Mrooodl-¢
M-5035, VOLUME i

USER'S REFERENCE MANUAL (U)
FOR |
COMPILER, MONITOR SYSTEM-2 (CMS-2]
- FOR USE WITH AN/UYK-1 COMPUTER

COMPILER, ASSEMBLER, AND INSTRUCTION REPERTOIRE

FLEET COMBAT DIRECTION SYSTEMS SUPPORT ACTIVITY

San Diégo, California 92147

, ‘ \\%\\Q’ : THIS CHANGE SHOULD BE INCORPORATED INTO THE
5 | BASIC PUBLICATION. DESTROY SUPERSEDED PAGES.

REVISED : 15 NOVEMBER 1973
CHANGE: 15 AUGUST 1975






LIST OF EFFECTIVE PAGES

M-5035
Change 5

“Volume I

Insert latest changed pages; dispose of superseded pages in accordance with applicable

regulations.

NOTE: On a changed page, the portion of the text affected by the latest change is in-

dicated by a vertical line, or other change symbol, in the outer margin of the page.

Total number of pages in this manual is 681 consisting of the following:

Pagé
No.

Title ® e @ ¢ & 0 0 0
A‘-Daoouoccu

i.tl.o o o o o

iiBlank ® 0o 8 0 0 0 e

iii—V........
vi..........

viiboosu-‘.o‘ ooooooo

viii..’..-.....o

ViiiA.O."‘..
viiiBBlank'..‘O

iIX vevveconos
Xeoasvosseosa
XI veveeesoes
Xile oo oeoosos
Xili eeoeieins
XiV e e eaoenn
XV e v 000000
xvii - xviii ...
II-1-1 -11I-1-9, .
II-1-10 Blank. ..
T2-1eieeiaess
I-2-2 -I11-2-24 ,
II-2-25 -11-2-26
2270000
I-2-28 Blank. ..
o-3-1 -0-3-3..

H"‘3-4tooooooooo

II‘S'B;.....-.

H"3-60 e o 0o o s 0 o .

II-3"70 o o - o e o o
H-3-8. ® o s 00 00
II""4—1¢ e o s 00 00

® ¢ @ 00 e 0 0o

L] . 0
. . .
ooooo s 0
s 0o 0 o 0 .
e s e 0 o o
o . ¢ o o o
L)
. ® o 0 .
* o o 0
® ¢ o 00 00
® o o 8 05 0 0
o o s o 0
o ® s o ¢ .
e o ¢ o o 00
® o o 0 0 0
® ® o 0 0 s s
. . o o
¢ & o o 0 .
L] o0 0 o @
o o 0 L]
* e o s 0 0 0
® ® 0 0 0 s o
L) e e
] e o o 0
o o o 0 .
o e 0o 0 0 o
. o o o o s
e o o & 0 o
e o o * o o
e e e o o o o

COWHOWOOCOROROORNOUINWSU AR BRUTWO OO UK

Page
No.

H_4—2- L R A A A )
]I—4"'3. oooooooo o o
H-4-'4 - II'-4-6 e o v 0 ¢ o o

n4-7-0-4-16....

H4-17...00000ee
O4-18....0000000
m-4-18A -MM4-18B ..

I-4-19-1I-4-20 .....
n-4-21 -1m-4-22 ....
H4-23 -I-4-24 ....
O04-26..........
m4-26..........

H—4-27-.-..v.....

n‘4"28a-oo.oo.oo

O-4-29 -1-4-33 ...

n-4-34:..‘.........

I-4-85........ .o
O4-36..ccc000..
I-4-37 -1I-4-40 ...
n-4-41 -I-4-42 ...

o-4-43 -II-4-59 . ...

II"'4-60.oooocooco

n-4-61 -I1-4-62 ., ..

11—4—63 ® 6 ¢ s 9 0 0 0 0 0

II"'4—64 LR A R I
H"4_65 ® 6 ¢« 0o 2 0 ¢ 0 0 0
H_4_66 e 0o 0 0 0 00 0 0 0 0

nI4-67 -1I-4-68 ...
m-4-68A,........
I-4-68B Blank ....
H4-69..........,
O-4-70. 000000 nns
n-4-71 - 0I-4-72 ..,

7Zero in this column indicates an original page.

TChange

. .
ttttttt .
o o . -
. L .

L ° > o

® o 0o o s 0 o .
o o o o o L
e e s 0o 0 0 @

o ® o o o o
® o o o L2

o e o o -
o e 3 o ® o
. . LI Y
3 . e o

ooooooooo

. * o 0o o 0
L * o ¢ v e
. e L] o e
oooooooo
® 0 e 0 0 9 o 0
® o o o 0 o o .

No.

o UUNUoNOoOWNWONODCWOUIONUIOUOoOUOoOWOO Ui Woe w



- M-5035
Change 5
Volume II

Page
- No.

[I-5-1-I-5-2
n-5"2A'
H-S-ZB Blank o 2 e

1 T SO
Hb5e e e eeenns
TM-5~4As e v vvunn.
O-5-4B Blank .. ...
I5-50cvueeenns

560 e ooveees
m-5-7. .
n-5-8 -M-5-10 . .
I-65-11 -0-5-12 .
O-5-18..cceeee
o-5-14 -O-5-17 .
H-5-180 ¢ e vvene
- IO-5-18A...

H"5-18B Blank. o o

11-5-19 -1I-5-20 .,
O-6-21....00..
o-6-22.....
n-5-23 -II-56-25 .
n-5-26 -MI-5-27 .

]:[‘5“'28.-....0.-

o-5-29. ...
o-5-30. ...
o-5-31
I1-5-33 - II-5-38, .
II-5-39 - I-5-40, .

. I~-5-41 - I-5-44, ,

O-5-45 - I1-5-46, .
H-5-47, ... .0
- O-5-48 - I-5-79 ,
-5-80 Blank. . . .

o-6-1 --64. ...

]I—6-5 -11_6-70 LY
H—6-8 - I["6"'90

H‘6"10.0..0'0.
nI-6-11 - II-6-15 .

1'Zero in this column

® o 0 v 0 0 0 0

- II-5-32

LIST OF EFFECTIVE PAGES (contd)

1'Change
No.

o o 0 ¢ o
. c .

@ o e o 0o .

. o . .
. . ® s 0 0
........ Ld
oooooooo o
o o o o 0.0 s 0
¢ e o o e s s 0
e« o ¢ 0o o o [
« o o 0 0 0 & 00
. e ¢« o 0o 0o o
. . s 0 0o 0
LI ] o e 0 0 0 0
. . o e o
. e o 0o 0 o

000000000

o o o o 0 L]
. ¢ o 06 06 0 0 0
. . s 0o
o & o .'. e e o 0
L] . . o 0

indicates

MmO DO NOPRMDRCOCWO WNOUOUNOWOUOUIUUUIOKRWONHWIKBKRWRKR

Page
No.

o-6-18 - 0-6-22 ,
O0-6-23........
II—6-24. . a o e o 0.0

II"6’25.-;.0-.».

H-6-26. * e o 0
H—6-27u L I A )
H_6—28¢ e o 0

H‘6—29 - II"'G_BO e .

0-6-31.......
0-6-32 - I[-6-34
M-6-35.......
I-6-36 Blank. .
O-7-1-I~7-3 .

I[-7-4: -II"7"5 e ¢ ¢ o o 0 0 0 0 e 0 @
H—7~6 "]I""7"7, * e 0o 0 :
H-7-80 0 e e 0 o 0 ¢ 0 0

]I-7-9.,0 ...

I[-7—10....-.........-...

o-7-11...
I-7-12.......
I-7-12A -1I-7-12B
o-7-13 - I-7-16 . .

® o0 0o 0 0 0

oooooo

H-7_24A e o o 0 0 0
II-7-248B, .

e« o 0 0 o o

o-7-25 -M-7-26 , ..

000000000

* o oo

I-7-30A -II-7-30F
n-7-31 -O-7-33 ..
I1-7-34 Blank

e » o o

« o 0

11—8"3.0.0...
Im-8+4 -II-8-5. ...

an original page.

B

¢ o

----- . o o o
...........
ooooooo o o 0
¢ o @ o 0 0 o .
oooooooo .
------- .

ooooo . e o o ¢ o
ccccccccc
------ .
ooooooooo
e o o o o .
® 0 0 0 0 ¢ 0 0

ooooooooo

.
ooooooo .
....... .
0000000 . * o o 0 o
.
....... . . .
LN o0

o o LY
® o o ¢ o s » o 0
® 9 0 0 0 0 0 o .
o 0o 0 ¢ 0 0 LN
o 0’0 ® o 0 o o

" 0.0 0 0 .
LI I B .

. e s 0 .
o o 0 . o
* e o 0 o o .
. o 0 .

. .o .
oooooo . .
@ * o e 0 0 0 .
ooooooooo
oooooo 3 .

ooooooooo

* e o

CHOUDIUUKRNOWURBRUWONONORWNNOUBRUO WWo Ho HNOGMO®NOS



M-5035
Change 5
Volume I

LIST OF EFFECTIVE PAGES (contd)

1'Change
No.

Page TChangc

Page .
No. No.

No.

1 0 T S 3 L e
. I1-12-6 - I1-12-34 vvvuennsnn.
R I1-12-35 - I1-12-50 ..........
I1-12-51 - II-12-54 .0vernnn..
L R R I 2 TI-12-55 veueenennnnns
O-9-2 -I-9-3....... 0 IT1-12-56 «vuunnn.
TE-0—. s o v vvoennoonanens 2 11-12-57 - II-12-68 .eeu...:
M-95 ~T-9-6...0..0... .. 1 I1-12-69 - II1-12-72 veeenven..
O-9-7...... 3 11-12-73 - 1I-12-78 .....uennn
I1-12-79 - II-12-82 vueunn....
ﬁ:g:f)'_'ﬁlg'_ié"""" : (2) TT-12-83 teueivrnnearnneannnnnn
AR TI-1284 o oeeeeeeenennannnnns
I-9-170 0o vvcvnnneress 0 I1-12-85 - I1-12-88 veuueenn...
M-9-18 ~W-9-21 .......... 2 T1-12-89 tveeeneennnnanennns
O-9-22 Blank .....ce0000 00 0 11-12-90 - II-12-94 ....u.u...
M-10-1 ~T1-10-2 & vvenvenns 3 11-12-95 - 1I-12-110 .........
TE-10-8 ¢ v v veveoeneons 0 Al eeeeeeaneanrantanaraaens
M-10~4 -T-10-5 4 vvavaons 5 ﬁ-% .................... Ceeeen
I[-10-6—11-10-10..‘........ 0 A4 BIanK veeveevrenrenannnens
O-10-11 e senoecnnnsene 3 S - T
O-10-12 -I-10-13......... 0 I S
-10-14 Blank ... ovu... .. 0 B4 = B0 vouerennennonneanens
M-11-1 -H-11-10, o 0 v e v o no 0 - A
O-11-11 ~I-11-12. 0 0 e e e, 1 B8 - B-12 teerrenrnnnnnnennnn
O-11-13 -O-11-14. .0 0o e . 3 B-13 - B-14 ... it
O-11-14A - O-11-14B....... 3 g:i; : g:ig -------------------
O-11-15 ~-0-11-22......... 0 B-10 - B-20 ».oiunnrsinnnnns
B-11-23 oo vvvvnvnnenons . 1 B2l ereerianeanranrennenees
M-1124 .. o i veerannnns 5 B-22 = B28 tutenrrnnrnnnanens
O-11-25 .. v vuw. 3 (o L
II-ll—ZGA.-............-. 5 C“Z'C'6 ....................
M-11-26A -~II-11-26B. . ... .. 3 13 1 A
O-11-27 -T1-11-81.1 0 v 0w s v.. 0 D-2 iiiiiiiiiiiiettettseteaaas
O-11-32 ~H-11-49, ..o vuune 2 o S
T80, e eeeeeees 8 gy T
I-11-51 ~M-11-69......... 2 E-4B Blank ...ooeeeeeeaceenens
O-11-70 . s v vt eenennsns 5 E-5 = Fo6 vovueeennneneionennnn
M-11-71 -m-11-74, e v e v ees 2 E-7 teviiiivennnnnnns e
O-11-75 ~H~11=76 10 o v o v v s . 5 E-8 ..... e eeeeeeaes
He11-77 ~T=11-800 v o o v v v .. 92 E-9 - E-10 ,ieinviniiieannnnn
II-11-81 . v v v v v u. ......;. "5 g:ig‘% .............. cesease e
O0-11-82 -O-11-83......... - 2 E-11 vovvvmnnmnssaia,
H-11-84 ...0venennes cee. 5 E-12 - E-14 voenirnnnernanannnn
O-12-1 ~O-12~4 .......... 0 E-15 - E-17 .......

?Zéro in this column indicates an original page.
G



M-5035

LIST OF EFFECTIVE PAGES (contd)

TZero in this colum indicates an original page.

Change 5

Volume II

Page TChange
No. No.
E-18 - E-19 ..... P aeonn
E-20 - E-24 . ..iiiiiiniiiannnans
F-1 .iiiiviennes teessesasensenn
F-2 ...... A
G-1 - G-8 tiviriinnennnonns ces
H-1 ..... ceenes veeaen eeaeeann
H-2 Blank ...... Ceraseamnnneee
I-1 -1I-3 ........ seassasas oo
I-4 (.. i, cremesaans
I-5-1-24 .......... crease .
I-25 ciiiiiiennns teacsdnserone
I-26 - T-30 civenieenncnanannns
I-31 coiieennns. B
I-32 - 1-34 ..vvvinennns cecnes
I-35 iiiiiiiiinnen, cisasenes
I-36 Blank ...vcvvvnenicennns
K-1 - K-15 .. ieiinenennnns
K-16 Blank ...... ceceseas

Page
No,

TChange
-~ No.



M-5035
Volume II

FOREWORD

This is Revision 1 of Volume II of the two volume User's Reference Manual for

Compiler Monitor System (CMS-2) for use with AN/UYK-7 Computer. This

volume contains a description of the languages recognized by the Compiler and
Assembleri, including a comprehensive description of macro generation. It
also contains a complete functional description of the AN/UYK-7 Computer
Instruction Repertoire. (Volume I describes the Monitor, Loader, Librarian,

Peripheral Utilities, and System Operation.)
Revision 1 incorporates changes 1, 2, and 3 to the original document (NAVSHIPS
0967-028-0060). The reader will find the changed pages clearly indicated through-

out the volume.

A document related to Volume II is the Compiler Monitor System-2 (CMS-2)

User's Reference Manual, Volume I, M-5012. This document describes the

CMS-Z language as it is used in the preparation of programs for the CP-642B-
hosted CMS-2/XCMS-2 compilers.

i/ (ii blank)






M-5035
Vol un?e 11

RECORD OF CHANGES

CHANGE DATE TITLE OR BRIEF ENTERED BY
NO. DESCRIPTION

iii



M-5035
Volume II

Paragraph

NN

bt bt e bt bt et b bl bt bt o bt o et bt

RN DN DN

.

[ NR AR N N N

. e . e o o . . . e o o e

B B R WWWLWW WLWWWL N
- .

. . .
N DO

. . . .

.

[UCRRLIE U I ACH S (G NG NI NG (GRS )

XRCRICICRR

.

e e
DO DD DN

*
[ S —
.

.

.
ISR NN —

(S N

et

WS IS D DO DN et et e

CO D

L] L]
NN

.

~NC LT WO

ot

ne

[ e

N b

TABLE OF CONTENTS

Title

SECTION 1
INTRODUCT ION

Purpose and Scope
Applicable Documents
System Capabilities
Hardware Requirements
Software Components
Monitor
Object Code Loader
Librarian
Peripheral Utilities
Compiler
Assembler
System Tape Generator
System Operation
System Load and Initiation
Standard Input Processing
Standard Output Processing

SECTION 2
INTRODUCTION TO THE CMS-2 LANGUAGE

Major Features of CMS-2
Program Structure
Organization and Classification of
Identifiers
‘Forward and Backward References
Local and Global Definitions
External References and Definitions
CMS-2 Elements '
System Data Designs
System Procedures
Local Data Designs
Procedures
Range of Identifiers
Declarative Statements
Program Structure Declaratives
Procedure Structure Declaratives and
Linking
Reentrant System Procedures
Data Declarations
Switches
Variables
Tables

iv -

Page

I1-1-1
I11-1-2

I11-1-3

I1-1-3
I1-1-5
I11-1-6
I1-1-6
11-1-7
11-1-7.
I1-1-7
11-1-8

. 11-1-8
S 11-1-8

11-1-8

. I1-1-9

11-1-9

11-2-3
11-2-3
11-2-3
11-2-4
11-2-5
11-2-7
11-2-8
11-2-9
11-2-9
11-2-9
I1-2-10
I11-2-10

11-2-13
11-2-14
11-2-16
[1-2-17
[1-2-17

L 11-2-17



Paragraph
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6

.
[—

. .
e o s o
o

WWwLwwWwwN N -
.

WWWWWWWLWWWLWWwwwWw
COUMBLNNNDMNONNNDNODNDN -

* o e
. .
[

=S

TABLE OF CONTENTS (Continued)

Title

SECTION 2
(Continued)

Arrays

Compiler Directive Declaratives
Dynamic Statements

Expressions

Statement Operators

Special Operators
High-Level Input/Output Statements
Program Debug Facilities

SECTION 3
BASIC DEFINITIONS

CMS-2 Alphabet
Symbols
Operators
Identifiers
Statement Label
Constants
Numeric Constants
Hollerith Constant
Status Constants
Boolean Constants
Delimiters
Statements
Comments
Special Comments
Source Card Format

SECTION 4
DECLARATIVES

Program Structure Declaratives
System Declarative (SYSTEM)
Head Declarative (HEAD)
End Head Declarative (END-HEAD)
System Data Design Declarative (SYS-DD)
End System Data Design Declarative
(END-SYS-DD)
System Procedure Declarative (SYS-PROC)

M-5035
Volume II

Page

11-2-20
11-2-20
11-2-24
11-2-24
11-2-24
11-2-25
11-2-26
11-2-27

11-3-1
11-3-1
11-3-2
I1-3-2
I11-3-3
11-3-3
I1-3-3
11-3-4
I1-3-5
I11-3-6
I1-3-6
I1-3-6
I1I-3-6
I1-3-7
I1-3-8

[1-4-1
I1-4-2
[1-4-2
I1-4-3
- 11-4-4

[1-4-4
11-4-5



M-~5035
Volume II
Change 3

Paragraph

4.1.7

[ S~ AN
° . e o
.

bt i bt i i b = e~ D O C OO

e o o
*« o e

L] .
NI ODNDODODMDNDODODNNNODDNODND D DR -~

L] .
. L]
. .
[SC18 G

e o o
e o o
. .
=D

bt ot o ot et
L]

« o
LN S N e

.
°
N =

:&bééﬁ&hbbﬁbﬁbbﬁﬁﬁﬁbbbb&bb
. . .

°* .

e o

[SCIN N ]

TABLE OF CONTENTS (Continued)

Title

SECTION 4
(Continued)

Reentrant System Procedure Declarative
(SYS-PROC-REN)
Local Data Design Declarative (LOC-DD)
Local Data Design Declarative (END-LOC-DD)
Automatic Data Design Declarative
(AUTO-DD)
End Automatic Data Design Declarative
(END-AUTO-DD)
Procedure (PROCEDURE) and End Procedure
(END-PROC) Declaratives v
Function (FUNCTION) and End Function
~ (END-FUNCTION) Declaratives
End System Procedure Declarative
(END-SYS~PROC) '
End System Declarative (END-SYSTEM)
Data Declarations
Variable Declaration (VRBL)
Parameter Declaration (PARAMETER)
Table (TABLE) Declaration
Field (FIELD) Declaration
Item-Area (ITEM-AREA) Declaration
Subtable (SUB-TABLE) Declaration
Like-Table (LIKE-TABLE) Declaration
End-Table (END-TABLE) Declaration
Packing Rules
No Packing (NONE)
Medium Packing (MEDIUM)
Dense Packing (DENSE)
Overlay (OVERLAY) Declaration
. Data Referencing
Table Referencing
Whole Table Referencing
Item Referencing
Field Referencing
Item-Area Referencing
Transfer Declaratives (Switches)
Statement Switch (SWITCH) Declaratives
Index Switch ' :
Item Switch :
Procedure Switch (P-SWITCH) Declaratives
Index Procedure Switch
Double Procedure Switch
Item Procedure Switch

Vi

Page

11-4-6
I1-4-6
I11-4-7
11-4-7
11-4-8
11-4-8
11-4-11
11-4-13
11-4-14

11-4-14
I1-4-15

I1=4-18A

11-4-19
11-4-25
11-4-30
11-4-31
11-4-34
11-4-35
11-4-37
11-4-38
11-4-38
11-4-39
11-4-40
11-4-44
11-4-44
11-4-45
11-4-45
11-4-47
11-4-49
11-4-50
11-4-50
11-4-50
11-4-53
11-4-55
11-4-55
11-4-56

11-4-58



M-5035

Change 5
Volume I1I
TABLE OF CONTENTS (Continued)
Paragraph Title Page
SECTION 4
(Continued)
.11.3 Switch Referencing IT-4-59
.12 ' Local Indexes II1-4-59
.13 Data (DATA) Declaration I1I1-4-61
Control Declaratives I1-4-62
.1 Mode (MODE) Declaration I1-4-63
System Linkage I1I1-4-64

N O O S O O O O O
P AREDUUNDNN

.1 External Definition (EXTDEF) Operator II-4-65
.2 External Reference (EXTREF) Operator I11-4-66
.3 Transient Reference (TRANSREF)
' Operator I1-4-66
.4 Local Definition (LOCREF) Operator I11-4-67
.5 Applications of EXTDEF, EXTREF and
TRANSREF I11-4-68
SECTION 5
DYNAMIC STATEMENTS
5.1 Expressions I1-5-2
5.1.1 Arithmetic Expressions IT1-5-2
5.1.1.1 Fractional Significance in Fixed-
Point Operations II1-5-3
5.1.2 Relational Expressions II-5-5
5.1.3 Boolean Expressions II-5-6
5.1.4 Literal Expressions I1-5-8
5.2 Functional Modifiers ' II-5-9
5.2.1 Absolute Value (ABS) Modifier II1-5-10
5.2.2 Bit (BIT) Modifier I1-5-10
5.2.3 Character (CHAR) Modifier IT1-5-12
5.2.4 Count (CNT) Number of Bits ' II1-5-13
5.2.5 Core Address (CORAD) Modifier II1-5-14
5.2.6 File Position (FIL) Modifier I1-5-14
5.2.7 Record Position (POS) Modifier II-5-15
5.2.8 Record Length (LENGTH) Modifier II1-5-15
5.3 Procedure Linking II-5-15
5.3.1 Procedure Call II-5-16
5.3.2 Function Call IT-5-18
5.3.3 Return (RETURN) Statement I1-5-19
5.3.4 Executive (EXEC) Statement II1-5-22
5.3.5 Procedure Switch Call I1-5-23
5.4 Replacement Statements II-5-26

vii



M-5035

m'pmm

Volume II
Change 4 .
TABLE OF CONTENTS (Continued)
Paragraph Title Page
(Continued)
5.4.1 Assignment (SET) Statement I1-5~26
5.4.1.1 Arithmetic Assignment Statement . 11-5-27
5.4.1.2 Literal Assignment Statement I1-5-31
5.4.1.3 Status Assignment Statement - 11-5-32
5.4.1.4 : Boolean Assignment Statement ‘  I1-5-33
5.4.1.5 : Multiword Assignment Statement II-5-35
5.4.1.5.1 ’ Multiword Table-to-Table Assignment v
Statement ' , I1-5-35
5.4.1.5.2 © Multiword Item-to-Item Assignment
Statement I11-5~36
5.4.1.5.3 Single Word-to-Multiword Assignment
. Statement 11-5-36
5.4.2 , Exchange Statement (SWAP) I1-5-38
5.4.3 Shift (SHIFT) Operation I1-5~-39
5.4.4 Pack (PACK) Operation II-5-40
5.5 Control Statements ' I1-5-41
5.5.1 GOTO Statement Name 1-5-41
5.5.2 GOTO Switch Name 11-5-42
5.5.3 STOP Statement I1-5-45
5.6 Decision Statements I1-5-45
5.6.1 Logical Decision Statement II-5-46
5.6.2 Table Search Statement . II-5-48
5.6.2.1 FIND Statement II-5-48
5.6.2.2 Search Decision Statement II-5~50
5.6.2.3 Table Search Format I-5-51
.6.2.4 Table Search Examples : TI~5~52
.6.3 Validity Decision Statement - II-5-54
6.4 Parity Decision Statement - I-5-55
.6.5 ELSE Statement II-5-56
5.6.6 Nested Decision Statements I-5-58
5.7 Statement Blocks ‘ II-5-59
5.7.1 - BEGIN Block 1I-5-60
5.7.2 VARY Block I1-5-61
5.7.2.1 VARY Statement - DI-5-62
5.7.2.1.1 : Index Clause ‘ A I1-5-64
5.7.2,1.2 WHILE Clause I1-5-65
5.7.2.1.3 UNTIL Clause I1-5-66
5.7.2.2 Resume (RESUME) Statement 11-5-66
5.7.2.3 End Vary Statement (END) 11-5-67

viii



Paragraph

-q:q-a'ﬂ-a

oo
o

w.ooc.owm

>

W N =

TABLE OF CONTENTS (Continued)

Title
(Continued)
Examples of VARY Blocks
FOR' Block
FOR Statement
Value Block
FOR Block Examples

SECTION 6
INPUT/OUTPUT STATEMENTS

Input/Output Operations
INPUT Statement

viiiA/ viii B Blank

M=5035 -
Volume II
Chaqge‘ 4

Page

11-5-67
11-5-72
11-5-73
11-5-76
1-5-77

n-6-1
11-6-4






M-5035

Volume II
: ~ Change 4
TABLE OF CONTENTS (Continued) ‘
Paragraph Title Page
SECTION 6
(Continued)
6.1.2 OUTPUT Statement 11-6-7
6.1.3 FORMAT Declaration I1-6-8
6.2 Encode and Decode Operations 11-6-15
6.3 Nonstandard File Control 11-6-18
6.3.1 FILE Declaration [1-6-20
6.3.2 OPEN Statement 11-6-24
6.3.3 - ENDFILE Statement 11-6-24
6.3.4 CLOSE Statement ' 11-6-26
6.4 Device State Checking ’ 11-6-26
6.5 Device Positioning 11-6-28
6.5.1 Positioning by Files 11-6-28
6.5.2 Positioning by Records 11-6-30
6.6 File and Record Position Determination 11-6-31
6.7 Record Length Determination 11-6-32
6.8 Device Identification Operations : _ 11-6-33
6.8.1 DEFID Statement I1-6-33
6.8.2 CHECKID Statement I1-6-35
SECTION 7
COMPILE-TIME SYSTEM FACILITIES
7.1 Accessing the Compiler ' -7-1
7.2 Major and Minor Headers . : 11-7-3
7.3 Options Header Statement 11-7-5
7.3.1 SOURCE Option 11-7-6
7.3.2 OBJECT Option 1I-7-7
7.3.3 LISTING Option ‘ n-7-10
7.3.4 MONITOR Option : I1-7-11
7.3.5 NONRT Option I1-7-12
7.3.6 Two~-Level Diagnostics -7-12
7.3.7 MODEVRBL Option I1-7-12
7.3.8 STRUCTURED Option , ‘ [I-7=12A B
7.4 Allocation Header Statements 11-7-12B
7.4.1 Pooling Statements o n-7-12B
7.4.1.1 LOCDPOOL Statement 11-7-14
7.4.1,2 TABLEPOOL Statement : -7-16
7.4.1.3 BASE Statement R | CV £
7.4.1.4 DATAPOOL Statement 11-7-18
7.4.2 EQUALS Statement -7-19
7.4.2.1 Defining a Tag : 11-7-20
7.4.2.2 Establishing Relative Locatlons Mn-7-21
7.4.3 NITEMS Statement 11-7-22
7.5 Library Retrieval Header Statements - I1-7-22
7.5.1 LIBS Statement S TI-7-23
7.5.2 Retrieval Selection Statements 1I-7-23

ix



- M-5035
Change 5

Volume I1I

Paragraph

~
wi
(T2~ S TN

NN NN NNN NN NNN NN
. 'y - - - L) . . - . L) . . * L]
(o X We We We Wo We Wa We Weo Wo Wo W W NT,
N . .
* [ ] [ ] [)
BN

Co 00 OO0 00 OO
U1 BN

B RN

O W WWYWIWWWVLIWYWVWYVLWVWYWYLWYW

° . . . e e . . * e e & e e .

RO DY B BRI R N R N R BN RO N
L] . .

U RN NN NN N R R

TABLE OF CONTENTS (Continued)

Title

SECTION 7
(Continued)

. Correcting Elements During Library
Retrieval ‘

DEP Statement

Key Specification

Miscellaneous Header Statements

SYS-INDEX Statement

MEANS Statement

EXCHANGE Statement

DEBUG Statement

CSWITCH Declarations
CSWITCH Selection Declaration
CSWITCH Brackets
CSWITCH Deletion

- CSWITCH Example

EXECUTIVE Statement

CMODE Statement

SPILL Statement

SECTION 8
DEBUG STATEMENTS

Display Statement
Snap Statement
Range Declaration
Trace Statement

 Procedure Trace (PTRACE)

SECTION 9
DIRECT CODE

‘Direct Code Statement Format
Direct Code Statement Repertoire
Direct Code Directives
Constants
Decimal Numbers
Octal Numbers
- Floating-Point Numbers
Character Strings
Scaled Decimal Numbers
Scaled Octal Numbers
Data Expressions
Literals
Direct Constant Entries
Instruction Expressions

- Processing Conventions

X

Page

I1-7-24B
II-7-25
I1-7-25
I11-7-27
I1-7-27
I1-7-27

II-7-28

I1-7-29
IT-7-30
I1-7-30
II-7-30A
I1-7-30B
I1-7-30B
I1-7-31

- II-7-32

I11-7-32

II-8-2
II-8-5
IT-8-7
IT-8-9
II-8-11



Paragraph

10.1
10.2
10.3
10.4
10,5
10.6

[ S S —
ot ) et
o« o o

—
[
.

Pt ot o ot it ottt
[ R S O P WP R i S -
e o o o o o o o

. . ‘e @

NESEBWNDNDNNONNDDNDNDN -~
L] L]
DN -

o e

[
ot ot et ot ot ot ot o ot et

e @ o & e © o o o o o

P
=
L]

R B R R R ol o R S R

st
et
.

N U N

TABLE OF CONTENTS (Continued)

Title

SECTION 10
COMPILER OUTPUTS

Source Listing Format

Source and Mnemonic Listing Format
Local Cross-Reference Listings
Global Cross-Reference Listing
Symbol Analysis Format

Compiler Error Summary

SECTION 11
ASSEMBLER

Assembler Functions
Input Language Structure
Label ‘
Statements
Fields
Subfields
Omission of Subfields
Statement Continuation

Statement Termination and Notes

Blank Card Images
Language Structure Summary
Notations Used In This Section
Coding Control Statements
Comments
“Printer Page Control
Directives
Addressing Sections
Segmentation
Assembly Base Addresses
Conditional Assembly
- Library Usage
Macros
Expressions
Assembler Generation
Full-Word
.Half-Word
Temporary Storage
Assembler Output
Assembly Time Allocation
Linking '
Control Card _
Start Assembly (ULTRA)

xi

M-5035
Change
Volume II

Page

I1-10-1
I1-10-2
1I-10-4
II-10-5
I1-10-6
I1-10-12

I1-11-1
I1-11-2
I1-11-2

1I-11-5

I1-11-5
I1-11-5
I1-11-5
I1-11-6
I1-11-6
I1-11-6
I1-11-6
I1-11-7
11-11-7
11-11-7
I1-11-7
11-11-8
I1-11-8
I1-11-8
I1-11-9
I1-11-9
11-11-10
I1-11-10
I1-11-11
11-11-11
I1-11-11
II-11-11
II-11-11

S II-11-12

I1-11-12
I1-11-12
I1-11-12

I1-11-12



M-5035

Change 3
Volume II
TABLE OF CONTENTS (Continued)
Paragraph . ’ Title
SECTION 11
(Continued)
11.2.2 ~ Stop Assembly (OFF)
11.2.3 Disable Object Output Code (OFO)
11.2.4 Sample Deck Using Control Cards
11.3 - Source Statements
11.3.1 - Label Field
11.3.1.1 Labels
011.3.1.2 Address Counter Declaration
11.3.1.3 Leading Asterisk (%)
11.3.1.4 Half-Word Instruction Labels
11.3.2 Operation Field
11.3.2.1 Processor Instruction Mnemonics
11.3.2.2 ' , Input/Output Controller Command
‘ ' ~ Mnemonics
.3.2.3 Directive Mnemonics
R Directives

ABS Directive
BYTE Directive
CHAR Directive
DO Directive
A EMBED Directive
' END Directive
EQU Directive
EVEN, ODD Directives
FORM Directive
LCR Directive
LIBS Directive
LIB Directive
LINK Directive
LIST, ELIST, and NOLIST Directives
LIT D1rect1ve
LLT Directive
PXL Directive
RES Directive
RF$ Directive
SEGEND Directive
- SETADR Directive
WRD Directive
TAGTBL Directive
Macro Statements

e o
. e e o o
e o

o e ° .

* e
o e o
.

L]
.
L] .
D DD DD bt bt bt ot ot i pd ot b bt O D =] O LN PNV B

e o o
3 . . b
. .« o .

. 3
. .
. .

bt bt ot bt ot bt bt ot o ot bt o ot e o bt ot bt bt ol bt et e et ot et
.

bt bt bk ot et ot ot e ot ot ot ot ot ot o (o o ) et bt fund bt et ot ot ot o
i

4.1 ~ MACRO and END Dlrectlves
11 1.1 Paraforms
11.4,1.2

Starred Labels Wlthln Macros

xii

Page

11-11-14B
I1-11-14B

II-11-15

I1-11-15
11-11-15
I1-11-16
I1-11-18
I1-11-18
I1-11-18
I1-11-19
I1-11-20

1I-11-20
. 1I-11-20

II-11-21
I1-11-21
11-11-21
11-11-22
I1-11-23
I «11-25
11-11-26
I1-11-26A
I1-11-26B
11-11-27
I1-11-28

- 1I-11-29

11-11-29
I11-11-31
II-11-32
11-11-33
1I-11-34
I1-11-35
1I-11-35

II-11-36

11-11-37
I1-11-38
11-11-39
11-11-40

"1I-11-40

11-11-40
11-11-42
I1-11-45



M-5035

Change 2
Volume II
TABLE OF CONTENTS (Continued)
baragraph Title ' Page
SECTION 11
.(Continued)
11.4.1.3 Operand Field I1-11-15
11.4.2 Other Macro-Oriented Directives I11-11-16
11.4.2.1 NAME Directive II-11-16
11.4.2.2 GO Directive I1-11-48
11.4.3 Summary of Macro Usage I1-11-49
11.4.4 Special Consideration When Codlng Macros I1-11-30
11.4.4.1 Comments I1I-11-30
11.4.4.2 Labels on a Macro Reference Line 1I-11-50
11.4.4.3 Address Counter Declarations Within a
Macro II-11-31
11.4.4.4 Externalizing Labels II-11-31
11.4.4.5 Macro Reference Lines 11-11-33
11.4.4.6 Complex Macros II1-11-53
11.5 Address Counter Declarations II-11-54
11.6 . Expression Statements IT-11-35
11.6.1 Labels II-11-56
11.6.2 Address Counter , 11-11-56
11.6.3 Decimal Number I1-11-57
11.6.4 Octal Number I1-11-57
11.6.5 Floating Point Number I1-11-58
11.6.6 Fixed Point Number I1-11-59
11.7 Data Modes 11-11-59
11.7.1 Literals : II-11-59
11.7.2 Data Words I11-11-60
11.7.2.1 Constants 11-11-60
11.7.2.2 Character Strings II-11-61
11.8 ~ Operators II-11-62
11.8.1 Symbols ‘ II1-11-63
11.8.1.1 Arithmetic Operators : I1-11-65
11,8.1.1.1 *+ (Positive Exponentiation) IT-11-65
11.8.1.1.2 *. (Negative Exponentiation) 11-11-65
11.8.1.1.3 */ (Binary Exponentiation or Scaling) II-11-06
11.8.1.1.4 # (Arithmetic Product) II-11-66
11.8.1.1.5 / (Arithmetic Quotient) ' I1-11-67
11.8.1.1.6 // (Covered Quotient) I11-11-67
11.8.1.1.7 + (Arithmetic Sum) I1I-11-67
11.8.1.1.8 - (Arithmetic Difference) I1-11-67
11.8.1.2 Logical Operators II-11-68
11.8.1.2.1 *% (Logical Product) I1-11-68
11.8.1.2.2" - ++ (Logical Sum) o I1-11-68
11.8.1.2.3

-~ (Logical Difference) _ I1-11-68

xiii



- M-5035

Volume II
- Change 5 o
TABLE OF CONTENTS (Continued)
Paragraph : Title - - Page
SECTION 11
(Continued)
11.8.1.3 Conditional Operators ‘ II-11-68
11.8.1.3.1 = (Equal) I1-11-09
11.8,1.3.2 > (Greater Than) * , I11-11-69
11.8.1.3.3 < (Less Than) I1-11-69
11.8.2 Operator Priorities v I1-11-70
11.8.3 Parenthetical Grouping II-11-71
11.8.4 Relocatability , ' _ I11-11-71
11.9 - Assembler Outputs II-11-73
11.9.1 Side-By-Side Listing 1 : CII-11-73
- 11.9.2 Error Codes - 1I-11-73
11.9.2.1 Expression (E) I1-11-73
11.9.2.2 Duplicate (D) - II-11-73
11.9.2.3 Undefined (U) , II-11-74
11.9.2.4 Instruction (I) _ I1I-11-74
11.9.2.5 Relocation (R) : o 11-11-74
11.9.2.6 Truncation (T) - ' - 1I-11-74
11.9.2.7 Overflow (0) v - II-11-74
11.9.2.8 Name (N) R I1-11-74
11.9.2.9 Level (L) 11-11-75
11,9.2,10 Floating Point (F) ' o-11-75
11.9.2.11 - Warning (W) I-11-75
11.9.3 Generation Formats : 1I1-11-25
11.9.4 Listing of Labels II-11-76
11.9.4.1 Level O I11-11-76
11.9.4.2 Level 1 - II-11-76
11.9.4.3 LLT Sample Listing II-11-76
11.9.4.4 Undefined Labels I1-11-76
11.9.4.5 _ Cross Reference Listing I1-11-77
11.10 : ‘ Assembler Diagnostics and Status II1-11-77
11.10.1 , Assembly Errors - I1-11-77
11.10.2 ‘ Assembler Internal Errors , I11-11-79
11.10.2.1 Core Overflow ‘ II-11-79
11.10.2,2 : Level Overflow I1-11-79
11.10.3 Library Call Errors : I1I-11-79
11.10.4 Peripheral Errors I1-11-79
11.11 Source Deck Organization 11-11-80
11.12 - Special Considerations I11-11-83
SECTION 12
INSTRUCTION REPERTOIRE
12.1 AN/UYK-7 Computer Functions - o 11-12-)
12.1.1 . - Register Format and Usage 11-12-2
12.1.1.1 Program Address Register ' 11-12-2



Paragraph

.
no

[ L] . L] . * o . L] L] [ ] [ ]
LCWWWNNDINONNDDNN NN DN e e e ot
L] L] L] L ] L] L] . L] L] L] . [ ]
NN DN -
L) . .
O DN =

NI ~NC LS LN

L] . .
L]
[ ]
[\l

.
.

. .
O N =

T T o o Vv WP U oy W oy Gy S ey e
DN DD DD DN

. e o ®
. . L) [ L)

=R BB A WWWWWWWWw

L]
= O O~ O U

[\C R i )

bt it ot o o o et o o ot ot ot e B
OO DDODNDDND DN

= WO N

e o

et bt bt ot o e ot

DN NN
L]

[ Y= NI SN ST SN SN

M-5035

Volume II
TABLE OF CONTENTS (Continued)
Title Page
SECTION 12
(Continued)

Addressable Registers, Control Memory
Modes of Operation
Interrupt State
Task State
Active Status Register
AN/UYK-7 Instruction Formats
Format I Instructions
Format II Instructions
Format III Instructions
Format IV-A Instructions
Format IV-B Instructions
Indirect Word
1/0 Commands Formats
Normal Mode
ESI Mode
Symbolic Conventions
f - Function Code Designator
a - Arithmetic Code Designator
k - Operand Interpretation Code
Designator
- Index Register Code Designator
- Indirect Address Code Designator
- Base Register Code Designator
- Operand Code Designator

Shift Counter Field
- Monitor Interrupt Codeé Designator
- Chain Flag Code Designator '
J - Channel Number
Computer-Instruction Repertoire
Load and Store Instructions
Arithmetic Instructions
Jump Instructions
- Instructions Involving Comparison
Operations

0.8 3 - =T
|M .

Instructions Involving Logical Operations

Shift Instructions

Instructions Referencing Control Memory
Interrupt Handling Instructions
Miscellaneous Instructions

Extension Mnemonics '

Input/Output Instructions

XV

f3, f4, - Subfunction Code Designators

11-12-3

11-12-8

I1-12-8

I11-12-8

I1-12-9

I1-12-12
I11-12-12
11-12-13
11-12-13
I1-12-14
I1-12-14
I1-12-15
I1-12-16
II-12-16
11-12-17
11-12-17
I1-12-17
I1-12-17

11-12-22
11-12-25
11-12-25
11-12-25
11-12-25
11-12-20
11-12-26
11-12-26
11-12-20
11-12-20
11-12-26
11-12-35
11-12-41
11-12-50

11-12-57
I1-12-62
I11-12-68
11-12-71
11-12-79
11-12-84
11-12-92
11-12-98



M-5035

Change 2
Volume II

TABLE OF CONTENTS (Continued)
Paragraph 4 Title

APPENDIX A
CHARACTER CODES

: APPENDIX B
SUMMARY OF SYSTEM STATEMENTS

: APPENDIX C
SUMMARY OF SERVICE ROUTINE CALLING SEQUENCES

APPENDIX D
CMS-2 COMPILER RESERVED WORD LIST

APPENDIX E
COMPILER ERROR MESSAGES AND LIMITS

APPENDIX F
SUMMARY OF ASSEMBLER ERROR CODES

APPENDIX G
AN/UYK-7 CONDENSED REPERTOIRE

"APPENDIX H
CMS-2 SYSTEM TAPE DUPLICATION

APPENDIX I
SYSTEM MODIFICATION

CMS-2 KEYWORD INDEX

Xvi

Page

‘B-1

D-1

E-1

1-1

K-1



M-5035
Change 4

Volume 11
LIST OF ILLUSTRATIONS
Figure : Title Page
1-1 Typical Minimum Configuration I1-1-4
2-1 CMS-2 Compile-Time System 11-2-4
2-2 Structuring of Data Designs and Procedures 11-2-0
2-3 Source Deck Forms [1-2-7
2-4 System Procedure Design 11-2-8
2-5 Range of Program Identifiers 11-2-10
2-0 CMS-2 Program Structure Declaratives F1-2-11
2-7 A Compile-Time System Structure 11-2-12
2-8 Statement Execution Flow Involving Procedure
Calls ' : I1-2-15
2-9 Table Structure 11-2-18
2-10 _ Ficld Assignments for a Table _ Ir-2-10
2-11 . Table Storage Sequence [1-2-10
2-12 Parent Table Relationships Ji-2-21
2-13 A Three-Dimensional Array v 11-2-20
2-14 Array Storage Sequence 11-2-23
5-1 VARY Flow 11-5-63
0-1 Input/Output Data Flow 11-0-3
-1 Elements of a Compile-Time System Ir-7v-2
11-1 : Assembler Pass 1 Data Flow I1-11-3
11-2 Assembler Pass 2 Data Flow I1-11-1
11-3 Sample Deck Using Control Cards HI=11-15
11-4 Sample Deck to Assemble, Load, and Execute
a Single Program H-11-17
11-5 ‘ Sample Cross-Reference Listing I1-11-78
11-6 Source Deck Organization for a Single Program Fl-11-00
11-7 . ‘ Source Deck Organization for Assembling
Using Library Input [1-11-
11-8 Source Deck Organization for Two or More
‘ : Bependent Programs or Segments H1-11-82
11-9 ' . Source Deck Organization for Two or More /
- Independent Programs or Scgments ' I1-11-82

11-10 Source Deck Assembly Time Allocation Fr=-11-83

wvera o



M-5035
Change 4
Volume II

13
4]
(=2
[
(22

| I B | L ] 1
b QO N et b e e S GO N e DD

— O~ UtOr U s
)

[P —
bt et
] ]

[ —
N
1

e
Nl‘\DNl\J

12-7

LIST OF TABLES

- Title

Examples of Variable Declarations
Examples of Type-a Fields

Arithmetic Operators

Relational Operators

Boolean Operators

Truth Table

CMS-2 Operating System Standard Files
Equals Expression Summary

Instruction Sub-field Valid Forms

Operators and Priorities of Operators

Data Modes for Operator Items
Relocation of Binary Items

Single and Double Precision Expressions
Central Processor Control Memory Address

Assignments
AN/UYK-7 Computer Modes of Operation
Active Status Registet

Instruction Repertoire Symbol Definitions
General Operand Interpretation (Memory To

Arithmetic)

‘General Operand Interpretation (Arithmetic

To Memory)
General Operand Interpretation (Normal
Replace Instruction Interpretation)

xviii

Page
11-4-20

11-4-32

I1-5-2A
II-5-6
I1-5-6
I1-5-8
I11-6-2
11-7-20
I1-9-19
II-11-64

CII-11-65

I1-11-72
I1-11-72

I1-12-4
I11-12-8
11-12-9

- 11-12-19

11-12-23
11-12-23

1I-12-24



M-5035

SECTION 1

INTRODUCTION

1.1 PURPOSE AND SCOPE

This user's reference manual contains the information required by programmers and
operators who wish to use or control the operation of the Compiler-Monitor System
(CMS-2) developed for use with the AN/UYK-7 Computer, Univac Systems Programming
Group developed this system for the Department of the Navy, Naval Ship Systems
Command, under contract number N00024-70-C-1142,

This manual consists of two volumes with contents as follows:

Volume I - Monitor, Loader, Librarian, Peripheral Utilities, and System
Operation - contains descriptions of command formats
recognized by the Monitor, Loader, Librarian, and
Peripheral Utilities. This volume also contains
descriptions of calling sequences required to reference
Monitor service routines and descriptions of operator

commands recognized by the CMS-2.

Volume IT - Compiler, Assembler, and Instruction Repertoire - contains a
description of the languages recognized by the Compiler
(both high level and low level) and the AsSemblér.
including a comprehensive description of macro generation.
Volume II also contains a complete functional description

of the AN/UYK-7 Computer instruction repertoire,

While thiS'manuél contains comprehensive descriptions of command syntax,
calling sequences, and méssages generated by various components of the system,
detailed descriptioiis of the functions performed by each component, the inter-
faces between the components, and functions performed by the hardware are all
beyond the scope of this manual, |

I1-1-1



M-5035

1.2 APPLICABLE DOCUMENTS

The following documents augment the content of this manual to provide a

complete description of the Compiler-Monitor System 2 (CMS-2) developed for the

AN/UYK~7 Computers

NAVSHIPS 0967-029-5430
Program Specification for
Compiier—Monitor\System
for use with the AN/UYK-7

Computer.

NAVSHIPS 0967-029-5440
.Program Design Plan for
Compiler-Monitor System
for use with the AN/UYK-7

Computer,

NAVSHIPS 0967-051-6291
AN/UYK-T Digital Data Computer

Univac DSD Document, PX 3699A
UNIVAC? 1532 Input/Output

Console Technical Description

Univac DSD Document, PX 3662
UNIVAC® 1540/1541 Magnetic

Tape Units Technical Description

11-1-2

Consists of five parts containing
the basic functional specifications
for each of the five major com-

ponents in the system:

Part 1 - Compiler

Part 2 - Librarian

Part 3 - Monitor

Part 4 - Loader

Part 5 - Peripheral Utilities

Consists of five parts containing
the detailed descriptions of
functions performed by each of the

five major components in the system:

~Part 1 - Compiler

Part 2 - Librarian

Part 3 - Monitor

Part 4 - Loader

Part 5 - Peripheral Utilities

Contains the hardware description

of the computer used by the system.

Contains the hardware description
of the I/0 console used by the

system.

Contains the hardware description
of the magnetic tape units used

by the system.



M-5035

Univac DPD Document, UP2543, Rev 1, Contains the hardware description
UNIVACE 1004 Card Processor Reference of the card reader, card punch,
' and high-speed printer used by

the system,
1.3 SYSTEM CAPABILITIES

CMS-2, also referred to as the system, provides optimum utilization of the
AN/UYK-7 Computer and associated peripherals in a serial batch processing
environment. The system is user oriented and designed to optimize the

capabilities of the system for all users. Its major features are:

1. Provides the simplest possible operational characteristics

consistent with the full utilization of the system.

2, Provides a simple yetvflexible means of generating, storing, and

updating computer programs at the individual installation.

3. Provides a broad and easily utilized system of program construction,

manipulation, and debugging aids.

1.3.1 Hardware Requirements

The system operates on an AN/UYK-7 Computer and its associated peripherals.

The minimum equipment required to efficiently operate the system consists of:
1. AN/UYK-7 Computer with 3 memory banks. |
2. UNIVAC® 1004 Card Reader, Punch, and Printer or equivalent.
3. Six UNIVAC@ 1240 or 1540 Magnetic Tape Transports or equivalent.
4, UNIVAC® 1532 Input/Output Console and Keyboard or equivalent.

Figure 1-1 illustrates a typical minimum configuration.

I1-1-3



M-5035

1532 1/0
Console and
Keyboard

1240
/ Magnetic
Tape

Transport

1240
Magnetic

Tape
Transport

‘1240
Magnetic
Tape

Transport

1240
Magnetic

Tape
Transport

Figure 1-1,

~ AN/UYK-7

Computer
with 48K
of Memory

11-1-4

1004 Card Reader
Punch, and
Printer

1540
Magnetic
Tape

Transport

1540
Magnetic
Tape

Transpor

*'OptiOnal
addition

1540
Magnetic
Tape %
Transport

1540
Magnetic |
Tape %
Transpor

Typical Minimum Configuration



M-5035

1.3.2 Software Components

A software component of CMS-2 is a program which is designed to perfarm a
specific function (e.g., compile a program, build a library) using an
external data-base (e.g., source, object code). The component is designed
to operate under the Monitor (a component that performs control functions)
which determines its final operational allocation and provides it with a
centralized input/output capability. Thus, a component represents a module
in the system which may be tailored to operate under the Executives with
little aniicipated change in the logic. These changes would necessarily
reflect the idiosyncrasies of the particular executive, notably in the area
of the Executive call. CMS-2, for the initial development, consists of the

following components:
1. Monitor
2. Object Code Loader
3. Librarian
4. Peripheral Utilities
5. Compiler
6. Assembler
7. System Tape Generator

The system utilizes magnetic tape as the system storage medium. The tape

format effectively provides the features which follow:

1. Efficient run time retrieval of programs,

2. Independent system initialization.

3. Potential system expansion,

4, Tdtal system delivery.

5. Complete system update, maintenance and reproduction.

The system storage medium consists of two parts: 1) the operational library

and 2) the system library.

II-1-5



-M-5035

The operational library contains the Monitor and components which make up the
system; in addition, it contains directory information required for locating
programs on the operational library, for relocatable loading (not instruction
modification), and for initating execution. This library occupies the first
file on the system tape and is written in a format compatible with the NDRO
bootstrap routine. The Monitor and the directory information are loaded when
the bootstrap routine is initiated from the computer control console. This

‘provides the independent system initialization.
The systen Library.éontains the following:
1. Object_code of all run time routines (implicit).
2. Object code of all intrinsic built-in routines.
3. Object code of Monitor and all components,
4. Compools of selected data designs for Monitor and components.
1.3.2.1 Monitor

The Monitor (described in Volume I, Section 2) is a serial batch processing
operating routine utilizing a single AN/UYK-7 unit processor. Major functions
available through the Monitor are requested by the user through control cards
described in Volume I, Section 2. The Monitor includes the Centralized Input/
Output Module which supports I/0 on the various devices attached to the
AN/UYK-7. The Monitor also provides for handling of all classes of processor
interrupts and interfaces to allow user programs to access vital interrupt
information (e.g., floating point error). The Monitor is responsible for
retrieval of components from the operational library on the system storége

medium (system tape). It also maintains system core allocation algorithm,

1.3.2.2 Object Code Loader

The Object Code Loader (described in Volume I, Section 3) performs instruction
modification to object code produced by the CMS-2 Compiler and CMS-2
Assembler. The Loader allows optimum code to be generated by the AN/UYK-7
language processors by combining independently compiled program segments

under a common base register or registers, thus reducing the number of base

register manipulation instructions which must be executed.

II-1-6



M-5035

1.4.2.3 Librarian

The Librarian (described in Volume I, Section 4) provides a convenient, easy-
to-use method of storing, fetfieving. and updating both source statements and
relocatable object code. The Librarian is capable of updating (i.e., adding,

deleting, changing) both entire elements or individual items within an element.
1.3.2.4 Peripheral Utilities

The Peripheral Utilities (described in Volume I, Section 5) provide a
variety of functions for manipulating data files on the peripheral devices.

These functions include:

1. Position specified magnetic tape at the start of a file (designated

by a file mark).

2. Position specified magnetic tape at the start of a record within

a file.
3. Transfer tape data into memory (read tape).
4. Transfer memory data onto tape (write tape).
5. Compare the contents of two tapes and print out any differences.
1.3.2.5 Compiler

The Compiler (described in Volume II Sections 2 through 10) accepts both high
and low level languages. The high level language is statement oriented and
the low level is computer instruction mnemonic oriented; These languages
describe the desired program, and the Compiler generates object code data that
the Object Code Loader places into memory as an executable program, The

Compiler input is called source code and the Compiler output is called object
code,

11-1-7



»M-5035

1.3.2;0 Assembler

The Assembler (described in Volume II, Section 11) accepts a computer instruc-
tion mnemonic oriented language that gives the programmer absalute control of
the structure of his program. 1In addition, the Assembler brovides programmers
kwith a level of éssistance beyond that normally associated with an assembler
class of language processors. The assembler accepts programmer defihitions

of pseudo-operatidns (called Macros) and then uses the definition whenever

the programmer references the pseudo-operations. As with the Compiler, the
Assembler I'nput is called source code and the Assembler output is called

object code.
1.3,2,7 System Tape Generator

The System Tape Generator (described in the System Programmer's Manual)
provides an easy-to-use method of updating system tapes that have a directory
schéme identical to the CMS-2 tape. The System Tape Generator accepts input
~that contains the necessary data to change tape'directory information (e.g;.
number assigned to a new component, names of new records, names of records to
be deleted), and then, in conjunction with the Object Code Loader, generates

‘a new system tape complete with required directories.

1.4 SYSTEM OPERATION

System operation consists of initiating the system, preparing inputs to the

system, and accepting outputs.

1.4.1 System Load andrInitiation

System loading is initiated using the AN/UYK-7 Magnetic Tape Hérdware Bootstrap
Program. The resident Monitor is loaded at a specified location dependent on:
the number of'Operable memory banks currently available. The necessary allo-
cation-dependent words in the resident Monitor are then initialized. The
Monitor's data and the operational library directory for the Monitor are then

" loaded from the system tape, and the Monitor requests the current time, date,
operating mode (open or closed shop), and standard selections of input/output
devices. Any other flags or variables maintained by the Monitor and requiring

initialization are preset,

II-1-8



M-5035

1.4.2 Standard Input Processing

Once initiated, the Monitor starts reading card image data from the selected
standard input device. This device is normally the card reader; however, ihe
Monitor accepts commands to process data from either magnetic tape or the 1/0
console as standard input data. In each of these cases, the input data must

be in card image format.
The data read from the standard input device consists of:

l1.- Monitor control cards which contain commands to the Monitor including

commands to load and activate other system components or user programs,

2. Inputs to an activated system component or user program which contain

both commands to the program and input data to be processed by the

program.,

In general, when the Monitor»pasées control to either another system component
or user program, the component or program (as applicable) starts recading data
from the standard input deviées; for example, the card images following the
image commanding the Monitor to load and activate the Compiler make up the
source code input to the Compiler. On the other hand, most of the card images
following the image commanding the Monitor to load and activate the Librarian
are commands to the Librarian directing its manipulation of data stored on

magnetic tape.

1.4.3 Standard Output Processing

The system has three basic outputs:

1. Standard output consisting of object code cards normally produced on
the card punch. The Monitor accepts a command to place this data on
magnetic tape in object code card image format instead of punching
cards.

2. Hardcopy output consisting of high-speed printer-oriented data, such
as program listings, normally produced on the UNIVAC“71004 High
Speed Printer. The Monitor accepts a command to place this data on

magnetic tape in printer format instead of printing the data.

3. Console messages consisting of up to 72 characters of operator-

oriented data (request to mount a tape) typed out on the I/0 console.

