
UNIPLUS+ SYSTEM Y
User's Manual

Sections 2 - 6

Copyright © 1983 UniSoft Corporation.

Portions of this material have been previously copyrighted by:

Bell Telephone Laboratories, Incorporated, 1980

Western Electric Company, Incorporated, 1983

Regents of the University of California

Holders of a UNIX and UniPlus+ software license are permitted to copy this docu­
ment, or any portion of it, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

UNIX is a Trademark of Bell Telephone Laboratories, Inc.

UniPlus+ is a Trademark of UniSoft Corporation of Berkeley.

INTRODUCTION

This manual describes the features of System V UnWlus+, a UNIX operating sys­
tem. All commands, features, and facilities described in this manual are available
on U niPlus + .

This manual is divided into two volumes containing a total of six sections, some
containing subsections:

1. Commands and Application Programs:
1. General-Purpose Commands.

lC. Communications Commands.
1 G . Graphics Commands.

2. System Calls.

3. Subroutines:
3C. C and Assembler Library Routines.

3M. Mathematical Library Routines.
3S. Standard I/O Library Routines.

3X. Miscellaneous Routines.
4. File Formats.

5. Miscellaneous Facilities.
6. Games.

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory Ibin (for bin ary programs). Some programs also
reside in lusr/bin, to save space in Ibin. These directories are searched automati­
cally by the command interpreter called the shell. Sub-class lC contains communi­
cation programs such as CU, send, uucp, etc.

Section 2 (System Calls) describes the entries into the UNIX kernel, including the C
language interface.

Section 3 (Subroutines) describes-Jhe available subroutines. Their binary versions
reside in various system libraries in the directories IUb and lusr/Ub. See intro(3)
for descriptions of these libraries and the files in which they are stored.
Section 4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out(4). Excluded
are files used by only one command (for example, the assembler's intermediate
files). In general, the C language struct declarations corresponding to these for­
mats can be found in the directories lusr/include and lusr/include/sys.
Section 5 (Miscellaneous Facilities) includes descriptions of character sets, macro
packages and other system features.

Section 6 (Games) describes the games and educational programs that, as a rule,
reside in the directory lusr/games.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each

-1-

Introduction

section are alphabetized, with the exception of the introductory entry that begins
each section. The page numbers of each entry start at 1. The version date of the
entry appears in the lower left corner of each page. Some entries may describe
several routines, commands, etc. In such cases, the entry appears only once, alpha­
betized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:
The NAME part gives the name(s) of the entry and briefly states its purpose.
The SYNOPSIS part summarizes the use of the program being described. A
few conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.
Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the manual.
Square brackets [) around an argument prototype indicate that the
argument is optional. When an argument prototype is given as "name"
or "file", it always refers to a file name.
Ellipses ..• are used to show that the previous argument prototype
may be repeated.

A final convention is used by the commands themselves. An argu­
ment beginning with a minus -, plus +, or equal sign = is often taken
to be some sort of flag argument, even if it appears in a position where
a file name could appear. Therefore, it is unwise to have files whose
names begin with -, +, or =.

The DESCRIPTION part discusses the subject at hand.
The EXAMPLE part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.
The DIAGNOSTICS part discusses the diagnostic indications that may be pro­
duced. Messages that are intended to be self-explanatory are not listed.
The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

At the front of each volume there is a table of contents and a permuted index.
The permuted index is a computer-generated index that uses the information in the
NAME part of each entry in the User's and Administrator's Manuals. The per­
muted index contains three columns. The center column is an alphabetic list of
keywords as they appear in the NAME part of the entries. The last column is the
entry that the keyword in the center column refers to. This entry is followed by
the appropriate section number in parentheses. The first column contains the
remaining information from the NAME part that either precedes or follows the key­
word.
For example, to look for a text editor, scan the center column for the word "edi­
tor". There are several index lines containing an "editor" reference, i.e.:

ed, red: text editor. edO)
files. ld: link editor for common object IdO)

-2-

Introduction

You can then turn to the entries listed in the last column, ed(I) and Id(I), to find
information on the editor.

On most systems, all user manual entries are available on-line via the command,
Q.V.

-3-

T ABLE OF CONTENTS

2. System Calls

intro • • . • introduction to system calls and error numbers
accept. accept a connection on a socket
access • determine accessibility of a file
acct enable or disable process accounting
alarm . set a process~s alarm clock
brk•.... change data segment space allocation
chdir . . . • . . . • change working directory
chmod. • • . change mode of file
chown • change owner and group of a file
chroot • . . change root directory
close • • . . close a file descriptor
connect•........•• initiate a connection on a socket
creat • create a new file or rewrite an existing one
dup duplicate an open file descriptor
exec. execute a file
exit • • terminate process
fcntl. file control
fork•... create a new process
gethostname. . . • . • • . . get name of current host
getpid • . • . get process, process group, and parent process IDs
getuid .•... get real user, effective user, real group, and effective group IDs
ioctl . . • control device
kill send a signal to a process or a group of processes
link••.... • . • link to a file
lockf • provide exclusive file regions for reading or writing
lseek. . . • • . . • . . move read/write file pointer
mknod . . • • make a directory, or a special or ordinary file
mount • • . . mount a file system
msgctl ..•.....•.......•... message control operations
msgget • . • • . get message Queue
msgop . • . . • • • . . • . . • message operations
nice . . . • • change priority of a process
open . . • • . . . open for reading or writing
pause suspend process until signal
phys • • allow a process to access physical addresses
pipe . . . • . . • • • create an inter process channel
plock . . . lock process, text, or data in memory
profil • • execution time profile
ptrace . • . . • . • • . • • . process trace
read•. read from file
reboot. • reboot the system
receive. receive message from a socket
select . synchronous if 0 multiplexing
semctl semaphore control operations
semget get set of semaphores
semop . semaphore operations
send . send message from a socket
sethostname set name of host cpu
setpgrp set process group 10
setuid set user and group IDs
shmctl . shared memory control operations
shmget. get shared memory segment
shmop. • . • shared memory operations

- 1 -

Table of Contents

signal specify what to do upon receipt of a signal
socket create an endpoint for communication
socketaddr return address associated with a socket
stat . get file status
stime set time
sync • . update super-block
time • . • • get time
times . get process and child process times
ulimit • . get and set user limits
umask set and get file creation mask
umount . unmount a file system
uname . . get name of current UNIX system
unlink remove directory entry
ustat . get file system statistics
utime set file access and modification times
uvar•.. returns system-specific configuration information
wait wait for child process to stop or terminate
write . write on a file

3. Subroutines

intro • • introduction to subroutines and libraries
a641• convert between long integer and base-64 ASCII string
abort ..•............•....... generate an lOT fault
abs • return integer absolute value
assert . verify program assertion
atof • convert ASCII string to floating-point number
bessel. • • . . • . . . Bessel functions
bIt • • block transfer data
bsearch • • . . . binary search
clock . . . • . . • • • report CPU time used
conv • • • . •• translate characters
crypt . . . • • . • • . generate DES encryption
ctermid . . generate file name for terminal
ctime • . • • . . convert date and time to string
ctype . • • classify characters
cuserid • . • • . get character login name of the user
dial . . . • • establish an out-going terminal line connection
drand48 .••..•. generate uniformly distributed pseudo-random numbers
ecvt • . . • . . convert floating-point number to string
end • • . • . . . • • • • . last locations in program
erf error function and complementary error function
exp••..•. exponential, logarithm, power, square root functions
fclose . . • • • . . • . • • close or flush a stream
ferror • . stream status inquiries
floor • floor, ceiling, remainder, absolute value functions
fopen ..•....•.............•.•... open a stream
fread•.•........•.•.. binary input/output
frexp . • • manipulate parts of floating-point numbers
fseek reposition a file pointer in a stream
ftw ...•..............••.•••.•. walk a file tree
gamma . . • • • . • . • log gamma function
getc . . • . . • . . .'. • • • get character or word from stream
getcwd get path name of current working directory
getenv •.•.••.......... return value for environment name
getgrent • • . get group file entry
getiogin ••. . • • • . . • . • • • . . get login name

- 2 -

Table of Contents

getopt . • get option letter from argument vector
getpass . . • . . read a password
getpw • . . • • . • • . . • . . . • . get name from UID
getpwent•.•..•. get password file entry
gets • • . • • • . . . • . . . get a string from a stream
getut•...•. access utmp file entry
hsearch manage hash search tables
hypot. • • Euclidean distance function
13tol . . . convert between 3-byte integers and long integers
logname • . . • . . . return login name of user
Isearch ••.•.............•... linear search and update
malloc • . ••.•......• main memory allocator
matherr •....•.•.....•••....• error-handling function
memory • • . . • • . • • . . . • • memory operations
mktemp • • • • • . . • • • • . • • • make a unique file name
monitor . . . • • • . • • • • . . • • . • . . . • prepare execution profile
nlist • • • . • • . • • . • . . • • . • get entries from name list
perror. • • • . • • . . . • . • • . . . • . system error messages
plot •.•.•.••••••... . . • . . graphics interface subroutines
popen ••.•.•••...•..•..•. initiate pipe to/from a process
printf • . • . . • . . • • . . • . . • . . . print formatted output
putc • • . . • . . . • • . . • put character or word on a stream
putpwent •.••.•.•••.•..•....• write password file entry
puts • . • • • . . . • . • . • . • . • . . • . • . put a string on a stream
qsort • . • • • • . . . • • . . • . • . . • • • quicker sort
rand •.••.••.•.• • . simple random-number generator
regcmp •...•.....•... compile and execute regular expression
rhost •••..•.••....• look up internet hosts by name or address
scanf •...•.•...•..•••.•.... convert formatted input
setbuf . • . • • • • • . • • . • • • • assign buffering to a stream
setjmp ••••••.•..••.••••.•.••.••. non-local go to
sinh .•...•..••..•••.•.••...• hyperbolic functions
sleep. • . • • . • • . • . . . • . • . . • . suspend execution for interval
sputl • • • . • . access long numeric data in a machine independent fashion.
ssignal .•...•.....•••..••.•.•.•. software signals
stdio • • .•..•.....•.• standard buffered input/output package
stdipc ••••.. . . . • . • standard interprocess communication package
string •...•...•.•..•.•...••.••• string operations
strtol . • • • . . • • . • • . • . . . • convert string to integer
swab. . • . • . • • • . • • . . . • • . • • • swap bytes
system • . • . • . . . • . • . . • . . • . • • . • issue a shell command
termcap • . • • • • . • . • . . • . terminal independent operation routines
tmpfile • • . . • . • . . • . • . . • . • create a temporary file
tmpnam .•.•....•....... create a name for a temporary file
trig •..•.......•.....•...•. trigonometric functions
tsearch . • . • . • . • . • • • . • . . manage binary search trees
tty name . • • • • . . . • . • . • find name of a terminal
ttyslot • • • . • . . find the slot in the utmp file of the current user
ungetc. • . • . • • • push character back into input stream

4. File Formats

intro . • • • . • • . • • • . • • . • introduction to file formats
a.out. • • • . • • • • • . • • . • assembler and link editor output
acct. • • • . . . • . • • • . . • . . • • per-process accounting file format
altblk • . • . . • . • • • alternate block information for bad block handling
ar • • • • • • . . • . • . . • • • • • archive Oibrary) file format

- 3 -

Table of Contents

checklist • . • . • • list of file systems processed by fsck
core . . . • . . • . . • . • • . . format of core image file
cpio • . • . • • . • . . . • • format of cpio archive
dir • • . • . . • • format of directories
environ • • . •. . • . . • . user environment
errfile . • . . • . • • . . • • error-log file format
fs•.•. • . . • . • format of system volume
fspec . • • • . . . • • . • • . . format specification in text files
gettydefs • • . . . • • • speed and terminal settings used by getty
gps •..••....•. graphical primitive string, format of graphical files
group • • • • . • . • . . . • • group file
inittab•.....•.......• script for the in it process
inode. . • • . • • . • • • . • • • format of an inode
issue . . • . • • . . • . . • . • . • issue identification file
master •••.•..•..•....•.• master device information table
mnttab • • • . . . • • • • . mounted file system table
passwd. . • . • • . • • password file
plot • • . . • • . graphics interface
pnch file format for card images
profile. . . setting up an environment at login time
sccsfile . . . • format of SCCS file
tp • . . • . . • . • • magnetic tape format
ttytype . . . data base of terminal types by port
utmp. . . • . utmp and wtmp entry formats

5. Miscellaneous Facilities

intro. • • • • • • • • • • • • . . • • . • • • • introduction to miscellany
ascii • • • • . . • . . • • • . . • • . • . . . map of ASCII character set
environ •••••.••.•.••.••.••.•.•. user environment
eqnchar • special character definitions for eqn and neqn
fcntl . • • • • • • • • • . • • • • • • • • . • • • • . file control options
greek • graphics for the extended TTY -37 type-box
inet . • . . • • • . • • • • • . . • • . • Internet protocol family
ip • • . . • • • • • . • • . • • . • . . • . • . • • • . Internet Protocol
10 •••••••••••••••••••••• software loopback interface
man ••••••.••.•.. macros for formatting entries in this manual
mm ••..•.••.•• the MM macro package for formatting documents
mosd • • the OSDD adapter macro package for formatting documents
mptx • • . • • • • • • • the macro package for formatting a permuted index
mv . • • . • a troff macro package for typesetting view graphs and slides
net • • • . • • • • . • • • • . . • • . introduction to networking facilities
regexp ..•.•..•. ~ • regular expression compile and match routines
stat .••.•..•..•.•..••.. data returned by stat system call
tcp •••..•.•••••.••. Internet Transmission Control Protocol
term • • • • • • • • • . . • . • • . • . conventional names for terminals
termcap . • • . • • . . • . • . • . terminal capability data base
types . . . • • • • • • . . • • . . . • • . • • primitive system data types
udp . • • . • • • . • . . • . • . . . • • Internet User Datagram Protocol

6: Games

intro. • . • . • . . • • . • . . • . . • . . • • • . introduction to games
adventure • • . • • • • • . • • . . • . • • • an exploration game
aliens . • . • • • • • . • . • • . . • . The alien invaders attack the earth
arithmetic • • • • . • • • • • • • . • • . • • provide drill in number facts
autorobots. • . • • . • . . . • • Escape from the automatic robots
back •.• . • • • • • • . • • . • . . • . • the game of backgammon

- 4 -

Table of Contents

bcd •.......•.............. convert to antique media
bj. • the game of black jack
chase. • . Try to escape the killer robots
craps •......•................ the game of craps
cribbage the card game cribbage
fish . . • • play "Go Fish"
fortune print a random, hopefully interesting, adage
hangman . • . • . . guess the word
life . . play the game of life
maze generate a maze
moo . guessing game
number . convert Arabic numerals to English
quiz. test your knowledge
rain • . . . • • animated raindrops display
robots • • Escape from the robots
trek • • . . • • . • . trekkie game
ttt . • . . . tic- tac- toe
twinkle . twinkle stars on the screen
worm • • • • Play the growing worm game
worms . . . animate worms on a display terminal
wump • . • . . the game of hunt-the-wumpus

- 5 -

PERMUTED INDEX

Ifunctions of HP 2640 and
handle special functions of HP

archiver. hpio: HP
functions of D ASI 300 andl

Ispecial functions of DASI
of DASI 300 and 300s1 300,

functions of DASI 300 and
13tol, ltol3: convert between

comparison. diff3:
Tektronix 4014 terminal.

paginator for the Tektronix
of the DASI 450 terminal.

special functions of the DASI
long integer and base;641

value.
abs: return integer

Ifloor, ceiling, remainder,
socket. accept:

a socket.
LP requests.

utime: set file
of a file. touch: update

accessibility of a file.
machinel sputl, sgetl:

phys: allow a process to
sadp: disk

copy file systems for optimal
Isetutent, endutent, utmpname:

access: determine
enable or disable process

acctcon2: connect-time
acctprc1, acctprc2: process

turnacct: shell procedures for
runacct: run daily

laccton, acctwtmp: overview of
accounting and miscellaneous

acct: per-process
search and print process

acctmerg: merge or add total
summary from per-process

wtmpfix: manipulate connect
process accounting.

file format.
per-process accountingl

process accounting file(s).
connect-time accounting.

accounting. acctconl,
acctwtmp: overview ofl
overview ofl acctdisk,

accounting files.
acctdisk, acctdusg,

accounting.
acctprc1,

acctdisk, acctdusg, accton,
sin, cos, tan, asin,

killall: kill all
current sees file editing

report process data and system
sag: system

sal, sa2, sadc: system

2621-series terminals.
2640 and 2621-seriesl hp:
2645A terminal tape file
300, 300s: handle special
300 and 300s terminals. .
300s: handle special functions
300s terminals. Ispecial .•
3-byte integers and longl
3-way differential file •
4014: paginator for the
4014 terminal. 4014:
450: handle special functions
450 terminal. 450: handle .
a641, 164a: convert between
abort: generate an lOT fault.
abs: return integer absolute
absolute value. . . • ..
absolute value functions.
accept a connection on a
accept: accept a connection on
accept, reject: allow/prevent .
access and modification times.
access and modification times
access: determine
access long numeric data in a
access physical addresses.
access profiler. • . .
access time. dcopy: .
access utmp file entry.
accessibility of a file.
accounting. acct: . .
accounting. acctcon 1,
accounting.
accounting. Istartup,
accounting.
accounting and miscellaneousl
accounting commands. lof
accounting file format.
accounting file(s). acctcom:
accounting files.
accounting records. 1 command
accounting records. fwtmp,
acct: enable or disable
acct: per-process accounting . .
acctcms: command summary from
acctcom: search and print
acctconl, acctcon2: •..
acctcon2: connect-time
acctdisk, acctdusg, aeeton,
acctdusg, aeeton, acctwtmp:
acctmerg: merge or add total
accton, acctwtmp: overview off
acctprc1, acctprc2: process .
acctprc2: process accounting.
acctwtmp: overview ofl
acos, atan, atan2:1
active processes.
activity. sact: print . .
activity. Itime a command;
activity graph.
activity report package.

- 1 -

• • hp.l
hp.l

•. hpio.l
300.1
300.1
300.1
300.1
13to1.3c
dUD.l

. 4014.1
4014.1
450.1
450.1
h641.3c
abort.3c
abs.3c
abs.3c
floor.3m
accept.2n
accept.2n
accept.1m
utime.2
touch.l
access. 2
sputl.3x
phys.2
sadp.l
dcopy.lm
getut.3c
access.2
acct.2
acctcon.lm
acctprc.lm
acctsh.lm
runacct.lm
acct.1m
acct.lm
acctA
acctcom.l
acctmerg.l m
acctcms.lm
fwtmp.lm
acct.2
acctA
acctcms.lm
acctcom.l

• acctcon.lm
acctcon.lm
acct.lm
acct.1m
acctmerg.l m
acct.lm
acctprc.lm
acctprc.1m
acct.lm
trig.3m
killall.lm
sact.l
timex.l
sag.lg
sar.lm

Permuted Index

sar: system activity reporter. • • • .
random, hopefully interesting, adage. fortune: print a
formattingl mosd: the OSDD adapter macro package for

adb:debugger .•••••
acctmerg: merge or add total accounting files.

up internet hosts by name or address. rhost, raddr: look
socket. socketaddr: return address associated with a

a process to access physical addresses. phys: allow
SCCS files. admin: create and administer

admin: create and administer SCCS files.
game. adventure: an exploration .

alarm: set a process's alarm clock. •. • • . . .
clock. alarm: set a process's alarm

delivermail. aliases: aliases file for . .
aliases: aliases file for delivermail.

earth. aliens: The alien invaders attack the
attack the earth. aliens: The alien invaders

change data segment space allocation. brk, sbrk: • •
realloc, caHoc: main memory allocator. malloc, free,

physical addresses. phys: allow a process to access
accept, reject: allow/prevent LP requests.

information for bad block/ altblk: alternate block ••.
for bad blockl altblk: alternate block information

sort: sort and! or merge files. • • . . .
terminal. worms: animate worms on a display

rain: animated raindrops display.
. bed: convert to antique media. • •

editor output. a.out: assembler and link
introduction to commands and application programs. intro:

maintenance commands and application programs. / system
maintainer. ar: archive and library

format. ar: archive (library) file . .
number: convert Arabic numerals to English.

delivermail: deliver mail to arbitrary people.
language. be: arbitrary-precision arithmetic

cpio: format of cpio archive. . • • . .
tp: manipulate tape archive. • • • . •

maintainer. ar: archive and library .••.
ar: archive (library) file format.

HP 2645A terminal tape file archiver. hpio: ••••••
tar: tape file archiver. ••.••...

cpio: copy file archives in and out.
command. xargs: construct argument list(s) and execute

getopt: get option letter from argument vector .••••.
echo: echo arguments. ••••

expr: evaluate arguments as an expression.
be: arbitrary-precision arithmetic language.

number facts. arithmetic: provide drill in
expr: evaluate arguments as an expression. . • •

as: assembler. • •.•••
characters. asa: interpret ASA carriage control • .

control characters. asa: interpret ASA carriage
ascii: map of ASCII character set.

Itranslates object files into ASCII formats suitable forI
set. ascii: map of ASCII character

long integer and base-64 ASCII string. I convert between
number. atof: convert ASCII string to floating-point

and! ctime, localtime, gmtime, asctime, tzset: convert date
trigonometricl sin, cos, tan, asin, acos, atan, atan2:

help: ask for help. • • • . . •
as: assembler .•••...•

output. a.out: assembler and link editor
assertion. assert: verify program

assert: verify program assertion. •••••.•

- 2 -

sar.l
fortune.6
mosd.5
adb.l
acctmerg.l m
rhost.3n
socketaddr .2n
phys.2
admin.l
admin.l
adventure.6
alarm.2
alarm.2
aliases.7n
aliases.7n
aliens.6
aliens.6
brk.2
maHoc.3c
phys.2
accept.im
altblk.4
altblk.4
sort. 1
worms.6
rain.6
bcd.6
a.out.4
intro.l
intro.lm
ar.l
ar.4
number.6
delivermail.8n
bc.1
cpio.4
tp.l
ar.1
ar.4
hpio.l
tar.l
cpio.l
xargs.l
getopt.3c
echo. I
expr.l
be.1
arithmetic.6
expr.1
as.l
asa.l
asa.l
ascii.5
hex.l
ascii. 5
h641.3c
atof.3c
ctime.3c
trig.3m
help.l
as.1
a.out.4
assert.3x

•• assert.3x

Permuted Index

chmod: change mode. chmod.1
chmod: change mode of file. . . • • • chmod.2

of a file. chown: change owner and group • • • chown.2
group. chown, chgrp: change owner or ••• chown.1

chroot: change root directory. chroot.2
for a command. chroot: change root directory chroot.1m

monacct, nulladm,l chargefee, ckpacct, dodisk, 1astlogin,. • • acctsh.1m
isgraph, iscntrl, isascii: classify characters. lisprint, • • ctype.3c

uuclean: uucp spool directory clean-up. •••••.•• uuclean.lm
clear: clear terminal screen. • c1ear.l

c1ri: clear i-node. . • . . . • c1ri.1 m
clear: clear terminal screen. . • • • • clear. 1

statusl ferror, feof, clearerr, fileno: stream ferror.3s
(command interpreter) with C-like syntax. csh: a shell •• csh.1
alarm: set a process's alarm clock. . • . • • . • • • • alarm.2

cron: clock daemon. • . • . • cron.1m
clock: report CPU time used. • clock.3c

close: close a file descriptor. . c1ose.2
descriptor. close: close a file . • • • • close.2

fclose, mush: close or flush a stream. fclose.3s
clri: clear i-node. • • • c1ri.1 m
cmp: compare two files. cmp.l

line-feeds. col: filter reverse . • • • col. 1
comb: combine SCCS deltas. comb.1

comb: combine SCCS deltas. comb.1
common to two sorted files. comm: select or rejeci lines comm.1

change root directory for a command. chroot: chroot.lm
system: issue a shell command. • system.3s

test: condition evaluation command. • • • • test.l
time: time a command. . • • . time. 1

argument list(s) and execute command. xargs: construct xargs.!
nice: run a command at low priority. nice. 1

env: set environment for command execution. • env.l
uux: unix to unix command execution. uux.1c

(shl nohup: run a command immune to hangups • nohup.l
C-like syntax. csh: a shell (command interpreter) with . csh.l

getopt: parse command options. •.....• getopt.1
Ishell, the standard/restricted command programming language. sh.1

and systeml timex: time a command; report process data timex.l
per-processl acctcms: command summary from . acctcms.lm

and miscellaneous accounting commands. lof accounting acct.l m
install: install commands. .•..... install.lm

intro: introduction to commands and applicationl intro'!
Ito system maintenance commands and applicationl intro.1m

at: execute commands at a later time. . • at. 1
cdc: change the delta commentary of an sees delta. cdc.l

comm: select or reject lines common to two sorted files. comm.!
socket: create an endpoint for communication. socket.2n

ipes: report inter-process communication facilities I ipes.1
stdipe: standard interprocess communication package. stdipe.3c

diff: differential file comparator. •..... diff.l
cmp: compare two files. cmp.l

SCCS file. sccsdiff: compare two versions of an sccsdiff.l
diff3: 3-way differential file comparison. diff3.l

dircmp: directory comparison. • dircmp.l
regcmp: regular expression compile. regcmp.l
expression. regcmp, regex: compile and execute regular regcmp.3x
regexp: regular expression compile and match routines. regexp.s

cc: C compiler. • cc.l
yacc: yet another compiler-compiler. yacc.l

modest-sized programs. bs: a compilerlinterpreter for . • bs.1
erf, erfc: error function and complementary error function. erf.3m

wait: await completion of process. . . wait.l
pack, peat, unpack: compress and expand files. pack.l

- 5 -

Permuted Index

cat: concatenate and print files.
test: condition evaluation command.

uvar: returns system-specific configuration information. .
system. Ipadmin: configure the LP spooling • •

fwtmp, wtmpfix: manipulate connect accounting records. .
on a socket. connect: initiate a connection

an out-going terminal line connection. dial: establish
accept: accept a connection on a socket. .

connect: initiate a connection on a socket. .
acctconl, acctcon2: connect-time accounting.

fsck, dfsck: file system consistency check andl
cw, checkcw: prepare constant-width text for troff.

mkfslb: construct a file system.
mkfs: construct a file system.

execute command. xargs: construct argument list(s) and
nroff/troft', tbl, and eqn constructs. deroff: remove

Is: list contents of directories.
(Berkeley version). Is7: list contents of directory

csplit: context split. •
fcntl: file control.

uucp status inquiry and job control. uustat:
vc: version control. . . .

asa: interpret ASA carriage control characters.
ioctl: control device. . •

init, telinit: process control initialization.
msgctl: message control operations.

semct1: semaphore control operations.
shmctl: shared memory control operations.

fcnll: file control options.
tcp: Internet Transmission Control Protocol. •

interface. tty: controlling terminal
terminals. term: conventional names for

units: conversion program.
dd: convert and copy a file.

English. number: convert Arabic numerals to
floating-point number. atof: convert ASCII string to . . •

integers and! 13tol, ltol3: convert between 3-byte . .
and base-64 ASCIII a64l, 164a: convert between long integer

Igmtime, asctime, tzset: convert date and time tol ..
to string. ecvt, fcvt, gcvt: convert floating-point number

scanf, fscanf, sscanf: convert f<.?rmatted input.
strtol, atol, atoi: convert string to integer.

bcd: convert to antique media.
bcopy: interactive block copy.

rcp: remote file copy. •••.••...
uulog, uuname: unix to unix copy. uucp,
System-to-UNIX System file copy. luupick: public UNIX

dd: convert and copy a file. . . . • . . . •
cpio: copy file archives in and out.

access time. dcopy: copy file systems for optimal
checking. volcopy, labelit: copy file systems with label

cp, In, mv: copy, link or move files.
file. core: format of core image

core: format of core image file.
mem, kmem: core memory.

atan2: trigonometricl sin, cos, tan, asin, acos, atan,
functions. sinh, cosh, tanh: hyperbolic

wc: word count. • • • . • . • . .
sum7: sum and count blocks in a file. . .

in the given! sumdir: sum and count characters in the files
sum: print checksum and block count of a file. • • . . • .

files. cp, In, mv: copy, link or move
cpio: format of cpio archive. . . • • . .

and out. cpio: copy file archives in

- 6 -

cat.l
test. 1
uvar.2

• • Ipadmin.lm
· . fwtmp.lm
• • connect.2n

dial.3c
accept.2n

• • connect.2n
acctcon.lm

• fsck.lm
• • cw.l

mkfslb.lm
• mkfs.1m

xargs.1
• deroff.l

Is.l
Is7.1
csplit.l
fcntl.2
uustat.lc
vc.1

• • asa.l
ioctl.2

• • init.lm
msgctl.2
semctl.2

• shmctl.2
fcntl.S
tcp.Sn

· . tty.7
term.5
units. 1
dd.1

• number.6
atof.3c

• • 13to1.3c
• h641.3c
• ctime.3c

ecvt.3c
scanf.3s

• strto1.3c
bcd.6
bcopy.1m

• rcp.ln
uucp.lc

• • uuto.1c
• • dd.l

cpio.l
• • dcopy.1m

• volcopy.lm
• • cp.1
• • coreA

• coreA
••• mem.7

trig.3m
• sinh.3m

• • wc.1
sum7.1

• sumdir.l
• • sum.1

cp.l
• cpio.4

cpio.1

cpio: format of cpio archive.
preprocessor. cpp: the e language •

sethostname: set name of host cpu. ••••••
clock: report CPU time used.

craps: the game of craps. . . . • • •
craps: the game of craps.

system crashes. crash: what to do when the
what to do when the system crashes. crash: •.....

rewrite an existing one. creat: create a new file or
file. tmpnam, tempnam: create a name for a temporary

an existing one. creat: create a new file or rewrite
fork: create a new process. .

tmpfile: create a temporary file.
communication. socket: create an endpoint for

by massaging e source. mkstr: create an error message file
channel. pipe: create an interprocess . . .

files. admin: create and administer sees
umask: set and get file creation mask. • . . • •

cribbage: the card game cribbage. ..••.•
cribbage. cribbage: the card game

cron: clock daemon.
cxref: generate e program cross reference.
more: file perusal filter for crt viewing.

crypt: encodel decode.
generate DES encryption. crypt, setkey, encrypt:

interpreter) with e-likel csh: a shell (command
csplit: context split. . . •

terminal. ct: spawn getty to a remote
for a e program. ctags: maintain a tags file

for terminal. ctermid: generate file name
asctime, tzset: convert datel ctime, localtime, gmtime, .

cu: call another UNIX System.
ttl, cubic: tic-tac-toe. . • •

gethostname: get name of current host.
hostname: set or print name of current host system.

activity. sact: print current sees file editing
uname: print name of current UNIX System.

uname: get name of current UNIX system.
slot in the utmp file of the current user. lfind the

getcwd: get pathname of current working directory.
spline: interpolate smooth curve. . . . •

name of the user. cuserid: get character login
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of
constant-width text fori cw, checkcw: prepare ..

cross reference. cxref: generate C program •
cron: clock daemon.

errdemon: error-logging daemon.
terminate the error-logging daemon. errstop:

runacct: run daily accounting.
backup. filesave, tapesave: daily/weekly UNIX file system ••

Ihandle special functions of DASI 300 and 300s terminals.
special functions of the DASI 450 terminal. Ihandle

bit, blt512: block transfer data.•.
prof: display profile data.

Itime a command; report process data and system activity.
termcap: terminal capability data base.

port. ttytype: data base of terminal types by
I sgetl: access long numeric data in a machine independentl

plock: lock process, text, or data in memory.
call. stat: data returned by stat system .

brk, sbrk: change data segment space allocation.
types: primitive system data types.

join: relational database operator.

- 7 -

Permuted Index

• • cpio.4
cpp.l

• • sethostname.2n
• c1ock.3c

craps.6
• • craps.6

crash.S
• crash.S

creat.2
tmpnam.3s

• creat.2
• • fork.2

tmpfile.3s
socket.2n
mkstr.1
pipe.2

• admin.1
umask.2
cribbage.6

• cribbage.6
cron.lm

• cxref.l
• more. 1

crypt. 1
crypt.3c

• csh.l
csplit.l

• • ct.lc
ctags.l
ctermid.3s
ctime.3c
cu.lc
ttt.6

· • gethostname.2n
hostname.l n

• • sact.l
uname.l
uname.2
ttyslot.3c
getcwd.3c
spline.1g
cuserid.3s
cut. I
cut. I
cw.1
cxref.l
cron.lm
errdemon.l m
errstop.lm
runacct.lm
filesave.lm
300.1
450.1
blt.3
prof. 1
timex.1
termcap.5
ttytypeA
sput1.3x
plock.2
stat. 5

• brk.2
• types.5

join.1

Permuted Index

udp: Internet User Datagram Protocol. ..•
date: print and set the date. .•.•••..

I asctime, tzset: convert date and time to string.
date: print and set the date.
dc: desk calculator.

optimal access time. dcopy: copy file systems for
dd: convert and copy a file.

adb: debugger. • .•..•..
fsdb: file system debugger. • •.•....

eqnchar: special character definitions for eqn and neqn.
netmailer: deliver mail to.

people. delivermail: deliver mail to arbitrary
names. basename, dirname: deliver portions of path

file. tail: deliver the last part of a
aliases: aliases file for delivermail.

arbitrary people. delivermail: deliver mail to
delta commentary of an sees delta. cdc: change the . . .

file. delta: make a delta (change) to an sees
delta. cdc: change the delta commentary of an sees

rmdel: remove a delta from an sees file.
to an sees file. delta: make a delta (change)

comb: combine sees deltas. . .•••....
mesg: permit or deny messages.

tbl, and eqn constructs. derotT: remove nrotT/trotT,
setkey, encrypt: generate DES encryption. crypt,

close: close a file descriptor. . •
dup: duplicate an open file descriptor ..•.•..

dc: desk calculator.
file. access: determine accessibility of a

file: determine file type.
errors in the specified device. 10n/otT the extended

ioct1: control device. •........
master: master device information table.

devnm: device name.
devnm: device name. . .

blocks. df: report number of free disk
check and interactivel fsck, dfsck: file system consistency

terminal line connection. dial: establish an out-going
bdiff: big diff. • . •

comparator. diff: ditTerential file
ditTdir: ditT directories ..•..••

comparison. diff3: 3-way ditTerential file
ditTdir: diff directories.

sdiff: side-by-side difference program
diffmk: mark ditTerences between files.

diff: differential file comparator.
diff3: 3-way differential file comparison.

between files. ditTmk: mark differences
dir: format of directories.
dircmp: directory comparison.

ditTdir: ditT directories.
dir: format of directories.

Is: list contents of directories.
rm, rmdir: remove files or directories.

in the files in the given directories. I count characters
cd: change working directory.

chdir: change working directory.
chroot: change root directory.

pathname of current working directory. getcwd: get
mkdir: make a directory.
mvdir: move a directory. . .•

Is7: list contents of directory (Berkeley version).
uuclean: uucp spool directory clean-up.

dircmp: directory comparison. •

- 8 -

udp.5n
• date.l

. • ctime.3c
• date.l
• dc.1

dcopy.lm
· dd.1

adb.l
· fsdb.1m

eqnchar.5
netmailer.8n
delivermail.8n
basename.l
tail. 1
aliases.7n
delivermail.8n

· cdc.1
• delta.1
· cdc.1
• rmde!.l
· delta. 1
• comb.l
· mesg.1
• derotT.1

crypt.3c
close.2

· dup.2
· dc.1
· access.2
• file.1

exterr.1
ioctl.2

• master.4
devnm.1m
devnm.lm
df.1m
fsck.lm
dia1.3c
bditT.1
ditT.1
ditTdir.1
ditT3.1
ditTdir.1

• sditT.1
· ditTmk.1

ditT.1
• ditT3.1

ditTmk.l
dir.4
dircmp.l
ditTdir.1
dir.4
Is. 1

• rm.1
sumdir.l
cd.l
chdir.2
chroot.2
getcwd.3c
mkdir.1
mvdir.1m
Is7.1

• • uuclean.1 m
• dircmp.1

unlink: remove directory entry.
chroot: change root directory for a command.

Imake a lost+found directory for fsck.
pwd: working directory name.

ordinary file. mknod: make a directory, or a special or
path names. basename, dirname: deliver portions of

printers. enable, disable: enable/disable LP .
acct: enable or disable process accounting.

type, modes, speed, and line discipline. Iset terminal
diskformat - format a disk. ••..•.

sadp: disk access profiler. • .
df: report number of free disk blocks.

disktune - tune floppy disk settling time parameters.
du: summarize disk usage. .•••...

diskformat - format a disk.
settling time parameters. disk tune - tune floppy disk

mount, umount: mount and dismount file system. . .
rain: animated raindrops display. ...•.•..

I view: screen oriented (visual) display editor based on ex.
prof: display profile data.

worms: animate worms on a display terminal.
hypot: Euclidean distance function.

Ilcong48: generate uniformly distributed pseudo-random I
macro package for formatting documents. mm: the MM •
macro package for formatting documents. Ithe OSDD adapter

mm, osdd, checkmm: print/check documents formatted with thel
slides. mmt, mvt: typeset documents, view graphs, and

nulladm,l chargefee, ckpacct, dodisk, lastlogin, monacct,
whodo: who is doing what. ••..•••.

suitable for Motorola S-record downloading. I ASCII formats
IMotorola S-records from downloading into a file. • .

nrand48, mrand48, jrand48,1 drand48, erand48, Irand48,
arithmetic: provide drill in number facts. . .

du: summarize disk usage.
extract error records from dump. errdead:

od: octal dump. ••••....
descriptor. dup: duplicate an open file

descriptor. dup: duplicate an open file
The alien invaders attack the earth. aliens:

echo: echo arguments.
echo: echo arguments.

floating-point number tol ecvt, fcvt, gcvt: convert
ed, red: text editor. .

program. end, etext, edata: last locations in
ex, edit: text editor.

sact: print current SCCS file editing activity.
ed, red: text editor.
ex, edit: text editor.

Id: link editor.
sed: stream editor.

oriented (visual) display editor based on ex. Iscreen
a.out: assembler and link editor output.

luser, real group, and effective group IDs.
andl Igetegid: get real user, effective user, real group,

Language. eft: Extended Fortran
split fortran, ratfor, or eft files. fsplit: • • . . •

for a pattern. grep, egrep, fgrep: search a file
enable/disable LP printers. enable, disable:

accounting. acct: enable or disable process
enable, disable: enablel disable LP printers.

crypt: encodel decode.
encryption. crypt, setkey, encrypt: generate DES

. setkey, encrypt: generate DES encryption. crypt.
makekey: generate encryption key.

- 9 ~

Permuted Index

unlink.2
chroot.1m
mklost + fnd.1 m
pwd.1
mknod.2
basename.1
enable.1
acct.2
getty.1m
diskformat.1m
sadp.1
df.lm
disktune.1m
du.1
diskformat.l m
disk tune. I m
mount.lm
rain.6
vi.l
prof. I
worms.6
hypot.3m
drand48.3c
mm.5
mosd.5
mm.l
mmt.l
acctsh.lm
whodo.1m
hex.l
rcvhex.1
drand48.3c
arithmetic.6
du.1
errdead.lm
od.l
dup.2
dup.2
aliens.6
echo.1
echo. 1
ecvt.3c
ed.l
end.3c
ex.l
sact.l

• ed.l
ex.l
Id.l
sed.l
vi.1
a.out.4
getuid.2
getuid.2
efl.l
fsplit.l
grep.1
enable.1
acct.2
enable.l
crypt. 1
crypt.3c
crypt.3c
makekey.1

Permuted Index

locations in program. end, etext, edata: last
Igetgrgid, getgrnarn, setgrent, endgrent: get group filel

socket: create an endpoint for communication.
/getpwuid, getpwnam, setpwent, endpwent: get password filel

utmp/ Ipututline, setutent, endutent, utmpname: access
convert Arabic numerals to English. number:

nlist: get entries from name list.
man, manprog: print entries in this manual.

man: macros for formatting entries in this manual.
endgrent: get group file entry. Igetgrnam, setgrent,

endpwent: get password file entry. Igetpwnam, setpwent,
utmpname: access utmp file entry. /setutent, endutent,

putpwent: write password file entry.
unlink: remove directory entry. . • •

utmp, wtmp: utmp and wtmp entry formats.
command execution. env: set environment for

environ: user environment.
environ: user environment.

environ: user environment.
environ: user environment.

printenv: print out the environment.
profile: setting up an environment at login time.

execution. env: set environment for command
getenv: return value for environment name.
character definitions for eqn and neqn. / special

remove nrotT/trotT, tbl, and eqn constructs. derotT:
mathematical text for nrotTl eqn, neqn, checkeq: format

definitions for eqn and neqn. eqnchar: special character
mrand48, jrand48,1 drand48, erand48, Irand48, nrand48,

complementary error function. erf, erfc: error function and
complementary errorl erf, erfc: error function and . .

err: error-logging interface.
from dump. errdead: extract error records

daemon. errdemon: error-logging . .
format. errfile: error-log file

system errorl perror, errno, sys errlist, sys nerr:
function and complementary error function. lerfc:-error

complementaryl erf, erfc: error function and
massaging CI mkstr: create an error message file by

sys errlist, sys nerr: system error messages. I errno, . .
- to system calls and error numbers. lintroduction

errdead: extract error records from dump.
matherr: error-handling function.

errfile: error-log file format.
errdemon: error-logging daemon.

errstop: terminate the error-logging daemon.
err: error-logging interface.

process a report of logged errors. errpt:
hashcheck: find spelling errors. Ihashmake, spellin,

1- turn on/otT the extended errors in the specifiedl
logged errors. errpt: process a report of

error-logging daemon. errstop: terminate the . • •
robots. autorobots: Escape from the automatic

robots: Escape from the robots. •
chase: Try to escape the killer robots.

terminal Iinel dial: establish an out-going
setmnt: establish mount table.

bnet. letc/hosts: host table for
in program. end, etext, edata: last locations

hypot: Euclidean distance function.
expression. expr: evaluate arguments as an

test: condition evaluation command. • • • •
display editor based on ex. Iscreen oriented (visual)

ex, edit: text editor.

- 10-

• end.3c
• • getgrent.3c

· socket.2n
• getpwent.3c
• getut.3c

number.6
nlist.3c

• man.l
• man.5

getgrent.3c
· getpwent.3c

getut.3c
· putpwent.3c
· unlink.2

utmp.4
· • env.l

· environ.4
environ.5
environ.4
environ.5

· printenv.l
profile.4

· . env.l
• getenv.3c
• eqnchar.5
• derotT.I
• eqn.l
• eqnchar.5
· drand48.3c
• erf.3m
· erf.3m

err.7
· errdead.l m
• errdemon.lm
• errfile.4

perror.3c
erf.3m

• erf.3m
• •• mkstr.l

• perror.3c
• intro.2
• errdead.l m

matherr.3m
• errfile.4
• errdemon.l m
• errstop.l m

• • err.7
• errpt.lm
• spell. I
• exterr.l

• •• errpt.1m
• errstop.lm
• autorobots.6
· robots.6

chase.6
· •• dial.3c

• setmnt.lm
hosts.7n

• end.3c
hypot.3m

• • expr.l
• test.1

vi.l
ex.l

reading orl lockf: provide
execlp, execvp: execute al

execvp: executel execl, execv,
execl, execv, execle, execve,

execve, execlp, execvp:
construct argument Iist(s) and

time. at:
regcmp, regex: compile and

set environment for command
uux: unix to unix command

sleep: suspend
sleep: suspend

monitor: prepare
profil:

execvp: execute al execl,
executel execl, execv, execle,

I execv, execle, execve, execlp,
system calls. link, unlink:

a new file or rewrite an
process.

exit,
exponential, logarithm,!

peat, unpack: compress and
adventure: an

exp, log, 10glO, pow, sqrt:
expression.

expr: evaluate arguments as an
compile and execute regular

regcmp: regular
routines. regexp: regular

exterr - turn on/off the
efl:

greek: graphics for the
extended errors in thel

dump. errdead:
remainder,! floor, ceil, fmod,

factor:

true,
data in a machine independent

finc:
abort: generate an lOT

a stream.

floating-point numberl ecvt,
fopen, freopen,

status inquiries. ferror,
fileno: stream statusl

statistics for a file system.
stream. fclose,

word froml getc, getchar,
stream. gets,

pattern. grep, egrep,
determine accessibility of a

chmod: change mode of
change owner and group of a

core: format of core image
fields of each line of a
dd: convert and copy a

a delta (change) to an sees
execlp, execvp: execute a

on character frequencies in a
get: get a version of an sees

exclusive file regions for
execl, execv, execle, execve,
execle, execve, execlp,
execlp, execvp: execute al
execute a file. I execle,
execute command. xargs:
execute commands at a later
execute regular expression.
execution. env:
execution•.
execution for an interval.
execution for interval.
execution profile.
execution time profile.
execv, execle, execve, execlp,
execve, execlp, execvp:
execvp: execute a file.
exercise link and unlink
existing one. creat: create
exit, _exit: terminate
exit: terminate process.

exp, log, 10glO, pow, sqrt:
expand files. pack,
exploration game.
exponential, logarithm, power,/
expr: evaluate arguments as an
expression.
expression. regcmp, regex:
expression compile. • . . .
expression compile and match
extended errors in thel . .
Extended Fortran Language.
extended TTY -37 type-box.
exterr - turn on/off the .
extract error records from
fabs: floor, ceiling,
factor a number.
factor: factor a number. .
false: provide truth values.
fashion .. laccess long numeric
fast incremental backup.
fault.
fclose, mush: close or flush
fcnt!: file control.
fcnt!: file control options.
fcvt, gcvt: convert
fdopen: open a stream.
feof, c1earerr, fileno: stream
ferror, feof, clear err,
ff: list file names and . . .
mush: close or flush a
fgetc, getw: get character or
fgets: get a string from a
fgrep: search a file for a
file. access:
file
file. chown:
file.
file. cut: cut out selected
file•....
file. delta: make
file. lexecv, execle, execve,
file. freq: report
file

- 11 -

Permuted Index

lockf.2
exec.2

• exec.2
exec.2
exec.2

• xargs.l
at.!
regcmp.3x
env.1
uux.lc
sleep.1

• sleep.3c
monitor.3c
profil.2
exec.2
exec.2

• exec.2
Iink.1m
creat.2
exit.2
exit.2
exp.3m
pack.1
adventure.6
exp.3m
expr.1
expr.1
regcmp.3x
regcmp.l
regexp.S
exterr.1
efl.1
greek.S
exterr.l
errdead.lm
floor.3m
factor. 1
factor.1
true.1
sputl.3x
finc.lm
abort.3c
fclose.3s
fcntl.2
fcntl.S
ecvt.3c
fopen.3s
ferror.3s
ferror.3s
ff.lm
fclose.3s
getc.3s
gets.3s
grep.1
access.2
chmod.2
chown.2
core.4
cut.1
dd.1
delta. 1
exec.2
freq.1
get. 1

Permuted Index

group: group file.
issue: issue identification file.

link: link to a file.
mknod: build special file.

or a special or ordinary file. /make a directory,
change the format of a text file. newform:

null: the null file.
passwd: password file. . . . •

or subsequent lines of one file. /lines of several files
prs: print an sees file. . . . • • • • . . .

from downloading into a file. /Motorola S-records
read: read from file. . . • •

remove a delta from an sees file. rmdel:
two versions of an sees file. sccsdiff: compare
sccsfile: format of sees file. . •

size: size of an object file.
in an object, or other binary file. /the printable strings

checksum and block count of a file. sum: print .
sum and count blocks in a file. sum7:

deliver the last part of a file. tail: . • .
tmpfile: create a temporary file.

create a name for a temporary file. tmpnam, tempnam:
and modification times of a file. touch: update access

undo a previous get of an sees file. unget:
report repeated lines in a file. uniq:

val: validate sees file.
write: write on a file.

times. utime: set file access and modification
hpio: HP 264SA terminal tape file archiver. . .••.

tar: tape file archiver. . . • . • . .
cpio: copy file archives in and out. . .

mkstr: create an error message file by massaging e source.
pwck, grpck: password/group file checkers ...

diff: differential file comparator.
diff3: 3-way differential file comparison.

