will be evaluated in the 

floating-point mode. 

7. Fixed-point replacement aligns the,radix point of the right 

term with the radix point of the receptacle. 

8. The radix point of a receptacle or a right term may be defined 

by an in-line scaling definition. 

Format 

SET receptacle(s) TO expression SAVING· numeric-data-unit 

OVERFLOW s tatement-riame $ 

Explanation 

SET Specifies that one or more receptacles follow, to 

which data from the right term is to be transferred. 

11-5-28 



1 • 

Receptacle(s) 

TO 

Expression 

SAVING 

Numeric Data Unit 

OVERFLOW 

Statement Name 

Examples 

M-S035 
Change 5 

A.data, element that is to receive a new value. Multiple 

receptacles that are to receive the same value may be 

specified, and are separated by commas. In this case, 

the assignment operations are performed from right to left. 

Specif{es that the right term follows. 

An arithmetic expression. 

Optional. Specifies that the remainder of the last 

fixed-point division performed in the statement is 

to be saved. 

Any variable or field having an arithmetic data 

type. 

Optional. Specifies that a check for overflow 

caused by previous fixed-point (an~ floating~point, 

if under MONITOR option) arithmetic operations is 

requested. If an overflow condition resulted, all 

overflow indicators are turned off and control is 

transferred to the abnormal path specified by a 

statement name. 

The label of the statement to which control is 

transferred. 

I I I I I I I , I I 

The value of A is repla1e'ed by the result of (B+C)::~D. 

2. ,5, fir; IA, ,ijDI ,-,.5j ,$'1 I I " I I II I I , I , I I 

The value of A is replaced with the constant value .5. 

11-5-29 



M-5035 

3. ,s, £:, T, ,At., -,5] • fig .15. ,$, I I I , , , , I I I II I I I I J I I J 

7. 

The value of B, with its declared radix point, will be aligned 10 a 

radix point of 5 and stored in A. 

, " I " J I II "" " J I 

The value of B, with a radix point of 4, will be aligned to the declared 

radix point of A and stored in Ao 

The value of B, with a radix point of 6, will be aligned to a radix 

point of 4 and stored in A (resulting in the loss of two fractional 

bits). An in-line definition is only valid for a particular reference. 

The radix point of a right term that is an arithmetic expressio~ is 

specified by the expression result. 

The value of A is replaced by the value of the result of B/c. The value 

of D is replaced by the value of the remainder. 

Slt,TI A • . ,Tel .!.6c, ,o,V,t;R,FIL,O,W, ,S,i, ,.$1 I J , , I , I I & I , I , 

If a divide overflow occurs, control will be transferred to the statement 

51. 

B • • ~EjTI ,F,Zjxtbl ,rc, ,F,L,O,8,Ti I ,$, I I I 1· I I 1 I • I , I II 1 I I I • 

Assuming FLOAT was declared as a floating-point variable and FIXD declared 

as a fixed-point variable, the floating-point value of FLOAT is converted 

to a fixed-point value. The variable FIxn is then set to the converted 

valuc o 

11-5-30 



9. SET RESULT TO A1tB+C .. D/E $ 

M-S03S 
Change 5 

In this example, the required operations would be executed according 

to the predefined hierarchy: ((A*B)+C)-(D/E). 

10. SET ALPHA TO BETA TIffiN OOTO ENIlJOB $ 

This compotmd statement transfers the value from data tmit BETA to data 

wi t ALPHA with conversion as required and then transfers to the location 

specified symbolically by ENIlJOB. 

5.4.1.2 Literal Assignment Statement 

A literal SET statement stores in a literal (Hollerith data type) variable the 

value specified by the right tenn. The right tenn must bea literal expression 

which iricludes Hollerith functions, the functional modifiers BIT and QIAR, and 

Hollerith constants. Variables and fields typed as Hollerith and the functional 

modifier QIAR are permitted on the left side of the literal SET statement. If 

the right term is a Hollerith or CHAR-modified data unit, the replacement is 

executed from left to right. Characters are nmbered from the left, starting 

with o. Character 0 of the right term replaces character 0 of the receptacle, 

etc. If the size of the right ter.m is smaller than the size of the receptacle 

and the right tenn is not a Hollerith constant, the excess characters of the 

receptacle are not affected. If the right term is a Hollerith constant and is 

smaller than the size of the receptacle, the constant is left-justified and 

blank-filled to the size of the receptacle. If the size of the right term is 

greater than the receptacle, the rightmost characters are truncated. 

Examples 

The following declarations will be referenced in the following examples: 

TABLE TAT H NONE 10 $ 



M-5035 
Change 5 

FIELD CATA H 5 $ 

FIELD FATID.fS H 11 $ 

END-TABLE TAT $ 

VRBL COURSE H 10 $ 

1. SET COURSE TO H (VALLEVERDE) $ 

The Hollerith variable COURSE is replaced by the string of characters 

VALLEVERDE. 

2. SET TAT(O,CATA) TO TAT(7,CATA) $ 

The value of the Hollerith field CATA of item 7 of table TAT replaces 

field CATAof item 0 of table TAT. 

3. SET CHAR (0) (TAT (7) ,CATA)) TO H(?) $ 

The first character of field rATA of item 7 of table TAT is replaced by 

the Hollerith 1. 

4. SET CHAR (0) (COURSE) TO a~(1)(TAT(5,CATA)) $ 

The second character of field CATA of item 5 of table TAT is placed in 

the first character position of the variable COURSE. 

5. SET BUFFER TO H(DEPTIf ) CAT TBLE(J ,FATHCl4S) r­

CAT He NO ALERT) $ 

Assuming BUFFER and FAlli(}.1S are typed as Hollerith, the variable BUFFER 

might contain a string of characters s~lar to the following message, 

assuming that the value 73 FATHOMS was contained in TABLE (J, FATHOMS). 

DEP1H 73 FATHOMS NO ALERT 

5.4.1.3 Status Assignment Statement 

The" status SET statement assigns to a status variable, the value specified 

by a status constant, a status type data unit, or a status type ftmction. 



M-5035 

Exampl(~ 

,f(,§L, ,W,EiI\;lTlHfjR, ,S, ,',FIAIZ3& 'I"~ IIClgL.aDl/"I/IR~,.z: i.ly,'J" ',CIL,O,U,b,>'. ',$ 
'1 AJ8tL, Ej ,.1i§slr,EiR, ,H I tD,E't',SIE", tl,o, ,$, I l I I I 'I "" I I , I , I I 1 

:, " tiL,]), ,C.,/<tolu ITI PI J 'IIhCIC,t:iP,TI'" ',lltJPIL!t4 je lEI I" I, ,(, ~1JIt'"", qT, I ~ I 
I I. I , I I I I I I I , I I 1,6=5 X', 'I I b, I I I I I I I , . I I It' I I I I I , 

J t I , 1 I ,., I I 
, , I , I J I·' I I 

I , I I I , J I I I '-I I I I I 

o 
5.4.1.4 Booleari Assignment Statement 

A SET statement is classified as Boolean by the presence of a Boolean 

expression on the right side of the statement. Assignment of the bit string 

that results on the right side to the receptacle(s) on the left side must 

adhere to the following rules: 

1. If the magnitude (length) of the bit string on the right is 

greater than the receptacle, the bit string is right-justified 

in the receptacle and truncation occurs to the excess bits on 

the left. 

2. If the magnitude (length) of the bit string on the right is less 

than the magnitude of the receptacle, the bit string is right­

justified in the receptacle and the unused bits are cleared 

(set to 0) • 

11-5-33 



M-5035 

1 • 

:1. 

Examples 

6,b:jTi lTi£iS I ,7iQ I 4+ I tf. I I I I· I I I I ,. I I I I I· I I 

This example assigns the value I to the Boolean variable TEE. 

Thl' variable TEE is assigned the value of the zero bit location in 

variable TRAP. 

The variable ALPHA is assigned the logical product of the Boolean value 

of the relational expression BETA GT GAMMA with the Boolean value of the 

variable DELTA. 

Assume: 

a. ALPHA is a 16-bi t integer variable. 

b. DELTA is a 32-bit integer variable filled wi th the octal 

constant 0(30707070707) • 

c. BETA and GAMMA are floating-point variables. 

d. TBLE (J, K) contains the value 0(25252525252) • 

Since DELTA and TBLE(J, K) are not Boolean data units, they are treated 

as bit strings for the purposes of the evaluation of this Boolean 

expression. In this context, the Boolean result of the relational 

expression BETA GT GAMMA is an arbi trary string of 0 or 1 bi ts. If. 

BETA is greater than GAMMA, ALPHA will contain 0(020202). If BETA is 

nut greater than GAMMA, ALPHA will contain 0 (16 bits cleared). 



M-5035 

This statement assigns a value or values to a multiword data element. There 

are three types of multiword assignment statements: 

1. Table-to-table o 

2. I tem-t.o-i tern. 

3. Single word-to-multiword. 

5.4.1.5 0 1 Multiword Table-t.o-Table Assignment Statement. Thi~ statement 

assigns the values of one table to another table. Since this is a block 

transfer, care should be taken to ensure that both table structures are 

similar and that the item size is identical. If the number of words in the 

receptacle is less than the right term, the excess words are lost. If the 

number of words in the receptacle is greater than the right term, t~en the 

(~xtra words are not affected. This type of statement applies to subtables 

anI! like-tables as well as to tables. When vertical tables with major indexes 

appear in a table-to-table assignment, the major indexes will be used to 

determine the number of words to be transferred. 

Example 

The following declarations are referenced in the following multiword 

1ableassignment example: 

,Ejtl,D,·,TiA,B,llc. ,P,A,6",e, ,$, , I I , I I I I , I 
ITiAt81L,Ei I I I , ,8,)(,N,U I~ 1M Ii, ,Lao, ef, I 

, ,tiN, bl-jT'1~1131LIE I ,B,~,NI~t"1 If, I I , I , I J I I 
I I , , I , , I I , ,. I ,., , I I I I 
, , , J J I ,. J I .J J ". J , J I I , I 

:5:~T: :~x:N:wl~: :~o:·:~~tt:~ ~: : : : : : : :: : : :: : : : : : : : 
The words of table BXNUM are replaced by the words of table PAGE. 

11-5-35 



M-5035 

5~4.I.S.2 Multiword Item-to-Item Assignment Statement. This statement assigns 

the values of one table item to another table item. If the number of words in 

the receptacle is less than the right term, the excess words are lost. If the 

number of words in the receptacle is greater than the right term, the extra 

words are not affected. For this replacement, an item-area is considered t.o 

be the same as an item. 

Examples 

The following declarations are referenced in the following multiword 

item replacement examples: 

ITtrl,i3t L,t; , I f , iIIMP, IH, .sf ,s, tfJ f 

IIi TjrfA,-,A',&~HI I '1,4, T tIt . Eft J I I I I 
§NJbc iT (ttBl LIE" I ,IjMIP' . ,f, J I , I J I I f 

ilj,4I3 ,L €I I J I , ,),EiC, ,V, JJfI ,Ji t$, I 
,E7N,b,- jTjA,B,Yt. ~IEjc..1 ~I I I I , , I 1 I 

1. ,$fj1j ~P,(IO,), iTjg J),Eic..Qi), ~, I I I 1 , I , , , I I , , I I 

All of the words of item 0 of table IMP are replaced by the words of 

item I of table DEC. Note that IMP is a horizontal table and DEC is 

a vertical table. 

2. AF,Ti tl, EiC:, tDo, ~,Il, T,.Ii .$ t , I , , , , , , , I , , 1 I. I I , 1 , 

All word~ of each item of DEC are replaced by the words in item-area 

CATI. 

5.4.1.5.3 Single Word-to-Multiword Assignment Statement. This statement 

assigns a single word value to every word of a multiword table element (table, 

subtable, like-table, item-area, or item of a table). When a vertical table 

with a major index appears in this type of assignment statement, the major 

indf!X will bf~ used to determine the number of words affected in the table. 

11-5-36 



M-5035 

Examples 

The following declarations are referenced in the examples: 

,TjQBl.t4j I I I ~Zin IN I .AI.£iDtZ,UaMl I 14't III I I I 

,S~,~-,TI~,8,L-IEI ,C~ r,&1 I ,0, I ,Z ,$" J I I I I I 
IFj (,c,LJ>. I , I , ,C'Alr,.!, , #' lSi,., I I I J 

,F, llfiL~ , , I , ,y,4,rg" I "Ii I,s; ~ I I I , 

,fiN1b l-,1i BBt LIEI IC,A,T,T, I~' , I , I , I I I I , I 
,Till ,8, HE, I ,w,If-,o,L,E, J &AI , ~, I ,z,,3~ til ,$, I 
,A I,EiLJ>. I ~,i, I ;r, ," kI, ,0, ,ft', .$, 1 I I I 

tE"IHlbC- jT,,,,~,L.le, ,W,It,O,'-,t, ,If, J , , , I I I , I .. I I II , , I I , ,I 

:~:~~~: : : : I : :~A~ ~~ :U8:1':t~:($:Jl>:I(:~LL:Y~: J: I 
"viR, C!JLI , J I I J IA,X,FI6A,&-1 AB .$. , I , I I , I I , , , , , I , I I I 

1. " J 

Every word of table WHOLE is set to 15. 

2. S,t;jTj 'lC,IO,TIT, ,Tig I,D, ,$, I , , I , , 
The table CATTiscleared to zeros. 

3 .. ,s. £iT" ,'riA,rJT, ,Tj g , ,L,:;'!t I ,$, , , , , , , , f , " , I I 1 1. , 

Every word of CATT is filled with the value contained in the variable 

LIB. 

4. ,5,EiT" ,"11,m, ,1IQ J ~H;O, YEi Gi, ,,21 "3,, ,Wt.JD I If. I I I 1 1 , • 

Each word of the subtable CATA is assigned th{~ value of the field W3 

of item 1,2,3 in table MIOLE. 



M-5035 

Each of the three words in the item specified by 0,1,0 of table WHOLE 

is assigned the value of the arithmetic expression LIB •• 2*4 o 

6. 1Si£JT1 IQAIDrl',A) I I IIIQ I IClQII1I81PI t$ I I I I I II I I I I I I 

7. 

Each word of item 1 of table CATT is filled with all or part of the 

characters of the Hollerith variable COMAP. For example, since the 

AN/UYK-7 machine word size accommodates four characters, the characters 

REDK would be stored in each word of the item. 

,(>, I I I I I I I I I , I I I I . , 

Each word of subt3ble CATA is replaced with the true or false (lor 0) 

value of the Boolean variable AXFLAG. 

3.4.2 Exchange Statement (SWAP) 

Th(' exchange statement swaps the values contained in two data units. The 

exchange statement may be viewed as two assignment statements that are 

executed simultaneously. The rules regarding ~ata unit iengths and types in 

the exchange statement are the same as the rules for the assignment statement 

(see paragraph 5.4.1.1). However, both the left and right terms assume the role 

of the receptacle. 

Format 

SWAP data-unit data-unit $ 

Explanation 

SWAP Specifies the ~peration SWAP. 

Data Unit The identifier of a data unit. 

11-5-30 



Examplt'S 

I . tS/NI&P, 

~) 

'-. 
tS,tv, At P, 

3. ~W,I!tP, 

,j I , J 

I , 

M-5035 
Change 3 

I 1 J 

, , 

5.4.3 Shift (SHIFT) Operation 

The SHIFT operation moves the contents of a data location into either the 

same or a different data location. During the operation, the data is shifted 

as prescribed. 

Format 

SHIFT data-unit shift-type shift-count INTO data-unit $ 

Explanation 

SHIFT 

Data Unit 

Shift Type 

Shift Count 

INTO 

Specifies the operation. 

The identifier for a data unit (two words or less in 

length). 

One of the following: 

eIRe Specifies circular shift. 

ALG 

LOG 

Specifies algebraic shift (sign flll). 

Specifles logical shift (zero fill). 

Specifies the number of positions to shift and the . 

shift dire~tion. This may be a constant, a data unit 

or an arithmetic expression. A negativ~ shlft count 

denotes a shift to the left, a positive shift count 

denotes a shift to the right (the sign must be explicitly 

specified for a left shift). 

Optional. Specifies that the receiving data ualt'. name follows. 

1I-5~39 

I 



M-5035 
Change 3 

1 • 

OJ -. 

:~ . 

Examples 

NOTE 

The SHIFT statement is intended primarily to provide high­
level access to the shift instructions in the AN/UYK-7 
repertoire. Consequently several restrictions and limitations 
are imposed: the data-unit being shifted must not exceed 64 
bits in length; partial-word circular shifts are not permitted 
(i. e. ,if crnc is specified, the source data-unit must be defined 
as exactly 32 or 64 bits, or 4 or 8 characters); when a 
receptacle data-unit is specified, the normal data-type rules 
for assignment statements must be followed and the shift opera­
tion itself is independent of normal operand alignment or con­
version which takes place prior to the assignment; because all 
left shifts must be performed using AN/UYK-7 circular shift 
instructions, left algebraic shift operations can result in filling 
to the right with magnitude bits. 

6l#tZiB7j ,. tIJNj7j I IL.O" I ,-12. I $, , I , I , 'I I 1 I 1 , , I 

5.4. 4 Pack (PACK) OperatioI). 

The PA CK operation requests packing of specified data units into a specified data area. 

Format 

PACK data-unit WITH data-unit data-unit ... data-unit $ 

Explanation 

PACK 

Data Unit 

WITH 

Specifies the operation. 

The identifier of a data unit. 

Specifies that the· data units which follow are to be packed into 

the receptacle. 

The effect of the PACK statement is bit string transfers from the source location to the 

target area, where the strings are stored consecutively and without spacing. If the 

receptacle is a table or an item, the right side data units must be tables or items. If the 

receptacle is a variable or field, the right side data units must be variables or fields. 

11-5-40 



Examplp 

As s un\(~ : 

a. COON is a half-word variable. 

b • ANG i s a 40 - bit fie I d • 

c. LAT(L) is a three-word field in item area LAT. 

The variable QUAU will receive the following cont~ibutions: 

~! I 
Word 0 Word 1 Word 2 Word 3 Word 4 

M-5035 

presuming that QUAD is a storage area capable of containing the 

specified bit strings. 

5.5 CONTROL STATEMENTS 

A control statement alters or affects program flow within a procedure. There 

are three types of control statements: 

1. GOTO statement name 

2. GOTO switch name 

3. STOP 

5.5.1 GOTO Statement Name 

This statement performs a transfer to a named statement and may specify a 

governing special condition imposed by a console hardware switch. 

Format 

GOTO statement-name special-condition $ 

11-5-41 



M-5035 

Explanation 

GOTO Specifies a transfer of control. 

Statement Name The name of the gatem{~nt to which control is to be 

transferred. 

Special Condition Opt.ional. Specifies a machine-dependent condition 

of lh(' console key selt;ingso For the AN/UYK-7, 

these are KEYl, KEY2, KEY3, STOP, STOPS, STOP6 and· 

STOP7. 

~amples 

I . 6.1QJjQ I , lL,BllAITiEi I ~ I I I " I I J I J I I I , I I ., , J I 

Execution of this statement transfers program control to the statement 

labeled UPDATE. 

A transfer is made to statement label ERRDIAG if console key I is on. 

If console STOPS is on, program execution halts. When restart is 

accomplished, a transfer is made to statement label ALTRNATE. 

5.5.2 GOIO Switch Name 

This statement performs a transfer of control toa statement label listed 

within an index- or item-switch declaration. Transfer may be made conditional 

as governed by a specified console key setting. 

1. Referencing an Index-Swi tch. 

Transfer is based upon the valu~ of the switch index. This 

value is specified in the GOTO statement. No check is made by 

th(! Compiler as to th(~ valictity of the index. Therefore, if 

the index is outside the range of switch index values, program 



') ..... 

Format 

M-5035 

('xpcution eonlrol ean b(' Josi. To pf(~v(!nt. this, spp(;ification 

of thl' INVALJl) operator direct.s the Compil(~r to perform a 

validity check; if the index is oUlside the range of index 

values, contr61 will be transferred to a programmer-supplied 

statement label. 

Referenc i ng an I fem-Swi tch. 

The value of the variable specified in the item-switch is 

compared against the list of constants defined in the switch 

declaration. If a match is found. transfer is made to the 

corresponding statement name. If a match is not found, control 

is transferred to the next statement or to a statement svecified 

after the INVALID operator. 

Goro switch-name value INVALID statement-name special-condition $ 

Explanation 

GOTO 

Switch Name 

Value 

Special Condition 

INVALID 

Specifies a transfer of control. 

The name of the referenced index- or item-switch. 

A constant, arithmetic expression, or data unit 

that provides an index value pointing to a switch 

point. This parameter is not to be used when 

referencing an item-switch. 

Optional. Specifies the machine dependency conciitions 

to be imposed by console key settings. KEYl, KEY2, 

KEY3, STOP, STOP5, STOP6, and STOP7 are the CMS-2 

identifiers used for the corresponding key settings 

on the AN/UYK-7. 

Optional. Spe~ifies a transfer of control to the 

following named statement if the index is outside 

the range of the index-switch values or if no match 

is found in an item-switch. 



M-5035 

Statement Name 

Examples 

Control is transferred to this statement if the 

switch test is invalid. 

Thp following declarations are referenced ip the GOTO switch examples: 

IV1RI~ll I I I~ I ~I I I I 1 I I I I I I 1 I I , I I I I 
~lwt!lrl~~ I~~IAI I IS~I~~I lSIAI&i~ I ~11i131 I!I 1 
IVI~BI~ I 1 t2,~XI 1$1 I I I I I I I I J 
15Iwl~rl~HI 12IWI§ I(~I~)(~I Iii I' I I 

IbiD", 15181.1.1 ,$1 I I I I 
I I tJ,o, ~I 1 ISI§&J !$, I I 1 I I I 
1 I ,.21°1)1 I I IS181311~1 , I J I I 
IEjNlbl-I~WI~!1C.I"1 lSI Wl61 Iii I I 

I . rna TiOI 1 ISIWAI I tld I til I 1 I I I I I I I I '.1 I I 1 I I· I I 1 I 1 I 

Program control is transferred to the switch point of SWA specified by 

I. ~or example, if I equals 2, control is transferred to statement SA3. 

This is the same as Example I, except that if 1 is outside the valid 

index range, control is transferred to statement SA4. For example, if 

I equals 4, control is transferred to SA4. 

~. t;iOlriA I Plwle, I tS, I I I , I I 1 I I I I I I I I , I III I I I I I 

Prouram control is transferred to the statement corresponding to the 

value in SWX. For example, if SWX equals 30, control is transferred to 

statement SB2; however, if SWX equals 35, program control continues to 

the next sequential statement. 

11-5-44 



4. 

5. 

M-5035 
Change 3 

Cia ro, I .5,wl8. , ;+'tI, v ,R,Lil;) I , ,S ,B,i, , .$, I. I • • , I I , , , 

This is the same as ExamI)le 3, except that if the value of SWX is not 

found in the switch definition, control is transferred to statement 5B4. 

For example, if SWX equals 40, control is transferred to SB4. 

&gt a J SIMA, I ,4. 1 IK,k,y,il , S. I J , , J , J 

Program control is transferred to the statement labeled SA2 if console 

key I is on. 

5.5.3 STOP Statement 

The STOP statement temporarily suspends program execution. This statement is 

legal only in programs being compi.led to execute in the executive state. 

Format 

STOP special-condition $ 

Explanation 

STOP Specifies a suspension of program execution. 

Special Condition Optional. Specifies machine dependent conditions 
\ 

of the console key settings. 

;).o, DECISION STAT~M~NTS 

The IF operator allows for conditional execution of one or more slatenlPnts. 

The condition is based on one of the following four types of de'cisions: 

1 • Log lea 1 
. ) S('arch '-. 

:l. Validi ty 

1., Parity 

A decision statement may be followed by the ELSE operator which allows for execution 

of one or more statements if the result of the condition is false. 

11-5-45 

I 



I 

M-5035 
Change 3 

5.6.1 Logical Decision Statement 

\ 

The logical decision statement evaluates a specified Boolean condition and 

reduces the evaluation to a true or false result. 

Format 

IF Boolean-condition THEN statement(s) $ 

Explanation 

IF Specifies that an evaluation, resulting in a Boolean 

true or false condition, is to be made. 

1. 

Boolean Condition Specifies a Boolean condition, defined in CMS-2 

notation by operands (constants, data units, and 

arithmetic expressions) and relational or Boolean 

operators. 

THEN Specifies that the statement or statements that 

follow are to be executed only if the result of the 

Boolean condition is true. 

Statement(s) A simple or compound statement, or a block of dynamic statements. 

See paragraph 5. 8 for an explanation of blocks and the requirements for compounding 

(nesting) . decision statements. 

Exam(!les 

~fi I dJ eQ ~ iiiit' IE"~I G:.QIUO, I~.£I ~ I . I 

~Er'i 8.1 ITiDI ail ctl . Iii I til I I I I I I I I I I 

Control is transferred to statement Sl when A equals B. Otherwise, 

the set statement is executed. 

I 
I 

2. t;FI ,R,+I§ ILO-'EiQ is • .,,, ITiflffl' ISle l~' ,TiD, .), 
J I , ,1j"'Cj'l 15 lilT, I~ InQ IF! I ,.-. I I I I I I I I I 

C is set to.D, and E is set to F when A+B is less than or equal to B.C. 

11-5-46 



M-5035 

:\. .trjF1 ,W,~,Ajrlltlt'",R, ,E,Q, .-',R,4ts'MY/ J ,Tr#lEtI'J 
I I 1 ,Crtg 1iA IE,V,A-,LW, T,tt,R, , ri, , , , , I I , 

('(I!llro) is Iranst't'rrt'd 10 s.talt·Jllt~nt E\ALWnm if lilt' statlls of \\LXIIWH 

is 'HAI:\Y'. 

I. eIiF, It, tA,Hj)J ,5 IgR, ,(g.1 Yjrl 1M lAtJ.iJl ;;)1 ,T,H,tflj 
, , , YxQTj{), I el~ I ,$, I I I I I I , , I I I I , J t I I I , 

b. 

If Iht' Bouh'an variahlt's E and F art· both trUt' lII, or if (; is ~Irt'nlt'r 

Ihan II and thp Boolt'an \'ariablt' I is trUt', lIH'!l conlrol is Iransft'rrt'd 

t () S t a I I'ml' n lSI • 

If thl~ Buol('an variable BOOL is set to tht' trUt' slate (U, pro~lral11 control 

is transfl'rred tu thl' slatement labelt'd TRUE. 

If the Boolean variable BOOL is set to the false state (0), takin~J tht' 

complement will make it true; hence, the true path is takt'n with protJram 

control transfer beinu made to statement FALSE. 

7. ~~, 8tirJt~ titn ~I~ AIN~ ~~~I~lrI61TI I£'~ 1/~~I!t!I~ I, J·~C~i 

I 

61£(17 IClo,lliEI ITe, I'dl'l Irfl.E~t I I I 
I aIQJ1jO, leBOICIEIS~dl· I Ifl I I I I I I ·1 

The rei a t ion a I e x pre s s ion s ( GT and E(J) are fir s t t'V a 1 u ate dan d r (' d u (' e d 

to a true or false condit ion. These two results are then logically 

tested (ANU) for the final determination of a true or false condition. 

If evaluat(~d true, the status variable COUE is St't and pro~lram eontrol 

is lransferrpd to statement PROCESSA. 

II-~-:17 

I i i I 

I L.J...J.. 



M-5035 
Change 4 

. 5.6.2 Table Search Statement 

The table search statement provides the capability of searching a table for data 

that satisfies specified end conditions. The statement is a combination of a 

FIND statement and a search decision statement. 

The FIND loop is terminated when the value of the table element, specified by 

the index, first satisfies the condition. If the condition is satisfied, the loop 

index points to the element that satisfied the condition. The loop is also 

terminated when the index has reached its final value. 

The FIND statement must always be followed immediately by a search decision 

statement, which may in turn be followed by an ELSE statement (Paragraph 5.6.5). 

5. 6. 2~ 1 FIND statement 

Format 

statement-label. FlND expression VARYING loop-index 

initial-value final-value increment $ 

Explanation 

Statement Label. Optional. The name by which this statement is 

referenced. This label is required if the table 

search is resumed. 

FIND 

Expression 

Specifies a table search. 

A relational expression, the first term of which 

must be a subscripted table reference using the 

loop index. 

II-5-48, 



VARYING 

Loop Index 

Initial Value 

Final Value 

Optional. Specifies that the operands that 

M-5035 
Change 4 

follow, control the loop. If not included, the loop 

index is varied from 0 in increments of 1 within 

the limits of the table. The loop index, initial 

value, and final value are allowed only if 

VARYING is given. 

Optional. The name of an index or integer variable 

to be varied. It must be included whenever 

VARYING is used and it must be one of the 

subscripts included in the table reference. If the 

VARYING clause is omitted, the first subscript in 

the table reference will be used as the loop index. 

Optional. FROM followed by a constant, arithmetic 

expression, or data unit that specifies the beginning 

index value of the loop. If omitted, the initial value 

is O. 

One of the following: 

1. May be THRU followed by a constant, 

arithmetic expression or data unit. This 

value Signifies the last pass through the 

loop. 

2. May be WITHIN followed by the name of a 

horizontal or vertical table, subtable, or 

like-table. The value assigned is the 

number of items defined for the table or 

the current value of the major index. 

11-5-49 



M-5035 
Change 4 

Increment Optional. BY followed by a constant, arithmetic 

expression, or data unit. If this value is to be a 

decrement, BY must be followed by a minus sign. 

If omitted, the increment is 1. When varying 

within a table by a negative value, the initial value 

is the number of items defined for the table or the 

major index, and the final value is O. 

5.6.2.2 Search Decision Statement 

The search decision statement must immediately follow a FIN D statement. 

The FOUND/NOTFOUND condition is determined by the results of the FIND 

search. 

Format 

IF DATA FOUND THEN statement(s) $ 

IF DATA NOTFOUND THEN statement(s) $ 

Explanation 

IF 

DATA 

FOUND 

NOT FOUND 

THEN 

Specifies that a condition is to be evaluated as 

true or false. 

A compiler control word used to clarify the 

statement. 

Specifies the condition to evaluate upon 

satisfaction of the FIND condition. 

Specifies the condition to evaluate when the 

search loop is completed. 

Specifies that the statement or statements that 

follow are to be executed if the FOUN D or 

NOTFOUND condition Is true. 

11-5-50 



Explanation 

M-5035 
Change 3 

ELSE Specifies that the statement or statements that follow 

Statement(s) 

are to be executed only if the result of the Boolean 

condition in the corresponding previous decision statement 

'is false. 

A simple or compound statement, or a block of dynamic 

statements. 

See paragraph 5.8 for an explanation of blocks and the requirement for 

compounding (nesting) decision statements. 

Examples 

1. IF A EQ B THEN'SET C TO D $ 

ELSE SET C TO 1 $ 

C is set to D if A equals B. Otherwise C is set to 1. 

2. IF BOOL THEN PROCA $ 

ELSE BEGIN $ 

SET E TO F $ 

SET G TO H $ 

END $ 

PROCB $ 

If the Boolean variable BOOL is true, then procedure. PROCA 

is called. If BOOL is false, then the block of set statements 

is executed. In either case, PROCB is then called. 

5.7 LOOP STATEMENTS 

Loop statements direct repeated execution of a specified group of statements (vary 

block) or perform. a table search. 

II-5-50A 



M-5035 

5.7.1 Vary Block Statements 

A vary operation· is used to execute . one or more statements a specified number of times 

(at least one time). The statements to be executed are bracketed by a VARY statement 

and an END vary statement. This group of statements is defined as a vary block. 

The number of passes through the loop is controlled by a loop index. Multiple vary 

loops on the same level are allowed within the same VARY statement. . 

II-5-50B 



M-5035 
Change 4 

Statement(s) A simple or compound statement, or a block of 

dynamic statements. 

5.6.2.3 Table Search Format 

A generalization of the FIN D statement in combination with the required search 

decision statement follows: 

1. FIND statement $ 

IF DATA FOUND THEN (found sequence, with or without 

RESUME) .•• $ 

(search completed sequence, should not RESUME) 

2. FIND statement $ 

IF DATA NOTFOUND THEN ••• (search completed sequence, 

should not RESUME) ..• $ 

(found sequence, with or without RESUME) 

The search completed sequence in the first case and the found 

sequence in the second case may be ELSE statements. 

11-5-51 



M-5035 
Ghange 4 

5.6.2.4 Table Search Examples 

'TARGET' is compared fJljainst. field PLUTA in table PAR, starting at 

ii, 'm 0 and c () n Lin u i n U un til an e (I u i val en c e i s f 0 u n d 0 r the com pie t e 

table has been searched (not. found) and an exit made to AVERAGE. If 

t h" FIND is satisfi(~d before the complete table has been searched, 

control is lransf(~rred out of the loop and the remaining items are not 

s('archt'd. The variable K is the loop index. 

This sequence of statements increments TALLY each time the third word 

in the first seven items of CATD equals CATC. If no equivalence is 

found or the varying portion of the FIND is satisfied, control is 

I ransferred to STEP2. The RESUME statement. continues the search only 

if an (>({uivalence has occurred. It is no~ logical to resume a FIND 

loop on a not-found condition since the search continues without 

reinitialization. In the example, STEP2 will always be executed whether 

tJr not dat.a is found, since completion of the table search will be 

interpreted as a true NOTFOUND condition and exit will be via THEN 

(;OTO STEP2. 

11-5-52 



1\1-5035 
Change 4 

The following three f>xamples illustrClte a table search for a ~pecified 

condition using Cl FIND st.atement with a search d(lcision statement of ForNU 

and NOTFOUNU, respect ively, in the first two pxamples, and a VARY block in 

the thitd examp·le. All three examples produce the same result: a transf('r 

to ALARM is made if the specified condition is met less than five times 

during the search; otherwise, processing continues with the next instruction 

in sequence. 

1 I 'I 1 

I I I I I I 

4. 1.' 1'1 I I.! , I 
,A-r; Rt Rj' f: JAtl) IY', J 

,S,c." ,KO,Uft,TI ,r; 9 ,0, If, I J 1 1 J J J I , 

,FtZiM), ,"':,BIUM,'-,( ,TI~'J'5L,"'J~lr I'" 16,), 
I 

I C~~f1~) , I , I I I lillI&., ,I 1 I 

II-5-53 



M-5035 
Change 4 

,-,. I I I , I , J , , ls,EiT, ,f4,O,tJ,MT, Irp"f), ,$, I J J J , , 4 " 

lA~IR,R,£"II4I~,Y,.1 IVaD,R,Y, ,TiX, ,Wlr,T,HltJl OrJ:,Arj,!,B,L, If, 

5.6.3 Validity Decision Statement 

, 1 I 
I I I 

. The validity decision determines whether a subscripted data reference is valid. For 

example, if a horizontal table is defined wlth four items, any reference with the item 

index larger than 3 would be invalid o 

Format 

IF table-element VALID/INVALID THEN statement(s) $ 

11-5-54 



Explanation 

IF 

Tablt~ EIl'mt'nt 

\' A L I I) / I N V A L I I) 

TlIEN 

5tatement(s) 

Examples 

M-5035 
Change -.1 

Spt'cifips that n decision is to bf' performf~d. 

A subscripteu table ell'mt'nt wtll'rl' tht, suhscript 

cnlculation is checkpd for \,nlidity. 

5 P e c i fie sac 0 nil i t ion () f a \' II 1 i Ii 0 r i n val i d 

subscript. 

Specifies that the statellll'nt or statpments thnt 

follow ()rf~ to bp (,Xl'cutt'd if tht' tllhll' l'lenwnt 

ref ere n c e i s V A L I U () r I :\ \' A L III • 

A simple or compound statenlent or a block of dynamic 

statements. 

The following tieclnration is referenced in the validity decision examplt>s: 

''2WiB' e I ,ClA'M I 1111 I l-5j I ,2 I $ 
.s)UlB -171ABIL 1«1 , IClefIZl81 lat I II ,$I 

Program control is transferred to statement 51 if I has a value of U 

or 1. 

Program control is transferred to statement 51 if I is not zero. 

5.6.4 Parity Decision Statement 

The parity decision statement determines parity by testing the data specified 

for an odd or even number of I-bit settings. If the sum of the I-bits 

contained within the data unit is an even number, theparitj is considered 

even. If the sum is an odd number, the parity is considered odd. 

II-5-55 



1\1-5035 
Change 4 

Format 

IF one-word data-unit onDP THEN statement(s) $ 

IF one-word data-unit EVENP THEN statement(s) $ 

Explanation 

IF 

One-word 
data-unit 

ODDP/EVENP 

THEN 

State~ent(s ) 

Example 

Specifies that a condition is to be evaluated as true 

or false. 

The identifier of a data unit contained in one 

word. 

The decider as to whether the parity condition of the 

value contained in the data unit is odd or even. 

Specifies that the statement or statements that follow 

are to be executed if the ODDP or EVEN P condition 

is true. 

One or more (connected by THEN) dynamic statements. 

The bits set to 1 in the variable STAT are tested to see if their sum is an 

even number. If so, the variable FLAG is set to O. 

5.6.5 ELSE Statement 

Any of the four types of decision statements may be immediately followed by an ELSE 

statement which allows for execution of one or more statements if the result of the 

condition is false. 

Format 

ELSE statement(s) $ 

I1-5~56 



M-5035 
Change 4 

Explanation 

ELSE Specifies that the statement or statements that follow 

are to be executed only if the result of the Boolean 

condition in the corresponding previous decision statement 

is false. 

Statement(s) A simple or compound statement, or a block of dynamic 

statements. 

Refer to paragraph 5.7 for an explanation of blocks and the requirement 

for compounding (nesting) decision statements. 

Examples 

1. IF A EQ B THEN SET C TO D $ 

ELSE SET C TO 1 $ 

2. 

C is set to D if A equals B. Otherwise C is set to 1. 

IF BOOL THEN PROCA $ 

ELSE BEGIN $ 

SET E TO F $ 

SET G TO H $ 

END $ 

PROCB $ 

If the Boolean variable BOOL is true, then procedure PROCA 

is called. If B~OL is false, then the block of set statements 

is executed. In either case, PROCB is ,then called. 

11-5-57 



1',1-5035 
Change 4 

5. 6. 6 Nested Decision Statements 

Because the connector TH EN serves a specialj purpose within decision statements, 

IF and FIND statements cannot directly appear ~fter THEN or ELSE associated 

with an IF statement. However, the compiler interprets all statements within a 

statement block (Paragraph 5.7) as the equivalent of a simple statement. This 

provides the means of nesting decision statements and gives rise to the following 

rule: 

If an IF or FIND statement is to appear following the connector THEN or the 

operator ELSE associated with another decision statement, the nested IF or 

FIN D statement must appear within a statement block. Furthermore, when a 

stat~ment block appears within an IF statement, execution of all statements 

within the block is subject to the condition of the IF statement. 

Examples 

1. IF 'A THEN 

Bl. BEGIN $ 

FIND TAB(I) EQ B $ 

IF DATA FOUND THEN SET F TO 1 $ 

ELSE 

SET F TO 0 $ 

END B1 $ 

ELSE 

132 •. BEGIN $ 

IF B LT 10 THEN SET B TO B+1 $ 

ELSE 

VARY I WITHIN TAB $ 

SET TAB(I) TO 0 $ 

END $ 

END B2 $ 

1I~5-58 



M-5035 
Change 4 

In this example, the outer decision statement is logically 

equivalent to the form: 

IF A THEN block Bl ELSE block B2 $ 

The BEGIN and END statements are necessary due to the nested FIND 

statement in Bl and the nested IF statement (with its nested VARY loop) 

in block B2. 

2. IF STATUS EQ 'START' THEN 

SET STATE TO 0 THEN 

VARY I WITHIN ANS $ 

SET ANS(I, SUM) TO 0 $ 

END THEN 

COMPUTE $ 

ELSE FINISH $ 

In this example, the VARY block is the equivalent of a simple 

statement within the compound conditional portion of the decision 

statement. 

5.7 STATEMENT BLOCKS 

A statement block is a group of simple or compound statements initiated by a 

BEGIN, VARY, or FOR statement and terminated by an END statement. A 

statement block is interpreted by the compiler as the equivalent of a simple 

statement. A value block (Paragraph 5.7.3.2) is a special block used only in 

the construction of FOR blocks; a value block· is not the equivalent of a simple 

statement. 

11-5-59 



M-5035 
Change 4 

5. 7. 1 BEGIN Block 

Format 

statement-label. BEGIN $ 

Explanation 

Statement-label 

BEGIN 

END 

Statement-name 

dynamic statements 

EN D statement-name $ 

Optional. The name by which the block is 

identified. 

Specifies the start of a block. 

Specifies the end of a block. 

The name, if any, given to the block as 

specified in the BEGIN statement. 

• 

The BEGIN and END statement brackets serve only to delimit statement blocks; 

the BEGIN statement does not specify a dynamic processing function as does the 

VARY or FOR statement (Paragraphs 5.7.2 and 5.7.3). Because the BEGIN 

statement does not define a loop structure, it cannot be resumed. Statement 

blocks delimited by BEGIN and END may be nested within, and in the same 

manner as, VARY blocks and FOR blocks. 

ll-5-60 



Example 

1\1-5035 
Change 4 

Ll. BEGIN $ 

SET A TO B $ 

VARY I WITHIN TAB $ 

BEGIN $ 

SET C TO D**A $ 

IF C LT 100 THEN SET TAB(I) TO C $ 

END $ 

SET A TO A+1 $ 

END $ 

END Ll $ 

Three statement blocks are defined in the above example: an outer block, Ll, 

delimited by BEGIN and END; a VARY block nested within block Ll; and a 

BEGIN/END block embedded In the VARY block. Note that the two BEGIN 

statements and their associated EN D statements serve only to group dynamic 

statements in a logical manner; removal of these bracketing statements would 

not alter the processing function of this program segment. 

5.7.2 VARY Block 

A vary operation is used to execute one or more statements zero or more times. 

The statements to be executed are bracketed by a VARY statement and an EN D 

vary statement.. This group of statements is defined as a vary block.. The 

number of passes through the loop is controlled by zero or more loop indices, a 

WHILE condition, and/or an UNTIL condition. 

11-5-61 



M-5035 
Change 4 

5.7.2. 1 VARY Statement 

The VARY statement initializes the loop and specifies controls for the number of 

passes through the loop (see Figure 5-1). 

Format 

statement-label. VARY index-clause(s) WHILE clause UNTIL clause $ 

Explanation 

Statement Label. 

VARY 

Index-clause(s) 

WHILE clause 

UNTIL clause 

Optional. The name by which the vary block is 

referenced. This label is required if the VARY 

loop is resumed. 

Specifies the start of a vary block. 

Optional. Specifies the data units to be incremented 

or decremented and possibly tested (Paragraph 50 7.2 .. 1. 1: 

Multiple index-clauses are separated by commas. 

Optional. Specifies a condition which is to be 

tested before each pass through the loop 

(Paragraph 5.7.2.1.2). 

Optional. Specifies a condition which is to be 

tested after each pass through the loop 

(Paragraph 5.7.2" 1.3). 

A program's execution nlust not depend on incrementing and testing of the indices 

and the evaluation of the UNTIL clause being performed in a.ny predefined order. 

The conlpiler will order the end loop evaluation a.ccording to optimal code 

generation. 

II-5-62 



M-5035 
Change 3 

Simple and compound statements may also be grouped together into blocks by means 

of the brackets BEGIN or VARY and END. Statement blocks are particularly useful, 

and in fact are required, when compounding (nesting) of decision statements is 

desired. 

5. 8. 1 Statement Blocks 

A statement block is a group of simple or compound statements initiated by a VARY 

or BEGIN statement and terminated by an END statement. A statement block is 

lnterpreted by the compiler as the equivalent of a simple statement. 

Format 

statement-label. VARY. . . $ 
or 

statement-label. BEGIN $ 

Explanation 

Statement-label 

VARY. 

BEGIN 

END 

Statement-name 

dynamic statements . 
EN D statement-name $ 

Optional. The name by which the block is identified. 

This label is required on the VARY statement if the 

VARY loop is resumed. 

A VARY statement is specified in paragraph 5. 7. 1. 1. 

Specifies the start of a block. 

Specifies the· end ofa block. 

The name, if any,given to the block as specified 

in the VARY or BEGIN statement. 

n-5-62A . 



M-5035 
Change 3 

The BEGIN and END statement brackets serve only to delimit statement blocks; the 

BEGIN statement does not specify a dynamic processing function as does the VARY 
\ 

statement, described in paragraph 5. 7. L Because the BEGIN statement does not 

define a loop structure, it cannot be resumed. Statement blocks delimited by BEGIN 

and END may be nested within, and in the same manner as, VARYblocks. 

Example 

Ll. BEGIN $ 

SET A TO B $ 

VARY I WITHIN TAB $ 

BEGIN $ 

SET C TO D**A $ 

IF C LT 100 THEN SETTAB(I) TO C $ 

END $ 

SET A TO A+l $ 

END $ 

END Ll $ 

Three statement blocks are defined in the above example: an outer block, Ll, 

delimited by BEGIN and END; a VARY block nested within block Ll; and a 

BEGIN/END block embedded in the VARY block. Note that the two BEGIN 

statements and their associated END statements serve only to group dynamic 

statements in a logical manner; removal of these bracketing statements would 

not alter the processing function. of this program segment. 

5.8.2 Compound Decision Statements 

Because the connector THEN serves a special purpose within decision statements, IF 

statements (and therefore FIND statements) cannot directly appear after THEN or ELSE 

associated with an IF statement. However the compiler Interprets all statements within 

a statement block (1. e., all statements from BEGIN or VARY to the corresponding END 

statement) as the equivalent of a simple statement. This provides a convenient means 

II-5-62B 



of compounding, or nesting, IF statements and gives rise to the following 

rule. 

M~5035 

Change 3 

If an IF or FIND statement is to appear following the connector THEN or the 

operator ELSE associated with another IF statement, the nested IF or FIND 

statement must appear within a statement block. (Note that VARY may directly 

follow THEN or ELSE because the VARY statement defines the start of a block.) 

Furthermore,. when a stateIJlent block appears within an IF statement, execution of 

all statements within the block is subject to the condition of the IF stat~ment. 

Examples 

1. IF A THEN 

Bl. BEGIN $ 

FIND TAB(I) EQ B $ 

IF DATA FOUND THEN SET F TO 1 $ 

ELSE 

SET F TO 0 $ 

END B1 $ 

ELSE 

B2. BEGIN $ 

IF B LT 10 THEN SET B TO B+1 $ 

ELSE 

VARY, I WITHIN TAB $ 

SET TAB(I) TO 0 $ 

END $ 

END B2 $ 

In this example, the outer decision statement is logically equivalent 

to the form: 

IF A THEN block B1 ELSE block B2 $ 

II-5-62C. 



M-5035 
Change 3 

The BEGIN and END statements are necessary due to the nested FIND 

statement in Bl and the nested IF statement (with its nested VARY loop) 

in block B2. 

2. IF· STATUS EQ 'START' THEN 

SET STATE TO 0 THEN 

VARY I WITHIN ANS $ 

SET ANS(I, SUM) TO 0 $ 

END THEN 

COMPUTE $ 

ELSE FINISH $ 

In this example. the VARY block is the equivalent of a simple 

statement within the compound conditional portion of the decision 

statement. 

Il-5-62D 



Yes 

Index 
Ini tiallzation 

VARY Block 

Increment Indices 
and Evaluate 

UNTIL Condition 

Next 
Statement 

Condition False 

Figure 5-1. VARY Flow 

M-5035 
Change 4 



l'Y1-5035 
Change 4 

5.7.2. 1. 1 Index Clause. An index clause specifies a data unit which is to 

be initialized before the first pass through the vary loop, incremented or 

decremented after each pass through the loop, and possibly compared against 

a limit after each pass through the loop in order to terminate the loop. 

Format 

loop-index initial-value increment final-value 

Explanation 

Loop-Index 

Initial-Value 

Increment 

The name of the data unit to be varied, 

Optional. FROM followed by a constant, 

arithmetic expression, or data unit that 

specifies the beginning index value of the 

loop. If omitte~, the initial value is O. 

Optional. BY followed by a constant, 

arithmetic expression, or data unito If 

this value is to be a decrement, BY must 

be followed by a minus sign. If omitted, 

the increment is 1. When varying within 

a . table by a negative value, the initial 

value is the number of items defined for 

the table or the major illdex, and the final 

value is O. 

II-5-64 



Final Value One of the following: 

M-5035 
Change 4 

1. May be THRD followed by a constant, 

arithmetic expression or data unit. 

This value signifies the last pass 

through the loop. 

2. May be WITHIN followed by the name of 

a horizontal or vertical table, subtable t 

or like-table. The value assigned is 

the number of items defined for the table 

or the current value of the major index. 

The initial-value, incr~ment, and final-value may appear in any order 

within an index-clause. Refer to Paragraph 5.7.2.4 for examples of 

index-clauses. 

5.7.2. 1. 2 WHILE Clause. The WHILE clause specifies a condition which 

is to be tested before each pass. If the WHILE condition is true, the pass will 

be executed. 

Format 

WHILE condition 

Explanation 

WHILE 

condition 

Specifies a WHILE clause. 

A Boolean-condition as defined in Paragraph 5.6.1, 

a validity condition as defined in Paragraph 5.6.3, 

or a parity condition as defined in Paragraph 5.6.4. 

Refer to Paragraph 5.7.2.4 for examples of WHILE clauses. 

II-5-65 



1\'1-5035 
Change 4 

5.7.2.1.3 UNTIL Clause. The UNTIL clause specifies a condition which is 

to be tested after each pass through the VARY block. If the UNTIL clause is 

true, another pass through the VARY block will not be performed. 

Format 

UNTIL condition 

Explanation 

UNTIL 

Condition 

Specifies an UNTIL clause. 

A Boolean condition as defined in Paragraph 5.6, 

a validity condition as defined in Paragraph 5.6.3, 

or a parity condition as defined in Paragraph 5. 6.4. 

Refer to Paragraph 5.7.2.4 for examples of UNTIL clauses. 

5.7.2.2 Resume (RESUME) Statement 

A RESUME statement specifies a transfer to the increment and test steps within 

a VARY block. This allows partial vary passes through a VARY block and a 

means to continue the VARY block. A RESUME statement may also be used in 

conjunction with a FIND statement, since FIND operations permit VARY operands. 

Format 

RESUME statement-name $ 

Explanation 

RESUME 

Statement N arne 

Specifies the RESUME operator. 

The name given to the V AR Y or FIN D 

statement to which this RESUME statement 

applies. 

II"'5-(j() 



M-5035 
Change 4 

5.7.2.3 End Vary Statement (END) 

The EN D vary statement specifies the conclusion of the vary block. If the loop 

is not yet completed, any loop indices are incremented and control is transferred 

to the initial statement within the vary block. If the loop has been completed, 

control is transferred to the statement following the END vary statement. 

Format 

ENU statement-name $ 

Exp lana t i on 

ENU Specifies the end of a vary block. 

S t a Lemen t Name The name, if any, given to the corresponding VARY statement. 

5.7.2.4 Examples of VARY Blocks 

1. 

The data unit APR is varied from starting point 1 (FROM) to thpf'nding 

point 10 (TURU) by an implied faetor of I. The field FCX2 iss!'t to thp 

val u e 0 f 'I N SERT' i nit em s 1 t h r 0 ugh 10 0 f tab 1 e PAR. W he nth e 1 00 pis 

completed, processing cont.inues with the statement following the ENU 

stat em(~nl • 

NOTE 

Upon loop terminat.ion (aftpr thp END statement), 
the loop index will not neeessarily eontain 1.h(1 
value of thp ending point or tht' pndin~) point 
plus one. 

11-5-67 



1\1-5035 
Change 4 

2. ,S,T,EiP,,,., IV)41RIY' ,L>,W, ,WtrlrtHtEaM o'&2t8cr1 ,-e,y, Cd, J~' 
J,s,EjT, ,FjCtg,RIT,(JZ)~,. J,), ,T,O, ,01 It, 
IEiNlb, ,S,T,.,,,,, IS, " , I , I I , II I I I I I 

The data unit UW is varied according to the number of items in table 

FC2RT or the major index (if any). ·Each word 1 in all i terns of table 

F C 2R T wi 11 be set toO. 

, I I I I 

IVIAl<ltl IX, ,F,RlO", 0041 11jHBJUI ID, rst, ,-,1, til 
IS,Ejrl ,Y, ,1,9 ,cJ4,Tlltr¥l1, ,$, I I 

JEiN'LbJ I1jMO, ~, I I , I I I I , 

iE-Mbl eMEi ~ I I I , I !. I 

This examplf' illuslralt·s npsling of VAHY statements. The vary hlne" 

TWO is restarlpd aflt·r It1(~ initialization of vary block ONE and aflt\r 

(~~ch decrement for vary block ONE. The complete loop is terminat(~d 

af t t~r X becomes O. 

Whf'n nt~sting vary blocks, the ENU vary block statements must be arranged in 

I h(' rt~Vt~rse order of thp vary block defini tions. 

II~5-68 



.1. 

• J • 

AA., 
:fl5.! 

1\1-5035 
Change -l 

Ivj ~ ~y, · , • 1· ,. l' , '1$ I l 

I ,. I I I I I I I I I I f I. I I J 

J leI I l' , I I I I, J J 

I ,J I e, I , , I , , , I , I , I , I' I J I I 1 I I I I 1 

,:~ . : : : : : I~:~~ ~~ · ~ · : ·I~ : : : : : : : : I : : : : : : : : : I 
I J • , I I I I I I , 

f " , I ,., I I I, " I 1 I 

: : : : : : : : ~ bAt:!i : 'l : : : : : : : : : I : : : : : : : : : I 
I 1 I I I " I ~ IN J), tA, A, i I I J I , , " , , , J l J , I j I I 1 j , J 

More than one complete ~ary block can be nested within another vary block • 

Mort' than one datil unit may be varied within a loop. Thl' data unit 

CATB is varied from the start ing point U (implil'd) to tht' l'ndin~l point 

:\0 (TIIRU) by a factor 01'·1 (BY). The data unit CAlA is ·vnrit'd from Iht' 

starting point U (implied) to the ending point :!U byanimplil'd fnl'tof 

of 1. The field CTRI is set to· the value of CATB ini tt~ms U throu~lh ,. 

of table PAR. 

NOTE 

If more than one data unit is to be varied, the 
data unit that first satisfies its ending point 
terminates the loop. 

11-5-69 



1\1-5035 
Change 4 

(). C,A,T\,R,., ,. JVllb&>1 IK, ,W,r,TIHi5N, ,Ct;15,R, iBl)'J ,-,.L ,i 
I EIFI ·1c..,II8,RI(I~.13UI ',#to,Tj ,0, ,DMEf(1 I 

Whl'l1 CJBH(K,:3) is nonzpro, tl1l' statpnwnt f()]lowin~1 tile IF is nol 

PXI'(~ulpd. Th(~ transf('r ro ll1ah(~ Ilw twxl pass Ihr()lI~lh Ihl' vary b]och 

is accomp 1 j shed by I lip HESt:~lE s tat cnH'ut • 

.. _~ ij£d<,J" I j Iv ~ JAj 16R,oM, Ii! i~~~1.21QL ... L.L.LJ-L.L-L 

_LLj_l.~.LLJsJ§Il j ,X. I JTjol 1 ,'I1_.1±l..Jk .. LJ.~_.} ..... L...L-LL.l._L_J-1_l 

-1-. _. ; J __ L-Ll kJFl fi 161Tl ~J! IlT1H-f"1.ti.L_jQ:.~!'QL_~~A[1~ J~L-LJ _ 

_ j_~ .. ~._.2 .L..l.-l_~J)j ... J g,T,§~ I J~_.~ .. J._l.. .. L__ LJ __ .4.-1-l.J-~~ .. Ll. 
-L.L I !. 1 .l.. I l.~J--.LL-L...L1 1 ,1 1 L-L.l_J.....LJ .. .l L.~~ j 1 1.J 
_L..L-.L..J. 1 1 , I ) '-1 1 J .1-1-L' I I I I '! l..J ____ L...LL~ , 1 1 J-Li 

:,~~g.: :: ~:;:~ : :~ : T.ol : YM~~: I ~. I 
I I I III J 1 IRIE'IS1U,MtEll6JT~,& 1 I~ I J 1 I I' J 

T his f • X a III pIe ill II ~ t rat (~ s t h (' t r an s fer 0 U t sid (' () f a va r y b 1 0 e k. W h f' n X 

is Un',ltt'r than :2;1, control is transferred to stp» LATH outside of this 

vary block. Thp HESIJME stat(~ment will transfer control hack into 1h(' 

vary hloch. 

11-5-70 



tie VARY I FROM I 

SET TAB(I) 

VARY I FROl\1 I 

SET TAB(I) 

END $ 

WHILE TAB(I) 

TO TAB(I)+5 $ 

\VITHIN TAB $ 

TO TAB(I)+5 $ 

VALID ~ 

1\1-5035 
Change -1 

This example illustrates two methods of increnlenting a set of table 

itenls not necessarily starting with the first iteln. The diffetcnc"e 

between the two Inethods is the location of the test to deternline if 

another pass is to be perfornled. The VAR Y using the \VHILE clause 

will test before each pass, while the VARY using the \VITH1N will 

test after each pass. The WHILE VARY would be used for situations 

in which !!£ passes through the loop were desired because I does 

not contain a valid TAB index. 

9. VARY I UNTIL SYl\tIBOL NOT H(,) $ 

SCAN $ 

"SET NAIHE(l) TO SYlVlBOL $ 

SCAN $ 

END $ 

The above example illustrates the use of an UNTIL clause to process 

a comnla separated list, storing each list itcnl in a name"table 

whose index is also initialized and incremented by the VARY block. 

Assuming SCAN updates the value of the HoU'erith variable SYl\IBOL, 

a test is made at the end of each pass to determine if another list 

item is specified. 

11-5-71 



M-5035 
Change 4 

10 0 VARY I, J THRU5 WHILE B1 UNTIL B2 $ 

TABPROC INPUT TIN(I) OUTPUT TOUT(l), BI, B2 $ 

END $ 

The above examples illustrate a loop which may be terminated by any 

of the three loop termination criteria: index, WHILE, or UNTIL. 

No passes will be made through the block if the Boolean variable B1 

is false when first entering the block. TABPROC will set the first 

six items of table TOUT assuming neither Boolean variable B1 or B2 

is set to false due to some condition diagnosed by TABPROC. 

11. VARY I $ 

END $ 

VARY $ 

END $ 

The above examples illustrate two methods of programming "infinite" 

loopso The only difference between the loops is that in the first 

example, I will maintain a count of how many times the loop has 

been executed. 

5. 7 . 3 FOR Block 

A FOR block consists of a FOR statement followed by a set of value blocks 

. and an END statement which terminates the FOR block. Execution of a FOR 

block will result in the execution of the value block one of whose values is the 

. same as the result of the FOR expression contained in the FOR statement. 

11-5-72 



Format 

M-5035 
Change 4 

statement-label. FOR-statement $ 

value-block 

Explanation 

Statement-label 

FOR-statement 

Value-block 

END 

Statement-name 

Examples 

value-block 

EN D statement-name $ 

Optional. The name by which the FOR block 

is identified. 

Refer to Paragraph 5.7.3 .• 1. 

Refer to Paragraph 5.7.3.2. 

Specifies the end of the FOR block. 

The name, if any, given to the FOR block . 

as specified in the FOR statement. 

Refer to Paragraph 5.7. 3. 3. 

5.7.3.1 FOR Statement 

The FOR statement specifies the controlling expression, type, and optional 

ELSE statement of a FOR block. 

Format 

FOR FOR-expression FOR-type ELSE-statement $ 



1\1-5935 
Change ·1 

.Explanation 

FOR-expression 

FOR-type 

Any arithmetic, Boolean, relational, literal, 

or status expression legal as an assignlnent 

expression as defined in Paragraphs 5. -1. 1. 1 

through 5.4. 1. 4. 

Optional. The presence of an explicit FOIt-type 

is denoted by a comma following the FOH­

expression. The comma is followed by a 

data type containe.d in parenthesis. The data 

type nlay be any type allowed in a variahle 

declaration with the restriction of a rnaximum 

of eight characters for a Hollerith type. ,If 

the F(>I~-expression is a variable, field 

reference, typed item reference, or function 

reference and the FOR-type is not explicitly 

specified, the FOR block will have the type 

of the FOR-expression data unit. If the FOR­

expression is a local or system index and the 

FOR-type is not explicitly specified, the FOR 

block will have a type of I 16 U .. If the FOR­

expression is an item word reference and the 

FOR-type is not explicitly specified, the FOR­

block will have a type of I 32 S. If the FOR­

expression is not one of the above data units 

the FOR-type must be explicitly specified. If 

the FOR-type is explicitly specified, the FOR­

expression must agree in type with the FOR-type 

U-5-74 



1\1-5035 
Chang(.) 4 

acco'rding to rules of assignment specified in 

Paragraphs 5 . .J. 1. 1 through 5 .. 1. 1. 4. 

Additionally, if the explicit FOH-type is 

Hollerith, the FOR-type 1l1UY not specify a 

greater nUlnber of characters than contained in 

the FOR-expression. 

ELSE-statement Optional. Refer to Paragraph 5. 6. 5. 

Execution of a FOR statenlent will cause the evaluation of the FOR­

expression, the required conversion, if any, to the FOR block type, 

and execution of the value block having the same value as the FOR­

expression. If the value of the FOR-expression docs not match any 

of the l .... OR block values and an ELSE-statement is not specified, 

the control will be transferred to the staten1ent following the FOR 

block. If the value of the FOR-expression docs 110t match any of 

the FOR block values and an ELSE-statclllCnt is s})ecified, the 

ELSE-statelncnt will be executed. After execution of the selected 

value block or the ELSE-statement, control will be transferred to 

the st.atement following the FOR block. 

Execution of a FOR statement is subject to the following rules: 

1. If the FOR-expression is an arithmetic expression, it 

will be evaluated with "simulated receptacle" rules 

defined on Page II-5-4. 

2. The result of a FOR~expression will be converted to the 

FOR block type as if the FOR-expression were being 

assigned to a variable having the FOR block type. 

II-5-75 



M-5035 
Change 4 

3. To produce correct code, the'FOR block type ~ express 

all possible values which may be produced by the FOR­

expressiono For example, if an arithmetic FOR-expression 

produces a negative value, the FOR block type must be 

signed. This rule does not imply that a value block must be 

specified for each possible value which may be produced by 

the FOR-expression. 

4. To produce optimal code, the FOR block type should express 

only those values which may be produced by the FOR-expression. 

For example, if an arithmetic FOR-expression will always 

produce only the integers between 0 and 7, the FOR block 

should be typed I 3 U. 

5.7. 3.2 Value Block 

A value block is a group of statements which is executed when the evaluation 

of the associated FOR-expression results in one of the constant values 

associated with the value block. 

Format 

Statement-label. 

Explanation 

Statement-label 

BEGIN value(s) $ 

dynamic statements . 
EN D statement name $ 

Optional. The name by which the value 

block is identified., 

n-5-76 



BEGIN 

Value(s) 

Statement-name 

1\[-5035 
Change -l 

Specifies the start of a value block (when 

followed by constants). 

Constants that are associated with the value 

block. Multiple values are separated by 

commas. The constant must agree, in type 

with the FOR block type. If the constant 

is Hollerith, it will be blank filled to the 

right to the size of the FOR block type. 

The name, if any, given to the value block 

as specified on the BEGIN statement. 

5. 7. 3. 3 FOR Block Examples 

1. FOR X $ 

VA. BEGIN 0, 7 $ 

CASEA INPUT H($) $ 

END VA $ 

'VB. BEGIN 4 $ 

CASEB INPUT H(,) $ 

END VB $ 

VC. ',BEGIN 1,2,3 $ 

SET ERCOD TO 16 $ 

END VC $ 

END $ 

Assuming X is a local-index, the appropriate value block will be 

executed if X has the value 0, 1,2,3,4, or 7. If X is 5,6 or greater 

than 7, the statement following the FOR block will be executed. If 

it is known that at the time of execution of the FOR statement, X 

will never be greater than 7, the FOR statement should be coded: 

FOR X, (I 3 U) $ 

11-5-77 



1\:1~5035 

Change 4 

2. FBLOCA. 

VBLOC. 

FBLOCB. 

FOR F(X)+2, (1646S) 

BEGIN -7, -5, 7 $ 

VARY UNTIL X GTEQ 0 $ 

SET X TO X+F(X) $ 

END VBLOC $ 

SET MES TOH( ) $ 

END $ 

BEGIN -1, 0, 1 $ 

FOR H(Y) 

ELSE 

SET MES TO H(*****) THEN 

SET X TO 1 $ 

BEGIN H(Tl) $ 

SET MSG TO H(AA) $ 

SET X TO 5 $ 

END $ 

BEGIN H(Dl), H(T2) $ 

SET MES TO H(??) $ 

SET X TO 7 $ 

END $ 

BEGIN H(DIA) $' 

SET MES TO H(ERROR) $ 

SET X TO 0 $ 

END $ 

ENDFBLOCB $ 

END $ 

END FBLOCA $ 

The value block containing VBLOC will be executed if the arithmetic 

expression F(X)+2 results in -7, -5, or 7. The value block containing 

II-5-78 



3. 

1\1-5035 
Change -1 

F BLOC B will be executed if the expressions results in -1,0, or 1. 

If none of these values result, the control will be transferred to 

the statement following block FBLOCA. FBLOCB is a FOR block 

whose FOR-expression is an H 4 type function. II the function 

returns the value H(Tl.6.6), H(Dl.6.6), ,H(T2.6~), or H(DIA.6), X 

and 1\IES will be set by the appropriate value blocks. Otherwise, 

X and 1\-[ ES will be set by the execution of the FOR ELSE clause. 

FOR T(J) 

ELSE BEGIN $ 

VARY UNTIL T(J) EQ 'FREE' $ 

'END $ 

SET T(J) TO 'BUSY' $ 

END $ 

BEGIN '101' $ 

VARY UNTIL T(J+l) EQ 'FREE' $ 

END $ 

END $ 

BEGIN' '102' $ 

VARY UNTIL T(J+2) EQ 'FREE' $ 

END $ 

END $ 

BEGIN 'FREE' $ 

END $ 

END $ 

Example 3 demonstrates a possible ~sage of a FOR block used to 

control wait loops in a multiprocessing environment. where the 

processors communicate the system status through a table with 

status typed items. Note that the value block whose value is 

'FREE' contains no dynamic statements. 

II-5-79/U-5-80 Blank 





M-5035 

SECTION 6 

INPUT/OUTPUT STATEMENTS 

The CMS-2 language i~cludes a number of statements that enable the user's 

program to communicate with peripheral equipment. The operators for these 

statements are summarized below: 

General Operators 

INPUT 

OUTPUT 

FORMAT 

ENCODE 

DECODE 

Special File 
Handling Operators 

FILE 

OPEN 

ENDFILE 

CLOSE 

POS 

FIL 

LENGllI 

DEFID 

CHECKID 

To use these statements successfully, the following restriction must be 

observed: The CMS-2 Monitor must be in core during user-program execution. 

This requirement arises because of Compiler-generated procedure calls to 

input/output run-.time routines, which are designed to link with the Monitor 

and communicate with its input/output drivers. 

6.1 INPUT/OUTPUT OPERATIONS 

For many input/output purposes~ a user's program requirements can be most 

simply met wi th: only the INPUT, OUTPUT and FORMAT s ta tements. In these 

general situations, the CMS-2· operating system provides system-defined names 

by which the user may reference the hardware device involved with the input or 

output function. These names and their associated devices, hereafter referred 

to as startdard files, are described in Table 6-1. 

11-6-1 



M-5035 

TABLE 6-1. CMS-2 OPERATING SYSTEM STANDARD FILES 

FILE NAME FILE DEVICE 

READ Card reader 

PRINT Printer 

PUNCH Card punch 

OCM Operator commu-
nication medium 

For those cases in which the user wishes to perform input/output operations 

using devices other than standard devices, special fil~-handling operators 

are provided. These operat-ors are discussed in paragraph 6.3 (Nonstandard 

File Control). 

The INPUT and OUTPUT commands are used to transmit data between a hardware 

device and a user's program. These commands are functionally illustrated in 

Figure 6-1. Each input or output statement causes the Compiler to generate 

calls to particular run-time routines. These routines interface with the 

Moni tor to cause immediate transfer of data between a buffer area and the 

hardware device. For standard files, the run-time routines provide the 

buffer area. 

If formatting (conversion of data from one representation form to another) is 

required, transformation routines that utilize the specifications of the 

FORMAT statement as their inputs are provided. These transformations occur in 

the input/output flow as illustrated in Figure 6-1. Prior to each input or 

output operation, the buffer area associated with that file name is preset to 

blanks if the data is to be formatted, and to zeros if the data does not have 

formatting specified. 

For standard input/output operations where no format statement is prescribed, 

the input card image is interpreted as Hollerith characters and stored with 

the internal octal representation of the individual character. During 6utput, 

the word contents are interpreted in 8-bit Hollerith characters and are printed. 

11-6-2 



Us er Req ui res 
Formatting 

External 
Hardware 
Device 

Buffer 
Area 

Data Conversion 
Based on Format 
Statement 

User's 
Data 
Area 

Figure 6-1. 

Output 

Input 

M-5035 

User Does Not 
Require Formatting 

External 
Hardware 
Device 

Buffer 
Area 

User's 
Data 
Area 

Input/Output Data Flow 

11-6-3 



M-5035 

6.101 INPUT Statement 

This statement ~irects an operation to input da1a from the device associated 

with the specified file name. When tlds command is used to transfer data 

into an entire table by means of whole-tahle referencing~ the data is moved 

sequentially word-by-word without regard to the defined table structure; 

however, when all or part of a tahle is specified by means of .Item referencing, 

the data transfer is performed hy items o If a FOHMAT declaration is referenced, 

automatic conversion o~curs. 

Forma t 

INPUT file-name receptacle-data-list format-name $ 

Explanation 

INPUT 

Fi l'e Name 

Specifies an INPUT operationo 

The name of a-standard file or the name of a non­

standard file that has been defined with a FILE 

declaration statement. Legal standard file names 

for input are: 

1. OCM - specifies the,operator communication 

medium. 

2. READ - specifies the operating system's input 

device for punched card images. 

'Receptacle Data List One or more of the following CMS-2 data structures o 

If more than one receptacle is to be specified, the 

names, separated by commas, are gathered into a list 

which is enclosed in parentheses. 

1. The name of a table, subtable, like-table or 

item~area. This name indicates that the entire 

structure is to be used. 

2. The name of a major index of a table, subtable or 

like-table. 

:L The name of a variahlf!. 



Format Name 

M-5035 
Change 2 

110 A speeifj(~ item reference of a table, subtable, 

or like-table, which may be indexed by a variable 

or a numeric parameter. This indicates that 

every word of this item is to be used. 

5. A field or fields of some specific item within 

a table, subtable, like-table or item-area. 

Multiple field references can be made to any 

item specified; these references must be separa­

ted by commas. 

6. A series of items of a table, like-table or 

subtable that may be modified by field refer­

ence(s). This modification is accomplished 

by bracketing the starting item number in paren­

theses followed by three periods followed by 

the ending item number and bracketed in paren­

theses, such as: 

HIGHT «A) ••• (B), MI, M2) 

where Ml and M2 are fields within the table. 

7. A series of items in an array: 

ARRAY «K,L,M) ••• (N,P,Q» 

Every word in the referenced items is filled. 

Optional. Refers to the name of a previously defined 

FORMAT declaration. If a format name is specified, 

the data units in the receptacle data list must have 

internal data attributes ~ompatible with the external 

conversion format type. 

II-6~5 



M-5035 
Change 2 

Examples 

1 0 ITt If a J.., fj lelA IBI 1M i'/I Ii I D I ,II 
I I I , I I I I " I I I , I I , I I I I I I , I I I I I I I I 

I I. 

I I 

I : 
In this example, one record is read from the device described by the FILE 

declaration LBR and is transferred to fill each word of the table CAB. 

2. Iljhl81L,Ei J)lzlC. l1i 1/1131 11101 ~I , I I I 

I I I I I I I I -I I· I I ,., I I , I 1 , , 'I I I I I I I I , I 

~:~~Q:~ :~JA:tr:E: ~I:t:~(~): ~: : : : :: : : : : : : : I : : : I : 
One record is read from the device described by the FILE declaration IMAGE 

and is transferred, filling each word of item 2 in table DICT. 

3. !l5D~,M'''I7i IEIDtRlMtfl j3,z,!>-", 101(1.3, ), 
Ifill LIEI ,:r111 pi ,HI Iii' I ,RI I2,DI 1""T,2 

I I -I I 

~I I 

,.;,. , 
,lOI 

, , 
I 1 

lSI 

I I·' I I-

I I I I I I I I -II I I I I , I I I " I I I I I I I I I I I 

One record is read from the device MT2; assume that it is the Hollerith 

string: 

(20 characters) 

When the format FORMA is applied to tbis string~· the results in memory 

are: 

MIOOR (0,0) 35°10 

MIM>R (1,0 ) 201 10 

MlOOR (2,0) 110 

MIOOR (3,0) 7778 

11-6-6 



6.1.2 OUTPUT Statement 

M-5035 
Change 2 

The OUTPUT statement dire(~ts an operat.ion to output da1JJ to the devir,e 

associated with the file name. Data transferred from an entire table by an 

OUTPUT command using whole-table referencing is moved sequentially word-by-

word without regard to the defined table structure o However, when all or 

part of a table is specified using item referencing, the data transfer is 

performed by items. If a FORMAT declaration is referenced, automatic conversion 

takes place. 

Format 

OUTPUT file-name source-data-list format-name $ 

Expla na ti on 

OUTPUT 

File Name 

Source D~taList 

Format Name 

Specifies an OUTPU~ operation. 

The name of a FILE declaration or a standard file. 

Legal standard files for OUTPUT are: 

OCM Operator communication medium. 

PRINT Systems output for printer listing. 

PUNCH Systems output for card punching. 

A constant or one or more of the operands as 

described for the INPUT statement. If the FORMAT 

declaration describes a Hollerith string only, the 

source data parameter is not required. If more than 

one data unit is to be acted upon, the names are 

gathered into a list, separated by commas and 

enclosed in parentheses. 

Optional. An operand referring to a previously 

defined FORMAT declaration. If a format name is 

is specified, the data units in the source data 

list must have internal data attributes compatible 

with the external conversion format type. 

11-6-7 



M-5035 

Examples 

111 

The data to be written on the device identified' in the file named PRINT 

is contained in the variable DICT. The optional operand TERRY, refers 

to a previously defined FORMAT declaration. 

The data contained in the tables POS, SPEED, and 10 is to be written on 

the device identified in the file named DATUM. The optional operator 

TRUNC refers to a previously defined FORMAT declaration. 

3. In reference to the data structure of Example 3, paragraph 6.1.1, assume 

that table MAJOR is the result of the INPUT command. 

The values in MINOR (0,0) through MINOR (3,0) are transformed to the 

Hollerith character string: 

tJ,. .t:.. 350 Illl 20 1 t:. i. Illl 1777 Il t:.. (20 cha racters) 

which is then transferred as one record to the hardware device MT2. 

6.1.3 FORMAT Declaration 

The FORMAT. declaration describes the conversion of data between internal and 

external forms. The external form is usually a Hollerith string containing, 

in addition to the data, certa1n spa~ing and control information. Data 

existing in this external form is referred to as ,formatted data and is 

transmitted to and from an external device in this form. 

When the user requires data conversion, he references the FORMAT declarative's 

name in the INPUT or OUTPUT command. The FORMAT declaration is always referenced 

by the ENCODE and DECODE statements when they are utilized ina program. FORMAT 

declarations may appear only in data designs. 