11-1-9/11I-1-10 Blank






M-5035
Change 4

SECTION 2

INTRODUCTION TO THE CMS-2 LANGUAGE

2.1 MAJOR FEATURES OF CMS-2
CMS-2 is a problem-oriented compiler language developed to meet the needs of

real-time data processing and scientific applications, Its major featurecs

are described below:

a. CMS-2 permits program modularization and adherence

to the concepts of structured programming.

b. Input to the CMS-2 Compiler is statement-oriented, rather
than card-oriented. The source card format is free-form

and may be arranged for user convenience,

c. A broad range of data types is definable in CM5-2. These
types include fixed-point, floating-point, Boolean,

Hollerith (character), and status.

d. CMS-2 permits direct reference to, and manipulation of,

character and bit strings.

e. Programs may include segments of symbolic machiné language,

referred to as direct code.

The remainder of this section presents a number of definitions, discusses
various concepts fundamental to the CMS-2 language, and presents a summary of

the specific capabilities of the language.

2.2 PROGRAM STRUCTURE

A CMS~2 program is composed of an orderly set of statements, These statements
are composed of various symbols that are'separated by delimiters. Three ’
categories of symbols are processed: operators, identifiers, and constants.

The operators are language primitives assigned by the Compiler to indicate

11-2-1



M-5035

specific operations or definitions within a program. Identifiers are the
unique names assigned by the programmer to data units, program elements, and
statement labels. Constants are known values, and may be numeric (decimal or

octal), Hollerith strings, status values, or Boolean,

CMS-2 statements are written in a free format and terminated by a dollar sign.
Several statements may be written on one card, or one statement may cover
many cards. A statement label may be placed at the beginning of a statement

for reference purposes,

The collection of program statements developed by the programmer for input to
the CMS-2 Compiler is known as the source code for a program and is composed

of the following two basic types of statements:

1. Declarative statements - Provide basic control information to
the Compiler and define the structure
of the data associated with a particular

program,

2. Dynamic statements - Cause the Compiler to generate execut-
able machine instructions (object code)

for a program.

These instruc;ions. when executed at program run time, manipulate the data

to solve the desired problem.

Declarative statements defining the data for a program are grouped into units
called data designs. Data designs consist of the precise definition of
temporary and permanent data storage areas, input areas, output aréas. and
special data units such as program switches. The dynamic statements that

- cause manipulatibn of data or express calculations to solve the programmer's
problems are grouped into procedures. These data designs and procedures

may be further grouped or classified to form elements of a CMS-2 program,

At compile-time, the CMS-2 Compiler recognizes a system as any collection of
program elements that may be compiled as an entity independent of any inter-
facing program elements, A compile-time system may comprise an entire

execution package or it may be only a small part of a large program,

. 11-2-2



M-5035

Before présenting any further discussion concerning the classification and
grouping of procedures and data designs into clements and the combining of
these elements to form systems, several concepts fundamental to the CMS-2

language must be explored.

2.2.1 Organization and Classification of Identifiers

The CMS-2 Compiler uses several conventions to classify data definitions and
program identifiers that are defined in a user's program. These techniques
assist the programmer in structuring his program and simplify the development

and maintenance of the programs.

2.2.1.1 Forward and Backward References

The order in which definitions and references to these definitions appear in
the source input to the Compiler is quite important. All data units are
defined in data designs. Within the data design where it is defined, an
identifier may generally be referenced either before it is defined (a forward
reference) or after it is defined (a backward reference)., However, references
to data from outside a data design can only be backward; that is, the data
must havé already been defined before it can be referenced. Since data
definitions always appear in data designs, and since data references usually
appear in procedures, procedures generally follow the data designs defining

the data referenced by the procedure.

References to statement labels within procedures and calls to procedures may
be forward or backward, but must obey the following local/global limita-

tions,

2.2.1.2 Local and Global Definitions

The Compiler further structures the referencing of identifiers by classifying
all identifiers in a program as either local or global. Local definitions
are those identifiers that can be referenced only from within the system
element where they.areidefined. Global definitions are those identifiers
‘that can be referenced both from inside the element where defined and from

outside by subsequent system elements in the source input stream.

11-2-3



M-5035

Figure 2-1 is a pictorial representation of a CMS-2 compile-time system con-
sisting of three elements: A, B, and C. Since a definition in the CMS-2
language;is said to be local if it is valid onIy within a single eiement of
“the system, any definition valid within eleménL B of Figure 2-1 is said to
-be local to element B, A global definition in the system of Figuré 2-1 is

valid within elements A, B, and C.

An alternative definition of the term "system" can be derived from this local-
globél concept, i.e., a system is the largest global area within a CMS-2

compilation.

Eleﬁent B

Figure 2-1. CMS-2 Compile-Time System

»2.2.1.3 External References and Definitions

The CMS-2 Compiler provides the capability of compiling one or more elements
of a large system indepehdently. For example, all three elements of the
system of Figure 2-1 could be compiled together as a single compile-time

system. Alternatively, elements A and B could be compiled together as a

11-2-4



M-5035

compile-time system and then element C could be compiled separately as another
compile-time system. The compiler-produced outpul in each case is the computer-
executable instructions (object code) for the various system elements. Later,
the object code for elements A, B, and C may be combined by a relocatable

linking loader program and executed together.

Presumably, there is some cross-referencing of data and procedures between

the three elements of our example. In order to compile element C separately,
any references made by element C to definitions in elements A and B must be
handled in a special manner by the Compiler and the Loader. References of

this type are called external references because they involve definitions

that are external to element C and, in this case, external to the compile-

time system as well. Those definitions in elements A and B that are referenced
externally by element C are called external definitions because they are

definitions that are available to elements external to A and B.

There are various ways in which definitions and references may be declared
external. In some cases the Compiler will automatically treat a definition
or a reference as being external. In other cases, external references and

definitions must be explicitly declared by the programmer.

It should be noted that only global definitions may be externally referenced
or defined. Local definitions are never valid outside, or external to, the

element in which they are defined.

2.2.2 CMS-2 Elements

As described in the previous paragraphs, data designs may be grouped or
classified to form elements of a CMS-2 program. One or more elements then
make up a compile-time system. The ordering and content of program elements.

is subject to the rules governing range and classification of definitions.

The two types of elements within a compile-time SyStém are system‘data designs
and system'procedutes. System data designs contain global data definitions.
System procedures contain one or more procedures and may also include local
data design packages. A local data design, as the name implies, contains

data definitions that are local to the system procedure in which the local data

I1-2-5



M-5035

design appears.‘ This structuring of data designs and procedures into program

elements within a system is illustrated in Figure 2-2,

System

: ‘System Procedure ' System Data Design

Procedure Local Data Design

Figure 2-2, Structuring of Data Designs and Procedures

The hierarchy shown in Figure 2-2 indicates that, within a system, system
data designs are equal in importance to system’procedures; they are the
program elements of a system. Keeping in mind the restrictions against
forward referencing, a source deck may take various forms, as illustrated

in'Figure 2-3.

The technique illustrated in Figure 2-3 (A) is often used in constructing.a
program, Since definitions within a system data design are global to the
balance of the system, system procedures may appear in ahy order following
the system data design(s) defining the referenced data. Interspersing data
designs and procedures as in Figure 2-3 (B) (C), however, has an advantégé,
eSpecially-in a large system, of maintaining data definitions in meaningful

groups close to the associated procedures.

Note that Figure 2-3 illustrates several examples of a compile-time system,
but these systems might be only a small part of an entire execution package.
In addition, each compile-time system of Figure 2-3 might be further broken
down into two or more compile-time systems. In this manner, corrections '
may be made to a particular system procedure, which may then be recompiled

without compiling the entire execution package again.

- II-2-6



M-5035

System System
Data Design Data Design System Procedure
System Procedure System Procedure System
! Data Design
System

System < System Procedure, System Procedure

Data Design

‘ System
System Procedure System Procedure Data Design
System Procedure System Procedure System Procedure

‘Figure 2-3., Source Deck Forms

System data designs and system procedures are the smallest program units that
may be compiled individually. A compile-time system may consist of a single
system data design or system procedure, but it cannot consist of a single

local data design or procedure.

2.2.2.1 System Data Designs

Data designs contain descriptions of the attributes of the various data units
(e.g., tables and variables) and their relationship to each other. As the
Compiler processes these descriptions, it assigns and reserves core storage
locations for‘subseqUent references to the data units, Data designs may
contain value information as well, which will cause the Compiler to generaie

object code to preset the data.

11-2-7



M-5035

Definitions within a system data design are global to the system, They are
all automatically externally defined by the Compiler.' There is, therefote,
no need to specifically externally define any data within a system data

design.

2,2,2,2 System Procedures

System procedures are composed of procedures and iocal data designs. A
system procedure usuélly contains one procedure with a name identical to that
of the system procedure name. This procedure is known as the prime*procédure
of that systém procedure, The prime procedure entry pdint is automaticéliy
éxternally defined by the Compiler and is global to the system. Other system
procedures, and data designs may reference prime procedures at will. Thus,
the prime procedure of a system procedure is considered a global procedure

(hence, the term system procedure).

A system procedure may contain more than one procedure, as illustrated in

Figure 2-4,

"\

Local Data Design

Procedure A

System

Procedure B Procedure

Local Data Design

Procedure C

J

Figure 2-4, System Procedure Design

For’éxample. the system procedure of Figure 2-4 contains three procedures and
two local data designs., If this system procedure were named "B", procedure B

would be the prime procedure of the system procedure and its name would be

11-2-8



M-5035

global Lo the entire system. However, procedurcs A and C, along with the
data units of the two data designs, would be local to the system procedure

and could not be referenced from outside the system procedure.

2.2.2,2.1 Local Data Designs. The difference between system data deSignS.
and local data designs is that, while system data.design definitions are
global to the system and automatically externally defined, local data design
definitions are local to the system procedure within which they are contained;
any necessary external definitions must be explicitly indicated within the
data design. In addition, a local data design may not be compiled separately

from its associated system procedure,

The local data design is intended to be used for the definition of data units
referenced only by the procedures within its system procedure. The use of
local data designs reduces the possibility of duplication of data names in a

large system because of their limited range of definition,

2.2.2.2.2 Procedures. Procedures contain CMS-2 statements and machine-
language statements. They may not contain data definitions or data values
for previously defined data. Procedures contain the statements from which
the Compiler generates the instructions that actually perform the steps
necessary to the solution of the problem. They must be included within a

system procedure element at compile-time.

2.2.3 Range of Identifiers

As can be seen from the prévious discussions, the organization of CMS-2
statements into system data désigns and system procedures to form the

elements of a program is closely related to the rules concerning classification
of identifier definitions and references. These rules on the range of ‘
identifiers (i.e., local/global definitions and forward/backward referencés)

are summarized in Figure 2-5.

11-2-9



M-5035

Range Within Which

Identifiers They Can Be Referenced

‘Prime Procedures Throughout the compile-time system.
Global Data defined in a Within that system data design

System Data Design and in all system elements that

follow, '

Local Procedures Within the same system procedurec,

Data defined in a Within that local data design and

Local Data Design the remainder of the system procedure

Local : - containing the local data design,

All Statement Labels Within the system procedure,
Figure 2-5. Range of Program Identifiers

2.3 DECLARATIVE STATEMENTS

The CMS-2 declarative statements provide the Compiler with information about
program structure and data element definitions. Declaratives generally do not
result in executable code. Declaratives are classified in three categories:
proygran structure declaratives, data declaratives;, and Compiler directiVe

(or program control) declaratives.

2.3.1 Program Structure Declaratives

In the deveIOpment'of a CMS-2 program, the dynamic and data definition state-
ments are organized into procedure and data design packages. CMS-2 program
structure declaratives are used to define the source program organization by
specifically delimiting the structure type as shown in Figure 2-6. An
example of the correct organization of program structurebdeclaratives for a

compile-time system is presented in Figure 2-7,

11-2-10



Beginning Delimiter Ending Delimiter
SYSTEM END-SYSTEM
SYS-bb END-SYS-DD
SYS-PROC END-SYS-PROC
LOC-DD END-LOC-DD
PROCEDURE END-PROC
FUNCTION END-FUNCTION

SYS-PROC-REN

AUTO-DD

HEAD

END-SYS-PROC
END-AUTO-DD

END-HEAD

M-5035

Purpose

‘Delimits a compile-time system

Delimits a system data design
within a compile-time system

Delimits a system procedure
within a compile-time system

Delimits a local data design’
within a system procedure

Delimits a procedure within a
system procedure

Delimits a function within a
system procedure

Delimits a reentrant system
procedure within a compile-
time system

Delimits a reentrant data design
within a reentrant system
procedure

Delimits a header package within
a compile-time system

Figure 2-6. CMS-2 Program Structure Declaratives

I1-2-11



¢cl-¢-I1

20 25 30 35

11 15 40
SAMPILE | | ISYSITIEM & 1 L1 11111
ot it L EAD & s g
L1111 loPTitons soluRreE B | | |
Llit i (o |EMD=iHEAD 1}y 1011
DATADEC [ ISYSI-dD ® [y
it aa g IviRBL YEAR W
Ll EmMd =SSP &1 1111
H_LMITIEI L1 lSlYlSl-lPlKlolcl lﬂ j I O T I O I |
L1 1111 |IPROCEDURE WPDATE & |
i ISET YiEAR o LTl #
ittt RETURN & Ly
L1111 [EMd-iPIR0G UIPDIATIE &) )
Ll a1 11 lewmdi~s Y isi-PRIOG % 11111

| N C I S S e | IEINIDL-LSflisiTiglMl lbl | U U N N O |

Figure 2-7. A Compile-Time System Structure

1 Major
Header

System Data Design

Procedure

Compile- |

Time
System

System
Procedure

S€0S-W



M-5035

2,3.1.1 Procedure Structure Declaratives and Linking

The dynamic statements that describe the processing operations of a program
are grouped into blocks of statements called procedures. The overall
purpbse of a program, its design, and to some extent, its size, influence
the programmer's decision as to whether one or several procedures will be
declared. The transfer of program control from one procedure to another

requires the observance of proecedure linking rules for such transfers.

The concept of procedure linking may best be described by posing a situation
from which those linking requirements desirable for use by a programmer may
be derived. - As a program design develops, it becomes apparent to the
programmer/designer that there is a requirement to execute a given set of
statements at several points (within several procedures) in the total program.
As each of these points is encountered, it would be advantageous to have a
program control capability of branching to a common routine (procedure),
processing, and returning to the next instruction following the program
control branch point (or procedure call). Along with this procedure call
should be a capability of simultaneously and automatically passing that
data, from the calling procedure to the called procedure where the data

is ptocessed. This automatic data transfer is defined as input of para-
meters, that is, data input to the called procedure from the calling pro-

cedure.

Upon completion of processing by the called procedure, it also should be
possible to automatically pass the results of the processing from the called
procedure to the calling procedure when program control is returned to the
calling procedure; This is defined as output of parameters, that is, data
output to the calling procedure from the called procedure.

Additionally..there should be a capability of specifying an instruction
address (statement label) to which the called procedure may transfer program
control in the event it does not perform its normal processing due to invalid
input data or processing checks indicating invalid or illogical results.

This is defined as an abnormal exit (abnormal réturn).

I1-2-13



M-5035

¢

The foregoing is the capability available to provide linkage émong all
procedures. Furthermore, all or part of these linkage capabilities may be
used, depending upon the requirements of the program. . The syntactical
requirements for defining a procedure and making a procedure call are
presented in Sections 4 and 5, respectively. Figure 2-8 is a schematic

representation of the procedufe linkage concept.

2.3.1.2 Reentrant System Procedures

Certain programming applications require that one or more of the procedures
comprising the progrém package or system for that application be structured
such that they may be shared by more than one task concurrently. Procedures

of this type are said to be reentrant procedures.

The principal characteristic of a reentrant routine is that it must be divided
into. two logiéally and physiéally distinct parts: a constant part and a
variable part, The constant part (instruction part) is loaded into memory
~once and services all tasks requiring this routine. One copy of the variable
part (data area) belongs to each task that is being serviced. This copy is
usually created (that is, it is allocated memory space) when the task is

initiated,

Within the CMS-2 language, a programmer has the capability of declaring a
system procedure to be reentrant. In this case, the object code generated

by the Compiler for all procedures within this system procedure will be |
invariant (constant) under execution. In addition, a special type of local
data design called an automatic data design may be declared within a reentrant
system procedure. An automatic data design is used for the definition of
temporary storage and procedure parameters used by the.reentrant proceddres
within the system procedure. Within a reentrant system procedure, the
Compiler automatically performs the required separation of the constant part
(procedures) and the variable part (automatic data designs). Multiple copies
of the variable part may then be loaded into memory along with a single copy
of the constant part and the reentrant system procedure may be executed

simultaneously by more than one task or central processor.

11-2-14



Procedure M

Procedure B

M-5035

L-

Procedure R

—_———d

EntrX. Eqiry
T "l CMS-2 r 7
| Dynamic | |
4 Statements _ : )
Procedure B Call  |-4 :
Retur
Next inst. after call ---—-'-l-q.-l
Procedure G
Procedure G Call |- Entry [
$ Entry
Next inst. after call [* Procedure R Call | -
{ ! Return
) — = o
{ [ Next inst, after call i
|
| [ -
] '| |
' R |-
| Beturn) 4
|
|
|
1 ‘ Entry Procedure F
Procedure F Call [~ ===
l }'Test Sequence
Next inst. after call '] '
o
! | Branch to Abnormal 1
| | Sequence or |
| | Continue with |
| | Normal Sequence ‘
! | l
L) ‘Normal } l
l (Return| | :
T
| |
I r1-"
| Abnormal 1
I Processing '
' Abnor- Sequence :
dfetvrn || mal 1
Ret :
r‘_i —u-.rﬂc-h- ———————— -—J
|
|
'
1
|
Qetwrn | _ J

Figufe 2-8. Statement Execution Flow Involving Procedure Calls

II—2515



M-5035

It must be clearly understood that the Compiler provides only this separation
capability, The‘reSponsibility for loading these programs into memOry and
allocating space for automatic data designs is properly a function of loaders,
monitors, and executive programs. Furthermore, the CMS-2 language and
Compiler provides the capability, through this separation function, of
impiementing such sophisticated programming techniques as recursion and
reentrance after suspension. However, much of the responsibility for this
type of programming muét be borne by the programmer/designer and the executive

program for the application.

2.3.2 Data Declarations

Data declarations by the programmer define the format, structure, and order
~of data elements within a compile~time system. The three major»data types

are as follows:
1. Switches:

a. Statement switches.

b. Procedure switches.
2. Variables:
a. Computational:

1. Integer.
2, Fixed-point.
3. Floating-point.

b. Non-computational:

1. Hollerith,
2. Boolean,
3. Status,

3. Tables:

a. One-dimensional,
b. Multidimensional (array).
c. Subtables.

I11-2-16



M-5035

d. Like-tables.
e. Item areas,
f. Fields.

2.3.2.1 Switches

Switches provide for the transfer of program control to a specific location
within a compile-time system. Switches contain a set of identifiers, or
switch points, to facilitate program transfers and branches. The switch
points represent program addresses of statement labels or procedure names.
Transfer of control to a particular switch point is usually determined by

the value of a programmer-supplied index.

2.3.2.2 Variables

A variable is a singulaf piece_of data. It may be one bit or multiple bits

or words, A variable may be preset to a desired value within the definition
statement, The variable may contain a constant value or its value may
continuously change during program execution. Multiple variables having
identical attributes may be defined in a single declarative statement. Data
types that may be specified for a variable are arithmetic (fixed- or fioatingf
point), Hollerith (character string), status (defined states of condition), or
Boolean (true or false). An initial value, or preset, may be specified for

the variable in the declarative statement,

2.3.2.3 Tables

Tables hold ordered sets of identically structured information. The common
unit of data structure in a table is the item. An item consists of k computer -
words where k is selected by the programmer or Compiler. A table may contain
n items, where n is programmer selected. Thus the size of the table in

number of required computer words for storage becomes the product of n and k.

A table structure is illustrated in Figure 2-9,

I1-2-17



M-5035

Word O Word 1 Word 2

Item O

Figure 2-9, Table Structure

11-2-18

- Word k

F"‘—”F"’—? : ["_-"f"“~—/’*“rf‘-q?‘—\——r




M-5035

Items may be subdivided into fields. Fields are the smallest subdivision
of a table., A field may be a partial word, a full word, or a multi-word
subdivision, Data types that may be specified for a field are arithmetic
(fixed- or floating-point), Hollerith (character string), status (defined
states of condition), or Boolean (true or false). Fields may overlap each
other, Data may be preset into a field. An example of field assignments
is illustrated in figure 2-10. ‘

Word O Word 1 Word 2

AL A A

s 2\ aE Y N
Item 2

r — J

Field A \ fieldB J
N 2
Field C

Figure 2-10., Field Assignments for a Table

CMS-2 tables may be defined as horizontal or vertical. This specification by
the programmer dictates the manner in which the table words will be stored in
core, The words of a horizontally declared table are stored such that words
O of all items are stored sequentially, followed by words 1 of all items, etc.
The words of a vertically defined table are stored such that all words of

item O are stored sequentially, followed by all words of item 1, etc. Figure

2-11 illustrates the storage pattern for horizontal and vertical storage.

WO{d 0’ Word 1 »//Eg;d 2 Word O Word 1 Word 2

Item O~ _ : -> ,

Horizontal Storage . Vertical Storage

Item O

Item 1

Figure 2-11. Table Storage Sequence

11-2-19



M-5035

The CMS-2 table structure also allows the programmer to define a subset of
adjacent items within a table as a subtable. The programmer may also allocate
outside the table a working storage area, designated as an item-area, which will
automatically take on the same field format as that defined for the table
items.v‘AddiLionaliy, the programmer may declare .tables known as like—tables
having identical field format as the parent table but having a different

number of items. ~Figure 2-12 illustrates these described relationships to

the parent table,

2.3.2.4 Arrays

An array is an extension of the table concept for storing ordered sets of
identically structured information previously‘defined as items. Arrays may
be conceptually visualized as rows, columns, and planes of items, An example
of an array (three-dimensional) is presented in Figﬁre 2-13. As with tables,
the basic structural unit of an array is the item. The array item may
consist of k computer words with fields defined as desired. The pattern

for storage of an'array within core is illustrated in Figure 2-14,

2.3.3 Compiler Directive Declaratives

Certain CMS-2 declarative statements specify control information to the
Compilér. These declaratives direct Compiler action as to allocation mode,
listing options, system index registers, program debug features, base number-
ihg system interpretation, data pooling requirements, and the computer mode of
operation within which the designated program is expected to run., These
declarative statements may be located in major headers if the control applies
to the entire compile-time system, in minor headers if the control applies

to a system element, or within a system element. The rules for placement

and range of effective action for the individual declaratives are defined

fully in Section 7.

11-2-20



Parent
Table

<

Words and
¢ Fields — ™

M-5035

Item 6\

Item 6\ 2

?»Subtable

>Subtable

\OJ

Item-Area

Item (?

“Like-Table

Y

Figure 2-12. Parent Table Relationships

11-2-21



M-5035

Column O Column 1 Column 2
Row O
| / W
| /AN
; _ /R \
N o \
3 /, / , QO\}uan Column 1 Column 2
Pla/e/é Row O | \‘\‘
/ / ' \'\
;! ! |\
/] AR
/;/ 2 \ \
/// \
/ \
/// 3 | \\\
//’/ . \ \Plane 1
!/ \ A
/1l | \
/1 \\
!/ \\
/ \\
/1 \
/1 \
!/ / \
! \ A
/1 Item 1, 2, 0 A\

/I | ' \ .
/ Word O Word 1° >> Word k V|
/ - | \

Figure 2-13. A Three-Dimensional Array

11-2-22



M-5035

Plane O
AL
~
Column O Column 1
A A,
r ; ™ r
Word Word Word Word
0 1 2 3

‘Repeat the pattern with next plane, commencing at
Row O, Column O, Word O,

Figure 2-14, Array Storage Sequence

11-2-23



M-5035

2.4 DYNAMIC STATEMENTS

CMS-2 dynamic statements specify processing operations and result in executable
code generation by the Compiler. A dynamic statement consists of an operator
followed by a list of operands and additional operators., An operand may be a

single name, a constant, a data-element reference, or an expression.

2.4.1 Exgressionsrl'

Arithmetic expressions may include standard addition, subtraction, multiplicé-
tion, and division operators, as well as exponentiation, mixed-mode values,
and inline redefinition of the scaling of fixed-point numbers. An algebraic
hierarchy of operation evaluation is used. A relational expression performs

a comparison between two similar operands as specified by a relational

operator, There are four types of comparisons available:

1. Arithmetic, involving the comparison of signed arithmetic values
(fixed, floating, or mixed).

2. Hollerith, involving a left-to-right, character-by-character
comparison. ‘

3. Boolean, involving single bit comparisons.

4. Status, involving the comparison of status values.

Arithmetic operators used in CMS-2 are + (addition), - (subtraction),

/ (division), * (multiplication), ** (exponentiation), and .. (inline scaling).

Relational operators are EQ (equal), NOT (not equal), LT (less than), GT
(greater’than). LTEQ'(léss than or equal) and GTEQ (greater than or eﬁual).
Boolean Operators‘used in CMS-2 are AND, OR, XOR (exclusive or) and COMP
(lbgical not), A CMS-2 expression may include algebraic. relational, and

Boolean operators.

2.4.2 Statement Operators

The CMS-2 statement operators allow the programmer to write his program in an
easy~to-learn, problem—oriehted language. Major CMS-2 operators and their

~functions are summarized on the following page.

11-2-24



M-5035

Change 4
Uperator Function
Sk Performs calculations or assigns a value to one or more

data units. The assignment may be arithmetic, Hollerith,
.status, Boolean, or multi-word,

SwAp Exchanges the contents of two data units,
G010 Alters program flow directly or via a statement switch,
IF “ Expresses a test situation for conditional execution of

one or more statements,

VARY Establishes a program loop to repeat execution of a
specified group of statements.

F IND Searches a table for data that satisfies specified conditions;
PACK Transfers bit strings into a data area.

SHIFT Shifts a string of bits.

FOR o Selectively executes one of a set of statement

blocks based on the value of a controlling expression.

2.4.3 Special Operators

Special operators are available in CMS-2 to facilitate references to data
structures and operations on them. These operators and their functions are

summarized below,

Operator Function
‘BIT To reference a string of bits in a data element,
CHAR : ‘To reference a character string.
CORAD To reference a core address.
ABS _ To obtain the absolute value of an expression,
POS.vFIL' " To position a magnetic tape file.
LENGTH : To obtain an input/output file length.
CNT ' To obtain a count of bits set.
) CAT -~ To concatenate character strings.

11-2-25



M-5035
Change 4

2.5 HIGH-LEVEL INPUT/OUTPUT STATEMENTS

CMS-2 high-level input/output (1/0) StatemenIS'permit the program to communicatc
with various hardware devices while running in a non-real-time env1r0nment

under a Monitor system.‘ When CMS-2 1/0 statements are used by the programmer,
the Compiler generates specific calls to run=time routines that must be

loaded with the user's program. The run-time routines are designed to link
with the Monitor system and communicate with its 1/0 drivers. I/O declarallve

and dynamic statement operators and their associated functions are summarized

below,

Operator Function

FILE : Defines the environment and pertinent information concerning
an input or outpul operation, and reserves a buffer area
for record transmission.

OPEN Prepares an .external device for I1/0 operations.

CLOSE Deactivates a specified file and its external dev1ce. if
-appropriate,

INPUT Directs an input operation from an external device to a
FILE buffer area.

ouUTPUT ‘ Directs an output operation-from a FILE buffer area to an
external device.

FORMAT - - Defines the desired conversion between external data blocks

' and internal data definitions,

ENCODE LDirects transformation of data clements into a common area,
with conversion in accordance with a specified FORMAT,

DECODE ‘ Directs unpacking of a common area and transmittal to data
units as specified by a FORMAT declaration,

ENDFILLE Places an end-of-file mark on appropriate recording mediums,

CHECKID Directs checking an ID header or. label on a file.

DEF 1D ' Directs ihc output of an 1D header on a file.

11-2-20



M-5035

2.6 PROGRAM DEBUG FACILITIES

CMS-2 debug statements may be placed in the source language of a user's
program to assist in program checkout. These statements may reference any
data units defined within the system. Machine code is generated by the
Compiler to call on run-time debug routines. The debug routines communicate
with the Monitor system during program execution to print the desired checkout

data onto the systemvoutput device (high-speed printer).

Five program checkout statements are provided. Output code is generated only
if the corresponding statements are enabled in the program header information,
A programmer may then control and select the debug tools as needed. The debug

operators and their functions are summarized below,

Operator Function
DISPLAY , Causes the contents of machine registers and/or specified

data units to be formatted and printed on the system output.

SNAP The contents of a data unit are printed and stored. Sub-
sequent executions cause a printout only when the data
contents are modified.

RANGE “A high and low value are specified for a data unit. Each
: time the data is modified in the program, a message is
printed if the value falls outside the range,

TRACE ' A printout is generated for the execution of each CMS-2
statement between TRACE and END-TRACE boundaries.

PTRACE Each CMS-2 procedure call encountered in the program being
executed is identified by calling and called procedure

11-2-27/11-2-28 Blank






M-5035

SECTION 3

BASIC DEFINITIONS

A CMS-2 program consists of an ordered set of sentences composed of symbols
and delimiters. The symbols and delimiters are formed using characters from
the CMS-2 alphabet.

3.1 CMS-2 ALPHABET
The CMS-2 alphabet.consistsyof letters, digits, and marks as described below:

a. Letter - One of the 20 letters of the English alphabet, A
through Z, written in capital letter form.

b. Digit - One of the ten Arabic numerals, O through 9.

c. Mark - Any additional special character that may be input
to the Compiler via the Monitor I/O routines. The
commonly used marks that have significance to the
CMS-2 Compiler are listed below, along with their

common name:

+  (plus) ) (right‘pérenthesis)
- (minus) $ (dollar sign) -

/ (slash) ,  (comma)

* (asterisk) ' (prime)

. (decimal point, period) A (space)

( (left parenthesis) (space)

3.2 SYMBOLS

- CMS-2 symbols are composed of strings of one or more letters, digits, or marks
from the CMS-2 alphabet. There are three types of symbols:

1. Operaiors - Indicating operations or specifications.

2. Identifiers - Names by which programs reference their
environment., : |

3. Constants - Words that represent unchangingvvélues (constanig\

in the mathematical sense).

I1-3-1



M-5035

3.2.1 Operators
Operators are symbols that denote an action or delineation to the Compiler.
They tell the Compiler "what to do" or "what it is" as opposed to'other

symbols that tell "where it is" or "how much it is",

The following symbols are examples of CMS-2 operators; the symbols are divided

into five categories:

Arithmetic : Relational Boolean Dxnamic Declarative
+ . EQ AND ' PROCEDURE TABLE
- LT OR FIND : FIELD
/ GT CcomMP SET LOC-DD

A special class of operators provides machine control interface. These symbols
are entirely machine dependent. For the AN/UYK-7 Computer, these symbols are:
KEY1, KEY2, KEY3, STOP, STOP5, STOP6, and STOP7.

3.2.2 Identifiers

Identifiers are arbitrary names uscd to label various units of a CMS-2 program
so that these units may be referred to by unique names. A name is composed of
from one to eight letters and digits; the first character of a name must be a
letter. All CMS-2 identifiers (except statement labels, procedure names, and
abnormal exits) must be defined by or within a data declaration, which assoc-

iates the identifier with its specific attributes.

In order to prevent ambiguities in the source input for a CMS-2 program, the'
Compiler does not allow the programmer to declare or define identifiers that
duplicate operator symbols in the CMS-2 language. Appendix D presents a listv
of those symbols which are reserved words. These reéerved words are not
available to the programmer for use as identifiers._In addition, any programmer
expecting to make use of CMS-2 run-time routines (high-level debug, input/
output, or mathematical routines) should avoid the use of identifiers beginning
with the characters "RT", This will prevent possible conflict at load time
with global 1dent1f1crs defined and referenced within the CMS-2 run-time

library.

11-3-2



3.2.2.1 Statement Label

A statement label is a special identifier in a CMS-2 program; the statement
label is used to label a dynamic statement. A statement label derives its

definition by context, since it is always followed immediately by a period.

When reference is made to the statement label during an operation within the
program, the period is omitted and the label is then known as a statement

name, More than one statement label may be applied to a dynamic statement,
- ~ NOTE

Statement labels may appear only on dynamic
statements. Hence, the period following a name
signifying a statement label may be used only
between the PROCEDURE and END-PROC declarations
and may never be used with direct code statement
labels.

3.2.3 Constants

A constant denotes a value that is known at compilation time. CMS-2 programs

manipulate the following four types of data:

1. Numeric values consisting of rational numbers. ’

2. Hollerith or literal values consisting of strings of characters
from the CMS-2 alphabet. '

‘3. Status values consisting of independent sets of arbitrarily
named conditions:

4. Boolean values consisting of the two values: true or false.

3.2.3.1 Numeric Constants

A numeric value, pdsitive or negative, may be represented by a decimal or

octal constant as desCribed below:

1. Decimal - Consists of one or more base-10 digits (0-9). This
is the normal mode of the Compiler, The number
enclosed in parentheses, preceded by the letter D,
is also acceptable and may be used When a non-décimal

mode is Specified to the Compiler (see Section 7).,

I11-3-3



M-5035
Change 3

2. Octal - Consists of one or more base~8 digits (0-7) enclosed -

in parentheses and preceded by the letter O.

These constants may be preceded by a plus sign if positive and must be preceded by a

minus sign if negative.

A radix point appearing within or at the beginning of the constant identifies the constant
as a mixed number or fraction. The number of fractional bits attributed to the constant

equals:

1. 3.2*n+1 truncated to an integer, if constant is decimal, or

2. 3*n, if constant is octal

where n is the number of fractional digits. If the radix point is omitted or occurs at

the end of the constaﬁt, it identifies the constant as an integer (whole number).

Examples

a. -94 (negative decimal integer)

b, 0(77) (positive octal integer)

c. 88.1 (positive mixed decimal number)
d. -0(.64) (negative octal fraction)

é. -D(492.3) (negative mixed decimal number)

To avoid writing many zeros, it is sometimes convenient to express a very large or

very small numeric constant as a coefficient multiplied by an exponent.

Examples

a. 00023, = .233 * 10,7 = 0(,236-3)
b. 1800000, = 18, * 10° - 1885

c. 15000, = 1.5, %107 = 1.584

d. 7300 = T35 %100 = 0(7.363)

Both the coefficient and the exponent must have the same pase. If the number is octal,
it must be preceded by the O descriptor. ‘

3.2.3.2 Hollerith Constant
A Hollerith constant is composed of a string of characters ‘ervxclo'wd by parentheses and

preceded by the descriptor H.

I-3-4



M-5035

Lxamples

1. H(NOTNOW)
2. H(REWINDAA)
3. HO)ILAST)

In the second exahple, the two blanks are considered part of the constant,.
The third example illustrates the use of a right parenthesis as part of
the constant within a'string’of characters. Each right parenthesis must
be represented by two consecutive right parentheses since the string is
terminated by a single right parenthesis. Encoding this constant results

in the characters:
) LAST

Any character, including blank, is a valid character in the Hollerith
set and may be used in source programs to construct character-string.

constants.
NOTE

If a Hollerith constant appears as the last term of a
parenthesized expression, at least one blank must
separate the right parenthesis signifying the end of
the Hollerith constant from the right parenthesis
signifying the end of the expression.

'3.2.3.3 Status Constants

A status constant is a mnemonic used to describe one of the possible values of
a data unit. The Compiler assigns a unique value (beginning with zero) to each
status constant that is associated with a data unit. In subsequent statements,
as the programmer sets and tests the data unit using the mnemonic, the Compiler
substitutes the assigned value to differentiate possible conditions. Status
constants must be unique for a given data unit but may be reused for other

data units,

A status constant may be composed of any characters of the CMS-2 alphabet with
the exception of a single prime ('), The status constant may have the same
number of characters as an identifier. Status constants are always enclosed

by single primes, as illustrated on the following page.

I11-3-5



M-5035
Change 1

'REPAIR
'STANDBY'
"ALERT’
'AIRBORNE'

3.2.3.4 Booleaﬁ Constants

A Boolean constant denotes one of the logical values of Boolean algebra (true

or false) and is represented as a binary integer:

Logical Binary
True _ 1
False 0

3.3 DELIMITERS

Blanks serve to éeparate symbols in a CMS-2 program. When used as é separator,
a single blank accomplishes the same result as é sequence of two or more ‘
blanks. All marks described in paragraph 3.1 may be used as delimiters,

Some marks, such as $, have unique delimiting uses. When a mark appears
between two CMS-2 symbols, blanks are not needed as separators although they

may be used if desired.

J.4 STATEMENTS

CNS-2 statcment§ are dynamic and declarative and are composed of a string of
symbols and delimiters. In‘general, a declaration defines a structural con-

' figuration of data and a dynamic statement defines the processing operation
that manipulates the data. All CMS-2 statements are terminated by a dollar
sign ($). More than one statement may appear on one card and a statement may
be continued on several cards. Null statements are recognized by the compiler
when a statement terminator is immediately followed by a statement terminator

and is otherwise syntactically correct.

3.5 COMMENTS

Comments, intended as clarifying text, have no operational effect on a program
and may be included in either of the following two ways.

\

S I1-3-6



M-5035
Change 3

1. Within a statement by enclosing the comment within two
consecutive single-prime symbols, as illustrated below:
VRBL Z I"NTEGER" 14 "BITS" S"IGNED" $

NOTE
A symbol may not be broken by this type of comment;

i.e., V'A"R"IA"BL"E" would not result in the symbol
VRBL. ’

2. As a separate statement the use of the operator, COMMENT:
COMMENT THIS ROUTINE COMPUTES SQUARE ROOTS $
| NOTE
A dollar sign may be expressed within either type of comment

by coding it as two consecutive dollar signs.

3;5.1 Special Comments

Comments beginning in card column 11 (the first column of the statement field)
are treated as special cases by the Compiler. If the statement is one of the

following, the Compiler performs the indicated action on the listing:

Input Action
COMMENT A((EJECT $ Eject to the top of the next listing page.
COMMENT A (LINE* $ Print a line of asterisks (%),
COMMENT AC(SKIPn $ Skip n lines, where n is a number from 1 to 9.

If a comment statement beginning in card column 11 is not one of the special
indicators, the'Compiler replaces the word COMMENT with a single asterisk (%)

in column 11 and lists the comment after skipping a line.

Input:
COMMENT THIS IS AN EXAMPLE §$

OQutiput:
TH1S 1S AN EXAMPLE §$

These special commenls allow programmers to produce listings that have a

greater narrative format than listings without the special comments feature,

I1-3-7



3.6 SOURCE CARD FORMAT

A1l CMS-2 source cards contain a card identification field and a statement
field. The card identification f1e1d occupies columns 1 through 10; the

statement field occupies columns 11 through 80,

Card columns 1 through 10 have no operational effect»on the Compiler. However,

the suggested use of the card identification field is as follows:

‘a. Columns 1 through 4 - Program identification,
b. Columns 5 through 8 -~ Card sequence number.

c. Columns 9 through 10 - Insert number.

The statement field has a free format. Statement labels, operands, operators,
etc., may occur anywhere in columns 11 through 80, ‘Each statement is terminated
with a $. There can be more than one statement per card or a statement may
require several cards. No continuation card indicator is needed when a CMS-2

- statement exceeds one card. The statement continues in columns 11 through 80

of each succeeding card until a dollar sign is encountered. If a symbol or
contiguous string of characters is to span two cards, the first part must end

in column 80 of card 1 and the second part must start in column 11 of card 2.
For example, if the eight-character symbol STMTLAB1 is started in column 78

of one card, the remaining five characters must begin in column 11 of the

next card.

While packing of statements on cards reduces the size of the input deck, the
CMS-2 Compiler does not format the listing of the input statements. Packed

statements will appear in the same form on the listing.

11-3-8



M-5035

SECTTON 4

DECLARATIVES

- The CMS-2 declarative statements provide the Compiler with information about
program structure and data element definitions., Declaratives generally do not
result in executable object code. Declaratives may be divided into three
groups: program structure declaratives, data declaratives, and control

declaratives.

4,1 PROGRAM STRUCTURE DECLARATIVES

The following program structure declaratives are used to define the organization

of a CMS-2 program:

a. SYSTEM and END-SYSTEM statements delimit a compile;time system,
b. HEAD and END-HEAD statements delimit headers within a compile-
time system. ' ‘

‘c¢. SYS-DD and END-SYS-DD statements delimit a system data design
within a compile-time system. |

d. SYS-PROC (or SYS-PROC-REN) and END-SYS-PROC statements delimit
a system procedure within a compile-time system,

e. LOC-DD and END-LOC-DD statements delimit local data designs
within a system procedure,

f. AUTO-DD and END-AUTO-DD statements delimit automatic data
designs within a system procedure,

g.‘ PROCEDURE and ENDrPROC statements delimit procedures within a
‘'system procedure.

h. FUNCTION and END-FUNCTION statements delimit functions within

a system procedure,

Each of these statements is discussed in detail in the fbllbwing paragraphs
in the order in which they generally occur in a CMS-2 source progrém (see

Section 2 for further information on program organization),

I1-4-1



M-5035 -
Change 3

4.1.1 System Declarative (SYSTEM)

The SYSTEM declarative specifies the beginning of a compile-~time system. This

must always be the first statement of a CMS-2 source program,

Format

name SYSTEM key-specification comments $

EXglanation

Name The identifier by which this system is known.

“SYSTEM ‘ Declares a compile-time system to be known by the

identifier above,

Key specification Optional (see Section 7 for explanation),

Comments Programmer remarks. . Optional.

4.1.2 Head Declarative (HEAD)

The HEAD declarative serves Lo
cohtrol statements, - The major
system must imhediately follow
with an END-HEAD declarative,

“precede the system data design

identify a group of ‘major or minor Compiler
header control statements of a compile-time
the SYSTEM declarative and must be terminated
Minor header control statements immediately

or system procedhre to which they apply.

Since the HEAD declarative is primarily for library control purposes, its

use in source input to the Compiler'is,generally optional (see Section 7 for

further information on the HEAD statement),

. Format

name HEAD Kkey-specificationr comments §

Explanation

Name The identifier by which this header is known,
HEAD Declares a major or minor header.

Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional.

11-4-2



M-5035

4.1.3 End Head Declarative (END-HEAD)

This declarative terminates a major or minor header within a compile-time
system, Its use is required after major header control statements but is

optional after minor header control statements.

Format

END-HEAD name. $

Explanation

END-HEAD Declares the end of a header,
Name The header identifier, Optional.
Example

|&mmhug|||ﬂﬂﬁﬂﬂm|ﬁllnnn Lol
LllLlt i BRATIONS ISOIUPCE $lllLILLLllL

Lot EmMd-HEND ¥t i
l“lilllllLlI”IEIAQJl$llllllllllllLLlllllJJ
Licti i ATTR mEanisl A 131415 410 1 8
Lottt Emd-HEND R ® o by
DATIAL ) ISNS-D 81 L v by

I1-4-3



M-5035
Change 3

4.1.4 Systém Data Design Declarative (SYS-DD)

This declarative specifies the beginning of a collection of data element
-definitions that are global to the system; that is, these data elements are
known to all system procedurcs that fellow in the compile-time system._'A

system data design is a basic element of a CMS;2 program.
Format
name SYS-DD key-specification comments §$
Explanation
Name - The identifier by which this system data design is known,
SYS-DD ‘ The system data design deciarative.
Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional.

4,1.5 End System Data Desiqgn Declarative (END-SYS-DD)

This declaration terminates a system data design-within a compile-time system.
Format
END-SYS-DD name $

Explanation
END-SYS-DD Declares the end of a system data design.

Name The identifier by which this system data design is known,

11-4-4



‘M-5035
Change 3

d.1.0 Sysl<m1l’rucvdur('luuzlurativu (SYS-PROC)

System procedures consist of onec or more procedurcs or functions and may
contain one or morc local data designs., A system procedure is a basic clement

of a CMS-2 program,
Formal
name SYS-PROC key-specification comments $
Explanation
Name The identifier by which the system procedure is known,

-1t also identifies the prime procedurc within the system

procedure.

SYS-PROC Initiates a system procedure consisting of local data

desiqns and procedures.
Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional

Examples

Mm 1'41 LI5S PROC # 1 1 NEENE NN
~&MWJ;;IHJ&m&nH&QQIMmmM Do& 4| JhN 74 &

11-4-5



M=~5035
Change 3

4.1.7 Reentrant System Procedure Declarative (SYS-PROC-REN)

This declarative specii'ies the beginning of a special type of system procedure known as a
reentrant system procedure. The generated code produced by the Compiler for all
procedures within ai reentrant system procedure is invariant under execution (see Section 2
for a further explanation of reentrant code). A reentrant system procedure consists of one

or more procedures and may contain one or more local data designs or automatic data designs;
’ Fofmat » , ' | v
Name SYS-PROC-REN key-specification comments $
Ez_;glanation |
Name o The identifier by which the system procedure is known. It also

identifies the prime procedure within the system procedure.
SYS-PROC-REN Initiates a reentrant system procedure.
Key specification Optional (see Section 7 for explanation).

Comments Programmer remarks. Optional.

4.1.8 Local Data Design Declarative (LLOC-DD)

This declai?ative specifies the beginning of a set of data element definitions that are valid
only within the system procedure in which this local data design appears. Such data

elements must be defined in a local data design before they may be referenced by a dynamic

statement within a procedure.
Format

'name LOC-DD comments $

Explanation
Namé o The identifier by which the local data design is known. Optional,
| The name has relevance when LOCDDPOOL is requested. The
user must provide a LOC-DD name at compile time if he wants
to reference the pooled local data design by AC name atload time.
LOC-DD Declares the start of a local data design.
Comments Programmer remarks. Optional.

-4-6



M-5035

4,1.9 Local Data Design Declarative (END-L.OC-DD)

This declarative specifies the end of a local data design within a system

procedure.,
Format

END-LOC-DD name $

Explanation

END-LOC-DD Declares the end of a local data design,
Name The identifier by which the local data design is known,
Optional.

4.1.10 Automatic Data Design Declarative (AUTO-DD)

This declarative specifies the beginning of a set of datavelemenl definitions
that are valid only within the reentrant system procedure in which this auto-
matic data design appears. An automatic data design may appear only within a
reentrant system procedure (i.e., it must follow a SYS-PROC-REN declaration).
A1l formal input and output parameters and temporary data storage areas used

by reentrant procedurcs that follow must be declared between the AUTO-DD and
END-AUTO-DD declaratives. The allocation for these data areas must be pTOVidcd
dynamjcally prior to or during execution; hence, automatic data designs may

not contain switch definitions or preset data,
Format

name - AUTO-DD comments §$

Explanation

Name The identifier by which the automatic data design is
' known, '
AUTO-DD Declares the start of an automatic data design within a

reentrant system procedure.

Comments ' Programmer remarks. Optional.

11-4-7



M-5035

NOTE

- Automatic data designs are functionally similar to local
data designs except that they may be used only within a
reentrant system procedure and may not contain preset
data or switches., Automatic data designs should contain:
the definitions of all data units that are modified during
execution of reentrant procedures. Local data designs
may be used within reentrant system procedures for
defining switches and preset data that are not modified
during execution,

4.1.11 End Automatic Data Design Declarative (END-AUTO-DD)

This declarative specifies the end of an automatic data design within a

reentrant system procedure,
Format

END-AUTO-DD name $

Explanation

END-AUTO-DD Déclares the end of an automatic data design.
Name - The identifier by which the automatic data design is
known.

- 4.1.12 Procedure (PROCEDURE) and End Procedure (END-PROC) DeClaraiives

A procedure is the basic organizational unit of dynamic statements in a CMS-2
program; it establishes the rules of data manipulation in processing a problem.
Procedures specify a sequence of operations which appear only once in the

source program but which may be invoked alL various points throughout the
program. The PROCEDURE declarative specifies the beginning entry point of a
procedure and supplies further identifying information to the Compiler. The
end of the procedure is indicated by the END-PROC declarative. Procedures may
be called by name from other procedures within the same system procedure,‘or"
from other system procedures if the procedure is externally defined. Procedures
may have input, outpul or exil parameters, which are passed from or to the

calling procedure.

11-4-8



M-5035

Format

PROCEDURE name INPUT formal-parameters OUTPUT
formal-parameters EXIT abnormal-exit-name(s) §

steps of the procedure

END-PROC name $

Explanation
PROCEDURE : Delimits (with associated END-PROC) a-procedure

and establishes an entry point for the procedure.
Name " An identifier by which the procedure is referenced.

INPUT Optional. Specifies that the list of formal para-

meters that follows is input to the procedure,

Formal Parameters Optional. Data unit names separated by commas.
They are inpﬁt or output parameters that have been
previously defined in a data design. They establish
the structure of parameters and provide a legality
check on proéedure calls., Formal parameters may be
variables, system indexes, entire tables, like-
tables, subtables, or item areas. They may not be
subscripted data units, expressions, constants or
'functionally modified data units, A formal para-
meter may not be a LOC-INDEX. (See paragraph 4.2.2,

"Example 5 for an explanation of the allowable use

of the CORAD operator in ‘the formal parametet list.)

I1-4-9



M-5035

OUTPUT Optional. Specifies that the 1list of formal
parameters that follows is output as a result

of the procedure operation,

EXIT ‘ Optional. Specifies that one or more abnormal

exit names follow,

Abnormal Exit Name(s) Optional. Identifies the abnormal exit(s).
Abnormal exit names appear only as operands of a
RETURN operation within the procedure and must be
unique, If more than one is specified, they

must be separated by commas.

END-PROC : : Specifies the end of the procedure identified
by name.
Examgle

lP&mcEAw&ﬁxﬂ&ajluwmuhlw. Vi2 O TPu TV Lu

RN NN . Ah énﬂﬁk|v|iq,| BAD Y2 & 1.1

(steps of procedure)

JEND~PROC ITEST & v o Lo v by aa g

In this example, the name of the procedﬁre is TEST. It has two formal
input parameters, V1 and V2, which will contain input values when the
procedure is entered. The formal output parameter, VALUE, will be set
apprOpriatoly by the procedure prior to returning to the calling program.
The two abnormal exit parameters require alternative return points in the
calling program to be specified when procedure TEST is called. Refer

r

to Section O for further information on procedure calls.

11-4-10



M-5035

d1.1.13 - Function (FUNCTION) and End Function (END-F UNCTION) Déclaratives

The function is a special class of procedure. While a procedure call has a
specific CMS-2 statement form (see Section 5), the function is called
implicitly by using its name in a dynamic statement in much the same way as

a data unit is referenced (see Section 53). The steps of the function are
delimited by the FUNCTION and END-FUNCTION declarations. A function must have
at least one input parameter and always results in a single output value. The
function must specify a data unit name or an expression as a parameter on a
RETURN statement to indicate the output value (see Section 5). A function

may be the prime procedure or the only procedure of a system procedure if

desired.
Format

FUNCTION name (formal input parameters) type $

.

steps of the function

END-FUNCTION name §

Explanation
FUNCTION - Specifies the beginnihg of a function definition,

Name , The identifier used to reference the function.

Formal Input Parameters The names of variables, tables, like-tables,
subtables, or item-areas that have been previously
defined in a data design. A function must have
at least one formal input pérameter; if more
than one is specified, they must be separated

by commas.

11-4-11



M-5035

Type

Optional. Specifies the attributes of the output value of

the function. When this information is omitted, the attributes

~of the output value are determined by the implied mode of the

Compiler for variables (a signed 16-bit integer, unless

superseded by a MODE declaration)., When specified, the.

type parameter must be one of the following:

F

B

H followed by the number

of characters

S followed by a list of
status constants separated

by commas

A followed by the total
number of bits (not to
exceed 64), the designator

S or U (signed or unsigned) ,

~and the number of fractional

bits

I followed by the total

number of bits (not to

~ exceed 64), and the desig-

nator S or U (signed or

unsigned)

11-4-12

Floating-point value .
Boolean value

Hollerith value having the
indicated number of qharacters

(not to exceed eight)

Status value that can assume
any of the states corresponding

to the listed status constants

Fixed~point value

Integer value



M-5035

Steps of the Function CMS-2 dynamic statements that perform the

operations of the function,

END-FUNCTION Specifies the end of the function definition.

Example

g IFUNe T .QNLLTIPDL;MLML; S

N I 1 LA A P.H A ITOI (131*1 1Z|M1/ll 5’1)1* *151£1TA1 I$,

U B A O O B “JF] LAlLIPLHJAI l(le@Ql 15101 173”151/’1 U U I I S O [1

1

lelilllllJllgLojT‘oLl-rlPlolslil 4, 1111 Lo

lllll]lllInglTluLKJNIL(L;*JALIPHADIl oo vl
TPosd. ISET ALPHA o 4%( LALLJPI e/ 3), .$, Lo
|
|

-

111111111[RIEJ1UAR|N|1(HLIP1M L)lﬁlluln L1
i END- EUNeT oM TPosS & |, NN

In this example, the output value of the function is a signed 32-bit

integer that depends on the value of the input paraméter AZM,

4.1.14 :Ehd System Procedure Declarative (END-SYS-PROC)
This declarative speéifies the end of a system procedure,
Format \
END-SYS-PROC name $
Explanation |
END-SYS-PROC Declares the end of the system procedure,

Name The name of this system procedure assigned by the SYS-
PROC statement,

11-4-13



M-5035

4.1.15 End System Declarative (END-SYSTEM)

This statement declares the end of a compile-time system.
Format

END-SYSTEM name $

- Explanation
END-SYSTEM Declares the end of the preceding system,

Name ' The name of the system assigned by the SYSTEM

Statement.

4.2 DATA DECLARATIONS

Data declarations define the structure and order of data elements within a
compile-time system and provide a means for referencing these elements., A
thorough understanding of data declarations is necessary to write efficient

and accurate CMS-2 programs.
There are five major types of data declarations in CMS-2:

1. Variables,

2. Tables (together with'fields, item-areas, subtables, and
like-tables). k

3. Indexes.

4. Switches.

5. Files.

These declarations, with the exception of files, are discussed in the following

paragraphs. Files are described in Section 6 with the input/output statements.

Within any range of definition, no two data elements may have the same name.
A name defined in a system data design may not be dupiicated within the
compile-time system (or within any system to be loaded simultaneously in
which the name is externally defined). A data definition made within a local
data design or a statement label specified within a procedure may not be

duplicated within that system procedure.

11-4-14



M-5035

An exception is made for fieclds. The definition of a field is always local
to. a table., A field name may not be duplicated within the same table, but may

appear in as many tables as desired.

4.2.1 Variable Declaration (VRBL)

A variable is a single quantity of data. The variable name identifies a given
location containing the quantity of data, A variable may contain a constant
value or its value may continually change during program execution. The data

may occupy one bit, part of a word, one whole word, or many words,

Variables may be any of the following six data types:

1. Integef
2. Fixed-Point Computational
3. Floating-Point
4. Boolean
5. Hollerith Non-computational
6. Status
Format

VRBL name(s) type (R) initial-value V(x,y) .$

Exglanaiion

VRBL . : Indicates that the definition of one or more variables
follows,
~Name(s)‘ A unique identifier by which the variable is referenced.

Multiple names (maximum 25) may»be'specified by separating
them with commas and enclosing the list in parentheses.
The Compiler then allocates locations for each of the
names according to the description (implied or specific)

that follows,

11-4-15



M-5035

Type

Optional. May be one of the following:

F
B

H, followed by.the

number - of characters (not

. to exceed 132)

S, followed by a list of

status constants Separated

by commas

A, followed by the total
number of bits (not to
exceed 64), the designator
S or U (signed or unsigned),
and the number of fractional
bits -

-1, followed by the total

~ number of bits (not to

exceed 64), and the desig-
nator S or U (signed or

unsigned)

Floating-point

. Boolean variable

Hollerith variable having

- the indicated number of

characters

Status variable that can

assume any of the states

. corresponding to the listed

status constants

. Fixed-point variable

Integer variable

In the absence of a preceding‘MODE declarative statement

and in the ‘absence of one of the above listed data type

specifications, the Compiler will imply and allocate the

data type as -a signed 16-bit integer.

NOTE

The descriptors H, A and I may be followed by
tags representing the various numeric para-
meters. Tag is defined in Section 7 under the

EQUALS definition,

11-4-16



M-5035
Change 5

(R) Optional. Only meaningful when the floating-point
. data type is specified. If specified, it indicates that
AN/UYK-7 floating-point instructions with rounding are

to be used for arithmetic operations on this variable,

Initial Value Optional., The variable(s) may be preset with this
parameter. If more than one variable is defined by the
declaration, all will be preset to the same value. If
specified, this parameter consists of a P followed by a
constant (see Example 4, below). The constant must be a

value compatible with the variable structural definition.
If the variable is computational, the constant may be

any numeric constant,

V(x.y)v v Optional. Specifies that the variable is to be preset
to the preceding specified initial value parameter
according to the magnitude and bit position contained
‘within the parentheses. The initial value will be
computed using the magnitude assigned by the x-parameter

to the bit position assigned by the y-parameter (see
Example 10). The magnitude must not exceed 13 bits.