-fcntl: file control.
fcnt!: file control options.

rcp: remote file copy.
UNIX System-to-UNIX System file copy. /uupick: public

umask: set and get file creation mask.
close: close a file descriptor.

dup: duplicate an open file descriptor.
file: determine file type.

sact: print current sees file editing activity. .
setgrent, endgrent: get group file entry. /getgrnam,

endpwent: get password file entry. /setpwent,
utmpname: access utmp file entry. /endutent,

putpwent: write password file entry. • •...•
ctags: maintain a tags file for a e program.

grep, egrep, fgrep: search a file for a pattern. .
aliases: aliases file for deliver mail.

acct: per-process accounting file format.
ar: archive (library) file format.

errfile: error-log file format.
pnch: file format for card images.

intro: introduction to file formats. •• • . . • •
take: takes a file from a remote machine.

take7: takes a file from a remote machine ..
split: split a file into pieces. • • . • • •

mktemp: make a unique file name. •• . . . • • •
ctermid: generate file name for terminal.

a file system. ff: list file names and statistics for
lfind the slot in the utmp file of the current user. • .

put: puts a file onto a remote machine ..

- 12 -

groupA
• issueA
• link.2

mknod.lm
mknod.2
newform.l

• null.7
passwdA
paste. 1
prs.l
rcvhex.l

• read.2
· rmdel.l

sccsdiff.l
• sccsfileA
• size.l
· strings. 1

sum.l
sum7.1
tail. 1

• tmpfile.3s
tmpnam.3s
touch.l
unget.l
uniq.l
val.l
write.2
utime.2
hpio.l
tar.l
cpio_l
mkstr.l

• pwck.lm
diff.l
diff3.l
fcntl.2
fcntl.S
rcp.In
uuto.lc
umask.2
close.2
dup.2
file.l
sact.l
getgrent.3c
getpwent.3c
getut.3c
putpwent.3c
ctags.I

• grep.l
aliases.7n
acctA
ar.4
errfileA

• pnchA
introA
take.Ic
take7.lc

• • • split.l
mktemp.3c

• ctermid.3s
ff.lm

• ttyslot.3c
put.1c

put7: puts a
/identify processes using a

one. creat: create a new
viewing. more:

Iseek: move read/write
Irewind, ftell: reposition a

lockf: provide exclusive
bfs: big

stat, fstat: get
processes using a file or

names and statistics for a
mkfsl b: construct a

mkfs: construct a
umount: mount and dismount

mount: mount a
umount: unmount a

tapesave: daily/weekly UNIX
and interactivel fsck, dfsck:

fsdb:
volume.

ustat: get
mnttab: mounted

access time. dcopy: copy
fsck. checklist: list of
volcopy, labelit: copy

ftw: walk a
file: determine

umask: set
ferror, feof, clearerr,

and print process accounting
merge or add total accounting

create and administer SCCS
cat: concatenate and print

cmp: compare two
lines common to two sorted

cp, In, mv: copy, link or move
mark differences between

find: find
format specification in text

fortran, ratfor, or efl
string, format of graphical

intro: introduction to special
unpack: compress and expand

pr: print
sort: sort and/or merge

reports version number of
what: identify sees

updater: update
updater: update

frec: recover
and count characters in the

hex: translates object
rm, rmdir: remove

Imerge same lines of several
daily/weekly UNIX file systeml

greek: select terminal
nl: line numbering
more: file perusal

col:
tplot: graphics

find:

hyphen:

file onto a remote machine ..
file or file structure.
file or rewrite an existing
file perusal filter for crt
file pointer. • •
file pointer in a stream.
file regions for reading orl
file scanner. . •
file status. • •
file structure. /identify
file system. ff: list file
file system.
file system.
file system. mount,
file system.
file system.
file system backup. filesave,
file system consistency check
file system debugger. • •
file system: format of system
file system statistics.
file system table.
file systems for optimal
file systems processed by
file systems with label!
file tree. • . • •.
file type. • .
file-creation mode mask.
fileno: stream statusl
file(s). acctcom: search
files. acctmerg:
files. admin:
files.
files.
files. comm: select or reject
files.
files. diffmk:
files.
files. fspec:
files. fsplit: split
files. 1 graphical primitive
files.
files. pack, peat,
files.
files.
files. version:
files.
files between two machines.
files between two machines.
files from a backup tape.
files in the givenl Isum
files into ASCII formatsl
files or directories.
files or subsequent lines oft
filesave, tapesave:
filter.
filter.
filter for crt viewing.
filter reverse line-feeds.
filters.
finc: fast incremental backup.
find files.
find: find files.
find hyphenated words.

- 13 -

Permuted Index

put7.lc
fuser.1m
creat.2
more.l

• Iseek.2
• fseek.3s

lockf.2
bfs.l

• stat.2
• fuser.1m

ff.1m
mkfslb.1m

• mkfs.lm
mount.1m
mount.2
umount.2
filesave.lm
fsck.lm

• fsdb.lm
fs.4
ustat.2
mnttab.4
dcopy.lm
checklist.4
volcopy.lm
ftw.3c
file.l
urn ask. 1
ferror.3s
acctcom.l
acctmerg.1 m
admin.l
cat.1
cmp.1
comm.l
cp.1
diffmk.1
find. 1
fspec.4
fsplit.l
gps.4
intro.7
pack. 1
pr.1
sort. 1
version. I
what.1
updater.1
updater.lm
frec.lm
sumdir.l
hex.1
rm.l
paste. 1
filesave.1m
greek. 1
nl.1
more.l
col. I
tplot.lg
finc.lm
find. 1
find. 1
hyphen. 1

Permuted Index

ttyname, isatty: find name of a terminal. ttyname.3c
object library. lorder: find ordering relation for an lorder.l

hashmake, spellin, hashcheck: find spelling errors. spell, . spell. 1
an object, or other/ strings: find the printable strings in strings. 1
of the current user. ttyslot: find the slot in the utmp file ttyslot.3c

fish: play "Go Fish". ..•... fish.6
fish: play "Go Fish". fish.6

a command immune to hangups (sh only). nohup: run nohup.l
tee: pipe fitting. •.•... tee.l

atof: convert ASCII string to floating-point number. atof.3c
ecvt, fcvt, gcvt: convert floating-point number tol ecvt.3c

i modf: manipulate parts of floating-point numbers. . frexp.3c
floor, ceiling, remainder,! floor, ceil, fmod, fabs: floor.3m

floor, ceil, fmod, fabs: floor, ceiling, remainder,! floor.3m
parameters. disktune - tune floppy disk settling time disktune.lm

cflow: generate C flow graph. •..•.. cflow.l
fclose, mush: close or flush a stream. fclose.3s

remainder,! floor, ceil, fmod, fabs: floor, ceiling, floor.3m
stream. fopen, freopen, fdopen: open a fopen.3s

fork: create a new process. fork.2
per-process accounting file format. acct: acct.4

ar: archive Oibrary) file format. ar.4
errfile: error-log file format. errfile.4

tp: magnetic tape format. tp.4
diskformat - format a disk. • diskformat.lm

pnch: file format for card images. • pnch.4
nroff orl eqn, neqn, checkeq: format mathematical text for eqn.l

newform: change the format of a text file. newform.l
inode: format of an inode. . • . inode.4
core: format of core image file. core.4
cpio: format of cpio archive. cpio.4

dir: format of directories. . • dir.4
/ graphical primitive string, format of graphical files. . gps.4

sccsfile: format of SCCS file. • sccsfile.4
file system: format of system volume. • fs.4
files. fspec: format specification in text • fspec.4

troff. tbl: format tables for nroff or • tbl.l
nroff: format text. . . nroff.l

intro: introduction to file formats. intro.4
wtmp: utmp and wtmp entry formats. utmp, • utmp.4

/ object files into ASCII formats suitable for Motorolal . hex. I
scanf, fscanf, sscanf: convert formatted -input. • • scanf.3s

fprintf, sprintf: print formatted output. printf, • printf.3s
Icheckmm: print/check documents formatted with the MM macros. mm.l

mptx: the macro package for formatting a permuted index. mptx.5
nroff7: text formatting and typesetting. . nroff7.1
troff7: text formatting and typesetting. • • • troff7.l

mm: the MM macro package for formatting documents. mm.5
OSDD adapter macro package for formatting documents. Ithe mosd.5

manual. man: macros for formatting entries in this •••••• man.5
efl: Extended Fortran Language. • efl.l

files. fsplit: split fortran, ratfor, or efl • • • fsplit.1
hopefully interesting, adage. fortune: print a random, fortune.6

formatted output. printf, fprintf, sprintf: print printf.3s
word on a/ putc, putchar, fputc, putw: put character or putc.3s

stream. puts, fputs: put a string on a puts.3s
input/output. fread, fwrite: binary fread.3s
backup tape. frec: recover files from a frec.l m

df: report number of free disk blocks. df.l m
memory allocator. malloc, free, realloc, calloc: main malloc.3c

stream. ropen, freopen, fdopen: open a fopen.3s
frequencies in a file. freq: report on character freq.l

freq: report on character frequencies in a file. freq.l
parts of floating-point/ frexp, Idexp, modf: manipulate frexp.3c

- 14 -

frec: recover files from a backup tape.
take: takes a file from a remote machine.

take7: takes a file from a remote machine ..
receive: receive message from a socket.

send: send message from a socket. •• •
gets, fgets: get a string from a stream. • •
rmdel: remove a delta from an sees file.

getopt: get option letter from argument vector.
Itranslates Motorola S-records from downloading into a file.
errdead: extract error records from dump. • • •

read: read from file.
ncheck: generate names from i-numbers.

nlist: get entries from name list.
acctcms: command summary from per-process accountingl

getw: get character or word from stream. Igetchar, fgetc,
autorobots: Escape from the automatic robots.

robots: Escape from the robots. • • •
getpw: get name from UID.

formatted input. scanf, fscanf, sscanf: convert
of file systems processed by fsck. checklist: list
a lost+found directory for fsck. mklost+found: make

consistency check andl fsck, dfsck: file system
fsdb: file system debugger.

reposition a file pointer inl fseek, rewind, ftell: • • •
text files. fspec: format specification in

or efl files. fsplit: split fortran, ratfor,
stat, fstat: get file status. •

pointer in al fseek, rewind, ftell: reposition a file
ftw: walk a file tree.

and complementary error function. lerror function
gamma: log gamma function.

hypot: Euclidean distance function. ••••.••
matherr: error-handling function. ••••••.

errorl erf, erfc: error function and complementary
jO, jl, jn, yO, yl, yn: Bessel functions. • •••••.•

logarithm, power, square root functions. Isqrt: exponential,
remainder, absolute value functions. Ifloor, ceiling,

sinh, cosh, tanh: hyperbolic functions. • • . • . . . • • •
atan, atan2: trigonometric functions. Itan, asin, acos,

300, 300s: handle special functions of DASl 300 and 300s1
hp: handle special functions of HP 2640 andl

terminal. 450: handle special functions of the DASl 450
using a file or filel fuser: identify processes •

fread, fwrite: binary input/output.
connect accounting records. fwtmp, wtmpfix: manipulate

adventure: an exploration game.
moo: guessing game.

trek: trekkie game.
worm: Play the growing worm game.

cribbage: the card game cribbage.
back: the game of backgammon.

bj: the game of black jack. . •
craps: the game of craps. • • • •

wump: the game of hunt-the-wumpus.
life: play the game of life. • •

intro: introduction to games. ••.....••
gamma: log gamma function. • . . • .

gamma: log gamma function.
number to string. ecvt, fcvt, gcvt: convert floating-point

maze: generate a maze. . . .
abort: generate an lOT fault.
cflow: generate C flow graph.

reference. cxref: generate C program cross
crypt, setkey, encrypt: generate DES encryption.

- 15 -

Permuted Index

frec.1m
take.1c
take7.1c
receive.2n
send.2
gets.3s

• rmdel.1
getopt.3c

• rcvhex.l
• errdead.l m

read.2
ncheck.lm
nlist.3c
acctcms.lm

• getc.3s
• autorobots.6

robots.6
getpw.3c

• scanf.3s
checklist.4
mklost+fnd.lm
fsck.1m
fsdb.1m

• fseek.3s
fspecA
fsplit.l
stat.2
fseek.3s
ftw.3c
erf.3m
gamma.3m
hypot.3m
matherr.3m
erf.3m
besse1.3m
exp.3m
floor.3m
sinh.3m
trig.3m
300.1
hp.l
450.1
fuser.lm
fread.3s
fwtmp.lm
adventure.6
moo.6
trek.6
worm.6
cribbage.6
back.6
bj.6
craps.6
wump.6
life.6
intro.6
gamma.3m
gamma.3m
ecvt.3c
maze.6
abort.3c
cflow.l
cxref.l
crypt.3c

Permuted Index

makekey: generate encryption key.
terminal. ctermid: generate file name for

ncheck: generate names from i-numbers.
lexical tasks. lex: generate programs for simple

!srand48, seed48, Icong48: generate uniformly distributed!
srand: simple random-number generator. rand,

gets, fgets: get a string from a stream.
get: get a version of an sees file.

ulimit: get and set user limits.
the user. cuserid: get character login name of

getc, getchar, fgetc, getw: get character or word from!
nlist: get entries from name list.

umask: set and get file creation mask.
stat, fstat: get file status.

ustat: get file system statistics. .
file. get: get a version of an sees

!getgrnam, setgrent, endgrent: get group file entry.
getlogin: get login name.
logname: get login name.

msgget: get message queue.
getpw: get name from UID.

gethostname: get name of current host.
system. uname: get name of current UNIX

unget: undo a previous get of an sees file.
argument vector. getopt: get option letter from .

! getpwnam, setpwent, endpwent: get password file entry.
working directory. getcwd: get pathname of current

times. times: get process and child process
and! getpid, getpgrp, getppid: get process, process group,

!geteuid, getgid, getegid: get real user, effective user,!
semget: get set of semaphores.
shmget: get shared memory segment.

tty: get the terminal's name.
time: get time. •.•....

get character or word from! getc, getchar, fgetc, getw:
character or word from! getc, getchar, fgetc, getw: get .

current working directory. getcwd: get pathname of
getuid, geteuid, getgid, getegid: get real user,!

environment name. getenv: return value for .
real user, effective! getuid, geteuid, getgid, getegid: get

user,! getuid, geteuid, getgid, getegid: get real . .
setgrent, endgrent: get group! getgrent, getgrgid, getgrnam,
endgrent: get group! getgrent, getgrgid, getgrnam, setgrent,
get group! getgrent, getgrgid, getgrnam, setgrent, endgrent:

current host. gethostname: get name of . .
getlogin: get login name.

argument vector. getopt: get option letter from
getopt: parse command options.
get pass: read a password.

process group, and! getpid, getpgrp, getppid: get process,
process, process group, and! getpid, getpgrp, getppid: get
group, and! getpid, getpgrp, getppid: get process, process .

getpw: get name from UID. .
setpwent, endpwent: get! getpwent, getpwuid, getpwnam,
get! getpwent, getpwuid, getpwnam, setpwent, endpwent:
endpwent: get! getpwent, getpwuid, getpwnam, setpwent,

a stream. gets, fgets: get a string from
and terminal settings used by getty. gettydefs: speed

modes, speed, and line! getty: set terminal type, ..
ct: spawn getty to a remote terminal.

settings used by getty. gettydefs: speed and terminal
getegid: get real user,! getuid, geteuid, getgid,

pututline, setutent,! getutent, getutid, getutline,
setutent, endutent,! getutent, getutid, getutline, pututline,

- 16 -

makekey.1
ctermid.3s
ncheck.1m
lex.1
drand48.3c
rand.3c
gets.3s
get.1
ulimit.2
cuserid.3s
getc.3s
nlist.3c
umask.2
stat.2
ustat.2
get. 1
getgrent.3c
getlogin.3c
logname.1
msgget.2
getpw.3c
gethostname.2n
uname.2
unget.l
getopt.3c
getpwent.3c
getcwd.3c
times.2
getpid.2
getuid.2
semget.2
shmget.2
tty. 1
time.2
getc.3s
getc.3s
getcwd.3c
getuid.2
getenv.3c
getuid.2
getuid.2
getgrent.3c
getgrent.3c
getgrent.3c
gethostname.2n
getlogin.3c
getopt.3c
getopt.1
getpass.3c
getpid.2
getpid.2
getpid.2
getpw.3c
getpwent.3c
getpwent.3c·
getpwent.3c
gets.3s
gettydefs.4
getty.1m
ct.lc
gettydefs.4
getuid.2
getut.3c
getut.3c

setutent,l getutent, getutid, getutline, pututline,
froml getc, getchar, fgetc, getw: get character or word
convertl ctime, localtime, gmtime, asctime, tzset:

fish: play "Go Fish".
setjmp, longjmp: non-local goto. ••.•.•••
string, format of graphicall gps: graphical primitive

cflow: generate C flow graph. • • . . • . . .
sag: system activity graph. . • . • • • • .

primitive string, format of graphical files. Igraphical
format of graphicall gps: graphical primitive string,

tplot: graphics filters. • . • • •
TTY -37 type-box. greek: graphics for the extended

plot: graphics interface.
subroutines. plot: graphics interface • • . •

mvt: typeset documents, view graphs, and slides. mmt,
package for typesetting view graphs and slides. Imacro
extended TTY -37 type-box. greek: graphics for the

greek: select terminal filter.
file for a pattern. grep, egrep, fgrep: search a

chown, chgrp: change owner or group. ••.••••..
newgrp: log in to a new group. •••••••..

luser, effective user, real group, and effective groupl
Igetppid: get process, process group, and parent process IDs.

group: group file. • • . • . . • .
setgrent, endgrent: get group file entry. Igetgrnam,

group: group file. • • • • .
setpgrp: set process group 10. ••• • . • • •

real group, and effective group IDs. leffective user,
setuid, setgid: set user and group IDs. • . • • •

id: print user and group IDs and names.
chown: change owner and group of a file. • . .

a signal to a process or a group of processes. I send
update, and regenerate groups of programs. Imaintain,

worm: Play the growing worm game. . •
checkers. pwck, grpck: passwordl group file

ssignal, gsignal: software signals.
hangman: guess the word.

moo: guessing game. •
DASI 300 and 300s1 300,300s: handle special functions of

2640 and 262l-seriesl hp: handle special functions of HP
the DASI 450 terminal. 450: handle special functions of

information for bad block handling. lalternate block
hangman: guess the word. .

nohup: run a command immune to hangups (sh only).
hcreate, hdestroy: manage hash search tables. hsearch,

spell, hashmake, spellin, hashcheck: find spellingl
find spelling errors. spell, hashmake, spellin, hashcheck:

search tables. hsearch, hcreate, hdestroy: manage hash
tables. hsearch, hcreate, hdestroy: manage hash search

help: ask for help. •••.••••.
help: ask for help.

into ASCII formats suitablel hex: translates object files .
fortune: print a random, hopefully interesting, adage.

get name of current host. gethostname: . . • •
sethostname: set name of host cpu. ••••....

ruptime: show host status of local machines.
set or print name of current host system. hostname: • . .

I etc/hosts: host table for bnet. • • . . .
current host system. hostname: set or print name of

rhost, raddr: look up internet hosts by name or address. . .
handle special functions of HP 2640 and 262l-seriesl hp:

archiver. hpio: HP 2645A terminal tape file •
of HP 2640 and 2621-seriesl hp: handle special functions .

file archiver. hpio: HP 2645A terminal tape

- 17 -

Permuted Index

getut.3c
getc.3s
ctime.3c
fish.6
setjmp.3c
gps.4
cflow.1
sag.lg
gps.4
gps.4
tplot.lg
greek.5
plot.4
plot.3x
mmt.l
mv.5
greek.5
greek.l
grep.1
chown.l
newgrp.1
getuid.2
getpid.2
group.4
getgrent.3c
group.4
setpgrp.2
getuid.2
setuid.2
id.1
chown.2
kill.2
make.1
worm.6
pwck.1m
ssigna1.3c
hangman.6
moo.6
300.1
hp.1
450.1
altblk.4
hangman.6
nohup.1
hsearch.3c
spell. 1
spell.1

• hsearch.3c
hsearch.3c
help.l
help.l
hex.l
fortune.6
gethostname.2n
sethostname.2n
ruptime.ln
hostname.1 n
hosts.7n
hostname.l n
rhost.3n
hpj
hpio.l
hp.l
hpio.l

Permuted Index

manage hash search tables. hsearch, hcreate, hdestroy:
wump: the game of hunt-the-wumpus.

sinh, cosh, tanh: hyperbolic functions.
hyphen: find hyphenated words.

hyphen: find hyphenated words. • • • • •
function. hypot: Euclidean distance

semaphore set or shared memory id. Iremove a message queue,
setpgrp: set process group ID. • • • . • • . . • . •

and names. id: print user and group IDs
issue: issue identification file. • . . .

file or filel fuser: identify processes using a
what: identify SCCS files. • • .

group, and parent process IDs. Iget process, process
group, and effective group IDs. leffective user, real
setgid: set user and group IDs. setuid,

id: print user and group IDs and names.
core: format of core image file. • . •

pnch: file format for card images.
only). nohup: run a command immune to hangups (sh

finc: fast incremental backup.
long numeric data in a machine independent fashion .. I access

Itgoto, tputs: terminal independent operationl • .
for formatting a permuted index. Ithe macro package

ptx: permuted index .•••••••
family. inet: Internet protocol

inittab: script for the init process.
initialization. init, telinit: process control

init, telinit: process control initialization. • . . • . .
Irc, powerfail: system initialization shell scripts.

socket. connect: initiate a connection on a
process. popen, pclose: initiate pipe to/from a

process. inittab: script for the init
clri: clear i-node. •..•••..

inode: format of an inode. . • • • • • . . .
inode: format of an inode.

sscanf: convert formatted input. scanf, fscanf,
push character back into input stream. ungetc:

fread, fwrite: binary input/output.
stdio: standard buffered input/output package.

fileno: stream status inquiries. Ifeof, clearerr,
uustat: uucp status inquiry and job control. •

install: install commands.
install: install commands.

atol, atoi: convert string to integer. strtol, . • • . .
abs: return integer absolute value.

/l64a: convert between long integer and base-64 ASCIII
3-byte integers and long integers. Iconvert between

Iltol3: convert between 3-byte integers and long integers.
bcopy: interactive block copy.

system consistency check and interactive repair. lfile
print a random, hopefully interesting, adage. fortune:

err: error-logging interface.
loop: software loopback interface.

plot: graphics interface.
termio: general terminal interface.
tty: controlling terminal interface.

plot: graphics interface subroutines.
rhost, raddr: look up internet hosts by name orl

ip: Internet Protocol.
inet: Internet protocol family.

Protocol. tcp: Internet Transmission Control
Protocol. udp: Internet User Datagram .••

spline: interpolate smooth curve. • •
characters. asa: interpret ASA carriage control

- 18 -

hsearch.3c
wump.6
sinh.3m
hyphen.l
hyphen.l
hypot.3m
ipcrm.l
setpgrp.2
id.l
issue.4
fuser.lm
what.!
getpid.2
getuid.2
setuid.2
id.1
core.4
pnch.4
nohup.l
finc.lm
sput1.3x
termcap.3
mptx.5
ptx.!
inet.5n
inittab.4
init.lm
init.1m
brc.lm
connect.2n
popen.3s
inittab.4
clri.1m
inode.4
inode.4
scanf.3s
ungetc.3s
fread.3s
stdio.3s
ferror.3s
uustat.1c
install.1m
install. 1m
strto1.3c
abs.3c
h641.3c
l3to1.3c
13to1.3c
bcopy.lm
fsck.lm

• fortune.6
err.7
10.5n
plot.4
termio.7

• tty.7
plot.3x
rhost.3n
ip.5n
inet.5n
tcp.5n
udp.5n
spline.Ig
asa.1

sno: SNOBOL
syntax. csh: a shell (command

pipe: create an
facilitiesl ipcs: report

package. stdipc: standard
suspend execution for an

sleep: suspend execution for
commands and applicationl

formats.

miscellany.
files.

subroutines and libraries.
calls and error numbers.

maintenance commands andl
maintenance procedures.

application programs. intro:
intro:
intro:
intro:

facilities. net:
intro:

and libraries. intro:
and error numbers. intro:

maintenance commandsl intro:
maintenancel intro:

ncheck: generate names from
aliens: The alien

select: synchronous

abort: generate an

semaphore set or sharedl
communication facilitiesl
I islower, isdigit, isxdigit,

isdigit, isxdigit, isalnum,l
lisprint, isgraph, iscntrl,

terminal. ttyname,
I ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,

isalnum,1 isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
I isdigit, isxdigit, isalnum,

system:
issue:

file.
isxdigit, isalnum,l isalpha,

/isupper, islower, isdigit,
news: print news

functions.
functions. jO,

bj: the game of black
functions. jO, jl,

operator.
/Irand48, nrand48, mrand48,

makekey: generate encryption
killall:

process or a group of!

processes.
chase: Try to escape the

mem,

interpreter.
interpreter) with C-Iike
interprocess channel.
inter-process communication
interprocess communication
interval. sleep:.. .
interval. .•••..••
intro: introduction to . .
intro: introduction to file
intro: introduction to games.
intro: introduction to • • •
intro: introduction to special
intro: introduction to . . •
intro: introduction to system
intro: introduction to system
intro: introduction to system
introduction to commands and
introduction to file formats.
introduction to games.
introduction to miscellany.
introduction to networking
introduction to special files.
introduction to subroutines
introduction to system calls
introduction to system
introduction to system
i-numbers.
invaders attack the earth.
i/o multiplexing. . .
ioctl: control device.
lOT fault.
ip: Internet Protocol.
ipcrm: remove a message queue,
ipcs: report inter-process
isalnum, isspace, ispunct,l
isalpha, isupper, islower,
isascii: classify characters.
isatty: find name of a ..
iscntrl, isascii: c1assifyl
isdigit, isxdigit, isalnum,l
isgraph, iscntrl, isascii:1
islower, isdigit, isxdigit, .
isprint, isgraph, iscntrl,l
ispunct, isprint, isgraph,l
iss pace, ispunct, isprint,l
issue a shell command.
issue identification file.
issue: issue identification
isupper, islower, isdigit, •
isxdigit, isalnum, isspace,l
items ..••••....
jO, jl, jn, yO, yl, yn: Bessel
jl, jn, yO, yl, yn: Bessel
jack. • .••....
jn, yO, yl, yn: Bessel
join: relational database
jrand48, srand48, seed48,1
key. . ••....•
kill all active processes.
kill: send a signal to a •
kill: terminate a process.
killall: kill all active .
killer robots.
kmem: core memory.

- 19 -

Permuted Index

sno.l
csh.l
pipe.2
ipcs.l
stdipc.3c
sleep. 1
sleep.3c
intro.l
intro.4
intro.6
intro.5
intro.7
intro.3
intro.2
intro.lm
intro.8
intro.l
intro.4
intro.6
intro.5
net.5n
intro.7

• intro.3
intro.2
intro.lm
intro.8
ncheck.lm
aliens.6
select.2n
ioctl.2
abort.3c
ip.5n
ipcrm.l
ipcs.l
ctype.3c

• ctype.3c
ctype.3c
ttyname.3c
ctype.3c
ctype.3c
ctype.3c
ctype.3c
ctype.3c
ctype.3c
ctype.3c
system.3s
issue.4
issue.4
ctype.3c
ctype.3c
news. 1
bessel.3m
bessel.3m
bj.6
bessel.3m
join. 1
drand48.3c
makekey.l
killall.lm
kill. 2
kill. 1
killall.lm
chase.6
mem.7

Permuted Index

quiz: test your knowledge.
3-byte integers and longl 13tol, ltol3: convert between

integer and base-641 a64l, 164a: convert between long
copy file systems with label checking. /labelit:

with label checking. volcopy, labelit: copy file systems
scanning and processing language. awk: pattern

arbitrary-precision arithmetic language. bc:
efl: Extended Fortran Language. . .•.•.

command programming language. Istandard/restricted
cpp: the C language preprocessor.

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,!
Ijrand48, srand48, seed48, Icong48: generate uniformlyl

Id: link editor. •
of floating-pointl frexp, Idexp, modf: manipulate parts

getopt: get option letter from argument vector.
simple lexical tasks. lex: generate programs for

generate programs for simple lexical tasks. lex: • • .
to subroutines and libraries. /introduction

relation for an object library. lfind ordering
ar: archive (library) file format.

ar: archive and library maintainer.
ulimit: get and set user limits. • • . • . . .

line: read one line. ..••...
an out-going terminal line connection. lestablish

type, modes, speed, and line discipline. Iset terminal
nl: line numbering filter. •

out selected fields of each line of a file. cut: cut •
sendl cancel requests to an LP line printer. Ip, cancel:

lpr: line printer spooler. . .
line: read one line.

lsearch: linear search and update.
col: filter reverse line-feeds. . . . • . • .

head: give first few lines. •........
files. comm: select or reject lines common to two sorted

uniq: report repeated lines in a file.••
of several files or subsequent lines of one file. Isame lines

subsequentl paste: merge same lines of several files or
link, unlink: exercise link and unlink system calls.

Id: link editor.
a.out: assembler and link editor output.

link: link to a file.
cp, In, mv: copy, link or move files.

link: link to a file
and unlink system calls. link, unlink: exercise link

lint: a C program checker.
nlist: get entries from name list. • • .

nm: print name list. . • . • . . • . • •
Is: list contents of directories.

(Berkeley version). Is7: list contents of directory
for a file system. ff: list file names and statistics

by fsck. checklist: list of file systems processed
xargs: construct argument list(s) and execute command.

files. cp, In, mv: copy, link or move
tzset: convert datel ctime, locaitime, gmtime, asctime,

end, etext, edata: last locations in program. . • •
memory. plock: lock process, text, or data in

regions for reading orl lockf: provide exclusive file
gamma: log gamma function.
newgrp: log in to a new group.

exponential, logarithm,! exp, log, 10glO, pow, sqrt:
logarithm, power,! exp, log, 10g10, pow, sqrt: exponential,

/loglO, pow, sqrt: exponential, logarithm, power, square root!
errpt: process a report of logged errors. ••••.•

rwho: who is logged in on local machines.

- 20 -

quiz.6
13to1.3c

• h641.3c
volcopy.lm
volcopy.lm
awk.!
bc.l
efl.!
sh'!
cpp.l
acctsh.lm
drand48.3c
Id.!
frexp.3c
getopt.3c
lex.l
lex.l
intro.3
lorder.l
ar.4
ar.1
ulimit.2
line.l
dia1.3c
getty. 1m
nl.l
cut.!
Ip.l
Ipr.1
line. 1
Isearch.3c
col. 1
head.1
comm.!
uniq.1
paste. 1
paste. 1
Iink.1m
ld.l
a.out.4
link.2
cp.l
Iink.2
link.1m
lint. I
nlist.3c
nm.1
Is.1
Is7.1
if.lm
checklist.4
xargs.1
cp.l
ctime.3c
end.3c
plock.2
lockf.2
gamma.3m
newgrp.1
exp.3m
exp.3m
exp.3m
errpt.lm
rwho.1n

rlogin: remote login. . . .
getlogin: get login name.
logname: get login name.

cuserid: get character login name of the user.
log name: return login name of user.
passwd: change login password.

login: sign on.
setting up an environment at login time. profile:

logname: get login name.
user. logname: return login name of

a64l, l64a: convert between long integer and base-64 ASCII/
between 3-byte integers and long integers. /ltoI3: convert

sputl, sgetl: access long numeric data in a machine/
setjmp, longjmp: non-local goto.

interface. loop: software loopback . .
loop: software loopback interface.

for an object library. lorder: find ordering relation
mklost+found: make a lost+found directory for fsck.
nice: run a command at low priority. . •....
requests to an LP line/ Ip, cancel: send/cancel

send/cancel requests to an LP line printer. Ip, cancel:
disable: enable/disable LP printers. enable,

/Ipshut, Ipmove: start/stop the LP request scheduler and move/
accept, reject: allow/prevent LP requests. . • . . .

Ipadmin: configure the LP spooling system.
Ipstat: print LP status information.

spooling system. Ipadmin: configure the LP
request/ Ipsched, Ipshut, Ipmove: start/stop the LP

Ipr: line printer spooler. .
start/stop the LP request/ Ipsched, Ipshut, Ipmove:

LP request scheduler/ Ipsched, Ipshut, Ipmove: start/stop the
information. Ipstat: print LP status . . .

jrand48,1 drand48, erand48, Irand48, nrand48, mrand48,
directories. Is: list contents of

directory (Berkeley version). Is7: list contents of
update. Isearch: linear search and
pointer. Iseek: move read/write file

integers and long/ 13tol, Ito13: convert between 3-byte
m4: macro processor.

truth value about your/ m68k, pdpll, u3b, vax: provide
put: puts a file onto a remote machine ..

puts a file onto a remote machine .. put7:
takes a file from a remote machine. take: •
takes a file from a remote machine .. take7:

/access long numeric data in a machine independent fashion ..
show host status of local machines. ruptime:
who is logged in on local machines. rwho: .
update files between two machines. updater:
update files between two machines. updater:

permuted index. mptx: the macro package for formatting a
documents. mm: the MM macro package for formatting
mosd: the OSDD adapter macro package for formatting/

view graphs and/ mv: a troff macro package for typesetting
m4: macro processor. . •

formatted with the MM macros. /print/check documents
in this manual. man: macros for formatting entries

tp: magnetic tape format. . .
send mail to users or read mail. mail, rmail:

users or read mail. mail, rmail: send mail to
netmail: the bnet network mail system. . • . . .

netmailer: deliver mail to. . . . •
deliver mail: deliver mail to arbitrary people. .

mail, rmail: send mail to users or read mail.
malloc, free, realloc, calloc: main memory allocator.

- 21 -

Permuted Index

rlogin.ln
getlogin.3c
10gname.1
cuserid.3s
logname.3x
passwd.l
login.l
profileA
10gname.1
10gname.3x
h641.3c
13tol.3c
sputl.3x
setjmp.3c
10.5n
10.5n
lorder.l
mklost + fnd.l m
nice.l
Ip.l
Ip.l
enable.1
Ipsched.lm
accept.1m
Ipadmin. 1m
Ipstat.l
Ipadmin. 1m
Ipsched.lm
Ipr.l
Ipsched.lm
Ipsched.lm
Ipstat.l
drand48.3c
Is.1
Is7.1
Isearch.3c
Iseek.2
13tol.3c
m4.1
machid.l
put.lc
put7.1c
take.1c
take7.1c
sputl.3x
ruptime.ln
rwho.1n
updater.1
updater.lm
mptx.5
mm.S
mosd.S
mv.5
m4.1
mm.1
man.S
tp.4
mail.l
mail. I
netmail.8n
netmailer.8n
delivermail.8n
mail.l
malloc.3c

Permuted Index

program. ctags:
regenerate groups off make:

ar: archive and library
intro: introduction to system
intro: introduction to system

SCCS file. delta:
mkdir:

or ordinary file. mknod:
for fsck. mklost+found:

mktemp:
regenerate groups ofl

ssp:
banner:

key.
main memory allocator.

entries in this manual.
this manual.

tsearch, tdelete, twalk:
hsearch, hcreate, hdestroy:

records. fwtmp, wtmpfix:
frexp, Idexp, modf:

tp:
manual. man,

manprog: print entries in this
for formatting entries in this

ascii:
files. diffmk:

umask: set file-creation mode
set and get file creation

an error message file by
table. master:

information table.
regular expression compile and

eqn, neqn, checkeq: format
function.

maintain a tags file for a C
maintain, update, and
maintainer. . •••.•
maintenance commands and/
maintenance procedures.
make a delta (change) to an •
make a directory. •..•••
make a directory, or a special
make a lost+found directory
make a unique file name.
make: maintain, update, and
make output single spaced.
make posters. •....•
makekey: generate encryption
malioc, free, realioc, calloc:
man: macros for formatting •
man, manprog: print entries in
manage binary search trees. .
manage hash search tables.
manipulate connect accounting
manipulate parts off
manipulate tape archive.
manprog: print entries in this
manual. man, .••...
manual. man: macros
map of ASCII character set.
mark differences between
mask .•.........
mask. umask: • • • . . •
massaging C source. 1 create
master device information
master: master device
match routines. regexp: . .
mathematical text for nroff orl
matherr: error-handling

maze: generate a maze. • • • .
maze: generate a maze.

bcd: convert to antique media. ...••..
mem, kmem: core memory.

memcpy, memset: memory/ memccpy, memchr, memcmp,
memset: memoryl memccpy, memchr, _memcmp, memcpy,

operations. memccpy, memchr, memcmp, memcpy, memset: memory
memccpy, memchr, memcmp, memcpy, memset: memoryl

mem, kmem: core memory. • ••...•
lock process, text, or data in memory. plock:

free, realloc, calloc: main memory allocator. malloc,
shmctl: shared memory control operations.

queue, semaphore set or shared memory id. !remove a message
memcmp, memcpy, memset: memory operations. Imemchr,

shmop: shared memory operations.
shmget: get shared memory segment.

Imemchr, memcmp, memcpy, memset: memory operations.
sort: sort and! or merge files. .•••.•.•

files. acctmerg: merge or add total accounting
files or subsequent! paste: merge same lines of several •

mesg: permit or deny messages.
msgctl: message control operations. •

mkstr: create an error message file by massaging CI
receive: receive message from a socket.

send: send message from a socket.
msgop: message operations.

msgget: get message queue.
or shared! ipcrm: remove a message queue, semaphore set

mesg: permit or deny messages. • • • • . . . • •

- 22 -

ctags.1
make.1
ar.1
intro.1m
intro.S
delta.1
mkdir.1
mknod.2
mklost + fnd.1 m
mktemp.3c
make. 1
ssp. 1
banner. 1
makekey.1
malloc.3c
man.5
man.1
tsearch.3c
hsearch.3c
fwtmp.1m
frexp.3c
tp.1
man.1
man.1
man.5
ascii.5
diffmk.1
umask.l
umask.2
mkstr.1
master.4
master.4
regexp.5
eqn.1
matherr.3m
maze.6
maze.6
bcd.6
mem.7
memory.3c
memory.3c
memory.3c
memory.3c
mem.7
plock.2
malloc.3c
shmctl.2
ipcrm.1
memory.3c
shmop.2
shmget.2
memory.3c
sort.!
acctmerg.1 m
paste.1
mesg.!
msgctl.2
mkstr.1
receive.2n
send.2
msgop.2
msgget.2
ipcrm.1
mesg.1

sys_nerr: system error

system.
lost + found directory fori

special or ordinary file.
file by massaging C source.

name.
formatting documents. mm: the

documents formatted with the
documents formatted with thel

formatting documents.
view graphs, and slides.

table.
chmod: change

umask: set file-creation
chmod: change

getty: set terminal type,
bs: a compiler/interpreter for
floating-pointl frexp, Idexp,

utime: set file access and
touch: update access and

I ckpacct, dodisk, lastlogin,
profile.
uusub:

package for formattingl
I ASCII formats suitable for

rcvhex: translates
mount:

system. mount, umount:

setmnt: establish
dismount file system.

mnttab:
mvdir:

cp, In, mv: copy, link or
lseek:

the LP request scheduler and
formatting a permuted index.
lerand48, Irand48, nrand48,

operations.

select: synchronous i/o
typesetting view graphs andl

cp, In,

graphs, and slides. mmt,
i-numbers.

definitions for eqn and
mathematical text fori eqn,

networking facilities.
system.

uusub: monitor uucp
netmail: the bnet

rstat:
net: introduction to

a text file.

news: print

messages. I errno, sys errlist,
mkdir: make a directory.
mkfs: construct a file system.
mkfsl b: construct a file •
mklost+found: make a ...
mknod: build special file.
mknod: make a directory, or a
mkstr: create an error message
mktemp: make a unique file
MM macro package for ...
MM macros. Iprint/check
mm, osdd, checkmm: print/check
mm: the MM macro package for
mmt, mvt: typeset documents,
mnttab: mounted file system
mode .•.•
mode mask ..•.•.
mode of file ..•...
modes, speed, and Iinel
modest-sized programs.
modf: manipulate parts of
modification times. . . .
modification times of a file.
monacct, nulladm, prctmp,l
monitor: prepare execution
monitor uucp network.
moo: guessing game.
mosd: the OSDD adapter macro
Motorola S-record downloading.
Motorola S-records froml
mount a file system.
mount and dismount file
mount: mount a file system.
mount table. . • . • • . •
mount, umount: mount and
mounted file system table.
move a directory.
move files. . •.•..•
move read/write file pointer.
move requests. Istart/stop
mptx: the macro package for
mrand48, jrand48, srimd48,1
msgctl: message control • •
msgget: get message queue.
msgop: message operations.
multiplexing.
mv: a troff macro package for
mv: copy, link or move files.
mvdir: move a directory.
mvt: typeset documents, view
ncheck: generate names from
neqn. I special character
neqn, checkeq: format
net: introduction to • .
netmail: the bnet network mail
netmailer: deliver mail to.
network.
network mail system. • .•
network statistics program.
networking facilities.
newform: change the format of
newgrp: log in to a new group.
news items.
news: print news items.

- 23 -

Permuted Index

perror.3c
mkdir.1
mkfs.1m
mkfslb.1m
mklost+fnd.lm
mknod.lm
mknod.2
mkstr.1
mktemp.3c
mm.5
mm.l
mm.!
mm.5
mmt.1
mnttabA
chmod.l
umask.l
chmod.2
getty.lm
bs.l
frexp.3c
utime.2
touch.l
acctsh.lm
monitor.3c
uusub.1m
moo.6
mosd.5
hex.l
rcvhex.1
mount.2
mount.lm
mount.2
setmnt.1m
mount.1m
mnttab.4
mvdir.1m
cp.l
Iseek.2
lpsched.lm
mptx.5
drand48.3c
msgct1.2
msgget.2
msgop.2
select.2n
mv.5
cp.l
mvdir.lm
mmt.l
ncheck.lm
eqnchar.5
eqn.l
net.5n
netmail.8n
netmailer.8n
uusub.1m
netmail.8n
rstat.ln
net.5n
newform.1
newgrp.l
news.l
news.l

Permuted Index

process. nice: change priority of a
priority. nice: run a command at low

nl: line numbering filter.
list. nlist get entries from name

nm: print name list.
hangups (sh only). nohup: run a command immune to

setjmp, longjmp: non-local goto. • • . . . • .
drand48, erand48, Irand48, nrand48, mrand48, jrand48,/

nroff: format text.
format mathematical text for nroff or troff. !checkeq:

tbl: format tables for nroff or troff.
typesetting. nroff7: text formatting and

constructs. deroff: remove nroff!troff, tbl, and eqn
null: the null file. • . . • . • • .

null: the null file. . • • .
!dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,/

nl: line numbering filter. • . . .
number: convert Arabic numerals to English.
sputl, sgetl: access long numeric data in a machine!

size: size of an object file. . •
formats! hex: translates object files into ASCII

find ordering relation for an object library. lorder: .
!the pr:ntable strings in an object, or other binary file.

od: octal dump. ••.....
od: octal dump.

immune to hangups (sh only). nohup: run a command
the specified! exterr - turn on!off the extended errors in

put: puts a file onto a remote machine ..
put7: puts a file onto a remote machine ..

fopen, freopen, fdopen: open a stream. • . . .
dup: duplicate an open file descriptor.

open: open for reading or writing.
writing. open: open for reading or .

!prfdc, prfsnap, prfpr: operating system profiler.
tputs: terminal independent operation routines. !tgoto,

memcmp, memcpy, memset: memory operations. memccpy, memchr,
msgctl: message control operations.

msgop: message operations.
semct1: semaphore control operations.

semop: semaphore operations.
shmctl: shared memory control operations.

shmop: shared memory operations.
strcspn, strtok: string operations. !strpbrk, strspn,

join: relational database operator. ...•....
dcopy: copy file systems for optimal access time.

vector. getopt: get option letter from argument
fcntl: file control options. . •

getopt: parse command options. • • • • . . • • •
object library. lorder: find ordering relation for an . • •
a directory, or a special or ordinary file. mknod: make

editor based! vi, view: screen oriented (visual) display
formatting! mosd: the OSDD adapter macro package for

documents formatted with! mm, osdd, checkmm: print/check
dial: establish an out-going terminal line!

assembler and link editor output. a.out:
sprintf: print formatted output. printf, fprintf,

ssp: make output single spaced.
! acctdusg, accton, acctwtmp: overview of accounting and!

chown: change owner and group of a file. .
chown, chgrp: change owner or group.

and expand files. pack, peat, unpack: compress
sadc: system activity report package. sal, sa2,

standard buffered input!output package. stdio: •••.•
interprocess communication package. stdipc: standard

- 24 -

nice.2
nice.l
nU
nlist.3c
nm.l
nohup.l
setjmp.3c
drand48.3c
nroff.l
eqn.I
tbLl
nroff7.l
deroff.l
nulL7
null.7
acctsh.Im
nU
number.6
sputI.3x
size.l
hex.I
lorder.!
strings.l
od.l
od.l
nohup.l
exterr.l
put.lc
put7.Ic
fopen.3s
dup.2
open.2
open.2
profiler.lm
termcap.3
memory.3c
msgctL2
msgop.2
semctL2
semop.2
shmctl.2
shmop.2
string.3e
join.l
dcopy.lm
getopt.3e
fentL5
getopt.l
lorder.l
mknod.2
vi.1
mosd.5
mm.l
diaI.3e
a.out.4
printf.3s
ssp.l
acct.lm
chown.2
chown.l
pack.l
sar.Im
stdio.3s
stdipc.3c

permuted! mptx: the macro package for formatting a
documents. mm: the MM macro package for formatting
mosd: the OSDD adapter macro package for formatting! •

graphs and! mv: a trof'f macro package for typesetting view
4014 terminal. 4014: paginator for the Tektronix

tune floppy disk settling time parameters. disktune -
process, process group, and parent process IDs. Iget

getopt: parse command options.
passwd: change login password.
passwd: password file.

getpass: read a password.
passwd: change login password.

passwd: password file.
!setpwent, endpwent: get password file entry.

putpwent: write password file entry.
pwck, grpck: password!group file checkers.

several files or subsequent! paste: merge same lines of
dirname: deliver portions of path names. basename, • . .

directory. getcwd: get pathname of current working
fgrep: search a file for a pattern. grep, egrep,

processing language. awk: pattern scanning and
signal. pause: suspend process until

expand files. pack, peat, unpack: compress and
a process. popen, pelose: initiate pipe to!from

value about your! m68k, pdpll, u3b, vax: provide truth
mesg: permit or deny messages. •

macro package for formatting a permuted index. mptx: the
ptx: permuted index.

format. acct: per-process accounting file
acctcms: command summary from per-process accounting! •

sys nerr: system error! perror, errno, sys err list,
- viewing. more: file perusal filter for crt . . .

tc: phototypesetter simulator.
access physical addresses. phys: allow a process to .
allow a process to access physical addresses. phys:

split: split a file into pieces. •.•••...
channel. pipe: create an inter process

tee: pipe fitting.
popen, pelose: initiate pipe to!from a process.

fish: play "Go Fish".
life: play the game of life. .

worm: Play the growing worm game.
data in memory. plock: lock process, text, or

plot: graphics interface.
subroutines. plot: graphics interface

images. pnch: file format for card
lseek: move read!write file pointer. • .•..••.

ftell: reposition a file pointer in a stream. !rewind,
to!from a process. popen, pelose: initiate pipe

data base of terminal types by port. ttytype:
basename, dirname: deliver portions of path names.

banner: make posters. • • • • . • .
logarithm,! exp, log, logIO, pow, sqrt: exponential,

!sqrt: exponential, logarithm, power, square root functions.
brc, bcheckrc, rc, powerfail: system I

pr: print files.
/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,!