11-6-8 



Forma t 

Expla na t ion 

FORM.'\T 

Name 

Q. 
, 1 

M-5035 

Specifies the FORMAT DECLARATION. 

The identifier to he used to reference this FORMAT declar~­

tion. 

t\ format descriptor. The format descriptors indicate the 

form ~nd arrangement of data and the types of conversions 

to be performed. 

Numeric eonversion types are summarized helow. 

Internal Form 

Fixed-point hinary 

Floating-point binary 

Floating~point binary 

Fixed-point binary 

Format DescriPtor 

IW.d 

Fw.d 

EW.d 

Ow.d 

External Form 

Fixed-point decimal 

Fixed-point decimal 

Floating-point decimal 

Fixed-point octal 

I nth eli s t 0 f forma t des c rip to r s; t hat follow s, w i san u n s i g ned i n t eg e r 

representing the maximum width (number of characters) of the field in the 

external medium. Integer w must not exceed the number of characters in one 

printer line. Descriptor d'is an unsigned integer representing thenumher of 

characters in the field that appears to the right of the hinary or decimal 

point. The maximum width of the field w must include space for signs, radix 

point~, and exponent descriptions. Hence, field d must he less than w. The 

d-field is optional if the internal fixed-point hinary value is an integer. 

11-6-9 



1\1-5035 
Change 4 

Format Descriptor 

Iw~ d 

Fw.d 

Ewou 

Function 

Specifies conversion of data between 

internal fixed-point binary and an 

external fixed-point decimal Hollerith 

character string. For a positive value, 

w ~ d+2. For a negative value, w ~ d+3. 

Specifies conversion of data between 

internal floating-point binary and 

external f~ed-point decimal. For a 

positive value, W L d+2. For a negative 

value w L d+3. 

Specifies conversion of data between 

internal floating-point binary and 

external floating-point decimal. 

The acceptable forms of input fields 

for the E conversion (floating-point) are: 

+0. mantissa E 

,::00 mantissa E ~ exponent 

I I"'!"6-1 0 



Ow.d 

M-5035 

The mantissa may be of any ~agnitude; 

the allowable exponent range depends 

upon the object machine. The output 

form for E conversion is: 

!9.xxx ••. xxxE~ee 

where: 

d is the number of digits in 

the mantissa. w includes all 

characters. Thus, w ~ 7, where 

the 7 accounts for the specific 

characters ±p.E~ee of the above 

output form. 

Specifies the conversion of data 

between internal fixed-point binary 

and external fixed-point octal. For 

a positive value, w must be ~ 2. For a 

negative value, w must be ~ 3. 

other formats descriptors that ma,y appear are described below. 

Format Descriptor 

H (string of characters) 

Aw 

Function 

Specifies an alphanumeric field in the 

form H(ABC), for example, where ABC 

represents a string. For input, an H 

(string) specification causes n char­

acters to be skipped in the input record. 

For output, the string of characters 

specified within the parentheses is the 

output image., 

Specifies the first w characters of an 

alphanumeric data unit in a transfer to 

or fr-:>m an input/output buffer. Aw appears 

in the FORMAT declaration. The related 

11-6-11 



M-5035 

Format Descriptor 

Lw 

wX 

Tw 

n format descriptor 

Function 

data unit in the input/output reference 

can have more than w characters. The 

remaining characters are ignored. If 

the data unit has less than w characters, 

the rightmos~ characters are truncated 

on input and trailing spaces are inserted 

on output. 

Specifies the sam~ as Aw, only here the 

last w characters of the data unit are 

used. Everything else said under Aw 

applies here. 

Specifies skip w characters of an input 

record or insert w spaces in an output 

record. 

Specifies a position designator for the 

buffer of a record input/output file. w 

indicates the character position within 

the buffer. The count starts with 0 at 

the start of the buffer. The FORMAT 

statement can have many !'St one for every 

data word or constant. T is illegal 

for files having a length descriptor of S. 

Specifies repetition of a format descrip­

ter n times, such as n Ew.d. 

Slash specifies end of a record or, when 

used sequentially, indicates the number 

of records to be skipped or inserted: 

n+l consecutive slashes on input cause 

n records to be skipped. 0+1 consecutjve 

slashes on output cause n blank records 

to be prod uced • 

11-6-12 



Format Descriptor 

m(group of descriptors) 

Printer carriage 

control characters 

M-5035 

Format 

Specifies the repetition of a group of 

format descriptors within the parentheses 

m times. No other parentheses except for 

H descriptors are allowed within the group 

of descriptors. 

Appear in an H string. They specify 

spacing, page eject, etc. These control 

characters appear as the first Hollerith 

character in the first word of each 

record. If the character is not one of the 

following, it is replaced with a blank. 

Carriage-Control 
Character Operation 

blank Single space and print 

line. 

o 

I 

H 

A 

B 

11-6-13 

Double space and print 

line. 

Triple space and print 

line. 

Page eject and print 

line. 

Cancel headers, page 

eject and print line. 

Cancel headers, page 

eject, print line and 

save location and length 

of line as 8 major header. 

Cancel lower-level 

headers, double space, 

print line and save 



M-5035 

Carriage-Control 
Character 

C 

Operation 

location and length of 

line as a minor header. 

Cancel lower-level 

headers, single space, 

print line and save 

location and length of 

line as a minor header. 

If classification, major header, and/or minor header lines are wanted, they 

will be printed in the following order each time a page eject is necessary: 

classification, major header with page number, minor header B, minor header C. 

The page number will occur even if a major header is not used. It is not 

necessary to specify consecutive levels of minor header information. 

It is the programmer's responsibility to ensure that· the specified type of 

format conversion is compatible with the declared data unit mode (for example, 

F-type conversion should not be applied to integer data units). If the FORMAT 

descriptors are exhausted and the target list not yet filled, the FORMAT,is 

restarted. 

Examples 

1. Given the external string of characters 

350274-0162E+o50703 with format 

the quantities s'tored on a read or decode statements are: 
5 35, 27.4, -l.62XIO , 703 

11-6-14 



2. Given the internal quantities 
3 417, -320, 0.536xlO and octal 627 

with format 

M-5035 

the string of characters resulting from an OUTPUT or ENCODE 

statement is: 

l417*******+O.536E+03~27 

where the asterisks indicate that the value -320 cannot be encoded 

within an F6.2 format descriptor. 

3~ Given the internal qu~ntities 

27, H (XY Z), 74. 51, H (JKLM) 

with the format 

,F,D,#t,M,A,T, ,ttIA,'" ,F1'1·,2,"1 ,HI(,«,Re-~ 1'1 ,L,~,I 1 1 

the string of characters resulting from an OUTPUT or ENCODE 

statement is: 

27.00RAGYZ 74.5IMODPJK 

6.2 ENCODE AND DECODE OPERATIONS 

The ENCODE and DECODE statements direct run-time routines to transfer data 

internally from one area of the computer to another, while converting the data 

from nonformatted to formatted (encoding) or vice versa (decoding). The 

transformation is specified by a FORMAT declaration. 

The ENCODE and DECODE statements are analogous to INPUT arid OUfPUT statements 

that reference a FORMAT declarative, except that no transmission to an I/O­

device takes place, and the buffer area involved is a data unit specified by the 

programmer. ,The rules previously discussed regarding formatted I/O also 

apply to the decode/encode operations. 

11-6-15 



M-5035 
Change 1 

When inputting records of different types, a DECODE statement can be used to 

reformat the data after the record type has been examined. The ENCODE state­

ment can be used to format data that is to be modified before being output. 

These statements are also valuable for debugging by simulating input/output 

operations in memory. 

The ENCODE statement specifies that the data contained in the data units 

named in the source list is to be converted as specified in the named format 

declaration and packed into a character string identified by the formatted 

data-unit name. 

The DECODE statement spec~fies that the character string identified by the 

formatted data-unit name is to be converted as specified in the named format 

declaration and placed in the data units named in the target list. 

Format 

ENCODE formatted-data-target unformatted-source-list 

format-name $ 

DECODE formatted-data-source unformatted-target-list 

format-name $ 

Explanation 

ENCODE 

DECODE 

Formatted Data Target 

Specifies the encoding operation of 

converting data from unformatted to 

formatted form. 

Specifies the decoding operation of 

converting data from formatted to 

unformatted form. 

The data-unit na:rp.e that will receive the formatted 

character string (starting in character position 0). 

This identifier may refer to a single word or 

multiword data unit with Hollerith attributes. 

11-6-16 



Formatted Data Source 

M-5035 
Change 2 

The data-unit name containing the 
character string (starting in character 

position 0) to be converted to 

unformatted data. This identifier may 

refer to a single word or a multiword 

data unit with Hollerith attributes. 

Unformatted Source List One or more data units containing the 

data to be converted to character string 

form. If more than one data unit are 

specified, they are collected together, 

separated by commas, and enclosed in 

parentheses. These data units must have 

internal data type attributes compatible 

with the external conversion format type. 

Unformatted Target List One or more data units that will receive 

the unformatted data after conversion. 

Format Narne 

If more than one data unit is specified, 

they are collected together, separated by 

commas, and enclosed in parentheses. These 
data 'units must have internal data type 

attributes compatible with the external con~ 

version format type. 

The identifier of the format. 

11-6-17 



M-5035 

Example 

"- PIC 1- ,btl>, If 1 I , I I .1 I , . I I I I I I I I I I 

L 

I I , I I I I ,el I I I I I I I I I I 
I , , I I I I I -, , I I I I , I I I I I I I I , I I I I I I 

I -, I I I I I I , I .. , 1 I I I I . 

I I I I I I I I 'I . I I I I I I I I I· I I 

I 

In this example, the character string JOE· is to be packed with the 

value of VRBLs AI, A2 and A3 as indicated by the format BILL. The 

result will be 

JOE: 223GOBAC12.14 

6.3, NONSTANDARD FILE CONTROL 

The special file operators presented in the remainder of this section are not 

to be used with the standard file names listed in Table 6-1. 

In addition to the CMS-2 operating system standard file names and their 

associated devices, each operating system provides other devices for the user. 

These devices consist principally of magnetic tape and paper tape punch units. 

The principal difference in using nonstandard devices versus standard devices 

is the requirement for the user to describe the physical characteristics of 

the data to be transferred and ·to state the name of the device on which input/ 

output operations are to occur. These attributes are collected in a fermal 

declarative called a FILE declaration and identified by a user-supplied file 

name. This file name has significance only within the user's program. It 

provides the linkage between the attributes described in the file declarative 

5tatement and the run-time routines that interface with the Monitor to achieve 

satisfactory input/output results. 

11-6-10 



Th«! followinu d«~finilions are necp.ssary hefore proceeding with th'e discussion 

of nonstandard file control. 

Physical record 

Physical file 

A group of adjacent., related dat.a 

items such as the individual f'f1t tj~~ 

in a telephone book for name, address 

and telephone number. This organization 

has significance only to the user and 

is not necessarily a physically definable 

entity. 

A group of adjacent, related logical 

records defined as a unit such as the 

alphabetic groupings of telephone 

book entries. On magnetic tape, a 

physical record is delimited at the 

beginning and end by inter-record gaps. 

These gaps are recognizable by the 

h~rdware device. A physical record 

may (~ontain one (unblocked) or mo r .-

than one (blocked) logical records. ' 

Blocking is the technique used to reduce 

the wasted space of inter-record gaps 

between unblocked logical records. 

A group of adjacent, related, physical 

records defined as a unit such as the 

complete telephone book for one city. 

On magnetic tape, a physical file is 

delimited at the beginning and end by 

an end-of-file mark (for the first 

ph~sical file of a tape, it's beginning 

is signified by a beginning-of-tape 

mark). These marks are recognizable 

by t'he hardware handling device. Thus, 

the physical file comprises one or more 

physical records. 

11-6-19 



M-5035 

Peripheral file device 

File-name 

6.3.1 FILE Declaration 

That mechanical device which is the repository 

for a group of adjacent, not necessarily 

related, physical files. A file device may 

contain one or more physical files as spact' 

permits. 

A unique, user-assigned name to provide 

referencing from the dynamic input/output 

command and control statements to the 

run-time routines. 

This declaration is mandatory for all input/output functions involving non­

standard file devices. 

The ~ILE declar~tion defines the environment in which one or more physical files 

are to be processed. The declaration assigns a file name for dynamic statement 

referencing, identifies the symbolic name assigned to the actual hardware 

device, and declares that all data to be processe~ on the named hardward device 

is physically organized as described in the declarative statement. 

The FILE declaration indicates the hardware device and reserves two areas. 

The first area contains the record description r the file status variable, device 

address, space for keeping track of file and record positions, .nd in case of a 

file having the length descriptor Sf the position pointers. The second area 

reserved is a buffer, equal in size to the maximum record that may be trans­

mitted. For record input/output the buffer area does not accumulate data for 

blocking purposes, so that each INPur or OUfPUT statement causes immediate 

communication with the device. If the file declaration contains the len'gth 

descriptor S, data is accumulated in a fixed size stream buffer and output is 

under control of run-time routines. 

The number of words transferred between the buffer and the data area depends 

upon the number of words specified in the data list of the input or output 

statement rather than the record length. For example, if 50 words of input 

are request(~ by specifying a ~O-word table in an input statement and if the 

input record is only 10 words long, the first 10 words of the input record are 

II-6-20 



M-5035 

assigned to the first 10 words of the table. and the remainder of the table is 

Sht to blanks or 0 depending on the record type. If 50 words of input are 

requested and the input record is 100 words long, the first 50 words of the 

input record would be transferred and the remaining 50 words would be lost. 

The INPLn' and OmpUT statements, when referencing a FORMAT declarative, imply 

either an automatic decode from the FILE declaration buffer area or an auto­

matic encode into the FILE declaration buffer area. 

The FILE declaration must occur in one of the user's data design areas. A hard­

ware device may be referenced in more than one FILE declaration. Standard 

hardware units have implied FILE declarations; the user is not required to 

declare them. 

Format 

FILE file-name type maximum-no.-of-records 

length-descriptor maximum-record-size 

hardware-name states WITHLBL $ 

Explanation 

FILE 

File Name 

Type 

Specifies a FILE declarative. 

An identifier to be used to reference this 

information. 

One of the following: 

H - records are all Hollerith. 

B - records are all binary. 

Maximum Number of Records I An integer or tag that specifies the maximum 

number of records that may be accessed in 

Length" Descriptor 

a physical file. If 0 is specified, any 

number of records may be accessed. 

One of the following: 

R - the size of each record is equal to the 

maximum length as defined by the record size 

(rigid length). 

I I -() "21 



M-5035 

Maximum Record Size 

Hardware Name 

v - The size of each record is determined by 

the amount of data transferred to ~nd from the 

file buffer and is not to exceed the maximum 

length as defined by the record size (variable 

length). 

S - The size of each record is rigid. Data is 

accumulated in the buffer gradually. 

An integer or tag that specifies the maximum 

length of the record (meaning number of words 

if the type is B and number of characters if 

the type i~ H). If 0 is specified, the size of 

the operand used in the particul~r input/output 

statement determines the record length. In 

this case,' no buffer area is set aside, and 

data is transferred directly betw~en the data 

area and the input/output device. Zero is 

illegal with a length descriptor of S. 

The name of any external storage device in a 

computer's environment. Run-time routines will 

provide direct interface with peripheral 

equipment (printer, punch, magnetic tapes, etc.). 

11-6-22 



States 

WITHLBL 

Examples 

M-5035 
Change 2 

Examples of hardware names, which may vary 

for each installation: 

MT2 Magnetic tape input and output units. 

TTY Teletype. 

An optional parameter that defines one or 

more states, which may be tested between 

input/output operations on this device. Each 

state is a mnemonic enclosed in single primes 

and corresponds to one of the ~umeric values 

returned by the Monitor after each I/O 
- . 

operation. (See paragraph 2.3.1.4 Volume I). 

Testing one or more of these states may be 

necessary to avoid an input/output abort 

(see paragraph 6.4 for format to tes t s ta tes ) .• 

Optional. Indicates that this file has or 

will have a label lor identification as its 

first entry preceding the first record. 

1. ·lfi/Illti Ill6T.Et 1M 1,s,2fQ(l is 1/12101 Y'lT12 I' rBuLs,Yt '", 
I' I i I I I I I "If,O,R,MA,L'", I',E,O,FI"'I ,\,E,B1R,/, $1 

2. 

The file LBR has a maximum of 3200 Hollerith-type records, whose 

sizes are rigid (120 characters) .. The external storage device named 

is MT2, whose possible states are 'BUSY't 'NORMAL', 'EOF', and 'ERR'. 

t8/1t.141 I(28s1JcJ t8 17f()/QI I \t1 191801 ""rtf, ,'",s1YI' 1,1 I' WI6rM1' I, I 
I I , II II I I I' 1601EI' I, IMlIIM''''L! 1$1 I I , 'I I I I I I I I I I 

The file OBJC is a binary file containing up to 700 records with 

the name OBJC as the first record. The record size is variable and 

may have a maximum of 480 words. If the user tests an , EOF' hardware 

state, Monitor hardware state-2 will be tested. 

11-6-23 



M-5035 

6.3.2 OPEN Statement 

Before data can be transmitted between a user's program and an external non­

standard device by means of the INPUT or OUTPUf statements, the run-time 

routines must be informeo that any reference using the FILE declaration name 

is legitimate and expected. The OPEN command instructs the hardware device 

specified by the FILE declaration to be accessible for input, output or both. 

E5tecution of an OPEN statement does not establish or guarantee the physical 

readiness of the hardware device. In addition, a file that is open may not be 

reopened until it has first been closed. That is, if a file is to be changed 

from an input unit to a scratch unit, it must be closed and reopened as a 

scratch unit. 

Format 

OPEN file~name action $ 

Explanation 

OPEN Specifies an OPEN operation. 

File Name The identifier of the file . 

. Action One of the following: 

INPUT 

OlJIPUT 

SCRATCH (both input and output allowed) 

Example 

108M 1l,t&eIIIA4AUIZ1 4, I I I J I I II I I I I, I I I I I I I I I 

This statement causes the file identified as LBR to be activated 

and specifies use as INPUT only. 

6.3.3 KNDFILE Statement 

if a user wishes to group records together, he may form a physical file. A 

physical file of data is any set of sequential physical records delimited by 

11-6-24 



M-5035 
Change 1 

an end-of-file mark. These groupings may.be used for device positioning; a 

device may cont.ain any number of these marks. 

The ENUflLE statement is used to place an end-of-file mark on those hardware 

devices to which it is applicable.· Writing an end-of-file automatically sets 

to 0 the record count associated with the file name of the file declarative. 

There is no change in the physical position of the hardware device as a result 

of this command. 

Format 

ENDF1LE file-name $ 

Explanation 

ENDF1LE Produces an end-of-file mark on a 

hardware device~ 

File Name The name of a previously opened 

nonstandard file. The parameter 

OUTPUT or SCRATCH must be included 

in the OPEN operation for this 

file name. 

Example 

I I, ,-, I , , , , , 

I I I Ie J J 

,EJUj,£, I,Lt4j 

The file declaration LBR, specifying hardware device MT2, is opened 

for both input and output. The ENDF1LE operation causes an end-of-

11-6-25 



M-5035 

file mark to be placed on the hardware device MT2, the record count 

for LBR is set to 0, and the file count is incremented by one. 

6.3.4 CLOSE Statement 

The CLOSE oper~tion deactiv~tes the specified file by setting an indicator 

that this file is not activated. Standard devices cannot be closed. Closi~g 

an dutput file having a length descriptor of S will also send the last un­

finished buffer to output. 

Closing a tape file does not imply rewinding the tape. A SET FIL (file) to 0 

or -0 will rewind the tape. Setting to -0 will rewind tpe tape, release the 

device, and close the file (see paragraph 6.5.1). 

Format 

CLOSE file-name $ 

Explanation 

CLOSE Specifies a CLOSE operation. 

File Name The identifier of the file. 

Example 

I I 

This statement causes the file identifier as LBR to be deactivated. 

6.4 DEVICE STATE CHECKING 

In performing any input/output, various states may b.e flagged by the Moni tor. 

These states might indicate such errors as end of input conditions either as 

a hardware problem or system problem. 

Each device may have various associated states that may be checked by the user. 

Those states which are of interest to the user may be specified in the FILE 

declaration by unique mnemonics enclosed in single primes. 

1 1-6-26 



M-5035 
Change 2 

The states may be tested by use cit th~'IF statement containing the file name 

and this unique mnemonic. The test checks equality between the current status 

of the file and the value assigned to the unique mnemonic. All runtime I/O 

operations are completed before returning to user's program. 

It should be noted that this test is dependent upon the hardware and Monitor 

system. The list of states appearing in the FILE declaration must correspond 

to the numeric status values returned by the Monitor (see Volume I). 

Format 

IF file-name EQ or NOT state THEN expression $ 

Explanation 

IF 

File Name 

EQ or NOT 

State 

THEN 

Expression 

Examples 

Specifies an IF statement. 

The name of a FILE declaration. 

Specified relational operators. 

Any mnemonic designated in the FILE 

declaration. It must be enclosed in single 

primes. 

A CMS-2 connector word. 

Any CMS-2 dynamic statement. 

The status variable of the FILE LBR is tested. 

If the condition indicated by the mnemonic 'NRM' is true,"a 

transfer to ENJOB is executed. 

11-6-27 



M-5035 
Change 1 

2. ,Fj I,L,E, ,I,/t',Plr,c, ,H.,S;O,D, ,R, 1/ 1%")' IM,T e; 
I , I I I 'JEiOJE! '", I ',E1RIRLSI 1', 

II I ." , I , , , , I , I I 

I I I ·1-- I I , I I , I I I I I 

lIB· r V'.. " oU:lRIMI' .. I btl' I I.JP , . !t!.1._ _ ~ 

I r$, 

i I I I' I I I I I 

The state for 'EOF' (Monitor hardware status code 2) in the file 

defined by INPTC is tested. If the condition is true, a transfer 
to ALPHA is executed. 

6.5 DEVICE POSITIONING 

In order to retrieve data from a device more efficiently, the programmer may 

separate .his data into one or more files or subfiles. The run-time routines 

will recognize these files by end-of-file marks and maintain position counters 

for the number of files passed and a counter for the number of records passed 

within a given file. 

The SET statement in conjunction with the functional modifiers POS (record 

position), FIL (file position) and LENGTH may be used to physically position 

a device, determine its present position or determine the length of a record • 

. Positioning requests are not applicable to all devices and incorrect use of the 

above modifie.rs will result in an input/output error indication. 

6.5.1 POSitioning By Files 

A unit may be positioned forward or backward by a 'number of files or subfiles. 

The unit is always automatically positioned following the ead-of-file mark. 

Format 

SET F1L(name) TO signed-integer-constant or data-unit-name $ 

11-6-28 



1. 

Explanation 

SET 

FIL(name) 

TO 

Signed Integer Constant 

or Data-Unit Name 

Examples 

M-5035 

\ Specifies a Sb1' operation. 

Specifies the positioning (FIL) of the unit 

specified by the name of a FILE declaration. 

CMS-2 separator. 

Specifies the number of files the unit is to be 

pOSitioned. The sign indicates the direction 

of the movement: + forwarrl and - backward. If 

a data name is used, it must contain an integer. 

A data-unit name containing a 0 will cause the 

device to be positioned to the beginning, If 

-0 is specified, the unit is locked out from 

further reference. 

If the variable LOCI contains a 4, the device referenced in file 

declaration NARFLAG will be positioned forward four file marks. 

The same statement may be used to backspace four fiI~s by setting 

LOCI to -4. If a request" is given to backspace more files than are 

written on the device; the device is positioned at the beginning. 

A request to backspace one file mark causes the tape to be positioned 

at the start of the current file. 

11-6-29 



M-5035 

2. lFI/ILIE', ,",T ,FI3, ,3,01°, ,R, ,i,LID, ,11 IT 11 j3, ,-$, 
IVIRI81l1 , F,',L.IP e 151 Ir , ,il~ IU ," 
I , I I , , , " I , I 1 , I ·1 
I I I I , , I I ·1 , , , I I 1 I 
Q,PIFIN, IM,T,FI3, IRIE',AI)I ~ 
J I I I , , 1 , 'I , ) , 1 , I 

I I I I I , , , . , i , , 1 , , , I , , , , , , , I , , , , , 
IAI L, PI HIA,. I , ISltlTI I F1 ' I LI( IMIT IFI3,) , ITIO, 1,;/1'll1o ,s1 ~I 
I 1 I 1 I I I ' 1 , I , I I , , I I I , I I , I , II I 1 

I I I I I , I -I , , I ,I I , I I I , , , I I I , , , 1 

I ~EIT IA-I _, IS,E,T, , FI /,L,(I"'I T IF,"3I) I IT,O, 1°1 ~I I 

I , I I I , I ·1 J I , , I I , , I I , , , I , 'I , I , 
6AII\IMI AI.' 1-S,EITi I fi'l L,{,H,TIF,'3, ), ,710, I-,D I ·1\1 

Statement ALPHA causes the hardware device Ml'13 to be positioned 

forward as many files as indicated in the variable FILPOS~ Statement 

BETA causes the hardware device MTl3 to be set to the beginning 

position 0: By statement GAMMA, the hardware device is set to the 

beginning, locked out from further reference, and the FILE MTF3 is 

closed. Each time, the file counter is adjusted. 

6.5.2 Positioning by Records 

I , 
I 
I 
I 

I 
1 

1 

1 

A unit may be positioned forward or backward a number of records within the 

current file. Attempted record positioning beyond the bounds of the current 

file will cause the device to be positioned at the beginning or end of the 

current file •. Record positioning should not be used with stream files. 

Format 

SET POS(name) TO signed-integer-constant or data-unit-name $ 

11-6-30 



1. 

2. 

Explanation 

SET 

POS 

TO 

Signed Integer Constant 

or Data-Unit Name 

Examples 

Specifies a SET operation. 

M-5035 
Change 1 

Specifies the positioning (POS) of the unit 

named by a FILE declaration. 

CMS-2 separator. 

Specifies the number of records to be forwa~d 

or backward spaced. 

In this example, the file named ~OOK is sp~ced fo~ward the number 

of record positions contained in the variable named SCREEN. 

Iii' 1 Lit, l}fjA/tiIF II, L/ Sit, 18, ,D1 It, 13,3'''1 "'IT/il l'IBIZi' I) I 'IN' .Rlte'l, , 
I 1 I " I I I I 1 I 1 1 I I I , 1 I 1 1 , I 1 I'G,ol"I'1 II I 
I I I , I I I I -, I I , I I I I 1 I I I I I I I I , 
eIPI~,IJI,MIAI4IFIIILIEI~1 ,IN,P,U!T"$,,., I I', II" I', 

~:£:T: :P:O:$:{~:~:~:F:':L:~~): Irk: :-:3: :~ : : I : : : : : : : : : : : 
The hardware device described as Mf4 is positioned three records 

backwards, relative to its current position. 

6.6 FILE AND RECORD POSITION DETERMINATION 

The record file or subfile position within the current file can be determined 
with the use of the POS or FIL modifiers. 

Format 

SET data-unit-name TO FIL(name) or POS(name) $ 

11-6-31 



M-5035 

Explanation 

SET .Specifies a SET operation. 

Data Unit Name The location where record position is to be stored. 

TO CMS-2 separator. 

FIL(name) or POS(rtame) Specifies the file position (FIL) or record 

position (POS) of the unit specified by the name 

of a FILE declaration. 

Example 

,5/II.IEI li/SIRI 1M 13rf l'l I'" ,,-tID ID I 1,tt,f,2.1 ~ I I I I 
,VIRI8 I l 1 ,L,B,RIF",L , .xl Iii&' ,1I1 r\1 I , I . I I 
iVI~8ILI 1L.1~ItIP,OISI e:1 I!,'I lUI 1$" I. I I, I 
I , , I I I I 1·1 I I I I I I I I I I I I I I 
PIPIEi'" IL,'Ill ,RtF1AI])1 1$1' I I t I I, I 

~:f:T: :L:8~:;:' :L: :~o: :~,~ :dL:~&~ ~: : : : : : ::: : : : :: : : 
SIEjrl 1L.,8tR,Plo tSl ,TiOI I PetSI(IL,~RI)1 I~ I I I I I I I t I I , I I J 

The current file or subfile position of the hardware device Mr2 is 

stored in the data unit LBRFIL; the current record position within 

this file is stored in LBRPOS. 

6.7 RECORD LENGTH DETERMINATION 

The length of the last record transmitted by either an INPUT or an OUTPUT 

statement may be determined by using the functional modifier, LENGTH. 

Format 

SET data-unit-name TO LENGTH(name) $ 

11-6-32 



Explanation 

SET 

Data-Unit Name 

TO 

LENGTH(name) 

Example 

M-5035 

Specifies a SET operation. 

Specifies the location where the record length 

is to be stored .. 

CMS-2 separator. 

Specifies the length of the previous record on 

the unit specified by the name of a FILE 

declaration. 

R,8,L, I ~E",NITjH, ,.; ,1,6, ,11, I~" I " I I , , I , J I, 

E:T: :L:r:w:;ltt: :r:o: :L:£~~:d~:(:~:~:~:F: I:L~)~: : : : : : : : : : : 
8 DEVICE IDENTIFICATION OPERATIONS 

, is sometimes desirable to make a check on a device (e.g., a tape unit or 

.sk to make sure that the right unit is mounted). The following two special 

:atements are used for this purpose: 

1. DEFID Statement. 

2. CHECKID Statement. 

lese commands are illegal on standard hardware devices . 

. 8.1 DEFID Statement 

EFID writes an identifier on an external device. If the tape is not at load 

()int when the DEFID command is ·given, the statement will be ignored. 

Format 

DEFID file-name STANDARD or (header description) $ 

11-6-33 



M-5035 

Explanation 

DEFID 

File Name 

STANDARD or Header Description 

Examples 

Specifies a CMS-2 control word. 

The identifier of a file that 

references the external device for 

which an ID block is desired. 

The description Df the identifier 

record to be written. If it is 

standard, the header is written in 

the local convention known to the 

run-time input/output routine. If 

a header description is given in 

parentheses, the contents of the 

parentheses are used as header. All 

header record~ are a standard 30 

words long. 

A standard header will be written on the device referenced in the 

file declaration LPR. 

The header "INVENTORY SDIEGO ··1 JUL 71" wi 11 be wri t ten on the device 

referenced in the file declaration LPR. 

] I-()-3t1 



6.0.2 CHECKID Statement 

M-5035 
Change 3 

CHECKID checks an identifier on an external device. If the tape is not at 

load point when the CHECKID command is given, the statement will be ignored. 

Failing the check will result in an input/output error condition. 

Format 

CHECKID file-name STANDARD or (header des.cription) $ 

Explanation 

CHECKID 

File Name 

Specifies a CMS-2 control word. 

The identifier of a file which refer­

ences the external device on which the 

identifier is to be checked. 

STANDARD or Header Description Describes the wording against which 

the identifier is to be checked. 

Example 

The,header record on the device referenced in the file declaration 

LPR will be checked if it is in standard format. 

II-6-35/n-6-36 mank) 





M-5035 

SECT [ON 7 

COM .. I i.E-,/, [ME SYSTEM FAC I t, IT 1 ES 

The primnry function of the CMS-2 Compiler is the translation of sourCe stntp­

mf~nts into machine (object) code. To effect this trnnslation, cprtain convpn­

tions regarding the organization' of the source statements have been established 

in previous sections. These conventions pertain to system data designs and 

systpm procedures as the organi,zational elements of a system. In the following 

sections, the header controls of a system are presented. They contain informa­

tion specifying listing options, loading controls w system index registers, 

inclusion of program debug features in the object code or other facilities that 

effect the compile operation~ 

A compile-time system comprises system elements and associated header rontrols 

(see figure 7-1). This concept establishes a method for obtaining a complete 

or partial translation of a user's program. The compile-time also signals 

the initiation and the termination of the translation process. For translation 

purpuses, such a system is regarded as something complete in itself; all infor­

mation necessary for a successful compile is specified within the system and in 

accordance with the rules and facilities of the CMS-2 language. 

7 • 1 ACCESSING THE COMPILER 

To obtain the services of the Compiler requires use of a uniquely formatted 

Monitor control card. Furthermore. additional Monitor control cards are re­

quired to properly define the user's job processing requirements for the 

Monitor. These requirements might be one or more of the following: compile; 

load and execute; build a library; update a library; etc. 

The $CMS-2 Monitor control card activates the CMS-2 Compiler. Following this 

Monitor control card are one or more compile-time systems (source input to the 

compiler). Use of the Compiler is terminated by the CMS-2 statement: TER­

MINATE $. 

The card formats of the Monitor control cards, their functions and their 

placement in a job deck are discussed in Volume I. 

11-7-1 

_ ... ~ .-r .... ' 



M-5035 

Statement 

Figure 7-1. Elements of a Compile-Time System 

I 1-7-2 



M-5035 

7.2 MAJOR AND MINOR HEADERS 

Headers are classified CIS major or minor deppnding upon position and TClnue of 

influence within a r.ompilt,-time system. A major heClder consists of those 

statements immediately following the SYSTEM statement (see paragraph 4.1.}) and 

bracketed by the statement: 

Format 

END-HEAD name $ 

Explanation 

END-HEAD Specifies the end of the header. 

Name Optional. The header identifier. 

The major header statements contain control information that applies throughout 

the compile of the entire system. A minor header, on the other hand, is a 

group of header statements immediately preceding a system element. The parCl­

meters within a minor header are in effect only throughout the compilation of 

the particular system element that the header precedes. Minor headers are 

optional if suffici:nt information is included in the major header. Figure 

7-1 illustrates the positions of major and minor headers. 

Major and minor header may be retrieved from a CMS-2 library. In this case, 

the header statements are bracketed by HEAU and END-HEAD statements. The format 

of the HEAU statement follows: 

Format 

name HEAD comments $ 

Explanation 

HEAD 

Name 

Specifies a set of header statements to supple­

ment major header controls or establish minor 

header groups. 

Optional. The header identifier. If the header 

group is to be included on a library, the name 

is required in order to identify the element on 

the library and for subsequent retrievals. 

II -7-3 



I 

M-5035 
Change 5 

Below is a list of available header statements, divided into four categories. These 

statements will be defined and their usage described in following sections. 

1. Options header statements:' 

OPTIONS 

2. Allocation header statements:' 

BASE 

TABLEPooL 

DATAPOOL 

LOCDDPOOL 

EQUALS 

NIT EMS 

3. Library retrieval header statements: 

LIBS 

SEL-ELEM 

SEL-8YS 

SEL-HEAD 

SEL-PooL 

CORRECT 

DEP 

4. Miscellaneous header statements: 

SYS-INDEX 

MEANS 

EXCHANGE 

DEBUG 

CSWITCH..;.DEL 

EXECUTIVE 

CMODE 

SPILL 

CSWITCH-ON 

CSWITCH-OFF 

CSWITCH 

END-CSWITCH 

END-CSWITCHS 
II-7-4 

.' 



1't1-50~15 

Change 5 

The OPTIONS, SYS-INDEX, and DEBUG statements are allowable only within a major 

header. DEP statements are restricted to minor headers. All the remaining state­

ment types may be used in either category of header. The major headers must in­

clude the OPTIONS statement. The statements of a major header may occur in any 

order except for the OPTIONS statement, which should precede all others. 

The comment features described in Section 3 are allowable within headers. 

7.3 OPTIONS HEADER STATEMENT 

Every compile-time system requires a major header containing at least the OPTIONS 

statement. This statement should immediately follow the SYSTEM statement. 

The OPTION S statement designates the types of output, the output units and the various 

program listings to be generated by the compiler for a compile-time system. 

Format 

OPTIONS PI' P2"" Pn $ 

Explanation 

OPTIONS 

Pl···Pn 

Specifies the OPTIONS header. 

Denotes optional parameters of the following types: 

SOURCE Source output and dispOSition. 

OBJECT 

LISTING 

MONITOR 

NONRT 

Object options, output, and disposition. 

Listing dispOSition. 

Execution under l\1onitor. 

Execution in a non-real-time environment 

allowing calls to implicit run-time functions. 

LEVEL(O) All error and warning messages are listed. 

This is the default condition .. 

LEVEL(l) \Varning messages are not generated. 

l\lODEVR BL Allows impl icit definition of variables. 

STRUCTURED Specifics that the system is written 

according to CMS-2 structured programming 

conventions. 

1I-7-5 

I 



1\1-5035 
Change 4 

Any or all of these parameters may be specified in any order. If no parameters 

are given or no OPTION S statement is included in the source input, the Compiler 

outpufconsists only of syntax error messages. The first three controls' listed 

above may be accompanied by subsidiary information in parentheses following the. 

parameter. This additional information ~sdescribed in the following paragraphs. 

The presence or absence of some of this informaUon can affect the duration and 

comprehensiveness of the compilation. The number of outputs requested may be 

restricted by the installation r s peripheral configuration. 

7.3.1 SOURCE Option 

This parameter calls for the listing, punching and/or tape output of the 

(edited) source statements input to the Compiler. The presence of this param­

eter on the OPTIONS statement indicates a request for source output; the 

associated parameters indicate the disposition of this source. 

Format 

SOURCE (LIST, CCOMN, CSRCE, CARDS) 

Explanation 

SOURCE 

LIST 

CCOMN 

CSRCE 

CARDS 

Requests output of edited sotlrce statements. 

Optional. Indicates that disposi tion of source 

output is hardcopy listing. This is the default 

parameter and is only necessary if a hardcopy 

listing is desired in addition to one or more of 

the following parameters. 

Optional. Indicates that the disposition of 

source is the output unit CCOMN. 

Optional. Indicates that ~isposition of source is 

the output unit CSRCE which is unloaded at the 

end of the compile time system. 

Optional. Indicates source output in the form 

of punched cards. 

II-7-6 



M-5.035 
Change 4 

Any or all of these parameters may be specified in any order. Whenever either 

CCOMN or CSRCE is requested, any hardcopy listing that results from either the 

LIST parameter or the OBI ECT options will show the source statements numbered 

as in a Librarian listing. This Compiler output may then be used in lieu of a 

library listing of the source code. 

1. 

3. 

l·~xampl (' s 

PI PI Ti I,01f6, 15,9"',R,c., €a ,~ , I I 1 I , 

I I I I I I 1'7-1 I I 1 I I It. 1 I 1 I I I I 

H .' q til'S I s a h a r d (' () P Y 1 i s lin ~I () f t h (' SOLI r (' t' i rfp 1I I • 

H('qUl'sls a hardcopy listinu nnd a plinchl'l\ t!t'C" or Ih(' sOllrc(' input. 

Bequests output of thl' source input to unit CU)~lN (genendly for a suh­

s{'quent library updatf' run). Any hardcopy listing of the sourrt' will harp 

statements numbered according to Librarian conventions. 

7 .:L 2 OBJECT Opt ion 

This parameter req'uests the Compiler to proceed all the way through its objprt 

generation phases. The sub~idiary information with this parameter specifies 

special generation options, object-code listing forms, and disposition of 

relocatable binary object-card decks. 

NOTE 

If OBJECT is not specified on the OPTIONS 
sta.tement, the Compiler will perform the syntax 
analysis phase only (producing syntax diagnostics) 
but will not proceed into the code generation phases. 
When SOURCE is present without OBJECT, the hard­
copy' source listing will have syntax error diagnostics 
interspersed with th,e source statements • 

. 11-7-7 



I 

I 

M-S035 
Change 5 

Fonnat 

OBJECT 

Explanation 

OBJECT 

(Special-mode, list-options, CNV, CCQ\1N, COBJT, CARDS) $ 

Requests object generation phases of the compilation. 

Special Mode Optional. One of the following: 

CMP Request a compool generation run. 

OPT Requests optimization of transient references. 

List Options Optional. One or more of the following hardcopy output 

options: 

CR Requests both local and global cross-reference 

listings, which are alphabetized listings of the 

identifiers defined within the compile-time sys-

tern, their assigned locations, and the locations 

that reference them. 

CRG Requests a global cross-reference only. 

CRL Requests a local cross-reference only. If CR, 

CRG, and CRL are omitted, only cross-reference 

, listings of unallocated identifiers are given. 

SA Requests symbol -analysis listings which provide 

a list of identifiers categorized according to 

declarative type. Within each grouping, the 

identifiers are alphabetized and accompanied by a 

stnnmary description of· their respective attribut~s. 

8M Requests a full symbolic output listing which pro .. 

vides for the complete listing of the source 

statements intermixed with the octal and nmemonic 

representations of the generated machine code and 

their corresponding addresses. 

11-7-8 



CNV 

CCOMN 

COBJT 

CARDS 

M-5035 

Optional. Specifies that fixed-to-float and 

float-to-fixed numeric conversions are to be 

provided by run-time routines rather than in­

line generation. 

Optional. Indicates that disposition of relo­

catable binary object-code is the output unit 

CCOMN. 

Optional. Indicates that disposition of relo­

eatable binary object-code is the output unit 

COBJT, which is unloaded at the end of the 

compile time system and may be saved. 

Optional. Indicates relocatable binary obj ect 

code output in the form of binary punched-card 

decks. 

Any or all of the above primary parameters may be specified in any order. 

r«lTE 

The special mode parameter CMP requests the 
creation of a compool output. This parameter 
may be used only with compile-time systems 
whose elements are system data designs and 
headers. The compool output is identified by 
the name of the last system data design and 
consists of the definitions of all the data 
design elements decoded into a format internal 
to the Compiler. A compool may be placed on a 
library tape and may be retrieved instead of 
the corresponding source system data designs 
for subsequent compile-time systems. Using 
such a compoolsaves the compilation time 
normally needed to process the source system 
data designs. 

The special mode parameter OPT requests 
optimization of transient references. The 
use of the parameter may result in the ele-
ments of a system being no longer indepen­
dently compilable. 

11-7-9 



I 

M-5035 
Change 5 

Examples 

1. ,gPa 17/,0."'3 to,e, :JjEjc, 7i ,$, , I I , , , I I , I , I , , I " , , I' , I 
Requests diagnostic output from all Compiler ,phases; no other output will 

be produced. 

Requests a hardcopy listing of source and diagnostics from all phases of 

the Compiler. Adjacent to each source statement is the relocatable 

location of the first instruction generated for 'that statement. These 

locations are useful if CR is also requested. 

3. p,p,r;I,gNJSt IO,A~EjCITjGC,~,,1 rS,t1",Sltf l), ~11 ,I II , , J I I 
Requests a local and global cross-reference, symbol analysis, and full symbolic hard­

copy listing, along with diagnostics, from all phases of the Compiler" 

4. Qe.lj l,aMs, IS,O,U,R,C,Ei" ,O,Bllj fjC,7i(,C,MP",Cto,B,Ji7j"S.M.;, il 
Requests a source listing and a full symbolic listing for a compool gen­

eration compilation. The compool and its corresponding relocatable binary 

object code will be output on unit OOBJT, which will then be unloaded. 

7.3.3 LISTING Option 

This parameter specifies the disposition of the hardcopy listings produced by 

the Compiler as a result of the parameters described in paragraph 7.3.2. It 

need only be specified if the hardcopy or printer, output is to be written onto 

other output units instead of, or in addition to, being printed. 

Format 

lISTING (PRINT, CCOMN, ClIST) 

11-7-10 



Explanat ion 

lISTING 

PRINT 

CCOMN 

ClIST 

M-5035 
Change 2 

Requests nonstandard hardcopy listing disposition. 

Optional. Indicates that disposition of printer 

listings is the printer. This is the default 

parameter and is only necessary if printer output 

is desired in addition to one or more of the 

following parameters. 

Optional. Indicates that disposition of hard­

copy listing output is the output unit CCOMN. 

CCOMN may not be used if specified in OBJECT option. 

Optional. Indicates that disposition of hard­

copy listing output is the output unit eLIST, 

which is unloaded and may be saved at the end of 

the compile time system. 

Any or all of the above parameters may be specified in any order. 

Examples 

1. ~PI7j l,gNis. fO,s,JjEje,Tj(StJ)I" ,LIIIS." 1,It't'dr I(,e IC,O,~N~), ,$, 

2. 

Requests the full symbolic hardcopy output listing to be placed on unit 

CCOMN rather than to be printed. 

Requests a hardcopy listing and a punched card deck of the source input. 

The listing will be printed, as well as placed on the output unit CLIST. 

7.3.4 MONITOR Option 

The MONITOR parameter allows the compilation of statements that directly or 

indirectly require access to the CMS-2 operating system (i.e., high-level I/O 

and DEBUG statements). It also results in all testing of the special console 

condi tions (e.g., KEY 1 , STOPS) to be simulated by the Moni tor. This parameter 

11-7-11 



M-5035 
Change 3 

should be specified only when the object code produced by the Compiler is to be 

executed under Monitor control. See Volume I, Section 2 (Monitor) for simulated 

settings of special console conditions. 

7.3.5 NONRT Option 

The N ONR T parameter indicates that the program· is to be executed in a non-real-time 

environment and allows the generation of calls to implicit run-time functions 

(exponentiation, BIT/CHAR, and fixed/floating point conversion). The MONITOR option 

automatically implies the NONRT option. In the absence of NONRT (or MONITOR), all 

impliCit references to these run-time functions will cause source warning messages 

and/or object error diagnostics. 

7.;3. 6 Two-Level Diagnostics 

Error listings produced by the Compiler contain two categories of diagnostic messages: 

serious errors which affect program execution and warning errors which may not affect 

program execution. The LEVEL(l) option causes suppression of the listing of errors 

in the warning category. A LEVEL(O) specification, or no specification of the LEVEL 

option, causes errors in both categories to be listed. Regardless of level specified 

or implied, errors in the warning category are not included in the COMPILE ERROR 

Summary at the end of the compile. 

7. 3. 7 MODEVRBL Option 

The MODEVRBL parameter instructs the compiler to create local variable definitions 

for any undefined data units appearing in dynamic statements where the syntax of the 

statement allows references to variables. These implicitly defined variables are given 

the attributes of the MODE VRBL declaration or the compiler's inherent mode (I 16 S) 

in the absence of a MODE VRBL declaration. 

II-7-12 



7. 30 ~ STHUCTURED Option 

M-5035 
Change 4 

The STRUCTURED option informs the compiler that the system is written 

. according to the Cl\IS-2 structured programming conventions. The Compiler 

will issue the warning message "NON-STRUCTURED STATEl\IENT" for the 

each statement which violates these conventions. These statements include: 

1. Statement switch declarations 

2. GOTO statements 

3. Procedure declarations containing abnorlual exits 

4. Procedure call statements containing ahnormal exits 

5. It ETUHN statelnents containing an abnorlnal exit 

6. SET statements containing an OVERFLOW specification 

7. Procedure Switch call statements containing an INVALID 

specification 

1I-7-12A 



7.4 ALLOCATION HEADER STATEMENTS 

M-5035 
Change 4 

The Hllocat ion srheme inrorporated in the Compilf'r generally consist s of ttl£' 

assignment of addresses to instructions and datH definitions in a sequentiHI 

mHnner thHt reflects the order of the source stHtements. All identifif'rs 

thHt function as symbolic addresses Hre assigned locat ions arrordingly. ]n th£> 

rasp of n data namp, tIl() sizp of the ar£>a reser\'pd is determined from its 

definition in a declarative stHtement. If the j)rogrHm subspquf>ntly sppcifies 

a preset value for the data unit, the Compiler ueneratf's the preset valup 

originHting Ht the location previously HllocHted. 

The requirem~nts of a particular program or application package often require 

departure from this standard allocation scheme used by the Compiler. F6r this 

purpose, various allocation header statements are provided in the CMS-2 language. 

Since the effect of these allocation statements on a user program often involves 

both the Compiler and the Loader, the reader should also refer to the descrip­

tion of the CMS-2 Loader in Volume I, Section 3, in particular, the AC and 

CS d i rec t i ve s. 

The words "allocation" or "relative allocation", when used to describe CMS-2 

for the AN/UYK-7, will refer to the positioning of an individual data unit or 

dynamic statement (TABLE, label, etc.) within a basic CMS-2 element (SYS~DD or 

SYS-PROC). The words "relocatable allocation" will refer to the posi 1ioning 

(offset) of a CMS-2 element from its associated basic register content. 

7.4.1 Pooling Statements 

Two basic types of pooling statements exist. The first type directs the Com- . 

piler to divide a basic element into two separate elements for the purposes of 

subsequent relocatable allocation by the Loader. Statements in this group are 

LOCUDPOOL and TABLEPOOL. If it is ever required to treat local data designs 

and/or tables as relocatable elements at load time, these statements must be 

II-7-12B 



M-5035 

present, with their associated basic elements, SYS-PROC and SYS-DO respective­

ly., during compilation of the source. 

The second type of pooling statement includes those pool statements that are 

associated with the basic CMS-2 elements. They are BASE and DATAPOOL. It is 

necessary to include these pool statements with the source only if machine and 

system-dependent information is included. 

In general, pooling statements may occur in both major or minor headers. Pool­

ing statements used in a minor header affect only the SYS-DO or SYS-PROC that 

immediately follows. (If a pool statement is used that is inappropriate, it is 

ignored by the Compiler; e.g., LOCDDPOOL within the minor header of a SYS-DD 

would be ignored.) 

If a pooling statement occurs in a major header, it applies to all basic ele­

ments not having this pooling statement as a minor header. All four of the 

above pooling statements may appear in a header, but only one of each type may 

be specified (i.e., two BASE statements may not appear in,the same header). 

Each of the pooling statements allows an optional name to be given for the pur­

pose of identifing the pooled element or group of elements. This name defines a 

compound section and appears in the CS Loader directive generated by the Com­

piler as part of the binary output. A compound section informs the Loader 

that relocatable elements are to be grouped together (see Volume I, Section :3). 

If no name is given on t~e pooling statements, the Compiler will provide 

default names. They are as follows: 

Pooling Statement' 

BASE 

DATAPOOL 

LOCUDPOOL 

TABLEPOOL 

Default Name 

SYSP 

SYSDD 

LOCDD 

TA3LI~ 

Furthermore, if neither the BASE ~or the DATAPOOL statements are provided 

by the user, the Compiler will use the respective default names for the 

compound section sperifications. 

11-7-13 



M-5035 

One of the parameters appearing in all of the following pooling statements 

specifies that the data or instructions in the pool be referenced using a 

transient base register. This parameter should be used only for extremely 

large programs. 

7.4~1.1 LOCDDPOOL Statement 

The LOCDDPOOL statement instructs the Compiler to compile the local data de­

signs with reference to a separate base (i.e., as a relocatable element). If 

'found in a major header, it instructs the Compiler to compile all local data 

designs in this manner. (A LOCDDPOOL also found in a minor header would be 

redundant unless it had a different name, requested transient reference g or 

suggested grouping under a different base register.) 

If found in a minor header, only the local data designs of the associated S~S­

PROC will be compiled as a relocatable element. All other local data designs 

will be based relative to the base of the SYS-PROC as encountered within the 

source. 

Format 

name LOCDDPOOL (Tv identifier) optional-value $ 

Explanation 

name 

LOCUDPOOL 

T, Identifier 

An optional name assigned to this element or 

group of elements. This name defines a compound 

section and appears in theCS Loader directive 

generated by the Compiler as part of the binary 

output. 

Identifies a local data-design pool. 

An optional implementation aid. If not presentv 

normal conventions will be used. If T is present, 

it specifies that the local data designs covered 

by this pool statement should be referenced 

transiently. The identifier, if present, spe­

cifies the AN/UYK-7 base register under which 

11-7-14 



Optional Value 

Example 

I I I 1 I , 

I I , , I , 

, , I I I J 

I , , , I I 

M-5035 

t.his p}pmf'nl may hf' illlo(~Htpd. This inf()r·~ 

mation is passed on to thp Loader but may 

be overridden at load time. The identifipr 

may be an EQUALS tag or a positive integer 

constant. 

The absolute allocation at which it is 

desired that this element (or group of 

elements) be located at load-time. The 

Compiler passes this information to the 

Loader. The Loader allows this value to 

be overridden at load time. 

. I· I , I , , , I I I I " I I , I , , , I 

I I I -, , I I I I I I , , I I , 1 , I' '" I 

J I ,., I I I , J , J 

I " ,., I I , , J , I l 

I I , .• , , , I I I , I 
I 1 I -, I 1 , I I , I , I , I I I 1 I I 

This example represents a program which, because of system design, 

found itself with a shortage of base registers. Since the programmer 

realized that he made few references to his own local data designs, he 

commands' the Compiler to use a transient base regi~ter whenever any local 

data is requested in his program. He further commands the Compiler to 

indicate to the Loader to use 56 as the transient register and to base 

his local data at address 40000. This can be changed at IGnd time. 

11-7-15 



M-5035 

7.4.1.2 TABLEPOOL Statement 

The TABLEPOOL statement instructs the Compiler to ~ompile all applicable tables 

with reference to a separate base location. The TABLEPOOL applies only to 

tables declared in a SYS-DD. 

If this pool statement is present in the major header, it is applicable to all 

tables declared in all SYS-DD's not having a TABLEPOOL statement in their minor 

header. If this statement is present in the minor header of a SYS-DD, it 

applies only to tables declared in that SYS-UD. 

Format 

name TABLEPOOL (T, identifier) optional-value $ 

Explanation 

Name 

TAI3LEPOOL 

T, Identifier 

An optional name asSigned to this element or 

group O:f element s. Thi s name defines a compound 

section and appears in the CS Loader directive 

generated by the Compiler as part of the binary 

output. 

Specifies pooling of all tables with reference to 

a separate base location. 

An optional implementation aid. If not present, 

normal conventions will be used. If T is present, 

it specifies that the tables declared in the 

SYS-DD covered by this pool statement should be 

referenced transiently. The identifier, if 

present, specifies the AN/UYK-7 base register 

under which this element may be allocated.· This 

information is passed on to the Loader but may be 

overridden at load time. The identifier may be 

an EQUALS tag or a positive integer constant. 

11-7-16 



Optional Value 

7.4.1.3 BASE Statement 

M-5035 
Change 2 

The absolute allocation at which it is desired 

that this element (or group of elements) be 

located at load time. The Compiler passes this 

information to the Loader. The Loader allows this 

value to be overridden at load time. 

The BASE statement instructs the Compiler to compile system procedures with 

reference to a sep~rate base location. This pool statement is considered to be 

present in the major header by default. 

If this pool statement is present in the major header, it is applicable to all 

SYS-PROC's not covered with a BASE statement in a minor header. 

Format 

name BASE (T, identifier) optional-value $ 

Explanation 

Name 

BASE 

Tt Identifier 

An optional name assigned to this element or 

group of elements. This name defines a compound 

section and appears in the CS Loader directive 

generated by the Compiler as part of the binary 

output. 

Specifies pooling of all instructions with refer-· 

ence to a separate base location. 

An optional implementation aid. If not present, 

normal conventions will be used. If T is present, 

it specifies that the generated instructions 

covered by this pool statement should be refer­

enced transiently. The identifier, if present, 

specifies the AN/UYK-7 base register under which 

this element may be allocated. This information 

is passed on to the Loader but may be overridden 

at load time. The identifier may be an EQUALS 

tag or a positive. integer constant. 
' .. , .~ .:~ ;.tl'~~~:;;;:.' . "IIIlIllIllI'l. 

11-7-17 



M-5035 

Optional Value 

7.4.1.4 DATAPOOL Statement 

The absolute allocation at which it is desired 

that this element (or group of elements) be 

located at load time. The Compiler passes this 

information to the Loader. The Loader allows this 

value to be overridden at load time. 

The DATAPOOL statement instructs the Compiler to compile system data designs 

with reference to a separate base location. This pool stat~ment is considered 

to be present in the major header by default. 

If this pool statement is present in the major header, it is applicable to all 

SYS-DD's not covered with a DATA POOL in a minor header. 

Format 

name DATAPOOL (T, identifier) optional-value $ 

Explanation 

Name 

DATAPOOL 

T, Identifier 

An optional name assigned to this element or 

group of elements. This name defines a compound 

section and appears in the CS Loader directive 

generated by the Compiler as part of the binary 

output. 

Specifies pooling of all data with reference to 

a separate base location. 

An optional implementation aid. If not present, 

normal conventions will be used. If T i's present, 

it specifies that the data design~ covered by this 

pool statement shbuld be referenc~d transiently. 

The identifier, if present, specifies the AN/UYK-7 

base register under which this element may be 

allocated. This information is passed on to the 

Loader but may be overridden at load time. The 

identifier may be an EQUALS tag or a positive 

integer constant. 

11-7-18 



Op1.ionul Valu(~ 

7.4.2 EQUALS Statement 

M-5035 
Change 2 

The ahs()lu1.(~ Hllor.ation nt whir.h it is d(~sif(~d 

thClt this el(~m(~nt (or uroup of (!lements) bp. 

located at load time. The Compiler passes this 

~nformation to the Loader. The Loader allows 

this value to be overridden at load time. 

The EQUALS statement is used for two purposes: the assignment of numeric 

values to symbols and the specification of relative allocation. 

If the EQUALS statement is contained in a major header or system data design, 

the EQUALS statement applies throughout the system and the value will be 

substituted wherever the name appears. If the EQUALS statement appears in a 

minor header or local data design, the value will be substituted only through­

out the system procedure or data design which follows the minor header. 

When the EQUALS statement is used to assign a numeric value to a symbol used 

in the following procedures or data designs, the values used in the arithmetic 

expression must be either constants or values previously defined by an EQUALS 

st3tement, or previously specified in a system data design within the system 

being compiled. Arithmetic expressions appeio-:.·ing in EQUALS statements must be 

simple, parenthesis-free expressiolls and are evaluated left to right without 

precedence consideration. Relative allocation is accomplished with the. EQUALS 

statement where the right-hand side references data units. 

Format 

name EQUALS expression $ 

Explanation 

Name 

EQUALS 

Expression 

The name of a data unit, or a tag for a numeric 

constant. 

Specifies that an allocation or value assignment 

follows. 

A simple, parenthesis-free expression repre­

senting a relative allocation or numeric valup. 

The basic arithmetic operations of +, -, * and I 

11-7-}9 



M-5035 

are allowed. The operands in this expression 

may be data unit names, tags defined by previous 

EQUALS, and constants. Table 10-1 summarizes the 

rules for legal final results (left side of 

EQUALS) and legal intermediate results (binary 

operations within the expression on the right 

side of the EQUALS). 

TABLE 7 ~l. EQUALS EXPRESSION SUMMARY 

ONE OTHER RESULT 
OPERAND OPERATOR OPERAND (FINAL OR INTERMEDIATE) 

Constant (tag) + _ f~ I Constant (tag) Constant (tag) 

Relative (data Constant (tag) Relative (data unit) 
unit) + -

Constant (tag) + Relative (data Relati ve: (data unit) 
unit) 

Relative (data - Relati ve (data Constant (tag) 
unit) unit) 

7.4.2.1 Defining a Tag 

When neither the name on the left nor any of the names on the right of an 

EQUALS statement are the identifiers of data units, the name on the left 

becomes a tag for the numeric value represented by the expression on the right. 

This tag may then be used in data declarations and dynamic statements and the 

appropriate value will be substituted. If the expression on the right involves 

data units (relative locations) and the result is an integer value, the tag 

may be used in dynamic statements or other EQUALS statements but not in data 

declarations. 

11-7-20 



M-5035 

Exam~le 

oft{ , IFt:!!ltlIIIIL ,S, ,3.2, . JI, , , I 1 1 

#fNt 1 JEAu~,LIS, IFjWvi ,f, 1 1 , 

,MAg, IE,flIUIAI LIS ,F,W,-IHtI!',- , il ,$, 
, 

" 
I I J I ., , , I I 1 J I I , , , I 

I I I I I , I', , , , I , , I I , J , I I I I , 
,V,R,8,L, IX, Al ,FaW, ,5, ,Hlw, IA /fAg, I, 
J J I , I , ,. I I , , , , J , I , , 
1 , , J I , , " , I I , , I I I , 1 , 
,S,E",li lx, ,Tjo, ,g., ifr "'IA~ .$, 

The variable X is a 32-bit, signed, fixed-point data unit with 16 

fractiona'l bi ts and an ini tial value of 15. Execution of the SET state­

ment assigns the value 30 to the variable X. 

·7.4.2.2 Establishing Relative Locations 

The EQUALS ,stat ement m(lY he used to assign the location of a name relative or 

equal to the locat.ion of another name. The definit.ions of these names must 

appear within the same system element. The identifier used on the left side 

of an EQUALS statement must be a data name for a table, like-table, item-area, 

va.riable or switch. The express,ion on the right involves data unit names, 

tags, and const.ants. 

If a data name appears on the left side of t.he EQUALS statement, no area for 

the data definition is reserved by the Compiler. During the allocation pro~ 

cess, the allocat.ion count('rs are not altered; the affected delta definition is 

removf'd from l.hf' normfll :lssiunm(~nt sequence and is allocated relative to the 

data name appearing to t hf' right of the EQUALS. (I f the data n~mp ont he right 

does not appear on the left or an EQUALS statement, its data definition re­

ceives normal allocation nnd reservation of area by the Compiler.) A statement 

label may not appear 011 the left of the EQUALS statement. 

11-7-21 



I 

M-5035 
Change 3 

Example 

Storage is allocated for Bf but is not reserved for A or C. A occupies 

the same location as B,and C occupies the next consecutive memory location. 

7.4.3 NITEMS Statement 

The NITEMS statement is a special case of the EQUALS statement as used to tag 

an identifier to a constant. Its purpose is to assign a value to a tag appear­

ing as the number-of-items specification in a vertical table. 

Format 

NITEMS (identifier) EQUALS value $ 

Explanation 

NITEMS 

Identifier 

EQUALS 

Indicates a special case of the EQUALS statement. 

A tag used on a subsequent table declarative to 

represent the number of items. 

Specifies an EQUALS declaration. 

Value An integer constant or another identifier tagged 

to a constant by a previous EQUALS statement. 

The NITEMS statement provides an initial constant for the number of items of a vertical 

table declaration using the tag and also provides a name to which another value may be 

attached at load time; thus, the length of a table may be changed without recompiling the 

program. As a result no fields of a table whose length is determined by a NITEMS tag may 

be preset. 

7.5 LIBRARY RETRI-EVAL HEADER STATEMENTS 

Elements of a compil~-time ~ystem may be retrieved from CMS-2 libraries and 

Compiler output tapes as part of the input to the Compiler. These include 

h(~;HJf' r nnd sys t(~m el('mf~n t s r,onta i ni ng sourr,e statement sand compool element s ¥ 

11-7-22 



M-5035 
Change 5 

wldch (tre compiled system data designs, in a format internal to the Compilpr. 

The following parugraphs describe the control stn\('lIIcnIS nef'ded to r('lril'Vf' 

source elements and compools. Additional control stntements are provided for 

the purpose of correcting source elements during element retrieval. These 

library retrieval and correction statements may he used either in major or 

minor headers or in place of system elements of a cumpile-~time system. Library 

features are described in Volume I, Section 4. 

7.~.1 LIBS Statement 

Prior to control statements that select elements from a lihrary, the library 

must be identified by a LIBS statement. 

Format 

LIBS internal-id {external-id} $ 

Explanation 

LIBS 

Internal ID 

External ID 

The statement identifier. 

The name of the library or Compiler output. 

Optional. Some external identification (such as tape reel 

number) which will be output to the compiling system 

operator. If not given, the internalID will be used. 

When Compiler-produced outputs are used in library retrieval, the names CCOMN, 

CSRCE orCOBJT must be used as the internal-ide The name used corresponds to 

the one specified on the OPTIO~S statement when the tape was produced by the Com­

piler. Sources statements'may be retrieved from CCOMN or CSRCE; compools from­

CCOMN or COBJT. If CCOMN is being used as library input and CCOMN has been 

specified on an OPTIONS statement as an output file, the LIBS statement must include 

an external-id other than CCOMN to distinguish between the two files. 

7.5.2 Retrieval Selection Statements 

Elements on a library are identified by name and an optional key. The key is required 

if the elements selected have been given a key during library preparation. Element 

keying provides a means of distinguishing between elements of the same name on a 

library. 

11-7 -23 



I 

l\1-5035 
Change 4 

The name of a source element for retrieval is the nanle specified on the H EA 0, SYS-DD 

or SYS-PH()C statelnent. The narne of a cornpool elernent is the name of the last 

SYS-DD llsed to create the COlllpool. The name and the HEA 0, END-HEAU, SYS-DD, 

E~D-SYS-I)(), SYS-PHOCand E~{)-SYS-PHUC statetnents define and delirllit an 

eicnlentduring the retrieval procpss. 

Hetrieval of eleOlcnts from a library is achieved through selection statenH.mts which 

specify thl' desired elerllcnts by name and/or key. There are four types of Sf-: L control 

statements: SEL-ELE:~I, SEL-SYS, SEL-IIEAD alld SEL-POOL. 

Formats 

SEL-ELEI\I name 

SEL-SYS (key) :$ 

Sf: L-IIEAI) name 

SEL-POOL name 

Explanation 

SE L- E LE 1\1, SE L-SYS, 
SEL-HEAD, SEL-PooL 

Natne 

Key 

Dep-option 

(key) , dep-option $ 

(key) , dep-option $ 

(key) $ 

Staternent identifiers. 

Identifies the element desired for retrieval. 

Hequired only if the named element has a key 

on the library. If not required, the parentheses 

and key are omitted; the key is considered blank. 

Optional. Specifies the level of dependent 

element retrieval. A dep-option may be one of 

the following: 

ALL 

ONLY 

II-7~24 

retrieve all dependent 
elements 

retrieve no dependent 
elements 



M-5035 
Change 4 

no-of-Ievels retrieve the specified levels 
of dependent elements 

No-of-Ievels is an integer or an EQUALS defined 

name of an integer. These integers have the 

following interpretations: 

o all dependent elements, equivalent 
to ALL 

1 no dependent elements, equivalent 
to ONLY 

2 this element and one level of 
dependencies 

3 this element and two levels of 
dependencies, etc. 

If no dep-option is given, ALL is assumed. This 

parameter is used only in conjunction with libraries 

and is ignored when retrieving from Compiler 

output tapes. 

The SEL-ELEM statement causes the retrieval of a specific system element and 

possibly all its declared dependent elements; it may not appear in a major header. 

The SEL-SYS statement requests the retrieval of all elements having the specified 

key. All source elements are retrieved when the key is blank. The SEL-HEAD 

statement causes the retrieval of the named major or minor header and possibly . 

all corresponding dependent elements. The BEL-POOL statement causes the 

retrieval of the named compoo!. 

NOTE 

SEL-SYS statements may be used in conjunction with 
SEL-ELEM and SEL-HEAD statements. The order 
of retrieval is dependant upon the order of the 
elements on· the -library. A single correct' deck (with 
elements referenced in their library order) may be 
used to update elements called by a combination of 
BEL statements. 

n-7-24A 



I 
M-5035 
Change 5 

The BEL-POOL statement must appear in an unnamed major header of the compile­

time system such that it precedes all user-defined identifiers except the system name. 

Retrieval of a com,pool occurs immediately when requested. Retrieval of elements 

specified in one or more consecutive select state~ents commences when one of the 

following conditions occur: 

a. The Compiler detects the CORRECT statement. 

b. The Compiler encounters a CMS-2 statement other than the LIBS or 

select statements. 

c. The number of consecutive select statements exceeds 60. 

When retrieval is completed for a given set of requests and corrections, the 

Compiler returns to the standard system input device for the rest of the user's 

input to the Compiler. 

7.5.3 Correcting Elements During Library Retrieval 

Source elements may be corrected during the retrieval process;" compools may 

not. The corrections do not modify the library or Compiler output tape itself, 

but only the elements as they are passed to the Compiler. The name of the 

element and the card image sequence numbers, as given in the library listing, 

provide the reference points for making corrections in the form of deletion, 

insertion or replacement of card images. The Compiler listings produeed during 

a SOURCE output onto CCOMN or CSRCE also provide the same card image sequence 

numbers. 

Corrections decks must be introduced by the statement: 

CORRECT $ 

which indicates that one or more of the elements (that are to be retrieved as 

directed by preceding SEL control statements) are to be corrected. Since 

CORRECT is a CMS-2 statement, it may not start in card columns 1 through 10.' 

The CORRECT card is followed by correction contr.ols (as described in Volume I. 

Section 4) and CMS-2 statements. The correction deck is terminated by the 

II-7-24B 



M-5035 
Change 3 

Librarian directive /ENDCOR .. Within a block of corrections, th~ order of the 

corrected elements must be that of the library or Compiler output tape. 

7. 5.4 DEP Statement 

For any given element of a compile-time system, the programmer may declare other 

elements to be dependent or subordinate to the given element. Such a specification 

of dependents may appear only in a minor header. An element may have a 

maximum of 58 dependent elements. Any minor header source element is automatically 

declared a dependent element of the associated system element. 

The DEP statement has no direct effect on the compile process; the information is 

simply passed through to the source or relocatable output. The dependent element 

concept has' bearing primarily upon the Librarian process and the relocatable loader. 

In library retrieval, whether of' source or relocatable elements, dependent elements 

are retrieved automatically with the selected element unless otherwise specified by 

the user. Furthermore, during relocatable loading, all declared dependent elements 

must be satisfied. 

Format 

DEP name (key),. name (key),... $ 

Explanation 

DEP 

Name 

Key 

7 .. 5. 5 Key Specification 

Declares a dependent element. 

,The name of another element such as a system 

data design or sy stem procedure. 

An optional key value placed on the element. 

Various programmer selected outputs from the Compiler may be incorporated into 

libraries. Elements on such libraries are identified by name and an optional key. The 

name of an element output by the Compiler is automatically defined as the name given 

11-7-25 

I 



M-5035 
Change 3 

on the associated HEAD, SYS-DD or SYS-PROC statement. Key specification provides 

the programmer with the option of defining library element keys at compile time. 

Key specification may be included in the SYSTEM, HEAD, SYS-DD, SYS-PROC and 

SYS-PROC-REN statements (see Section 4). This section describes the key specification. 

Formats 

(key) 

(key)*S 

(key) *0 

(key)*C 

(key)*L 

Explanation 

Key 

S 

o 

C 

L 

Alphanumeric identifier of not more than four 

characters. 

Specifies that the key is to be attached to a 

source element. 

The key is to be attached to an object element. 

The key is to be attached to a compool. element. 

The key is to be attached to a listing element. 

More than one key may be specified on any of the applicable declarative statements; each 

"(key)*element-type" is separated by a . comma. Key specification included in the SYSTEM 

statement applie~ to all elements of the designated type output for the compile-time system. 

Key specification included in the HEAD, SYS-DD, SYS-PROC and SYS-PROC-REN state­

ments apply only to outputs associated with that element. If system declared key specifica­

tions and an element declared key specification designate the same type of output, the 

element key is used .. Finally, if no output type is attached to the key specification, all output 

types are keyed; if no key specification is given, all output elements are keyed with blanks. 

11-7-26· 



M-5035 

7.6 MISCELLANEOUS HEADER STATEMENTS 

7. 6. 1 SYS-INDEX Statement 

The SYS-INDEXstatement may be used only in a major header. This statementassigns 

a unique identifier to a particular index register. This register is reserved throughout 

the entire system for use wherever the identifier is referenced. 

Format 

SYS-INDEX n identifier $ 

Explanation 

SYS-INDEX 

N 

Identifier 

Example 

,S I '/,5, j I ,1Ij-A Ej X, 

Specifies that a system index is to be declared. 

An integer specifying a machine index register 

number from 1 to 5. 

A unique identifier to which the index register 

is to be assigned. 

I~ I IX, Plo,S, , ,$, , I I I , , , , , I , , I 

The index (B-register) 1 is assigned the name XPOS througbout the system compile. 

7. 6.2 MEANS Statement 

The MEANS statement provides a· method of character substitution during the compila­

tion process; no permanent changes are made to the affected source statements. 

Format 

identifier MEANS character-string $ 

Explanation 

Identifier 

MEANS 

Indicates· where the substitution is to be made during 

the compilation. The identifier appears in subsequent 

statements (but never in another MEANS or EXCHANGE 

statement). 

Specifies that a character substitution is to be 

defined. 

11-7-27 



M ... 5035 
Change 2 

Character Strong . 'A string of characters that is to be used in 

place of the identifier. It consists of all 

characters between the term MEANS and the dollar 

sign excluding the blank delimiter. It may 

include other identifiers, constants or CMS-2 

symbolic operators. Since the dollar sign 

terminates the string, it may never appear within 

the string as a character to be substituted. 

The maximum number of characters is 132. 

If the MEANS is contained in a major header, it applies throughout the system 

and the character string will be substituted wherever the name appear's. If 

the MEANS appears in a minor header, the string will be substituted only 

throughout the system procedure or data design that follows the minor header. 

Examples character-string 

character-string 

The following statements illustrate the before and after effects of the 

above character substitutions for the purposes of Compiler interpretation: 

'IVt8J8ILI I MIA "'e, , I IAIDTIS, I$J I I I I , I , , I I 
,V,RlB'LJ IN,ts_IEl/I , lA, 131.2, 151 ,Jla , I' ,$, I I 

Before: , After: 

I$IEITI IBllXlplTI Ina OOflf:QI lit ICIO,EIEIFI iii I I I Before: 

I"~ After: 

7.6.3 EXCHANGE Statement 

The EXCHANGE statement provides exactly the same capability as the MEANS state­

ment, except that the specified character substitution appears in the source 

output and Compiler listings. 

Format 

identifier EXCHANGE character-string $ 

11-7-28 



Explanation 

Identifier 

EXCHANGE 

Character String 

7.6.4 DEBUG Statement 

'M-5035 
Change 1 

Indicates where the substitution is to be made 

during the compilation. The identifier appears 

in subsequent statements (but never in anoth(~r 

MEANS or EXCHANGE statement). 

Specifies that a character substitution is to be 

defined. 

A string of characters that is to be used in 

place of the identifier. It consists of all 

characters between the term EXCHANGE and the 

dollar sign 'excluding the blank delimiter. It 

may include other identifiers, constants, or 

CMS-2 symbolic operators. Since the dollar sign 

terminates the string, it may never appear 

within the string as a character to be 

substituted. The maximum number of characters 

is 132. 

Various program checkout statements, as described in Section 8, may be inclUded 

in'the system elements of a compile-tjme system. These statements are pror­

essed by the Compiler. Appropriate calls and parameters for the object-time 
f 

debug package are generated and included in the object-code output only if the 

user so requests via the use of the DEBUG control statement in the major header 

element. 

Format 

DEBUG parameters $ 

Explanation 

DEBUG 

Parameters 

Requests the Compiler to process those types of 

program debug statements specified by the para­

meters. 

Consist of one or more of the following names 

separated by commas~ DISPLAY v SNAP, RANGE, 

TRACE, PTRACE, DELETE. 

1I-7-2q 



M~5035 

Change 5 

The DISPLAY, SNAP, RANGE, and TRACE parameters permit the compilation of the 

corresponding types of source debug statements. If 'One of these parameters is not 

included in the DEBUG header, the corresponding statements in the system elements 

are ignored by the Compiler. The PTRACE parameter specifies that code is to be 

generated during the compilation process to cause a print message to appear during 

execution before every procedure call. The DELETE parameter specifies that all 

debug statements not activated by the other parameters are to be deleted from the 

source output and listings. 

7.6.5 CSWITCH Declarations 

The CSWITCH feature provides selective compilation of specified sequences of state­

ments within a compile -time system. The CSWITCH selection declaration defines the 

"on/off" setting. The CSWITCH bracket defines the sequences of statements. The 

CSWITCH delete declaration instructs the Compiler to remove those sequences which 

are "off. " 

7.6.5.1 CSWITCH Selection Declaration 

CSWITCH -ON defines the named CSWITCH sequences to be compiled. 

CswITCH-OFF defines the named CSWITCH sequences to be ignored. This declara­

tion is optional; a CSWITCH bracket sequence whose name has not been defined by a 

CSWITCH selection declaration is considered to be "off. " 

Format 

CSWITCH-ON name-1, name-2, ••• , name-n$ 

CSWITCH-OFF name-1, name-2, •.• , name-n $ 

Explanation 

CSWITCH-ON 

CSWITCH-OFF 

name-1, ..• , name-n 

Specifies that the listed groups of statements 

are to be compiled. 