Examples

1. JJﬂla‘héi*ﬁalhALRL§;nlﬂ lslch lsl 1 l RN ENE EE 1.1 L

The variable CHARS is a Hollerith variable (H) consisting of 80

characters,
o, IVIRIBIL) JOT Mol A 18 s e e gl

 The variable CTR is identified as being a fixed-point variable (A).

There are 24 unsigned bits (U); 12 of them are fractional bits.

3. VIRBL TR b et beg gy

The variable in this example is named CTR2 and will be assigned by

the Compiler the implied mode and attributes of a signed 16-bit integer.

11-4-17



M-5035

4. WViRBL, (FLoalr, (F P COONT TN ) ® L

The variable FLOAT is a floating-point variable. The descriptor P

indicates that the initial value of the variable is -17.77 octal.

5. WVIRABY l(lCLTlN}lQTL&il}lcl'ﬁR PR | 4 U2 POl s

The variables CTR, CTR1, CTR2, PTR1 are all fixed-point (A). They each -
contain 24 unsigned bits and 12 fractional bits, The initial value of

all the variables is O as indicated by the descriptor P.

6. AVIRBIL (WNTR T WS o i L1 1.‘ L1111 1‘11

The variable INTR is an unsigned integer variable of 5 bits.

7. Jvlnja‘jlllalolo“'JLgllPLjhftlLl1l A B ISt S A |

The variable BOOL is a Boolean variable initially set to the true (1)

condition,

. [
8. VIABY GnhS| S Fde "l oW gl Ewiplry Y (P A, $

The variable GAS is a.status variable that may assume the three stétes
FULL, LOW, and EMPTY. The Compiler will assign values to these three
states and assign these values to the variable as it subsequently
encounters these states in conjunction with the variable GAS (for example,
see the SET statement). The variable will be preset to the value
associated with FULL.

Note that the states of a status variable are always enclosed within
single primes.

Q;MLQIFILITIlFJl(lKl)llellllllljllllll111‘1111

The variable FLT is a floating-point variable. (R) specifies that

those AN/UYK-7 instructions providing floating-point operations with
rounding are to be used.

11-4-18



M-5035
Change 3

o, JViRBL COURSE T 8 W 1P 44.2.5 lvl(lljglol}t"l)l Sl

Variable COURSE is an unsigned integer variable, eight bits long. The
variable is to be preset with the value 112.5, V(180,7) specifies that
bit 27 is to represent 180. From this specification, bit 26 = 90,

25 = 45, 24 = 22.5, 23 = 11.25, etc. Thus, to preset the value to
112.5 requires bits 26 and 24 to be set (90 + 22.5 = 112.5), as

illustrated below.

N S R R R BN B
0 1 0 ] 0 0 0 0
Ly . 2 | 0

The internal representation will be the octal number 120, See Table

4-1 for further examples.

4.2.1.1 Parameter Declaration (PARAMETER)

The PARAMETER statement'declares a variable as in the VRBL declaration but in
addition associates with it registers to be used for parameter passage on any call
to a procedure (does not apply to function calls) with a formal parameter defined via

this PARAMETER statement,

NOTE

The PARAMETER declaration is designed to accommodate
users with previously assembled sets of utility routines
that require specific A-registers for input parameters
and which output results in specific A-registers. Because
of this intended use the compiler does not assume the
responsibility for destruction of partial results held in
A-registers when formal input or output lists in the
procedure declaration contain a mix of PARAMETER
_variables and normal variables, or when expressions are
used as actual parameters when calling a procedure with
'PARAMETER variables in its formal input list.

II-4-18A



M-5035

Change 3
Format
- PARAMETER name type (R) initial-value V(x,y) , register-number $

Explanation
PARAMETER Indicates that the definition of a variable follows.
Name
Type The explanation of these terms are given in
R ; paragraph 4. 2. 1 for the VRBL declaration.
“Initial Value Type may not specify more vthan two words.

- Vix,y)
Register Number An integer (0-7) or an EQUALS tag having a

| value (0-7). |

Example

A comparison of the code generated when using the PARAMETER statement and

that generated when uéing the VRBL statement:

PARAMETER X132S, 0%
PARAMETER Y132 S, 6$

Procedure declaration:

PROCEDURE P INPUT X OUTPUT Y $
SA A0, X,K3

LA A6,Y,K3
END-PROC

Procedure call:
P INPUT A OUTPUT B $
LA A0,A,K3

LBJ B6,P
SA A6, B,K3

n-4-18B

VRBLXI32S$
VRBL Y132 S$

PROCEDURE P INPUT X OUTPUT Y $

END-PROC

P INPUT A OUTPUT B $
LA A0,A,K3

SA  A0,X,K3

LBJ B6,P

LA A0,Y,K3

SA A0, B,K3



M-5035

4,2.2 Table (TABLE) Declaratlion

A table is an ordered set of data consisting of equal and adjacent subsets
(basic units) called items. There is no limit to the number of items within
a table.

All items of any one table contain exactly the same number of words and have
the same data structure., Items are identified sequentially within a table,

the first iiem number béing 0 and the last n-1, where n equals the number of
items. An optional counter (the major index) which is Compiler-allocated

with maintenance responsibility residing with the programmer, may be specified.
CIf maintained, it will contain the actual number of items within the table that

contains meaningful data at any given time.

A one-dimensional table is arranged in either a vertical or horizontal align-
ment. The vertical table arrangement of data permits rapid searches on selected
words of any one item. The horizontal table arrangement of data permits rapid

searches on one word or one field of all items.

II-4-19



02-v-11

TABLE 4-1.

EXAMPLES OF VARIABLE DECLARATIONS

FORMAT OF VARIABLE DECLARATIONS

Initial

TYPE OF Preset

VARIABLE | VRBL Name(s) Data Type - Rounding Value Scaling | $
Integer VRBL | INTA 15U P 0(12345) $
"VRBL| (INTB, INTC) |I 16 S . | $
VRBL | INTD » I INTDBITS U ~ | s
VRBL | INTE I 8 U P 1.25 V(.25,0) | $
Floating- | VRBL| FLTA F s
Point VRBL | FLTB F (R) P 12.75 $
VRBL | FLTC F | P 15E9 $
Fixed- VRBL | FIXA A 12 S 4 $
Point VRBL| (FIXB, FIXC) |A FIXBITS U FIXFRAC PO $
Boolean VRBL | BOOLA B $
VRBL | BOOLB B P 1 $
VRBL| (BoOLC, BOOLD) |B PO | s

Status VRBL | STA S 'LOW', 'MEDIUM', 'HIGH' 5
VRBL| (STB, STC, STD){S 'NONE', 'ONE', 'FEW', "MANY' P 'NONE' - $
Hollerith | VRBL| HOLA H 7 P H(ABCD) $
VRBL| HOLB H HOLCHAR $
VRBL| (HOLC, HOLD) |H 1 $
Implied VRBL| IMPL $

NOTES

1. Tags such as INTDBITS, FIXBITS FIXFRAC, and HOLCHAR may be used ‘as 1ndlcated but must be 3551gned

integer values by an EQUALS declaration.

2. If the type of variable is implied (type-structure omltted) the attrlbutes of the variable are determined

SEOSH

by the implied mode of the Compiler to be a signed 16-bit integer, unless superseded by a MODE declaration,



M-5035
Change 5

A multidimensional table (array) is stored forward in memory, in order of
increasing absolute location; with the leftmost subscript (which represents
the row or item) varying most rapidly. Thus, a two-dimensional array may be
said to be stored in a columnar fashion. All the defined subcomponents of a
given table (fields, subtables, like-tables, and item-areas) must be defined
between the TABLE declaration and its associated END-TABLE declaration., Sub-
tables and like-tables are not allowed as subcomponents of an arfay. Sub-
tables, like-tables, and item-areas cannot be included in a table that is
variable in length or that uses indirect addressing (INDIRECT).

In the following discussion of table format, the term tag is indicated as an
option to specify integer values for the various parameters associated with
the declaration of a table. When this option is exercised, the value supplied

by the tag must be provided by an EQUALS declarative (see Section 7).
Format

TABLE name storage-type words-per-item or packing-descriptor

INDIRECT number-of-items or dimensions major-index-name $

Explanation.
TABLE ' ‘ Specifies a TABLE declaration,
Name - : An identifier unique to the TABLE.
Storage Type Specifies the storage alignment desired according
‘ to one of the following types:
H Horizontal arrangement
v Vertical arrangement
A Array arrangement in n-dimensions
Wordséper—l't em An integer constant or tag that specifies the num-

ber of words contained in each item. This value

cannot be 0.

11-4-21



M-5035
Change 5

Packing Descriptor

- INDIRECT

Specifies that the Compiler will compute the

number of words per item necessary to contain the -

specified fields, as follows:

‘ Descrigtor

NONE

MEDIUM

DENSE

(data type)

Result

Each field is assigned at least a
full word,

Each field is éssigned the smallest
available, directly referable word:
fragment that will hold the data.

Fields will be packed by the Compiler
in a dense manner, making optimum use

of all bits in a word.

The Compiler will assign the'nuhberl.
of words required to accommodate ‘
the attributes of the specified data
type (see explanation under FIELD
declaration for data type). This
parameter permits referencing a
single piece of data by item. Field
declarations must specify starting
bit and word number when used with

typed-item tables.

Optional. Specifies that the table is indirectly

" referenced. Furthermore, no core allocation is

made, the names and definitions are preserved, and

- the core allocation can be accomplished dynamically,

I1-4-22



' M-5035

Number of ltems An integer or tag that specifies the maximum

number of items in the table.

. Dimensions Integers and/or tags, separated by commas, which

specify the array dimensions (a maximum of 7).

Major Index Name Optional. Defines a unique identifier containing
| the current number of items in the table as main-
tained by the user. If the major index name is
specified, the Compiler uses it to determine the
. current number of items in the table containing
data when searching or moving the table. Use of
a major index is restricted to V- and H-type tables.
Specification of a major index name constitutes
a definition of it as a data unit (signed 10-bit
variable) ; consequently, it cannot appear in any

~other data declarative statement.

.Examples

.1, TABLE ([ RIET M3 Slee ANA L i)

In this example, the table named DICT is a horizontal table with three
words per item, 500 items, and a major index named ALPHA, At run time,
ALPHA contains the current number of items as set dynamically by the

program.
o, TABHE ) FERNS M ODEMISE /RS A ]

The table némed IDNS is a vertical table with 1,200 items and is to be

densely}packed; The Compiler computes the words per item based on the

number and size of the defined fields and performs the dense packing.

3. TABLE Ly KK, A 5 Al By A& il

In this example, an array, ARY, contains five words in each item. Its

dimensions are 2 by 3 by 4, or 24 items,

11-4-23



=535

4. _LM L1 Rlﬂlx ‘1ﬁ1 zzt E”pn( ARJEACLTFIZIL 1‘31)i 1% 1"1 o

This example defines an array, RAY, of which each item contains two
words. Its dimensions are 2 by 3 by 4, or 24 items. The word INDIRECT
indicates that no core allocation is to be made. All references to

table RAY will be made by indirect addressing.
Following is an example of the use of INDIRECT and a major index.

Assume that a procedure processes data tables of fixed format and
varying lengths up to a maximum of 100 entries. The data design

associated with the procedure contains a table declaration:

5. MG LE || [TABA M A BB REer 490 74 B 1|

This declaration specifies a horizontal table of two words per item 100
itemsvmaximum, that has not been allocated core storage. The table has
a major index J1, which will contain the actual number of items at run-
time as provided by the dynamic source statements. This declaration may

be accompanied by FIELD declarations as desired.

The procedure itself might require as input the location of the calling

"program's data téble and the number of items in the following table:
PO GEDURE, PUTDO IMPUT, CORAD(ITAEA

The calling procedure puts data in its associated data table. The -

“procedure OUTDO is then called:

QUTDo TMPUT, CORAD (IMVBUF) o BUFTTEMS & , |

where MYBUF is the name of the caller's data buffer which has a structure
compatible with TABA, and BUFITEMS contains the number of items in MYBUF.

The procedure OUTDO thus has its TABA defined dynamically as the user's
data table for this operation of OUTDO, Each subsequent request for

OUTDO would pfovide similar entry conditions (see Section 5).

11-4-24



- M-5035
Change 5.

6. TABLE TRACK V 1 0 $
The table TRACK is vertical with one word per item. TRACK is a '"null"
table because it is declared with zero items; -No core locations will
be reserved. |
7. TABLE FLOATDAT V (F) 1000 $
Table FLOATDAT has been declared vertical and 1,000 items long; the
type bf‘data associated with the table is floating-point. The Compiler
will aséign two words per item. References to the table may be by item
“-and the Compiler will utilize the declared data type (floating-point).
8. Following is an example of the use of tags within a table declaration:
 NUMWORDS EQUALS 1023 $
NUMITEMS EQUALS 25§
TABLE  LARGE V NUMWORDS INDIRECT NUMITEMS $
In the above example, the names NUMWORDS and NUMITEMS represent 1023
and 25 respectively. The statement is interpreted as:
TABLE LARGE V 1023 INDIRECT 25 §
The table LARGE is arranged vertically, with 1,023 words per item and
25 items. Dynamic core allocation is specified by the INDIRECT

specifier.

4.2.3 Field (FIELD) Declaration

The items of a given table may be further subdivided into units called fields.
Field cbnfigurétions are identical for all items of a given table. A field
may occupy a partial word, a whole word, or more than one word. A field
defined as part of a word must be Wholly contained within that word; i.e.,

it may not cross word boundaries. A field occupying more than one word will

I1-4-25



M-5035

be allocated an integral number of words. Multiword fields are not permitted
in horizontal tables. Field definitions within an item are completely inde-

ipendént of one another and may, therefore, overlap. It is not necessary for

all of the data within an item to be completely defined by fields. A field |
name is always associated with a pariicular table, like-table, subtable or

item-area.
Format
There are two basic formats for defining fields:
1. Type.a
FIELD name data-type (R) word-location starting-bit-position
initial-value Vix,y) $
2. Type b

FIELD name data-type (R) initial-value V(x,y) $

Explanation
FIELD Specifies the FIELD declaration.

- Name The identifier used to reference the field within the
‘table. Field names are local to the table within which
they are defined. The same names may, therefore, be
used for fields within various tables. The same name

may not be duplicated within the same table definition.

'Data Type Descriptor - Meaning
F Floating-point field.
B Boolean field.
H followed by the - Hollerith field having the

number of characters indicated number of characters.
(not. to exceed 132). ‘

S followed by a list Status field, which can have any
of status constants  of the states from the listed

separated by commas. stalus constants,

11-4-26



‘M-5035

Change 5
Descriptor . Meaning
A followed by the Fixed-point field.

number of bits (not
to exceed 64), des-
ignator S/U (signed
or unsigned), and the
number of fractional
bits.

1 followed by the Integer field.
number of bits (not

to exceed 64) and

the designator S/U

(signed or unsigned).
NOTE

If the data type specification is omitted, the
field will be assigned the implied mode (i.e.,
by a MODE declaration or Compiler-provided
signed 16-bit integer).

(R) Optional. This parameter is meaningful only when a
floating-point data type is specified. 1f specified,
it indicates that AN/UYK-T floating-point instructions
with rounding are to be used for arithmetic operations

of this field.
Word Location ~An integer or tag indicating the word of the item in which
’  the field occurs. This value must not be greater than 255.
Starting Bit ~An integer or tag specifying the most significant
Position bit or sign bit of the field. In an n-bit word, the
positions are numbered from left (n-1) to right (0),
Initial Value Optional. This ficld may be preset with this paramecter.
‘ If specified, this parameter consists of a P followed

by one or more constants. These constants must be a

value compatible with the data type Spccified for the

11-4-27




M-5035

Change 2
field. A series of constants, up to a maximum of 255,
separated by commas, may be specified for multiple oc-
currences of the field. Constants may be enclosed in
parentheses and preceded by a repeat factor.
Vix,y) Optional. This parameter specifies that the field is

to be preset to the preceding specified initial value
parameter according to the magnitude and bit position
contained within the parentheses. The initial value
will be computed using the magnitude assigned by the
x-parameter to the bit position assigned by the y-

parame ter (see Example 6). The magnitude must not exceed
~ 13 bits.

Type-a fields are used when the programmer wishes to specify the field
location within an item (programmer packing).

Type-b fields are used to permit packing to be controlled by the packing
designator used in the TABLE declaration (Compiler packing).

The data type may be omitted for both type-~a and type-b fields to specify
use of the implied data type of the Compiler. The implied data type is the
inherent mode of the Compiler (a signed 16-bit integer) or is specified

in a MODE declaration.

kExamples of Type-a Fields
1. ﬁ/L5£Q|1@M1A110“$111111!111111111'1

The Boolean field, BOOL, occupies the rightmost bit of the second word

(word 1) of the item.

o, JANELD WMotk M L2002 IS4y

In this example, the Hollerith type field, HOLL, has 120 characters., It

is located in word 2 of the item and starts in bit position 31. It is
implied that this is a multiword field requiring the necessary number
of words to contain the 120 characters. (HOLL would not be allowed in a

horizontal table.)

11-4-28



M-5035

3. 2A08CD 4 ETAT S IRESECT) ‘o Vcie, 58T
it 1'1/601L|_b1’1,1 aaxl s 4 gl

The status type field, STAT, may contain only the status constants
'REJECT', 'ACCEPT', 'HOLD', or 'FIX'., It is located in word 4 of the

item and starts in bit position 2,

4. FALELD | [ARTTH A RY S A 10 k3 [ TN

In this example, the field ARITH is a signed fixed-point data type having
24 bits, four of which are fractional. It is located in word O of the

item and starts in bit position 23,

5. FAGSA | MDHWD % 48 % 0 bl

The field MDHWD starts in bit 15 of word 2 of each item. Its type is

implied by the Compiler or a MODE declaration and must not conflict with
the starting bit 15.

o. WELELD MATIH 11 12 S 2| 26 1A B30 WL ,901 11 |

In this example, field MATH is a signed integer, 12 bits long, starting
at bit 26 of word 1. The first occurrence of this field is to be preset
to the value of 30 with bit 28 of the field representing the magnitude
of 12. The‘result of the preset assignment will show an octal represent-
ation of 1200 in the field, as illustrated below:

Word 1
> A N\
31 26 15 : 0 .
g YWora 0 47 of1foj1fojojojojofjofo 47 Octal
sign Bit_J | | | | b— 2% = 0.0m875 1,
B} ‘ L 21 - 0.09375 }
22 = 0.1875
23 = 0.375
24 = 0.75 0
29 = 1,5 }
26 - 3
- 27T = ¢ . 2
28 = 12 }
29 = 24
210 = 4g }1

11-4-29



M-5035

£l [ R 111F1|1(|Rl)111&13111 IJSIIJJ"LIIIJL

In this example, field FARITH is a floating-point data type, two words
long,'starting ét bit 31 of word 0. The (R) signifies that arithmetic
operations using this field must employ floating-point instructions with
rounding. Note that a floating-point field must never be defined in a
horizontal table since the AN/UYK-7 floating-point format requires two

adjacent computer words.

Examples of Type-b Fields

8. 111.11L1|lnnﬁ/Jﬁ‘-rDllq"qu“BLrﬁluLl11111“11

This is a Compiler-packed Boolean type field., The associated table must
have a packing descriptor,

o, ANELD ViAILIUE T 111‘1 N ﬁﬂms';L 131(11171) N d|(| |22| ;‘_

The integer field VALUE will be allocated or packed according to the
packing descriptor specified in the table declaration. The first

occurrence of this field in an item will be preset to -145, the next

three occurrences will be preset to 19, and the following 4 occurrences
will be preset to 73.

See Table 4-2 for further examples.

4.2.4 Item-Area (ITEM-AREA) Declaration

An item-area is a data set with a structure identicalyto that of an item of
the associated (parént) table, with the same number of words and the same
field configuration. There may be any number of item-areas associated with

a parent table, but they are physically separated from the table. The item- ‘
area is a convenient working storage area, assigned by the Compiler, where a

single item of a table may be temporarily stored for examination, manipulation,
or accumulation of data,

11-4-30



M-5035

ITEM-AREA area-name(s) §
Explanation
ITEM-AREA Specifies the ITEM-AREA declaration,

Area Name(s) The unique name or names, separated by commas, of
' ‘ areas of working storage. Each area has the same
format as an item of the parent table; therefore,

only the name of each item-area associated with the

parent table need be specified.

Examples

. JLTEMARER | BUFERL L v bl

A single item-area named BUFF1 is defined.

2. NEM™ UF FK R pl&@f’ll‘llllill

There are three item-areas named BUFF2, WORK1, and WORKST.

4,2,5 Subtable (SUB-TABLE) Declaration

A subtable is a set of adjacent items, wholly contained within the parent
table. Its item size and field configurations are identical with those
defined for the parent table, Except that it lies within the confines of the
parent table, a subtable is itself a table having its own optional major index
and stipnlated maximum number of items, Subtable definitions within a parent
table are independent of one another and may overlap. Subtables may only be ‘

defined for single-dimensional tables (horizontal or vertical tables).
Format

SUB-TABLE name initial-item-number—of—parent-table

‘maximum-number-of-items-in-subtable major-index-name §

11-4-31



- TABLE 4-2. EXAMPLES OF TYPE-a FIELDS

ce-v-1I

FORMAT OF FIELD DECLARATION
‘ ' Start | Initial ;
TYPE OF FIELD FIELD Name Data Type |Rounding] Location Bit Values | Scaling| $
Integer FIELD INTA [ I 5 U 2 15 P 3(10) S $
FIELD INTB {I 64 S INTBWL INTBST | P O V(1,00 | $
Floating Point| FIELD FLTA | F 1 31 $
Fixed Point FIELD FIXA |A 6 U 2 0 5 : $
FIELD FIXB [ A 32 S 16 ' FIXBLOC | 31 P 9.548 $
Boolean FIELD BOOLA| B 1 0 ' ' $
FIELD BOOLB| B 0 BOOLBBIT| P 1,0,1 $
Status FIELD STA | S 'ON', 'OFF' A 1 14 P 'ON' /\ $
Hollerith FIELD HOLA | H 40 3 31 $
FIELD HOLB |H 3 0 28 P H(ABC) $
Implied - | FIELD IMPLA| ’ 1 15 $
NOTES

1. Tags such as INTBWL, INTBST, FIXBLOC, and BOOLBBIT may be used as indicated but must be 3551gned
integer values by an EQUALS declaration.

2. If the type of field is implied, the attributes of the field are determlned by the implied mode
of the Compiler to be a signed 16-bit integer, unless superseded by a MODE declaration.

3. If a field starts in the middle of a word, it must be wholly contalned within that word--it may not
cross word boundaries,

GEO0G-W



M-5035

Explanation
SUB-TABLE : Specifies a SUB-TABLE declaration.

Name : A unique identifier by which the

subtable is referenced.

Initial Item Number of Parent Table Establishes the base item of the
subtable by specifying the item
number of the table at which tﬁv
subtable is to start. The number
can be either an integer or a tag

predefined by an EQUALS statement,

Maximum Number of Items in Subtable Either an integer or a tag that

specifies the size of the subtable.

Major Index Name Optional, Specifies the name of
the major index of the subtable.
If used, it is handled in the same
manner as the major index of a

table (see paragraph 4.2.2).
Examgle

514131 111’7151115114Lﬂiﬂﬂ1 Lo r’nllllllllllllLllll

In this example, the subtable named BLIP starts at the initial item

‘number 4 of the parent table and is 20 items long.

2. 51‘41_51"173@51451 1514151‘/1 ovidL Roumd SPPOK Jfl 11 L_l

The characteristics of subtable SCAN are defined by means of tags whose
values are supplied by the EQUALS declaration. OVAL provides the initial
item number, and ROUND, the number of items. SPOOK is the name of the

major index.

11-4-33



M-5035
Change 5

4.2.6 Like-Table (LIKE-TABLE) Declaration

The like-table serves the same purpose for an entire table or specified number of

items of the table as the item-area does for an item of the table. Like-tables have
configurations identical to the tables that they duplicate. The use of like-tables

allows the elimination of duplicate field definitions when defining multiple tables
with identical formats. LIKE-TABLE must be enclosed within the TABLE and END-
TABLE brackets to which the same field definitions gpply. A LIKE-TABLE is valid

in single dimension tables only.

Format

LIKE-TABLE

Explanation
LIKEfTABLE
Name

Number of Items

-Major Index Name

name number-of-items major-index-name $

Specifies that a LIKE-TABLE specification follows.
A unique identifier by which this table is referenced.

Optional. An integer or tag specifying the maximum
number of items in the table. If this parameter is
omitted, the number of items of the like-table»will be

the same as the number of items of the parent table.

Optional. Specifies the name of the major index of
the like-table. This parameter, if used, is handled

in the same manner as the major index of a table (see

paragraph 4.2.2).

Example

iﬁﬁﬂhﬁnllﬁﬂ&&j%1&&[@QQ1§11111

L1

|

.

NSNS LN ENE NN

L1

1111

L1

[ ]
IR AT NNy

L 11

J

(1]

JLJ“KIEJ-ITIMJLJE STRK 3 ﬁn L1l

L1l

11 1

L1l

EMD-TABLE MTRK 3 |, 110l

il

1111

bl

In this example, the like=table STRK is declared to have the identical

format and field declarations as the parent table MTRK, except that it

has only three items.

11-4-34



M-5035

4,2.7 End-Table (END-TABLE) Declaration

The END-TABLE declaration terminates the declaration of elements of the table
" identified between the TABLE and END-TABLE declarations. All the defined sub-
components of a given table (FIELD, SUB-TABLE, LIKE-TABLE, and ITEM-AREA) must
be defined between the table declaration and its associated END-TABLE
declaration. '

Format

END-TABLE table-name $

‘ Explanation

This operation terminates the declaration of elements of the table
identified between the TABLE and END-TABLE declarations.

Examples .

1. Mmﬂﬁﬂmmlﬂllnlllllilll1411111’11

2. An eXample of the various table options and the resulting space allocation
may best serve to illustrate the options. For purposes of the example,
assume that the Compiler is generating code for a six—bit machine. One

computer word contains bits designated O through 5 as:

11-4-35



M-5035
Change 3

The following input:

11-4-36

JTABLE  ITEasT VA ST TESTIEND B 11l
Angudy g viAewEed, [ § 3 W0 3 $ a1l
FuELD | ViaLMEZ T 3 U0 s Ll
JALEYD | [VALWED T 2 M 2 3 Logr e ool
STEMAREA mEMP 8 s gl
SWB-TABILIE SUBTEST & 2 bl aiaald
NUKESTABIVE LUKET S % el
(EMD-TABME TEST & v 11l trraatld
produces the following in core:
. 5 4 3 2 1
NN\ s 7 xorg ? } Ltem 0
i or
NN | Word O :
Table Word 1 tem 4
TEST < Sub- ﬁ°r§ ? } Item 2
table , i | Wor
SUB- ARSI ijo rg (1) } Ltem 3
TEST HeE | vord.
DANMNIRRS? v xorg ‘i } Ltem 4
. . or
pien SN  Word 0
e L — i Jvora 1} Tren-irea
o : N BRI 7/ /] | Word O }“ 0
C 0 HEPEHEHERHHES i Word 1 Lem
SRR JHora 0 1
. it Word 1 em
Like- oo PR i,
Table J OSSR uo rg (1) } Ltem 2
LIKET 9 or
RS Word O } .
\ Word 1 Item
RNRRRRRIRS | Word O »
' gt Word 1 }.Item 4



M-5035

Note the following facts in conjunction with the resultant area:

1. Table TEST is a vertical table (all words of an item are
together) of five items of two words each,

2. Item-area TEMP is allocated two words just like the items of
table TEST. |

3. Like-table LIKET is allocated five items identical to the items
of table TEST,

4. Subtable SUBTEST exists within table TEST, occupying items
2 and 3. |

5. Field VALUEL ( ) and VALUE2 ( ) are identified with

. word O of evefy item within the table, like-table, and item-
area. Notice the overlapping of the fields ( m ).

6. Field VALUE3 ( FEEE '
within the table, like-table and item-area.

7. Subtable SUBTEST does not exist within the like-table LIKET

) is identified with word 1 of every item

at the corresponding position (*) because there is no way for

the Compiler to differentiate between the two subtables.

4.2.8 Packing Rules

As fields and variables are defined in data declaration statements, the
programmer specifies various attributes of the data units. These attributes
are used by the Compiler to determine the proper allocation of these data units
consistent with the AN/UYK-7 memory structure and addressing scheme. When
Compiler packing of fields is specified in a table declaration, or when
allocation of variables is\perfdrmed by the Compiler, a sét of rules governs
the manner in which the fields and variables are packed into’AN/UYK—Y memory

words.

 Three different packing algorithms are used by the Compiler: no packing,
medium packing; and dense packing. In the descriptions of these algorithms
that follow, the term magnitude is used to refer to the number of bits required
to represent an arithmetic data unit (I or A type) excluding the sign bit,

For example, a signed 32-bit integer (I 32 S) has 31 magnitude bits; an
‘unsigned 32-bit integer (I 32 U) has 32 magnitude bits.

11-4-37



M-5035

NOTE

In the case of no packing or medium packing, when a
programmer specifies the number of bits in a field

or vaqiable, the Compiler will guarantee a data unit
allocation of at least that number of bits; additional
magnitude bits may be provided. Hence, the length
specification of an arithmetic data unit should

always be regarded as the minimum number of bits
required to contain that data unit. For all types

of packing, multiword data units must always start

in bit 31 of a word.

4.2.8.1 No Packing (NONE)

No packing applies only to fields in tables declared with the NONE packing

descriptor. - Such fields will be packed as follows:

Type . ' Packing
Boolean (B) and Allocated a full-word.
Status (S)
Hollerith (H) Allocated the least number of full-words required

to contain the specified number of characters

~ (four characters per word).
Floating-point (F) Allocated two full-words.

Fixed-point (I or A)  Allocated one full-word if the magnitude is less
” than 32 bits; allocated two full-words if the

magnitude is less than 64 bits.

4.2.8.2 Medium Packing (MEDIUM)

- Medium packing applies to all variables and all fields in tables declared with

the MEDIUM packing descriptor, Medium packing is performed as follows,

11-4-38



M-5035

Type Packing
Boolean (B) and Allocated a quarter-word.
Status (S)
Hollerith (H) Allocated the least number of full-words required

to contain the specified number of characters
~ (four characters per word) if greater than two
characters; allocated a quarter-word if one

character; allocated a half-word if two characters.
Floating-point (F) Allocated two full-words.

Fixed-point (I or A) Allocated a quarter-word if unsigned and less
than nine bits in magnitude; allocated a half-
word if less than 16 bits in magnitude; allocated
é full word if less than 32 bits in magnitude;
allocated two full words if less than 64 bits in
magnitude., Illustrating these rules: an I 8 U
receives a quarter-word; an I 7S, 1 8S, I 15U,
or I 16 S receives a half-word; an I 16 U or
I 32 S receives a full word; an I 32 Uor I 64 S

feceives two words; and an I 64 U is illegal.

. 4.2.8.3 Dense Packing (DENSE)

Dense packing applies only to fields in tables which are programmer-packed, to
tables declared with the DENSE packing descriptor, or to variables that are

overlayed (see paragraph 4.2.9). Dense packing is performed as follows:

Type ' . ; Packing
Boolean (B) Allocated a single bit,
Status (S) Allocated the number of bits required to hold the

largest status constant (e.g., if seven states are
defined, three bits would be allocated).

11-4-39




M-5035

Type - Packing
Hollerith (H) : Allocated the number of quarter-words,required'to

contain the specified number of characters if
less than five; otherwise, allocated the required

integral number of words.
Floating-point (F) Allocated two full-words.

Fixed-point (I or A) . Allocated the number of bits required to contain
' the data unit if less than 32 bits in magnitude;

otherwise allocated two full-words.

4.2.9 Overlay (OVERLAY) Declaration

The CVERLAY statement allows the user to contirol the allocation of variables
and fields which are to be densely packed by the Compiler, If the OVERLAY
involves fields, the OVERLAY statement must follow the associated field
declarations within the TABLE, END-TABLE brackets. If the OVERLAY involves
variables, it implies dense packing, and the OVERLAY statement must follow

the associated data declarations within the data design,

Any number of fields or variables can be named, separated by commas, on the
right side of an OVERLAY. All are allocated consecutive storage space in the
order in which they are named, subject to the following restriction: a field
or a variable defined as part of a word will be allocated so that it is
wholly contained within a word. Compatibilitf in size is the programmer's
responsibility.

Ahy number of OVERLAY statements are permitted and names may appear in more
than one OVERLAY statement but logical inconsistencies must be‘évoided. '
Programmer confusion in using the OVERLAY statement can be avoided by inter--

preting the word OVERLAY in this statement as meaning "overlay with."
When using OVERLAY, the following rules apply:

1. If the data unit name is not a field, the variable list must not
include fields.,

2. If the data unit name is a field, all of the names in the field
list must be fields; only fields within the same table may be

overlayed.

11-4-40



M-5035
Change 2

d. If the overlay list exceeds the size of the data unit being
overlayed, a warning message is outpul by the Compiler; however,
‘the data allocation will still be performed.

4. All nonfield OVERLAYs must be outside table definition brackets
but within the data design. Field OVERLAY's must be within the
table brackets. '

5. A1l names within an overlay must be previously defined within
the data design. |

6. A name cannot be used more than once on the right side of an
OVERLAY statement.

7. If a name is to appear on the right side of one OVERLAY and to
the left side of another OVERLAY, the statement containing the

name on the right side must be declared first.
 Format
data-unit-name - OVERLAY variable-list or field-list §

Exglanation

Data Unit Name v The name of a variable, table, field, like-table,

item-area or subtable.

OVERLAY . Indicateé(that the variable or field list to the right
of the operator is to overlay the data unit to the

left of the operator,

Variable List Contains the names of one or more variables, tables,

like-tables or item-areas, separated by commas.,

Field List : Contains the names of one or more fields separated

by commas.

I1-4-41



M-5035

Change 2
Example
G LSTTEMDD, 1SS DD Bl Lo i1 114 | 84
Ll vRBE AGH @S W E L 1R
Lt IVRBL AGG B ST A b a1 | 6R
Lttt viREy ABD ™ A0 S il 1l @
ot lviRey ABE I 4o Wb | (R
Lo ViR AAC T 20 W gl L@
AAG 11 PMBRLAY ﬁ|&1,| ABE B 11101 @
ABD | DVIER LAY u‘hCJF] ACEH # 1l 11 l@_,
it VIREL 1(101.1)1,1_1,15_,1_@,1&,%_&,111111‘1 L
L

N

1

Ll a1

L bigMaIN, O |,@,|&|;I§|’|T|;1 |
i |U,|,|V|’lW,’|X|’|I|’.ZJ|!| LT B é ' ‘

LAvieeil, PVRBL T 24 M A L il

RN U T |

I5NLJTABHﬁlﬂ&|MLmﬂﬁllJ thl

WL S I W W |

, le@L =155 ] | .c.z.s.T.Emlp. Ly

L Lty
v oV,ERLAY, L E; oF, J SRR N
RN NN 1%1”1,|0|,|2|,|Q,|8|’ Sty (Thgl 1 11 |
Lo b gtz | bl
Ll ir El MMABUILATE EWISIE] (240
Ll mneny (AoxiPn A 200 1S40 g1 |
partnr i lmnEyy BwmamA L T A0 Sl H !
L RnED FRACIE A 40 W 40
FIXPT,,, OVERLAY, IMT A, FRACE | 8000, {
|
.

11-4-42

355585



YM45035

The results of statements 2 through 8 would be:

| ACF | ACG | |
L ABD | ABE 1
| , AAC
W
Same Word

The results of statements 9 through 11 would be:

CI{D|E{F|G|H|I|J|{K|L|[M|{N|OIP|Q[R|[S|T|{U]JV|IW]X|Y]|Z

l _ PVRBL 1

Same Word

In the above example, a series of flags (Boolean variables) have been
declared so that they occupy a single variable (word). This might be
advantageous if it is frequently necessary to check to see if all flags
are cleared. Also, since all flags are contained in a single variable,
they can be quickly passed on procedure or function calls. Such packing
“results in more object code when data is manipulated, and care must be

exercised in weighing the advantages gained over the resulting disadvantages.

The results of statements 13 through 16 would be:

L INTF ] FRACF | ]

L ____FIXPT I

11-4-43



M-5035

4.2.10 Data Referencing

Data units are referenced in their entirety by name (identifier), a specific
occurrence of an n-dimensional unit by name and subscripts, or a particular
part of a data unit by use of a functional modifier., Variables and lists
(tables, subtables, like-tables and item-areas), when treated as entities,
are referenced by name only. Each of these data units has its own unique
name, as established in a declaration. Fields, items, and words are always
referenced with their associated table, item-area, liké-table. or subtable,
Because of this, a field name by itself is never meaningful. To ideﬁtify the
subdivision of a larger data unit, the additional descriptive information is

enclosed in parentheses after the name of the larger data unit,

; All lists are indexed (or subscripted) from O through N-1, where N equals the
number of entries. Thus, entry O is the first entry in the list.,entry'l is

the second entry, etc.

4,2.10,1 Table Referencing
Tables may be accessed in a variety of ways:

‘a. Whole table referencing:

!

1. Set every word of the given table to the specified value.
2. Set every word of one table to the value of the corresponding

word in another table.

b. Item referencing - Set an item of the given table to the
specified value(s). -

c. Field referencing (where a word is a special case of a field
corresponding to one word) - Set the given field to the

specified value,

The method of addressing may‘also be determined by the category into which
the table falls:

a. Horizontal or vertical (one-dimensional).

b. Array (multidimensional).

11-4-44



M-5035

4,2.10,1.1 Whole Table Referencing

Format

name

Explanation
Name | The name of the table, subtable, or like-table.
Examglés

(See paragraph 5.4 for rules applicable to multiword set statements.)

1. 'llelTLJTlAJMITIQPS—llI#lllllllLlllllLlllllll

For this evample, every word of TABL1 will be set to 5.

2. SET TMABLY, o TABLY o b

In this example, every word of TABL1 will be set to the value ofvthe
corresponding word of TABL2, If TABL2 is longer than TABL1l, the
transfer of values will stop at the end of TABL1. If TABLZ2 is shorter
than TABL1, the transfer of values will stop at the end of TABL2, with
the excess words of TABL1 unaffected.

4.2.10.1.2 Iiem Referehcbng. There are two ways to address items, depending
on the type of table in which the items occur:

1. Horizontal or vertical (one-dimensional):

Format -
name(i)
‘Explanation

Name The name of the table, subtable.‘or like-table.

i , ' The item indicator. It may be a data unit, tag, constant,
or arithmetic expression,

11-4-45



M-5035

, Examples
o JSET, TABL(O), WO 5 $ly il

All words of the first item (0) of TABL1 will be set to‘5.

b, SET TABLU(VAL) To s il il

The words of the item of TABL] indicated by the value of VAL will be
set to 5. V

2. Array (multidimensional) :
Format
name (d17 d2. f..,‘d7)
~Explanation
Name » The name of an array.

di The index corresponding to the associated dimension of the
table. The number of indexes specified must correspond to.
the number of dimensions of the table (at least 1 but no
more than 7)., Each index may be a constant, tag, data

unit, or arithmetic expression.

Examples ‘
| Column O Column 1
“a. TABLI1 )
Item O Item O
77777
v H
Ttem 2 - Item 2

SSEN TABL () To il s il

All the words of item 1 in column 1 (the shaded area) of TABLI

will be set to 5.

11-4-46



M-5035

bh. Column O Column ]
TABLI Column 1
Item O r———-
T Item 0
ftem1 | FT=7
Item 1
Item 2 S 7 ////7
//’Item 2
Level O _ S S S
Level 1

2SEN TABLLICR, 10 T S i L |

All the wofds of item 2 in column 1 of level 1 (the shaded area)
of TABL1 will be set to 5.

4.2,10.1.3 Field Referencing. There are two ways in which fields may be

addressed, depending on the type of table in which the fields occur:
1. Horizontal or vertical (one-dimensional):
Format
name(i,f)
Explanation
Name 'The name of. the table, subtable, or like-table.

i The item indicator. It may be a data unit, cohstant,
tag or arithmetic expression.

f ' - The field indicator. To specify a field previously
' defined within the table, f must be the field name. A
word is a special type of field which may be indicated

by a constant, data unit, tag, or arithmetic expression.

I1-4-47



M-5035

- Examples

@ET“‘ﬂdeLh|3FL2MIHQ15ﬂ$111111111111l

The predefined field FLD of item 2 of TABLl will be set to 5.

| ISIELTI 1Tﬂ13[L1{121.111)1 To L S WEEE

Word 1 of item 2 of TABL1 will be set to 5.

2. Array (multidimensional):

Format

name(d1

Explanation

Name

d.
i

Examples

R IS .
B n

The name of the table.

The index corresponding to the associated dimension of

the table, as previously described.

The field indicator. To specify a field previously
defined within the table, f must be the field name. A
word is a special case of field that may be indicated by

a constant, data unit, tag or arithmetic expression.

SET TABIL (244, ,,L,.a‘gam.mg BulFL A& £ .. |

The contents of BUFLAG will be placed in the field FLAG of item 2 in

E\T,

column 1 of level 1 of TABL1,

[ T 5]

Word 1 of item 1 of column O will be set to 5.

11-4-48



M-5035

SET, TihB|( z’_’;ﬁf’,ﬂBé,(&],lF,Q,i,h,.ﬁle)l ro 0 % I

The contents of field FLD of the item represented by the expression
2*TAB1(I,FLD1) will be set to O.

d. 1 TABLL

l 1 141 b 11111 I {1l 1 1 1 1 11 ] Whole table.

1710L§1L14(43111111111L¢1 Lt 1 1 i 14 Item 4,

JTanBLLliJ{ﬁluFlLLDl)l Lttt i1 i Ll L L 1] Field FLD of Item 4.

ﬂ'JﬂlﬁanLZnJiﬂnbl Lyl p&)LLJl L it 1 a g gy Word 2 of item specified

AIRA
AR

by INDI.
E Fielq F%D of item O in
col, 1,
4. INDR TR Word specified by TAG1 of

of item specified by
IND1 of column specified
by IND2 of level speci-
fied by IND3.

NOTE

The interpretation of the referencing is governed
by the structure declared in the TABLE declarative.

4,2,10,1.4 TItem-Area Referencing. An item-area is addressed by its name.

The name alone addresses the total item. A field specification may be

included to address a field or word.

Format

name
Sor

name (f)
Explanation

Name

f

The name of an item-area.

The field indicator. ‘To specify a field previously
defined within the parent table, f must be the field

- name. A word is a special case of field that may be

indicated by a constant, data unit, tag, or arithmetic

expression. !

11-4-49



- M-5035

Examples
. SET ITEMA L To S8 s L ca

Every word of ITEMA will be set to 5.

2. SET FlTnfﬂlﬁl(nﬁ@l)l e il

Field FLD of ITEMA will be set to 5.

3. BT S TEMA 44-‘-1011p1rf11£11111111111'1‘11]

Word 2 of ITEMA will be set to O,

4.2.11 Transfer Declaratives (Switches)

The transfer declaratives allow the establishment of switches for determining
indirect linkage within procedures and for transferring control from one
procedure to another. There are two classes of transfer declaratives:

statement switches and procedure switches.

4,2,11,1 Statement Switch (SWITCH) Declaratives

The statement switch is a collection of statement labels to which control may
be transferred, depending on various conditions encountered during processing.
For purposes of identification and selection, the switch is a unit identified
by a switch name. Since statement switches are collections of statement
labels, and since statement labels are always local to the system procedure

in which they are defined, switch declarations must fall within local data
design (LOC-DD) brackets. There are two types of statement switches: index

and item.

4.2.11.1.1 Index Switch. The index switch defihes a transfer of control

“that is determined by a user-supplied index.

11-4-50



M-5035

Format
SWITCH name switch-point, switch-point, ---, switch-point $
Exglanation
SWITCH : Specifie§ the beginning of a switch definition.
Name An identifier used to reference the switch.
Switch Points One or more statement names separated by commas.

The switch points of a given switch are accessed by use of an index (see
paragraph 5.5). The value of this index is within the range O through
n-1, where O corresponds to the first switch point and n is the number

of switch points,

The program must include validity checking of the index if there is a

possibility of the index having a value outside the switch range.

“Example

smMITicH | |1BPX) S, 1S, S3 ol

This declaration defines switch BPX with switch points S1, S2, S3, and

S4. A reference to switch BPX transfers program control to one of four
statements labeled S1, S2, S3, or S4 depending upon a numerical input of
0, 1, 2, or 3, respectively.

Two switches may be defined simultaneously by specifying two names for each
switch point. In declaring these switches, a separate statement is required
for each pair of switch points. The list of switch-point statements is
delimited by an END-SWITCH declaration. The second switch name and associated
switch points may be omitted and the result used as an alternate form for

definihg a single index switch.

11-4-51



M-5035

Format

SWITCH nameéa, ‘name-b $
| switch-point  ,switch-point §$

switch-point  ,switch-point $h'
END-SWITCH name-a, name-b $

Explanation
SWITCH » Specifies the beginning of a switch definition,

Name-a An identifier used to reference the left column of

switch points,

Name-b Optional. An identifier used to reference the right

column of switch points,
Switch Point A statement name.
END-SWITCH Specifies termination of the switch definition.

In referring to the switch with name-a, the index specifies one of the
switch points in the left column. Switch points in the right column
are selected by use of name-b and an index. The program must include
validity checking of the index if there is a possibility d? an index

outside the range O through n-1.

Examples ‘
SWTGH | |FiLi A1 1ALIoP) o bl
il lreeék € Bl & 1ol gl

Li 1111 MERCURY I S G o b |
i) IEMD-SwinTieH] AP, 1Fuelf o111l

In this example, the SWITCH declaration generates two independent
switches, FLIP and FLOP. A reference to switch FLOP will transfer

1I-4-52



M-5035

program control to the statement BOLT or the statement SWCH, depending

upon a numerical input of O or 1, respectively.

The number of switch points in the left-hand column may be greater than
the number in the right-hand column. In this case, only one statement

name is specified,

2, SMINTCH | [swdiyl SW $l 10y 111 ]
1L1111nnlﬁnlnl’xmﬁn,lm_li@lﬁﬂ'nﬁn$lluln1111:;11
11111111@@ﬁﬁ31dﬂ£@1§1L11(1111
Luujubuﬁmﬁmw DECIR & 1 bt
1111llllmlqllrjﬁnnﬁ111111LLL11¢111111(111

) ﬁMMﬂwWﬂhﬁlﬁMAylﬂM&l#LLllLlLlllHJII1

Switch SW1 may be referenced by index values of 0, 1, 2 and 3.

Switch SW2 may use index values of O, 1 or 2,

4,2.11.,1,2 Item Switch. The item switch defines switch points that are
accessed by a constant as specified in the definition. The Compiler performs
a compare between the value of the variable name contained in the switch
statement and the constants of the definition. Control will then be trans-
ferred to the switch point that corresponds to the matching constant.
Validity checking of the data unit name is not necessary as program control
will continue with the next instruction if a match is not found. This means,
however, that the instruction sequence following must be applicable to a not-
found condition. The variable specified in the item switch declaration must
be defined prior to its reference in the switch declaration and must not

exceed two words in length.

11-4-53



M-5035

Format

SWITCH name (variable-name) §$
constant, switch-point §

constant, switch-point $
END-SWITCH name $

Explanation

SWITCH Specifies the beginning of a switch definition,
Name : ~ An identifier used to reference the switch.
Variable Name The name of a variable whose value is to be compared

against the list of constants in the left-hand column.

Constant A CMS-2 constant of two words or less in length. This

constant must agree in type with the variable,

Switch Point A statement name.
END-SWITCH Specifies the termination of the switch.
Example
WLLITC Wi O|F] N .m); lﬁLHlllltllJiLJ
L&(ﬁm,hl;m [EwEmenmT & | oot b rp el
(1T101P|\)19IULNLC101MA l‘llllll it b e d

JdL(LLElEdﬁ)Lﬂ[ JMCNNJE ‘51 11 l I RS O T Y I B ll T I T A B | l
.ﬁELJlD:];hﬂﬂJIIISuﬂb_jS!NxojFafi Jbl A B J L 111 |

This declaration defines switch SWOFF with switch points ELEMENT, UNCOND,
énd DONE. A reference to switch SWOFF will transfer control to one of
these switch points, depending upon the value of the variable named
FINISH, If FINISH is equal to H(TERM), control will transfer to the
statement DONE.

I11-4-54



M-5035

4,2.11.2 Procedure Switch (P-SWITCH) Declaratives

The P-SWITCH is a collection of procedure names to which a call may be made,
depending on conditions encountered during execution. The list of procedure
names identifies the procedures accessible by the switch., Procedure switches
are declarations, and can fall within the data design brackets (SYS-DD or
LOC-DD) or may stand alone (i.e., within a SYS-PROC but outside a LOC-DD or
procedure). There are three types of P-SWITCHes: index procedure, double

procedure, and item procedure..

4,2.11.2.1 Index Procedure Switch
Format

P-SWITCH name INPUT formal-parameters OUTPUT
formal-parameters §

switch-point $

swiich—point $
END-SWITCH name $°

Explanation

P-SWITCH ’ Specifies the P-SWITCH declaration.
Name The identifier by which the p-switch is referenced.
INPUT , Optional, Specifies that formal input parameters

for each p-switch procedure follow.

OUTPUT | Optional., Specifies that formal output parameters

for each p-switch procedure follow.

Formal Parameters A list of names (single identifiers), separated by
commas, which are to be input or output to the

procedures.,

I11-4-55



M-5035

Switch Point The name of a procedure accessible by the switch. The
switch points are indexed by a value within the range

0 through n-1, where O corresponds to the first switch

and n equals number of switch points. The program must

include validity checking of the index if it can exceed

the range O through n-1 (see paragraph 5.5).
END-SWITCH Specifies the termination of the switch,

This declaration allows the use of input and output parameter transfers.
If formal parameters are specified, they must be identical for every
procedure of the p-switch. No abnormal exits are allowed. Transfer to
the procedures specified is activated by a procedure-switch linking
statement (see paragraph 5.3).

Examgle
|E|‘|5|N |1T1C1Hl R|h&| |'|N|P|“|T-| l&ﬂ|ﬂ:‘!’|5|’|.blsl O UT P éﬁll-l ﬁj
ijlllljllsll4I§IJIJLllLlllJllLLJllJJlll lllx
1 TS T T Y | l ‘;ﬁzéh r5. 19 | l S T T T O I I I l N RN VA O A S R 1 [
i L TAM 1‘11111111111111
L LI EMDSwiLTIE TR LG N RN

This declaration defines procedure switch TRIG whose input parameters are
~ ANG and SIDE and whose output parameter is SOL. A reference to switch
TRIG transfers control to one of the procedures SIN, COS or TAN, depending

upon a numeral index of 0, 1 or 2, respectively.

4.2.11.2.2 Double Procedure Switch. Two procedure switches may be defined

in a single declaration.

11-4-56



M-5035

Format

P-SWITCH name-a, name-b $—

switch-point, switch-point §

switch-point, switch-point §
END-SWITCH name-a, name-b $
Explanation
P-SWITCH Specifies a P-SWITCH declaration.
Name The name of a procedure, A switch point‘is indexed

by a value within the range of O through n-1 where

n is the number of switch points,
END-SWITCH Specifies the termination of the switch.

Multiple procedure switch declarations do not allow formal input or
output parameters. Name-b and associated switch points define a second

procedure switch,

Example
Prow i Tianl (PiL mMEnHlJT]leM/L l-’llllllllllllll'-l.
LLLIHHI:A:IIN, LRl b by
LJJIJ]'IIIIPIRIOIPI;lIIIlSlTlﬁlTI/lolVl $ L i L
Hllllullﬂqéu1$||1|1111nuuln1: Lraar L
it | Ewdiisiwgmie LAN E ’M/jt*LLll]J

This declaration defines 1ndependent procedure sw1tches PLANE and TRAIN.
A reference to switch PLANE will transfer program control to one of the .
procedures AIR, PROP or FOG depending upon a numerical input of O, 1 or 2,
réspectively. '

II-4-57



- M-5035

4;2.11.2.3 Item Procedure Switch

Format

P—SWITCH name (variable-name) INPUT formal-parameters
OUTPUT  formal-parameters $

constant, procedure-name $

constant, procedure-name $
END-SWITCH name $

Explanation

P-SWITCH v Specifies a P-SWITCH declaration.
Name ; ' . An identifier used to reference the P-SWITCH.
Variable Name The name of a variable whose value is to be

compared against the list of constants in the
left-hand column. When a match is found, the
procedure that is paired with the constant will -

be accessed.

INPUT Optional. Specifies that the names which follow

~are the formal input parameters.

OUTPUT  Optional. Specifies that the names which follow

are the formal output parameters.

Formal Parameters A list of the formal names, separated by commas,

of the input and output parameters.

Constant : _ . Any allowable CMS-2 constant of two words or
less. This constant must agree in type with

the variable,

Procedure Name Identifies thebprocedures accessible by the
switch,

END-SWITCH Specifies the termination of the list of procedure
names. |

11-4-58



M-5035

Example

WPoSiwmie ] LMK (MTYIPEY, (I MPUT | ADDRL )00
Clr b vttt gl iodmPu™ RESILT &0
11111111Q§|l|3)|;|Mml’l&@1111|1L1111L|11111
it oA MTPB % L L
L o3 MTPle $ g b il
[ Y LlEjNI.LL-Islwl'lTLCﬂ»I 1L1'1~»1K1 L#l 11 l | I I | I J

A procedure switch linking statement would invoke the procedure item
switch. This would cause the contents of the variable MTYPE to be
compared against the list of constants in the LINK procedure switch
table. A match generates a procedure call to the procedure associated
with the constant., The formal parameters are ADDR and RESLT.

4.2.11.3 Switch Referencing

Statement switches (index and item) are referenced by a GOTO statement.
Paragraph 5.5 provides examples of such referencing. Procedure switches
(P-SWITCH) are referenced by a procedure switch call. Paragraph 5.3 provides
examples of such referencing. '

4.2.12 Local Indexes

Identifiers may be used to refer to machine index registers within the range
of a procedure by means of index declaration statements. Two types of
indexes may be declared: system indexes and local indexes.

System indexes are global identifiers that must be declared in a major header
(see Section 7).

Local indexes are declared for use within a procedure by means of the LOC-
INDEX statement.

11-4-59



M-5035
Change 3

Format

LOC-INDEX name(s) §$

Explanation

LOC-INDEX Indicates that the following name or names are to

refer to the Compiler-assigned index register(s).

Name , ‘An’identifier(s) of the index register(s). It must
not be previously defined in a data declaration. This
name can be an actual (not a formal) parameter in a
procedure call. Multiple names are separated by

commas .

The declaration should immediately follow the PROCEDURE statement.

Examples

Loc - M EX, 1ﬁ1./-|P1H1ﬂ1‘1 A il
O ~I/IMNEIX) Ky Blﬁn‘ﬁﬁ@;n CLAN L 11 111

The fbllowing conventions apply to declaration and use of indexes:

1. Two index registers (B6 and B7) are reserved for Compiler use and will
never be assigned to a user-declared index.

2, Five index registers (Bl through B5) may be assigned specific data names
by SYS-INDEX statements. |

3. Upto five index registers may be assigned by the Compiler for use in a
procedure by LOC-INDEX statements. ‘

4., The sum of the number of index registers assigned by LOC-INDEX and
SYS-INDEX statements will never exceed five. | '

5. There is no restriction on the number of local indexes which may be
defined ,by LOC-INDEX statements. However, if index registers are not
available, temporary locations in memory will be assigned.

6. In non-arithmetic operations the Compiler manipulates index registers as
16-bit, unsigned, integer data units. When index registers are used bas
operands in arithmetic expressions, AN/UYK-7 sign bit considerations
require that the result of the expression must not exceed 15 bits in maghnitude. ‘

I1-4-60



M-5035

Change 2

4,2.13 Data (DATA) Declaration

A DATA declaration may be used to assign a preset value to a previously defined

data unit. EQUALS tags may be used to represent numeric constants (see Section

7).

NOTE

‘The DATA declaration is accepted by the AN/UYK-T CMS-2
Compiler to provide additional compatibility with other
CMS-2 compilers. However, its implementation is not
fully compatible with other CMS-2 language implementations;
nor can its continued existence in this or future CMS-2
implementations be assured. It is strongly recommended
that the variable and field preset capability and the
extensive direct code preset features available with
this compiler be used in place of the DATA declaration.
Each DATA declaration generates full word preset values;
no partial word variables should be preset via the DATA
declaration.

Format

name DATA constant-a constant-b $

Explanation

Name

Constant-a

Constant-b

An identifier of a table, subtable, variable, liketable, or
item-area. After the first declaration, name is optional when
presetting sequential words of a multiword data unit. When
presetting these uhits, a user must be aware of the word allo-

cation format (see Example 2 on the following page).

A numeric integer constant, Hollerith constant, or tag assigned

as an initial value for the named data unit. If name identifies
a variable, the type of this constant mus t agree with the type

of the variable.