!monacct, nulladm, prctmp, prdaily, prtacct, runacct,l
for trof'f. cw, checkcw: prepare constant-width text

monitor: prepare execution profile.
cpp: the e language preprocessor. •.....

unget: undo a previous get of an sees file.
operating! prfld, prfstat, prfdc, prfsnap, prfpr:

prfsnap, prfpr: operating! prfld, prfstat, prfdc,

- 25 -

Permuted Index

mptx.5
mm.5
mosd.5
mv.5
4014.1
disk tune. 1 m
getpid.2
getopt.l
passwd.l
passwdA
getpass.3c
passwd.l
passwdA
getpwent.3c
putpwent.3c
pwck.lm
paste. 1
basename.1
getcwd.3c
grep.1
awk.l
pause.2
pack.l
popen.3s
machid.1
mesg.l
mptx.5
ptx.1
acctA
acctcms.lm
perror.3c
more. 1
tc.1
phys.2
phys.2
split. 1
pipe.2
tee.1
popen.3s
fish. 6
life.6

• worm.6
plock.2
plot.4
plot.3x
pnch.4
Iseek.2
fseek.3s
popen.3s
ttytype.4
basename.1
banner.1
exp.3m
exp.3m
brc.lm
pr.l
acctsh.1m
acctsh.lm
cw.1
monitor.3c
cpp.l
unget.l
profiler.lm
profiler.lm

Permuted In"dex

Iprfstat, prfdc, prfsnap,
systeml prild, prfstat, prfdc,

prfpr: operatingl prfld,
graphicall gps: graphical

types:
interesting, adage. fortune:

prs:
date:

cal:
of a file. sum:

editing activity. sact:
man, manprog:

cat: concatenate and
pr:

printf, fprintf, sprintf:
banner7:

Ipstat:
nm:

system. hostname: set or
System. uname:

news:
printenv:

file(s). acctcom: search and
pstat:

names. id:
object, orl strings: find the"

formattedl mm, osdd, checkmm:
environment.

banner7: print large banner on
requests to an LP line

Ipr: line
disable: enable/disable LP

print formatted output.
nice: run a command at low

nice: change
exit, exit: terminate

fork: create a new
inittab: script for the init

kill: terminate a
nice: change priority of a

initiate pipe to/from a
wait: await completion of

errors. errpt:
acct: enable or disable

acctprc1, acctprc2:
acctcom: search and print

times. times: get
init, telinit:

timex: time a command; report
Igetpgrp, getppid: get process,

setpgrp: set
process group, and parent

kill: send a signal to a
getpid, getpgrp, getppid: get

ps: report
memory. plock: lock

times: get process and child
addresses. phys: allow a

wait: wait for child
ptrace:

pause: suspend
list of file systems

to a process or a group of
killall: kill all active

prfpr: operating system I
prfsnap, prfpr: operating
prfstat, prfdc, prfsnap,
primitive string, format of
primitive system data types.
print a random, hopefully
print an sees file.
print and set the date.
print calendar. '
print checksum and block count
print current sees file
print entries in this manual.
print files. • .•..•
print files. . .••....
print formatted output.
print large banner on printer.
print LP status information.
print name list. • •
print name of current host
print name of current UNIX
print news items. . . . •
print out the environment.
print process accounting .
print system facts.
print user and group IDs and
printable strings in an .
print/check documents
printenv: print out the
printer. ..••...
printer. Icancel: send/cancel
printer spooler.
printers. enable,
printf, fprintf, sprintf:
priority. . ••...
priority of a process.
process.
process.
process.
process.
process.
process. popen, pclose:
process. . ••.•..
process a report of logged
process accounting. . • .
process accounting. . ••
process accounting file(s).
process and child process
process controll
process data and system I
process group, and parenti
process group 10.
process IDs. I get process, •
process or a group oft
process, process group, andl
process status.
process, text, or data in .
process times.
process to access physical
process to stop or terminate.
process trace. ••••..
process until signal. . • • •
processed by fsck. checklist:
processes. I send a signal
processes. • •••••••

- 26 -

profiler.lm
profiler.lm
profiler.1 m

• gps.4
types.5
fortune.6

• prs.1
date.1
cal.1
sum.1
sact.1
man.l
cat.!
prJ
printf.3s
banner7.l
Ipstat.i
nm.1
hostname.1 n
uname.1
news.!
printenv.1
acctcom.1
pstat.1m
id.l
strings.!
mm.l
printenv.!
banner7.!
Ip.l
Ipr.!
enable.l
printf.3s
nice.l
nice.2
exit.2
fork.2
inittabA
kill.!
nice.2

• popen.3s
wait.!
errpt.1m
acct.2
acctprc.!m

• acctcom.l
• times.2

init.!m
timex.!
getpid.2

• • setpgrp.2
getpid.2

• kill.2
getpid.2
ps.l

• plock.2
times.2

• phys.2
wait.2

• ptrace.2
• pause.2

checklist.4
kill.2

• killall.lm

structure. fuser: identify
shutdown: terminate all

awk: pattern scanning and
m4: macro

provide truth value about your
alarm: set a

profile.
monitor: prepare execution

profil: execution time
prof: display

environment at login time.
prfpr: operating system

sadp: disk access
standard/restricted command

ip: Internet
Internet Transmission Control

udp: Internet User Datagram
inet: Internet

arithmetic:
for reading or/ lockf:

m68k, pdpll, u3b, vax:
true, false:

/nulladm, prctmp, prdaily,

/ generate uniformly distributed

stream. ungetc:
remote machine ..

put character or word on a/
character or word on a/ putc,

entry.
machine.. put:

machine .. put7:
stream.

getutent, getutid, getutline,
a/ putc, putchar, fputc,

file checkers.

msgget: get message
ipcrm: remove a message

qsort:

by name or address. rhost,
display.

rain: animated
random-number generator.

adage. fortune: print a
rand, srand: simple
fsplit: split fortran,

initialization/ brc, bcheckrc,

S-records from downloading/
getpass:

read:
rmail: send mail to users or

line:

exclusive file regions for
open: open for

processes using a file or file
processing.
processing language.
processor. • • • • •
processor type. /u3b, vax:
process's alarm clock. . .
prof: display profile data.
profil: execution time
profile.
profile. . .•..•
profile data.
profile: setting up an
profiler. /prfdc, prfsnap,
profiler. • . . • . •.
programming language. /the
Protocol.
Protocol. tcp:
Protocol.
protocol family.
provide drill in number facts.
provide exclusive file regions
provide truth value about your/
provide truth values.
prs: print an SCCS file.
prtacct, runacct, shutacct,!
ps: report process status.
pseudo-random numbers.
pstat: print system facts.
ptrace: process trace.
ptx: permuted index.
push character back into input
put7: puts a file onto a
putc, putchar, fputc, putw:
putchar, fputc, putw: put
putpwent: write password file
puts a file onto a remote
puts a file onto a remote
puts, fputs: put a string on a .
pututline, setutent, endutent,!
putw: put character or word on
pwck, grpck: password/group
pwd: working directory name.
qsort: quicker sort.
queue. . .•.•....•
queue, semaphore set or shared/
quicker sort. • . . • • . .
quiz: test your knowledge. .
raddr: look up internet hosts
rain: animated raindrops
raindrops display.
rand, srand: simple . • • .
random, hopefully interesting,
random-number generator.
ratfor, or efl files.
rc, power fail: system
rcp: remote file copy.
rcvhex: translates Motorola
read a password.
read from file.
read mail. mail,
read one line.
read: read from file.
reading or writing. / provide
reading or writing.

- 27 -

Permuted Index

fuser.lm
shutdown.lm
awk.1
m4.1
machid.1
alarm.2
prof. I
profil.2
monitor.3c
pro fi I. 2
prof. I
profile.4
profiler.im
sadp.l
sh.I
ip.5n
tcp.5n
udp.5n
inet.5n
arithmetic.6
lockf.2
machid.I
true.l
prs.I
acctsh.Im
ps.l
drand48.3c
pstat.1m
ptrace.2
ptx.I
ungetc.3s
put7.lc
putc.3s
putc.3s
putpwent.3c
put.1c
put7.1c
puts.3s
getut.3c
putc.3s
pwck.Im
pwd.I
qsort.3c
msgget.2
ipcrm.1
qsort.3c
quiz.6
rhost.3n
rain.6
rain.6
rand.3c
fortune.6
rand.3c
fsplit.1
brc.Im
rcp.In
rcvhex.1
getpass.3c
read.2
mail.l
line.l
read.2
lockf.2
open.2

Permuted Index

lseek: move
allocator. malloc, free,

reboot:
specify what to do upon

receive:
a socket.

from per-process accounting
manipulate connect accounting

errdead: extract error
tape. frec:

ed,
generate e program cross

execute regular expression.
compile.

make: maintain, update, and
regular expression. regcmp,
compile and match routines.
lockf: provide exclusive file
regex: compile and execute

regcmp:
match routines. regexp:

requests. accept,
sorted files. comm: select or

lorder: find ordering
join:

strip: remove symbols and
/fmod, fabs: floor, ceiling,

calendar:
rcp:

rlogin:
put: puts a file onto a

put7: puts a file onto a
take: takes a file from a

take7: takes a file from a
remsh:

ct: spawn getty to a
file. rmdel:

semaphore set or/ ipcrm:
unlink:

rm, rmdir:
eqn constructs. deroff:

bits. strip:

check and interactive
uniq: report

clock:
communication/ ipcs:

blocks. df:
errpt: process a

frequencies in a file. freq:
sa2, sadc: system activity
timex: time a command;

ps:
file. uniq:

sar: system activity
files. version:

stream. fseek, rewind, ftell:
/lpmove: start/stop the LP

reject: allow/prevent LP
LP request scheduler and move

lp, cancel: send/cancel
teletype bits to a/ tset,

sensible/ tset, reset: set or

read/write file pointer.
realloc, calloc: main memory
reboot: reboot the system.
reboot the system.
receipt of a signal. signal:
receive message from a socket.
receive: receive message from
records. / command summary
records. fwtmp, wtmpfix:
records from dump.
recover files from a backup
red: text editor.
reference. cxref: •
regcmp, regex: compile and
regcmp: regular expression
regenerate groups of programs.
regex: compile and execute
regexp: regular expression .
regions for reading or/
regular expression. regcmp,
regular expression compile.
regular expression compile and
reject: allow/prevent LP
reject lines common to two
relation for an object/
relational database operator.
relocation bits. . • • . . .
remainder, absolute value/
reminder service.
remote file copy.
remote login.
remote machine ..
remote machine ..
remote machine.
remote machine ..
remote shell.
remote terminal.
remove a delta from an sees
remove a message queue, .
remove directory entry. • .
remove files or directories.
remove nroff/troff, tbl, and
remove symbols and relocation
remsh: remote shell.
repair. / system consistency
repeated lines in a file.
report CPU time used.
report inter-process • •
report number of free disk
report of logged errors.
report on character . . • .
report package. sal,
report process data and system/
report process status. • •
report repeated lines in a
reporter. ••••. •.
reports version number of
reposition a file pointer in a
request scheduler and move/
requests. accept, . • .
requests. / start/ stop the
requests to an LP line/
reset: set or reset the .
reset the teletype bits to a

- 28 -

Iseek.2
malloc.3c
reboot.2
reboot.2
signal.2
receive.2n
receive.2n
acctcms.lm
fwtmp.lm
errdead.lm
frec.lm
ed.l
cxref.l
regcmp.3x
regcmp.l
make.l
regcmp.3x
regexp.s
lockf.2
regcmp.3x
regcmp.l
regexp.s
accepLlm
comm.l
lorder.l
join. 1
strip. I
floor.3m
calendar.l
rcp.ln
rlogin.ln
put.lc
put7.lc
take.lc
take7.lc
remsh.ln
ct.le
rmdel.l
ipcrm.l
unlink.2
rm.l
deroff.l
strip.l
remsh.ln
fsck.lm
uniq.l
clock.3c
ipcs.l
df.lm
errpt.lm
freq.l
sar.lm
timex. 1
ps.l
uniq.l
sar.l
version. 1
fseek.3s
lpsched.lm
accept.lm
lpsched.lm
lp.l
tset.l
tset.l

a socket. socketaddr: return address associated with
abs: return integer absolute value.

logname: return login name of user.
name. getenv: return value for environment

stat: data returned by stat system call.
configuration! uvar: returns system-specific

col: filter reverse line-feeds.
file pointer in al fseek, rewind, ftell: reposition a

creat: create a new file or rewrite an existing one. .
hosts by name or address. rhost, raddr: look up internet

rlogin: remote login.
directories. rm, rmdir: remove files or

read mail. mail, rmail: send mail to users or
sees file. rmdel: remove a delta from an

directories. rm, rmdir: remove files or
Escape from the automatic robots. autorobots:

Try to escape the killer robots. chase:
robots: Escape from the robots.

robots. robots: Escape from the
chroot: change root directory.
chroot: change root directory for a command.

logarithm, power, square root functions. lexponential,
expression compile and match routines. regexp: regular

terminal independent operation routines. Itgoto, tputs:
standardl restricted/ sh, rsh: shell, the

program. rstat: network statistics
nice: run a command at low priority.

hangups (sh/ nohup: run a command immune to .
runacct: run daily accounting.

runacct: run daily accounting.
Iprctmp, prdaily, prtacct, runacct, shutacct, startup,!

local machines. ruptime: show host status of
local machines. rwho: who is logged in on

activity report package. sal, sa2, sadc: system . . .
report package. sal, sa2, sadc: system activity

editing activity. sact: print current sees file
package. sal, sa2, sadc: system activity report

sadp: disk access profiler.
sag: system activity graph. .
sar: system activity reporter.

space allocation. brk, sbrk: change data segment
formatted input. scanf, fscanf, sscanf: convert

bfs: big file scanner. . •
language. awk: pattern scanning and processing

th~ delta commentary of an sees delta. cdc: change
comb: combine sees deltas ...

make a delta (change) to an sees file. delta:
get: get a version of an sees file.

prs: print an sees file.
rmdel: remove a delta from an sees file.

compare two versions of an sees file. sccsdiff:
sccsfile: format of sees file.

undo a previous get of an sees file. unget:
val: validate sees file.

sact: print current sees file editing activity.
admin: create and administer sees files. .•....

what: identify sees files.
of an sees file. sccsdiff: compare two versions

sccsflle: format of sees file.
Istart/stop the LP request scheduler and move requests.

clear: clear terminal screen. ..••...•
twinkle: twinkle stars on the screen. .•.•....

displayeditorl vi, view: screen oriented (visual) .
inittab: script for the init process.

- 29 -

Permuted Index

socketaddr.2n
abs.3c
logname.3x
getenv.3c
stat.5
uvar.2
col.1
fseek.3s
creat.2
rhost.3n
rlogin.ln
rm.1
mail.l
rmdel.l
rm.1
autorobots.6
chase.6
robots.6
robots.6
chroot.2
chroot.lm
exp.3m
regexp.5

• termcap.3
sh.l
rstat.ln
nice.1
nohup.l
runacct.lm
runacct.lm
acctsh.lm
ruptime.ln
rwho.1n
sar.lm
sar.lm
sact.1
sar.1m
sadp.l
sag.lg
sar.1
brk.2
scanf.3s
bfs.1
awk.l
cdc.1
comb.1
delta.l
get. 1
prs.l
rmdel.l
sccsdiff.l
sccsfile.4
unget.l
val. 1
sact.l
admin.l
what.l
sccsdiff.l
sccsfile.4
lpsched.lm
clear. 1
twinkle.6
vi.1
inittab.4

Permuted Index

system initialization shell
program.

bsearch: binary
grep, egrep, fgrep:

accounting file (s). acctcom:
lsearch: linear

hcreate, hdestroy: manage hash
tdelete, twalk: manage binary

I mrand48, jrand48, srand48,
shmget: get shared memory

brk, sbrk: change data
to two sorted files. comm:

multiplexing.
greek:

of a file. cut: cut out
semctl:
semop:

ipcrm: remove a message queue,
semget: get set of

operations.

a group of processes. kill:
mail. mail, rmail:

send:
socket.

line printer. lp, cancel:
reset the teletype bits to a

stream.
IDs. setuid,

getgrent, getgrgid, getgrnam,
cpu.

goto.
encryption. crypt,

getpwent, getpwuid, getpwnam,
login time. profile:

gettydefs: speed and terminal
disktune - tune floppy disk

group IDs.
Igetutid, getutline, pututline,

data in a machinel sputl,
standardl restricted commandl

operations. shmctl:
queue, semaphore set or

shmop:
shmget: get

remsh: remote
system: issue a

with C-Iike syntax. csh: a
shutacct, startup, turnacct:

system initialization
command programmingl sh, rsh:

operations.
segment.

operations.
I prdaily, prtacct, runacct,

processing.
program. sdiff:

login:
pause: suspend process until
what to do upon receipt of a

scripts. Irc, powerfail:
sdiff: side-by-side difference
search. • •••••••
search a file for a pattern.
search and print process • •
search and update.
search tables. hsearch,
search trees. tsearch, • •
sed: stream editor.
seed48, Icong48: generatel
segment. ••.•.••
segment space allocation.
select or reject lines common
select: synchronous i/o
select terminal filter.
selected fields of each line • •
semaphore control operations.
semaphore operations.
semaphore set or shared memory!
semaphores. • • • . . • • •
semctl: semaphore control • •
semget: get set of semaphores. •
semop: semaphore operations.
send a signal to a process or
send mail to users or read •
send message from a socket.
send: send message from a
sendl cancel requests to an LP
sensible state. Ireset: set or
setbuf: assign buffering to a .
setgid: set user and group • .
setgrent, endgrent: get groupl
sethostname: set name of host •
setjmp, longjmp: non-local
setkey, encrypt: generate DES
setmnt: establish mount table.
setpgrp: set process group ID.
setpwent, endpwent: getl
setting up an environment at
settings used by getty.
settling time parameters.
setuid, setgid: set user and
setutent, endutent, utmpname:1
sgetl: access long numeric
sh, rsh: shell, the . • . • • .
shared memory control . • •
shared memory id. I a message
shared memory operations.
shared memory segment.
shell. . ••••..•••
shell command.
shell (command interpreter)
shell procedures fori /runacct,
shell scripts. I rc, powerfail:
shell, the standardl restricted
shmctl: shared memory control
shmget: get shared memory
shmop: shared memory . •
shutacct, startup, turnacct:1
shutdown: terminate all
side-by-side difference
sign on.•.
signal. .•.••.•
signal. signal: specify

- 30 -

brc.1m
• sdiff.1
• bsearch.3c
• grep.1

acctcom.1
Isearch.3c
hsearch.3c
tsearch.3c

• •• sed.1
drand48.3c

• shmget.2
• brk.2

comm.1
• select.2n
• greek.1

cut.1
semctl.2

• semop.2
ipcrm.1
semget.2
semctl.2

• • semget.2
• semop.2

kill. 2
mail. 1
send.2

• • send.2
Ip.1

• • • tset.l
setbuf.3s
setuid.2
getgrent.3c

• • • sethostname.2n
setjmp.3c
crypt.3c
setmnt.1m
setpgrp.2

• getpwent.3c
profile.4
gettydefs.4
disktune.1m
setuid.2
getut.3c
sput1.3x
sh.1

• •• shmctl.2
ipcrm.1

• • shmop.2
shmget.2
remsh.1n
system.3s
csh.1
acctsh.1m
brc.1m
sh.1
shmctl.2

• shmget.2
shmop.2
acctsh.1m
shutdown. 1m
sdiff.1
login. 1
pause.2
signal. 2

upon receipt of a signal. signal: specify what to do
of processes. kill: send a signal to a process or a group
ssignal, gsignal: software signals. ••.•••.

lex: generate programs for simple lexical tasks.
generator. rand, srand: simple random-number

tc: phototypesetter simulator. • . . ••.
atan, atan2: trigonometric/ sin, cos, tan, asin, acos,

ssp: make output single spaced.
functions. sinh, cosh, tanh: hyperbolic

size: size of an object file.
size: size of an object file. . •

an interval. sleep: suspend execution for
interval. sleep: suspend execution for

documents, view graphs, and slides. mmt, mvt: typeset
typesetting view graphs and slides. /macro package for

current/ ttyslot: find the slot in the utmp file of the
spline: interpolate smooth curve. . • . . •

sno: SNOBOL interpreter.
sno: SNOBOL interpreter.

accept a connection on a socket. accept: •
initiate a connection on a socket. connect:

receive message from a socket. receive:
send: send message from a socket.

address associated with a socket. socketaddr: return
communication. socket: create an endpoint for

associated with a socket. socketaddr: return address
loop: software loopback interface.

ssignal, gsignal: software signals.
qsort: quicker sort. .•••.•.••

tsort: topological sort. ..•.•..•
sort: sort and/ or merge files.

sort: sort and/or merge files.
or reject lines common to two sorted files. comm: select

message file by massaging C source. / create an error
brk, sbrk: change data segment space allocation.

ssp: make output single spaced. •..•••.
terminal. ct: spawn getty to a remote

fspec: format specification in text files.
the extended errors in the specified device. / turn on/ off
receipt of a signal. signal: specify what to do upon . .

/ set terminal type, modes, speed, and line discipline. .
used by getty. gettydefs: speed and terminal settings
hashcheck: find spelling/ spell, hashmake, spellin,

spelling/ spell, hashmake, spellin, hashcheck: find • .
spellin, hashcheck: find spelling errors. /hashmake,

curve. spline: interpolate smooth
csplit: context split. .•..•.•.

split: split a file into pieces. .
efl files. fsplit: split fortran, ratfor, or

pieces. split: split a file into
uuclean: uucp spool directory clean-up.

Ipr: line printer spooler. • . . . • • •
Ipadmin: configure the LP spooling system.

output. printf, fprintf, sprintf: print formatted
numeric data in a machine/ sputJ, sgetl: access long

power,! exp, log, loglO, pow, sqrt: exponential, logarithm,
exponential, logarithm, power, square root functions. /sqrt:

generator. rand, srand: simple random-number
/nrand48, mrand48, jrand48, srand48, seed48, icong48:/
formats suitable for Motorola S-record downloading. / ASCII

rcvhex: translates Motorola S-records from downloading/
input. scanf, fscanf, sscanf: convert formatted

signals. ssignal, gsignal: software
spaced. ssp: make output single

- 31 -

Permuted Index

signal.2
kill.2
ssignal.3c
lex.l
rand.3c
tc.l
trig.3m
ssp. I
sinh.3m
size.l
size.l
sleep. I
sleep.3c
mmt.l
mv.5
ttyslot.3c
spline.lg
sno.l
sno.l
accept.2n
connect.2n
receive.2n
send.2
socketaddr .2n
socket.2n
socketaddr .2n
10.5n
ssignal.3c
qsort.3c
tsort.l
sort. I
sort. I
comm.l
mkstr.l
brk.2
ssp. I
ct.lc
fspec.4
exterr.l
signal.2
getty.lm
gettydefs.4
spell. I
spell. I
spell.l
spline.Ig
csplit.l
split. I
fsplit.l
split. I
uuclean.lm
Ipr.l
Ipadmin. 1m
printf.3s
sputl.3x
exp.3m
exp.3m
rand.3c
drand48.3c
hex.I
rcvhex.l
scanf.3s
ssignal.3c
ssp. I

Permuted Index

package. stdio:
communicationl stdipc:

sh, rsh: shell, the
twinkle: twinkle

Ipsched, Ipshut, Ipmove:
boot:

Iprtacct, runacct, shutacct,
system call.

stat: data returned by
ustat: get file system

ff: list file names and
rstat: network

communication facilities
ps: report process
stat, fstat: get file

Ipstat: print LP
feof, c1earerr, fileno: stream

control. uustat: uucp
ruptime: show host

input/output package.
communication package.

wait for child process to
strncmp, strcpy, strncpy,/

1 strcpy, strncpy, strlen,
strncpy'/ strcat, strncat,

Istrncat, strcmp, strncmp,
1 strrchr, strpbrk, strspn,

mush: close or flush a
fopen, freopen, fdopen: open a

reposition a file pointer in a
get character or word from

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setbuf: assign buffering to a

push character back into input
sed:

/feof, c1earerr, fileno:
convert date and time to
floating-point number to

long integer and base-64 ASCII
gps: graphical primitive

gets, fgets: get a
puts, fputs: put a

strspn, strcspn, strtok:
number. atof: convert ASCII

strtol, atol, atoi: convert
strings in an object, orl

strings: find the printable
relocation bits.

Istrncmp, strcpy, strncpy,
strcpy, strncpy,/ strcat,
strcat, strncat, strcmp,

1 strcmp, strncmp, strcpy,
Istrlen, strchr, strrchr,
1 strncpy, strlen, strchr,

1 strchr, strrchr, strpbrk,
Istrpbrk, strspn, strcspn,

string to integer.
processes using a file or file

another user.
plot: graphics interface

standard buffered input/output
standard interprocess . • . •
standardl restricted commandl
stars on the screen. . • .
start/stop the LP requestl
startup procedures. • . .
startup, turnacct: shelll
stat: data returned by stat
stat, fstat: get file status.
stat system call.
statistics. ..•.•..
statistics for a file system.
statistics program.
status. Ireport inter-process
status.
status.
status information.
status inquiries. ferror,
status inquiry and job .
status of local machines.
stdio: standard buffered
stdipc: standard inter process
stime: set time.
stop or terminate. wait:
strcat, strncat, strcmp,
strchr, strrchr, strpbrk,/
strcmp, strncmp, strcpy,
strcpy, strncpy, strlen,l
strcspn, strtok: stringl
stream. fclose, •••.
stream.
stream. fseek, rewind, ftell:
stream. Igetchar, fgetc, getw:
stream. gets, •••.••.
stream. Iputchar, fputc, putw:
stream.
stream.
stream. ungetc:
stream editor.
stream status inquiries.
string. 1 asctime, tzset:
string. Ifcvt, gcvt: convert
string. l164a: convert between
string, format of graphicall
string from a stream. . • .
string on a stream.
string operations. Istrpbrk,
string to floating-point
string to integer.
strings: find the printable
strings in an object, or otherl
strip: remove symbols and
strlen, strchr, strrchr,/
strncat, strcmp, strncmp,
strncmp, strcpy, strncpy,l
strncpy, strlen, strchr,/
strpbrk, strspn, strcspn,/
strrchr, strpbrk, strspn,/
strspn, strcspn, strtok:1
strtok: string operations.
strtol, atol, atoi: convert
structure. fuser: identify
su: become super-user or
subroutines. • • . • . •

- 32 -

stdio.3s
stdipc.3c
sh.l

• twinkle.6
Ipsched.lm
boot.S
acctsh.lm
stat.S
stat.2
stat.S
ustat.2
ff.lm
rstat.ln
ipcs.l
ps.l
stat.2
Ipstat.l
ferror.3s
uustat.lc
ruptime.ln
stdio.3s
stdipc.3c
stime.2
wait.2
string.3c
string.3c
string.3c
string.3c
string.3c
fclose.3s
fopen.3s
fseek.3s
getc.3s
gets.3s
putc.3s
puts.3s
setbuf.3s
ungetc.3s
sed.l
ferror.3s
ctime.3c
ecvt.3c
h641.3c
gps.4
gets.3s
puts.3s
string.3c

• atof.3c
strto1.3c
strings. 1
strings. I
strip.l
string.3c
string.3c
string.3c
string.3c
string.3c
string.3c
string.3c
string.3c
strtol.3c

• fuser.lm
su.l
plot.3x

intro: introduction lO subroutines and libraries.
Isame lines of several files or subsequent lines of one file. . .

lfiles into ASCII formats suitable for Motorola S-recordl
file. sum7: sum and count blocks in a

the files in thel sumdir: sum and count characters in . •
count of a file. sum: print checksum and block

a file. sum7: sum and count blocks in
characters in the files inl sumdir: sum and count . .

du: summarize disk usage.
accountingl acctcms: command summary from per-process

sync: update the super block. • • . • • . .
sync: update super-block. . • •
su: become super-user or another user.

interval. sleep: suspend execution for an
interval. sleep: suspend execution for

pause: suspend process until signal.
swab: swap bytes.

swab: swap bytes. ...•...
strip: remove symbols and relocation bits.

sync: update super-block.
sync: update the super block.

select: synchronous i/o multiplexing.
interpreter) with C-Iike syntax. csh: a shell (command

errorl perror, errno, sys errlist, sys nerr: system
perror, errno, sys errlist, sys-nerr: system errorl

information. uvar: returns system-specific configuration .
uuto, uupick: public UNIX System-to-UNIX System filel
master device information table. master:

mnttab: mounted file system table.
setmnt: establish mount table.

letc/hosts: host table for bnet.
hdestroy: manage hash search tables. hsearch, hcreate,

tbl: format tables for nrotf or trotf.
tabs: set tabs on a terminal.

tabs: set tabs on a terminal.
ctags: maintain a tags file for a C program.

a file. tail: deliver the last part of
remote machine. take: takes a file from a .
remote machine.. take7: takes a file from a

machine. take: takes a file from a remote
machine .. take7: takes a file from a remote

trigonometricl sin, cos, tan, asin, acos, atan, atan2:
sinh, cosh, tanh: hyperbolic functions.

recover files from a backup tape. frec: . . •
tp: manipulate tape archive. • •

hpio: HP 2645A terminal tape file archiver.
tar: tape file archiver.

tp: magnetic tape format. • •
file system backup. filesave, tapesave: daily/weekly UNIX

tar: tape file archiver. .
programs for simple lexical tasks. lex: generate • • .
derotf: remove nrotf/trotf, tbl, and eqn constructs. •

or troff. tbl: format tables for nroff
tc: phototypesetter simulator.

Control Protocol. tcp: Internet Transmission . .
search trees. tsearch, tdelete, twalk: manage binary

tee: pipe fitting.
4014: paginator for the Tektronix 4014 terminal.

tset, reset: set or reset the teletype bits to a sensiblel
initialization. init, telinit: process control

temporary file. tmpnam, tempnam: create a name for a
tmpfile: create a temporary file. •

tempnam: create a name for a temporary file. tmpnam,
terminals. term: conventional names for

- 33 -

Permuted Index

intro.3
paste. 1
hex.l
sum7.1
sumdir.1
sum.l
sum7.1
sumdir.1
du.1
acctcms.lm
sync. 1
sync.2
su.l
sleep.l
sleep.3c
pause.2
swab.3c
swab.3c
strip. 1
sync.2
sync.l
select.2n
csh.l
perror.3c
perror.3c
uvar.2
uuto.lc
master.4
mnttab.4
setmnt.lm
hosts.7n
hsearch.3c
tbl.l
tabs.l
tabs.1
ctags.l
tail. 1
take.1c
take7.1c
take.lc
take7.1c
trig.3m
sinh.3m
frec.1m
tp.1
hpio.l
tar. 1
tp.4
filesave.lm
tar.1
lex.l
derotf.l
tbJ.1
tc.1
tcp.5n
tsearch.3c
tee.1
4014.1
tset.1
init.lm
tmpnam.3s
tmpfile.3s
tmpnam.3s
term.5

Permuted Index

data base. termcap: terminal capability
for the Tektronix 4014 terminal. 4014: paginator

functions of the DASI 450 terminal. 450: handle special
ct: spawn getty to a remote terminal.

generate file name for terminal. ctermid:
tabs: set tabs on a terminal.

isatty: find name of a terminal. ttyname,
animate worms on a display terminal. worms: .

termcap: terminal capability data base.
greek: select terminal filter. • . • . . .

Itgetstr, tgoto, tputs: terminal independent operation!
termio: general terminal interface.
tty: controlling terminal interface.

dial: establish an out-going terminal line connection.
clear: clear terminal screen.

getty. gettydefs: speed and terminal settings used by
hpio: HP 2645A terminal tape file archiver.

and linel getty: set terminal type, modes, speed,
ttytype: data base of terminal types by port.

functions of DASI 300 and 300s terminals. Ihandle special .
of HP 2640 and 2621-series terminals. /special functions

term: conventional names for terminals. •
tty: get the terminal's name. . .

for child process to stop or terminate. wait: wait
kill: terminate a process.

shutdown: terminate all processing.
exit, exit: terminate process.

daemon. errstop: terminate the error-logging
interface. termio: general terminal

command. test: condition evaluation
quiz: test your knowledge.

nroft': format text.
troft': typeset text.

ed, red: text editor.
ex, edit: text editor.

change the format of a text file. newform:
fspec: format specification in text files.

/ checkeq: format mathematical text for nroft' or troft'.
prepare constant-width text for troft'. CW, checkcw:

typesetting. nroft'7: text formatting and • • .
typesetting. troff7: text formatting and • • .

plock: lock process, text, or data in memory.
tgetstr, tgoto, tputs:/ tgetent, tgetnum, tgetflag,

tputs:1 tgetent, tgetnum, tgetflag, tgetstr, tgoto,
tgoto, tputs:/ tgetent, tgetnum, tgetflag, tgetstr,

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs:/
/tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal/

ttt, cubic: tic-tac-toe. • . . • •
execute commands at a later time. at:

systems for optimal access time. dcopy: copy file
up an environment at login time. profile: setting

stime: set time.
time: get time. .••••..

time: time a command.
data and system/ timex: time a command; report process

time: get time. . • • • •
- tune floppy disk settling time parameters. disk tune

profil: execution time profile. • . • • .
time: time a command.

tzset: convert date and time to string. /asctime,
clock: report CPU time used. • • •

get process and child process times. times:
file access and modification times. utime: set • . •

process times. times: get process and child

- 34 -

termcap.5
4014.1
450.1

• ct.lc
ctermid.3s
tabs.1
ttyname.3c
worms.6
termcap.5
greek. 1
termcap.3
termio.7
tty.7
dia1.3c
dear.l
gettydefs.4
hpio.1
getty.1m
ttytype.4
300.1
hp.1
term.5
tty. 1
wait.2
kill.1
shutdown. 1 m
exit.2
errstop.1m
termio.7
test. 1
quiz.6
nroff.l
troft'.l
ed.l
ex.1
newform.l
fspec.4
eqn.!
cw.1
nroff7.1
troff7.!
plock.2
termcap.3
termcap.3
termcap.3
termcap.3
termcap.3
ttt.6
at.1
dcopy.lm
profile.4
stime.2
time.2
time. 1
timex.1
time.2
disktune.1m
profi1.2

• time.1
ctime.3c
clock.3c
times.2
utime.2
times.2

update access and modification
process data and system I

file.
for a temporary file.

Itolower, _toupper, _tolower,
popen, pelose: initiate pipe

toupper, tolower, toupper,
toascii: translate/-toupper,

tsort:
acctmerg: merge or add

modification times of a file.
translatel toupper, tolower,
_ tolower, toascii: transla tel

Itgetflag, tgetstr, tgoto,

ptrace: process
bIt, bltSl2: block

I_toupper, _tolower, toascii:
tr:

from downloading intol rcvhex:
ASCII formats suitablel hex:

tcp: Internet
ftw: walk a file

twalk: manage binary search

trek:
tan, asin, acos, atan, atan2:

constant-width text for
mathematical text for nroff or

format tables for nroff or
typesetting view graphsl mv: a

typesetting.
values.

m68k, pdpll, u3b, vax: provide
true, false: provide

robots. chase:
manage binary search trees.

teletype bits to a sensiblel

interface.

graphics for the extended
a terminal.

utmp file of the currentl
types by port.

parameters. disk tune -
lrunacct, shutacct, startup,

trees. tsearch, tdelete,
twinkle:
screen.

file: determine file
value about your processor

getty: set terminal
for the extended TTY -37

types: primitive system data
ttytype: data base of terminal

types.
graphs, and slides. mmt, mvt:

troff:

times of a file. touch: • • . . •
timex: time a command; report
tmpfile: create a temporary
tmpnam, tempnam: create a name
toascii: translate characters.
to/from a process.

tolower, toascii: translatel
tOlower, _toupper, _tolower,
topological sort.
total accounting files. . • .
touch: update access and
toupper, tolower, toascii:

toupper, tolower, _toupper,
tp: magnetic tape format.
tp: manipulate tape archive.
tplot: graphics filters.
tputs: terminal independentl
tr: translate characters.
trace. • .••••
transfer data.
translate characters.
translate characters.
translates Motorola S-records
translates object files into
Transmission Control Protocol.
tree.••••
trees. tsearch, tdelete,
trek: trekkie game. . •
trekkie game.
trigonometric functions. Icos,
troff. cw, checkcw: prepare
troff. Ineqn, checkeq: format
troff. tbl: ••••••
troff macro package for .
troff: typeset text.
troff7: text formatting and
true, false: provide truth
truth value about yourl
truth values. . • • • •
Try to escape the killer
tsearch, tdelete, twalk:
tset, reset: set or reset the
tsort: topological sort. •
ttt, cubic: tic-tac-toe.
tty: controlling terminal .
tty: get the terminal's name.
TTY -37 type-box. greek:
ttyname, isatty: find name of
ttyslot: find the slot in the • •
ttytype: data base of terminal
tune floppy disk settling time
turnacct: shell procedures fori
twalk: manage binary search
twinkle stars on the screen.
twinkle: twinkle stars on the
type.••....
type. lu3b, vax: provide truth
type, modes, speed, and line/
type-box. greek: graphics
types. • •.••.....
types by port. •.....
types: primitive system data
typeset documents, view
typeset text. • • . . • . .

- 35 -

Permuted Index

touch. 1
timex. 1
tmpfile.3s
tmpnam.3s
conv.3c
popen.3s
conv.3c
conv.3c
tsort.l
acctmerg.l m
touch. 1
conv.3c
conv.3c
tp.4
tp.l
tplot.lg
termcap.3
tr.l
ptrace.2
blt.3
conv.3c
tr.1
rcvhex.1
hex.l
tcp.Sn
ftw.3c
tsearch.3c
trek.6
trek.6
trig.3m
cw.l
eqn.l
tbl.l
mv.s
troff.l
troff7.1
true.l
machid.l
true.l
chase.6
tsearch.3c
tset.l
tsort.1
ttt.6
tty.7
tty. 1
greek.S
ttyname.3c
ttyslot.3c
ttytype.4
disktune.l m
acctsh.1m
tsearch.3c
twinkle.6
twinkle.6
file.1
machid.l
getty.lm
greek.S
types.s
ttytype.4
types.s
mmt.l
troff.l

Permuted Index

nroff7: text formatting and typesetting. ••.•...
troff7: text formatting and typesetting. •.....•

mv: a troff macro package for typesetting view graphs and/
/Iocaltime, gmtime, asctime, tzset: convert date and timet

about your/ m68k, pdpll, u3b, vax: provide truth value
Protocol. udp: Internet User Datagram

getpw: get name from UID. ..•...•.
ul: do underlining.

limits. ulimit: get and set user
creation mask. umask: set and get file

mask. umask: set file-creation mode
file system. mount, umount: mount and dismount

umount: unmount a file system.
UNIX system. uname: get name of current •
UNIX System. uname: print name of current •

ul: do underlining. . . • • . . • • .
file. unget: undo a previous get of an sees

an sees file. unget: undo a previous get of
into input stream. ungetc: push character back .

/seed48, lcong48: generate uniformly distributed/
a file. uniq: report repeated lines in

mktemp: make a unique file name
units: conversion program.

unlink system calls. link, unlink: exercise link and
entry. unlink: remove directory

unlink: exercise link and unlink system calls. link,
umount: unmount a file system.

files. pack, peat, unpack: compress and expand
Isearch: linear search and update. ..•..•..••

times of a file. touch: update access and modification
of programs. make: maintain, update, and regenerate groups

badblk: program to set or update bad block information.
machines. updater: update files between two
machines. updater: update files between two

sync: update super-block. . . •
sync: update the super block. •

two machines. updater: update files between
two machines. updater: update files between

du: summarize disk usage. •
character login name of the user. cuserid: get

logname: return login name of user.
become super-user or another user. su:

the utmp file of the current user. /find the slot in
write: write to another user. •.. ••••

setuid, setgid: set user and group IDs.
id: print user and group IDs and names.

udp: Internet User Datagram Protocol.
/getgid, getegid: get real user, effective user, reall

environ: user environment.
environ: user environment.

ulimit~ get and set user limits.
/get real user, effective user, real group, and/

wall: write to all users. . . . • • •
mail, rmail: send mail to users or read mail. •
fuser: identify processes using a file or file/

statistics. ustat: get file system
modification times. utime: set file access and

utmp, wtmp: utmp and wtmp entry formats.
endutent, utmpname: access utmp file entry. /setutent,

tty slot: find the slot in the utmp file of the current user.
entry formats. utmp, wtmp: utmp and wtmp

/pututline, setutent, endutent, utmpname: access utmp file/
clean-up. uuclean: uucp spool directory

uusub: monitor uucp network. . • • • • • .

- 36 -

nroff7.1
troff7.l
mv.s
ctime.3c
machid.l
udp.Sn
getpw.3c
ul.1
ulimit.2
umask.2
umask.l
mount.lm
umount.2
uname.2
uname.l
ul.1
unget.l
unget.1
ungetc.3s
drand48.3c
uniq.l
mktemp.3c
units.l
link.lm
unlink.2
link.lm
umount.2
pack.l
Isearch.3c
touch.l
make.l
badblk.lm
updater.l
updater.lm
sync.2
sync.l
updater.l

• updater.lm
du.l
cuserid.3s

• logname.3x
su.l

• ttyslot.3c
• write.l
• setuid.2
• id.l
• udp.Sn
• getuid.2

environ.4
environ.5

• ulimit.2
• getuid.2

wall. 1m
mail.l

• fuser.lm
ustat.2

• utime.2
• utmp.4
• getut.3c
• ttyslot.3c

utmp.4
• getut.3c
• uuclean.l m

•• uusub.lm

uuclean: uucp spool directory clean-up.
control. uustat: uucp status inquiry and job

unix copy. uucp, uulog, uuname: unix to
copy. uucp, uulog, uuname: unix to unix

uucp, uulog, uuname: unix to unix copy.
System-to-UNIX System/ uuto, uupick: public UNIX

and job control. uustat: uucp status inquiry
uusub: monitor uucp network.

System-to-UNIX System file/ uuto, uupick: public UNIX
execution. uux: unix to unix command

configuration information. uvar: returns system-specific
val: validate sees file.

val: validate sees file.
abs: return integer absolute value. • • . . • •

/pdpll, u3b, vax: provide truth value about your processor/
getenv: return value for environment name.

ceiling, remainder, absolute value functions. Ifabs: floor,
true, false: provide truth values. .•........

your/ m68k, pdpll, u3b, vax: provide truth value about
vc: version control. • . •
vchk: version checkup.

option letter from argument vector. getopt: get
assert: verify program assertion.

of directory (Berkeley version). Is7: list contents
vchk: version checkup.

vc: version control.
version: reports version number of files. •

get: get a version of an sees file.
number of files. version: reports version

sccsdiff: compare two versions of an sees file.
(visual) display editor based/ vi, view: screen oriented

mmt, mvt: typeset documents, view graphs, and slides. .
macro package for typesetting view graphs and slides. Itroff

display editor based on/ vi, view: screen oriented (visual)
file perusal filter for crt viewing. more:

onl vi, view: screen oriented (visual) display editor based
systems with label checking. volcopy, labelit: copy file

file system: format of system volume. • . . .
process. wait: await completion of

or terminate. wait: wait for child process to stop
to stop or terminate. wait: wait for child process

ftw: walk a file tree.
wall: write to all users.
wc: word count.
what: identify sees files.

signal. signal: specify what to do upon receipt of a
crashes. crash: what to do when the system

whodo: who is doing what. . . •
machines. rwho: who is logged in on local

who: who is on the system. • •
who: who is on the system.
whodo: who is doing what.

cd: change working directory.
chdir: change working directory.

get pathname of current working directory. getcwd:
pwd: working directory name.

worm: Play the growing worm game•.•
game. worm: Play the growing worm

display terminal. worms: animate worms on a .
worms: animate worms on a display terminal.

write: write on a file.
putpwent= write password file entry.

wall: write to all users. • • •
write: write to another user.

- 37 -,

Permuted Index

uuclean.lm
uustat.1c
uucp.lc
uucp.lc
uucp.lc
uuto.lc
uustat.lc
uusub.lm
uuto.lc
uux.lc
uvar.2
vaLl
val.1
abs.3c

• machid.l
getenv.3c
floor.3m
true.l
machid.l
vc.l
vchk.lm
getopt.3c
assert.3x
Is7.1
vchk.lm
vc.1
version. I
get. 1

· version. 1
sccsdiff.l
vi.1
mmtl
mv.S
vi.1
more.l
vi.1
volcopy.lm
fs.4
wait.1
wait.2
wait.2
ftw.3c
wall.1m
wc.1

• what.!
• signal.2

crash.8
• whodo.1m
• rwho.ln
· who.1

who.l
whodo.lm

• cd.1
• chdir.2

• •• getcwd.3c
pwd.l

• worm.6
worm.6
worms.6

• • worms.6
• write.2

putpwent.3c
wall.lm
write. I

Permuted Index

write: write on a file.
write: write to another user.

file regions for reading or writing. Iprovide exclusive
open: open for reading or writing. •• • . .

utmp, wtmp: utmp and wtmp entry formats.
formats. utmp, wtmp: utmp and wtmp entry

accounting records. fwtmp, wtmpfix: manipulate connect
hunt-the-wumpus. wump: the game of

Iist(s) and execute command. xargs: construct argument .
jO, jl, jn, yO, yl, yn: Bessel functions.

jO, jl, jn, yO, yl, yn: Bessel functions.
compiler-compiler. yacc: yet another . .

jO, jl, jn, yO, yl, yn: Bessel functions.

- 38 -

write.2
write.l
lockf.2
open.2
utmp.4
utmp.4
fwtmp.lm
wump.6
xargs.l
bessel.3m
bessel.3m
yacc.l
bessel.3m

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one
or more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -1; the individual
descriptions specify the details. An error number is also made available in
the external variable errno. Errno is not cleared on successful calls, so it
should be tested only after an error has been indicated.

There is a table of messages associated with each error, and a routine for
printing the message; see perror(3). All of the possible error numbers are
not listed in each system call description because many errors are possible
for most of the calls. The following is a complete list of the error numbers
and their names as defined in < errno.h >.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn't, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter­
rupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam­
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec family.

8 ENOEXEC Exec format error

July 1984

A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
(see a. out (4» .

- 1 -

INTRO(2) INTRO(2)

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively
write) request is made to a file which is open only for writing
(respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork, failed because the system's process table is full or the user
is not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than
the system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap
space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the pro­
tection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text seg­
ment). It will also occur if an attempt is made to enable accounting
when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir (2) .