Specifies that the Ii sted groups of statements 

are not to be compiled. 

N am es that identify the selected CSWITCH 

groupsofCMS-2 statements. 

II-7-30 



M-5035 
Change 5 

A CSWITCH selection declaration may appear anywhere within a compile-time system 

except within direct code and between a FIND statement and its corresponding IF data 

statement. The CSWITCH name follows the standard CMS-2 local/global conventions. 

The "on/off" setting of a CSWITCH name may be reversed at any time during the com­

pile by including the opposite CSWITCH selection declaration. If the setting of a global 

CSWITCH name is reversed within a system procedure (locally) it is reset to the global 

setting after the END-SYS-PROC has been processed. If a CSWITCHselection declara­

tion appears within a CSWITCHbracket sequence and reverses the setting of the CSWITCH 

bracket name, the reversed setting does not affect processing of that CSWITCH bracket 

sequence. 

7. 6. 5.2 CSWITCH Brackets 

The sequence of statements between the CSWITCH bracket declaration and the END- . 

CSWITCH bracket declaration is to be compiled, depending on the "on/off" setting of 

the CSWITCH name. The CSWITCH bracket may appear anywhere within a compile­

time system except within direct code and between a find statement and its correspond­

ing IF data statement. 

Format 

CSWITCH name $ 

END-CSWlTCH name $ 

END-CSWITCHS $ 

Explanation 

CSWITCH 

END-CSWITCH 

END-CSWITCHS 

name 

Brackets beginning of CSWITCH block. 

Brackets end of a CSWITCH block. 

~erminates all CSWlTCH sequences. 

A name of a CSWITCH block. Must correspond to 

~ name in a CSWITCH selection declaration. 

CSWITCH brackets may be nested up to a maximum of 10 ("on" or "off'? with a last-on 

first-off sequence. The name following END-CSWITCH terminates th·at CSWITCH name 

ll-7-30A 



M...;,5035 
Change 5 

sequence. If the CSWITQI sequence is ·'0££," only CSWITCH warnings are diagnosed; 

all other syntax checking is suspended tmtil the END~CSWrTCH bracket declaration 

is encountered or the language boundary structure has been violated. A CSWITCH 

bracket declaration in a data design (local, global or auto), procedure, fWlction 

or systern·procedureDRlst have the END .... CSWITCH bracket declaration prior to the 

respective data design bracket (local, global or auto), END-PROC, END-FUNCTION 

orEND-SYS-PROC declaration. 
NOTE 

A CSWITCH bracket declaration appearing in a header 
(major or minor) will not be terminated until its cor­
responding END -CSWITCH bracket declaration, an END­
SYSTEM, a TERMINATE, or a monitor control card is 
encountered. If the END -CSWITCH bracket declaration 
is not encountered, the remainder of the source will not 
be compiled when the CSWITCH bracket declaration is 
"off. " 

7 • 6. 5.3 CSWIT CH Deletion 

The CSWITCH delete declaration may appear only in a major or minor header. If 

in a major header, all sequences of "off" CSWITCH brackets following within the com­

pile-time system are deleted from the listing and source outputs. If in a minor header, 

all sequences of "off" CSWITCH brackets through the end of the following element are 

deleted fro m the listing and the source outputs. 

Format 

CSWITCH-DEL $ 

7.6.5.4 CSWITCH Example 

EXMPI SYSTEM $ 

• 
• 
CSWITCH-ON CSWAl, CSWA2 $ 

CSWITCH-OFF CSWA3, CSWA4 $ 

END-HEAD $ 

SDDl SYS-DD $ 

Major header. 

1I-7-30B 



CSWITCH CSWA2 $ 

CSWITCH-ON CSWB2 $ 

• 
• 
END-CSWITCH CSWA2 $ 

• 
• 
CSWITCH CSWB2 $ 
• 

• 

CSWITCH CSWA3 $ 

• 
• 
END-CSWITCHS $ 

• 
• 
END-SYS-DD SDDl $ 

SPCl SYS-PROC $ 

LOC-DD $ 

CSWITCH CSWAl $ 

• 
• 
END-CSWITCH CSWAl $ 

• 
• 
CSWITCH CSWA3 $ 

• 
• 
END-LOC-nD $ 

} 

n-7-30C 

M-5035 
Change 5 

CSWlTCH CSWA2 is set "on" in the 

major header; this sequence will 

compile and CSWB2 will be set "on. " 

Statements from CSWB2 to CSWA3 

will compile. Statements from CSWA3 

to END-CSWITCHS will be ignored. 

Will compile. 

Will not compile. END-LOC-DD 

will produce END -CSWITCH MISSING 

diagnostic. 



M-5035 
Change 5 

CSWITCH-OFF CSWA2 $ 

PROCEDuRE PROCI $ 

• 
• 
CSWITCH CSWA2 $ 

• 
• 
END-CSWITCH CSWA2 $ 

• 
• 
END-PROC PROCI $ 

• 
• 
END-SYS-PROC SPCl $ 

HEDI HEAD $ 

• 
• 
CSWITCH CSW A3 $ 

END-HEAD HEDI $ 

SPC2 SYS-PROC $ 

• 
• 
END-SYS-PROC SPC2 $ 

HEDI HEAD $ 

END-CSWITCH CSWA3 $ 

Will set "off" CSW A2. 

Will not compile. 

Will not compile. 

n-7-30D 



CSWITCH CSWA2 $ 

END-HEAD HED! $ 

SPC2 SYS-PROC $ 

• 
• 
CSWITCH CSW Al $ 

• 
• 
CSWITCH CSWAa $ 

• 
• 
CSWITCH CSWB2 $ 

• 
• 

END-CSWITCH CSWB2 $ 

• 
• 
END-CSWITCH CSWA3 $ 

• 
• 
END-CSWITCH CSWAI $ 

• 
• 

END-SYS-PROC SPC2 $ 

HED2 HEAD $ 

END-CSWITCH CSWA2 $ 

END-HEAD HED2 $ 

SPC3 SYS-PROC $ 

Will not 

compile. 

CSWB2 is 

ignored even 

if it is "on. " 

II-7-30E 

Will 

compile. 

M-5035 
Change 5 

Will 

compile 

since 

END-SYS-PROC 

has reset 

CSWA2 

to "on." 



M-5035 
Change 5 

CS\VITCH CSWAI $ 

• 
• 

CSWITCH CSWA2 $ 

• 
• 
CSWITCH CSW:a2 $ 

• 
• 
END-CSWITCHS $ 

• 
• 

END-8YS-PROC SPC3 $ 

END-SYSTEM EXMPI $ 

U-7-30F 

All will compile. END­

CSWITCHS terminates 

the sequence. 



7.6. 6 EXECUTIVE Statement 

M-5035 
Change 5 

The EXECUTIVE statement may appear in a major or minor header and is used to in­

form the Compiler that the program generation is for use in the interrupt (executive) 

state of the AN(UYK-7. (The Compiler requires this information when generating 

control memory references to index registers and accumulators). The Compiler 

assumes generation for the task state in the absence of this statement. 

Format 

EXECUTIVE $ 

Explanation 

EXECUTIVE Indicates eode generation to be executed 

in the exeeuo. ve statement 

ll-7-31 



I 

I 

M-5035 
Change 5 

7.6.7 CMODE Statement 

The CMODE statement may appear in a major or minor header and is used to in­

form the Compiler that octal is to be the implied mode for numeric constants 

in the element or elements which follow. This statement provides for com­

patibility with other versions of CMS-2 in the method of expressing constants. 

Format 

CMODE $ 

Explanation 

CMODE Specifies that the implied mode of numeric 

constants is to be octal. 

When this statement is included in a header, decimal constants must be 

followed by a Dor must appear in parentheses 'and be prefaced by a D. Un­

modified constants or constants enclosed in parentheses and prefaced by an 0 

will be treated as octal constants. 

Examples 

~ I : : %~:t~~~: ~: : f:~:~ : : I : : : : : : : : : : : : 

7.6.8 SPILL Statement 

The SPILL statement may appear in a major or minor header element. 

Format 

SPILL $ 

Explanation 

SPILL Causes the Compiler to declare, at output time, 

every identifier within each affected system pro­

cedure as an external definition. 

11-7 -32 



M-5035 
Change 5 

Tllis der.lnrat.ion primarily far.ilitates the patr.hing of result;)nt relor.atablf· 

object code by permitting the use of symbolic addresses (such as statement 

labels, procedure names or data names) to specify the locations to be patched. 

This declaration does not alter the normal scope of identifiers during the 

compilation process. 

If sPILL appears in a m ajor header, all local identifiers will be declared as external 

definitions at output. If in a minor header, only those identifiers in the following 

element will be declared as external definitions at output. 

11-7-33/11-7-34 (Blank) 





M-5035 

SECTION U 

DEBUG STATEMENTS 

A set of program checkopt statements provides the capability for flow analysis 

and data display while an object program is being executed under control of the 

operating system. One or more types of program checkout statements may be 

included in the source input. When the corresponding statement types are 

enabled, tnese statements generate calls to debug package routines (see 

paragraph 7.6.4). Debug package routines may'then be selectively activated 

at program load time (see Volume I, Section 3 for usage of the CMS-2 Loader). 

Therefore, the following three conditions must be fulfilled when one or more 

debug capabilities are desired: 

1. The DEBUG header card must be present 

with the desired debug aid as a parameter. 

This card instructs the Compiler to generate 

the code for that aid when encountered. 

If the debug aid is not included in the 

header statement, the Compiler will ignore 

the debug aid and will not generate code for it. 

2. The debug aid, as discussed in this section, 

must be located in the source program deck. 

3.' The- desired debug' aid must be included as 

a parameter on the $LOAD card (see Volume I, 

Section 3). This parameter instructs the 

Loader to set Monitor flags directing execution 

of the instructions associated with that debug 

aid. Absence of the debug aid parameter will 

cause the instructions associated with that 

missing parameter to be bypassed during program 

execution. 

11-8-1 



The various types of program checkout statements and the results of enabling 

these statements at compile and load time are described in the following 

paragraphs. 

8.1 DISPLAY STATEMENT 

The DISPLAY statement allows the contents (image) of specified data units to 

be output on the system output device in the appropriate format for that data 

type. Optional value conversion will be made if stated. 

Format 

name DISPLAY image V(w,y), image V(x,y), .•• , image V(x,y) $ 

Explanation 

Name 

Image 

Optional. An identifier for this state­

ment. If included, this identifier must 

be followed by a period and is printed. 

with the data units and their co~tents. 

This name is not a statement label and 

therefore may not be referenced. 

REGS for machine registers or the identi­

fier of a variable, table, subtable, like­

table, item-area, or field. This data­

unit reference identifies the image on 

the printout. 

The output format for REGS, table, sub­

table, like-table, and item-area words 

is an II-digit octal number. 

The data type for fields and va~iables 

is the same as the data type specified 

for that data unit in its data declaration. 

1I-8-2 



V(x,y) 

Examples 

The format 

below. 

Data Type 

A 

I 

B 

S 

F 

H 

of t he out put 

120.8 

120.8 

is 

M-5035 
Changel 

specified 

Format 

The integer 0 or 1 

The status constant 

name 

E20.8 

Aw (w = number of 

characters) 

Optional. Specifies the magnitude for 

conversion for a field or variable. The 

magnitude must not exceed 15 bits. 

Assuming M is a 4-word table, X is a Hollerith variable, and Y is a 

. floating-point variable, the printout might appear as follows: 

.M 046732115043 

362341023456 

265123245675 

145676343210 

X OOG GONE 

Y 0.34244632+07 

11-8-3 



M-5035 

Assuming FIELD is an arithmetic field, the printout might appear as 

follows: 

BETA 

TABL(ALPHA t FELD) 432.06 

3. J7T~8J /"'6 !IIlfIV', ,Vi l&ili, ttl I , , I 1 I , I 

IFi'ltlL.U>, 1511>1£1,"'.1>, tIl ,110, lUI ,IJ I ,J,l, ", 
I , I 1 , , I', I I I I , , I , , , I 1 I I I I I I 

I , I I , I Iii I I I I I I I I I I I I I I I I , " I I I I I I I I ", 

I I " I , I I', I , I I I I I I , '-L1....J1L...-J-1 -"I-JI~I .....L'--,-' ..4...1 -'---'I--'-......... """"'""-~~_.-__ 
I ., I I I 

Field 
Bi t Magni tude 

l'osition He resented 
20 I ·0.15625 
21 I 0.3125 

CJ 
31 

~ loJ,)1 0 1o 111 0 111 0 10 10 1 .~ ~ I 
14 I 3 0 

22 I 0.62[) 
:!J I 1.25 I 
24 I 2.5 
25 I 5 
26 I 10 
27 I 20 
28 I 

40 I 
29 I 80 

I 
I 
I 

11-8-4 



M-5035 

Assume that the field SPEED had bit settings as indicated in the 

illustration above. To execute the display statement with the con­

version specification that bit 2° of field SPEED represents ,10, t.he 

output would be: 

KNOTS 

NAV(O,SPEED) 6.25 

where 6.25 is the summation of the binary bit values of 25 and 2
3 

(5 + 1.25) respectively. 

8.2 SNAP STATEMENT 

The SNAP statement reserves an area image equivalent in size and attributes 

to the data unit. The first execution of the SNAP statement causes the contents 

(or convert~d value) of the data unit to be printed on the system output device 

and stored in its reserved image area. Subsequent execu~ions of the statement 

cause a printout only if the contents of the data unit have changed. 

Format 

name SNAP image V(x,y) $ 

Explanation 

Name 

Image 

Optional. An identifier for this state­

ment. If included, this identifier must 

be followed by a period and is printed 

with the data unit and its contents. This 

name is not a statement label and therefore 

may not be referenced. 

An identifier for a table, subtable, like­

table, item-area, field, or variable. 

The image output format is the same as 

that described for DISPLAY (see paragraph 

8.1) . 

11-8--5 



1 • 

2. 

I 

M-5035 
Change 3 

V\X,y) 

Examples 

II I , I I , 

Optional. Specifies the magnitude for 

conversion for a field or variable. The 

magni tude mus t no t exceed 15 bi ts • 

This example illustrates several aspects of SNAP statement usage. In 

this example, snap ALPHA is always executed, while snap BETA is executed 

only when Z is less than or equal to O. The IF statement serves only . 

to place a condition on the snap; deletion of the SNAP parameter on the 

DEBUG header would render the IF statement unnecessary. These same 

considerations also apply to the use of the DISPLAY statement. (Note 

that the debug statements should not be compounded.) 

,rIA,SIL,E, ,f/IAI" I IVI 12, 1.1, IS, I , I , I , I 1 I 
I~I t I EjLI)' ,(.1 0 lu 1R151E, II,18, IYI Ii, 1 {I" I~I I 
1 E"'INI ~I-ITI AI 8, '-I t I IN,If,V, 1 =it I , I , I I , I I I I , I I 1 I I I 

,eIIiS"SINtAPi NtAIVI(,OI"C,OJUIRS,E')1 ,V,lJI',OI,,7r), Ij, 

At the time the SNAP is first executed, assume the bit configuration 

for COURSE is as follows: 

The output would then be: 

CRS 

NAV(O, COURSE) 33.75 

11-8-6 



M-5035 

which represents the summation of the binary bit values, as specified 

by V{360,14), of 23 and 22 (22.5 + 11.25 respectively). See paragraph 

0.1, Example 3 for a detailed explanation. 

8.3 RANGE DECLARATION 

The RANGE declaration specifies that a data-unit value is to be examined to 

determine whether it exceeds the values specified each time the data unit is 

set. This declaration can appear only within a data design. 

Format 

data-unit-name RANGE value l ..• value 2 . $ 

Explanation 

Data Unit Name A variable or field (floating-point, fixed-point, 

or integer). 

Value 1 

Value 2 

Examples 

The upper limit for this data unit. 

The range separator, used only if value 2 is specified. 

NOTE 

Only one RANGE declaration is allowed 
per field or variable definition, If 
the RANGE declaration references a 
field, the declaration must be placed 
within the table brackets. 

Each time data is s~t into the data element DISTANCE, the range is tested. 

If at any time the value is outside the range of 64 to 8, a printout to 
that, effect is made s imj lar to the following: 

DISTANCE EXrEEDS RANGE AT CALC + 2 

where CALC is a statemant lahel and the statement causing the range to 

be exceeded occurs two statements after CALC. (For the purpose of 

statement counting, both the THEN separator and the $ terminate a state­
ment.) 

11-8-7 



M...;5035 

.) Ii ,0 , c ,- J) tb, ~, ,. I I·, ,., , , I I I I , , , 1 

j,-,AIBI'-I£' ,r,AIBILI IH, ,.t, 1'1 ~J' J 1 I , I 

3. 

I , I I 'P IRIO, Cl fl,)IM,RIEI th I" IM,fIR,O,C.1 ~I I I I , 

~:Ut\:l:!:.: : 1~:::~:Y:T~:8:~ (:~::;:~:~:;,,):a:~:o:~i)(: :~ :~ :~: : : : : 
II I II I I I 1E'1"'1:b1 tll~IMll,il If I I I I I , I , I I I I I I I I , I I I I 

, 

If any occurrence of field FELU in table TABL is within the range, no 

message is printed out. If FELD is outside the range of values, the 

.printout might appear as follows: 

TABL (4, FELD) EXCEEDS RANGE AT DUMLI+I 

I L,O,'-,- ,j),'D, ,$, ,I , I , , , , , 
IV,R,B,L, ,x, ,li ,/IJ~ IU, ,~ I I 

, IV,RIBII., ,t, ,A, 1/161 I'" 
,3, ,$, 

,X 181 tJlN,tr, t, , 3,8, ~, , I , , , , 
, , 1£ !N,b,· , I-,O,c,-,) ,lll ,,,, 

I I , , I 
I , , I I I IPIK,OI,-,£,),U,R,EI Ip,R,O,C,& til 
I L,A,B,i, ., IS,E',TI , )(, ITlo, 111+,71 ,$, , I , , , 

If X is greater than 38, the printout might appear as follows: 

X EXCEEDS RANGE AT LABI+O 

I I -8-8. 



M-5035. 

H. tl TRACE STATEMENT 

The THACE statement generates a line to be printed on the system output device 

for each executed statement that occurs between the TRACE and END-TRACE state­

ments. This line identifies the flow of execution by the most recent statement 

label plus an increment of statements relative to this label. The Compiler 

counts statements whenever a $ or THEN is encountered. The statement immediately 

following the TRACE statement should be labeled. 

Format 

TRACE $ 

dynamic statements 

END-TRACE $ 

11-8-9 



M-5035 

Example 

, I I I , IT,R,Aic,£. 6 1 • I , , • I I I I· I I I , I .,. J « « 

Assuming that Y is 0 and there are two occurrences of X in field FELD 

of table TABL, the printout might appear as follows: 

AAI + 0 

AAI + I 

AAI + 2 

AAI + 3 

BBI + 0 

BBI + 1 

BBI +3 

BBI + 4 

BBI + 0 

BBI + 1. 

BBI + 3 

BBI + 4 

BBI +0 

BBI + I 

11-8-1U 



M-5035 

BBI -+ 2 

CCI + 0 

If in the above example Y is not 0 and there are no occurf(~lIces of X 

in field FELD of table TABL, the printout might appear as follows: 

AAI + 0 

AAI + I 

AAI + 2 

AAI + 4 

BBI + 0 

BBI + I 

BBI + 2 

CCI + 0 

8.5 PROCEDURE TRACE (PTRACE) 

The PTRACE parameter on the debug header provides a mapping of procedure 

linkages by printing a message for every CMS-2 procedure call encountered. 

Format 

PTRACE 

Example 

Print('d output shows Ihe eurrpnl proeedllf(' nalll(' and Ihf' (:nl1('d pro(,.,durt' 

nam(! at each pToc.edure call as follows: 

PROCEDURE xxxxxxxxxx CALLING PROCEDURE yyyyyyyyyy 

where xxxxxxxxxx is the current proced~re being executed and yyyyjyyyyy 

is t.he proced1lt p t.o be, executed. 

11-8-11/11-8-12 Blank 





SECTION 9 

DIRECT CODE 

M-5035 
Change 2 

Direct code statements, or symbolic machine code instructions, are operations 

which generally result in the generation of a single machine instruction. 

The CMS-2 Compiler processes as direct code, a subset of the language defined 

for the CMS-2 Assembler (see Sections 11 and 12). This direct code may appear 

in both data designs and procedures, but it must be properly bracketed and 

must follow a specific source card format. 

The remainder of this section describes the direct code statement format, the 

various directives available, and specific processing conventions. In 

addition, this section describes the differences between the direct code 

subset that may be embedded in a CMS-2 program for processing by the CMS-2 

Compiler and the full assembly language capability available through the 

C~IS-2 As sembler. 

9.1 DIRECT CODE STATEMENT FORMAT 

When one or more direct code statements appear in a CMS-2 source program, 

they must be bracketed between two CMS-2 statements provided for that purpose. 

These state~ents are described below. 

DIRECT $ 

CMS-2 .. $ 

Must immediately precede a sequence of 

direct code. 

Must immediately follow a sequence of 

direct code. 

The format for direct code statements apprearing in a CMS-2 program is slightly 

different from that accepted by the CMS-2 !\.ssembler. The format is consistent, 

however, with that of CMS-2 source cards in that card columns 1 through 10 are 

strictly for programmer use and are ignored by the Compiler. The normal 

direct code format consists of three fields delimited by spaces and connas. 

Periods indicate the end of a coding line. Direct code statement is limited 

to one card. The general card format is illustrated below. 

11-9-1 



M-5035 

Format 

CARD-ID label op-code operand 

Explanation 

Label 

Op Code 

Operand 

Instruction label. Always starts in column 11 

of a coding line. A space in column 11 indicates 

no label. A label may consist of at least one 

but not more than eight alphanumeric characters; 
the first character must be alphabetic. It must 

not be followed by a period. 

Separated from label field by at least one space. 

May contain a mnemonic function code. A space 

signifies the end of the op-code field. 

Contains the elements of the function specified 

by the op-code. Operand fields are separated by 

commas. Line termination and comment fields are 

acceptable and are indicated by a period followed 

by a space. 

9.2 DIRECT CODE STATEMENT REPERTOIRE 

The CMS-2 Compiler will accept the full AN/UYK-7 machine instruction repertoire 

as defined in Append,fx G. A more detailed description of these instructions 

may b~ found in Section 12. 

In addition to processing the symbolic machine language repertoire, the CMS-2 

Compiler will accept several Assember directives and a variety of expressions 

and constants as operands in the direct code statements. 

9.2.1 Direct Code Directives 

The following items define the CMS-2 direct code directives that are processed 

by the CMS-2 Compiler. 

11-9-2 



M-5035 

1. ABS 

Format 

label ABS label 

Explanation 

ABS 

2. BYTE 

Format 

BYTE 

Explanation 

BYTE 

3. CHAR 

Format 

Explanation 

C. 
1 

e. 
1 

Translates compile-time location counter value into an 

object-time absolute address. 

Redefines the embedded character size and number of 

characters placed in an object word for direct code 

character strings occurring subsequently within the 

same CMS-2 element. 

The number of characters to be packed into an object word. 

The size of the character field in bits, not to exceed 

16 bits. 

The octal code (000 through 377) that is to be redefined. 

The redefined value where current character e. becomes 
1 

new value e .• 
1 

11-9-3 



M-5035 
Change 2 

4. DO 

Format 

label DO e, direct-constant-entry 

Explanation 

e 

5. FORM 

Format 

Explanation 

FORM 

e. 
1 

An integer defining the number of times the direct constant 

is to be generated. If a label is specified, it shall 

apply to the first word of generated data. The direct 

constant entry must not contain a symbol. 

Describes a special word format specified by the 

programmer. The word format may include fields of 

variable length, where the length in bits of each field 

is user-defined. 

The number of bits in a user-defined field. The total 

number of bits must be equal to or less than 64 and 

the number of such subfields limited to 16. ei must be 

less than 32. 

The FORM directive may be implied. The format for utilizing the implicit 

FORM is illustrated below. 

Format 

11-9-4 



M-5035 
Change I 

Only constants are accepted in Form reference sub-fields with the exception 

of a name appei-lring in the last sub-field where that sub-field size is dcfil1('d 

as 16 bits or greater. When a value appearing in a Form reference sub-field 

requires more bi ts than \Vas defined in the Form declaration the leftmost bi ts 

of the value will be truncated when packing the resul ting constant. 

Explanation 

N. 
I 

Format 

RES e 

,Exp lana t i on 

RES 

e 

Values to be packed into fields of word. The Compiler 

determines the number of bits required to contain each 

value by dividing the word into n fields and forming 

the word accordingly. 

Adds the value of the single expression in the operand 

field to the current location counter value. 

An expression that must result in a determinable 

positive value. 

11-9-5 



M-5035 
Change I 

9.2.2 Constants 

Constants accepted in direct code statements are: 

1. Decimal numbers. 

2. Octal numbers. 

3. Floating-point numbers. 

4. Double-word-Iength octal numbers. 

5. Double-word-length decimal numbers. 

6. Character strings from one to eight characters in length. 

7. Scaled decimal numbers. 

Constants may be used in direct constant entry statements and in direct code 

expressions. The following paragraphs define CMS-2 direct code constants. 

9.2.2.1 Decimal Numbers 

A decimal number is converted to its binary equivalent and used in its binary 

form for all computations. The integer may consist of 9 digits if single 

word <lnd 18 digits if double word specified. The sign of the number is the 

leftmost bit of the final object word. The first (most significant) digit 

of the coded decimal number must not be O. If the decimal number is immediately 

follO\ved by the letter Of a t\\'o-i':ord binary equivalent will resul t • 

. Example 

1+ISl/1~ 1 ,-, ,ptR,o,b,u,C,E,St 19) cITiAJL, JO,90'99P1~,I'~I"'9 , I , I 

1+~15l31~9,78,5J.DJ ,., lPIR,o,l>,U,C.IEj~ ,A, jr,Wp,-,h'lo,R,l), ,V,8,yU,Ei 1 
'I ,-, ,E"f&U, 4, 1.., mOt , ,g9.3,7,1 ,/1.5jJj I,?j I, I I , , I 

11-9-6 



9.2.2.2 Octal Numbers 

M-5035 
Change 3 

An octal integer is specified by preceding the first (most signficant) octal 

digit with a O~ Each character of the octal integer must be an octal digit 

(0 through 7). Rules for evaluation are the same as for decimal numbers. An 

octal number may also be followed by the letter D to obtain a double-precision 
result •. 

Example 

lte'I"31 I '-I ,ptBt9D,U,C"E,5, ,0, olo,O,AO,o P,g I~, I , , , , , , , , 
l-A3,5i" ,., ,pIR,OJl)tt,C.,E,S, ,.3,?17,7,717,717t11~/, I I , I I I I J , 

,+p,7, ',Jj1,3,ZJI ID,!,2,JJ), I-I 'PlpJ9~U,C.,EjS, ,3",J11IJ~ 119/1.1,3, 
J J II I , 1 , I I l' , J 11-' ,AlI/fA I , II 1 PPIOIO,DlgOpepl/1 

9.2.2.3 Floating-Point Numbers 

A floating-point number must be coded as a single word decimal mixed number 

conSisting of an integral part and a fractional Vart, and must include the decimal 

point. Spaces are not allowed within the number. The number is converted to a 

64~bit floating-point number, formatted in memory as follows: 

Sign of characteristic Characteristic 

S Mantissa 

where S is the sign of the mantissa. 

1~-Y-7 

I 



M-5035 

Example 

,+~ .,.siif; i)~ 1-, ,P,PiOJ?,Y.C, §51 pe,O,o,o,oe,o.oI.ZJ4, 
, "II I , , I' , I -, ANA , , , , , ,I, ".q,z,z,',1,90 10 ,o, I 

1- ,2,. tf,~,t", 1-, , P,R,Otl> ,U,C,E'i 51 ,0,0,0 tOe'0,oI0r9J2" , I , 
i I I I I I , I-, ,thNIA I , , , I .z.~,3,Sjs,' I, ~ 1, "7,'1, 
1+,1,0,-1°" -, ,pl~,oP,u,C,EiSI ,0,0,0,0,°,0,0,90 10,1, , 
1 , I , I , , " ,1f,Nt=A I , , , I I/,y 0, 0, '3 0,0,0, 010.0 , , 
,-,1 1-,0, 

" 
- I ,fl(,O,D, U,C,fi 51 IO,O,oeeee,golg I, I I 

I I I I I , • I lAMA I I , , I ,It 7, '1, ~ " " 7,7,717, 7, , 
,-,.,.3, I , -, I R R,O~U,CI§.51 13," , '1,7, '7,7,7,1,717,', , I , 

I , I , I Ji,N..A I I , , I ,z, ~.3,/,DI".3,/,11'131· , I , 

The * + and * - operators are accepted when declaring" a floating­

point constant. 

9.2.2.4 Character Strings 

When a + precedes a character string, the Compiler regards the string as a 

constant; therefore, the number of characters between apostrophes may be from 

one to eight. One to four characters yield one computer word; five to eight 

characters yie Id two computer words. Characters are packed, right-j ustified, 

within the generated words with leading binary zeros as required to pad the 

word. The implied code for character strings in ASCII. 

Example 

ft-, 1/.A~ ,&£,'1 I I I ,., I P,&OI ~1L(1~1 Ei ~ IlI9/~OI'I~ 'l'IOI5i I I 
It, ,'IA,'-I & Ei~~E 1'1 I·' I P,RI~,"t1 ~ Ei§ lo~Ot2£,~",/,5i.2I~ I I 
I I , I I I I I I I I I ,., I I I I I I , 1 I 11~1.l~9~413~OI5i I I 

11-9-8 



9.2.2.5 Scaled Decimal Numbers 

M-5035 
Change 2 

A decimal or floating-point number followed by a ~::/N shall be handled by the 

Compiler as a scaled, fixed-point value. The form of scal~d numbers is shown 

below: 

Format 

Nl ~::/N2 

Explanation 

NI May be a decimal or floatinu-point number. 

N2 Shall be a decimal number. 

The converted decimal number shall be aligned to a scale value indicated by 

N2. 

Example 

9.2.2.6 Scaled Octal Numbers 

An octal number followed by a IO/N shall be converted and shifted as specified 

by the scale value following the "~c/" indicator. The compiler will not test 

the scale value for overflow but will simply perform a left shift circular 

or right shift sign fill by a number equal to the scale value. 

11-9-9 



M-5035 
Change 2 

Format 

Nl*/N2 

Explanation 

Nl Scaled octal number 

N2 Decimal number 

If N2 is signed negative, Nl shall be converted and shifted right N2 bits. 

If N2 is unsigned or positive then NI shall be converted and shifted left 

N2 bits. 

Example 

9.2.3 Data Expressions 

The data expression forms that are accepted by the CMS-2 Compiler are defined 

below: 

1. Constant (as defined in paragraph 9.2.2). 

2. Numeric tag (identifier assigned a value by equals statement). 

3. Operand
l
-operator-operand2 (operand 2 must be a constant in this form). 

The operators allowed within data expressions are: 

1. + (addition) 

2. - (subtraction) 

3. * (multiplication) 

11-9-10 



4. / (division) 

Mixed mode constants are not permitted in data expressions. 

9.2.4 Literals 

M-5035 
Change 2 

A literal in CMS-2 direct code is defined as a data expression contained 

within parentheses. 

Examples 

(56) 

('Cr\T' ) 

One or two object words result from evaluation of a literal. Data expressions 

allowed in literals are defined in paragraph 9.2.3. 

9.2.5 Direct Constant Entries 

The CMS-2 Compiler accepts data words declared in direct code that result in 

one or two generated computer words. Character strings may require more than 

two words. These direct constant entries shall consist of declared constants 

as defined in paragraph 9.2.2, character strings, or data expressions. 

A + or -sign in the operation field followed by one or more subfields in the 

operand field signifies that a constant is to be generated. Whenever ,a + or 

- sign appears as the first character of the operation field, any number of 

spaces or no, spaces may separate the sign from the first operand. Subfields 

are separated by commas. In generating constants, the Compiler uses the size 

of the object computer word. If the operand field contains one subfield, the 

signed value of the subfield is right-justified in the generated word. If 

the operand field ,contains two subfields, two equal-length signed subfields 

are generated with the values right~ustified within each field, and so forth. 

The first subfield must be signed. Successive subfields may optionally be 

signed. The absence of a sign implies a positive value. If variants of this 

implicit equal subdivision of data words are required, the capabilities of 

the FORM directive may be used to derive the desired format. This is 

accomplished by referencing the FORM label in the operation field. 

11-9-11 



M-5035 
Change 2 

ExampH~s 

1. 1-1/",3Iel~ I , I , I , ,., ,P,~OrbJU,C,€j5, ,3,7,',7,717,3,'1,','7,7, 
,tB",-,~",2,,!t ,1-tl,S, ,-, ,PtRp,b)",C"c, s, ,9 I e,7"",.t,~7,.f,3t 

If the operand field contains just one subfield immediately followed 

by a D, or if the constant is a floating-point number, the Comriler . 

generates a double-length constant in two successive computer words. 

The first generated word of the double-length constant will contain 

the least-significant bits of the result,. The letter D in this 

context is only meaningful when appended ~o a numeric constant. 

2. ,+, ,',0,.,0, ,.1 IPIKJOtP,U,c.,c,Sa ,OIo,999lggq?,o.11 
I I , I , , I I ., J 'I II I , , I ,I iJ.J90 ,999OPeel 

I I , I I , , ,., I II I , , I , , pI7,?,'1,'1,'1I'1,7,'1,'1t71 , , I , I , I I., , 

rr,O,I,.l,3,4,5p1"1J,,S,i,3JZ,i~, ,., Ip,It,O,b,u, G§S, ,.3"~ ,Sj', 7 ",Sj4,3t241J 
I I , , I I I I,I , I , , I I I ,., I" " , " I ,/)19°,0,0 BD,90 ,l,2i 

Character strings longer than eight characters may be entered as a 

direct constant entry_ No character s~ring in CMS-2 may exceed 132 

characters. 

9.2.6 Instruction Expressions 

The CMS-2 Compiler recognizes and processes simple expressions appearing in 

the operand field of direct code instructions and in direct code directives. 

Expression forms allowed are: 

a. Symbol (label, tag, $). 

b. Symbol ~ constant - If symbol-constant is used and the symOOl IS 

externally re~erenced, see note at end o.f section 11.3.3.12. 
~ .. 

11-9-12 



c. Constant + symbol. 

d. Constant. 

e. Literal. 

M-5035 
ChClnge 2 

A constant used in an instruction expression must be limited to a decimal or 

octal integer. 

The $ symbol is used only to reference the Compiler location counter. The 

contents of the location counter are accessed by coding the symbol $. $ 

signifies that the contents' of the location counter are to be substi tuted in 

the expression. 

Example 

,., 
An alphanumeric label may be used within an expression. The label 

must conform to the rules for labels as described earlier; for 

example, it must not exceed eight characters; it must consist of 

alphabetic (A through Z) or numeric (0 through 9) characters and 

the label must begin with an alphabetic character. 

When the expression is evaluated, the value allocated to the label is sub­

stituted in the expression. Numeric constant values may be equated to 

labels by the CMS-2 high-level declarative EQUALS for use in direct code 

expressions. The high-level EQUALS statement allows simulation of the 

parenthetical static expression capability in direct code. 

An identifier that has a value assigned by an EQUALS statement is defined as 

a tag. 

Example 

The tag VALl can be used in a simple expression carrylng an asso­

ciated value of 7.5 when the expression is evaluated. 

11-9-13 



M-5035 
Change 2 

A sym,bol defined by a high-level MEANS or EXCHANGE statement may be referenced 

in direct code. However, the character string to be substituted for the 

symbol in the direct code issubj ect t,o the following restrictions: 

a. The character string may not contain a comma or a period (i.e., it 

must represent a single term of a single direct code statement). 

b. The character string must be equal in length to the symbol. it re­
places in direct code. 

NOTE 

Character substitution for a symbol defined in an EXCHANGE 
statement will be performed for the purpo'se of statement 
interpretation. However, no source card or listing editing 
is performed. 

Example 

~~A:::i.~~::~:~E~T~fu1:i f: : : : : : : : : : : : : : : : : l 
, , I , I I I I ,-I I I I 
1 . I I I I I I I ,., 1 '" I·' I I I I I 1 

AA&~ ~ +. ~.: : : : : : : A : : I : : : : : : : : : I : : : : : : : : : l 
IL,~ , I I tLXa,IPr4,RM"Ka3, ,.1 
I C 1,\5,-,2, e I ·1 . I I I I , , I·' I I . ,!::-'-L-L....L-JL.-L.. ...... ~""'--I~ ............. 

The direct code statement would be assembled by the Compiler as: 

LB 84, TAGll, K3 

11-9-14 



9.3 PROCESSING CONVENfIONS 

M-5035 
Change 2 

The following conventions apply when processing direct code statements appear­

ing in CMS-2 programs: 

a. Direct code statements, bracketed by DIRECT and CMS-2 may appear 

within the following source program elements: 

1. Procedures (PROCEDURE). 

2. System data designs (SYS-DD). 

3. Local data designs (LOC-DD). 

b. The rules established for referencing labels within or from 
. . 

outside procedures and data designs apply to direct code 

segments. The direct code statements assume the same refer· 

encing and allocation characteristics as the program element 

within which the direct code residcso 

A direct code statement may be declared to preset a data unit 

defined in a high-level declaration. The direct code statement 

must be labeled with the duplicate of the identifier of the 

high-level "declarative and must not precede the high-level 

declaration. It must be given within the same data design. 

Any direct code following the preset of a high-level data 

unit is assumed to be part of that preset unless labeled 

by an identifier duplicating another high-level definition. 

11-9-];1 



M-5035 
Change 2 

Example 

I ,', I J , , I I I J 

" • I I I I , , I I J I I I I \ I 

I I I I I I I I I I I' I I I 1 , I I I I I I I , I' I I I " , 

: : : : : : : : : I~~~=~Y:::-~)I : :E:K:A:~;'L:E: ! ~ :: : :: 
The computer word to which the variable NAMI is allocated will be 

preset to the decimal number 625 declared 'in the low-level direct 

constant entry. 

c. Direct code segments may reference other direct code segments 

resident in the same SYS-PROC or SYS-DD. 

d. CMS-2 high-level statements may reference direct code statement 

labels (GOTO or SWITCH only). 

e. CMS-2high-level statement may not reference data units defined 

only by direct code statements. 

f. Direct code statements may reference data unit names (symbolic 

addresses) defined by high-level declaratives. K-designators 

must be coded explicitly. 

II-9-16 



M-5035 

g. Direct code statements may reference high-level statement labels. 

h. The rules of symbols, operator priority, and elements established 

for direct code statements are independent of those applicable 

to high-level statements. 

i. The following mnemonics, used to reference computer registers, 

are recognized by the direct code processor: 

1. Accumulators: AO, AI, A2, A3, A~~A5, A6, A7. 

2. Index registers: BO, Bl, B2, B3, B4, B5, 86, B7. 

3. Base registers: SO, 51, 52, 53, 54, 55, 56, 57. 

4. Quarter-word memory: Ql, Q2, Q3, Q4. 

5. Half-word memory: L, U. 

6. Whole word memory: W. 

7. K-designators: KO, KIt K2, K3, K4, K5. K6, K7. 

j. Direct code half-word instructions are packed together into one 

word where possible. Labeled half-word instructions will 

always be assigned to the upper half of the word. The following 

tables illustrate the method for packing half-word instructions 

(HW = half-word instruction, FW = whole-word instruction): 

Instruction 

1. Nonlabeled: 

HW 

FW 

HW } HW 

11-9-17 

Memory Assignment 

IiW 

FW 

HW HW 



M ... 5035 
Change 2 

j . 2. Labeled: 

FW FW 

HW } HW HW 
HW 

FW FW 

HW HW 

LABLI HW LABLI HW 

FW FW 

HW HW 

LABL2 HW LABL2 HW 

LABL3 HW LABL3 HW 

k. Spaces appearing between elements in operand fields of direct 

code statements are ignored except where specifically defined 
as a delimiter, as illustrated below: 

MOD + RAD Spaces ignored. 

M on + R AD Illegal because of spaces within 

element itself. 

1. Labels of direct code in system data designs are treated as 

global labels by the Compil~r. 

m. When referencing procedures declared by high-level statements, 

the direct code instructions must be the same as the instructions 

generated by the Compiler for a high-level procedure call. 

n. A direct code statement that contains an explicity coded s­

designator (base register) may contain only a constant in the 

Y-field. 

Table 9-1 summarizes the values and symbols that may appear in direct code in .... 
struction subfields and in direct constant entries. 

11-9-18 



Table 9-1. Instruction Sub-field Valid Forms 

a y k b s ak af4 sy m/h I w p e DeE Lit 

I) Oc ta I dig i t x x x x x 

2) Q (1-4) x x x x x 

3) ttL" (=1) x .x x x x 

4) "U" (=2) x x x x x 

S) "W" (=3) x x x x x 

6) A, B, C, n,H, K, 
S (0 - 7) x x x x x 

7) NTAG (=0 - 7) x x x x x 

~ 8) MEAN/EXC (2)-6) above) ~ x x x x X 
I 
..0 
I 9) Integer Sl77 ..... x x x x 
-.0 

10) NTAG (~I77) x x x x 

II) "ALL) (= 177777) x 

12) C(O - 17) x 

13) In tege r S 177777 x 

14) NfAG s 177777 x 

15) Y operand $ Y x n3 
::r'1 
1»U'1 

16) Integer So77 ::so 
x cCw 

(t)U'1 

N 17) ~ Integer or Integer x x 



Table 9-1. (continued) 
n3: ::r. 
Q,) 01 

a y k b s ak af4 sy m/lJ 1 w p e OCE Li t :s 0 
r.Q w 

C'D 01 

18) Integer + Relocatable 
N 

Identifier x 

19) Relocatable Identifier 
~ Integer x 

20) Relocatable Identifier x 

21) $::!:, Integer x 

22) Li teral: (Constant, 
NTAG, data express.) x 

23>- NfAG x x x X 

1-4 
1-4 24) MEAN/EXC tag x 
I 
-.0 
I 
N 25) Constant x x x 
0 

26) 
Const [;] 

Const (no mix) x x x 

27) Char String S132 chars x 

28) Integer ~37777 (BCW) x 

~4000 (BCWE) x 

RTAG - Identifier equated to identifier. 
NfAG - Identifier equated to a value. 
e - data expression 
Identifier - includes RTAG 



M-5035 
Change 2 

The following items. identify additional capabilities ayailable under the CMS-2 

Assembler which are not included in the direct code capability of the CMS-2 
Compiler. 

1. Addres~ing section declarations in the label field are not 

allowed (direct code is compiled under the existing high-level 

allocation environment). 

2. Macros and related directives are not allowed (including macro 

name and statements, paraform usage, and macro reference lines). 

3. Library retrieval from direct code is not allowed. 

4. Labels of direct code externalized by postfixing an asterisk 

to the label are not allowed. 

5. The CMS-2 Compiler does not process direct code statements 

containing expressions using parentheses. 

6. The following directives are not acceptable as direct code: 

a. END 

b. SEGEND 

c. LINK (can use the high-level EXTREF statement instead) 

d. Loader directives (~:'AC, ::;CS, etc.) 

e. LLT 

f. LCR 

g. LIST, ELIST, and NOLIST 

h. OnD and EVEN 

i. PXL 

j. WRD 

k. RF$ 

1. EQU (can use the high-level EQUALS state~ent instead) 

7. SETADR and LIT literal directives are not allowed (the Compiler 

controls when and where to dump the literals). 

11-9-21/11-9-22 Blank 





..... " 

SECTION 10 

COMP II.ER OUTPl JTS 

M-5035 
Change 3 

A variety of hardcopy or listed outputs is available from the CMS-2 Compiler. 

The method of selecting these various outputs using the OPTIONS statement is 

described in Section 7. The purpose of Section 10 is to explain the various 

li~ting formats, page headers, and column descriptors. 

10.1 SOURCE LISTING FORMAT 

The source listing provides a record of input to the Compiler. This listing 

consists of a page header for each listing p'age containing the element name 

and number, the date of the compilation and a page number. 

If the source· listing is requested by a SOURCE option and no OBJECT option, 

the format is as follows: 

Column Heading 

CARD ID 

SOURCE STATEMENT 

ERROR COND IT ION 

Meaning 

Columns 1 through 10 of the card 

image. 

Columns 11 through 80 of the card 

image (the CMS-2 source statement 

field) • 

An error message for any syntax 

errors detected in the source state­

ment. 

If the source listing is requested by a SOURCE option and an OBJECT option 
(no 8M), the body of the listing consists of several columns, the contents of 

which are explained below. 

Column Heading 

ERR 

Meaning 

Used to indicate errors that occurred 

in the adjacent source statement. A 

list of these errors, their meanings 

and identifying numbers that appear 

in the error column is given in 

AppendixE. 

11-10-1 



M~5035 

Change 3 

S 

AC 

LOC 

LABEL 

STATEMENT 

CID 

SID 

CR 

Base register numter. 

Address counter number. 

The relat~ve memory location (in 

octal) of the first instruction or , 

data word generated for this state­

ment. 

The label associated with the source 

statement or the first 10 characters 

of the input statement. 

A character field containing the 

remainder of the CMS-2 source state­

ment. 

Four characters of the card ID 

(columns I through 4). 

Four characters of the card 10 

,representing the statement number 

(comumns 5 through 8). 

The remaining two characters of the 

card 10. 

10.2 SOURCE AND MNEMONIC LISTING FORMAT 

·1 The source and mnemonic listing (8M) provides a record of the source 

iaput to the Compiler as well as a side-by-side mnemonic and octal representa­

tion of the machine instructions generated for the source statements. This 

listing consists of a page header for each listing page containing the system 

procedure or system data-design name, the date of the run, the number of the 

element being compiled, the page number, and the type of element. The body 

11-10-2 



M-5035 

of the listing consists of several columns, the contents of which are 

described below. 

Column Heading 

ERR 

S 

AC 

LOC 

FUNCTION 

x 

LABEL 

STATEMENT 

CIO 

Meaning 

Used to indicate errors that occurred 

in the adjacent source statement. A 

list of these errors, their meaning, 

and identifying numbers that appear 

in the error column is presented in 

Appendix E. 

Base register number. 

Address counter number. 

The relative m~mory location (in 

octal) of the data or instruction 

(13 bits), or the operand of the 

instruction. 

The first half of the data or 

instruction containing the operation 

(upper 16 bits left-adjusted). 

Flag for external reference (R) or 

transient reference (T). 

The label associated with the source 

statement or the first 10 characters 

of the input statement. 

A character field containing the 

remainder of the CMS-2 source state­

ment. 

Four char~cters of the card 10 that 

appeared on the card aS50ciat~d with 

the statement (columns I through 4). 

11-10-3 



M-5035 
Change 5 

SID 

CR 

10.3 LOCAL CROSS-REFERENCE LISTINGS 

Four characters of the card 10 

representing the statement number 

(col umns 5 through 8). 

The remaining two characters of the 

card 10. May contain·a flag (R) 

in column q if the source statement 

references a reserved word (see 

Append ix D). 

I The local cross-reference (CRL or CR) listing provides a record of each symbol de-

fined in the system element; the listing shows the location of each symbol and all re­

ferences to that symbol. Also included in the list are global symbols defined in other 

I elements but referenced within the current element. If no CR or CRL is requested, 

only unallocated identifiers and references are listed. The listing contains a page 

header at the top ci. each page. The header shows the name of the system procedure, 

the date of the run, and page number. The body of the listing consists of several 

columns, as follows: 
Column Heading 

AC 

S 

LOC 

LABEL 

Meaning 

Address counter number. 

Base register number. 

Gives the relative location, in octal, 

of the following label. A location 

of all sevens denotes an allocation 

error. 

The label to which the references 

apply. The labelS are printed 

alpha bet i Ca 11 y • The s ymbo 1 ")~';c******" 

denotes a genetation error in refer­

encing an identifier. 

I I -10-4 



EXT 

REFERENCES 

M-5035 
Change 5 

This column identifies t.he label as 

being defined as local or external to 

the system procedure (blank means 

local to the system procedure, D 

means external definition, M means 

local, implicitly MODE defined in 

the system procedure, R means 

external reference, T means 

transient reference).' If not blank, 

the label will also appear in the 

global cross-reference listing. 

A set of octal addresses within the system 

procedure that shows the location of each 

instruction using the preceding label. The 

word NONE appears if there were no 

references to the label. The references are 

given in the same format (AC S LaC) as the 

location of the referenced identifier. 

10.4 GLOBAL CROSS-REFERENCE LISTING 

The global cross-reference (eRG or CR) listing provides a record of each global ele- I 
ment defined in the system, showing the name of each system element that referenced 

it. The global cross-reference appears at the end of the compile. 

The listing consists of a header at the top of each page; the header contains the name 

of the system, the date of the run and the page number. 

The body of the listing consists of several columns, as follows: 

Column Heading Meaning 

EXT The label is an external reference. 

The definition is presumed to be 

given in another compile-time system. 

11-10-5 



M-5035 . 

LABEL 

DEFINED IN 

REFE RENCED BY 

The label of the element referenced. 

Labels are printed alphabetically. 

The name of the system data design 

or system procedure that contained 

the element. 

The nam~ of each system procedure 

that referenced the label. 

10.5 SYMBOL ANALYSIS FORMAT 

The symbol analysis (SA) option provides information as to the USAge of the 

symbols in the system compilation. The analysis utilizes the following cate­

gories (the items in the individual categories are printed in alphabetical 

order) : 

a. Files. 

b. Formats. 

c. Tables (including subtables, like-tables, item-areas~fields). 

d. Switches. 

e. Variables. 

f. Procedures-functions. 

g. Index registers declared locally. 

A header, printed at the top of each page, gives the heading SYMBOL ANALYSIS 

and the identifier as either a SYS-OU or SYS-PROC name. Each of the above 

categories is headed by the category type and bracketed with lines of asterisks. 

The following are descriptions of the headings for the various categories: 

a. Files: 

The general heading is FILES DECLARED. The columns are: 

Column Heading Meaning 

NAME The name of the files. 

11-10-6 



MU 

TP 

HRDWR 

MXSZ 

MXRCU 

NSTC 

b. Forma t.s: 

The file mode: 

II - Holler i t.h • 

B - Binary. 

The record type: 

V - Variable length. 

F - Fixed length. 

5 - Stream. 

The hardware C0<1f~. 

M-5035 

The maximum record size. 

The maximum number of records. 

The numb~r of associated status 

constants. 

The general heading is FORMAT STATEMENTS. There are eight idpnt iCHl 

heading sets of two headin~Js each as described below: 

Column Ileading 

NAME 

XT 

c. Tables: 

The n::lI:w of t.he format. 

If declared, the external icl('ntifil~r, 

R, for external reference or IJ for 

external defini.tion. 

Th(~ firsl seUrTJerll or the print Jilll~ id(~ntirips the table or a~suei;""ll 

tab Ie. The sec 0 n d s e g me n tid e n ti fie s t h (~ a t.t r j IJ u t. p s 0 f the t tJ h I ('or 

assoeiated tabln. Th(~ third segment. identlfi('s the fields and Iheir 

as soc ita I ed at t r; [HI I (,~s • 

11-10-7 



M-5035 

Column Heading 

TABLE-NAME 

ASSOC 
NAME 

ASSOC 
TYPE 

TP 

NI 
TM 

PACK 
NDIM 

ADD 
MOD 

Meaning 

The name of the prime table being 

described. 

The name 'of a subtable, like-table 

of item-area associated with the 

prime table. 

One of the following: 

SUB - Subtable. 

LIKE - Like-table. 

ITEM - Item-area. 

Denotes the type of the prime table: 

H - Horizontal. 

V - Vertical. 

A - Array. 

If the length of the table is 

variable (specified by a NITEMS 

statement) ,this eolumn will con­

tain NT. 

Denotes the packing usage on fields 

for horizontal or vertical tables 

or denotes the number of dimensions 

if an array; this may be NULL, 

MEDIUM or DENSE or an integer from 

I to 7. 

Indicates whether the table is 

addressed directly (DIR) or addressed 

indirectly, (IND). 

11-10-8 



WDS/ 
ITEM 

INDEX-NAME 

NO. ITEMS 
DIMS. SIZE 

EXT 

START 
ITEM 

FIELDS 

NAME 

TP 

SN 

START 
BIT 

11-10-9 

M-5035 

Specifies the number of words per 

item. 

Gives the name of the major index 

for the table or the associated 

table. 

The number of items if H (horizontal> 

or V (vertical) t or the size of the 

dimensions if A (array). 

Designates whether the table or 

associated table is externally 

defined (D) t externally referenced 

(R) t or transiently referenced (T). 

The item number at which the 

associated table starts. 

Applies to the remainder of the 

headings. 

The name of the field. 

Defines the field type: 

F - Floating-point. 

B - Boolean. 

H - Holleri th characters. 

A - Arithmetic fixed-point. 

I - Integer. 

Indicates whether the field type 

is S for signed, U for unsigned~ 

or blank if neither S nor U apply. 

Starting bit position in the word. 



M-5035 

WORD 
LOC. 

NO. BITS 
OR CHARS 

FB 

d. Switches: 

The word number by which the field 

is addressed. 

Designates ihe number of words for 

multi-word fields, the number of 

bits for types F, A, or I, the 

number of characters for type .H, . 

or the number of status constants 

for type S. 

Fractional bits. 

The general heading is SWITCHES. The columns are: 

Co 1 umn Head ing Meaning 

NAME The name of the switch. 

TYPE One of the following: 

NO. PTS 

EX 

SHSW-CVRBL 

S - Statement switch. 

P Procedure switch. 

IT - Item switch. 

Gives the number of switch points. 

Defines the external specifications: 

R - Externally referenced. 

T - Transiently referenced. 

D - Externally defined. 

Indicates the name of a shared 

switch; if the switch is an item 

switch (IT), the compared variable 

is given. 

11-10-10 



INPUT 
PARAMETERS 

OUTPUT 
PARAMETERS 

e. Variables: 

M-5035 
Change 3 

Thf(~(~ (!olumns of input parnmelHrs 

if switch type P. 

Three columns of output parameters 

if switch type P. 

The general heading is VARIABLES. The columns are: 

Column Heading Meaning 

NAME The name of the variable. 

TYPE Gives the variable type: 

F - Floating-point. 

B - Boolean. 

S - Status. 

I - Integer. 

A - Arithmetic fixed-poi n t. 

H - Hollerith. 

EX Defines the external specifications, 

if any: 

SN 

FB 

NO. CHAR. 
BIT 

D - Externally defined. 

R - Externally referenced. 

T - Transiently referenced. 

M - Implicitly and locally defined. I 
Specifies whether signed (8) or unsigned 

(U). 

Fractional blts. 

The number of characters, bits, or 

status constants depending on type. 

11-10-11 



f. Proced ures -F unc ti ons : 

The general heading is PROCEDURES-FUNCTIONS. The columns are: 

Column Heading Meaning 

NAME 

TP 

INPUT 
PARAMETERS 

OUTPUT 
PARAMETERS 

EXIT 

The procedure or function name. 

Either P (for procedure) or F(for 

function) • 

Four columns listing the input 

parameters. 

Four columns listing the output 

parameters. 

The names of an~ abnormal exits. 

g. Index Registers Declared Locally: 

The general heading is LOC-INDEXES DECLARED. The columns are: 

Column Heading Meaning 

NAME 

REG 

PROCEDURE 

10.6 COMPILER ERROR SUMMARY 

The name of the local index declared 

for the current system procedure. 

The B-register assigned to the 

above ,symbolic name, or the letter 

T if a temporary cell is assigned. 

The name of the procedure i~ which 

the local index is defined. 

At the end of each compile-time system for which the OBJECT option is used, a 

summary of errors is listed. The name of each element, its element number 

within the compile and the number of syntax/generation errors and the number 

of allocation errors are listed. The syntax/generation errors are individually 

listed at the front of t.he eompile listing. Th(~ allocation errors are flagged 

11-10-12 



M-5035 

in th(~ source (and mnemonic) list.inu where t.hey occurr(~d and art.! al!'lo lbdc'd 

in the local cross-reference. 

11-10-13/11-10-14 Blank 





11.1 ASSEMBLER FUNCTIONS 

SECTION 11 

ASSEMBLER 

M-5035 

The Assembler accepts symbolic source code in eO-column card image format 

and translates this coding into an object machine language suitable for 

loading into the AN/UYK-7 Computer memory via an object-code loader program 

(see Section 3 of Volume I). The Assembler operates in conjunction with the 

Monitor to provide programmers with a level of programming assistance not 

ordinarily associated with an Assembler class of language processors. 

The Assembler capabilities include: 

a. Macro directives as well as other directives which enable the 

programmer to control the assembly process in a positive way via 

conditional assembly. I 

b. A powerful set of directives which enables variable bit-field 

definitions, character substitution, segmentation, and so forth. 

c. The ability to handle multiple addressing sections (counters) for use 

in segmenting and assembly-time allocation control. 

d. Printer side-by-side listings of the symbolic source code and also an 

edited representation of the generated object code. 

e. Optionally selected printer listing of all alphanumeric labels 

referenced within the source code. The labels are separated into 

internally referenced labels and those which can be referenced from 

another program. 

f. Optionally selected printer listing of all alphanumeric labels cross­

referenced with their respective addresses. 

g. Evaluation of arithmetic and logical expressions. 

h. Relocatable object machine code output which employs full binary card 

image format (960 punches per aO-column card). 

11-11-1 



M-5035 

i. All Assembler-detected errors in source statements are flagged when 

encountered. 

The $ASM card commands the Monitor to place the Assembler in memory and 

initiate its execution. 

In operation, the Assembler scans the. subsequent symbolic input code twice. 

The first assembly pass performs a pseudo-generation primarily to record any 

programmer-defined r.'tacro sample code and to define forward referencing. The 

second assembly pass simultaneously produces the object code and the program 

listing. When referenced in the program, generation for macro sampl~ code is 

carried on as a subassembly of the main program. Figures 11-1 and 11-2 show 

the basic functions performed during the first and second passes, respectively. 

Jl.l.1 Input Language Structur~ 

Inputs to the Assembler consist of programmers prepared symbolic coding 

statements. The programmer has one basic unit available when constructing 

symbolic code on the coding sheet. This unit is the operation which may 

consist of three parts: 

1. Label. 

2. Statement. 

3. Notes. 

The label and notes are generally optional attachments to the statement and are 

always separated from the statement by.at least one space. In order to apply 

notes t the statement must be terminated by a period (.). 

Format 

I I I 

A program written in the CMS-2 Macro Assembler Mnemonic Language consists of 

action statements. Their structure is discussed in the following paragraphs. 

11.1.1.1 Label 

Within the progranuning language, the labels consist of 1 to 8 alphanumeric 

characters. The first character of any label must be a letter. The letter 

o should also be used with caution as any character of a label because of the 

iI-I1-2 



Source Tape 

or 

Source 
Cards 

Macro Sample 
in Core 
Storage 

Library Source 

In ut Input/Output 
Syst em (Part 
of Monitor) 

~ ___ --.._ ... or 
Assembler 
Input/Out put 
Controller 

Translator 

1---.... 

M-5035 

Intermediate 
Source Tape 

Intermediate 
Source In 
Core Storage 

Item Table 
in Core 
Storage 

Figure 11-1. Assembler Pass 1 Data Flow 

11-11-3 



M-5035 

Intermediate 
Source Tape 

or 

In termed i a te 

Monitor 

Source in Assembler 
'Core Storage ..... ____ ..... Input/Output 

Macro Sample 
In Core 
Storage 

Controller 

Translator 

Object Tape 

Object Cards 

--.. Side-by-Side 
Listing 

Item Table 
in Core 

..... ____ • Storage 

Figure 11-2. Assembler Pass 2 Data Flow 

11-11-4 



M-5035 

visual difficulty in distinguishing it from zero. A label is used to identify 

a statement which may be referenced by another. 

11.1.1.2 Statements 

Except for purely comment statements, programmers are normally concerned with 

three basic fields of a coding line: 1) label field; 2) operation field; 

and 3) operand field(s). A line of coding is defined as a logical symbolic 

statement not necessarily confined to a single physical line; for example, a 

logical line may extend over several cards. 

11.1.1.2.1 Fields. Fields are delimited 'by at "least one space following the 

last character of the field. There can be no spaces between characters of an 

element or expression within a field or the Assembler will interpret the 

space as the end of the field. The label field is always assumed to start 

in column 1; if there is no label field, its absence is indicated by at least 

one space starting in column 1. 

11.1.1.2.2. Subfields. Any field may consist of one or more subfields 

separated by a comma and terminated by a space. There can be no spaces between 

the characters of a subfield or between the subfield and its terminating. comma. 

The Asserrrbler interprets the first space as terminating the current field. 

To the Assembler, a comma indicates that another subfield follows; therefore 

the last subfield coded does not terminate with a comma, since a space 

terminates both the field and the last subfield. Any number of spaces may 

intervene between a terminating comma and the first character of the next 

subfield, since the Assembler was alerted that another subfield will follow. 

11.1.1.2.3' Omission of Subfields. The first subfield must always .be expressed 

If the programmer desires to omit this field, he codes a zero followed by a 

comma. (A coded zero' is not legitimate as the fi rst .subfie ld of the labe 1 

field). 

11-11-5 



M-5035 

Intermediate subflelds may be.omitted by coding two successive commas, ot comma­

space..;.comma, or cornrna-zero-comma. The Assembler interprets any of these 

representations as assigning a zero value to the subfield •. Trailing subfields 

ma~ be omitted by following the last ~xpressed subfield with at least one 

space. The Assembler assigns a zero value to any missing subfields~. 

ll.1.1.2.4 Statement Continuation. A logical coding line may be interrupted 

at any point (~xcept between apostrophes) by coding a semicolon (;) as the 

next character and continuing the line on the next physical line: i.e., next 

card. The Asse!i.bler ignores any characters following the semicolon on the 

interrupted line and continues its scan starting with column 1 of the next card. 

The sequence of coding on continuation statements must fOllow the syntax 

rules governing fields and sub-fields. 

11.1.1.2.5 Statement Termination and Notes. Programmers may include notes as 

part of their coding lines by following the state~nts with a period followed 

by at least one space. The period space combination, except when it appears 

between apostrophes, causes the Assembler to stop scanning for additional 

fields or subfields. If a coding line involves a fixed number of fields 

and subfields and all are encoded on the line, programmers may add notes without 

the preceding period space combination, since the Assembler ceases scanning 

when the last required field or subfield is evaluated. A coding line may be 

nothing but a notes line. In this case, the period space must precede the 

first character of the notes. Any number of spaces or no spaces may precede 

the period. 

11.1.1.2.6 Blank Card Images. Blank cards (source statements containing no 

non-space characters) are given a source line number but are otherwise ignored 

by the ASRembler. It is important n6t to include blank cards within macros 

since this results in slowing up the expansion of them, whenever called. 

11.1.1.2.7 Language Structure Summary. Spaces delimitiields. A comma 

delimits a subfield except for the la$t encoded subfield which terminates 

with a space. A semicolon (except when it appears between apostrophes) 

denotes line continuation, causing the Assembler to continue its scanning with 

11-11-6 



M-5035 

the first character of the continuation line. A period space combination 

(except when it appears between apostrophes) signals the Assembler to terminate 

line evaluation. 

11.1.1.3 Notations Used In This Section 

Whenever a statement or operation is described in this section, a uniform 

system of notation is used to define the structure. This ~otation is not part 

of the language, but is a standardized notation that may be used to describe 

the syntax (construction) of any programming language, thus providing a brief 

but precise means of explaining the general patterns that the language permits. 

It does not describe the meaning of the statements or operations but merely 

describes the structure; that is, it indicates the order in which operands 

must appear, the punctuation required and the options allowed. 

11.1.1.4 Coding Control Statements 

Control statements direct system performance rather than user program gener­

ation. Conunents, printer page control and product directives are in this 

category. 

11.1.1.4.1 Comments.. A comment is a special type of operation which may appear 

.anywhere within a source program. The usage of a comment is optional. A 

comment in the source program does not produce any generation and is detected 

by the system under the same form as notes in a language statement; that is, 

following a period and at least one space. 

Format 

11.1.1.4.2 Printer Page Control. If the first character of a language statement 

is a slash (/), the printer listing will be ejected to the top of the next page. 

The character may precede a label, a statement (in absence of a label) or singly 

on a separate card im~ge. 

11-11-7 



M-5035 

Format 

II, III , ,",0 mE,S, , 
It I I 1·1 I I ,., , I I 

11.1.1.5 Directives· 

There are two forms of directives: I) those that direct the system and prod­

ucts to perform specific functions, and 2) those thatdirec~ the Assembler 
generation. Within the Assembler generation, the dIrective is a predetermined 

mnemonic coded in the operation field of a language statement. 

These directives take the same form as the language structure of paragraph 11.1.1. 

Format 

CODE: f.cDIRECTlVE 

1 .1 

11.1.2 Addressin~ Sections 

The Assembler provides the programmer with the ability to assemble program 

sections which are intended to operate a~ a sin'gle program unit, but which, for 

segmenting purposes, the programmer may consider discrete. A simple example 

is the case of any program unit consisting of instructions and data. One good 

purpose for keeping them separate is to take advantage of hardware overlap in 

accessing data from within instructions (see Section 3, Volume 1 of this 

document) . 

Il~I.3 Segmentation 

Segmentation is accomplished through use of· the SEGEND and PXL directi ves. 

SEGEND is used when assembling back-to-back segments. PXL is used to output 

11-11-8 



M-5035 

externally defined labels to be, us~d as source input in programs assembled at 

some other time. 

11.1.4 Assembly Base Addresses 

rhe Assembler initially sets all initial address counters to zero. The base 

address of any address counter can be set to some other value by beginning 

coding for that counter with a SETADR directive. When generating code for the 

AN/UYK-7 this may have the effect of biasing the base register number on all 

references to words associated with that address counter. In generating code 

for non-base register machines, address counter values may have a direct 

correlation to physical memory addresses. 

11.1. 5 Conditional Assembly 

Sometimes it is desirable to code a program on a modular basis. Certain 

sections of the progra~ may not Qe needed at any given time. Whether to omit 

or include this code may be based on a condition known at assembly time. 

This leads to what is sometimes called conditional assembly which can be made 

by two methods: 

a. Any given source statement can be generated dependent on the 

setting of a condition known at assemhly time. This can be done 

by coding the statement as part of a DO line, where the DO count 

is the result of the condition (either 0 or 1). 

b. An instruction or series of instructions can be effectively over­

ridden or included in object output by following these instructions 

with a negative reserve (RES) directive, dependent on the result of the 

condition. If the result of the condition is one, the specified number 

of previously generated lines of code are overlain by those following 

the negative reserve line. 

II-11-9 



M-503S 

Format 

II. 1.6 Library USa(le 

Source library' programs can be included within the calling program at the pqint 

at which they are called. 

1 1. 1 • 7 Ma c ro s 

Often programs require repetition of sequences of coding not necessarily 

identical hut similar enough so th~t repetition of the coding becomes mechanical. 

A device wi thin the Assembler which generates such sequences is called a macro.' 

The Assembler stores the .,.HC fO sample code when 'encountered and generates this 

coding whenever the pro"edure is called upon. The Assembler modifies the lines 

generated in accordance with pnrameters supplied in the calling line/-reference 

J j ne . 

1]-11"..10 



lI.l.R Expressions 

M-5035 

Change 1 

An expression is an elementary item or series of elpmf~nts connprted hy opf'rntors; 

which, when evalu~ted, results in a binary value, a floRting point number or 

a memory reference addresse If more than one element is included within an 

expression, they must be separated from one another by operators. An 

elementary item is an expression containing only one element. 

11.1.9 Assembler Generation 

The Assembler generates object code in accordance with the capabilities of the 

AN/DYK-7 Computer instructions. 

11.1.9.1 Ful1~Word 

Full words are generated from computer instructions, data words, FORM reference 

lines (see paragraph 11.3.3.8), and character strings. ORe d'ata word can pro­

duce up to two computer words of object code. A character string can generate 

a variable number of computer words. 

11.1.9.2 Half-Word 

If a number of successive half-word (16-bit) instructions are encountered by 

the Assembler, they are packed two per word. When a half-word is encountered 

between two full words or is the last of an odd number of successive haif­

words, it is generated in the upper half-word and the lower half-word contains 

zeros. 

11.1.10 Temporary Storage 

Two modes of temporary storage are available: 1) magnetic tape, or 2) com­

puter memory. The standard mode is storage on magnetic tape. Small programs 

can be assembled using core memory as temporary storage (see paragraph 11.2.1). 

11-11-11 



M-5035 
Change 1 

11.1.11 Assembler Output 

Output from the Assembler consists of relocatable object code. This output 

is in a format recognized by the Object Code lnader and may also be composed 

of Loader directives passed on through the Assembler source input language. 

11.1.12 Assembly Time Allocation 

Allocation of address sections can be achieved at assembly time by including 

~bject Code Loader directives in the source input to the Assembler (see Section 

3, Volume I of this document). 

11.1.13 Linking 

Values corresponding to labels can be made available to some independently 

processed code by suffixing the labels with an asterisk. Conversely. symbolic 

program names not defined within the current program can be referred to, and the 

necessary information is saved to provide a link to the program which defines 

them. The current program simply declares these names in the operand field 

of a LINK directive • 

. 11.2 CONTROL CARD 

Generally a card containing an asterisk (lie) in COlUDDl I is considered by 

the Assembler to be a control card. One exception to this rule is when 

column 2 conta~ns a space (blank). This combination is used to achieve assign­

ment ofa particular line of coding within a macro to a label found on the 

macro reference line (refer to paragraph 11.4). Those non-Assembler control 

cards found between the first card and assembly terminating END card are 

transmitted to the output code when they are encountered. 

11.2.1 Start Assembly (ULTRA) 

Each program submitted for assembly must begin with the ULTRA statement. 

11-11-12 



Format 

M-5035 
Change 3 

* ULTRA , source-option, object-option, listing-option name; version 

Explanation 

Source Option 

Obj ect Option 

One of the following (option: R maybe used with MIS): 

M - Memory will be used as the intermediate device. 

·S - An ISCM tape will be·built which contains the source. 

It will be used as the intermediate device. 

Blank - A scratch tape will be llsed for the intermediate 

device. This is the default option for source. 

R - Source will be resequenced. 

Any logical combination of the following: 

D - Disable obj ect output. 

S -. An ISCM tape will be built which contains the object 

output of the assembly(s). This output will be 

saved for the user. 

P - Object output will be in the form of binary 

punched-card decks. 

E - An ISCM tape will be built which contains the object 

output of the assembly(s). This option should be 

used when the user wants to assemble, load, and 

execute his program but does not want the object 

output saved after hls.job has been run. This is 

'the default option for object and is necessary only 

if this. option is desired in addition to one of the 

other obj ect options. 

II~11..;13 

I 

I 



M-5035 
Change 3 

Listing Option 

Name 

Version 

Any combination of the following: 

S - An ISCM tape will be built which contains the side­

by-side listing output.. 

H - The side-by-side listing will be output to the printer. 

This is the default for listing and is necessary only 

if this option is desired in addition to the above listing 

option. 

A one to eight-character name which will be used to build 

the obj ect output program: ID and the library element 

IDs for ISCM tape output(s). 

A one to four-character version which will be used to 

build the object output program ID and the library element 

IDs for ISCM tape output(s). 

For options which request output on an ISCM tape, the ISCM tape will be given the 

following internal and external names: , 

Field 

Source Option 

Object Option 

Listing Option 

Option 

S 

S 

E 

S 

Internal and External Name 

ASOURCE 

AOBJECT 

ACOMMON 

ALIST 

No spaces are allowed on the label field between *ULTRA and the three following 

subfields nor can any be present between the program name and version. 

The resequencing option causes the last twelve columns (69-80) to be overlaid with a 

period-space, four character name, four character ,number (starting at 0001), and two 

spaces. The four character name is taken from the first four characters of the element 

name specified on the *ULTRA card. The final two spaces allow for insert numbers 

when the assembler Is not resequencing. 

11-11-14 



Examples 

M-5035 
Change 3 

1*IUIIJTIRJAI,ISIRla Is I ITIEI SITIPIRIOIGI I, I I I I I I I I I I I I I I I I I I I 

The ISCM ASOURCE and AOBJECT tapes will be built, the element will be named 

TESTPROG, and the source will be resequenced on the ASOURCE tape with 

.. TESTxxxx6 6(-6= space, x = number) in columns 69-80 

The programmer has the' added option of specifying what is to be overlaid in 

columns 69-74. By immediately following the R with a left parenthesis, any 

combination of six or les's characters, and a right parenthesis, the characters 

(as many as specified) in columns 69-74 would be overlayed with the Information 

between the parenthesis, 

Example 

The ISCM ASOURCE and AOBJECT tapes will be built, the element will be named 

TESTPROG, and the source will be resequenced on the ASOURCE tape with 

REEFxXXX66 

in columns 71-80 

Assemblies may be stacked back-to-back for Assembler input. The Assembler detects 

the end of a given assembly through the occurrence of an END or SEGEND directive. 

The parameters following the *ULTRA are evaluated for the first *ULTRA card only 

and are then effective until the stop assembly card (*OFF) is encountered. The name 

and version on the first *ULTRA card of each source program is used as the name 

and version for that source program. 

Assemblies requesting source, object, or listing output should always include a 

name on the *ULTRA card to allow element identification. If no name or version 

is supplied, spaces will be used. 

II-11-14A 



11.2.2 Stop Assembly (OFF) 

M-5035 
Change 3 

The last program to be assembled (or only program if there is bu~ one) ter­

minates with the following card: 

ltO'FIE'.1 I INIQITIEISI II I I I I' I., ii' 11·,·11.11 11·1 

:::OFF appears in the label field and all other fields are empty. 

11.2.3 Disable Object Output Code (OFO) 

If no object output is wanted for one or more of a number of stacked assemblies, 

U-11-14l3 



M-5035 

a programmer codes within the source deckts) the following statement: 

I I 

.OFO appears in the label field and all other fields are empty. 

If no object output is wanted for all the stacked assemblies, a '0' is coded 
\ . 

in the object options subfield of the first ~:;ULTRA card, thus eliminating the 

need for ~::OFO cards in each source deck. 

11.2.4 Sample Deck Using Control Cards 

figure 11-3 and 11-4 show sample source decks to illustrate the use of Assembler 

and Moni tor cant ro 1 cards. 

END 

*ULTRAA ~ TXP t I 

$ASM 

Figure 11-3. Sample D~ck Using Control Cards 

11.3 SOURCE STATEMENTS 

A source statement is a coding line not nec·essarily confined to a single 

physical line; for example 9 a logical line may ext~nd over several cards. 

Except for purely comment lines, programmers are normally concerned with three 

basic fields of a coding line: 1) label field, 2) operation field, and 

3) operand field(s). 

11.3.1 Label.Field 

The label field must start in column 1 of the source line. The label field 

of a line of symbolic coding may· contain: 

a. An address counter declaration. 

b. A symbolic label. 

11-11-15 



M-5035 

c. An address counter declaration followed by a symbolic label. 

d~ An asterisk (*) in place of a symbolic label. 

If an address counter declaration and a label appear in the label field, the 

address counter declaration is coded first fOllowed by a comma (,); then the 

label is coded as in line 2 of the example shown on the next page. 

The label field may be preceded by the control character slash (I), 'which 

causes the ASsembler printer listing to be ejected to the top of the next page. 

If the slash control character is' uSrd, it must be coded in columnl, and the, 

label field must then start in column 2. A space in column 1 (or in column 2 

if column I contains a slash) implies that the label field is empty. 