Optional. A numeric integer constant or tag that is used when
a dual preset value may be applied to a data unit. When con-
stant-b is specified, constant-a assigns a valué to the upper
halfword of the data unit and constant-b assigns a value to the

lower halfword of the named data unit., Constant-b"is not allow-

~ed when constant-a is Hollerith.

I1-4-61



M-5035
- Change 2

A numeric constant may be followed by a scaling speéifier (a comma folluwed by
a positive integer constant). The scaling specifier must be given if the pre-
set value is to have any fractional precision.

Examples ‘ :
1. 10AC | 8ATA 1272 08 o Lo b b

The whole word, referencéd by the data unit name TAC, has an initial

preset value of 7.

2.  One DATA declaration per data unit name presets only the first word of
the unit. To preset several or all words, the following format is

employed, using table DICT as an example:

1 DZOT | RATA 1~ 1 11 |
1|||‘|umm71Qx__|$u|l||1||u|||1'||-|1u||
[ M_m_]_LLL]__L_JiJ_lLIIILIIIIIIIlJIJIII_[

The first word of table DICT has an initial value of -64. The second
word has an initial value of 7 in the upper half and O in the lower half.
The third word has an initial preset value of 11. When using this method
of table'presetting. the user must be concerned with word allocation

format so that a data reference will give the proper preset value.

3.. llllL"llllllllJlL

This declaration will preset the Hollerith variable HOLVB with the char-
acters TWOWDS (left-adjusted with two trailing blanks) .

4,3 CONTROL DECLARATIVES

A variety of declaratives are available for use in specifying various Compiler
control information. Most of these declarations control allocation or code
generation on an element-wide basis. They appear primarily in major or minor
headers, and are therefore described in Section 7. The MODE declaration is
closely related to the data declaration process and is therefore described

in the following sections,

1I-4-62



M-5035
Change 3

4.3.1 Mode (MODE) Declaration .

" The MODE declaration defines the format of variables and fields for which no
attributes are declared. A MODE declaration may appear within headers or data
designs; it overrides the Compiler-inherent mode. When a mode declaration appears
in a major header, it remains in effect throughout the system compile. When it
appears in a minor header or within a data design, it remains in effect throughout
that element or until another MODE declaration is encountered. In conjunction with
the MODEVRBL option (see Section 7), the MODE VRBL declaration is also permitted
within procedures and functions.

Format

MODE VRBL description §
MODE FIELD description §$

Explanation

MODE Specifies the MODE declaration.

VRBL A variable MODE declaration.

FIELD A field MODE declaration.

Description  The format as specified ianRBL or FIELD declarations

(see paragraphs 4.2.1 and 4.2,3). Specifying an initial-
value is allowable in a variable MODE deéclaration.

Examples

1. 1 AlotblEL i l' MR@;L;. ﬁl 1241 l”l l[é {41 Ll 14 S T U W W O | l

If the examplevwere included in a data design, all succeeding variables
within the data design that contain no attribute specification would
adhere to the format A 24 U 13 until the next variable MODE is
encountered. All variables would be fixed-point with a length of 24
bits and unsigned.‘with 13 fractional bit positions to the right of the

binary point.

n-4-63



M-5035

2. ﬂol-blEl 14 lFl ,JELL-hylﬂL;Lz’l 151 1/1‘1 1’1 11 l N B U S U I W lJ L1
' JM Lo TR K M 1-‘-11:4 dpo, Lol R 141 saaa g
R LELD Irievmo & 321 S5 0, 34 S L b
B UELD p-'ﬂh S 1’1F|RL'1?WJP1'1,|/|F|0|E| ’,,I ',//l'i"/_(lolklld’l» l“ 34, Ifl
FnELd WXy b S C a3 S
BoEnd Y b b 3l 348
FUELD T s b 9 34 8

g b b v b v raee baa
111'11LLLLL11|111111111111111111114111114141
END—TABILE |L10,¢ALTIRIK $oo b b

In this example, fields X1, Y1 and T1 have undeclared data-type attributes;
therefore, the MODE-declared attributes of A 32 S 16 would be assigned
to each. Note that it is still necessary to specify the word‘location
and starting bit for those three fields since Compiler packing was not

specified.

4.4 SYSTEM LINKAGE

Sysiem linking is the process by which program information known to one basic
CMS-2 element may be communicated to another basic element. It may be

required when the information is local to a system procedure within a SYSTEM
or unknown because the elements were compiled under different SYSTEM headers.

The following items may be linked between two basic elements:

a. Tables (and associated items).
b. Variables.

c. P-switches.

d. Procedures.

e, Functions,

f. Files,

11-4-64



M-5035
Change 5

The capability to link the above items between and within basic CMS-2 elements is pro-
vided by the EXTREF, EXTDEF, TRANSREF, or LOCREF operators. This capabhility
eliminates the need to expand the local concept of certain items and/or include entire

elements within SYSTEM compiles when only a few unknown items are referenced.

Because segments containing items a through f can be linked at load time, it is
unnecessary to externally reference a procedure (unless it has input/output parameters
or exits) or to define a procedure in a segment in order to call it in that segment. -
Although the compiler will not flag such an "undefined'" procedure, the loader will do

so if that procedure remains undefined at load time.

4.4.1 External Definition (EXTDEF) Operator

The name and associated declaration following the operator EXTDEF is to be
considered as global so that it may be referenced within any basic element
of any SYSTEM compilation.

Format

(EXTDEF) identifier-identification §$

Explanation

EXTDEF. Specifies an external definition.

Identifier-ldeniification A symbol and its associated definition defined
totally within this SYS-PROC. ’ '

EXamgles
1. ENTLDIEF ViRBL A bty rieal

This example specifies that VRBL X, defined in a LOC-DD of the SYS-PROC,
is referenced by other SYS-PROC's and is to be considered global.

2. |‘|E|&‘|r|l|E|F“| .IVIEIBEIOKEI’I ‘ZIZi“ zglh |E ﬂ HEBENEEN I

This example declares that variables XX, YY, and ZZ within this SYS-PROC
are global floating-point data units.

-4-65



M-5035

4.4,2 External Reference (EXTREF) Operator

The deélaration following the operator EXTREF defines an item that is
physidally located "in anothér SYS-PROC or SYS-DD and is‘referenced within
the current SYS-PROC. Allocation of the item.wilenOL occur ‘in the SYS~PROC
being compiled, but the definition to provide the necessary element compati-

bility will be applied.
Format !

(EXTREF) identifier-identification $

Exglanation.

[

EXTREF Specifies an external reference.

‘Identifier-IdentifiCaIion A symbol and its associated identification
that is referenced from, but not located within,
this SYS-~PROC,

Example

1(151X1T1&51F1)1 JVIMJJH i eS|

This example specifies that VRBL F1 is used within this SYS-PROC, but is
‘physically located in anotherkSYS—PRQC or SYS-DD.

4 4.4.3 Transient Reference (TRANSREF) Operator -

The declaration following the operator TRANSREF defines an item that is
‘physically located in another SYS-PROC or SYS-DD that cannot be assigned a
perménent base register. References made to this item will result in the load
of a transient base register to cover the referenced SYS-PROC or SYS—DD. The
definition furnished will be applied to provide the necessary element compati-
bility.

Format

(TRANSREF) identifier-identification $

11-4-66



M-5035

Change 5
Explanation
TRANSREF Specifies a transient reference.
Identifier-Identification A symbol and its associated identification
that is referenced from, but not located
within, this SYS-PROC,
Examples

TR @&QFI)L 1V1R151L1‘1F;il A §11L1111[11;141111l
1‘117R4R1N61&51F[)1 M&ﬁjh(lf’ﬂd}lﬁﬁl)lﬁ E oo bl

4.4.4 Local Definition (LOCREF) Operator

The procedure or function declaration following the operator LOCREF is considered
local to the system procedure in which it is contained, so that forward references to the
procedure or function receive proper parameter linkage. The declaration containing
the (LOCREF) modifier must appear in a local data design prior to the procedure or
function containing the local forward reference. Formal parameters must be defined

prior to the declaration.

Format

(LOCREF) procedure or function declaration $
Explanation

LOCREF Specifies a local procedure or function declaration.

Example

‘J__MKLB_\LLNLHI'IIII l?Jlull$11 11L!|llll|l|lllJn 1100
l l(ILlolClRlE[FI)I‘ IPIKIQClElDlujklEl gP,RlA[ ]I[&]E[Uln |!181”‘*1 [ N SR |

This example specifies that procedure PRA is a procedure local to the system

1.

procedure and is called locally within this system procedure. Its formal input
is VBL. .

 I1-4-67



~“M-5035
Change 5

4 4.5 Applications of EXTDEF, EXTREF, and TRANSREF

LﬁlllLlllllSHSIIPlqucjlﬂl11llllll]llllilllll
L111111411L|01C1‘xb;)114111111HlullunuLuLL
'xﬁfﬁ‘w_lﬁ_ﬁ-ui@ﬁnh uluull
st FrERD, sumdl A 32418 4 10 |3é| LR
(e Er), IomEam-AREA SuMAL S 110 L1
Li 1111l [mmEM-ARE A [SuMB 1$1J1111'111L1 il

‘LUHLJJiLEMM‘mﬁJBlHEI loum & ool il
covvv v by by e b gagd
L e b by e d

B bBYs-PRaAG S il L il
irg_u__A_LLjL_lL_QQ:LD@J Sl bl

EXTREF) |TABLE SuM 14 4 40 & 11119 L1 |
L IBLELD (SiMMAL A 228 a0 34 d ]
Ll e kE - TABLE SUML ST L s
.L.(JWM - ARIEA BUMAL B 1 1) l NSNS NEE)

Lol I ITEM-AREA ISumB B L el
ca i |EMDOTABLE oM B L]

-Table SUM is linked between system procedure A and system procedurev B. Since the
field defintion for SUM1 is included in the table description, SUM1 is also linked be-
tween A and B. A reference to SUM (0, SUM1) in either system procedure will access

; the same data unit,

Subunits of tables, such as like-tables, subtables, and item-areas are not automati-
cally linked between system procedures. In this example, a reference to SUMB will
access different data units. However, linkage can be achieved for subunits of tables.
‘Item—area SUMA is externally defined in system procedure A and externally referenced
in system procedure B, thus providing the ability to reference the s’amé data unit from

either system procedure.

An externally referenced table must have the same field definitions as that of the ex~
ternally defined table. Only like-tables, sﬁbtables and item-areas may be added or

I1-4-68



M-5035
Change 5

deleted from the definition. As an example of this, SUML can be included in system
procedure B without being in system procedure A as long as it has the same attributes
as table SUM,

O-4-68A/I-4-68B (Blank)b






M-5035
Change 5

3ETA 1 1 1SYISHIPROC | 1B, STRAVALIER 2ZSAARDN 3, 1
it ito€=DD # v et by
(LEL*TL&ELFDI IviRBty Py B 1§ v vt bt ay
(BATREF), VRBL P2 & W iy ias ey
gt ViReL AL e g b e g bas iy
Sl g dlvimBe AL A M s s b b s
(EXT REF) [PROCEDURE 1A LPH A [ MPUTT Pd) OuT Pulr, P2 3,
P11 1 EMDIMLOCDD] % v b v by
1141 11 L111~V1114L111 lllJALlll 1111 L1141 111 L1
NN LT NN T TR T e
Cr g MLPHA MPET A ouTPUT AZ 3 L
1llnIALLLlJllllllLllllLlllJJ[lLLiJlJlll11.1111

NI EEL NN SRS EEETE TN R N e
i) [EMDSYISmPRIOG BETA L i aa
HAWD, | 1 1) [SYS-1PREIC | 137, 1Di10IE (Zi5imImRi20 810 10 |4 L1y
!
1

gt leoc=Dd s Lo bt b
(EXTIEFR) IvikBL P R ld it iiaa b
ILE;KJ-JIELFJ)LIVLR!&L) LPde lﬁJsleLllllllllll-lll Jll b1t
LLlLlllllE.NbbllLolc‘llbl-)J ‘lLllllllll L1l 11]1111_11
{ExTerEIF}L E pﬁolclsblu RE h’lL PLHLAL .11"1?1“171 PMJ“JF Ul'rl 121 151

kLlLJJILL[lllJLLllllllllllllllllllllllLlLllll1

Lll1IJlJlllllllllLlJJLllLlllJLlL.‘.l.llljllllllll
tLlLALlllllE.NlD PR LJAILP"‘ ﬁxllJllllelellillljJ'
1Lnllllull11411111114L1(111111111nlanlx11’111

[ | l AR EEEEE NN 1l TN 1 U . .

Procedure ALPHA is in SYS-PROC HAND. SYS-PROC BETA initiates a procedure
call to ALPHA by means of ALPHA INPUT Al OUTPUT A2$. To indicate this
cross-referehcing to the Compiler, procedure ALPHA and its associated
formal parameters, variables Pl and P2, are flagged as external references
in SYS-PROC BETA and as external definitions in SYS-PROC HAND.

m-4-69



M-5035

nAn‘l111111L§171517’1£IM11$111111111111111111111|i

Lo b v b bttt 1l
covv i e b e b g bt i1l
EXMP 151‘/151 “IPROIG ) [Tey DIOE TMAN 70 £ 1

Laadtarrg ke dD L et b i

TRANSREF) | (VRBIL FILAGS (A B4 1S, Viéi 1% ] 1
(ENTRERY | viRBL B IR 8l
Lottt b v b by
Lot v b i
[EMD-L0G-DD & L
BRI BN NN

-
e
d

b

I

.

B U T O |

[ ° ‘ | |
I N Ly L4411 11 [ O O

Ll L1glgyg
L1111 JJEND-SYSTEM S i
By lsysmem b i L
NN NN RN BN Ll ety
st b e b bl
S rlsmsred o Lo b il
1 41 4+t 14 1111

[ ]
JlllllijlllllillLlllllLllllLl

[, |
P d b i lad [N O U U S | S O S O A |

-lElNIbl“,S{/,S;;D)l 141 L1 11q

-
—

-
b
-
-
—
P
o

[ ]
,llll‘llllllJLllllllllllll

|
I
|
l
|
J
|
|
|
llelBlLllFJ_Llﬁ“*lLllllllbilllllllil
l
|
|
|
|
|

Ll
]
]
|
I
|
I
|
|
J
|
|
I
|
|
, l
1111111111
|
|
|
u
N
|
l
|
|
|
|

Al L1+ 1 11111
llllLllllll‘l_Lllllllllllllllll [ U U O i |
lElllLillllSJ\’lSlllethlllll 11'11 J U I O
11111111«1|V1R18111F1'~1A§_1§||| é|& 151‘1I1‘ 1‘1111111
patd g b e by r e b taad
111111111[1111111111LllLll1lllllllllll
Lttt JEWDISIYGS-DPL # vt b bt et
ettt e bvr v s bv gty b aaas
coa bttt v b v e b rr i
it |EmMPssTEM @ L

When SYSTEM A was compiled, the programmer anticipated using two variables

from different SYS-DD's in SYSTEM B that would not be covered under the

11-4-70



M-5035

Change 5
same base register. This capability allows assigning a base
register to one SYS-DD when SYSTEM A is loaded for execution and a
transient register to the other SYS-DD. It was not necessary to
attach the operator EXTDEF to the variables in SYSTEM B since

they are within SYS-DD's and, hence, global.

Use of the TRANSREF and EXTREF operators allows the Compiler to
generate the appropriate object code for SYSTEM A. The allocation

is‘determinedlby the system Loader.

4. SPCX SYS-PROC $

LOC-DD $
VRBL VX1 A 16 S 10 §

(LOCREF)'PROCEDURE PRX1 OUTPUT VX1 §
VRBL VX2 H 2 §

(LOCREF) FUNCTION ENX2 (VX2) H 4 §
VRBL (VA3,VA4) A 32 S 24 §
VRBL (HA5,HA6) H 4 $

- END-LOC-DD §

PROCEDURE PRCA1 $
[ )

PRX1 OUTPUT VA3 §
.

II-4-71



M-5035
Change 5

'SET HA5 TO FNX2(HA6) $
b
®
END-PROC PRCAI §
PROCEDURE PRX1 OUTPUT VX1 §$

[ J
END-PROC PRX1 §$
FUNCTION FNX2 (VX2) H 4 §

END-FUNCTION FNX2 §

END-SYS-PROC SPCX $

Proéédure PRX1 and function FNXZ are local to system procedure
kSPCX; both are called prior to their definition by procedure
‘PRCAl. Including the declarations in the local data design prior

to PRCAl permits more accurate error checking and generatibn for

their parameter passage with respect to scaling and type.

I1-4-72



M-5035
Change 4

SECTION 5

DYNAMIC STATEMENTS

Dynamic statements specify processing operations within procedures and
functions. They perform calculations, manipulate data, and direct control of

the program.

This type of statement consists of an operator followed by a list of 6perands
and additional operators. An operand may be a single name,‘ a constant, a data
unit reference or an expression. Ex-prvessions may be arithmetic, Boolean,

relational, or literal.

Dynamic statements have two possible forms: simple and compound. A simple
statement comprises a single dynamic statement followed by its statement
terminator ($). A compound statenient consists of two or more dynamic
statements, each separated by the connector THEN, followed by a single

$ statement terminator.

With the exception of decision statements (Paragraph 5. 6), there are no
restrictions on the number or types of dynamic statements which may be _
compounded With this exception, the connector THEN is exactly equivalent to

the terminator $.

Example
‘ The compound statement

"SET A TO B THEN PROCA INPUT X
THEN L2. SET E TO F THEN GOTO L1 §$

is equivalent to the simple statements:

SET A TO B $§ PROCA INPUT X
$L2. SET E TO F $ GOTO L1 §

II-5-1



M-5035
Change 4 .

Simple and compound statements may also be grouped into a statement block by
the formation of a BEGIN, VARY, or FOR block (Paragraph 5.7). Statement

blocks are required in order to nest decision statements (Paragraph 5. 6. 6).

5.1 EXPRESSIONS

The arithmetic, Boolean, relational, and literal expressions used in dynamic

statements are described in the following paragraphs.
NOTE

-Variables, constants, local and system indexes, field
references, typed item references, item word references,
function references, and functionally modified data
units may be used as operands in CMS-2 expressions.
Tables, sub-tables, like-tables, and untyped item
references may not be used as expression operands.

'5.1.1 Arithmetic Expressions

An arithmetic expression consists of two or more arithmetic data units or
constants (operands) connected by arithmetic operators., The operators and
their hierarchy of execution are defined in Table 5-1, Operations involving

the level-1 operators are evaluated first, followed by evaluation of operators
of levels 2 and 3,

T892,



M-5035
Change 4

TABLE 5-1. ARITHMETIC OPERATORS

HIERARCHY OF

EXECUTION OPERATOR FUNCTION
1 - Unary minus
1 e Exponentiation
2 * Multiplication
2 / Division
3 Addition
3 - Subtraction

If expressions involve more than one operator of the same hierarchy, execution
is performed from left to right in the order in which the operators are
encountered. For example, A*B/C is evaluated as (A*B)/C. The one exception
to this rule occurs with expressions involving the exponentiation and unary
minus Operators-(level—l). In this case, execution proceeds from right to
left, For example, -X**-Y is equivalent to -(X**(-Y)), unless X is a

constant in which case the sign is part of the constant, Note that the unary

minus is the only operator that may directly follow another operator.
Example
A+B*C/D**3 is evaluated in four steps:
1. B*C -
2. D**3

3. The result of Step 1 divided by the result of Step 2,
4. A plus the result of Step 3.

When opcrations are Spécified by parentheses, those within the innermost

parentheses are performed first.
Example
D*((A+B) **C) is evaluated in three steps:

1. A+B
2. The result of Step 1 raised to the power of C.
3. D multiplied by the result of Step 2.

11-5-2A/I[-5-2 B Blank






M-5035
Change 3

Arithmetic operations are perforded in one of two modes: floating-point or
fixed-point., Floating- and fixed-point data units may be mixed within an
expression. However, an operation is performed in fixed-point mode only if
both operands are fixed-point. Exponentiation involving a scaled exponent is

performed in floating-point mode.

The radix point of a fixed-point operand is determined by a data declaration’
or by an in-line definition. Using an in-line definition, the radix point is
specified following the operand with the scaling specifier (..). An in-line

definition overrides a data-declaration definition.

Example
A..5+B,.7

In this example, A has a radix point of 5 and B has a radix point of T.

Only an integer constant, an EQUALS tag, or a name defined in a MEANS »
declaration may follow the scaling specifier. An in-line définition is valid
only for a particular reference. Any succeeding operand reference utilizes
the radix point definition of the data declaration unless the radix point is

again defined inéline.

Precision of fixed-point arithmetic operations is dependent upon the function

of the statements,

5.1.1.1 Fractional Significance in Fixed-Point Opefations

The rules for determining fractional significance in operations between two fixed-point
operands A and B ai'e described below. An operand may be a data unit, a constant
or the result of a subexpression. The radix point of a data unit is the number of -
fractional bits defined in the data }declaration or the in-line defined scaling specifier.

The radix point of a mixed or fractional constant equals:

1. 3.2*n+1 truncated to an integer, if constant is decimal, or

2. 3*n, if constant is octal

where n is the number of fractional digits. The radix pbint of an intermediate result

or subexpression is determined by application of the scaling rules.-



M-5035
Change 4

In the discussion of scaling rules, the following abbreviations are used:

Abbreviation - Meanin,

b ¢ Radix point of A.
y ' , Radix point of B.

Radix point of receptacle in a replacement
statement, or radix point of simulated
receptacle in relational expression or
programmer supplied override value.

min(x,y) The smaller value of x and y.

~ For relational expressions, FOR-expressions, or replacement statements with floating-point

receptacles, the following are applied to determine the radix point of the' simulated receptacle.

1. Ix#¥0andy #0, then z = min(x,y).
2. fx=0andy =0, thenz =0,
‘3. If neither of the above is true, then z equals the nonzero scale factor (x or y,

whichever 'is nonzero).

The programmer may override the Compiler determined value of z by enclosing an
expression within parenthesis followed by the scaling specifier (..) and then specifying the
desired value of z.

Example
(A+B/C+D). .5

This specifies that each operation within the parentheses wili be performed in

accordance with the scaling rules for fixed-point arithmetic with "z" equal to 5.
The scaling rules for fixéd-point arithmetic are now described as follows:

1. Addition and Subtraction (A+B)
a. K x =y, the radix point of the result is x.
'b. If min(x,y) is gryeater than z, the radix point of the result is min(x, y). |
c. If neither rule a ndr .rule b is true, the i'adix point of the result is z.

11-5-4



M-5035
-Change 4

2. Multiplication (A*B)
a. No alignment prior to multiplication in relational expressions.

b. If x is greater than z, and A is the result of a previous multiplication,
operand A is aligned to z prior to the multiplication. If y is greater
than z, and B is the result of a previous multiplication, operand B is
aligned to z prior to the multiplication. -

c. The radix point of the result (product) is the sum of the radix pomts of
the operands after application of rule a or rule b.
3. Division (A/B)
a. If y is greater than z, then B is aligned to z prior to the division.
b. A is aligned to y + z so that the result (quotient) will have scaling
equivalent to z.

4. Absolute value and complementation v
a. There is no adjustment of scale factors; i. e., the scaling of the result
equals the scaling of the operand.
5. Exponentiation
a. There is no adjustment; i.e., scaling of the result equals
(exponent)*(operand scaling).
If both operands are constants, such as in addition, subtraction, multiplication and
division, the above rules épply with the following consideration. Each of the constant
operands has a user implied radix point as described at the beginning of this discussioh.'
The rules produce an implied radix point for the result. On the other hand, constants
are converted within the compiler to double precision binary constants with maximum

precision. Attributed to each internal representation of the constant is the compiler
generated radix point. Compiler evaluation of the constant expression is performed

in strict double precision mode. The scaling rules applied to the compiler generated

" radix points yield a compiler radix point for the result of the constant expression. If

the resultant radix point derived from the user implied radii is greater than the

resultant radix point derived from compiler generated radii, then the final radix point

for the evaluated vconstant expression is the compiler resultant radix point; otherwise,
it is the resultant user implied radix point.

II-5-4A/11-5-4 B Blank






M-~5035
Change 3

5.1.2 Relational Expressions

A relational expression performs a comparison between two operands via
rational operators (see Table 5-2). If an operand of a relational expression is an
arithmetic expression, the operations of the arithmetic expression are executed
first. Compai'isons between two arithmetic operands will be performed in fixed-
point mode only if both operands are fixed-point. When comparisons‘are made
between Hollerith operands, the shorter operand determines the number of
characters to be compared. If one of the Hollerith operands is a constant, the
necessary blank filling on the right is made to form equal length operan&s. A

relational expression always results in a Boolean true or false value.

Example

(A+B+C)*D EQ E+F

This expression is evaluated by comparing the result of (A+B+C)*D with
the result of E+F.

I-5-5



M-5035

Change 1
TABLE 5-2. RELATIONAL OPERATORS
S , ‘ ~ OPERAND TYPES
OPERATOR DEF INITION ] . "COMPARED
W — —
EQ Equal Arithmetic, Status,
’ Hollerith, Boolean
NOT Not equal Arithmetic, Status,
: ‘ Hollerith, Boolean
LT Less than ‘Arithmetic, Status}
, Hollerith
GT - Greater than Arithmetic, Status,
‘ Hollerith
“LTEQ Less than or‘équal to . Arithmetic, Status,
. Hollerith
GTEQ Greater than or equal to Arithmetic, Status,
’ : Hollerith

5.1.3 Boolean Expressions

A Boolean expression consists of two or more operands connected by Boolean
operators. The operands can be considered bit strings, i.e., a string of
one or more consecutive bits, each having the Boolean value true or false,
which is interhally represented as 1 or O respectively. Operator definitions

and hierarchy of evaluation are defined in Table 5-3.

TABLE 5-3. BOOLEAN OPERATORS

HIERARCHY OF
EXECUTION - OPERATOR ' DEF INITION
1 COMP Complement or negation
2 AND Logical multiply’or'intersection -
3 | or Logical add or union
3 XOR ~ Logical difference or exclusive OR

I1-5-6



M-5035
Change 2

If Boolean operations are contained within parentheses, the innermost operation

is executed first,

Example

A 1 OR | ICOMPA(A ANDI(E PR G AW G

- The expression is evaluated as follows:

l. BorC ,

2. A AND the result of Step 1
3. COMP the result of Step 2
4, The result of Step‘3 AND C
5. A OR the result of Step 4

Operands associated with logical operations in a Boolean expression may be of
any type (i.e., Hollerith, numeric, status, of Boolean) or they may be
relational expressions. If no Boolean operators are used, the operand of a
Boolean expression must be a Boolean variable, Boolean constant, Boolean
function, Boolean functional modifier, or a relational expression, If two
operands result in bit strings of lengths a and b, where a and b are not
equal, the length of each bit string is assumed to be the maximum of a and b
with the shortest bit-string filled with zeros on the left, All bit strings
are right-justified before the binary Boolean operations are performed. In
arithmetic operations, bit-strings are assumed unsigned, fixed-point data with

no scaling. |

The primary luse of Boolean expressions is in IF and FIND statements, which
select statement execution options based on relational comparisons. The
Boolean expression is also useful for manipulating bit strings and assigning

values to Bdolean data units,

When the value of a relational expression is used as an operand in a Boolean-
expression, each bit of the required bit string for the operand is assigned
the value true (1) or false (0). When a Boolean data unit is used as an
operand in a Boolean expression, it is always assumed to be a single bit in
length. If the functional modifier BIT specifies a single bit of a data unit,

that data unit is considered a Boolean operand.

I1-5-7



M-5035

When relational and Boolean operators are mixed in a Boolean expression, the
relational operations are performed first and the resultant Boolean values are

evaluated according to the Boolean operators.
Example

AL B L AND G ES ;Iﬁ b gl

1. A LT B (true or false)
2. CEQ D (true or false)
3. (result of 1) AND (result of 2)

The results of Boolean operations can be shown in a truth table. Referring
to Table 5-4, the A and B columns represent the assignment of truth values
for these variables. The remaining columns show the truth values resulting
from the Booleén operations, For example, if A and B are both false
(represented intérnally as’O) then COMP B would be true, A AND B would be
false, A OR B would be false, and A XOR B would be false.

TABLE 5-4, TRUTH TABLE

‘ A..I B COMPB AANDB | AORB XOR
0o | o 1 0 0 0
0 1 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0

5.1.4 Literal Expressions

" A literal expression is similar to other expressions in that it'specifies a
single literal value expressed in terms of literal operators and associated
operands. The operands that are allowed with litefal expressions are: fields .
and variables typed as Hollerith, Hollerith functions, the functional modifiers
BIT and CHAR, and Hollerith constants.

11-5-8



M-5035

The operator allowed in a literal expression is CAT (concatenation). When
used, it places the rightmost character of the left operand adjacent to the

leftmost character of the operand on its right,

Example

Assume the following variables have been declared with associated initial

values:

ViRBL M ML P Alm) B
VRBL, E M A P MED IS g
VRBL SL AL P LGS ]
ViRBL A M A POMGA) sttt
MRBL & M 4 A HGGE 1B ]

then M CAT E CAT S CAT S CAT A CAT G CAT E is equivalent to the Hollerith
value, MESSAGE.

5.2 FUNCTIONAL MODIFIERS

Functional modifiers facilitate easy reference to various parts of data
structures or indicate an operation to be perfofmed on data. They are
designated as open and/or closed functions. An open function reference
generates instructions that are compiled in-line. A closed function'requireé
references at run-time to Compiler-supplied routines loaded with the user's

program. The following formats define the allowable functional modifiers:

a. ABS (data unit)

b, BIT (index, index) (data unit)
c. BIT (index) (data unit)

d. CHAR (index, index) (data unit)
e. CHAR (index) (data unit)

f. CNT (data unit)

g. CORAD (data unit)

'h. FIL (file-name)

i. LENGTH (file-name)

j. POS (file-name)

11-5-9



K-5035

5.2,

1 Absolute Value (ABS) Modifier

ABS is used for referencing the absolute value of a data clement or arithmetic

expression; it is an open function.

Format
ABS (data unit)

Explanation

ABS Specifies an absolute value operation on the specified
element,

Data Unit - A data unit or arithmetic expression.

_Examples

‘1@551(141HPV"(41)111 1‘111!1 llJllJlL! L1l

The example refers to the absolute value of the variable ALPHA.

ﬁj@slﬁcle5L54(§1§2LEDD1 1J TR EN AN N

This example refers to the absolute value of‘the field, SIZE, in the
item-area CLASS, ' ' '

5.2,2 Bit (BIT) Modifier

BIT is used to reference a string of one or more bits in a data unit. Data

unit bits are numbéred with bit O specifying the leftmost bit., This function

may be open if the starting bit and length specifications are positive integer

constants and do not require movement across a word boundary.

Format
BIT (starting-bit,number-of-bits)(data-unit)
Explanation

BIT Indicates that bit specifications for a data element

follow.

11-5-10



M-5035
Change 3

Starting Bit - A numeric constant, data unit, or aritametic expression.

This bit specifies the initial bit position of the string.

Number of Bits Optional. A numeric constant, data unit, or arithmetic
expression. It specifies the number of bits in the string.

If this option is omitted, the number of bits is assumed to be 1.

Data Unit - The name of a data unit. The data unit cannot be a system

or local index.

Examples

1. -_151;'71'(101;1.51)1(xﬂnHPlHI”J)l NN SN E

The string begins in bit O (the leftmost bit) and is five bits long.

ALPHA is the name given to the variable by a previous declaration.

2, WﬂL@M;lswlﬁl)l)l NEU NS B

This bit string begins in bit 6 and is six bits long. The table (subtable

or like-table) is BETA, the item index is N, and the field referenced is
SUM. In this example‘, assume that field SUM has been defined such that

it-occupies bits 27-16 of a table word. Thus, the bit reference applieé
to word bits 21-16, as illustrated beloW:

" v |
e e —— Field SUM. —
|

31 30 127 25 20 16'15

0 1 2 3 4/5(() -
_z Length of
~ 4 N bit string
Starting bit
specified in the
BIT reference

II-5-11



M-5035
Change 3

3. JBIITI(‘I')l(J‘qlLIPIHIA'I)l TSN B

~This example specifies the single bit in bit-position 6 of variable

ALPHA.

This bit string begins in the position specified by the variable START.
Its length is determined by the value of the variable LENGTH. The table
(subtable or like-table) is BETA. The item index is N, and the field

referenced is SUM.

5.2.3 Character (CHAR) Modifier

"CHAR is used to reference a string of characters in a data unit. Data unit

characters are numbered with O specifying the leftmost character. This

function may be open if the character string specifications are positive

- iInteger constants and do not require movement across a word boundary.

Format

CHAR (starting-character,number-characters)(data-unit)

Explanation
CHAR

‘Starting Character

Number Characters

Data Unit

Indicates that character specifications for the

~data element follow,

A numeric constant, data unit, or arithmetic
expression., It specifies the initial character

position of the string.

Optional. - A numeric cdnstant, data unit, or
arithmetic expression. It specifies the number of
characters in the string. If this option is not
specified, the number of characters is assumed to
be 1. '

The name of a data unit. The data unit cannot be a

system or local index.

I1-5-12



M-5035

Change 1
Examples .
1. A E TR Slul“l)l)l L1 14 J 1 1 111

The character strlng beglns 1n character position 1 and is three
characters long. The table (subtable or like-table) is BETA, the item
is 4, and the field referenced is SUM. This example can be visualized
like Example 2 for BIT, the difference being that this uses character
counts where there are eight bits per character. o

2. LA BETA(NgSuM) )y 11y 1]y,

This character string begins in character position 1 and is one character
long. The table (subtable or like-table) is BETA, the item index is N,
and the field referenced is SUM.

5.2.4 Count (CNT) Number of Bits

CNT furnishes the count of the number of bits set (equal to 1) in the specified
data element., CNT results in an integer value and may be used in a numeric

or status expression. This is an open function.
Formét
CNT . (one-word data-unit)
Explanation

CNT Specifies the counting of bits set to 1 in the désignated‘
data unit, - o

One-word . ,
data-unit ‘The name of a data unit contained in one word.

Example

R 1(1-“511-151 (lxjxl.lFlLl)jPlorsl)n)l L1l 1‘ ! l L]

The number of bits Lhat are set in field FLDPOS of item XX of table TBLL
Wlll be counted

I1-5-13



M-5035

5.2.5 Core Address (CORAD) Modifier

CORAD is used to reference the core address of a data element. It is an open

function,
Format
CORAD(data-ﬁniL or statement-name)
Explanation “

CORAD ' - Specifies the core address of the following

data element or statement name,
Data Unit or Statement Name A data unit or statement identifier,
NOTE

-The CORAD modifier always results in an unsigned,
16-bit value which represents the SY address of the
data unit or statement name referenced, Under no
circumstances will CORAD result in an 18-bit absolute

address.

5.2.6 File Position (FIL) Modifier
- FIL ié used for file positioning. See Section 6 for usage examples. This
is a closed function.
Format
FIL (name)>
vExglénation

FIL ‘  Specifies the positioning of a device to a

particular file,

Name . The identifier of a file.

I1-5-14



M-5035

5.2.7 Record Position (POS) Modifier

POS is used for record positioning. This is a closed function. See paragraphs

6.5.1 and 0.5.2 for usage examples,
Format
POS(name)

Explanation

POS Specifies the position of a file named within the

parentheses.

Name ‘The identifier of a file,

'5.2.8 Record Length (LENGTH) Modifier

LENGTH is used to determine the length of the last record of an input or
outpul operation; it is a closed function. See paragraph 6.7 for usage

examples,
Format
LENGTH (name)
Exglénétibn‘
LENGTH Specifies the length of a record for the file named.

Name The identifier of a file.

5.3° PROCEDURE LINKING

Procedure‘linking is accomplishéd through the procedure call, function call,
the procedure switch call,and‘the return statement. This capability provides
for progfam'segmentation and increased efficiency through the elimination of
statement duplication, Paragraph 4.1.12 gives instructions for declaring a

procedure,

I11-5-15



M-5035

5.3.1 ‘Procedure Call

A procedure call establishes transfer of control 1o a named procedure and may
assign actual parameter values to the formal parameters defined in the procedure

declaration,

A1l procedure input parameter linking is accomplished by tranéferring the
values contained in the actual input parameters of the calling statement to

- the formal input parameters of the called prdcedure‘declarative statement,
That is, an actual parameter and its corresponding formal parameter are
usually distinct programmer—declared data units allocated to different
locations in core. Therefore, modification of a formal input paraméter in
the proéedure does not affect the value of the actual input parameter in the
céliing procedure, Proéedure output parameter linking is accomplished by
transferring the values contained in the formal output parameters of the
called pfocodure's_declarative statement to the actual output parameters
Specifjcd in the calling statement upon procedure return. If an actual‘
paramcter is omitted, or if the same data unit is specified as both the actual
parameter and the corresponding formal parameter, no transfer of values is
performed. ‘Addfesses of data units may be transferred (simulating a call by

name) by using the CORAD operator (see paragraph 5.2).
Format

name INPUT actual-input-parameter(s) OUTPUT .

actual-output-parameter(s) EXIT statement-name(s) $

N

Explanation
Name ' Identifies the procedure to be executed.
INPUT Optional. Spécifies that the following list

of actual parameters is to be input .to the

named procedure.

Actual Input Parameter(s)  Constants, data units, or expressions that
replace the corresponding formal input para-

meter values during execution of the named

TrT O~ oy



ouTPUT

~Actual Output Parameter(s)

EXIT

Statement Name

M-5035

procedure. Actual parameters must agree in
type with formal parameters. Multiple para-
meters are separated by commas. There must

be a one-to-one correspondence with the formal
parameters defined in the called procedure's

declarative statement (see note below).

~Optional. Specifies that the list of actual

parameters following are the outputs from the

named procedure,

Data units whose values are replaced by the
corresponding formal output parameter values
after execution of the named procedure.
Actual parameters must agree in type with
formal parameters. Multiple parameters are
separated by commas. There must be a one-to-
one correspondence with the formal parameters
defined in the called procedure's declarative

statement (see note below).

Optional. Specifies the statement name (s)

that follow are abnormal exit reentry points.

An identifier that replaces the correSponding'~
formal exit name during execution of the

named procedure., Program control is trans-
ferred to the named statement if a RETURN

(see paragraph 5.3.3) referencing the formal

exit name is executed.

NOTE

If the same data unit is specified as both the actual
parameter and the corresponding formal parameter, no
transfer of values is performed. Alternatively, if

~an actual parameter is omitted from the calling state-
ment, no transfer of values is performed. In this case,
the position of the actual parameter in the parameter
list must be maintained with a comma, ‘ ‘

11-5-17



M-5035
Change 5

Since the passing of parameters involves a passing of actual values, if the designated
parameter is a table, subtable, etc., the entire table, subtable, etc., is actually
transferred into the procédure receptacle. The procedure must, therefore, provide a
receptacle of sufficient size. Any excess beyond the receptacle sizé is truncated.

The CORAD' modifier and the INDIRECT table option may be used when a table is
»spécified as’:i procedure parameter and it is desirable not to have the entire table

~ passed (see paragraph 4.2, 2),
NOTE

It is not legal to use status constants as actual input or
output parameters for forward reference procedures

~ (procedures which are called before they are formally
defined or declared with an EXTREF or LOCREF
modifier). Furthermore, a local procedure may not
be forward referenced before its local formal para-
meters are defined or declared, regardless of the
parameter types.

Examples
L Ao 111 [TESTR, Tveum, 0, Qur PuT (GLAS, 3,11,

The statement AX will call the procedure TESTR. INPUT specifies that 0

will be passed to TESTR as the actual input parameter value. The actual

parameter CLAS will receive the outlput value from procedure TESTR.

2. IRGAG TNPUT| APy g hP3| OUT PUT TMALE,
L o1 EXATT AT &l IR TE T e

The procedure RCAC is to be called. APl and AP3 are the first and third
actual input parameters. The actual parameter IMAGE will contain the
output from procedure RCAC. If an abnormal exit is taken from RCAC,

reenitry to the calling procedure will be at the statement labeled AT3.

. [I-5-18



OUTPUT

Actual Output Parameter(s)

EXIT

Statemen; Name

M-5035

procedure. Actual parameters must agree in
type with formal parameters. Multiple para-
melers are separated by commas. There must

be a one-to-one correspondence with the formal

“parameters defined in the called procedure's

declarative statement (see note belbw).

Optional, Specifies that the list of actual

parameters following are the outputs from the

named procedure,

Data units whose values are replaced by the
corresponding formal output parameter values
after execution of the named procedure.
Actual parameters must agree in type with
formal parameters. Multiple parameters are
separated by commas., There must be a one-to-
one correspondence with the formal parameters
defined in the called procédure‘s declarative

statement (see note below).

Optional; Specifies the statement name(s)

that follow are abnormal exit reentry points.

An identifier that replaces the corresponding
formal exit name during executionvof the
named procedure. Program control is trans-
ferred to the named statement if a RETURN
(see paragraph 5.3.3) referencing the formal

exit name is executed,

NOTE

‘If the same data unit is specified as both the actual
parameter and the corresponding formal parameter, no
transfer of values is performed. Alternatively, if

an actual parameter is omitted from the calling state-
ment, no transfer of values is performed. In this case,
the position of the actual parameter in the parameter
list must be maintained with a comma.

11-5-17



M-5035

Change 5

~ Since the passing of parameters involves a passing of actual values, if the designated
parameter is a table, subtable, etc., the entire table, ‘subta‘ble, etc., is actuaHy
transferred into the procedure receptacle. The procedufe must, therefore; provide a
receptacle of sufficient size. Any excess beyond the reéeptacle size is truncated.
The CORAD modifier and the INDIRECT table option may be used when a table is

specified as a procedure parameter and it is desirable not to have the entire table

passed (see paragraph 4. 2. 2).
NOTE

It is not legal to use status constants as actual input or
‘output parameters for forward reference procedures
(procedures which are called before they are formally
defined or declared with an EXTREF or LOCREF
modifier). Furthermore, a local procedure may not
be forward referenced before its local formal para-
meters are defined or declared, regardless of the
parameter types.

Examples
1. AMe o 11 [TESTR, TMPur, 0, Our PuT (GLAS, 841 L,

The statement AX will call the procedure TESTR. INPUT specifies that 0O
will be passed to TESTR as the actual input parameter value. The actual

parameter CLAS will receive the output value from procedure TESTR.

2 IRGAG TMRYT] APLy oA R3l OUTPUT .I-‘.Mlhéu
1111:451&1.17]11917131&11111 TR RN N

The procedure RCAC is to be called. APl and AP3 are the first and third
~actual input parameters. The actual parameter IMAGE will contain the
output from procedure RCAC. If an abnormal exit is taken from RCAC,

reentry to the calling procedure will be at the statement labeled AT3.

II-5-18



M-5035
Change 5

5.3.2 Function Call

A function call establishes transfer of control to a named function and assigns one or
more values to the formal input parameters of the function. A function call may appear
in dynamic statements or expressions; it resembles conventional mathematical func-

tion notation.
Format

name (actual-input-parameter,...., actual-input-parameter)

II-5-18A/I-5-18B (Blank)






M-5035

" Change 5
Explanation _
Name The name of the function to be executed.
Actual input Parameters(s) Specifies each actual input to the function,
There must be at least one specified; multi-
ple parameters are separated by commas.
Example

The function call for the function TAN is TAN(AX, AY)., AX and AY are the actual
input parameters to be used as the values of the formal input parameters of the
function. The function is evaluated and provides the value specified to compléte
the operation of the SET statement. '

NOTE

It is not legal to use status constants as acutal input
parameters for forward reference functions (functions
which are called before they are formally defined or
declared with an EXTREF or LOCREF modifier).
Furthermore, a local function may not be forward
referenced before its local formal parameters are
defined or declared, regardless of the parameter

types.

5.3.3 Return (RETURN) Statement

The RETURN statement is a transfer of control operation used within a given proce-
dure or function to exit from that procedure or function. 'I'here are three types of
RETURN statements for procedures: a normal RETURN, an abnormal RETURN, and
a conditional RETURN, dependent on a hardware key setting. All procedures should
have at least one normal RETURN statement. However, a RETURN statement may be
omitted if it immediately precedes the END-PROC declaration. There is only one type
of return for a function, '
Format |
RETURN statement-name special-condition $
RETURN (expression) $ |

I-5-19



M-5035
Change 5

Explanation

RETURN - ' Causes a normal transfer back to the statement
following the procedure-linking operation of the

calling procedure or function.

Statement Name Optional. Must be the same name as one of
| those following the EXIT definition in the proce?'
dure declaration and effects an abnormal trans-
fer of control to a labeled statement of the calling
procedure or function. A one-to-one cdrresporid-
ence is established between EXIT names specified
in the call and those specified in the declaration
to effect this transfer.
Special Conditions Optional. Specifies any of the special hardware
" | ' conditions defined for the target machine. For |
the AN/UYK-17, these are KEY1, KEY2, KEY3,
STOP, STOP5, STOP6, and STOP7 (see para-
graph 7.3.4 for simulating these special condi-

tions).

Expression Any legal data name or CMS-2 expressibn. This
format is reserved for returning from a function.
The Compiler will process the expression and

return the result to the calling procedure.
Examples ) ‘

1. IPROGEDURE, | UPDATE & | | Ll

Lo g bty byt

PoSi s e v b gt be g il
RETURM F | v v la a1

EMDI-RROC UIPDATIE & Lo L i1

Ll 4 1.1

Ll 1 11

) - .

]
|
l ) S I
1
|

| U U

This is the normal type of return. Control is transferred back to the

procedure that called UPDATE,

I11-5-20



M-5035 -

.. IPROCEDURE READ, OUTPUIT, CARD EXTIT, GRS

111”1 llLlJlxl 1111[J1111J TN SN DN
Poevvvvna b s b a g bea g
ﬂ2u§57]ujklhﬁ .EﬂChFﬂ :bl W | l 11 1111 L l L4 1 11
Joo v v by by sv g o baa g
NN NE N NN SN ENEE S N NS N N

RETMRM & L b aa b
JENDPROC READ % 1 v Ly togvin il

The RETURN EOF statement results in a return to the alternate reentry
statement corresponding to the parameter EOF in the procedure call.

In this case, the output parameter value is not transferred.

3. |E|E|T|ﬂlk 11:5;‘_JOLR 1$1111111L1411L111l11LL1l
llnildiallljllxllajllllnAnJLLlllll41Lll

IKElTlulkNlllslrblP“_S_—_LélJ‘llllllJllllljlLl 1

These are examples of special condition returns. The first example

results in an unconditional halt with the return executed after oper-
ator intervention. The second example results in a stop if key 5 is
set, with the return executed after operator intervention; otherwise

the return is executed.

4. JRETURN, , STIEPY, l;lslquP}_S_LffL RN I

In this example, if key 5 is set, a halt will occur. After operator
intervention, the return will be made through STEP9 to the controlling
procedure or function. Otherwise, a return through STEP9 is executed

without halting.

5. JRETURNM, (X H Y, H 1Z)1 NS TEE FNE T

In this example of a return from a function, thc expression X+Y+Z will

be evaluated and returned to the calling procedure as the output value
of the function.

11-5-21



M-5035
Change 5

5.3.4 Executive (EXEC) Statement

This statement provides an interface with an executive program. A call to an
executive programiis generated and a parameter is placed in the appropriate
register for the executive program to access. The parameters réquired by the
ekequtivévprogram are specified by the particular system. This statément

merely provides the interface capability.
Format
EXEC parameter-1, parameter-2 §$

Explanation

EXEC "~ Causes a call to an executive program (generation of an

XS instruction).

Parameter 1 A parameter required by the executive program to inform
it s to what action is to be taken (this parameter is
specified by the particular system). This parameter will

appear in the SY portion of the XS instruction.

Parameter 2 Optional. A parameter that will be loaded into machine

register AO prior to execution of the XS instruction.
Examples
1. A&ECLIMlﬁllllllLlllLlllllllllanJ

This example provides code 15 to the executive program and requests the task

associated with code 15 to be performed (i.e., generates an XS 017 instruction).

2. _ﬁ&ﬁQllLﬂn,M&&h&:ﬁlnHllllnllLl.1LJ

- This example provides the contents of VRBLX to the executive program
through task regiSter AO. This data unit may either instruct the
executive program to perform a Specific task, or may contain a core
address for the executive program to access for its instructions. (This
generated instruction is dependent on the particular system that is

implemented) .

11-5-22



M-5035

5.3.5 Procedure Switch Call

A procedure switch call establishes a procedure link by specifying a transfer
of control to one of the procedures named in the procedure switch declaration
(sec paragraph 4.2). Actual paramclers arc assigned to formal parameters

named by the declaration.

The index value of the procedure switch call determines which procedure'within
the declaration is to be called. If the value of the switch index is outside
the range of allowable valuecs, control may be transferred to the named statement
via the INVALID operator. Allowable index values are O through n-1, where n is
the number of switch points. If the user does not use the INVALID option, it

is his responsibility to see that the index is within the range of the switch.

If the procedure switch is defined with formal input and output parameters,
actual input and output paramcters must be included in the procedure switch

call, as in a normal procedure call.
Format

“name USING index INVALID statement-name INPUT

actual-parameters OUTPUT actual-parameters $

Explanation 7
Name The identifier of a previously defined P-SWITCH.

USING Specifies that the following index indicates the
procedure to be called. This parameter is not

used in a procedure item switch call.

Index A data unit, constant, or arithmetic expression
whose integer value determines the procedure to be
called. This parameter is not used in a procedure

item switch call,

INVALID Optional. Specifies that the procedure linkage
should be accomplished only if the switch index is

valid.

I1-5-23



M-5035

Statement Name

INPUT

Actual Parameter

ouTPUT

Actual Parameter

Identifies the statement to which control is

transferred if the invalid condition is met,

Optional. Specifies that the list of actual para-
meters following are the inputs to the named pro-

cedure switch.

A data unit, constént, or expression that replaces
the corresponding formal input parameter during
execution of a procedure referenced by the
procedure switch call. Multiple parameters are

separated by commas.

Optional. Specifies that the list of parameters

following are to contain the outputs from the

named procedure,

A data unit that is replaced by the corresponding
formal output parameter after execution of a
procedure referenced by the procedure switch call,

Multiple parameters are separated by commas.

11-5-24



M-5035

Examgle‘

The following declaratives are referenced in the procedure switch call.

VRGL 1CARD A LS bo s aa b

VRBIL | JARNG T A6 W S b

PASWINTICHL F1GCARD (TvPUT (CARD| DU PUTT ARNG 5, |

L aaaalBRoCd & L i b g ia by

Ll PReGZ L e b

Lttt iPReGd B i b it b

END-SW I Tle ([ TGCARD 18 0 i bt a gl

PrSw T TOARD (KL mMPU T (GARD OUTPUT, 1[1‘1&”16«;

L0 L PROCE & b i b

4
llllllilgll1P1Rlolc-12'll$JlJJlJLLJiillLJlJlllJllJL4

L L
111l1@1}Lliﬂkl@(—n3nfulln111111111141111111U“
JELNLD1-15LVVL'JTL‘1HJ TCARD, %l | LlLlllllll‘ll RN BTy
1ottt 1;11 1.1 Lt 1t 11 11 Lyt Ll,l [ | l 14 111
JJLiLLiJLiijlllllllllllJlLllJJIIIlJllLJLJx

1

J1 11 ed 1l I 11 1 l L1 JAJ,1A141 Lttt J NN SRR

TIGCIARD) | JUisTM& K TV LT 1$1TlE'1PL{_1 JMPUT) EMA L E |
it oulnPuT eROER B i L

TCARD , , I NVALTD STIEPL, TNPUT TMagE 10

11111111LilnlA'Lnnqalﬂplulrn01R1D151HL1§1L11111111111

In this example, the procedure switch JCCARD is used to enter a procedure
using K as an index. STEPl is the statement to which control will be
transfefred if the index value is out of range for the switch. The
actual input value to the procedure called is defined by the actual
parameter IMAGE. The actual output value is specified by the parameter
"ORDER. The second statement would result in exactly the same action

through the call to the procedure item switch ICARD.

11-5-25



M-5035
Change 3

9.4 REPLACEMENT STATEMENTS

Replacement statements provide for the transfer of data from one data unit

to another, permit performance of algebraic (both Boolcan and numeric)

manipulations according to a predefined hierarchy, and provide for the

simultancous exchange of values between data units.,

J.4.1 Assignment (SET) Statement

Upon execution of an assignment statement, the value of the right term is

iransferred Lo one or more specified data units. The four types of assign-

ment statements are:

Format

arithmetic, literal, status, Boolean, and multiword,

SET receptacle(s) TO right-term §

Explanation
SET

‘Receptacle(s)

TO

Right Term

Specifies that one or morec receptacles follow, to

which data from the right term is to be transferred.

A data element that is to receive a new value,
Multiple receptacles that are to receive the same
value may be specified, and are Separated by commas.
The receptacle type may be arithmetic, literal,

status, or Boolean,
Specifies that the right term follows.

A data clement or expression. Evaluation of the right
term results in a signle value., The right term must
agree in type (arithmetic, Hollerith, status, or

Boolean) with the receptacle.



M-5035
Change 3

Examples
. L5151711A117'1QL4&11$1MU1111111111111111111

The value of A is replaced by the value of B,

9, 6151T11&9_|__]_@1117'1QL1Q151L1111111111111111111.1

The values of A and B are replaced by the value of C.

3. 151674 (T19 131 THEM SIET, Como WD B i ]

4, J§L§£[Lj&ﬂﬂﬁd§h,1114h lﬁéiVEﬁfﬂéiélil ﬂi [ lj L4 1t 14 J,l 1.1 1I

5.4.1.1, Arithmetic Assignment Statement
The value specified by the right term in an arithmetic statement must be an arithmetic
expression, which may include numeric functions and functional modifiers. The

receptacle must be an arithmetic data unit. The following rules must be observed.

II-5-27



1. When the value designated in the right term is specified to
greater precision than that defined by the receptacle, the
excess precision is truncated. ‘

2, When the value is specified to less significance than that
defined by the‘rcceptacle. the most significant bits will be
filled with the sign bit if the field is signed. 1If the field
is unsigned, the bits will be filled with zeros.

3. When the value is specified to less precisfon than that defined
by the receptacle, the least significant bits will be set to
zeros or ones.,

4, When the value has greater significance than that accepted by
the receptacle, the most significant bits of the value may be
lost, depending on the actual number of bits allocated to the
receptacle, '

D The mode of the receptacle defines the replacementyas floating-
or fixed-point, '

6. Any arithmetic expression in the right term involving both a
floating- and fixed-point data unit will be evaluated in the
floating-point modé. | ‘

7. Fixed—pbint replacement aligns the radix point of the right
term with the radix point of the receptacle.

- 8. The radix point of a receptacle or a right term may be defined

by an in-line scaling definition,
Format

SET receptacle(s) TO expression SAVING- numeric-data-unit
OVERFLOW statement-name §$

Explanation
SET Specifies that one or more receptacles follow, to

which data from the right term is to be transferred.

11-5-28



Receptacle(s)

TO

Expression

SAVING

Numeric Data Unit

OVERFLOW

Statement Name

Examples

M-5035
Change 5

A data.element that is to receive a new value. Multiple

receptacles

that are to receive the same value may be

specified, and are separated by commas. In this case,

the assignment operations are performed from right to left.

Specifies that the right term follows.

An arithmetic expression,

Optional. Specifies that the remainder of the last

fixed-point

to be saved.

division performed in the statement is

Any variable or field having an arithmetic data

type.

Optional. S

pecifies that a check for overflow

caused by previous fixed-point (and floating-point,

if under MONITOR option) arithmetic operations is

requested.
overflow ind

transferred

If an overflow condition resulted, all
icators are turned off and control is

to the abnormal path specified by a

statement name,

The label of

transferred.

the statement to which control is

SET A T (Bae)XAD $L i L aaaa by

The value of A is replaced by the result of (B+C)*D.

SET A T0L eS8 1 ity riaa b

The value of A is replaced with the constant value .5.

11-5-29



M-5035

3.

w

8.

SET AeeS1 1A B & L b i aaa

The value of B, with its declared radix point, will be aligned to a

radix point of 5 andstored in A,

515171 A 1T10| ﬁom‘hnﬁ llll'LliALlllilJ Ll d a1l

The value of B, with a radix point of 4, will be aligned to the declared

radix point of A and stored in A,

1515;71 Aeredl o Beioo Bl s b ity

The value of B, with a radix point of 6, will be aligned to a radix
point of 4 and stored in A (resulting in the loss of two fractional
bits). An in-line definition is only valid for a particular reference.
The radix point of a right term that is an arithmetic expressionis

specified by the expression result.

SIET A To| BAC Sievizme D1 8§ p o Lol

The value of A is réplaced by the value of the result of B/C. The value

of D is replaced by the value of the remainder.

. SET, A Tol B/ OVERFILoW, S S L. 0L

If a divide overflow occurs, control will be transferred to the statement

S1.

SET FIXxD| T, FLOAT | & o b

Assuming FLOAT was declared as a floating—point variable and FIXD declared
as a fixed-point variable, the floating-point value of FLOAT is converted
to a fixed-point value. The variable FIXD is then set to the converted

value.