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument

July 1984

Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signal, or kill; reading or writing

- 2 -

INTRO(2) INTRO (2)

a file for which [seek has generated a negative pointer). Also set by
the math functions described in the OM) entries of this manual.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more
opens can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty is not a terminal or one of the
other devices to which these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently
open for writing (or reading). Also an attempt to open for writing
a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088
bytes) or ULIMIT; see ulimit (2) .

28 ENOSPC No space left on device
During a 'write to an ordinary file, there is no free space left on the
device.

29 ESPIPE Illegal seek
An [seek was issued to a pipe. This error should also be issued for
other non-seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package OM) is out of the
domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not represent­
able within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue; see msgop (2).

36 EIDRM Identifier Removed

July 1984

This error is returned to processes that resume execution due to
the removal of an identifier from the file system's name space (see
msgct[(2), semctI(2), and shmct[(2».

- 3 -

INTRO(2) INTRO(2)

55 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted
on an object in non-blocking mode (see socket(2».

56 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a con­
nect(2» was started on a non-blocking object (see socket(2».

57 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already
had an operation in progress.

58 ENOTSOCK Socket operation on non-socket
Self-explanatory.

59 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

60 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message
buffer.

61 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of
the socket type requested. For example, you cannot use the inter­
net UDP protocol with type SOCK_STREAM.

62 ENOPROTOOPT Protocol not available
In this incarnation of the system.

63 EPROTONOSUPPORT Protocol not supported
In this incarnation of the system.

64 ESOCKTNOSUPPORT Socket type not supported
In this incarnation of the system.

65 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

66 EPFNOSUPPORT Protocol family not supported
In this incarnation of the system.

67 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For
example, you shouldn't necessarily expect to be able to use PUP
Internet addresses with ARPA Internet protocols.

68 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

69 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address
not on this machine.

70 ENETDOWN Network is down
A socket operation encountered a dead network.

71 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

72 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

July 1984 - 4 -

INTRO (2) INTRO(2)

73 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

74 ECONNRESET Connection reset by peer

55 ENOBUFS No buffer space available
For a socket or a pipe in the buffer pool.

76 E1SCONN Socket is already connected

77 ENOTCONN Socket is not connected

78 ESHUTDOWN Can't send after socket shutdown

79 unused

80 ETIMEDOUT Connection timed out
Due to failure to initiate properly or because keep-alives failed.

81 ECONNREFUSED Connection refused
No connection could be made because the target machine actively
refused it.

82 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

83 ENAMETOOLONG File name too long
A component of a path name exceeded 14 characters, or an entire
path name exceeded 1023 characters.

84 EHOSTDOWN Host is down
A socket operation encountered a defunct host.

85 EHOSTUNREACH No route to host
A socket operation was attempted to an unreachable host.

100 EDEADLOCK Locking Deadlock
Returned by lock/(2) system call if deadlock would occur or when
lock table overflows.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer
called a process ID. The range of this ID is from 0 to 30,000.

Parent Process ID
A new process is created by a currently active process; see fork (2). The
parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a
positive integer called the process group ID. This ID is the process ID of
the group leader. This grouping permits the signaling of related processes;
see kill (2) .

Tty Group ID
Each active process can be a member of a terminal group that is identified
by a positive integer called the tty group ID. This grouping is used to ter­
minate a group of related process upon termination of one of the processes
in the group; see exit (2) and signal (2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a
real user ID.

July]984 - 5 -

INTltO(2) INTltO(2)

Each user is also a member of a group. The group is identified by a posi­
tive integer called the real group ID.

An active process has a real user ID and real group ID that are set to the
real user ID and real group ID, respectively ,of the user responsible for the
creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are
used to determine file access permissions (see below). The effective user
ID and effective group ID are equal to the process's real user ID and real
group ID respectively, unless the process or one of its ancestors evolved
from a file that had the set-user-ID bit or set-group ID bit set; see exec (2).

Super-user
A process is recognized as a super-user process and is granted special
privileges if its effective user ID is O.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as procO and proci.

ProcO is the scheduler. Proci is the initialization process (init). Procl is
the ancestor of every other process in the system and is used to control the
process structure.

File Name.
Names consisting of 1 to 14 characters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values
excluding \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, I, or I as part of file names
because of the special meaning attached to these characters by the shell.
See sh 0). Although permitted, it is advisable to avoid the use of unprint­
able characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional
slash (/), followed by zero or more directory names separated by slashes,
optionally followed by a file name.

More precisely, a path name is a null-terminated character string con­
structed as follows:

< path-name> ::= <file-name> I <path-prefix> <file-name> II
< path-prefix> ::= <rtprefix> II <rtprefix>
< rtprefix>:: = < dirname> I I < rtprefix> < dirname> I

where <file-name> is a string of 1 to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters (other than
the ASCII slash and null) that names a directory.

If a path name begins with a slash, the path search begins at the root direc­
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

July 1984 - 6 -

INTRO(2) INTRO(2)

Directory.
Directory entries are called links. By convention, a directory contains at
least two links, . and .. , referred to as dot and dot-dot respectively. Dot
refers to the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory and a
current working directory for the purpose of resolving path name searches.
A process's root directory need not be the root directory of the root file
system.

File Access Permissions.
Read, write, and execute/search permissions on a file are granted to a pro­
cess if one or more of the following is true:

The process's effective user ID is super-user.

The process's effective user ID matches the user ID of the owner of
the file and the appropriate access bit of the "owner" portion (0700)
of the file mode is set.

The process's effective user ID does not match the user ID of the
owner of the file, and the process's effective group ID matches the
group of the file and the appropriate access bit of the "group" portion
(070) of the file mode is set.

The process's effective user ID does not match the user ID of the
owner of the file, and the process's effective group ID does not match
the group ID of the file, and the appropriate access bit of the "other"
portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by
a msgget (2) system call. Each msqid has a message queue and a data struc­
ture associated with it. The data structure is referred to as msqid ds and
contains the following members: -

struct ipc perm msg perm; /* operation permission struct */
ushort msg_qnum; - /* number of msgs on q */
ushort msg_qbytes; /* max number of bytes on q */
ushort msg_Ispid; /* pid of last msgsnd operation */
ushort msg_Irpid; /* pid of last msgrcv operation */
time_t msg_stime; /* last msgsnd time */
time_t msg_rtime; /* last msgrcv time */
time_t msg_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

MsgJerm is a ipc_perm structure that specifies the message operation per­
mission (see below). This structure includes the following members:

July 1984

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode;

/ * creator user id */
/ * creator group id */
/* user id */
/* group id */
/* r/w permission */

- 7 -

INTRO(2) INTRO(2)

Msg qnum is the number of messages currently on the queue.
Msg=qbytes is the maximum number of bytes allowed on the queue.
Msg_lspid is the process id of the last process that performed a msgsnd
operation. Msg lrpid is the process id of the last process that performed a
msgrcv operation. Msg stime is the time of the last msgsnd operation,
msg rtime is the time of the last msgrcv operation, and msg ctime is the
time-of the last msgct[(2) operation that changed a member 'Of the above
structure.

Message Operation Permissions.
In the msgop (2) and msgct[(2) system call descriptions, the permiSSIOn
required for an operation is given as "{token}", where "token" is the type of
permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or
more of the following is true:

The process's effective user ID is super-user.

The process's effective user ID matches msg_perm.lcluid in the data
structure associated with msqid and the appropriate bit of the "user"
portion (0600) of msgyerm.mode is set.

The process's effective user ID does not match msgyerm.lcluid and
the process's effective group ID matches msgyerm.lc)gid and the
appropriate bit of the "group" portion (060) of msgyerm.mode is
set.

The process's effective user ID does not match msgyerm.lcluid and
the process's effective group ID does not match msgyerm.lclgid and
the appropriate bit of the "other" portion (06) of msgyerm.mode is
set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a
semget (2) system call. Each semid has a set of semaphores and a data
structure associated with it. The data structure is referred to as semid ds
and contains the following members: -

struct ipc perm sem perm; /* operation permission struct */
ushort sem nsems; - /* number of sems in set */
time_t sem-otime; /* last operation time */
time_t sem=ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Semyerm is a ipc_perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

July 1984

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;

/* creator user id */
/* creator group id */
/* user id */
/* group id */

- 8 -

INTRO(2) INTRO (2)

ushort mode; 1* ria permission *1
The value of sem nsems is equal to the number of semaphores in the set.
Each semaphore iii the set is referenced by a positive integer referred to as
a sem num. Sem num values run sequentially from 0 to the value of
sem nsems minus-I. Sem otime is the time of the last semop (2) opera­
tion~ and sem ctime is the time of the last semet/(2) operation that
changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort semval; 1* semaphore value *1
short sempid; 1* pid of last operation *1
ushort semncnt; 1* # awaiting semval > cval *1
ushort semzcnt; 1* # awaiting semval = 0 *1

Semval is a non-negative integer. Sempid is equal to the process ID of the
last process that performed a semaphore operation on this semaphore.
Semnent is a count of the number of processes that are currently
suspended awaiting this semaphore's semval to become greater than its
current value. Semzent is a count of the number of processes that are
currently suspended awaiting this semaphore's semval to become zero.

Semaphore Operation Permissions.
In the semop (2) and semetl (2) system call descriptions, the permission
required for an operation is given as "(token}", where "token" is the type of
permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or
more of the following is true:

The process's effective user ID is super-user.

The process's effective user ID matches sem_perm.lcJuid in the data
structure associated with semid and the appropriate bit of the "user"
portion (0600) of semJerm.mode is set.

The process's effective user ID does not match semJerm.lcJuid and
the process's effective group ID matches semJerm.lcJgid and the
appropriate bit of the "group" portion (060) of semJerm.mode is
set.

The process's effective user ID does not match sem perm.lcJuid and
the process's effective group ID does not match sem- perm.lcJgid and
the appropriate bit of the "other" portion (06) of semJerm.mode is
set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by
a shmget (2) system call. Each shmid has a segment of memory (referred to
as a shared memory segment) and a data structure associated with it. The
data structure is referred to as shmid_ ds and contains the following
members:

July 1984 - 9 -

INTRO(2)

struct
int
ushort
ushort
short
time_t
time_t
time_t

INTRO(2)

ipc perm shm perm; /* operation permission struct *j
shm_segsz; - j* size of segment */
shm_cpid; /* creator pid */
shm_lpid; /* pid of last operation *j
shm nattch; /* number of current attaches */
shm-atime; j* last attach time */
shm - dtime; j * last detach time */
shm=ctime; j* last change time *j

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

ShmJerm is a ipc_perm structure that specifies the shared memory opera­
tion permission (see below). This structure includes the following
members:

ushort cuid;· /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory segment. Shm_cpid is
the process id of the process that created the shared memory identifier.
Shm Ipid is the process id of the last process that performed a shmop (2)
operation. Shm nattch is the number of processes that currently have this
segment attached. Shm atime is the time of the last shmat operation,
shm_dtime is the time of the last shmdt operation, and shm_ctime is the
time of the last shmct[(2) operation that changed one of the members of
the above structure.

Shared Memory Operation Permissions.
In the shmop (2) and shmctl (2) system call descriptions, the permiSSIOn
required for an operation is given as "{token}", where "token" is the type of
permission needed interpreted as follows:

00400 Read by user
00200 W rite by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or
more of the following is true:

July 1984

The process's effective user ID is super-user.

The process's effective user ID matches shmJerm.lcluid in the data
structure associated with shmid and the appropriate bit of the "user"
portion (0600) of shmJerm.mode is set.

The process's effective user ID does not match shm perm.lc)uid and
the process's effective group ID matches shmJerm.lclgid and the
appropriate bit of the "group" portion (060) of shmJerm.mode is
set.

The process's effective user ID does not match shmJerm.lcluid and
the process's effective group ID does not match shmJerm.lclgid and
the appropriate bit of the "other" portion (06) of shmJerm.mode is
set.

- 10 -

INTRO(2)

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3).

July 1984 - 11 -

INTRO(2)

ACCEPT(2N) (UniSoft) ACCEPT(2N)

NAME
accept - accept a connection on a socket

SYNOPSIS
accept (s, from)
int S;
struct sockaddr *from;

DESCRIPTION
This call is used to accept a connection on socket s; from is a result value
indicating the address of the entity which connected, as known to the com­
munications layer. This call is used with connection-based socket types,
currently with SOCK_STREAM.

If the underlying communications layer has already made a connection on
the socket, then the call returns immediately. If no connection has yet
been made and the socket is nonblocking (see ioctl (2», then a -1 is
returned and the global variable errno is set to EWOULDBLOCK. It is possi­
ble to select (2N) a socket for the purposes of doing an accept by selecting it
for read, since no data may be read until the connection completes.

SEE ALSO
connect(2N), select(2N), socket(2N).

DIAGNOSTICS

BUGS

Zero is returned if a connection is accepted; -1 is returned in the error
cases. Some important errors returned in errno are EOPNOTSUPP if the
socket is not of a type supporting this operation, and EISCONN if the socket
is already connected.

This call is provisional and will exist in a slightly different form in future
releases.

July 1984 - 1 -

ACCESS (2) ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, aDlode)
char .path;
int aDlode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for
accessibility according to the bit pattern contained in amode, using the real
user ID in place of the effective user ID and the real group ID in place of
the effective group ID. The bit pattern contained in amode is constructed as
follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR)

Read, write, or execute (search) permission is requested for a null
path name. [ENOENT)

The named file does not exist. [ENOENT)

Search permission is denied on a component of the path prefix.
[EACCES)

Write access is requested for a file on a read-only file system. [EROFS}

Write access is requested for a pure procedure (shared text) file that is
being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested access.
[EACCES)

Path points outside the process's allocated address space. [EFAULT]

The owner of a file has permission checked with respect to the "owner"
read, write, and execute mode bits, members of the file's group other than
the owner have permissions checked with respect to the "group" mode
bits, and all others have permissions checked with respect to the "other"
mode bits.

Notice that it is only access bits that are checked. A directory may be
announced as writable by access, but an attempt to open it for writing will
fail because it is not allowed to write into the directory structure itself,
although files may be created there. A file may look executable, but exec
will fail unless it is in proper format.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

ASSEMBLER
Dloveq #33,DO

October 1983 - 1 -

ACCESS (2)

movl
movl
trap

path,AO
amode,Dl
#0

Carry bit set on failure and cleared on success.

October 1983 - 2 -

ACCESS (2)

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acet (path)
char .path;

DESCRIPTION
Acct is used to enable or disable the system's process accounting routine.
If the routine is enabled, an accounting record will be written on an
accounting file for each process that terminates. Termination can be caused
by one of two things: an exit 'call or a signal; see exit (2) and signal (2). The
effective user ID of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur
during the system call.

Acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user. [EPERM]

An attempt is being made to enable accounting when it is already
enabled. [EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components of ,the accounting file's path name do not
exist. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file. [EACCES]

The named file is a directory. [EISDIR]

The named file resides on a read-only file system. [EROFS]

Path points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
acct(4).

ASSEMBLER
moveq
movl
trap

#51,DO
path,AO
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

ALARM (2) ALARM (2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the calling process's alarm clock to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the calling process's
alarm clock. If the argument is 0, any alarm request is canceled. Because
the clock has a I-second resolution, the signal may occur up to one second
early; because of scheduling delays, resumption of execution of when the
signal is caught may be delayed an arbitrary amount. The longest
specifiable delay time is 4,294,967,295 (2**32-1) seconds, or 136 years.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the calling
process's alarm clock.

SEE ALSO
pause (2), signaI(2).

ASSEMBLER
moveq
movl
trap

#27,DO
sec,AO
#0

On return, DO will contain the amount of time previously remaining in the
alarm clock.

October 1983 - 1 -

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated
for the calling process's data segment; see exec(2). The change is made by
resetting the process's break value and allocating the appropriate amount of
space. The break value is the address of the first location beyond the end
of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accord­
ingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative, in which case the amount of allocated
space is decreased.

Brk and sbrk will fail without making any change in the allocated space if
one or more of the following are true:

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(2». [ENOMEM]

Such a change would result in the break value being greater than or
equal to the start address of any attached shared memory segment
(see shmop(2».

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the
old break value. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2).

ASSEMBLER
moveq #17,DO
movl endds,AO
trap #0

Carry bit cleared if the brk could be set; brk fails if the program requests
more memory than the system limit or, on memory management CPUs, if
too many segmentation registers would be required to implement the break.

October 1983 - 1 -

CHOIR (2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
iot chdir (path)
char .path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named direc­
tory to become the current working directory, the starting point for path
searches for path names not beginning with I.
Chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

A component of the path name is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path name.
[EACCES]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of - 1 is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

ASSEMBLER
moveq
movl
trap

#12,DO
path,AO
#0

Carry bit set on failure and cleared on success.

October J 983 - 1 -

CHMOD (2) CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char .path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permis­
sion portion of the named file's mode according to the bit pattern contained
in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.
02000 Set group 10 on execution.
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00100 Execute (or search if a directory) by owner
00070 Read, write, execute (search) by group
00007 Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01 000
(save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the effective
group ID of the process does not match the group ID of the file, mode bit
02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing (see the cc -n option), then
mode bit 01000 prevents the system from abandoning the swap-space image
of the program-text portion of the file when its last user terminates. Thus,
when the next user of the file executes it, the text need not be read from
the file system but can simply be swapped in, saving time.

Changing the owner of a file turns off the set-user-id bit, unless the
superuser does it. This makes the system somewhat more secure at the
expense of a degree of compatibility.

Chmod will fail and the file mode will be unchanged if one or more of the
following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value

OCTober J <JX3 - 1 -

CHMOD(2)

of -1 is returned and errno is set to indicate the error.

SEE ALSO
chown(2), rnknod(2).

ASSEMBLER
moveq
movl
movl
trap

#15,DO
path,AO
mode,Dl
#0

Carry bit set on failure and cleared on success.

October /983 - 2 -

CHMOD(2)

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char .path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of
the named file are set to the numeric values contained in owner and group
respectively.

Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

Chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of - 1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).

ASSEMBLER
moveq
movl
movl
movl
trap

#16,DO
path,AO
owner,Dl
group,Al
#0

Carry bit set on failure and cleared on success.

October J 983 - 1 -

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char .path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named
directory to become the root directory, the starting point for path searches
for path names beginning with I.
The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory
itself. Thus, .. can not be used to access files outside the subtree rooted at
the root directory.

Chroot will fail and the root directory will remain unchanged if one or more
of the following are true:

Any component of the path name is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

SEE ALSO
chdir(2).

ASSEMBLER
moveq
movl
trap

#61,DO
path,AO
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

CLOSE (2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION

CLOSE (2)

Fildes is a file descriptor obtained from a creal, open, dup,lcntl, or pipe sys­
tem call. Close closes the file descriptor indicated by fildes. A close of all
files is automatic on exit, but since there is a 20 open file limit on the
number of open files per process, close is necessary for programs which deal
with many files.

Close will fail if jildes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntI(2), open(2), pipe(2).

ASSEMBLER
moveq
movl
trap

#6,DO
fildes,AO
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

CONNECT (2N) (UniSoft) CONNECT (2N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include < net/socket.h >

connect(s, addr)
int s;
struct sockaddr *addr;

DESCRIPTION
Connect causes a connection request to be initiated to the entity at addr
using the underlying protocol of the socket s. When the connection com­
pletes, a zero value is returned.

If the socket is non-blocking but the connection cannot be completed
immediately, then the call returns -1 and sets the external variable ermo
to EWOULDBLOCK. It is possible to select (2) a socket which is connecting
by selecting it for writing, since writing is not possible before the connec­
tion completes.

If the socket is already connected, a value of -1 is returned and ermo is
set to EISCONN. Failure to connect often results in ETIMEDOUT or ERE­
FUSED errors. Other errors are also possible.

SEE ALSO
accept(2N), select(2N), socket(2N).

BUGS
A socket's state is not properly restored if a connect fails; for the time being
you can close the socket and recreate it to get around the bug.

This call is provisional and will exist in a slightly different form in future
releases.

July /984 - 1 -

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
iot creat (path, mode)
char .path;
iot mode;

DESCRIPTION
Creal creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner 10 is set to the process's effective
user 10, the file's group ID is set to the process's effective group ID, and
the low-order 12 bits of the file mode are set to the value of mode modified
as follows:

All bits set in the process's file mode creation mask are cleared. See
umask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned and the file is open for writing, even if the mode
does not permit writing. The file pointer is set to the beginning of the file.
The file descriptor is set to remain open across exec system calls. See
jcntl(2). No process may have more than 20 files open simultaneously.

The mode given is arbitrary; it need not allow writing. This feature is used
by programs which deal with temporary files of fixed names. The creation
is done with a mode that forbids writing. Then, if a second instance of the
program attempts a creat, an error is returned and the program knows that
the name is unusable for the moment.

The system-scheduling algorithm does not make this a true un interruptible
operation, and a race condition may develop if creat is done at precisely the
same time by two different processes.

Creat will fail if one or more of the following are true:

October 198]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The path name is null. [ENOENT]

The file does not exist and the directory in which the file is to be
created does not permit writing. [EACCES]

The named file resides or would reside on a read-only file system.
[EROFS]

The file is a pure procedure (shared text) file that is being executed.
[ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDIR]

- 1 -

CREAT(2) CREAT(2)

Twenty (20) file descriptors are currently open. [EMFILE]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and erma is
set to indicate the error.

SEE ALSO
close(2), dup(2), Iseek(2), open(2), read(2), umask(2), write(2).

ASSEMBLER
moveq #8,DO
movl path,AO
movl mode,Dl
trap #0

Carry bit set on failure and cleared on success.

The file descriptor is returned in DO.

October J 983 - 2 -

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (tildes)
int tildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creal, open, dup,lcntl, or pipe sys­
tem call. Dup returns a new file descriptor having the following in common
with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls. See
Icntl (2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently open. [EMFILE]

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descrip­
tor, is returned. Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
creat (2), close (2), exec(2), fcntI(2), open (2), pipe (2).

October J 983 - 1 ..

EXEC (2) EXEC (2)

NAME
execl, execv, execle, execve, execlp, execvp - execute.a file

SYNOPSIS
int execl (path, argO, argt, ... , argn, 0)
char .path, .argO, .argt, ... , .argn;

int execv (path, argv)
char .path, .argv(I;
int execle (path, argO, argt, •.. , argn, 0, envp)
char .path, .argO, .argt; ... , ·argn, .envp(I;
int execve (path, argv, envp)
char .path, .argv(I, .envp(I;
int execlp (file, argO, argt, ... , argn, 0)
char .file, .argO, .argt, ... , .argn;

int execvp (file, argv)
char .file, .argv (I;

DESCRIPTION
Exec in all its forms transforms the calling process into a new process. The
new process is constructed from an ordinary, executable file called the new
process file. This file consists of a header (see a.out(4», a text segment,
and a data segment. The data segment contains an initialized portion and
an uninitialized portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new process.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained
by a search of the directories passed as the environment line "PATH =" (see
environ (5». The environment is supplied by the shell (see sh (I». The
shell is invoked if a command file is found by exec/p or execvp.

ArgO, argi, ... , argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process. By
convention, at least argO must be present and point to a string that is the
same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By con­
vention, argv must have at least one member, and it must point to a string
that is the same as path (or its last component). Argv is terminated by a
null pointer and is directly usable in another execv because argv [arge] is O.

Envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. Envp is terminated
by a null pointer. For exec/ and execv, the C run-time start-off routine
places a pointer to the calling process's environment in the global cell:

extern char •• environ;
and it is used to pass the calling process's environment to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see lent! (2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new
process. Signals set to be ignored by the calling process will be set to be
ignored by the new process. Signals set to be caught by the calling process

October 1983 - 1 -

EXEC (2) EXEC (2)

will be set to terminate new process; see signal (2).

If the set-user-ID mode bit of the new process file is set (see chmod(2»,
exec sets the effective user ID of the new process to the owner ID of the
new process file. Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set to the group ID of
the new process file. The real user ID and real group ID of the new process
remain the same as those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process (see shmop (2».

Profiling is disabled for the new process; see profil (2).

The new process also inherits the following attributes from the calling pro­
cess:

nice value (see nice (2»
process ID
parent process ID
process group ID
semadj values (see semop (2))
tty group ID (see exit (2) and signal (2»
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2»
current working directory
root directory
file mode creation mask (see umask (2»
file size limit (see ulimit (2))
utime, stime, cutime, and cstime (see times (2»

From C, two interfaces are available. exec! is useful when a known file
with known arguments is being called; the arguments to exec! are the char­
acter strings constituting the file and the arguments; the first argument is
conventionally the same as the file name (or its last component). A 0
argument must end the argument list.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc~
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers
to the arguments themselves. As indicated, argc is conventionally at least
one and the first member of the array points to a string containing the
name of the file.

Envp is a pointer to an array of strings that constitute the environment of
the process. Each string consists of a name, an =, and a null-terminated
value. The array of pointers is terminated by a null pointer. The shell
sh 0) passes an environment entry for each global shell variable defined
when the program is called. See environ (5) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global
cell environ, which is used by execv and exec! to pass the environment to
any subprograms executed by the current program. The exec routines use
lower-level routines as follows to pass an environment explicitly:

execve(file, argv, environ);
execle(file, argO, argl, ... , argn, 0, environ);

October 1983 - 2 -

EXEC (2) EXEC (2)

Exec!p and execvp are called with the same arguments as exec! and exec v,
but duplicate the shell's actions in searching for an executable file in a list
of directories. The directory list is obtained from the environment.

Exec will fail and return to the calling process if one or more of the follow­
ing are true:

One or more components of the new process file's path name do not
exist. [ENOENT]

A component of the new process file's path prefix is not a directory.
[ENOTDIR]

Search permission is denied for a directory listed in the new process
file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission. [EACCES]

The exec is not an exec!p or execvp, and the new process file has the
appropriate access permission but an invalid magic number in its
header. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY]

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM. [ENOMEM]

The number of bytes in the new process's argument list is greater
than the system-imposed limit of 5120 bytes. [E2BIG]

The new process file is not as long as indicated by the size values in
its header. [EFAULT]

Path, argv, or envp point to an illegal address. [EFAULT]

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value
will be -I and errno will be set to indicate the error.

SEE ALSO
exit(2), fork(2), environ(5).

October 1983 - 3 -

EXIT(2) EXIT (2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process's termination and the low order eight
bits (i.e., bits 0377) of status are made available to it; see wait(2).

If the parent process of the calling process is not executing a wait, the
calling process is transformed into a zombie process. A zombie process
is a process that only occupies a slot in the process table, it has no
other space allocated either in user or kernel space. The process table
slot that it occupies is partially overlaid with time accounting informa­
tion (see < sys/proc.h » to be used by times.

The parent process ID of all of the calling process's existing child
processes and zombie processes is set to 1. This means the initializa­
tion process (see intro(2» inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value (see semop(2», that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an unlock is performed
(see plock (2)).

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct (2).

If the process ID, tty group ID, and process group ID of the calling
process are equal, the SIGH UP signal is sent to each processes that has
a process group ID equal to that of the calling process.

The C function exit may cause cleanup actions before the process exits.
The function _exit circumvents all cleanup.

SEE ALSO
signaI(2), wait (2).

WARNING
See WARNING in signal(2).

ASSEMBLER
moveq
movl
trap

October 1983

#l,DO
status,AO
#0

- 1 -

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntI.h>

int fcntI (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
Fcnt! provides for control over open files. Fildes is an open file descriptor
obtained from a creat, open, dup, [cntf, or pipe system call.

The cmds available are:

F _DUPFD Return a new file descriptor as follows:
Lowest numbered available file descriptor greater than or equal
to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same
file status flags).

The close-on-exec flag associated with the new file descriptor is
set to remain open across exec (2) system calls.

Get the close-on-exec flag associated with the file descriptor
fifdes. If the low-order bit is 0 the file will remain open across
exec, otherwise the file will be closed upon execution of exec.

Set the close-on-exec flag associated with Jifdes to the low­
order bit of arg (0 or 1 as above).

Get fife status flags.

Set fife status flags to argo Only certain flags can be set; see
[cntf(5).

Fcntf will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Cmd is F _DUPFD and 20 file descriptors are currently open. [EMFILE]

Cmd is F _DUPFD and arg is negative or greater than 20. [EINVAL]

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F _DUPFD A new file descriptor.
F _GETFD Value of flag (only the low-order bit is defined).
F SETFD Value other than -1.
F =GETFL Value of file flags.
F SETFL Value other than - 1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), exec(2) , open(2), fcntl(5).

October 1983 - 1 -

FCNTL(2)

ASSEMBLER
moveq
movl
movl
movl
trap

#62,DO
fildes,AO
cmd,Dt
arg,At
#0

Carry bit set on failure and cleared on success.

October 1983 - 2 -

FCNTL (2)

fORK(2) FORK (2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is
an exact copy of the calling process (parent process). This means the child
process inherits the following attributes from the parent process:

environment
close-on-exec flag (see exec(2»
signal handling settings (i.e., SIG_DFL, SIG_ING, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2»
all attached shared memory segments (see shmop(2»
process group ID
tty group ID (see exit(2) and signal(2»
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm (2))
current working directory
root directory
file mode creation mask (see umask(2»
file size limit (see ulimit(2»

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID
of the parent process).

The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared (see semop (2».

Process locks, text locks and data locks are not inherited by the child
(see plock (2».

The child process's utime, stime, cutime, and cstime are set to 0 (see
times(2».

Fork will fail and no child process will be created if one or more of the fol­
lowing are true:

The system-imposed limit on the total number of processes under
execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. [EAGAIN]

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Oth­
erwise, a value of -1 is returned to the parent process, no child process is
created, and ermo is set to indicate the error.

October 1983 - 1 -

FORK(2)

SEE ALSO
exec(2), times(2), wait(2).

ASSEMBLER
moveq #2,DO
trap #0
New process return.
Old process return, new process ID in DO.
Carry bit cleared on success.

FORK(2)

The return locations in the old and new process differ by one 16 bit word.
The C-bit is set in the old process if a new process could not be created.

October 1983 - 2 -

GETHOSTNAME (2N) (UniSoft) GETHOSTNAME(2N)

NAME
gethostname - get name of current host

SYNOPSIS
char hostname[32J;

gethostname (hostname, sizeof (host name)) ;
DESCRIPTION

Gethostname returns the standard host name for the current processor, as
set by sethostname (2N) ~nd defined in rhost (3N) . The name is null­
terminated.

SEE ALSO
sethostname (2N), rhost (3 N).

July 1984 - 1 -

GETPID(2) GETPID (2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process
IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

These system calls are useful for generating uniquely-named temporary
files.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signaI(2).

ASSEMBLER
moveq #20,DO I getpid
trap #0

Process ID is returned in DO.

moveq
movl
trap

#39,DO
#O,AO
#0

I getpgrp

Process ID is returned in DO.

moveq #20,DO I getppid
trap #0

Parent process ID is returned in Dt.

October 1983 - 1 -

GETUID (2) GETUID (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group,
and effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()

int getgid 0
int getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

ASSEMBLER
moveq #24,DO I sys getuid
trap #0
Real user ID returned in DO.

moveq #24,DO I sys geteuid
trap #0
Effective user ID returned in Dl.

moveq #47,DO I sys getgid
trap #0
Real group ID returned in DO.

moveq #47,DO I sys getegid
trap #0
Effective group ID returned in Dl.

October 1983 - 1 -

IOCTL (2)

NAME
ioctl - control device

SYNOPSIS
ioctl (fildes, request, arg)

DESCRIPTION

IOCTL (2)

foeti performs a variety of functions on character special files (devices).
The writeups of various devices in Section 7 discuss how ioetl applies to
them.

foeti will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fildes is not associated with a character special device. [ENOTTY)

Request or arg is not valid. See Section 7. [EINV AL]

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indi­
cate the error.

SEE ALSO
termio(7) in the UniPlus+ Administrator's Manual.

ASSEMBLER
moveq
movl
movl
movl
trap

July 1984

#54,DO
fildes,AO
request,Dl
#argp,Al
#0

I sys ioctl

- 1 -

KILL (2) KILL (2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid. The
signal that is to be sent is specified by sig and is either one from the list
given in signal (2), or O. If sig is 0 (the null signal), error checking is per­
formed but no signal is actually sent. This can be used to check the validity
of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process unless, the effective user ID of the
sending process is super-user, or the process is sending to itself.

The processes with a process ID of 0 and a process ID of 1 are special
processes (see intro (2» and will be referred to below as procO and proc1
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID
is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc1 whose
process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig
will be sent to all processes excluding procO and proc1 whose real user ID is
equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and proc1.

If pid is negative but not -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are
true:

Sig is not a valid signal number. [EINV AL]

No process can be found corresponding to that specified by pid.
[ESRCH]

The sending process is not sending to itself, its effective user ID is not
super-user, and its real or effective user ID does not match the real or
effective user ID of the receiving process. [EPERM]

RETURN VALUE.
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
kill(I), getpid(2), setpgrp(2), signaI(2).

October 1983 - 1 -

KILL (2) KILL (2)

ASSEMBLER
moveq #37,DO
movl pid,AO
movl sig,Dl
trap #0
Carry bit set on failure and cleared on success.

October 1983 - 2 -

LINK (2) LINK (2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char .pathl, .path2;

DESCRIPTION
Path1 points to a path name naming an existing file. Path2 points to a path
name naming the new directory entry to be created. Link creates a new
link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are
true:

A component of either path prefix is not a directory. [ENOTDIR]

A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by path1 does not exist. [ENOENT]

The link named by path2 exists. [EEXIST]

The file named by path 1 is a directory and the effective user ID is not
super-user. [EPERM]

The link named by path2 and the file named by path 1 are on different
logical devices (file systems). [EXDEV]

Path2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a mode that
denies write permission. [EACCES]

The requested link requires writing in a directory on a read-only file
system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

The requested link requires the file named by path 1 to have more
than 1000 links. [EM LINK]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
unlink(2).

ASSEMBLER
moveq
movl
movl
trap

#9,DO
pathl,AO
path2,Dl
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

LOCKF(2) (UniSoft) LOCKF(2)

NAME
lockf - provide exclusive file regions for reading or writing

SYNOPSIS
lockf(tildes, mode, size)
int tildes;
int mode;
int size;

DESCRIPTION
Lockf will allow a specified number of bytes to be accessed only by the
locking process. Other processes which attempt to lock, read, or write the
locked area will sleep until the area becomes unlocked.

Fildes is the word returned from a successful open, creal, dup, or pipe sys­
tem call.

Mode is zero to unlock the area. Mode is one or two for making the area
locked. If the mode is one and the area has some other lock on it, then the
process will sleep until the entire area is available. If the mode is two and
the area is locked, an error will be returned.

Size is the number of contiguous bytes to be locked or unlocked. The area
to be locked starts at the current offset in the file. If size is zero, the area
to the end of file is locked.

The potential for a deadlock occurs when a process controlling a locked area
is put to sleep by accessing another process's locked area. Thus calls to
lock!, read, or write scan for a deadlock prior to sleeping on a locked area.
An error return is made if sleeping on the locked area would cause a
deadlock.

Lock requests may, in whole or part, contain or be contained by a previ­
ously locked area for the same process. When this or adjacent areas occur,
the areas are combined into a single area. If the request requires a new
lock element with the lock table full, an error is returned, and the area is
not locked.

Unlock requests may, in whole or part, release one or more locked regions
controlled by the process. When regions are not fully released, the remain­
ing areas are still locked by the process. Release of the center section of a
locked area requires an additional lock element to hold the cut off section.
If the lock table is full, an error is returned, and the requested area is not
released.

While locks may be applied to special files or pipes, read/write operations
will not be blocked. Locks may not be applied to a directory.

Note that close(2) automatically removes any locks that were associated
with the closed file descriptor.

SEE ALSO
close(2), creat(2), dup(2), open(2), read(2), write(2).

DIAGNOSTICS
The value - 1 is returned if the file does not exist, or if a deadlock using
file locks would occur. EACCES will be returned for lock requests in which
the area is already locked by another process. EDEADLOCK will be returned
by: read, write, or locking if a deadlock would occur. EDEADLOCK will also
be returned when the locktable overflows.

July 1984 - 1 -

LOCKF(2)

ASSEMBLER
moveq
movl
movl
movl
trap

#S6,DO
fildes,AO
mode,Dl
size,Al
#0

Carry bit cleared on success.

July 1984

(UniSoft) LOCKF(2)

- 2 -

LSEEK(2) LSEEK (2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or fcntl system
call. Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in
bytes from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of
the following are true:

Fildes is not an open file descriptor. [EBADFI

Fildes is associated with a pipe or fifo. [ESPIPEI

Whence is not 0, 1 or 2. [EINV AL and SIGSYS signaI]

The resulting file pointer would be negative. [EINV ALI

Some devices are incapable of seeking. The value of the file pointer associ­
ated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file
pointer value is returned. Otherwise, a value of - 1 is returned and errno
is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntI(2), open(2).

ASSEMBLER
moveq
movl
movl
movl
trap

#19,DO
fildes,AO
offset,Dl
whence,Al
#0

Carry bit set on failure and cleared on success.

File offset returned in DO.

October 1983 - 1 -

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dey)
char .path;
int mode, dey;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode. Where the value of mode is
interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file's owner ID is set to the process's effective user ID. The file's
group ID is set to the process's effective group ID.

Values of mode other than those above are undefined and should not be
used. The low-order 9 bits of mode are modified by the process's file mode
creation mask: all bits set in the process's file mode creation mask are
cleared. See umask(2). If mode indicates a block or character special file,
dev is a configuration dependent specification of a character or block 110
device. If mode does not indicate a block special or character special device,
dev is ignored.

Mknod may be invoked only by the super-user for file types other than
FIFO special.

Mknod will fail and the new file will not be created if one or more of the
following are true:

The process's effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a read­
only file system. [EROFS]

The named file exists. [EEXIST]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

October 1983 - 1 -

MKNOD(2)

SEE ALSO'
mkdir(1), chmod(2), exec(2), umask(2), fs(4).

ASSEMBLER
moveq
movl
movl
movl
trap

#14,DO
path,AO
mode,Dl
dev,Al
#0

Carry bit set on failure and cleared on success.

October 1983 - 2 -

MKNOD(2)

MOUNT (2) MOUNT (2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwftag)
char -spec, -dir;
int rwftag;

DESCRIPTION
Mount requests that a removable file system contained on the block special
file identified by spec be mounted on the directory identified by dir. Spec
and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is permit­
ted according to individual file accessibility. Physically write-protected and
magnetic tape file systems must be mounted read-only or errors will occur
when access times are updated, whether or not any explicit write is
attempted.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

The effective user ID is not super-user. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTDIR]

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space.
[EFAULT]

Dir is currently mounted on, is someone's current working directory
or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
umount(2).

ASSEMBLER
moveq
movl
movl
movl
trap

#21,DO
spec,AO
dir,Dl
rwftag,Al
#0

I sys mount

Carry bit set on failure and cleared on success.

October 1983 - 1 -

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include < sys/types.h >
#include < sys/ipc.h >
#include < sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds .buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd.
The following cmds are available:

IPC_STAT Place the current value of each member of the data structure
associated with msqid into the structure pointed to by buf The
contents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure
associated with msqid to the corresponding value found in the
structure pointed to by but

msg perm.uid
msg=perm.gid
msg perm.mode 1* only low 9 bits *1
msg=qbytes

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user or to the
value of msgJerm.uid in the data structure associated with
msqid. Only super user can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from
the system and destroy the message queue and data structure
associated with it. This cmd can only be executed by a process
that has an effective user ID equal to either that of super user
or to the value of msgJerm. uid in the data structure associ­
ated with msqid.

Msgctl will fail if one or more of the following are true:

October 1983

Msqid is not a valid message queue identifier. [EINV AL]

Cmd is not a valid command. [EINV AL]

Cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process (see intro(2». [EACCES]

Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of
the calling process is not equal to that of super user and it is not equal
to the value of msgJerm.uid in the data structure associated with
msqid. [EPERM]

Cmd is equal to IPC _SET, an attempt is being made to increase to the
value of msg qbytes, and the effective user ID of the calling process is
not equal to that of super user. [EPERM]

Bujpoints to an illegal address. [EFAULT]

- 1 -

MSGCTL(2) MSGCTL(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and erma is set to indicate the error.

SEE ALSO
msgget(2), msgop(2).

October 1983 - 2 -

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include < sys/types.h >
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgBg)
key t key;
int msgBg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data struc­
ture (see intro (2» are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with
it, and (msgfig & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

MsgJlerm.cuid, msgJlerm.uid, msgJlerm.cgid, and msg_perm.gid
are set equal to the effective user ID and effective group ID, respec­
tively, of the calling process.

The low-order 9 bits of msgJlerm.mode are set equal to the low-order
9 bits of msgfig.

Msg qnum, msg lspid, msg lrpid, msg stime, and msg_rtime are
set equal to O. - - -

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

A message queue identifier exists for key but operation permIssIon
(see intro (2» as specified by the low-order 9 bits of msgfig would not
be granted. [EACCES]

A message queue identifier does not exist for key and (msgflg &
IPC_CREAT) is "false". [ENOENT]

A message queue identifier is to be created but the system imposed
limit on the maximum number of allowed message queue identifiers
system wide would be exceeded. [ENOSPC]

A message queue identifier exists for key but ((msgflg & IPC_CREAT)
& (msgfig & IPC_EXCL)) is "true". [EEXIST]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message
queue identifier is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
msgctI(2), msgop(2).

October 1983 - 1 -

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include < sys/types.h>
#include < sys/ipc.h >
#include < sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message
queue identifier specified by msqid. {WRITE} Msgp points to a structure
containing the message. This structure is composed of the following
members:

long mtype; 1* message type */
char mtext[]; 1* message text *1

Mtype is a positive integer that can be used by the receiving process for
message selection (see msgrcv below). Mtext is any text of length msgsz
bytes. Msgsz can range from 0 to a system imposed maximum.

Msgf!g specifies the action to be taken if one or more of the following are
true:

The number of bytes already on the queue is equal to msg_qbytes
(see intro (2)).

The total number of messages on all queues system wide is equal to
the system imposed limit.

These actions are as follows:

If (msgf!g & IPC NOWAIT) is "true", the message will not be sent
and the calling process will return immediately.

If (msgf!g & IPC NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

Msqid is removed from the system (see msgctl (2». When this
occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes exe­
cution in the manner prescribed in signal (2».

Msgsnd will fail and no message will be sent if one or more of the following
are true:

October 1983 - 1 -

MSGOP(2) MSGOP(2)

Msqid is not a valid message queue identifier. [EINVAL]

Operation permission is denied to the calling process (see intro (2)).
[EACCES]

Mtype is less than 1. [EINV AL]

The message cannot be sent for one of the reasons cited above and
(msgffg & IPC_NOWAIT) is "true". [EAGAIN]

Msgsz is less than zero or greater than the system imposed limit.
[EINVAL]

Msgp points to an illegal address. [EFAULT]

Upon successful completion, the following actions are taken with respect to
the data structure associated with msqid (see intro (2)).

Msg_qnum is incremented by 1.

Msg_Ispid is set equal to the process ID of the calling process.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by
msgp. {READ} This structure is composed of the following members:

long mtype; 1* message type *1
char mtext[]; 1* message text *1

Mtype is the received message's type as specified by the sending process.
Mtext is the text of the message. Msgsz specifies the size in bytes of mtext.
The received message is truncated to msgsz bytes if it is larger than msgsz
and (msgffg & MSG NOERROR) is "true". The truncated part of the mes­
sage is lost and no indication of the truncation is given to the calling pro­
cess.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

Msgffg specifies the action to be taken if a message of the desired type is
not on the queue. These are as follows:

If (msgffg & IPC_NOWAIT) is "true", the calling process will return
immediately with a return value of -1 and ermo set to ENOMSG.

If (msgffg & IPC_NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, ermo is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes
execution in the manner prescribed in signal (2)).

Msgrcv will fail and no message will be received if one or more of the fol­
lowing are true:

October 1983 - 2 -

MSGOP(2) MSGOP(2)

Msqid is not a valid message queue identifier. [EINVAL]

Operation permission is denied to the calling process. [EACCES]

Msgsz is less than O. [EINV AL]

Mtext is greater than msgsz and (msgffg & MSG_NOERROR) is
"false". [E2BIG]

The queue does not contain a message of the desired type and (msgtyp
& IPC_NOWAIT) is "true". [ENOMSG]

Msgp points to an illegal address. [EFAULT]

Upon successful completion, the following actions are taken with respect to
the data structure associated with msqid (see intro (2».

Msg_qnum is decremented by 1.

Msg_lrpid is set equal to the process ID of the calling process.

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of - 1 is
returned to the calling process and errno is set to EINTR. If they return due
to removal of msqid from the system, a value of - 1 is returned and errno
is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
msgctl(2) , msgget(2).

October 1983 - 3 -

NICE (2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A
process's nice value is a positive number for which a more positive value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. Requests for values above or below these limits result in
the nice value being set to the corresponding limit.

Nice will fail and not change the nice value if incr is negative and the
effective user ID of the calling process is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of - 1 is returned and errno is set to indicate the error.

SEE ALSO
niceO), exec(2).

ASSEMBLER
moveq #34,DO
movl incr ,AO
trap #0

October 1983 - 1 -

OPEN (2) OPEN (2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, ofiag [, mode])
char .path;
int ofiag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for
the named file and sets the file status flags according to the value of ojiag.
Ojiag values are constructed by or-ing flags from the following list (only
one of the first three flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes. See
read (2) and write (2).

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If ° _NDELA Y is set:

The open will return without waiting for carrier.

If 0_ NDELA Y is clear:

The open will block until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file prior
to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise, the file's
owner ID is set to the process's effective user ID, the file's
group ID is set to the process's effective group ID, and the
low-order 12 bits of the file mode are set to the value of
mode modified as follows (see creat(2»:

October 1983

All bits set in the process's file mode creation mask
are cleared. See umask (2) .

The "save text image after execution bit" of the
mode is cleared. See chmod (2) .

If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

- 1 -

OPEN (2) OPEN (2)

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file
exists.

Upon successful completion a non-negative integer, the file descriptor, is
returned.

The file pointer used to mark the current position within the file is set to
the beginning of the file.

The new file descriptor is set to remain open across exec system calls. See
!cntl(2).

No process may have more than 20 file descriptors open simultaneously.

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

0_ CREA T is not set and the named file does not exist. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

Ojlag permission is denied for the named file. [EACCES]

The named file is a directory and ojlag is write or read/write. [EISDIR]

The named file resides on a read-only file system and ojlag is write or
read/write. [EROFS]

Twenty (20) file descriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the dev­
ice associated with this special file does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is being executed
and ojlag is write or read/write. [ETXTBSY]

Path points outside the process's allocated address space. [EFAULT]

O_CREAT and O_EXCL are set, and the named file exists. [EEXIST]

° NDELA Y is set, the named file is a FIFO, ° WRONL Y is set, and no
process has the file open for reading. [ENXIO}-

RETURN VALUE
Upon successful completion, a non-negative integer, namely a file descrip­
tor, is returned. Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), creat(2), dup(2), fcntI(2), Iseek(2), read(2), write(2).

ASSEMBLER
moveq
movl
movl
movl
trap

#5,DO
path,AO
ofiag,Dl
mode,Al
#0

Carry bit set on failure and cleared on success.

File descriptor is returned in DO.

October 1983 - 2 -

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from
the signal catching-function (see signa!(2» , the calling process resumes
execution from the point of suspension; with a return value of -1 from
pause and ermo set to EINTR.

SEE ALSO
alarm (2), kill (2), signaI(2), wait(2).