Examples 

11.3.1.1 Labels 

A label is a means of identifying a symbolic coding line. Normally a label is 

giv~n the'current value of the active address counter. L~bels associated with 

EQU, FORM, GO, DO, MACRO, NAME and LIT ha've unique interpretations which are 

explained for these directives under paragraphs 11.3.3 and 11.4. 

A label may consist of up to eight alphanumeric characters. The first character 

must be alphabetic (A through Z). Subsequent characters may be any combination 

of alphabetic or numeric characters (0 through 9) or $. 

An asterisk (toe) may follow a label without intervening spaces. Asterisks so 

used do not count as a character of the label. If a label outside of a macro' 

is suffixed with an asterisk, the label is externalized (defined as level 0). 

This label then becomes available outside the program. Refer to paragraph 

11.!J.,1.:'! for an explanation of the siunificance of starred labels within macros. 

II-11-H> . \ 



I JOB 

M-5035 

NEXT JOB 

$JOB, •••• 

$SEQ,123M0~2 

Transfer control 
$TRA, LABEL ...... ...a...---- to LABEL. 

~SE-L---E-L-M-P-R-O-G-l--~ Select object code 
by name (PROGl). 

$LOAD, PI, P2, ......... ~:....---­
::;OFF 

ASSEMBLY 
PROGRAM 

Library select the 
ta pe to load (ACOMMON ) • 

Ca 11 the Loader. 

Externalized label (LABEL). 

~;AC,P1, P2, P3, P4 

~:ULTRA PROGI 

$ASM,U 4I-~---- Call the Assembler. 

Figure 11-4. Sample Deck to Assemble, Load, and Execute a Single Program 

11-11-17 



, ' 

M-5035 

11.3.1.2 Address Counter Declaration 

The first time an address counter is declared, it has the relative value of 

zero. Subsequent declarations of the same address counter cause the associated 

generation to continue at the next sequential address, regardless of how many 

other address counters 'were declared in between. A declared address counter 

controls the generated coding until another counter is declared. If no address 

counter is declared, the entire assembly is under control of address counter 

zero. 

Format 

S (e) 

Explanation 

e The desired address counter 0=31. If an address counter 

is used in conjunction with the LIT'directive, the active 

address counter is not changed (see paragraph 11.3.3.14). 

"11.3.1.3 Leading Asterisk (*) 

An asterisk (*) may be coded in the label field in place of a symbolic label, 

within macro definition coding. During macro ex~ansiont this causes the label 

coded on the macro reference line to take on the value of the active address 

counter corresponding to the line containing the leading asterisk. ' The 

leading asterisk must be followed by a space, and can only be used within 

a macro definition. The asterisk must only appear once within a particular 

macro. 

11.3.1.4 Half-Word Instruction LabelS 

The computer instruction repertoire includes a group of half-word (16-bit) 

instructions as well as full-word (32-bit) instructions. An Assembler­

generated object word may, therefore, contain either a single 32-bit instruction 

or two 16-bit instructions. The, programmer codes each half-word instruction as 

11-11-10 



M-5035 

a single source input s~atement. Two half-word instructions may not be coded 

as one source statement. 

The Assembler will collect two sequential half-word instrurtions into a si~gle 

object word with the first occupying the most significant (upper) half and 

the second occupying the least significant (lower) half. A single unpaired 

half-word instruction will be placed in the upper half of the object word and 

the Assembler will pad the lower half with a no-operation instruction. 

Only those half-word instruct~ons which will occupy the upper half of an object 

word (as described above for the Assembler's pairing convention) may be labeled. 

Examples CODING 

SIDE - BY - SIDE 

000010 1 0 4 3 0 0 000014 LA 4,GOOF,W LINE I 
000011 7 140 5 0 FLIP HOR 4,5 LINE 2 
000012 2 443 0 0 000014 SA 4,GOOF,W LINE 3 
000013 7 1 453 0 FLOP HAND 4,3 LINE 4 
000013 6 240 I 0 GOOF HLC 4,8 LINE 5 

Line l·is assemuled at relative address 000010. Line 2 is assembled into the 

upper half of relative address 000011; the lower half will be a no-operation. 

Line 3 is assembled at relative address 000012. Lines 4 and 5 are assembled 

at relative address 000013 and 000014 respectively, with the logical 

instructiori in the upp~r half and a no-operation instruction in the lower 

half of each word. 

a value of 000013. 

The label FLIP has a value of 000011; label FLOP has 

Line 5 violates the half-word labeling convention; there~ 

fore, references to GOOf have a value of 000014. 

11.3.2 Operation Field 
\ 

The first non-space (rrn-blank) character following the label field is assumed 

to be the start of the operation field except when that character is a period 

or a semicolon. (A period space si~nifies line termination; a semicolon 

signified line continuation.) 

11-11-19 



M-5035 

the operation field may contain: 

a. A computer-instruction mnemonic function code. 

b. An Assembler directive. 

c. The label of a previously defined FORM directive. 

d. A label already defined as an entry point to macro codingo 

e. + or - followed by a data word. (When the operator is + or -

spaces may separate the sign from its related operand.) 

f. An apostrophe. (When an apostrophe is the first non-blank 

character following the label field, the remainder of the line 

through the terminating apostrophe is assumed to be a character 

string. ) 

In any event, except as noted in items e) and f) above, a space following any 

character except a comma signifies the end of the operation field. 

Whenever a symbolic line results in generation of a computer word, the value 

of the controlling address counter is increased by one. An exception to this 

is the RES directive which causes the counter to be modified by the value . 

derived from the expression in the operand field. 

11.3.2.1 Processor Instruction Mnemonics 

Processor instruction mnemonic codes consist of up to four alphabetic 

characters. All half-word instruction mnemonics begin with an H. 

11.3.2.2 Input/Output Controller Command Mnemonics 

Input/Output Controller <IOC) command mnemonic codes, like those for the 

processor instructions, consist of up to four letters. All IOC commands are 

32 bits in length. 

11.3.4.3 Directive MnemoniQs 

The Assembler provides programmers with a level of programming versatility 

not ordinarily associated with an assembler-class language processor. This 

versatility is derived primarily from a group of symbolic assembler directives. 

Some of these di recti ves allow the programmer to override the imbedded 

language of the Assembler, to redefine the size and field boundaries of 



M-5035 

generated words, and to perform conditional generation; others provide for 

modifiCAtion of th~ Address counters and repetitive generation and stJ)l 

others permit character set substitution and equating one expression to another. 

A directive is a predetermined mnemonic written in the operation field of a 

coding line. Assembler directives fall roughly into two categories: 1) general, 

and 2) macro-oriented. 

11.3.3 Directives 

11.3.3.1 ABS Directive 

The ABS (ABSolute) directive is used to request a translation of an assembly­

time address counter value into a run-time absolute address. 

Format 

I' I I I I I I I I JAilS, , , , I I ICIA,T, I I I I -, ,-I ,EAR,IItAW 

The above statement causes the sy value of CAT to be translated into its 

corresponding 18-bit run time address. The upper 14 bits of the generated 

word contain zeros. One practical use for such a directive is to create a 

value used to load a base register . 

. 11.3.3.2 BYTE Directive 

The BYTE directive is defined for use solely to direct the Assembler's 

format ting of character codes in generated words. The BITE di recti ve enable s 

the programmer to redefine the Assembler's imbedded character size and the 

number of· characters paCked in an object work. 

Format 

I! I 18,Y,T,E, I Idl'Jlel~' I ,-, IFiOIRlMA,T, I II , I I I '. , 

The BITE line is written with BITE in the operation field and one or two 

expressions in the operand field. 

Explanation 

The number of characters to be packed into the Object 
word. 

11-11-21 



M-5035 

The size of the character field in hits not to 

exceed a 16-bit character field. Expression e2 may 

be omitted if the charact~r size is eight bits. 

The expression el * e2 must be S the number of bits in the object word. 

If the product of the two expressions exceeds that number of bi ts, the 

Assembler sets the expression error flag (E), and ignores the line. 

Examples 

Assume a thirty-two-bit object word: 

The first example causes all character strings encountered thereafter (until 

the next BITE di recti ve) to be packed wi th up to two characters per word, wi th 

each character right-justified in a 16-bit field. 

The second example alters the generation to four eight-bit characters per word 

for all subsequent character strings. 

The BITE directi ve must be used and expression e? encoded if the CHAR (CHAR­
acter) directive· is used to define characters other than eight bits . 

. The values of e l and e2 must be determinable at the time the Assembler 

eva luates them. 

11.3.3.3 CHAR Directive 

The CHAR directive allows the programmer to redefine the Assembler's eight-bit 

imbedded character set used for generation of characters coded between apos­

trophes (character strings). If the characters of the redefinition exceed 

eight bits, the programmer must have previously used the BYTE directive to 

define the maximum number of characters and the field 'size to be packed into 

an Object word; otherwise, incorrect generation and/or truncation (T) errors 

occur. 

Format 

11-11-22 



M-5035 
Change 1 

Thf' CIIAH direetivf! is coded with CIIAH in the operation field nnd n pnirs of 

expressions in the operand field. The first expression of each pair defines 

the octal code (000 through 377) which is to be redefined, and the second 

expression of each pair is the redefined value. In the absence of a pre­

ceding. BITE directive, the Assembler assumes that the redefinition is an 

eight-bit character set. For all character string generation following a 

CHAR directive, the Assembler uses the redefined character codes until it 

encounters another Cll.l\R di recti ve which changes them. 

The use of rI lnbel on a CliAH line is optional. V~dues of expressions in the 

operand list must be determinable when they are evnluated. 

ExampJ e s 

11. 3'. ::\ . 4 DO D ire c t i v e 

T~e DO directive causes a value or line of coding to be generated a stipulated 

number of times. DO is written in the operation field. The operand field 

contains two entries. The first operand entry is an expression defining the 

DO count (the number of times the second operand is to be done). The second 

operand entry is any valid symbolic line with or without a label. The two 

operand entries are separated by space comma. If there is no space following 

the" delimitinycomma, the line to be done is presumed to have a label. If one 

or more spaces follow the delimiting comma, the line to be done is presumed 

to have no label. 

Format 

11-11-23 



I 

M-S035 
Change 5 

There may be,a label in the label field of a DO line. Such a label is not 

equated to the value of the address counter, but is treated as a unique counter 

\fith initiai vllIue always one. For each iteration of the line to be done, 

the value of this counter increases by one until the DO count specified by the 

first op~rand expression is reached. 

To refer to the first word of a group of words generated by a DO statement, 

use <l lnbel which is not a part of the DO statement. 

Format 

Example 

If the DO count exceeds 216_1, an expression (E) error occurs. The Assembler 

arbitrarily sets the DO count to zero. 

The DO directive may be uf,f~d top\~l·form the line to be done on a conditional 

basis. In this context the first operand expression (the DO count) results 

in either zero (false) or one (true). When the result of the condition is 

zero, no action is taken. When the result of the condition is one, the line 

to be done is processed once. 

11-11-24 



Example 

M-5035 
Change 3 

DO directives may be nested. When nested, the innermost DO cycles to completion 

first, then the riext innermost DO, and so forth. 

Example 

The expression defining a DO count must result in a value determinable at the 

time it is evaluated. The maximum number of DOs which may be nested at any 

one time is 16. 

Since the label of a DO line takes on the value of the DO count, it cannot 

be used as a reference to the 00 line itself. The programmer may, however, 

immediately precede a IXl statement wi th a line consisting of a label field 

only_ Whenever the Assembler encounters a line consisting of a label field 

only, the label is equated to the current value of the active address counter, 

but the counter is not advanced since no generation occ~rs; hence a reference 

to such a label immediately preceding a DO line has the effect of referencing 

the first word generated from the UO statement. 

11. 3. 3. 4A EMBED Directive 

The EMBED directive adds defined values for certain assembly tags called Embedded 

Mnemonics. The embedded mnemonics are turned on by placing the following 

directive prior to an embedded mnemonic reference. 

11-11-25 



M-5035 
Change 5 

Format 

I" 1 IElMIBEIDI I III II I. I.IIFIQRIMAITI 1 III 1,'1.11 

The following is a list of the embedded mnemonics and their associated values: 

AO-O, A 1~1, A2-2, A3-3, A4-4, A5-5, A6-6, A7-7 

BO-O, Bl-1, B2-2, B3-3, B4-4, B5-5, 00-6, B7-7 

80-0, 81-1, 82~2, 83-3, 84-4, 85-5, 86-6, 87-7 

I KO-O, K1-1, K2-2, K3-3, K4-4, K5-5, K6-6, K7-7 

Q1-4, Q2~5, Q3-6, Q4-7 

L-1 

U~2 

W-3 

H1-1 

H2-2 

Any given embedded mnemonic will be used only if the programmer has not defined 

that tag. 

NOTE 

An embedded mnemonic reference may not be used in 
assembler directive fields which affect the address 
counter, namely - RES, 00, SETAnR. This type of 
usage may cause labels following those directives to 
be· flagged as a D error. 

11.3. 3. 5 END Directive 

An END directive Indicates the end of symbolic input to the Assembler or the end of 

a macro coding sequence. Each program to be assembled must have an END directive 

signifying the end of the symbolic program. An END directive is not labeled. 

Format 

I, , I I I ,. I . ,FiOIRMAI T, 

11-11-26 



11.3.3. 6 EQUDirective 

M-5035 
Change 3 

The EQU (EQUate) directive causes a label in the label field to be equated to the 

single expression in the operand field for all subsequent references to that label. 

If the programmer wishes to assign a value to a label, he must define the label via 

the EQU directive prior to any references to the label. The expression in the operand 

field must result in a determinable value at the time it is evaluated. 

Example 

Except when It appears in Macro coding, a label defined by EQU may not subsequently 

be redefined or a duplicate (D) error occurs. Within Macro coding sequences, labels 

may be redefined via EQU lines unless ,the definition affects an address counter. 

The expression on an EQU within a Macro will be evaluated twice by the assembler. 

Thus, the user should be careful in his use of EQUs whose operand expression 

involves the label of the EQU. 

Example 

A* MA C R 0 
B* EQ U 0 

EN D 
A 

C* MA C R 0 
B* E Q U B + 1 

+B 
END 
C 
C 
C 

GENERATES 
GENERATES 
GENERATES 

II-11-26A 

00000000002 
00000000004 
00000000006 



M-5035 
Change 3 

Labels defined by EQU are not considered relocatable memory references unless 

the value of the operand expression is a relocatable memory reference. 

11. 3. 3.7 EVEN, ODn Directives 

The EVEN dire~tive forces the current address counter value to an even number, 

thus subsequent words start at that number. 

The ODn directive forces the current address counter vahle to an odd number, 

thus subsequent words start at that number. 

I1-I1-26B 



M-5035 

For Edther directive, if the condition is met, the Asspmbler ignores the 

directive. If the condition is not met, the address counter value is increased 

by one. 

Format 

I : : ~~:~ : : I : : ::: :~::~rn : : : : : : : : I : : : : : : : : 
11.3.3.8 FORM Directive 

The FORM (FORMat) directive describes a special word format designed by the 

user. This word format may include fields of variable length, the length in 

bits of each field being defined by the user through expressions in the operand 

field of a FORM line. The value of each expression specifie6 the number of 

bits desired in its respective field. 

Format 

The number of bits specified by the sum of the values of the operand expressions 

must equal 32 or 64, depending on whether a single or double precision FORM 

word is desired. When a WRD (WoRD) directive is employed, the .number of bits 

must be the word size, or twice the word size, but must not exceed 64 bits 

(see paragraph :~.3.3.21). The number of fields may not exceed 32. 

A format defined by this directive can be referred to by writing the label of 

the FORM directive in the operation field, followed by a series of expressions 

in the operand field which specify the value to be inserted· in each field of 

the generated word or words. A reference to a specific FORM label always 

creates one or two words composed of fields in the same format. The content of 

the fields varies according to the expression values in the referencing line. 

Truncation occurs and an error flag is set if a given value exceeds the space 

permitted for a field as indicated in the associated FORM directive. The 

number of expressions in the operand field should equal the number of fields 

specified on the FORM directive~ If fewer fields are coded, they are left­

justified in the object word(s). Coded fields in excess' of the required number 

11-11~27 



M-5035 

are ignored. 

Format 

The line above would produce a word as follows: 26020410002 

Format 

The line above would produce the two words as follows 9 plus an error flag 

because the expression 167(2478) required more than six bits. 

26410000012 01750471204 

Expressions in the operand field of a FORM directive line must result ina 

determinable value. 

11.3.~.9 LCR Directive 

The LCR (List Cross Reference Table) directive instructs the Assembler to 

print symbolic names appearing within the program together with the program 

address(es) where the symbolic names have been referenced or used. This 

optional listing is produced following the normal side-by-side printed program 

listing. This directive can appear anywhere in the source coding after the 

*ULTRA header card. Only references to level 0 or level 1 relocatable 

labels, to external labels, or to undefined labels, will be saved in the cross 

reference table. Labels are alphanumerically sorted on the listing and 

appear as follows, (see also paragraph 11.9.4.5); 

LABEL ADDRESS COUNTER VALUE' 

Format 

11-11-28 



M-5035 

11.3.~LIO LIBS Directive 

The LIBS (Library Select) directive permits the programmer to specify the names 

of the library tapes or the ISCM tapes that are needed for library retrieval. 

The LIBS directive statement works in conjunction with the LIB directive 

statement (see paragraph 11.3.3.11) with the following stipulations: 

a. A LIBS directive must precede any LIB directive(s). 

b. A LIBS directive is effective until another LIBS directive is encoun·· 

teredo The new LIBS directive then replaces the previous one. 

C. An element retrieved from a library should not contain a LIBS directive. 

If a retrieved element does contain a LIBS directive, that directive 

is flagged as an error and is ignored. 

Format 

LIBS internal-name(external-name),internal-name(external-name) •••• 

Explanation 

Internal Name 

External Name 

11.3.3.11 LIB Directive 

A one to eight-character name identifying 

the internal library tape label. 

An optional external tape identifier. 

The LIB (LIBrary element) directive permits the programmer to incorporate source 

library elements into his current assembly at the point where the LIB directive 

statement is encountered. The LIB directi~e must be preceded by the LIBS 

directive (see paragraph 11.3.3.10) 

Format 

Explanation 

Name (Ver) Name and vers ion of a 1 ibrary element to be merged. 

The version field is optional; but if it is ommitted, 

th~ library element to ber~trieved must not contain 

a version on the library tape. If a version is 

11-11-29 



M-5035 

specified but no name is specified. then all elements 

on thelibrary(s) with that version will be retrieved. 

If neither a name nor a version is specified, then 

all source elements on the library(s) will be re-

t rieved. 

Library elements may be corrected during retrieval; and if an output ASOURCE 
t~pe has been requested fora tape containing Assembler source data (see 

paragraph 11.2.1), the corrected elements will be written on the ASOURCE tape. 

To correct a library element, a /CORRECT card must immediately follow the LIB 

directive (see Volume I, Section 4, paragraph 4.3.7). 

The retrieved library elements are assumed to be symbolic and are assembled as 

parts of the current assembly program. After the last requested element is 

retrieved from the library and assembled, the Assembler resumes processing the 

user's source p'rogram from the original input medIum commencing with the symbolic 

statement :immediately following the LIB directive statement. Use of library 

calls have the following limitations: 

a. Nested library calls are not allowed; that is, a called 'element may, 

not il self contain a call for another library element'. 

b. A conditional library call may be used in conjunction'with the DO 

directive to conditionally call a library element. 

Example 

,Da .j, .. , II I ,I ,L,I,a. ,51111" .li t. , 

This line would insert library elements SIN and eOSIN into tb~ user's 

source program if A was previously equated to an absolute value of I. 

If A was not defined as being equal to I, the LIB directive line is 

ignored. Nesting of 00 statements in conjunction with the LIB direc~ 

tive is not allowed. 

c~ If the called library element is a macro definition, it is the pro­

grammer's responsibility to provide a subsequent call line and 

" 

11":11-30 



M-5035 

parameters for t~e macro as part of his source program. 

d. If the called library element is a closed subroutine, it is the 

programmer's responsibility to establish parameters required by the 

subroutine and transfer control to the subroutine. 
e. A LIB directive used in conjunction with a DO directive is not 

allowed within a macro definition. 

f. If a macro i s to be called from a library tape via the LIB 
uirective, the total macro must have been entered into the 
library including its END line. 

g. A LIBS directive must precede any LIB directive(s). 

11.3.3.12 LINK Directive 

This manual has previously discussed external definition of a program label 

by suffixing the label with an asterisk (refer to paragraph 11.3.1.1) o. By 

doing so, the programmer makes the value (usually a relative address counter 

value) available at load time to some other independently processed code. 

Conversely, the programmer may wish to refer in his coding to symbolic names 

of prog·rams or data not included in his program. These symbolic names are 

taIled external references. The primary purpose for externalizing labels is 

to permit program and data linkages at object program load time. Both 

externally defined and externally referenced symbols are transmitted to the 

object program loader by the Assembler. 

The LINK directive is the means whereby the programmer declares externally 

referenced names. 

Format 

Explanation 

1-, ,fjO,R,MAJ, 

Symbolic names referenced by the source program but 

which appear nowhere as labels In the source program. 

11':'11-31 



M-5035 
Change 2 

If the programmer references a symbolic name which is neither defined within 

his program nor identified by a LINK directive, the name is assumed to be 

undefined and is flagged with a (U) warning at each reference. 

NOTE 

If the LINKed name is referenced in the form "LINKed 

name-constant",' the generated instruction (at load time) 

may not be what the user intended and a load time diag-
, , 

nostic (MODIFICATION OVERFLOW - see paragraph 3.4.2.2 

Volume I) will be output. The programmer should link 

to the actual cell he wishes to reference. 

II~a.3.13 LIST, ELIST, and NOLIST Directives 

These directives permit programmers to control printed program listings. 

The Assembler always assumes that it produces a side-by-side source listing 

of the program being assembled. It assumes further that generated object code 

is printed with a space separating field within it. 

Example 

Explanation 

NOLIST Causes the Assembler to suspend all printing of the program 

being assembled. 

LIST 

ELIST 

Causes the Assembler to resume printing after a NOLlST in the 

normal manner with object words packed. 

Causes the Assembler to print (or resume printing after a 

NOLISTwi th edi ting-. This means that individual fields of the 

object word are printed with a space separating the fields. 

Literals are never edited. 

II -11-32 ' 



M-5035 
ChHngp .) 

The progrHmmer m~y intersperse these directives in ~ny combinntion throughout 

his progrnm, but to ohtF1in ~ complete listing, NOLTST lines should be removed. 

LIST ~nd FI..IST lines ~re printed and :'-JOLIST lines ~re not printed. 

If no chF1nge to the Ass(";" :.('}"s printing F1ssumptions is wHnted. none of these 

dirpctives need be used. 

11.:3.:3.14 LIT Directivp 

The I~IT (LITerF1l) directive activF1tes R literal tahle under the control of 1he 

currently Hctive F1ddress counter. 

Format ---

The word LIT is written in the operntion field. There is no operand field. 

The contents of the IF1bel field mF1Y contF1in F1n Hddress counter declaration F1nd 

or a label; however. the labe 1, when present, may not be other than HS' deseri bed 

below, nor may it be suffixed witn Hn asterisk. 

In the absence of a LIT directive, the Assembler enters Hll literals, under the 

control of address counter zero. The LIT directive may be used to nIter this 

Assemtler process. The Asspmhler eliminates duplicF1te literals within PF1ch 

Hddress counter, but duplicates mny exist within sepHtHte counters. 

If H LIT line has no l~bel, the Asspmblrr plHces literHIs not preceded by a 

IHbel 'in the literal table designated by the LIT directive. Any number of un­

labeled LIT lines mHY be used, each causing all subsequent unlabeled literals 

to be generHted under the address counter relHted to this last LIT line, until 

another unlabeled LIT line is used. 

If the LIT line is labeled, all literals to be plHced under its relHted address 

counter must be preceded by this LIT line label. 

The Assem~~er generates for literals during its second generative pass. It 

places all unlabeled literals under address counter zero until an unlabeled 

LIT,directive overrides this'process. 

II-Il-:~:\ 



M-5035 
Change 2 

Examples 

11.3.3.15 LLT Directive 

The LLT (List Label Table) directive instructs the assembler to print symbolic 

names appearing within the program together with their associated values. The 

listing is produced immediately following the normal iside-by-side printed pro­

gram listing. It does not include MACRO, NAME, FORM, and LIT line labels or 

labels which are purely local to a macro. 

Example 

I, ,L,l,lj I , ! , I , , , , I I ,-, IF,O,R,MAiIi I I 

Labels are alphanumerically sorted on the listing. ,.. 

Format 

11-11-34 



Explanation 

N One of the following: 

D (d uplicate) 

X (external reference) 

Blank 

M-5035 
Change 2 

The address counter is only printed when the label has a relocatable value. 

11.3.3.16 PXL Directive 

The PXL (Punch External Labels) directive instructs the Assembler to output 

all assembly level program labels which have been suffixed by an asterisk; 

that is, externally defined symbols. 

Format 

, I I I IP,XIY II I I , I , I I ,e I ,FIORaMAlli , II I I I I I t I 

The labels are output as symbolic EQU statements which may then, be use,d wi th 

subsequent assemblies at some later date. Each EQU statement has the format: 

Label EQU value, mode of value (e.g~ relocatable, fixed point) 

The PXL directive takes effect after the completion of assembly. The standard 

PXL output device is the card punch. 

11.3.3.17 RES Directive 

The RES (REServe) directive causes the value of the single expression in the 

operand field to be added to the 'currently active address counter. Ifa label 

appears in the label field of a RES line, it is equated to the current value of 

the address counter which is also the address of the first reserved word. 

Examples 

11-11-35 



M-5035 
Change 2 

The expression in the operand field must result in a determinable value at 

the time it is evaluated. The value may be either positive or negative. 

A RES line is used to set aside areas for any programmable purpose, or·to mOdify 

ah address counter. The Assembler does 'not produce any generated words as the 

result of a RES operation. 

11.3.3.18 Rf$ Directive 

The RF$ (Relocation Field) directive is designed to assist users employing 

the Assembler to generate object programs that differ from that established 

for normal operati~g ~onditionst see Appendix G. The directive permits such 

users to define relocatable fields within object words and to associate a 

descriptive modification code with each defined field. The statement must 

precede any coding which results in object code gen~ration. 

Format 

Explanation 

e 

h -h 
1 n 

I -1 1 n 

c -c 
1 n 

I I I 

The number of unique relocation fields to be defined. 

e must be in the range 1 ~ e ~ 16. 

The higher order bit position of the relocation field. 

The value of h canrtot exceed 31. 

The lower order bit position of the relocation field. 

The modification code to be associated with the re­

location field. c must be in the range 1 ~ c ~ 16. 

A non~relocatable field or word is assumed to carry a modification code of O. 

Upon encountering an RF$ statement, the Assembler overlays its relocatable 

fields table with those defined by the statement. Each occurrence of the 

statement causes the overlay; therefore users must declare all d~sired re­

location fields with a single RF$ statement. 

Use of the RF$ directive, as well as the WRD directive, permits programmers to 

control not only the size of generated object words but also to define known 

relocation fields within the generated words, and to associate with e~ch de­

fined field a modification code of their own chosing. 

11-11-36 



11.3.3.19 SEGEND Directive 

M-5035 
Change 2 

The SEGEND (SEGment END) directive provides the programmer with a type of 

segmentation which differs slightly in concept from the LINK capability. The 

SEGEND concept may be used when the programmer wishes to assemble a main pro­

gram followed by one or more sequential overlay segments or when a program is 

too large to be assembled at one time. 

When the Assembler END dlrective appears at the end of a program, it indicates 

the end of symbolic input to the Assembler. The Assembler outputs literals, 

finalizes the assembly, initializes all flags, and clears counters and tables 

in preparation for a possible new assembly. Nothing pertaining to the just­

finished assembly survives this process. However, to assemble successive 

segments back-to-back, which are actually segmented parts of a single operational 

program, is made possible by the SEGEND directive. The SEGEND directive in 

this case replaces the END directive on all segments except the last. SEGEND 

informs the Assembler that the next immediate assembly is a segment of the 
current assembly. 

Format 

I, ,SE,GtE,N,Dt I I " I , , ,., ,FfogMA,T. II I I I I , I I I I I I I I 

The SEGEND directive causes the Assembler to retain certain information from the 

just-finished assembly for use by the succeeding assembly. 

NOTES 

a. All assembly-level labels which have been sufr 

fixed with an asterisk and their associated values 

are saved in the Assembler's item table so they 

are available to the next assembly. 

b. Address counter values are not reset to zero; 

instead they have the highest value attained from 

the just-finished assembly +1. 

c. Only externally defined symbols are preserved. 

Externally referenced symbols declared via the 

LINK directive are not preserved, but must be 

redefined as requir~d for each segment. 

11-11-37 



M-5035 
Cbange 2 

d. Macros are never preserved from one assembly to the 

next; they must be redefined for each segment. 

11.3.3.20 SETADR Directive 

The SETADR (SET ADdRess) directive instructs the Assembler to dump (generate 

sequentially) "literals referred to prior to the occurrence of the SETADR line 

as defined by the subfield(s) of the operand field. 

Format 

Explanation 

e Always coded. 

(Optional). When present, specify each 

controlling address counter whose literals 

are t'o be dumped. 

Literals controlled by the currently active add~ess counter are always dumped 

and need not, therefore, be included in expressions a l through an. After 

literals have been dumped, the value of the currently active address counter 

is set to the value of expression e (normally the start of the next 8,192 word 

base). 

Examples 

Line 1 causes the Assembler to dump literals under control of "the currently 

active address counter, then set the counter to 02()OOO. 

11-11-38 



M-5035 
Change 2 

Line 2 causes the Assembler to dump literals under control of the currently 

aetive address counter and those under control of address counter 3, then set 

the currently active address counter to 040000. The value of address counter 

3 must be separately advanced if desired. 

Thus the SETADR allows the programmer to ensure that literals and coding 

referencing them are assembled into the same 8,192 word base group_ 

The SETADR operation has the effect of erasing dumped literals from the 

Assembler's item table. Consequently, identical literals may occur under the 

same address counter but in different SETADR groups. 

The Assembler automatically dumps all literals for all address counters when 

it detects the end of the assembly delimited by the terminating ENO or SEGEND 

directi ve. 

11.3.3.21 WRD Directive 

The WRD (WoRD) d.irective is written with WRD in the operation field and a 

single expression in the operand field which indicates an object computer 

word size in bits. The value in the operand field may not exceed 32. 

Example 

I =: : : : :~:O: : : : : : : : : : ::: :~~::=t:E:: : : : : : : : : : : 
The WHO directive defines the object computer word size to the Assembler. 

It is not required when the object word size is 32 bits. Its primary use 

is in causing the Assembler to generate for other than 32-bit word lengths. 

Expression evaluation within the Assembler is carried out modulo, and the 

object computer word size sign is extended as required for single or double 

precision values with truncation occurring at the point of output. 

Once the WRD directive is encountered, it takes effect for all subsequent gen­

erated words until another WHO line is encountered. 

11-11-39 



M-5035 
Change 2 

11.3.3.22 TAGTBL Directive 

The TAGTBL (TAG Table) directive causes all assembly labels other than labels 

purely local to a macro to be output to the object output. This output will 

be ignored by the CMS-2 Loader. 

Example 

I ,I IH OIIi EISI I ' 

11.4 MACRO STATEMENTS 

A macro within the Assembler framework is an arbitrary, programmer-defined 

guide in generating object code. A macro may be thought of as a sample sub­

program whose characteristics are generally defined in the formal parameter 

references. The actual values for these parameters are supplied when the 

programmer instructs. the Assembler to generate for the sample. 

Programs can, of course, be written without using macros; however when 

repeti ti ve coding sequences occur, it is more efficient and minimfzes errors 

to define the coding sequence just once and let the. Assembler produce object 

words based on the definition. Generation may vary from one calIon a macro' . 

to the next depending upon the values furnished for, interpretation of the macroo 

Macro sample programs must always physically precede any calIon them. When 

the assembler encounters a macro di recti ve line t. it. save s the as sociated 

sample through its END line, making use of it only when it is referenced. When 

a macro is referenced, the Assembler in a sense interrupts its normal sequence 

and commences generation at the designated entry point in the sample. When 

this sub-assembly is complete, the Assembler resumes its normal sequence wi th 

the next symbolic line. 

11.4.1 MACRO and END Directives 

Each macro sample begins with a MACRO directive and terminates with an END 

directive. Both must always be present to delimit the macro sample. 

11-11-40 



• 
• 
• 

Format 

M-5035 
Change 2 

,\ MACRO directive line must have a label. The label should be suffixed by an 

asterisk if the calIon the macro is via the MACRO line. 

Example 

It should be remembered that a macro reference (call) line merely supplies 

actual values for the macro when any are required. Generation results from 

matching the actual values of the reference line to they symbolic values within 

the macro sample coding. 

The basic element of a macro reference line is called a subfield. A string of 

subfields separated by commas 'is called a field; fields are separated by spaces. 

Data supplied in this manner are considered to be the actual values to be sub­

sti tuted wi thin the macro sample 'coding where indicated by the use of symbolic 

representations. These representations are normally subscripted indexes to 

elements of the referencing line •. These subscrip~ed indexes are called para­
forms (parameter reference forms). 

A macro directive line may al&o have an address counter declaration associated 

with it. The address counter declaration defines the address counter under 

which the macro is to be expanded. After the macro has been expanded, the 

address counter is reset to the address counter active at the time of the macro 
reference (call) line. 

II-11-41 



M-5035 
Change 2 

Format 

1\ f.tll,1M1t MIeeO I-I 

11.4.1.1 Paraforms 

I 

Paraforms are the means within a macro whereby the programmer references a 

specific parameter or group of parameters which may be found wi thin a reference 

line calling on the. ~acro. A part of each paraform is the label of the MACRO 

directive line. A paraform may consist of the label· alone, a label plus one 

subscript, or the label plus two subscripts. ixamples follow: 

a. The most common paraform is label (x,y), where label is the label 

of the MACRO directive line, x is the field number, and y is the 

. subfield number wi-thin field x on the reference line. Thus, 

lEST(2,1) indicates that the first subfield of the second field of 

the reference line is to be substituted wherever ZEST(2,l) appears 

in the sample coding of macro ZEST. The following example 

illustrates the use of two fields, assuming a 3D-bit object word 
size. 

Example 

11-11-42 



M-5035 
Change 2 

The writer of the EE macro could have written it to expect one field 

of five subfields. 'rhe resulting generation would have been the 

same, but the macro sample and the reference line would then have 

been coded as shown in the next example. 

Example 

b ~ A paraform can be written label (x), where x is the field number • 

The value resulting from such a paraform is the number of subfields 

found in field x on the macro reference line. 

Example 

11-11-43 



M-5035 
Change 2 

c. A paraform may consist only of the' macro label without any sub­

script. The value resulting from such a paraform usaae is the 

number of fields submitted on the macro reference line. 

Example 

d. 

Example 

I I I I I 

I 
for example, F1TZ (1,1) 

the programmer may c~de an asterisk preceding the second subscript; 

for example,FIX( 1 t ~::l). The asterisk preceding in this context has 

the effect of true (value is one) or false (value is zero) depending 

on whether or not the corresponding subfield of the reference line 

is preceded by an asterisk. 

NOTE 
Paraforms may not be used as labels in the label field of any 
symbolic line. 

11-11-44 



11.4.1.2 Starred Labels Within Macros 

M-5035 
Change 2 

Suffixing a label with an asterisk in a macro externalizes the label and makes 

it available to the main program as well as the macro which contains it. For 

the purpose of this discussion, assume that the main program is defined as 

level one, and the macros are defin~d as level two. A single asterisk suffixing 
a labe I in a macro externa~ize\s that labe I, making it avai lable wi thin the main 

program level. Any label defined for the main program is also defined for any 

macro. 

11.4.1.3 Operand Field 

The operand field of a MACRO dlrective line may contain no subfie1ds, one sub­

field, or two subfields separated by a comma. 

Format 

1L..4&fiLritt , ",41C,AO , !&""e'a' ,', ,FORMA[. I I I , , ,. I , , I I 

Zero, one, or two expressions may appear in the operand field of the MACRO 

directive. The first, if code'd, is the maximum number of fields which may be 

submitted to the macro on a macro reference line. Knowing this, the Assembler 

can terminate the scan of the Teference line operand field once the maximum 

number of fields is encountered. If fewer than the maximum number of fields 

is submitted, a line terminator (the period space convention) must precede 

any comments on the procedure reference line. 

The second MACRO directive operand. if coded, is the exact number of words to, 

be produced by the macro. The second operand must be omitted in the following 

situations: 

a. If forward references are made in the macro. 

b. If external definitions are made in the macro (except entry points). 

c. If the macro should generate a ,variable number of lines. 

d. When a change of address counter control, however transient, occurs 

within a macro. 

e. When a label on a macro reference line is to be assigned to a line 

11-11-45 



M-5035 
Change 2 

other than the first line of the macro. 

f. When the macro.generates half-word machine instructions. 

Except for the conditions stated above, the s~co~d operand should be used 

because it eliminates one assembly pass on the macro, thus shortening assembly 
time • 

el and e2 inust result in determinable values at the time they are evaluated. 

To further understand the power of the procedure, two more directi ves, NAME 

and GO, are explained in the following paragraphs. 

11.4.2 Other Macro-Oriented Directives 

11.4.2.1 NAME Directive 

The NAME directive is usable only within a macro. It serves as an alternate 

entry to a macro or asa forward or backward reference point within a macro. 

If it is used as an entry to a macro, it may also define a value associated 

with that entry point. 

Format 

~IA6fiLrMI II tNlAMEI I lei I I I I· I IFO,R,MIA,1i , I , I I I I I I , I· 

It was already explained that a macro can be referenced by the label of its 

MACRO directive line. A macro may also be referenced by the label of a NAME 

directive. The label must be suffixed by one or more asterisks to define it 

outside of the macro. A reference line calling a macro by a NAME line is 

written with the label of the NAME line in the operation field, and with fields 

and subfields in the operand field, as required. 

Calling on a macro via a NAME label is more common than via the MACRO label 

because a value can be associated with a NAME line. Thus if a macro has 
, 

several NAME line entry points, each entry point may have a unique value 

~ssociated with it. The value is coded as a single expression in the operand 

field of the NAME line. The value on a NAME line can be referenced as a para­

form. By convention, its subscript value is always field zero, subfield zero. 

The following example illustrates how a NAME line value can be used to vary the 

11-11-46 



macro generation. 

Example 

M-5035 
Change 2 

The value on a NAME line may be preceded by an asterisk. Assuming the MACRO 

label, M, the paraform to interrogate the condition is M(O,*O). 

Example 

The value on a NAME line may itself be a paraform only if the NAME line is 

contained in a nested macro. 

The programmer may incorporate additional subfields in the zero field. 

Values to be associated with the zero field are coded as subfields in the 

operation field following the entry label. These subfields are expressed 

within the macro as label (0, *label subfield number). Remember that field 0, 

subfield 0, always refers to the value. on a NAMl! line. 

11-11-47 



M-5035 
Change 2 

Example 

The count of fields obtained by using the paraform consisting only of the 

MACRO label includes field zero in the count only when entry is via a NAME 

line. Entry via a NAME line implies at least one. field, field zero. 

A NAME line may also be used as a local reference point within a macro. 

11.4.2.2 GO Directive 

The GO directive transfers Assembler processing to the label in the operand 

field of the GO line. The label may only be a NAME label or a starred MACRO 

label. GO provides the mechanism for forward or backward referencing within a 

macro. By inference, any entry to a macro must have a starred label associated 

with it (see paragraph 11.4.1 and 11.4.2.1). Externalizing a label is a 
physical attribute. For assembly purposes, macros are presumed to be nested 

within the main program; one asterisk overrides this nesting. If a macro is 

physically nested within another macro, it is one level further removed from 

the main program. To externalize a label within this innermost macro would 

th~refore require one asterisk to make it available to the outer macro and 

another asterisk to make it available to the ~ain program. 

A special word of caution is necessary when disc~ssing starred labels contained 

within a macro physically nested inside another macro. A starred label within 

a macro nested within another macro is not externally defined (or referable) 

II-11-48 



until the macro containing it has been referenced. 

Example 

M-5035 
Change 2 

A NAME label serving as the destination of a GO must be suffixed by an asterisk 

if it is a forward reference •. 

11.4.3 Summary of Macro Usage 

A macro describes to the Assembler the format and manner of generation for one 

or more object words. Input to a macro consists of parameters, which when 

substituted within the macro, either result in object generation and/or 

conditionally affect the generation. 

A macro begins with a MACRO directive and terminates with an END directive. 

Entry to a macro may be via the MACRO or NAME lines. MACRO and NAME lines 

require labels. An asterisk appended to a MACRO or NAME line label defines 

it as an entry to the macro or a forward reference within· the macro. 

Macros may be nested within macros. Reference to nested or non-nested macros 

maY.be made in a macro only if its definition was encountered prior to the 

reference. 

11-11-49 



M-5035 
Change. 5 

All directives (except LIBSand LIB) may be used within a macro. 

None, one, or two expressions may be encoded in the ,operand field of a MACRO direc­

tive line. The first is the maximum number of fields which may be expected on a 

reference line, and the second is the precise number of object words which the macro 

generates. The second expression is never coded if the· first is not coded. If the num­

ber of fields is variable, the operand field is empty. If the number of words generated 

I by the macro can vary, or if the macro generates half-word instructions or affects 

the currently active address counter control or contains forward referenc.es or exter­

nal definitions, the second expression must be omitted from the MACRO line operand 

. field. Comments on a MACRO directive line must be preceded by period space. Good 

programming practice implies that detailed comments be used to describe a macro, 

including its purpose and the. expected order and contents of a line of coding which 

references it. Such comments should be encoded as pure comment lines outside the 

macro. 

11.4.4 Special Consideration When Coding Macros 

11.4.4.1 Comments 

Comments on macro reference lines and macro coding lines should always be pre­

ceded by a period Gpace, whenever the expected number of fields Or subfields may 

vary. When extensive comments are desirable. it is good programming practice 

to code several purely comment lines preceding the macro. 

11.4.4.2 Labels on a Macro Reference Line 

A label may be present on a macro reference line. Under normal conditi.ons 

this label will be defined equal to the value of the current address counter 

at the time of the macro call. It is possible to alter the positioning of this 

label within the macro; that is, it is possible to ~ssociate this label with 

a line within the macro. This is done by coding an asterisk (*) alone in the 

label field of that particular line in the macro definition. The label of the 

calling line will be processed exactly as though it had appeared in place of 

the asterisk, except that it will be defined at the level of the reference line 
on which it appeared. 

II-II-50 



Example 

M-5035 
Change 2 

In this example, RAM is the address of the J line. If this line has not 

included the asterisk in the label field, RAM would have been the address of 

the JZ line. 

11.4.4.3 Address Counter Declarations Within a Macro 

No change of address counter number is permitted during the expansion of a 

macro except that governing the generation of in-line constants or literals. 

Changes of the latter type are made via the LIT directive. 

11.4.4.4 Externa1izi~g Labels 

The nestirig of macros is permitted up to 29 levels. This nesting can take 

two forms: 

a. If a macro definition is completely <physically) c~ntained within , ' 

another macro definition, it is explicitly nested in the larger, 

and the internal macro is considered to be one level higher than 

the external macro which contains it. This type of macro may'con­

tain other macros. An internal macro may only be referenced after a 

call has been made on the external macro. 

b. A macro which is called upon by another macro is said to be nested 

within the calling macro at the time of reference. If a GO statement 

transfers control to an entrance label of another macro, this is not 

considered nesting but is a lateral transfer and does not change 
levels. 

The value associated with a label contained in a macro may be defined for use 

outside of the macro by suffixing the label with an asterisk. A special con-

II-II-51 



M-5035 
Change 2 

dition applies to labels contained within macros physically nested within outer 

macros. One asterisk defines a label for use by the next outer macro. Two 

asterisks define a label for use by the next two outer macros, and so forth. 

The skeleton diagram which follows illustrates this method of propagating a 

label value through the use of ~uffixingasterisks. 

Note that externally defined labels are not defined outside the macro containing 

them until that macro is referenced. Label Dl remains undefined to the main 

program until at C, and 0 are referenced, in th~t order. Al is not defined 

until A is referenced. Once defined through a reference, Al and D1 are avaiI­

able, thereafter, throughout the assembly. 

A· MACRl REFERABLE BY B AND MAIN PROGRAM 
AI· EQU' 6 AVAILABLE OUTSIDE' A 
A2 EQU 5 AVAILABLE INSIDE A ONLY 

END 
B· MACRO REFERABLE BY A AND MAIN PROGRAM 
C· MACRO REFERABLE ONLY BY B 
D* MACRO REFERABLE ONLY BY C 
Dl··· +6 
D2·· +8 
D3· +10 
D4 +12 

+Al DEFINED FOR MACRO D 
END 
D C REFERENCES NESTED MACRO D 
+D4 UNDEFINEQ'FOR MACRO C 
+Al, DI, D2" D3 DEFINED FOR MACRO C 
END 
C BREFERENCES'NESTED MACRO C 
+D3, 04 UNDEFINED FOR MACRO B 
+Dl, D2 DEFINED FOR ~ACRO B 
+Al DEFINED FOR p!!ACRO B 
END 

MAIN P II>GRAM CODING LINES 
A MAIN PROGRAM REFERENCES MACRO A 
B MAIN PROGRAM' REFE RENCES MACRO B 
+Al, Dl DEFINED FOR MAIN PRlGRAM 
+A2, D2, D3, D4 UNDEFINED FOR MAIN PROGRAM 

II-II-52 



11. ti. 4. ~ Macro Reference Lines· 

M-5035 
'Change 2 

Macro reference lines (calls upon'macros) are coded following the normal 

Assembler syntax governing fields arid subfields. A macro r~feience line may 

be labeled. The label is normally equated to the address of the first word 

generated from the macro, but may be equated to any line within the macro by 

coding an asterisk only in the label field of the line. The macro is called by 

writing the entry label {from the MACRO or a NAME line} in the operation field, 

followed by as many parameters as may be required in the operand field. Para­

meters are organi zed into fie Ids and subfie Ids according to the requi rement s 

of the macro. Subfields of the operand field are assumed to be parameters of 

field 1, field 29 and so forth, in left-to-right order. Any subfield maybe 

preceded by a single ast~risk to be used as a conditional value within th2 

referenced macro. 

An address counter declaration may be coded on a macro reference line. This 

declared address counter will supercede any address counter declaration made 

on the macro directive line. (See also Paragraphs 11.3.1 and 11.5.) 

11.4.4.6 Complex Macros 

Macro capabilities provide an extremely powerful technique for controlling 

Assembler generation. Macros c~n b~ simple or complex limited only by the 

programmer's ingenuity. The example which follows of a more complex 
I 

macro may be used to generate for data word lines assuming a 32-bit object 

word size. 

Example 

II-II-53 



M-5035 
Change 2 

j 
;' 

The following macro example generates an overlapped bit-field object word for 

an l8-bitobject word. 

Example 

11.5 ADDRESS COUNTER DECLARATIONS 

The Assembler provides for 32 address counters, and anyone may be refere~ced 

or used. Grouping of constants an~/or instructions under a given address 

counter may be more convenient or meaningful for segmenting purposes or for 

collecting coding groups at load time. A specific address counter is declared 

by coding in the label field: 

Format 

$ (e) 

Explanation 

e The address counter number (0 through 31). 

At the start of an as sembly, the Assembler assumes address counter 0 is active. 

All address counters have an initial value of zero. A declared address counter 

(counter 0 if no other has been declared) remains active until a new address 

counter is declared and all coding following the· declaration is controlled by 
that counter (assembled relative to zero). Coding resumed under a previously 

declared counter continues at the next sequentia~ address following the last 

one used under the counter. 

II-II-54 



Examples 

11.6 EXPRESSION STATEMENTS 

• 

M-5035 
Change 2 

An expression is an element or a series of elements connected by operators 

which, when evaluated, produce as a final result a binary value, a floating 

point number, or a memory reference address. The final value may be used as 

a word(s) of data in memory, as a subfield of an instruction word or data word, 

or as a parameter for an Assembler directive. 

An element is a grouping of characters which is recognizable to the Assembler 

as an entity and can be replaced by a binary val~e, a floating pOint number, 

or a memory address. An element may be: 1) a symbolic name, (a label); 2) a 

decimal, oetal, or floating point number; 3) the contents of an address counter; 

or 4) a literal item enclosed by parentheses. A detailed discussion 

of element follOWS. 

An operator is a special mathematical symbol defining the operation to be per­

fo·rmed on the operands immediate ly preceding and immediate ly following the 

operator. An expression need not include any operators if it consists of only 

one element; however, if more than one element is included within an expression, 

they must be separated by operators. 

Expression evaluation is normally performed in a single-precision mode (single­

precision normally being 32 bits, unless altered by the WRD directive). How­

ever, if any numerical element of an expression is terminated by the letter D, 

the remainder of the evaluation shall be performed in a double-precision mode, 

with a double-precision result generated. 

An expression is terminated by either a comma or a space; therefore these two 

characters cannot be included within an expression. The one exception to this 

rule is the use of character strings as elements. These are further explained 

in the following paragraphs. 

II-II-55 



M-5035 
Change 2 

11.6.1 Labels 

An alphanumeric label may be used as an element' within an expression. The 

label must conform to the rules for labels as described in paragraph 11.3.1~1; 

for exampl&, it must .not exceed eight characters; it must consist of alpha­

betic (A through Z) or numeric <0 through 9) characters, or $; and the label 

must begin with an alphabetic character~ 

When the expression is evaluated, the value allocated to the label is sub­

stituted in the expression. If the label is undefined at the time the expressi'-III 

is evaluated, it is assigned a value of 0, and a U error flag appears on the 

assembly Ii sting adj acent to the line referencing the undefined label. 

Example 

11.6.2 Address Counter 

The contents of any address counter used by the program may be referenced in 
an expression by coding the symbol, $ or $(e). $ signifies that the contents 

of the current (active) address counter are to be substituted in the expression: 

$(e) signifies that the contents of the address counterspecified.by eare to 

be substituted. e must be an octal or decimal number, or an expression 

resulting in a binary value. 

II-II-56 



Example 

11.6.3 Decimal Number 

M-5035 
Change 2 

A decimal integer may be used as an element within an expression. The decimal 

number is converted to its binary equivalent and used in its binary form for all 

further computations. The integer may consist of any number of decimal digits; 

however the final binary value represents only the least significant bits of 

the number as determined by the object word size. The sign of the number is 

the leftmost bit of the final o~ect word. The first (most significant) digit 

of the coded decimal number must not be zero (0). If the decimal number is 

immediately followed by the letter Of a two-word binary equivalent shall be 

generated. 

Example 

11.6.4 Octal Number 

An octal integer is specified by preceding the first (most significant) octal 

digit with a zero (0). Each character of the octal integer must be an octal 

digit (0 through 7). Rules for evaluation are the same as for decimal numbers. 

An octal number may also be followed by the letter 0 to obtain a double-precision 

resul t .• 

I 

II-II-57 



M-5035 
Change 2 

Example 

11.6.5 Floating Point Number 

A floating point number may be used as an element in an expression. The number 

must be coded as a decimal mixed number consisting of an integral part and a 

fractional part, and must include the decimal point. Spaces are not allowed 

within the number. The number is converted to a 64-bit (regardless of the 

declared word length) floa-ting point number, formatted in memory as follows: 

Least significant 32 bits 

S Mantissa 

Most significant 32 bits 

Sign of characteristic Characteris tic 

S is the sign o!the mantissa. 

Example 

11-11-58 



11.6.6 Fixed Point Number 

M-5035 
Change 2 

A fixed point number is an expression element containing only an integral part, 

and hence does not include a decimal point. This type of number is often 

referred to as a signed pure binary number. 

11.7 DATA MODES 

Since expressIon evaluation 'is essentially an arithmetic process, the elements 

within an expression (with the exception of character strings) must be able 

to be identified with a unique numerical quantity. This numerical quantity 

may exist in one of two formats: 1) a signed pure binary number; or 2) a 

floating point number. The resultant or final value of the expression is 

either a binary value or a floating point number. (The final value may be 

truncated to fit a specified subfield or word size at the time the generated 

object code is produced in its loadable form.) 

All internal expression evaluation is performed in one of these two modes 

(either binary or floating point). If the expression involves both binary 

. values and floating point va~ues, internal data conversions are performed 

(for example, binary to floating point, floating pointtto binary) so the 

evaluation can be carried out. 

11.7.1 . Literals 

A line of coding without a label field, without leading or trailing spaces~ 

and entirely enclosed in parentheses is called a line item" A line item may 

only be a symbolic computer instruction, a data word, a macro reference line, 

or a FORM reference line. The object word(s) (either one or two) generated 

for the line item is called a literal and is stored in a literal pool. The 

Ii teralpool address is then substituted for the parenthetical expression in 

the parent line. The line item must be the only element within the expression 

being evaluated, and must not be preceded by a + or - sign. If the first 

subfield of a data word line item is a symbolic name~ the name should be preceded 

by a + or - to avoid possible confusion with a symbolic computer instruction, 

see paragraph 11.7.2. Six levels 01 parentheses (for example, five line items 
nested within line items) are allowed. A double-precision literal constant 

may be generated by terminating the numeric constant within the parentheses by 

II-II-59 



M-5035 
Change 2 

the letter D. If the line item is a character string, up to two words can be 

generated. 

Example 

11.7.2 Data Words 

The Assembler recognizes two distinct types of data words: 1) constants, 

resulting in either one or two generated computer words; and 2) character 

strings, resulting in one or mOre generated computer words containing character 

codes. 

11.7.2.1 Constants 

A + or - in the operation field followed by one or more subfields in the 

operand field signifies that a constant is to be generated. Whenever a+ or -

appears as the first character· of the operation fi'eld, any number of spaces or 

no spaces may separate the sign from the first operand. Subfields are separated 

by commas. In generating constants, the Assembler assumes the size of the 

object computer word. If the operand field contains one subfleld, the signed 

value of the subfield is right-justified in the generated word. If the operand 

field contains two subfields, two equal-length signed subfields are generated 

with the values right-justified within each field,and so forth. The first 

subfield must be signed. Successive subfields may optionally be signed. The 

absence of a sign implies a positive value. If variant~ of this implicit 

11-11-60 



M-5035 
Change 2 

. equal subdivision of datn words are required, the capabilities of the FORM 

directive may be used to derive the desired format. 

Example 

If the operand field contains just one subfield immediately followed lJY a 0, 

or if the constant is a floating p.oint number, the Assembl::;rgenerate~ a double­

length constant in two successive computer words. The first generated word of 

the double-length constant will contain the least significant bits of the 

result. The letter 0 in this context is only meaningful when appended to a 

numeric constant. 

Examples 

11~7.2.2 Character .Strings 

Strings of characters which can be represented by the Assembler's imbedded 

character set (with the exception of the apostrophe) may be encoded by 

enclosing the entire character string between apostrophes. The apostrophe 

is not included in the allowable characters because it is the control character 

delimiting the string. A semicolon between apostrophes is treated as a char­

acter, not as a line continuation symbol. Similarly, a period space combination 

between apostrophes is treated as two characters and not as a line termination. 

The Assembler's internal character set is the USA Standard Code for Information 

Interchange, commonly referred to as ASCII code. Unless directed to the contrary 

by the CHAR and BYTE directives, the Assembler will right-justify each ASCII-

II -11-61 



M-5035 
Change 2 

coded character within an eight-bit field, up t~ a maximum of four characters 

per generated word. 

If the first non-blank character of the operation field is an apostrophe, all 

subsequent characters up to, but not including the terminating apostrophe are 

packed l,eft-justified into as many successive computer words ~s are required 

to accommodate the string. Any remaining partial word is padded on the right 

with space characters. If the object word size is not evenly divisible by 
the declared character length (see paragraphs 11:3.3.2 and 11.3.3.3), the un­

usable bits'will app~ar as binary zeros in the rightmost bit positions of the 

generated object word. 

If a + precedes a character string, the Assembler regards the string as a 

constant; therefore, the number of characters between apostrophes may be from 

one to eight. One to four characters yield one computer word; five to eight 

characters yie ld two computer word s • Characters are' packed right-justified 

within the generated words with leading binary zeros as required to pad the 

word. However, if two computer words are generated, the character string is 
regarded as a double-length constant and the leading character codes will 

be in the second word. 

Examples 

Refer to paragraph 11.3.3 for descriptions of the BYTE, CHAR, FORM and WHD 
di recti ves. These directi ves may be used to deviate from the imbedded obj ect 

word length and eight-bit 'character framework. 

11.8 OPERATORS 

The Assembler provides 14 mathematical operators which define the exact sequence 

and manner in which elements are to be combined within an expression during 

evaluation. These operators serve essentially the same purpose as those 



encountered within a normal algebraic expression. 

M-5035 
Change 2 

Similar to the rules of algebra, which assign a priority to each of its operators 

(for example, multiplication is performed before addition), the rules for 

expression evaluation a~sign a priority to each of the 14 operators recognized 

by the Assembler. These priorities may be overridden by using parenthetical 

grouping,.in the same way that parenthetical grouping is used in an algebraic 

expression. The rules for evaluation are discussed in greater detail under 

Operator Priorities (see paragraph 11.8.2). 

Each of the 14 operators falls into one of three classes: 1) arithmetic, 

2) logical. or 3) conditional. Arithmetic operators have the highest priority; 

conditional the lowest. 

11.8.1 Symbols 

The operator symbols as well as their relative priorities are listed in Table 

11-1. 

Table 11-2 summarizes the data formats allowed with each operator, and the 

format of the resultant value. Note that the table is divided into four 

columns,labeled First Item, Operator, Second Item, and Result. If the entries 

under First Item and Second Item for a particular.~operator specify both binary 

and floating, the corresponding value for that item may be either data format; 

however, the result is in the format specified under the Result column. The 

actual evaluation is performed in the mode specified for the result. 

11-11-63 



M-5035 
Change 2 

Relative 
Priority 

6 

6 

6 

5 

5 

5 

4 

4 

3 

2 

2 

1 

1 

1 

TABLE 11-1. OPERATORS AND PRIORITIES OF OPERATORS 

Operator 

*+ 

*-
·1 

• 
I 

II 

+ 

•• 
++ 

> 

< 

Meaning 

A *+ B is equivalent to A* lOB 

A * -8 is equivalent to A * 10-8 

A * I 8 is equivalent to A * 28 

Arithmetic product 

Arithmetic quotient 

Covered quotient 

Arithmetic sum 

Arithmetic difference 

Logical product (AND) 

Logical sum (OR) 

Logical difference (EXCLUSIVE OR) 

EQUALS ,conditional 

A=B has value 1 if true; 0 if not true 

GREATER THAN conditional 

A > B has value 1 if true; 0 if not 
true 

LESS THAN conditional 

A < B has value 1 if true; 0 if not 
true 

11-11-64 



M-5035 
t";ln~lC' " 

TABLE 11-:'!. U,\TA MOUES FOR OPEHATOH ITEMS 

Fi rs t 1 , pm Operfltor Second I tern Hp su 1 t 

B i nfll'y or float inH < > Binary or floating Bi nfl ry «() or 

Hinnry or flont i n~l ++ ::...- •• Binary or float.ing Hi nary , , 

Binfll"y -+ , - • Bi nary Bi nary 

Flnntinu +, - • I ' Bi nary Floating , 

Binary +, ICc Flonting Floating , 

Fl 0<1 t i n~l +, - • Floating Flo~ting , . , 

Rinary or f loa t i n~l ~:+, * Bi nary <D Floating 

Binn}'y *' Bi nary <D Binary 

Floating .' Binary<D Scaled Bi nary 

<D Tht, second i tern for these operators must be a binary value; if not, the 
Expression Error (E) flag is set. 

II.H. 1.1 Ari t hmpt ie Opt'rators 

This class of operator includes the familiar arithmetic operations v such as 

addition, multiplication, exponentiation and so fo~th. 

I ) 

11.8.1.1.1:::+ (Positive Expone.ntiation). This operator multiplies the element 

on the left of the operator by 10 raised to the power indicated by the element 

on the right (for example, A:::+B is equivalent to A:::IO+B). The resul t is 

floating point nu~ber. 

11.B.l.l.~ *- '(Negative Exp~nentiation). This operator is similar to the 

positive exponential, except that the left-hand element is multiplied by 1/10 

raised to the power indicated by the right-hand element (for example, A:::-B 

is equivalent to A*IO-B or A*(l/lO)+B). 



M-5035 
Change 2 

Example 

11.8.1.1.3 */ (Binary Exponentiation or Scaling). This operator multiplies the 

value on the. left-hand side of the operator by 2, raised to the power indicated 

by the element on the right. If the left-hand element is a binary value, the 

effect of this operator is to shift the value left, if the right-hand .element 

is positive; and to shift the value right, if the rjght-hand31~ment is negative. 

If the left-hand element is a flQating point value, the result of the */oper­

ation is a scaled binary value. If the right-hand element is a single-prec~sion 

value, the result will be a single-precision binary value with up to 32 signifi­

cant bits. If the right-hand element is a double-precision value, the result is 

a double-precision value with 32 significant bits. 

Example. 

11.0.1.1.4 * (Atithmetic Product). Multiplication bf. two values is indicated 

by separating them with an asterisk (*). The value on the left is multiplied 

by th~ value on the right. 

Example 

11-11-66 



M-5035 
Change 2 

11.0.1.1.5 / (Arithmetic Quotient). This opeJ'ator divides the. value on the left 

by the value on the right. Any remainder resulting from division is ignored. 

Example 

11.8.1.1.6 II (Covered Quotient). 'The covered quotient operator divides the 

value on the left by the value on the right, and adds +1 to the resulting 

quotient if the division resulted in a non-zero remainder. 

, 'Example 

I: : =~ : I: ::: :~:~g~~~ : ::: : : : I: :: :: : : : : : 
11.8.1.1.7 + (Arithmetic Sum) This operator adds the value on the left to'the 

value on the righ~. 

11.8.1.1.8 - (Arithmetic Difference) This operator subtracts the value on the 

right from the value on the left. 

Example 



M-5035 
Change 2 

11.8.1.2 Logical Operators 

This class of operator includes the logical product (**), logical sum (-t+), and 

logical difference (--). 

11.8.1.2.1 ~::* (Logical Product). The logical product operator forms the bit­

by-bit product (AND function) of the two values to the· right and left of the 

operator; for example, if (and only if) the two values both have a 1 In the 

same bit position, the result contains a 1 in that bit position. 

Example 

11.8.1.2.2 ++- (Logical Sum) The logical sum (INCLUSIVE OR function) sets a 1 

in each bit position of the result if either or both of the values preceding 

and following the operator have a I in the corresponding bi t posi tion. 

Example 

11.8.1.2.3 -- (Logica 1 Difference ). The logical difference operator (EXCLUSIVE' 

OR function) sets each bit of the result to a 1 if either, but not both, of the 

two values on the right and left sides of the operator !has the corresponding bit 

set. 
Example 

I: zt::~ : : I : ::: ~=:~ : :~: : : : : : : : : : : : : :: I 
11.8.1.3 Conditional Operators 

Thi s c las s of operator always produces a resultant va lue of I or O. depending on 

whether or not the condition expressed by the particular operator is satisfied. 

11-11-68 



M~5035 
Ch(l nge 2 

11.0.1.3.1 = (Equal). The equal operator results in a binary value of 1 if the 

value on the left is equal to the value on the right; and a value of 0 if the 

two va I ues are not equa 1. 

EX(lmple 

11.0.1.3.2 > (Greater Than). The greater than operator results in a value of I 

if the quantity on the left is strictly greater than the quantity on the right; 

otherwise, the resultant value is O • 

. ' Example 

11.8.1.3.3 «Less Than). The less than operator compares the value on the left 

with the value on the right and sets the result equal to a I' if the left-hand 

quantity is less than the quantity on the right; if it is not less, the result­
an t va I ue is O. 

11-11-69 



I 

I 

I 

M-5035 
Change 5 

Example 

11.8.2 Operator Priorities 

In the absence of parentheses, individual operator priorities determine the 

order in which elements are combined within an expression. Evaluation is 

performed left to right if two or more operators 'with the same priority occur 

within the same expression. 

Table 11-2 shows that ::;+, :::_, and ::) have the highest priority' (6), and =,>, 
and < the lowest (1). Thus, within a given expression, elements separated by 

one of the three exponential operators are combined before anyone operation 

is performed. Comparison' of values within an expression is done last (such as 

is done when anyone of the th'ree condi tional operators is encountered). 

Example 

11-11-70 



11.8.3 . Parenthetical, Grouping 

M-5035 
Change 2 

The normal sequence of evaluation within an expression may be altered by using 

parenthetical grouping; that is, enclosing certain portions of the expression 

within parentheses to override the normal rules of evaluation. The effect is 

to evaluate that portion of the expression within the parentheses as though it 

were the only expression on the line, independent of any elements or operators 

occurring outside of the parentheses. The value resulting from this evaluation 

is then substituted as an element in the entire expression, and the evaluation 

is continued. 

Up to five levels of parenthetical grouping are allowed. When encountered, the 

expression within the innermost set of parentheses is evaluated first. 

11.8.4 Relocatability 

The final value resulting from the evaluation of an expression may be a memory 

address reference and. as such. may be potentially relocatable; fo~ example, 

the memory address may be modified at load time. General rules which govern 

whether the result of an expression shall be relocatable or not are: 

a. A floating point value is never relocatable. 

b. The value resulting from a logical or conditional operation is not 

relocatable. 

c. Only the + and - arithmetic operators yield a result that is 
relocatable; The one exception to this rule is multiplication 

or division of a relocatable quantity by +1. 

Tables 11-3' and 11-4 summarize t\hese rules for reloctability .• 

11-11-71 



M-5035 
Change 2 

First Item 

Binary or floating 

Binary or floating 

Not relocatable 

Relocatable 
(binary) 

Not relocatable 
(bi nary) 

Relocatable 

Binary or floating 

Binary or floating 

TABLE 11-3. RELOCATION OF BINARY ITEMS 

Operator Second Item Result 

<, -, > Binary or floating Not relocatable 

++, --, ~(* Binary or floating Not relocatable 

+, - Not relocatable Not relocatable 

+, - Not relocatable Relocatable 
(binary) 

+, - Relocatable Relocatable 
(bi nary) 

+, - Relocatable Not relocatable 

ace / II<D Bi nary or floating Not relocatable , I , 

*+, *- t * I Binary Not relocatable 

Multiplication or division of a relocatable lte~ by +1 results in a 
reloctable value. 

First Item 

Single 
Double_. 

Single 
Single 
Double 
Double 

Single 
Single 
Double 
Double 

Single 
Single 
Double 
Double 

TABLE 11-1. SINGLE AND DOUBLE PRECISION EXPRESSIONS 

Operator Second Item Result. 

<, =, > Single or double Single 
Single or double Single 

Single Single 
Double Double 
Single Double 
Double Double 

Single Double 
Double Double 
Single Double 
Double Double 

*1 Single Single 
Double Double 
Single Double· 
Double Double 

11-11-72 



11.9 ASSEMBLER OUTPUTS 

M-5035 
Change 2 

The Ass(~mblcr produces on1y relocatahle object output. The 1o:ation of the ob­

ject program then becomes a load-time determination. Assembler object code 

format is described in Volume I, Section 3 as part of the inputs to the Object 

Code Loader. 

Along with the relocatable object code, the Assembler passes to the Loader the 

number of errors that occurred during the assembly (see Volume 1, paragraph 

2.2.3 for loading). The number passed to the Loader does not include the num­

ber of T errors or R errors (see paragraphs 11.9.2.5 and 11.9.2.6). 

Conc~rrent with the source language translation and output of the loadable 

machine code, the Assembler produces a side-by-side assembled program hardcopy 

listing. 

11.9.1 Side-By-Side Listing 

This side-by-side listing contains: 1) a sequential decimal source language 

statement number; 2) each source language statement together with any generated 

addresses; 3) object code resulting from translation of the statement; 4) As­

sembler-detected translation errors and warnings included along with the state­

ment in error. By means of Assembler directives, the progranuner can suppress 

all or any part of the side-by-side listing. Another Assembler directive per­

mits the programmer to control the editing of the generated machine code into 

logically discrete fields. 

11.9.2 Error Codes 

11.9.2.1 Expression (E) 

Expression errors result from illogical expressions such as a decimal digit 

. within an octal number; element type inconsistent with arithmetic operators; 

expression improper in context, such as a GO line used outside a macro or a DO 

coun~ in excess of 216_1, or unequal number of left and right parentheses. 

11~9.2.2 Duplicate (D) 

Duplicate errors result "from labels defined more than once with different 

values. A label used in an expression affecting an address counter is not 

defined prior to its use resulting in a different addressing sequence in the 

first and second assembly passes. 

11-11-73 



M-5035 
Change 2 

11.9.2.3 Undefined (U) 

. An undefined error results from any of the following three conditions: 

1. A reference made to a label which was not defined in the program. 

2. A reference made to a label that was not externalized properly 

by a calion a macro. 

3. A failure to suffix labels of macro entry points with an a~equate 

number of asterisks. 

11.9.2.4 Instruction(l) 

An Instruction error results when the Assembler encounters: 

a. A MACRO or EQU directive which has no label. 

b. A SEGEND within a MACRO. 

c. More than one coded subfield in field zero of a MACRO reference 

line ,called via a MACRO name. 

d. A nested LIB directive ora LIB directive within a MACRO. 

e. A LIBS directive retrieved from a library. 

11.9.2.5 Relocation (R) 

A Relocation error results from an arithmetic or logical operation being per­

formed on a reloctable value which destroyed its reloctability. 

11.9.2.6 Truncation (T) 

A Truncation error occurs when the final va·lue of an expres~ion does not fit in 

the destined bit field of an object word, resulting in the Assembler truncating 

the left~most bits of the value in order to make it fit the field. 

11.9.2.7 Overflow (0) 

The Overflow error occurs when memory available for the Assembler tables is 

exhausted. 

11.9.2.8 Name (N) 

A Name error occurs when the Assembler encounters a name which contains more 

than eight characters. 

11-11-74 



11.9.2.9 Level (L) 

M-5035 
Change 5 

A Level error results from an expression containing a parentheses nested more 

than five levels or from more than 64 SETADR lines appearing in this assemhly 

or from an incomplet.e MACRO definition retrieved from a library. 

11.9.2.10 Floating Point (F) 

A Floating Point error occurs under any of three circumstances: 

1. The divisor in a requested floating point divide operation is 

zero. 

2. A floating point operation during evaluation of an expression 

yielded characteristic underflow. Characteristic underflow 

occurs whenever the characteristic is less than -32767. 

3.. A floating point operation during evaluation of an expression 

resulted in characteristic overflow. Characteristic overflow 

occurs whenever the characteristic exceeds +32767. 

11.9.2.11 Warning (W) 

A warning results when alabel is used with a half-word instruction which is assigned 

to the lower halI ofa computer word. 

11.9.3 Generation Formats 

Assuming the editing listing option has been selected, a number of generated words, 

values, or half-words appear. They are: 

S FIELD CODED EXPLICITLY. -

000120 14 0 0 0 0 0 00265 AA AO, CLASIV, , , SO 

S FIELD NOT CODED (SY COMIDNED). -

0002"05 52 0 0 0 0000211 LBJ B7,FETCH 

FULL-WORD (ON-LINE CONSTANTS OF EQU VALUES). -

001140 37700000377 
00000000001 Al EQU 1 

ll-11-75 " 

I 

I 

I 



M-5035 
Change 5 

HALF-WORD INSTRUCTIONS. - . 

000123 71 0 2 0 0 
000123 61 11 0 1 

11.9.1 Listing Of Labels 

HAN 
HLCI 

Ao,AO 
010+Bl,AO 

The Assembler provides programmers via the LLT directive, with an alphanumericall) 

sorted listing of source statement labels and corresponding Assembler-generated 

addresses or values. Listed labels are those defined at levels 0 and 1. LLT 

labels do not include 'MACRO, NAME, FORM, and LIT line labels. 

11.9.4.1 Level 0 

Level 0 labels are those names which are made available to anoth~r program at 

load time to some other independent'ly processed code. 

11.0~4.~ Level 1 

Level 1 .labels are those names encountered on the main program level. 

11.9.4.3 LLT Sample Listing 

A sample of the listing produced by the Assembler after processing a LLT 

directive appears below: 

AO 
A3 
BI 
B4 
B7 
BEGIN1 

ADD 
BWAIT 
CBUFF 

00000000000 
00000000003 
00000000001 
00000000004 
00000000007 
0000062 00 

0000353 00 
0000347 00 
0000544 00 

11.9.4.4 Undefined Labels 

* LIST LABEL TABLE • 

LEVEL 0 

Al 00000000001 
A4 00000000004 
B2 00000000002 
B5 00000000005 
BCOUNT 00000000002 
BUFF 0000150 00 

LEVEL 1 

AGAIN1 0000275 00 
BWAITO 0000262 00 
COIV 0000521 00 

A2 00000000002 
A7 00000000007 
B3 00000000003 
B6 00000000006 
BEG 00000000007 
BUFFLAG 0000125 

AGAIN2 0000402 
BWAIT2 0000355 
CHARCK 0000444 

Names or symbols encountered during the assembly which are not defined are 

listed: 

UNDEFINED SYMBOLS PRDIR 

II-11-76 

00 

00 
00 
00 



11.9.4.5 Cross Reference Listing 

M-5035 
Change 2 

A crossreterence listing can be produced at the end of an assembly if an LCR 

directive has been previously encountered by the Assembler. This listing con-

sists of labels, address counter values, and address counters where these labels 

a·re referenced. A sample listing is shown in figure 11-5. 

11.10 ASSEMBLER DIAGNOSTICS AND STATUS 

Several categories of error.a encountered during the assembly process cause an 
error message to be output to the standard hardcopy device, These errors fall 

into one of four classes: 1) Assembly; 2) Assembler Internal; 3) Library 

calli and 4) Peripheral. 

11.10.1 Assembly Errors 

If an assembly error occurs during the assembly process, the following status 

messages will appear on the standard hardcopy devices: 

ASSEMBLY ERRORS 

xx YY 

xx YY 

EXl!lanation 
XX Any one of the followi og: 

0 Overflow 

U Undefined 
D Duplicate 

E Expression 
T TruncatIon 
R Relocation 
I Instruction 
L Level 

N Name 
F Floati ng- Poi n t 

IT The number of errors of type XX that occurred in the assembly. 

11-11-77 



LIST tRuSS R~FERlNCE TA8LE 
Ll 1J0lJO£J~ 00 Ll 
Ll (IUU014 OU L2 
L? OUUOOl 07 L2 
L3 UOOUU2 ns L3 
L4 IIUU012 00 L4 
L4 UU0017 00 t:5 I-o! 

!-oj L'; UOOO£J4 15 L5 
I ..... ..... 
J 
-'l 
co 

nOOO04 fJl L1 vOOOOO lJ~ Ll 
(100006 no L2 lJOOOO7 liO L2 
1100001 15 L~ 000015 LO L3 
IIUOOU2 r:7 L3 lJUOO02 l~ L3 
000002 fll Let fJUOO03 l'5 L4 
(100013 no L~ UUOO03 III L5 
oU0020 (10 

Figure 11-5. Sample Cross-Reference Listing 

OUOOOO £J7 L.1 
000000 01 L2 
OU0010 00 L.3 
uU001& 00 L.4 
0000U3 U7 L" 
OUOOUet 05 L5 

000000 
000001 
000001 
000011 
000003 
000004 

~3: 
:;r­
Qlc.n 
::sO eeW 
('Dc.n 

N 

15 
O~ 
01 
00 
15 
07 



ILLOGICAL SOURCE INPUT SEQUENCE 

M-5035 
Change 2 

This message occurs when the Assembler has read a sentinel statement. This only 

occurs when an illogical sequence of source cards is input to the Assembler. 