11-5-30



M-5035
Change 5

9. SET.RESULT TO A*B+C-D/E §
In this example, the required operations would be executed according
to the predefined hierar;hy: ((A*B)+C)-(D/E).
10. SET ALPHA TO BETA THEN GOTO ENDJOB $
This compound statement transfers the value from data unit BETA to data
unit ALPHA with conversion as required and then transfers to>the location

specified symbolically by ENDJOB.
5.4.1.2 Literal Assignment Statement

A literal SET statement stores in a literal (Hollerith data type) variable the
value specified by the right term. The right term must be a literal expression
which includes Hollerith functions, the functional modifiers BIT and CHAR, and
Hollerith constants. Variables and fields typed as Hollerith and the functional
modifier CHAR are permitted on the left side of the literal SET statement. If
the right term is a Hollerith or CHAR-modified data unit, the replacement is
executed from left to right. Characters are numbered from the left, starting
with 0. Chﬁracter 0 of the right term replaces character 0 of the receptacle,
etc. If the size of the right term is smaller than the size of the receptacle
and the right term is not a Hollerith constant, the excess characters of the
receptacle are not affected. If the tight term is a Hollerith éonstant and is
smaller than the size of the receptacle, the constant isyleft-justified and

blank-filled to the size of the receptacle. If the size of the right temm is

- greater than the receptacle, the rightmost characters are truncated.

Examples
The fbllowing declarations will be referenced in the following examples:
TABLE TAT H NONE 10 $ | |

I1-5-31



M-5035
Change 5

FIELD CATAHS §
FIELD FATHOMS H 11 §
END-TABLE TAT §

VRBL  COURSE H 10 §

1.  SET COURSE TO H(VALLEVERDE) $
The Hollerith variable COURSE is replaced by the string of characters
VALLEVERDE.
2. SET TAT(0,CATA) TO TAT(7,CATA) $
The value of the Hollerith field CATA of item 7 of table TAT replaces
Field CATA of item 0 of table TAT. |
3. SET CHAR(0) (TAT(7),CATA)) TO H(?) $
~The first character of field CAIA of item 7 of table TAT is replaced by
the Hollerith ?.
4.  SET CHAR(O) (COURSE) TO CHAR(I)(TAT(S,CATAj) $
The second character of field CATA of item 5 of table TAT is placed in
the first character position of the variabie COURSE.
5. SET BUFFER TO H(DEPTH ) CAT TBLE(J,FATHOMS) "
CAT H( NO ALERT) $ | ,
Assuming BUFFER and FATHOMS are typed as Hollerith, the variable BUFFER
might COntéin a string of characters similar to the following message,
assuming that the value 73 FATHOMS was contained in TABLE (J, FATHOMS).
DEPTH 73 FATHOMS NO ALERT

5.4.1.3 Status Assigmment Statement
The status SET statement assigns to a status variable, the value specified

by a status constant, a status type data unit, or a status type function.

I1-5-32



M-5035

Example

RBL WEATHER 5 | nFIAHRn'm 6aLD,’ Ll IRRE Y 151 1€l 4014 Y, ‘5
\MBLIE TIESITIER #, DENSE, 40, lsLliJ_l BN BTN
LELD Colum S I'WLCLQE'IP|T|’|,LMfl/’lLJ&Llel VML L > TA TS LAPIEN
TSI N A T N
N TMBLEl TESTER & [ v v b grireabervagy
RN TEEE NSRS NSNS AT NS N N
NN NN NN NS N F NN N TN e
prrv e b v bv s e b v b gy
ST ONEATHER TO "RATMY Y & b b
36T T SLTJEiRl(LKLOLULNnTl;LCJKlOL‘ﬂn)l O VRETEST ) $ |y

o
5.4.1.4 Boolean Assignment Statement

A SET statement is classified as Boolean by the presence of a Boolean
expression on the right side of the statement. Assignment of the bit string
that results on the right side to the receptacle(s) on the left side must

adhere to the following rules:

1. If the magnitude (length) of the bit string on the right is
greater than the receptacle, the bit string is right-justified
in the receptacle and truncation occurs to the excess bits on
the left.

2. If the magnitude (length) of the bit string on the right is less
than the magnitude of the receptacle, the bit string is right-
justified in the receptacle and the unused bits are cleared
(set to 0).

11-5-33



M-5035

Examples ‘ _
o pEn el o A E b

This example assigns the value 1 to the Boolean variable TEE,

SET TEE |10 BETIWON(ITRAP) F1 a1y 1110111

re.
.

The variable TEE is assigned the value of the zero bit location in

variable TRAP,

5. 2SET ALPHIAL TIO BETA 6T GAMMA AIMD PELTA ¥

The variable ALPHA is assigned the logical product of the Boolean value
of the relational expression BETA GT GAMMA with the Boolean value of the
variable DELTA.

1. €T ALPHA TO, BETA T, £AMMA, 1'91”10L 13157171‘91 1l
1111111Llnuuullluﬂyv Ti8.L Ki

Assume :

a., ALPHA is a 16-bit integer variable.

b. DELTA is a 32-bit integer variable filled with the octal
constant 0(30707070707) .

c. BETA and GAMMA are floating-point variables.

d. TBLE (J, K) contains the value 0(25252525252)

Since DELTA and TBLE(J, K) are not Boolean data units, they are treated
as bit strings for the purposes of the evaluation of this Boolean
eXpression. In this context.‘the Boolean result of the relational
expression BETA GT GAMMA is an arbitrary string of O or 1 bits. If.
BETA is greater than GAMMA, ALPHA will cqntain 0(020202) ., 1If BETA is
not greater than GAMMA, ALPHA will contain O (16 bits cleared).

11-5-34



M-5035

5.,4.1.5 Multiword Assignment Statement

This statement assigns a value or values to a multiword data element. There

arc three types of multiword assignment statements:

1. Table-to-table.
2. Item-to-item.

3. Single word-to-multiword.

5.4.1.5.1 Multiword Table-to-Table Assignment Statement. Thig statement

assigns the values of one table to another table. Since this is a block
transfer, care should be taken to ensure that both table structures are
similar and that the item size is identical. If the number of words in the
receptacle islless than the right term, the excess words are lost, If the
number of words in the receptacle is greater than the right term, then the
extra words are not affected. This type of statement applies to subtables

and like-tables as well as to tables. When vertical tables with major indexes
appear in a table-to-table assignment, the major indexes will be used to

determine the number of words to be transferred.

Example

The following declarations are referenced in the following multiword

table assignment example:

TABLE g | PAEE M 4400 i ol
END-TABLIE PAGE 1 L g g b
TGABLE o | BN 1 oo Bl il
AEND-TABUE, BNUm ® | pr il
|
]
|
1

e . .

NN NN T NN s
- o

ISR NN BN AR NN
®

prv v by b v b g

SIET, BXNUM To, PAGE B il il

The words of table BXNUM are replaced by the words of table PAGE.



M-5035

5.4.1.5.2 Multiword Item-to-Item Assignment Statement. This statement assigns

the values of one table item to another tabie item. If the number of words in

the receptacle is less than the right term, the excess words are lost, If the

number of words in the receptacle is greater than the right term, the extra
~words arc not affected. For this replacement, an item-area is considered to

be the same as an item.

Examgles

‘The following declarations are referenced in the following multiword

item replacement examples:

TAGLE | TP ST S il
Jrlﬁf_ﬂflﬁ'lﬂiflﬂjl CATO &l vt
END-TABILIE, TMP % v Lot et

TABLE L ¢ Vst s ol
IEINlbl-mnlBLLlEJ;DIE—Icn ﬁllltjlllllIllllellllllL

. SET IMP(lo) ma dec () & L]

All of the words of item O of table IMP are replaced by the words of
item 1 of table DEC. Note that IMP is a horizontal table and DEC is

a vertical table.

2. JﬁﬁETTT DEGIMo AT & | v by l

All words of each item of DEC are replaced by the words in item-area
CAT1. ‘

5.4.1.5.3 Single Word-to-Multiword Assignment Statement. This statement
‘assigns a single word value to every word of a multiword table element (table,
sublable. like-table, item-area, or item of a table). When a vertical table
with a major index appcars in this Lype of assignment statement, the major

index will be used to determine the number offwords affected in the table.

I1-5-36



M-5035

Examgleé

The following declarations are referenced in the examples:

MMMH&JI&HHLMJL
C SuA-TRBLIE CGATA L O 1 &4 S il

FUELD i lpard W LS B bl
FuEd (] iCATZ LS B Ll
END-TABUE (CATIT 6 1 L i 11011 :4J \ 11*1 prataal
TABIME | WHOLE | Al 31 i3l g1
Bueud L owd T W0 A8 & Ll
Frueed (o lyomwy oA WL o 4d Syl
BuELD L aow3 T 42 U 4 124 Sl il
EMd-TaRe, oLl & | il
MRBL oy wTB T Ast M P33 A L !
1VIR(_31L1 il l 1 lCIOIMUqlPx 1 ;H'] nﬁL LPl 1”1(1RLEID1KIEILIL1YJ;\1 #1 l
MRBL  l ANFRLAG B i Lo

1. JSEm whauE; ma  AS B et

Every word of table WHOLE is set to 15,

2. SET 1CnnfrTTl g 0 1‘% I P log 1 aa 1 L1131y I

The table CATT is cleared to zeros.

3. 1$Em¢L_CLnlﬂﬂlEQ11LLILBI$J111111111141111¢L1'

-Every word of CATT is filled with the value contained in the variable
LIB.

4. JSET  eATs 70 WHode(d o2 3. M3, b

Each word of the subtable CATA is assigned the value of the field W3
of item 1,2,3 in table WHOLE,

T1-.5-37



M-5035

5. SET MmolE Gyl 0 hTBee 24 8 1111011

Each of the three words in the item specified by 0,1,0 of table WHOLE

is assigned the value of the arithmetic expression LIB..2%4,.

o.mmmmmm_@aMPlﬁulhnuumL_

Each word of item 1 of table CATT is filled with all or part of the

characters of the Hollerith variable COMAP, For example, since the
AN/UYK-7 machine word size accommodates four characters, the characters

REDK would be stored in each word of the item.

;. SET CATA | 70 | ANFLAG & ol a1 aaa

Each word of subtable CATA is replaced with the true or false (1 or 0)
value of the Boolean variable AXFLAG.

5.4.2 Exchange Statement (SWAP)

The exchange statement swaps the values contained in two data units. The
exchange statement may be viewed as two assignment statements that are

executed simultaneously. The rules regarding data unit lengths and lypes in

the exchahge statement are the same as the rules for the assignment statement
(see paragraph 5.4.1.1). However, both the left and right terms assume the role

of the receptacle.
Format

SWAP data-unit data-unii $

Explanation

SWAP Specifies the operation SWAP.

Data Unit The identifier of a data unit.

11-5-38



Examples

M-5035
Change 3

1 tswlﬁlpllllWLlﬁlllllllLlllllLlJ

) ﬁl‘ﬁﬁﬂnlilﬂhﬂﬁlﬁ,j_ﬁﬂuﬁ11'1‘51111L111111LJ ]

1. SNAPLL L CAT(%e GATE) | (CATI(XM A CATB), & o |

5.4.3 Shift (SHIFT) Operation

The SHIFT operation moves the contents of a data location into either the

same or a different data location. During the operation, the data is shifted

as prescribed.

Format

- SHIFT data-unif shift-type shift-count INTO data-unit §$

Explanation
SHIFT

Data Unit

Shift Type

Shift Count

INTO

Specifies the operation.

The identifier for a data unit (two words or less in

length) .

One of the following:

CIRC Specifies circular shift.

ALG  Specifies algebraic shift (sign fill).
LOG Specifies logical shift (zero fill_).

Specifies the number of positions to shift and the °
shift direCtion. This may be a constant, a data unit

or an arithmetic expression. A negative shift count
denotes a shift to the left, a positive shift count
denotes a shift to the right (the sign must be explicitly
specified for a left shift),

Optional. Specifies that the receiving data unit's name follows.

11-5-39



M-5035
Change 3

NOTE

The SHIFT statement is intended primarily to provide high-
level access to the shift instructions in the AN/UYK-7
repertoire. Consequently several restrictions and limitations
are imposed: the data-unit being shifted must not exceed 64
bits in length; partial-word circular shifts are not permitted
(i.e., if CIRC is specified, the source data-unit must be defined
as exactly 32 or 64 bits, or 4 or 8 characters); when a
receptacle data-unit is specified, the normal data-type rules
for assignment statements must be followed and the shift opera-
tion itself is independent of normal operand alignment or con-
version which takes place prior to the assignment; because all
left shifts must be performed using AN/UYK-7 circular shift
instructions, left algebraic shift operations can result in filling
~ to the right with magnitude bits.

} Examples
. 5#1:55'“]1-1”17-1111-1016!111& J“llulllunlull

o, DhEET  RIOIGK | IGTRIC | TMCH) | TNTIO| | HHOWLIET | H

3. PIHOFT | 1Ph,@| (1485 4R 1,6

11111111P|Q|(Q|é|91LJEiF1"'111-ﬁnll|L(111L111LJ

5.4.4 Pack (PACK) Operation
The PACK operation requests packing of specified data units into a specified data area.

Format :
PACK data-unit WITH data-unit data-unit ... data-unit $
Explanation
PACK Specifies the operation. v
Data Unit The identifier of a data unit, |
WITH Specifies that the data units which follow are to be packed into

the receptacle.

The effect of the PACK statement is bit string transfers from the source location to the
'target area, where the strings are stored consecutively and without spacing. If the
receptacle is a table or an item, the right side data units must be tables or items. If the
receptacle is a variable or field, the right side data units must be variables or fields.

I1-5-40



M-5035

Examplé _ ‘
PACK QUAID WITH COOW, 1Fzix (baMMié )y wam(iti), 3,
Assume: '

a., COON is a half-word variable.
b. ANG is a 40-bit field.
c. LAT(L) is a three-word field in item area LAT,

The variable QUAD will receive the following contributions:

icooN):' ANG 1| (LAT(L))
T - N

Word O Word 1 Word 2 = Word 3 Word 4

.

presuming that QUAD is a storage area capable of containing the

specified bit strings.

5.5 CONTROL STATEMENTS

A control statement alters or affects program flow within a procedure. There

are three types of control statements:

1. GOTO statement name
2. GOTO switch name
3. STOP

5.5.1 GOTO Statement Name -

This statement performs a transfer to a named statement and may specify a

governing special condition imposed by a console hardware switch.
Format

GOTO " statement-name special-condition §

I11-5-41



M-5035

Explanation
GOTO - Specifies a transfer of control,

Statement Name The name of the satement to which control is to be

transferred.

Special Condition Optional. Specifies a machine-dependent condition
of the console key sel(ings, For the AN/UYK-7,
these are KEYI, KEY2, KEY3, STOP, STOPS, STOPG and
STOPY.

Lgéamglcs

1. _&QﬂgnunﬂﬂﬁﬂlﬁlﬁlnullLlHlt11111111]

Execution of this statement transfers program control to the statement

labeled UPDAIE.

2, noTma ;| JERRDTAL | ke (b il a1l

A transfer is made to statement label ERRDIAG if console key 1 is on.

3. £O0T09 | BTIRNATE | 1ST0PS ol v a0l

If console STOP5 is on, program execution halts. When restart is

accomplished, a transfer is made to statement label ALTRNATE.

5.5.2 GOTO Switch Name

This statement performs a transfer of control to a statement label listed

within an index- or item-switch declaration. Transfer may be made conditional

as governed by a specified console key setting.
1. Referencing an Index-Switch.

Transfer is based upon the value of the switch index. This
value is specified in the GOTO statement. No check is made by
lh0>C0mpiler as to the validity of the index. Therefore, if

~the index is outside the range of switch index values, program

11-5-42



M-5035

execution control can be lost, To prevent this, specification
of the INVALID operator directs the Compiler to perform a
validity check; if the index is outside the range of index
values, control will be transferred to a programmer-supplied

statement label,
2. Referencing an Item-Switch,

The value of the variable specified in the item-switch is
compared against the list of constants defined in the switch
declaration. If a match is found, transfer is made to the
corresponding statement name. If a match is not found, control
is transferred to the next statement or to a statement specified

after the INVALID operator.
Format

GOTO switch-name value INVALID statement-name special-condition $

Explanation

GOTO Specifies a transfer of control.
Switch Name The name of the referenced index- or item-switch,
Value : A constant, arithmetic expression, or data unit

that provides an index value pointing to a switch
point. This parameter is not to be used when

referencing an item-switch,

Special Condition Optional. Specifies the machine dependéncy conditions
' to be imposed by console key settings. KEYl, KEY2,
KEY3, STOP, STOPS, STOPG, and STOP7 are the CMS-2
identifiers used for the corresponding key settings
on the AN/UYK-7.

INVALID Optional. Specifies a transfer of control to the
' following named statement if the index is outside
the range of the index-switch values or if no match

is found in an item-switch.

I1-5-43



M-5035

Statement Name Control is transferred to this statement if the

switch test is invalid.

“Examples

The following declarations are referenced in the GOTO switch examples:

WRBL w8 g b ra gl
SWITIGH | ISWA | 151411491_5_._&#_@_1_31 Sl
VRBY B g NTEESENNTEEEEEES
SWTTIGH | |68 1(&51W1><1)1 < 1'11111111111114 |
1116101 11[5_1_11L1511111111|111111[1111111414

Lllslﬁluﬂuul“111111111111111Lnl
”'1112101311115131311-’&111:1111411111111111‘11111
EvD-SwTiey SwB 8 L e bl

1. M@llﬂ”AllﬂJﬁllllllllllllllllLlilllllJ

Program control is transferred to the switch point of SWA specified by

I. tor example, if I equals 2, control is transferred to statement SA3.

2. _(@0T0| | Slwlﬁl‘ljrl L GMVIALED, L Sed B gl

This is the same as Example 1, except that if I is outside the valid
index range,’COntrol is transferred to statement SA4, For example, if

1 equals 4, control is transferred to SA4.

5, @OTo  SW& bt bl

Program control is transferred Lo the statement corresponding to the
value in SWX. For example, if SWX equals 30, control is transferred to
statement SB2; however, if SWX equals 35, program control continues Lo

the next sequential statement,

11-5-44



M-5035
Change 3

4. Wllts&mnﬁxlnixlxnlll

This is the same as Example 3, except that if the value of SWX is not

found in the switch definition, control is transferred to statement SB4.

For example, if SWX equals. 40, control is transferred to SB4.

5. _[i<21193<1;éhlﬂfh 4 EiL_L_d§£§1§4J | »ii L1 L 1.1 l J S D S T O J

Program control is transferred to the statement labeled SA2 if console

key 1 is on.

5.5.3 STOP Statement

The STOP statement temporarily suspends program execution. This statement is

legal only in programs being compiled to execute in the executive statle,
Format
STOP special-condition §$
Explanation
stop Specifies a suspension of progfam execution,

Special Condition Optional. Specifies machine dependent conditions

of the console key settings.

5.6, DECISION STATEMENTS

The IF operator allows for conditional execution of one or more statcments.,

The condition is based on onc of the following four types of decisions:
1. Logical
2. Scarch
J. Validity
4., Parity

A decision statement may be followed by the ELSE operator which allows for execution I

of one or more statements if the result of the condition is false.



M-5035
Change 3

5.6.1 Logical Decision Statement

The logical decision statement evaluates a specified Boolean condition and

reduces the evaluation to a true or false result,

2.

Formal
IF Boolean-condition THEN statement(s) $

Explanation
IF Specifies that an evaluation, resulting in a Boolean

true or false condition, is to be made.

Boolean Condition Specifies a Boolean condition, defined in CMS-2
notation by operands (constants, data units, and
arithmetic expressions) and relational or Boolean

operators.

THEN Specifies that the statement or statements that

follow are to be executed only if the result of the

Boolean condition is true,

‘Statement(s) A simple or compound statement, or a block of dynamic statements.

See paragraph 5. 8 for an explanation of blocks and the requirements for compounding

(nesting) decision statements,

Examples : ) ‘ '
LR A EQ B THEN Golro, S b Loyl
ET| T,0 i11$1l1|1L11UthulllLJx'l‘

Control is transferred to statement S1 when A equals B. Otherwise,

the set statement is executed.

_EF AHB (LTIEQ BMG THEN Siem 6 mor D1 iaal

A THEM KEeT & o R s bl

C is set to.D,and E is set to F when A+B is less than or equal to B¥*C.

I11-5-46



0.

M-5035

LF WEATHIER €& " RATWY' | TAEM (| 1 1110001
L1 GOTO EVALWTHR B g
Control is transterred to statement EVALWEHR il the status of WENHIER

is "RAINY',

I B mm)l A 18R, 14&_@1_1&_@5@1 111)1 THEM 1]
o Gamell s 8 bl

If the Boo]van variables b nnd Foare both true (1), or if G is greater

than H and the Boolean variable I is true, then control is transferred

to statement S,

TiF BOay [THEN, Gomo TRuE &1 (L g1 100]

If the Boolean variable BOOL is set to the true state (1), program control

is transferred to lhp statement labeled TRUE.

LF comp(BooL), THeN GoTo Fausle & |

I[f the Boolean variable BOOL is set to the falsce state (0), taking the
complement will make it true; hence, the true path is taken with program

control transfer being made to statement FALSE.

IF AGE GIT 6.5 AND MRRSTAT E& |'/MARRT &R |Twew,

111 SIET CloDE 1o VAL THEM L Lo g g

V1 GOTO IPROCESSA 1 B i v L i i cu

The relational expressions (GT and EQ) afe first evaluated and reduced
to a true or false condition. These (wo results are then logically v
tested (AND) for the final determination of a true or false condition,
If evaluated true, the status variable CODE is set and program control
is transferrcd to statement PROCESSA.

11=-5-47



M-5035
Change 4

5, 6 2 Table Search Statement

~ The table search statement provides the capability of searching a table for data
that satisfies specified end conditions. The statement is a combination of a

FIND statement and a search decision statement.

- The FIND loop is terminated when the value of the table element, specified by '
the index, first satisfies the condition, If the condition is satisfied, the loop
index points to the element that satisfied the condition. - The loop is also

terminated when the index has reached its final velue.

The FIND statement must always be followed immediately by a search decision

statement, which may in turn be followed by an ELSE statement (Paragraph 5. 6. 5).

5.6.2,1 FIND Statement

Format

statement-label. FIND expression VARYING loop-index

initial-value final-value increment $

Exp_la.nation

Statement Label. Optional., The name by which this statement is
referenced. This lal;el is required if the table

search is resumed.
FIND Specifies a table search.

Expression A relational expression, the first term of which
must be a subscripted table reference using the

loop index.

11-5-48 -



VARYING

Loop Index

Initial Value

Final Value

M-5035
Change 4

Optional. Specifies that the operands that

follow, control the loop. If not included, the loop

index is varied from 0 in increments of 1 within
the limits of the table. The loop index, initial
value, and final value are allowed only if

VARYING is given.

Optional. The name of an index or integer variable
to be varied. It must be included whenever
VARYING is used and it must be one of the
subscripts included in the table reference. If the
VARYING clause is omitted, the first subscript in

the table reference will be used as the loop index.

Optional. FROM followed by a constant, arithmetic
expression, or data unit that specifies the beginning
index value of the loop. K omitted‘, the initial value

is 0.
One of the following:

1, May be THRU followed by a constant,
arithmetic expression or data unit. This
value signifies the last pass through the
loop. | ’

2, May be WITHIN followed by the name of a
| hofizontal or vertical table, subtable, or
like-table. The value assigned is the
number of items defined fof the table or

the current value of the major index.

11-5-49



M-5035
- Change 4

Increment Optional. BY followed by a constant, arithmetic
expression, or data unit. If this value is to be a k
decrement, BY must be followed by ak minus sign'.
If omitted, the increment is 1. When varying
within a table by a negative value, the initial value
is the number of items defined for the table or the

major index, and the final value is 0.

5.6.2,2 Search Decision Statement

The search decision statement must immediately follow a FIND statement.

The FOUND/NOTFOUND condition is determined by the results of the FIND

search.
Format
IF DATA FOUND THEN statement(s) $
IF DATA NOTFOUND THEN statement(s) $
'Explanation
IF Specifies that a condition is to be evaluated as
true or false.
DATA ' A compiler control word used to clarify the
statement.
FOUND Specifies the condition to evaluate upon
satisfaction of the FIND condition.
NOTFOUND Specifies the condition to evaluate when the
“search loop is completed.
THEN Specifies that the statement or statements that

follow are to be executed if the FOUND or
NOTFOUND condition is true.

II-5~50



M-5035

Change 3
Explanation
ELSE Specifies that the statement or statements that follow
are to be executed only if the result of the Boolean
condition in the corresponding previous decision statement
is false.
Statement(s) - A simple or compound statement, or a block of dynamic
statements.

See paragraph 5. 8 for an explanation of blocks and the requirement for

compounding (nesting) decision statements.

Examples

1. IF A EQ B THEN SET C TO D $§
ELSE SET C TO 1 §$

C is set to D if A equals B. Otherwise C is set to 1.

2. IF BOOL THEN PROCA $
ELSE BEGIN $
SET E TO F $
SET G TO H $
END $§
PROCB §

If the Boolean variable BOOL is true, then procedure PROCA
is called. If BOOL is false, then the block of set statements

is executed. - In either case, PROCB is then called.

5.7 LOOP STATEMENTS

Loop statements direct repeated execution of a specified group of statements (vary

block) or perform a table search.

II-5-50A



M-5035

5.7.1 Vary Block Stateménts

’ A vary operation is used to execute one or more statements a specified number of times
(at least one time). The statements to be executed are bracketed by a VARY statement
and an END vary statém_ent. This group of statements is defined as a vary block.

The number of passes through the loop is controlled by a loop index. Multiple vary

loops on the same level are allowed within the same VARY statement.

11-5-50B



. M-5035
Change 4

Statement(s) A simple or compound statement, or a block of

“dynamic statements,

5.6.2,3 Table Search Format

A generalization of the FIND statement in combination with the required search

decision statement follows:

1. FIND statement $
IF DATA FOUND THEN ... (found sequence, with or without
RESUME) ... $

(search completed sequence, should not RESUME)

2, FIND statement $
IF DATA NOTFOUND THEN ,.. (search completed sequence,
' v should not RESUME) ... $

(found sequence, with or without RESUME)

A Y

The search completed sequence in the first case and the found

sequence in the second case may be ELSE statements.

11-5-51



. M-5035

Change 4

5.6.2,4 Téble Search Examples

I

re
.

il ratu B T 3 ' TR Lo ETT ¢

L1l L1 A DATA MOTAOUND, THEM 11111111
L1t 4070 | BVIERALE 131 cdy s p g realy

111_1111111LMM lillllllllllL

E \JllLJLJLLL

"FARGET* is compar(d against fl(ld PLOTA in table PAR, startlng at
item O and continuing until an equivalence is found or the complete
table has been scarched (not found) and an exit made to AVERAGE. If
the FIND is satisfied before the complete table has been searched,
control is transferred out of the loop and the remaining items are not

scarched,  The variable K is the loop index.

T,E P FINn AT, 124)1 ER lcnnlrlcll“illllel

ot L VARYTING | A |Zt£‘ﬂll£l§llllllllJLL

Lii 11 ER DATA MoTFoUAD THEW, §oTo STIEIPR i

) sIET iT]fhl;LgZﬂ R f71£hL5qui i») |‘i . T
L1 RESUME  BTIERPL & i Lo

| S .1
MMMMWDHUHHLi“IIKI

- This sequence of statements increments TALLY each time the third word
in the firét seven items of CATD equals CATC. If no equivalence is
found or the varying portion of the FIND is saiisfied, control is
transferred to STEP2, The RESUME statement continues the search only
if an equivalence has occurred. It is not logical to resume a FIND
loop on a not-found condition since the search continues without
reinitialization, In the example, STEP2 will always be executed whether
or not data is found, since completion of the table search will be
inlufpretcd as a true NOTFOUND condition and exit will be via THEN
GOTO STEP2. | |

11=5=52



M-5035
Change 4

The following three examples illustrate a table search for a specified
condition using a FIND statement with a scarch decision statement of FOUND
and NOTFOUND, respectively, in the first two examples, and a VARY block in
thé third example. All three examples produce the same result: a transfer
to ALARM is made if the specified condition is met less than five times
during the search; otherwise, processing continues with the next instruction

in sequence,

s a1 11111 ] SIET (KQuwT TO, O L b,
ATRREADY | (HRIND ATRTIABN (TX sIALTISTT ATS 1l
¢1111111||111111‘21Q1/]KLE'1AD12'111$1L111111111111L11
Ll ] IR DAIMA MOoTiRO UMD, THEN, GOTIO MEXT, &,
g L sET kQunT] 1A KIoUwTHd A e b
Tt | IRESUME ATORREADY) 1 0 Lttt a
MEXT o1 11§ l T (KOU T LT ST THEN, KOoTNo pib &Ml 3

Lottt i lmesditi sdetraeion) 1 L1 0 L1

N S L sEeEn wounTl e 0 % L i .
ATRREMDY .| FTMD azRTAGL (TR, ALTIST A18) (4 |
coav gl B8 READY L Bl i ]
Lot mF DATA Found mimEM | g i aa

Lottt (S ET KoluaT 1Tiop (KauwT | | (4 TmeW, |

WENERSUEE B JLRLEﬁl“M‘lARRMCﬁPnYlﬁl Loty

11 Ll I L R KOWAMT, oT,0 L

JLLIIJLJIlAKMW.r)lllllllJLILilllll

-
-
-

I-5-53



M-5035
Change 4

3.1111111‘1LMTJlm1£11ﬁ1111411111111

ADRREADY 0] VARY, TiX, NETHIN ATRTABL, $

L1 | TF AL RT A8l GTLKulF LT, STRTS ) 1 1 L

enmadl SN G W

T U G T |
Ll won (REAd YA TImEM & 111 ]
gl RESUMEL ATRREADY: | $1 1 11011 ]
Lt L SED (KOUNTT] o KowMT 1+ Ay B 1|
Lt | EMD | ATRRIEADY: ¥ o L e ]
SHNEN HlllrIlFl IKOUNT) LT 45T ITHEN, OO A LARM|
L (e 111114“1111111,

5.6, 3 Validity Decision Statement

- The validity decision determines whether a subscripted data reference is valid. For

example, if a horizontal table is defined with four items, any reference with the item

index larger than 3 would be invalid.

Format

1-5-54

IF table-element VALID/INVALID THEN statement(s) $ ‘



M-5035

Change 4
Explanation
¥ Specifies that a decision is to be performed,
Table Element A subscripted table element where the subscript
calculation is checked for validity,
VALID/INVALID Specifies a condition of a valid or invalid
subscript,
THEN : Specifies that the statement or statements that

follow are to be executed if the table element
reference is VALID or INVALILD.

Statement (s) A simple or compound statement or a block of dynamic
statements.
Examples

The following declaration is referenced in the validity decision examples:

TREE  CATR | b LB e
Sul-maacle 1 Cerna o 14 v Ll
M&Mﬂﬁl‘lllljllllillllLllLlllll

1. 08 1ICerwlI,i0)| MeLTD \THas Goziol St b 11|
Program control is transferred to statement S1 if [ has a value of 0

or 1,

2. uA CATRTD,0) | Tuvallnog THeM Qo7 1l B |

Program control is transferred to statement S1 if I is not zero.

5.6.4 Parity Decision Statement

The parity decision statement determines parity by testing the data specified
for an odd or even number of 1-bit settings. If the sum of the l-bits
contained within the data unit is an even numbér. the parity is considered

even. If the sum is an odd number, the parity is considered odd.

[1-5-55



M-5035
Change 4

Format ,
IF one-word data-unit ODDP THEN statement(s) $
IF one-word data-unit EVENP THEN statement(s) $

Explanation

IF Specifies that a condition is to be evaluated as true
or false.

One-word The identifier of a data unit contained in one

data-unit word.

ODDP/EVENP  The decider as to whether the parity condition of the

value contained in the data unit is odd or even.

THEN Specifies that the statement or statements that follow
are to be executed if the ODDP or EVENP condition

is true.

Statement(s) One or more (connected by THEN) dynamic statements.

Example
&R (QTAT |EVIGMP THEM (SET) ALAER 0110 & 111 ]

The bits set to 1 in the variable STAT are tested to see if their sum is an

~ even number. If so, the variable FLAG is set to 0.

5.6.5 ELSE Statement

Any of the four types of decision statements may be immed_iately followed by an ELSE

statement which allows for execution of one or more statements if the result of the

condition is false.
Format

FELSE statement(s) $

I1-5-56



M-5035

Change 4
Explanation
ELSE Specifies that the statement or statements that follow
are to be executed only if the result of the Boolean
condition in the corresponding previous decision statement
is false.
Statement(s) A simple or compound statement, or a block of dynamic
statements.

Refer to paragraph 5.7 for an explanation of blocks and the requirement

for compounding (nesting) decision statements.

Examples

1, IF A EQ B THEN SET C TO D §$
ELSE SET C TO 1 §

C is set to D if A equals B. Otherwise C is set to 1.

2. IF BOOL THEN PROCA $
: ELSE BEGIN $
SET E TO F §
SET G TO H $
| END $
PROCB $

If the Boolean variable BOOL is true, then procedure PROCA
is called. If BOOL is false, then the block of set statements

is executed. In either case, PROCB is then called.

II-5-57



M -5035
Change 4

5.6.6 Nested Decision Statements

Because‘the conhector’ THEN serves a special/purpose within decision statements,
IF and FIND statements cannot directly appezir after THEN or ELSE associated
with an IF statement. However, the compiler interprets all statements within a
statéement block (Parag‘paph 5.7) | as the equivaleﬁt of a simple statement. 'This v
provides the means of nesting decision statemenﬁs and gives rise to the following

rule:

If an IF or FIND statement is to appear following the connector THEN or the
operator ELSE associated with another decision statement, the nested IF or
FIND statement must appear within a statement block. Furthermore, when a
sta,tément block appears within an IF statement, execution of all statements

within the block is subject to the condition of the IF statement,

Examgles
1. IF A THEN
Bl. BEGIN $
FIND TAB(I) EQ B $ |
IF DATA FOUND THEN SET F TO 1 $

ELSE
SET F TO 0 §
END Bl §
ELSE
B2, BEGIN $
[F B LT 10 THEN SET B TO B+l §
ELSE |
VARY I WITHIN TAB $
SET TAB(I) TO 0 $
END $
END B2 §$

1-5-58



M-5035
Change 4

In this example, the outer decision statement is logically

equivalent to the form:

IF ‘A THEN block Bl ELSE block B2 §$

The BEGIN and END statements are necessary due to the nested FIND

statement in Bl and the nested IF statement (with its nested VARY loop)
in block B2.

2, IF STATUS EQ 'START' THEN
SET STATE TO 0 THEN
VARY 1 WITHIN ANS $
- SET ANS(I,SUM) TO 0 $
. END THEN
COMPUTE $§
ELSE FINISH $

In this example, the VARY block is the equivalent of a simple

statement within the compound conditional portion of the decision

statement,

5.7 STATEMENT BLOCKS

A statement block is a group of simple or compound statements initiated by a
BEGIN, VARY, or FOR statement and terminated by an END statement. A
statement block ié interpreted by the compiler as the equivalent of a simple
statement., A value block (Paragraph 5. 7. 3.2) is a special block used only in

the constrﬁction of FOR blocks; a value block is not the equivalent of a simple
statement, -

I1-5-59



M-5035
Change 4

5.7.1 BEGIN Block

Format

statement-label. BEGIN $

dynamic statements

END statement-name $

Explanation

Statement~label Optional. The name by which the block is

identified.
BEGIN Specifies the start of 'a. block. )
END Specifies the end of’ a block.
vStatement-namev The name, if any, given to the block as

- specified in the BEGIN statement.

The BEGIN and END statement brackets serve only to delimit statement blocks;
the BEGIN statement does not specify a dynamic processing function as does the
VARY or FOR statement (Paragraphs 5.7.2 and 5.7.3). Because the BEGIN
statement does not define a loop structure, it cannot be resumed. Statement
blocks delimited by BEGIN and END may be nested within, and in fhek same
manner as, VARY blocks and FOR blocks.

I-5-60



M-5035
Change 4

Example
L1l. BEGIN $
SET A TO B $
VARY I WITHIN TAB $
BEGIN $
SET C TO D**A §
IF C LT 100 THEN SET TAB(I) TO C $
END $
SET A TO A+l §$
END §$
END L1 $

Three statement blocks are defined in the above example: an outer block, L1,
delimited by BEG]:N and END; a VARY block nested within block L1; and a
BEGIN/END block embedded in the VARY block. Note that the two BEGIN
statements and their associated END statements serve only to group dynamic
statements in a logical manner; removal of these bracketing statements would

not alter the processing function of this program segment.

' 5.7.2 VARY Block

A vary operation is used to execute one or more stateménts zero or more times.
The statements to be executed are bracketed by a VARY statement and an END
vary statement'.‘ This group of statements is defined as a vary block. The
number of passes through the loop is controlled by zero or more loop indices, a

WHILE condition, and/or an UNTIL condition.

II1-5-61



. M-5035
- Change 4

5.7.2,1 VARY Statement

The VARY statement initializes the loop and specifies controls for the number of

passes through the loop (see Figure 5-1).
Format

statement-label. VARY index-clause(s) WHILE clause UNTIL clause $

Explanation
|

Statement Label, Optional. The name by Which the vary block is
referenced. This label is required if the VARY

loop is resumed.
VARY ' ’ Specifies the start of a vary block.

Ihdex—clause(s) Optional. Specifies the data units to be incremented
or decremented and possibly tested (Paragraph5.7.2,1.1

Multiple index-clauses are separated by commas.

WHILE clause Optional. Specifies a condition which is to be
tested before each pass thi'ough the loop

- (Paragraph 5.7.2.1, 2),

UNTIL clause Optional. Specifieé a condition which is to be
tested after each paés through the loop

(Paragraph 5.7. 2, 1. 3).

A progfam's execution must not depend on incrementing and testing of the indices
and the evaluation of the UNTIL clause being performed in any predefined order.
The compiler will order the end loop evaluation according to optimal code

generation,

11-5-62



M-5035
Change 3

Simple and compound statements may also be grouped together into blocks by means
of the brackets BEGIN or VARY and END. Statement blocks are particularly useful,
and in fact are required, when compounding (nesting) of decision statements is

desired.

5.8.1 Statement Blocks

A statement block is a group of simple or compound statements initiated by a VARY
or BEGIN statement and terminated by an END statement. A statement block is
interpreted by the compiler as the equivalent of a simple statement.

Format

statement-label. VARY. .. $
or
statement-label. BEGIN $

dynamic statements

END statement-name $

Explanation |
Statement-label \ Optional. The name by which the block is identified.
This label is required on the VARY statement if the
VARY loop is resumed.
- VARY. .. A VARY statement is specified in paragraph 5. 7.1.1.
BEGIN Specifies the start of a block.
- END Specifies the end of a block.
Statement-name The name, if any, given to the block as specified

in the VARY or BEGIN statement.

I-5-62A



M-5035
Change 3

‘'The BEGIN and END statement brackets serve only to delimit statement blocks; the
BEGIN statement does not specify a dynamlc processing functlon as does the VARY
statement, described in paragraph 5 7.1. Because the BEGIN statement does not
define a loop structure, it cannot be resumed. Statement blocks dehmlted by BEGIN

and END may be nested within, and in the same manner as, VARY blocks.

Example
Ll BEGN $
SET A TO B $
VARY I WITHIN TAB §$
BEGIN $
SET C TO D**A $ |
IF C LT 100 THEN SET TAB(I) TO C $
END $
SET A TO A+l $
END $
END L1 $

Three statement blocks are defined in the above example: an outer block, L1,
delimited by BEGIN and END; a VARY block nested within block Ll;anda
BEGIN/END block embedded in the VARY block. Note that the two BEGIN
statements and théir associated END statements serve only to group dynamid
statements in a 1ogica1 ma.nher; removal of these bracketing statements would

not alter the processing function of this program segment.

5.8.2 Compound Decision Statements

Becaﬁse the connector THEN serves a special purpose within decision statements, IF

statements (and therefore FIND statements) cannot directly appear after THEN or ELSE
associated with an IF statement, However the compilér interprets all statements within |
a statement block (ik. e., all statements from BEGIN or VARY to the corresponding END

- statement) as the equivalent of a simple statement. This provides a conVenié_nt means

1I-5-62B



M-5035
Change 3

of compounding, or nesting, IF statements and gives rise to the following

rule.

If an IF or FIND statement is to appear following the connector THEN or the

operator ELSE associated with another IF statement, the nested IF or FIND

statement must appear within a statement block. (Note that VARY may directly
follow THEN or ELSE because the VARY statement defines the start of a block. )

Furthermore, when a statement block appears within an IF statement, execution of

all statements within the block is subject to the condition of the IF statement.

Examples
1. IF A THEN
Bl. BEGIN $
FIND TAB(I) EQ B $
IF DATA FOUND THEN SET F TO 1 §$
ELSE
SET F TO 0 $
END Bl §
ELSE
B2, BEGIN $
IF B LT 10 THEN SET B TO B+l $ |
ELSE

VARY I WITHIN TAB $
SET TAB(I) TO 0 $
"END $

END B2 §

In this example, the outer decision statement is logically equivalent
to the form:

IF A THEN block Bl ELSE block B2 $

I1-5-62C.



M-5035
Change 3

The BEGIN.and END statements are necessary due to the nested FIND
statement in Bl and the nested IF statement (with its nested VARY loop)
in block B2.

v2. IF  STATUS EQ 'START' THEN

SET STATE TO 0 THEN
VARY 1 WITHIN ANS $
SET ANS(I, SUM) TO 0 $
END THEN |
COMPUTE $
 ELSE FINISH $

In this example, the VARY block is the equivalent of a simple
statement within the compound conditional portion of the decision

statement.

II-5-62D



Resume

Index
Initialization

Evaluate

Condition False

Condition True

VARY Block _

Increment Indices
and Evaluate
UNTIL Condition

Indices
within THRU Limits
and UNTIL Condition _
False

Next
Statement

Figure 5-1. VARY Flow

1[-5=~63

M~5035
Change 4



'M-5035
Change 4

5.7.2.1.1 Index Clause. An index clause specifies a data unit which is to
be initialized before the first pass through the vary loop, incremented or
decremented after each pass thrbugh the loop, and possibly compared against

a limit after each pass through the loop in order tok terminate the loop.

Format

loop-index initial-value increment final-value

Explanation

Loop-Index The name of the data unit to be varied,

Initial-Value Optional. FROM followed by a constant,
arithmetic expression, or data unit that
specifies the beginning index value of the

loop. If omitted, the initial value is 0.

Increment Optional. BY followed by a constant, -
arithmetic expression, or data unit. If

this value is to be a decrement, BY must
be followed by a minus sign. If omitted,
the increment is 1. When varying Within
a table by a negative value, the initial
value is the mimber of items defined for
the table or the major index, and the final

value is 0. .

I1-5-64



M-5035
Change 4

Final Value One of the following:

1. May be THRU followed by a constant,
arithmetic expression or data unit.
This value signifies the last pass

through the loop.

2, May be WITHIN followed by the name of
a horizontal or vertical table, subtable,
or like-table. The value assigned is
the number of items defined for the table

or the current value of the major index.

The initial-value, increment, and final-value may appear in any order
within an index-clause. Refer to Paragraph 5.7.2. 4 for examples of

index-clauses.

5.7.2.1,2 WHILE Clause. The WHILE clause specifies a condition which

is to be tested before each péss. If the WHILE condition is true, the pass will
be eXecﬁted. | '
Format
WHILE condition
Explanatiori
WHILE | Specifies a WHILE clause.

condition A Boolean condition as defined in Paragraph 5.6.1,
a validity condition as defined in Paragraph 5.6.3,

or a parity condition as defined in Paragraph 5. 6. 4.

Refer to Paragraph 5.7. 2. 4 for examples of WHILE clauses.

I-5-65



M=-5035
Change 4

5.7.2,1.3 UNTIL Clause. The UNTIL clause specifies a condition which is

to be tested after each pass through the VARY block. If the UNTIL clause is

true, another pass through the VARY block will not be performed.

- Format
UNTIL condition
Explanation
UNTIL Specifies an UNTIL clause. -

Condition A Boolean condition as defined in Paragraph 5.6,
| a validity condition as defined in Paragraph 5. 6. 3,

or a parity condition as defined in Paragraph 5. 6. 4.
Refér to Paragraph 5.7.2.4 for examples of UNTIL clauses.

5.7.2.2 Resume (RESUME) Statement

A RESUME statement specifies a transfer to the increment and test steps within
a VARY block. This allows partial vary passes through a VARY block and a
means to continue the VARY block. A RESUME statement may also be used in

conjunction with a FIND statement, since FIND operations permit VARY operands.
Format
RESUME  statement-name $
Explanation |
RESUME Specifies the RESUME operator.

Statement Name The name given to the VARY or FIND
' statement to which this RESUME statement

applies.

1=5-66



M-5035
Change 4

5.7.2,3 End Vary Statement (END)

The END vary statement specifies the conclusion of the vary block. If the loop
is not yet completed, any loop indices are incremented and control is transferred
to the initial statement within the vary block. If the loop has been completed,

control is transferred to the statement following the END vary statement.
Format
END statement-name $
Explanation
END Specifies the end of a vary block.

Statement Name The name, if any, givento the corresponding VARY statement.

5.7.2.4 Examples of VARY Blocks

l.

STIEPS e | IVARY, APR (AROM 4 MHRM, [0 3 |1 : }
Lt bsisn ﬁ&&_ﬁﬁﬁ&,ﬁfﬁ‘;&)n ol | ‘EiMsIERT

_111111LJLE_]MDHSIT|E'1PL.5LHJ§“111111111411111@'

The data unit APR is varied from starting [5()int, 1 (FROM) to the ending
point 10 (THRU) by an implied factor of 1. The ficld FCX2 is set to the
value of 'INSERT' in items 1 through 10 of table PAR. When the loop is

completed, processing continues with the statement following the END
statement , ‘ |
NOTE

Upon loop termination (after the END statement),
the loop index will not necessarily contain the
value of the ending point or the ending point
plus one,

II-5-67



M-5035
Change 4

2, USITEPG,.1 | VmRY DW lWFerFm_ﬁmmu_i_u

L1 ISiET  RGQYRT |(@E|, ._.l_.l)l T 01 % 1 111111

uxuuvnltmbl STEPS ¥ 0ttt it

‘The data unit DW is varied according to the number of items in table
FCZRT or the major index (if any). Each word 1 in all items of table
FCZRT will be set to 0,

ARYY| X |FiRO Ti# 0 -4

leLLllLL_lilEl-rlJYl JTQ;(’JQ;TﬁL*Alth;ll Ll
TNQiet 111 VAR & TR @ RATAL $1 1 L0 v a1
L ISiET NMBR (X)) TTo Yl a1 |
Ll Ll siET LY nﬂ&LJ[;A&LﬁlHHM111L1111'l
crrrrilEmd o Lot b et ]
g lEemdome @l bt e

™

This example 1llustrates nesting of VARY statements. The vary bloch
TWO is restarted after the initialization of vary block ONE and after
each decrement for vary block ONE. The complete loop is terminated

after X becomes O,

When nesting vary blocks, the END vary block statements must be arranged in

the reverse order of the vary block definitions,

I1-5-68



M-5035
Change 1

AALHIIAJI%&&YL;'l‘n'L';'mlillLilJlLLLLALlLL
m,ulLLllvlniRlYl.l.l.l.l.L.lilllllLl_ljlllLlllllJ

I | J,J,i J U U D B O l [ N | l S T U U U B

llLllJlLllLilLllLllllAJLLLLJJLILlllll

L1 111111 l 1 1,1 L 11111 l [ L1 4111 1‘1 I EN

1
.
N | lEi§;2111%ES fil l I O N Y e | l AL Ll L
1
L

_ﬁlgouull\/ﬂ&)'uuLLlﬁ Lad o by

]
]
N [ ]
LLiJlnnnlnLnnnlnlllun TN eE
1
L

—
-
b
-

NN NN NN TN e Te e
NN Y NN TN NN

11111114151/&&_&_11511[114 NI N TN REs|
Lttt ENDAA S s b

More than one complete vary block can be nested within another vary block.

-
—

po—

A, _éLJEE (Tie1 1 IVIARYL 1CATIA ITMRY | 2._4. |,|‘|CE|T|E TARIY 1310,

vt B A S s by
i ISET 1P19R1(1C141Uﬁ14@ﬂ'&11\1 Mo CcamB b ],
Lo JEND SMERA $ o v gl

More than one data unit may be varied within a loop, The data unit
CATB is varied from the starting point O (implied) to the ending poini
30 (THRU) by a factor of 4 (BY)., The data unit CATA is varied from the
starting point O (implied) to the ending point 20 by .an implied factor
of 1. The field CIR1 is set to the value of CATB in items O through 7
of table PAR. ’
NOTE
If more than one data unit is to be varied, the

data unit that first satisfies its endlng point
1erm1nates the loop.

11-5-69



M<-5035
Change 4

_Qﬁ_a&&_.l L1 IVisRYL (K 1”1317'1"17-'1/*/1 1GTBR BY, ~d 1% 11l

11|

|

1

L1 EIR CTBRY 1&,[3”. MOTT 10 TIMeEMW 1 11111 ]

ol 1R15151UN1=1J(‘.M_L&JJL 1l BERE

L1 1

A

L SET f—ﬂ-]&&(lKlui); T7a RAcCKS &1 111 |

AL

|

AJJJlEWIAJlQMRRAﬁjlnlllljljnujjld

When CIBR(K,3) is nonzero, the statement following the IF is not

exccuted,  The transfer to make the next pass lhruugh the vary block

is accomplished by the RESUME statement.

GTER L1 IVARYL AL RROM A TR 510, gl

s T o x o mel Y h s M

Ao

Aol

111

L LT K ET RSt TEw, GO0 UATR di 1 ]
L END @TER & L]

1o 4l 1 1.1 S WS T U S U | 1 IR 0 U WO D A B Y | fo R SN S B I 1‘J

g1 l SR A G NS | l L Ui

llili]llylj

LATR. lsET Y. . To Y/A2 . 3.,

PSS B A S |

|

USRS S A | l 1'1 1 1 4144 ] [ UAY DU T B I l FEED W U U W B U O | 1
|
l

e 1f1'1»1 1 1 anﬁnsluMEn 1 'élTFlRl | 1$1 . 1'

llllllilll

This example illustrates the transfer outside of a vary block. When X

“is greater than 25, control is transferred to step LATR outside of this

vary block, The RESUME statement will transfer control back into the

vary hlock.

%
=

11-5-70



9.

M=5035
Change -4

VARY | FROM [ WHILE TAB() VALID 3
SET TAB(I) TO TAB()+5 $

VARY [ FROM [ WITHIN TAB $
SET TAB(I) TO TAB()*5 $
END $

This example illustrates two methods of incrementing a set of table
items not necessarily starting with the first item. The difference
betweéu the two methods is the location of the test to determine if
another pass is to be performed. The VARY using;‘the WHILE clause
will test before each pass, while the VARY using the WITHIN will
test after each pass. The WHILE VARY would be used for situations
in which no passes through the loop were desired because I does

not contain a valid TAB index.

VARY [ UNTIL SYMBOL NOT H(,) $
SCAN §
SET NAME() TO SYMBOL $
SCAN $
" END $

The above example illustrates the use of an UNTIL clause to process
a comma separated list, storing each list item in a name'-table
whose index is also initialized and incremented by the VARY block.
Assuming SCAN updates the value of the Hollerith variable SYMBOL,
a test is made at the end of each pass to determine if another list

item is specified.

[-5-71



M-5035
Change 4

10.

© 11,

VARY I, J THRU 5 WHILE Bl UNTIL B2 $
TABPROC INPUT TIN(I) OUTPUT TOUT(1), Bl, B2 $
END $

The above examples illustrate a loop which may be terminated by any

of the three loop termination criteria: ihdex, WHILE, or UNTIL.

 No passes will be made through the block if the Boolean variable Bl
is false when first entering the block. TABPROC will set the first

six items of table TOUT assuming neither Boolean variable Bl or B2

is set to false dué to some condition diagnosed by TABPROC.

VARY I $
END $
VARY $

END $
The above examples illustrate two methods of programming "infinite'"
loops. The only difference between the loops is that in the first

example, I will maintain a count of how many times the loop has

been executed.

5.7.3 FOR Block

A FOR block consists of a FOR statement followed by a set of ',value blocks

~and an END statement which terminates the FOR block. Execution of a FOR

block will result in the execution of the value block one of whose values is the

same as the result of the FOR expression contained in the FOR statement.

[-5-72



Format

statement-label.

' Explanation

Statement-label

FOR-statement
Value-block
END

Statement-name

Examples

M-5035
Change 4

FOR-~-statement $
value-block

.
.

value-block

END statement-name $

Optional. The name by which the FOR block

is identified.-
Refer to Paragraph 5.7.3.1.

Refer to Paragraph 5.7. 3.2.

| Specifies the end of the FOR block.

The name, if any, given to the FOR block
as specified in the FOR statement. '

. Refer to Paragraph 5.7. 3. 3.

5.7.3.1 FOR Statement

The FOR statement specifies the controlling expression, type, and optional
- ELSE statement of a FOR block.

- Format

FOR FOR-expression FOR-type ELSE-statement $

I-5-73



M-5935
Change 4

Explanation '

FOR-expression Any arithmetic, Boolean, relational, literal,
or status expression legal as an assignment
expression as defined in Paragraphs 5.4.1.1

through 5.4, 1, 4,

FOR—ty.pc Optional. 'The presence of an explicit FOR~type
is denoted by a comma following the FOR-
expression. The comma is followed by a
data type contained in parenthesis. The data
type may be any type allowed in a variable ‘
declaration with the restriction of a maximum
of eight characters for a Hollerith type. ‘»If
the FOR-expression is a variable, field
reference, typed item reference, or function
reference and the FOR-type is not explicitly
specified, the FOR block will have the type
of the FOR-expression data unit, If the FOR~
expression is a local or system index and the
FOR-ty'pe is not explicitly specified, the FOR
block will have a type of 1 16 U. If the FOR-
expression is an item word reference and the
FOR-~type is not explicitly specified, the FOR
block will have a type of 1 32 S, If the FORQ
expression is not one of the above data units
the FOR-type must be explicitly specified. If
the FOR—type is explicitly specified, the FOR-

expression must agree in type with the FOR-type

11-5-74



M-5035
Change 4

according to rules of assignment specified in
Paragraphs 5.4.1.1 through 5.4, 1.4,
Additionally, if the explicit FOR-type is
Hollerith, the FOR-type may not specify a
greater number of characters than contained in

the FOR~expression,
ELSE-statement Optional. Refer o Paragraph 5. 6. 5.

Fxccution of a FOR statement will cause the evaluation of the FOR~
expression, the required conversion, if any, to the FOR block type,
and cxecution of the value block having the same value as the FOR-
expression, If the value of the FOR~expression does not match any
of the FOR block values aﬁd an ELSE-statement is not specified,
the control will be transferred to the statement following the FOR
block. If the value of the FOR-expression docs not match any of
the IFOR block values and an ELSE-statement is specified, the
ELSE-statement will be executed., After execution of the selected
valuc block or the E LSI*i-statement, contrdl will be transferred to

the statement following the FOR block.

Execution of a FOR statement is subject to the following rules:
1, If the FOR~expression is an arithmefic expression, it
will be evaluated with "simulated receptacle' rules

defined on Page 11-5-4.

2. The result of a FOR-expression will be converted to the
FOR block type as if the FOR~expression were being
assigned to a variable having the FOR block type.

II-5-75



M-5035
Change 4

3. To produce correct code, the'FOR block type must express
all possible values which may be produced by the FOR-
expression, ‘For example, if an arithmetic FOR-expression
produces a negative value, the FOR block type must be
signed. This rule does not imply that a value block must be
specified for each possible value which may be produced by

the FOR-expression.

4.  To produce optimal code, the FOR block type should express
M those values which may be produced by the FOR-expression.
For example, if an arithmetic FOR-éxpression will always
produce only the integers between 0 and 7, the FOR block
should be typed I 3 U. o |

5.7.3.2 Value Block

A value block is a group of statements which is executed when the evaluation
of the associated FOR~-expression results in one of the constant values

associated with the value block.

Format
Statement-label. —B}EGIN value(s) $
'dx:mamic' statements
: EI.\ID statement name $
- Explanation
Statemenf—label Optional. The name by which the value

block is identified.;

I1-5-76



M=-5035

Change 4
BEGIN Specifies the start of a value block (when
followed by constants).
Value(s) Constants that are associated with the value

block. Multiple values are separated by
commas. The constant must agree in type
with the FOR block type. If the constant
is Hollerith, it will be blank filied to the
right to the size of the FOR block type.

Statement-name The name, if any, given to the value block

as specified on the BEGIN statement.