ASSEMBLER
moveq
trap

October 1983

#29,DO
#0

- 1 -

PHYS (2) (UniSoft) PHYS (2)

NAME
phys - allow a process to access physical addresses

SYNOPSIS
phys(physnum, virtaddr, size, physaddr)
int physnum
char *virtaddr;
long size;
char *physaddr;

DESCRIPTION
The phys (2) call maps arbitrary physical memory into a process's virtual
address space. The virtual address used by phys must not otherwise be
used. Physnum is a number (0-3) that specifies which of 4 physical spaces
to set up. Up to 4 phys (2) calls can be active at anyone time. Virtaddr is
the process's virtual address. Size is the number of bytes to map in. Phy­
saddr is the physical address to map in.

Valid virtaddr and physaddr values are constrained by hardware and must be
at an address multiple of the resolution of the CPU's memory management
scheme. If size is non zero, size is rounded up to the next MMU resolution
boundary. If size is zero, any previous phys (2) mapping for that physnum
segment is nullified.

For example, the call:

phys (2, OxlOOOOO, 32768, 0)

will allow a process to access physical locations 0 through 32767 by
referencing virtual address Oxl00000 through Oxl00000+ 32767.

In actuality, the CPU MMU register is loaded with physaddr shifted to
account for page resolution.

Phys (2) may only be executed by the super-user.

DIAGNOSTICS

BUGS

The value zero is returned if the phys call was successful. The value -1 is
returned if not super-user, if virtaddr or physaddr is not in the proper range,
or if the specified virtaddr segment register is already in use.

This system call is very machine dependent.

ASSEMBLER
moveq #SS,DO
movl physnum,AO
movl virtaddr,Dl
movl size,Al
movl D2,save
movl physaddr,D2
trap #0
movl save,D2

Carry bit cleared on success.

July 1984 - 1 -

PIPE (2) PIPE(2)

NAME
pipe - create an inter process channel

SYNOPSIS
int pipe (tildes)
int fildes(Z);

DESCRIPTION
Pipe creates an 110 mechanism called a pipe and returns two file descrip­
tors, fildes [0] and fildes [1]. Fildes [0] is opened for reading and fildes [1] is
opened for writing.

Writes up to 5120 bytes of data are buffered by the pipe before the writing
process is blocked. A read on file descriptor fildes [0] accesses the data writ­
ten to fildes [1] on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultaneously.

Pipe will fail if 19 or more file descriptors are currently open. [EM FILE]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of - 1 is returned and errno is set to indicate the error.

SEE ALSO
sh (I), read (2), write (2) .

ASSEMBLER
moveq
movl
trap

#4Z,DO
fildes,AO
#0

Carry bit set on failure and cleared on success.

Read file descriptor in DO. Write file descriptor in Dl.

October 1983 - 1 -

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include < sys/lock.h>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its data
segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping. Plock also
allows these segments to be unlocked. The effective user ID of the calling
process must be super-user to use this call. Op specifies the following:

PROCLOCK -
lock text & data segments into memory (process lock)

TXTLOCK -
lock text segment into memory (text lock)

DATLOCK -
lock data segment into memory (data lock)

UNLOCK -
remove locks

Plock will fail and not perform the requested operation if one or more of
the following are true:

The effective user ID of the calling process is not super-user. [EPERM]

Op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process. [EINV AL]

Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process. [EINV AL]

Op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process. [EINV AL]

Op is equal to UNLOCK and no type of lock exists on the calling pro­
cess. [EINV AL]

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of - 1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

ASSEMBLER
moveq
movl
trap

October 1983

#45,DO
op,AO
#0

- 1 -

PROFIL (2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char .buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user's program counter (pc) is examined each clock tick;
offset is subtracted from it, and the result multiplied by scale. If the result­
ing number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned (16 bit), fixed-point fraction with
binary point at the left: FFFF (hex) gives a 1-1 mapping of pc's to words in
buff; FFFF (hex) maps each pair of instruction words together. 2 (hex)
maps all instructions onto the beginning of buff (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective
by giving a bUfsiz of O. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned
off if an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(1)' monitor(3C).

ASSEMBLER
moveq #44,DO
movl buff,AO
movl bufsiz,Dl
movl offset ,AI
movl D2,save
movl scale,D2
trap #0
movl s8ve,D2

The D2 register must be saved when calling profil (2) since that register
might be in use by the "c" program that calls this routine.

October 1983 - 1 -

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execu­
tion of a child process. Its primary use is for the implementation of break­
point debugging. The child process behaves normally until it encounters a
signal (see signal (2) for the list), at which time it enters a stopped state
and its parent is notified via wait (2). When the child is in the stopped
state, its parent can examine and modify its "core image" using ptrace.
Also, the parent can cause the child either to terminate or continue, with
the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace
and is one of the following:

o This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that stipu­
lates that the child should be left in a stopped state upon receipt
of a signal rather than the state specified by June; see signal (2).
The pid, addr, and data arguments are ignored, and a return
value is not defined for this request. Peculiar results will ensue
if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process ID of the child. The child must be in a stopped
state before these requests are made.

1, 2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. Either
request 1 or request 2 may be used with equal results. The data
argument is ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of -1· is
returned to the parent process and the parent's ermo is set to -
EIO.

3 With this request, the word at location addr in the child's USER
area in the system's address space (see < sys/user.h >) is
returned to the parent process. Addresses are system dependent.
The data argument is ignored. This request will fail if addr is
not the start address of a word or is outside the USER area, in
which case a value of -1 is returned to the parent process and
the parent's ermo is set to EIO.-

4, 5 With these requests, the value given by the data argument is
written into the address space of the child at location addr.
Either request 4 or request 5 may be used with equal results.
Upon successful completion, the value written into the address
space of the child is returned to the parent. These two requests
will fail if addr is a location in a pure procedure space and
another process is executing in that space, or addr is not the start
address of a word. Upon failure a value of - 1 is returned to the
parent process and the parent's ermo is set to EIO.

October 1983 - 1 -

PTRACE(2)

6

PTRACE(2)

With this request, a few entries in the child's USER area can be
written. Data gives the value that is to be written and add, is
the location of the entry. The few entries that can be written
are:

the general registers
the condition codes
the floating point status register and floating point registers
certain bits of the Processor Status Word

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused
the child to stop are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes execu­
tion as if it had incurred that signal and any other pending sig­
nals are canceled. The add, argument must be equal to 1 for
this request. Upon successful completion, the value of data is
returned to the parent. This request will fail if data is not 0 or a
valid signal number, in which case a value of -1 is returned to
the parent process and the parent's errno is set to EIO.

8 This request causes the child to terminate with the same conse­
quences as exit (2).

9 This request sets the trace bit in the Processor Status Word of
the child and then executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon completion of
one machine instruction. This effectively allows single stepping
of the child.
Note: the trace bit remains set after an interrupt.

To forestall possible fraud, pt,ace inhibits the set-user-id facility on subse­
quent exec (2) calls. If a traced process calls exec, it will stop before execut­
ing the first instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

Request is an illegal number. [E10]

Pid identifies a child that does not exist or has not executed a pt,ace
with request O. [ESRCH]

SEE ALSO
exec (2), signaI(2), wait (2) .

ASSEMBLER
moveq #26,DO
movl D2,save I save D2 register
elrl errno
movl request,AO
movl pid,Dl
movl addr,Al
movl data,D2
trap #0
movl save,D2 I restore D2 register

Carry bit set on failure and cleared on success.

October 1983 - 2 -

READ (2) READ (2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char -buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a ereat, open, dup, lentl, or pipe sys­
tem call.

Read attempts to read nbyte bytes from the file associated with fildes into
the buffer pointed to by buf,

On devices capable of seeking, the read starts at a position in the file given
by the file pointer associated with fildes. Upon return from read, the file
pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the file is
associated with a communication line (see ioell (2) and termio (7)), or if the
number of bytes left in the file is less than nbyte bytes. A value of 0 is
returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data becomes available.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading. [EBADF]

Bulpoints outside the allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. Otherwise, a -1 is returned and errno
is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctI(2), open(2), pipe(2), termio(7).

ASSEMBLER
moveq
movl
movl
movl
trap

October 1983

#3,DO
fildes,AO
buf,Dl
nbytes,Al
#0

- 1 -

REBOOT (2)

NAME
reboot - reboot the system

SYNOPSIS
reboot ()

DESCRIPTION

(UniSoft) REBOOT (2)

Reboot causes the kernel to execute the initial bootstrap code that was used
to boot the operating system.

On most CPUs the reboot(2) command will take the place of a manual res­
tart.

ASSEMBLER
moveq 64,DO
trap #0

October 1983 - 1 -

RECEIVE (2N) (UniSoft) RECEIVE (2N)

NAME
receive - receive message from a socket

SYNOPSIS
#include < netl socket.h >

cc = receive(s, from, buf, len);
int cc, s;
struct sockaddr *from;
char *buf;
int len;

DESCRIPTION
Receive is used to receive a message from a SOCK DGRAM or SOCK RAW
socket. The source address of the message is placed in from. The length of
the message is returned in cc. If the message is too long to fit in the sup­
plied buffer, then excess characters are discarded.

If no messages are available at the socket, the receive waits for a message to
arrive, unless the socket is non blocking in which case a cc of -1 is
returned with the external variable errno set to EWOULDBLOCK.

The select(2N) call may be used to determine when more data arrives.

SEE ALSO

BUGS

send (2), socket (2N).

This call is provisional and will exist in a slightly different form in future
releases.

July 1984 - 1 -

SELECT (2N) (UniSoft) SELECT (2N)

NAME
select - synchronous i/o multiplexing

SYNOPSIS
nfd = select (nfds, readfds, writefds, millO;
int nfds;
int *readfds, *writefds;
int milli;

DESCRIPTION
Select examines the i/o descriptors specified by the bit masks readfds and
writefds to see if they are ready for reading and/or writing respectively and
returns, in place, a mask of those descriptors which are ready. The total
number of ready descriptors is returned in nfd.

Milli is the maximum number of milliseconds to wait before giving up if no
descriptors come active. If no maximum wait is desired a very large integer
can be given.

A milli of 0 specifies a poll; the select returns whatever information is avail­
able without blocking. Either readfds or writefds may be given as 0 if no
descriptors are interesting.

For the present, since UNIX allows only 20 file descriptors it suffices for nfd
to be 20, and for readfds and writefds to be pointers to integer variables.
File descriptor f is represented by the bit "1 < <f' in the mask.

SEE ALSO
accept(2N), connect(2N), ioctl(2), read(2), receive(2N), send(2), write(2).

BUGS
The system currently rounds milli to integral seconds, with a resolution of
+ / - 1 second.

Currently select only works correctly on sockets and psuedo-teletypes.
Other file-descriptors always select as ready.

This call is provisional and will exist in a slightly different form in future
releases.

July 1984 - 1 -

SEMCTL (2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include < sys/types.h>
#inelude < sys/ipe.h >
#include < sys/ sem.h >

int semetl (semid, semnum, emd, arg)
int semid, emd;
int semnum;
union semun (

int val;
struct semid ds .buf;
ushort array[I;

arg;

DESCRIPTION
Semetl provides a variety of semaphore control operations as specified by
emd.

The following emds are executed with respect to the semaphore specified by
semidand semnum:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Return the value of semval (see intro(2». {READ}

Set the value of semval to argo val. {ALTER} When this
cmd is successfully executed the semadj value
corresponding to the specified semaphore in all processes
is cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following emds return and set, respectively, every semval in the set of
semaphores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by
arg.array. {ALTER} When this cmd is successfully exe­
cuted the semadj values corresponding to each specified
semaphore in all processes are cleared.

The following emds are also available:

October 1983

IPC_STAT Place the current value of each member of the data
structure associated with semid into the structure pointed
to by arg.buf The contents of this structure are defined
in intro (2). {READ}

IPC_SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf.

semJerm.uid
sem_perm.gid
sem_perm.mode /. only low 9 bits ./

- 1 -

SEMCTL(2) SEMCTL(2)

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user or to
the value of semJerm.uid in the data structure associ­
ated with semid.

IPC_RMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores and
data structure associated with it. This cmd can only be
executed by a process that has an effective user ID equal
to either that of super user or to the value of
semJerm.uid in the data structure associated with
semid.

Semetl will fail if one or more of the following are true:

Semid is not a valid semaphore identifier. [EINV All

Semnum is less than zero or greater than sem_llsems. [EINV All

Cmd is not a valid command. [EINV All

Operation permission is denied to the calling process (see intro (2».
[EACCES]

Cmd is SETV AL or SET ALL and the value to which semval is to be set
is greater than the system imposed maximum. [ERANGE]

Cmd is equal to IPC RMID or IPC SET and the effective user ID of
the calling process is not equal to that of super user and it is not equal
to the value of semJerm.uid in the data structure associated with
semid. [EPERM]

Arg.bujpoints to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, the value returned depends on emd as follows:

GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of O.

Otherwise, a value of - 1 is returned and errno is set to indicate the error.

SEE ALSO
semget(2), semop(2).

October 1983 - 2 -

SEMGET(2) SEMGEr(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include < sys/types.h>
#include < sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing
nsems semaphores (see intro(2» are created for key if one of the following
are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semjig & IPC_CREAr) is "true".

Upon creation, the data structure associated with the new semaphore
identifier is initialized as follows:

SemJlerm.cuid, semJlerm.uid, semJlerm.cgid, and sem_perm.gid
are set equal to the effective user ID and effective group ID, respec­
tively, of the calling process.

The low-order 9 bits of semJlerm.mode are set equal to the low-order
9 bits of semjig.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the current
time.

Semget will fail if one or more of the following are true:

October 1983

Nsems is either less than or equal to zero or greater than the system
imposed limit. [EINV AL]

A semaphore identifier exists for key but operation permission (see
intro (2» as specified by the low-order 9 bits of semjig would not be
granted. [EACCES]

A semaphore identifier exists for key but the number of semaphores
in the set associated with it is less than nsems and nsems is not equal
to zero. [EINV AL]

A semaphore identifier does not exist for key and (semflg &
IPC_CREAr) is "false". [ENOENT]

A semaphore identifier is to be created but the system imposed limit
on the maximum number of allowed semaphore identifiers system
wide would be exceeded. [ENOSPC]

A semaphore identifier is to be created but the system imposed limit
on the maximum number of allowed semaphores system wide would
be exceeded. [ENOSPC]

A semaphore identifier exists for key but ((semjig & IPC_CREAT) & (
semjig & IPC_EXCL)) is "true". [EEXIST]

- 1 -

SEMGET(2) SEMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore
identifier is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO
semctl(2), semop(2).

October 1983 - 2 -

SEMOP(2) SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf (.sops)[];
int nsops;

DESCRIPTION
Semop is used to atomically perform an array of semaphore operations on
the set of semaphores associated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-operation structures.
Nsops is the number of such structures in the array. The contents of each
structure includes the following members:

short sem num; j* semaphore number *j
short sem=op; j* semaphore operation *j
short sem_flg; j* operation flags *j

Each semaphore operation specified by sem op is performed on the
corresponding semaphore specified by semid and-sem_num.

Sem_ op specifies one of three semaphore operations as follows:

October 1983

If sem_ op is a negative integer, one of the following will occur:
{ALTER}

If semval (see intro (2» is greater than or equal to the absolute
value of sem op, the absolute value of sem op is subtracted from
semval. Also, if (semJlg & SEM_UNDO) is "true", the absolute
value of sem op is added to the calling process's semadj value
(see exit (2» for the specified semaphore.

If semval is less than the absolute value of sem_op and (semJlg
& IPC_NOWAIT) is "true", semop will return immediately.

If semval is less than the absolute value of sem_op and (semJlg
& IPC NOWAIT) is "false", semop will increment the semncnt
associated with the specified semaphore and suspend execution
of the calling process until one of the following occurs:

Semval becomes greater than or equal to the absolute value
of sem op. When this occurs, the value of semncnt associ­
ated with the specified semaphore is decremented, the abso­
lute value of sem op is subtracted from semval and, if
(semJlg & SEM_U-NDO) is "true", the absolute value of
sem op is added to the calling process's semadj value for
the specified semaphore.

The semid for which the calling process is awaiting action is
removed from the system (see semetl (2». When this
occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with the

- 1 -

SEMOP(2) SEMOP(2)

specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (2).

If sem op is a positive integer, the value of sem op is added to semval
and, if (sem.Jig & SEM_UNDO) is "true", the value of sem_op is sub­
tracted from the calling process's semadj value for the specified sema­
phore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem jig & IPC NOW AIT) is
"true", semop will return immediately. - -

If semval is not equal to zero and (sem_jig & IPC_NOWAIT) is
"false", semop will increment the semzcnt associated with the
specified semaphore and suspend execution of the calling process
until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt
associated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is
removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated with the
specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (2).

Semop will fail if one or more of the following are true for any of the sema­
phore operations specified by sops:

Semid is not a valid semaphore identifier. [EINVAL]

Sem num is less than zero or greater than or equal to the number of
semaphores in the set associated with semid. [EFBIG]

Nsops is greater than the system imposed maximum. [E2BIG]

Operation permission is denied to the calling process (see intro (2».
[EACCES]

The operation would result in suspension of the calling process but
(sem.Jig & IPC_NOWAIT) is "true". [EAGAIN]

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded. [ENOSPC]

The number of individual semaphores for which the calling process
requests a SEM_ UNDO would exceed the limit. [EINV AL]

An operation would cause a semval to overflow the system imposed
limit. [ERANGE]

An operation would cause a semadj value to overflow the system
imposed limit. [ERANGE]

Sops points to an illegal address. [EFAULT]

Upon successful completion, the value of sempid for each semaphore
specified in the array pointed to by sops is set equal to the process ID of the
calling process.

October 1983 - 2 -

SEMOP(2) SEMOP(2)

RETURN VALUE
If semop returns due to the receipt of a signal, a value of - 1 is returned to
the calling process and errno is set to EINTR. If it returns due to the remo­
val of a semid from the system, a value of - 1 is returned and errno is set
to EIDRM.

Upon successful completion, the value of semval at the time of the call for
the last operation in the array pointed to by sops is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), semctl(2), semget(2).

October 1983 - 3 -

SEND(2) (UniSoft) SEND(2)

NAME
send - send message from a socket

SYNOPSIS
#include < netl socket.h >

send (s, to, msg, len)
int cc, s;
struct sockaddr *to;
char *msg;
int len;

DESCRIPTION
Send is used to transmit a message to another socket from a SOCK_DGRAM
or SOCK_RAW socket. The address of the target is given by to. The length
of the message is given by len. If the message is too long to pass atomi­
cally through the underlying protocol, then the error EMSGSIZE is returned,
and the message is not transmitted.

No indication of failure to deliver is implicit in send. Some locally detected
errors may be reported to the user through the return value from send
being -1 with the errors being stored in the external variable errno.

If no messages space is available at the socket to hold the message to be
transmitted, then send normally blocks, unless the socket is
SO NONBLOCKING in which case a cc of -1 is returned with the external
variable errno set to EWOULDBLOCK. The select(2) call may be used to
determine when it is possible to send more data.

SEE ALSO

BUGS

send(2), socket(2).

This call is provisional and will exist in a slightly different form in future
releases.

October 1983 - 1 -

SETHOSTNAME(2N) (UniSoft) SETHOSTNAME(2N)

NAME
sethostname - set name of host cpu

SYNOPSIS
sethostname (name, namelen)
ehar *name;
int namelen;

DESCRIPTION
This call sets the name of the host processor to be name, which has length
name/en characters. This is normally executed when the system is
bootstrapped, executed out of the file fete/reo The name set should not be
a nickname for the machine, but the full name of the machine, i.e.,
"unisoft".

SEE ALSO
gethostname (2N).

July 1984 - 1 -

SETPGRP(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group ID of the calling process to the process ID of
the calling process and returns the new process group ID.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

ASSEMBLER
moveq #39,DO
movw #l,AO
trap #0
Carry bit set on failure and cleared on success.

October 1983 - 1 -

SETUID(2) SETUID (2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real user
(group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real
user (group) ID is equal to uid (gid), the effective user (group) ID is set to
uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling process is
not equal to uid (gid) and its effective user ID is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

ASSEMBLER
moveq
movl
trap

#23,DO
uid,AO
#0

I sys setuid

Carry bit cleared on success.

moveq
movl
trap

#46,DO
gid,AO
#0

I sys setgid

Carry bit set on failure and cleared on success.

October 1983 - 1 -

SHMCTL (2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include < sys/types.h>
#include < sys/ipc.h >
#include < sys/shm.h>

int shmctl (shmid, cmd, buC)
int shmid, cmd;
struct shmid_ds -buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified
by cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf
The contents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf

shm perm. uid
shm - perm.gid
shm=perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user or to the
value of shm perm.uid in the data structure associated with
shmid. -

IPC_RMID Remove the shared memory identifier specified by shmid from
the system and destroy the shared memory segment and data
structure associated with it. This cmd can only be executed by
a process that has an effective user ID equal to either that of
super user or to the value of shmJerm.uid in the data struc­
ture associated with shmid.

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier. [EINV AL]

Cmd is not a valid command. [EINV AL]

Cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process (see intro (2». [EACCES]

Cmd is equal to IPC RMID or IPC SET and the effective user ID of
the calling process is not equal to that of super user and it is not equal
to the value of shmJerm.uid in the data structure associated with
shmid. [EPERM]

Bujpoints to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of
- I is returned and errno is set to indicate the error.

SEE ALSO
shmget(2), shmop(2).

October 1983 - 1 -

SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >
#include <sys/shm.h>

int shmget (key, size, shmflg)
key t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared
memory segment of size size bytes (see intro (2» are created for key if one
of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with
it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

ShmJlerm.cuid, shmJlerm.uid, shmJlerm.cgid, and shm_perm.gid
are set equal to the effective user ID and effective group ID, respec­
tively, of the calling process.

The low-order 9 bits of shmJlerm.mode are set equal to the low­
order 9 bits of shmflg. Shm_segsz is set equal to the value of size.

Shm lpid, shm naUch, shm atime, and shm dtime are set equal to
O. - - - -

Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

October 1983

Size is less than the system-imposed minimum or greater than the sys­
tem-imposed maximum. [EINV AL1

A shared memory identifier exists for key but operation permission
(see intro (2» as specified by the low-order 9 bits of shmflg would not
be granted. [EACCES]

A shared memory identifier exists for key but the size of the segment
associated with it is less than size and size is not equal to zero.
[EINVAL1

A shared memory identifier does not exist for key and (shmflg &
IPC_CREAT) is "false". [ENOENT]

A shared memory identifier is to be created but the system-imposed
limit on the maximum number of allowed shared memory identifiers
system wide would be exceeded. [ENOSPC]

A shared memory identifier and associated shared memory segment
are to be created but the amount of available physical memory is not
sufficient to fill the request. [ENOMEM]

A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) & (shmflg & IPC_EXCL)) is "true". [EEXIST]

- 1 -

SHMGET(2) SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared'
memory identifier is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
shmctl (2), shmop (2) .

October 1983 - 2 -

SHMOP(2) SHMOP (2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling pro­
cess. The segment is attached at the address specified by one of the follow­
ing criteria:

If shmaddr is equal to zero, the segment is attached at the first avail­
able address as selected by the system.

If shmaddr is not equal to zero and (shmjig & SHM_RND) is "true",
the segment is attached at the address given by {shmaddr - (shmaddr
modulus SHMLBA».

If shmaddr is not equal to zero and (shmjig & SHM_RND) is "false",
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmjig & SHM RDONLY) is "true"
{READ}, otherwise it is attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or more
of the following are true:

Shmid is not a valid shared memory identifier. [EINV AL]

Operation permission is denied to the calling process {see intro (2».
[EACCES]

The available data space is not large enough to accommodate the
shared memory segment. [ENOMEM]

Shmaddr is not equal to zero, and the value of {shmaddr - (shmaddr
modulus SHMLBA» is an illegal address. [EINV AL]

Shmaddr is not equal to zero, (shmjig & SHM_RND) is "false", and
the value of shmaddr is an illegal address. [EINV AL]

The number of shared memory segments attached to the calling pro­
cess would exceed the system-imposed limit. [EM FILE]

Shmdt detaches from the calling process's data segment the shared memory
segment located at the address specified by shmaddr.

Shmdt will fail and not detach the shared memory segment if shmaddr is
not the data segment start address of a shared memory segment. [EINV AL]

RETURN VALUES
Upon successful completion, the return value is as follows:

October 1983 - 1 -

SHMOP(2) SHMOP(2)

Shmat returns the data segment start address of the attached shared
memory segment.

Shmdt returns a value of O.

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), shmctl(2), shmget(2).

October 1983 - 2 -

SIGNAL (2) SIGNAL (2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include < sys/signal.h >
int (-signal (sig, func}) ()
int sig;
int (-func) ();

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is
possible to handle the receipt of a specific signal. Sig specifies the signal
and june specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:
SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* lOT instruction
SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRl 16 user defined signal 1
SIGUSR2 17 user defined signal 2
SIGCLD 18 death of a child (see WARNING below)
SIGPWR 19 power fail (see WARNING below)

See below for the significance of the asterisk (*) in the above list.

Fune is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values of are as follows:

SIG_DFL - terminate process upon receipt of a signal

October 1983

Upon receipt of the signal sig, the receiving process is to be ter­
minated with the following consequences:

All of the receiving process's open file descriptors will be closed.

If the parent process of the receiving process is executing a wait,
it will be notified of the termination of the receiving process and
the terminating signal's number will be made available to the
parent process; see wait(2).

If the parent process of the receiving process is not executing a
wait, the receiving process will be transformed into a zombie
process (see exit(2) for definition of zombie process).

The parent process ID of each of the receiving process's existing
child processes and zombie processes will be set to 1. This
means the initialization process (see intro (2)) inherits each of
these processes.

- 1 -

SIGNAL (2) SIGNAL (2)

Each attached shared memory segment is detached and the value
of shm nattach in the data structure associated with its shared
memory identifier is decremented by 1.

For each semaphore for which the receiving process has set a
semadj value (see semop(2», that semadj value is added to the
semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is per­
formed (see plock(2».

An accounting record will be written on the accounting file if the
system's accounting routine is enabled; see acct(2).

If the receiving process's process ID, tty group 10, and process
group ID are equal, the signal SIGH UP will be sent to all of the
processes that have a process group 10 equal to the process
group ID of the receiving process.

A 'core image' will be made in the current working directory of
the receiving process if sig is one for which an asterisk appears in
the above list and the following conditions are met:

The effective user ID and the real user 10 of the receiving
process are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the follow­
ing properties:

a mode of 0666 modified by the file creation mask
(see umask(2»

a file owner 10 that is the same as the effective user 10
of the receiving process

a file group 10 that is the same as the effective group
10 of the receiving process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address - catch signal

October 1983

Upon receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by June. The signal number sig
will be passed as the only argument to the signal-catching function.
Before entering the signal-catching function, the value of June for the
caught signal will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write, an
open, or an ioctl system call on a slow device (Iike a terminal; but not
a file), during a pause system call, or during a wait system call that
does not return immediately due to the existence of a previously
stopped or zombie process, the signal-catching function will be exe­
cuted and then the interrupted system call will return a -1 to the cal­
ling process with errno set to EINTR.

- 2 -

SIGNAL(2) SIGNAL (2)

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal.

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, including SIGKILL. [EINVAL]

Fune points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, signal returns the previous value of June for
the specified signal sig. Otherwise, a value of - 1 is returned and ermo is
set to indicate the error.

SEE ALSO
kilI(I), kill(2), pause(2), ptrace(2), wait(2) , setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above
exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fait.(not reset when caught)

There is no guarantee that, in future releases of the UNIX System, these
signals will continue to behave as described below; they are included only
for compatibility with other versions of the UNIX System. Their use in new
programs is strongly discouraged.

For these signals, June is assigned one of three values: SIG DFL, SIG IGN,
or a Junction address. The actions prescribed by these values of are as fol­
lows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process's child processes will not create zombie processes when they
terminate; see exit(2).

Junction address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for June equal to function address. The same is true if
the signal is SIGCLD except, that while the process is executing the
signal-catching function any received SIGCLD signals will be queued
and the signal-catching function will be continually reentered until the
queue is empty.

The SIGCLD affects two other system calls (wait(2), and exit (2)) in the fol­
lowing ways:
wait If the June value of SIGCLD is set to SIG IGN and a wait is exe­

cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -1 with erma set
to ECHILD.

exit If in the exiting process's parent process the June value of SIGCLD
is set to SIG_IGN, the exiting process will not create a zombie pro­
cess.

October 1983 - 3 -

SIGNAL (2) SIGNAL (2)

BUGS

When processing a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into in
this manner (and thus become the parent of other processes) should take
care not to set SIGCLD to be caught.

If a repeated signal arrives before the last one can be reset, there is no
chance to catch it.

The type specification of the routine and its june argument are problemati­
cal.

The symbols sighnd and sigtrap are globally defined symbols used by sig­
nal(2) and are reserved words.

October J 983 - 4 -

SOCKET (2N) (UniSoft) SOCKET (2N)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <net/socket.h>

s = socket(type, pf, addr, options);
int type;
struct sock proto *pf;
struct sockaddr *addr;
int options;

DESCRIPTION
Socket creates a communication endpoint and returns a descriptor, much
like a file descriptor. The socket has the specified type which defines the
semantics of communication. Currently defined types are SOCK_STREAM,
for sequenced, reliable, two-way connection based streams with an out-of­
band mechanism; SOCK_DGRAM for datagrams, connectionless, unreliable
messages of a fixed (typically small) maximum length, SOCK_RAW provid­
ing access to internal network interfaces. The type SOCK_RAW, which is
available only to the super-user, is not described here.

The pf supplied causes a specific protocol to be used with the socket; since
there is currently only one protocol supporting each socket type we will not
discuss this further.

The addr parameter specifies the address for the socket. A socket address
is a discriminated union with a fixed length of 16 bytes. The first two bytes
indicates the format of the remaining bytes. The only currently relevant
variant is a sockaddr_in, an internet address. The first three fields of a
variable of this type are AF _INET (indicating that the address is of the
Address Family Internet, this is defined in < netlsocket.h », a 16 bit
socket number to be used (see < netlin.h > for lists of well-known sock­
ets), and a 32 bit host address. The socket number and host address are in
network byte order.

If no address is specified, then the system will assign one at its conveni­
ence; currently it does this at connection time to simplify the routing deci­
sions required of the connected socket. If the socket number is omitted, a
unique socket number will be supplied. The socket numbers in the range 0
to IPPORT_RESERVED-I are reserved for the super-user.

The procedurerhost(3N)may be used to determine Internet host numbers,
while raddr(3) converts addresses to standard host names.
Sockets of type SOCK_STREAM are full-duplex byte streams, similar to
two-way pipes. A typical use of such a stream involves creation with socket
and connection to another socket with a connect (2N) call, followed by a
sequence of read and write calls to exchange data, followed finally by a
close (2). Out-of-band data may also be transmitted as described below.

The protocol used to implement a SOCK_STREAM insures that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time
(typically about 1 minute), then the connection is considered broken and
calls will indicate error with -1 returns with ETIMEDOUT as the specific
code in the global variable ermo. The protocols optionally keep sockets
"warm" by forcing transmissions roughly every minute in the absence of

July 1984 - 1 -

SOCKET (2N) (UniSoft) SOCKET (2N)

other activity. An error is then indicated if no response can be elicited on
an otherwise idle connection for a extended period (e.g., 5 minutes). A
SIGPIPE signal is raised if a process writes on a broken stream; this causes
naive processes, which do not handle the signal, to exit.

SOCK_DGRAM sockets allow sending of datagrams to correspondents
named in send (2) calls. It is also possible to receive datagrams at such a
socket with receive(2N)

The primitive socketaddr(2N)can be used to determine the address of a
socket.

The options available on sockets are ored together in options, and are:

SO_DEBUG
Enable protocol tracing for this socket, to be used in protocol debug­
ging.

SO_ACCEPTCONN
which must be used with SOCK_STREAM sockets which are to accept
connections. Only sockets which indicate SO_ACCEPTCONN as a crea­
tion parameter may do aceept(2N) find such sockets may not do con­
nect (2N).

SO DONTLINGER
- which allows close (2) operations on a socket to complete immediately.

Otherwise the system will block a process waiting for data to drain (or
return EWOULDBLOCK if the socket is marked NON BLOCKING) when
a close is attempted. See also the SIOCSLINGER ioctl below.

SO_KEEP ALIVE
which causes keep alive to be used so as to time out dead connections.
If this option is not specified, then timing out dead connections is the
responsibility of the user process.

General ioctls which apply to sockets are:

SIOCDONE
indicating that the user is done receiving (if the integer parameter is
0), sending (if the integer parameter is 1) or both (if the parameter is
2) on the indicated socket. This is normally used to indicate an end­
of-file on a SOCK_STREAM while continuing to read input.

SIOCSLINGER
sets the linger time to the number of seconds specified by the integer
parameter. This is currently only partly implemented: linger time is
either 0 or infinite (if non-zero).

SIOCGLINGER
returns the current linger time.

FIONBIO
takes an integer parameter saying whether non-blocking i/o is desired
on the specified socket. Applies to sockets and specifies that opera­
tions are to return EWOULDBLOCK rather than blocking. A select(2N)
operation may be used to determine when i/o is possible without busy
polling.

The out-of-band data facilities of the stream protocols are currently primi­
tive, allowing the user to send a single byte of out-of-band data to the
correspondent process. An SIOCSENDOOB ioetl takes as parameter the

July 1984 - 2 -

SOCKET (2N) (UniSoft) SOCKET (2N)

address of the character to be sent as a parameter. This causes a SIGURG
signal, indicating an urgent condition, to be raised in the correspondent
process, and places a mark in the data stream after the last byte written
before the out-of-band data was sent.

The SIOCSPGRP ioell can be used to specify a process group to receive the
SIGURG signal when the out-of-band data arrives. If the integer argument
to SIOCSPGRP is negative, then it is taken to mean a single process rather
than a process group, given by the absolute value of the argument. The
SIOCGPGRP ioell returns the current value of a sockets process group.

When a process receives a SIGURG signal it can enquire of each of its chan­
nels to see which ones have out-of-band data, by doing SIOCRCVOOB on
each channel. This will return EINVAL if there is no out-of-band data
currently available on that channel. If a channel has out-of-band data, a
course of action might be to read in the input stream to the mark, which
can be detected by SIOCATMARK which returns a 0 or a 1 into its integer
parameter telling whether the read pointer is now at the mark. The system
never returns bytes on both sides of a mark with a single read.

Facilities to provide the user with interrupts whenever i/o is possible on a
specifiable set of channels are planned. This will allow interrupt-driven i/o
processing similar to the out-of-band facilities.

SEE ALSO

BUGS

accept(2N), connect(2N),
socketaddr(2N) .

receive (2N), select(2N), send(2) ,

This call is provisional and will exist in a slightly different form in future
releases.

July 1984 - 3 -

SOCKETADDR (2N) (UniSoft)

NAME
socketaddr - return address associated with a socket

SYNOPSIS
#ioclude < net/socket.h>

socketaddds, addr)
iot s;
struct sockaddr *addr;

DESCRIPTION

SOCKETADDR UN)

The address associated with the socket s is returned in addr. If s is not a
socket, -1 is returned and an appropriate errno is returned.

SEE ALSO
socket(2N) .

BUGS
This call is provisional and will exist in a slightly different form in future
releases.

July 1984 - 1 -

STAT(2) STAT (2)

NAME
stat, fstat - get file status

SYNOPSIS
#include < sys/types.h >
#include <sys/stat.h>

int stat (path, buC)
char *path;
struct stat *buf;

int fstat (fildes, buC)
int fildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write or execute permis­
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. Stat obtains information about
the named file.

Similarly, Istat obtains information about an open file known by the file
descriptor fildes, obtained from a successful open, ereat, dup, lentl, or pipe
system call.

Bul is a pointer to a stat structure into which information is placed concern­
ing the file.

The contents of the structure pointed to by bul include the following
members:

ushort st_mode;
ino_t st_ino;
dev _ t st_ dev;

short
ushort
ushort
off_t
time_t
time_t
time_t

st atime

st nlink;
st-uid;
s(gid;
st_size;
st_atime;
st_mtime;
st_ctime;

/* File mode; see mknod(2) */
/* Inode number */
/* ID of device containing */
/* a directory entry for this file */
/ * ID of device */
/* This entry is defined only for */
/* character special or block special files */
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
/* File size in bytes */
/* Time of last access */
/* Time of last data modification */
/* Time of last file status change */
/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

- Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and read(2).

st mtime
- Time when data was last modified. Changed by the following sys­

tem calls: creat(2), mknod(2), pipe(2), utime(2), and write (2) .

st ctime
- Time when file status was last changed. Changed by the following

system calls: ehmod(2) , ehown(2), creat(2), link (2) , mknod(2),
pipe (2) , unlink(2), utime(2), and write (2) .

October 1983 - 1 -

STAT (2) STAT(2)

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Bujor path points to an invalid address. [EFAULT]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Bujpoints to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), time(2), unlink(2).

ASSEMBLER
moveq
movl
movl
trap

#18,DO
path,AO
buf,Dl
#0

I sys stat

Carry bit set on failure and cleared on success.

moveq
movl
movl
trap

#28,DO
fildes,AO
buf,Dl
#0

I sys fstat

Carry bit set on failure and cleared on success.

October 1983 - 2 -

STIME (2)

NAME
stime - set time

SYNOPSIS
int stime <tp)
long *tp;

DESCRIPTION

STIME (2)

Stime sets the system's idea of the time and date. Tp points to the value of
time as measured in seconds from 00:00:00 GMT January 1, 1970.

Stime will fail if the effective user ID of the calling process is not super­
user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of - 1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

ASSEMBLER
moveq
movl
trap

#25,DO
tp,AO
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

SYNC(2) SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written
out. This includes modified super blocks, modified i-nodes, and delayed
block 110.

It should be used by programs which examine a file system, for example
fsck, d/, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return
from sync.

ASSEMBLER
moveq 36,DO
trap #0

October 1983 - 1 -

TIME (2) TIME (2)

NAME
time - get time

SYNOPSIS
long time «(long .) 0)

long time (tloc)
long .tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1,
1970.

If tiDe (taken as an integer) is non-zero, the return value is also stored in
the location to which tiDe points.

Time will fail if tiDe points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stime(2).

ASSEMBLER
moveq #13,DO
trap #0
tstl tloc
beq 1$
movl tloc,AO
@ movl DO,AO@

October 1983

I
time(O)?
yes, return

- 1 -

TIMES (2) TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#include < sys/types.h >
#include < sys/times.h >
long times (buffer)

. struct tms -buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting informa­
tion. The following is the contents of this structure:

struct tms {
time_t
time_t
time_t
time_t

} ;

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are in 60ths of a
second.

Tms_ utime is the CPU time used while executing instructions in the user
space of the calling process.

Tms_ slime is the CPU time used by the system on behalf of the calling pro­
cess.

Tms_ cutime is the sum of the tms_ utimes and tms_ cutimes of the child
processes.

Tms_ cstime is the sum of the tms_ stimes and tms_ cstimes of the child
processes.

Times will fail if buffer points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, times returns the elaps~d real time, in 60ths of
a second, since an arbitrary point in the past (e.g., system start-up time).
This point does not change from one invocation of times to another. If
times fails, a -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

ASSEMBLER
moveq #43,DO
movl buffer,AO
trap #0

October 1983 - 1 -

ULlMIT(2) ULIMIT (2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulirnit (crnd, newlirnit>
int crnd;
long newlirnit;

DESCRIPTION
This function provides for control over process limits. The cmd values
available are:

1 Get the process's file size limit. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be
read.

2 Set the process's file size limit to the value of newlimit. Any process
may decrease this limit, but only a process with an effective user ID of
super-user may increase the limit. Ulimit will fail and the limit will be
unchanged if a process with an effective user ID other than super-user
attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See b,k(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
brk(2), write(2).

ASSEMBLER
rnoveq
rnovl
rnovl
trap

#63,DO
crnd,AO
newlirnit,Dl
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

UMASK(2) UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
Umask sets the process's file mode creation mask to cmask and returns the
previous value of the mask. Only the low-order 9 bits of cmask and the file
mode creation mask are used.

The file mode creation mask is used whenever a file is created by creat(2) ,
mknod(2) or open(2). The actual mode (see chmod(2» of the newly­
created file is the difference between the given mode and cmask. In other
words, cmask shows the bits to be turned off when a new file is created.

The previous value of cmask is returned by the call. The value is initially
022, which is an octal 'mask' number representing the complement of the
desired mode. '022' here means that no permissions are withheld from the
owner, but write permission is forbidden to group and to others. Its com­
plement, the mode of the file, would be 755. The file mode creation mask
is inherited by child processes.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

ASSEMBLER
moveq
movl
trap

#60,DO
cmask,AO
#0

The previous value of umask is returned to DO.

October 1983 - 1 -

UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char .spec;

DESCRIPTION

UMOUNT(2)

Umount requests that a previously mounted file system contained on the
block special device identified by spec be unmounted. Spec is a pointer to a
path name. After unmounting the file system, the directory upon which
the file system was mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM]

Spec does not exist. [ENXIO]

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINV AL]

A file on spec is busy. [EBUSY]

Spec points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
- 1 is returned and errno is set to indicate the error.

SEE ALSO
mount(2).

ASSEMBLER
moveq
movl
trap

#22,DO
spec,AO
#0

I sys umount

Carry bit set on failure and cleared on success.

October 1983 - 1 -

UNAME(2) UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include < sys/utsname.h >
int uname (name)
struct utsname .name;

DESCRIPTION
Uname stores information identifying the current UNIX system in the struc­
ture pointed to by name.

Uname uses the structure defined in < sys/utsname.h > :
struct utsname {

char
char
char
char
char

} ;

sysname[9] ;
nodename[9] ;
release[9];
version[9] ;
machine [9] ;

extern struct utsname utsname;

Uname returns a null-terminated character string naming the current UNIX
system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network. Release
and version further identify the operating system. Machine contains a stan­
dard name that identifies the hardware that the UNIX System is running on.

Uname will fail if name points to an invalid address. [EF AUL T]

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise,
- 1 is returned and ermo is set to indicate the error.

SEE ALSO
uname(1).

ASSEMBLER
moveq
movl
subl
trap

#57,DO
name,AO
Al,Al
#0

I
fetch argument
uname

Carry bit set on failure and cleared on success.

October 1983 - 1 -

UNLINK (2) UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char .path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to be
path.

The named file is unlinked unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link to be
removed. [EACCES]

The named file is a directory and the effective user ID of the process
is not super-user. [EPERM]

The entry to be unlinked is the mount point for a mounted file sys­
tem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure (shared
text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file system.
[EROFS]

Path points outside the process's allocated address space. [EFAULT]

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist. If
one or more processes have the file open when the last link is removed, the
removal is postponed until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
rm(1), close(2), link(2), open(2).

ASSEMBLER
moveq
movl
trap

#10,DO
path,AO
#0

Carry bit set on failure and cleared on success.

October 1983 - 1 -

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include < ustat.h >

int ustat (dev, but)
int dev;
struct ustat .buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device
number identifying a device containing a mounted file system. Buj is a
pointer to a ustat structure that includes the following elements:

daddr_t f tfree; 1* Total free blocks *1
ino t f-tinode; 1* Number of free inodes *1
char f-fnamel61; 1* Filsys name *1
char (fpackl61; 1* Filsys pack name *1

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted file
system. [EINV AL]

Bujpoints outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

ASSEMBLER
moveq
movl
movl
movl
trap

#S7,DO
buf,AO
dev,Dl
#2,Al
#0

I ustat

Carry bit set on failure and cleared on success.

October 1983 - 1 -

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include < sys/types.h>
int utime (path, times)
char .path;
struct utimbuf .times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write per­
mission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuj structure
and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use
utime this way.

The times in the following structure are measured in seconds since 00:00:00
GMT, Jan. 1, 1970.

struct utimbuf {
time t actime;
time=t modtime;

/ * access time */
/ * modification time */

} ;

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix.
[EACCES]

The effective user ID is not super-user and not the owner of the file
and times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner of the file
and times is NULL and write access is denied. [EACCES]

The file system containing the file is mounted read-only. [EROFS]

Times is not NULL and points outside the process's allocated address
space. [EFAULT]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

ASSEMBLER
moveq
movl
movl
trap

October 1983

#30,00
path,AO
times,Dl
#0

- 1 -

UVAR(2) (UniSoft)

NAME
uvar - returns system-specific configuration information

SYNOPSIS
#include < sys/var.h >

uvar(v)
struct var *v;

DESCRIPTION

UVAR(2)

Returns system-specific configuration information contained in the kernel.
The information returned contains table sizes, mask words, and other
system-specific information for programs such as adb (1), Id (1), and ps (1).

Presently a maximum of 256 bytes of information is returned. This number
is subject to change.

SEE ALSO
lusr/includel sysl space.h

ASSEMBLER
moveq
movl
movw
trap

#57,DO
v,AO
#33,Al
#0

Carry bit is set if data could not be put into the address pointed to by v.

October 1983 - 1 -

WAIT (2) WAIT (2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat loe)
int .stat_loc; -

int wait «int .)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be
caught (see signal(2», or until anyone of the calling process's child
processes stops in a trace mode (see ptrace(2)) or terminates. If a child
process stopped or terminated prior to the call on wait, return is immediate.

If stat loc (taken as an integer) is non-zero, 16 bits of information called
status -are stored in the low order 16 bits of the location pointed to by
stat loco Status can be used to differentiate between stopped and ter­
minated child processes and if the child process terminated, status identifies
the cause of termination and passes useful information to the parent. This
is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will contain
the number of the signal that caused the process to stop and the low
order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits
of status will be zero and the high order 8 bits will contain the low
order 8 bits of the argument that the child process passed to exit; see
exit (2) .

If the child process terminated due to a signal, the high order 8 bits of
status will be zero and the low order 8 bits will contain the number of
the signal that caused the termination. In addition, if the low order
seventh bit (i.e., bit 200) is set, a "core image" will have been pro­
duced; see signal(2).

If a parent process terminates without waiting for its child processes to ter­
minate, the parent process 10 of each child process is set to 1. This means
the initialization process inherits the child processes; see intro (2).

Wait will fail and return immediately if one or more of the following are
true:

The calling process has no existing unwaited-for child processes.
[ECHILD]

Stat_loc points to an illegal address. [EFAULT]

RETURN VALUE
If wait returns due to the receipt of a signal, a value of - 1 is returned to
the calling process and ermo is set to EINTR. If wait returns due to a
stopped or terminated child process, the process ID of the child is returned
to the calling process. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

WARNING
See WARNING in signal(2).

October 1983 - 1 -

WAIT (2)

ASSEMBLER
moveq #7,DO
trap #0
bes 2$
tstl stat_loe
beq 1$
movl stat loe,AO
@ movl Dl,AO@

Process ID in DO.
Status in Dl.

I
wait (0) ?
yes, return

Carry flag is set if there are no children not previously waited for.

October 1983 - 2 -

WAIT(2)

WRITE (2) WRITE (2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char -buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, /entl, or pipe sys­
tem call.

Write attempts to write nbyte bytes from the buffer pointed to by bu/ to the
file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write,
the file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the ° APPEND flag of the file status flags is set, the file pointer will be
set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of
the following are true:

Fildes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading by
any process. [EPIPE and SIG PIPE signal]

An attempt was made to write a file that exceeds the process's file size
limit or the maximum file size. See ulimit(2). [EFBIG]

Bu/points outside the process's allocated address space. [EFAULT]

If a write requests that more bytes be written than there is room for (e.g.,
the ulimit (see ulimit(2» or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512
bytes will return 20. The next write of a non-zero number of bytes will
give a failure return (except as noted below).