NOT ENOUGH UNASSIGNED TAPES 

The Assembler is unable to obtain enough tapes to assemble with the requested 

output options. 

11.10.2 Assembler Internal Errors 

11.10.2.1 Core Overflow 

The core overflow error occurs when the Assembler item table macro sample 

storage area, memory intermediate storage area, or literal origin stack overflows. 

No recovery is possible. 

11.10.2.2 Level Overflow 

The level overflow error occurs when the number of nested macros exceeds 29. 

No recovery is possible. 

11.10.3 Library Call Errors 

The following message is typed if the Assembler is unable to locate a called 

source library element on the assigned library medium: 

****. LIB REF ERROR S name (vers) 

Explanation 

S Denotes source library. 

Name (vers) The called library element name (version). 

After the typeout, the Asserribler continues without soliciting a response from 

the operator. 

11.10.4 Peripheral Errors 

The following peripheral error indications are received by the Assembler from 

the Centralized I/O Program or the Standard Input Program, and no recovery 

11-11-79 



M-5035 
Change 2 

is possible (the MN field in the messages is the name of the device involved 

in the error): 

I/O ERR MN END OF FILE 

A tape mark has been read while reading from the input. 

I/O ERR MN UNREC ERR 

A tape error has occurred and recovery procedure was unsuccessful. The tape 

function was retried five times without success. 

I/O ERR MN ILLEG PROC 

An illogical function has been requested (such as a magnetic tape read forward 

when the tape is positioned at the end of tape, or a pass backward function 

while the tape is positioned at the beginning of tape). 

I/O ERR MN STRG END 

End of tape was detected during a magnetic tape function or while using core 

memory as intermediate storage, or there was not enough core memory available 

to store the source program. In the second case, MN in the· message will be 

MM. 

I/O ERR MN NOT ASS1GNED 

An I/O function was requested on a logical unit which had been removed from 

the current equipment configuration .. 

11.11 SOURCE DECK ORGANIZATION 

Figures 11-6 through 11-10 illustrate example structures of source decks. 

·OFF 

END 

ASSEMBLER SOURCE 
DECK 

Figure ll-(). Source Deck Organization for a Single Program 

11-11-80 



*OFF 

END 

/ENDCOR 

lEND 

OPTIONAL, 
CORRECTION 

DECK 

M-5035 
Change 5 

Figure 11-7. Source Deck Organization for Assembling Using 
Library Input. 

11-11-81 



M-5035 
Change 2 

ASSEMBLER SOURCE 
DECK FI RST SEGME 

{

Th.iS card indicates 
dependent programs 

or segments. 

Figure 11-8. Source Deck Organization for Two or More Dependent 
Programs ~r Segments 

ASSEMBLER SOURCE 
DECK FIRST PROGRAM 

{

ThiS card indicates 

..... ______ . independent programs 

or segments. 

Figure 11-9. Source Deck Organizat'ion' for Two or More Independent 

Programs or Segments 

11-11-82 



END 

·ULTRA 

Figure 11-10. Source Deck Assembly Time Allocation 

11.12 SPECIAL CONSIDERATIONS 

M-S035 
Change 2 

a. Only the first *ULTRA Assembler control statement has any effect on 

the mode of intermediate storage or on the name recorded 

on the object code program ID images. Subsequent *ULTRA statements 

are passed over by the Assembler. 

b. When coding for the CMS-2 Assembler, it is desirable to keep label 

lines (lines containing only a label) separate from coded machine 

instructions. This allows shifting the label line without altering 

any other line(s}. 

c. If a number of successive half-word (16-bit) instructions are 

encountered (under the same address counter) by the Assembler, they 

are packed two per word. The fi rs t half-word encountered after 

the address counter has been activated/reactivated is packed into 

the upper half of the generated word. 

11-11-83 



M-5035 
Change 5 

d. Generation of half-word in-line constants or literals is always in the lower 

half of the word with no packing. 

e .. If LLT and LCR directives have been encountered and no reference is made 

to a relocatable label within the assembly, the label will be flagged with NR. 

f. The assembler call $ASM, U indicates the, ULTRA/32 keypunch code is to be 

used when interpreting source statements for the assembly. lfthe U is not 

present, the keypunch code specified in the $JOB command is in effect. 

Note: ULTRA/32 keypunch code is not interchangeable with the 026/029 

keypunch codes; See special character codes for options in Appendix A. 

n-ll-S4 



SECTION 12 

INSTRUCTION REPERTOln~ 

12.1 AN/UYK-7 COMPlJI'ER FUNCTIONS 

M-5035 

The UYK-7 is a general purpose, multi-state, multi-processor, multi-I/O 

processor, stored-program co~puter. Some of the features of this computer 

relevant to a programmer arc: 

a) High-speed memory with a cycle time of 1.5 microseconds and a capacity of 

16,384 words expandable with more memory banks to 262,144 words. 

b) Memory banks containing 16,384 words each that can be addressed by the 

arithmetic processor(s), the I/O processor(s), and external devices with 

proper hardware adaptation o 

c) A portion of memory is non~destructive readout (NORO) for storage of 

critical instructions and constants. This storage provides the facility 

for automatic recovery in case of a system failure or program fault and 

for automatic initial loading of programs. 

d) A 32-bit word length allowing for storage of one full-word instruction or 

two packed half-word instructions. 

e) Ability to address a 32-bit whole-word, 16-bit half-word, or 8-bit quarter­

word with no difference in execution time. 

f) Use of parallel, one's complement, subtractive arithmetic. 

g) Use of single ~ddress instructions with the provision for address mOdifi­

cation via seven index registers and eight base registers. 

h) Floating point and double prevision fixed point arithmetic functions. 

i) Memory protection, in segments of up to 65,536 words, under both program 

and manual control. 

j) An indirect addressing capability. 

k) Any field of a word addressing capability. 

1) Provision for connecting a remote operating console. 

11-12-1 



M-5035 

m) A manual/program addressable breakpoint register which may be set to stop 

or interrupt program operation at any point. 

n) Interrupt and task states each with their own associated registers. 

0) A status register which contains information concerning the current status 

of a processor. 

p) Interrupt status or definition code capability. 

q) Provision for half-word instructions. 

r) Privileged instructions which can only be executed in the interrupt state. 

s) Eight arithmetic accumulators provided to allow parallel and cumulative 

computation. 

t) A processor capable of retrieving the current operand and the next 

instruction in parallel if located in different memory banks. 

u) Five different types of instruction formats., 

v) A processor decremental monitor clock, an IOC incremental realtime clock, 

and an IOC decremental monitor clock. 

12.1.1 Register Format and Usage 

12.1.1.1 Program Address Register 

The progra~ address register (P) holds the.address of instructions to be 

executed by the computer. This register holds 19 useable bits. Bits 19 

through. 17 (Ps) hold a base register designator, 0 through 7, while bits 15 

through 0 (PD) contain a displacement value, relative to the address contained 

in the designated base register. Bit 16 is not used. 

P Register Format 

11-12-2 



M-5035 

12.1.1.2 Addressable Registers, Control Memory 

Table 12-1 gives the control memory address assignments for the central 

processor. 

Accumulator register format 

A 

Base register fnrmat 

s 

Index register format 

Where: 

B -
D 

B5'= base register designator. 

BD ='displacement value. 

When actually used for indexing, only the 16 bits of BD are used. Bit 

16 is not used. 

11-12-3 



M-5035 

TABLE 12-1. CENTRAL PROCESSOR CONTROL MEMORY ADDRESS ASSIGNMENTS 

CMR Address 

0-7-

10* 

11-17* 

20-27· 

100-107*· 

110** 

111-117~,c~~ 

160-167** 

170-177** 

Register Selected 

Task Accumulators (Registers 0~7) 

Unassigned (Addressabl~) 

Task Index (Registers 1-7) 

Task Base (Register 0-7, Addressable 
in Interrupt Mode Only} 

Unassigned (Not Useable) 

Brea kpoi nt } · 
(Addressable in Inter-
rupt Mode Only) 

Active Status 

Interrupt Accumulators (Registers 0-7) 

Central Processor Monitor Clock 

Interrupt Index (Registers 1-7) 

Interrupt Base (Registers 0-7) 

Unassigned (Not Useable), 

DSWand leW 

Storage Protection Registers 
(Registers 0-7) 

Segment Identification Registers 
(Registers 0-7) 

* Task mode CMR address. 
** Interrupt mode CMR address. 

11-12-.4 

Register Size 

32 bits each 

19 bits 

19 bits each 

18 bits each 

20 bits 

23 bits 

32 bits 

19 bits (clock 
. only 16 bits) 

19 bits each 

18 bits each 

20 bits each 

21 bits each 

21 bits each 



Breakpoint register format 

BPI = when set, compares BP A with instruction memory address. 

BP 0 = when set,compares BP A with operand memory address. 

If both BPO and BPI are set, both operations are performed. 

BP A = an absolute address, up to 18 bits. 

Central processor monitor clock register (CPMCR) 

Not 
Used CPMCR 

M-5035" 
Change 5 

The CPMCR, when activated, is decremented at the rate of 1024 counts per 

se£ond. A class II interrupt is generated when its value changes from zero 

to a negative value by hardware decrementation. If bit 15 is set, the clock 

is deactivated. 

Initial condition word register (ICW) 

The four ICW registers contain entrance addresses for the four interrupt 

classes. ICWS contains a base register designator and bits 15 through 0 

" (ICW
U

) contain a displacement value. 

II -12-5 

I 



M-5035 . 

Designator storage word registers (DSW) 

DSW (P Register) 

DSW (Active Status Register) 

DSW (Interrupt Status Code) 

The twelve DSW registers are in sets of three; each set is used for one 

of the four interrupt classes. During an interrupt sequence, Ps of the P 

register is stored in DPS ' and PD of the P register is stored in DPD" Bits 

19 through 0 of the Active Status Register are stored in DSWASR ' while the 

Interrupt Status Code is stored in DSWISC • 

Storage protection registers (SPR) 

10 .. II 17 .. 15JI~llsI121IlJlolll'T7T'T5T .. TsI211Io 

R 

IR I 
IA I 

OW T 
OR I 

I 1 

11-12_'; 



M-5035 

The eight SPR registers correspond to the eight task base registers. R is 

a displacC'm(~nt value, defining a segment of memory with a starting address 

contained in the corrcspon~ing task base register. A final address is this 

address plus the value in R. This segment is then the only memory area 

accessible by the corresponding base register. The allowable types of 

operations within such a segment are defined by bits 20 through 16. The 

following operation is allowed when these bits are set: 

Bit 16 (IR) - Use of interrupt index and base registers in indirect 

addressing. 

Bit 17 (IA) - Use of indirect addressing. 

Bit 18 (OW) - Operand writing. 

Bit 19 (OR)· - Operand reading. 

Bit 20 (I) - Instruction execution. 

The SPRs are loaded by executing the LOAD BASE and MEMORY PROTECTION 

instruction (05 4). The lower 21 bits of the contents of the operand address 

+1 are loaded into an SPR. 

Segment identification registers (SIR) 

The eight SIR registers correspond to the eight task base registers. 

SIRS base register designator. 

SIRD a displacement value. 

These registers are loaded with the effective operand address of the LOAD BASE 

and MEMORY PRUfECTION instruction (05 4) which loads the correspondIng base 

register. 

11-12-7 



M-5035 
Change 3 

12.1.2 Modes of Operation 

The AN/UYK-7 Computer can be operated. in one of two modes of operation: 

1) the executive (or interrupt) state or 2) the task state. Both states can 

be manually or program initiated. Four bits of the ~ctive status ~egister 

specify the state the computer is in according to Table 12-2. 

TABLE 12-2. AN/UYK-7 COMPUTER MODES OF OPERATION 

Active Status Reg i ster Bi ts PrOcessor State 

2
19 

2
18 217 2

16 

0 0 0 0 Task state 
0 0 0 1 Executive state 
0 0 1 0 Interrupt class III state 
0 1 0 0 Interrupt class II state 
1 0 0 0 Interrupt class I state 

12.1.2.1 Interrupt State 

In the interrupt sta~e, the computer has the following characteristics: 

a) The computer can reference any memory word which has been locked out. 

b) The computer uses the interrupt set of accumulators, index registers, 

and base registers. 

c) The computer can come to a stop condition. 

12.1.2.2 Task State 

In the task state, the computer has the ,following characteristics: 

a) The computer can reference any memory word which has not been locked out. 

b) The computer uses the task set of accumulators, index registers, and base 

registers. 

11-12-8 



M-5035 

c) The int.errupt state set. of registers cannot be referenced. 

d)' Privileged instructions will not be executed. 

e) The task set of base registers can be modified only under certain conditions. 

12.1.2.3 Active Status Register 

The active status register (see Table 12-3) is a 23-bit register (one for each 

processor) showing the current environment relative to that processor at any 

moment. 

Bi t Number' 

22-20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9' 
8 
7 

6-4 
3 

n 

TABLE,12-3. ACTIVE STATUS REGISTER 

Designator 

CP identifier 
Under State I } 

State II 
State III 
State IV 
Upper/lower 

Hardware - see Table 3-2 
Control 

Class I lockout 
Class II lockout 
Class III lockout 
Base(s) register selector 
Accumulator and index register 
Memory lockout inhibit 
Load base enable 
Boot st rap mode 
Not allocated 
Fixed point overflow indicator 

Compare 
designators 

,11-12-9 

selector 



M-5035 

Upper/lower control - bit 15 

Class 

Class 

Class 

The upper/lower control bit is s~t when al,l upper half-word instruction 

has completed execution and is cleared when a whole word or a lower 

half-word instruction has completed execution. 

I lockout - bit 14 

Locks out class I interrupts when set. 

II lrickout - bit 13 

Locks out class II interrupts when set. 

III lockout - bit 12 

Locks out class III interrupts when set. 

Accumulator/index register selector - bit 10 

Thissele~tor is set in the interrupt mode and cleared in the task mode 

to select which set of A and B registers the active program may acce~s. 

Special base register selector - bit 11 

This selector is set when entering the interrupt mode and cleared in the 

task mode to select which set of base registers the active program may 

access. 

Memory lockout inhibit - bit 9 

The l-:-bit memory lockout inhibit (bit 9) is set (inhibit mode) j.n the 

interrupt mode and cleared (memory lockouts used) in the task state. 

Load base enable - bit 8 

Allows use of Load Base and Memory Protection instructions in task state 

when set. 

Bootstrap mode - bit 7 

Set manually to enable access to NORO memory during bootstrap load. Thjs 

bit is cleared under program control by execution of the following 

instructions: Interrupt Return, or Enter Executive State. 

11-12-10 



M-5035 

Spare bits - bits 4-6 

Bits 4 through 6 are programmable spare bits. 

Fixed point overflow indicator - bit 3 

Displays the sta~us of fixed point overflow (is set if overflow oc~urred). 

This bit is tested and cleared under program control by execution of t~e . 

following instructions: Jump on Overflow, and Jump on No Overflow. 

Compare designator - bits 0-2 

The compare designator (bits 2,1, 0) display the status of the compare 

instructions as specifIed in the descriptions of individual instructions. 

The status word designation is as follows: 

a) Bit 2 == 0 unequal case 

= 1 equal case 

b) Bit 1 = 0 less than 

= 1 greater than 

c) Bit 0 = 0 within limits 

= 1 outside, limits 

11-12-11 



M-5035 

12.2 AN/UYK-7 INSTRUCTION FORMATS 

There are five different types of instruction formats: three are full-word 

formats and two are half-word formats. Half-word instructions do not have' any 

memory reference parts because these instructions deal mainly with data 

manipulations between various registers. 

The AN/UYK-7 Computer is a' self -modifying, one-address computer • Although one 

reference or address is provided for the execution of an instruction, this 

reference or address can be modified automatically during a programmed sequence. 

The references are modified by using the index registers and the base registers 

which contain previously stored constants. The final operand address is the 

result of adding together the 18-bit content of the selected base register 

plus the 16-bit content of the selected index register, and the 13 bits of the 

immediate operand field of the instruction. 

An instruction or data address is coded using octal notation with each octal 

digit denoting three binary digits. The instructions are read sequentially 

from memory except after jump instructions or interrupt situations. In-

these cases, the sequential execution of instructions resumes at another loca­

tion in memory. 

Each of the instructions in thr repertoire is assigned to a format class 

according to the operational characteristics of the instructions. There are 

three full-word (32-bit) formats (Formats I, II, and III) and two half~word 

(16-bit) formats (Formats IV-A and IV-B). The paragraphs which follow specify 

the formats and the type of instructions assigned to each. 

12.2.1 Format I Instructions 

The instructions of format I have the following word format: 

1'11012112112112' ut24111 ulzllzo "1 11117 " 151 14111 121111101111171115(411121'10 

f a k b i s y 

11-12-12 



M-5035 

These inst.ructions basically require two operands: 1) an arithmetic or index 

register specified by the 3-bit a-field and 2) an operand address y-designator. 

The effective operand address y is formed by adding the content of an index 

register specified by the 3-bit b-field, the 13-bit displacement y-value and 

the content of a base register specified by the 3-bit s-field. The 3-bit 

k-field .is used to control operand interpretation (see paragraph 12.3.3). 

The one-bit i-field of the instructions is used to specify indirect addressing. 

·The f-field (6-bits) is the ,major function code. There are no subfunction 

codes in this format class. 

There is a group of Format I instructions in which the a- and k-designators are 

interpreted as a combined unit. In these cases, whole-word operands are assign­

ed and ak specifies either a control memory address or a bit position within a 

computer word. 

12.2.2 Format II Instructions 

Format II instructions have the following format: 

.II'0129121127lze 2112-121 2212'120 I'lllll7 " Isil-l1• 121" 11011 II 17 I_ 151_1 .121 I 1o 

f a f2 b i s Y 

Whole word operands (k = 3) are hardware assumed in Format II. instructions. 

Thus, the k-fields are used as a subfunction code labeled f 2• The other fields 

of the Format II instructions are used in the same manner as in Format I. 

12.2.3 Format III Instructions 

Format III instructions have the following word format: 

'Ilso129Iall2712' ula-ln 22121 ao 1'1'1117 " 1511-11. 121" 1101'11171-1 514 r.1 z I 11o 

f a f3 ~ b i s Y 

Again only whole-word operands are specified or assumed in Format III instruc­

tions. Thus, the k-field is divided into two parts: l)a 2-bit subfunction 

code l~beled f3 and 2) a single bit labeled k for which zero is the only legal 

entry. The other fields of Format III instructions are used in the same manner 

as for Format I. 

11-12-13 



M-5035 

12.2.4 Format IV-A Instructions 

Format IV-A instructions have the following word format: 

15(14(15(12111110 _11(1 11514 slall 0 

f a f4 b i 

f a b i 

The instructions of For~at IV-A require two registers (index or arithmetj~) and 

are used for register-to-register transfers and arithmetic operations.' The 3-

bit a-field and the 3~bit b-field specify one of eight accumulators or eight 

index registers respectively. The 3-bitk-field is used as a subfunction 

code labeled f 4. Except as specified in the individual instructions, the 

i-field of the instruction is unused in Format IV-A instructions. 

12.2.5 Format IV-B Instructions 

Format IV-B instructions have the following word format: 

f a m Shift 
Desi na tor 

The Format IV-B instructions use the 7-bit m-fie~d to specify a shift count. 

the 3-bit a-field is used to specify ene of the eight accumulators whose data 

is to be shifted for shift instructions. 

The m-field value is interpreted as follows: if the upper bit of the m-field 

is set and bit 5 of the m-field is cleared, the shift count is contained in 

the B-register specified by bits I through 3; if the upper two bits of the 

m-fieldare set, the shift count is given in the A-register specified 'by bits 

1 through 3. If neither of these cases apply (upper-most bit of m equals zero), 

then the shift count is contained in the lower 6 bits of the m-field (maximum 

shift permitted is 63 places). 

11-12-14 



M-5035 

12.2. () Jndi rect Word 

If i ~ 1, the 20 least significant bit positions of an instruction (b, i, s, 

and y fields) are replaced with the 20 least significant bit positions of (Y). 

The 12 higher order bit positions of (Y) are used to specify indirect address­

ing options. The interpretation of the indirect control word is: 

11110 2111111711'115 14121112111110 

c w 

Explanation 

c 

c=lO 

c=012 

c=112 

c=00, bi t 29=0: 

c=OO; bit 29=1: 

P 

11111117 

b 

I' 11114111 121" 1101 t 1117 1-1114111 z II 10 

i s y 

Control designator specifying the type of 

addressing that will occur. 

For indirect addressing only. 

For single character addressing. 

For sequential character addressing. 

Indirect addressing where bits 17-19 indicate 

the base register and bits 0-15 the 16-bit dis­

placement. 

Indirect addressing where bits 17-19 indicate 

the index register and bits 0-15 the 16-bit 

displacement. 

Indirect addressing shall continue as long as i = 1 with indexing capability 

at each cascaded level. When i = 0, the indirect addressin~ will terminat~ 

a~d the current instruction will be interpreted in the normal manner. 

When i = 0 and c = (012, 112), the remaining ten positions of the indirect con­

trol word are interpreted and character addressing will occur. In this case, 

the p- and w-designators are interpreted as follows: 

p - bit position designator which specifies the least significant bit 

position of the variable-length character field. 

w - character length designator which specifies the number of bits of the 

character field based at p. 

11-12-15 



M-5035 

When a character has been read from memory by character addressing, it is 

placed in the appropriate arithmetic register, right-justified, and zero-filled. 

If c = 112,sequential character add~essing is specified. The indirect control 

word is updated for subsequent addressing of the next character field and then 

stored back in main memory. 

12.2.7 I/O Commands Formats 
I . 

The IOC will read the command from memory and begin its execution upon receipt 

of the command address from the central processor.' The I/O format is: 

1'llOllIlal ll7lu 15114 

f k 

Explanation 

f 

k 

j 

c 

m 

y 

15111121110 It II 

j mc 

'111111111'4 1'11 '21"1'01'111111111411121'10 

y 

Function code of the .command. 

Partial word designator. 

Channel number (0-15). 

Chain flag. 

Monitor flag. 

Absolute 18-bit address of the operand (buffer 

control words, external function words, etc.). 

The buffer control words specify the limits of the buffer of data for input/out­

put and the desired mode of transfer (a word at a time, half-word at a time, 

and so forth). Buffer control words are in two formats: normal mode and ESI 

mode. 

12.2.7.1 Normal Mode 

The normal mode format is: 

Final Address 
Compare Bi ts Y 

11-12-16 



M-5035 

12.2.7.2 E5I Mode 

The ESI mode format is: 

k 
Final Address 
Compa re Bi ts 

Explanation 

y 

Final address compare bits 

Initial 

Initial 

length 

number 

y 

lO-bit buffer address. 

buffer address plus the 

minus 1 truncated to the 

of bits to fit the field. 

k Partial word designator. 

12.3 SYMBOLIC CONVENTIONS 

buffer's 

required 

For symbols, registers, and terms used in the computer instruction descrip­

tions, see Table 12-14. 

12.3.1 f- Function Code Designator 

The f-designator always occupi.es the most significant 6 bits of the instruction. 

It specifies or determines the type of instruction to be performed. All un­

used major function codes are illegal instructions and, if executed in the 

upper half-word, will cause an illegal instruction interrupt. 

12.3.2 a - Arithmetic Code Designator 

The 3-bit a-designator specifies which one of eight A-registers an instruc­

tion will use or reference. The accumulator designation i3 as ff)ll'l/r,: 

a) 0002 
-t AO 

b) 0012 
-t A 1 

c.) 0102 
-t A2 

d) 0112 
-t A3 

e) 1002 
-+ A4 

f) 1012 
-t A5 

11-12-17 



M-5035 

g) 1102 .... A6 

h) 1112 .... A7 

NOTE 

There are two groups of accumulators. 
One group is associated with the task 
state and the other with the interrupt 
state of computer operation. 

I I -12-10 



M-5035 

TABLE 12-4. INSTRUCTION REPERTOIRE SYMBOL DEFINITIONS 

Symbol 

( ) 

( ) , 

I I 

x 
;. 

+ 

= 

i: 
> 

~ 

< 

s 
0 

a 

A 
a 

Definition 

Content or the quantity 

Complement of the quantity 

Absolute value 

Compare 

Multiply 

Divide 

Minus 

Plus 

Equal 

Not equal 

Greater than 

Greater than or equal 

Less.than 

Less than or equal 

Logical AND or logical product defined as: 

Tltrl 000 
101 

Inclusive OR or logical sum defined as: 

o4t­
~ I ~ ~ 

Exclusive OR or logical difference defined as: 

rtttl 001 
I I 0 

Instruction field designating an accumulator or 
index register.· 

Accumulator designated by the a-field. 

Accumulator designated by the b-field. 

11-12-19 



M-5035 

TABLE 12-4. INSTRUCTION REPERTOIRE SYMBOL DEFINITIONS (continued) 

Symbol Definition 

af4 Instruction field designating the combined a- and 

f 4-fields use to specify a control memory register. 

ak 

b 

B a 

c 

C 

CA 

Cj 

CD 

CMR 

DSW 

e 

EF 

EI 

f 

i 

Instruction fiel~ designating the combined a- and 

k-fields used to specify a bit position or a control 

memory register. 

Instruction field desi~nating an index or accumu­

lator register. 

16-bit index register designated by the a-fi~ld. 

10-bit index register designated by the b-field. 

Instruction field designating indirect addressing 

word type or the chain flag in "input/output control­

ler commands. 

Input/output channel. 

Capable of indirect word character addressing. 

Input/output channel designated by the j-field. 

Hardware compare designator. 

Control memory register. 

Designator storage words. 

Operand field of the HK pseudo instruction. 

External function. 

External interrupt. 

In~truction field designating the major function 

code. 

Instruction fields designating sub-function code. 

Instruction field designating indirect addressing 

or interrupt control memory addressing. 

I J -12-20 



M~5035 

TABLE 12-4. INSTRUCTION REPERTOIRE . SYMBOL DEFINITIONS (continu~~d) 

Symbol . Dcfi ni t i on 

I/O Input/output. 

IOC Input/output controller. 

j Instruction field designating an I/O channel. 

k Instruction field partial word designator. 

kj Instruction field designating the combined k- and j­

fields used to specify a bit position or control 

memory register in IOC instructions. 

1 

n 

NI 

OD 

p 

P 

PI 

RPT 

RTC. 

s 

SIR 

SPR 

Operand subfield of buffer control word pseudo 

instructions. 

Instruction field designating a shift count or 

monitor flag in an IOC command. 

Used as a subscript indicating a bit position; for 

example, (A ) . a n 

Next instruction. 

Overflow designator. 

Indirect word bit position designator. 

Program address register, 20 bits. 

Privileged instruction executable only when the 

processor is in the interrupt {executive} state. 

Capable of being executed in the repeat mode. 

Real-time clock. 

Instruction field designating a base register. 

Segment identification register. 

Stored protection register. 

11-12-21 



M-5035 

TABLE 12-4. INSTRUCTION REPERTOIRE SYMBOL DEFINITIONS (continued) 

Symbol Definition 

sy . Instruction field representing s~ ·and y~fields in 

combination. 

U 

w 

y 

y 

y. 

U regist~r (program control register). 

Indirect word character length designator. 

Instruction operand field deSignating an address 

or value. 

Effective address formed by Y + (Bb) + (Ss). 

Effective operand as qualified by k (and/or p and 

w when applicable)~ 

12.3.3 k - Operand Interpretation Code Designator 

I The k-designator determines what part of the wordi referenced by an instruction 
i 

is to be used. Wh~n k #0, bits 15 through 13 sp~cify abase register. If 
. I 

the k-designator specifies an upper I)r lower halfl-word, the l6-bit operand will 

be sign-extended to 32 bits. If the k~designatorl specifies a quarter-word, the 

8-bit quarter-word will be zero extended to 32 bifs. If the k-deslgnator .\'--

specifies the whole word, the full 32-b .. it. word willI be used •. The genera. I 
interpretation of the k-designator is specified ip Tables 12-5, 12-6, and 12-7. 

, 11-12-22 



M~5035 

TABLES ]:2-5. GENEHAI~ OPERAND INTERPRETATION (Mf~MORY TO ARITHMETIC) 

k De s i g n B t () r 

k = 0 

k = 1 

k = 2 

k = 3 

k = 4 

k = 5 

k = 6 

k = 7 

TABLE 12-6. 

k Designator 

k = 0 

k = 1 

k = 2 

k = 3 

k = 4 

k = 5 

k = 6 

k = 7 

M~mory to Arithmetic 
i 
I 

i s y+( Bb ) .... A 15 -0 
i 

i (y 15-0) .... A15-0 

(Y31-16) - A15 -0 

(Y31 -0 ) - A31 -0 

(Y7 -0) - A7_0 

1 (Y 15-8) .... A7_0 
1 

I 

!(Y23- 16 ) .... A7_0 

\ (Y 31-24) .... A7_0 
I 

'I 

1 

GENERAL OPERAND INTERPRETATION 
'I 

Sign extended 

Sign extended 

Sign extended 

Zeros extended 

Zeros extended 

Zeros extended 

Zeros extended 

(ARITHMETIC TO MEMORY) 

1 

Arithmetic to Memory 
I 

Not use(i 
I 

1 

(AlS-O>j - YI5 - 0 ; Y31-16 - Unchanged 
i 

(A 1S -0 )! - Y31 - 16 ; Y1S-0 - Unchanged 

(A31 -0> .... Y31 -0 

(-A7 -0) - Y7 - 0 ; Y31 -8 
,- Unchanged 

(A
7

_
0

) - YI5 -8 ; Y31 -16 - Unchanged 

Y7-0 - Unchanged 

(A7 -0) - Y23- 16 ; Y31 -24 - Unchanged 

Y15-0 - Unchanged 

(A
7

_
0

) i - Y31 -24 ; Y23-0 - Unchanged 

11-12-23 



M-5035 

TABLE 12-7. GENERAL OPERAND INTERPRETATION (NORMAL REPLACE INSTRUCTION 
INTERPRETATION) 

Normal Replace Instruction' Inte'rpretation 

k = U Not used 

k = 1 Rea d : ( Y 15 -0 ) ..... A 15 -0 (s i 9 n ex· ten d e 1) · 
i 

Stor~: Store the lower 16 bits of the operand in bits 15-0 of 
I 

address Y leaving the upper 16 bits df the contents of address Y 
I 

unchanged. I 

I 

k = 2 Read: (Y3l - 16 ) ..... A15-0 (sign extentl4d). 

k = 3 

k = 4 

Store: Store the lower 16 bits of the operand in bits 31-16 of 
j 

address Y leaving the lower 16 bits ~f the contents of address Y 

unchangedo 
. i 

I 

I 

Read: (Y3l -0 ) -t A31 -0 
I 

I 

Store: Store the 32 bit operand at ~ddress Y. 

Read: (Y7- 0 ) .... A
7

_
0 

(zero extended) ~ 
I 

Store: Store the lower 8 bits of th~ operand in bits 7-0 of 

address Y, leaving the upper 24 bitslof the contents of address Y 

unchanged. I 

! 
i 

k = 5 Read: (Y 15-
8

) .... A7_0 (zero extended~. 
I 

Store: Store the lower 8 bits of th~ operand in bits 15-8 of 

address Y, leaving the remaining bit~ of the contents of address Y 

unchanged. I 
i 
! 

k = 6 Read: (Y23- 16) ..... A
7

_0 (zero extende~). 
I 

Store: Store the lower 8 bits of th~ operand in bits 23-16 of 
! 

address Y, leaving the remaining bit. of the contents of address 

Y unchanged. 
I 
i 
I 

I 

k = 7 Read: (Y31- 24) ..... A7_0 (zero extender). 

Store: Store the lower 8 bits of th~ operand in bits 31-24 of 
I, , 

the operand in bits 31-24 of addressi Y, leaving the lower 24 bits 
I 

of the contents of address Y unchang~d. 

11-12-24 



M-5035 

l:!.:\.·) b - Index Heqister Code Uesiqnator 

The :~-hil h-desiunator specifics which of tht! ind(~x registers wi 11 he used t.o 

modify the operand address y-designator. B-registers arc generally used for 

indexing loops in a program. In addition, the B7-register serves as a 

repeat counter and the BO-register indicates a register which always contains 

zero. There is a group of index registers for each state of the computer. 

12.3.5 i-Indirect Address Code Designator 

The i-designator is set by coding an asterisk (*) before the y field. The i­

designator of the instruction word controls the use of indirect addressing and 

variable-length character addressing during execution. If i = 0, the instruc­

tion will function normally. 

12.3.6 s - Base Register Code Designator 

The 3-bit s-designator is used to modify the 13-bit operand address y-designator 

to form Y = Y + Bb + 5s ' The base registers addressing techn~que is as 

follows: 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

000 .... 5 
2 0 

0012 .... 51 

0102 "" 52 

0112 .... 53 

10°2 "" 54 

1012 "" 55 

110
2 

.... 56 

1112 .... 57 

(Add 

(Add 

(Add 

(Add 

(Add 

(Add 

(Add 

~Add 

(50) to y + (B
b

» 

(51'> toy + (Bb » . 

(52) to y + (B
b

» 

(53) to y + (B
b

» 

(54) to y + (Bb» 

(55) to y + (Bb» 

(56) to y + (Bb » 

(57) to y + (B
b

» 

There are two sets of eight base registers, one for each of the task and inter­

rupt states of the processor(s). 

12.3.7 y - Operand Code Designator 

The o~era~d y-designator is either a l3-bit value (zero extended) if k # 0, or 
, ' 

a l6-bit value (sign extended) when k = O. In the first case, the y-designator is 

part of the final operand addressi in the other case it is a constant. 

11-12-25 



M-5035 

12.3.8 f2,f3' f4' ~ Subfunction Code Designat~rs 

In an effort to minimize the number of different function codes, various 

instructions have subfunctions in all or part of the normal k-designator field. 

In place of the k-field, a whole-word interpretation of the operand is hardware 

ass umed. 

12.3.9 m - Shift Counter Field 

This is a 7-bit field used in half-word shift instructions to specify the 

number of data bits in an A-register that will be moved either to the right or 

to the left. 

12.3.10 m - Monitor Interrupt Code Designator 

This is a special designator for input/output controller instructions con­

sisting of a I-bit monitor flag that, if set, will cause the IOC to transmit an 

interrupt to the processor when a buffer is terminated. 

12.3.11 c - Chain Flag Code Designator 

This is a special deSignator for input/output controller instructions con­

sisting of a I-bit chain flag that, if set, indicates to the IOe that another 

command follows. When the operation specified by this command terminates, the 

chain shall remain active. 

12.3.12 i-Channel Number 

This is a special designator for input/output cqntroller instructions con­

sisting of a 4-bit field specifying which channel (0 through 15) the associated 

IOC command is to be performed on. 

12.4 COMPUTER-INSTRUCTION REPERTOIRE 

The assembler recognizes and generates for an idbedded computer-instruction 

repertoire associated with the AN/UYK-7 Compute~ System. All mnemonic computer­

instruction lines have the general format: 

Label Mnemonic Function : Operand 

Use of a label is always optional. An asterisk :(f,c) preceding the y field 

specifies indirect addressing and causes the Assembler to set the i-field of 

the generated instruction word to a one. 

I I -12-26 



M-5035 

For convience of programming, the coding sequence of the operand subfield(s) 

does not necessarily correspond to the field order of the generated instruction. 

The material contained in this section presents the instruction repertoire in 

condensed form for reference purposes only. Programmers requiring more detailed 

information concerning the hardware operation should consult the appropriate 

hardware· specification document. 

Note that the mnemonic function code for all half-word instructions begins with 

the letter H. 

For ease of reference, the in~tructions are grouped according to their 

function into eleven major categories as follows: Load and Store, Arithmetic, 

Jump, Comparison, Logical, Shifts, Control Memory References, Interrupt 

Handling, Miscellaneous, Extension Mnemonics and Input/Output. 

Within each group, instructio~s are arranged alphabetically by name. Format 

I and Format II instructions are character addressable and repeatable except 

as indicated. There is some unavoidable overlap in the above classification. 

For example, some of the logical type instructions involve arithmetic opera­

tions. The list which follows may be consulted for corresponding names, 

mnemonics, and groups. 

11-12-21 



M-5035 

MNEMONIC 

AA 

AB 

AEI 

AFC 

AIC 

ALP 

ANA 

ANB 

AOC 

AXC 

BC 

BCW 

BCWE 

BS 

BZ 

C 

CG 

CL 

CM 

CNT 

CXI 

o 
DA 

DAN 

DC 

UJNZ 

ADO A 

ADO B 

NAME 

ALLOW ENABLE INTERRUPT 

ACTIVATE EXTERNAL 
FUNCTION CHAIN ON Cj 

ACTIVATE INPtIT CHAIN 
ON Cj 

ADO LOGICAL PRODUCT 
SUBTRACT A 
(Add Negative A) 

SUBTRACT B 
(Add Negative B) 

ACTIVATE OUTPUT CHAIN 
ON Cj 

ACTIVATE EXTERNAL INTER­
RUPT CHAIN ON Cj 

COMPAHE BIT TO ZERO 

BUFFER CONTROL WORD 

BUFFER CONTROL WORD ESI 

SET BIT 

CLEAR BIT 

COMPARE 

COMPARE GATED 

COMPARE LI MITS 

COMPARE MASKED 

COUNT ONES 

COMPARE INDEX, INCRE­
MENTED 

DIVIDE A 

DOL1~LE ADD A 

DOUBLE SllliTRACT A 
(Uoubl(! Add Negntive A) 

DOt13LE COMPAHE 

DOUBLE JUMP A NOT ZERO 

11-12-20 

GROUP --
Arithmetic 

Arithmetic 

Interrupt 

Input/Output 

Input/Out put 

Logical 

Arithmetic 

Arithmetic 

Input lOut put 

Input/Output 

Comparison 

Extension 

Ext ensi on 

Miscellaneous 

Miscellaneous 

Comparison 

Comparison 

Comparison 

Comparison 

Miscellaneous 

Comparison 

Arithmetic 

Arithmetic 

Arithmetic 

Comparison 

Jump 



MNEMONIC 

DJZ 

DL 

DS 

FA 

FAN 

FANR 

FAR 

FB 

FD 

FDR 

FM 

FMIR 

FMR 

HA 

HAl 

HALT 

HAN 

HAND 

HC 

HCB 

HCL 

HCM 

HCP 

M-5035 

NAME GROUP 

DOUBLE JUMP A ZERO Jump 

DOUBLE LOAD A Load & Store 

DOUBLE STORE A Load & Store 

FLOATING POINT ADD Arithmetic 

FLOATING POINT SUBTRACT Arithmetic 
(Floating Point Add 
Negative) 

FLOATING POINT SUBTRACT Arithmetic 
WITH ROUND (Floating 
Point Add Negative with 
Round) 

FLOATING POINT ADD WITH Arithmetic 
ROUND 

INITIATE EXTERNAL FUNC- Input/Output 
TION BUFFER ON Cj 

FLOATING POINT DIVIDE Arithmetic 

FLOATING POINT DIVIDE Arithmetic 
WITH ROUND 

FLOATING POINT MULTIPLY Arithmetic 

SET EXTERNAL FUNCTION Input/Output 
MONITOR INTERRUPT 
REQ UEST ON C j 

FLOATING POINT MULTIPLY Arithmetic 
WITH ROUND 

ADD (SUM) Arithmetic 

All.OW CLASS II INTER- Input/Output 
RUPTS 

STOP PROCESSOR Miscellaneous 

SUBTRACT (DIFFERENCE) Arithmetic 
Add Negative (Differ-
ence) 

AND Logical 

COMPARE, REGISTER Comparison 

COMPAllli Bb WITH Ba Compari son 

COMPARE LIMITS, REGISTER Compari son 

COMPARE MASKED, REGISTER Comparison 

COMPLEMENT A Ar it hmet i c 

11-12-29 



M-5035 

MNEMONIC NAME GROUP 

HO DIVIDE REGISTER Arithmetic 

HOCP DOUBLE COMrLEMENT A Arithmetic 

HOLC DOUBLE SHIFT LEFT Shift 
CIRCULARLY 

HDRS DOUBLE SHIFT RIGHT Shift 
FILL SIGN 

HDKZ DOUBLE SHIFT RIGHT Shift 
FILL ZEROS 

HOSF DOUBLE SCALE FACTOR Miscellaneous 

HK HALF-WORD CONSTANT Extension 

HLB LOAD 8a WITH 8b ' Load & St ore 

HLC SHIFT LEFT CIRCULARY Shift 

HLCI LOAD INTERRUPT CMR Cont rol Memory 
WITH A 

HLCT LOAD TASK CMR Control Memory 
WITH A 

lIM MULTIPLY REGISTER Arithmetic 

UNO HALF WORD NO-OPERATION Extension 

HOR INCLUSIVE OR A (Logical Logical 
Sum) 

HPI PREVENT CLASS III Interrupt 
INTERRUPTS 

HRS SHIFT RIGHT FILL SIGN Shift 

HRT SQUARE ROOT Arithmetic 

HRZ SHIFT RIGHT FILL ZEROS Shift 

HSCI STORE INTERRUPT CMR Control Memory 
INA 

HSCT STORE TASK CMR IN A Control Memory 

HSF SCALE FACTOR Miscellaneous 

HSIM STORE 1/0 MONITOR CLOCK Miscellaneous 

HSTC STORE REAL TIME CLOCK Miscellaneous 

HWFI WAIT FOR INTERRUPT I nt errupt 

HXOR EXCLUSI VE OR A ( Logical Logical 
Oi fterence) 

11-12-30 



M-5035 

MNEMONIC NAME GROUP 

IB INITI ATE I NPIIT BUFFER Input/Output 
ON Cj 

IBS SET BIT Input/Output 

IBZ CLEAR BIT Input lOut put 

ILTC LOAn REAL-TIME CLOCK Input/Output 

IMIR SET INPUT MONITOR INTER- Input/Output 
RUPT REQUEST ON Cj 

JBNZ INDEX JUMP (Jump B not Jump 
zero) 

10 INITIATE INPUT/OUTPUT Miscellaneous 

IPI INTERPROCESSOR INTERRUPT Interrupt 

ITSF TEST AND SET FLAG Input lOut put 

IW INDIRECT WORD Extension 
/ 

1M3 INDIRECT WORD, SPECIAL Extension 
INDEX 

I\«: INDIRECT WORD, CHARACTER Extension 

IWCI INDIRECT WORD, CHARACTER Extension 
INCREMENT 

IWS INDI RECT WORD, SPECIAL Extension 
BASE 

J JUMP Jump 

JC JUMP CONDITION SETTING Jump 

JE JUMP EQUAL Jump 

JEP JUMP EVEN PARITY Jump 

JG JUMP GREATER THAN Jump 

JGE JUMP GREATER THAN OR Jump 
EQUAL 

JIO JUMP (I NPUT / OUTPUT ) Input lOut put 

JL JUMP LOWER Jump 

JLE JUMP LESS THAN OR EQUAL Jump 

JLT JUMP LESS THAN Jump 

IN JUMP A NEGATIVE Jump 
JNE JUMP NOT EQUAL Jump 
JNF JUMP NO OVERFLOW Jump 

11-12-31 



M-5035 

MNEMONIC NAME GROUP 

JNW JUMP NOT WITHIN LIMITS Jump 

JNZ JUM P A NOr ZEHO Jump 

JOF JUMP OVERFLOW Jump 

JOP JUMP ODD PARITY Jump 

JP JUMP A POSITIVE Jump 

JS JUMP Sy + B Jump 

JSC JUMP STOP CONDITIONAL Jump 
SETTING 

JW JUMP WITHIN LIMITS Jump 

JZ JUMP A ZEHO Jump 

LA LOAD A ;Load & St ore 

LB LOAD B Load & Store 

LBJ LOAD B AND JUMP Jump 

LBMP LOAD BASE AND MEMORY Load & Store 
PROTECTION 

LCI LOAD INTERRUPT CMR Control Memory 

LCT LOAD TASK CMR Control Memory 

LDIF LOAD DIFFERENCE Load & Store 

LICM LOAD IDe CONTROL MEMORY I nput/Out put 

LIM LOAD, ENABLE IOC MONITOR Miscellaneous 
CLOCK 

LLP LOAD LOGICAL PRODUCT Logical 

LLPN LOAD LOGICAL PRODUCT Logical 
NEXT 

LM LOAD MAGNITUDE Load & Store 

LNA LOAD NEGATI VE Load & Store 

LSUM LOAD SUM Load & Store 

LXB LOAD A & INDEX B Load & Store 

M MULTIPLY A Arithmetic 

MP MEMORY PROTECTION Extension 

MS SELECTIVE SUBSTITUTE A Logical 

NLP SUBTRACT LOGICAL PRODUCT Logical 
(Add Negative Logical 
Product) 

11-12-32 



M-5035 

MNEMONIC NAME GROUP 

NOOP NO OPEHATION Extension 
OB INITIATE OlITPUl' BUFFEH I n put / Ou t. put 
OMIR SET OlITPlIT MONITOH Input/Output. 

INTERRUPT REQUEST 

OR INCLUSIVE OR (SELECTIVE Logical 
SET) 

PEl PREVENT ENABLE INTERRUPT Interrupt 

RA HE PLACE ADD Arithmetic 

RALP REPLACE A + LOGICAL Logi ca I 
PHODUCT 

RAN REPLACE SUBTRACT Arithmetic 
(Replace Add Negative) 

RD REPLACE DECREMENT Arithmetic 

RI REPLACE INCREMENT Arithmetic 

RJ RETURN JUMP Jump 

RJC RETURN JUMP CONDITIONAL Jump 

RJSC RETURN JUMP STOP CONDI- Jump 
TIONAL SETTING 

RLP REPLACE LOGICAL PRODUCT Logical 

RMS REPLACE MASK (SEL. SUB- Logical 
STITUTE) 

RNLP REPLACE A - LOGICAL Logical 
PRODUCT (Replace Add Neg-
ative Logical Product) 

ROR REPLAC,E INCLUSIVE OR Logical 
(Replace Selective Set) 

RP REPEAT Miscellaneous 

RSC REPLACE S~LECTIVE CLEAR Logi ca 1 

RXOR REPLACE EXCLUSIVE OR Logical 
(Replace Selective Com-
plement) 

SA STORE A Load & Store 

SB STORE B Load & Store 

SC SELECTIVE CLEAR Logical 
SCI STORE INTERRUPT CMR Cont rol Memory 

11-12-33 



M-5035 

MNEMONIC NAME GROUP 

SCT STORE TASK Control Memory 

SDIF STORE DIFFERENCE Load & Store 
SICM STORE IOC CONTROL MEMORY Input lOut put 
SLP STORE LOGICAL PRODUCT Logi cal 

SM STORE MAGNITUDE Load & Store 

SNA STORE NEGATIVE LOnd & Store 
SSUM STOHE SUM Load & Store 

5XB STOHE A AND INDEX B Load & Store 

5Z STORE ZERO Extension 

TBS TEST BIT SET Input/Output 

TBZ TEST BIT CLEARED Input/Output 

TFB TERMINATE EXTERNAL FUNC- Input/Output 
TION BUFFER ON Cj 

TIB TERMINATE INPUT BUFFER Input/Output 
ON Cj 

TOB TERMINATE OUTPUT BUFFER Input/Output 
ON Cj 

TSF TEST AND SET FLAG Miscellaneous 

TXB TERMINATE EXTERNAL INTER- Input/Output 
RUPT BUFFER 

XB INITIATE EXTERNAL INTER- Input/Output 
RUPT BUFFER 

XMIR SET EXTERNAL INTERRUPT 
MONITOR INTERRUPT Input/Output 
REQ UEST ON C j 

XOR EXCLUSIVE OR (SELECTIVE Logical 
COM PLEMENT ) 

XR EXECUTE REMOTE Miscellaneous 

XRL EXEClITE REM(YfE LOWER Miscellaneous 

XS ENTER EXECUTIVE STATE Miscellaneous 

ZA CLEAR A Extension 

ZR CLEAR B Extension 

11-12-34 



12.4.1 Load and Store Instructions 

M-5035 
Change 1 

Generally, load instructions load a register or rt!gisters with: 1) th(' con­

tents of memory; 2) the contents of memory plus or minus the contents of im 

accumulator register; or 3) the contents of memory in absOlute magnitude or 

complemented. In format I instruction, k is the normal read designator. Store 

instructions store the following in memory: 1) the contents of a register 

or registers; 2) the sum or difference of consecutively numbered accumulator 

registers; or 3) an accumulator register in absolute magnitude or com­

plemented. 

The following are the formats for load and store instructions: 

DOUBLE LOAD A 

)'l''1Z!l'I,zrIZl u12-1n n12 '1'° "1'11'7 " '51'-I's 

05 n 4 b i s 

Not character addressable. 

Not repeatable. 

"I "I ,01'J 11 71'1 51 41 s I I I ' 10 

Y 
DL a,y,b,s 

Load the double length register (formed with the lease significant half 

in A and the most significant half in A +1) with the content of the a a 
double length memory word, formed with the least significant half as (Y) 

and the most significant half as (Y + 1). 

OOUBlE STORE A 

"l'~ztlZlIZ7II' ula-In ul"IIO "1'11" " 111'-1" 

02 () 7 b i s 

Not character addressable. 

Not repeatable. 

'~1I1'01',11 7J '1 514 1 s I z I '10 

y 

11-12-35 

DS a,y,b,s 



I 

M-5035 
Change 1 

Store the content of the double length register (formed with the least 

significant half in Aa and the significant half in A
a
+

l
) at the 

double length memory word (formed with Y as the least significant half 

and Y + I as the most significant half). 

LOAD A 

10 a k b i s y LA a,y,k,t,s 

y -A 
.a 

Load A with Y. 
a 

LU . .\lJ . .\.\ND J~JjEX B 

11 a k s y LXB a, y , k, b , s 
___ ---l. •..•.. . ____ "_ 

y - ., " (B.) ·1 1 -.. B 
a lJ h 

Not rl:'peat.able. 

Load Aa ~ith Y and add one to (B
b

). 

LOAD B 
!'1sOTziTzlfzifn ulz.lu utzllzo "T'll,1' II ',TI411! lifliTlo\'\ll1TITaj41 sTzTi fo 

20 a k b i s y LB a,y,k,b,s 
w_ 

Y .... B 
-. M 

lhe ~ suh-field specifies an index register. 

Load B with Y. If 8 is 8 , the effect is a no-operation. 
a a 0 

11-12-36 



LOAU BASE ANU MEMORY PROTECTION 
"i,Tiolz'tlzllulze u1z.123 ZZ[I'lZO 111'1117 II ,sl'.I" 'zl''I,01111(1('1 s141' I z I' (0 

OS ;) 4 b 

Y - Sa 
Y + 1 - SPR a 

i s 

S - SIRa 19-17 

y + (Bo) - SIRa 15-0 
b 

Not character addressable. 

Not repeatable. 

Y 

M-5035 
Change 1 

LBMP a,y,b,s 

This instruction loads the task state base register, specified by the a­

field, with the lower 18 bits at address Y, and loads the Storage Protec­

tion Register specified by tha a-field, with the lower 21 bits of 

address Y + 1. The Segment Identification Register, specified by the a­

field, receives the s-field value in bits 19 through 17 and the sum of 

y + (BD~ in bits 15 through O. This instruction can be executed in the 

task state under the following conditions: 

1. Bit 0 of the Active Status Register must be set. 

2. The s-field must equal seven. 

3. The a-field must not equal seven. 

A violation of these conditions shall cause a privileged instruction 

int~rrupt (class II). 

The following condition applies to this instruction in both the task and 

interrupt states: 

The'17-bit relative address quantity, y + (BO)b must be an even number. 

Its violation shall be an illegal instruction error causing a class II 

interrupt. 

11-12-37 



M-5035 
Change 1 

LUAD B WITH B 
n b 

I' I ,. r I ,T I 2 J I I J 10 -r-T7 
7-1 H 

(Bt ) - B ) a 

'I s I" 312 II ° 
3 h j IILB a,b 

Thp a sub-field specifies an index register. 

Load Ba with (Bb). If Ba is Bo' the effect is a no-operation. If Bb is 

n ,H is cleared to zero. 
o a 

U }t\/l J) I FFERENCE 

31 T,01u12l1z "\21 uh"{u ulZllzo "\"1 '1 " 15114jl' 121"1101'1117111114111 z I' 10 

() k b i s Y 
, 

12 LDIF a,y,k,b,s 

y - (A ) ..... A (A ) i = (A ) f 
- a a+1; a a 

Load Aa+l with the difference formed by subtracting (Aa) from I. 
remnins unchanged. 

LOAD MAGNITUDE 

"T,0InI2lIz 7121 

17 

ulz41u ulzllzo 

() 

-A a 

k 

"1")'7 I' 1511411' 121"110I'J 1171-1114111 z II 10 

b i s y 

Load A with the absolute value of I. a 

LOAD NEGATIVE 

"I,oInf2l1Z1(z, z51z 4Tu ulz1fzo "1" 1'7 I' 11'1'41'1 121"1101'1111111114111 Z 1'10 

] /, " k lJ i s y 

Y' - A 
Cl 

LM a,y,k,b,s 

LNA a,y,k,b,s 

l.oaci t\ wi th the logical complement (ones complement) of Y. 
Cl 

I 1-12-38 

(A ) 
a 



LOAU SUM 

31\30\21\21\21 121 u\z.\n uT211zo "1 '11'1 II IsII.I" 'alII I '01'1111 11\ a \4 I ' \ z \ ' \ 0 

l~ a k h i s y 

Y + (A ) - A +1; (A ). = (A ) f - a a a 1 a 

M-5035 
Change 1 

LSUM a,y,k,b,s 

Load Aa+1 with the sum of I and (A a ). (A ) remains unchanged. 
a 

STORE A 

31\3012l\ZII21\2I u\Z 4ln Ullllzo "1 '11 '1 

24 () 

(A ) - Y 
a 

k 

Store (A ) at Y. 
a 

STORE A AND INDEX B 

b 

3113012l\11121lz, ulz41n 1211'110 "1'11 '7 

25 II k b 

Not repeatable. 

,. 'sl'·I" Izl" 1'01. Til 7 T. T a 14 1' \ 2 I' 10 

i s y SA a,y,k,b,s 

,. 'Sl '.[1' 'aI' , I '0 I ., I 171 .1a I 4 III 2 I ' I 0 

i s y SXB a,y,k,b,s 

Store (Aa) at Y; add one to (Bb) and store the sum !n the Bb register. 

STORE B 

311Io121lz112112. u\a4\n 

23 
-

a 

(B ) - y. 
a 

12111 lao 

k 

"1 '11,7 ,. "r'·l" ,aT"T,ol. TIT 7 T. TSI.III 2 I ' 10 

b i s y 

The a sub-field specifies an index register. 

Store (B ) at Y . 
a 

II-12-:l9 

SB a,y,k,b,s 



M-5035 
Change 1 

STUHL IHFFEHENCE 

311)0129121127121 2~124123 221Zl lzo 

0:2 () 6 
~---------

1'1 11111 II 1!l11411) 1~llllol'11111~I!l14Islzl I 10 

h j s y SDIF a,y,b,s 

Subt rClC t (Aa) from C'(1+1). The resul t is noted rtt Y and Aa+lo 

remnins unchrtngedo 

STORE ~lAGNITl!DE 

S tor e the mel 9 nit u de 0 f ( A ) ~t Y. 
el 

STORE NEGATIVE 

'I1,01n1zel27l21 ulz41n zz111 1zo 1t111111 II 1511411) I zl"II01' 111' I I 151 41 s I z II 10 

20 () 

(A )' - Y 
rt 

k b i s y 

SM a,y,k,D,s 

SNA a,y,k,b,s 

Telke the complement of (A ) and store the result in Y. 
el 

STORE SUM 

5 b s y SSUMa,y,b,s ________ ~ __ ~ ____ -L ____ ~ ____ J_ ____________________ ~ 

(A ) 
a 

Add (Aa) to (A a+l ). The result is stored in Aa+land Y. 

unchanged. 

(A ) remai ns 
a 

11;..12-40 



12.·1.:2 Arithml'tic Instructions 

M-5035 
Change 1 

Tht·sc· i~:sl rllc'i()n~ chnn~,(' ttw conU'nl.s of a Sl)('(~ifipd rf'~JistC'r or r(luislc'rs 

accordinu to the operation sppcifif'd, except for ttw replacp instructions 

which also modify the contents of memory. Some instructions in the LOAD AND 

STORE and LOGICAL sections also involve arithmetic operations. 

ADD A 
311501nlllll1l21 ul2-ln 1212 '(20 "1'11" 'I III'-I's '~"1,01'111111ItI415rzr'To 

1 ·1 (] k b i s y AA a,y,k,b,s 

(A ) + Y - A 
a a 

Form the sum of (Aa) and ¥b and store the result in Aa. 

ADD (SUM) 

151 1_1']1 121"1'0 .J It 1 11 5/4 3/ Z I' ?1 

71 a 1 b i llA a,b 

Form the sum of (Aa) and (Ab) and store the result in Aa. 

ADD B 

]1150In/lIll1l21 ul2-ln ul2'lzo 111'11" 'I 'II'-I's Izi "110111111 III It 141 1 I z II r 0 

21 a k b i s Y AB a,y,k,b,s 

(B ) + Y - B , where reference is to an index register in sub~field a. a - a 
If Sa is Bo ' the effect is a no-operation. k is normal read. 

COMPLEMENT A 

151'-111112111110 '111 ' 
II III- 31zl1 0 

70 a 2 b i HCP a 

(A )' - A a a 

Complement (A ) and store the result in A . 
a a 

11-12-41 



M-5035 
Change 1 

UIrIUE A 

311301u12l1271za 2512 .123 2212 '120 "1"1 11 'I '51'.1'5 Izl"llol'l_P 11 1'1 4 15 1z1 '1 0 

,n () k h j s y U a,y,k,b,s 

( .. \ ',1' A ) • () -.- a r :... A ; rf'mn i nder ..... A 
a H+] 

IJi\'id(' I hi' content of t h(' dOllu1(' length register (formed with the least 

si~lnifican1 half in Aa and tIl(' most significant half in A
a
+

1
) by Y. The 

quot ient is stored in A and the remainder in A I" Uivide overflow a a+ 
shaJ I occur if the quotif'n1. exceeds 31 data bits and one sign bit. 

DJ\,IUE HI·:C;lSTEH 

'51'.('51 121 ,,110 -'1'1 ' II ~l. 31 z I' 0 

/.\ () I II i 1m [J, h 

(~ -+l' A) ~ CAb) - A ; rf'mainder - Aa+l 
() , () 

Divide the double length n~gister (formed with (Aa) as the least signi­

ficant half and (A
a
+]) as the most significant half) by (A

b
). The 

quot ient is stored in Aa and the remainder' in A
a
+ l " (Ab)i = (Ab)f if 

a I band a+1 t b. 

DOtJBLE ADD A 

os b s 

Not character addressahle. 

Nol r('IH-'atahlc. 

y DA a,y,b,s 

Form the sum of the content of the double length register (formed with 

t 1](' ]('ast significant half in Aa and the mostsignificatn half in A
a
+

l
) 

and the content of the doublf' length memory word (formed with the least 

significant half at Y and the most significant half at Y+ 1). Store the 

I('nst siunificant half of th(~ n'sult in A and the most significant half a 

1 J -l2-12 



M-5035 
Change 1 

UOUBLE COMPLEMENT A 

1'1 "lis 112111110 '111 ' -I' ,_ I I Z II 0 

70 () 3 h i B[iep a 

Complement the double length register (formed with (A ) as the leRst 
a 

significant half, and (A a+1) as the most significant half} and store the 

most significant half of the result in Aa+l and the least significant 

half in A . . a 

OOUBLE SUBT RACT A 

05 2 b s Y 
..L-_--L.-'--_~ __ . ____ ._ ... _____ _ 

Not character addressable. 
Not repeatable. 

DAN a,y,b,s 

Subtract the content of the double length memory word (formed with the 

least significant half at Y and the most significant half at Y + 1) from 

the content of the double length register (formed with the least signif~ 

icant half in Aa and the most significant half in Aa+ l ). Store the least 

significant half of the result in Aa and the most significant half in 

Aa+ l • 

FLOATING POINT ADD 

311501111 ziia '111 ulz-In Uli l l20 1'1.11 11 II ISl14rl3 

06 n 0 b i s 

Not character addresable. 

Not repeatable. 

1~lijl~.T'1111Isl-lllzll 10 

Y FA a,y,b,s 

11-12-43 



M-5035 
Change l' 

Compare thp characteristic stored at Y with the characteristic located in 

the lower 16 bits of A. The mantissa located at Y + 1 or the mantissa 
a 

located in Aa+l is tlH'n shifted, depending on the comparison of the 

characteristics. (Y + 1) is then added to (Aa+
l
). The normalized shift 

count is t.hen subtract(~LI from, or added to the final characteristic 10-

cat.pd in A • 
a 

. FLO,\TI;'\(; POI:'-JT AUD WITH HOl~ND 

Not character addressable. 

Not rep{'atab1e. 

fj\ rl Cl, Y , b , s· 

Compare the characteristic stored at Y with the characteristic located 

in the lower 16 bits of A. The mantissa stored at Y + I or the mantissa a 
located in Aa+l is shifted, depending on the comparison of the charac-

teristics. The final mantissa is round~d as required. The normalized 

shift count is subtracted from, or added to, the final characteristic 

located in A . 
a 

FLOATING POINT DIVIDE 

31130129121121128 25124123 22111120 111 1'1 17 II 1511411S 121"11011 I '17 II 151 .. 1 31 2 II 10 

U() () 
.) 
,) b i S 

Not character addressable. 

Not repeatable. 

Y FD a,y,h,s 

Sllbt ract t he characteristic located at Y from the characteristic located 

in the lower 16 bits of A. The mantissa located in A I is then divided a ~ 

hy the mantissa located a1 Y + 1. The final mantissa located in A +1 is . a 
norma] izcd right one place if necessary and the characteristic adj usted 

accordingly. 

J] -12-4,1 



M-5035 
Change 1 

FLOATING POINT DIVIDE WITH ROUND 

U6 7 b s 

Not character addressable. 

Not repeatable. 

y FU H (l, Y , 1>, s 

Subtract the characteristic located at Y from the characteristic located 

in the lower 16 bits of Aa. The mantissa located in Aa+l is then divided 

by the mantissa located at Y + 1. The mantissa located in Aa+l is nor­

malized right one place if necessary and the characteristic adjusted 

accordingly. The final quotient mantissa, (Aa+l ), is rounded as required. 

FLOATING POINT MULTIPLY 
r--r. 
'~ 1":~O:"9Iz'lz11z. nlz-In Ull11Z0 1'111111 II Isj ,-jls '2j"jlol II IUI-lsI"lsl z 111 c 

06 (l 2 h i s 

Not character addressable. 

Not. repeatable. 

y FM a,y,L,s 

Add the characteristic located at Yto the characteristic located in the 

lower 16 bits of Aa. The mantissa located in Aa+l is then multiplied by 

the mantissa located at Y + 1. The final mantissa located in Aa+l is 

normalized left one place if necessary and the characteristic adjusted 

accordingly. 

FLOATING POINT MULTIPLY WItH ROUND 

Not character addressable. 

Not repeatable. 

FMR a,y,b,s 



M-5035 
Change 1 

Add the characteristic located at Y to the characteristic located in the 

IOl\'('r }() bits of Aa' The mantissa located in Aa+l is then multiplied by 

thf' mantissa located at Y + 1. The mantissa located in Aa+l is nor-

ma I ized left one place if necessary and the characteristic adjusted 

accordinuly. Thc final mantissa, (Aa+
l
), is then rounded as required. 

FLUr\TI\(; P!)I\T St:BTRACT 

]11]01 291"121121 2512·lu 221Zl lzo 11111117 II 1511.(1] 1211 q 10111'1 7 III '1 41 5 I z III ° 
(II ) 

- -- --
il I' t> i s 

- -- .. 

Not character addressable. 

Not repeatable. 

Y FAN a,y,b,s 

Compare the characteristic stored at Y with the characteristic located in 

the lower 16 bits of A. The mantissa located at Y + 1 or the mantissa a 
located in Aa+l'is then shifted depending on the comparison of the char-

act.t~ristics. (Y + 1) is then subtracted from the (Aa+ l ). The normalized 

shift count is then subtracted from, or added to, the final characteristic 

located in A , 
a 

FLOATING POINT SUBTRACT WITH ROUND 

5 11]01211 nl27 In 2512·lu 22121120 "11'1 17 II 1511.11] 12111110 II I '1 7 I-I 5141 5 I 2 I I 10 

() I) :1 5 h j s Y FANR a,y,b,s 

Not character addressable. 

Not. repeatable, 

Compare the characteristic stored at Y with the characteristic located 

in tlH~ lower III hits of A. The mantissa located at Y + I or the man­
a 

tjssa located in A I is shifted depending on the comparison of the , a+ 
characteristics. (Y + 1) is then subtracted from(Aa+ I ). The final 

manf issa is rounded as required. The normalized shift count is then 

suhtracted from, or added to, the final characteristic located in A • 
a 

I I -12-46 



M-5035 
Change 1 

Mll.TIPLY A 

3,13012112112 'In nT241n ul21 1zo Itllll17 I- 1111_11' I zl"llo f t f I f 7 I_ 1'1-1 , I z II 10 

,10 () k b i s y ~1 Cl, Y , k , b , ~; 
.-

Multiply (A ) by I, store the leClst signific,Rnt half of the double length, 
(1 

result in AR' and the most significant half in ACl+lo 

MULTIPLY REGISTER 

1'11411'1'21"110 .1117 -1'1- 3121 1 0 

74 a 0 11 j HM ~.b 

M~ltiply (Aa) by (A
b
). The least significant half of the double length 

result is stored inA
a

, and the most significClnt half in Aa+l · (Ab)i = 
(Ab)f if a 1 band a+l # b. 

REPLACE ADD 

S ilsoTu12lTuT2I uTz-ln ulzllzO 1'1 11111 'i 111'4115 ,zl"IIO I t I I (1 (-( 'I 4 J SJ Z II J 0 

34 a k b i s Y RA a,y,k,b,s 

Y + (A ) - Y and A +1;' (A ). = (A ) - a a a1 af 

Form the sum of ! and (A >, and store the result at Y and A • . a a+] 
remains unchanged. 

I 1-12-47 

(A ) 
a 



M-5035 
Change 1 

HLPL\CL INCRE\lENT 

___ L _;_1 --1..._ 

~---~~--~--------------------~ 

s y HI a,y,k,b,s 

y ~ I - A and Y 
{] 

Lo ad t\ 
(1 with I, then add one to (A ) and store the result at A and Yo 

a a 

REPLACE DECRE'lENT 

k 

Y - I --+ A and Y 
a 

b s y RD a,y,k,b.s 

Load A wi th r. then sub trae t one from (r\ ) and s tore the resul tat A and Y. 
a a a 

REPLACE SlJBT RACT . 

'IJ JOl211 Zll 27121 nl241n UI21[ZO IIJ lll 11 II l'll411S 121" 110 I • I I 11 I lIs 1 41 S J 2 J I 10 

36 a k h i s Y RAN a,y.k,b,s 

Y - (A ) - Y a nd A +1; (A ). = (Aa) f - a a a 1 

Subtract (Aa) from ro, then store the result in Y and A
a
+

l
. 

unchanged. 

SQUARE ROOT 

l'lI41ISI'21"1IO 11117 lis 14 S \z II 0 

74 a h i HRT a,b 

(A ) remains 
a 

Calculate the squ:.re root of fhe content of the double length register 

(formed with the most significant half in A I and the least significant - a+ 
half in AaL The result is stored in Ab and the residue is stored in 

Ab+lo 

(A +1). = fA ) if a+l 1: band a+l :f b+l 
a J a+ 1 f 

if a :f b and a :f b+l 

lI-12-tlB 



SUBTRACT (UJ FFEHENCE) 

',sri-II'I,zl"llo 11111 'I ~ 14 31z r I 0 

71 n 2 h i . l:AN n, h 

(A ) - (A ) - A 
a b a 

SUBTRACT A 

,,130fu lzII11111 nil-In 12111\10 11111111 II I~I 14113 121"110111'11 1'1 ~ I 41 3 I 11110 

13 a k b i s Y 

(A ) - Y - A a - a 

Subtract Y from (A ) and store the result inA. 
a. a 

SUBTRACT B 

31 130lulzalulll nlz-In ZZl111z0 111 1'1 11 I' 11.11-113 111"110111'1111111-1 3 I IT I To 

~~ a k b i s Y 

(B ) - Y ..,.. B 
8 - a a = index register 

M-5035 
Change 1 

ANA a,y,k,b,s 

ANB a,y,k,b,s 

Subtract Y from (B ) and store the result in B. If B is B t the effect 
a a a·O 

is a no-operation. 

11-12-49 



M-5035 
Change 1 

12.4.3 Jump Instructions 

There are 20 jump instructions and all are Format III. Zero is the only 

possible value in the K field of an assembled jump instruction, so the 

Assembler ignores any value in the k sub-field of a corresponding source line. 

In the descriptions below, Y is regarded as a relative address formed by 

adding (Bb)15_0 to y zero extended. If the jump is taken, this quantity is 

transferred to P(15-0) and the s-designator is transferred to P(19-17). If the 

jump is not taken, the next instruction in sequence is executed. 

JUMP 

3 h s y J y,k,t,s 

y - P 

Jump unconditionally to address Y. 

INDEX JC~lP 

~ll,ojnl21121j2' 2512-123 nl21 20 "1'11'7 'I '511_(" '21"1,01'llj71111141112111o 
r: <, 
.J", (J I ) h i s Y JBNZ a,y,k,b,s 

If (B ) ~ 0, then (B ) - 1 - B , and jump to Y. If (B ) = 0, take NI. 
a a a a 

If B = B , the effect is a no-operation .. a 0 

DOUBLE JUMP A NOT ZERO 

"110119121121121 2512-123 n12' 20 "1111'1 'I '51'-('3 '2("llol'1111111514131211{0 

50 ,) 3 ) h i s Y DJNZ a,y,k,b,s 

If (Aa+l' Aa) ~ 0, jump to Y. 

where (Aa+l' Aa) is the contents of ~he double length register formed 

by Aa+l and Aa' 

I I -12-50 



M-5035 

OOUBLE JUMP A ZERO 

51T50TullllulZl ul141n 21111 10 1'11'117 II 11114115 111"llol'I'1 71-111 415111ITo 

SO a 2 ) h i s y DJZ a,y,k,b,s 

If (Aa+l , Aa) = 0, jump to Y. 

where (Aa+1, Aa) is the contents of the double length register formed 

by Aa+l and Aa· 

JUMP A NEGATIVE 

SITsoIullllUIZI ull·ln 21111 10 "11'117 II 11)14)IS 

51 a 1 P b i 

If (A ) < 0, jump to Y. 
a 

JUMP A NOT ZERO 

s 

51150Iulll[U[Z1 ul141n 21111 10 1'1111 17 II 11114111 

51 a 3 p b i 

If (A ) 1 0, jump to Y . . a 

JUMP A POSITIVE 

s 

5tl501ulilluiZi ula41n 21111 ao 1111'117 II 11114111 

51 a 0 p b i 

If (A ) ~ 0, jump to Y. 
a 

JUMP A ZERO 

s 

II [lolulallulll ul141n 21111 20 1'11'117 II 11114111 

51 a 2 p b i 

If (A ) = 0, jump to Y. 
a 

s 

111"1101 '1.!7 1-!11 41 51 aT 110 

y JN a,y,k,b,s 

11111110111'17 I-I 1141 5 [ a II r 0 

y JNZ a,y,k,b,s 

111"llolll.!71111141 I I I II 10 

y JP a,y,k,b,s 

121"1 10111'1 7 Illl)4ls h II 10 

y JZ a,y,k,b,s 

11-12-51 



M-5035 

JUMP .CONDITIONAL SETTING 

31130121121127121 ul241n nlll 20 "1'11'1 II '51'41" 121"1'01'11111_111411121' 10 

53 a 3 ) b i s Y JC a,y,k,b,s 

If the value of the a sub-field, (1, 2, or. 3) corresponds to a manua 1 

switch which has been selected, then jump to Y. 

SPECIAL FUNCTION 
a-VALUE PERFORMED 

1 Jump if switch 1 is selected 
2 Jump if switch 2 is selected 
3 Jump if switch 3 is selected 

JUMP CONDITIONAL STOP SETTING (PI) 

"11012112'121121 25(241n nlll 20 "1"('1 I_ 151'41" 121"110 (. I '1 1 (- I 51 411( 2 1110 
53 a 3p b i s Y JSC a,y,k,b,s 

If the value of the a sub-fie·ld (4,5,6, 'or 7) corresponds to a manual 

switch setting, then stop the,processor, and transfer Y to P. 

SPECIAL 
a-VALUE 

4 
5 
6 
7 

FUNCTION 
PERFORMED 

Always stop, then jump. 
Stop and jump if switch 5 selected. 
Stop and jump if switch 6 selected. 
Stop and jump if switch 7 selected. 

JUMP EVEN PARITY 

"l'01u(2'121(2' ul241n nlll 20 "11'1'1 II 1511411' ,21111,0('1111 1-1514( .( 2 1110 

;'0 a 0 b b i s Y JEP a,y,k,b,s 

If the logical product of (Aa) and (Aa+l ) contains an even number 

of binary ones, jump to Y. 

11-12 -52 



M-5035 

JUMP EQUAL 

I'IJolnla'luJu nla-lu lulll ao 1'111111 .. 111 1_1 11 lal" J 101'111
' 

II J 114) II a II 10 

;,:\ ;, 0 h ~ s Y JE y,t,b,s 

If CD is set to equal, jump to Y. 

JUMP GREATER THAN 

3113OJZt121jUJU ulz-lululll 20 "1 11111 .. 1111-J13 lalllllol'l '1' I' I • 14 ' S I a 'I 10 

53 11 0 b ~ s Y JG y,k,b,s 

If the CD is set to greater than, jump to Y. 

JUMP GREATER THAN· OR EQUAL 

31Isolnlz·lz1IZ. nlz-Iuluizi zo 1'111111 .. 1'1 14113 lal li llol' III' Ill s14) s la 1110 

53 15 0 b i s Y JGE y,k,b,s 

If the CD is set to greater than or equal, jump to Y. 

JUMP LESS THAN 

311s01ZtlZIlUlu ulz-lululz I 20 "111111 .. Isll-113 lall II 101' III' IIIsl41 s 1111 10 

53 21 0 b ~ s Y JLT y,t,b,s 

If CD is set to less than, jump to Y. 

JUMP LESS THAN OR EQUAL 

sllsolnl2'lu lu zslZ4lul22lz I zo "11111' II Isl1411S lal"llol' 1'1' III t 141 s I a II 10 

53 25 0 b i s Y JLE y,k,b,s 

If CD is set to less than or equal, jump to Y . 

. JUMP LOWER 

JllsolZtIZl1Z11al uJz-lu 12121 ao "1'11 17 .. Isl1411s lal"llol' Ill' IIIsl41 s1 z J 110 

52 a 3 l> b i s Y JL y,k,b,s 

Y - p. 
L ' 

Jump to the 16-bit instruction contained in the lower half of the word 

whose addre~s is Y. 

11-12-53 



M-5035 

JUMP NO OVERFLOW 

,11,0Inlzll21l21 ulz41nluizi zo 11111117 II Is114!1' IZ!II!10!1!'17 1_11141 • I Z II 10 

53 00 0 b ~ s Y JNF y,k,b,s 

If the 00 is not set, jump to Y. 

JUMP NOT EQUAL 

'1 1101 n! "121111 ulz41nlulz1 zo "111!11 II 11!14!11 IZ! II!IO!I!II" 1-1114111 Z II 10 

53 01 0 b i s Y JNE y,k,b,s 

If the CD is set to not equal, jump to Y. 