5.7.3.3 FOR Block Examples

1. FOR X $
VA. BEGIN 0, 7 $
CASEA INPUT H($) $
END VA §
'VB. BEGIN 4 §$
 CASEB INPUT H(,) $
END VB $§
VC. BEGIN 1,2,3 $
~ SET ERCOD TO 16 §
END VC $
END $ '

Assuming X is a local-ihdex, the appropriate value block will be
exeéuted if X has the value 0,1,2,3,4, or 7. If X is 5,6 or greater
than 7, the statement following the FOR block will be executed. | If
i‘t is known that at the time of execution of the FOR statement, X | ,
will never bé g'reater‘ than 7, the FOR statement should be coded:
FOR X, (I13U) $ |

1-5-77



M-=5035
Change 4

2, FBLOCA. FOR F(X)+2, (124A8)
' | 'BEGIN -7,-5,7 $
VBLOC. VARY UNTIL X GTEQ 0 §
SET X TO X+F(X) §
END VBLOC §
SET MES TO H( ) $
END $
'BEGIN -1,0,1 $
FBLOCB. FOR H(Y)
ELSE
SET MES TO H(*****) THEN
SET X TO 1 §
BEGIN H(T1) $
SET MSG TO H(AA) $
SET X TO 5 $
END $ '
BEGIN H(D1),H(T2) $
SET MES TO H(??) $
SET X TO 7 $
END $
BEGIN H(D1A) §$
SET MES TO H(ERROR) $
SET X TO 0 $ -
END $ |
END FBLOCB $
END $ |
END FBLOCA $

The value block containing VBLOC will be executed if the arithmetic

eXpression F(X)+2 results in -7, -5, or 7.. The value block containing

I1-5~78



M-5035
Change 4

FBLOCB will be executed if the expressions results in ~1,0, or 1,
If none of these values result, the control will be transferred to
the statement following block FBLOCA. FBLOCB is a FOR block
whose FOR-expression is an H 4 type function. If the function
‘returns the value H(T1A4), H(D1aA), H(T2A.), or H(D1AA), X
and MES will be set by the appropriate value blocks. Otherwise,
X and MES will be set by the execution of the FOR ELSE clause.

3. FOR T(J)
| | ELSE BEGIN $ |
VARY UNTIL T(J) EQ 'FREE' $
END $ |
SET T@J) TO 'BUSY' $
END $
BEGIN 'I01' $
VARY UNTIL T(J+l) EQ 'FREE' $
END $ |
END $
BEGIN '102' $ |
VARY UNTIL T(J+2) EQ 'FREE' §$
END $ |
END $
BEGIN 'FREE' $
END $
END $

Example 3 demonstrates a possible ysage of a FOR block used to
control Wait loops in a multiprocessing environment where the
processors communicate the system status through a table with
status typed items. Note that the value block whose value is

'FREE' contains no dynamic statements.

1-5-79/11-5-80 Blank -






M-5035

SECTION 6

INPUT/OUTPUT STATEMENTS

The CMS-2 language includes a number of statements that enable the user's
program to communicate with peripheral equipment, The operators for these

statements are summarized below:

Special File

General Operapors Handling Operators
INPUT FILE
OUTPUT OPEN
FORMAT ENDFILE
ENCODE CLOSE
DECODE POS
FIL

LENGTH

DEFID

CHECKID

To use these statements successfully, the following restriction must be
observed: The CMS5-2 Monitor must be in core during user-programbexecutibn.
This requirement arises because of Compiler-generated procedure calls to
input/output run-time routines, which are designed to link with the Monitor

and communicate with its input/output drivers.

6.1 INPUT/OUTPUT OPERATIONS

For many input/output purposes, a user's program requirements can be most
simply met with only the INPUT, OUTPUT and FORMAT statements. In these
igeneral situations, the CMS-2 operating system provides system-defined names
by which the user may reference the hardware device involved with the input or
output function. These names and their associated devices, hereafter referred

to as standard files, are described in Table 6-1,

I1I-6-1



M-5035

TABLE 06-1.  CMS-2 OPERATING. SYSTEM STANDARD FILES

FILE NAME : FILE DEVICE
© READ Card reader
PRINT ' Printer
PUNCH , Card punch
OCM Operator commu-
nication medium

For those cases in which the user wishes to perform input/output'operations
using devices other than standard devices, special file-handling operators
are provided. These operators are discussed in paragraph 6.3 (Nonstandard

File Control)°

The INPUT and OUTPUT commands are used to tranémit daté between a hardware
device and a user's program., These commands are functionally illustrated in
Figure 6-1, Each input or output statement causes the Compilerito‘generate
calls to particular run-time routines. These routines inferféce with the
Monitor to cause immediate transfer of data between a buffer area and the
hardware device. For standard files, the run-time routines provide thé

buffer area.

If formatting (conversion of data from one representation form to another) is
requifed, transformation routines that utilize the specifications of the
FORMAfistatement as their inputs are provided. These transformations occur in
the input/output flow as illustrated in Figure 6-1. Prior to each input or
output operation, the buffér area associated with that file name is preset to
blanks if the data is to be’formatted. and to zeros if the data does not have

formatting specified.

For standard input/output operations where no format statement is prescribed, .
the input card image is interpreted as Hollerith characters and stored with
the internal octal representation of the individual character. During output,

the word contents are interpreted in 8-bit Hollerith characters and are printed.

I1-6-2



M-5035

User Requires User Does Not

Formatting Require Formatting
External External
garqware A Harqware

evice Device
Output

Buffer . Buffer

Area Area -

Data Conversion
Based on Format

Statement
Input
1 ]
gser 5 . User's
Aata v Data
rea ' Area

| Figure 6-1. Input/Output Data Flow

I11-6-3



M-5035

6.1.1 INPUT Statement

" This statement directs an operation to input data from the device associated

with the specified file name.

When this command is used to transfer data

into an entire tablebby means of whole-table refefencing, the data is moved.

sequentially wofd-by-wofd without regard to the defined table Structure;

however, when all or part of a table is specified by means of item referencing,

the data transfer is performed by items, If a FORMAT declaration is referenced,

automatic conversion occurs.

- Format

INPUT file-name receptacle-data~list format-name $

Explanation
INPUT

File Name

‘Receptacle Data List

Spedifies an INPUT operation.

The name of a” standard file or the name of a non-

standard file that has been defined with a FILE

declaration statement, Legal standard file names

for input are:

lo

OCM - specifies the operator communication
medium.
READ - specifies the operating system's input

device for punched card images.

One or more of the following CMS-2 data structures.

If more than one receptaclé is to be specified, the

names, separated by commas, are gathered into a list

which is enclosed in parentheses.

1,

The name of a table, subtable, like-table or
item-area, This name indicates that'the entire

structure is to be used.

The name of a major index of a table, subtable or
like-table. |

The name of a variable,

1I1-6-4



M-5035
Change 2

4. A specific item reference of a table, subtable,
or like-table, which may he indexed by a variahle
or a numeric parameter, This indicates that

every word of this item is to be used.

5. A field or fields of some specific item within
a table, subtable, like-table or item-area.
Multiple field references can be made to any’
item specified; these references must be separa-

ted by commas.

6. A series of items of a table, like-table or
~ subtable that may be modified by field refer-
ence(s). This modification is accomplished
by bracketing the starting item number in paren-
theses followed by three periods followed by
the ending item number and bracketed in paren-

theses, such as:
HIGHT ((A)...(B), M1, M2)
where M1 and M2 are fields within thé table. -
7. A series of items in an array: |
" ARRAY ((K,L,M)...(N,P,Q))
Every word in the referenced items is filled.

qumat Name Optional. Refers to the name of a previously defined

FORMAT declaration. If a format name is specified,
the data units in the receptacle data list must have
internal data attributes zompatible with the external

conversion format type.

11-6-5



M-5035

Change 2

| Examples
[ﬂﬂﬁLEIQM&JM ﬂl@ﬁl#llllllllll

lllllllllll
11’111111'1111L1111n||1111:1:1111111111111
l 0
I |

S W U U N PR N
Ll ]yl

Ll a1 11 1'] Ll bt I L1

JIMPUT (LBIR (LA 8 Foi i

In this example, one record is read from the dev1ce described by the FILE

declaration LBR and is transferred to fill each word of the table CAB,

TimBLE DICT # 3 lioll-flnnn41111|_11L111111|.

11L111111111111111|1111111'11111111'111‘1'1'1'
cod el cig g s b b

- IMPuT, 1-7-'11"“16’151 AIICIT(IZI)I 1}11 WENE FENNN L1l | |

One record is read from the device described by the FILE declaration IMAGE

and is transferred, filling each word of item 2 in table DICT.

FloRMMTT (FlORMA, 13F;51,J_p](131)1 Foo b

ANLE TPl 40 R 20 MTR Lt

1TiAB L €| nﬁlﬂlflonkt VG 312 is) 200 Ll
S\ 8- TIABLIE, M ”01&1 O 40 8 L by
EMD-TiABLE, M4TOR | b |
Lt art]g 11(111111111111111!11111111‘1[.

A l'l | O O O | | Lt e 111 J Lt bl
Lttt b o bt L

uNeent yme Mo”0 1. 1101¢:3) ) 1AoReme 1$ | 1 |

One record is read from the device MT2; assume that it is the Hollerith
string:

LA30AA0IAAAALITTTAA (20 characters)
When the format FORMA is applied to this string, the results in memory
are:

MINOR (0,0) 350,

MINOR (1,0) 201

‘10
MMR(?&) , HO
MINOR (3,0) 7778

I1-6-6



6.1,2 OUTPUT Statement

M-5035
Change 2

The OUTPUT statement directs an operation to output data to the device

associated with the file name. Data transferred from an entire table by an

OUTPUT command using whole-table referencing is moved sequentially word-by-

word without regard to the defined table structure. However, when all or

part of a table is specified using item referencing, the data transfer is

performed by items, If a FORMAT declaration is referenced, automatic conversion

takes place.

Format

OUTPUT file-name source-data-list format-name $

Explanation
OUTPUT |

File Name

Source Data List

- Format Name

Specifies an OUTPUT operation.

The name of é FILE declaration or a standard file.
Legal standard files for OUTPUT are:

OoCM Operator communication medium.
PRINT Systems output for printer listing.
PUNCH Systems output for card punching.

A constant or one or more of the operands as
described for the INPUT statement. If the FORMAT
declaration describes a Hollerith string only, the
source data parameter is not required. If more than
one data unit is to be acted upon, the hames are
gathered into a list, separated by commas and

enclosed in parentheses.

Optional. An operand referring to a previously
defined FORMAT declaration. If g3 format name is
is specified, the data units in the source daté
list must have internal data attributes COmpatible

with the external conversion format type.

I1-6-7



- M-5035

Examples

1. OWTPwT PRINMT, DICT ITERRY (S0 1w iv ]

The data to be written on the device identified in the file named PRINT
is contained in the variable DICT. The optional operand TERRY, refers

to a previously defined FORMAT declaration.

2. qur Pyn DATum (,POSISPEED ,TD) mﬂl‘INICI il

The data contained in the tables POS, SPEED, and ID is to be written on
the device identified in the file named DATUM. The optional operator
TRUNC refers to a previously defined FORMAT declaration.

3. In reference to the data structure of Example 3, paragraph 6.1.1, assume
that‘table MAJOR is the result of the INPUT command.

.JQLQIE&MZI Ilhﬂ m/m@gmdom....’..(@,m. Iﬁamm Wl 1 | S

The values in MINOR (0,0)  through MINOR (3,0) are transformed to the

Hollerith character string:
AA3OAA201ALAANTTTAA - (20 characters)

which is then transferred as one record to the hardware device MT2.

6.1.3 FORMAT Declaration

The FORMAT declaration describes the conversion of data between internal and
external forms. The external form is usually a Hollerith string containing,
in addition to the data, certain spacing and control information. Data
existing in this external form is referred to as formatted data and is

transmitted to and from an external device in this form.

When the user requires data conVersion, he references the FORMAT declarative's
name in the INPUT or OUTPUT command. The FORMAT declaration is always referenced
by the ENCODE and DECODE statements when they are utilized in a program. FORMAT

declarations may appear only in data designs.

I1-6-8



Format
FORMAT name Q,, Q,, Q4,c00..Q 8
Explanaiinn‘
FORMAT Specifies the.FORMAT N
Name The idenfificr to bhe u
. tion,
.Qi ' A format descriptor,

form and arrangement o

to be performed.

M-5035

ECLARATION.

sed to reference this FORMAT declara-

The format descriptors indicate the

f data and the types of conversions

Numeric conversion types are summarized below.

Internal Form "Format Descriptor External Form
Fixed-point binary ) Iw.d Fixed-point decimal
Floating-point binary Fw.d Fixed-point decimal
Floating-point binary Ew,d Floating-point decimal
Fixed-point binary Ow.d Fixed-point octal

In the list of format descriptors. that follows, w is an unsigned integer

representing the maximum width (number of characters) of the field in the

external medium, Integer w must not exceed the number of characters in one

printer line. Descriptor d is an unsigned integer representing the number of

characters in the field that appears to the right of the binary or decimal

point, The maximum width of the field w must include space for signs, radix

points, and exponent descriptions, Hence, field d must be less than w. The

d-field is optional if the internal fixed-point binary value is an integer,

11-6-9



M-5035
Change 4

Format Descriptor

‘Iw. d

Fw.d

Ew.d

Function

Specifies cbnversion of data betwéen
internal fixed-point binary and an
external ﬁxed-point decimal Holvler‘ith'
character string. For a positive value,

w > d+2, - For a negative value, w > d+3.

Specifies coriversion of data between
internal floating-point binary and
external fixeﬁ—pdint decimal. For a
positive value, w 2 d+2, For a riegative

value w > d+3.

Specifies conversion of data between

" internal floating-point binary and

external floating-point decimal.

The acceptable forms of input fields

for the E conversion (floating-point) are:

+0. mantissa E

+0. mantissa E + exponent

H=6-10



M-5035

The mantissa may be of any magnitude;
the allowable exponent range depends
upon the object machine. The output

form for E conversion is:
H0.xxx...xxxEtree
where:

d is the number of digits in
the mantissa. w includes all
characters. Thus, w = 7, where
the 7 accounts for the specific
characters +0.Etee of the above

output form,

Ow.d Specifies the éonversion of data
between internal fixed—pbint binary
and external fixed-point octal. For
a positive value, W must be 2 2. For a

negative value, w must be 2 3.

Other formats descriptors that may appear are described below.

Format DesCriptor ‘ Function
H (string of characters) Specifies an alphanumeric field in the

form H(ABC), for example, where ABC
represents a string. For input, an H
(string) specification causes n char-
acters to be skipped in the input record.
For output, the stfing of characters
specified within the parentheses is the
output image.

Aw : - Specifies the first w characters of an

‘ alphanumeric data unit in a transfer to

or from an input/output buffer. Aw appears
in the FORMAT declaration. The related

II-6-11



- M-5035

Format Descriptor Function

data unit in the input/output reference
can have more than w characters. ~The
remaining characters are ignored. . If

the data unit has less than w characters,
the rightmost characters are truncated
on input and trailing spaces are inserted

on output,

Lw ' Specifies the same as Aw, only here the
last w characters of the data unit are
used. Everything else said under Aw

applies here.

wX Specifies skip w characters of an input
‘ record or insert w spaces in an output

record.

- Tw Specifies a position designator for the
buffer of a record input/output file. w
indicates the character position within
the buffer. The count starts with O at
the start of the buffer. The FORMAT
statement can have many T's, one for every
data word or constant, T is illegal
for files having a length descriptor of S.

n format descriptor Specifies repetition of a format descrip-

ter n times, such as n Ew.d.

Slash specifies end of a record or, when
used sequentially, indicates the number
of records to be skipped or inserted:

n+l consecutive slashes on input cause

n records to be skipped. n+l consecutive
slashes on output cause n blank records
to be produced.

I11-6-12



Format Descriptor

m(group of descriptors)

Printer carriage

control characters

M-5035

Format

Specifies the repetition of a group of
format descriptors within the parentheses
m times. No other parentheses except for
H descriptors are allowed within the group

of descriptors.

Appear in an H string. They specify
spacing, page eject, etc. These control
characters appear as the first Hollerith
character in the first word of each

record. If the character is not one of the
following, it is replaced with a blank.

Carriage-Control

Character Operation

blank Single space and print
line.

0 Double space and print
line.

- Triple space and print

line,

1 Page eject and print
line.

H _ Cancel headers, page

eject and print line.

A : Cancel headers, page
eject, print line and
save location and length

of line as a major header.

B ' Cance1 1ower—leve1‘
’ headers, double space,
print line and save

I11-6-13



M-5035

Carriage-Control
Character : Operation

location and length of

line as a minor header.

c , Cancel lower—levéi
' headers, éingle space,
print line and save
location and length of

line as a minor header.

/ If classification, major header;,and/or minor’header lines are wanted, they

- will be printed in the following order each time a page eject is necessary:
classification, major header with page number, minor header B, minor header C.
The page number will occur even if a major header is not used. It is not

necessary to specify consecutive levels of minor header information.

It is the programmer's responsibility to ensure that- the specified type of
format conversion is compatible with the declared data unit mode (for example,
F-type conversion should not be applied to integer data units). If the FORMAT
descriptors are exhausted and the target list not yet filled, the FORMAT is

restarted.

Examples

1. Given the external string of characters
350274-0162E+050703 with format

FioRMAT clo RE T30y Fidy. dy) 1E91200 1 1041200 1 $]

the quantities stored on a read or decode statements are:

'35, 27.4, -1.62X10°, 703

11-6-14



- M-5035

2. Given thekinternal quantities
417, -320, 0.536x10° and octal 627

with format

|Fto|K1M1‘1TL JlRIAIBL 1"1(1113191 Fnsl‘ nalblFL‘L‘gjjlfnijpl‘isl)l LJOI;l‘ 101 1‘1

the string of characters resulting from an OUTPUT or ENCODE

statement is:

141 Taesesesesereant-Q , 536EH03 ANG2T
where the asterisks indicate that the value -320 cannot be encoded

within an F6.2 format descriptor.

3. Given the internal quantities
27, H(XYZ), 74.51, H(JKLM)
with the format

1Fl°131M1“1TL LHIAINI 15161'3'&1 lHl(l‘lnﬁl)l’l ll‘lzl:tl L1t 1 1 | 1 LLJ 1
.LJIl!lllllIfﬁﬂ&ﬂymkwppfagjﬁdléjJlLLlllll

the string of characters resulting from an OUTPUT or ENCODE

statement is;
27.00RAGYZ 74.51MODPJK

6.2 [ENCODE AND DECODE OPERATIONS

The ENCODE and DECODE statements direct run-time routines to transfer data
internally from one area of the computer to another, while converting the data
from nonformatted to formatted (encoding) or vice versa (decoding). The
transformation is spécified by a FORMAT declaration.

" The ENCODE and DECODE statements are analogous to INPUT and OUTPUT statements
that reference a FORMAT declarative, except that no transmission to an I/0-
device takes place, and the buffer area involved is a data unmit specified'by the
programmer, ;The'rules previously discussed fegarding formatted 1/0 also

apply to the decode/encode operations.

I11-6-15



M-5035
Change 1

When inputting records’Of different types, a DECODE statement can be used to
reformat the data aftér‘the»record type has been examined. The ENCODE state-
ment can be used to format data that is to be modified before being output.
These statements are also valuable for debugging by simulating input/output

operations in memory.

The ENCODE statement specifies that the data contained in the data units
named in the source list is to be converted as specified in the named format
declaration and packed into a character string identified by the formatted

data-unit name.

The DECODE statement specifies that the character string identified by the
formatted data-unit name is to be converted as specified in the named format

declaration and placed in the data units named in the target list,

Format

ENCODE formatted-data-target unformatted-source-list

format-name $

DECODE formatted-data-source unformatted-target-list

format-name $

Explanation
ENCODE Specifies the encoding operation of
converting data from unformatted to

formatted form.

DECODE : ~ Specifies the decoding operation of
converting data from formatted to

unformatted form.

Formatted Data Target The data-unit name that will receive the formatted
character stritig (starting in character position 0).
This identifier may refer to a single word or
multiword data unit with Hollerith attributes.

11-6-16



M-5035
Change 2

Formatted Data Source The data-unit name containing the
character string (starting in character
position 0) to be converted to
unformatted data. This identifier may
refer to a single word or a multiword
data unit with Hollerith attributes.

Unfofmatted Source List One or more data units containing the
data to be converted to character string
form. If more than one data unit are
specified, they are collected together,
separated by commas, and enclosed in
parentheses. These data units must have
internal data type attributes compatible

with the external conversion format type.

Unformatted Target List One or more data units that will receive
the unformatted data after conversion.
If more than one data unit is specified,
they are collected together, separated,by
commas, and enclosed in parentheses. These
data units must have internal data type
attributes compatible with the external con-

version format type.

Format Name The identifier of the format.

11-6-17



M-5035

~ Example :

o= # v e bl
VRBL Al iz 42 WP 223 Ll
VIRBE AR |H 6 P H(&0BAC), #1110
VRBL A8 R B A2ed % i b by
viREL ToE) M A3 A g bt b
FloRmar, Bl T3 LS FSeA & Ll
EMD-Le =D F g v by
PRO\CEDURIE ALPHA @ | 1L
F I I O I O J'l RN I S A O | l Lottt bl g l 1
v s e b s b
EeveoDE Jo€ (AL, A2, A43) Bkt #1111
RN NN IR AT TN
vttt v by b e va by
EMD-PROC MLPHA & | v il

In this example, the character string JOE is to be packed with the
value of VRBLs Al, A2 and A3 as indicated by the format BILL. The

result will be

JOE: 223GOBAC12.14

6.3. NONSTANDARD FILE CONTROL

The special file operators presented in the remainder of this section are not

to be used with the standard file names listed in Table 6-1.

In addition to the CMS-2 operating system standard file names and their
associated devices, each operating system provides other devices for the user.

These devices consist principally of magnetic tape and paper tape punch units.

The principal difference in using/nonstandard devices versus standard devices
is the requirement for the user to describe the physical characteristics of
the data to be transferred and to state the name of the'device’on which input/
output operations are to occur. These attributes are collected in a formal
declaratiVe called a FILE declaration and identified by a user-supplied file
name. This file name has significance only within the user's program. It

- provides the linkage between the attributes described in the file declarative

statement and the run-time routines that interface with the Monitor to achieve

satisfactory input/output results.

11-6-18



M-5035

The following definitions are necessary hefore proceeding with the discussion

of nonstandard file control.

logical record

Physical record

Physical file

A group of adjacent, related data
items such as the individual entries

in a telephone book for name.vaddress

~and telephone number. This organization

has significance only to the user and
is not necessarily a physically definable

entity.

A group of adjacent, related logical
records defined as a unit such as the
alphabetic groupings of telephone
book entries. On magnetic tape, a
phyéical record is delimited at the

beginning and end by inter-record gaps.

-These gaps are recognizable by the
hardware device. A physical record

may contain one (unblocked) or move

than one (blocked) logical records. :
Blocking is the technique used to reduce
the wasted space of inter-record gaps

between unblocked logical records.

A group of adjacent, related, physical

‘records defined as a unit such as the

complete telephone book for one city.
On magnetic tape, a physical file is ’
delimited at the beginning and end by

- an end-of-file mark (for the first

physical file of a tape, it's beginning
is signified by a beginning-of-tape
mark). These marks are recognizable

by the hardware handling device. Thus,
the physical file comprises one or more -
physical records. |

11-6-19



M-5035

Peripheral file device That mechanical device which is the repository
for a group of adjacent, not necessariiy
related, physical files. A file device may
contain one or more physical files as space
permits, ,

File-name : A unique, user-assigned name to provide

| \ referencing from the dynamic input/output
command and control statements to the

run-time routines.

6.3.1 FILE Declaration

This declaration is mandatory for all input/output functions involving non-

standard file devicés.

’The EILE_declaration defines the environment in'which one or more physical files
are to be proceésed; The declaration assigns a file name for dynémic statement
referencing, identifies the symbolic name assigned~to the actual hardware

device, and declares that all data to be processeq'On the named hardward device

is physically organized as described in the declarative statement.

The FILE declaration indicates the hardware device and reserves two areas.

The first area contains the record description, the file status variable, device
address, space for kéeping track of file and record positions, and in case of a
file having the length descriptor S, the position pointers. The second area
reserved iska buffer, equal in size to the maximum record ;hat may be trans-
mitted. For record input/output the buffer area does not accumulate data for
blocking purposes, so that each INPUT or OUTPUT statement causes immediate
communication with the device. If the file declaration contains the length
descriptor S, data is accumulated in a fixed size stream buffer‘and output is

under control of run-time routines.

The number of words transferred between the buffer and the data area depends
upon the number of words specifiea in the data list of the input or output
statement rather than the record length. For example, if 50 words of input
are requested by specifying a 50-word table in an input statement and if the

input record is only 10 words long, the first ]O words of the input record are

11-6-20



M-5035

assigned to the first 10 words of the table,and the remainder of the table is
set to blanks or O depending on the record type. If 50 words of input are
requested and the input record is 100 words long, the first 50 words of the

input record would be transferred and the remaining 50 words would be lost.

The INPUT and OUTPUT statements, when referencing a FORMAT declarative, imply
either an automatic decode from the FILE declaration buffer area or an auto—'

matic encode into the FILE declaration buffer area.

The FILE declaration must occur in one of the user's data design areas. A hard-
ware device may be referenced in more than one FILE declaration. Standard
hardware units have implied FILE declarations; the user is not required to

declare them,
Format

FILE file-name type maximum-no.-of-records
length-descriptor maximum-record-size
hardware-name states WITHLBL §

Explanation

FILE Specifies a FILE declarative.
File Name ' An identifier to be used to reference this
information.

Type ‘ One of the following:

H - records are all Hollerith.

B - records are all binary,

Maximum Number of Records 'An integer or tag that specifies the meximum
number of records that may be accessed in
a physical file. If O is specified, any
number of records may be accessed.

‘_Length“DescriptOr ‘ One of the following:

R - the size of each record is equal to the
maximum length as defined by the record size
. (rigid length).

11-0 21



M-5035

V - The size of each record is determined by .
the amount of data transferred to and from the

“file,buffer and is not to exceed the maximum
length as defined by the record size (variable
length). ‘ 4

S - The size of each record is rigid. Data is

accumulated in the buffer gradually.

Maximum Record Size An integer or tag that specifies the maximum
length of the record (meaning number of words
if the type is B and number of characters if
the type is H)., If O is specified, the size of
the operand used in the particular input/output
statement determiﬁes the record length.  In
this case, no buffer area is set aside, and
data is transferred directly between the data
area and the input/outpﬁt device. Zero is

illegal with a length descriptor of S.

Hardware Name The name of any external storage device in a
computer's environment. Run-time routines will
provide direct interface with peripheral -

equipment (printer, punch, magnetic tapes, etc.).

I11-6-22



2.

 M-5035
Change 2

l’xamples of hardware names, which may vary

for each installation:

MT2 Magnetic tape input and output units.
TTY Teletype.
States An optional parameter that defines one or

more states, which may be tested between
input/output operations on this device. Each
state is a mnemonic enclosed in single primes
and corresponds to one of the numeric values
returned by the Monitor after each 1/0
operation. (See paragraph 2.3.1.4 Volume I),
Testing one or more of these states may be
necessary to avoid an input/output abort

(see paragraph 6.4 for format to test states).

WITHLBL Optional. Indicates that this file has or
' will have a label for identification as its
first entry preceding the first record.

Example :

MMMMMYUN Lidd
cav e 8 I!A1dhAﬂfL14_J:4_l_JEhIhEl_;1L_L_HEURUEL_L_diL_L_L_L_L_L

The file LBR has a maximum of 3200 Hollerith-type records, whose
sizes are rigid (120 characters). The external storage device named
is MT2, whose possible states are 'BUSY', 'NORMAL', 'EOF', and 'ERR'.

Ll hGoR i wansele g el

The file OBJC is a binary file containing up to 700 records with

the name OBJC as the first record. The record size is variable and
may have a maximum of 480 words. If the user tests an 'EOF' hardware
state, Monitor hardware state-2 will be tested. o

11-6-23



M-5035

6.3.2 OPEN Statement

Before data can be transmitted between a user's program and an external non-
‘Standard device by means of the INPUT or OUTPUT statements, the run-time ‘
routines must be informea that any reference using the FILE declaration name
is legitimate and expected. The OPEN command instructs the hardware device

specified by the FILE declaration to be accessible for input, output or both.

Execution of an OPEN statement does not establish or guarantee the physical
readiness of the hardware device. In addition, a file that is open may not be
reopened until it has first been closed. That is, if avfile is to be changed
from an input unit to a scratch unit, it must be closed and reopened as a '

scratch unit.
Format
OPEN file-name action $
Explanation
OPEN ~ Specifies an OPEN operation.
File Name The identifier of the file.
Action One of the following:

INPUT
OUTPUT
SCRATCH (both input and output allowed)

- Example

’

10REM .BR yMpun & 1 (| il

This statement causes the file identified as LBR to be activated
and specifies use as INPUT only.

6.3.3 ENDFILE Statement

If a user wishes to group records together, he may form a physical file. A
physical file of data is any set of sequential physical records delimited by

11-6-24



- M-5035
Change 1

an end-of-file mark. These groupings may be used for device positioning; a

device may contain any number of these marks,

The ENDFILE statement is used to place an end-of-file mark on those hardware
devices to which it is applicable. Writing an end-of-file automatically sets
to O the record count associated with the file name of the file declarative.
There is no change in the physical position of the hardware device as a result

of this command.
Format

ENDFILE file-name $

Explanation
ENDFILE Produces an end-of-file mark on a

hardware device.

File Name The name of a previously opened
nonstandard file. The parameter
OUTPUT or SCRATCH must be included
in the OPEN operation for this

file name.

Examgie’

TAr] ‘ ,\4 ‘a1 ’
J I O Y I T T I | l I L T W O | l N N T O U U Y | I SN T T W Y Y | l | 1
I U | 11 l | I L T O VO O Y ' N N W N S T O B | l T N T R W O T | ] J |
T . 14 I LA U B A l I S N S I B I l U W U N O S Ikl ]
_‘2[3§yyLJ{dﬁiﬁLjﬁﬁﬂﬂliﬁhfuhﬁd_ﬂﬁ l L1 N N N
I I A B A A l L 1% 11 1 L L] N FE R N
| I B T O I l I L N O I I | l N N N T S O A B l N N S N S B Y ] L}
llllJlJlLLlUllllJ!llLLLLllIll:lLlllllll}ll

EMDEILE leR v 1 1 |

The file declaration LBR, specifying hardware device MI2, is opened

for both input and output. The ENDFILE operation causes an end-of-

11-6-25



M-5035

file mark to be placed on the hardware device MT2, the record count

for LBR is set to O, and the file count is incremented by one.

6.3.4 CLOSE Statement

The CLOSE operation deactivates the specified file by setting an indicator
that this file is not activaied. Standard devices cannot be closed. Closing
an output file having a length descriptor of S will also send the last un-
finished buffer to output. '

- Closing a tape file does not imply rewinding the tape. A SET FIL (file) to O
or -0 will rewind the tape. Setting to -O will rewind the tape, release the

device, and close the file (see paragraph 6.5.1).
Format
CLOSE file-name $
[Explanation
CLOSE Specifies a CLOSE operation.

File Name The identifier of the file.

Example

Cose Al @ b b | 1

This statement causes the file identifier as LBR to be deactivated,

6.4 DEVICE STATE CHECKING

In performing any input/output, various states may be flagged by the Monitor,
These states might indicate such errors as end of input conditions either as

a hardware problem or system problem.

Each device may have various associated states that may be checked by the user.
Those states which are of interest to the user may be specified in the FILE

declaration by unique mnemonics enclosed in single primes.

11-6-26



M-5035
Change 2

The states may be tested by use of the IF statement containing the file name
and this unique mnemonic. The test checks equality between the current status
of the file and the value assigned to the unique mnemonic. All runtime I/O

operations are completed before returning to user's program,

It should be noted that this test is dependent upon the hardware and Monitor
system. The list of states appearing in the FILE declaration must correspond

to the numeric status values returned by the Monitor (see Volume I).

Format

IF file-name EQ or NOT state THEN expression §$

Explanation

IF )Specifies an . IF statement.

~ File Name The name of a FILE declaration.
EQ or NOT Specified relational operators,
State Any mnemonic designated in the FILE

declaration. It must be enclosed in single

primes.
THEN A CMS-2 connector word.
Expression Any CMS-2 dynamic statement.

R LiF L8R (€& q'l”lRIMl'J \TIHENM, GOTO EAMPOB ® 1111

The status variable of the FILE LBR is tested.

If the condition indicated by the mnemonic 'NRM' is true, a
transfer to ENJOB is executed.

I11-6-27



M-5035
Change 1

2. FlLLE LJPJrC14H1 IIOPJJRI /2101 1“ rrﬁ 1'BSIVJIL’I I'MBM_’JZ
it gl lfﬁﬂuq 191 I ﬂﬁ[ﬁﬁ&Sl L 1 L1 hd 4 I 1;
1

U W 14 [ EET O I Y U G T I L1t ) l TR T U W I I B J ]
[ A R U l La11 l 11 1 11 ] 1'11 I T T Y I N I B ] 1
#%F’f]hﬂ 4 NQPlr.C1 1//V” 7- “l [ l N N T I I I !
’”7“7'1 l/ﬂ]PTCJ 1”1 //OR ]le I T | Il Illlllll'L
AP Mo |<MEE215 | 74,64 £3K911Cd,r4 L P A r#ﬂ .

The state for 'EOF' (Monitor hardware status code 2) in the file
defined by INPTC is tested. If the condition is true, a transfer
to ALPHA is executed. ’

" 6.5 DEVICE POSITIONING

In order to retrieve data from a device more efficiently, the programmer may
separate his data into one or more files or subfiles. The run-time routines
will recognize these files by end-of-file marks and maintain position counters
for the number_of files passed and a counter for the number’of records passed
within a given file.

The SET statement in conmjunction with the functional modifiers POS (record
position), FIL (file position) and LENGTH may be used to physically position

a device, determine its present position or determine the length of a record.

‘" Positioning requests are not applicable to all devices and incorrect use of the

above modifiers will result in an input/output error indication.

6.5.1 Positioning By Files

' A unit may be positioned forward or backward by a number of files or subfiles.

The unit is always automatically positioned following the emd-of-file mark.
Format

SET FIL(name) TO signed-integer-constant or data-unit-name $

11-6-28



lixplanation
SET

FIL(namé)
TO

Signed Integer Constant

or Data-Unit Name

Examples

M-5035

" Specifies a SET operation.

Specifies the positioning (FIL) of the unit
specified by the name of a FILE declaration.

CMS-2 separator.

Specifies the number of files the unit is to be
positioned. The sign indicates the direction

of the movement: + forward and - backward. 1If
a data name is used, it must contain an integer.
A data-unit name containing a O will cause the
device to be positioned to the beginning, If
-0 is specified, the unit is locked out from

further reference.

1. SIET P (MARFILAG) Mo, ko€t & 0 Ly aai1ly

If thé variable LOC1 contains a 4, the device referenced in file

declaration NARFLAG will be positioned forward four file marks.

The same statement may be used to backspace four files by setting

LOC1 to -4, 1If a request is given to backspace more files than are

written on the device, the device is positioned at the beginning.

A request to backspace one file mark causes the tape to be positioned

at the start of the current file.

11-6-29



M-5035

2. JANLE MTFI3 300 ROA20 MTAS A |
MR8 FNLPOS T 4SS U S by
carrtrra et b v g bbby
b v b v by g by
OPEN ATFI3 READ &) |y vt aa b graaa
Lot b by v brar e g
pov b v b v b g by
AILPHAL | ISIET) 1F1'1L1(1M1"'IF131)1 Te ANt RS #1001
dav g v b b TEEEEN
1111}111']111111111|11111111L1111111111l1
BET AW IsiET FUOLCMTIF3DY, T 0 % i L
NN R I i A S AN A AT AT S AT AN A S A A S A A
GAMMAC | [SET FLL(MTIFS), To -0 (% NEENEE
Statement ALPHA causes the hardware device MI'13 to be positioned

‘ Statement

forward as many files as indicated in the variable FILPOS.

BETA causes the hardware device MI13 to be set to the beginning

position 0. By statement GAMMA, the hardware device is set to the
beginning, locked out from further reference, and the FILE MIF3 is

elosed. Each time, the file counter is adjusted.

6.5.2 Positioning by Records

Abunit may be positioned forward or backward a number of records within the

current file. Attempted record positioning beyond the bounds of the current
file will cause the device to be positioned at the beginning er end of the

current file. - Record positioning should not be used with stream files.

Format

SET POS(name) TO signed-integer-constant or data-unit-name $

11-6-30



M-5035

Change 1
Explanation
SET Specifies a SET operation.
POS Specifies the positioning (POS) of the unit

named by a FILE declaration.

TO _ CMS-2 separator.

Signed Integer Constant Specifies the number of records to be forward

or Data-Unit Name or backward spaced.

Examples

1. SET Pos|(|8ooK);, Tia SEREEN & L 1101l

In this example, the file named BOOK is spaced forward the number

of record positions contained in the variable named SCREEN,

2. JRLLE MAGIE L LER B 0 (R 13,310 MT4 1182 1 /NRM s,

IS N A | l [ O I N A O l Ll l{é?ﬁh’ﬁ'l - 1
llllJlll‘lJllLlllllJI[uLLLLJlllllllJLJll
PIPLEINIJMIALG'IFI'ILIEIZI |‘1N|P1QIT| 1$| I W A | L1 R lbl 1 1 l 1
bl Ll.l I B A A A Y l NEEENEETE N R N

i

llllll'

_J§IE;TI jpﬁﬁsﬂzpﬂﬂhéiﬁL'nLIEF%)J,17?’1 o3 115 T R

The hardware device described as MI4 is positioned three records

backwards, relative to its current position.

6.6 FILE AND RECORD POSITION DETERMINATION

The record file or subfile position within the current file can be determined

with the use of the POS or FIL modifiers.

Format

SET  data-unit-name TO FIL(name) or POS (name) §$

11-6-31



M-5035

Explanation

SET ' Specifies a SET operation.
kData Unit Name The location where record position is to be stored.
TO Coe CMS-2 separator.

FIL(name) or POS(name) Specifies the file position (FIL) or record
k position (POS) of the unit specified by the name
of a FILE declaration.

- Example
An4E LBR| K 350 V2100 MT 2, N TSR
vVRBL LBRFIL X 46 U & i ]
VRBL, L BRPOS & 46 w F bl
cia ety by b i by
ePEN LBR READ & | v v v bl
crr e v v b b v by
SEm LBRFIL To Fll (LBRY & il ]
ST LBRPPS To PoS(LBRY, B il

The current file or subfile position of the hardware device MT2 is
stored in the data unit LBRFIL; the current record position within
this file is stored in LBRPOS.

6.7 RECORD LENGTH DETERMINATION

The length of the last record transmitted by either an INPUT or an OUTPUT
statement may be determined by using the functional modifier, LENGTH.

Format

SET data-unit-name TO LENGTH(name) §$

11-6-32 .



M-5035

Explanation
SET Specifies a SET operation.

Data~Unit Name Specifies the location where the record length

is to be stored."
TO CMS-2 separator.

LENGTH(name) Specifies the length of the previous record on
the unit specified by the name of a FILE

declaration,

Example

/_1L151 MAGlF e € B 430 1R1 4000, MTiS 4, KRR
RBL (LENTH & A6 U 14

Lt e b bt by
£ T, LENTIH, To L EMETIH(MAGFLEM | | | 1 L1l

8 DEVICE IDENTIFICATION OPERATIONS

. is sometimes desirable to make a check on a device (e.g., a tape unit or
.sk to make sure that the right unit is mounted). The following two special

.atements are used for this purpose:
1. DEFID Statement.
2. CHECKID Statement.

1ese commands are illegal on standard hardware devices.

.8.1 DEFID Statement

EFID writes an identifier on an external device. If the tape is not at load

oint when the DEFID command is given, the statement will be ignored.
Format

_ DEFID file-name STANDARD or (header description) $

I1-6-33



M-5035

Explanation
DEFID

File Name

STANDARD or Header Description

Examples

Specifies a CMS-2 control word.

The identifier of a file that

references the external device for

which an ID block is desired.

The description of the identifier
record to be written. If it is
standard, the header is written in
the local convention known to the
run-time input/output routine. If

a header description is given in
parentheses, the contents of the
parenthesesvare used as headef. A1l
header records are a standard 30

words long.

DEFED LPR STANDARD| & | | (1 i b tiaa

A standard header will be written on the device referenced in the

file declaration LPR.

DEFTd (LPR (11 MVENTO

RY, S E&Q 14 I 1d ) 18,

The header "INVENTORY SDIEGO:-1 JUL 71" will be written on the device

referenced in the file declaration LPR.

11-6-34



M-5035
Change 3

6.8.2 CHECKID Statement

CHECKID checks an identifier on an external device. If the tape is not at
load point when the CHECKID command is given, the statement will be ignored.

Failing the check will result in an input/output error condition.
Format
CHECKID file-name STANDARD or (header description) $
Explanation
CHECKID Specifies a CMS-~2 control word.

File Name The identifier of a file which refer-
ences the external device on which the

identifier is to be checked.

STANDARD or Header Description Describes the wording against which
the identifier is to be checked.

Example :

Lciﬁlincjﬁ'rbpl lLlPlRlJSJTlﬁWiblﬂlglpl 1?1 Ll v by

The ‘header record on the device referenced in the file declaration
LPR will be checked if it is in standard format.

11-6-35/11-6-36 Blank)






 M-5035
SECTION 7

COMPILE-TIME SYSTEM FACILITIES

The primary function of the CMS-2 Compiler is the translation of source state-
ments into machine (object) code. To effect this translation, certain conven-
tions regarding the organization of the source statements have been established
in previous sections. These conventions pertain to system data designs and
system procedures as the organizational elements of a system. In the following
sectiohs, the header controls of a system are presented. They contain informa-
tion specifying listing options, loading controls, system index registers,
inclusion of program debug features in the object code or other facilities that

effect the compile operation.

A compile-time system comprises system elements and associated header rontrols
(see figure 7-1). This concept establishes a method ior obtaining a complete
or pértial translation of a user's program. The compile-time also signals

~the initiation and the termination of the translation process. For translétion
purposes, such a system is regarded as something complete in itself; all infor-
mation‘necessary for a successful compile is specified within the system and in

accordance with the rules and facilities of the CMS-2 language.

7.1 ACCESSING THE COMPILER

To obtain the services of the Compiler requires use of a uniquely formatted
Monitor control card. Furthermore, additional Monitor control cards are re-
quired to properly define the user's job processing requirements for the
Monitor. These requirements might be one or more of the,followingﬁ compile;

load and execute; build a library; update a library; etc.

The $CMS-2 Monitor control card activates the CMS-2 Compiler. Following this
Monitor control card are one or more compile-time systems (source input to the
compiler). Use of the Compiler is terminated by the CMS-2 statement: TER-
MINATE $.

The card formats of the Monitor control cards, their functions and their

placement in a job deck are discussed in Volume I.

I1-7-1°



M-5035

END-SYSTEM
Statement

(System
Element

MinorHeéder

System
Element

ﬂﬁinor Header

END-HEAD
tate t

ﬁlajor Header

SYSTEM
Statement

Figure 7-1. LElements of a Compile-Time System

I1-7-2



M-5035

7.2 MAJOR AND MINOR HEADERS

Headers are classified as major or minor depending upon position and range of
influence within a compile-time system. A major header consists of those
statements immediately following the SYSTEM statement (see paragraph 4.1.1) aﬁd
bracketed by the statement:

Format

END-HEAD name §$

Explanation
END-HEAD Specifies the end of the header.

Name Optional. The header identifier.

The major header statements contain control information that applies throughout
the compile of the entire system. A minor header, on the other hand, is a
group of header statements immediately preceding a system element. The para-
meters within a minor header are in effect only throughout the compilation of
the particular system element that the header precedes. Minor headers are
optional if sufficignt information is included in the major header. Figure

7-1 illustrates the positions of major and minor headers.

Major and minor header may be retrieved from a CMS-2 library. In this case,
the header statements are bracketed by HEAD and END-HEAD statements. The format
of the HEAD statement follows: ‘

Format
name HEAD comments $

Exglanation

HEAD Specifies a set of header statements to supple-
ment major header controls or establish minor

header groups.

Name Optional. The header identifier. If the header
‘ group is to be included on a library, the name
is required in order to identify the element on

the library and for subsequent retrievals.

11-7-3



M-5035
Change 5

Below is a list of available header statements, divided into four categories.

statements will be defined and their usage described in following sections.

1. Options header statements:
OPTIONS

2. Allocation header statements:
BASE
TABLEPOOL
DATAPOOL
LOCDDPOOL
EQUALS
‘NITEMS

3. Library retrieval header statements:
LIBS
SEL-ELEM
SEL-SYS
SEL-HEAD
SEL-POOL
CORRECT

’ DEP

4. Miscellaneous header statements:
SYS-INDEX
MEANS
EXCHANGE
DEBUG
CSWITCH-DEL
EXECUTIVE
CMODE
SPILL
CSWITCH-ON
CSWITCH-OFF
CSWITCH

- END-CSWITCH

END-CSWITCHS
II-7-4

These



M-5035
Change 5

The OPTIONS, SYS-INDEX, and DEBUG statements are allowable only within a major
header. DEP statements are restricted to minor headers. All the remaining state- l
ment types may be used in either category of header. The major headers must in-

clude the OPTIONS statement. The statements of a major header may occur in any

order except for the OPTIONS statement, which should precede all others.

The comment features described in Section 3 are allowable within headers.

7.3 OPTIONS HEADER STATEMENT

Every compile-time system requires a major header containing at least the OPTIONS
statement. This statement should immediately follow the SYSTEM statement.

The OPTIONS statement designates the types of output, the output units and the various

program listings to be generated by the compiler for a compile-time system.

Format
OPTIONS P, Py,...p, $
Explanation
OPTIONS Specifies the OPTIONS header.

P1---P Denotes optional parameters of the following types:

n

SOURCE  Source output and disposition.

OBJECT  Object options, output, and disposition.

LISTING  Listing disposition.

MONITOR Execution under Monitor.

NONRT Execution in a non-real-time environment
allowing calls to implicit run~-time functions.

LEVEL(0) All error and warning messages are listed.
This is the default condition.

LEVEL(1) Warning messages are not generated.

MODEVRBL Allows implicit definition of variables.

STRUCTURED Specifies that the system is written
according to CMS5-2 structured programming

conventions.

I1-7-5



M-5035

Change 4

Any or all of these parameters may be specified in any order. If no paraméters
are given or no OPTIONS statement is included in the source input, the Compiler
output consists only of syntax error messages. The first three controls listed
above may be accompanied by subsidiary information in parentheses following the
parameter. This additional information is described in the following paragraphs.
The presence or absence of somé of this information can affect the duration and
comprehensivenesé of the compilation. The number of outputs requested may be

restricted by the installation's peripheral configuration,

7.3.1 SOURCE Option

This parameter calls for the listing, punching and/or tape output of the
(edited) source statements input to the Compiler. The presence of this param-
eter on the OPTIONS statement indicates a request for source output; the

associated parameters indicate the disposition of this source.
Format

SOURCE (LIST, CCOMN, CSRCE, CARDS)

Explanation
SOURCE Requests output of edited source statements.

LIST | Optional. Indicates that disposition of source

' output is hardcopy listing. This is the default
parameter and is only necessary if a hardcopy

listing is desired in addition to one or more of

the following parameters.

CCOMN _ Optional. Indicates that the disposition of
source is the output unit CCOMN,

CSRCE Optional. Indicates that disposition of source is
the output unit CSRCE which is unloaded at the
end of the compile time system.

-CARDS ‘ Optional. Indicates source output in the form

of punched cards.

I1-7-6



M-5035
Change 4

Any or all of these parameters may be specified in any order. Whenever either

CCOMN or CSRCE is requested, any hardcopy listing that results from either the

LIST parameter or the OBJECT options will show the source statements numbered

as in a Librarian listing. This Compiler output may then be used in lieu of a

library listing of the source code.

| Lxamples | ‘

L OPTowS 1SO4RCE A L i bty |
e B g e b gt bl

PAT/OMS 1504 REE G ST 8 il

Requests a hardeopy listing of the source inpult,

. 0PI aMS 15104 R E(CARPS A /ST B a1l

Requests a hardcopy listing and a punched deck of the source input.

1. _OPTI1O0NS Is o ELEGOMN) Bl il

Requests output of the source input to unit CCOMN (generally for a sub-
sequent library update run). Any hardcopy listing of the source will have

‘'statements numbered according to Librarian conventions.

7.3.2 O0OBJECT Option

This parameter requests the Compiler to proceed all the way through its object
generation phases. The subsidiary information with this parameter specifies
special generation options, object-code listing forms, and disposition of

relocatable binary object-card decks.

NOTE

If OBJECT is not specified on the OPTIONS
statement, the Compiler will perform the syntax
analysis phase only (producing syntax diagnostics)
but will not proceed into the code generation phases.
When SOURCE is present without OBJECT, the hard-
copy source listing will have syntax error diagnostics
interspersed with the source statements.

=77



M-5035
Change 5

Format

OBJECT
Explanation
OBJECT
Speéial Mode

List Options

(Special-mode, list-options, CNV, CCOMN, COBJT, CARDS) §

Requests object generation phases of the compilation.

-Optional.

P

OPT

Optional.
options:

CR

CRG
CRL

One of the following:
Request a compool generatiohvrun.
Requests optimization of transient references.

One or more of the following hardcopy output

Requests both local and global cross-reference

listings, which are alphabetized listings of the

‘identifiers defined within the compile-time sys-

tem, their assigned 1ocations; and the locations
that reference them.

Requests a globél cross-reference only.

Requests a local cross-reference only. If CR,

CRG, and CRL are omitted; only cross-reference

"~ listings of unallocated identifiers are given.

Requests symboi“analysis listings which providé

a list of identifiers categorized according to
declarative type. Within each grouping, the
identifiers are alphabetized and accompanied by a
summary description of their respective attributes.
Requests a fuil symbolic output listing which pro-
vides for the complete listing of the source
statements intermixed with the octal and mnemonic
representations of the generated machine code and
their corresponding addresses.

11-7-8



CNV

CCOMN

COBJT

CARDS

M-5035

Optional. Specifies that fixed-to-float and
float-to-fixed numeric conversions are to be
provided by run-time routines rather than in-

line generation.

Optional. Indicates that disposition of relo-
catable binary object-code is the output unit
CCOMN.

Optional. Indicates that disposition of relo-
catable binary object-code is the output unit
COBJT, which is unloaded at the end of the
compile time system and may be saved.

Optional. Indicates relocatable binary object
code output in the form of binary punched-card

decks.

Any or all of the above primary parameters may be specified in any order.

NOTE

The special mode parameter CMP requests the
creation of a compool output. This parameter
may be used only with compile-time systems
whose elements are system data designs and

The compool output is identified by
the name of the last system data design and
consists of the definitions of all the data _
design elements decoded into a format internal
to the Compiler. A compool may be placed on a
library tape and may be retrieved instead of
the corresponding source system data designs
for subsequent compile-time systems. Using
such a compool saves the compilation time
normally needed to process the source system
data designs.

The special mode parameter OPT requests

optimization of transient references. The
use of the parameter may result in the ele-

ments of a system being no longer indepen-
dently compilable. '

I1-7-9



M-5035
- Change 5

Examples

1. LQRZT/QMSq pquel—cn"frﬂnlinnnn'niull11'11111LJ

Requests diagnostic output from all Compiler phases; no other output will

be produced.

2. PAT/OMS [0BTECT S0 4REE & 1 1l i1 aiai1a]

Requests a hardcopy listing of source and diagnostics fromAall phases of

the Compiler. Adjacent to each source statement is the relocatable
location of the first instruction generated for that statement. These

locations are useful if CR is also requested.

3. pl.PJT;/iQMSI lqaxgclﬂcclﬁljl rSLﬁL:\L 151,"1)1 #l 141 Lil I e l

Requests a local and global cross-reference, symbol analysis, and full symbolic hard-

copy listing, along with diagnostics, from all phases of the Compiler.

4. DPT!ONS |§,a,u,k.c,s,,, ,0,B|J',E,c,7‘,(,C,MP,,.C[Q.B,.T,T,,,sg_\_t, ), §|

Requests a source listing and a full symbolic listingAfor a compool gen-
eration compilation. The compool and its corresponding relocatable binary
object code will be output on unit COBJT, which will then be unloaded.

7.3.3 LISTING Option

This parameter specifies the disposition of the hardcopy listings produced by
the Compiler as a result of the parameters described in paragraph 7.3.2. 1t
need only be specified if the hardcopy or printer. output is to be written onto

other output units instead of, or in addition to, being printed.
Format

LISTING (PRINT, CCOMN, CLIST)

11-7-10



M-5035

Change 2
Explanation
LISTING Requests nonstandard hardcopy listing disposition,
- PRINT Optional. Indicates that disposition of printer

listings is the printer. This is the default
parameter and is only necessary if printer output
is desired in addition to one or more of the

following parameters.

CCOMN Optional. Indicates that disposition of hard-
copy listing output is the output unit CCOMN.
CCOMN may not be used if specified in OBJECT option.

CLIST ~ Optional. Indicates that disposition of hard-
copy listing output is the output unit CLIST,
which is unloaded and may be saved at the end of

the compile time system.

Any or all of the above parameters may be specified in any order.

Examples

1. OPT1ONS DBIECT(SH )y Li/STI/ME |(cCoMu) $ |

Requests the full symbolic hardcopy output listing to be placed on unit

CCOMN rather than to be printed.

2. LQPJI/LW_@ |Si0URiC
L 6STI M 1(1ﬂ81/10i71,1 16

Requests a hardcopy listing and a punched card deck of the source input.

The liéting will be printed, as well as placed on the output unit CLIST.

7.3.4 MONITOR Option

The MONITOR parameter allows the compilation of statements that directly or
indirectly require access to the CMS-2 operating system (i.e., high-level I1/0
and DEBUG statements). It also results in all testing of the special console
conditions (e.g., KEY1, STOPS) to be simulated by the Monitor. This parameter

II-7-11



M-5035
Change 3

should be specified only when the object code produced by the Compiler is to be
executed under Monitor control. See Volume I, Section 2 (Monitor) for simulated

settings of special console conditions.

7.3.5 NONRT Option

The NONRT parameter indicates that the program is to be executed in a non-real-time
environment and allows the generation of calls to impliéit run-time functions -
(exponentiation, BIT/ CHAR, and fixed/floating point conversion). The MONITOR 'option
automatically impliesthe NONRT option. In the absence of NONRT (or MONITOR), all |
implicit references to these run-time functions will cause source warning messages

and/or object error diagnostics.

7.3.6 Two-Level Diagnostics

Error listings produced by the Compiler contain two categories of diagnostic messages:
serious errors which affect program execution and warning errors which may not affect
program execution. The LEVEL(1) option causes suppression of the listing of errors
in the warning category. A LEVEL(0) specification, or no specification of the LEVEL
option, causes errors in both categories to be listed. Regardless of level specified

or implied, errors in the warning category are notl included in the COMPILE ERROR
’Summary at the end of the compile.

7.3.7 MODEVRBL Option

The MODEVRBL parameter instructs the compiler to create local variable defihitions
for any undefined data units appearing in dynamic statements where the syntax of the
statement allows references to variables. These implicitly defined variables are given
the attributes of the MODE VR BL declaration or the compiler's inherent mode (I 16 S)
in the absence of a MODE VRBL deélaration. |

n-7-12



M-5035
Change 4

7.3.8 STRUCTURED Option

The STRUCTURED option informs the compiler that the system is written
‘according to the CMS-2 structured programming conventions. The Compiler
will issue the warning message "NON-STRUCTURED STATEMENT" for the

each statement which violates these conventions. These statements include:
1. Statement switch declarations
27 GOTO statements
3.  Procedure declarétions containing abnormal exits
4, Procedure call statements containing abnormal exits
5. RETURN statements containing an abnormal exit
6. SET statements containing an OVERFLOW specification

7. Procedure Switch call statements containing an INVALID

specification

II-7-12A



M~5035
- Change 4

7.4 ALLOCATION HEADER STATEMENTS

~The allocation scheme incorporated in the Compiler generally.consists of the
assignment of addresses to instructions and data definitions in a sequential
manner that reflects the order of the source statements. All identifiers

that function as symbolic addresses are assigned locations accordingly. In the
case of a data name, the size of the area reserved is determined from its
definition in a declarative statement. If the program subsequently specifies

a preset value for the data unit, the Compiler generates the ﬁfeset value

originating at the location previously allocated.

The requirements of a particular progfam or application package often require
"departure from this standard allocation scheme used by the Compiler. For this
purpose, various allocation heéder statements are proVided in the CMS-2 language.
Since the effect of these allocation statements on a usér program often involves
both the Compiler and the Loader, the reader should also refer to the descrip-
tion of the CMS-2 Loader in Volume I, Section 3.‘in particular, the AC and

CS directives,

The words "allocation” or "relative allocation”, when used to describe CMS-2
for the AN/UYK-T, will refer to the positioning of an individual data unit or
dynamic statement (TABLE, label, etc.) within a basic CMS-2 element (SYS-DD or
SYS-PROC). The words "relocatable allocation" will refer to the positioning

(offset) of a CMS-2 element from its associated basic register content.