If the file being written is a pipe (or FIFO), no partial writes will be permit­
ted. Thus, the write will fail if a write of nbyte bytes would exceed a limit.

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the
file flag word is set, then write to a full pipe (or FIFO) will return a count of
O. Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block
until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

October 1983 - 1 -

WRITE (2)

ASSEMBLER
moveq
movl
movl
movl
trap

#4,DO
fildes,AO
buf,Dl
nbytes,Al
#0

Carry bit set on failure and cleared on success.

The number of bytes written is returned in DO.

October 1983 - 2 -

WRITE(2)

INTRO(3) INTRO (3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include < stdio.h >

#include < math.h >

DESCRIPTION
This section describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described
in Section 2 of this volume. Certain major collections are identified by a
letter after the section number:

(3C) These functions, together with those of Section 2 and those marked
(3S), constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc(l). The link editor [dO) searches this
library under the -Ie option. Declarations for some of these func­
tions may be obtained from #inelude files indicated on the appropri­
ate pages.

(3M) These functions constitute the Math Library, /ibm. They are not
automatically loaded by the C compiler, cc(l); however, the link
editor searches this library under the -1m option. Declarations for
these functions may be obtained from the #inelude file <math.h>.

(3S) These functions constitute the "standard I/O package" (see
stdio (3S». These functions are in the library libc, already men­
tioned. Declarations for these functions may be obtained from the
#inelude file < stdio.h > .

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

DEFINITIONS

FILES

A character is any bit pattern able to fit into a byte on the machine. The
null character is a character with value 0, represented in the C language as
'\0'. A character array is a sequence of characters. A null-terminated char­
acter array is a sequence of characters, the last of which is the null charac­
ter. A string is a designation for a null-terminated character array. The null
string is a character array containing only the null character. A NULL
pointer is the value that is obtained by casting 0 into a pointer. The C
language guarantees that this value will not match that of any legitimate
pointer, so many functions that return pointers return it to indicate an
error. NULL is defined as 0 in <stdio.h>; the user can include his own
definition if he is not using < stdio.h > .

llib/libc.a
llib/libm.a

SEE ALSO
ar(1), cc(1), fortran(1), Id(1), nm(1), intro(2), stdio(3S).

DIAGNOSTICS
Functions in the Math Library (3M) may return the conventional values 0
or HUGE (the largest single-precision floating-point number) when the
function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable errno (see -intro (2» is
set to the value EDOM or ERANGE.

October 1983 - 1 -

A64L (3C) A64L(3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char .s;

char .164a 0)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64 ASCII
characters. This is a notation by which long integers can be represented by
up to six characters; each character represents a "digit" in a radix-64 nota­
tion.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9
for 2-11, A through Z for 12-37, and a through z for 38-63.

A 641 takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains
more than six characters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the corresponding
base-64 representation. If the argument is 0, 164a returns a pointer to a
null string.

The value returned by 164a is a pointer into a static buffer, the contents of
which are overwritten by each call.

October 1983 - 1 -

ABORT (3C) ABORT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort causes an lOT signal to be sent to the process. This usually results in
termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in
which case the value returned is that of the kill(2) system call.

SEE ALSO
adb (I), exit (2), kill (2), signaI(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored and the current directory is writ­
able, a core dump is produced and the message "abort - core dumped" is
written by the shell.

October 1983 - 1 -

ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

ABS (3C)

In two's-complement representation, the absolute value of the negative
integer with largest magnitude is undefined. Some implementations trap
this error, but others simply ignore it.

SEE ALSO
floor(3M).

October 1983 - 1 -

ASSERT (3X) ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include < assert.h >
assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is exe­
cuted, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the
name of the source file and nnn the source line number of the assert state­
ment.

Compiling with the preprocessor option -DNDEBUG (see cpp(I», or with
the preprocessor control statement "#define NDEBUG" ahead of the
"#include < assert.h>" statement, will stop assertions from being com­
piled into the program.

SEE ALSO
cpp(I), abort(3C).

October 1983 - 1 -

ATOF(3C) ATOF(3C)

NAME
atof - convert ASCII string to floating-point number

SYNOPSIS
double atof (nptr)
char .nptr;

DESCRIPTION
Ato! converts a character string pointed to by nptr to a double-precision
floating-point number. The first unrecognized character ends the conver­
sion. Ato! recognizes an optional string of white-space characters (tabs and
spaces), then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e or E followed by an optionally signed
integer. If the string begins with an unrecognized character, ato! returns
the value zero.

DIAGNOSTICS
When the correct value would overflow, ato! returns HUGE, and sets errno
to ERANGE. Zero is returned on underflow.

SEE ALSO
scanf(3S), strtol (3C).

October 1983 - 1 -

BESSEL (3M) BESSEL(3M)

NAME
jO, jl, jn, yO, 'yl, yn - Bessel functions

SYNOPSIS
#ioclude <math.h>

double jO (x)
double x;

double jl (x)
double x;

double jo (0, x)
iot 0;
double x;

double yO (x)
double x;

double yl (x)
double x;

double yo (0, x)
iot 0;
double x;

DESCRIPTION
JO and j 1 return Bessel functions of x of the first kind of orders 0 and 1
respectively. In returns the Bessel function of x of the first kind of order
n.

YO and yl return the Bessel functions of x of the second kind of orders °
and 1 respectively. Yn returns the Bessel function of x of the second kind
of order n. The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, yl and yn to return the value HUGE and
to set errno to EDOM. They also cause a message indicating DOMAIN error
to be printed on the standard error output; the process will continue.

These error-handling procedures may be changed with the function
matherr(3M) .

SEE ALSO
matherr(3M) .

October 1983 - 1 -

BLT(3) (UniSoft) BLT(3)

NAME
bIt, blt512 - block transfer data

SYNOPSIS
int bit (to,from,count>
char *to;
char *from;
int count;

int bIt512(to,from,count)
char *to;
char *from;
int count;

DESCRIPTION
Bit does a fast copy of count bytes of data starting at address from to
address to.

Blt5i2 does a fast copy of count number of consecutive 512 byte units
starting at address from to address to.

October 1983 - 1 -

BSEARCH (3C) BSEARCH (3C)

NAME
bsearch - binary search

SYNOPSIS
char .bsearch «char .) key, (char .) base, nel, width, compar)
unsigned nel, width;
int (.compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.0 Algo­
rithm B. It returns a pointer into a table indicating where a datum may be
found. The table must be previously sorted in increasing order according to
a provided comparison function. Key points to the datum to be sought in
the table. Base points to the element at the base of the table. Net is the
number of elements in the table. Width is the width of an element in
bytes; sizeo! (*key) should be used. Compar is the name of the comparison
function, which is called with two arguments that point to the elements
being compared. The function must return an integer less than, equal to,
or greater than zero;according:ly, the first argument is to be considered less
than, equal to, or greater than the second.

DIAGNOSTICS

NOTES

A NULL pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

SEE ALSO
Isearch(3C), hsearch(3C), qsort(3C), tsearch(3C).

October 1983 - 1 -

CLOCK (3C) CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time On microseconds) used since the
first call to clock. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it
has executed wait(2) or system (3S).

SEE ALSO

BUGS

times(2), wait(2), system(3S).

The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution. Because
of this, the value returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

October 1983 - 1 -

CONV(3C) CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include < ctype.h >
int toupper (c)
int c;

int tolower (c)
int c;

int toupper (c)
int c;
int tolower (c)
int c;
int toascii (c)
int c;

DESCRIPTION
Toupper and t%wer have as domain the range of getc(3S): the integers
from -1 through 255. If the argument of toupper represents a lower-case
letter, the result is the corresponding upper-case letter. If the argument of
t%wer represents an upper-case letter, the result is the corresponding
lower-case letter. All other arguments in the domain are returned
unchanged.

toupper and t%wer are macros that accomplish the same thing as toupper
and t%wer but have restricted domains and are faster. toupper requires a
lower-case letter as its argument; its result is the corresponding upper-case
letter. t%wer requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside the domain cause
undefined results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype (3C), getc(3S).

October 1983 - 1 -

CRYPT (3C) CRYPT (3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char -crypt (key, salt)
char -key, -salt;

void set key (key)
char -key;

void encrypt (block, edflag)
char -block;
int edflag;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS Data
Encryption Standard (DES), with variations intended (among other things)
to frustrate use of hardware implementations of the DES for key search.

Key is a user's typed password. Salt is a two-character string chosen from
the set [a-zA-ZO-9./]; this string is used to perturb the DES algorithm in
one of 4096 different ways, after which the password is used as the key to
encrypt repeatedly a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual
DES algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. If this string
is divided into groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is set into the machine. This is the key that will be
used with the above mentioned algorithm to encrypt or decrypt the string
block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 contain­
ing only the characters with numerical value 0 and 1. The argument array
is modified in place to a similar array representing the bits of the argument
after having been subjected to the DES algorithm using the key set by set­
key. If edflag is zero, the argument is encrypted; if non-zero, it is
decrypted.

SEE ALSO

BUGS

NOTE

10gin(1), passwd(1), getpass(3C), passwd(4).

The return value points to static data that are overwritten by each call.

The international distribution of this family of subroutines has setkey
removed and disallows decryption by the encrypt function.

July 1984 - 1 -

CTERMID (3S) CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include < stdio.h >
char .ctermid (s)
char .s;

DESCRIPTION

NOTES

Ctermid generates the path name of the controlling terminal for the current
process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the
contents of which are overwritten at the next call to ctermid, and the
address of which is returned. Otherwise, s is assumed to point to a charac­
ter array of at least L ctermid elements; the path name is placed in this
array and the value ofs is returned. The constant L ctermid is defined in
the < stdio.h> header file. -

The difference between ctermid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associ­
ated with that file descriptor, while ctermid returns a string (fdev ftty) that
will refer to the terminal if used as a file name. Thus ttyname is useful only
if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C) .

October 1983 - 1 -

CTIME(3C) CTIME(3C)

NAME'
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
#include < time.h>

char -ctime (clock)
long -clock;

struct tm -localtime (clock)
long -clock;

struct tm -gmtime (clock)
long -clock;

char -asctime (tm)
struct tm -tm;

extern long timezone;

extern int daylight;

extern char -tzname[Z];

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a
26-character string in the following form. All the fields have constant
width.

Sun Sep 1601:03:52 1973\n\0

Localtime and gmtime return pointers to "tm" structures, described below.
Localtime corrects for the time zone and possible Daylight Savings Time;
gmtime converts directly to Greenwich Mean Time (GMT), which is the
time the UNIX System uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" structure, are
in the < time.h> header file. The structure declaration is:

struct tm {

} ;

int tm_sec;
int tm min;
int tm=hour;
int tm_mday;
int tm_mon;
int tm year;
int tm-wday;
int tm - yday;
int tm)sdst;

1* seconds (0 - 59) *1
1* minutes (0 - 59) *1
1* hours (0 - 23) *1
1* day of month (I - 31) *1
1* month of year (0 - 11) *1
1* year - 1900 *1
I * day of week (Sunday = 0) *1
1* day of year (0 - 365) *1

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time On EST, timezone is 5*60*60); the
external variable daylight is non-zero if and only if the standard U.S.A.
Daylight Savings Time conversion should be applied. The program knows

October 1983 - 1 -

CTIME(3C) CTIME(3C)

about the peculiarities of this conversion in 1974 and 1975; if necessary, a
table for these years can be extended.

If an environment variable named TZ is present, asctime uses the contents
of the variable to override the default time zone. The value of TZ must be
a three-letter time zone name, followed by a number representing the
difference between local time and Greenwich Mean Time in hours, fol­
lowed by an optional three-letter name for a daylight time zone. For exam­
ple, the setting for New Jersey would be EST5EDT. The effects of setting
TZ are thus to change the values of the external variables timezone and day­
light; in addition, the time zone names contained in the external variable

char *tzname(2] = { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these
external variables from TZ; tzset is called by asctime and may also be called
explicitly by the user.

Note that in most installations, TZ is set by default when the user logs on,
to a value in the local / etc/ profile file (see profile (4».

SEE ALSO

BUGS

time(2), getenv(3C), profile(4), environ(5).

The return values point to static data whose content is overwritten by each
call.

October 1983 - 2 -

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include < ctype.h >
int is alpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each
is a predicate returning nonzero for true, zero for false. lsascii is defined
on all integer values; the rest are defined only where isascii is true and on
the single non-ASCII value EOF (-1 - see stdio(3S».

isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-fl.

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical tab, or form-
feed.

ispunct c is a punctuation character (neither control nor alphanumeric).

isprint c is a printing character, code 040 (space) through 0176 (tilde).

isgraph c is a printing character, like isprint except false for space.

iscntrl c is a delete character (0177) or an ordinary control character
(less than 040).

isascii c is an ASCII character, code less than 0200.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the func­
tion, the result is undefined.

SEE ALSO
ascii(5).

October 1983 - 1 -

CUSERID (3S) CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include < stdio.h >
char .cuserid (s)
char .s;

DESCRIPTION
Cuserid generates a character-string representation of the login name of the
owner of the current process. If s is a NULL pointer, this representation is
generated in an internal static area, the address of which is returned. Oth­
erwise, s is assumed to point to an array of at least L cuserid characters;
the representation is left in this array. The constant L cuserid is defined in
the < stdio.h > header file. -

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is
not a NULL pointer, a null character (\0) will be placed at s[01.

SEE ALSO

BUGS

getiogin(3C), getpwent(3C).

Cuserid uses getpwnam(3C); thus the results of a user's call to the latter
will be obliterated by a subsequent call to the former.

The name cuserid is rather a misnomer.

October 1983 - 1 -

DIAL(3C) DIAL (3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include < dial.h >
int dial (call)
CALL .callj

void undial (fd)
int fdj

DESCRIPTION

FILES

Dial returns a file-descriptor for a terminal line open for read/write. The
argument to dial is a CALL structure (defined in the < dia/. h> header file.

When finished with the terminal line, the calling program must invoke
undial to release the semaphore that has been set during the allocation of
the terminal device.

The CALL typedef in the < dial.h> header file is:

typedef struct {
struct termio
int
int
char
char
int

} CALL;

*attr;
baud;
speed;
*line;
*telno;
modem;

/* pointer to termio attribute struct */
/* transmission data rate */
/* 212A modem: low=300, iligh=1200 */
/* device name for out-going line */
/ * pointer to tel-no digits string */
/* specify modem control for direct lines */

The CALL element speed is intended only for use with an outgoing dialed
call, in which case its value should be either 300 or 1200 to identify the
113A modem, or the high or low speed setting on the 212A modem. The
CALL element baud is for the desired transmission baud rate. For example,
one might set baud to 110 and speed to 300 (or 1200).

If the desired terminal line is a direct line, a string pointer to its device­
name should be placed in the line element in the CALL structure. Legal
values for such terminal device names are kept in the L-devices file. In this
case, the value of the baud element need not be specified as it will be
determined from the L-devices file.

The telno element is for a pointer to a character string representing the tele­
phone number to be dialed. The termination symbol will be supplied by
the dial function, and should not be included in the telno string passed to
dial in the CALL structure.

The CALL element modem is used to specify modem control for direct lines.
This element should be non-zero if modem control is required. The CALL
element attr is a pointer to a termio structure, as defined in the termio.h
header file. A NULL value for this pointer element may be passed to the
dial function, but if such a structure is included, the elements specified in it
will be set for the outgoing terminal line before the connection is esta­
blished. This is often important for certain attributes such as parity and
baud-rate.

/ usr / lib/ uucp/L-devices
/ usr / spool/ u ucp/ LCK .. tty-device

October 1983 - 1 -

DIAL(3C) DIAL(3C)

SEE ALSO
uucp(1C), alarm(2), read(2), write(2).
termio(7) in the UniPlus+ Administrator's Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be

. returned. Mnemonics for these negative indices as listed here are defined
in the < dial.h> header file.

INTRPT
D_HUNG
NO_ANS
ILL_BD
A_PROB
L_PROB
NO_Ldv
DV_NT_A
DV_NT_K
NO_BD_A
NO_BD_K

-1
-2
-3
-4
-5
-6
-7
-8
-9
-to
-11

/* interrupt occurred */
/ * dialer hung (no return from write) */
/* no answer within 10 seconds */
/* illegal baud-rate */
/* acu problem (openO failure) */
/* line problem (openO failure) */
/* can't open LDEVS file */
/* requested device not available */
/* requested device not known */
1* no device available at requested baud *1
1* no device known at requested baud *1

WARNINGS

BUGS

Including the < dial.h > header file automatically includes the
< termio.h > header file.

The above routine uses < stdio.h >, which causes it to increase the size of
programs, not otherwise using standard 110, more than might be expected.

An alarm(2) system call for 3600 seconds is made (and caught) within the
dial module for the purpose' of "touching" the LCK .. file and constitutes
the device allocation semaphore for the terminal device. Otherwise,
uucp(1C) may simply delete the LCK .. entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or
write(2) system call, causing an apparent error return. If the user program
expects to be around for an hour or more, error returns from reads should
be checked for (errno = = EINTR), and the read possibly reissued.

October 1983 - 2 -

DRAND48 (3C) DRAND48 (3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
Icong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubil3);

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubil3);

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubil3);

void srand48 (seedvaO
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16vl31;

void Icong48 (param)
unsigned short param(7);

DESCRIPTION
This family of functions generates pseudo-random numbers using the well­
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly dis­
tributed over the interval [_2 31 , 231).

Functions srand48, seed48 and Icong48 are initialization entry points, one of
which should be invoked before either drand48, Irand48 or mrand48 is
called. (Although it is not recommended practice, constant default initial­
izer values will be supplied automatically if drand48, Irand48 or mrand48 is
called without a prior call to an initialization entry point.) Functions
erand48, nrand48 and jrand48 do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula

XIl+1 = (aXil + c)mod m n~O.

The parameter m = 248
; hence 48-bit integer arithmetic is performed.

Unless Icong48 has been invoked, the multiplier value a and the addend
value c are given by

a = 5DEECE66D 16 = 273673163155 8

C = B 16 = 13 8 •

The value returned by any of the functions drand48, erand48, Irand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-

October 1983 - 1 -

DRAND48 (3C) DRAND48 (3C)

NOTES

bit Xi in the sequence. Then the appropriate number of bits, according to
the type of data item to be returned, are copied from the high-order (left­
most) bits of X; and transformed into the returned value.

The functions drand48, irand48 and mrand48 store the last 48-bit X; gen­
erated in an internal buffer; that is why they must be initialized prior to
being invoked. The functions erand48, nrand48 and jrand48 require the
calling program to provide storage for the successive X; values in the array
specified as an argument when the functions are invoked. That is why
these routines do not have to be initialized; the calling program merely has
to place the desired initial value of X; into the array and pass it as an argu­
ment. By using different arguments, functions erand48, nrand48 and
jrand48 allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the sequence of
numbers in each stream will not depend upon how many times the routines
have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32
bits contained in its argument. The low-order 16 bits of Xi are set to the
arbitrary value 330E16 •

The initializer function seed48 sets the value of Xi to the 48-bit value
specified in the argument array. In addition, the previous value of Xi is
copied into a 48-bit internal buffer, used only by seed48, and a pointer to
this buffer is the value returned by seed48. This returned pointer, which
can just be ignored if not needed, is useful if a program is to be restarted
from a given point at some future time - use the pointer to get at and
store the last X; value, and then use this value to reinitialize via seed48
when the program is restarted.

The initialization function icong48 allows the user to specify the initial Xi,
the multiplier value a, and the addend value c. Argument array elements
param[O-2] specify X;, param[3-5] specify the multiplier a, and param[6]
specifies the 16-bit addend c. After icong48 has been called, a subsequent
call to either srand48 or seed48 will restore the "standard" multiplier and
addend values, a and c, specified on the previous page.

The routines are coded in portable C. The source code for the portable
version can even be used on computers which do not have floating-point
arithmetic. In such a situation, functions drand48 and erand48 do not
exist; instead, they are replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubil3], m;

Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, m-11.

SEE ALSO
rand(3C).

October 1983 - 2 -

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
ehar -eevt (value, ndigit, deept, sign)
double value;
int ndigit, -deept, -sign;

ehar -fevt (value, ndigit, deept, sign)
double value;
int ndigit, -deept, -sign;

ehar -gevt (value, ndigit, bur)
double value;
ehar -buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The low-order digit is rounded. The position of the
decimal point relative to the beginning of the string is stored indirectly
through deept (negative means to the left of the returned digits). The
decimal point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is
zero.

Fcvt is identical to eevt, except that the correct digit has been rounded for
Fortran F-format output of the number of digits specified by ndigit.

Gcvt converts the value to a null-terminated string in the array pointed to
by but and returns buf. It attempts to produce ndigit significant digits in
Fortran F-format if possible, otherwise E-format, ready for printing. A
minus sign, if there is one, or a decimal point will be included as part of
the returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S) .

BUGS
The return values point to static data whose content is overwritten by each
call.

October 1983 - 1 -

END (3C) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting con­
tents. The address of etext is the first address above the program text,
edata above the initialized data region, and end above the uninitialized data
region.

When execution begins, the program break (the first location beyond the
data) coincides with end, but the program break may be reset by the rou­
tines of brk(2), malloc(3C), standard input/output (stdio(3S)), the profile
(- p) option of cc(l), and so on. Thus, the current value of the program
break should be determined by sbrk (0) (see brk (2)).

These symbols are accessible from assembly language if it is remembered
that they should be prefixed by _.

SEE ALSO
brk (2), malloc (3C) .

October 1983 - 1 -

ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
x

Erj returns the error function of x, defined as ;.- f e- t2 dt.
"'1/'11' 0

ERF(3M)

Erjc, which returns 1.0 - er!(x), is provided because of the extreme loss of
relative accuracy if er!(x) is called for large x and the result subtracted from
1.0 (e.g. for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

October 1983 - 1 -

EXP(3M) EXP(3M)

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, square root
functions

SYNOPSIS
#include <math.h>
double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns C.
Log returns the natural logarithm of x. The value of x must be positive.

Log 1 0 returns the logarithm base ten of x. The value of x must be posi­
tive.

Pow returns xY. The values of x and y may not both be zero. If x is non­
positive, y must be an integer.

Sqrt returns the square root of x. The value of x may not be negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would overflow, and sets ermo
to ERANGE.

Log and [oglO return 0 and set ermo to EDOM when x is non-positive. An
error message is printed on the standard error output.

Pow returns 0 and sets ermo to EDOM when x is non-positive and y is not
an integer, or when x and yare both zero. In these cases a message indi­
cating DOMAIN error is printed on the standard error output. When the
correct value for pow would overflow, pow returns HUGE and sets ermo to
ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A message indi­
cating DOMAIN error is printed on the standard error output.

These error-handling procedures may. be changed with the function
matherr (3M).

SEE ALSO
intro(2), hypot(3M), matherr(3M), sinh(3M).

October 1983 - 1 -

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, mush - close or flush a stream

SYNOPSIS
#include < stdio.h>

int fclose (stream)
FILE *stream;

int mush (stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffered data for the named stream to be written out, and
the stream to be closed.

Fclose is performed automatically for all open files upon calling exit(2).

Fflush causes any buffered data for the named stream to be written to that
file. The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying
to write to a file that has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

October 1983 - 1 -

FERROR(3S) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include < stdio.h >
int feof (stream) FILE -stream;

int ferror (stream) FILE -stream;

void clearerr (stream) FILE -stream;

int fileno(stream) FILE -stream;

DESCRIPTION

NOTE

Feo! returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Ferror returns non-zero when an 110 error has previously occurred reading
from or writing to the named stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
stream.

Fileno returns the integer file descriptor associated with the named stream;
see open (2) .

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO
open(2), fopen(3S).

October 1983 - 1 -

FLOOR (3M) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include < math.h >
double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns the number f with the same sign as x, such that x = iy + f
for some integer i, and Ifl < Iyl. Fmod will thus return x if y is zero.

Fabs returns Ixl.
SEE ALSO

abs(3C).

October 1983 - 1 -

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h >
FILE .fopen (file-name, type)
char .file-name, .type;

FILE .freopen (file-name, type, stream)
char .file-name, .type;
FILE .stream;

FILE .fdopen (fildes, type)
int fildes; .
char .type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to
be opened.

Type is a character string having one of the following values:

"r" open for reading
"w" truncate or create for writing
"a" append; open for writing at end of file, or create for writing
"r+" open for update (reading and writing)
"w+" truncate or create for update
"a +" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Freo­
pen returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with
stdin, stdout and stderr to other files.

Fdopen associates a stream with a file descriptor obtained from open, dup,
creat, or pipe (2), which will open files but not return pointers to a FILE
structure stream which are necessary input for many of the section 3S
library routines. The type of stream must agree with the mode of the open
file.

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be directly
followed by output without an intervening jseek, rewind, or an input opera­
tion which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is
impossible to overwrite information already in the file. Fseek may be used
to reposition the file pointer to any position in the file, but when output is
written to the file the current file pointer is disregarded. All output is writ­
ten at the end of the file and causes the file pointer to be repositioned at
the end of the output. If two separate processes open the same file for
append, each process may write freely to the file without fear of destroying
output being written by the other. The output from the two processes will
be intermixed in the file in the order in which it is written.

October 1983 - 1 -

FOPEN (3S) FOPENC3S)

SEE ALSO
open (2), fclose(3S).

DIAGNOSTICS
Fopen and [reopen return a NULL pointer on failure.

October 1983 - 2 -

FREAD (3S) FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include < stdio.h >
int fread (ptr, size, nitems, stream)
char .ptr;
int size, nitems;
FILE .stream;

int fwrite (ptr, size, nitems, stream)
char .ptr;
int size, nitems;
FILE .stream;

DESCRIPTION
Fread copies, into an array beginning at plr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of length size. Fread stops appending
bytes if an end-of-file or error condition is encountered while reading
stream, or if nitems items have been read. Fread leaves the file pointer in
stream, if defined, pointing to the byte following the last byte read if there
is one. Fread does not change the contents of stream.

Fwrite appends at most nitems items of data from the the array pointed to
by ptr to the named output stream. Fwrite stops appending when it has
appended nitems items of data or if an error condition is encountered on
stream. Fwrite does not change the contents of the array pointed to by ptr.

The variable size is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2) , fopen (3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts(3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or written. If nitems is
non-positive, no characters are read or written and 0 is returned by both
fread and fwrite.

October 1983 - 1 -

FIlEXP(3C) FIlEXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x* 2n

, where the
"mantissa" (fraction) x is in the range 0.5 ~ Ixl < 1.0, and the
"exponent" n is an integer. Frexp returns the mantissa of a double value,
and stores the exponent indirectly in the location pointed to by eptr.

Ldexp returns the quantity value* 2exP•

Modi returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS
If Jdexp would cause overflow, HUGE is returned and errno is set to
EIlANGE.

October 1983 - 1 -

FSEEK(3S) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include < stdio.h >
int fseek (stream, offset, ptrname)
FILE .stream;
long offset;
int ptrname;

void rewind (stream)
FILE .stream;

long ftell (stream)
FILE .stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offiet bytes from the beginning,
from the current position, or from the end of the file, according as ptrname
has the value 0, 1, or 2.

Rewind(stream) is equivalent to !seek(stream, OL, 0), except that no value
is returned.

Fseek and rewind undo any effects of ungetc (3S).

After /seek or rewind, the next operation on a file opened for update may
be either input or output.

Ftell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper
seek can be, for example, an /seek done on a file that has not been opened
via !open; in particular, /seek may not be used on a terminal, or on a file
opened via popen (3S).

WARNING
Although on the UNIX System an offset returned by /tell is measured in
bytes, and it is permissible to seek to positions relative to that offset, porta­
bility to non-UNIX systems requires that an offset be used by /seek directly.
Arithmetic may not meaningfully be performed on such a offset, which is
not necessarily measured in bytes.

October 1983 - 1 -

FTW(3C) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include < ftw.h >
int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, ftw calls in, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat struc­
ture (see stat(2» containing information about the object, and an integer.
Possible values of the integer, defined in the < ftw.h> header file, are
FTW_F for a file, FTW_D for a directory, FTW_DNR for a directory that can­
not be read, and FTW _NS for an object for which stat could not successfully
be executed. If the integer is FTW _DNR, descendants of that directory will
not be processed. If the integer is FTW _NS, the stat structure will contain
garbage. An example of an object that would cause FTW _NS to be passed
to in would be a file in a directory with read but without execute (search)
permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of in
returns a nonzero value, or some error is detected within ftw (such as an
110 error). If the tree is exhausted, ftw returns zero. If in returns a
nonzero value, ftw stops its tree traversal and returns whatever value was
returned by in. If ftw detects an error, it returns - 1, and sets the error
type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors so used. If depth is zero or negative,
the effect is the same as if it were 1. Depth must not be greater than the
number of file descriptors currently available for use. Ftw will run more
quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.
It could be made to run faster and use less storage on deep structures at
the cost of considerable complexity.
Ftw uses mal/oc (3C) to allocate dynamic storage during its operation. If ftw
is forcibly terminated, such as by /ongjmp being executed by in or an inter­
rupt routine, ftw will not have a chance to free that storage, so it will
remain permanently allocated. A safe way to handle interrupts is to store
the fact that an interrupt has occurred, and arrange to have in return a
nonzero value at its next invocation.

October 1983 - 1 -

GAMMA(3M) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include < math.h >
extern int signgam;

double gamma (x)
double x;

DESCRIPTION
00

Gamma returns In(lr(x)l), where r(x) is defined as f e-tr-1dt. The
o

sign of r (x) is returned in the external integer signgam. The argument x
may not be a non-positive integer.

The following C program fragment might be used to calculate f:

if «y = gamma(x» > LOGHUGE)
error ();

y = signgam * exp(y);

where LOG HUGE is the least value that causes exp (3M) to return a range
error.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating DOMAIN error is printed on the standard
error output.

If the correct value would overflow, gamma returns HUGE and sets erma to
ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
exp(3M), matherr(3M).

October 1983 - 1 -

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include < stdio.h >
int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
Getc returns the next character (i.e. byte) from the named input stream. It
also moves the file pointer, if defined, ahead one character in stream. Getc
is a macro and so cannot be used if a function is necessary; for example
one cannot have a function pointer point to it.

Getchar returns the next character from the standard input stream, stdin.
As in the case of getc, getchar is a macro.

Fgetc performs the same function as getc, but is a genuine function. Fgetc
runs more slowly than getc, but takes less space per invocation.

Getw returns the next word (32-bit integer on a 68000) from the named
input stream. It returns the consta'nt EOF upon end-of-file or error, but as
that is a valid integer value, feof and ferror (3S) should be used to check the
success of getw. Getw increments the associated file pointer, if defined, to
point to the next word. Getw assumes no special alignment in the file.

SEE ALSO
fc1ose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end-of-file or upon an
error.

Because it is implemented as a macro, getc treats incorrectly a stream argu­
ment with side effects. In particular, getc(*f++) doesn't work sensibly.
Fgetc should be used instead.
Because of possible differences in word length and byte ordering, files writ­
ten using putw are machine-dependent, and may not be read using getw on
a different processor.

October 1983 - 1 -

GETCWD(3C) GETCWD(3C)

NAME
getcwd - get path name of current working directory

SYNOPSIS
char .getcwd (buf, size)
char .buf;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path name. The value of
size must be at least two greater than the length of the path name to be
returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
mal/oc (3C) . In this case, the pointer returned by getcwd may be used as
the argument in a subsequent call to free.

The function is implemented by using popen (3S) to pipe the output of the
pwd(I) command into the specified string space.

EXAMPLE

SEE ALSO

char *cwd, *getcwd 0;

if «cwd = getcwd«char *)NULL, 64» = = NULL) {
perror("pwd");
exit(I);

}
printf("%s\n", cwd);

pwd(I), malloc(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error
occurrs in a lower-level function.

October 1983 - 1 -

GETENV(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ (5» for a string of the
form name= value, and returns a pointer to the value in the current
environment if such a string is present, otherwise a NULL pointer.

SEE ALSO
environ (5).

October 1983 - 1 -

GETGRENT(3C) GETGRENT(3C)

. NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#inelude < grp.h >

struct group -getgrent ()

struet group .getgrgid (gid)
int gid;

struet group -getgrnam (name)
ehar -name;

void setgrent ()

void endgrent ()

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the
following structure containing the broken-out fields of a line in the
fete/group file. Each line contains a "group" structure, defined in the
< grp.h> header file.

struct group (
char
char
int
char

} ;

·gr_name;
.gr passwd;
gr_gid;
ugr_mem;

1* the name of the group .1
1* the encrypted group password .1
1* the numerical group ID .1
1* vector of pointers to member names *1

Getgrent when first called returns a pointer to the first group structure in
the file; thereafter, it returns a pointer to the next group structure in the
file; so, successive calls may be used to search the entire file. Getgrgid
searches from the beginning of the file until a numerical group id matching
gid is found and returns a pointer to the particular structure in which it was
found. Getgrnam searches from the beginning of the file until a group
name matching name is found and returns a pointer to the particular struc­
ture in which it was found. If an end-of-file or an error is encountered on
reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.

letc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use < stdio.h> , which causes them to increase the size
of programs, not otherwise using standard 110, more than might be
expected.

All information is contained in a static area, so it must be copied if it is to
be saved.

October 1983 - 1 -

GETLOGIN (3C) GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
char .getlogin ();

DESCRIPTION

FILES

Getiogin returns a pointer to the login name as found in /etc/utmp. It may
be used in conjunction with getpwnam to locate the correct password file
entry when the same user ID is shared by several login names.

If getiogin is called within a process that is not attached to a terminal, it
returns a NULL pointer. The correct procedure for determining the login
name is to call cuserid, or to call getiogin and if it fails to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

BUGS

Returns the NULL pointer if name not found.

The return values point to static data whose content is overwritten by each
call.

October 1983 - 1 -

GETOPT(3C) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char •• argv;
char .optstring;

extern char .optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in opt­
string. Optstring is a string of recognized option letters; if a letter is fol­
lowed by a colon, the option is expected to have an argument that mayor
may not be separated from it by white space. Optarg is set to point to the
start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically
before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argu­
ment), getopt returns EOF. The special option - - may be used to delimit
the end of the options; EOF will be returned, and - - will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?)
when it encounters an option letter not included in optstring.

WARNING
The above routine uses < stdio.h>, which causes it to increase the size of
programs, not otherwise using standard 110, more than might be expected.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the mutually exclusive options a and b, and
the options f and 0, both of which require arguments:

October 1983

main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

while «c = getopt (argc, argv, "abf:o:"» ! = EOF)
switch (c) {
case 'a':

if (bilg)

else

break;
case 'b':

if (aflg)

- 1 -

errflg+ +;

aflg+ +;

GETPASS (3C) GETPASS (3C)

NAME
getpass - read a password

SYNOPSIS
char .getpass (prompt>
char .prompt;

DESCRIPTION

FILES

Getpass reads up to a newline or EOF from the file /dev/tty, after prompt­
ing on the standard error output with the null-terminated string prompt and
disabling echoing. A pointer is returned to a null-terminated string of at
most 8 characters. If /dev/tty cannot be opened, a NULL pointer is
returned. An interrupt will terminate input and send an interrupt signal to
the calling program before returning.

/dev/tty

SEE ALSO
crypt(3C).

WARNING

BUGS

The above routine uses < stdio.h >, which causes it to increase the size of
programs, not otherwise using standard 110, more than might be expected.

The return value points to static data whose content is overwritten by each
call.

October 1983 - 1 -

OETPW(3C) OETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, but)
int uid;
char *buf;

DESCRIPTION

FILES

Getpw searches the password file for a user id number that equals uid,
copies the line of the password file in which uid was found into the array
pointed to by but, and returns O. The line is null-terminated. Getpw
returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and
should not be used; see getpwent (3C) for routines to use instead.

/ etc/ passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses < stdio.h> , which causes it to increase the size of
programs, not otherwise using standard 110, more than might be expected.

October 1983 - 1 -

GETPWENT (3C) GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file
entry

SYNOPSIS
#inelude < pwd.h >
struet passwd -getpwent ()

struet passwd -getpwuid (uid)
int uid;

struet passwd -getpwnam (name)
ehar -name;

void setpwent ()

void endpwent ()

DESCRIPTION
Getpwent, getpwuid and getpwnam each returns a pointer to an object with
the following structure containing the broken-out fields of a line in the
/ete/passwd file. Each line in the file contains a "passwd" structure,
declared in the <pwd.h> header file:

struct passwd {
char
char
int
int
char
char
char
char
char

struct comment {

*pw_name;
*pw passwd;
pw uid;
pw=gid;
*pw_age;
*pw_comment;
*pw_gecos;
*pw_dir;
*pw_shell;

char *c dept;
char *c=name;
char *c _ acct;

} ;
char *c_bin;

This structure is declared in <pwd.h > so it is not necessary to redeclare it.

The pw_ comment field is unused; the others have meanings described in
passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in
the file; thereafter, it returns a pointer to the next passwd structure in the
file; so successive calls can be used to search the entire file. Getpwuid
searches from the beginning of the file until a numerical user id matching
uid is found and returns a pointer to the particular structure in which it was
found. Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the particular struc­
ture in which it was found. If an end-of-file or an error is encountered on
reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file when

October 1983 - 1 -

GETPWENT (3C)

processing is complete.

FILES
/ etc/ passwd

SEE ALSO
cuserid(3S), getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

GETPWENT(3C)

The above routines use < stdio.h >, which causes them to increase the size
of programs, not otherwise using standard 110, more than might be
expected.

BUGS
All information is contained in a static area, so it must be copied if it is to
be saved. Also see cuserid (3S).

October 1983 - 2 -

GETS (3S) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include < stdio.h >
char .gets (s)
char .s;

char .fgets (s, n, stream)
char .s;
int n;
FILE .stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file condition
is encountered. The new-line character is discarded and the string is ter­
minated with a null character.

Fgets reads characters from the stream into the array pointed to by s, until
n-l characters are read, or a new-line character is read and transferred to
s, or an end-of-file condition is encountered. The string is then terminated
with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS

NOTE

If end-of-file is encountered and no characters have been read, no charac­
ters are transferred to s and a NULL pointer is returned. If a read error
occurs, such as trying to use these functions on a file that has not been
opened for reading, a NULL pointer is returned. Otherwise s is returned.

Gets deletes the new-line ending its input, but !gets keeps it.

October 1983 - 1 -

GETUT(3C) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname -
access utmp file entry

SYNOPSIS
#include < utmp.h >
struct utmp .getutent ()

struct utmp .getutid (id)
struct utmp .id;

struct utmp .getutline (line)
struct utmp .Une;

void pututline (utmp)
struct utmp .utmp;

void setutent ()

void endutent ()

void utmpname (file)
char .file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure of the fol­
lowing type:

struct u tmp {
char
char
char
short
short
struct

short
short

ut user[8];
ut-id[4];
ut-lineU2];
u(pid;
ut type;
exit_status {

e_termination;
e_exit;

} ut_exit;

} ;

1* User login name *1
1* letc/inittab id (usually line #) *1
I * device name (console, lnxx) *1
1* process id *1
1* type of entry *1

1* Process termination status *1
1* ProceSB exit status *1
1* The exit status of a process
* marked as DEAD PROCESS. *1

I * time entry was made *1

Getutent reads in the next entry from a utmp-like file. If the file is not
already open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it
finds an entry with a ut_type matching id-> uLtype if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in
id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS,
then getutid will return a pointer to the first entry whose type is one of
these four and whose ut id field matches id-> ut id. If the end of file is
reached without a match;-it fails. -

Getutline searches forward from the current point in the utmp file until it
finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also
has a uLline string matching the line-> uLline string. If the end of file is
reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not already
at the proper place. It is expected that normally the user of pututline will

October 1983 - 1 -

GETUT(3C) GETUT(3C)

FILES

have searched for the proper entry using one of the getut routines. If so,
pututline will not search. If pututline does not find a matching slot for the
new entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This should be
done before each search for a new entry if it is desired that the entire file
be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/etc/utmp to any other file. It is most often expected that this other file
will be /etc/wtmp. If the file doesn't exist, this will not be apparent until
the first attempt to reference the file is made. Utmpname does not open the
file. It just closes the old file if it is currently open and saves the new file
name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions
or having reached the end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple accesses
require that it be copied before further accesses are made. Each call to
either getutid or getutline sees the routine examine the static structure
before performing more I/O. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getutline
to search for multiple occurrences, it would be necessary to zero out the
static after each success, or getutline would just return the same pointer
over and over again. There is one exception to the rule about removing
the structure before further reads are done. The implicit read done by
pututline if it finds that it isn't already at the correct place in the file will not
hurt the contents of the static structure returned by the getutent, getutid or
getutline routines, if the user has just modified those contents and passed
the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes
trying to modify the utmp and wtmp files.

October 1983 - 2 -

HSEARCH (3C) HSEARCH(3C}

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include < search.h >
ENTRY .hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (neI)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algo­
rithm D. It returns a pointer into a hash table indicating the location at
which an entry can be found. Item is a structure of type ENTRY (defined in
the < search.h> header file) containing two pointers: item.key points to the
comparison key, and item. data points to any other data to be associated
with that key. (Pointers to types other than character should be cast to
pointer-to-character.) Action is a member of an enumeration type ACTION
indicating the disposition of the entry if it cannot be found in the table.
ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuc­
cessful resolution is indicated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before
hsearch is used. nel is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algo­
rithm in order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by another call to
hcreate.

Hsearch uses open addressing with a multiplicative hash function. However,
its source code has many other options available which the user may select
by compiling the hsearch source with the following symbols defined to the
preprocessor:

DIV

USCR

Use the remainder modulo table size as the hash function
instead of the multiplicative algorithm.

Use a User Supplied Comparison Routine for ascertaining
table membership. The routine should be named hcompar
and should behave in a manner similar to strcmp (see
string (3C» .

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in ascend­
ing order.

SORTDOWN Keep the linked list sorted by key in descend­
ing order.

October 1983 - 1 -

HSEARCH (3C) HSEARCH (3C)

Additionally, there are preprocessor flags for obtaining debugging printout
(- DDEBUG) and for including a test driver in the calling routine
(- DDRIVER). The source code should be consulted for further details.

SEE ALSO
bsearch(3C), Isearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS

BUGS

Hsearch returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the table.

Only one hash search table may be active at any given time.

October 1983 - 2 -

JlYPOT(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include < math.h >
double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt (x * x + y * y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and sets errno
to ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M) .

October 1983 - 1 -

L3TOL(3C) L3TOL(3C)

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (lp, cp, n)
long *lp;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by Ip.

Ltol3 performs the reverse conversion from long integers (Jp) to three-byte
in tegers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical values of
the long integers are machine-dependent.

October 1983 - 1 -

LOGNAME (3X)

NAME
logname - return login name of user

SYNOPSIS
char .logname()

DESCRIPTION

LOGNAME(3X)

Logname returns a pointer to the null-terminated login name; it extracts the
$LOGNAME variable from the user's environment.

This routine is kept in llib/libPW.a.

FILES
/ etc/ profile

SEE ALSO

BUGS

env(1), 10gin(1), profile(4), environ(5).

The return values point to static data whose content is overwritten by each
call.

This method of determining a login name is subject to forgery.

October 1983 - 1 -

LSEARCH (3C) LSEARCH (3C)

NAME
lsearch - linear search and update

SYNOPSIS
char .lsearch «char .)key, (char .)base, nelp, width, compar)
unsigned .nelp, width;
int (.compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.0 Algorithm
S. It returns a pointer into a table indicating where a datum may be found.
If the datum does not occur, it is added at the end of the table. Key points
to the datum to be sought in the table. Base points to the first element in
the table. Nelp points to an integer containing the current number of ele­
ments in the table. The integer is incremented if the datum is added to the
table. Width is the width of an element in bytes; sizeoJ (*key) should be
used. Compar is the name of the comparison function which the user must
supply (strcmp, for example). It is called with two arguments that point to
the elements being compared. The function must return zero if the ele­
ments are equal and non-zero otherwise.

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

SEE ALSO

BUGS

bsearch (3C), hsearch (3C), tsearch (3C)
The Art oj Computer Programming, Volume 1, Sorting and Searching by
Donald Knuth.

Undefined results can occur if there is not enough room in the table to add
a new item.

October 1983 - 1 -

MALLOC(3C} MALLOC(3C}

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

cfree (ptr, nelem, elsize)
char *ptr;
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation pack­
age. Malloc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation,
but its contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space found
in a circular search from the last block allocated or freed, coalescing adja­
cent free blocks as it searches. It calls sbrk (see brk (2)) to get more
memory from the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by plr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of
size bytes is available in the storage arena, then realloc will ask malloc to
enlarge the arena by size bytes and will then move the data to the new
space.

Realloc also works if plr points to a block freed since the last call of malloc,
realloc, or ealloc; thus sequences of free, malloc and realloe can exploit the
search strategy of malloc to do storage compaction.

Ca/loe allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

The arguments to cfree are the pointer to a block previously allocated by
calloc plus the parameters to calloc.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by plr may be

October 1983 - 1 -

MALLOC(3C) MALLOC(3C)

NOTE
destroyed.

Search time increases when many objects have been allocated; that is, if a
program allocates but never frees, then each successive allocation takes
longer.

October 1983 - 2 -

MATHERR(3M) MATHERR (3M)

NAME
matherr - error-handling function

SYNOPSIS
#include < math.h >
int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors by
including a function named matherr in their programs. Matherr must be of
the form described above. A pointer to the exception structure x will be
passed to the user-supplied matherr function when an error occurs. This
structure, which is defined in the < math.h > header file, is as follows:

struct exception {
int type;
char *name;
double arg1, arg2, retval;

} ;

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header file):

DOMAIN domain error
SING singularity
OVERFLOW overflow
UNDERFLOW underflow
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function
that had the error. The variables argi and arg2 are the arguments to the
function that had the error. Retval is a double that is returned by the func­
tion having the error. If it supplies a return value, the user's matherr must
return non-zero. If the default error value is to be returned, the user's
matherr must return O.

If matherr is not supplied by the user, the default error-handling pro­
cedures, described with the math functions involved, will be invoked upon
error. These procedures are also summarized in the table below. In every
case, errno is set to non-zero and the program continues.

EXAMPLE
matherr(x)
register struct exception *x;
{

October 1983

switch (x - > type) {
case DOMAIN:
case SING: /* print message and abort */

fprintf(stderr, "domain error in %s\n", x- > name);
abort();

case OVERFLOW:
if (!strcmp("exp", x- > name» {

/ * if exp, print message, return the argument */
fprintf(stderr, "exp of %f\n", x- >arg1);

- 1 -

MATHERR (3M) MATHERR (3M)

x- >retval = x- >argl;
} else if (! strcmp ("sinh" , x - > name» {

/* if sinh, set errno, return 0 */
errno = ERANGE;

} else
x- >retval = 0;

/* otherwise, return HUGE */
x- >retval = HUGE;

break;
case UNDERFLOW:

return (0); /* execute default procedure */
case TLOSS:
case PLOSS:

/* print message and return 0 */
fprintf(stderr, "loss of significance in %s\n", x - > name);
x- >retval = 0;
break;

}
return 0);

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

DOMAIN SING OVERFLOW UNDERFLOW TLOSS
BESSEL: - - H 0 -
yO, yl, yn M,-H - - - -
(neg. no.)