JUMP NOT WITHIN LIMITS 

'1IIolnIZllu l21 ulz41nlulzl 20 '11 111 11 II 15114111 121"110111'171-lsI411IzI I I0 

53 31 0 b ~ s Y JNW y,k,b,s 

If the CD is set to outside limits, jump to Y. 

JUMP ODD PARITY 

:!1~'oritri'lzr111 ulz4!n U!ll zo 1.!11!11 II IS!14!IS IZ!II!10!.!.!1 !I! 5 !4111 z II 10 

50 a 1 0 b i s Y JOP a,y,k,b,s 

If the logical product of (Aa) and (Aa+l > contains an odd number of 

binary ones, jump to Y. 

JUMP OVERFLOW 

sllsolnlzllulZ. ull4lulUIZI ZO 1'1111 11 I- 11114!11 IZ!II!101'1111 I_III 41 II Z II 10 

50 04 0 b ~ s Y JOF y,k,b,s 

If the 00 is set, clear 00, jump to Y. 

11-12-54 



JUMP SY + B 

31110lulzIII11u ululu uIzl 10 "111117 

52 n 2 ) h 

I' 11114111 

i s 

111"1 101'111 7 11 I 114111 Z II 10 

Y JS s,y,k,b 

M-5035 
Change 5 

Jump to Y, where Y in this case is defined as the address formed by 

the 16-bit sy-field and indexed by (Bb)15-O. The base register 

designator, (Bb)17-l9' is transferred to P17- 19 . An example of 

usage of this instruction is as an exit from a subroutine entered 

through the LOAD B AND JUMP instruction. 

JUMP WITHIN LIMITS 

3111011111111 iJu ull-[uluI21 201'1 111 17 II 1.1 '4)1' 111"1101'1111 1'1.141.1 Z II 10 

53 35 0 b ~ s Y JW y,k,b,s 

If the CD is within limits, jump to Y. 

LOAD B AND JUMP 

SII,oll'IIII21111 ull·lu ull' 10 1'1 11111 I' '11141" tll"IIOltII111'1114Islzll [0 

52 a o 0 b i s Y LBJ a,y,k,b,s 

The a sub-field specifies an index register. Load B with the 
a 

contents of P (address of NI).P19-l7 ... Ba 19-17' P15-0 .. Ba 15-0· 

Jump to Y. If B = B , no address is saved and an unconditional jump to Y occurs. a 0 

RETURN JUMP 

11)10111111121111 1SI141ul nil I 10 "1'11" 'I "1141" 111''1'01'1111 1'111 4Islal' 10 

53 02 0 b ~ s Y RJ y, I< , b, s 

P, (address of NI) -I. Jump to Y+l. 

11-12-55 

I 



M-5035 

RETURN JUMP CONDITIONAL SETTING 

IIIIolztlzel:t1lz, 2512 4 125 2212.1 20 Itll'117 It 15114111 121111101 t 1117 1.111411 12 II 10 

53 a .2 0 b. i s y RJC a, y , k , b ,s ' 

If the value of the a sub-field (1,2, or 3) corresponds to a manual 
switch which has been selected, then execute the Return Jump, 
(see RETURN JUMP instruction). 

SPECIAL FUNCTION 
a-VALUE PERFORMED 

I Return jump if switch 1 is selected. 
2 Return jump if switch 2 is selected. 
3 Return jump if switch 3 is selected. 

RETURN JUMP CONDITIONAL STOP SETTING (PI) 

1111012912'127121 15124125 22121 20 11111117 II 15114111 121"1101.1.1711111411121110 

53· a 2 0 b i s Y RJSC a,y,k,b,s 

If the value of the a sub-field (4,5,6,7) corresponds to a manual 
switch which has been selected, then stop before executing the 
Return Jump (see RETURN JUMP instruction). 

SPECIAL FUNCTION 
a-VALUE PERFORMED 

4 Always stop before execution of 
Ret urn Jump. 

5 Stop if switch 5 is selected, 
Ret urn Jump. 

6 Stop if switch 6 is selected, 
Ret urn Jump. 

7 Stop if switch 7 is selected, 
Return Ju~p. 

11-12-56 



1:2.;1.4 instructions involvinq Comparison Operations 

M-5035 
Change 1 

All the instructions in this,group set the compare designator according to 

conditions indicated. They are usually followed by one of the jump instructions 

which act upon the condition of the compare designator. 

,II'olulZIIZ7lz1 nlz-In zzlz'IIO 11111111 " 1511-111 121" 1101'1111 I. 11141 112 (I (0 

44 a k b i s y 

(A): !; set CD 
a 

Compare (A ) with I, and set the CD to: 
a 

Equal, if (Aa) = X 
Une~ual, if (Aa) ¥ X 
Greater than or equal, if (A ) ~ X a 
Less than, if (A ) < X a 

COMPARE, REGISTER 

'51'-11'('21 11 110 '1111 .'SI4 'I Z II 0 

74 a 4 b i HC a,b 

Compare (Aa) with (Ab), and set the CD to: 

Eq ua l, if (Aa) = (-\) 

Unequal, if (Aa) ¥ (A
b

) 

Greater than or equal, if (Aa) ~ (A
b

) 

Le sst han, i f (A a) < (Ab ) 

11-12-57 

C a,y,k,b,s 



M-5035 
Change 1 

COMPARE Bb WITH Ba 

74 a 7 b i HCB a,b 

Compare (B
b

) with (B
a

), and set the CD to: 

Equal, if (Ba) = (Bb ) 

Unequal, if (Ba) ~ (Bb ) 

Greater than or equal if (Bb ) ~ (Ba) 

Less than, if (Bb) < (Ba) 

COMPARE BIT TO ZERO 

)11501nI2l121121 nl2-ln u121lzo 1'11'117 II Isl14111 121 11 1101' 1'17 111114111 aT 110 

42 a k b i s y 

(Y) : 0: set CD 
ak 

Not character addressable. 

BC ak,y,b,s 

The ak-designator specifies the bit of (Y) to be compared to zero where 
O$ak~31. 

Test the bit specified by the ak-designator; then set the CD to: 

Equal, if (f)ak= 0 

Not equal, if (Y) 1 0 
ak 

COMPARE GATED 
IIlloln12l12112. 15124121 21121120 1'11'1 17 II IsI14111 121 I I 1101' 1'1 7 1III14111a I I 10 

47 a k b i s 

(A 1); set CD a+ 

y CG a.y,k,b,s 

Compare the absolute value of Y - (Aa) with (Aa+1)v and set the CD to: 

Equal, if I! - (Aa)1 = (Aa+1) 

Unequal, if ,! -(Aa)1 # (Aa+l ) 

Greater than or equal, if I! - (Aa)1 ~ (Aa+1) 

Less than, if 11: - (Aa) I <: (Aa+1) 

11-12-58 



COMPAHE INUEX, INCHEMENT 
1'llolnIZllz712. nla-In Ull'12O '11'11" ,. '11'-111 '21"1101'111711111411121 I 10 

M-5035 
Change 1 

43 a k b i s Y CXI a,y,k,b,s 

If (B ) ~ X, 0 - B and set CD outside limits: 
a a 

If (B ) < XV (B ) + 1 - B and set CD within limits. a a a 

a - equals B register designator. 

Set the CD for outside limits and clears B if (B ) ~ Y. Otherwise, a a-
increment (B ) by one and set the CD for within limits. 

a 

COMPARE LIMITS 

45 a k b i .s y CL a,y,k,b,s 

(A) (A ) y. set CD 
a' a+1 -' 

Compare (Aa) and (Aa+l ) with X. Set the CD to: 

Within limits, if (A +1) > Y ~ (A ) a - a 
Outside limits, if Y < (Aa) or ! ~ (Aa+1) 

COMPARE LIMITS,· REGISTER 

, 0 

i HCL a,b 

Compare (Aa) and (Aa+
l

) to (A
b

) and set the CD to: 

Within limits, if (Aa+1) > (Ab) ~ (Aa) 

Outside limits, if (Aa+l ) ~ (Ab) or (A
b

) < (Aa) 

11-12-59 



M-5035 
Change 1 

COMPARE MASKED 

1lllolzlllIlnl21 ulz-(n zzl211zo 11111117 II 1511-111 Izl li llollll17 Illsl"l I I zI I} 0 

46 a k b i s Y CM a,y,k,b,s 

(A ): (A )0 y. set CD 
a+l a -' 

Compare the logical product of (Aa) and Y with (A
a

+
l

) and set the CD to: 

Equal, if (Aa+l ) = (Aa) 0 ! 
Unequal, if (Aa+l ) f:- (Aa) 0 ! 
Greater than or equal, if (Aa+l ) ~ 

Less than, if (Aa+1 ) < (Aa) 0 ! 

(A ) 0 y 
a 

COMPARE MASKED, REGISTER 

1511-1111 121"110 11'17 Ilsl- 11211 0 

74 a 6 b i HCM a ,b 

(A
a
+

l
)0 (Aa) : (A

b
); set CD 

Compare the logical product of (A ) and (A
a

+
l

) with (A
b

) and set the 
CD to: a 

Equal, if (Aa+1 ) 0 (Aa) =\ 
Unequal t if (Aa+l ) 0 (Aa) f Ab 

Greater than or equal, if (Aa+1 ) 0 (Aa) ~ \ 

Less than, if (Aa+1 ) 0 (Aa) < Ab 

II-12-W 



M-5035 
Change 1 

DOUBLE COMPARE 

Sllsolz'lululz, nll·ln ulzillo 1.11.111 I' 1II1411s 111111101.1.-111.111 41 S I z II 10 

05 () 3 b i s 

Not character addressable. 

Not repeatable. 

y DC a,y,b,s 

Compare the content of the double length register (formed with the least 

significant half in Aa and the most significant half in Aa+l ) with the 

content of the double length memory word (formed with (Y) as the least 

significant half and (Y + 1) as the most significant half), and set the 

CD to: 

Unequal, if (A 9 A ) t- (y + I, Y) 
a+l a 

Greater than or equal, if (A ,A) ~ (Y + 1, Y) a+l a 

Less than, if (Aa+l , Aa) < (Y + 1, Y) 

11-12-61 



M-5035 
Change 1 

12.4.5 Instructions Involving Logical Operations 

The following instructions perform a variety of logical operations involving' 

register and memory: 

ADD LOGICAL PRODUCT 
S'il5olnlz'I21lz' nlz41n ull'lzo '11"1''1 'I '51'41 ,s ,zl"I,olll'I'I III 5141 5121' 10 

01 () 4 b i s y ALP a,y,b,s 

Add to (Aa+l ) the logical product of (Aa) and Y and store the result Aa+l" 

AND 

1'1'41 151'21"1 10 11'1'1 11514 5121' 0 

71 
L-

a 5 b i HAND a,b 

Form the logical product of (Aa) and (Ab ) and store the result in Aa. 

(Ab)i=(Ab)f. Logical product or logical AND is defined by the following: 

o 
I 

o 1 

o 
o 

o 
1 

EXCLUSIVE OR (SELECTIVE COMPLEMENT A) 

01 () 3 b 

... A 
a 

i s y XOR aty,b,s 

Complement the individual bits in A corresponding to the ones in It 
a 

leaving the remaining bits in A unaltered. The result is stored in A . 
a a 

11-12-62 



M-5035 
Change 1 

EXCLUSIVE OR A 

'51'-1"1'21"1'0 '1'1 ' 
115J4 'j21' 0 

'i 1 n 3 h 

-- A a 

i HXOR a,b 

Form the logical difference between (Aa) and (A
b

). The result is stored 

in A. Logical difference, exclusive OR q or selective complement is 
a 

defined by the following: 

o 1 

001 
1 1 0 

INCLUSIVE OR (SELECTIVE SET A) 
.11,0Iulall27lal asla41n 22111 lao 1'111111 'I '11'4111 121"1101'111'111'14J I JaI' L 0 

01 a 0 b i s y OR a,y,b,s 

y E9 (A) .. A 
- a a 

Set the individual bits of A corresponding to ones in Xv leaving the 
a 

remaining bits in A unaltered. The result is stored in A . a a 

11-12-63 



M-5035 
Change 1 

INCLUSIVE OR A 

1511-IIS1121 11 110 • 1 '11 _1514 S 12 II 0 

71 a 0 b i HOR a, b 

Form the logical sum of (Aa) and (Ab ). The result is stored in Aa' 

(Ab)i = (Ab)rif a f. band a+l =j:. b. Logical sum, inclusive OR, or 

selective set is defined by the following:! 

o I 

o 0 I 

1 I 1 

LOAD LOGICAL PRODUCT IN Aa 
SI Tsolz'II'111f21 251141n 2211'110 1'1 1'1 11 " 1511411s 121"110\'1' r 1 I- I 5141 S 12 II Io 

01 () 5 b i s Y LLP a,y,b,s 

Y 0 (A) - A - a a 

Form the logical product of (A ) and Y. The result is stored in A . 
a a 

LOAD LOGICAL PRODUCT IN Aa+l 
IllI01zlIz·11111• ulZ4lzs 12111110 Itll'111 I_ 11114111 121"11°1_1'111_)514111 I II 10 

01 () 7 b i s y LLPN a,y,b,s 

Y (;) (A ) - AI; (A ) i = (A ) f a a+ a a 

Form the logical product of (Aa) and Y. The result is stored in Aa+1• 

(Aa) is unchanged. 

11-12-64 



M-5035 
Change 1 

REPLACE A - LOGICAL PRODUCT 
SI1s0129LZllZ 71u zslz&In 221111zo 1'1111 11 II 1511&11S 121111101'(111 111 514J S I Z II (0 

()~\ 
j' 

(, h i s Y 
HNLP a,y,h,s 

Subtract from (Aa+l ) the logical product of yand (A
a

), then store the 

result in Y and Aa+1. 

REPLACE A + LOG I CAL PRODUCT 
'11,olnlzlluIZI ulz~Iu 22111 1zo 1'1 11117 " 1511&1 I' ,zll'l lol'11171 1Isj4jslzl l lo 

03 () '-I h i s Y RALP a,y,b,s 

Add to (A a+l ), the logical product of I and (A a ); then store the result 

in Y and Aa+l" 

REPLACE EXCLUSIVE OR (REPLACE SELECTIVE COMPLEMENT) 

sll,olnIZllula. as12~n 2211'1 ao I'IIIL 11 " Isll&jIS 121"11°1'1'11111s141'lz(11° 

03 3 
b i s y a RXOR a,y,b,s 

Y e (A ) - Y and A a a 

Not character addressable. 

Complement the individual bi ts in Aa corresponding to ones in I, leaving 

the remaining bits' in A unaltered. The result is stored in A and Y. 
a a 

REPLACE INCLUSIVE OR (REPLACE SELECTIVE SET) 
s11101a'1 alIa 1111 ula~u 2211 'lao 1'1 111 " 1'15J 14111 I 2JI IJ 101'1111 1'151 4 I S I z I I 10 

03 a 0 b i s Y ROR a, y, b, s 

Y $(A ) ~ Y and A 
- a a 

Set the individual bits in A corresponding to ones in I, leaving the a 
remaining bits in A unaltered. The result is stored in A and Y. 

a a 

11-12-65 



M-5035 
Change 1 

REPLACE LOGICAL PRODUCT 
11)101nl21J2712' 25J2 4)23 ulzI120 1'11'1 11 I_ 15114111 121" 110 I • I • l' I • I 5 I 41 1 I 2 II I 0 

03 tl 
5 b i s Y 

HLP a, y, b ,S 

Load Aa+l with the logical product of Y and (Aa ); then storp the rpsult 

at Y. 

REPLACE SELECTIVE SUBSTITUTE A 

1'11012112'127121 2512 4123 ulzI120 1'1"1 17 I_ 15114111 121"1101'1'1'1_/5/413/2/110 

03 () 2 b i s Y HMS a,y,b,s 

For each bit, hv which is equal to one in A v substitute the nth bit of 
a 

Y for the nth bit of the Aa+l . The result in Aa+l is stored at Y. 

REPLACE SELECTIVE CLEAR 
11110121121127(21 25124123 ulzIJzo 1'11'1 11 .. 151 14113 12(11110 I' (. l' I-I 5 I 41 3 I 2 II 10 

03 () 1 h i s Y 
.. _ .. _- -- ._-_. 

(A ) 0 y t ~ Y and A 
a - a 

Clear the individual bits in A corresponding to ones in X, leaving the 
a 

remaining bits in A unaltered. The result is stored in A and 4. 
a a 

SELECTIVE CLEAR A 

01 a 1 b i s y SC a, y ,b, s 

(A ) 0 y t 
... A 

a - a 

Form the logical product of (A ) and the complement of Y, The result is . a -
stored in A. Selective clear is defined by the following: 

a 

o 
1 

o 1 

o 
o 

1 

o 

I I -12-6() 



SEl.ECTfVE SllASTTTlITE 

01 il 
, ) 
"" h s 

M-5035 
Change 1 

MS a,y,b,s 

For each bit, n, which is equal to one in A , substitute the nth bit of Y 
a 

for the nth bit of Aa+ l . 

STORE LOGICAL PRODUCT 
,. f,oIZ9I21I27I11 25IZ4I21 ul211zo 1'1 11 1" 11 151'.1" • z 1"11 oJ • I I 11 I , I 51 4 I sfa 1.1 0 

02 il 4 b i s Y SLP a,y,b,;) 

Store at Y the logical product of (Aa) and (Aa+ll. The contents of the 

A-registers are unchanged. 

SUBTRACT LOGICAL PRODUCT 

01 6 b i s y NLP a,y,b,s 

Subtract from (Aa+1) the logical product of (Aa) and X. The result is 

stored in Aa+1. 

11-12-67 



M-5035 
Change 1 

12.4.6 Shift Instructions 

DOUBLE SHIFT LEFT CIRCULARLY 

1511·1151121"jI0 - l' 17 I 5 4 51 z 1 I 0 

63 a m 

63 a 1 0 (J b 0 

63 a 1 1 0 b () 

HDLe a,m 
m normal shift count 

HDLe a, b,l 1 shift count in Bb 
2 shift count in Ab 

HDLC a,b,2 

Shift the content of the double length register (formed with (A ) as the 
a 

least significant half and (A a+
l

) as the most significant half) to the 

left circularly, where the shift count is specified by the m-field. 

DOUBLE SHIFT RIGHT FILL SIGN 

15114115112111110 _1'1 7 • 5 4 :s 1211 0 

67 

67 

67 

a. m HDRS aim 
m normal shift count 

a 1 0 U b 0 

a 1 1 0 b 0 

HDRS a,b,l 1 shift count in ~ 
2 shift count in Ab 

HDRS a,b,2 

Shift the content of the double length register (formed with (A ) as the 
a 

least significant half and (Aa+
1

) as the most significant half) to the 

rigbt m places, end-off with sign filion the l~ft. The maximum allowable 
shift count is 26-1 = 63. 

DOUBLE SHIFT RIGHT FILL ZEROS 

151141111121"110 '1'17 I 514 51211 0 

65 a m HDRZ a,m 
m normal shift count 

65 a 1 0 U b 0 HDRZ a ,b, 1 1 shift count in Bb 
2 shift count in Ab 

65 a 1 1 0 b 0 HDRZ a,b,2 

Shift the content of the double length register (formed with (A ) as the 
a 

least significant half and (A a+
l
) as the most significant half) to the 

right, end-off anc fill with zeros on the leftv where the shift count is 
specified by the m-field. The maximum allowable shift is 26 -1 = 63. 

11-12-68 



M-5035 

SHIFT LEFT CIRCULARLY 

11114111112111110 11'1 ' • 1 .. 'I Z II 0 

62 a m HLC a,m 
m normal shift count 

62 a 1 0 U b 0 HLC a ,b, 1 1 shift count in Bb 
2 shift count in Ab 

62 a 1 1 0 b () HLC a,b,2 

Shift (A ) left circularly where the shift count is specified by the 
a 

m-field. 

SHIFT RIGHT FILL SIGN 

15114111112111110 11'1' • 5 4 'j211 0 

66 a m HRS a,m 

m normal shift count 
66 a 1 0 U b 0 

66 a 1 I 0 b () 

HRS a,b,l 1 shift count in Bb 
2 shift count in Ab 

HRS a,b,2 

Shift (A ) to the right, end-off with sign filIon the left, where the 
a 

shift count is specified by the m-field. The maximum allowable shift is 
6 

2 -1 = 63. 

Example of right shift, sign fill ~, m = 9. 
r~ 

:1:000111111000001111100 III 000 1111 
: :~ '--: t _______ ~.. ---~ 

LlJ))))J)J.~OOOIIIlllOOOOOIIIIIOOl 

11-12-69 



M-5035 

SHIFT RIGHT FILL ZEROS 

1,(1-11'112111110 -1'1' . , 4 'I zll 0 

64 

64 

64 

a m HHZ a,m 
m normal shift count 

a 1 0 0 b 0 HRZ a,b,l I shift count in Bb 
2 shift count in Ab 

a 1 10 b 0 HRZ a,b,2 

Shift (Aa) to the right, end-off and fill with zeros on the left, where 

the shift count is specified by the m-field .. The maximum allowable shift 

is 26_1 = 63. 

Example of right shift A2 , m = 9. 

(A2 l
i 

froOOllllllOOOOOlllllOOlllOOOllll 
I :~ '-

iQ~QQOPPP~1pOOllllllOOOOO-l-ll-l-l-O~ 

11-12-70 



M-5035 

12.4.7 Instructions Referencing Control Memory 

There are eight instructiQns referencing control memory~ four are Format I 

full-word instructions, and the other four are half-word instructions, Format 

lV-A. The instructions which refer to the interrupt set of registers are 

all privileged instructions (PI) while the other instructions are privileged 

for certain control memory address reference. 

LOAD INTERRUPT CMR (PI) 

"1'0129l2l1271Z' ulz~Julzzlzllzo Itll'117 I' utll~ll'llz "110 It 1,, 7 I- I a 141 , I z II r 0 

55 ak b i s y LCI ak,y,b,s 

Y - CMR 

The a-designator and k-designator form a six-bit (central processor) 

control memory address (100-177)8 of the interrupt mode registers as 

follows. 

6FFECTIVE ADDRESS 
I CONTROL MEMORY REGISTER HARDWARE 

ASSIGNED ak-VALUE 
1 00 CMR address 100 (AO) 1 01 CMR address 101 (AI) • , 

+ 1 26 CMR address 126 (56 ) 1 27 CMR address 127 (57 ) 1 30 CMR address 130 (unassigned) t ; • 1 75 CMR address 175 (SIRS) 1 16 CMR address 176 (SIR6 ) 1 77 CMR address 117 (SIR7 ) 

Load the CMR address (specified by the special ak-value) with !. 

NOTE 

In the repeat mode, ak + 1 ~ ak. This instruction 
is not interruptable in the repeat mode. 

11-12-71 



M-5035 

LOAD INTERRUPT CMR WITH A (PI) 

61 i HLCI afLlb 
~------~.------~~--~ 

b specifies an accumulator register; 

i (bit 0 or 16) = 1 

The a-designator and k-designator form a six-bit address in (central 

processor) control memory in conjunction with the i-designator to access 

control memory locations as follows: 

i = 1 af t1 VALUE CONTROL MEMORY REGISTER 

00 CMR address 100 (AO) 
01 CMR address 101 (AI) 

• • 26 CMR address 126 (S6 ) 
27 CMR address 127 (S7 ) 
30 CMR address 130 (~nassigned) 

• • 75 CMR address 175 (SIRS) 
76 CMR address 176 (SIR

6 
) 

77 CMR address 177 (SIR7 ) 

Load the CMR address specified by the af4 -designator wi th (Ab)" 

11-12-72 



M-5035 
Change 1 

LOAD TASK eMU 
sllsolnlllll'lu u)ululul111lo 1-11'1 17 IIIIII·IIS 121"1101-1'17 I_ I !t 141 s I 211 To 

:.ill nk b i s y LeT ak,y,b,s 

Y - CMR 

The a-designator and k-designator form a six-bit (central processor) 

control memory address (0-77
8

) of the task mode registers as follows: 

The a-designator and k-designator form a six-bit (central processor) 
control memory address (0-778 ) of the task mode registers ns follows: 

ak-VALUE CONTROL MEMORY REGISTER 

00 CMR address o (AO) 
01 CMR address I (AI) 

• t 
26 CMR address 26 (S )* 
27 CMR address 27 (S6)* 
30 CMR address 30 (uAassigned) 
t t 
57 CMR address 57 (unassigned) 
6X Breakpoint* 
7X Active status 

Load the CMR address (specified by the special ak-value) with 1_ 

NOTE 

In the repeat mode, ak + 1 ~ ak. This instruction is 
not interruptable in the repeat mode. 

This instruction is privileged when repeated. 

• Addresses 60-778 and 20-278 are addressable in the interrupt mode 
only. 

11-12-73 



M-5035 
Change 1 

LOAD TASK CMR WITH A 

61 

I 0 

b i HLCT af4,b 
--------~--------~--~ 

b specifies an accumulator register 

i (bit 0 or 16) = 0 

The a-designator and f 4- designator form a six-bit (central processor) 

control memory in conjunction with the i-designator to access control 

memory locations as shown below. 

SPECIAL 
i = 0 Af4 VALUE CONTROL MEMORY REGISTER 

00 CMR address o (AO) ~MR addresses 01 CMR address 1 (AI) 
t ~ 

20-27 access-
(5) ible in inter-26 CMR address 26 

27 CMR address 27 (56) rupt mode only 

30 CMR address 30 (u~assigned) 
t + 56 CMR address 56 (unassigned) 

57 CMR address 57 (unassigned) 
6X Breakpoint (accessible in interrupt 

mode only) 
7X Active status (accessible in inter-

rupt mode only) 

Load the CMR address specified by the af4-designator with (Ab). 

11-12-74 



STURE INTEHRUPT CMR (PI) 

M-5035 
Change 1 

ak h i s y SCI llk,y,b,s 
. _____ "--____ --L_----JL......L __ L--________ --.J 

(CMR) - Y 

The a-designator and k-designator form a six-bit (central processor) 

control memory address (100 through 177)8 of the interrupt mode registers 

as follOWS: 

EFFECTIVE ADDRESS , 
HARDWARE 
ASSIGNED ak-VALUE CONTROL MEMORY REGISTER 

1 00 CMR address 100 (AD) 

! If CMR address 100 (AI) 

! 
1 26 CMR address 126 (5 ) 
1 27 CMR address 127 (56) 
1 30 CMR address 130 (uAassigned) 

• • + 
1 7S 

CMR address 175 (SIRS) 

I 76 
CMR address 176 (SIR6 ) 

1 77 
CMR address 177 (SIR7 ) 

Store t he content of the CMR address (specified by the ak-value) at Y. 

NOTE 

In the repeat mode. a k + I - ak. This instruction 
is not interruptable in the repeat mode. 

11-12-75 



M-5035 
Change 1 

STORE INTERRUPT CMR IN A (PI) 
1511.113112111110 t I • I 7J • I 5 I 4 3121 1 0 

60 sf4 b i 

(CMR) - Ab 

b specifies an accumulator register; j i (bi t 0 or 16) ::: 1 < 

The a-designator and the f4-designator form a six-bit (cen~ral pr0cessor) 

control memory address in conjunction with the i-designator to access 

control memory locations as fOllows: 

i ::: 1 5£4 VALUE CONTROL MEMORY REGISTER 

00 CMR address 100 (AO) 
01 CMR address 101 (AI) 

+ ~ 26 CMR address 126 (S6 ) 
27 CMR address 127 (S7) , 
30 CMR address 130 (unassigned) 
~ ~ 

175 (SIRS) 75 CMR address 
76 CMR address 176 (SI R6 ) 
77 CMR address Iii (SIR"'9) 

I 

Load Ab wi t h (CMR f ). 
a 4 



• 

., 

M-5035 
Change 1 

STonE TASK CMR 

56 nk b i s y seT ak,y,b,s 

(CMR) .... Y 

The a-designator and k-designator ~orm a six-bit (central processor) 

control memory address (0 through 77)0 of the task mode registers as 

follows~ 

ak-VALUE CONTROL MEMORY REGISTER 

00 CMR address o (AO) ~CMR addresses 20-27 01 CMR address I (AI) 

• + 
addressable in 

26 CMR address 26 (S) i nt errupt mode only 

27 (S~) 27 CMR address 
30 CMR address 30 (unassigned) 
t • 57 CMR address 57 (unassigned) 

6X Breakpoint (accessible in inter-

7X 
rupt mode only) 
Activate status (accessible in inter-
rupt mode only) 

Store the content of the CMR address (specified by the ak-valuel ~t Y. 

" 

• • 

...... ',: • ',R." .. 
,. 

,'.: . . ' 

. • 
• C'.~. \, 

. ." 

,-, 
o " • ~ 

• 

NOTE 

...... 
. - ... : . '. .. .. .. .. -..... . . .. 

.. .. .. . . :! .. ;.: ..... 
, . 

.. .. 
~ . . ' :'.:' - " 

flip p.. ..' -.• 
. .. ' " 

... .. ~ .... 

... 
I i"::'12-77 

:, , 
--~ 



M-5035 
Change 1 

STORE TASK CMR IN A 

15\1.11'112111110 -\11'1 6 15 14 

60 .. f 
c. -4 

(CMR) - Ab 

'izil 0 

b i 

b specifies an accumulator register; 

i (bit U or 16) = 0 

The a-designator and f 4-designator form a six-bit (central processor) 

control memory address in conjunction with the i-designator to access 

control memory location as follows: 

i = 0 af4 VALUE 

00 
01 

+ 26 
27 
30 
.~ 

56 
57 
6X 

7X 

Load Ab with (CMR f ). 
a 4 

• 

CONTROL MEMORY REGISTER 

CMR address 
CMR address 

CMR addriss 
CMR address 
CMR address 

o (A ) 

1 (AD) {CMR addres ses 20-27 
1 addressable in 

26 (56) interrupt mode only 
27 (57) 
30 (unassigned) 

~ 
CMR address 56 (unassigned) 
CMR address 57 (unassigned) 
Brea~Qoint (accessible in interrupt mode 
only·f . 

- Active status (accessible in interrupt 
mQde • only1 _.~. ~ 

.. ... .. . 

.. 

11-12-78 

.. .... 

• 1'*. •• . . . . 

.. 

.. 



M-5035 

12.4.8 Interrupt Handling Instructions 

These are all privileged instructions, and none are chara~ter addressable or 

repeatable. 

ALLOW CLASS III JNTERRUPTS (PI) 

Isll-IIS 1121"1 10 1111' II \ I- s 1111 0 

77 0 5 0 0 HAl 

Release the lockout for input/output Class III interrupts .. This shall 

not affect the individual channel interrupts enable/disable logic as set 

by AEI and PEl instructions. 

11-12-79 



M-5035 

ALLOW ENABLE INTERRUPT (PI) 

07 a I b 
AEI a,sy~b 

sy 

The a-designator specifies which IOC will receive the enable interrupt 

information: 

SPECIAL IOC TO RECEIVE ENABLE 
a-VALUE INTERRUPT INFORMATION 

0 IOC #() receives enable interrupt 
I IOC ttl receives enable interrupt 
2 IOC #:2 receives enable interrupt 
3 IOC tt3 receives enable interrupt 

4-7 Not used 

The s-designator in conjunction with the y-operand forms a 16-bit sy­

field. The 16-bit sy-field enables interrupts on a channel basis in the 

specified IOC as follows: 

SPECIAL FUNCTION PERFORMED 
sy-VALUE AT SPECIFI ED IOC 

sy (bit 0) = I Enable channel 0 
sy (bit 1 ) = I Enable channel I 
sy (bi t 2) = I Enable channel 2 
sy (bi t 3) = I Enable channel 3 
sy (bit 4) = I Enable channel 4 
sy (bi t 5) = I Enable channel 5 
sy (bi t 6) = I Enable channel 6 
sy (bi t 7) = 1 Enable channel 7 
sy (bi t 8) = 1 Enaole channel 8 
sy (bi t 9) = I Enable channel 9 
sy (bit 10) = 1 Enable channel 10 
sy (bit 11) = 1 Enable channel 11 
sy (bi t 12) = 1 Enable channel 12 
sy (bit 13) = 1 Enable channel 13 
sy (bi t 14) = 1 Enable channel 14 
sy (bit 15) = 1 Enable channel 15 

Enable the interrupt request for each IOC channel specified in the 16-bit 
sy-field. 

11-12-80 



M-5035 

INTERPROCESSOR INTERRUPT (PI) 

I PI sy. b 

A class II interrupt is generated for each processor selected by the sy­

field after Bb modification. The processor number is bit-encoded in the 

lower 18 bits of sy + (Bb)15 as follows: 

16-bit result of sy + (Bb)15-O 

15 14 8 7 6 5 4 3 2 1 o I 
Interrupt Processor No. 0 

Interrupt Processor No. I I 
Not used Int errupt Processor No. 2 I 

Interrupt Processor No. 3 I 
Interrupt Processor No. 4 I 

Interrupt Processor No. 5 I 
Self interrupt Interruot Processor No. 6 I 
control bit Interrupt Processor No. 1 I 

1 

This instruction interrupts all processors whose corresponding bit is set 

as indicated above. If bit 15 is set, and if the processor executing 

this instruction is selected to be interrupted, then the processor ex­

ecuting the instruction will ignore the interrupt. If bit 15 is clear 

and the processor executing the instruction is selected to be interrupted, 

then the interrupt request will occur. 

11-12-81 



M-5035 

INTERRUPT RETURN (PI) 

31 1301 2'1 zel21l21 25124123 22121120 1.(,.,'7 ,. '51'4}'31'2 "1'01-1.171115141 312" 10 

07 0 5 0 ~ 0 0 IR 

Return control to the processor state designated by the DSW corresponding 

to the state control field in the active status register. 

PREVENT CLASS III INTERRUPTS (PI) 

"1'4( '31'21"1'0 _1'1 7 11'14 31zl' 0 

77 0 4 0 0 HPI 

Lock out the input/output class III interrupts. The interrupts are held 

pending until this lockout is removed. 

PREVENT ENABLE INTERRUPT (PI) 

07 a 2 b sy PEl a,sy,b 
--------~----~------~------------------------~ 

The a-eesignator specifies which IOC will receive the disable interrupt 

information: 

SPECIAL loe TO RECEIVE DISABLE 
a-VALUES INTERRUPT INFORMATION 

0 loe #0 receives disable interrupt 
1 loe #1 receives disable interrupt 
2 loe #2 receives disable interrupt 
3 loe #3 receives disable interrupt 

4-7 Not used 

11-12-02 



The 

Th(~ 

fied 

sy 
sy 

sy 
2y 

s -des igna tor in 

I ()-bi t sy-field 

IOe as fo llows : 

sy-VALUE 
sy-VALUE 

(bit 0) = 1 
(bi t 1 ) = 1 

~ 
(bit 14) = I 
(bi t 15) = 1 

M-S035 
Change 1 

conjunction with the y-field forms a 16-bit sy-field. 

disables interrupts on a channel hnsis in the spf'ci-

FUNCTION PERFORMED AT 
SPECIFIED ION 

Disable channel 0 
Disable channell 

~ 
Disable channel 14 
Disable channel 15 

Disable the interrupt request for each IOC channel specified in the 

16-bit sy-field. 

WAIT FOR INTERRUPT (PI) 

l'li-IIS 112)11110 ')'1 ' '1'1- ~ 1211 0 

77 0 6 () 1 HWFI 

This instruction causes the computer to stop referencing memory until an 

interrupt occurs (any class not currently locked out). After an interrupt 

request is detected, the processor honors the interrupt, saving the 

address of the instruction following the wait for interrupt. Upon return 

from the interrupt, normal processing continues. 

11-12-83 



I 

M-5035 
Change 5 

12.4.9 Miscellaneous Instructions 

CLEAR BIT 

31130129111127121 2512-123122121120 111 1'1 11 II Isil-IIS 12["1 10111'1 1111&1-11121 110 

32 iik b i s y 

() - (Y) ak 

Not character addressable. 

BZ ak,y,b,s 

The ak-designator specifies the bit of (Y) to be cleared, where 

o sak s31. 

02 o b s 

N umbe r 0 f "1' s" in Y - A a 

y crIT a I Y I b , f, 

Count the bits in ! which are set to one and store the count in A . 
H 

OOUBLE SCALE FACTOR A 

1511-11'112111110 -1'1 ' 
115(_ '1211 0 

70 a 1 h i HDSF a,b 

Normalize (A l' A ); normalized shift count .... A
h

• 
a+ a 

Shift the content of the double length register (formed with (A ) as the least a 
signficant half and (A 1) as the most significant half) to the left circularly 

a+ 
until normalized. The required shift count is stored in~. If a or a+1 = b, 

the registers shall be normalized with no shift count available. If (A l' A ) a+ a 
i = 0 or all 1 's, the resultant shift count is 63. 

11-12-84 



M-5035 
Change 1 

EXECUTE HEMOTE 

U" 
I. o • > 

h s y 

Execute instruction at!; (P) is unchanged. 

Not character addressable. 

Not repeatable. 

Execute the whole-word instruction or two half-word instructions which 

is at !, without changing (P). 

EXECUTE REMOTE LOWER 

02 o h s y XHL y,b,s 
--..... ~---""" ... ----_._------' 

Execute ins I ruct ion at. ~ .. ; (P) is unchanged. 

Not character addressahlc. 

Not rep~atahle. 

t-:xpcute the low(;r hair-word jnstruction at I, without chan!}ing (1'). 

ENTEH EXECUTIvE STATE 

U7 o o b sy 

Interrupt to executive entrancp address. 

Not character addressable, 

Not repeatable. 

XS sy,b 

The s-desi\Jnator and t.he y-designat or are combined to form a H>-bi t 

sy-field which, after B modification, is used as follows: 

YO-I~ form the intprrupt code word. 

Switch control to the interrupt state and transfer control to the execu­

tive entrance address as determined by the initial condition word pointer 

associated with the Class IV interrupt state. 

11-12 -85 



i • 

M-5035 
Change 1 

INITIATE INPUT/OUTPUT (PI) 

111501u12l12 7121 ul241n 22121120 1'11'1 17 " 15114115 

07 II 4 b i s 
---

Not character addressable. 

Not repeatable. 

121")101'1'1 7111' 141 s 1 z 1 1 10 

y I () r., y , b , s 

The a-designator specifies which JOC will' recei~e the processor command 

as follows~ 

SPECIAL IOC to RECEIVE 
a-VALUE COMMAND ADDRESS 

0 10C tt{) receives address 
1 IOC #1 receives addr!~s s 
2 IOC ~ receives address 
3 IOC #3 receives adress 

4-7 Not used 

Provide the IOC specified by the a-field with the absolute address Y 

(address of the first command in an input/output program sequence). 

11-12-86 



M-5035 
Change 

I UC MON I TO H CLOCK ( 1'1 ) 

07 a 3 h 

Y ..... mo nit 0 r c 1 0 c k 

Not character addressable. 

Not repeatable. 

sy LIM a, sy ,b 

The a-designator specifies which IOC monitor clock will be entered with Y: 

a-VALUE 

o 
1 
2 
3 

4-7 

IOC MONITOR CLOCK 
TO BE ENTERED WITH Y 

IOC #0 
IOC #1 
IOC #2 
IOC #3 
Not used 

The s-designator and the y-field form a 16-bit sy-field which, after 

B modification, is used to load the lOG monitor clock specified by the 

a-value. 

If the 16-bit sy-field (after B modification) is negative, the monitor 

clock in the specified IOC is disabled; if the 16-bit sy-field (after B 

modification) is equal to zero, the IOC monitor clock (that was entered 

with zero) generates a Class III interrupt in an attempt to interrupt 

any central processor conrtected to the IOC; otherwise, the IOC monitor 

clock is counted down in the normal manner at the rate of 1,024 counts 
per second. 

11-12-87 



M-5035 
Change 1 

REPEAT 
.. ~"tlz·121Iz. Hlz41Z3 221 21 120 11111117 I'I~ 114113112111110 I I II J 7 J 6 r ~ I -I 3 r zI I r 0 

07 a 6 b j :;y RP a,sy,b 
---

Repeat NI (B-) t.imes or until test condition is satisified. 
I 

Not character addrt'ssable. 

Not repeat.able. 

The a-dpsianator controls thp repeated instruction termination conditions 

as ·'-fo 110ws: 

NON-COMPARE COMPARE 
a-VALUE INSTRUCTIONS a-VALUE INSTRUCTIONS 

0 Terminate if A :f 0 0 Terminate if CD set to t 
1 Terminate if A = 0 1 Terminate if CD set to = 
2 Terminate if A ~ 0 2 Terminate if CD set to > 
3 Terminate if A < 0 3 Terminate if CD set t 0 ~ 

4 Do not terminate ·1 Terminate if CD set to < 
5 Terminate if A contains 5 Terminate if CD set to ~ 

an even nUIT!ber of binary 
ones. 

6 Terminate if A contains 6 Terminate if CD set toOL 
an odd number of binary 
ones. 

7 Do not terminate 7 Terminate if CD set to WI.. 

The b-dpsi<jnrll(ir shall sppcify IIw USt' of S() on ff'pluce inst.ruct ions liS 

follows: 

I f b f. (), <l n d the rep e <l ted ins t r u c t. ion i s are p I ace in s t r u c t ion, t IH' 

operand address of the r('plrlc(~ instruclion is incremented by (Sb) Cor 

1 h (~ s tor e po r 1 ion () f 1. her f~ pin c (~ ins t r u c 1 ion. I f b ::: 0, norm n 1 

operation occurs. 

The s-designntor (lnd the y-field form n 16-bit constant (including sign) 

which specifies the increment or decrement of the operand address after 

ench execution of the repented instruction. This increment or decrement 

is added to the n-register of the repeated instruction after each execution. 

Tt)(~ instruction shnll rep(~nt the next sequential instruction n limes, 

whpr(' n is conlainpd in B7 • 

instruetion is skipped. 

1 f B- is z(~ro, the next sequent inl 
I 

I I -12-0B 



M-5035 
Change 5 

A, above, refers to the accumulator specified in the repeated instruction. 

The repeat count is available in B7 which is decremented by 1 after each 

execution. The use of B7 in the instruction being repeated 'should be 

avoided. 

SCALE FACTOR 

l'II-lllI 121 11 1IO 11'1 7 II'i 4 l)zll 0 

70 a 0 b .i HSF a,b 

Normalize (Aa ); normalized shift count .... '\ 

Normalize (Aa ), and store the shift count in A
b

• (Aa) is shifted left 

circularly until normalized, the required shift count is then stored 

in Ab • If a = b, the accumulator is normalized with no shift count 

available. If (Aa) i = 0, the resultant shift count is 63. 

SET BIT 

33 ak b i s y BS ak,y,b,s 

Not character addressable. 

The ak-designator specifies the bit of (Y) to be set where 0 ~ ak ~ 31. 

STOP PROCESSOR (PI) 

1'11-11'1121"110 '1'1 7 I J '}4 'Iz J 1 0 

77 0 6 0 0 HALT 

Terminate processor operation and illuminate ~hestop indicator light. 

11-12-89 

I 



M-5035 
Change 1 

STORE I/O MONITOR CLOCK (PI) 

15(1_11'1121"110 t I'! 1 'l~t· '12 II 0 

77 rt 0 . h i HSIM a,b 

( IOC mo n i to reI oc k) -- A 
a b 

The a-designator specifies which IOC monitor clock is to be referenced 

as follows: 

SPECIAL 
a-VALUE FUNCTION PERFORMED 

0 I(IOC #0) Mon .. Clk - A 
1 (IOC ltl) Mon. Clk - Ab 
2 (IOC lt2) Mon. Clk - Ab 
3 (IOc lt3) Mon. Clk - Ab 

4-7 Not used b 

Load Ab with the content of the IOC monitor clock selected by the a-desig­
nat or. 

STORE REAL-TIME CLOCK 

15il-II'IIZII'l10 _1'1 1 , lsi· '121 1 0 

77 a 1 h i HSTC a,b 

(IOCa real-time clock) - Ab 

The a-designator specifies which IOC real-time clock is to be referenced 
as follows: 

SPECIAL 
a-VALUE FUNCTION PERFORMED 

0 (IOC #(» RTC - ~ 1 (I DC ltl) RTC -2 (IOC 1t2) RTC 

~ 3 . (IOC #3) RTC -4-7 Not used 

Load '\ with the content of the IOC RTC selected by the a-designator. 

11-1:2-9U 



TEST ANU SET FLAG 

Set the CD; 1 ~ Y31 

Not character addressable. 

M-5035 
Change 1 

TSF y,b,s 

Set the flag bit in the upper bit of address Y. If this bit was originally 

clear~d, set CO to equal; otherwise, set CD to not equal. 

11-12-91 



M-5035 
Change 1 

}:.!. ,1. } () Extens ion Mnernoni cs 

Extpnsion mnemonics ar(' recognizpd hy the Assembler, but arp n01 unique hard­

ware instructions themselves; however, they utilize special configurations 

of hardware inst.ructions or are made available for programmer convenience. 

Tllesp instructions fa]] in10 three categories: ]) pseudo hardware inst.ruc-

tions;:2) indirect words; and 3) buffer control words. 

a) Pseudo Hardware Instructions; 

CLE~H A (ZA) 

CLEAR B (ZB) 

HALF-WORD CONSTANT (HK) 

NO OPERATION (Full Word) (NOOP) 

NO OPERATION (Half Word) (HNO) 

STORE ZEROS (SZ) 

b) Indirect Word Instructions: 

INDI REeT WORD (IW) 

INDIRECT WORD CHARACTER (IWC) 

INDIRECT WORD CHARACTER INCREMENT (IWCI) 

INDIRECT WORD. SPECIAL BASE (IWS) 

INDIRECT WORD. SPECIAL INDEX (IWB) 

MEMORY PROTECTION (MP) (Not an instruction) 

c) Buffer Control Word Instructions: 

BUFFER CONTROL WORD (BCW) 

BUFFER CONTROL WORD ESI (BCWE) 

II-l:2-():.! 



M-5035 
Change 1 

CI.I':/\ H /\ 

" l!olnlZl\zr\ZI z51z 41n ulzl\2O Itl"1 " I' 15114115112 " 110 I t \ '1 ' I' I 'I 4 I 5 I Z II 10 

10 

() - A a 

a 

a - normn1 

0 U U 0 0 ZA a 

Load A with zeros. All. other instruction fields are zeros. a 

CLEAR B 

o - B a 

o o 0 0 

a - special (specifies B ) 
a 

o Zll (J 

Load B with zeros. All other instruction fields are zeros. a 

HALF-WORD CONSTANT 

HK e e 

This instruction permits programmers to intersperse half-word constants 

with half-word instructions as desired. By the Assembler's half-word 

pairing convention, two sequential half-word instructions occupy the 

upper and lower half of the same ge~erated object word. A single half­

word instruction occupies the upper half of the generated word and the 

Assembler pads the lower half with zeros. 

The e-operand may be any expression resulting in a 16-bit value. 

NO OPERATION (FULL WORD) 

51150IZtIZII21IZ1 ulz-In ul211zo Itlill I" 
20 

o - B o 

0 0 

a - s pee i fie s B 
o 

0 

I' 15114115112 "110 It I I I" I' I 5 I 41 5121110 

0 0 0 NOOP 



M-5035 
Change 1 

~o OPERATION (HALF -WORU) 

1'(,.(1'112111110 IIIU IJ!J 4 51211 0 

~O 0 3 () () IINO 

(B ) ..... B 
o 0 

STURE ZEROS 

51150121111127121 ul1 41u zzlz'IIC '11'11 '7 'I ,sT'41'5 '21111'0111'1 7 I- I s 141 s 1 Z 1'10 

:23 0 k lJ i s Y SZ y,k,b,s 

() -t Y 

This is equivalent to the STORE B instruction where B is B . 
a 0 

I:\UIRECT WORD 

)1 so 

1 () 

z'IZIIZ711'llsI141ISlzZlz'l10 '11"1'7 II ISl1411s 111"110 I I I • I 7 I I I s I 41 s 1 z II 10 

not used b i s Y IW y,b,s 
----

This format is for indirect word addressing only. Cascading continues 

until the i-field is equal to zero, Indexing is available at each 

cascade leve 1. 

INDIRECT WORD, CHARACTER 

S, so 

) 1 

IIllllz 7121115 z41ul2212111O '111'1'7 'I '51141's ,zl"1101'1'17 II I 1141 s I z tIL 0 

v: p b 0 s y IWC y,w,p,b,s 

w = number of bits in the character 

p = least significant bit position of the character 

b = normal 

i - zero -

s = normal 

This format is for single character addressing only. The character de­

fined by p and w is stored in the arithmetic register (specified by the 

parent instruction) right-justified and zero-filled on the left. The 

range of p iso s p s 31. The range of w is lsw ~ 31 only if p -t w is ~ 

32. 

11-12-94 



M-5035 

INDIRECT WORD, CHARACTER, INCREMENT 

31 SO nlillul"ln 14(UI22(21110 "1'11 11 'I ,'('41's '11"1'01111111111141112 I' 10 

1 1 w P b 0 s y I \\ ely f W ~ P ~. b , S 

W = number of bits in the character 

p = least significant bit position of . the character 

b - norma I -

i = zero 

s - normal 

This forma1 is for successive character addressing. The character defined 

by p and w is stored in the arithmetic register (specified by the parent 

instruction) right-justified and zero-filled on the left. The range of p 

is 0 s p s 3l. The range of w is I So w s 31 only if p + w is s 32. 

After the character has been obtained, the indirect control word is 

modified for subsequent ,addressing of the next character. This sequential 

character addressing assumes the next character contiguous, of the 

same size, and lower in bit position than the present character. If the 

next character would lie outside the current 32-bit word, the character 

is assumed to lie in the next sequential memory word with its most 

significant bit in bit 31 of that word. Modification of the indirect 

control word occurs accordingly. 

INDIRECT WORD, SPECIAL BASE 

3' SO It 2I11 711'lnlz4Iu lull '110 "1'11'1 'I '11'4('1(11(111101'11111'111411111'10 

0 00 not used b i sy 
IWS sy,b 

The contents of the b-field is a bas(! register designator. The next 

address is the sum of the contents of the indica1ed base register plus 

the 16-bit D-field. 

]I-l~-9:; 



M-5035· 

INDIRECT WORD, SPECIAL INDEX 

11 10 u uTZ 'fzllulz-lulull'lzo "1"117 " ,'I'.I,II'ZI")'01')1)711151.1 'lzl'lo 

0 o 1 not used b i sy 

The contents of ttw h-fieltl is an index register tl(~signator, where the 

contents of the index reuister is in the format of the P-register. The 

next address is the sum of three quantities: 

10 The contents of the hase register designated by (B
b

)p)-17 

:2 0 ( B b ) 1 J -0 

;) • The 1 () -bit D·· fie 1 d . 

MEMORY PROTECTION 

5' J5olulzalz7lzelnlZ4lululZI 20 " 'I '7 '1 '511.j'51121111Iol.1117111514151211 fo 

r 

is I 
MP r,i,or,ow,ia,is 

ia I 
ow I 

or I 
i 

, 
Not used I 

This mnemonic is used to specify the memory protection register word. 

The special fields are as follows! 

r - bit 0-15 = maximum allowed displacement 

i bit 20 = I when instructions may be executed 

or bit 19 = I when operands· may be read 

ow bit 18 = I when operands may be written 

ia bit 17 = 1 when indirect references are allowed 

is bi t 16 - I when computer will use B and S-registers in indirect 

addressing 

11-12-9& 



BUFFER CONTROL WORD 

BCW y,l 

Description: 

1 - length of buffer in whole words where a <1 $ 16304 

This instruction permits the programmer to code buffer control words 

symbolically and at the same time inform the asse~bler of the special 

addressing characteristics required of buffer control words. 

The final address compare bits in bits 31 through 18 of the generated 

object word are computed by the Assembler or Loader. 

BUFFER CONTROL WORD ESI 

k Final Address 
Com are Bi ts 

Description: 

y BCWE y,l,k 

1 - length of buffer in whole words where 0 < 1 So 2048 

This instruction permits the programmer to code ESl buffer control words 

symbolically and at the same time to inform the assembler of the special 

addressing characteristics of buffer control words. The final address , 
compare bits in bits 28. through 18 of the generated object word are com-

puted by the assembler or loader. 

11-12-97 



M-5035 

12.4.11 Input/Output Instructions 

ACTIVATE EXTERNAL FUNCTION CHAIN ON C. 

3113012'12112 rllt nl24 23122121120 

16 k j 

k - 2 

j - normal 

m - not used 

c - normal 

J 

I' I' 171.11.51.41.51.21"110 f '1'11 1 I I ~ 14 I 31 Z II 10 

me y 
AFC j,y,c 

Transfer Y to bits 55 through 38 of the appropriate' chain pointer in IOC 

control memory and set the external functio,n chain for channel j active. 

ACTIVATE INPUT CHAIN ON C, 
J 

311,012'la'I21llt 25124 ulul21120 II I' l'I.I I,sI1411'llzlllllol.l.T'I.1 ~ 14131z111 ° 
16 k j me y 

k - 0 

j - normal 

m - not used 

c - normal 

AIC j,y,c 

Transfer Y to bits 55 through 38 of the appropriate chain pOinter inIOC 

eontrol memory and set t.he input chain for channel j active. 
ACTIVATE OUTPUT CHAIN ON C. 

J 

16 k j me y AOC j,y,c 

k - I 

j - normal 

m - nol used 

c - norma] 

Transfer Y to bits S!'J t.hrouuh ~3fl of the appropriate chain pOinter in IOC 

control memory a .d set the output chain for channel j active. 



M-5035 

ACTIVATE EXTERNAL INTERRUPT CHAIN ON C, 
J 

16 k j 

k - 3 

j - normal 

m - not used 

c - normal 

me y AXe j,y,c 

Transfer Y to bits 55 through 38 of the appropriate chain pointer in IOC 

control memory and set the external interrupt chain for channel j active. 

CLEAR BIT 

26 .kj me 

(0 s; kj s; 31) 

k - special 

j - speci al 

m - not used 

c - normal 

y 

The k- and j-fields are used in combination to designate a bit position 

where 0 $ kj S 31 . 

Clear bit kj of (Y) to zero. 

11-12-99 



M-5035 

INITIATE EXTERNAL FUNCTION BUFFER ON C. 

12 k 

k - special 

j - normal 

m - m = 1 

c - c = 1 

c = U 

j 

J 

me y 

with monitor; m = 0 - without monitor 

activate chain on buffer termination; 

FB j,y,k,c,m 

do not activate chain on buffer termination 

Initiate an external function buffer on channel j as defined by k. 

k = 0 one-word buffer with force; Y is the buffer control word 

k = I one-word buffer without force; Y is the buffer control word 

k = 2 n-word buffer; ( Y) is the buffer control word 

k = 3 unused 

J J -1 :!-lOU 



M-5035 

INITI ATE ~:XTEHNAL INTEHIUJPT BUFFEH 

sI150lnlzllnlZl ulz. ulullillo II II l'IIIII'II·II~laIIlII0111111111'14Is1z1ITo 

13 k j me y XB j,y,k,c,m 

k - specia I 

j - normal 

m - m = I - with monitor; m = 0 - without monitor 

c - c = I - activate chain on buffer termination; 

c = 0 - do not activate chain on buffer termination 

Initiate an external interrupt buffer on channel j as defined by the 

k-designator. (Y) is the buffer control word. 

k = 0 - No transfer. The buffer current address is incremented by 1 

after each request. 

k = I - For each request, transfer external interrupt code word bits 

7 through 0 to bits 31 through 24, 23 through 16, 15 through 

8,and 7 through 0 of memory, in that order. The current buffer 

address in incremented by I after each 4 transfers. 

k = 2 - For each request, transfer external interrupt code word bits 

15 through 0 to bits 31 through 16 and 15 through 0 of memory, 

in that order. The current buffer address is incremented by I 

after each 2 transfers. 

k = 3 - For each request, transfer all 32 bits of the external interrupt 

code word to memory. The current buffer address is incremented 

by I after each transfer. 

The monit~r interrupt flag controls when an external interrupt request 

is sent to the processor(s) at buffer termination. 

]J-l:!~lUl 



M-5035 

INITIATE INPUT BUFFER ON C. 

10 k j 

k - special 

j - normal 

J 

me y 

m - m = 1 - with monitor; m = 0 - without monitor 

c - c = 1 activate chain on buffer termination; 

IB j,k,c,m 

c = 0 do not activate chain on buffer termination 

Initiate an input buffer on channel j as defined by the k-field (Y) is 

the buffer control word. 

k = 0 - No data transfer. The current buffer address is incremented 

by one after each request. 

k = I - For each request, transfer input bi ts 7 through 0 to bi ts 31 

through 24, 23 through 16, 15 through 8, and 7 through 0 of memory, 

in that order. The current buffer address is incremented by one 

after each four transfers. 

k = 2 - For each request, transf(~r input bits 15 through 0 to bits 31 

through 16 and 15 through 0 of memory in that order. The current 

buffer address is incremented by one after each two transfers. 

k = 3 - For each request, transfer input bits 31 through 0 to bits 31 

through 0 of memory. The current buffer address is incremented 

by one after each request. 

11-12-102 



M-5035 

INITIATg OUTPUT BUFFER 

11 k j me y 08 j,y,k,c,m 

k - special 

j - normal 

m - m = 1 - with monitor; m = 0 - without monitor; 

c - c = 1 - activate chain on buffer termination; 

c = 0 - do not activate chain on buffer termination 

Initiate an output buffer on channel j as defined by the k-designator. 

(Y) is the buffer control word. 

k = 0 - Transfer 32 bits of zeros for each request. The current buffer 

address is incremented by one after each transfer. 

k = 1 For each request, transfer to output bits 7 through 0 from 

memory bits 31 through 24, 23 through 16, 15 through 8, and 7 

through 0, in that order. The current buffer address is in­

cremented by one after each four transfers. 

k = 2 - For each request, transfer to output bits 15 through 0 from 

memory bits 31 through 16 and 15 through 0, in that order. The 

current buffer address is incremented by one after each two 

transfers. 

k = 3 - For each request, transfer to output bits 31 through 0 from 

memory bits 31 through O. The current buffer address is in­

cremented by one after each transfer. 

] J-l:!-IU:\ 



M-5035 

JUMP (INPUT/OUTPUT) 

20 o o Dc 

y - ~hain pointer 

k - not used 

j - not used 

m - not used 

c - normal 

Load the chain pointer with Y. 

LOAD IDe CONTROL MEMORY 

22 kj me 

o 

y 

(Y) - IDe control memory addre~s kj 

k - special 

j - special 

m - not used 

c - normal 

JIO Ylc 

LICM kj,y,c 

The k- and j-fields are used in combination to specify an IOC control 

memory address where 0 s; kj S 63. 

Load the lower 32 bits of the IDe control memory address specified by 

kj with (Y). 

11-12-104 



I.OAn Ufo:AI.TIME CI.OCK 

'1llolnlllll1lz, 1511. ulzzll l llo 

23 0 0 

(Y) - RTC 

k - not used 

m - not used 

c - normal 

II 'I 171"1'11'.1'11'11"110111'1' I_I t 14111 z I' 10 

o c y 

Load the real-time clock with (YJ. 

SET BIT 

25 kj 

k - special 

j - special 

m - not used 

c - normal 

me y 

(0 s; kj S; 31) 

M-5035 

ILTC Y,c 

The k- and j -fields are'used in combination to designate a bit posi tion 

where 0 ::; kj ::; 31. 

This instruction sets bit kj of (Y) to one. 

SET EXTERNAL FUNCTION MONITOR INTERRUPT REQUEST ON Cj 

15 2 j 

n - not used 

c - normal 

me not us~d FMIR j,c 

Set the external function monitor interrupt request on channel j. 

11-12-105 



M-5035 

SET EXTERNAL INTERRUPT MONITOR INTERRUPT REQUEST ON Cj 

15 j 

k - 3 

j - normal 

m - not used 

e - normal 

me not used 

Set the external interrupt monitor interrupt request on channel j. 

SET INPUT MONITOR INTERRUPT REQUEST ON Cj 

311501uI21127121 2512
-

ul22121 120 

15 0 j 

k - 0 

j - normal 

m - not used 

c - normal 

I' ,I 171'111111.1111121"1'01'1111111'1411121110 

me not used 

Set the input monitor interrupt request on Cj. 

SET OUTPUT MONITOR INTERRUPT REQUEST 

15 1 j 

k - 1 

j - normal 

m - not used 

c - normal 

me not used 

Set the output monitor interrupt request on Cj. 

11-12-106 

IMIR j,c 

OMIR j,c 



STORE roc CONTROL MEMORY 

24 kj me 

(IOC control memorY)kj - Y 

k - special 

j - special 

m - not used 

c - normal 

M-5035 

Y 
SICM kj ,Y ,c 

The k- and j-fields are used in combination to designate an IOC control 

memory address where 0 5 kj S 63. 

Store the lower 32 bits of the content of the 10C control memory address 

specified by kj at address Y. 

TERMINATE EXTERNAL FUNCTION BUFFER ON Cj 

,. 1,012'12Ilulz, ulz- ul22111120 1111 171'111111-11'1 121"1101'1117111' 141 'iZ 1110 

14 2 

k - 2 

j - normal 

m - m = 1 

m = 0 

c - normal 

j 

y - not used 

me not used 

do not clear buffer monitor interrupt 

clear buffer monitor interrupt 

Terminate the external functidn buffer on channel j. 

11-12-107 

TFB j,c,m 



·M-5035 

TERMINATE EXTERNAL INTERRUPT BUFFER ON Cj 

5 1Isollllll)27I11 n12. nl1212'1IO 'I 'I '71 1111111.1 tSI'II"I'0111117 III ~ 1.1 s I z II 10 

14 3 

k - 3 

j - normal 

m - m = 1 

m = 0 

c - normal 

j 

y - not used 

me not used 

do not clear buffer monitor interrupt 

clear buffer monitor interrupt 

TXB j,c,m 

Terminate the external interrupt buffer on channel j. 

TERMINATE INPUT BUFFER ON Cj 

14 3 

k - 0 

j - normal 

m - m = 1 

m = 0 

C - normal 

j 

y - not used 

me not used 

do not clear buffer monitor interrupt 

clear buffer monitor interrupt 

Terminate the input buffer on channel j. 

11-12-100 

TIB j,c,m 



TERMINATE OUTPUT BUFFER ON Cj 

'IJ'OlZ~I'lI~ZI UIZ4 Z~lqllllO II II 1111111111411'11111111011111111 J 51 41 s 1 z 1 110 

14 1 j me not used 

k - 1 

j - norma I 

m - m = 1 

m = 0 

c - normal 

y - not used 

do not clear buffer monitor interrupt 

clear buffer monitor interrupt 

Terminate the output buffer on channel j. 

TEST AND SET FLAG 

"1'~Z9IZII1112' 25124 n12Z!1'110 " 'I 1'111111114!lSjIZl"ltO!111 IT J 11 51.1 '(z I' J 0 

25 k j me y 

M-5035 

1'OB j,c,m 

1 ~ Y31 : if (Y) was originally cleared, skip: else NI. 
31 . . 

k - not used 

j - not used 

m - not used 

c - normal 

Set flag bit 31 of (Y) to one. If the flag bit was originally cleared, 

the chain pointer is indexed by 2. If the flag bit was originally set 

to one, the chain pointer is indexed by one. 

1[-12-109 



M~5035 

TEST BIT CLEAREU 

17 kj me y TBZ kj,y 

If (Y)kj = 0, skip; else NI (0 ~ kj s; 31) 

m - 0 

c - not used 

Test the bit of (Y) specified by the combined kj-field for zero. If 

(Y)kj is equal to zero, the chain pOinter is ,indexed by 2; otherwise, the 

chain pointer is indexed by I resulting in execution of NI. The valid 
I 

range is 0 skj s 31. 

TEST BIT SET 

17 kj me y TBS kj,y 

If (Y)kj "f 0, skip; else NI (0 s; kj ~ 31) 

m - 1 

c - not used 

Test the bit of (Y) specified by the combined kj-field for one. If (Y)kj 

is equal to one, the chain ~ointer is indexed by 2; otherwise, the chain 

pointer is indexed by I resulting in execution of NI. The valid range 

is 0~kj~31. 

11-12-110 



ASCII ASCII 
Character Code 

line feed 012 
carriage return 015 
Space 040 
r 041 
" 042 

# 043 
$ 044 
% 045 
& 046 , 047 

( 050 
) OS1 

'" OS2 
+ 053 

• 054 

- 055 

/ 
056 
057 

0 060 
1 061 

2 062 
3 063 
4 064 
5 065 
6 066 

7 067 
8 070 
9 071 
: 072 
; 073 

< 074 
= 075 
> 076 
? 077 
@ 100 

APPENDIX A 

CHARACTER CODES 

XS-3 
Equiva1ent-1004M 
or (1004 REX) 

00 
00 
00 
43 
40 (S6) 

35 (37) 
42 
61 (SS) 
20 (63) 
40 (S6) 

55 (61 ) 
77 (7S) 
41 
63 (20) 
62 

02 
22 
64 
03 
04 

05 
06 
07 
10 
11 

12 
13 
14 
21 
16 

36 
37 (35) 
76 
23 
56 (40) 

A-I 

Standard 
Card Punch 

0-5-9 
12-5-8-9 
blank 
12-7 -8 
7-8 

3-8 
11-3-8 
0-4-8 
12 
5-8 

12-5-8 
II-S-8 
11-4-8 
12-6-8 
0-3-8 

11 
12-3-8 
0-1 
0 
1 

2 
3 
4 
5 
6 

7 
8 
9 
2-8 
11-6-8 

12-4-8 
6-8 
0-6-8 
0-1-8 
4-8 

M-5035 
Change 2 



M-5035 

ASCII ASCII XS-3 Standard 
Character Code Equivnlent Card Punrh 

A H>1 24 12-1 
B 102 25 12-'-2 
C 10:) 2h 12~3 
f) 1 (),I 27 12-4 
E 10;1 30 12-5 

F 10() 31 12-h 
G ]07 32 12-7 
H ]]() 33 12-8 
I 1 1 ] 34 ]2-9 
.1 11:2 44 11-1 

K ] l:~ 45 11-2 
L 114 46 11-3 
M 11;; 47 11-4 
N 1] 6 50 11-5 
0 117 51 11-6 

P 120 52 11-7 
Q 121 53 11-8 
R 122 54 11-9 
S ]23 65 0-2 
T ] 24 66 0-3 

U 125 67 0-4 
V ]26 70 0-5 
W ] ')-... 1 71 0-6 
X 130 72 0-7 
Y 131 73 O-A 

Z 132 74 0-9 
c: 133 17 12-2-8 
I 1:14 15 0-2-8 
J 13:i 01 11-2-8 

• 136 00 11-7 -8 

• l:n 00 0-5~8 

A-2 



M-5035 
Change 5 

SPECIAL CHARACTER CODES FOR THE OPTIONS DECLARATION 

Standard Card 
029 026 U (ULTRA) Punch 

046 053 053 12 

042 042 047 7-8 

075 075 076 6-8 

047 047 072 5-8 

0100 047 047 4-8 

043 075 075 3-8 

072 072 053 2-8 

077 077 051 0-7-8 

076 076 0134 0-6-8 

0137 0137 050 0-5-8 

045 050 050 0-4-8 

054 054 054 0-3-8 

0134 0134 012 0-2-8 

0136 0136 015 11-7-8 

073 073 073 11~-8 

051 051 0135 11-5-8 

052 052 052 11-4-8 

044 044 044 11-3-8 

0135 0135 042 11-2-8 

041 041 075 12-7-8 

053 053 074 12-6-8 

050 050 0133 12-5-8 

074 051 051 12-4-8 

056 056 056 12-3-8 

0133 0133 0100 12-2-8 

A-:Y A-4 (Blank) 





M.;.5035 

APPENDIX B 

SlJMMAHY OF SYSTEM STATEMENTS 

'.1 NOTATION OF STATEMENTS AND OPERATIONS 

Wherever a statement or operation is discussed in this appendix, a uniform 

system of notation is used to define the structure. This notation is not a 

part of CMS-2, but is a standardized notation that may be used to describe the 

syntax (construction) of any programming language. It provides a brief but 

precise means of explaining the general patterns that the language permits. 

It does not describe the meaning of the statements or operations; it merely 

describes structure; that is, it indicates the order in which the operands 

must appear, the punctuation required, and the options allowed. 

The following rules explain this standard notation: 

1. A word wri tten in lowercase letters represents the type of entry to 

be made by the programmer. This word may be hyphenated. 

name denotes an entry of a name. 

data-uni t-name denotes an entry of a data uni t name. 

2. A word written in uppercase letters or special characters denotes an 

actual occurrence of that word or character in the language. 

name DISPLAY data-unit-name $ This example denotes the entry 

of a name followed by the entry 

of the reserved word DISPLAY 

followed by an entry of a data 

unit name. 

·3. Braces{ } are used to denote a choice. The units from which a choice 

may be made are stacked vertically within the braces. At least one 

of the units within the braces must occur in the statement. 

{
REGS } 

.. da ta -un it-name . 

This example indicates that either REGS 

or a data unit name must appear in the 

statement. 

4. Square bracke t8 [ ] are used to denote options. When one uni tis 

enclosed in brackets, the unit mayor may not appear. When more than 

one unit is enclosed in brackets, anyone of the alternative units may 

B-1 



M-5035 

. or may not be chosen to appear. In either case, it is possible that 

no unit may appear. It is generally not possible that more than one 

unit will appear. 

[name ] 

5. The use of • • •• 

This example indicates that a name may 

appear in the statement format. lIow-

ever, this unit is not required. 

denotes tha t the type of entry i ndi-

cated by the word preceding • •• may appear one or more times 

in succession, where each entry is delimited by the word preceding. 

This does ~ot imply that all entries should be identical. It does 

imply, however, that all entries should be the same type of entry 

indicated by the word preceding the three dots. 

, • data unit name • • • This example indicates that one or more 

data unit names may occur in succes­

sion as entries, separated by commas. 