7.4.1 Pooling Statements

Two basic types of pooling statements exist. The first type directs the Com;'
piler to divide a basic element into two separate elements for the purposes of
subsequent relocatable allocation by the Loader. Statements in this grouﬁ are
LOCUDPOOL and TABLEPOOL. 1If it is ever required to treat local data designs

and/or tables as relocatable elements at load time, these statements must be

I-7-12B



M-5035

present, with their associated basic elements, SYS-PROC and SYS-DD respective-

ly, during compilation of the source.

The second type of pooling statement includes those pool statements that are
associated with the basic CMS-2 elements. They are BASE and DATAPOOL. It is
necessary to include these pool statements with the source only if machine and

system-dependent information is included.

In general, pooling statements may occur in both major or minor headers. Pool-
ing statements used in a minor header affect only the SYS-DD or SYS-PROC that
immediately follows. (If a pool statement is used that is inappropriate, it is
ignored by the Compiler; e.g., LOCDDPOOL within the minor header of a SYS-DD

would be ignored.)

If a pooling statement occurs in a major header, it applies to all basic ele-
ments not having this pooling statement as a minor header. All four of the
above pooling statements may appear in a header, but only one of each type may

be specified (i.e., two BASE statements may not appear in the same header).

Each of the pooling statements allqws an optional name to be given for the pur-
pose of identifing the pooled element or group of elements. This name defines a
compound section and appears in the CS Loader directive generated by the Com-
piler as part of the binary output. A compound section informs the Loader

that relocatable elements are to be grouped together (see Volume I, Section 3).
If no name is given on the pooling statements, the Compiler will provide

default names. They are as follows:

Pooling Statement Default Name
BASE SYSP
DATAPOOL SYSDD
LOCDDPOOL LOCDD
TABLEPOOL TABLE

Furthermore, if neither the BASE nor the DATAPOOL statements are provided
by the user, the Compiler will use the respective default names for the »

compound section specifications.

11-7-13



M-5035

One of the parameters appearing in all of the following pooling statements
specifies that the data or instructions in the pool be referenced using a
transient base register. This parameter should be used only for extremely

large programs.

7.4.1.1 LOCDDPOOL Statement

The LOCDDPOOL statement instructs the Compiler to compile the local data de-
signs with reference to a separate base (i.e., as a relocatable element). If
found in a major header, it instructs the Compiler to compile all local data
designs in this manner. (A LOCDDPOOL also found in a minor header would be
redundant unless it had a different name, requested transient referenpev or

suggested grouping und=r a different base register.)

If found in a minor header, only the local data designs of the assoCiatéd»SYS—
PROC will be compiled as a relocatable element. All other local data designs
~ will be based relative to the base of the SYS-PROC as encountered within the

source.

Format

name LOCDDPOOL (T, identifier) optional-value $

Explanation

_name An optional name assigned to this element or
group of elements. This name defines a compound
section and appears in the CS Loader directive

generated by the Compiler as part of the binary

output.
LOCDDPOOL Identifies a local data-design pool.
T, Identifier An optional implementation aid. If not present,

normal conventions will be used. If T is present,
it specifies that the local data designs covered
by this pool statement should be referenced
transiently, The identifier, if present, spe-

cifies the AN/UYK-7 base register under which

11-7-14



Optional Value

kExample

TIAMCKM | ISNSTEM T Plo& 24 APRIL T4, .

AT NN NN

Ll 1411t

M-5035

this clement may be allocated. This infor-
mation is passed on to the Loader but may

be overridden at load time. The identifier
may be an EQUALS tag or a positive integer

constant.

The absolute allocation af which it is
desired that this element (or group of
elements) be located at load-time. The
Compiler passes this information to the
Loader. The Loader allows this value to

be overridden at load time.

e
.

P
-

SN RN NN NN BN Ny

—

LoedD | |

-

[

|
1L OCPD P OO l(lTL>1 61 4100100, 31 1 11
EMD-HEAD @] 1 il

(NN

Log ooty rr s bttt

—

[ T O Y

i s b b s i1

TRAC KA | |

SYS=PROC Bl Lyttt g

.

S S T Y T O O

| T NN AN TN e

-

_1411141141“‘1111111lunllnllLLn1LL1111

-

L1y Emd-SY5-PRIOG TIRACKA B 11 11111

e
e b b e L L L L L

.

This example represents a program which, because of system design,

found itself with a shortage of base registers. Since the programmer

realized that he made few references to his own local data designs, he

commands the Compiler to use a transient base register whenever any local

data is requested in his program. He further commands the Compiler to

indicate to the Loader to use S6 as the transient register and to base

his local data at address 40000. This can be changed at load time.

I1-7-15



M-5035

7.4.1.2 TABLEPOOL Statement

The TABLEPOOL statement instructs the Compiler to compile all applicable tables

with reference to a separate base location. The TABLEPOOL applies only to

tables declared in a SYS-DD.

If this pool statement is present in the major header. it is applicable to all

tables declared in all SYS-DD's not having a TABLEPOOL statement in their minor

header. If this statement is present in the minor header of a SYS-DD, it

applies only to tables declared in that SYS-DD,

Format

name TABLEPOOL (T, identifier) optional-value $

kExplanation

Name

TABLEPOOL

T, Identifier

An optional name assigned to this element or
group of elements.v This name defines a compound
section and appears in the CS Loader directive
generated by the Compiler as part of the binary
output. ' '

Specifies pooling of all tables with reference to

a separate base location.

An optional implementation aid. If not present,
normal conventions will be used. If T is present,
it specifies that the tables declared in the
SYS-DD covered by this pool statement should be
referenced transiently. The identifier, if
present, specifies the AN/UYK-T base register
under which this element may be allocated. This
information is passed on to the Loader but may be
overridden at load time. The identifier may be

an EQUALS tag or a positive integer constant.

I1-7-16



M-5035
Change 2

Optional Value . The absolute allocation at which it is desired
that this elemént (or group of elements) be
located at load time. The Compiler passes this
information to the Loader. The Loader allows this

value to be overridden at load time.

7.4.1.3 BASE Statement

The BASE statement instructs the Compiler to compile system procedures with
reference to a separate base location. This pool statement is considered to be

present in the major header by default.

If this pool statement is present in the major header, it is applicable to all
SYS-PROC's not covered with a BASE statement in a minor header.

Format

name BASE (T, identifier) optional-value §

Explanation

Name . _An optional name assigned to this element or
group of elements. This name'defines a compound
section and appears in the CS Loader directive
generated by the Compiler as part of the binary
output. :

BASE ’ Specifies pooling of all instructions with refer-

ence to a separate base location,

T, Identifier ‘An optional implementation‘aid; If not present,
" normal conventions will be used. If T is present,
it specifies that the generated'instructions
covered by this pool statement should be refer-
enced transiently. The identifiér, if present,
specifies the AN/UYK-7 base register under which
this element may be allocated. This information
is passed on to the Loader but may be overridden
at load time. The identifier may be an EQUALS

tag or a positive integer constant.

P T
L

I1-7-17



M-5035

Optional Value

7.4.1.4 DATAPOOL Statement

The absolute allocation at which it is desired
that this element (or group of elements) be
located at load time. The Compiler passes this
information to the Loader. The Loader allows this

value to be overridden at load time.

The DATAPOOL statement instructs the Compiler to compile system data designs

with reference to a separate base location. This pool statement is considered

to be present in the major header by default.

If this pool statement is present in the major heéder.'it is applicable to ali
SYS-DD's not covered with a DATAPOOL in a minor header.

Format

name DATAPOOL (T, identifier) optional-value §$

Explanation

Name

DATAPOOL

T, Identifier

- An optional name assigned to this element or

group of elements. This name defines a compound
section and appears in the CS Loader directive
generated by the Compiler as part of the binary
output. ' | '

Specifies pooling of all data with reference to

a separate base location.

An optional implementation aid. If not present,

normal conventions wfll be used. If T is present,
it specifies that the data designs covered by this
pool statement should be referenced transiently.
The identifier, if present, specifies the AN/UYK-7
base register hnder which this element may be
allocated. This information is passed on to the
Loader but may be overridden at loéd time. The
identifier may be an EQUALS tag or a positive

integer constant.

11-7-18



M-5035
Change 2

Optional Value The absolute allocation at which it is desired
“that this element (or group of clements) be
located at load time. The Compiler passes this
‘ "information to the Loader. The Loader allows

this value to be overridden at load time.

7.4.2 EQUALS Statement

The EQUALS statement is used for two purposes: the assignment of numeric

values to symbols and the specification of relative allocation.

If the EQUALS statement is contained in a major header or systém data design,
the EQUALS statement applies throughout the system and the value will be
substituted wherever the name appears. If the EQUALS statement appears in a
minor header or local data design, the value will be substituted only through-

out the system procedure or data design which follows the minor header.

When the EQUALS statement is used to assign a numeric value to a symbol used
in the following procedures or data designs, the values used in the arithmetic
expression must’be either constants or values previously defined by an EQUALS
statement, or previously specified in a system data design within the system
being compiled. Arithmetic expressions appenriﬁg in EQUALS statements must be
simple, parenthesis-free expressions and are evaluated left to right without
precedence consideration. Relative allocation is accomplished with the. EQUALS

sta;ement where the right-hand side references data units.
Format
name EQUALS éxpression $
Exélanatibn

Name The name of a data unit, or a tag for a numeric

constant.

EQUALS Specifies that an allocation or value assignment
, follows.
Expression A simple, parenthesis-free expression repre-

senting a relative allocation or numeric value.

The basic arithmetic operations of +, -, * and /

I11-7-19



M-5035

are allowed.

The operands in this expression

may be data unit names, tags defined by previous

 EQUALS, and constants.

Table 10-1 summarizes the

rules for legal final results (left side of

'EQUALS) and legal intermediate results (binary

operations within the expression on the right

side of the EQUALS).

TABLE 7-1. EQUALS EXPRESSION SUMMARY
ONE OTHER RESULT ‘
OPERAND OPERATOR OPERAND (FINAL OR INTERMEDIATE)

Constant (tag) + - Constant (tag) Constant (tag)
Relative (data Constant (tag) Relative (data unit)

unit) - ' ' _
Constant (tag) Relative (data Relative  (data unit)

unit) :

Relative (data = Relative (data Constant (tag)

unit) ‘ unit) '

7.4.2.1 Defining a Tag

When neither the name on the left nor any of the names on the right of an

EQUALS statement are the identifiers of data units, the name on the left

becomes a tag for the numeric value represented by the expression on the right.

This tag may then be used in data declarations and dynamic statements and the

appropriate value will be substituted.

If the expression on the right involves

datakunits (relative locations) and the result is an integer value, the tag

may be used in dynamic statements or other EQUALS statements but not in data

declarations.

I11-7-20



M-5035

Example

FM ) Eewats 328 bl
AW 1 EQuaLS) 15%/ S el
MAG | |EQuia LS FW-laWeid 3 il il
cor b v b o b o |

Ll 1 l MU EEN l Lt Lo g
V,RB.L, |X FW, S _HW P

L1 Ll l i O I I l T l U T B U J

Lid i1 ll 1°0 1 L1 1[ Ll 11 LJJ,lJ*LJ L oLdg LJ

;;ﬁﬁTl Lgb(LJ1:cﬁ J‘g,igi J"bQAQi E$l La 111 l L e 1 14 41 J

The variable X is a 32-bit, signed, fixed-point data unit with 106
fractional bits and an initial value of 15. Execution of the SET state-

. ment assigns the value 30 to the variable X.

'7.4.2.2 Establishing Relative Locations

The EQUALS statement may he used to assign the location of a name relative or
equal to the location of another name. The definitions of these names must
appear within the same system element. The identifier used on the left side
of an EQUALS statement must be a data name for a table, like-table, item-area,
variable or switch. The expression on the right involves data unit names,

tags, and constants.

If a data name appears on the left side of the EQUALS-statément, no area for
the data definition is reserved by the Compiler. During the allocation pro-
cess, the allocation counters are not altered; the affected data definition is
removed from the normal nssignmunt sequence and is allocated relative to the
data name appearing to the right of the EQUALS. (If the data name on the right
does not appear on the left of an EQUALS statement, its data definition fo~

- ceives normal allocation and reservation of area by the Compiler.) A statement

label may not appear on the left of the EQUALS statement.

11-7-21



M-5035
" Change 3

Example :

M&.l.LJ_lé]ﬁMﬂﬁhLﬁﬂ_i_li,l ﬂh 11111 Ll;l I W T I Ll |
Gy lsewals A/ 1+ 4 éjunlnlluujLJ

Sporage is allocated for B, but is not reserved for A or C. A occupies

the same location as B,and C occupies the next consecutive memory location.

7.4.3 NITEMS'Statement

The NITEMS statement is a special case of the EQUALS statement as used to tag
- an identifier to a constant. Its purpose is to assign a value to a tag appear-

ing as the number-of-items specification in a vertical table.
Format

NITEMS (identifier) EQUALS value $

Explanation

NITEMS | Indicates a special case of the EQUALS statement.

Identifier A tag used on a subsequent table declarative to

represent the number of items.
EQUALS Specifies an EQUALS declaration.

Value An integer constant or another identifier tagged
o to a constant by a previous EQUALS statement.
The NITEMS statement provides an initial constant for the number of items of a vertical
table declaration using the tag and also provides a name to which another value may be
attached at load time; thus, the length of a table may be changed without recompiling the
program. As aresult no fields of atable whose length is determined by a NITEMS tag may

be preset.

7.5 LIBRARY RETRIEVAL HEADER STATEMENTS

Elements of a compile-time system may be retrieved from CMS-2 libraries and
Compiler output tapes as part of the input to the Compiler. These include

header and system elements containing source statements and compool clements,

11-7-22



M-5035
Change 5

which afe compiled system data designs, in a format internal to the Compiler.

The following paragraphé describe the control slaluménls needed to relrieve
source elements and compools. Additional control statements are provided for
the purpose of correcting source elements during element retrieval. These
library retrieval and correction statements may be used either in major or
minor headers or in place of system elements of a cumpile-time system. Library

features are described in Volume I, Section 4.

7.5.1 LIBS Statement.

“Prior to control statements that select elements from a library, the library

must be identified by a LIBS statement.
Format

LIBS internal-id (external-id) §

Explanation

LIBS ; The statement identifier.
Internél 1D The name of the library or Compiler output.
External D Optional. Some external identification (Such as tapereel

number ) which will be output to the compiling system
operator. If not given, the internal ID will be used.

When Compiler-produced outputs are used in library retrieval, the names CCOMN,
| CSRCE or COBJT must be used as the internal-id. The name used corresponds to
the one specified on the OPTIONS statement when the tape was produced by the Com-~
piler. Sources statements may be retrieved from CCOMN or CSRCE; compools from |
CCOMN or COBJT. If CCOMN is being used as library input and CCOMN has been
specified on an OPTIONS statement as an output file, the LIBS statement must include
an external-id other than CCOMN to distinguish between the two files.

7.5.2 Retrieval Selection Statements

Elements on a library are identified by name and an optional key. The key’ is required

if the elements selected have been given a key during library preparation. Element

keying provides a means of distinguishing between elements of the same name on a
library. |

I11-7-23



- M-5035

Change 4
The name of a sourc‘e element for retrieval is the name specified on the HEAD, SYS-DD
or SYS-PROC statement. The name of a compool element is the name of the last
SYS-DD used to create the compool. The name and the HEAD, END-HEAD, SYS-DD,
END=-SYS-DD, SYS-PROC and END-SYS-PROC statements define and delirﬁit a.n

clement during the retrieval process.

Retrieval of elements from a library is achieved through selection statements which
specify the desired elements by name and/or key. There are four types of SEL control
st;xtemenls_: SEL-ELENM, SEL-SYS, SEL-HEAD and SEL-POOL.
Formats

SEL-ELEM name (key), dep-option §$

SEL-SYS (key) 3 ‘

SEL-HEAD name (key), dep-option $

SEL-POOL name (key) $

Explzmation

SEL-ELEM, SEL-SYS, Statement identifiers.
SEL-HEAD, SEL-POOL

Name : Identifies the element desired for retrieval.
Key ' Required only if the named element has a key

on the library. If not required, the parentheses

- and key are omitted; the key is considered blank,

Dep-option Optional. Specifies the level of dependent
element retrieval. A dep-option may be one of

the following:

ALL retrieve all dependent
_elements

ONLY retrieve no dependent
elements

11-7-24



M-5035
Change 4

no-of-levels retrieve the specified levels
of dependent elements
No-of-levels is an integer or an EQUALS defined
name of an integer. These integers have the

. following interpretations: _

0 all dependent elements, equivalent
to ALL

1 no dependent elements, equivalent
to ONLY

2 this element and one level of
dependencies '

3 this element and two levels of

dependencies, etc.

If no dep-option is given, ALL is assumed. This
parameter is used only in conjunction with libraries
and is ignored when retrieving from Compiler

output tapes.

| The SEL-E‘LEM statemént causes the retrieval of a specific system element and
poésibly all its declared dependent elements; it may not appear in a major header.
The SEL-SYS statement requests the retrieval of all elements having the specified
key. All source elements are retrieved when the key is blank, The SEL-HEAD
statement causes the retrieval of the named major or minor header and possibly -
all corresponding dependent elements. The SEL-POOL statement .cause‘s the

retrieval of the named compool.
NOTE

SEL-SYS statements may be used in conjunction with
SEL-ELEM and SEL-HEAD statements. The order
of retrieval is dependant upon the order of the

elements on the library. A single correct deck (with
elements referenced in their library order) may be
used to update elements called by a combination of
SEL statements.

O-7-24A



1h4-5035 ;

Change 5

The SEL-POOL statement must appear in an unnamed major header of the cbmpile—
time system such that it precedes all user-defined identifiers except the sysfer‘n name,
Retrieval of a compool occurs immediately when requested. Retrieval of elements
specified ih one or more consecutive select statements commences when one of the

following conditions occur:

The Compiler detects the CORRECT statement.
The Compiler encounters a CMS-2 statement other than the LIBS or
select statements,

c. The number of consecutive select statements exceeds GO.

When retrieval is completed for a given set of requests and corrections, the
Compiler returns to the standard system input device for the rest of the user's

input to the Compiler.

~7.5.3 Correcting Elements During Library Retrieval

Source elements may be corrected during the retrieval process; compools may
not. The corrections do not modify the library or Compiler output tape itself,
but only the elements as they are passed to the Compiler. The name of the
element and the card image sequence numbers.‘as given in the library listing,
provide the reference points for making corrections in the form of deletion,
insertion or replacement of card images. The Compiler listings producéd during
a SOURCE output onto CCOMN or CSRCE also provide the same card image sequence

" numbers.
Corrections‘decks must be introduced by the statement:
CORRECT $

which indicates that one or more of the elements (that are to be retrieved as
directed by precéding SEL control statements) are to be corrected. Since
CORRECT is a CMS-2 statement, it may not start in card columns 1 through 10.
The CORRECT cardiis followed by correction controls (as described in Volume I,

Section 4) and CMS-2 statements. The correction deck is terminated by the

1-7-24B



M-5035
Change 3

‘Librarian directive /ENDCOR. Within a block of corrections, th2 order of the '

corrected elements must be that of the library or Compiler output tape.'

7.5.4 DEP Statement

For any given element of a compile-time system, the programmer may declare other
elements to be dependent or subordinate to the given element. Such a specification

of dependents may appear only in a minor header. An element may have a

maximum of 58 dependent elements. Any minor header source element is automatically

declared a dependent element of the associated system element.

The DEP statement has no direct effect on the compile process; the information is
simply passed through to the source or relocatable output. The dependent element
concept has bearing primarily upon the Librarian process and the relocatable loader.
In library retrieval, whether of source or relocatable elements, dependent elements
are retrieved automatically with the selected element unless otherwise specified by
the user. Furthermore, during relocatable loading, all declared dependent elements

must be slatisfied.

Format
 DEP name (key), name (key), ... $
Explanation
DEP Declares a dependent element.
- Name | The name of another element such as a system
" data design or system procedure.
Key - S An optional key value placed on the eklement.k

7.5.5 Key Specification

Various programmer selected outputs from the Compiler may be incorporated into
libraries. Elements on such libraries are identified by name and an optional key. The

name kof an element output by the Compiler is automatically defined as the name given _

II-7-25



M-5035
Change 3

on the associated HEAD, SYS-DD or SYS-PROC statement. Key specification' provides

~ the programmer with the option of defining library element keys at compile time.

Key specification may be included in the SYSTEM, HEAD, SYS-DD, SYS-PROC and
SYS-PROC-REN statements (see Section 4). This section describes the key specification.

Formats

(key)
(key)*S
(key)*O
(key)*C
(key)*L

Explanation

Key | Alphanumeric identifier of not more than four

characters.
S Specifies that the key is to be attached to a

source element.

o) o The key is to be attached to an object element.
C : , The key is to be attached to a compool element.
L The key is to be attached to a listing element.

More than one key may be specified on any of the applicable declarative statements; each
"(key)*elementétype" is separated by a comma. Key specification included in the SYSTEM
statement applies to all elements of the designated type output for the c,omliile-time system.v
Key spéciﬁcatioh included in the HEAD, SYS-DD, SYS-PROC and SYS-PROC-REN state-
ments épply only to outputs associatedwith that element. If system declared key specifica-
tions and an element declared key specification designate the same type of output, the

- element key is used. . Finally, if no output type is attached to the key specification, all output
types are keyed; if no key specification is given, all output elements are key‘ed with blanks.

[I-7-26



M-5035

7.6 MISCELLANEOUS HEADER STATEMENTS

7.6.1 SYS-INDEX Statement /
The SYS-INDEX statement may be used only in a major header. This statement assigns

a unique identifier to a particular index register. This register is reserved throughout
the entire system for use wherever the identifier is referenced.
Format ,
| SYS-INDEX n identifier $
Exglanétion
SYS-INDEX Specifies that a system index is to be declared.

N An integer specifying a machine index register
number from 1 to 5.

Identifier A unique identifier to which the index register
is to be assigned.

Example

SyYSHA/mMdEX A  XPOS s i

The index (B-register)1 is assigned the name XPOS throughout the system compile.

7.6.2 MEANS Statement
The MEANS statement provides a method of character substitution during the compila-’

tion process; no permanent.changes are made to the affected source statements.
Format

identifier MEANS character-string $

 Explanation

Identifier Indicates where the substitution is to be m‘;ide during
the compilation. The identifier appears in subsequent
statements (but never in another MEANS or EXCHANGE
statement). '

| MEANS B Specifies that a character substitution is to be
defined. -

II-7-27



 M-5035
Change 2

Character Strong - A string of characters that is to be used in
| place of the identifier. It consists of all ‘

‘characters between the term MEANS and the dollar
sign excluding the blank delimiter. It may '
include other identifiers, constants or CMS-2”
symbolic operators. Since the dollar sign
terminates the string, it may'never appear within
the string as a character to be substituted.

The maximum number of characters is 132,

If the MEANS is contained in a major header, it applies throughout the system
and the character string will be substituted wherever the name appears. If
the MEANS appears in a minor header, the string will be substituted only
throughout the system procedure or data design that follows the minor header.

Examples character-string

ATTR MEAMS, | A S do 3 L l~‘ Ly
COEFRF MEANS (X l—zn)l*n*nz . BTN N
\ VIR ,

v

character-string

The following statements illustrate the before and after effects of the

above character substitutibns for the purposes of Compiler interpretation:

IVIRIBILI INAMIEI L ATITIR & L1110 11111111 Before:
VKRR WAMES 1 1A 1321 1SL 100 bt L after:

Ti ¥ FL 181 L1 11111 Before:
xXP o ¥ After:

7.6.3 EXCHANGE Statement

The EXCHANGE statément provides exactly the same capability as the MEANS state-
ment, except‘that the specified character substitution appears in the source

output and Compiler listings.
Format

jidentifier EXCHANGE character-string $

11-7-28



kExplanation

Identifier

EXCHANGE

Character String

"M-5035
Change 1

Indicates where the substitution is to be made
during the compilation. The identifier appears
in subsequent statements (but never in another
MEANS or EXCHANGE statement).

Specifies that a character substitution is to be
defined.

A string of characters that is to be used in

' place of the identifier. It consists of all

7.6.4 UEBUG Statement

characters between the term EXCHANGE and the
dollar sign excluding the blank delimiter. It
may include other identifiers, constants, or
CMS-2 symbolic operators. Since the dollar sign
terminates the string, it may never appear
within the string as a character to be
substituted. The maximum number of characters
is 132,

Various program checkout statements, as described in Seqtidn.B, may be included

in the system elements of a compile-time system. These statements are proc-

essed by the Compiler. Apptopriate calls and parameters for the object-time

debug package are generated and included in the'object-cbde output only if the

user so requests via the use of the DEBUG control statement in the major header

element.
Format
DEBUG ' parameters $
" Exgianation
DEBUG

Parameters

Requests the Compiler to process those types of
program debug statements specified by the para-

meters.

Consist of one or more of the following names
separated by commas: DISPLAY, SNAP, RANGE,
TRACE, PTRACE, DELETE.

I11-7-29



M-5035 R
- Change 5
The DISPLAY, SNAP, RANGE, and TRACE parameters permit the compilation of the
corresponding types of source debug statements. If one of these parameters is not o
~ included in the DEBUG header, the corresponding statements in the System elements
are ignored by the Compiler. The PTRACE parameter specifies that code is to be
generated during the corhpilation process to cause a print message to appear during
execution before every procedure call. The DELETE parameter specifies that all
debug statements not activated by the other parameters are to be deleted from the

source output and listings.

7.6.5 CSWITCH Declarations

‘"The CSWITCH feature provides selective compilation of specified sequences of state-
ments within a compile ~time system. The CSWITCH selection declaration defines the
"on/off** setting. The CSWITCH bracket defines the sequences of statements. The

CSWITCH delete declaration instructs the Compiler to remove those sequences which

are "off, "
7.6.5.1 CSWITCH Selection Declaration

CSWITCH-ON defines the named CSWITCH seque’ncés to be compiled.

CSWITCH-OFF defines the named CSWITCH sequences to be ignored. This declara-
tion is optional; a CSWITCH bracket sequence whose name has not been defined by a
CSWITCH selection declaration is considered to be 'off. '

- Format
CSWITCH-ON name-1, name-2, ..., name-n $
CSWITCH-OFF name-1, name-2, ..., nhame-n $

Explanation
CSWITCH-ON Specifies that the listed groups of statements
are to be compiled.
CSWITCH-OFF Specifies that the listed groups of statements
_ are not to be compiled;
name-1, ..., name-n Names that identify the selected CSWITCH

groups of CMS-2 statements.

1I-7-30



M-5035
Change 5

A CSWITCH selection declaration may appear anywhere within a compile-time system
except within direct code and between a FIND statement and its corresponding IF data
statement. The CSWiTCH name follows the standard CMS-2 local/global conventions.

The 'on/off" setting of a CSWITCH name may be reversed at any time during the com-
pile by including the opposite CSWITCH selection declaration. If the setting of a global
CSWITCH name is reversed within a system procedure (locally) it is reset to the global
setting after the END-SYS-PROC has been processed. If a CSWITCH selection declara-
tion appears within a CSWITCH bracket sequence and reverses the setting of the CSWITCH
bracket namé, the reversed setting does not affect processing of that CSWITCH bracket

sequence.

7.6.5.2 CSWITCH Brackets

The sequence of statements between the CSWITCH bracket declaration and the END-
CSWITCH bracket declaration is to be compiled, depending on the 'on/off'" setting of
the CSWITCH name. The CSWITCH brécket may appear anywhere within a compile-
time system except within direct code and between a find statement and its correspond-
ing IF data statement.

Format
CSWITCH name $
END-CSWITCH name $
END-CSWITCHS $

Explanation

CSWITCH Brackets beginning of CSWITCH block.
END-CSWITCH Brackets end of a CSWITCH block.
END-CSWITCHS Terminates all CSWITCH sequences.

name - , A name of a CSWITCH block. Must correspond to

a name in a CSWITCH selection declaration.

CSWITCH brackets may be nested up to a maximum of 10 ("on" or "off'") with a last-on
first-off sequence. The name following END-CSWITCH terminates that CSWITCH name

M-7-30A



M-5035
Change 5 | SR L
sequence. If the CSWITCH sequence is "off," only CSWITCH warnings are diagnosed;
all other syntax checking is suspended until the END-CSWITCH bracket declaration
is encountered or the language b0undary structure has been violated. A CSWITCH
bracket declaration in a déta design (local, globai or auto), procedure, function
or system procedure must have the END-CSWITCH bracket declaration prioij to the
respective data debsi'gn bracket (local, global or auto), END-PROC, END-FUNCTION
or END-SYS-PROC declaration.
' : NOTE

A CSWITCH bracket declaration appearing in a header
(major or minor) will not be terminated until its cor-
responding END-CSWITCH bracket declaration, an END-
SYSTEM, a TERMINATE, or a monitor control card is
encountered. If the END-CSWITCH bracket declaration
is not encountered, the remainder of the source will not
be compiled when the CSWITCH bracket declaration is
"Off. " . \ '

7.6.5.3 CSWITCH Deletion

The CSWITCH delete declaration may appear only in a major or minor header, If
~ in a major header, all sequences of "off"" CSWITCH brackets following within the com -
- pile~time system are deleted from the listing and source outputs. If in a minor header,
all sequences of 'off" CSWITCH brackets through the end of the following element are
deleted from the listing and the source outputs. '

Format
CSWITCH-DEL $

7.6.5.4 CSWITCH Example

EXMP1 SYSTEM $

CSWITCH-ON CSWA1, CSWA2 $

~ CSWITCH-OFF CSWA3, CSWA4 $
END-HEAD $ |
SDD1 SYS-DD $

Major header,

1I-7-30B



CSWITCH CSWA2 $
CSWITCH-ON CSWB2 $

END-CSWITCH CSWA2 $

'CSWITCH CSWB2 $

®

CSWITCH CSWAS $
[ ]

®

END-CSWITCHS $
[ ]

END-SYS-DD SDD1 $
SPC1 SYS-PROC $
LOC-DD $

CSWITCH CSWAL1 $

.

END-CSWITCH CSWA1 $

CSWITCH CSWA3 $

END-LOC-DD $

N vy’

I-7-30C

M-5035
Change 5

CSWITCH CSWA?2 is set "on'' in the
major header; this sequence will

compile and CSWB2 will be set 'on. "

Statements from CSWB2 to CSWA3
will compile. Statements from CSWA3
to END-CSWITCHS will be ignored.

Will compile.

Will not compile. END-LOC-DD
will produce END-CSWITCH MISSING
diagnostic.




- M-5035
; ,Change 5
CSWITCH-OFF CSWA2 $ Will set "off"" CSWA2.

PROCEDURE PROC1 $

—— e

CSWITCH CSWA?2 $

Will not compile.
[ ]

END-CSWITCH CSWA2 §
.
.
END-PROC PROCL $
R .
.
END-SYS-PROC SPC1 $
' HED1 HEAD $
.
.
CSWITCH CSWAS $ \
END-HEAD HED!1 $
SPC2 SYS-PROC $

> Will not compile.
L ]

END-SYS-PROC SPC2 $
HED1 HEAD $ |
END-CSWITCH CSWA3 $ /

I-7-30D



CSWITCH CSWA2 $
END-HEAD HED1 $
SPC2 SYS-PROC $

CSWITCH CSWAL $

CSWITCH CSWA3 $

CSWITCH CSWB2 §

END-CSWITCH CSWB2 $
. N
[

END-CSWITCH CSWA3 $
o ‘

. | |
END-CSWITCH CSWA1 $

END-SYS-PROC SPC2 $
HED2 HEAD $
END-CSWITCH CSWA2 $
END-HEAD HED2 $
SPC3 SYS-PROC $

Will not
compile,
CSWB2 is
ignored even

if it is "on. "

II-7-30E

Will

compile.

M-5035
Change 5

will

compile

since
END-SYS-PROC
has reset

CSWA2

to "on "



M-5035
Change 5

CSWITCH CSWAL1 $

CSWITCH CSWA?2 $

All will compile. END-

CSWITCH CSWB2 $ CSWITCHS terminates

. the sequence.
o

END-CSWITCHS $

END-SYS-PROC SPC3 $
END-SYSTEM EXMP1 $

II-7-30F



‘M-5035
Change 5

7.6.6 EXECUTIVE Statement

The EXECUTIVE statement may appear in a major or minor header and is used to in-
form the Compiler that the program generation is for use in the interrupt (executive)
state of the AN/UYK-7. (The Compiler requires this information when generating
control memory references to index registers and accumulators). The Compiler

assumes generation for the task state in the absence of this statement.

Format
EXECUTIVE $
Explanation
EXECUTIVE Indicates code generation to be executed

in the executive statement

II-7-31



M-5035

Change 5

7.6.7 CMODE Statement

The CMODE statement may appear in a major or minor header and is used to in-
form the Compiler that octal is to be the implied mode for numeric constants
in the element or elements which follow. This statement provides for com-

patibility with other versions of CMS-2 in the method of expressing constants.

Format

CMODE $

Explanation
CMODE Specifies that the implied mode of numeric

consténts is to be octal.

When this statement is included in a header, decimal constants must be
followed by a D or must appear in parentheses and be prefaced by a D. Un-. v
modified constants or constants enclosed in parentheses and prefaced by an O

will be treated as octal constants.

Examples

;%;z;ggi;tf{_L_L_L;Zh(Léﬂaéili_%,1 1 gtf?ﬁﬂlh ol b
L 6L 311!‘-L7|?lllllllllllilllln

7.6.8 SPILL Statement

The SPILL statement may appear in a major or mihor header element.
Format
SPILL $
‘Explanation ’
SPILL ‘ Causes the Compiler to declare, at 6utput time,

every identifier within each affected system pro-

cedure as an external definition.

I1-7-32



M-5035
Change 5

This declaration primarily facilitates the patehing of resultant relocatable
object code by permitting the use of symbolic addresses (such as statement
labels, procedure names or data names) to specify the locations to be patched.

This declaration does not alter the normal scope of identifiers during the
compilation process. )

If SPIL,L appears in a major header, all local identifiers will be declared as external
definitions at output. If in a minor header, only those identifiers in the following

element will be declared as external definitions at output.

11-7-33/11-7-34 (Blank)






M-5035

SECTION 8

DEBUG STATEMENTS

A set of program checkopt statements provides the capability for flow analysis
and data display while an object program is being executed under control of the
operating system. One or more types of program checkout statements may be
included in the source input. When the corresponding statement types are
enabled, these statements generate calls to debug package routines (see
paragraph 7.6.4). Debug package routines may then be selectively activated

at program load time (see Volume I, Section 3 for usage of the CMS-2 Loader).

Therefore, the following three conditions must be fulfilled when one or more

debug capabilities are desired:

1. The DEBUG header card must be present
with the desired debug aid as a parameter.
This card instructs the‘Compiler to generate
the code for that aid when encountered.
1f the debug aid is not included in the
header statement, the Compiler will ignore

the debug aid and will not generate code for it.

2. The debug aid, as discussed in this section,
must be located in the source program deck.

3. The desired debug aid must be included as
a parameter on the $LOAD card (see Volume I,
Section 3). This parameter instructs the
Loader to set Monitor flags directing execution
- of the instructions associated with that debug
“aid. Absence of the debug aid parameter will
cause the instructions associated with that
missing parameter to be bypassed during program

execution.

11-8-1



M-5035

The various types of program checkout statements and the results of enabling
these statements at compile and load time are described in the following

paragraphs.

8.1 DISPLAY STATEMENT

The DISPLAY statement allows the contents (image) of specified data units to

be butput on the system output device in the appropriate format for that data

type. Optional value eonversion will be made if stated.

Format

name DISPLAY

Explanation

Name

Image

image V(w,y), image V(x.y),.f.. image V(x,y) $

Optionai.. An identifier for this state-
ment. If included, this identifier must
be followed by a period and is printed
with the data units and their contents.
This name is not a statement label and

therefore may not be referenced.

REGS for machine registers or the identi-
fier of a variable, table, subtable, like-
table, item-area, or field. This data-
unit reference identifies the image'on

the printout.

The output format for REGS, table, sub-
table, like-table, and item-area words

is an 11-digit octal number.

The data type for fields and variables
is the same as the data type specified

for that data unit in ils data declaration,

11-8-2



M-5035
Change 1

The format of the output is specified

below.
Data Type Format
A 120.8
I 120.8
B The integer O or 1
S The status constant
name
F E20.8
H Aw (w = number of
characters)
Vix,y) Optional. Specifies the magnitude for

conversion for a field or variable, The

magnitude must not exceed 15 bits.

Examples

D5, LAY, Wl}l 1X1g1 A i Ly

Assuming M is a 4-word table, X is a Hollerith variable, and Y is a

floating-point variable, the printout might appear as follows:
M 046732115043

362341023456

265123245675

145676343210
X DOG GONE

Y 0.34244632+07

I1-8-3



M-5035

9. Jalﬁ'rﬁn.bbl 15|P;L|A|Zi |T|ﬂ|B|L|( |A|L|f|¢|£!,|ﬁ|flq}|)1 Ll l L

Assuming FIELD is an arithmetic field, the printout might appear as
follows:

BETA

TABL(ALPHA,FELD) 432.06

5. TABLE MMy V2 i L b by
A s feEd I A0 Ul 0 43 F L il
JEMD-TiABLIE, Navy &y g L byl
cr v b b bl

]
LY T TN T TR e B

.

Ste AL P EE

LY l AR I S A l W W W T O I O | l BN S O | nl {

N I ] Ll L I Lt Ll l SN N B I A ln

9 ,8 6.5 .4 .3 .2 0

29 98 9790 99 54 99 52 51 5 Field
W JofofoJofifofi]o]o]o 14 Bit Magnitude
31 14 3 0 Fosition | Represented
20 -0.15625
21 | 0.3125
22 19,625
29 1.25
24 | 2.5
29 I 5
20 1 10
27 { 20
28 | 4
29 | 80
|
I
|

I11-8-4 -



M-5035

Assume that the field SPEED had bit settings as indicated in the
illustration above. To execute the display statement with the con-
version specification that bit 28 of field SPEED represents 40, the

output would be:
KNOTS
NAV(O,SPEED) 6.25

where 6.25 is the summation of the binary bit values of 25 and 23
(5 + 1.25) respectively.

8.2 SNAP STATEMENT

The SNAP statement reserves an area image equivalent in size and attributes
to the data unit. The first execution of the SNAP statement causes the contents
- (or converted value) of the data unit to be printed on the system output device
and stored in its reserved image area. Subsequent executions of the statement

cause a printout only if the contents of the data unit have chénged.
Format

name  SNAP image V(x,y) $

Explanation

Name o ‘ Optional. An identifier for this state-
ment, If included, this identifier must
be followed by a period and is printed
with the data unit and its contents. This
name is not a statement label and therefore

may not be referenced.

Image " An identifier for a table, subtable, like-

table, item-area, field, or variable.

The image output format is the same as
that described for DISPLAY (see paragraph
B.l)' ’

11-8-5



M-5035

‘Change 3
V{x.y) Optional. Specifies the magnitude for
conversion for a field or variable. The
magnitude must not exceed 15 bits.
Examgles '
1. B! LJLSJEIIIXLITIOI 1Yl l*l ﬁl rfl llllllllll
ALPHA. | SINAP X | 111‘11111:114L1L11]1

Ll sET 2 To ﬂmé MEﬂﬁﬁhﬂLﬁ&;ﬁJLlJl

it InR iz G 0 ITkes Gioma Iémmmm $ 11
BIETIAL 1 1 ISINAP T A BlLl(UmﬁE L@J)J #F 1 Ll

- GAMMAL | BET, & T ol # terr

This example illustrates several aspects of SNAP statement usage. In

—

this example, snap ALPHA is always executed, while snap BETA is executed
only when Z is less than or equal to 0. The IF statement serves only

to place a condition on the snap; deletion of the SNAP parameter on the
DEBUG header would render the IF étatement unnecessary. These same
considerations also apply to the use of the DISPLAY statement. (Note
that the debug statements should not be ¢ompounded.)

2. J4TABLE 2 4 % | b by

EroEnd coluRrsiE I8 Wl o4 L & L gl
EN Y= TIABLIE| (NAY, l§lll|L1111LlJ|llllLllllll»
(GRS, SNAPL NAV.(.0, COURSE) V(3607 $ 1111,

At the time the SNAP is first executed, assume the bit configuration
for COURSE is as follows:

« ofoJofo]i]ifo]o] (€

31 19 11 0

The output would then be:

CRS
NAV(O; COURSE) 33.75

11-8-6



M-5035

which represents the summation of the binary bit values, as specified

by V(360,14), of 23 and 2 (22.5 + 11.25 respectlvely) See paragraph

8.1, Example 3 for a detailed explanation,

8.3 RANGE DECLARATION

The RANGE declaration specifies that a data-unit value is to be examined to

determine whether it exceeds the values specified each time the data unit is

set.

This declaration can appear only within a data design.

' Format

data-unit-~name RANGE value 1...value 2  §

Explanation

Data Unit Name A variable or field (floating-point, fixed-point,
or integer).

Value 1 The upper limit for this data unit.

Value 2 The range separator, used only if value 2 is specified.
NOTE

Only one RANGE declaration is allowed
per field or variable definition, If
the RANGE declaration references a
field, the declaration must be placed
within the table brackets,

Examples

1 DIUSITANCE] (RANGE GiielereB &1 11 L1110 Ll

Each time data is set into the'data-element DISTANCE, the range is tested.

If at any time the value is outside the range of 64 to 8, a prlntout to
that effect is made similar to the following:

- DISTANCE EXCEEDS RANGE AT CALC + 2

where CALC is a statement label and the statement causing the range td
be exceeded occurs two statements after CALC. (For the purpose of

statement counting, both the THEN separator and the $ termlnate a state-
ment . )

I11-8-7



Lo e &1 111 L Ll 11 L1

o L1l L
Lo gy lreBeE TABL] 2 b F gy g 1 ]
L lFEnd FRERD T 05w A M %
vt 1L FELD RANGE 36101101000 8l 1 0]
L EMOTABLE (TABL & Ly a1 |
Lia i lEwdmtoe =D & v b |
L1 a1l [PiRoGEDMRE DuMPROC & || 11 11000
Diumitidier 1 IvimRiy Ty wieirn N riaBiey 8§l 00|
Ll sE A Gl ALY Tier X ph Y # |
L g JEMd P M 16 v b

If any occurrence of field FELD in table TABL is within the range, no

message is printed out.

-printout might appear as follows:

If FELD is outside the range of values, the

TABL (4, FELD) EXCEEDS RANGE AT DUMLI+1
i S S Y S A B  JLoc- DD, ﬁ% lvll Lot 111 J [ B 11
11.111‘1‘1IIV1R18LLlnX11:1,|'5.11u|_1$11lJlllllllllLll
jLJJlllllle[BlLl Y, LAII/I‘]!H[_JBI 1$141|111||111|_1
_L)_(Lulnnnlklﬁwthn...?.& &IIIILJIJIIJJ IllllLl
llllJIIIIFWIbl’lLlolCI-L)IbIlblljllIlIIlJlllJllli
Ll PROGEDURE PROCZ F ]
Ladd, lser % o To Y+ $ o b

If X is greater than 38, the printout might appear as follows:

X EXCEEDS RANGE AT LAB1+0

11-8-8



 M-5035

0.4 TRACE STATEMENT

The TRACE statement generates a line to be printed on the system output device
for each executed statement that occurs between the TRACE and END-TRACE state-
ments. This line identifies the flow of execution by the most recent statement
label plus an increment of statements relative to this label. The Compiler

" counts statements whenever a $ or THEN is encountered. The statement immediately

following the TRACE statement should be labeled.
Format

TRACE $

dynamic statements

END-TRACE  $

11-8-9



L|1111T1R1MC|§5111111I14L‘L;LJlﬂlllxnnLL‘ll‘Jnir
ﬁhA|iqg| ﬁiEiT1 Z| T0 X I)ﬂ qu‘i [ l‘n [ ! N O 11
|,
|
l
|
|
|
|

LllLllSJElTllYliTnollonn$lnllllnnln_] I |
Ll BULE . EQ, .Z, T.HEW, &0 TO 13431 F*l
i SETT X Te 00 L L
BBi . FIND TABL, (nI; FIEILIIDI 6 X I
Lii L 1UF DATA w.omnolu._@ THEM Gloirio) (€ $i
sEd Y o Yl @ bt
i RESUME, BBA &S L
Gy SEM Zmo XM L v b v b
L1l L IEND-TRACE @ L b by

-
—
-
-
—
-

Assuming that Y is O and there are two occurrences of X in field FELD -

of table TABL, the printout might appear as follows:
AAl + O
AAl + 1
AAl + 2
AAL + 3
BB1 + 0
BB1 + 1
BB1 + 3
BB1 + 4
BB1T + O
BBl + 1
BBl + 3
BB1 + 4
BBl + 0O

BB1 + 1

11-8-10



M-5035

BB1 + 2
CCl1 +0

If in the above example Y is not O and there are no occurrences of X
in field FELD of table TABL, the printout might appear as follows:

AAL + O
AAl + 1 -
AAl + 2
AAl + 4
BBl + O
BBl + 1
BB1 + 2

CCl1 + 0

8.5 PROCEDURE TRACE (PTRACE)

The PTRACE parameter on the debug header provides a mapping of procedure

linkages by printing a message for every CMS-2 procedure call encountered.
Format
PTRACE

Example

| DEBUG PTRACE $,

Printed output shows the current procedure name and the called procedure

name at each procedure call as follows:
PROCEDURE  xxxxxxxxxx CALLING PROCEDURE YYYYYYYYYY

where XXXXXXXXXX is the current procedure being executed ahd YYVYYYYYYY

is the procedure to be executed.

11-8-11/1II-8-12 Blank






M-5035
Change 2

SECTION 9

DIRECT CODE

Direct code statements, or symbolic machine code instructions, are operations
which generally result in the generation of a single machine instruction.

The CMS-2 Compiler proéesses as direct code, a subset of the language defined
for the CMS-2 Assembler (see Sections 11 and 12), This direct code may appear
in both data designs and procedures, but it must be properly bracketed and |

must follow a specific source card format,

The remainder of this section describes the direct code statement format, the
various directives available, and specific processing conventions. 1In
addition, this section describes the differences between the direct code
subset thatvmay be embedded in a CMS-2 program for processing by the CMS-2
Compiler and the full assembly ldnguage capability available through the
CMS-2 Assembler.

9.1 DIRECT CODE STATEMENT FORMAT

When one or more direct code statements appear in a CMS-2 source program,
they must be bracketed between two CMS-2 statements provided for that purpose.

These statements are described below.

DIRECT $ Must immediately precede a sequence of

direct code.

CMS-2 - . § Must immediately follow a sequence of

direct code.

The format for direct code statements apprearing in a CMS-2 program is slightly
different from that accepted by the CMS-2 Assembier. The format is conéistent.
however, with that of CMS-2 soufce cards in that card columns 1 through 10 are
strictly for programmer use and are ignored by the Compiler, The normal

direct code format consists of three fields delimited by spaces and commas.
Periods indicate the end of a coding line. Direct code statement is limited

to one card. The general card format is illustrated below.

11-9-1



‘M-5035

Format

CARD-ID label op-code operand

Explanation

Label Instruction label. Always starts invcolumn 11
of a coding line. A space in column 11 indicates
no label. A label may consist of at least one
but not more than eight alphanuméric’characters;
the first character must be alphabetic. It must
not be followed by a period.

Op Code Separated from label field by at least one space,
May contain a mnemonic function code. A space
signifies the end of the op-code field.

Operand  Contains the elements of the function specified
- by the op-code. Operand fields are separated by
- commas. Line termination and comment fields are
acceptable and are indicated by a period followed

by a space.

9.2 DIRECT CODE STATEMENT REPERTOIRE

The CMS-2 Compiler will accept the full AN/UYK-7 machine instruction repertoire
as defined in Appendix G. A more detailed description of these instructions

may be found in Section 12,

In addition to processing the symbolic machine language repertoire, the CMS-2
Compiler will accept several Assember directives and a variety of expressions

and constants as operands in the direct code statements.

9.2.1 Direct Code Directives

The following items define the CMS-2 direct code directives that are processed
by the CMS-2 Compiler. ’

11-9-2



ll

M-5035

ABS

Format

label ABS 1label

Exgianation

ABS Translates compile-time location counter value into an

object-time absolute address.

BYTE
qumat

BYTE el.e2

Explanation

BYTE Redefines the embedded character size and number of
characters placed in an object word for direct code
character strings occurring subsequently within the

same CMS-2 element.

e, The number of characters to be packed into an object word.
The size of the character field in bits, not to exceed
16 bits. ‘

CHAR

Format

CHAR CI' el'.c2' e2“"cn' Cn

Explanation

Ci . - The octal code (000 through 377) that is to be redefined.

ei The redefined value where current character ei becomes

new value ei.

11-9-3



M-5035

Change 2
4. DO
Format

label DO e, direct-constant—entry

Explanation

e An integer defining the number of times the direct constant
is to be generated. If a label is specified, it shall
apply to the first word of generated data. The direct

constant entry must not contain a symbol.

5. FORM
Format

label FORM el.ez...en

Explanation

FORM Describes a special word format specified by the
' programmer. The word format may include fields of
variable length, where the length in bits of each field

is user-defined.

e. ~ The number of bits in a user-defined field. The total
number of bits must be equal to or less than 64 and
the number of such subfields limited to 16. €; must be

less than 32.

The FORM directive may be implied. The format for utilizing the implicit
FORM is illustrated below.

Format

Nl' N2""Nn

11-9-4



M-5035
Change 1

Only constants are accepted in Form reference sub-fieldé with the exception

of a name appearing in the last sub-{icld where that sub-ficld size is defined
as 10 bits or greater. When a value appearing in a Form reference sub-field
requires more bits than was defined in the Form declaration the leftmost bits

of the value will be truncated when packing the resulting.constant.

Explanation

Ni Values to be packed into fields of word. The Compiler

determines the number of bits required to contain each
value by dividing the word into n fields and forming

the word accordingly.

6. RES
Format

RES e

Explanation

RES Adds the value of the single expression in the operand

field to the current location counter value.

e An expression that must result in a determinable

positive value.

11-9-5



-

M-5035
~ Change 1
9.2.2 Constants
Constants accepted in direct code statements are:

Decimal numbers.
Octal numbers.

[JCR I ]

Floating-point numbers.

-
—
.

Double-word-length octal numbers.
5. Double-word-length decimal numbers.
6. Character strings from one to eight characters in length.

7. Scaled decimal numbers.

Constants may be used in direct constant entry statements and in direct code

expressions. The following paragraphs define CMS-2 direct code constants.

9.2.2.1 Decimal Numbers

A decimal number is converted to its binary equivalent and used in its binary

form for all computations. The integer may consist of 9 digits if single

word and 18idigits if double word specified. The sign of the number is the
leftmost bit of the final object word. The first (most significant) digit

of the coded decimal number must not be 0. If the decimal number is immediately

followed by the 1etter D, a two-vord binary equivalent will result.

. Example
o2 1 1e PIRODMCIES peinal poeooio00éd 1111 |

o6 e PIRODUCGES 99T AL (3NN TS ]

S e PIRODUCIES oCTIAL 1999990919 /899 | 11|
16,5229 78,51D, jo) (PRIODUICIES A TIWO-INIORD VA LiE |
Lt b Eeunay Mo 083t hISISIANY ]
Pir gl ggerAMDd L ereeeodoe000 gl

IT-9-6



M-5035
Change 3

9.2.2.2 Octal Numbers

An octal integer is specified by preceding the first (most signficant) octal
digit with a O, Each character of the octal integer must be an octal digit
(0 through 7). Rules for evaluation are the same as for decimal numbers. An
octal number may also be followed by the letter D to obtain a double-precision

result.

Example

A3 e (PRODUCIES oo oal! 3 | i a1 aal
—O356 o PlRoPucES 37172727,777440 11 1 a0
+10176543411011,2.3D e \PIRAODUCIES 361513210143 1 |
pavtaar il rae 1AND g oR0l0010000011 |

9.2.2.3 Floating-Point Numbers

A floating-point number must be coded as a single word decimal mixed number
consisting of an integral part and a fractional part, and must include the decimal
point. Spaces are not allowed within the number. The number is converted to a

64-bit floating-point number, formatted in memory as follows:

31[30[29]28]27[26{28]24]23]22]21 [20] 0] is]s7[re]is]iafia] 2] v ifiof o e {7 ie s fa]3]2] o

Sign of characteristic Characteristic

so]u[zo[zr[ulzs]u]n[zz]i']zo]n]n[ ir[is]is[iafisfrafrifio] o7 fa]sfafs]2] o

S , Mantissa

where S is the sign of the mantissa.

11-9-7



M-5035

Example

i S 06 | |+ PIRODUCIES] 0000000002611 1111111
it der AND 4246499900 1]
m 25Kt | |1 \PRODUCEY 100000000012161 1 111111l
ot e ANMD | ZE3SSARINTT |
#1010 | 4 | | PRODUCE S| 00000000009 1 | |11
Ll AN ] 1024099000090 g )]
SO g e ARODIUCES| 90000009905y )
Lot e AMD L L RTTRARINTAT g gy g ]
Lmied g e (BRODUCIES 377700076 0 (0 0]
NN l AMND 1 1] k6306304631 11 10111
The * + and * - operators are accepted when declaring’a floating-

point constant.

9.2.2.4 Character Strings

When a + precedes a character string, the Compiler regards the string as a
constant; therefore, the number of characters between apostrophes may be from
one to eight. One to four characters yield one computer word; five to eight
characters yield two computer words. Characters are packed, right-justified,
within the generated words with leading binary zeros as required to pad the

word. The implied code for character strings in ASCII.

Example
11'1 VAL IRE l L Lo} 1P|&°|D|UIC ES 1/10/&01415 HWios 1110l
' AIC RE PR 000 4,152

HHUHALJH‘; | 11111111 1111015140124415&0151'111117

17-9-8



M-5035
Change 2

9.2.2,5 Scaled Decimal Numbers

A decimal or floating-point number followed by a */N shall be handled by the
Compiler as a scaled, fixed-point value. The form of scaled numbers is shown

below:
Format
N1#*/N2
Explanation
N1 May be a decimal or floating-point number.
N2 | Shall be a decimal number,

The converted decimal number shall be aligned to a scale value indicated by

N2’

Example

9.2.2.6 Scaled Octal Numbers

An octal number followed by a.*/N shall be converted and shifted as specified
by the scale value following the "*/" indicator. The compiler will not test
the scale value for overflow but will simply perform a left shift circular

or right shift sign fill by a number equal to the scale value.

7

L]

- I1-9-9



M-5035
Change 2

»

Format
N1*/N2

Explanation

N1 Scaied octal number

N2 Decimal number

If N2 is signed negative, N1 shall be converted and shifted right N2 bits.
If N2 is unsigned or positive then N1 shall be converted and shifted left
N2 bits. |

Example

crrtr it
HEEEEEE
Ll

9.2.3 Data Expressions

The data expression forms that are accepted by the CMS-2 Compiler are defined

below:

1. Constant (as defined in paragraph 9.2.2).

2. Numeric tag (identifier assigned a value by equals statement).

3. Operandl—opefator—operand2 (operand2 must be a constant in this form).
The operators allowed within data expressions are:

1. + (addition)

2. - (subtraction)

3. * (multiplicatibn)

11-9-10



M-5035
Change 2

4. / (division)

Mixed mode constants are not permitted in data expressions.

9.2.4 Literals

A literal in CMS-2 direct code is defined as a data expression contained

within parentheses.

Examples
(56)
('CAT")
One or two object wdrds result from evaluation of a literal. Data expressions

allowed in literals are defined in paragraph 9.2.3.

\

9.2.5 Direct Constant Entries

The CMS-2 Compiler accepts data words declared in direct code that result in
one or two generated computer words. Character strings may require more than
two words. These direct constant entries shall consist of declared constants

as defined in paragraph 9.2.2, character strings, or data expressions.

A + or - sign in the operation field followed by one or more subfields in the
operand field signifies that a constant is to be generated. Whenever a + or
- sign appears as the first character of the operation field, any number of
spaces or no spaces may separate the sign from the first operand. Subfields
are separated by commas. In generating constants, the Compiler uses the size
of the object computer word. If the operand field contains one subfield, the
signed value of the subfield is right-justified in the generated word. If
the operand field contains two subfields, two equal-length signed subfields
are generated with the values right-justified within each field, and so forth.
The first subfield must be signed. Successive subfields may optionally be
signed. The absence of a sign implies a positive value. If variants of this
implicit equal subdivision of data words are required, the capabilities of
the FORM directive may be used to derive the desired format., This is
accomplished by reférencing the FORM label in the operation field.

I11-9-11



' Meéo35"
Change 2
Examplés
1Jﬁ4ﬁ&&ﬁ11JllJlﬂlﬁﬂqmmqaﬁlmﬂﬂ%nﬂhﬂﬂﬂﬂllllw
Byt b1- 28 1o PRODIUCIES, (G107 6644743 (| | |

1f the operand field contains just one subfield immediately followed
by a D, or if the constant is a floating-point number, the Compiler .
generates a double-length constant in two successive computer words.
The first generated word of the double-length constant will contain

the least—signifidant bits of the result. The letter D in this

context is only meaningful when appended to a numeric constant.