EXP: - - H 0 -
POW: - - H 0 -
(neg.)" (non- M,O - - - -
int.),O .. O

LOG:
10g(O): - M,-H - - -
log(neg.): M,-H - - - -
SQRT: M,O - - - -
GAMMA: - M,H - - -
HYPOT: - - H - -
SINH, COSH: - - H - -
SIN, COS: - - - - M,O
TAN: - - H - 0
ACOS, ASIN: M,O - - - -

ABBREVIATIONS
* As much as possible of the value is returned.

M Message is printed.
H HUGE is returned.

-H - HUGE is returned.
0 o is returned.

October 1983 - 2 -

PLOSS
...
-

-
-

-
-
-
-
-
-

M, *
...
-

MEMORY (3C) MEMORY(3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memory.h>

char *memccpy (sl, s2, c, n)
char *sl, *s2;
int c, n;

char *memchr (s, c, n)
char *S;
int c, n;

int memcmp (sl, 82, n)
char *sl, *82;
int n;

char *memcpy (81, s2, n)
char *sl, *82;
int n;

char *memset (8, c, n)
char *S;
int c, n;

DESCRIPTION

NOTE

BUGS

These functions operate efficiently on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into s1, stopping after the
first occurrence of character c has been copied, or after n characters have
been copied, whichever comes first. It returns a pointer to the character
after the copy of c in s1, or a NULL pointer if c was not found in the first n
characters of s2.

Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as s1 is
lexicographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns s1.

Memset sets the first n characters in memory area s to the value of charac­
ter c. It returns s .

For user convenience, all these functions are declared in the optional
< memory.h > header file.

Memcmp uses native character comparison.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

October 1983 - 1 -

MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char -mktemp <template)
char -template;

DESCRIPTION

MKTEMP(3C)

Mktemp replaces the contents of the string pointed to by template by a
unique file name, and returns the address of template. The string in tem­
plate should look like a file name with six trailing Xs; mktemp will replace
the Xs with a letter and the current process ID. The letter will be chosen so
that the resulting name does not duplicate an existing file.

SEE ALSO
getpid (2), tmpfile (38), tmpnam (38).

BUGS
It is possible to run out of letters.

October 1983 - 1 -

MONITOR (3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
void monitor (Iowpc, highpc, buffer, bufsize, nfunc)
int (-lowpc)(), (-highpc)();
short -buffer;
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc - p automatically includes calls for
monitor with default parameters; monitor needn't be called explicitly except
to gain fine control over profiling.

Monitor is an interface to pro./il (2). Lowpc and highpc are the addresses of
two functions; buffer is the address of a (user supplied) array of buJsize
short integers. Monitor arranges to record a histogram of periodically sam­
pled values of the program counter, and of counts of calls of certain func­
tions, in the buffer. The lowest address sampled is that of lowpc and the
highest is just below highpc. Lowpc may not equal 0 for this use of monitor.
At most nfunc call counts can be kept; only calls of functions compiled with
the profiling option -p of ceO) are recorded. (The C Library and Math
Library supplied when cc -p is used also have call counts recorded,) For the
results to be significant, especially where there are small, heavily used rou­
tines, it is suggested that the buffer be no more than a few times smaller
than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor «int (*) 0) 2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end (3C) .

To stop execution monitoring and write the results on the file mon.out, use

monitor «int (*)O)NULL, 0, 0, 0, 0);

Prof 0) can then be used to examine the results.

mon.out

SEE ALSO
ceO), prof(l), profil(2), end(3C).

October 1983 - 1 -

NLIST(3C) NLIST(3C)

NAME
ntist - get entries from name list

SYNOPSIS
#include < a.out.h >
int nUst (file-name, nn
char .file-name;
struct nUst .nU];

DESCRIPTION
NUst examines the name list in the executable file whose name is pointed to
by file-name, and selectively extracts a list of values and puts them in the
array of ntist structures pointed to by nl. The name list nl consists of an
array of structures containing names of variables, types and values. The
list is terminated with a null name; that is, a null string is in the name posi­
tion of the structure. Each variable name is looked up in the name list of
the file. If the name is found, the type and value of the name are inserted
in the next two fields. If the name is not found, both entries are set to O.
See a.out(4) for a discussion of the symbol table structure.

This subroutine is useful for examining the system name list kept in the
file lunix. In this way programs can obtain system addresses that are up to
date.

SEE ALSO
a.out(4).

DIAGNOSTICS
All type entries are set to 0 if the file cannot be read or if it doesn't contain
a valid name list.

NUst returns -1 upon error; otherwise it returns O.

October 1983 - 1 -

PERROR(3C) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *S;

extern int errno;

extern char .sys_errlistl I;
extern int sys_nerr;

DESCRIPTION
Perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argu­
ment string s is printed first, then a colon and a blank, then the message
and a new .. line. To be of most use, the argument string should include the
name of the program that incurred the error. The error number is taken
from the external variable errno, which is set when errors occur but not
cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_ errlist is provided; errno can be used as an index in this table to get the
message string without the new-line. Sys_nerr is the largest message
number provided for in the table; it should be checked because new error
codes may be added to the system before they are added to the table.

SEE ALSO
intro(2).

October 1983 - 1 -

PLOT (3X) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl 0
erase 0
label (s)
char *s;
line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, xl, y1)
int x, y, xO, yO, xl, yl;

move (x, y)
int x, y;
cont (x, y)
int x, y;

point (x, y)
int x, y;
line mod (s)
char *s;
space (xO, yO, xl, y1)
int xO, yO, xl, yl;

closepl ()

DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device­
independent manner. Space must be used before any of these functions to
declare the amount of space necessary. See plot(4). Openpl must be used
before any of the others to open the device for writing. Closepl flushes the
output.

Circle draws a circle of radius r with center at the point (x,y).

Arc draws an arc of a circle with center at the point (x,y) between the
points (xO,yO) and (xi,yJ).

String arguments to label and linemod are terminated by nulls and do not
contain new-lines.

See plot (4) for a description of the effect-of the remaining functions.

The library files listed below provide several flavors of these routines.

lusr/lib/libplot.a
I usr llib/lib300.a
lusr/lib/lib300s.a
lusr/lib/lib450.a
lusr/lib/lib4014.a

produces output for tplot(IG) filters
for DASI 300
for DASI 300s
for DASI 450
for Tektronix 4014

WARNINGS
In order to compile a program containing these functions in jile.c it is

October 1983 - 1 -

PLOT (3X) PLOT (3X)

necessary to use "cc file.c -lplot".

In order to execute it, it is necessary to use "a. out I tplot".

The above routines use < stdio.h >, which causes them to increase the size
of programs, not otherwise using standard liD, more than might be
expected.

SEE ALSO
tplot(lCi), plot(4).

October 1983 - 2 -

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate pipe tolfrom a process

SYNOPSIS
#include <stdio.h>

FILE -popen (command, type)
char -command, -type;

int pclose (stream)
FILE -stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing,
respectively, a shell command line and an 1/0 mode, either r for reading or
w for writing. Popen creates a pipe between the calling program and the
command to be executed. The value returned is a stream pointer such that
one can write to the standard input of the command, if the 110 mode is w,
by writing to the file stream; and one can read from the standard output of
the command, if the 110 mode is r, by reading from the file stream.

A stream opened by popen should be closed by pdose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input
filter and a type w as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created, or if
the shell cannot be accessed.

Pdose returns -1 if stream is not associated with a "popened" command.

If the original and "popened" processes concurrently read or write a com­
mon file, neither should use buffered 110, because the buffering gets all
mixed up. Problems with an output filter may be forestalled by careful
buffer flushing, e.g. with fflush; see Idose (3S).

October 1983 - 1 -

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include < stdio.h>

int printf (format [, arg 1 ...)
char .format;

int fprintf (stream, format [, arg 1 ...)
FILE .stream;
char .format;

int sprintf (s, format [, arg 1 ...)
char .s, format;

DESCRIPTION
Print! places output on the standard output stream stdout. Fprint! places
output on the named output stream. Sprint! places "output", followed by
the null character (\0) in consecutive bytes starting at *s; it is the user's
responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the
case of sprint!), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control
of the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which results in fetching of zero or more
args. The results are undefined if there are insufficient args for the format.
If the format is exhausted while args remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %. After the
%, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will
be padded on the left (or right, if the left-adjustment flag (see below)
has been given) to the field width;

A precision that gives the minimum number of digits to appear for the
d, 0, U, x, or X conversions, the number of digits to appear after the
decimal point for the e and f conversions, the maximum number of
significant digits for the g conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string: a null
digit string is treated as zero.

An optional I specifying that a following d, 0, U, x, or X conversion
character applies to a long integer argo

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (.) instead of a
digit string. In this case, an integer arg supplies the field width or preci­
sion. The arg that is actually converted is not fetched until the conversion
letter is seen, so the args specifying field width or precision must appear
before the arg (if any) to be converted.

October 1983 - 1 -

PRINTF(3S) PRINTF(3S)

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign
(+ or -).

blank If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and
+ flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alter­
nate form." For c, d, s, and u conversions, the flag has no
effect. For ° conversion, it increases the precision to force the
first digit of the result to be a zero. For x (X) conversion, a
non-zero result will have Ox (OX) prefixed to it. For e, E, f, g,
and G conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal,
decimal, or hexadecimal notation (x and X), respectively; the
letters abcdef are used for x conversion and the letters ABCDEF
for X conversion. The precision specifies the minimum number
of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading
zeroes. The default precision is 1. The result of converting a
zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the
style ,,[-]ddd.ddd", where the number of digits after the
decimal point is equal to the precision specification. If the preci­
sion is missing, 6 digits are output; if the precision is explicitly
0, no decimal point appears.

e,E The float or double arg is converted in the style
"[-]d.ddde±dd", where there is one digit before the decimal
point and the number of digits after it is equal to the precision;
when the precision is missing, 6 digits are produced; if the preci­
sion is zero, no decimal point appears. The E format code will
produce a number with E instead of e introducing the exponent.
The exponent always contains at least two digits.

g,G The float or double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent result­
ing from the conversion is less than -4 or greater than the pre­
cision. Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters

from the string are printed until a null character (\0) is encoun­
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are
printed. If the string pointer arg has the value zero, the result is

October 1983 - 2 -

PRINTF(3S) PRINTF(3S)

undefined. A null arg will yield undefined results.
% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated by
print! and [print! are printed as if pute (3S) had been called.

EXAMPLE
printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);

prints a date and time in the form "Sunday, July 3, IO:02n
, where weekday

and month are pointers to null-terminated strings.

printf("pi = %.Sf', 4*atan(I.O»;

prints 1'1' to 5 decimal places.

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

October 1983 - 3 -

PUrC(3S) pure (3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include < stdio.h>

int putc (c, stream)
char c;
FILE -stream;

int putchar (d
char c;

int fputc (c, stream)
char c;
FILE -stream;

int putw (w, stream)
int w;
FILE -stream;

DESCRIPTION
Pute writes the character e onto the output stream (at the position where
the file pointer, if defined, is pointing). Putehar(e) is defined as putc(e,
stdout) . Pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro. Fpute runs
more slowly than pute, but takes less space per invocation.

Putw writes the word (32-bit integer on the 68000) w to the output stream
(at the position at which the file pointer, if defined, is pointing). Putw nei­
ther assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are
by default buffered if the output refers to a file and line-buffered if the out­
put refers to a terminal. The standard error output stream stderr is by
default unbuffered, but use of jreopen (see jopen (3S» will cause it to
become buffered or line-buffered. When an output stream is unbuffered
information is queued for writing on the destination file or terminal as soon
as written; when it is buffered many characters are saved up and written as
a block; when it is line-buffered each line of output is queued for writing
on the destination terminal as soon as the line is completed (that is, as
soon as a new-line character is written or terminal input is requested).
Setbuj(3S) may be used to change the stream's buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S),
setbuf(3S) .

DIAGNOSTICS

BUGS

On success, these functions each return the value they have written. On
failure, they return the constant EOF. This will occur if the file stream is
not open for writing, or if the output file cannot be grown. Because EOF is
a valid integer, jerror (3S) should be used to detect putw errors.

Because it is implemented as a macro, pute treats incorrectly a stream argu­
ment with side effects. In particular, putc(c, -f+ +); doesn't work sensi­
bly. Fpute should be used instead.
Because of possible differences in word length and byte ordering, files

October 1983 - 1 -

PUTC(3S) PUTC(3S)

written using putw are machine-dependent, and may not be read using getw
on a different processor. For this reason the use of putw should be
avoided.

October 1983 - 2 -

PUTPWENT (3C) PUTPWENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include < pwd.h >

int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION
Putpwent is the inverse of getpwent (3C). Given a pointer to a passwd struc­
ture created by getpwent (or getpwuid or getpwnam), putpwuid writes a line
on the stream fwhich matches the format of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation,
otherwise zero.

WARNING
The above routine uses < stdio.h> , which causes it to increase the size of
programs, not otherwise using standard liD, more than might be expected.

October 1983 - 1 -

PUTS (3S) PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *S;

int fputs (s, stream)
char *S;
FILE *stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new­
line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to
write on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while !puts does not.

October 1983 - 1 -

QSORT (3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort «char *) base, nel, width, compar)
unsigned int nel, width;
int (*compar)();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Base points to the element at the base of the table. Nel is the number of
elements in the table. Width is the width of an element in bytes; sizeo!
(.base) should be used. Compar is the name of the comparison function,
which is called with two arguments that point to the elements being com­
pared. The function must return an integer less than, equal to, or greater
than zero according as the first argument is to be considered less than,
equal to, or greater than the second.

The pointer to the base of the table should be of type pointer-to-element,
and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.

EXAMPLE

SEE ALSO

struct entry {
char *name;
int flags;

} ;

mainO
{

struct entry hp[IOO};
int entcmp();
int i, count;

for (i = 0; i < (count = 100); i+ +) {
I * fill the structure with the name and flags *1

}
qsort((char *) hp, count, sizeof (hp[O]), entcmp);

entcmp(ep,ep2)
struct entry *ep, *ep2;
{

return (strcmp(ep->name, ep2->name»;
}

will sort a set of names with associated flags in ASCII order.

sort(I), bsearch(3C), Isearch(3C), string(3C).

October 1983 - 1 -

RAND (3C) RAND (3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTE

Rand uses a multiplicative congruential random-number generator with
period 232 l~at returns successive pseudo-random numbers in the range
from 0 to 2 -1.

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired.
Drand48(3C) provides a much better, though more elaborate, random­
number generator.

SEE ALSO
drand48 (3C).

October 1983 - 1 -

REGCMP(3X) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char -regcmp(stringl [, string2, ...), 0)
char -stringl, -string2, ... ;

char .regex (re, subject[, retO, ... J)
char -re, -subject, -retO, ... ;

extern char -loc1;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled
form. Mal/oc (3C) is used to create space for the vector. It is the user's
responsibility to free unneeded space so allocated. A NULL return from
regcmp indicates an incorrect argument. Regcmp (1) has been written to
generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Regex returns NULL on
failure or a pointer to the next unmatched character on success. A global
character pointer loel points to where the match began. Regcmp and regex
were mostly borrowed from the editor, ed(1); however, the syntax and
semantics have been changed slightly. The following are the valid symbols
and their associated meanings.

[) * ." These symbols retain their current meaning.

$ Matches the end of the string, \n matches the new-line.

Within brackets the minus means through. For example, (a - z)
is equivalent to (abed ... xyz J. The - can appear as itself only
if used as the last or first character. For example, the character
class expression [)-] matches the characters) and -.

+ A regular expression followed by + means one or more times.
For example, [0 - 9) + is equivalent to 10 - 9)[0 - 9)-.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. m is the minimum
number and u is a number, less than 256, which is the max­
imum. If only m is present (e.g., {m}), it indicates the exact
number of times the regular expression is to be applied. {m,} is
analogous to {m,infinity}. The plus (+) and star (-) operations
are equivalent to {l,} and to,} respectively.

(...) $n The value of the enclosed regular expression is to be returned.
The value will be stored in the (n + lhh argument following the
subject argument. At present, at most ten enclosed regular
expressions are allowed. Regex makes its assignments uncondi­
tionally.

(...) Parentheses are used for grouping. An operator, e.g. -, +, {},
can work on a single character or a regular expression enclosed
in parenthesis. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, there­
fore, be escaped to be used as themselves.

October 1983 - 1 -

REGCMP(3X) REGCMP(3X)

EXAMPLE

char ·cursor, .newcursor, ·ptr;

newcursor = regex«ptr = regcmp(""\n", 0», cursor);
free(ptr);

matches a leading new-line in the subject string pointed at by cursor.

char retO[9];
char .newcursor, "'name;

name = regcmp("([A-Za-z][A-za-zO-9J{O,7})$0", 0);
newcursor = regex(name, "123Testing321", retO);

matches through the string "Testing3" and will return the address of the
character after the last matched character (cursor+ 11). The string "Test­
ing3" will be copied to the character array retG.

#include "file.i"
char .string, "'newcursor;

newcursor = regex (name, string);

applies a precompiled regular expression in file.i (see regcmp (1» against
string.

This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(1), regcmp(1), malloc(3C).

The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required. The following user-supplied
replacement for maUoc (3C) reuses the same vector saving time and space:

/. user's program ./

malloc(n) {
static int rebuf(256];
return rebuf;

October 1983 - 2 -

RHOST(3N) (UniSoft) RHOST(3N)

NAME
rhost, raddr - look up internet hosts by name or address

SYNOPSIS
iaddr = rhost (aname)
long iaddr;
ehar **aname;

name = raddrOaddr)
long iaddr;

DESCRIPTION

FILES

Rhos! is given a pointer to a name for an Internet host and returns the 32
bit internet address in network byte order suitable for direct use in a
soekaddr in internet address as sockaddr in.sin addr.s addr. If the host
name is not known then rhost returns -1.- If the-host name is known then
.aname is changed to point to the standard name of the specified host,
which is the first name given in its entry in jete/hosts. The return value
has been saved with mal/oc and is not destroyed on subsequent calls.

Raddr performs a similar function, but takes an Internet address, and looks
up the name.

/etc/hosts

SEE ALSO
remsh(IN), rlogin(1N), socket(2N).

BUGS
A more general data base or server is needed.

This interface is provisional and may be changed in future releases.

July 1984 - 1 -

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] ...)
char -format;

int fscanf (stream, format [, pointer] '")
FILE .stream;
char -format;

int sscanf (s, format [, pointer] '")
char .s, -format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each func­
tion reads characters, interprets them according to a format, and stores the
results in its arguments. Each expects, as arguments, a control string for­
mat described below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not Ofo), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character Ofo, an optional
assignment suppressing character -, an optional numerical maximum
field width, an optional I or h indicating the size of the receiving vari­
able, and a conversion code.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding argu­
ment, unless assignment suppression was indicated by -. The suppression
of assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non-space characters; it
extends to the next inappropriate character or until the field width, if
specified, is exhausted.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument should be given. The following
conversion codes are legal:

% a single % is expected in the input at this point; no assignment is
done.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be an
integer pointer.

October 1983 - 1 -

8CANF (38) 8CANF (38)

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

e,f,g a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a ./Ioat. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field consisting of an
E or an e, followed by an optionally signed integer.

s a character string is expected; the corresponding argument should be
a character pointer pointing to an array of characters large enough to
accept the string and a terminating \0, which will be added automati­
cally. The input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a char­
acter pointer. The normal skip over white space is suppressed in this
case; to read the next non-space character, use %1s. If a field width
is given, the corresponding argument should refer to a character
array; the indicated number of characters is read.
indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which
we will call the scanset, and a right bracket; the input field is the max­
imal sequence of input characters consisting entirely of characters in
the scanset. The circumflex, ("'), when it appears as the first charac­
ter in the scanset, serves as a complement operator and redefines the
scanset as the set of all characters not contained in the remainder of
the scanset string. There are some conventions used in the construc­
tion of the scanset. A range of characters may be represented by the
construct first-last, thus [0123456789] may be expressed [0-9]. Using
this convention, first must be lexically less than or equal. to last, or
else the dash will stand for itself. The dash will also stand for itself
whenever it is the first or the last character in the scanset. To include
the right square bracket as an element of the scanset, it must appear
as the first character (possibly preceded by a circumflex) of the scan­
set, and in this case it will not be syntactically interpreted as the clos­
ing bracket. The corresponding argument must point to a character
array large enough to hold the data field and the terminating \0,
which will be added automatically.

The conversion characters d, u, 0, and x may be preceded by I or h to indi­
cate that a pointer to long or to short rather than to int is in the argument
list. Similarly, the conversion characters e , f , and g may be preceded by I
to indicate that a pointer to double rather than to float is in the argument
list.

Scan! conversion terminates at EOF, at· the end of the control string, or
when an input character conflicts with the control string. In the latter case,
the offending character is left unread in the input stream.

Scan! returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between an
input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLE
The call:

October 1983 - 2 -

SCANF(3S) SCANF(3S)

int i; float x; char name(50);
scanf ("OfodOfofO/os", &i, &x, name);

with the input line:

25 54.32E-I thompson

assigns to i the value 25, to x the value 5.432, and name will contain
thompson\O. Or:

int i; float x; char name[501;
scanf ("0f02dOfof%·d 010[0-9]", &i, &x, name);

with input:

56789 0123 56a72

assigns 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name.
The next call to getchar (see getc(3S» will return a.

SEE ALSO

NOTE

atof(3C), getc(3S), printf(3S), strtol(3C).

Trailing white space (including a new-line) is left unread unless matched in
the control string.

DIAGNOSTICS

BUGS

These functions return EOF on end of input and a short count for missing
or illegal data items.

The success of literal matches and suppressed assignments is not directly
determinable.

October 1983 - 3 -

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >
void setbuf (stream, buf)
FILE -stream;
char -buf;

DESCRIPTION
Setbul is used after a stream has been opened but before it is read or writ­
ten. It causes the character array pointed to by buj to be used instead of an
automatically allocated buffer. If bul is a NULL character pointer
input/output will be completely unbuffered.

A constant B UFSIZ, defined in the < stdio.h > header file, tells how big an
array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3C) at the time of the first getc
or putc(3S) on the file, except that the standard error stream stderr is nor­
mally not buffered.

Output streams directed to terminals are always line-buffered unless they
are unbuffered.

SEE ALSO

NOTE

fopen (3S), getc(3S), malloc(3C), putc(3S).

A common source of error is allocating buffer space as an "automatic"
variable in a code block, and then failing to close the stream in the same
block.

October 1983 - 1 -

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include < setjmp.h >
int setjmp (env)
jmp_buf env;

void longjmp (env, van
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp buj, is defined
in the < setjmp.h> header file), for later use by longjmp. - It returns the
value O.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed program execu­
tion continues as if the corresponding call of setjmp (which must not itself
have returned in the interim) had just returned the value val. Longjmp
cannot cause setjmp to return the value O. If longjmp is invoked with a
second argument of 0, setjmp will return 1. All accessible data have values
as of the time longjmp was called.

SEE ALSO
signal(2).

WARNING
If longjmp is called when env was never primed by a call to setjmp, or when
the last such call is in a function which has since returned, absolute chaos
is guaranteed.

October J 983 - 1 -

SINH (3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >
double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH(3M)

Sinh, cosh and tanh return respectively the hyberbolic sine, cosine and
tangent of their real argument.

DIAGNOSTICS
Sinh and cosh return HUGE when the correct value would overflow, and set
errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M) .

SEE ALSO
matherr(3M).

October 1983 - 1 -

SLEEP(3C) SLEEP (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than
that requested for two reasons: (1) Because scheduled wakeups occur at
fixed I-second intervals, (on the second, according to an internal clock)
and (2) because any caught signal will terminate the sleep following execu­
tion of that signal's catching routine. Also, the suspension time may be
longer than requested by an arbitrary amount due to the scheduling of
other activity in the system. The value returned by sleep will be the
"unslept" amount (the requested time minus the time actually slept) in
case the caller had an alarm set to go off earlier than the end of the
requested sleep time, or premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it
(or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm signal
before calling sleep; if the sleep time exceeds the time till such alarm signal,
the process sleeps only until the alarm signal would have occurred, and the
caller's alarm catch routine is executed just before the sleep routine returns,
but if the sleep time is less than the time till such alarm, the prior alarm
time is reset to go off at the same time it would have without the interven­
ing sleep.

SEE ALSO
alarm(2), pause(2), signaI(2).

October 1983 - I -

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl - access long numeric data in a machine independent fashion.

SYNOPSIS
sputl (value, buffer)
long value;
char -buffer;

long sgetl (buffer)
char -buffer;

DESCRIPTION
Sputl (3X) will take the 4 bytes of the long value and place them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the
same across all machines. Sgetl will retrieve the 4 bytes in memory starting
at the address pointed to by buffer and return the long value in the byte
ordering of the host machine.

The usage of sputl (3X) and sgetl in combination provides a machine
independent way of storing long numeric data in an ASCII file. The
numeric data stored in the portable archive file format (see ar(4» is writ­
ten and read into/from buffers with sputl(3X) and sgetl respectively.

A program which uses these functions must be loaded with the object file
access routine library libld.a.

SEE ALSO
ar(4).

October 1983 - 1 -

SSIGNAL(3C) SSIGNAL (3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (.ssignal (sig, action» ()
int sig, (.action) ();

int gsignal (sig)
int sig;

DESCRIPTION

NOTES

Ssignai and gsignai implement a software facility similar to signal(2). This
facility is used by the Standard C Library to enable users to indicate the
disposition of error conditions, and is also made available to users for their
own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 15. A call to ssignai associates a procedure,
action, with the software signal sig; the software signal, sig, is raised by a
call to gsignai. Raising a software signal causes the action established for
that signal to be taken.

The first argument to ssignai is a number identifying the type of signal for
which an action is to be established. The second argument defines the
action; it is either the name of a (user defined) action function or one of the
manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssignai returns
the action previously established for that signal type; if no action has been
established or the signal number is illegal, ssignai returns SIG_DFL.

Gsignai raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is
reset to SIG DFL and the action function is entered with argument sig.
Gsignai returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignai returns the value 1 and takes
no other action.

If the action for sig is SIG_DFL, gsignai returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig, gsig­
nal returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range 1
through 15 which are used by the Standard C Library to indicate error con­
ditions. Thus, some signal numbers outside the range 1 through 15 are
legal, although their use may interfere with the operation of the Standard C
Library.

October 1983 - 1 -

STDIO(3S) STDIO(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >

FILE .stdin, .stdout, .stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual consti­
tute an efficient, user-level I/O buffering scheme. The in-line macros
getc(3S) and putc(3S) handle characters quickly. The macros getchar,
putchar, and the higher-level routines fgetc, jgets, jprinif, fputc, jjJuts, fread,
jScan/, jwrite, gets, getw, print/, puts, putw, and scanj all use getc and putc;
they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE. Fopen (3S) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. Normally, there are three open streams with constant pointers
declared in the < stdio.h> header file and associated with the standard
open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (- 1) is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual descrip­
tions for details).

Any program that uses this package must include the header file of per­
tinent macro definitions, as follows:

#include < stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of
this manual are declared in that header file and need no further declaration.
The constants and the following "functions" are implemented as macros
(redeclaration of these names is perilous): getc, getchar, putc, putchar, feo/,
jerror, ciearerr, and fiieno.

SEE ALSO
open(2), close(2), Iseek(2) , pipe(2) , read (2) , write (2) , ctermid(3S),
cuserid(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S),
getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3S), system (3S), tmpfile(3S), tmpnam (3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

October 1983 - 1 -

STDIPC(3C) STDIPC (3C)

NAME
stdipc - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >

key t ftok (path, id)
char .path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to
be used by the msgget (2), semget (2) and shmget (2) system calls to obtain
interprocess communication identifiers. One suggested method for forming
a key is to use the ftok subroutine described below. Another way to com­
pose keys is to include the project ID in the most significant byte and to use
the remaining portion as a sequence number. There are many other ways
to form keys, but it is necessary for each system to define standards for
forming them. If some standard is not adhered to, it will be possible for
unrelated processes to unintentionally interfere with each other's operation.
Therefore, it is strongly suggested that the most significant byte of a key in
some sense refer to a project so that keys do not conflict across a given sys­
tem.

Ftok returns a key based on path and id that is usable in subsequent
msgget, semget and shmget system calls. Path must be the path name of an
existing file that is accessible to the process. Id is a character which
uniquely identifies a project. Note that ftok will return the same key for
linked files when called with the same id and that it will return different
keys when called with the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key _0 -1 if path does not exist or if it is not accessible to
the process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to
the file, future calls to ftok with the same path and id will return an error.
If the same file is recreated, then ftok is likely to return a different key than
it did the original time it was called.

October 1983 - 1 -

STRING (3C) STRING (3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include < string.h >
char .strcat (s1, s2)
char .sl, .s2;

char .strncat (sl, s2, n)
char .s1, .s2;
int n;

int strcmp (sl, s2)
char .sl, .s2;

int strncmp (sl, s2, n)
char .sl, .s2;
int n;

char .strcpy (sl, s2)
char .sl, .s2;

char .strncpy (sl, s2, n)
char .sl, .s2;
int n;

int strlen (s)
char .s;

char .strchr (s, c)
char .s, c;

char .strrchr (s, c)
char .s, c;

char .strpbrk (sl, s2)
char .sl, .s2;

int strspn (sl, s2)
char .sl, .s2;

int strcspn (sl, s2)
char .sl, .s2;

char .strtok (sl, s2)
char .sl, .s2;

DESCRIPTION
The arguments s1, s2 and s point to strings (arrays of characters terminated
by a null character). The functions strcat, strncat, strcpy and strncpy all
alter s1. These functions do not check for overflow of the array pointed to
by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends
at most n characters. Each returns a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer less than, equal to,
or greater than 0, according as s1 is lexicographically less than, equal to, or
greater than s2. Strncmp makes the same comparison but looks at most n
characters.

October 1983 - 1 -

STRING (3C) STRING (3C)

NOTE

BUGS

Strcpy copies string s2 to s1, stopping after the null character has been
copied. Strncpy copies exactly n characters, truncating s2 or adding null
characters to s1 if necessary. The result will not be null-terminated if the
length of s2 is n or more. Each function returns s1"

Str/en returns the number of characters in s, not including the terminating
null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c
in string s, or a NULL pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character
from string s2, or a NULL pointer if no character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

Strtak considers the string s1 to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer s1 specified) returns a pointer to the
first character of the first token, and will have written a null character into
s1 immediately following the returned token. The function keeps track of
its position in the string between separate calls, so that on subsequent calls
(which must be made with the first argument a NULL pointer) will work
through the string s1 immediately following that token. In this way subse­
quent calls will work through the string s1 until no tokens remain. The
separator string s2 may be different from call to call. When no token
remains in s1, a NULL pointer is returned.

For user convenience, all these functions are declared in the optional
< string. h > header file.

Strcmp uses native character comparison.

All string movement is performed character by character starting at the left.
Thus overlapping moves toward the left will work as expected, but overlap­
ping moves to the right may yield surprises.

October 1983 - 2 -

STRTOL(3C) STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str;
char "ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
Strtol returns as a long integer the value represented by the character string
str. The string is scanned up to the first character inconsistent with the
base. Leading "white-space" characters are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character ter­
minating the scan is returned in *ptr. If no integer can be formed, *ptr is
set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and
"Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thus: After an optional
leading sign, a leading zero indicates octal conversion, and a leading "Ox"
or "OX" hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment, or
by an explicit cast.

Atol(str) is equivalent to strtol(str, (char **)NULL, 10).

Ato;(str) is equivalent to Ont) strtol(str, (char **)NULL, 10).

SEE ALSO
atof(3C), scanf(3S).

BUGS
Overflow conditions are ignored.

October 1983 - 1 -

SWAB (3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char -from, -to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed to by to,
exchanging adjacent even. and odd bytes. It is useful for carrying binary
data between PDP-II s and other machines. Nbytes should be even and
non-negative. If nbytes is odd and positive swab uses nbytes-I instead. If
nbytes is negative swab does nothing.

October 1983 - I -

SYSTEM (3S)

NAME
system - issue a shell command

SYNOPSIS
#include < stdio.h>

int system (string)
char .string;

DESCRIPTION

SYSTEM (3S)

System causes the string to be given to sh (1) as input, as if the string had
been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec's Ibin/sh in order
to execute string. If the fork or exec fails, system returns -1 and sets
errno.

October 1983 - 1 -

TERMCAP(3) TERMCAP(3)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent
operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent (bp, name)
char *bp, *name;

tgetnum (id)
char *id;

tgetfiag (id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto (cm, destcol, destline)
char *cm;

tputs (cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc) 0;

DESCRIPTION
These functions extract and use capabilities from the terminal capability
data base termcap (5). Note that these are low level routines.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp
should be a character buffer of size 1024 and must be retained through all
subsequent calls to tgetnum, tgetjlag, and tgetstr. Tgetent returns -1 if it
cannot open the term cap file, 0 if the terminal name given does not have an
entry, and 1 if all goes well. It will look in the environment for a
TERM CAP variable. If found, and the value does not begin with a slash,
and the terminal type name is the same as the environment string TERM,
the TERMCAP string is used instead of reading the term cap file. If it does
begin with a slash, the string is used as a path name rather than
/etc/termcap. This can speed up entry into programs that call tgetent, as
well as to help debug new terminal descriptions or to make one for your
terminal if you can't write the file /etc/termcap.

Tgetnum gets the numeric value of capability id, returning -1 if it is not
given for the terminal. Tgetjlag returns 1 if the specified capability is
present in the terminal's entry, 0 if it is not. Tgetstr gets the string value of
capability id, placing it in the buffer at area, advancing the area pointer. It
decodes the abbreviations for this field described in termcap(5), except for
cursor addressing and padding information.

Tgoto returns a cursor addressing string decoded from em to go to column
destcol in line destline. It uses the external variables UP (from the up capa­
bility) and BC Of bc is given rather than bs) if necessary to avoid placing
\n, AD or A@ in the returned string. (Programs which call tgoto should be

October 1983 - 1 -

TERMCAP (3) TERM CAP (3)

FILES

sure to turn off the XTABS bit(s), since tgoto may now output a tab. Note
that programs using termeap should in general turn off XTABS anyway since
some terminals use control-I for other functions, such as nondestructive
space.) If a % sequence is given which is not understood, then tgoto returns
oops.
Tputs decodes the leading padding information of the string ep; affent gives
the number of lines affected by the operation, or 1 if this is not applicable,
oute is a routine which is called with each character in turn. The external
variable ospeed should contain the output speed of the terminal as encoded
by stty (2). The external variable PC should contain a pad character to be
used (from the pc capability) if a null ("@) is inappropriate.

/usr/lib/libtermcap.a
/etc/termcap

termcap library
data base

SEE ALSO
exO), termcap(5).

AUTHOR
William Joy

October 1983 - 2 -

TMPFILE (3S)

NAME
tmpfile . - create a temporary file

SYNOPSIS
#include < stdio.h >
FILE *tmpfile ()

DESCR.IPTION

TMPFILE (3S)

Tmpfiie creates a temporary file and returns a corresponding FILE pointer.
The file will automatically be deleted when the process using it terminates.
The file is opened for update.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S).

October 1983 - 1 -

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include < stdio.h>
char .tmpnam (s)
char .s;

char .tempnam (dir, pfx)
char .dir, .pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary
file.

Tmpnam always generates a file name using the path-name defined as
P tmpdir in the < stdio.h > header file. If s is NULL, tmpnam leaves its
result in an internal static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If s is not NULL, it is
assumed to be the address of an array of at least L_tmpnam bytes, where
L_tmpnam is a constant defined in < stdio.h >; tmpnam places its result in
that array and returns s.

Tempnam allows the user to control the choice of a directory. The argu­
ment dir points to the path-name of the directory in which the file is to be
created. If dir is NULL or points to a string which is not a path-name for
an appropriate directory, the path-name defined as P _tmpdir in the
< stdio.h > header file is used. If that path-name is not accessible, /tmp
will be used as a last resort. This entire sequence can be up-staged by pro­
viding an environment variable TMPDIR in the user's environment, whose
value is a path-name for the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial
letter sequences in their names. Use the pfx argument for this. This argu­
ment may be NULL or point to a string of up to five characters to be used
as the first few characters of the temporary-file name.

Tempnam uses mal/oc (3C) to get space for the constructed file name, and
returns a pointer to this area. Thus, any pointer value returned from temp­
nam may serve as an argument to free (see mal/oc (3C». If tempnam can­
not return the expected result for any reason, i.e. mal/oc failed, or none of
the above mentioned attempts to find an appropriate directory was success­
ful, a NULL pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary
only in the sense that they reside in a directory intended for temporary use,
and their names are unique. It is the user's responsibility to use unlink (2)
to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will
start recycling previously used names.
Between the time a file name is created and the file is opened, it is possible

October 1983 - 1 -

TMPNAM(3S) TMPNAM(3S)

for some other process to create a file with the same name. This can never
happen if that other process is using these functions or mktemp, and the file
names are chosen so as to render duplication by other means unlikely.

October J 983 - 2 -

TRIG (3M) TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include < math.h >
double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double as in (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, y;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their
argument, which is in radians.

Asin returns the arcsine of x, in the range -1r12 to 1r12.

Acos returns the arccosine of x, in the range 0 to 1r.

Atan returns the arctangent of x, in the range -1r12 to 1r12.

Atan2 returns the arctangent of yl x, in the range -1r to 1r, using the signs
of both arguments to determine the quadrant of the return value.

DIAGNOSTICS
Sin, cos and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return 0 when there would
otherwise be a complete loss of significance. In this case a message indicat­
ing TLOSS error is printed on the standard error output. For less extreme
arguments, a PLOSS error is generated but no message is printed. In both
cases, ermo is set to ERANGE.

Tan returns HUGE for an argument which is near an odd multiple of 1r12
when the correct value would overflow, and sets ermo to ERANGE.

Arguments of magnitude greater than 1.0 cause asin and acos to return 0
and to set errno to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M) .

SEE ALSO
matherr(3M).

October 1983 - 1 -

TSEAR.CH (3C) TSEAR.CH (3C)

NAME
tsearch, tdelete, twalk - manage binary search trees

SYNOPSIS
#include < search.h >
char *tsearch ({char *) key, (char ..) rootp, compar)
int (*compar){);

char *tdelete ({char *) key, (char **) rootp, com par)
int (*compar)();

void twalk ({char *) root, action)
void (*action) ();

DESCRIPTION

NOTES

Tsearch is a binary tree search routine generalized from Knuth (6.2.2)
Algorithm T. It returns a pointer into a tree indicating where a datum may
be found. If the datum does not occur, it is added at an appropriate point
in the tree. Key points to the datum to be sought in the tree. Rootp points
to a variable that points to the root of the tree. A NULL pointer value for
the variable denotes an empty tree; in this case, the variable will be set to
point to the datum at the root of the new tree. Compar is the name of the
comparison function. It is called with two arguments that point to the ele­
ments being compared. The function must return an integer less than,
equal to, or greater than zero according as the first argument is to be con­
sidered less than, equal to, or greater than the second.

Tdelete deletes a node from a binary search tree. It is generalized from
Knuth (6.2.2) algorithm D. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the
root of the tree. Tdelete returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Action is the name of a routine to be invoked at each node.
This routine is, in turn, called with three arguments. The first argument is
the address of the node being visited. The second argument is a value
from an enumeration data type typedef enum { preorder, postorder, endorder,
leaf} VISIT,· (defined in the < search.h> header file), depending on
whether this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or whether the
node is a leaf. The third argument is the level of the node in the tree, with
the root being level zero.

The pointers to the key and the root of the tree should be of type pointer­
to-element, and cast to type pointer-to-character. The comparison function
need not compare every byte, so arbitrary data may be contained in the ele­
ments in addition to the values being compared. Although declared as type
pointer-to-character, the value returned should be cast into type pointer­
to-element.
Warning: the root argument to twalk is one level of indirection less than the
rootp arguments to tsearch and tdelete.

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available
to create a new node.

October 1983 - 1 -

TSEARCH (3C) TSEARCH (3C)

A NULL pointer is returned by tsearch and tdelete if rootp is NULL on entry.

SEE ALSO

BUGS

bsearch (3C), hsearch (3C), lsearch (3C).

Awful things can happen if the calling function alters the pointer to the
root.

October 1983 - 2 -

TTYNAME (3C) TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char .ttyname (tildes)
int tildes;

int isatty (tildes)
int tildes;

DESCRIPTION

FILES

Ttyname returns a pointer to a string containing the null-terminated path
name of the terminal device associated with file descriptor fildes.

!satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

Idev/*

DIAGNOSTICS

BUGS

Ttyname returns a NULL pointer if fildes does not describe a terminal device
in directory / dev.

The return value points to static data whose content is overwritten by each
call.

October 1983 - 1 -

TTYSLOT (3C) TTYSLOT (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

Ttyslot returns the index of the current user's entry in the /etc/utmp file.
This is accomplished by actually scanning the file /etc/inittab for the name
of the terminal associated with the standard input, the standard output, or
the error output (0, 1 or 2).

/etc/inittab
/etc/utmp

. SEE ALSO
getu t (3C), ttyname (3C) .

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the
terminal name or if none of the above file descriptors is associated with a
terminal device.

October 1983 - 1 -

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h >
int ungetc (c, stream)
char c;
FILE .stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an input
stream. That character, c, will be returned by the next getc call on that
stream. Ungetc returns c, and leaves the file stream unchanged.

One character of push back is guaranteed provided something has been read
from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek (3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
In order that ungetc perform correctly, a read statement must have been
performed prior to the call of the ungetc function. Ungetc returns EOF if it
can't insert the character. In the case that stream is stdin, ungetc will allow
exactly one character to be pushed back onto the buffer without a previous
read statement.

October 1983 - 1 -

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations
for the file formats are given where applicable. Usually, these structures
can be found in the directories lusr/include or lusr/include/sys.

References of the type name(1M) refer to entries found in Section 1 of the
UniPlus + Administrator's Manual.

October 1983 - 1 -

A.OUT(4) A.OUT(4)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
A.out is the output file of the assembler asO) and the link loader [dO).
Ld(J) makes a.out executable if there were no errors and no unresolved
external references. Layout information as given in the include file for the
68000 is:

/ *
* Layout of a.out file:
*
* header of 8 longs
*
*
*
*
*
*
*
*
* header:
* text:
* data:
* symbol table:
* text relocation:
* data relocation:
*
*/

1* various parameters * /
#define SYMLENGTH

1* types of files * /
#define ARCMAGIC
#define FMAGIC
#define NMAGIC

1* symbol types * /
#d fine EXTERN
#define UNDEF
#define ABS
#define TEXT
#define DATA
#define BSS
#define COMM
#defineREG

1* relocation regions * /
#define RTEXT
#define RDAT A
#define RBSS
#define REXT

October 1983

magic number 405,407,410,411
text size
data size
bss size
symbol table size
text relocation size
data relocation size
entry point

o
32
32+textsize
32 + textsize + datasize
32 + textsize + datasize + symsize
32 + textsize + datasize + symsize + rtextsize

)
) in bytes
)
)
)
)

50 1* maximum length of a sym bol * /

0177545
0407
0410

040
00
01
02
03
04
05
06

00
01
02
03

- 1 -

1* ar files * /
1* standard executable * /
1* shared text executable * /

1* external * /
1* undefin d * /
1* absolute * /
1* text */
1* data */
1* bss */
1* internal use only * /
1* register name * /

A.OUT(4)

1* relocati n sizes * /
#define RBYTE
define RWORD
#define RLONG

00
01
02

A.OUT(4)

/* macros which define various positions in file based on a bhdr, filhdr * /
define TEXTPOS «(long) sizeof(filhdr))
#define DATAPOS (TEXTPOS + filhdr.tsize)
define SYMPOS (DATAPOS + filhdr.dsize)
#define RTEXTPOS (SYMPOS + filhdr.ssize)
#define RDATAPOS (RTEXTPOS + filhdr.rtsize)
define ENDPOS (RDAT APOS + filhdr.rdsize)

1* header of a.out files * /
struct bhdr {

long
long
long
long
long
long
long
long

};

fmagic;
tsize;
dsize;
bsize;
ssize;
rtsize;
rdsize;
entry;

1* symbol management * /
struct sym {

char
char
long

} ;

stype;
sympad;
svalue;

/* relocation commands * /
struct reloc {

unsigned
unsigned
unsigned
unsigned
char
short
long

rsegment:2;
rsize:2;
rdisp:l;
relpadl :3;
relpad2;
rsymbol;
rpos;

1* symbol table entry * /
struct nlist {

char n_name[S];
int n_type;

} ;
unsigned n_ value;

October 1983

1* symbol type */
/* pad to short align */
1* value */

1* RTEXT, RDATA, RBSS, or REXTERN */
1* RBYTE, RWORD, or RLONG */
/* 1 = > a displacement * /
1* pad 1 */
1* pad 2 */
1* id of the symbol of external relocations * /
1* position of relocation in segment * /

1* symbol name * /
1* type flag * /
1* value */

- 2 -

A.OUT(4)

1* values for type flag * /
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

N_UNDF 0
N_ABS 01
N_TEXT 02
N_DATA 03
N_BSS 04
N_TYPE 037
N_REG 024
N_FN 037
N_EXT 040
FORMAT "%060"

1* undefined * /
1* absolute * /
1* text symbol */
/* data symbol */
1* bss symbol * /

1* register name * /
1* file name symbol */
1* external bit, or'ed in * /
1* to print a value * /

A.OUT(4)

The file has four sections: a header, the program and data text, a symbol
table, and relocation information. The last two may be empty if the pro­
gram was loaded with the - s option of ld or if the symbols and relocation
have been removed by strip(I).

In the header the sizes of each section are given in bytes, but are even.
The size of the header is not included in any of the other sizes.

When an a.out file is loaded into core for execution, three logical segments
are set up: the text segment, the data segment (with uninitialized data,
which starts off as all 0, following initialized data), and a stack. The text
segment begins at the user program start address in the core image; the
header is not loaded. If the magic number in the header is FMAGIC, it
indicates that the text segment is not to be write-protected and shared, so
the data segment is immediately contiguous with the text segment. If the
magic number is NMAGIC, the data segment begins at the next segment
boundary following the text segment, and the text segment is not writable
by the program; if other processes are executing the same file, they will
share the text segment.

The stack will occupy the highest possible user program locations in the
core image and will grow downwards. The stack is automatically extended
as required. The data segment is only extended as requested by brk(2).

The start of the text segment in the file is 32 (I 0); the start of the data seg­
ment is 32+St (the size of the text) the start of the relocation information
is 32+St+Sd; the start of the symbol table is 32+2(St+Sd) if the reloca­
tion information is present, 32+St+Sd if not.

The layout of a symbol table entry and the principal flag values that distin­
guish symbol types are given in the include file.

If a symbol's type is undefined external, and the value field is non-zero,
the symbol is interpreted by the loader ld as the name of a common region
whose size is indicated by the value of the symbol.

The value of a word in the text or data portions which is not a reference to
an undefined external symbol is exactly that value which will appear in core
when the file is executed. If a word in the text or data portion involves a
reference to an undefined external symbol, as indicated by the relocation
information for that word, then the value of the word as stored in the file is
an offset from the associated external symbol. When the file is processed
by the link editor and the external symbol becomes defined, the value of
the symbol will be added into the word in the file.

October 1983 - 3 -

A.OUT(4) A.OUT (4)

If relocation information is present, it will appear in the form of the struc­
ture shown above.