Thus, the following would be a legal 

entry: ALPHA, BETA, GAMMA 

B.2 MONITOH STATEMENTS 

$SE() , ddd [non-numeric-nonspace-non-$ character] [$ [comments]] 

$JOB [; [user identification], [project identification], [time limit in decimal], 

[page limit in decimalJ. [~sJ . [26JJ [$ Lcomm"ntsJJ 

B-2 



$1-:01 [$ 1(~()mrnnntsJJ 

$ENDJOB l$ [comments]] 

$CMS-2 [$ [comments]] 

$ASM [, U] [$ [comments]] 

$UTILITY [$ [comments]] 

$LIBEXEC [$ [comments]] 

$LOAD [, • 
TRACE 
PTRACE • • • ] [$ [comments]] 
SNAP 
RANGE 
DISPLAY 

$A. REG [ • roct~l number J ••• ] [$ [commentsj] 
t Ldeclmal number 0 

$BREG [, [
octal number J ] 

• d . 1 mb D··· [$ [comments J] eClma nu er 

$KEYSET [. • [g;F] ••• ] [$ [comments]] 

$CALL, 
address section name 
external definition 

bound section name 

[
+ {octal number }] 

name . - decimal number D 

[ 
+ {oc tal number }~ 

decimal number J 

B-3 

M-S03S 
Change 5 

[$ [comments]] 

I 



M-5035 

$TYPE, message 

$HALT, message 

$REMARK, message 

$TRA, 
{

address section name } [{+} {octal number }] 
external definition name - decimal number D 

bound section name [ + {doct~~ nlUmbebr }] eClma numer 
[$ [comments]] 

I 
0 
H 
Q 

[rJ · $DUMP. D • 
C 
IC 
OC 
HC 
QC 
DC 
CC 

{
address section name } [{+} {octal number }] 
external definition name - decimal number D 

bound section name [+ {~~~~a~u~~er n}] 
••• [$ [comments] 

13-4 



$SNAP, 
{

address section name } 
extc rna 1 de r j ni ti on name 

bound section name 

I 
o 
H 
Q 
o 
C 
IC 
OC [decimal dumps count] 
HC 
QC 
DC 
CC 

{
oe tn 1 numhe r 
dec ima 1 numb\.! r 

{
octal number 
decimal number 

[decimal dump frequency ] , [ decimal start dump count] 

M-5035 

( 

{:~~~::l s~~:!~~ t~:~ naE } [ { ~} {~~~~a~u::er D} ] 

bound section name [+ {octal number } ] 
decimal :number 0 

{
octal number of words } 
decimal number 0 of words • •• [$ [commentsJJ 

$PATCH L$ [comments]) 

Pa tch S ta temen t: 

{address section name } 
external defi ni ti on . name [{~} {octal number 

decimal number D} ] 
bound section name [ + 

{ oc tal number 
decimal number D} ] 

( 

I, • up to twe 1 ve oc ta 1 d i gi ts • •• I 
0, • up to eleven octal digi ts ••• 

.. K, • up to thi rteen octal digi ts ••• 
. C, (character string) 

[ $ Lc omme n t s j J 

B-5 



M-5035 

Tl 
T2 
T3 
T4 

SIP, T5 
T6 
T7 
T8 
CR 
KB 
PR 

Tl 
T2 
T3 
T4 

SOP, T5 
T6 
T7 
T8 
CP 
PP 

$ASG, Tl [$ [commen ts ] ] 
T2 
T3 
T4 

SHC, T5 
T6 
T7 
T8 
HP 
KB 

Tl Tl 
T2 T2 
T3 T3 
T4 T4 
T5 T5 
T6 T6 
T7 T7 
T8 T8 
CR CH 
CP CP 
HP HP 
KB KB 
PR PH 
PP PP 

0 

H-6 



$LDUYK-20[$ [comments]] 

$FORTRAN [$ [commentsjj 

$SYSMAKER [$ [comments]] 

B.3 LOADER STATEMENTS 

Table Size Declaration: 

M-5035 
Change 5 

TSD, .name = decimal integer ••• [$ [comment]] 

Library Selection: 

LIBS, .internal library naillC [ (external library name)] 

••• [$ [ commen t] ] 

Element Selction: 

SEL-ELEM [element name] [(key)] [ i': ALL } ONLY ] 
decimal integeI 

[$ [comment]] 

Loader Options Select: 

LOPTIONS • r~g~~El. •• [tg~~~CT 1 
lNOMA~ SAVLODGOJ 

B-7 

I 



M-5035 

Combine Elements Selection: 

[Section name] { ~:~~~~g~L} 
BASE 
LOCDDPOOL 

[ (octal digit)] 

, • element name ••• [ (octal integer)] 

[ $ [c 0 mme n t ] ] 

End Card: 

END L$ [commentJJ 

B.4 LIBRARIAN STATEMENTS 

/LIST 

/BUILD internal-library-name 

/EDIT old-internal-library-name [ (old-external-library-name)J 

[, new-internal-library-nameJ 

/ENDLIB 

/TAPlD ,. internal-tape-name [ (external-tape-name)] ••• 

/RELEASE , • internal-tape-name [ (external-tape-name)] ••• 

/HISTENT notes 

IADD name [(key)] ~ (~l ] ~nternal_tape-nam;Y~~=xternal_tape-name)~ 
[NOLlST] 

B-8 



M-5035 

ALI, 

/CUI'Y 

name l (key) j [. [n ] [TilRIl name L<key) j 

*[~} 
(key) ['{nJ 

[i n terncIl- t ape -name l (cxte rna 1- t. ape-name) J J LNOLI ST J 

/UEL 

[Sl * ~ 

•• name [(key)] t ~} [TllllU name [(key)] t {~}]J 
(key) t U 

• • • 

* [~} 
/CIIANGE name [(key)] [, [~} ] [TO name [(key)] t [~} ] ] 

(key) [ {~} J 
8·-9' 



M-5035 

[

FROM HEADER J 
IOEP 

, • name [(key)] ••• 

/BEGINEL 

jENUEL 

ICORRECT 

/ENUCOR 

/ENU 

II Litem-number] 

/D [i tern-number [TlffiU item-number]] 

/NOLIST [H.ISTJ DIR 

B-10 



HIST 

DIR 

M-5035 

/PRI NT ,. name [( ke y )] t {~l J [i tem-numbe r [THRU i tem-numbe r] ] ••• 

B011l 

ALL 

* {n 
ALL 

/PUNCH , • name [(key)] [' { ~ lJ [i tern-number [THRU item-nUmber]] 

(key) [* { ~ I ] 
• • • 

B-l1 



M-5035 

B 0 5 PERIPHERAL UTILITIES STATEMENTS 

TYPE [( [me s sage to operator])] [ • [comments]] 

HALT [([message to operator])] [ • [comments]] 

MOUNT [tape name] [. [ {~~T} ] ] [. [comments]] 

DISMOUNT [tape name] [. [comments]] 

FILSKP [tape name] [ , [no. of files]] [. [comments] ] 

RECSKP [tape name] [ , [no. of records]] [. [comments]] 

BKFILSKP [tape name] [, [no. of files]] [. [comments]] 

BKRECSKP [tape name] [ , [no. of records]] [. [comments]] 

REWIND [tape name] [. [comments]] 

WRITE [tape name], location name [ , Lno. of words] [v[format]]] 

[ • [comments]] 

B-12 



WRTFIIMK [tape name] [e [conments]] 

DUPLlCAT [tape name] , [format] , [tape name] , [format] , 

{

no. Of. files [ , [no. of records]] } 
, [e [comments]] 

no. of files] , no. of records 

M-S03S 
Change 5 

REFORMAT [tape name] , [format] , [tape name] , [format] , item size , 

no. of items [ , [no. of files] [ , [skip words]]] [e [comment]] 

CARD TAPE [tape name] [e [conments]] 

BOOTWRT [tape name] , location name [ , [no. of words] [ , 

[load base] [ , [M]]]] [e [conments]] 

CONVERT [tape name] [ , [tape name] [ , [data type] [ , [CONflNUE]]]] 

[e [conments]] 

READ [tape name] , location name [ , [no. of words] [ , [format] 1] 

[e [comments]] I 
o 

LIST tape name [ , [tape format] [ , ~ [ , [no. of files] [ , no, of records] I 
I ] ] ] [e [ comnents ] ] C 

TAPEOUT [tape name] [ , [no. of files]] [e [comments]] 

CCMPARE [tape name] , [fonnat] , [tape name] , [format] , 

{

no. of files [ , [no. of recor .. dS] I} 
[e [conments]] 

[no. of files] , no. of records 

B-l3 



M-5035 
Change 5 

B.6 COMPILER STATEMENTS 

[name] BASE [( [T] [, integer-value])] [integer-value] $ 

CMODE $ 

CMS-2 $ 

CORRECT $ 

CSWITCH -ON,. name • •• $ 

CSWITCH -OFF ,. name • •• $ 

CSWITo-I, • name • •• $ 

CSWITCH-DEL $ 

[data-unit] DA~A constant [constant] $ 

[name] DATAPOOL [( [T] [, integer-value])] [integer-value] $ 

DISPLAY 
SNAP 
RANGE 

DEBUG,. TRACE ••• $ 

DEP,. element-name [(key)] ••• $ 

DffiECT $ 

END-HEAD [name] $ 

END-SYSTEM [name] $ 

identifier EQUALS value $ 

B-14 



M-5035 

iden1 ifif'r EXCIIANGE character-string $ 

EXECUTIVE $ 

[name] HEAD [comment] $ 

[name] LOCDDPOOL [( [T J L. integer-value])] [integer-value] $ 

identifier MEANS character-string $ 

NITEMS (name) EQUALS integer value $ 

rIST 

I OPTIONS • SOURCE [( CCOMN )] ••• $ , CSRCE 
CARDS 

{CMP} 
OPT 

CNV 
CCOMN 

OBJECT [( CARDS )] COBJT 
SA 
CR 

U~} 
( PRINT } LI STING [( CCOMN )] 

CLIST 

MONITOR 

B-15 



M-5035 

SEL-ELEM name [(key)] [,ONLY] $ 

SEL-HEAU name [(key)] [,ONLY] $ 

SEL-POOL name [(key)J $ 

SEL-SYS [(key)] l,ONLY] $ 

SPILL $ 

SYS-INUEX, • b-reuister index-name ••• $ 

Lname] SYSTEM [comment] $ 

[name] TABLEPOOL l([TJ [, integer-value])] [integer-value] $ 

TERMINATE $ 

name AUTO-DO [comment] $ 

[label] CHECKID file-name {
STANDARD } 
(character-string) [THEN statement] $ 

[label] CLOSE file-name [THEN statement] $ 

COMMENT comment,$ 

8-16 



CSWITCH name $ 

[label] DEFID file-name {
STANDARD } 

(character-string) 

[label] DECODE data-element image 
• image.··) 

format-name [THEN statement] $ 

} 

M-5035 
Change 5 

[THEN statement] $ 

[name] DISPLAY {
REGS } 
• • datn-element •• • [THEN statement] $ 

[label] ENCODE {
image } data-element ,. image •• e) 

format-name LTHEN statement] $ 

END-AUTO-DD name $ 

END vary-block-name $ 

END-CSWITCH name $ 

END-CSWITCHS $ 

END-FUNCTION function-name $ 

END-LOC-DD [name] $ 

[label] ENDFILE file-name [THEN statement] $ 

8-17 

I 



I 

M-5035 
Change 5 

{
EXTREF } J EXTDEF. ) 
TRANSREF 

EXTREF ) 
EXTDEF ~ 
TRANSREF \ . ) 

LOCREF J 

[label] GOTO 

FORMAT n a me • • [n] [ ( ] 

Ew.d 
Iw.d 
Fw.d 
Ow.d 

Iw [)] ••• $ 
Aw 
wX 
Tw 
Hollerith-constant 

FUNCTION name (formal-input-parameters) [type] $ 

{
statement-name [special-condition] 1 
switch-name [index] [INVALID statement-name] [special-condition] $ 

[label] IF 

{
VALID} table-element INVALID 

relational-expression 
Boolean-dat~-element 
Boolean-expression 

DATA {NO~~~~D} 
data-uni t { EVENP}· 

ODDP 

THEN statement $ 

END-PROC procedure-name $ 

END-SWITCH {
Switch-name-a [. switch-name-b] } $ 
procedure-swi tch-name-a [. procedure-swi tch-name-bJ 

END-SYS-DD name $ 

B-18 



END-SYS-PROC name $ 

END-SYSTEM name $ 

END-TABLE table-name $ 

END-TRACE $ 

FIELD name 

F [(R)] 
B 
H number-of-characters 

M-5035 

A number-of-bits {~ number-of-fractional-bits 
S list-Of-status-con~tants 

I number-of-bits {~ 
[word-location starting-bit-position] [P constants] [V(x,y)] $ 

[( (~~i~~~ , 1 )] 
TRANSREF 

FILE name (n maximum-number-of -records {~} 
maximum-record-size hardware-name [states] [WITHLBL] $ 

[lRbel] FIND expression [VARYING loop-index] 

[FROM initial-value) { 
TURU fi nRl-val ue} 

WITHIN name 

NOTE 

FROM, THRU, WITHIN, and BY may 
appear in any order. 

B-19 

[BY [±] in~remf'ntJJ $ 



M-5035 

LlabelJ INPUT 

filename 
OCM 
READ 
PRINT 
PUNCH 

{
receptacle } 
( ,. receptacle • ~ • ) 

[format name] LTHEN statement] $ 

[( I ~~i~~~ I )] ITEM-AREA , • name ••• $ 
TRANSREF 

[( l~~i~~~ I )] LIKE-TABLE name [number-of-itemsJ 
TRANSREF 

[major-index-name] $ 

[name] LOC-DD [comments] $ 

LOC-INDEX , • name • •• $ 

MODE {
variable deClaration} 
field declaration 

[label] OPEN filename 1~~~~~T I [THEN statement] $ 
SCRATCH 

data-unit OVERLAY, • d~ta-unit • Q. $ 



filename 
oeM 

LlabelJ OUTPUT PRINT 
PUNCH 
READ 

{
data-image } 

( • • d a t a - i rna g e • • • ) 

[format name] [THEN statement] $ 

[label] PACK data-unit WITH •• data-unit • • • 

[THEN statement] $ 

M-5035 
Change 5 

~ I~~i~~~ };l P-SWITCH name [(variable)] [[~N~~ L TRANSREF :J 
• • formal-parameter • • • J [OUTPUT •• formal-parameter • • • J:J $ 

[label] proeedure-switch-name [USING index] 

[INVALID statement-name] [INPUT, • actual-parameter •.• • ] 

[OUTPUT •• actual-parameter ••• ] [THEN statement] $ 

EXTREF 

( 
EXTDEF ) 
TRANSREF 
LOCREF 

PROCEDURE name [INPUT •• formal-parameter ••• ] 

[OUTPUT •• formal-parameter. • • ] 
[EXIT •• abnormal-exit-name ••• ] $ 

B-21 

I 



M-5035 

[label] procedure-name [INPUT, • actual-parameter • • • ] 
\ 

[OUTPUT t • actual-parameter • • • J [EXIT •• statement-name ••• ] 

[THEN statement] $ 

{
variable-name } 
field-referenr.e RANGE upper-value [ lower-value] $ 

[label] RESUME vary-block-name $ 

llabel] RETURN [abnormal exit] [special-condition] $ 

[label) SEARCH file-name[{~~}J [CONTIN) data-unit NOFIND name 

[THEN statement] $ 

[label] SET.. data-element • •• TO expression [THEN statement] $ 

[label] SHIFT data-uni t {~t~C) 
LOG 

[THEN statement] $ 

name SNAP data-element $ 

[label] STOP [THEN statement] $ 

8-22 

count [INTO data-unit] 



M-5035 

[ 
< (~~~~~~ I >] SUB-TABLE name initial-item-number 

TRANSREF 

maximum-number-of-items [major-index-name] $ 

[label] SWAP data-element • data-element [THEN statement] $ 

(

name 
SWITCH 

name-a, 

{ 
s ta tement -npme 
procedure-name 

[
< va ria b 1 e - na me> ••• ] I 
•• switch-point 

name-b 

[ , statement-name]} $ 
[ • procedure-name] 

constant statement~name $ 

constant procedure~name $ 

name SYS-DD [comment] $ 

name SYS-PROC [comment] $ 

name SYS-PROC-REN [comment] $ 

8-23 

$ 



M-5035 

(type) } 
wo rd s - pe r - it em 

H NONE 
V MEDIUM 

UENSE 
(type) 
words-per-item 

A NONE 
MEDIUM 
OENSE 

[INDIRECT] number-of-items [major-index-nameJ 

LINDIRECTJ ,. d imens ion ••• 

label VARY loop-index [FROM initial-value] 

{
THRU final-value} 
WITHIN name [BY [±J increment] $ 

NOTE 

FROM, THRU, WITHIN and BY may appear in any 
order. 

(
EXTREF I 
EXTDEF 
TRANSREF 

I 

A 

S 
H 
B 
F 

number-of -bi ts {~} 
number-of-bits {~} number-of-fractional-bits 

list-of-status-constants 
number-of-characters 

[(R)] 

[P constant] [V(x,y) J $ 

8-24 

$ 



B.7 ASSEMBLER STATEMENfS 

Start Assembly (ULTRA) Card: 

D 
p 

*ULTRA [[. [~][. ~! 
PS 
SP 

Stop Assembly (OFF) Card: 

*OFF 

Absolute Directive Card: 

ASS label 

Byte Directive Card: 

BYTE el [,e2] 

Character Directive Card: 

CHAR ,_ (c,e} - - -

DO Directive Card: 

M-5035 

[ · [Hi] J]] [name [. verSionJJ ] 

(label] DO e , (statement) 

END Directive Card: 

END 

B-25 



M-5035 

Equate Directive Card: 

label' EQU e 

EVEN Directive Card: 

I~VEN 

OUD Directive Card: 

ODD 

FOHM Directive Card: 

label FORM , • tel ••• 

List Cross Reference Table Directive Card: 

LCR 

Library Select Directive Card: 

LIBS ,. linternal-name} [(external-name)] ••• 

Library Element Directive Card: 

LIB , • [ n a me] [( ve r s ion) J • • • . 

LINK Directive Card: 

LINK , • (name} ••• 

LIST Directive Card: 

LIST 

ELIST Directive Card: 

fLIST 

B-26 



B.7 ASSEMBLER STATEMENTS 

Start Assembly (ULTRA) Card: 

o 
p 

*ULTRA [[. [~] [. ~i 

Stop Assembly (OFF) Card: 

*OFF 

Absolute Directive Card: 

ABS label 

Byte Directive Card: 

BYTE el [,e2] 

Charac ter Di recti ve Card: 

PS 
SP 

CHAR ,. [c ,e) ••• 

DO Directive Card: 

M-5035 

[ · [Hi] ]]] [name [. version] ] ] 

[label] 00 e , (statement} 

END Directive Card: 

END 

8-25 



M-5035 

Equate Directive Card: 

label' EQU e 

EVEN Directive Card: 

EVEN 

ODD Directive Card: 

OUD 

FORM Uirective Card: 

label FORM •• te} ••• 

List Cross Reference Table Directive Card: 

LCR 

Library Select Directive Card: 

LIBS •• linternal-name} [(external-name)] ••• 

Library Element Directive Card: 

LIB , • [ n a me ] L ( ve r s ion) J • • • 

LINK Directive Card: 

LINK •• (name} ••• 

LIST Directive Card: 

LIST 

ELIST Directive Card: 

FLIST 

B-26 



NOlIST Directive Card: 

NOlIST 

literal Directive Card: 

f$ (e) [, label J] lIT 

L label 

Punch External labels Directive Card: 

PXl 

Reserve Directive Card: 

[label] RES e 

Relocation Field Directive Card: 

RF$ e ,. (h, I t c} • • • 

Segment End Directive Card: 

SEGEND 

Set Address Directive Card: 

SET ADR e t. [a] • • • 

Word Directive Card: 

WRD e 

8-27 

M-5035 



M-5035 

MACRO Directive Card: 

label [~(] MACRO [e,[,e2]] 

MACRO Name Directive Card: 

label [*] NAME [eJ 

GO Directive Card: 

GO label 

8-20 



M-5035 

APPENDIX C 

SUMMARY OF SERVICE ROUTINE CALLING SEQUENCES 

Request Packets Reference Words 

I' 

IW Ytbts 

o S mod. 0 Y portion of pkt. address IWS YtS 

Standard Input Request Packet 

function code status user code 
data ad~ress (in indirect word fo~at) 

number of characters 

Standard Output Request Packet 

1')10)1')1'11111'11111.11111111'110["1"1'11" "1'.1 111 111" L,01'1' 1 ttJ II • till I I I 0 

user code 

da ta addres s (in indirect word format) 
number of characters 

Standard Hardcopy Output Request Packet 

data address (in indirect word fO!'ll8t) 

number of characters 

C-l 



I 
I 

M-5035 
Change 3 

Tape Assignment/Release Packet 

Tape Control Selection Packet 

Get Device N amePacket 

Centralized I/O Request Packet 

.111011 .... 1.'1 •• 1 .. 1 •• .... 111 '1101'.1'.1"1'. 

operation s ta tus 

data add res s (same forma ts 

skip count/number of words 

Device 

,. ,. "1'11"1'°1'1' '1'111.11111'10 

R C user logical unit 
C code no. 

as in request packet addr.) 

number of words read/ 
deposit user code 

search identifier/deposit data address 

C-2 



Scatter /Gather Centralized ·1/0 Request Packet 

SllsolulzelnlztJulz. UJUIZIIZ~ltll'11711' 15 ,. 

Word 0 
operation status ~ (015 or 016) IV C 

151121"1101'" 
user 
code 

M-5035 
Change 3 

711151.1' pi ' 10 

l~ical 
un t no. 

1 V///U/////////i/////////ULfLL 
2 number of areas in this 

gather write/scatter read 

3 data address of first area (same format as req. pkt. ) 

4 number of words/ 
character s in this area 

5 data address of second area (same format as req. pkt. ) 

6 number of words/chars. 

7 data address of third area, if one (same format as req. pkt. ) 

8 number of words/chars. 

9 data address of fourth area, if one (same format as req. pkt. ) 

10 number of words/chars. 

11 data address of fifth area, if one (same format as req. pkt. ) 

12 number of words/chars. 

13 data address of sixth area, if one (same format as req. pkt. ) 

14 number of words/chars. 

Service Request Call 

Centralized I/O Request 

XS 0 

nv (packe t add re s s ) 

Standard Input Request 

XS lOa 
IW (packet address) 

C-3 

Type of Packet 

Centralized I/O request packet 

Standard input request packet 



M-5035 
Change 3 

Service Request Call 

Standard Output Request 

XS 118 

IW (packet address) 

Standard Hardcopy Request 

XS 128 

IW (packet address) 

Tape Assignment/Release Request 

XS 3 

IW (packet address) 

Tape Control Selection Request 

XS 2 

IW (packet address) 

Get Device Name Request 

XS 1 

IW (packet ~ddr,ess) 

Check Simulated Jump Key 1 Selection Request 

XS 40
8 

return if simulated key 1 is "onu 

return if simulated key 1 is "off" 

Check Simulated Jump Key 2 Selection Request 

XS 418 

return if simulated key 2 is "on" 

return if simulated key 2 is "off" 

C-4 

Type of Packet 

Standard output request packet 

standard hardcopy request packet 

Tape Assignment/Release packet 

Tape Control Selection packet 

Get Device Name packet 

None 

None 



Sprvice Request enll 

rhf'ck Simulatf'd ,lump Key 3 Splection Request 

XS ,1'> 
'-8 

re turn if simula ted key 3 

re turn if s imula ted key 3 

Check PTRACE Selection Request 

XS ,13
8 

return if not selected 

return if selected 

Check TRACE Selection Request 

XS ,148 

return if not selected 

re turn if selec ted 

Check OISPLAY Selection Request 

XS .15
8 

re turn if no t se lee ted 

return if selected 

Check RANGE Selection Request 

XS 468 
return if not selected 

return if selected 

Check SNAP Selection Request 

XS 478 
re turn if not se lee ted 

return if selected 

is 

is 

Check Floating Point Error Request 

XS 508 

"on" 

"off" 

return if floating point error has occurred 

return if no floating point error has occurred 

Terminate User Program Req1!est 

XS 518 

or 

XS 528 

C-5 

M-5035 
Change 3 

Type of Packet 

None 

None 

None 

None 

None 

None 

None 

None 



M-5035 
Change· 3 

Service Request Call 

Current Time Request 

XS 608 

IW (address where data is wanted)- data occupies one word 

Current Data Request 

Type of Packet 

None 

XS 618 None 

IW (address where data is wanted) - data occupies two words 

C-6 



M-5035 
Change 5 

APPENDIX D 

CMS-2 COMPILER RESERVED WORD LIST 

The following symbols are compiler reserved words and may not be used as identifiers 

in a CMS-2 program. 

ABS DECODE FUNCTION OCM SPILL 

ALG DEFID I GOTO ODDP STOP 

AND DENSE GT ONLY SWAP 

BASE DEP GTEQ OPEN SWITCH 

BEGIN DffiECT tH OPTIONS SYSTEM 

BIT DISPLAY HEAD OR TABLE 

BY ELSE IF OUTPUT THEN 

CAT ENCODE INDffiECT OVERFLOW THRU 

CHAR END FILE INPUT OVERLAY TO 

CHECKID END INTO PACK TRACE 

crnc EQ INVALID POS UNTIL 

CLOSE EQUALS LENGTH PRINT USING 

CMODE EVENP LIBS PTRACE I VALID 

CNT EXCHANGE LOG PUNCH VARY 

COMMENT EXEC LT RANGE VARYING 

COMP EXIT LTEQ READ VRBL 

CORAD FIELD MEANS REGS WHILE 

CORRECT FIL MEDIUM RESUME WITH 

CSWITCH FILE MODE RETURN WITllN 

tD FIND NITEMS SAVING XOR 

DATA FOR NONE SET 

DATAPOOL FORMAT NOT SIflFT 

DEBUG FROM to SNAP 

t Not allowed as a tabular identifier or function. 

I 
D-l 



M-5035 
Change 2 

NOTE 

Programmers expecting to make use of CMS-2 run-time 
routines (high-level input/output, debug, and math 
routines) should avoid the use of identifiers beginning 
with R T to prevent duplication of identifiers. Any 
duplication of identifiers, globally defined within the 
run -time library, would not be detected until load time. 

D-2 ,.-

_ .. 



APPENDIX E 

COMPILER' ERROR MESSAGES AND LIMITS 

Source Errors and Warning Messages (Warnings Flagged with *) 

M-5035 
Change 3 

The following error messages appear as a result of errors detected by the source 

syntax analysis phase of a compilation (OPTIONS SOURCE): 

* 0 DEBUG REQUffiES MONITOR 

A DEBUG statement is only processed if the MONITOR OPTION has 

been specified. 

1 IDENTIFIER GT 8 CHARS 

Attempt to define an identifier greater than eight characters long. 

2 LITERAL GT 132 CHARS 

Hollerith or literal constant greater than 132 characters. 

3 RESERVED WORD USED AS ID 

illegal use of reserved word as an identifier. 

4 CHARACTER NOT RECOGNIZED 

illegal ASCII input character. 

5 DECIMAL POINT MISPLACED 

Erroneous use of period not in a constant or illegal label definition. 

* 6 COMMENT TERMINATED BY $ 

Double prime comment not completed before end of statement. 

7 INCORRECT OCTAL CONSTANT 

The digits 8 or 9 appear in an octal constant. 

8 MISPLACED SEL-POOL 

Identifier definition appears prior to SEL-POOL statement. 

E-1 

I 

I 

I 



M-5035 
Change 3 

9 ILLEGAL INTEGER TAG 

Symbol or constant must bean integer. 

10 NO STATEMENT TERMINATOR 

Missing $ statement terminator. 

11 IDENTIFIER MISSING 

Missing name in a data unit declaration. 

12 DUPLICATE IDENTIFIER 

Attempt to define a previously defined identifier. 

13 OUTSIDE TABLE BOUNDS 

Subtable not contained within table; field not contained within item; 

or multi-word field in a horizontal table. 

14 NO DESCRIPTIVE OPERATOR 

Missing descriptive or separator term. 

15 ILLEGAL IN MINOR HEADER 

Statement is not allowed in minor header (must be placed in major header). 

16 TOO MANY DIMENSIONS 

More than seven dimensions in an array declaration. 

*17 COMMA MISSING 

Comma missing in statement. 

*18 OVERLAY PARENT MISMATCH 

Data units on right of overlay exceed size of parent data unit. 

19 DUPLICATED OVEHLAY 

Data unit appears on right of more than one overlay. 

£-2 



20 OVEIlLAY SE()lJENCE EHHOH 

M-5035 
Change 5 

U a t. a un ito n rig h t () f 0 v {' r I it Y il P P t' a rc ~ don 1 (~ f t 0 f pre v i 0 u S 0 ve r 1 n y • 

21 UNDEFINED IDENTIFIER 

Referenced dnta unit hns not been previously defined. 

22 SCOPE CONFLICT 

Definition of a global procedure with local parameters. 

23 STATEMENT NOT RECOGNIZED 

Statement placed in the wrong type of element or within the wrong type 

of declarative brackets. 

24 ILLEGAL OPTIONS . 

CCOMN has been designated the output unit for both LISTING and OBJECT 

options - options that are produced simultaneously. Only the OBJECT 

option is produced: the LISTING option on CCOMN is ignored. 

*25 PARENTHESIS MISSING 

Parenthesis missing within statement. 

26 SUB/LIKE-TABLE PROHIBIT 

Subtable or like-table declared in an array. 

27 ILLEGAL OVERLAY DATAUNIT 

Illegal data unit appears in overlay. 

28 ILLEGAL OVERLAY PARENT 

Specified data unit may not be used as a overlay parent. 

29 DUPLICATE RANGE 

More than one range statement for the same data unit. 

30 PRESET NOT ALLOWED 

Data unit preset not allowed in AUTO-DD or on an externally 

referenced data unit. 
E-3 I 



I 

M,-5035 
Change 5 

31 ILLEGAL HARDWARE NAME 

Illegal hardware device name specified infile declaration. 

32 ILLEGAL FORMAT DESCRIPTOR 

Illegal conversion descriptor specified in format statement. 

33 MORE THAN 1 LEVEL NESTED 

Format descriptors nested (parenthesized) to more than one level. 

34 ILLEGAL IDENT REFERENCE 

Illegal use of identifier in an expression. 

35 ILLEGAL srZE DESCRIPTOR 

Illegal data unit size attribute (e. g., Hollerith over 132 characters, table defined 

with 0 words per item, too many bits for I- or A-type.) 

*36 END BRACKET MISPLACED 

Misplaced or missing END - statement. 

*37 STATEMENT REQUIRES MONITOR 

MONITOR OPTION must be declared for processing of this statement. 

*38 CNV REQUffiES NONRT 

Processing of a CNV statement requires the NONRT (or MONITOR) OPTION. 

39 SYSTEM LIMIT nn EXCEEDED 

One of the following compiler limitsdenoted by nn has been exceeded. The code 

nn has the following values: 

1. Constant conversion limit was exceeded; the value of the constant lies out­

side the decimal limits (IE57, IE-3S) or the octal limits (IE77, IE-52). 

2. The number of nested subexpressions within the Boolean condition of an IF 

statement may not exceed ten. 

3. The number of libraries requested for retrieval may not exceed ten. 

E-4 



M-5035 
Change 5 

4. The number of operands in a DISPLAY statement has exceeded the compiler 

limit. The card column indicator in the error output listing points to the 

operand which first exceeds the limit. This and following operands should be 

written as a separate DISPLAY statement. The limit may be calculated as 

follows: 

a) Allow 3 + n words for each operand, where n is the number of words required 

to contain the operand as a character string; 

b) the sum of the above may not exceed 94. 

5. The maximum number of exit parameters per PROCEDURE declaration is ten. 

6. The lllll'~ her of format descriptors exceeds 94 or the number of ope rands of 

an input/output list for INPUT, OUTPUT, ENCODE or DECODE statements 

exceeds 94. (For each operand that is a Hollerith constant, also add in the 

number of ·words required to contain the constant value.) 

7. A maximum of seven levels of subscripting and function calls per operand is 

allowed. 

8. An item beyond item 255 was specified in a field preset. 

9. The length of a dynamic statement is too long for the compiler to process 

properly. This may be due to the complexity of an expression or an abun­

dance of embedded notes. 

10. The maximum number of elements declared dependent of another is 58. 

11. A VRBL declaration may define no more than 25 names. 

12. . The offset of a sibling overlayed data unit relative to its parent data unit must 

not exceed 65535 words. 

13. More than 250 elements. 

14. Symbol table overflow -- number of global and local identifiers. 

15. Field defined or complier packed beyond word 255. 

16. More than 15 combined nested VARY and BEGIN blocks. 

E-4A/E-4B (Blank) 

I 

I 





17. More than 10 nested VARYs. 

M-5035 
Change 5 

18. CC»1ENT (or "-type comment) between FIND and IF DATA too long. 

19. CG1MENT (or "-type comment) between last TIffiN clause and ELSE 

clause too long. 

20 through 29. Not used. 

30. A dependent retrieval level greater than 255 was requested. 255 

is assumed. 

31. A magnitude value greater than 32767 was specified in a magnitude 

specification. 32767 is, assumed. 

E-5 



I 
M-5035 
Change 5 

* 40 OVER 10 NESTED CSWITCH BRACKETS. 

Nesting of CSWITCH brackets exceeded. 

41 ILLEGAL EXTERN MODIFIER I Illegal or misplaced EXTREF, EXTDEF or LOCREF declaration. 

* 42 END DEClARATION MISSING 

,Missing program structure EN D- declaration. 

43 HEADER NOT RECOGNIZED 

Unrecognizable or illegal statement appearing in a header. 

* 44 END HEAD MISSING 

END-HEAD statement missing after major header. 

*45 FUNCTION RETURN MISSING 

Return statement missing from function. 

46 ILLEGAL EXIT PARAMETER 

nl~gal name specified as a formal exit parameter. 

47 COMPOOL REQUEST IGNORED 

Requested COMPOOL generation run not made due to detection of SYS-PROC 

statement. 

48 INCOMPATIBLE DATAUNIT 

Expression operands do not conform to data unit type restrictions or do not fit 

context required by operator. 

* 50 NO DEF CHECK PERFORMED 

No structural compatibility checking between external compiler-packed table 

definitions. 

E-6 



51 FILE TYPE MISSING 

Type descriptor missing in file declaration. 

* 52 CMS-2 BRACKET MISSING 

CMS-2 statement missing as terminator for a direct code block. 

53 VALUE SIGNIFICANCE LOST 

M-5035 
Change 4 

The most significant bits have been lost during alignment of a numeric constant 

used as a variable or field preset or a value block value. 

54 TOO M~NY STATUS CONSTANT 

More than 12 status constants associated with a data unit. 

55 DUPLICATE ALLOCATION 

Symbol appears on the left of more than one EQUALS statement. 

56 ILLEGAL ALLOCATION 

Attempt to establish EQUALS allocation via a constant (absolute 

allocation) or illegal EQU~LS expression. 

57 LIBS NOT DEFlNED PHIOR 

Library selection statement appearing prior to a LIBS statement. 

58 nnnnnnnn NOT HETRI EVED 

The request element, named nnnnnnnn, WRsnot fOllno in Rny of thp dp­

clared libraries. 

*59 FIELD LIST MISSING 

No fields specified for a compiler packed table. 

60 WRONG ARGUMENT COUNT 

Procedure call parameter list mismatched. 

E-7 

I 



I 

:\1-5035 
Change 3 

HI FORl\IAT NOT INDICATED 

:\Iissing fornlllt statement rpference in ENCODE/DECODE statenu'nt. 

(") ) ... \\'OHD :\IOHE THAN 12 CIIAItS 

~all1e, identifier, or symhol more than 12 characters. 

():~ :\1 U ST BE FUB :\IAT N A :\11< 

Syntax requirt's name to IH' :l format statement reference, 

'()·l \\'HONG END NAI\IE 

Incorrect naille on END- statement. 

U5 SYNTAX 

Erroneous statenlent syntax or punct uation. 

{iG COl\IPILEH PHOBLEl\I, SYNTAX 

Syntax of statement cannot he analyzed by compiler. 

y G7 INCOHHECT END KEY\\,OHD 

\\'rong EN D- bracket stat ement used. 

• GIj !'JO SYSTEl\1 DECLAHATION 

:\Iissing 8YSTE1\1 declaration as first statement of source input . 

.. (j!) NO EN D-8YST E 1\1 

;\Iissing END-SYSTEI\J statplllent 

.. 70 SYNTAX 

Syntax of statement not correct. 

.. 71 OPTIONS ST1\lT MIHSIN(i 

Options statenlent missing from Jnajor header. Syntax diagnostics will he only 

output. 

E-8 



t 7~ PAHAl\I PROCESSED AS VnUL 

Paranleters are not allowed in function definitions. 

7J PROCEDUHE I/O LIST ERROR 

Procedure call paranleters do not match procedure definition. 

7-1 ILLEGAL KEY TYPE 

Key type not legal for this element. 

75 DUPLICATE KEY 

KEY previously declared. 

7H ELEIV[ENT KEY GREATER 4 CHS 

Library element key is greater than four characters. 

+< 77 l\tIISPLACED STATEl\IENT 

1\1-5035 
Change 4 

A misplaced or extraneous EN D statement has been encountered at a point 

in the progranl where all VARY declarations and their END delimiters have 

been paired. 

*78 VALUE PRECISION LOST 

The least significant bits have been lost during alignment of a numeric constant 

used as a variable or field preset or as a value block value. 

79 ILLEGAL DECREMENT WITHIN 

nlegal VARY containing explicit FROM and WITHIN parameters with a 

negative BY parameter. 

*80· 32D UNSIGNED DATA UNIT 

Variable is 32 bits unsigned (requiring 2 words). 

E-9 

I 



M-5035 
Change 4 

81 ILLEGAL FORWARD REF 

Forward reference PROCEDURE and FUNCTION calls may not have STATUS 

constants as input or output parameters. 

82 TOO MANY PARAMS LISTED 

More parameters listed in call than specified in definition. 

*83 TRUNCATED TO INTEGER 

Scaled value has been truncated to an integer value where integer is syntactically 

required. 

84 MEANS OR EXCHANGE GT 132 

Character string in MEANS or EXCHANGE statement greater than 132 characters. 

85 NESTED MEANS OR EXCHANGE 

I *86 

* 87 

Referenced MEANS or EXCHANGE name contains another MEANS or EXCHANGE 

name in its substitution string. 

NON-STRUCTURED STATEMENT 

The current statement violates CMS-2 structured programming conventions. 

CONSTANT PRECISION LOST 

Precision bits of converted constant in the decimal range of 1E-24 to lE-38 or 

the octal range of lE-32 to IE-52 have been lost. 

88 ILLEGAL EQUALS 

Illegal operator or operands in EQUALS expression. 

* 89 ILLEGAL LEVEL REQUEST 

LEVEL OPTION argument must be 0 or 1. 

90 DUPLICATE REGISTER 

PARA METER registers duplicated. 

E-10 



M-5035 
Change 4 

91 VARY VRBL IS THRU VALUE 

VARY loop index is the same data unit as the THRU clause data unit; 

hence, an illogical VARY statement. 

92 DEFINITION MISMATCH 

External definition or external reference does not match previous external 

definition or reference. 

93 DUPLICATE SYS-INDEX 

Definition of an index register as a system index which has already been 

declared as a system index. 

* 94 IDENTIFIER EXTERNALIZED 

Local identifier definition which has been made global because of a 

previous external reference. 

95 STATUS CONSTANT GT 8 CHAR 

More than eight characters specified in a status constant. 

96 MONITOR CONTROL READ 

97 

Missing TERMINATE statement; hence Compiler attempts to read a 

Monitor control card. 

TYPE NOT SPECIFIED 

A FOR-type was not specified for a FOR-expression which requires an 

explicit type specification. 

98 ERROR LIMIT EXCEEDED 

More than 100 syntax errors if options OBJECT requested or more than 

1000 syntax errors if options SOURCE requested. 

E-IOA 

I 



M-5035 
Change 5 

99 DUPLICATE VALUE 

The same value was specified more than once for the same FOR blocko 

100 VALUE MISSING 

A value is not present on the BEG1N statement of a value block. 

101 VALUE BLOCK MISS1NG 

A BEGIN with associated value is not present following a FOR statement 

or a value block which is not the last value block of a FOR block. 

102 1NCOMPATIBLE TYPE 

The type of an operand (numeric, Boolean, status, or Hollerith) is not 

compatible with its associated operator or operator. 

103 MISPLACED VALUE BLOCK 

A BEG1N with an associated value is present in a context other than 

immediately following a FOR statement or another value block. 

104 CONDITIONAL NOT BLOCKED 

A decision statement not enclosed within BEG1N-END brackets is 

present in the compound statement of another decision statement. 

I *105 UNCOMPLETED CONDITIONAL 

The compound statement of a. decision statement was not completed at 

the end of the containing block, procedure, or function. 

I *106 CONSTANT TRUNCATED 

The rightmost characters have been truncated during alignment 

of a Hollerith constant used as a variable or field preset or as a 

value block value. 

E-10B 



107 ILLEGAL REGISTER 

M-5035 
Change 5 

A register other than 0 through 7 was specified as a PARAMETER register. 

~109 NO END-CSWITCH xxxxxxxx 

Named. CSWlTCH does not have a corresponding END -CSWITCH bracket declara­

tion. 

*110 NO CSWITCH FOR TmS END 

END -CSWITCH bracket declaration does not have corresponding CSWITCH bracket 

declaration. 

E-ll 



M-5035 
Change 3 

, Object Errors and Warning Messages (Warnings Flagged with *) 

The following additional error messages may appear in a compilation which 

goes through the object code generation phase (OPTIONS OBJECT): 

200 INCOMPATIBLE DATA TYPES 

Attempted assignment or comparison of incompatible data unit type. 

201 ILLEGAL OPERAND REF 

I *202 

203 

Operand reference illegal in context used in statement. 

ABS OF UNSIGNED DATA 

Absolute value of unsigned data unit requested. 

DIRECT CODE SYNTAX ERROR 

Illegal or undefined operand, operator, or separator in a direct code 

statement. 

204 SYSTEM LIMIT nn EXCEEDED 

One of the following compiler limits denoted by nn has been exceeded. 

The code nn has the following values: 

20. The allocation table for generated labels has overflowed. A maxi­

mum of 1000 generated labels ,per system procedure is allowed. 

This error may also occur for cases of more than 96 generated 

labels for a given procedure. 

21. Compiler use and allocation of temporary words have exceeded 

certain limits which, depending upon the distribution of tem­

porary word usage and number of procedures, range from 2460 to 

3840 temporary words per system procedure. 

22. A maximum of 1536 binary constants can be generated per system 

procedure. 

23. A maximum of 4800 words of Hollerith constants can be generated 

per system procedure. 

24. A maximum of 4000 indirect words can be generated per system 

procedureo 

E-12 



205 REMAINDER NOT AVAILABLE 

M-5035 
Change 3 

SAVING remainder specified in statement without fixed-point division. 

206 STMT REQUffiES NONRT OPT. 

Run-Time call will be generated. This requires the NONRT (non-real time) 

option to be present. It is present by default if the MONITOR option is used. 

207 EXTERNAL DEF MISMATCH 

External reference does not match subsequent external definition. , 

208 UNDEFINED IDENTIFIER 

Forw.ard reference to an identifier which is not subsequently defined. 

209 SYSTEM ERROR 

Notify CMS-2Y maintenance personnel. 

210 COMPILER ERROR 

Compiler or undetected hardwaie error. 

211 TRANSREF IN P-SWITCH 

Illegal transient reference to procedure in a P-SWITCH. 

212 TOO MANY FRACTION DIGITS 

Too many fractional digits specified in a direct code constant. 

213 NON-NUMERIC CONSTANT 

I1lega1constant or improper punctuation ia a direct code statement. 

214 TOO MANY CHARACTERS 

Illegal MEANS or EXCHANGE character substitution in a direct 'code 

statement. 

215 ILLEGAL CHARACTER 

Illegal ASCII character appearing in a direct code statement. 

E-l~~ 

I 

I 



I 

I 

M-5035 
Change 3 

216 UNRESOLVED EQUALS STMT 

Reference to an EQUALS tag which is not resolvable at the time of reference. 

217 ILLEGAL FORM PARAMETER 

Illegal parameter in a direct code FORM statement. 

218 FORM LABEL MISSING 

Label missing from direct code FORM statement. 

* 219 RIGHT TERM TRUNCATED 

Truncation of operand has occurred. 

220 ILLEGAL SPECIAL COND 

Illegal STOP special condition specified on GOTO or RETURN statement. 

221 COMPILER PROBLEM, SYNTAX 

222 

Syntax of statement cannot be analyzed by compiler. 

PARAMETER TRANSFER ERROR 

Statement results in alteration of contents currently held in PARAMETER 

register. 

Allocation Errors 

The following codes may appear on the output listing to flag allocation errors: 

A Allocation error. Reference to an undefined label or incorrect program 

allocation. 

C Compiler error. Incorrect instruction generation or undetected hardware 

error. 

Library Retrieval Errors, Messages and Operator Messages 

Bee paragraph 3.4.2. 3 and 3.4.2.4 in Volume I. 

E-14 



Compiler Limits 

M-5035 
Change 5 

In addition to the various compiler limits given in the explanation of the pre­

ceding error messages, the following limits are described here: 

Generated Indirect Words 

Compiler generated indirect words are locally defined within system procedures. 

A maximum of 4,000 indirect words can be generated per system procedure. These 

words are grouped into 100 blocks of 40 words per hlock. Within each block, 

all indirect words are unique. 

Generated Binary Constants 

Compiler generated binary constants are locally defined within system procedures. 

A maximum of 1,536 binary constants can be generated per system procedure. 

These constants are grouped into 32 blocks of 40 constants per block. Within 

each block, all constants are unique. 

Generated Hollerith Constants 

Compiler generated hollerith constants are locally defined within system pro­

cedures. A maximum of 4,800 words of Hollerith constants can be generated per 

system procedure. These constants are grouped into 32 blocks of 150 constants 

per block. Within each block, all Hollerith character strings are unique. 

Identifiers 

The compiler dictionary for user defined identifiers contains a minimum of 10,240 

words and a maximum of 32,768 words. The minimum sized dictionary is standard 
I 

for a 49K ANjUYK-7 configuration. The number of dictionary words per identifier 

is variable depending upon type of identifier. The normal entry is six to nine words 

(see Table E-1). The dictionary is divided into a global segment and a local segment. 

Table overflow occurs whenever the size of the global segment plus the global hash 

table plus the largest local segment exceeds the size of the dictionary. The compila­

tion is terminated at this point. 

E-15 

I 



I 

I 

I 

I 

I 

M-5035 
Change 5 

TABLEE-l DICTIONARY ENTRIES 

Types of Identifier Dictionary Entries Number of Words Per Entry 

1) abnormal exit name n=5 

2) auto data name n=7 

3) cswitch name n=3 

4) data pool name n=8 

5) display label n=6 

6) equals name n= 5 +2p 

7) dum my loop, label n=4 

8) exchange name n= 5 ~rc:j 
9) field name U= 6 + 2s 

10) file name n = 8 + 2s 

11) for block n = 3 + 2s 

12) format name n=7 

13) form label n=7 

14) function name n = 7 + i 

15) header name n=4 

16) index switch name n=7 

17) item -area name n=8 

18) item switch name n=7 

19) like-table name n=9 

20) local data name n=7 

21) local index name n=7 

22) local pool name n=8 

23) major index name n=8 

24) means name n=5 if:j 
25) nitems name n=5 

26) procedure index switch name n = 7 + max (i, 0) 

27) procedure item switch name n=8+max(i, 0) 

28) procedure name n = 8 + max (i, o)e 

29) program base name n=8 

E-16 



M-5035 
Change 5 

Type of Identifier Dictionary Entries Number of Words Per Entry 

30) ranged data name 

31) statement name 

32) sub-table name 

33) system data name 

34) system index name 

35) system name 

36) syste m procedure name 

37) table name 

38) table pool name 

39) value block 

40) variable name 

Legend: 

n=9 

n=7 

n=9 

n=4 

n=4 

n=4 

n=7 

n = 9 + d + t (1 + 2 s) 

n=8 

n=5 

n = 7 + f + 2s 

c = num her of characters {C : 3}s an integer such that[ C : 3 ] ~ C : 3 

d = zero for horizontal or vertical tables 

= number of dimensions for an array 

e = num her of exit parameters 

f = 1 for fixed ;>oint data 

= 0 otherwise 

i = number of input parameters 

n = number of dictionary words per name 

o = number of output parameters 

p = number of names in the equals expression that are relocatable 

s = number of status constants 

t = 1 with table typing 

= 0 without table typing 

E-17 

I 

I 



M-5035 
Change 2 

Generated Labels 

Compiler generated statement labels are locally defined within system procedures. 

A maximum of 1,000 generated labels per system procedure is allowed. Each 

procedure is limited to 128 generated labels; the ~orst case is 96 generated 

labels for a procedure that follows one with 32 or fewer generated labels. 

Whenever one of these limits is exceeded, the remaining generated labels assigned 

to the offending procedure or system procedure will be unallocated. 

Generated Temporary Words 

Compiler generated temporary words are locally defined within system procedures. 

A maximum of 32 blocks of temporary words can be generated per system procedure. 

The maximum number of temporary words per block is 120. The length and starting 

address of a temporary block is established at the end of a procedure if the 

number of reserved temporary words is at least 80 or at the end of the system 

procedure. The number of temporary words per procedure is at most 120 and 40 

for the worst case. Depending upon the distribution of temporary words and the 

number of procedures, the best case maximum number of temporary words per system 

procedure is 3,840, the worst case is 2,460. 

Cross Reference Errors 

*****COMPLETE GLOBAL CROSS REFERENCE UNAVAILABLE TOO MANY ELEMENTS***** 

Whenever the number of elements per compile is 160 or greater, a global 

cross reference cannot be produced. The local cross reference for each 

element will still be available and printed. The major header and all 

system data designs and system procedures are counted as elements; minor 

headers are not inCluded in the element count since they are considered 

as part of the succeeding system element. 

*****LOCAL CROSS REFERENCE INCOMPLETE***** 

This message may appear at the end of a local cross reference listing. 

It indicates that the table for collecting reference data .overflowed and 

no more references for that element were collected. 

E-18 



M-5035 
Change 2 

*~:~U::~CERHOR EI'K;OUNTEHElJ DUllING CROSS HEFEHENCE DATA COLLECTIONf.:~:f.(f.n:: 

This message may appear at the end of a local cross reference listing. 

It indicates that an invalid condition was detected during cross 

reference data collection and was caused by a compiler error. 

~:*f.C~C*TOO MANY IDENTIFIERS FOR SORTING -- NOT OUTPUT GIVEN)::)::;::~C):; 

This message informs the user that he will not receive his requested 

cross reference or symbol analysis output because there are too many 

identifiers for the compiler alphabetized identifier table. 

Tape Errors 

The user is notified of tape related errors detected during compilation. Error 

messages are provided on the standard hardcopy device and on the operator 

communication device. 

**~C~;~CMAG TAPE ERROR UNIT Tn name 

This message is printed on the standard hardcopy device for any unre­

coverable hardware errors or compiler detected checksum errors. Tn 

identifies the offending tape unit and the name identifies which com­

piler output tape or compiler scratch tape encountered the error. The 

normal range of n in Tn is I through R. The tape names are: compiler 

outputs, CCOMN, CSRCE, COBJT, CLIST; compiler fCRATCHm (internal com­

piler scratch numbers m = I ... , 4); and COMPOOL input (for COMPOOL 

and TO, the SEL-POOL req~est could not be satisfied; if Tn is a normal 

tape unit, a bonafide error was detected). 

****~~OMPILE TERMINATED 

This companion message to the one above states that the tape error or 

the checksum error detected against one of the compiler scratch tapes 

necessitates termination of the compilation. 

E-19 



M-5035 
Change 3 

*****OUTPUT TERMINATED 

This companion message to the first one above states that the tape error 

detected against CCOMN, CSRCE, COBJT, CLIST, or COMPOOL necessitates 

that output to that tape be discontinued. Compilation and optional outputs to 

other tapes will be continued. 

*****WRITE ERROR Tn 

This message on the operator communication device informs the operator or 

user. that an unrecoverable hardware error has been detected during a write 

operation to tape. Tn designates individual tape units Tl through T8. 

*****CHECKSUM ERROR Tn 

This message on the operator communication device informs the operator or 

user that an unrecoverable hardware error 9r a compiler detected checksum 

error has been detected during a read operation from tape. Tn designates 

individual tape units Tl through T8. (A TO tape designator may indicate a 

SEL-POOL request that could not be satisfied. The assigned tape number is 

not available to the compiler under such circumstances. ) 

Run-Time Errors 

The following error messages are printed by the rUQ. time programs during execution 

of the CMS-2 debug and high-level I/O operations. 

During a Debug DISPLAY or SNAP operation, the following error messages are printed 

in place of the expected results: 

** INVALID DATA REFERENCE ** 

An illegal data unit was referenced. Legal data 'units are an array, field, item, 

REGS, sub-table, table, and a word reference. 

** INVALID STATUS ** 

A data unit, with status attributes, has a status value without its corresponding 

status constant. 

E-20 



:le* INVALID USE OF MAGNITUDE ** 
A magnitude was specified on a non-numeric data element. 

M-5035 
Change 3 

Errors detected by the run-time high-level I/O operations are flagged by a one line 

location message and a one line description message. The run time abort message 

will repeat the location message. The location message has the following format: 

ERROR IN RTxxxx RTDSL AT yyyyyyyy LOGICAL UNIT zzzzzz. 

where RTxxxx - Name of run-time routine detecting the error. 

yyyyyyyy - Core address of the first entry in the Run-Time Data 
Specification List (RTDSL). 

zzzzzz - Hardware device name. 

The error description message, with its symptoms and disposition, are as follows: 

ALREADY OPEN 

A file was OPENed twice without an intervening CLOSE statement - job abort .. 

BAD READ FOR FORMATTED INPUT 

An unrecoverable hardware error has invalidated the input data prior to 

internal conversion - job abort. 

BAD WRITE FOR FORMATTED OUTPUT 

An unrecoverable hardware error is detected while outputting a formatted 

message - job abort. 

BUFFER SMALLER THAN DATA UNIT 

The formatted buffer or source data unit is smaller than the decoded target 

unit during a DECODE or formatted INPUT operation - job abort. 

The cumulative character position counter of the converted data unit is 

larger than the literal buffer or target unit on an EN CODE or formatted 

OUTPUT operation - job abort. 

E-21 



M-5035 
Change 3 

DATA EXHAUST/END OF TAPE 

An End of Tape (EOT) mark has been detected on a previous INPUT or OUTPUT 

operation - job abort. 

END ITEM SMALLER THAN START ITEM 

A ranged data element specified by the form «a) ... (b», has an ending item 

(b) smaller than the starting item (a) - only the starting entry is processed. 

ILLEGAL FORMAT SPECIFICATION 

Incompatible structure within the RTDSL's associated with the specified 

operation - job abort. Data is incompatible with format specification. 

ILLEGAL INPUT CHARACTERS 

Input characters for an I, E, and F format contains a character other than 

a "+", "_", "blank", If. ", or a number 0 through 9 - flush the target data unit 

with zeros. 

Number of octal characters (for a 0 format) exceed 21 - flush the target data 

unit with zeros. 

LABEL INCORRECT 

The first record of a tape file doesn't match the specified label during a 

CHECKID operation - job abort. 

LOST FILE REFERENCE 

A file data unit specification wasn't located as the first entry in the parameter 

list associated with a file operation - job abort. 

NOT AT LOAD POINT 

A magnetic tape fUe was not at load point during a CHF;CKID or DEFID 

operation - job abort. 

E-22 



NOT OPEN 

M-5035 
Change 3 

A file operation was requested before the file was OPENed - job abort. 

NaT OPENED AS INPUT OR SCRATCH 

A file operation (CHECKID, INPUT, OUTPUT) was requested before the 

user-defined file was OPENed as an input or scratch file - job abort. 

NO AVAILABLE TAPES 

No available tape units remaining. 

NOT OPENED AS OUTPUT OR SCRATCH 

A file operation (DEFID, ENDFIL) was requested before the user-defined 

file was OPENed as an output or scratch file - job abort. 

OUTSIDE TAPE PHYSICAL FILE 

An End of Tape (EOT) mark was detected while positioning a file - job abort. 

OUTSIDE FILE BOUNDARY 

A file operation (INPUT, POS) was requested which either exceeds the 

number of records declared for that file or an EOT mark was detected -

job abort. 

OUTPUT NUMBER TOO LARGE 

Number of converted characters exceeds the width specified by the format 

descriptor - flush the formatted target data unit with an ASCII character (*). 

PROGRAM TERMINATED BY RUN TIME 10 

Job abort message. 

E-23 



lM-5035 
Change 3 

UNRECOVERABLE HARDWARE ERROR 

The monitor has detected an Unreco'verable Hardware Error (UHE). 

For a current unformatted INPUT or OUTPUT statement, processing will 

continue as normal with one exception. If a multipl~ read or a multiple write 

operation occurs as a result of a single INPUT or OUTPUT statement on a 

stream file, job abort will be invoked. 

Job abort will be invoked for all current formatted INPUT and OUTPUT 

operations, file and record positioning (FIL, POS). 

**** USER ERROR DISPLAY FLOATING POINT MAGNITUDE E+21 EXCEEDED 

Display table allows only E+21 characters to be displayed. 

**** USER ERROR MAGNITUDE E-22 EXCEEDED--TRUNCATION OCCURRED 

Display table allows only E-22 characters to be .displayed. 

E-24 



M-5035 

APPENDIX F 

SUMMARY OF ASSEMBLER ERROR CODES 

E 'Error Code 

Expression errors result from illogical expressions such as a decimal digit 

within an octal number; element type inconsistent with arithmetic operators; 

express ion improper in con text such as a GO I ine used outside a MACRO or a DO 

count in excess of 216_1. 

D Error Code 

Duplicate errors result from labels defined more than once with different 

values. A label used in an expression affecting an address counter is not 

defined prior to its use resulting in a different addressing sequence in 

the first and second assembly passes. 

U Error Code 

An Undefined error results from a reference made to a label which is nowhere 

defined in the program. A reference is made to a label which was not ex­

ternalized properly by a <?all! on a MACRO or by failure to suffix labels of 

MACRO entry points with an adequate number of asterisks. 

I Error Code 

An Instruction error results when the Assembler encounters: 

a) A MACRO or EQU directive which has no label. 
b) A SEGEND within a MACRO. 
c) More than one coded subfield in field zero of a MACRO 

reference line called via a MACRO name. 
d) A nested LIB directive or a LIB directive within a MACRO. 
e) A LIBS directive r~trieved from a library. 

R Error Code 

A Relocation error results from an arithmetic or logical operation being 

performed on a relocatable value which destroyed its relocatability. 

T Error Code 

A Truncation error occurs when the final value of an expression does not 

fit in the destined bit field of an object word. Therefore~ the Assembler 

truncated the left-most bits of the value in order to make it fit the field. 



I 

M-5035 
Change 5 

o Error Code 

The Overflow error occurs when memory available for the Ass~mbler tables is 

exhausted. 

N Error Code 

A Name error occurs when the Assembler encounters a name which contains more 

than eight characters. 

L Error Code 

A Level error results from an expression containing a parentheses nest which 

is more than five deep; more than 64 SETADR lines have been encountered in 

. this assembly. 

F Error Code 

A Floating Point error occurs under any of the following three circumstances: 

a) The divisor in a requested floating point divide operation is zero. 
b) A floating point operation during evaluation of an expression yielded 

characteristic underflow. Characteristic underflow occurs whenever 
the characteristic is less than -32767. 

c) A floating point operation during evaluation of an expression resulted 
in characteristic overflow. Characteristic overflow occurs whenever 
the characteristic exceeds +32767. 

W Error Code 

A warning results when a label is used with a half-word instruction which is assigned 

to the lower half of a computer word. 

Library Retrieval Error Messages and Operator Messages 

See paragraphs 3.4.2.3 and 3.4.2.4 in Volume I. 

Other Assembler Error Messages 

See paragraphs 11. 10, 11.10.1, 11.10.2, 11.10.3 and 11.10.4. 

F-2 



M-5035 

APPENDIX C; 

AN/UYK-7 CONDENSED REPERTOIRE 

Processor Instructions 

Function Mnemonic Instruction Description For- RPT PI CA 
Codes IIIIIt 

01 0 OR a, y, b, S INCLUSIVE OR (y)/i) (Aa) "'Aa II X X 

01 SC a,y,b,s SELECT! VE CLEAR (Y)' o (Aa} ... Aa II X X 

01 2 MS a,y,b,s SELECTIVE SU8STITL~E (y) n+ (Aa+}) n for II X X 

(A) =} a n 

01 3 XOR a,y,b,s EXCLt:SIVE OR (Y) $ (Aa) "'Aa II X X 

01 <1 ALP a, y, b, S ADD LOGICAL PRODUCT (Aa+}) + (Y) 0 (Aa) II X X 

... Aa+l 

01 5 LLP a,y,b,s LOAD LOGICAL PRODUCT (y) 0 (Aa) ... Aa II X X 

01 b NLP a,y,b,s SUBTRACT LOGICAL PRODUCT (Aa+l ) - (Y) 0 (Aa) II X X 

... Aa+I 

01 7 LLPN a,y,b,s LOAD LOGICAL PRODUCT NEXT (Y) 0 (Aa) "'Aa+I II X X 

02 0 CNT a,y,b,s COUNT O:'llES Count of ones in X'" II X X 
A a 

02 2 XR y,b,s EXECUTE REMOTE Y"'U; (P) unchanged II 

02 3 XRL y,u,s EXECUTE REMOTE LOWER yL ... U; (P) unchanged II 

02 <1 SLP a,y,b,s STORE LOGICAL PRODUCT (Aa) <:> (A.+l )'" Y II X X 

02 5 SSUM a,y,b,s STORE SUM (Aa) + (A.+l)-+Y II X X 

and AI +l : (Aa)i = 
(Aa )r 

02 b SDIF a,y,b,s STORE DIFFERENCE (Aa+I ) - (Aa )'" Y II X X 

and Aa+l: (Aa) i 
(Aa)e 

02 7 OS a,y,b,s DOUBLE STORE A (Aa+l,A.) Y + I, Y II 

03 0 ROR a,y,b,s REPLACE INCLUSIVE OR (Y) ED (Aa ) ... Y and Aa II X X 

03 RSC a,y,b,s REPLACE SELECTIVE CLEAR (Y)' O(Aa)"'Y and Aa II X X 

03 2 RMS a,y,b,s REPLACE SELECTIVE For (Aa)n = I'!n"' Y 1I X X 
SUBSTITUTE 

andA.+l 

03 3 RXOR a,y,b,s REPLACE EXCLUSIVE OR (Y) i (A )"'Y and A II X a a 
03 4 RALP a,y,b,s REPLACE A+ LOGICAL PRODOCT (Aa+l ) + (Y.) 0 (Aa)'" II X X 

Y and Aa+l 

03 5 RLP a,y,b,s REPLACE LOGICAL PRODUCT (Y) 0 (A.) -+Y and Aa II X X 

03 6 RNLP I,y,b,s REPLACE A- LOGICAL (Aa+}) - (Y) 0 (Aa) -+ II X X 
PRODUCT 

Y and AI+l 

03 7 TSF y.b, s TEST AND SET FLAG Set CD; 1 "'Y31 II X 

G-l 



M-5035 

Processor Instructions (Continued) 

Function Mnemonic Instruction Delcription Forma t HPT PI CA 
Codes 

O~ 0 DL a,y,b,s OOUBLE LOAD A (Y + I, Y)· A.+I,A. II 

05 DA a,y,b,s DOUBLE ADD A (Y+'1, Y) + (A.+1, A.) • II 

A.+1, A. 

05 2 DAN a,y,b,s DOUBLE SlETRACT (A.+1 , A. ) - (Y + 1, Y) • II 

A.+1, A. 

05 3 DC a,y,b,s DOUBLE COMPARE (Aa+1 , AI) (Y+l,Y); II 

Set CD 

05 4 LBMP B,y,b,s LOAD B4SE AND ME.\lORY !. Sa;!!! 04 SPRa : I 04 II 
PROTECTION 

SIR. 19-17; Y + (BO)b -

SIR. 15-0 

Ob 0 FA a,y,b,s FLOATING POINT ADD (Aa+1, Aa) + (Y + I, Y) - II 

Aa+1, Aa 

Of> fAN a,y,b,s FLOAT! NG POI NT SIJBTRACT (Aa+1, Aa) - (Y + 1, Y) - II 

Aa+}, Aa 

lib 2 FM a,y,b,s FLOATI NG POINT MIJLTI PLY (A.+1 , Aa) x (Y + I, Y) - II 

Aa+l' Aa 

06 3 FD a,y,b,s FLOATING POINT IJIVIDE (Aa+I , Aa) + (Y -+ I, Y) - II 

Aa+I' Aa 

Ob 4 FAR a,y,b,s FLUATING POINT ADD WITH (Aa+1, Aa) -+ (Y + 1. Y) - II 
ROUND 

Aa+I , Aa; round result 

Dt> 5 FA~R B,y,h,s FLOATl NG POI NT SIJBTRACT (Aa+1, Aa) - (Y + I, Y) - II 
WlTH ROUND 

Aa+l' Aa; round result 

06 6 FMR B,y,b,s FLUATING POINT MULTIPLY (Aa+I , Aa) x (Y + I, Y) - II 
WITH ROUND 

Aa+1, Aa; r,ound resul t 

06 7 FDR 8,y.b,s FLOATING POINT OI\iIDE (AA+l' Aa) + (Y + I, Y) - II 
WITH ROUND 

Aa+1, Aa; round result 

07 0 X5 sy,b ENTER EX EC I;},} VE 5T ATE Interr,upt to Executive II 
Entrance Address 

07 0 I PI sy,b (a=1 ) INTERPROCE550R INTERRUPT Allow selective interrupts II X 
to other processors 

07 AEI a,sy,b AI1.0W ENABLE INTERRUPT Enable Interrupt Request II X 
for lOGa Channel Specified 

07 2 PEl a,sy,b PREVENT ENABLE INTERRUPT Disable Interrupt Requelt II X 
for IOGa Channel Specified 

07 3 LIM a,sy.b LO AD, EN ABLE I OC MON nOR Y 04 lOG Monitor Clock II X 
CLOCK a 

07 4 IO a.y.b,s INITIATE INPl'T.iOL'TPlJr AD DR , Y=y + eBb) + (5 ) 
_ lOG S 

II X 

07 ~ lR I NTERRIiPT RETIJRN Return to Processor St.te II X 
designated by D5W 

07 b RP lI,sy,b REPEAT Repeat NI (B7) times Or II 
until telt condition is 
sati died 

J() LA B,y,k,b,s LOAD A Y - A - . X X 

G-:! 



M-5035 

Processor Instructions (Cont 1 nued) 

function Mnemonic Ins true t i O'n Description for- RPT PI CA 
Codes l1li t 

11 LXB a,y,k,b,s LOAD A AND INDEX B X -+Aa i (f\) +l-+f\ X 

12 LDIF a,y,k,b.s LOAD DIFFERENCE (Y-A) X - (Aa)-+Aa+1 X X 

13 ANA B.y.k.b.s ADD NEGATIVE A (A ) - X -+ Aa a X X 

14 AA a.y.k.b.s ADD A (Aa) + X-+ Aa X X 

1;, LSUM a.y.k.b.s LOAD SUM (Y+A) X + (Aa) -+Aa+l X X 

It» LNA a.y,k.l.J,s LOAD NEGATIVE X' -+Aa X X 

17 LM a.y.k.u.s LOAD MAGNITI:OE I xl -+ Aa X X 

20 LB a.y.k.b.s LOAD B y ... B 
- a X X 

21 AB a.y.k.u.s ADD B (Ba) + Y-+B - a X X 

22 ANB a.y.k.b.s SUBTRACT B (B ) - y ... B X X a - a 
23 SB a.y.k.b.s STORE B (B )"'Y a X X 

24 SA a.y.k.u.s STORE A (A )-+ Y a X X 

25 SXB a.y.k.b,s STORE A ANn INDEX B (Aa) -+Y; (~) + 1-+~ X 

26 SNA a.y.k,b,s STORE NEGATIVE (A )'-+Y a X X 

., .. .. ' SM a,y,k,b.s STORE MAGNI ruDE \Aal"'Y X X 

32 8Z al<.y.b,s CLEAR BIT O-+Yn; (n = ak) X 

33 BS ak,y.b.s SET BIT I"'Yn i (n = ak) X 

34 RA a,y,k,b.s REPLACE AUO X + (A.) "'Y and Aa+l X X 

3!'i RI a,y.k.b.s REPLACF. INCREMENT X + 1 ... Y and Aa X X 

36 RAN a,y.k.b,s REPLACE SUBTRACT X - (Aa) ... Yand "a+l X X 

37 RD a,y.k.b.s REPLACE DECREMENT X - 1 ... Y and A a X X 

40 M a.y.k.L.s MULTIPLY A X x (Aa)-+ Aa+l' A X X a 

·11 0 a.y,k,b,s DI \'1 OF. A (A8+1• Aa) ~ X-+Aa i X X 

Remainder ... "a+l 

·12 BC ak.y,b,s CO~ARE BIT TO ZERO (Y)n: 0: Set CD to equal X 

if (Y) = 0 and non-n 
equ&l if (¥)n f. (l.(n=ak) 

·13 eXI a,y.k,h,1 CO\1PARE INDEX INCREMF.NT (B ) 
a : X if (B;l) ~ X, X '( 

O-+LI. set CLI to OL; if 
(B ) < y, 

a - (Ba) + 1-+ Ba' 
set CD to WL 

44 C a.y.k.b,s COMPARE CAa) : Xi Set CO X X 

45 CL a,y.k.h.s COMPARE L1MITS (Aa) , (Aa+1) : Xi Set CD X X 

·16 CM a.y.k.h.s COMPARE MASk.EU (A3+1 ) : (Aa) 0 X; Set CD X X 

47 CG 8.r,k.h.s COMPARF GATED I X - (Aa) I : (A8+1); Set X X 

CD 

50 0 JEP a.y.k.b.s JUMP EVEN PARITY If (A8+1) 0 (Aa) even, III 

jump to 1.; else NI 

G-3 



M-5035 

Processor Instructions (Continued) 

Functlon Mnemonic Instruction Oe.cription For- RPT PI CA 
Code, mat 

50 JOP .,y,k,b,s JUMP ODD PARITY It (A&+l) 0 (A.) odd, III 

jump to I: else NI 

50 2 DJZ a.y,k.b,s DOUBLE JUMP A ZERO If (AI +1, AI) = 0 III 

jump to I: else NI 

50 3 DJNZ I,y,k,b,s DOUBLE JUMP A NOT ZERO If (AI +I , AI) ~ 0, III 

jump to 1: else NI 

51 0 JP a,y.k.b,s JUMP A POSY TI VE If (A.) ~ 0, jump to.!; III 

e1ae NI 

51 IN a,y,k,b,s JUMP A NEGATIVE If (A ') < 
I 0, jump to X: III 

else NI 

51 2 JZ 8,y.k.b,s JUMP A ZERO If (AI) = O. jump to !; III 

else NI 

51 3 JNZ I.y.k,b,s JUMP A NOT ZERO If (Aa) ~ 0, jump to !: III 

else NI 

52 0 LBJ a,y.k.b.s LOAD B AND JUMP (P)-+Ba • jump to r III 

(X-+P) 

S2 JIIa a,y,k,b.s JUMP B NOT ZERO If (B.) > 0, (B ) 
a - I III 

-+ B
a

, jump to I: 
else NI 

52 2 JS sy,k,b JUMP SY + b ! = (Bb)+sy III 

52 3 JL y,k,b,s JUMP L(JIJER Jump to ! Lower III 

S3 0 JNF y,k,b.s JUMP NO OVERFLOW If 00 not set, jump to I: III 
else NI 

53 01 JNE y.k.b.s JUMP NOT EQUAL If CD set ~, jump to X: III 
else NI 

53 10 Jor y,k,b,s JUMP OVERFL(JIJ If 00 set, jump to .!; III 
else NI 

53 11 JE y,k,b.s JUMP EQUAL ~f CD ,let =. jump to I: III 
else NI 

53 21 JG y,k,b,s JVMP GREATER THAN If CD set >. jump to 1: III 
else NI 

53 31 JGE y.k.b,s JUMP GREATER THAN OR EQUAL If CO set ~, jump to X; III 
else NI 

53 ~I JLT y.k.b.s JUMP LESS THAN If CD set < , jump to I: III 
else NI 

53 51 JLE y,k,b,s JL'MP LESS THAN OR EQUAL If CD set S , jump to X: III 
else NI 

53 61 JNW y.k. b. s JUMP NOT WITHIN LI MITS If CD set OL. jump to .1: III 
else NI 

:,:\ 71 JW y.k. b. s JUMP WITHIN LIMITS I f CD aet WL. jump 
else NI 

to .I: III 

53 2 RJ Y ,k, b. 5 RI':TIJRN Jl1MP (P) ... !. ! + I+P III 



M-5035 

Processor Instructions (Continued) 

function Mn_oni~ Instruction Description For- RPT PI CA 
Cod •• IIIIt 

53 2 RJC 8,y,k,b,s RETURN JUMP CONDITIONAL If jump key, 'et, (P) III CD 
SEtTING "'X, X + I .. P: ehe NI 

53 2 RJSC 8,y,k,b,s RETURN JUMP, STOP CO~- (P)"'y, X + l-+P; it III fD 
DITJONAL SETT1NG stop key let. 

else NI a 
stop: 

J3 3 J Y ,k, b, 5 JUMP X ... P III 

53 3 JC a,y,k,b,s JUMP CONDITIONAL SETTING If j umPa set, Jump to III a> 
1.; else NI 

53 ~ JSC a,y,k,b,s JUMP, STOP CONDITIONAL X .. P; if Stop KeYa set, III fD 
SETTING stop; else NI 

54 LCT ak,y,b,s UlAD TASK CMR X"CMR X ll' 
5;1 LCI ak,y,h,s LOAD INTERRUPT CMR X "'Interrupt CMR X X 

56 SCT ak,y,b,S STORE TASK CMR (CMR) "'1 X t7:> 
5i SCI ak.y,b,s STORE INTERRUPT CMR (Interrupt CMR) -+1 X X 

hO HSCT af4,b STORE TASK CMR IN A (CMR) ... Ab IV-A ~ 
60 HSCI af 4' h STORE INTERRUPT CMR IN A (Interrupt CMR) -+ Ab IV-A X 

61 HLCT af 4h LOAD TASK CMR WITH A (Ab) -+CMR IV-A 9J 
61 HLCI af4b LOAD INTERRUPT CMR WITH A (Ab) .. Interrupt. CMR IV-A X 

62 HL~ a,m SHIFT LEFT CIRCLLARLY Shi ft (Aa) left. end IV-B 
HLC a, b,l around 
HlC a,b,2 

63 HDL~ a,m DOUBLE SHIFT LEFT Shift (A&+l' A ) left, IV-B 
HDLe a, b,l CIRWLARLY 8 

HDLC a,b,2 end around 

64 H~ a,m SmFT RIGHT FILL ZEROS Shift (A ) right, end off, IV-8 
HRZ a, b,l a 
HRZ a, b,2 zero fi 11 on left 

65 HD~ a,m DOUBLE SIIlF'T RIGHT fiLL Shift (Aa +1, Aa) right, IV-B 
I10RZ a,b,l ZEROS 
HDRZ a.h.2 end off, 7.f'TO fill on 

left 

60 IfRS® a,m SHIn RtGHT FIl.l. SIGN Shi ft (A ) riqht eond (Iff. IV-8 
BRS a. b, I J 

HRS a,b.2 sign fi 11 on left 

67 HDRSJ:> a,m OOtBLE SHIFT kiGHT FILL Shift (..\ a ... l' Aa) riyht, IV-B 
HDRS a, b,l SIG~; 

HDRS 8.b,:! end 0:'(. si~tn fi lIon 
left 

70 0 nSF a,b SCAlE FACTOR Normal i:re (A,) ; shift IV-.\ 

co'.'··· ...... AI) 

70 HDSF a,b D[Il;BLI': SCALE F!i.l::rOR ~orllUl ihp. (~ :1'''': . 
A ). 

a ' 
I V-\ 

shif~ (:ount .... Ab 
70 2 HCP :1 COMPL.E~ENT .\ (Aa)· .... 4(\ IV-A 

iO ~ HD(P a [)(}!'BI E COMPU.MrNT A (1\ . A )' A A IV-A a+1 a .... "~'l' a 
71 0 HOR a,h INCLt:S1VE OR A (At!) Ef> ; Ab ) -+~a IV-A 

. __ ....... _--_ .. _--
<D Priv11 eI,Jed hUructi on if4s8~7. C]) Sbtft h.truct tOni hIVe three pOlilble fonllet I 

G> Privtlel,Jed in.truction if b()H ~ a f 4 c 77
8

, I.m lm 11 shift cOllnt) 
208 ~8f4 ~ ~7A 

8.h,l (shift count in Db) 

l.b.2 (,ht (t count In \> 

(;-.1 



M-5035 

Processor Instructions (Continued) 

function 
Codes 

Mnemonic Instruction De.cription Forllll t RPT PI CA 

71 

71 

71 

71 

74 

74 

74 

74 

74 

74 

74 

77 

77 

77 

77 

77 

77 

HA ',b 

2 HAN ',b 

3 HXOR ',b 

5 HAND ',b 

o tiM ',b 

HU ',b 

2 HRT ',b 

3 HLB a,b 

4 HC a;b 

5 HCl ',b 

b HCM ',b 

7 HCB ',b 

ADD (SUM) 

SUBTRACT (DIFFERINCE) 

EXCLUSIVE OR A 

AND A 

MULTIPLY REGISTER 

DIVIDE REGISTER 

S()UARE ROOT 

LOAD B. WITH Bb 

COMPARE, REGl STER 

COMPARE UIUTS , 
REGISTER 

COMPARE MASKED, 
REGISTER 

COMPARE B. WITH Bb 

(A.) + (\) 004 A. 

<A.) - (\) 004 A. 

(A.) i (\) 004 A. 

<A.) G> <A.) 004 A. 

(A.) x ('\) 004 A ... 1 I A. 

(A'+l' A.) +- (Ab ) 004 A.; 

Relll.inder" Aa+l 

..JCA.+l , A.) 004 '\; 

Residue 004 '\+1 

(Bb ) .004 B •. 

(A.): ('\); Set CD 

(A. +1 , A.':(,\); Set CD 

(A.+l) <:> (A.): ('\); 
Set CD 

(B.) :(B
b

); Set CD 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

IV-A 

o HSlM ',b 

HSTC ',b 

STORE I/O MONITOR CLOCk (IOC. Monitor Clock) 004 '\ IV-A 

STORE REAL-TIME CLOCk (IOC. RTC) ... '\ 1 V- A 

4 HPI 

5 HAl 

b HALT 

b HWFI 1=1 

PRE VENT CLASS I I I 
INTERRUPTS 

ALLOW CLASS III 
INTERRUPTS 

STOP PROCE;SOR 

WAIT fOR INTERRUPT 

CD Privll1'1ged taltruction if 4 c 8 C 7. 

Lock out Cl,sl III lV-A 
Interrupts 

Allow Cl,sl III lV-A 
Interrupts 

Stop Processor Oper.tion. IV-A 

Stop referencing lIIelllory 
until interrupt occurl 

IV-A 

G) Privileged instruetion it b0
8 

s af
4 

c 778 , 208 c .f
4 

c 278 

@ S .. Ut tutructions hIVe three possible forlllltl: 

f ',111 (III is Ihift count) 

I,b,l (shitt count inB
b

) 

f ",b,2 (Ihitt eount in\) 

G-6 

x 

x 

x 

x 

x 



Function Memoni c 

10 ZA • 
20 ZB 

20 NOOP 

23 SZ y,k,b,s 

74 3 HNO 

c =2 IW y,b,s 

c = 1 IWe y,w,p,b,s 

c = 3 IMCI y,w,p,b,s 

c = 0, IWS sy,b 
bit 29=0 

c = 0, IWB sy,b 
bit 29=1 

Extension Instructions 

Instruction 

CLEAR A 

CLEAR B 

NO OPERATION (Full Word) 

STORE ZEROS 

NO OPERATION (Half Word) 

INDIRECT WORD 

INDIRECT WORD CHARACTER 

INDIRECT WORD CHARACTER 
INCREMENT 

INDIRECT WORD, SPECIAL 
BASE 

INDIRECT WORD, SPECIAL 
INDEX 

Description 

o ... A. 
o ... B. 

o ... Bo 

o ... ! 