2. 1+1 1’101“q Lol .lPlRlO}DlulclElsl Aoblolqolqul‘" Ll e b1 J
Ll g itiocoaoeeeell ;i l
=116:384D, lPRODuCES ITNTN7ITTTN ) 11000
NI ETELE YRR AN A T TSR
9234, 561716,543240, 1o |AROPHU GES, 1314516765434 1]
Lo byvrrga g i g laepeaeged 4

Character strings longer than eight characters may be entered as a
direct constant entry., No character string in CMS-2 may exceed 132

}

characters.

9.2.6 Instruction Expressions

The CMS-2 Compiler recognizes and processes simple expressions appearing in
the operand field of direct code instructions and in direct code directives.

Expression forms allowed are:
a. Symbol (label, tag, $).

b. Symbol + constant - If symbol-constant is used and the symbol 1S
externally referenced, see note at end of section 11.3.3.12.

11-9-12



M-5035
Change 2

c. Constant + symbol.
d. Constant,
e. Literal.

A constant used in an instruction expression must be limited to a decimal or

octal integer.

The $ symbol is used only to reference the Compiler location counter. The
contents of the location counter are accessed by coding the symbol $. §

signifies that the contents of the location counter are to be substituted in
the expression.

Example

ho i Br2 ca et a g by,

An alphanumeric label may be used within an expression. The label
must conform to the rules for labels as described earlier; for
example, it must not exceed eight characters; it must consist of
alphabetic (A through Z) or numeric (0 through 9) characters and
the label must begin with an alphabetic character.

When the expression is evaluated, the value allocated to the label is sub-
stituted in the expression. Numeric constant values may be equated to
labels by the CMS-2 high-level declarative EQUALS for use in direct code
expressions. The high-level EQUALS statement allows simulation of the

parenthetical static expression capability in direct code.

An identifier that has a value assigned by an EQUALS statement is defined as
a tag. o

Example

WAL FQUALIS 20 By Lyl

The tag VALI can be used in a simple expression carrying an asso-

ciated value of 7.5 when the expression is evaluated.

I1-9-13



M-5035
Change 2

A symbol defined'by a high-level MEANS or EXCHANGE statement may be referenced
in direct code. However, the character string to be substituted for the
symbol in the direct code is subject to the following restrictions:

a. The character string may not contain a comma or a period (i.e., it

must represent a single term of a single4direct code statement) .

b. The character string must be equal in length to the symbol it re-
places in direct code.

NOTE

Character substitution for a symbol defined in an EXCHANGE
statement will be performed for the purpose of statement

interpretation. However, no source card or listing editing
is performed. ’

Example

X MEANS BY Bl
PARAM ENCIHANGE TAGLL & L 11 1)

ittt

|
td et iaald
¢ | ]
NN BN NN NN NN !
ittt b s e s b et by s g s gl
Lttt b it b s v b v d
lbj"qnlslc'lrrﬁlelllllllJllllllllllJl»lllllLLJ
LBy DXaPARAM K (el 10y i il
CMS=2 S |yl THEEEEEN|

‘-
-

T
-
-
pr—

The direct code statement would be assembled by the Compiler as:

- LB B4, TAGll, K3

11-9-14



M-5035
Change 2

9.3 PROCESSING CONVENTIONS

The following conventions apply when processing direct code statements appear-

ing in CMS-2 programs:

a,

Direct code statements, bracketed by DIRECT and CMS-2 may appear
within the following source program elements:

1. Procedures (PROCEDURE).
2. System data designs (SYS-DD).
3. Local data designs (LOC-DD).

The rules established for referencing labels within or from
outside procedurés and data designs apply to direct code
segments, The direct code statements assume the same refer=~
encing and allocation characteristics as the program element

within which the direct code resides.

A direct code statement may be declared to preset a data unit
defined in a high-level declaration. 'The direct code statement
must be labeled with the duplicate of the identifier of the
high-level declarative and must not precede the high-level
declaration., It must be given within the same data design.

Any direct code following the preset of a high-level data

unit is assumed to be part of that preset unless labeled ‘

_ by an identifier duplicating another high-level definition.

I1-9-15



M-5035
Change 2

Example

EXAMPLE | BY 52D 8L
1_111LH:I]V:R@L;NMH]A{]&:11 TR EEENS

coa e b v b b
Lt b g b by a1
Lo DIREET F ol it
LJIllilllJlnlllJlllJ4JJllf11LllngLLl

L lllllllll”lﬂﬂlijl 1"'1‘1'2‘1‘; | 14L11LL11’;L1111

Ll a3 1141 l 1‘1 G T U O O S | Ll ety l [ U N N |

Ll bt

b— e A
-
-

[ 4 .
Lt b i1 114 l 1‘J J 1 b1 111 l [N [ [ S |

: MS — ,
| S T O A N I I | 1 Li 11 1°11 l L et 15 l | S N T U I A |

Ll oiaal L;JEMQ 121 15‘ :Drbl i J&)QAJM!PnLJELLn!l Ll

The computer word to which the variable NAMl is allocated will be
preset to the decimal number 625 declared in the low-level direct

constant entry.

c. Direct code segments may reference other direct code segments
~resident in the same SYS-PROC or SYS-DD.

d. CMS-2 high-level statements may reference direct code statement
labels (GOTO or SWITCH only).

e, CMS-2 high-level statement may not reference data units defined
only by direct code statements,

f. Direct code statements may reference data unit names (symbolic
addresses) defined by high-level declaratives. K-designators
must be coded explicitly.

11-9-16



M-5035

Direct code statements may reference high-level statement labels.

The rules of symbols, operator priority, and elements established
for direct code statements are independent of those applicable
to high-level statements.

The following mnemonics, used to reference computer registers,

are recognized by the direct code processor:

1. Accumulators: AO, Al, A2, A3, AﬁgsAS, A6, AT.

2. Index registers: BO, Bl, B2, B3, B4, B5, B6, BT.
3. Base registers: SO, S1, S2, S3, S4, S5, S6, ST.
4, Quarter-wofd memory: Ql, Q2, Q3, Q4.

5. Half-word memory: L, U.

6; Whole word memory: W,

7. K-designators: KO, K1, K2, K3, K4, K5, K6, K7.

Direct code half-word instructions are packed together into one
word where possible. Labeled half-word instructions will

always be assigned to the upper half of the word. The following
tables illustrate the method for packing half-word instructions

(HW = half-word instruction, FW = whole-word instruction):

Instruction Memory Assignment
1. Nonlabeled:

HW HW

FW FW
HW '

© HW HW
HW o

11-9-17



M-5035
Change 2

j. 2. Labeled:

FW L FW

HW o
} HW HW

HW

FW ‘ | FW

HW ' HW
LABLI  HW LABL1 HW

FW  FW

HW - HW
LABL2  HW LABL2 HW

LABL3 HW LABL3 HW

k. Spaces appearing between elements in operand fields of direct
code statements are ignored except where specifically defined
as a delimiter, as illustrated below:

MOD + RAD Spacés ignored.

M OD + R AD Illegal because of spaces within
element itself.

1. Labels of direct code in system data designs are treated as
global labels by the Compiler,

m. When referencing procedures declared by high-level statements,
the direct code instructions must be the same as the instructions
generated by the Compiler for a high-level procedure call.

n. A direct code statement that contains an explicity coded s-

designator (base register) may contain only a constant in the
Y-field.

Table 9-1 summarizes the values and symbols that may appear in direct code inp-

struction subfields and in direct constant entries.

1I-9-18



6l-6711

Table 9-1.

Instruction Sub-field Valid Forms

a y k b s ak af4 sy m/b 1 w p e DCE Lit

1) Octal digit . X X x X X

2) Q (1-4) X X X X X

3)."L"(=1) X X x X X

4) "u" (=2) ’ X X X X X

5) "W (=3) X X X X X

6) A, B, C, D, H, K,

S (0 - 1) ) X X X X X ;

7) NTAG (=0 - 7) X X X X X

8) MEAN/EXC (2)-6) above) | X X X X X

9) Integer 5177 X X X X
10) NTAG (=177) X X X X
11)' "ALL) (= 177777) X
12) C(0 - 17) X
13) Integer S177777 X
14) NTAG =177777 | X
15) Y operand $ Y X

16) Integer =77 X

17) + Integer or Integer X X

2 abuey)y
GEOS-NW



0z2-6-11

Table 9-1. {(continued)

y k b s ak afd sy m/b 1 w p e

DCE Lit
18) Intéger + Relocatable
Identifier X
19) Relocatable Identifier
+ Integer X
20) Relocatable Identifier - X
21) $+ Integer X
22) Literal: (Constant,
NTAG, data express.) X
23) NTAG X X X X
24) MEAN/EXC tag X
25) Constant x X X
26) Const +
' &
Const (no mix) X P X
27) Char String S132 chars X
28) - Integer <37777 (BCW) X
<4000 (BCWE) x

RTAG - Identifier equated to idertifier.

NTAG - Identifier equated to a value.
e - data expression
Identifier - includes RTAG

¢ 9bueyy

GEOG-W



M-5035
Change 2

The following items. identify additional capabilities available under the CMS-2
Assembler which are not included in the direct code capability of the CMS-2
Compiler.

1. Addressing section declarations in the label field are not
allowed (direct code is compiled under the existing high-level

allocation environment).

2. Macros and related directives are not allowed (including macro

name and statements, paraform usage, and macro reference lines).
3. Library retrieval from direct code is not allowed.

4. Labels of direct code externalized by postfixing an asterisk

to the label are not allowed.

5. The CMS-2 Compiler does not process direct code statements

containing expressions using parentheses.
6. The following directives are not acceptable as direct code:
a. END
b. SEGEND
c. LINK (can use the high-level EXTREF statement instead)
d. Loader directives (*®AC, *CS, etc.) |
e. LLT
f. LCR
g. LIST, ELIST, and NOLIST

h. ODD and EVEN

i. PXL
j. WRD
k. RF$

: 1., EQU (can use the high-level EQUALS statement instead)

7. SETADR and LIT literal directives are not allowed (the Compiler

controls when and where to dump the literals).

11-9-21/11-9-22 B)ank






M-5035
Change 3

SECTION 10

COMPILER OUTPUTS

A variety of hardcopy or listed outputs is available from the CMS-2 Compiler.
The method of selecting these various outputs using the OPTIONS statement is
described in Section 7. The purpose of Section 10 is to explain the various

listing formats, page headers, and column descriptors.

10.1 SOURCE LISTING FORMAT

The source listing provides a record of input to the Compiler. This listing
consists of a page header for each listing page containing the element name

and number, the date of the compilation and a page number.

If the source listing is requested by a SOURCE option and no OBJECT option,

_the format is as follows:

T

Column Heading Meaning
¥ CARD ID Columns 1 through 10 of the card
image. ‘ '
SOURCE STATEMENT Columns 11 through 80 of the card
image (the CMS-2 source statement
field).
ERROR CONDITION . An error message for any syntax

errors detected in the source state-

ment.

If the source listing is requested by a SOURCE option and an OBJECT option
(no SM), the bddy of the listing consists of several columns, the contents of

which are explained below.

Column Heading Meaning

ERR " Used to indicate errors that occurred

in the adjacent source statement. A
list of these errors, their meanings
and identifying numbers that appear
in the error column is given in

Appendix E.

11-10-1



M-5035
Change 3

AC
LoC

LABEL

STATEMENT

CID

SID

CR

10.2 SOURCE AND MNEMONIC LISTING FORMAT

Base register numter,
Address counter number.

The relative memory location (in
octal) of the first instruction or
data word generated for this state-

ment.

- The label associated with the source

statement or the first 10 characters

of the input statement.

A character field containing the
remainder of the CMS-2 source state-
ment.

Four characters of the card ID
(columns 1 through 4).

Four characters of the card ID
representing the statement number
(comumns 5 through 8).

The remaining two characters of the
card ID.

The source and mnemonic listing (SM) provides a record of the source

input to the Compiler as well as a side-by-side mnemonic and octal representa-

tion of the machine instructions generated for the source statements. This

listing consists of a page header for each listing page containing the system

procedure or system data-design name, the date of the run, the number of the

element being compiled, the page number, and the type of element. The body

I1-10-2



M-5035

of the listing consists of several columns, the contents of which are

described below.

Column Heading

ERR

AC

LoC

FUNCTION

LABEL

- STATEMENT

CID

Meaning

Used to indicate errors that occurred
in the adjacent source statement. A
list of these errors, their meaning,
and identifying numbers that appear
in the error column is presented in

Appendix E.
Base register number.
Address counter number.

The relative memory location (in
octal) of the data or instruction
(13 bits), or the operand of the

instruction.

The first half of the data or
instruction containing the operation
(upper 16 bits left-adjusted).

Flag for external reference (R) or

transient reference (T).

The label associated with the source

statement or the fi:st 10 characters

of the input statement.

A character field containing the
remainder of the CMS-2 source state-

ment.

Four characters of the card ID that
appeared on the card associated with

the statement (columns 1 through 4).

II-10-3



M-5035
Change 5

SID Four characters of the card ID
representing the statement number

(columns 5 through 8).

CR L The remaining two characters of the
card ID. May contain a flag (R)
in column 9 if the source statement
references a reserved word (seé

Appendix D).

10.3 LOCAL CROSS-REFERENCE LISTINGS
The local cross-reference (CRL or CR) listing provides a record of each symbol de-

fined in the system element; the listing shows the location of each symbol and all re-
ferénces to that symbol. Also included in the list are global symbols defined in other
elements but referenced within the currentv element.' If no CR or CRL is requested, |
only unallocated identifiers and references are listed. The listing contains a page

. héader at the top o each page. The header shows the name of the system procedure,
the date of the run, and page number. The body of the listing consists of several

columns, as follows:

Column Heading Meaning
AC . v Address counter number.
- S : Base register number.
LOC Gives the relative ldcétion. in octal,

of the following label. A location
of all sevens denotes an allocation

error.

LABEL The label to which the references
apply. The labels are printed
alphabetically. The symbol 'xkseskuk
denotes a generation error in refer-

encing an identifier.

11-10-4



M-5035
Change 5

EXT This column identifies the label as

being defined as local or external to
the system procedure (blank means
local to the system procedure, D
means external definition, M means
local, implicitly MODE defined in
the system procedure, R means
external reference, T means
transient reference). If not blank,
the label will also appear in the

global cross-reference listing.

REFERENCES A set of octal addresses within the system
procedure that shows the location of each

instruction using the preceding label. The
word NONE appears if there were no
references to the label. The references are

given in the same format (AC S LOC) as the
location of the referenced identifier.

10.4 GLOBAL CROSS-REFERENCE LISTING
The global crossfr_eference (CRG or CR) listing provides a record of each global ele- I
ment defined in the system, showing the name of each system element that referenced

it. The global cross-reference appears at the end of the compile.

The listing consists of a header at the top of each page; the header contains the name
of the system, the date of the run and the page number.

The body of the listing consists of several columns, as follows:

Column Heading Meaning
EXT . The label is an external reference.

The definition is presumed to be

given in another compile-time system.

II-10-5



M-5035

LABEL . - The label of the element referenced.
Labels are printed alphabetically.

~ DEFINED IN ’ The name of the system data design
or‘system procedure that contained

the element.

REFERENCED BY ’ ; The name of each system procedure
that referenced the label. '

10.5 SYMBOL ANALYSIS FORMAT

The symbol analysis (SA) option provides information as to the usage of the
symbols in the system compilation. The analysis utilizes the following cate-
gories (the items in the individual categories are printed in alphabetical

order):
a. Files.
b. Formats.
c. Tables (including subtables, like-tables, item—areas. fields).
d. Switches. |
e. Variables.
‘»f. Procedures-functions.
g. Inde* registers declared locally.

A header, printed at the top of each page, gives the heading SYMBOL ANALYSIS
and the identifier as either a SYS-DD or SYS-PROC name. Each of the above
categories is headed by the category type and bracketed with lines of asterisks.

The following are descriptions of the headings for the various categoriesi

a. Files:

The general heading is FILES DECLARED. The columns are:

Column Heading ‘  Meaning
NAME ' The name of the files.

1I1-10-6



b.

c'

M-5035

MD The file mode:

H - Hollerith.
B - Binary.

TP The record type:

V - Variable length,
F - Fixed length,

S - Stream.

HRDWR The hardware code.

MXSZ The maximum record size.,
MXRCD The maximum number of records.
NSTC The numbér of associated status

constants.

Formals:

The general heading is FORMAT STATEMENTS. ‘There are eight identical

heading sets of two headings each as described below:

Column Heading A Muaning
NAME The name of the format,
XT A If'declared. the external identifier,

R, for external reference or ) for

: . external definition.

Tables:

- The flirst segment ol the print tine idenlifies the table or associalen

table. The second segment identifies the attributes of Lhe table or
associated table. The third segment identifies the fields and their

associated attr:putes.

I1-10-7



M-5035

Column Heading Meaning '
TABLE-NAME ~ . The name of the prime table being

described.

ASSOC , The name of a subtable, like-table
NAME of item-area associated with the
prime table.
Assoc One of the following:
TYPE ‘ v
SUB - Subtable.
LIKE - Likc-table,

ITEM - Item-area.
TP ‘ Denotes the type of the prime table:

Hi- Horizontal.

V - Vertical.

A - Array.

NI If the length of the table is

™ variable (specified by a NITEMS
statement), this‘column will con-
tain NT. '

PACK ‘ Denotes the packing usage on fields

NDIM ' for horizontal or vertical tables
or denotes the number of dimensions
if an array; this may be NULL,
MEDIUM or DENSE or an integer from
1 to 7.

ADD Indicates whether the table is

MOD

addressed directly (DIR) or addressed
indirectly (IND). '

11-10-8



M-5035

WDS/ - Specifies the number of words per

ITEM .
1tem,

INDEX-NAME ' Gives the name of the major index
for the table or the associated
table.

NO. ITEMS The number of items if H (horizontal)

DINS. SIZE or V (vertical), or the size of the
dimensions if A (array).

EXT Designates whether the table or
associated table is externally
defined (D), externally referenced
(R), or transiently referenced (T).

START The item number at which the

ITEM associated table starts.

FIELDS Applies to the remainder of the
headings.

NAME ‘ The name of the field.

TP ‘ Defines the field type:

F - Floating-point.

B - Boolean. v

H - Hollerith characters,

A - Arithmetic fixed~point.

1 - Integer,
- SN Indicates whether the field type

is S for signed, U for unsigned,

or blank if neither S nor U apply.
'START - Starting bit position in the word.

BIT

11-10-9



M-5035

WORD
LOC.

NO. BITS
OR CHARS

KB

d. Switches:

The general heading is SWITCHES.

Column Heading

NAME

TYPE

NO. PTS

EX

SHSW-CVRBL

The word number by which the field

is addressed.

Designates the number of words for
multi-word fields, thé number of
bits for tYpes F, A, or I, the
number of characters for type H,
or the number of status constants

for type S.

Fractional bits.

The coiumns are:
Meaning

The namevof the switch,’

One of the following:

S - Statement switch.
P - Procedure‘switch.

IT - Item switch.
Gives the number of switch points.
Defines the external specifications:

R - Externally referenced.
T - Transiently referenced.

D - Externally defined.

Indicates the name of a shared
switch; if the switch is an item
switch (IT), the compared variable

is given,

11-10-10



INPUT
PARAMETERS

OUTPUT
PARAMETERS

e. Variables:
The general heading is VARIABLES.

Column Heading

NAME

TYPE

EX

FB

NO. CHAR.
BIT

M-5035
Change 3

Three columns of input parameters

if switch type P.

Three columns of output parameters

if switch type P.

The columns are:
Meaning
The name of the variable.

Gives the variable type:

Arithmetic fixed-point.

F - Floating-point.
B - Boolean.

S - Status.

I - Integer.

A

H

Hollerith.

Defines the external specifications,

if any:

D - Externally defined.

R - Externally referenced.

T - Transiently referenced.

M - Implicitly and locally defined.
Specifies whether signed (S) or unsigned

(U).
Fract_;ional bits..

The number of characters, bits, or

status constants depending on type.

I1-10-11



f. Procedures-Functions:

The general heading is PROCEDURES-FUNCTIONS. The columns are:

Column Heading Meaning
NAME : : The procedure or function name.

TP Either P (for procedure) or F (for

function).

INPUT » Four columns listing the input

PARAMETERS ,
’ parameters.
- OUTPUT '  Four columns listing the output

'PARAMETERS parameters.

EXIT , The names of any abnormal exits.

g. Index Registers Declared Locally:

The general heading is LOC-INDEXES DECLARED. The columns are:

Column Heading Meaning i
NAME The name of the local index declared

for the current system procedure.

'REG The B-register assigned to the
k above symbolic name, or the letter

T if a temporary cell is assigned.

PROCEDURE ‘ The name of the procedure in which

the local index is defined.

10.6 COMPILER ERROR SUMMARY

At the énd of each compile-time system for which the OBJECT oétion is used, a
summary of errors is listed. The name of each element, its element number
within the compile and the number of syntax/generation errors and the number

of allocation errors are listed. The syntax/generationkerrors are individually

listed at the front of the compile listing. The allocation errors are flagged

11-10-12



M-5035

in the source (and mnemonic) listing where they occurred and are also listed

in the local cross-reference.

11-10-13/I1-10-14 Blank






M-5035

SECTION 11
ASSEMBLER

11.1 ASSEMBLER FUNCTIONS

The Assembler accepts symbolic source code in 80-column card image tormat

and translates this coding into an object machine language suitable for

loading into the AN/UYK-7 Computer memory via an object-code loader program
(see Section 3 of Volume I). The Assembler operates in conjunction with the

Monitor to provide programmers with a level of programming assistance not

ordinarily associated with an Assembler class of lanquage processors.

The Assembler capabilities include:

a.

Macro directives as well as other directives which enable the
programmer to control the assembly process in a positive way via

conditional assembly. '

A powerful set of directives which enables variable bit-field
definitions, character substitution, segmentation, and so forth.

The ability to handle multiple addressing sections (counters) for use

in segmenting and assembly—time allocation control.

Printer side-by-side listings of the symbolic source code and also an

edited representation of the generated object code.

Optionally selected printer listing of all alphanumeric labels
referenced within the source code. The labels are separated into
internally referenced labels and those which can be referenced from

another program.

Optionally selected printer listing of all alphanumeric labels cross-

referenced with their respective addresses.
Evaluation of arithmetic and logical expressions.

Relocatable object machine code output which employs full binary card
image format (960 punches per 80-colum card).

II-11-1



M-5035 ;
i. All Assembler-detected errors in source statements are flagged when

encountered.

The $ASM card commands the Monitor to place the Assembler in memory and

initiate its execution.

In operation, the Assembler scans the subsequent symbolic‘input\code twice.
The first assembly pass performs a pseudo-generation primarily to record any
programmer-defined macro sample code and to define forward referencing. The

second assembly paSs-simultaneously produces the object'code and the program

listing. When referenced in the program, generation for macro sample code is
carried on as g subassembly of the main program. Figures 11-1 and 11-2 show
the basic functions performed during the first and second passes,'reSpectively.

11.1.1 Input Language Structure

Inputs to the Assembler consist of programmers prepared symbolic'coding
' statements. The programmer has one basic unit available when constructing
symbolic code on the coding sheet. This unit is the operation which may
consist of three parts:

1. Label.

2. Statement.

3. Notes.
The label and notes are generally optional attachments to the statement and,aré
always separated from the statement by at least one space. In order to apply
- notes, the statement must be terminated by a period (.). |

Format

LABEL, | STATEMENT. | NOTES 1\ (1., ..,

A program written in the CMS-2 Macro Assembler Mnemonic Language consists of

action statements. Their structure is discussed in the following paragraphs.

11.1.1.1 Label

Within the programming language, the labels consist of 1 to 8 alphanumeric
characters. The first character of any label must be a letter. The letter
0 should also be used with caution as any character of a label because of the

I1-11-2



Source Tape

<>C><§
Qa

or

Source

Library Source

o QO
. Q

Input | Input/Output
System (Part
of Monitor)

Cards

M-5035

Intermediate
Source Tape

000
o

or

Assembler
Input/Output
Controller

L ———»

Macro Sample
in Core

T~

—

Intermediate
Source In
Core Storageﬂ

Storage H Tran.slator

j—

\~_“’/,._.J

Item Table
in Core

Storage

Figure 11-1. Assembler Pass 1 Data Flow

I1-11-3



- M-5035

Intermediate
Source Tape

<$n> a

-

or

Intermediate
Source in

ICore Storage

Macro Sample
in Core
Storage

'—\_Q

f‘-\_) |

Object Tape

» Monitor

’(g:ject'Cards.

Side-by-Side

Assembler

{Input /Output

Controller

Translator

Listing

Item Table
in Core

je———————pf Storage

I1-11-4

"

Figure 11-2., Assembler Pass 2 Data Flow



M-5035

visual difficulty in distinguishing it from zero. A label is used to identify

a statement which may be referenced by another.

11.1.1.2 Statements

Except for purely comment statements, programmers are normally concerned with
three basié fields of a coding line: 1) label field; 2) operation field;

and 3) operand field(s). A line of coding is defined as a logical symbolic
statement not necessarily confined to a single phySical line; for example, a

logical line may extend over several cards.

11.1.1.2.1 Fields. Fields are delimited by at least one space following the
last character of the field. There can be no spaces between characters of an
element or expression within a field or the Assembler will interpret the
space as the end of the field. The label field is always assumed to start

in column 1;'if there is no label field, its absence is indicated by at least
one space starting in column 1,

11.1.1.2.2. Subfields. Any field may consist of one or more subfields
separated by a comma and terminated by a space. There can be no spaces between
the characters of a subfield or between the subfield and its terminating comma.
The Asserbler interprets the first space as terminating the current field.

To the Assembler, a comma indicates that another subfield follows; therefore
the last subfield coded does not terminate with a comma, since a space
terminates both the field and the last subfield. Any number of spaces may 
intervene between a terminating comma and the first character of the next

subfield, since the Assembler was alerted that another subfield will follow.

11.1.1.2.3 Omission of Subfields. The first subfield must always be expressed

If the programmer desires to omit this field, he codes a zero followed by a

comma. (A coded zero is not legitimate as the first subfield of the label
field). |

1I-11-5



M-5035

Intermediate subfields may be omitted by.coding two successive commas , or comma-
space-comma, Or comma-zero-comma. The Assembler interprets any of these
representations as assigning a zero value to the subfield. Trailing subfields -
may be omitted by following the last expressed subfield with at least one

space. The Assembler assigns a zero value to any missing subfields.

11.1.1.2.4 Statement Continuation. A logical coding line may be interrupted

at any point (except between apostrophes) by coding a semicolon (;) as the

next character and continuing the line on the next physical line; i.e., next
card. The Assenbler ignores any characters following the semicolon on the
interrupted line and continues its scan starting with column 1 of the next card.
The sequence of coding on continuation statements must follow the syntax

rules governing fields and sub-fields.

11.1.1.2.5 Statement Termination and Notes. Programmers may include notes as

part of their coding lines by following the statements with a period'followed

by at least one space. The period space combination, except when it appears
between apostrophes, causes the Assembler to stop scanning for additional

fields or subfields. If a coding line involves a fixed number of fields

and subfields and all are encoded on the line, programmers may add notes without
the preceding period space combination, since the Assembler ceases scannihg

when the last required field or subfield is evaluated. A coding line may be
nothing but a notes line. In this case, the period space must precede the 
first character of the notes. Aﬁy number of spaces or no spaces may precede

the period.

11.1.1.2.6 Blank Card Images. Blank cards (source statements containing mo

non-space characters) are given a source line number but are otherwise ignored
by the Assembler. It is important not to include blank cards within macros
since this results in slowing up the expansion of them, whenever called.

11.1.1.2.7 Language Structure Summary. Spaces delimit fields. A comma
delimits a subfield except for the last encoded subfield which terminates

with a space. A semicolon (except when it appeérs between apostrophes)
denotes line continuation, causing the Assembler to continue its scanning with

11-11-6



M-5035

the first character of the continuation line. A period space combination
(except when it appears between apostrophes) signals the Assembler to terminate

line evaluation.

11.1.1.3 Notations Used In This Section

Whenever a statement or operation is described in this section, a uniform
system of notation is used to define the structure. This notation is not part
of the language, but is a standardized notation that may be used to describe
the syntax (construction) of any programming language, thus providing a brief
but precise means of explaining the general patterns that the language permits.
It does not describe the meaning of the statements or operations but merely
describes the structure; that is, it indicates the order in which operands

must appear, the punctuation required and the options allowed.

11.1.1.4 Coding Gontrol Statements

Control statements direct system performance rather than user program gener-
ation. Comments, printer page control and product directives are in this

category.

li.1.1.4.1 Comments. A comment is a special type of operation which may appear

_anywhere within a source program. The usage of a comment is optional. A
comment in the source program does not produce any generation and is deteéted
by the system under the same form as notes in a language statement; that 1s,
following a period and at least one space.

Format

Lirrger 11 1 (COMMENTS | 1 | i it lat taay

11.1.1.4.2 Printer Page Control. If the first character of a language statement

is a slash (/), the printer listing will be ejected to the top‘of the next page.
The character may precede a label, a statement (in absence of a label) or slngly '
on a separate card image.

I1-11-7



M-5035

Format

PLABEL | ;v bt by
ULL-LHN:D[TLE:SI1_11111111J_11L41‘|l'1~1111|'

oy L1 | L,1 L T I T I [ o0 4y L1

11.1.1.5 Directives:
There are two forms of directives: 1) those that direct the system and prod-

‘ucts to perform specific functions, and 2) those that direct the Assembler
generation, Within the Assembler generation, the directive is a predetermined

mnemonic coded in the operation field of a language statement.

These directives take the same form as the language structure of paragraph 11.i.1.

Format

"CODE:  *DIRECTIVE

BDIRECTIAVE (1o 111y ler  NOTES |11 111

11.1.2 Addressing Sections

The Assembler provides the brogrammef with the ability to assemble program
sections which are intended to operate ac a single prdgram unit, but which, for
segmenting purposes, the programmer méy consider discrete. A simple example

is the case of any program unit consisting of instructions and data. One good
purpose for keeping them separate is to take advahtage of hardware overlap in

accessing data from within instructions (see Section 3, Volume I of this

document ).

11.1.3 Ségmentation

Segmentation is accomplished through use of the SEGEND»and PXL directives.
SEGEND is used when assembling back-to-back segments. PXL is used to output

11-11-8



M-5035

externally defined labels to be used as source input in programs assembled at

some other time.

11.1.4 Assembly Base Addresses

The Assembler initially sets all initial address counters to zero. The base
address of any address counter can be set to some other value by beginning
coding for that couhter with a SETADR directive. When generating code for the
AN/UYK-T7 this may have the effect of biasing the base register number on all
references to words associated with that address counter. In generating code
for non-base register machines, address counter values may have a direct

correlation to physical memory addresses.

11.1.5 Conditional Assembly

Sometimes it is desirable to code a program on a modular basis. Certain
sections of the program may not be needed at any given time. Whether to omit
or include this code may be based on a condition known at assembly time.

This leads to what is som'etimes called conditional assembly which can be made

by two methods:

a. Any given source statement can be generated dependent on the
setting of a condition known at assembly time. This can be done
by coding the statement as part of a DO line, where the DO count
is the result of the condition (either 0 or 1).

b. An instruction or series of instructions can be effectively over-
riddén or included in object output by following these instructions
with a negative reserve (RES) directive, dependent on the result of the
condition. If the result of the condition is one, the specified number
of preVibusly generated lines of code are overlain by those following

the negative reserve line.

1-11-9



M-5035

Format

‘; I T T B 1l!lgl_ﬁhédﬁﬂﬁih_x_LJ;i_ﬁ-thL_ﬁizhﬂfmﬁﬂﬁ del 1 1 1 | 1
o THE LBJ BT 14 PAY TS |GENERATED |TF 1 1) 11111

. NIKS| HA SS.E Y- TIME VIALUE | 1111 ]
lo IGRE « NIOL WORIDy 1 1411
ley IS |G£|N|_E_|R|A|T|E|Q.llllllnnllunlllLuuluLl
cretrorrr b v v b vy by g b
UL TRIALURICEIEF) 181181 E{EISIT|P|R|OIGI L sl
,Ei!ld!d(GEL_LJ_J_J_JﬁﬁGth_JZh NN NN TN TN (11l
L1
[

llllllLllllJJLlllJLlllllllIll il el
mJXLlLLLIIL_IAIJLZIuDIAITIXL RN EEE il
pllllllllJ-Jllllllllllll s e gt
L1111 IRES |(151A|N1K15|<1_J)_|_)_‘1(1PJ_A1X1‘1‘|)1 TEENEREN|

O (€ F RE Lot
_x_tQQ'_-LJ_Lé&_J_QM&EE LMREI"@_L_@MM“H r11 |
o OF THE ABOVE JQO]QIINIGIQI JALL, OF ITHLE TN
o INSTRUCTITONS BEGINNING AT PAX 111111111
Mﬂ&_ﬂm&m&ﬁ“ﬂlh“nnul
., ADDRESS |COUNTER VALUVE =3 WILL BE | 11 1]
_I_QMIEJ_R_IQAIIJ“J B_IYL 1T1|‘!|&T| IGENIEJRAI&QI l LL oty |
* foaﬂ-ﬂ-ﬁAVMIJQMSI ;r““sl J§§E§L_E.ihll£i.L 1411 11 W Y S I

b -

T

11.1.6 Library Usage

Source 1ibrary’programs can be included within the calling program at the pgint

at which they are called.

11.1.7 Macros

Often programs require repetitibn of sequences of coding not necessarily
identical but similar enough so that repetition of the coding becomes mechanical.
A device within the Assembler which generates such sequences is called a macro.
The Assembler stores the Lacro sample code when encountered and generates this
coding whenever the pro.edure is called upon. The Assembler modifies the lines
generated in accordance with parameters supplied in the calling line/reference

line.

11-11-10



M-5035
Change 1

11.1.8 Expressions

An expression is an elementary item or series of elements connected by operators:
which, when evaluated, results in a binary value, a floating point number or

a memory reference address. If more than one element is included within an
eXpression, they must be separated from one another by operators. An

elementary item is an expression containing only one element.

11.1.9 Assembler Generation

The Assembler generates object code in accordance with the capabilities of the
AN/UYK-T7 Computer instructionms.

11.1.9.1 Full-Word

Full words are generated from computer instructions, data words, FORM reference
lines (see paragraph 11.3.3.8), and character strings. Onre data word can pro-
duce up to two computer words of object code. A character string can generate

a variable number of computer words.

11.1.9.2 Half-Word

If a number of successive half-word (16-bit) instructions are encountered by
the Assembler, they are packed two per word. When a half-word is encountered
between two full words or is the last of an odd number of successive half-
words, it is generated in the upper half-word and the lower half-word contains

Zeros.

11.1.10 Temporary Storage

Two modes of temporary storage are available: 1) magnetic tape, or 2) com-
puter memory. The standard mode is storage on magnetic tape. Small programs

can be assembled using core memory as temporary storage (see paragraph 11.2.1).

II-11-11



M-5035
Change 1

11.1.11 Assembler Output

Output from the Assembler consists of relo¢atab1e.object code. This output:
is in a format recognized by the Cbject Tode lLoader and may also be composed

of Loader directives passed on through the Assembler source input language.

11.1.12 Assembly Time Allocation

Allocation of address sections can be achieved at assembly time by including
Chject Code Loader directives in the source input to the Assembler (see Section

3, Volume 1 of this document).

11.1.13 Linking

Values corresponding to labels can be made available to SOme independently
processed code by suffixing the labels with an asterisk. Converéely. symbolic
program names not defined within the current program can be referred to, and the
necessary information is saved to provide a link to the program which defines
them. The current program simply declares these names in the operand field

of a LINK directive.

11.2 CONTROL CARD

Generally a card containing an asterisk (*) in column 1 is considered by

the Assembler to be a control card. One exception to this rule is when

column 2 contains a space (blank). This combination is used to achieve assign-
ment of a particular line of coding within a macro to a label found on the
macro reference line (refer to paragraph 11.4). Those non-Assembler control
cards found between the first card and assembly terminating END card are
transmitted to the output code when they are encountered.

11.2.1 Start Assembly (ULTRA)

Each program submitted for assembly must begin with the ULTRA statement.

II-11-12



Format

M-5035
Change 3

*ULTRA, source-option, object-option, listing-option name, version

Explanation

Source Option

Object Option

‘One of the following (option: R may be used with M/S):

M~
S -

Blank -

R -

Memory will be used as the intermediate device.

An ISCM tape will be built which éontains the sdurce.
It will be used as the intermediate device.

A scratch tape will be vsed for the interrﬁediate
device. This is the default option for source.

Source will be resequenced.

Any logical combination of the following:

D-

S -

P -

E -

Disable object output.

An ISCM tape will be built which contains the object
output of the assembly(s). This output will be
saved for the user. '

Object output will be in the form of binary
punched-card decks.

An ISCM tape will be built which contains the object
output of the assembly(s). This option should be
used when the user wants to assemble,‘ load, and
execute his program but does not want the obj eét
output saved after his job has been run. This is

the default option for object and is necessary only

if this option is desired in addition to one of the
other object options.

I1-11-13



M-5035
‘Change 3

Listing Option Any combination of the following:

S - An ISCM tape will be built which contains the side-
by-side listing output. ' “
H - The side-by~side listing will be output to the printer.’
" This is the default for listing and is necessary only
if this option is desired in addition to the above listing

option,

Name A one to eight-character name which will be used to build
the object output program ID and the library element
IDs for ISCM tape output(s). |

Version A one to four-character version which will be used to
' build the object output program ID and the library element
IDs for ISCM tape output(s).

For options which request output on an ISCM tape, the ISCM tape will be given the
following internal and external names:

Field Option Internal and External Name

Source Option 8 . ASOURCE

Object Option s  AOBJECT
E ACOMMON

Listing Option s ALIST

No spaces are allowed on the label field between *ULTRA and the three follqwing

subfields nor can any be present between the program name and version.

The reseqhencing option causes the last twelve columns (69-80) to be overlaid with a
period-space, four character name, four character number (starting at 0001), and two
spaces. The four character name is taken from the first four characters of the elemént
name specified on the *ULTRA card. The final two spaces allow for insert numbers

when the assembler {8 not resequencing.

n-11-14 -



M-5035

Change 3
Examples
lunmRal s s mESsTPRIOG o vt gl

The ISCM ASOURCE and AOBJECT tapes will be built, the element will be named
TESTPROG, and the source will be resequenced on the ASOURCE tape with

TESTxxxx A A(A= space, X = number) in columns 69-80

" The programmér has the added option of specifying what is to be overlaid in

" columns 69-74. 'By immediately following the R with a left parenthesis, any
combination of six or less characters, and a right parenthesis, the characters
(as many as specified) in columns 69-74 would be overlayed With the information

between the parenthesis.

Example

|4\ LT\ RA| R (RIEIEF))(S),08) ITEISTPROG 1 Ly iyl

The ISCM ASOURCE and AOBJECT tapes will be built, the element will be named
TESTPROG, and the source will be resequenced on the ASOURCE tape with

REEFxxxXx AA

in columns 71-80

Assemblies may be stacked back-to-back for Assembler input. The Assembler detects

- the end of a given assembly through the occurrence of an END or SEGEND directive.

The parameters following the *ULTRA are evaluated for the first *ULTRA card only |

and are then effective until the stop assembly card (*OFF) is encountered. The name

and version on the first *ULTRA card of each source program is used as the name

and version for that source program.

Assemblies requesting source, object, or listing output should always include a

name on the v*ULTRA card to allow element identification. If no name or version

is supplied, spaces will be used.

m-11-14A



M=-5035
Change 3

11.2.2 Stop Assembly (OFF)

 The last program to be assembled (or only program if there is but one) ter-

minates with the following card:
OEELr NoTlEs b be i by

*“OFF appears in the label field and all other fields are empty.

11.2.3 Disable Object OQutput Code ({OF0)

If no object output is wanted for one or more of a number of stacked assemblies,

[1-11-14B



M-5035

a programmer codes within the source deck{s) the following statement:

MOFDLPIlmmhmﬁllll[llrLLLILLLIJILlll}l]l!Ll

*OF0 appears in the label field and all other fields are empty.

If no object output is wanted for all the stacked assemblies, a 'D' is coded
in the object options subfield of the first *ULTRA card, thus eliminating the

'néed for *QF0 cards in each source deck.

11.2.4 Sample Deck Using Control Cards

Figure 11-3 and 11-4 show sample source decks to illustrate the use of Assembler

and Monitor control cards.

[/ *0FF
/ B

SOURCE
DECK

4

/ *ULTRAA A TXP, I
$ASM

Figure 11-3. Sample Deck Using Control Cards

11.3 SOURCE STATEMENTS

A source statement is a coding line not necessarily confined to a single
physical line; for example, a logical line may extend over several cards.
Except for purely comment lines, programmers are normally concerned with three
basic fields of a coding line: 1) 1label field, 2) operation field, and

3) operand field(s).

11.3.1 Label Field

The label field must start in column 1 of the source line. The label field
of a line of symbolic coding may contain:

a. An address counter declaration.

b. A symbolic label.

II1-11-15



M-5035

c. An address counter declaration followed by a symbollc label.

d. An asterisk (*) in place of a symbollc label.

If an address counter declaration and a label appear in thé label field, the
address counter declaration is coded first followed by a comma (,); then the

label is coded as in line 2 of the example shown on the next page.

The label field may be preceded by the control character slash (/), which

" causes the Assembler printer listing to be ejected to the top of the next page.
If the slash control character is us-d, it must be coded in columnl and the E
label field must thén start in column 2. A space in column 1 (or in column 2’

if column 1 contains a slash) implies that the label field is empty

Examgles :
$(A) 1, DO 4y hiO], ) 1) COUNTER DECLARATION,

'M. & ... 1,, .+ COUNTER DECL AB
linzliluwﬂ'x,ﬁlzna-lluwﬂﬁluﬂﬂluul,
LES 1 QU LAMW ] g WABELL ONLY 1111 ]

L
(ROM | | | | Q5E§LJ£&;EQ£UII&§!4k3LJ_J_1_1_u5éﬂ§l_Miu2éﬁ!ﬂ]l_JﬁLJ_u&ﬂitﬁ_J_l_L_

11.3.1.1 Labels

A label is a means of identifying a symbolic coding line. Normally a label isv
given the:current value of the active address counter. Labels associated with
EQU, FORM, GO, DO, MACRO, NAME and LIT have unique interpretations which are
explained for these directives under paragraphs 11.3.3 and 11.4.

A label may consist of up to eight alphanumeric characters. The first character

must be alphabetic (A thrdugh 2). SubSequent characters may be any combination
of alphabetic or numeric characters (0 through 9) or $.

An asterisk (*) may follow a label without intervening spaces. Asterisks so
used do not count as a character of the label. If a label outside of a macro
is suffixed with an asterisk, the label is externalized (defined as level 0).
This label then becomes available outside the program. Refer to paragraph

11.4.4.2 for an (xplanatxon of the significance of starred 1abels within macros.

llfll—lb



M-5035

NEXT JOB

$JOB,....
$SEQ, 123M@@2

$ENDJOB Transfer control

$TRA, LABEL .t].__________ to LABEL.
SEL-ELM PROG1 Select object code

by name (PROG1),
LIBS ACOMMON Library select the
$LOAD,P1,P2,...

tape to load (ACOMMON).
*OFF

Call the Loader.

1 JOB END
ASSEMBLY
PROGRAM
LABEL*, - . Externalized label (LABEL).
-/ *Ac,p1,P2,P3,P4 | [
/*ULTRA PROGL
/. $ASM,U ‘o= Call the Assembler.

.$JOB'00.00
$SEQ, nnn Mnnn

Figure 11-4. Sample Deck to Assemble, Load, and Execute'a Singie Program

11-11-17



M-5035

11.3.1.2 Address Counter Declaration

The firét‘time an address counter is declared, it has the relative value of

| zero. -Subsequent declarations of the same address counter causelfhe‘aSSociated
Qeneration to continue at the‘next sequential address, regardless of how many
other address counters-were declared in between. A declared addressv¢0unter
controls the generatéd coding until another counter is declared. If no address
counter is declared, the entire assembly is under control of address counter

Zero,
Format
S (e)

Explanation

e The desired address counter 0=31. 1If an address counter
is used in conjunctiion with the LIT directive, the active

address counter is nol changed (see paragraph 11.3.3.14).

‘11.3.1.3 Leading Asterisk (*)

An asterisk (*) may be coded in the label field in place of a symbolic label,
‘within macro definition coding. During macro expansion, this causes the label
coded on the macro reference line to tuke on the value of the active address
counter corresponding to the line containing'ﬁhe leading asterisk. 'The
leading asterisk must be followed by a space, and can only be used within

a macro definition. The asterisk must only appear once within a particular

macro.

11.3.1.4 Half-Word Instruction Labels

The computer instruction repertoire includes a group of half-word (16-bit)
instructions as well as full-word (32-bit) instructions. An Assembler-
generated object word may, therefore, contain either a single 32-bit instruction

or two 16-bit instructions. The programmer codes each half-word instruction as

11-11-18



M-5035

a single source input statement. Two half-word instructions may not be coded

as one Ssource statement.

The Assembler will collect two sequential half-word instrurtions into a single
object word with the first occupying the most significant (upper) half and

the second occupying the least significant (lower) half. A single unpaired
half-word instruction will be placed in the upper half of the object word and

the Assembler will pad the lower half with a no-operation instruction.

Only those half-word instructions which will occupy the upper half of an object

word (as described above for the Assembler's pairing convention) may be labeled.

Examples o ’ CODING

. ASSUME, ADOR : UNTER Q IS ACTIVE WITH, ,
o A CURRENIT, VALUE OF 000040 AT THE TIME | , |
o THE ASSEMBLER ENCOUNTERS THE| SEQUENCE:| | |

SIDE - BY - SIDE

000010 104300 000014 LA 4,GO0F ,W . LINE 1
000011 714050 FLIP HOR 4,5 . LINE 2
000012 244300 000014 SA 4,GOOF ,W . LINE 3
000013 714530 FLOP HAND 4,3 . LINE 4
000013 624010 GOOF HLC 4,8 LINE 5

Line 1 is assemvied at relative address 000010. Line 2 is assembled into the
upper half of relative address 000011; the lower half will be a no-operation.
Line 3 is assembled at relative address 000012. Lines 4 and 5 are assembled
at relative address 000013 and 000014 respectively, with the logical
instruction in the upper half and a no-operation instruction in the lower

" half of each word. The label FLIP has a value of 000011; label FLOP has

a value of 000013. Line 5 violates the half-word labeling convention; there-
fore, references to GOOF have a value of 000014.

11.3.2 Operation Field

_ \ '
The first'non-space~(?dn-blank) character following the label field is assumed
to be the start of the operation field except when that character .is a period
or a semicolon. (A period space signifies line termination; a semicolon

signified line continuation.)

1I-11-19



M-5035

The operation field may contain:
a. A computer—instruétion mnemonic function code.>
b, An Assembler diréctive.
c. The label of a previously defined FORM direétive;
d; A label already defined as an entry point to macro‘coding.

e. + or - followed by a data word. (When the operator is + or -,
spaces may separate the sign from its related operand.) -

f. An apostrophe. (When an apostrophe is the first non-blank |
 character following the label field, the remainder of the line
through the terminating apostrophe is assumed to be a character
string.)
In ény event, except as noted in items e) and f) above, a space following any

character except a comma signifies the end of the operation field.

Whenever a symbolic line results in generation of a computer word, the value
~of the controlling address counter is increased by one. An exception to this
is the RES directive which causes the counter to be modified by the value

derived from the expression in the operand field.

11.3.2.1 Processor Instruction Mnemonics

Processor instruction mnemonic codes consist of up to four alphabetic

characters. All half-word instruction mmnemonics begin with an H.
11.3.2.2 Input/Output Controller Command Mnemonics

Input /Output Controller (IOC) command mnemonic codes, like those for the
processor instructions, consist of up to four letters. All IOC commands are
32 bits in length.

11.3.2.3 Directive Mnemonics

The Assembler provides programmers with a level of programming versatility

not ordinarily associated with an assembler-class language processor. This
versatility is derived primarily from a group of symbolic assembler directives.
Some of these directives allow the prOgtammer to override the imbedded

language of the Assembler, to redefine the size and field boundaries of

I11-11-20



M-5035

generated wbrds. and to perform conditional generation; others provide for
modification of the address counters and repetitive generation and still

others permit character set substitution and equating one expression to another.

A directive is a predetermined mnemonic written in the operation field of a
coding line. Assembler directives fall roughly into two categories: 1) general,
and 2) macro-oriented.

11,3.3 Directives

11.3.3.1 ABS Directive

The ABS (ABSolute) directive is used to request a translation of an assembly-
time address counter value into a run-time absolute address.

Format

i1 |ABS 101011 ICAT 111 el FORMWAT 1 1

The above statement causes the sy value of CAT to be translated into its
corresponding 18-bit run time address. The upper 14 bits of the generated

word contain zeros. One practical use for such a directive is to create a
value used to load a base register.
11.3.3.2 BYTE Directive

The BYIE directive is defined for use solely to direct the Assembler's
formatting of character codes in generated words. The BYIE directive enables
the programmer to redefine the Assembler's imbedded character size and the

number of characters packed in an object work.

" Format

| YTE | el e «, FORMAT ]

The BYTE line is written with BYIE in the operation field and one 6r two
expressions in the operand field.

- Explanation

e The number of characters to be packed into the object

word,

I1-11-21



M-5035

e, e The size of the character field in bits not to

| exceed a 16-bit character field. Expression e2 may
be omitted if the character size is eight bits.

The expression e} * eo must be s the number of bits in the objeci‘word}

If the product of the two expressions exceeds that number of bits, the

Assembler sets the expression error flag (E), and ignores the line,

Examples

L BYTE | 2906 el EXAMPLE Mol
el BYTE | 48 e EXAMPLE 2] gy g ]

Assume a thirty-two-bit object word:
The first example causes all character strings encountered thereafter (until

the next BYIE directive) to be packed with up to two characters per word, with

each character right-justified in a 16-bit field.

The second example alters the generation to four eight-bit characters per word

for all subsequent character strings.

The BYIE directive must be used and expression e§ encoded if the CHAR (CHAR-
acter) directive is used to define characters other than eight bits.
The values of e and e, must be determinable at the time the Assembler

evaluates them.

11.3.3.3 CHAR Directive

The CHAR directive allows the programmer to redefine the Assembler's eight-bit
imbedded character set used for generation of characters coded between apos-
trophes'(character strings). If the characters‘ofyfhe redefinition exceed
eight bits, the prograhmer must have previously used the BYTE directive to
define the maximum number of characters and the fiéld'size to be packed into
an object word; otherwise, incorrect generation and/or truncation (T) errors

occur,

Format

11-11-22



M-5035
Change 1

The CHAR directive is coded with CHAR in the operation field and n pairs of
expressions in the operand field. The first expression of each pair defines
the octal code (000 through 377) which is to be redefined, and the second
expression of each pair is the redefined value. In the absence of a pre-
ceding BYTE directive, the Assembler assumes that the redefinition is an
eight-bit character set. For all character string generation following a
CHAR directive, the Assembler uses the redefined character codes until it

encounters another CHAR directive which changes them.

The use of a label on a CHAR line is optional. Values of expressions in the

operand list must be determinable when they are evaluated.

Examples
| .C | - Uy AL Coa o lag
o A MO.\M IPRODUCES, 006, : .5. . .g@.g.u.c.e,s. .gonl o
‘¢! ULCES, 0Ol P CES 0S|;

L1 ﬁ!@i‘:n 101 1" ll’JQKDJ)JJﬁ:‘EﬂSn lc\chnlhln .CDAliiCﬂiljiﬂﬂﬂlﬂaﬁgﬂiL1 1 1 |
+'B' 1 -] PRODUCES IOCTAL Q0000000007 , |,
1'.'1\131 1 1'4 1 L‘l 1PRQDIU1CMS| IQC|T|A|L1 LQ»QQQLGDIZAQ&L I l 1 1.

11.3.3.4 DO Directive

The DO directive causes a value or line of coding to be generated a stipulated
number of times. DO is written in the operation field. The operand field
contains ‘two enpries. The first operand entry is an expréssion defining the
DO count (the number of times the second operand is to be done). The second.
operand entry is any valid symbolic line with or without a label. The two
operand entries are separated by space comma. If there is no space following
the delimiting comma, the line to be done is presumed to have a label. If one
or more spaces follow the delimiting comma, the line to be done is présumed

to have no label.

Format

EiL

Lt 1’nvd:£l‘?l!d!£!}_41;_J
EL, LANE, TO @Q_IDPMEl 1*] 1FQR!A;I.__‘L_|

1I-11-23



M-5035 ‘
Change 5
There mayibe_a label in the label field of a DO line. Such a label is not

equated to the value of the address counter, but is treated as a unique counter
with initial value always one. For each iteration of the line to be done,

the value of this counter increases by one until the DO count specified by the

first operand expression is reached.

To refer to the first word of a group of words generated by'a DO statement,
use a label which is not a part of the DO statement.

Format

X g ICMCl_ﬁgL_L;J_IQQQA,] L a1 o IWTINE &) 0 0y
Lol ASSUMINIG, NO OTHER DEFIMNMITION FOR X WMITHIN
Lot (THE ASSIEMBLY 1y X HIAS A FINAL| VALUE OF 12,., ,
101 JLF| ONE, WISHED, TIO REFER, TO THE ADORESS| | , , .
o1 ICOUNTER| VALUE, CORIRESPONDING TO THE FIRST,
Lol WORD GEINERATED IN| LINE 41y HE WONLD CODE:, |

B R N TN TR RN B

'n'11’111111%_1_21___1_,1_&111:11:111!:1111114411LH

Example
1111, /D0 | 65 1mH-E||Rmhlulauunnul“1
1o WILL REISULT, IN, 65 SUCCESSTIVIELY GE D

i® |ﬂ &Q§| IHIAN)Iﬂ]Gl 11-1“151 lQQ.T;AnLl JVM]E_[_L_[AE&OI L1 l_Ll L
10 THRONGH| | | |, 4 01100 Eﬂ_mufbﬁj L1 00y

If the DO count exceeds 216 1, an expression (E) error occurs, " The Assembler

arbitrarily sets the DO count to zero.

The DO directive may be used to pexform the line to be done on a conditional
basis. In this context the first operand expression (the DO count)‘results
in either zero (false) or one (true). When the result of the condition is

zero, no action is taken. When the result of the condition is one, the line

to be done is processed once.

11-11-24



M-5035
Change 3

Example

IA%LM&MLQ“TI-‘lll1111111‘111L111111
. TF BANKS| HAS A VALWE AQ&EAMA&_MJ_._L

J_Jggu&ugl_&._ﬁ@jﬁﬁmﬁ WL [OCCUR 111 |,

. IF, BANKS| HAS THE VALUE O,.1,2, OR 34y . |, .,
., THE CURRENT, ADDRES!IS, COUNTER WILL BE , |,

MMMLM&_@LIQATI-&“;HHIIIH

When nested, the innermost DO cycles to completion

DO directives may be nested.
first, then the next innermost DO, and so forth.

’ Example .
b”Qg_gmuhum||3||,lm01+1°|||11111111111111.
o Tl C STV

- HAVING THE CONTENTIS | 2113151381050 iy 56 .
o1 151416141 REISPECTIVIELY 1 1 11 st i liavtaaaaal

The expression defining a DO count must result in a value determinable at the

time it is evaluated. The maximum number of DOs which may be nested at any
one time is 16.

Since the label of a DO line takes on the value of the DO count, it cannot

be used as a reference to the DO line itself. The programmer may, however,
immediately precede a DO statement with a line consisting of a label field
only.. Wheneyer the Assembier encounters a line consisting 6f a label field
only, the label is equated to the current value of the active address counter;
but the counter is not advanced since no generation occurs; hence a reference
to such a label 1mmedlately preceding a DO line has the effect of referencing

the first word generated from the DO statement.

11.3.3.4A EMBED Directive

The EMBED directive adds defined values for certain assembly tags called Embedded
Mnemonics. The embedded mnemonics ai'e turned on by placing the following

directive prior to an embedded mnemonic reference.

11-11-25



M-5035
Change 5

Format

lLlllElMlBElDllllllllvj.llFIOIRlMAJTllilylllllllJlll!

The following is a list of the embedded mnemonics ahd their associated values:

A0-0, Al-1, A2-2, A3-3, Ad—4, A5-5, AG-6, AT-T
B0-0, B1-1, B2-2, B3-3, B4-4, B5-5, B6~6, B7T-T
S0-0, S1-1, S2-2, S3-3, S4-4, §5-5, 56-6, ST-T
K0-0, K1-1, K2-2, K3-3, Kd-4, K5-5, K6-6, K7~
Ql-4, Q2-5, Q3-6, Q4-T |
L-1
U-2
w-3
H1-1
H2-2
Any given embedded mnemonic will be used only if the programmer has not defined
that tag.

NOTE

An embedded mnemonic reference may not be used in

- assembler directive fields which affect the address
counter, namely - RES, DO, SETADR. This type of
usage may cause labels following those directives to
be flagged as a D error.

11.3.3.5 END Directive

An END directive indicates the end of symbolic input to the Assembler or the end of
a macro coding sequence. Each program to be assembled must have an END directive

signifymg the end of the symbolic progr