(Bo> ... Bo 

MP r,i,or,ow,ia,ir 

HK e HAU -WORD e~STANT 

Bew y,l BUfFER CONTROL WORD 

BCWE y, 1. k BUFfER CONTROL WORD ESI 

G-7 

M-5035 

Forllllt RPT PI CA 

x 

x 

x 

x 

IV-A 



M-5035 

Input/Output Controller Ins true tlons 

Function Mnemonic Instruction OllcrSpUon 

10 IB J.y,k,c,m INITIATE INPUT BUFFER ON Cj Ini t1lte input butter on CJ 

11 OB j,y,k,c,m INITIATE OOTPt:T BUFFER ON CJ In1th te output butter on Cj 

12 FB jfy,k.c,m INITIATE EF BUFFER ON Cj Inlt1lte EF butter on Cj 

13 XB j,y,k,c,m INITIATE EI BUFFER ~ Cj Initiate EI butter on Cj 

14 (k = 0) TIB j,c,m TERMINATE INPUT BUFFER ~ Cj Terminate output butter on Cj 

1-1 lk = 1) TOB j,e,m TERMINATE OUTPUT BUFFER ON Cj Terminate output buffer on Cj 

14 (k = 2) TFB j ,c, m TERMINATE EF BUFFER ON Cj Terminate EF butter on Cj 

14 (k = 3) TXB j,c,m TERMINATE EI BUFFER ON Cj Terminate EI butter on Cj 

15 (k = 0) IMIR j ,c SET INPUT MONITOR INTERRUPT Set input monitor interrupt 
REQUEST ON Cj request on Cj 

15 (k = 1) OMIR j ,c SET OUTPUT MONITOR INTERRUPT Set output monitor interrupt 
REQUEST ON Cj request on Cj 

15 (k = 2) FMIR j.c SET EF MONITOR INTERRUPT Set EF monitor Int~rrupt reque.t 
REQ:JEST ON Cj on ·Cj 

IS (k = 3) XMIR j.c SET EI MONITOR INTERRUPT Set Ell monitor interrupt reque.t 
REQUEST ON Cj on Cj 

16 (k = O) AIC j .y, c ACTIVATE INPUT CHAIN ON Cj Aetivate input ehain on Cj 

16 (k = }) AOC j .y.e ACT! VATE OUTPUT CHAIN ON CJ Activate output ehaSn on Cj 

16 (Il = 2) AFC j.y. c ACT! VATE EF CHAIN ON Cj Aetivate EF chain on Cj 

16 (Il = 3) AXe j,y.c ACT! VATE £1 CHAIN ON Cj Activate EI ehain on Cj 

17 (m = O) TBZ kj.y TEST BIT CLEARED It (Y)kj = 0, skip; else NI 

17 (m = 1) TBS kj.y TEST BIT SET If (Y}kj '" 0, skip; else NI 

20 JIO y,e JUMP (INPUT/OUTPUT) Y .... Chain Pointer 

22 LICM kj.y,e LOAD IOC CONTROL MEMORY (Y} .... IOC Control Memory address kj 

23 ILTC y.c LOAD REAL-TIME CLOCK (Y} .... RTC 

24 SICM kj ,y.e STORE IOC CONTROL MEMORY (lOC Control llemorY\j ... Y 

25 IDS kj.y.e SET BIT 1 .... Ykj 

26 IBZ kj.y.e CLEAR BIT O .... Ykj 

27 ITSF 1 fC TEST AND SET FLAG I .... Y • if (Y}~l .a. originally 
clear~A: .kip; Ie NI 

G-8 



APPENDIX II 

CMS-2 SYSTEM TAPE DUPLICATION 

M-5035 
Change ii 

Addition~l copies of the CMS-2 system tape may be m~de by the followin~l: 

Form~t 

$.10B 

$SYSMAKER 

ENDSYSBD 

$END.I0B 

.Explanation 

input name 

output name 

Example 

input name, output namp 

One to eight character name of the system tapp to 

be copied. To copy the system tape that is curn'ntly 

running, code the name CMS2SYST or leave this fif'ld 

blank. 

One to eight character n~me of the tape on which thf' 

copy is to be written. If this field is not Slwcifipd, 

the copy will be written on a tape nam~d NEWC0PTP. 

"JIGS I I I II II I I II 

~fN,D,l,OIBI , I I , ,., I , 

This would duplicate the system tape IN on to tape OUT 

H-l/H-2 Blank 

I 





1.1 INTRODUCTION 

APPENDIX I 
SYSTEM MODIFICATION 

M-5035 
Change 2 

There are two basic methods of modifying the <laln on a system tape usinU 

CMS-2. The first method uses the system tape generation control cards 

(described in paragraph 102) to completely reconstruct a system, including 

recompiling some of the components and adding new components. The second 

method uses system debugging aid cards (SPATCH described in paragraph 1.2.8 

to change individual instructions in specified component records each time 

the system loader loads the record from tape into memory. 

I. 1.1 Sys tern Tape Or9 an i za t ion 

Figure 1-1 illustrates the organization of a system tape generated by C~lS-2. 

The first record on the tape contains the resident port inn of the Monitor that 

the bootstrap routine loads into memory during system initiation. 

This first record also contains the resident systPnt tape directory which 

identifies the physical position (by record number) of each segment directory. 

Each of these segment directories ide~tifies which records make up the segment 

and wh~re on the system tape (again by record number) each required record 

is located. The record data in memory is also called the compound address 

section with assigned base registers. 

The second record contains the segment directory for segment 2 incompon0nt 1. 

The following records contain the data for segment 2. The reader should note 

that the second tape record is the directory for segment 2 of component 1 

because this record is an exception to a basic organization assumption that 

the first segment directory on tape for a component is for segment 1 of the 

component. The first record on the tape is not assigned a segment number 

because it never leaves memory; it is considered a part of componerit 1 (the 

Monitor). 

I-I 



M-5035 
:hange 2 

Record Gap 

Record Gap 

- t tape mot ion -
RESIDENT MONITOR HECORD 

(Contains Resident Directory) 

COMPONENT 1 SEGMENT 2 

DIRECTORY 

COMP 1 SEG 2 RECORD 

COMP 1 SEG 2 RECORD 

etc. 

COMPONENT 1 SEGMENT N 

DIRECTORY 

COMPONENT 1 SEGMENT N 

RE 
Co 

Ro 
S 

COMPONENT M SEGMENT 1 

DIRECTORY 

COMPONENT M SEGMENT 1 

RE 
Co 

R 
Os 

COMPONENT M SEGMENT N 

DIRECTORY 

COMPONENT M SEGMENT N 

RE 
Co 

n 
DS 

SYSTEM LIBRARY 

- ----- - -----

} 

Loa. d Point Marker 
Loaded into Memory by Bootstrap 

Routine 

-Records Retrieved and Allocated 

~emory When Retrieving Component 

.Segment 2 

Tape Mark - End of Operation Fil(' 

Tape Mark 

Tape ~lark 

Figure 1-1. System Tape Organization 

1-2 



M-5035 
Change 2 

Exe(~pt for r,ompon(~nt. 1, thp first segment in a eomponpnt must be segment 1. 

There Isno rule uoverninu th(~ physieal arrangempnt. of the other seHm(~nt s 

in a eomponento They may he arranged in any order (normally t.o reduec tape 

movement during operation). Likewise, there is no rule governing the physical 

order of the components on the tape (cxcept that the first component must be 

componen t U. 

A tape mark separates l.he operational file (containing the records for the 

segments in the system components) from the system library containing 

assembler procedures, compiler math routines, and so forth. 

Two tape marks appear at the end of the system library to indicate the end 

of recorded data. 

1.1.2 System Directories 

There are basically two system directories; the resident directory and Lhe 

legment directory. The resident directory is loaded into memory during 

the bootstrap load. This directory contains a list. of the components on the 

tape, and the location of each segment directory for each component. There 

is a segment directory on the tape for each segment in the system. The 

segment directory lists each record that must be in memory before the segment 

can function properly. This list includes the physical location of the 

required records on tape. 

1.1.2.1 Resident Directory 

The resident directory has two basic parts: first, an introduction and list 

of components, and second, a list in physical component/segment order identi­

fying the location of corresponding segment directories on the system tape. 

1 -3 



I 

I 

M-5035 
Change 5 

The format of the resident directory is: 

31 16 

Num ber of Com·ponents 

-..- T ape Version -
~ System Tape Construction Date 

Counter 

Component Number Location of Seg List 

Component Number Location of Seg List 

Component Number I Location of Seg List 

Nu m ber of Segments 

Segment Number I Directory Position 

Directory Length 

Di re ctory Checksum 

Segment Number 1 Directory Position 

Directory Length 

Directory Checksum 

Segment Number 1 Directory Position 

Directory Length 

Directory Checksum 

Num ber of Segments 

Segment Number I Directory Position 

Directory Length 

Directory Checksum 

etc. 

1-4 

o 

---
-

Introduction and 
Component List 

List of Segments 
in One Component 

List of Segments 
in Next Component 



M-5035 
Change 2 

Unless otherwise specified, all numbers are right-justified and all charncter 

strings are left-justified. 

Explanation 

Number of Components 

Tape Version 

System Tape Contruction 

Date 

Counter 

Component Number 

The number of system components currently on 

the tape. This value indicates the length of 

the component list. 

The 16-character system version or identifier 

specified on the first control card when the 

tape was generated. 

The eight-character date in the format MM/DD/YY 

supplied when system tape generation routine 

generated the system. MM = number of the month; 

DO = date; YY = last two digits cf the year. 

Set to zero on BUILD and REPLACE functions. It 

is incremented by one on MOVE, DELETE, and PATCH 

functions. If multiple functions are specified, 

the first designated function determines change 

in counter value. 

An assigned number that is associated with 

process an independent processor. (Loader, 

Librarian, Sysmaker, etc.) 

Location of Segment List This is a pointer to the segment list of the 

component. The segment list is for the component 

that is in the same word as the pointer. 

Number of Segments 

Segment Number 

The number of segments that make up the corres­

ponding component. This value indicates the 

length of the corresponding segment list (3 

words required for each segment and 1 word for 

the number of segments). 

As assigned number corresponding to a phase or 

pass of a given component. It is the collection 

of records of a component that are in core and 

executing at one time. 

1-5 



M-5035 
Change 2 

Directory Position 

Directory Length 

Directory Checksum 

The tape record number of the segment directory 

corresponding to the segment number in the same 

word .. 

The length of that segment directory. 

The checksum (formed by executing full length 

fixed point adds disregarding overflow) of the 

segment directory data. 

NOTE 

At the end of each job, the CMS-2 Moni tor 
prints the Tape Version, System Tape Con­
struction Date, and Counter on the SYSTEM 
MEDIUM line. 

1.1.2.2 Segment D~rectory 

Each segment directory contains one word indicating the number of records that 

make up the segment plus a seven-word packet for each record. The packet con­

tains the data used by the system loader to place the corresponding record in 

memory upon. command. 

The format of the segment directory is: 

Comonent Number Record Type 

Record 
Name 

Record Position Ini tl RIse Ih Consec 

Memor Protection Code Number of Words 

Record Checksum 

Record 
Name 

Cont fIg 

Linked Rec 

Record Position Ini tl Base Ihg Consec 

Memory Protection Code Number of Words 

Record Checksum 
Cont FIg 

etc. 

1-6 

First Seven-Word 
Record Packet 

Second Seven-Word 
Record Packet 



M-5035 
Change 2 

Unless otherwise specified, all numbers are right-justified and all character 

strings arc left-justified. 

Explanation 

Number of Records in 

Segment 

Component Number 

Record Type 

No. Linked Records 

Record Name 

The number of records that make up the 

corresponding segment. This value indicates 

the number of record packets in the 

direct.ory. 

'the assigned number of the component that 

the record is a part of. 

One of the following colle s tha t identifies 

the type of record: 

I - fixed length data record. 

2 - fixed length instruction record. 

3 - dynamic variable length data record. 

4 - dynamic variable length instruction 

record. 

The Monitor permits dynamic record length 

adjustment requests (desrribed in Systems 

Programmer's Manual paragraph 3.4.2) to ref­

erence only type 3 or 4 tecords. 

The number of tape blocks that are linked 

together to form a compound section or 

record. 

The up to eight-character nam~ assigned 

to the record. The syste~ routines 

reference the record using the assigned 

name. The name corresponds directly to 

the compound section name used on the 

object.-code loader directives. 

1-7· 



M-5035 
Change 2 

Record Position 

Initl Base Reg 

Con sec Base Reg 

Memory Protect Code 

The relative posit ion of associated record 

on tape (the first record after the load 

point is record 0) counting the segment 

directories as records. 

The number of the base register that the. 

system load routine is to assign to the 

first 8K positions of the r(~cord. 

I nd i ca te s whe ther 0 r no t th(~ sys tern load 

routine is to assign consecutive base 

registers for each OK of memory as follows: 

1 - No; assign only one base register. 

2 - Yes 

An octal code that specifies what type of 

memory protection the System Load Routine 

is to set up for the record. It is a 

five-bit field. The operation is allowed 

if the bit is set. 

BIT NUMBER 5 4 3 2 1 

TYPE I OR OW IA IR 

IR = I - Allows the use of interrupt 

index and base, registers in 

indirect addressing. 

IA = 1 - Allows indirect addressing. 

OW = I - Allows operand writing o 

OR = 1 - Allows operand reading. 

I = 1 - Allows instruction execution. 

1-8 



Number of Words 

Record Checksum 

Cont FIg 

1.2 SYSTEM TAPE GENERATION 

M-5035 
Change 2 

T h (~ n Un! he r 0 f Ill( ~ mo r y w 0 r d s r e qui red I 0 h 0 1 II 

Ltw record <I:IIa. For dynamic f('cords 

(variable len~)ths - types 3 anu 4) this 

value inliicatf's the initial length ()l' Ihp 

record. If Ihis value is 0, thert~ is no 

datn on tape; however, the system load 

routin(~ plilcl~s the record name in Ihe 

active record list and assigns memory 

space as the routine receives requests to 

expand the record leng I h (see Systems Pro-

grammer's Manual, paragraph 3.4.2). 

The checksum (formed by executing full­

length, fixed-point adds disregarding 

overflow) of the specified record data. 

Two bits (bits 0 and 1) indicating whether 

or not the record is the control record for 

the associated segment as follows: 

I - indicates a control record. 

2 - indicates non-control record. 

When activating a segment, the Monitor 

passes control to the base address of the 

indicated control record. If more than 

one control record exists, control is 

given to the first one encountered in the 

segment directory. 

System tape generation uses two routines; the system tape generation SY5MAKER 

routine (to process special cards required to prepare the resident directory 

and segment directories) and the object-code loader (to bind the routines). 

The SYSMAKER can build a system tape using only the special cards and loader 

1-9 



M-5035 
Change 2 

input. However, in normal operation, the SYSMAKER builds a new system tape 

by starting with data on an existing system tape, then changing and adding 

data, as commanded, to generate the new tape. 

The Monitor loads and transfers control to the SYSMAKER after processing a 

$SYSMAKER card (same format as the other component call cards; for p-xamplc, the 

$SYSMAKER starts in column 1 with the rest of the card blank or hAving comments). 

The SYSMAKER performs the following five main functions: 

l. Build or insert function which adds a new segment or a new component, 

and new directory information. 

2. Replace function which adds a new version and deletes the old 

version of one segment at a time. 

3. Move function which changes the relative positions of a component 

or segment. 

4. Delete function which eliminates a component or segment. 

5. Patch function which inserts system patches. 

The routine scans the special control cards for one of the above functions. 

The first four functions must be declared in such an order that the current 

c~mponent upon which the operation is being pp.rformed has not been alre~dy 

copied by a previous function. The patch function must be a sepAra1.e $SYSMAKER 

call. 

1.2.1 Build or Insert Function Cards 

The build or insert function cards command the SYSMAKER to add a new 

component or a new segment to a component. The routine retrieves the r('sid(~nt 

directory and the corresponding segment directory from the input syst{'111 lapt' 

(if applicable). The definitions on the build cards are used to construct 

(or reconstruct) the resident. direct.ory and segment. direct.ories. The fOlil in(\ 

copies the data from the input tape (up t.o the posit ion when the d(~finpd 

segment. or component is supposed 1.0 go) onlo t.h(~ scrat.ch tape. 

1-10 



M-5035 
Change 2 

The SYSMAKEn then cilils the Loader to hind illl ilddress sections. The 

lengths and ot.her informlltion passed from th(~ Loader are plnct~d int.o tlw 

segmpnt. directory tables. These bound S('('.Lions (reL,ords) are placed on !.tw 

scrateh tilpe with the s(!Hrnent directory n!cord first. and ttH' rt~maininu 

records in "the relative posit.ion decl()rcd with (is many control records as 

are declared per segment. At this point, more segment builds, replarrs, 

moves or deletions may be init.iated. Upon the reading em ENUSYSBD card, thp 

scratch tape is file marked, and a new system tape is built containing the 

new resident directory information. The system library will be copied from 

the input system tape onto the output tape. For the case of an initial 

build, a null file with two tape marks will follow the operational li­

brary. 

The following four cards are associated with the build or insert function: 

1. Init.iat.e build. 

2. Segment definition. 

3. Record definiLion. 

4. Initiate Loader. 

1.2.1.1 Initiate Build Card 

The ini I.iate build card commands t.he SYSMAKER to activate the build or 

insert funelion. One of these cards must be present for e()ch component the 

programmer wishes to add to the system. The ini tiat.e build card definc's the 

component the programmer wishes either to add to the system o~ to modify. 

Subsef(uent cards define individual segments in the component and records 

in the segments. 

Format 

BUILD output tape, comp no., asg name, comp position, input tape~ 

mon loc. v resdiroffset, asg 2 name 

I-II 



M-5035 
Change 2 

Explanation 

Output Tape 

Comp No. 

Asg Name 

Comp Position 

Input Tape 

The up to eight-ch~racter name of the 

output system tape the SYSMAKER is to 

use in the console messRges. If this field 

is blank, the routine assumes the nnnW 

NEWSYSTP. 

The number assigned to the component when 

ita p pea r son the o'u t P u 1. tap e . 1ft h j s 

number is associ~ted with a component on 

the input tape, the routine assumes that 

specified segments will be added to the 

component. 

A name or version up to four characters 

which the routine assigns to the new tape. 

This name appears in the second word of 

the resident directory. 

The number of the component on the input 

tape that is to immediately precede the 

component being processed. If this field 

is blank, t~e routine will place the 

component being processed either at the 

end of the output tape if the componen1 

is not on the input tape, or at the same 

relative position on the output as the 

component appears on the input t.ape. 

The up to eight-character name of lhe 

input tape the SYSMAKER is to use in 

the console messages. If this field is 

blank, the routine will use the current 

sysU~m tape. A zero in this fie]d spf?cifies 

no input tapf? 

1-12 



Mon toe 

M-5035 
Change 2 

Tlw ahsolull' 0(:1;)1 addr('ss of II\(, starl 

of ttw Monitor hootslril\) lOlld an'iI. 'IIJ(~ 

current Monitor is alwnys lO(ldpd inlo II\(' 

upper nrC(l of memory., This v(llu<~ Il1l'n 

specifics thp bottom of the resident 

Monitor load area and the top address 

available to the non-resident routinps. 

If this field is blank, the routine ClSSltmeS 

address O. 

Resdir Offset The offset from the beginning of the boot 

block (first jump cell) to the first 

address of the resident directory. If 

this field is blank, the input system 

tape offset will be assumed. 

Asg 2 Name A name or version up to eight characters 

which the routine assigns to the new tape. 

This name appears in the fourth and fifth 

words of the resident directory. The two 

assigned names are output upon completion 

of each job in the accounting summary. 

Example 

NOTE 

The SYSMAKER uses the output tape, assign 
name, input 'tape, resdir offset, and 
Monitor octal load data on the first card 
processed after the $SYSMAKER card. The 
routine ignores these fields on subse­
quent cards; therefore, these fields may 
be left blank. 

On tape SYS~36, prepare to insert a component wi th the number 8. Use 

tape SYS~3/1 as the input syst.em to be modified. Insert component n 
immediately behind componen1 4. The residpnt monilor stnrts nt 

address 111,0000' 

1-13 



M-5035 
Change 2 

1.2.1.2 Segment Definition Card 

The segment definition card indicates the start of a segment record list 

for a specified segment within the component defined hy an initiale build 

card. 

Formal 

SEG segment number, segment position 

Explanation 

Segment Number 

Segment Position 

1.2.1.3 Record Definition Card 

The assigned segment numher the segment 

being processed will have when it appears 

on the output tape. 

The number of the segment within the 

component (specified by the initial 

build card) that is to immp(jiately precede 

the segment being process(~d on tape. If 

this field is blank, the SYSMAKER places 

the segment at the end of the component 

or, if on the input tape, in the same rela­

tive position. This field may not be used 

when "comp position" is used on the Build 

card. 

There are two record definition cards. These cards contain Ihe information 

required to construct the record packet in the seg~enl directory. The two 

cards have the same format except (or the card identifier. REC indicates a 

record definition card and CREC indicates a control record definition card. 

Format 

REr: 

or record name, type, link ba~e reg, mem protect code, length 

CREC 

1 -14 



Ex!»];)n:.1 ion 

Type 

Link Base Regs 

Mem Protect CodC! 

M-5035 
Change 2 

The up I () (~i U h t - c h a r () c t err e C () r cl n () 11\1' 

assigned to I tH~ record bei ng process('d. 

The specifif~d data app(\urs as th(~ record 

name in t.he correspon(ljng record packet 

in the segment directory. 

A code that indicat('s the type' of f(~cord 

as follows: 

1 - fixed lenglh dnta recoru. 

2 - fixed length instruction n'conl. 

3 - variable length uynamic dal<l rpcord. 

4 - variahl(' l(!nUlh dynamic instruclion 

record. 

A code that indicates whether or not the 

system Loader is to assign consecutive base 

regislers for (~aeh 01\ port."ion of Iht' 

record as follows: 

1 - No (only one). 

:2 Yf'S (defcwlt if not specifierf). 

An or I al code I hn I SI)('ci fips what t YIH'S 

of memory protecl ian Ihe Loader is 10 Sf'1 

lip for t.he record. II is a fivf>-bil fi(~ld. 

The op<'raLion is allowed if the bit is s('I. 

Bi t Numbpr ~ 4 :~ 2 1 

Type I on ow fA IH 

IR = 1 - Allows the use of interrupt 

index and base registers in 

indirect nctctressing~ 

IA = 1 - Allows indirect actdressinu. 

1-15 



M-5035 
Change 2 

Length 

ow = 1 - Allows operand writing. 

OR = 1 - Allows operand reading. 

I = 1 - Allows instruction execution. 

NOTE 

If the memory protection code is not specified 
(default mode), the SYSMAKER inserts a code 
of 36 for type 2 or4 records (instruction 
records) or a code of 16 for type I or 3 
records (data records)o 

A 1 indicates that the corresponding record 

has no initial length. The SYSMAKER 

puts no data on tape. The record name 

appears in the segment directory; and 

when the segment requests the Monitor to 

expand the record, the record is given 

space in memory (if dynamic). 

I .2.1.4 Loader Ini tiate Card 

The loader initiate card commands the SYSMAKER to transfer control to the 

Object Code Loader (described in Volume I, Section 3 of the User's Reference 

Manual). The cards following the Loader initiate card are inputs to the 

Object Code Loader until an END card appears. Then the Loader returns 

control to the SYSMAKER. 

Format 

LOAD counter release code 

Explanation 

Counter Release Code A code that informs the SYSMAKER whether 

or not the SYSMAKER is to use previously 

derived data during the current processing 

and whether or not the SYSMAKER is to save 

the data (such as bound data or linkage 

tables) as follows: 

Blank - Compute new tables as required 

and discard when finished. 

1-16 



M-5035 
Change 2 

- Sflve load information for npxl 

loader command. 

:.! - Use }o;ld information generatpd by 

previous IOlldnr processing llnd s;)\'(' 

currenl lOlld informal ion for 111'\.1 

loader command. 

:\ - Use load information <]enpral!'d hy 

pn'violls loader pr()r,f!Ssjn~1 nnd 

di scant when f ini shed. 

NOTE 

Wh e n II :2 0 r :3 j sus ed I nolo;) de r 
directives or END card follow o 

1.2.1.5 Example Build or Insert Requests 

Loader directives 

May have an object deck 

1-17 



M-5035 
Change 2 

Loader dirp.ctives 

May have an object deck 

Loader directives 

May have an object deck 

l :::::~:S:y :S:a:D: \ : : : : : : : : : l : : : I : : : : : \ : : : : : : : : : l : : 

The last card indicates the end of input to the SYSMAKER (see paragraph 

I.2.~). The above (!xample cffeetjvely adds a new r.omponent (number 0) behind 

component S to the system on tafH~ SYS0:36 and placp.s the new system on lapp. 

SY~~\7. The new componpnL consisls of three segments. 

1-180 



Loader direcl ives 

May have an object t1pck 

M-5035 
Change 2 

I :: :::~:S~ :':9:1: : : : : : : : : J : : : : : : : : : : : : : : : : : : : : : i : : 

The last. card indicates the end of input 10 the SYSMAKER. The above 

examp Ie cffec t i ve ly adds a new segmen t (number t}) to componen t n on t (1(lP 

SYS~J7 and places the new system on tape SYS0:JO. 

I.2.2 R(~plllCP Funetion 

Thp r<~place function is the process which replnces old spuments with nt'\\' 

ones. The new f(~cords of' tlte sevmf~nt retain all old tiirf'ctory infornl<ltion 

except length and possibly the initial bnse f(~<Jister. The old directory 

information is read into a table, after which th(~ scratch tape is correct ly 

positioned by copying ev(~rything lip t.o the old segment .Ti1t~ [ .. oacif~r is c.llllt'd 

and returns thf~ new [('('ords and their l(~ngth informlllion. The seument 

directory is updated and written on the scratch tape. Then the. n<'w f(\('ords 

are written on the scratch tape, and t.Iw old S(~~lment is automalically d<'II'lt'd. 

Upon eontinucd sermning, if an ENIlSYSBU ellrd is found, the scralch lapt' is 

f i I e mar ked, and I. h e rH' w S y s 1 (~m Lap e ism il d (~ w i I h I h t ~ new res i Ii e n t d i r (' c I () r y 

information. 

T his fun c t i on u ~ est wo car d s : t h (' i nit i a 1. e r (' p I (1 C e car d and 1 h P in iIi ill (' 

load card. Paragraphs 1.2.1.4 describes the format of the ini t iate load card. 

The formal of the iniLiate replace card appears bf'low. 

1-19 



M-5035 
Change 2 

Format 

REPLACE 

--- -- ". "- ---. --_._--------. 

Explanation 

Output Tape 

Comp No. 

Seg No. 

AsgName 

Input Tape 

Mon Loc 

output tape, comp no., seg no., asg name, input tape, mon loc, 

resdir offset~ asg 2 name. 

The up toe l g h t, c h a r act ern arne 0 f t h (! 

output system t ape that. the SYSMAKER 

is to use in the consolp m(!ssages. If 

this field is blank, the routine assumes 

the name NEWSYSTP. 

The number assigned to the component that 

contains the data tc be replaced. 

The number assigned to the segment that 

the SYSMAKER is to replace with new 

data. 

An up to four character name or version 

the routine assigns to the new tape. This 

name appears in the second word of the 

resident directory. 

The up to eight character name of the 

input tape the SYSMAKER is to use in 

the console messages. If this field is 

blank, the routine Will use the current 

system Lape. 

The absolute octal address of the start of 

the Monitor bootstrap load area. The 

current Monitor is always booted into the 

upper area of memory. This value then· 

specifies the bottom of the resident 

Moni tor load arf!i] and t.hc! lOp address 

availahl(! to the non-rpsidpnt routines. 

If this field is blank, the routine 

assumes address O. 

1-20 



M-5035 
Change 2 

H(~sdi r Offspt, Ttl(' off's", from ttlf' h(\~,innin{J of the hoot. 

block (first jump c(~ll) to thf~ first 

address of the resident directory. If 

this field is blank, the input system 

tape offset will be assumed. 

Asg 2 Name A name or version, up to eight characters, 

which the routine assigns to the new tape. 

This name appears in the fourth and fifth 

words of the resident directory. The two 

assigned names are output upon completion 

of each job in the accounting summary. 

Example 

NOTE 

The SYSMAKER uses the oU1put lapp, assiun name, 
input tape, and ~loni1()r octal load data on lh(~ 

first eard process(~d afler Ih(! SYS~lAI\En eard. 
The routin(~ ignores these fields on sllbs~qll(!nL 
car d s; the ref 0 r e, 1 he s e fie 1 d s mil y 1)(' 1 (! 1.1 lJ 1 an k • 

Loader directives 

May have an object deck 

I ::::S:Y~:9:1): I : : : : : : : : : : J : : : : : : : : I : : : : : : : : : : : : 

1-21 



M-5035 
Change 2 

The last card indicates the end of inputs to the SYSMAKER. The above 

example replaces segment 4 of component 8 on tape SYS03B with the data 

processed by the Loader. When complete, the routine writes a new system 

on tape SYS039. 

1.2.3 Move Function 

The move function rihanges the position of the specifiPlj component or segment 

on the system t.ape. First, it reads in the old residf'nL directory information. 

The moved item is pl~ced in the delete table. Then the copy routine is called, 

which positions the scratch with the old componerits copied on it. The defined 

~tem is then written onto the scratch tape, along with the correct tape 

position record numbers being placed in the segment directory. 

A move initiate card starts the move function. This card can command th0 

SYSMAKER to change either the relative positions of the components in the 

system or the relative position of the segments within various componrints. 

However, the routine cannot change the relative positions of segments within 

components that it has moved while changing the relative positions of 

components. Conversely~ the routine cannot move components th~t arc affec'ted 

by commands to alter the relative positions of internal segmenl,s. 

Format 

MOVE output tape.compno.,comp pOStseg nO.,seg pos,asg name,input tape,mon loc 

Explanation 

Output Tape 

Comp No. 

The up to eight character name of the out­

put system tape the SYSMAKER is to use in 

console messages. If this field is 

blank, the routine assumes the name NEWSYSTP. 

The number assigned to the component that 

the SYSMAKER either is to move to a new 

relative position on the system tape or 

is to change the relative positions of its 

internal segments. 

1-22 



Comp Pos 

SPg No. 

Seg Pos 

Asg Name 

M-5035 
Change 2 

The number assign(!d to the component that 

is to immediately precede the component 

specified by the Comp N~ field on the 

system tape. If this field is blank, the 

SYSMAKER assumes that the card changes 

the relative positions of segments within 

the component specified by the Comp No. 

field. If this field contains data, the 

Seg No. and Seg £los field must contain 

blanks. 

The number assigned to the segment (of 

the compon(~nt specified by the Comp No. 

field) that the SYSMAKER is to move to a 

new relative position on the system tape 

within the component. This field mllst b(~ 

blank when the routine is to move the 

component containing the segment to a 

new relative position. If this field 

contains data, the Comp Pos field must be 

blank. 

The number assigned to thp segment (within 

the component specifipd by the Comp No. 

field) that is to immediately prcc(~de the 

segment specified by the Seg No. field on 

the system t.ape. This field must be L>lank 

when the routine is to move the componl'nt 

con t a i n i n 9 1. h e s (~g me n t s t () a new r e III I i v (. \ 

position. If t.his field contains data, 

the eomp £los field must be b'lank. 

An up to fOllr character name or version 

the routin(' assigns to the np\\! tape. This 

name appears in the second word of the 

res i den t tHrec tory. 

1-23 



M-5035 
Change 2 

Input Tape 

~Ion Loc 

Examples 

The up to eight chari1cl('r nflme of ttw input 

t.ape thilt the SYSMAKER is to use in the 

console messag('s. If this fi{'ld is blilnk, 

the routine will use th(~ current system 

tape. 

The nbsolute oelal nddr{'~s of Ull' sli1rl. 

of Ih(' ~lonilor b()olslfi1P load an'a. The 

current. Monitor is alwi1Ys boot('eI inlo the 

upper aren of memory. This valU(~t hen 

specifies the bottom of the resident 

~lonitor load area and the top address 

available to the non-resilient routin(~s. 

If this fipld is blank, the rou1.in(~ 

assumes address o. 

NOTE 

The SySMAKER uses the output tape, assign 
name, input tape, and Monitor octal load 
data on the first card processe,d after the 
$SYSMAKER card. The rputine ignores these 
fields on subsequent cards; therefore, these 
fields may be left blank. 

Move component number 5 to a position just behind component number 8. 

Notice lhal fields Seg No. and Seg Pos are blank on this card as they 

mus t be for a move componen I ~~ommand. 

Move segment 3 of componc'n! () !o () position just hehind s(~gmcnt. 

number~. Noticp that field Comp Pos is blank on this card as it must. 

be for a move s('gmcnt. command. 

1-24 



I.2.tl Delet.e Function 

M-5035 
Change 5 

The dl~h~te funct ion prcv(\nl s specified (',omponents or segments from appearing 

on !.he new system tape; thus, deleting t.hem from th(~ neW systpm. The 

SYSMAKER, after processing an initiate delete card, removes all directory 

references to the specified component or segment. An initiate delete 

commands thp routine eit.her to remove an entire component or to remove one 

segmen t of a componl~n I • 

Format 

DELETE output tape, comp no., seg no., asg name, input tape, mon loc, 

resdir offset, asg 2 name. 

Explanation 

Output Tape 

Comp No. 

Seg No. 

Asg Name 

The up to eight character name of the output 

system tape the SYSMAKER is to use in the 

console messages. If this field is blank, 

the routine assumes the name NEWSYSTP. 

The number assigned to the component that 

the SYSMAKER is to delete from the new 

system or the number of the component 

containing the segment that the SYSMAKER is 

to delete from the new system. 

The number of the segment within the 

component specified by the Comp No. field 

the SYSMAKER is to delete from the new 

system. If this field is blank, the 

routine deletes the entire component 

specified by the Camp No. field. 

An up to four character name or version 

the routine assigns to the new tape. This 

name appears in the second word of the 

resident directory. 

1-25 

I 



M-5035 
Change 2 

Input Tape The up to eight character name of the 

input. t.ape the SYSMAKER is to use in 

the console messages. If this field is 

blank, the routine will use the current 

syst.em tape. 

Mon Loc The absolute oclal address of the start 

of the Monitor bootstrap load area. The 

current Monitor is always booted into the 

upper area of memory. This valu~ then 

specifies the bottom of the resident 

Monitor load area and the top address 

available to the non-resident routines. 

If this field is blank, the routine 

assumes address O. 

Resd i r Offset The offset from the beginning of the boot 

block (first jump cell) to the first ad­

dress of the resident directory. If this 

field is blank, the input system tape off­

set will be assumed. 

Asg 2 Name 

NOTE 

A name or version, up to eight characters, 

which the routine assigns to the new tape. 

This name appears in the fourth and fifth 

words of the resident directory. The two 

assigned names are output upon completion 

of each job in the accounting summary. 

The SYSMAKER uses the output tape, assign 
name, input tape, resdir offset, and Mon­
itor octal load point on the first 'card 
processed after the $SYSMAKER card. The 
rotitine ignores these fields on subsp­
quent cards; therefore, these fields may 
be left blank. 

1-26 



I .2.5 End of Input 

M-5035 
Change 2 

The SYSMAKER continues to buiJd a scratch tape containing all of the 

changes to the old system required to produce the new system until the 

routine processes an end of input card. The routine then copies the rest 

of the input tape onto the scratch and uses the accumulated change data to 

produce the new system. 

Format 

ENDSYSBD 

1.2.6 System Tape Patching 

The System Tape Patching routine reads system patch statement cards (see 

paragraph 1.2.8), processes system patch cards, and outputs a new system tape 

with all patches inserted. After the SYSMAKER reads the initiate patch card 

control is given to the System Tape Patching routine. This routine is inde­

pendent of the other four SYSMAKER functions and cannot be used concurrently 

with them. 

Upon initiation of this routine, patch cards are read until a $ card is read. 

The patch information is stored during the reading phase. In the next phase, 

the System Tape Patching routine copies from the input tape, inserts the 

patches, and copies onto the scratch tape. In the final phase, this routine 

inserts the new resident directory into the Monitor while copying from the 

scratch tape to the output tape. 

The following control card initiates this routine: 

Format 

PATCH 

Explanation 

Input Tape 

input tape, output tape 

Up to eight-character name of the input 

tape the SYSMAKER is to use in console 

messages. If this field is left blank, 

the routine assumes the current system 

tape. 

1-27· 



M-5035 
Change 2 

Output Tape 

Asg Name 

Resdir Offset 

Asg 2 Name 

Mon Loe 

Up to eight-character name of the system 

output 1.ape 1.he SYSMAKER is to use in con­

sole messages. If this field is blank, 

the routine assumes the name NEWPATTP. 

An up to eight character name or version 

the routine assigns to the new tape. 

This name appears in the second and third 

words of the resirlcnt directory. 

The offset from the beginning of the 

boot block (first jump cell) to the first 

address of the resident directory. If 

this field is blank, the input system 

tape offset will be assumed. 

A name or version up to eight characters 

which the routine assigns to the new tape. 

This name appears in the fourth and 

fifth words of the resident directory. 

The two assigned names are output upon 

completion of each job in the accounting 

summary. 

The absolute octal address of the start 

of the Monitor bootstrap load area. 

The current Monitor is always booted in­

to the upper area of memory. This value 

then specifies the bottom of the resident 

Monitor load area and the top address 

a va i I a hIe ton 0 n - re sid e n t ro uti n e s . I f 

this field is hlank, the routine assumes 

address O. 



1.2.7 Copying System Tape 

M-5035 
Change 2 

The SYSMAKER duplicates a system tape when th(~ $SYSMAKER control is followed 

by an ENUSYSBD card. The operation reads from an input system tape and writes 

on an output tape. 

Format 

ENDSYSBD 

Explanation 

Input Tape 

Output Tape 

Input Tape, Output Tape 

The up to eight character name of the input tape 

the SYSMAKER is to use in the console messages. 

If this field is blank, the routine will use the 

current system tape. 

The up to eight character n~me of the new copy of 

the system tape that the SYSMAKER is to use in the 

console messages. If this field is blank, the 

routine assumes the name NEWCOPTP. 

The SYSMAKER requests a scratch tape during the initialization phase and 

releases the scratch tape during the copy function. The operator may assign 

the output tape to the previously assigned scratch tape. Different output 

names must be declared for multiple copies in one job. A word-by-word 

comparison of the input tape and output tape can be made vi~ the peripheral 

utilities compare function. 

1.2.8 System Patch 

The sys1(~m patch control card calls the system patch stat(~ment processor 

to process sJstem patch statements that fOllow the specify syst~m program 

corrcction(s). A patch statement must precede the Ioauof tht~ program l)(~ing 

corrected. 

1-29 



M-S035 
Change 2 

Format 

$SPATCH 

Patch statement cards following the system patch control canl conlain the 

actual data. The statement processor modifies the specified component. pach 

time it is loaded into memory. Commas are used to separate all parameters. 

Spaces may be used to separate func1ional parts of a patch. Any number of 

consecutive spaces may surround 1:.0 comma. No more than one starting location 

may be specified on one system patch statement. 

Forma t 

component, location, type, patch, patch ••• 
Each successiv(~ patch affects successive memory locations. 

Explanation 

Component 

Location 

Type 

A decimal number specifying one of the 

system components on the system tape. 

A location specified by a system record name 

(compound section name in a component 

of up to eight characters) followed by an 

optional octal or decimal increment, where 

a decimal value is fOllowed by a D. This 

parameter specifies a starting location 

for a half-word or more of patch information. 

The patch statement type is as follows: 

I - Instruction 

K - I/O Controller command 

o - Octal (a signed number consisting of 

up to eleven octal digits). 

C - Variable length Hollerith character 

string converted to ASCII. If the 

length of this character string is 

not a multiple of four characters, the 

last patched word will be filled on 

the right with space codes. 

1-30 



Patch 

M-5035 
Change 5 

Informa tion in a format determined by the patch type. 

Patch type formats include the following: 

1. Central Processor Instruction (1) 

The patch processor interprets the function 

code (FF) to determine the proper form at. 

The patch processor considers all function 

codes legal. 

Non -assigned function codes 00 and 04 are 

treated as format n instructions, and non­

assigned function codes 72, 73, and 75 are 

tre ated as form at IV A instructions. 

As shown below, all full length instructions 

consist of octal digits. The first six digits 

are interpreted as FFAKm, FFAF 2BI, or 

FFAF 3BI, as applicable. The lower digits 

form SYYYYY. If there are less than twelve 

digits, the left six digits form the upper 

half of the word. The remaining digits form 

the S, Y, and SY fields, right-justified. 

Half-word instructions consist of six digits 

for each half-word. If only six digits are 

specified, the patch processor places the 

instruction in the upper half and all zeros 

in the lower half (a no-op). 

1-31 

I 



M-5035 
Change 2 

The fo]]owin~J list shows hnrdwClrt~ 

formats and the c,orresponding 

cod i ng seq ue nc'(~ : 

HClrdwarp Format Coding SeqlH'neC 

I FFAKBISYYYYY 

I I FF AF2 BI SYYYYY 

I I I FFAF
3

KBISYYYYY 

F~lK is codpd as 

one octal digit ° 

IVA FFAF4Bl 

IVB FF AF_~lM (F ,.. - U) 
;) J 

FFAF_RBI 
;) 

F_H = /1 
;) 

Shift count in 

F R = (, 
J 
Shi ft count in 

2. I/O Controller Commands (K) 

I/O Controller Commands arc coded 

in one of two formats: 

Bb o 

Ah • 

Hardware Format Cal1inq Seqw!ncp 

1-32 

I (FF ::.: 10-1(d 

I I (FF = 17-20, 

22-27 ) 

FFKJJ~lC YYYYYY 

FFKJMC YYYYYY 

Any function code (FF) not in th{~ 

range 10 to 20, ~2 to ~7 shall be 

interpreted as a format I IOC 

command. 



~l. Oe tal (0) 

M-S035 
Change 2 

The patch statement processor 

ar.Cf!pl s a If!ading plus or minus sign 

followed by as many as cleven or.tal 

dig its • A val i doc t a I n umbe r b.eg i n­

ning wi I.h an octal digi tis s I Oft'd 

as codpd. A leading minus si~ln 

causes thf! number following it 10 hI" 

complcm"nt(~d (sevens complempnl) 

before s l.orage. I f fewer than 

eleven octal digits are coded. th(~ 

resultant value is righ1.-justifi('d 

within the word (before complementin~ 

if precedpIl by a minus sign). 

4. Character ef) 

Thl' pat ch s tat emf'n t processor 

accepts chnracter strings contnining 

graphic ASC1I characters coded as 

follows: 

(C C .0.Cn) 

Wh,'relhp desired variable' j('nlJth 

character string is ('nclospd in 

parenlht'ses. Tf it right pnrpnthesis 

i s des i r cd () spa r t 0 f t h f' S t r i n 9 , 

i I is nf'cessary to code two for 

caeh right par'enthesis wanted. 

The chararter string terminates 

wi than odd number of r.onse(~ut iv(' 

rinht parf'nth('ses. If tht' 

character string does not r('sult 

in a numher of characters which 

is an even multiple of four, thl' 

Inst word patched is filled on thl! 

right with ASCII space codes. 

1-33 



M-5035 
Change 2 

Exallll'i(!s (system patch cards) 

: : :: l: :: 
Change the inst.ruction locnted in word 50

B 
of record C!\RIJSCAN in 

component 1 to thp instruction indicated (load A:~ with n vniup of 7:in'. 

Change the character- string starting at word ;jUDO of record CARDSCAN 

in component I to the string indicated. This string occupies five 

word s. 

C~ange the instruction located in word 776 of record RALPH in component 

1 to the instruction indicated (compare (A4) with a value of 25
0

). 

Because the lower digits describe a constant, nIl six digits nrc not 

rpI{U ired. 

Change the instructions located in words 543 and 544 of record INSORT 

in component 2 to the instructions indicated (half add (A2) + (A3) and 

complement (A4) instructions in word 543 with a square root (AS) instruc­

tion followed by all zeros in word 544). The patch processor ignores the 

space between the two half-word instructions listed for word 543. 

1-34 



I. 2. 9 User Segment Addition and Execution 

M-5035 
Change 5 

User segments can be added to the utili ties component of the system tape and subse­

quentlyexecuted. A typical SYSMAKER run to add a utility segment might appear as 

follows: 

$JOB 
$SYSMAKER 
BUILD NEWTAPE, 3, XXLYY"OLDTAPE,115000 
SEG 2 
REC DATAREC, U, 2, 36 
CRECINSTREC, 1,2,36 
LOAD 
DATAREC (1),· SYSDD1, SYSDD2 
INSTREC (4), SYSPROC1, SYSPROC2 
LIBS CCOMN(REELNUM) 
SEL-ELEM 
END 
ENDSYSBD 
$ENDJOB 

The user's program is contained in records DATAREC and INSTREC. The five state­

ments after LOAD are loader commands discussed in Section 3. The first two state­

ments after LOAD are combine elements commands for the loader. 

To execute the added segment, the following sequence of operations may ~ used: 

$JOB 
$UTILITY 
EXECUTE 2 
$ENDJOB 

Segment 2 is accessed in the execute with no return mode. Therefore, further 

utility commands may not follow the EXECUTE command. The user added segment 

is operating in the sytem mode,not the user mode, with all system facilities 

(such as those XS ·calls not available to a user program) available for use. 

1-35/1-36 (Blank) 





M-5035 
Change 5 

CMS-2 KEYWORD INDEX 

ADS 11-9-3 , 
ABS Directive, 11-11-21 

ABS Modifier, 11-5-10 

Accessing the Compiler, 11-7-1 

AC Directive, 1-3-12 

ACKN, 1-2-30, 1-2-31 

Active State Register, 11-12-9 

Address Counter, II-II-55 

Address Counter Declaration, 
II-II-53 

Allocated Map Listing, 1-3-36 

Allocation Header Statements, 
11-7-124 

AN/UYK-20 Loader, I-3A-1 

A Register, 11-12-3 

Arithmetic Assignment State­
men t, I I - 5 - 27 

Arithmetic Expressions, 11-5-1 

Arithmetic Operators~ 11-11-64 

BASE, 11-7-4, 11-7-17 

BASE Directive, 1-3A-3 

BC Directive, I-3-1B 

BEGIN Block, 11-5-60 

BIT Modifier, 11-5-10 

BKFILSKP, 1-5-6 

BKRECSKP, 1-5-7 

Blocks, I I - 5 - 59 

Boolean Assignment Statement, 
11-5-33 

Boolean Expressions, 11-5-6 

BOOTWRT, 1-5-14 

BP Register, 11-12-5 

B Register, 11-12-3 

BYTE, I I - 9 - 3 

BYTE Directive, 11-11-21 

CARD - I D, I I - 9 - 2 

CARDTAPE, 1-5-12 

Asseinb1er, I-1-B, II-1-B, _11-11-1 Card-to-Tape, 1-5-22 

Assembler Diagnostics, 11-11-76 

Assembler Outputs, 11-11-72 

Assembly Errors, 11-11-76 

AUTO-DD Declarative, 11-4-1, 
11-4-7 

K-1 

CHAR, I I - 9 - 3 

CHAR Directive, 11-11-22 

CHAR Modifier, 11-5-12 

Character Strings, 11-9-B, 
11-11-60 

I 



M-S035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

CHECKID, 11-6-35 CONVERT, 1-5-15 

CLOSE~ 11-6-26 CORAD Modifier, 11-5-14 

CMODE, 11-7-4, 11-7-32 CORRECT, 11-7-4, 11-7-25 

CNT Modifier, 11-5-13 CPMCR Register, 11-12-5 

Combine Elements, 1-3-9 Cross Reference Listing, 11-11-76 

Commands Available, 1-6-9 CS Directive, 1-3-14, 1-3A-2 

COMMENTS, 11-11-7 CSWITCH, 11-7-4 

COMPARE, 1-5-19 CSWITCH Brackets, 11-7-30A 

Compare Tape, 1-5-24 CSWITCH Declarations, 11-7-30 

Compiler, 1-1-7, 11-1-7 CSWITCH-DEL, 11-7-30B 

Compiler Error Summary, 11-10-12 CSWITCH Deletion, 11-7-30B 

Compiler Outputs, 11-10-1 CSWITCH-OFF, 11-7-4, 11-7-30 

Compile-Time System Facilities, CSWITCH~ON, 11-7-4, 11-7-30 
11-7-1 

Complex Macros, 11-11-52 

Compound Decision Statements, 
11-5-1 

Computer Instruction Repertoire, 
11-12-26 

Conditional Operators, 11-11-67 

Console Message Output, 1-1-9, 
1-2-63 

Constants, 11-9-6, II-II-59 

Control Dec1aratives, 11-4-62 
DATA, I I - 4 - 61 
MODE, I 1- 4 - 63 

Control Statements, 11-5-41 

Data Declarations, 11-4-14 

~ND-TABLE, 11-4-35 
FIELD, 11-4-25 
ITEM-AREA, 11-4-30 
LIKE-TABLE, 11-4-34 
SUB-TABLE, 11-4-31 
TABLE, 11-4-19 
VRaL, I I - 4 - 1 5 

DATA Declarative, 11-4-61 

Data Expressions, 11-9-9 

Data Modes, II-II-58 

DATAPOOL, 11-7-4, 11-7-18 

Data Referencing, 11-4-44 

Data Words, 11-11-59 

K-2 



M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

DEBUG, 11-7-4, 11-7-29 

Debugging Aid Cards, 1-2-7, 
1-2-18, 1-2-60 

Memory Dump Card ($DUMP), 
1-2-18 

Patch Card ($PATCH), 
1-2-26 

Snap Card ($SNAP), 1-2-21 

Debug Statements, 11-8-1 

Dl SPLAY, I 1- 8 - 2 
PTRACE, I 1- 8 -11 
RANGE, I I - 8 - 7 
SNAP, I I - 8 - 5 
TRACE, I I - 8 -" 9 

Decimal Numbers, 11-9-6, 
II-II-56 

Decision Statements, 11-5-45, 
11-5-50, 11-5-54, 1~-5-55, 
11-5-58 

Declarative Statements, 11-2-2 

DECODE Statememt, 11-6-15 

DEFID, 11-6-33 

DENSE, I 1-4 - 39 

DEP, 11-7-4, 11-7-25 

Device Identification Opera­
tions 11-6-33 11-6-35 , , . 

CHECKID, 11-6-35 
DEFID, 11-6-33 

Device Positioning, 11-6-28 

Device State Checking, 11-6-26 

Direct Code, 11-9-1 

ABS, I 1- 9 - 3 
BYTE, I 1- 9 - 3 
CARD - I D, I I - 9 - 2 
CHAR, . I I - 9 - 3 
DO, I 1- 9 - 4 
FORM, I 1- 9 - 4 
RES, I 1- 9 - 4 

Direct Constant Entries, 11-9-11 

Directives, 11-11-8, 11-11-21 

ABS, 11-11-21 
BYTE, I I - 11 - 21 
CHAR, I I - 11 - 2 2 
DO, I I - 11 - 2 3 
ELIST, 11-11-32 
EMBED, I I -11- 25 
END, I I -11 - 26 
EQU, II-11-26A 
EVEN, I I -11 - 26 B 
FORM, 11-11-27 
LCR, 11-11-28 
LIB, II - 11 - 2 9 
L I BS, I I -11- 29 
LINK, 11-11-31 
LIST, 11-11-32 
LIT, 11-11-32 
LLT, 11-11-34 
NOLIST, 11-11-32 
ODD, II-11-26B 
PXL, 11-11-34 
RES, II~11-35 
RF$, 11-11-35 
SEGEND, 11-11-36 
SETADR, 11-11-37 
WRD, I I ... 11 - 38 

DISMOUNT, 1-5-5 

Dismount Tape Message, 1-5-22 

DISPLAY, 1-2-61 

K-3 



I 

M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

DISPLAY Statement, 11-8-2 

DO, I 1- 9 - 4 

DO Directive, 11-11-23 

Double Procedure Switch De­
clarative, 11-4-56 

DP Register 11-12-6 

DSW Register ASR, 11-12-6 

DSW Register ISC, 11-12-6 

DUPLICATE, 1-5-10 

Duplicate (D),11-11-72 

Duplicate Tape, 1-5-22 

Dynamic Statements, 11-2-2, 
11-5-1 

ELSE Statement, 11-5-56 

ELIST Directive, 11-11-32 

EMBED Directive, 11-11-25 

ENCODE Statement, 11-6-15 

END, 1-3-11, 11-11-39 

END-AUTO-DD Declarative, 
11-4-1, 11-4-8 ' 

END-CSWITCH, 11-7-4 

END-CSWITCHS, 11-7-4 

END Directive, 11-11-26 

ENDFILE, 11-6-24 

END-FUNCTION Declarative, 
11-4-1, 11-4-11 

K-4 

END-HEAD, 11-7-3 

END-HEAD Dec1arative~ 11-4-1, 
11-4-3 

END-LOC-DD Declarative,II-4-1, 
11-4-7 

END-PROC Declarative, 11-4-1, 
11-4-8 

END Statement, 11-5-60, 11-5-67 

END-SYS-DD Declarative, 11-4-1, 
11-4-4 

END-SYS-PROC Declarative, 11-4-1, 
11-4-13 

END-SYSTEM Declarative, 11-4-1, 
11-4-14 

END-TABLE Declarative, 11-4-35 

END VARY Statement, 11-5-67 

EP Directive, 1-3-17 

EQUALS. 11-7-4 11-7-19 , , 

EQU Directive, 11-11-26A 

Error Codes, 11-11-72 

ESI Mode, 11-12-17 

EVEN Directive, 11-11-26B 

EX~HANGE, 11-7-4, 11-7-28 

EXEC Function, 11-5-22 

EXECUTIVE, 11-1-4, 11-7-31 

Expression (E), 11-11-72 

Expressions, 11-5-2, 11-11-11 



I 

M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

Expression Statements, 11-11-54 

EXTDEF Linkage, 11-4-65 

Externalizing Labels, II-II-SO 

EXTREF Linkage, 11-4-66 

Field, 11-4-47, 11-11-5 

FIELD Declarative, 11-4-25 

FILE, 11-6-20 

File and Record Position 
Determination, 11-6-31 

File Search Operation, 11-6-35 

SEARCH, 11-6-36 

FIL Modifier, 11-5-14 

FILSKP, 1- 5 - 6 

FIND Statement, 11-5-48 

Fixed.Point Number, II-II-58 

Floating Point (F), 11-11-74 

Floating-Point Numbers, 
11-9-7, II-II-57 

FOR Block, 11-5-72, 11-5-77 

FOR Statement, 11-5-73 

FORCE, 1-3-6A 

FORM, 11-9-4 

Format I, 11-12-12 

Format II, 11-12-13 

Format III, 11-12-13 

Format IV-A, 11-12-14 

Format IV-B, 11-12-14 

FORMAT Statement, 11-6-8 

FORM Directive, 11-11-27 

Full-word, 11-11-11 

Function Call, 11-5-18 

EXEC, 11-5-22 
RETURN, 11-5-19 

FUNCTION Declarative, 11-4-1, 
11-4-11 

Functional Modifiers, 11-5-9 

ABS, II - 5 -10 
BIT, 11-5-10 
CHAR, I I - 5 - 12 
CNT, 1 1 - 5 - 13 
CO RAD, I 1 - 5 - 14 
FIL, 11-5-14 
LENGTH, I I - 5 -15 
POS, I 1- 5 -15 

Generation Formats, 11-11-74 

Global Cross-Reference Listings, 
11-10-5 

GO, I I - 11 - 4 7 

GOTO Statement Name, 1I-5~41 

GOTO Switch Name Statement, 
11-5-42 

Half-word, 11-11-11 

HALT, 1-5 - 3 

Hardcopy Output, 1-1-9, 1-2-37 

K-5 



M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

HEAD, I I - 7 - 3 

HEAD Declarative, 11-4-1, 
11-4-2 

ICW Register, 11-12-5 

ID Directive, 1-3-17 

Index Clause 11-5-64 

Index Procedure Switch De­
clarative, 11-4-55 

Index Switch Declarative, 
11-4-50 

Indirect Word, II-12~15 

Initial A-Register Values 
($AREG), 1- 2 -16 

Initial B-Register Values 
( $ B RE G), I ~ 2 - 16 

Initial Condition Cards, 
1-2-16 

Initial Hardware Setup, 
1-6-1 

Initiate Execution Cards, 
1-2-17 

Jump Key Set Card 
($KEYSET), I-2~17 

Transfer Control Card 
($TRA) , 1-2-18 

User Program Call Card 
($CALL), 1-2-17 

Input/Output Statements, 
11-6-1 

INPUT Statement, 11-6-4 

K-6 

Instruction Expressions, 11-9-13 

Instruction Formats, 11-12-12 

Instruction (I), 11-11-73 

Instruction Repertoire, 11-12-1 

Interrupt, 1-2-7 

Interrupt State, .11-12-8 

I/O Command Formats, 11-12-16 

I/O Device Card, 1-2-12 

I tern, I I - 4 - 4 5 

Item-Area, 11-4-49 

ITEM-AREA Declarative, 11-4-30 

Item Procedure Switch Declara­
tive, 11-4-58 

Item Switch Declarative, 11~4-53 

Item-to-Item Statement, 11-5-36 

Job Definition Cards, 1-2-9 

End Qf Input Card ($EOI) 
1-2-12 

End of Job Card ($ENDJOB), 
, 1-2-12 
I/O Control Cards ($ASG), 

I/O Device Card, 1-2-12 
Job Limits Card ($JOB), 

1-2-10 
Sequence Card ($SEQ) , 1-2-9 

LABEL, I I -11- 2 

Label Field, 11-11-15 

Labels, 11-11-16, 11-11-55 



M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

LC~ OiTe~tjve, 11-11-28 

LENGTH Modifier, 11-5-15 

Level 0, 11-11-75 

Levell, 11-11-75 

Level (L), 11-11-74 

LIB Directive, 11-11-29 

Librarian, 1-1-7, 1-4-1, 
11-1-7 

Librarian Control Cards, 
1-4-5 

Add Element (/ADD) , 
1-4-10 

Begin Element (/BEGINEL), 
1-4-19 

Build New Library 
(/BUILD), 1-4-6 

Change Element Name 
(/CHANGE), 1-4-17 

Copy Elements (/COPY) , 
1-4-12 

Declare Dependent 
Elements (/DEP) , 
1-4-19 

Delete Elements (/DEL) , 
1~4-15 

Delete Items (/D), 
1-4-22 

Edit (/EDIT), 1-4-7 
End Corrections 

(/ENDCOR) , 1-4-20 
End Element (/ENDEL) , 

1-4-19 
End Element Corrections 

(lEND), 1-4-21 
History Entry (/HISTENT), 

1-4-9 
Insert Items (II), 

1-4-21 
Librarian Terminate, 

(/ENDLIB), 1-4-7 

List Job (/LIST), 1-4-6 
Start Corrections (/CORRECT) , 

1-4-20 
Start Element Corrections 

(/ELname), 1-4-20 
Tape Release (/RELEASE), 

1-4-8 
Tape Select (/TAPID), 

1-4-8 

Librarian Error Messages, 1-4-30 

Librarian Operator Messages, 
1-4-32 

LIBS, 1-3-7, 11-7-4, 11-7-23 

LIBS Directive, 11-11-29 

LIKE-TABLE Declarative, 11~4-34 

LINK Directive, 11-11-31 

Linking, 11-11-12 

List Options, 11~7-8 

LIST Directive, 11-11-32 

LISTING, 11-7-5, 11-7-10 

Listing of Labels, 11-11-75 

LIT Directive, 11-11-32 

Literal Assignment Statement, 
11-5-31 

Literal Expressions, 11-5-8 

Literals, 11-9-11, 11-11-58 

LLT Directive, 11-11-34 

LLT Sample Listing, 11-11-75 

Loader Control Cards, 1-3-2, 
1-3-6 

K-7 

I 



I 

I 

M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

Combine Elements, 1-1-9 
Element Select (SEL-ELEM), 

1-3-8 
End (END), 1-3-11 
Library Select (LIBS), 

1-3-7 
Table Size Declaration 

(TSD) , I-3-7 

Loader Diagnostic Messages, 
1-3-32 

Loader Directives, 1-3-12 

Address Counter Directive 
(AC) , 1-3-12 

Binary Code Directive 
(BC), 1-3-18 

Compound Section Direc­
tive (CS), 1-3-14 

End of Element Directive 
(EP), 1-3-17 

Library Reference Direc­
tive (LR), 1-3-16 

Program Element Identifi­
cation Directive (ID), 
1-3-17 

User Correction Direc­
tive (UC) , 1-3-26 

Loader ,Options Select, 
1-3-6A 

LOBJECT, 1-3-6B 

Local Cross-Reference Listings, 
11-10-4 

Local Indexes, 11-4-S9 

LOC-DD Declarative, 11-4-1, 
11-4-6 

LOCDDPOOL, 11-7-4, 11-7-14, 

LO DGO, I - 3 .. 6 B 

LOCREF Operator, 11-4-67 

Logical Operators, 11-11-67 

Logical Statement, 11-S-46 

Loop Statements, II-S-S0A 

LOPTI0NS, 1-3-6A 

LR Directive, 1-3-16 

MACRO, 11-11-39 

Macros, 11-11-10 

Macro Reference Lines, II-II-52 

Macro Statements, II-11-39 

Major and Minor Headers, 11-7-3 

K-8 

BASE, 11-7-4, 11-7-17 
CMODE, 11-7-4, 11-7-32 
CORRECT, lI-7-4, 11-7-2S 
CSWITCH, 11-7-4, 11-7-30 
DATAPOOL, 11-7-4, lI-7-18' 
DEBUG, II-7-4, 11-7-29 
DEP, 11-7-4, 11-7-2S 
EQUALS, 11-7-4, 11-7-19 
END-HEAD, 11-7-3 
EXCHANGE, 11-7-4, 11-7-28 
EXECUTIVE, 11-7-4, 11-7-31 
HEAD, I I- 7 - 3 
LIBS, 11-7-4, 11-7-23 
LISTING, 11-7-5, 11~7-10 
LOCDDPOOL, 11-7-4, 11-7-14 
MEANS, 11-7-4, 11-7-27 
MONITOR, 11-7-5, 11-7-11 
NITEMS 11-7-4 11-7-22 , ,. 
OBJECT, 11-7-5, 11-7-7 
OPTIONS, 11-7-4, 11-7-S 
SEL-ELEM, 11-7-4, 11-7-24 
SEL-HEAD, II-7-4, 11-7-24 
SEL -POOL, 11,-7 - 4, I I -7 - 24 
SEL-SYS, 11-7-4, 11-7-24 
SOURCE, 1I-7-~,II-7-6 
SPILL, 11-7-4, 11-7-32 
SYS-INDEX, 11-7-4, 11-7-27 
TABLEPOOL, 11-7-4, 11-7-16 

I 



M- 5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

MEANS, I1-7-4, II-7-27 

MED I UM , 1 I - 4 - 38 

Miscellaneous Header Statements, 

No1ist Directive, 11-11-32 

NOMAP, 1-3-6A 

NONE, 11-4-38 

II-7-27 NONRT Option, 11-7-12 

Mnemonics, 11-11-20 

Mnemonic Listing Format, 
11-4-63 

MODE Declarative, 11-4-63 

MODEVRBL Option, 11-7-12 

Modes of Operation 11-12-8 

Monitor, 1-1-6, 1-2-1, 11-1-6, 
lI-7-5, 11-7-11 

Monitor Control Cards, 1-2-2, 
1-2-5, 1-2-8 

Monitor I/O, 1-2-5, 1-2-6 

Monitor Loader, 1-2-3 

MOUNT, 1-5-4 

Mount Tape Message, 1-5-21 

Mu1tiword Assignment State­
men t, I 1- 5 - 35 

NAME, . I I -11- 45 

Name (N), 11-11-73 

N~sted Decision Statements, 
11-5-58 

NITEMS, 11-7-4, 11-7-22 

NOID, 1-3-6A 

Nonstandard File Control, II-6-18 

CLOSE, II-6-26 
ENDFILE, 11-6-24 
FILE, 11-6-20 
OPEN, 11 - 6 - 24 

Normal Mode, 11-12-16 

OBJECT, 11-7-5, II-7-7 

Object Code Loader, 1-1-6, 1-3-1, 
11-1-6 

ODD Directive, I1-11-26 

OFF, 11-11-14B 

OFO, I I -11-l4B 

Octal Numbers, II-9-7, II-II-56 

OPEN, 11-6-24 

Operand Field, 11-11-44 

Operation, 1-6-1 

Operation Field, 11-11-19 

Operator Communication, I-3-36 

Operator Communication Cards, 
1-2-30 

Enter Executive State (XS), 
I-2-32 

K-9 

I 

I 



M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

Hardcopy Message ($REMARK), 
1-2-31 

Operator Message Ca!ds, 1-5-2 

Dismount Tape (DISMOUNT) 
1-5-5 

Mount Tape (MOUNT), 1-5-4 
Operator Acknowledge 

(HAL T), I - 5 - 3 
Operator Information 

(TYPE), 1- 5 - 3 

Operator Priorities, 11-11-69 

Operators, 11-11-61 

OPTIONS, 11-7-4 

OUTPUT Statement, 11-6-7 

Overflow (0), 11-11-73 

OVERLAY, 11-4-40 

Packing Rules, 11-4-37 

DENSE, I 1- 4 - 39 
MEDIUM, 11-4-38 
NONE, I I - 4 - 38 
OVERLAY, 11-4-40 

PACK Statement, 11-5-40 

Paraforms, 11-11-40 

PARAMETER, 11-4-18A 

Parenthetical Grouping, 
11-11-70 

Parity Decision Statement, 
11-5-55 

PAUSE, 1-2-30, 1-2-31 

Performing the Bootstrap Load, 
1-6-3 

Peripheral Utilities, 1-1-7, 
1-5-1 

Pooling Statements, 11-7-12A 

Positioning by Files, 11-6~28 

Positioning by Records, 11-6-30 

Position Tape Cards, 1-5-5 

Rewind (REWIND), 1-5-7 
Skip Backward Specified 

Number of Files 
(BKFILSKP), 1-5-6 

Skip Backward Specified 
Number of Records 
(BKRECSKP), 1-5-7 

Skip Forward Specified 
Number of Files (FILSKP), 
1-5-6 

Skip Forward Specified 
Number of Records 
(RECSKP), 1-5-6 

POS Modifier, 11-5-15 

P Register, 11-12-2 

Procedure Call, 11-5-16 

PROCEDURE Declarative, 11-4-1, 
11-4-8 

Procedure Linking, 11-5-15 

Procedure Switch Cal1,11-5-23 

Processing Conventions, 11-9-15 

Program Structure Declaratives, 
11-4-1 

K-lO 

AUTO-DD, 11-4-1, 11-4-7 
END-AUTO-DD, 11-4-1, 11-4-8 



CMS-2 KEYWORD INDEX (contd) 

M-5035 
Change 5 

END-FUNCTION, 11-4-1, Record Length Determination, 
11-4-11 II-6-32 

END-HEAD, 11-4-1, 11-4-3 
END-LOC-DD, 11-4-1, II-4-7 RECSKP, 1-5-6 
END-PROC, 11-4-1, 11-4-8 
END- SYS- DD, 1 1- 4 -1, 1) - 4 - 4 REFORMAT, 1 - 5 -11 
END-SYS-PROC, 11-4-1, 

11-4-13 ,Reformat Tape 1-5-22 
END-SYSTEM, 11-4-1, 11-4-14 
FUNCTION, 11-4-1, 11-4-11 Relational Expressions, 11-5-5 
HEAD, II-4-1, 11-4-2 
LOC-DD, 11-4-1, II-4-6 Re1ocatabi1ity, 11-11-70 
PROCEDURE, 11-4-1~ 11-4-8 
SYS-DD, 11-4-1, 1I-4-4 Relocation (R), 11-11-73 
SYS-PROC, 11-4-1, 11-4-5 
SYS-PROC-REN, 11-4-1" Replacement Statements, 11-5-26 

11-4-6 
SYSTEM, II -4 -1, 11 - 4 - 2 , RES, 1 I - 9 - 4 

Pseudo-operations (MACROS), RES Directive, II-11-35 
I-1-8 

P-SWITCH Declarative, 11-4-55 

, PTRACE, 1-2-61 

PTRACE Statement 11-8-11 

PXL Directive, 11-11-34 

RANGE, 1-2-61 

RANGE Statement, 11-8-7 

READ, I - 5 - 1 7 

READ/Compare Tape Cards, 1-5-17 

Compare Tapes (COMPARE), 
1-5-19 

Read into Memory (READ), 
1-5-17 

READ to Cards or Printer 
(TAPEOUT), 1 ~ 5 -18 

Read Formatted Tape Record, 
I-5-23 

RESUME Statement, 11-5-66 

RETURN Function, 11-5-19 

REWIND, 1-5-7 

RF$ Directive, 11-11-35 

SAVLODGO, 1-3-6B 

Scaled Decimal Numbers,- 1I-9-9 

Search Decision Statement, 1I-5-50 

SEGEND Directive, 11-11-36 

Segmentation, 11-11-8 

SEL-ELEM, 1-3-8, 11-7-4, lI-7~24 

SEL-HEAD, 11-7-4, II-7-24 

SEL-POOL, 1I-7-4, 11-7-24 

SEL-SYS, 11-7-4, 11-7-24 

SETADR Directive, 11-11-37 

K-11 

I 



M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

SET Statement, 11-5-26 

SHIFT Statement, 11-5-39 

Side-by-Side Listing, 11-11-72 

Simple Statement, 11-5-1 

Single Word-to-Mu1tiword State­
men t, I 1- 5 - 36 

SIR Registers, 11-12-7 

SNAP, 1-2-61 

SNAP Statement, 11-8-5 

SOURCE, 11-7-5, 11-7-6 

Source Deck Organization, 
11-11-79 

Source Listing Format, 11-10-1 

Special Considerations, 
11-11-82 

SPILL, 11-7-4, 11-7-32 

SPR Registers, 11-12-6 

S Register, 11-12-3 

Standard Input, 1-1-9, 1-2-33 

Standard Output, 1-1-9, 1-2-35 

DISPLAY, 1-2-61 
PTRACE, 1-2-61 
RANGE, 1-2-61 
SNAP, I - 2 - 61 
Tape Assignment/Release, 

I .., 2 - 3 3, I - 2 -4 9 
TRACE, 1-2-61 
Type Message ($TYPE), 

1-2-30 
Type Message PAUSE (ACKN) 

($HALT), 1-2-30, 1-2-31 

Statements, 11-11-5 

Statement Blocks, 11-5-59 

Status Assignment Statement, 
11..,5-32 

STQP Statement, 11-5-45 

Subfie1ds, 1 1-11- 5 

SUB-TABLE Declarative, 11-4-31 

SWAP Statement, 11-5-38 

SWITCH Declarative, 11-4-50 

Switch Referencing, 11-4-59 

Symbol Analysis Format, 11-10-6 

Symbol Definitions, 11-12-19 

Symbolic Conventions, 11-12-17 

Symbols, 11-11-62 

SYS-DD Declarative, 11-4-1, 
11-4-4 

SYS-INDEX, 11-7-4, 11-7-27 

SYSMAKER, 1-2-15 

SYS-PROC Declarative, 11-4-1, 
11-4-5 

SYS-PROC-REN Declarative, 11-4-1, 
11-4-6 

System (CMS-2),I-l-3, 1-2-3, 
11-1-3 

System Component Call Cards, 
1-2-14 

K-12 

Call Assembler ($ASM, U), 
1- 2 -15 

I 



I 

M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

Call CMS-2 Compiler 
( $ CMS - 2), I - 2 - 15 

Call Librarian 
($LIBEXEC), 1-2-15 

Call Peripheral Utility 
Routines C$UTILITY), 
1-2-15 

Call Relocatable Object 
Code Loader ($LOAD), 
1-2-15 

SYSTEM Declarative, 11-4-1, 
11-4-2 

System Linkage, 11-4-64, 

EXTDEF, 11-4-65 
EXTREF, 11-4-66 
TRANSREF, 11-4-66 

System Messages, 1-6-14 

System Tape Generator, 1~1-8, 
11-1-8 

Table, 11-4-44 

TABLE Declarative, 11-4-19 

TABLEPOOL, 11-7-4, 11-7-16 

Table Search Statement, 
11-5-48 

Table-to-Table Statement, 
11-5-35 

TAPEOUT, 1 .. 5-18 

Tape-to-Card or Printer, 
1-5-23 

Task State, 11-12-8 

TRA Directive, 1-3A-4 

TRACE, 1-2-61 

TRACE Statement, 11-8-9 

Transfer Declaratives, II-4-50 

Double Procedure Switch, 
11-4-56 

Index Procedure Switch, 
11-4-55 

Index Switch, 11-4-50 
Item Procedure Switch, 

11-4-58 
Item Switch, 11-4-53 
P-SWITCH, 11-4-55 
SWITCH, II -4-50 

TRANSREF Linkage, 11-4-66 

Truncation (T), 11-11-73 

TSD, 1- 3-7 

Tw~-Level Diagnostics, 11-7-12 

TYPE, 1-5-3 

Type Message and Await Response, 
1-5-21 

Type Operator Messages, 1-5-21 

UC Directive, 1-3-26 

ULTRA, 1 1 -11 -12 

Undefined Labels, 11-11-75 

Undefined CU), 11-11-73 

UNTIL Clause, 11-5-66 

User I/O Chains, 1-2-48 

User Program Execution Cards, 
1-2-15 

User Routine Execution, 1-5-27 

K-13 

I 

I 



I 

M-5035 
Change 5 

CMS-2 KEYWORD INDEX (contd) 

Utility Control Cards, 1-5-2 

Validity Statement, 11-5-48 

Value Block, 11-5-76 

VARY Block, I 1- 5 - 61, I 1- 5 - 6 7 

VARY Statement, 11-5-62 

VRBL Declarative, 11-4-15 

Warning, 11-11-75 

WHILE Clause, 11-5-65 

Whole Table, 11-4-45 

WRD Directive, 11-11-38 

WRI TE, 1- 5 - 8 

Write Formatted Tape Record, 
1-5-22 

Write on Tape Cards, 1-5-8 

Convert to System Data 
Card (CONVERT), 
1-5-15 

Duplicate Tape 
(DUPLICAT) , 1-5-10 

Reformat Tape 
(REFORMAT), 1-5-11 

Write End .of File Mark 
(WRTFILMK), 1-5-10 

Write from Memory 
(WRITE), 1-5-8 

Write in Bootstrap For­
mat (BOOTWRT), 1-5-14, 
1-5-23 

Write Tape from Cards 
(CARDTAPE), 1-5-12 

WRTFILMK, 1-5-10 

XS, 1-2 -32 

$AREG, 1-2-16 

$ASG, 1-2-12 

$ASM, U, I - 2 -1 5 

$ B RE G , I - 2 -16 

$ CALL, . I - 2 -1 7 

$CMS-2, 1-2-15 

$DUMP, 1-2-18 

$ENDJOB, 1-2-12 

$EOI, 1-2-12 

$ FORTRAN , 1-2-15 

$HALT, 1-2-30, 1-2-31 

$JOB, 1-2-10 

$KEYSET, 1-2-17 

$LDUYK-20, 1-2-15, 1-3A-1 

$LIBEXEC, 1-2-15 

$ LOAD, I - 2 - 15 

$ PATCH , 1-2-26 

$ REMARK , 1-2-31 

$ SEQ, I - 2 -19 

$ SNAP, 1 - 2 - 21 

$SYSMAKER, 1-2-15 

$ TRA , I - 2 - 18 

K-14 

I 

I 

I 



$ TY P E , I - 2 - 30 

$UT1L1TY, 1-2-15 

IADD, 1-4-10 

IBEGINEL, 1-4-19 

IBUILD, 1-4-6 

/CHANGE, 1-4-17 

/COPY, 1-4-12 

/CORRECT, 1-4-20 

/D, 1-4-22 

/DEL, 1-4-15 

/DEP, 1-4 -19 

/ ED 1 T, 1 - 4 - 7 

/EL name, 1-4-20 

/ END, I - 4 - 21 

/ENDCOR, 1-4-20 

/ENDEL, 1-4-19 

/ENDLIB, 1-4-7 

/H1STENT, 1-4-9 

/1, 1-4-21 

/ LIST, 1 - 4 - 6 

/RELEASE, 1-4-8 

ITAPID, 1-4-8 

CMS-2 KEYWORD INDEX (contd) 

,K-15/K-16 (Blank) 

M-S035 
Change 5 



• 