SEE ALSO
asO), IdO), nmO)

October 1983 - 4 -

ACCT(4) ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include < sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form
defined by < sys/ acct.h >, whose contents are:

typedef ushort comp_t; /* "floating point" */
/* 13-bit fraction, 3-bit exponent */

struct acct {
char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
ushort ac_uid; /* Accounting user ID */
ushort ac_gid; / * Accounting group ID */
dev_t ac_tty; /* control typewriter */
time_t ac_btime; /* Beginning time */
comp_t ac_utime; /* acctng user time in clock ticks */
comp_t ac_stime; /* acctng system time in clock ticks */
comp_t ac_etime; / * acctng elapsed time in clock ticks */
comp_t ac_mem; /* memory usage in clicks */
comp_t ac_io; /* chars trnsfrd by read/write */
comp_t aCJw; /* number of block reads/writes */
char

} ;
ac_comm[S] ; /* command name */

extern struct acct acctbuf;
extern struct in ode *acctp; / * inode of accounting file */

#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 / * used super-user privileges */
#define ACCTF 0300 /* record type: 00 = acct */

In acJ/ag, the AFORK flag is turned on by each jork(2) and turned off by
an exec(2). The ac comm field is inherited from the parent process and is
reset by any exec. Each time the system charges the process with a clock
tick, it also adds to ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac mem / (ac stime + ac utime) can be viewed as an approxi­
mation to the mean process size, as modified by text-sharing.

October 1983 - 1 -

ACCT(4) ACCT(4)

The structure tacct, which resides with the source files of the accounting
commands, represents the total accounting format used by the various
accounting commands:

1*
* total accounting (for acct period), also for day
*1

struct tacct {
uid t
char
float
float
float
float
long
unsigned short
unsigned short
unsigned short

ta uid;
ta-name[S];
ta -cpu [2];
ta-kcore[2];
ta=con[2];
ta_du;
ta_pc;
ta sc;
ta-dc;

1* userid *1
1* login name *1
1* cum. cpu time, p/np (mins) *1
1* cum kcore-minutes, p/np *1
1* cum. connect time, p/np, mins *1
1* cum. disk usage *1
1* count of processes *1
1* count of login sessions *1
1* count of disk samples *1
1* fee for special services *1

} ;

SEE ALSO

ta)ee;

BUGS

acct (1 M), acctcom (1), acct (2) .

The ac_mem value for a short-lived command gives little information about
the actual size of the command, because ac mem may be incremented while
a different command (e.g., the shell) is being executed by the process.

October 1983 - 2 -

ALTBLK(4) (UniSoft) ALTBLK(4)

NAME
altblk - alternate block information for bad block handling

SYNOPSIS
#include < altblk.h>

DESCRIPTION
Altblk is the data structure used by badblk(1M) to handle bad blocks for
disk drives that support soft sector bad block remapping.

The layout of this structure is as follows:

#define MAXALT 50 1* max alternate disk blocks * /
#define ALTMAGIC OxDBDF 1* bad block information is valid flag */

1*
* structure for alternate block mapping
*/

struct a map {
long a altbk; 1* bad block * /
long a=index; /* relative bad block index * /

} ;

1*
* disk header block format for alternate block mapping
*/

struct altblk {
char a_fill [BSIZE-sizeof(struct a_map) -4 *sizeof(Iong)];

};

struct a map a map [I];
long a magic; -
long a=count;
long a nicbad;
long a=maxalt;

/* fill to make structure BSIZE bytes long */
1* mapping * /
1* verification code (ALTMAGIC) * /
1* bad block count * /
1* max number of bad blocks */
/* max alt block used so far * /

This structure describes the upper portion of block 0 of each physical disk.
The array a map is inverted (i.e., it is indexed backwards). The specific
fields in altblk are:

a_maxalt - the next usable block in bad block area relative to the start of
the bad block area

a nicbad - the maximum number of elements in the a map structure
a=count - the number of bad blocks currently remapped on the disk
a_magic - a magic number for verification
a_map - bad block remap information

SEE ALSO
badblk(1M)

October 1983 - 1 -

AR(4) AR(4)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar.b>

DESCRIPTION
The archive command aT is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link-editor Id.

A file produced by aT has a magic number at the start, followed by the con­
stituent files, each preceded by a file header. The magic number and
header layout as described in the include file are:

#define ARFMAG 0177545

struct

} ;

ar hdr {
char
long
short
short
short
long

ar_name[I4];
ar_date;
ar uid;
ar:gid;
ar_mode;
ar_size;

The "ar fmag" field contains the 32-bit number ARFMAG to help verify the
presence of a header. The name is a blank padded string. The other fields
are left-adjusted, blank-padded numbers. They are decimal except for
"ar mode", which is octal. The date is the modification date of the file at
the time of its insertion into the archive.

Each file begins on an even (0 mod 2) boundary; a new-line is inserted
between files if necessary. Nevertheless the size given reflects the actual
size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

SEE ALSO

BUGS

ar(I), Id(I), nm(I)

File names lose trailing blanks. Most software dealing with archives takes
even an included blank as a name terminator.

October 1983 - 1 -

CHECKLIST (4) CHECKLIST (4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory lete and contains a list of at most 15 special
file names. Each special file name is contained on a separate line and
corresponds to a file system. Each file system will then be automatically
processed by the jsck(IM) command.

FILES
/ etc/ checklist

SEE ALSO
fsck(IM).

October 1983 - 1 -

CORE(4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
The UNIX System writes out a core image of a terminated process when any
of various errors occur. See signal(2) for the list of reasons; the most com­
mon are memory violations, illegal instructions, bus errors, and user­
generated quit signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls
apply). A process with an effective user ID different from the real user ID
will not produce a core image.

The first section of the core image is a copy of the system's per-user data
for the process, including the registers as they were at the time of the fault.
The size of this section depends on the parameter USIZE , which is defined
in /usr/include/sys/param.h. The remainder represents the actual con­
tents of the user's core area when the core image was written. If the text
segment is read-only and shared, or separated from data space, it is not
dumped.

The format of the information in the first section is described by the user
structure of the system, defined in /usr/include/sys/user.h. The impor­
tant stuff not detailed therein is the locations of the registers, which are
outlined in /usr/include/sys/reg.h.

SEE ALSO
setuid (2), signal(2).

October J 983 - 1 -

CPIO (4) CPIO (4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(I) is not used, is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h ino,
h=mode,
h_uid,
h_gid;

short h_nlink,
h rdev,
h - mtime[2],
h - namesize,
h - filesize [2] ;

char h=name[h_namesize rounded to word];

When the -c option is used, the header information is described by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% 1110%s",
&Hdr.h magic, &Hdr.h dev, &Hdr.h ino, &Hdr.h mode,
&Hdr.h - uid, &Hdr.h gkt, &Hdr.h nlink, &Hdr.h rdev,
&Longtime, &Hdr.h"=-namesize,&Congfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h...filesize,
respectively. The contents of each file are recorded in an element of the
array of varying length structures, archive, together with other items
describing the file. Every instance of h_magic contains the constant 070707
(octal). The items h_dev through h_mtime have meanings explained in
stat(2). The length of the null-terminated path name h_name, including
the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!. Special
files, directories, and the trailer are recorded with h...filesize equal to zero.

SEE ALSO
cpio(I), find(I), stat(2).

October 1983 - 1 -

DIR(4) DIR (4)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a bit
in the flag word of its i-node entry (see js(4». The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif

struct direct (
ino_t
char

d ino;
d=name[DIRSIZ1;

By convention, the first two entries in each directory are for. and... The
first is an entry for the directory itself. The second is for the parent direc­
tory. The meaning of .• is modified for the root directory of the master file
system; there is no parent, so •• has the same meaning as ..

SEE ALSO
fs(4).

October 1983 - 1 -

ENVIRON (4) (UniSoft) ENVIRON (4)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the 'environment' is made available by exec(2)
when a process begins. By convention these strings have the form
'name= value'. The following names are used by various commands:

PA TH The sequence of directory prefixes that sh, time, nice (I), etc.,
apply in searching for a file known by an incomplete path name.
The prefixes are separated by':'.

HOME

TERM

SHELL

Login (I) sets :
PATH= :/bin;/usr/bin.

A user's login directory, set by login(I) from the password file
passwd(5).

The kind of terminal for which output is to be prepared. This
information is used by commands, such as nrojJ; more, or vi,
which may exploit special terminal capabilities. See letcltermcap
or (termcap(5» for a list of terminal types.

The file name of the users login shell.

TERMCAP The string describing the terminal in TERM, or the name of the
termcap file, see term cap (5) .

EXINIT A startup list of commands read by ex(I), edit(I), and v;(I).

USER The login name of the user.

Further names may be placed in the environment by the export command
and 'name=value' arguments in sh(I), or by the setenv command if you
use csh(I). Arguments may also be placed in the environment at the point
of an exec(2). It is unwise to conflict with certain sh (I) variables that are
frequently exported by ".profile" files: MAIL, PSI, PS2, IFS.

SEE ALSO
csh(I), ex(I), 10gin(I), sh(I), exec(2), system(3S), termcap(5), tty(7).

October 1983 - 1 -

ERRFILE(4) ERRFILE(4)

NAME
errfile - error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is gen­
erated and passed to the error-logging daemon for recording in the error log
for later analysis. The default error log is lusr/adm/errfile.

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following for­
mat:

struct errhdr {
short
short

} ;
time_t

e type;
e)en;
e_time;

I * record type * I
1* bytes in record (with header) *1
1* time of day *1

The permissible record types are as follows:

#define E GOTS 010 1* Start for UNIX/TS *1
#define E-GORT 011 1* Start for UNIX/RT *1
#define E-STOP 012 1* Stop *1
#define E -TCHG 013 1* Time change *1
#define E-CCHG 014 1* Configuration change *1
#define E - BLK 020 I * Block device error *1
#define E-STRAY 030 1* Stray interrupt *1
#define E=PRTY 031 1* Memory parity *1

Some records in the error file are of an administrative nature. These
include the startup record that is entered into the file when logging is
activated, the stop record that is written if the daemon is terminated
"gracefully", and the time-change record that is used to account for
changes in the system's time-of-day. These records have the following for­
mats:

struct estart {

};

struct utsname e name;
unsigned e=bconf;

#define eend errhdr

struct etimchg {

} ;
time_t

1* system names *1
1* block device configuration *1

1* new time *1

Stray interrupts cause a record with the following format to be logged in the
file:

struct estray {
physadr
unsigned

} ;

e_saddr;
e_sbacty;

I * stray loc or device addr *1
I * active block devices *1

Memory parity error record that is logged whenever one occurs, hardware
permitting:

October 1983

struct eparity {
int

} ;
1* memory subsystem registers *1

- 1 -

ERRFILE(4) ERR FILE (4)

Error records for block devices have the following format:

struct eblock {

} ;

dev t e_dev;
unsigned e_bacty;
struct iostat e stats;
short e - bflags;
short e = nreg;
daddr_t e bnum;
unsigned e -bytes;
paddr t e = memadd;
ushort e _ rtry;
struct pos {

unsigned unit;
unsigned cyl;
unsigned trk;
unsigned sector;

} e_pos;

/ * "true" major + minor dev number */
/* other block I/O activity */
/* unit I/O statistics */
/* read/write, error, etc */
/* number of device registers */
/* logical block number */
/* number of bytes to transfer */
/* buffer memory address */
/* number of retries where */
/* the block device the error occurred */
/* set invalid fields to -1 */

The following values are used in the e_ bjlags word:

#define E WRITE 0 / * write operation */
#define E - READ 1 / * read operation */
#define E -NOlO 02 /* no 110 pending */
#define E - PHYS 04 /* physical 110 */
#define E-MAP 010 /* Unibus map in use */
#define E=ERROR 020 /* 110 failed */

SEE ALSO
errdemon(1M).

October 1983 - 2 -

FS(4) FS(4)

NAME
file system - format of system volume

SYNOPSIS
#include < sys/filsys.h >
#include < sys/types.h >
#include < sys/param.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512
byte long sectors. Sector 0 is unused and is available to contain a bootstrap
program or other information.

Sector 1 is the super-block. The format of a super-block is:

/*
* Structure of the super-block
*/

struct

};

filsys {
ushort
daddr_t
short
daddr t
short -
ino t
char
char
char
char
time t
short
daddr_t
ino_t
char
char

s isize;
s-fsize;
s-nfree;
s -free [NICFREE);
s-ninode;
s-inode[NICINOD);
s-flock;
s -ilock;
s=fmod;
s_ronly;
s time;
s-dinfo[4);
s-tfree;
s-tinode;
s-fname[6);
s)pack[6);

#define FsMAGIC Oxfd187e20

#define Fsl b 1
#define Fs2b 2

1* size in blocks of i-list * /
/* size in blocks of entire volume * /
1* number of addresses in s free * /
1* free block list * / -
/* number of i-nodes in s inode * /
1* free i-node list * / -
1* lock during free list manipulation * /
1* lock during i-list manipulation * /
1* super-block modified flag *1
/* mounted read-only flag * /
1* last super-block update * /
1* device information * /
1* total free blocks* /
/* total free inodes */
/* file system name * /
1* file system pack name * /

/* s_magic number */

/* 512 byte block */
/* 1024 byte block */

S type indicates the file system type. Currently, two types of file systems
are supported: the original 512-byte oriented and the new improved 1024-
byte oriented. S magic is used to distinguish the original 512-byte oriented
file systems from the newer file systems. If this field is not equal to the
magic number, FsMAGIC, the type is assumed to be Fslb, otherwise the
s type field is used. In the following description, a block is then determined
by the type. For the original 512-byte oriented file system, a block is 512
bytes. For the 1024-byte oriented file system, a block is 1024 bytes or two
sectors. The operating system takes care of all conversions from logical
block numbers to physical sector numbers.

S isize is the address of the first data block after the i-list; the i-list starts
just after the super-block, namely in block 2; thus the i-list is s_isize- 2
blocks long. SJsize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad block

October 1983 - 1 -

FS(4)

FILES

FS(4)

numbers; if an "impossible" block number is allocated from the free list or
is freed, a diagnostic is written on the on-line console. Moreover, the free
array is cleared, so as to prevent further allocation from a presumably cor­
rupted free list.

The free list for each volume is maintained as follows. The sJree array
contains, in sJree[Il, ... , sJree[s_nJree- 1], up to 49 numbers of free
blocks. SJree[O] is the block number of the head of a chain of blocks con­
stituting the free list. The first long in each free-chain block is the number
(up to 50) of free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next member of the
chain. To allocate a block: decrement s nJree, and the new block is
sJree[s_nJree1. If the new block number is 0, there are no blocks left, so
give an error. If s nJree became 0, read in the block named by the new
block number, replace s nJree by its first word, and copy the block numbers
in the next 50 longs into the sJree array. To free a block, check if s_nJree
is 50; if so, copy s_nJree and the sJree array into it, write it out, and set
s_nfree to O. In any event set sJree[s_nJree] to the freed block's number
and increment s_nJree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To allocate
an i-node: if s ninode is greater than 0, decrement it and return
s inode[s ninodeC If it was 0, read the i-list and place the numbers of all
free inodes (up to 100) into the s inode array, then try again. To free an
i-node, provided s ninode is less than 100, place its number into
s inode[s ninode] and increment s ninode. If s ninode is already 100, do
not bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the
in ode is really free or not is maintained in the in ode itself.

S_tinode is the total free inodes available in the file system.

S.flock and s_ilock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
sJmod on disk is likewise immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk during the next
periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed, and
is the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).
During a reboot, the s time of the super-block for the root file system is
used to set the system'sidea of the time.

SJname is the name of the file system and sJpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is
reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file. For the format of
an inode and its flags, see inode(4).

/ usr / include/ sys/filsys.h
/ usr / include/ sys/ stat.h

SEE ALSO
fsck(IM), fsdb(IM), mkfs(IM), inode(4).

October 1983 - 2 -

FSPEC (4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX System with
non-standard tabs, (i.e., tabs which are not set at every eighth column).
Such files must generally be converted to a standard format, frequently by
replacing all tabs with the appropriate number of spaces, before they can be
processed by UNIX System commands. A format specification occurring in
the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and : >. Each parameter con­
sists of a keyletter, possibly followed immediately by a value. The follow­
ing parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value
of tabs must be one of the following:
1. a list of column numbers separated by commas, indicating

tabs set at the specified columns;
2. a - followed immediately by an integer n, indicating tabs at

intervals of n columns;
3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t - 8, or equivalently,
tl,9,17,2S,etc. The canned tabs which are recognized are defined
by the tabs(I) command.

ssize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have
been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t - 8
and mO. If the s parameter is not specified, no size checking is performed.
If the first line of a file does not contain a format specification, the above
defaults are assumed for the entire file. The following is an example of a
line containing a format specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

Several UNIX System commands correctly interpret the format specification
for a file. Among them is gath which may be used to convert files to a
standard format acceptable to other UNIX System commands.

SEE ALSO
ed(I), newform(I), tabs(I).

October 1983 - 1 -

GETTYDEFS (4) GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(IM) (see the
UniPlus + Administrator's Manual) to set up the speed and terminal settings
for a line. It supplies information on what the login prompt should look
like. It also supplies the speed to try next if the user indicates the current
speed is not correct by typing a < break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. Lines that begin with # are ignored
and may be used to comment the file. The various fields can contain
quoted characters of the form \b, \n, \c, etc., as well as \nnn, where nnn is
the octal value of the desired character. The various fields are:

label This is the string against which getty tries to match its second
argument. It is often the speed, such as 1200, at which the
terminal is supposed to run, but it needn't be (see below).

initial-flags These flags are the initial ioctl(2) settings to which the ter­
minal is to be set if a terminal type is not specified to getty.
Getty understands the symbolic names specified in
/usr/include/sys/termio.h (see termio(7) in the UniPlus+
Administrator's Manual). Normally only the speed flag is
required in the initial-flags. Getty automatically sets the ter­
minal to raw input mode and takes care of most of the other
flags. The initial-flag settings remain in effect until gettyexe­
cu tes login (I) .

final-flags These flags take the same values as the initial-flags and are
set just prior to getty executes login. The speed flag is again
required. The composite flag SANE takes care of most of
the other flags that need to be set so that the processor and
terminal are communicating in a rational fashion. The other
two commonly specified final-flags are TAB3, so that tabs are
sent to the terminal as spaces, and HUPCL, so that the line
is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the login-prompt field.

next-label This indicates the next label of the entry in the table that
getty should use if the user types a < break> or the input
cannot be read. Usually, a seri.es of speeds are linked
together in this fashion, into a closed set. For instance,
2400 linked to 1200, which in turn is linked to 300, which
finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
default entry. It is also used if getty can't find the specified label. If
/etc/gettydefs itself is missing, there is one entry built into the command
which will bring up a terminal at 300 baud.

October 1983 - 1 -

GETTYDEFS (4) GETTYDEFS (4)

FILES

It is strongly recommended that after making or modifying /etc/gettydefs,
it be run through getty with the check option to be sure there are no errors.

The following four symbols define the SANE state.

define ISANE (BRKINT\IGNPAR~STRIP~CRNL~XON)

define OSANE (OPOSTPNLCR)

define CSANE (CS7IPARENBicREAD)

define LSANE (ISIG~CANONIECHOIECHOK)

/etc/gettydefs

SEE ALSO
getty(1M), termio(7) in the UniPlus+ Administrator's Manual.
login (1), ioctI(2).

July 1984 - 2 -

GPS (4) GPS (4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher
level graphics programs such as plot (in stat(IG» and vtoe (in toe (I G))
produce GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points from which

zero or more connected line segments are produced. The first
point given produces a move to that location. (A move is a relo­
cation of the graphic cursor without drawing.) Successive points
produce line segments from the previous point. Parameters are
available to set color, weight, and style (see below).

arc The arc primitive has a variable number of points to which a
curve is fit. The first point produces a move to that point. If
only two points are included a line connecting the points will
result, if three points a circular arc through the points is drawn,
and if more than three, lines connect the points. (In the
future, a spline will be fit to the points if they number greater
than three.) Parameters are available to set color, weight, and
style.

text The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn.
Parameters are color, font, textsize, and textangle.

hardware The hardware primitive draws hardware characters or gives con­
trol commands to a hardware device. A single point locates the
beginning location of the hardware string.

comment A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a com­
ment of zero length.

G PS PARAMETERS
color

weight

style

font

October 1983

Color is an integer value set for arc, lines, and text primitives.

Weight is an integer value set for arc and lines primitives to
indicate line thickness. The value 0 is narrow weight, 1 is
bold, and 2 is medium weight.

Style is an integer value set for lines and arc primitives to give
one of the five different line styles that can be drawn on Tek­
tronix 4010 series storage tubes. They are:
o solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

An integer value set for text primitives to designate the text
font to be used in drawing a character string. (Currently font is
expressed as a four-bit weight value followed by a four-bit style
value.)

- 1 -

GPS (4) GPS (4)

textsize Textsize is an integer value used in text primitives to express the
size of the characters to be drawn. Textsize represents the
height of characters in absolute universe-units and is stored at
one-fifth this value in the size-orientation (so) word (see
below).

textangle Textangle is a signed integer value used in text primitives to
express rotation of the character string around the beginning
point. Textangle is expressed in degrees from the positive x­
axis and can be a positive or negative value. It is stored in the
size-orientation (so) word as a value 256/360 of it's absolute
value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

cw

point(s)

sw

so

string

October 1983

cw points sw
cw pOints sw
cw point sw so {string J
cw pOint {string J
cw (string]

Cw is the control word and begins all primitives. It consists of
four bits that contain a primitive-type code and twelve bits that
contain the word-count for that primitive.

Point{s) is one or more pairs of integer coordinates. Text and
hardware primitives only require a single point. Point(s) are
values within a Cartesian plane or universe having 64K (- 32K
to + 32K) points on each axis.

Sw is the style-word and is used in lines, arc, and text primitives.
The first eight bits contain color information. In arc and lines
the last eight bits are divided as four bits weight and four bits
style. In the text primitive the last eight bits of sw contain the
font.

So is the size-orientation word used in text primitives. The first
eight bits contain text size and the remaining eight bits contain
text rotation.

String is a null-terminated character string. If the string does
not end on a word boundary an additional null is added to the
GPS file to insure word-boundary alignment.

- 2 -

GROUP(4) GROUP(4)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all user allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory fete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical group ID's to names.

/etc/group

SEE ALSO
newgrp(1), passwd(l), crypt(3C), passwd(4).

October 1983 - 1 -

INITTAB (4) INITTAB (4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process
dispatcher. The process that constitutes the majority of init's process
dispatching activities is the line process fetclgetty that initiates individual ter­
minal lines. Other processes typically dispatched by init are daemons and
the shell.

The inittab file is composed of entries that are position dependent and have
the following format:

id: rsta te :action: process

Each entry is delimited by a newline, however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the process field using
the sh(I) convention for comments. Comments for lines that spawn gettys
are displayed by the who(I) command. It is expected that they will contain
some information about the line such as the location. There are no limits
(other than maximum entry size) imposed on the number of entries within
the inittab file. The entry fields are:

id This is one to four characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed.
Run-levels effectively correspond to a configuration of processes in
the system. That is, each process spawned by init is assigned a
run-level or run-levels in which it is allowed to exist. The run-levels
are represented by a number ranging from 0 through 6. As an
example, if the system is in run-levell, only those entries having
a I in the rstate field will be processed. When init is requested to
change run-levels, all processes which do not have an entry in the
rstate field for the target run-level will be sent the warning signal
(SIGTERM) and allowed a 20 second grace period before being
forcibly terminated by a kill signal (SIGKILL). The rstate field can
define multiple run-levels for a process by selecting more than one
run-level in any combination from 0 - 6. If no run-level is
specified, then action will be taken on this process for all run-levels
0-6. There are three other values, a, band c, which can appear
in the rstate field, even though they are not true run-levels.
Entries which have these characters in the rstate field are pro­
cessed only when the telinit (see in it (1 M» process requests them
to be run (regardless of the current run-level of the system). They
differ from run-levels in that the system is only in these states for
as long as it takes to execute all the entries associated with the
states. A process started by an a, b or c command is not killed
when init changes levels. They are only killed if their line in
letc/inittab is marked off in the action field, their line is deleted
entirely from /etc/inittab, or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by init are as follows:

respawn

October 1983

If the process does not exist then start the process,
do not wait for its termination (continue scanning
the inittab file), and when it dies restart the process.

- 1 -

INITTAB (4) INITTAB (4)

If the process currently exists then do nothing and
continue scanning the inittab file.

wait Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its termi­
nation. All subsequent reads of the inittab file while
init is in the same run-level will cause init to ignore
this entry.

once Upon init's entering a run-level that matches the
entry's rstate, start the process, do not wait for its
termination and when it dies, do not restart the pro­
cess. If upon entering a new run-level, where the
process is still running from a previous run-level
change, the program will not be restarted.

boot The entry is to be processed only at init's boot-time
read of the inittab file. Init is to start the process, not
wait for its termination, and when it dies, not restart
the process. In order for this instruction to be mean­
ingful, the rstate should be the default or it must
match init's run-level at boot time. This action is use­
ful for an initialization function following a hardware
reboot of the system.

bootwait The entry is to be processed only at init's boot-time
read of the inittab file. Init is to start the process,
wait for its termination and, when it dies, not restart
the process.

powerfail Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR see
signal(2» .

powerwait Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR) and
wait until it terminates before continuing any pro­
cessing of inittab.

off If the process associated with this entry is currently
running, send the warning signal (SIGTERM) and
wait 20 seconds before forcibly terminating the pro­
cess via the kill signal (SIGKILL). If the process is
nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is
given a different keyword in order to divorce its asso­
ciation with run-levels. This is used only with the a,
b or c values described in the rstate field.

initdefault An entry with this action is only scanned when init
is initially invoked. Init uses this entry, if it exists, to
determine which run-level to enter initially. It does
this by taking the highest run-level specified in the
rstate field and using that as its initial state. If the
rstate field is empty, this is interpreted as 0123456
and so init will enter run-level 6. Also, the initde­
fault entry can use s to specify that init start in the

October 1983 - 2 -

INITTAB (4) INITTAB (4)

FILES

sysinit

SINGLE USER state. Additionally, if init doesn't find
an initdefault entry in /etc/inittab, then it will
request an initial run-level from the user at reboot
time.

Entries of this type are executed before init tries to
access the console. It is expected that this entry will
be only used to initialize devices on which init might
try to ask the run-level question. These entries are
executed and waited for before continuing.

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh -c 'exec com­
mand'. For this reason, any legal sh syntax can appear in the the
process field. Comments can be inserted with the; # comment syn­
tax.

letc/inittab

SEE ALSO
getty(1M), init(IM) in the UniPlus+ Administrator's Manual.
sh(I), who(I), exec(2), open(2), signaI(2).

October 1983 - 3 -

INODE(4)

NAME
in ode - format of an inode

SYNOPSIS
#include < sys/types.h >
#include < sys/ino.h >

DESCRIPTION

INODE(4)

An i-node for a plain file or directory in a file system has the following
structure defined by < sys/ino.h > .

/* Inode structure as it appears on a disk block. */
struct din ode {

} ;

/*

ushort
short
ushort
ushort
off t
char
time_t
time_t
time_t

di mode;
dCnlink;
druid;
dCgid;
di-size;
dC addr[40] ;
di atime;
dC mtime;
dCctime;

* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

/* mode and type of file */
/* number of links to file */
/* owner's user id */
/* owner's group id */
/* number of bytes in file */
/* disk block addresses */
/ * time last accessed */
/ * time last modified */
/ * time created */

For the meaning of the defined types of.[t and time _ t see types (5) .

FILES
/usrlinclude/syslino.h

SEE ALSO
stat(2), fs(4), types(5).

October 1983 - 1 -

ISSUE (4) ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION
The file fete/issue contains the issue or project identification to be printed
as a login prompt. This is an ASCII file which is read by program getty and
then written to any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO
10ginO).

October 1983 - 1 -

MASTER (4) MASTER (4)

NAME
master - master device information table

DESCRIPTION
This file is used by con fig to obtain device information that enables it to
generate the configuration files. The file consists of 3 parts, each separated
by a line with a dollar sign ($) in column 1. Part 1 contains device infor­
mation; part 2 contains names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an asterisk (.) in column 1
is treated as a comment.

Part 1 contains lines consisting of at least 10 fields and at most 13 fields,
with the fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: interrupt vector size (decimal, in bytes).
Field 3: device mask (octal) - each "on" bit indicates that the

handler exists:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:
Field 10:
Fields 11-13:

000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.
device type indicator (octal):
000200 allow only one of these devices
000100 suppress count field in the conl.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.
handler prefix (4 chars. maximum).
device address size (decimal).
major device number for block-type device.
major device number for character-type device.
maximum number of devices per controller (decimal).
maximum bus request level (4 through 7).
optional configuration table structure declarations (8
chars. maximum).

Part 2 contains lines with 2 fields each:

Field 1:
Field 2:

alias name of device (8 chars. maximum).
reference name of device (8 chars. maximum; specified
in part 1).

Part 3 contains lines with 2 or 3 fields each:

October 1983

Field 1: parameter name (as it appears in description file; 20
chars. maximum)

Field 2: parameter name (as it appears in the conl.c file; 20
chars. maximum)

Field 3: default parameter value (20 chars. maximum; parame­
ter specification is required if this field is omitted)

- 1 -

MASTEll(4) MASTER (4)

Devices that are not interrupt-driven have an interrupt vector size of zero.
The 040 bit in Field 4 causes config to record the interrupt vector although
the ivec.s file will show no interrupt vector assignment at those locations
(interrupts here will be treated as strays).

October 1983 - 2 -

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include < mnttab.h>

DESCRIPTION

FILES

Mnttab contains a table of devices, mounted by the mount(IM) command,
in the following structure as defined by < mnttab.h >:

struct mnttab {
char
char
short

} ;
time_t

mt dev[1O);
mt-filsys [I 0) ;
m(ro_flg;
mt_time;

Each entry is 26 bytes in length; the first 10 bytes are the null-padded name
of the place where the special file is mounted; the next 10 bytes represent
the null-padded root name of the mounted special file; the remaining 6
bytes contain the mounted specialJile's read/write permissions and the date
on which it was mounted.

/etc/mnttab

SEE ALSO
mount(IM), setmnt(IM).

October 1983 - 1 -

PASSWD (4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
user's real name, and other information if desired
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from
the next by a colon. The GCOS field is used only when communicating
with that system, and in other installations can contain any desired infor­
mation. Each user is separated from the next by a new-line. If the pass­
word field is null, no password is demanded; if the Shell field is null, the
Shell itself is used.

This file resides in directory lete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical user ID's to names.

The encrypted password consists of 13 characters chosen from a 64 charac­
ter alphabet (., I, 0-9, A-Z, a-z), except when the password is null in
which case the encrypted password is also null. Password aging is effected
for a particular user if his encrypted password in the password file is fol­
lowed by a comma and a non-null string of characters from the above
alphabet. (Such a string must be introduced in the first instance by the
super-user.)

The first character of the age, M say, denotes the maximum number of
weeks for which a password is valid. A user who attempts to login after his
password has expired will be forced to supply a new one. The next charac­
ter, m say, denotes the minimum period in weeks which must expire before
the password may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last changed.
(A null string is equivalent to zero.) M and m have numerical values in the
range 0 - 63 that correspond to the 64 character alphabet shown above (i.e.
I = 1 week; z = 63 weeks). If m = M = 0 (derived from the string . or
..) the user will be forced to change his password the next time he logs in
(and the "age" will disappear from his entry in the password file). If m >
M (signified, e.g., by the string ./) only the super-user will be able to
change the password.

/ etc/ passwd

SEE ALSO
10ginO), passwdO), a64l(3C), crypt(3C), getpwent(3C), group(4).

October 1983 - 1 -

PLOT (4) PLOT (4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in p!ot(3X) and are
interpreted for various devices by commands described in tp!ot(IG). A
graphics file is a stream of plotting instructions. Each instruction consists
of an ASCII letter usually followed by bytes of binary information. The
instructions are executed in order. A point is designated by four bytes
representing the x and y values; each value is a signed integer. The last
designated point in an I, m, 0, or p instruction becomes the "current
point" for the next instruction.

Each of the following descriptions begins with the name of the correspond­
ing routine in p!ot(3X).

m move: The next four bytes give a new current point.

° cont: Draw a line from the current point to the point given by the next
four bytes. See tp!ot(I G).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the
point given by the following four bytes.

label: Place the following ASCII string so that its first character falls on
the current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for
drawing further lines. The styles are "dotted", "solid", "longdashed",
"shortdashed", and "dotdashed". Effective only for the - T4014 and
-Tver options of tp!ot(IG) (Tektronix 4014 terminal and Versatec
plotter).

s space: The next four bytes give the lower left corner of the plotting
area; the following four give the upper right corner. The plot will be
magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear
below for devices supported by the filters of tp!ot(I G). The upper limit is
just outside the plotting area. In every case the plotting area is taken to be
square; points outside may be displayable on devices whose face is not
square.

SEE ALSO

DASI300
DASI300s
DASI450
Tektronix 4014
Versatec plotter

space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);

tp)ot(IG), plot(3X), gps(4), term(5).

October 1983 - 1 -

PNCH (4) PNCH(4)

NAME
pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record con­
sists of a single control byte followed by a variable number of data bytes.
The control byte specifies the number (which must lie in the range 0-80) of
data bytes that follow. The data bytes are 8-bit codes that constitute the
card image. If there are fewer than 80 data bytes, it is understood that the
remainder of the card image consists of trailing blanks.

October 1983 - 1 -

PROFILE (4) PROFILE (4)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named .profile, that file will be exe­
cuted (via the shell's exee .profile) before your session begins; .profiles are
handy for setting exported environment variables and terminal modes. If
the file fete/profile exists, it will be executed for every user before the
.profile. The following example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL = / usr / mail/ myname
Add my /bin directory to the shell search sequence
PA TH = $PA TH :$HOME/bin
Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

300)
300s)
450)

esac

hp)
7451735)
43)
40141 tek)
*)

$HOME/ . profile
/ etc/ profile

stty cr2 nIO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty crl nil -tabs; TERM = 745;;
stty crl nlO -tabs;;
stty crO nlO -tabs ff1; TERM=4014; echo "\33;";;
echo "$TERM unknown";;

SEE ALSO
env(I), login(I), mail(I), sh(I), stty(I), su(I), environ(5), term(5).

October 1983 - I -

sees FILE (4) sees FILE (4)

NAME
sccsfile - format of sees file

DESCRIPTION
An sees file is an ASCII file. It consists of six logical parts: the checksum,
the delta table (contains information about each delta), user names (con­
tains login names and/or numerical group IDs of users who may add del­
tas), flags (contains definitions of internal keywords), comments (contains
arbitrary descriptive information about the file), and the body (contains the
actual text lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH
(start of heading) character (octal 00l). This character is hereafter referred
to as the control character and will be represented graphically as @. Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between
00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those
of the first line. The @h provides a magic number of (octal) 064001.

Delta table

October 1983

The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <sees ID> r/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD •••
@x DDDDD •••
@g DDDDD ...
@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines
inserted/ deleted/ unchanged respectively. The second line (@d) con­
tains the type of the delta (currently, normal: D, and removed: R), the
sees 10 of the delta, the date and time of creation of the delta, the
login name corresponding to the real user 10 at the time the delta was
created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

- 1 -

sees FILE (4) SeeSFILE (4)

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names

Flags

October 1983

The list of login names and! or numerical group IDs of users who may
add deltas to the file, separated by new-lines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta.

Keywords used internally (see adminO) for more information on their
use). Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t < type of program>
@f v < program name>
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@fj

< module name>
<floor>
<ceiling>
< default-sid>

@f 1 < lock-releases>
@f q < user defined>
@f z < reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword.
The v flag controls prompting for MR numbers in addition to com­
ments; if the optional text is present it defines an MR number validity
checking program. The i flag controls the warning/error aspect of the
"No id keywords" message. When the i flag is not present, this mes­
sage is only a warning; when the i flag is present, this message will
cause a "fatal" error (the file will not be gotten, or the delta will not
be made). When the b flag is present the - b keyletter may be used
on the get command to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the %M%
identification keyword. The f flag defines the "floor" release; the
release below which no deltas may be added. The c flag defines the
"ceiling" release; the release above which no deltas may be added.
The d flag defines the default SID to be used when none is specified
on a get command. The n flag causes delta to insert a "null" delta (a
delta that applies no changes) in those releases that are skipped when
a delta is made in a new release (e.g., when delta 5.1 is made after
delta 2.7, releases 3 and 4 are skipped). The absence of the n flag
causes skipped releases to be completely empty. The j flag causes get
to allow concurrent edits of the same base SID. The I flag defines a
list of releases that are locked against editing (getO) with the - e
keyletter). The q flag defines the replacement for the %Q%

- 2 -

sees FILE (4) sees FILE (4)

identification keyword. z flag is used in certain specialized interface
programs.

Comments

Body

SEE ALSO

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically will contain a description of the file's pur­
pose.

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to
the delta for the control line.

admin(I), delta(I), get(I), prs(l).
Source Code Control System User's Guide

October 1983 - 3 -

TP(4) (UniSoft) TP(4)

NAME
tp - magnetic tape format

DESCRIPTION
The command tPO) dumps files to and extracts files from magtape.

Block zero contains a copy of a stand-alone bootstrap program.

Blocks 1 through 62 contain a directory of the tape. There are 496 entries
in the directory; 8 entries per block; 64 bytes per entry. Each entry has the
following format:

struct tpent {
char
short
char
char
char
char
char
short
long
short
short
short

pathnam [32];
mode;
uid;
uid;
gid;
spare;
sizeO;
size2;
time;
tapea;
unused[8] ;
cksum;

1 * tape address *1

1 * check sum *1

The pathnam entry is the path name of the file when put on the tape. If
the path name starts with a zero word, the entry is empty. It is at most 32
bytes long and ends in a null byte. Mode, uid, gid, the sizes and time
modified are the same as described under i-nodes (fs(4». The tape address
is the tape block number of the start of the contents of the file. Every file
starts on a block boundary. The file occupies (size+ 511)/512 blocks of
continuous tape. The checksum entry has a value such that the sum of the
32 words of the directory entry is zero.

Blocks 63 on are available for file storage.

A fake entry has a size of zero. See (pO).

SEE ALSO
cpioO), tpO), fs(4).

October 1983 - 1 -

TTYTYPE(4) (UniSoft) TTY TYPE (4)

NAME
ttytype - data base of terminal types by port

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of
terminal that is attached to it. There is one line per port, containing the
terminal kind (as a name listed in termcap(5», a space, and the name of
the tty, minus /dev/.

This information is read by tset(1) and by /ogin(1) to initialize the TERM
environment variable at login time.

EXAMPLE

FILES

dw console
3a ttyO
hl9 ttyl
hl9 tty2
du tty dO

/ etc/ ttytype

SEE ALSO
tset (I), login (I) .

October 1983 - I -

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include < sys/types.h >
#include < utmp.h >

DESCRIPTION

FILES

These files, which hold user and accounting information for such com­
mands as who(I), write(I) , and login(I) , have the following structure as
defined by < utmp.h > :
#define UTMP FILE "/etc/utmp"
#define WTMP- FILE "I etc/wtmp"
#define ut_name ut_user

struct utmp {
char
char
char
short
short

} ;

struct
short
short

} ut_exit;

ut user[8];
ut-id[4];
u(line[I2];
ut_pid;
ut type;
exit_status {

e_termination;
e_exit;

1* Definitions for ut type *1
#define EMPTY - 0
#define RUN LVL 1
#define BOOT TIME 2
#define OLD TIME 3
#define NEW-TIME 4
#define INIT -PROCESS 5
#define LOGIN PROCESS 6
#define USER PROCESS 7
#define DEAD PROCESS 8
#define ACCOUNTING 9

1* User login name *1
1* letclinittab id (usually line #) *1
1* device name (console, lnxx) *1
I * process id * I
1* type of entry *1

1* Process termination status *1
1* Process exit status *1
1* The exit status of a process
* marked as DEAD_PROCESS. *1

1* time entry was made *1

I * Process spawned by "in it" *1
/ * A "getty" process waiting for login *1
1* A user process *1

#define UTMAXTYPE ACCOUNTING 1* Largest legal value of ut_type *1

1* Special strings or formats used in the "ut line" field when *f
I * accounting for something other than a process. *1
1* No string for the ut line field can be more than 11 chars + *1
I * a NULL in length. ~

#define RUNLVL MSG "run -level %c"
#define BOOT MSG "system boot"
#define OTIME MSG "old time"
#define NTIME=MSG "new time"

lusrlinclude/utmp.h
letc/utmp
letc/wtmp

October 1983 - 1 -

UTMP(4) UTMP (4)

SEE ALSO
iogin(1), who(1), write(1), getut(3C).

October J 983 - 2 -

INTRO (5)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO (5)

This section describes miscellaneous facilities such as macro packages, char­
acter set tables, etc.

October 1983 - 1 -

ASCII(5) ASCII (5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION

FILES

Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

1000 nul 1001 soh 1002 stx 1003 etx 1004 eot 1005 enq 1006 aek 1007 bell
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 er 1016 so 1017 si I
1020 dlel021 del 1022 de21023 de3 1024 de41025 nakl026 syn 027 etb
1030 eanl031 em 1032 subl033 esel034 fs 1035 gs 1036 rs 037 us
1040 sp 1041 1042" 1043 # 1044 $ 1045 % 1046 & 047'
1050 (1051) 1052 * 1053 + 1054, 1055 - 1056. 057 /
1060 0 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 067 7
1070 8 1071 9 1072: 1073; 1074 < 1075 = 1076 > 077?
1100@ IIOIA 1102B 1103C 1104D 1105E 1106F 107G
IllOH 1111 I 1112J 1113K 1114L 1115M 1116N 1170
1120P 1121Q 1122R 1123S 1124T 1125U 1126V 127W
1130 X 1131 Y 1132 Z 1133 [1134 \ 1135] 1136 ~ 137_
1140' 1141 a 1142 b 1143 e 1144 d 1145 e 1146 f 147 g
1150 h 1151 1152 j 1153 k 1154 I 1155 m 1156 n 157 0

1160 p 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 167 w
1170 x 1171 y 1172 z 1173 { 1174 I 1175} 1176 - 177 del

00 null 01 soh I 02 s tx I 03 etx 04 eot 05 enql 06 aek 07 bel
08 bs 09 ht I Oa nl I Ob vt Oe np Od er I Oe so Of s i
10 dIe 11 del I 12 de21 13 dc3 14 de4 15 nakl 16 syn 17 etb
18 can 19 em I la subl Ib esc 1 c fs Id gs I Ie rs If us
20 sp 21 ! I 22 " I 23 # 24 $ 25 % I 26 & 27 '
28 (29) I 2a * I 2b + 2c , 2d - I 2e . 2f1
30 0 31 1 I 32 2 I 33 3 34 4 35 5 I 36 6 37 7
38 8 39 9 I 3a : I 3b ; 3c < 3d = I 3e > 3f?
40 @ 41 A I 42 B I 43 C 44 D 45 E I 46 F 47 G
48 H 49 I I 4a J I 4b K 4c L 4d M I 4e N 4f 0
50 P 51 Q I 52 R I 53 S 54 T 55 U I 56 V 57 W
58 X 59 Y I Sa Z I 5b [5c \ 5d] I 5e

~

Sf
60 ' 61 a I 62 b I 63 c 64 d 65 e I 66 f 67 g
68 h 69 i I 6a j I 6b k 6c I 6d m I 6e n 6f 0

70 p 71 q I 72r I 73 s 74 t 75 u I 76 v 77w
78 x 79 y I 7a z I 7b { 7c I 7d } I 7e - 7f del

/usr/pub/ascii

October 1983 ': 1 -

ENVIRON (5) ENVIRON (5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins. By convention, these strings have the form
"name = value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh(1), time(1) , nice(1) ,
nohup(1), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). Login (1) sets
PATH= :/bin:/usr/bin.

HOME Name of the user's login directory, set by [ogin(1) from the pass­
word file passwd(4).

TERM The kind of terminal for which output is to be prepared. This
information is used by commands, such as mm(1) or tp[ot(1G) ,
which may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxx nzzz where xxx is stan­
dard local time zone abbreviation, n is the difference in hours from
GMT, and zzz is the abbreviation for the daylight-saving local time
zone, if any; for example, EST5EDT.

Further names may be placed in the environment by the export command
and "name=value" arguments in sh(1), by setenv in csh(1) or by exec(2).
It is unwise to conflict with certain shell variables that are frequently
exported by .profile files: MAIL, pst, PS2, IFS.

SEE ALSO
env(1), 10gin(1), sh(1), exec(2), getenv(3C), profile(4), term(5).

October 1983 - 1 -

EQNCHAR(S>

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] I troff [options]

neqn /usr/pub/eqnchar [files] I nroff [options]

DESCRIPTION

EQNCHAR(S>

Eqnchar contains troffand nroffcharacter definitions for constructing char­
acters that are not available on the Wang Laboratories, Inc. CI A/T photo­
typesetter. These definitions are primarily intended for use with eqn and
neqn; eqnchar contains definitions for the following characters:

ciplus E9 II II square 0

citimes ~ langle / circle 0 \
wig rangle) blot •
-wig - hbar 7i bullet •
> wig ~ ppd L prop a:

<wig .$ < -> - empty I2J

= wig = < => ~ member E

star * 1< <t nomem ~
bigstar * I> :} cup U

=dot - ang L cap n
orsign V rang L incl 6
and sign A 3dot subset C

= del ~ thf supset :::>
oppA 'rj quarter 1,4 !subset k
oppE 3 3quarter 3,4 !supset ~

angstrom A degree 0 scrL Q

==< ~ ==> ~
FILES

lusr/publ eqnchar

SEE ALSO
eqn(I), nroff(I), troff{I).

October 1983 - 1 -

FCNTL(S>

NAME
fcntl - file control options

SYNOPSIS
#include < fcntl.h >

DESCRIPTION
The !entl(2) function provides for control over open files.
describes requests and arguments to !entl and open(2).

/* Flag values accessible to open(2) and !entl(2) */
/* (The first three can only be set by open) */
#define 0 RDONL Y 0
#define 0-WRONL Y 1

/* Non-blocking 110 */

FCNTL(S>

This include file

#define 0-RDWR 2
#define 0 - NDELA Y 04
#define O=APPEND 010 /* append (writes guaranteed at the end) */

/* Flag values accessible only to open(2) */
#define O_CREAT 00400 /* open with file create (uses third open arg)*/
#define 0 TRUNC 01000 /* open with truncation */
#define O=EXCL 02000 /* exclusive open */

/* !entl(2) requests */
#define F DUPFD 0
#define F-GETFD 1
#define F - SETFD 2
#define F-GETFL 3
#define F)ETFL 4

SEE ALSO
fcnt1(2), open(2).

October 1983

/* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/ * Set file flags * /

- 1 -

GREEK(S) GREEK(S)

NAME
greek - graphics for the extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [I greek - Tterminal]

DESCRIPTION
Greek gives the mapping from ASCII to the "shift-out" graphics in effect
between SO and SI on TELETYPE@ Model 37 terminals equipped with a
128-character type-box. These are the default greek characters produced by
nroj]: The filters of greek(1) attempt to print them on various other termi­
nals. The file contains:

alpha a A
GAMMA r G
epsilon
THETA
LAMBDA
xi
rho
tau
psi
OMEGA
partial

FILES
I usr I pu bl greek

SEE ALSO

E

0
A
e
p
T

'" n
a

S
T
E
X
K
I
V
Z
]

beta
delta
zeta
theta
mu
pi
sigma
phi
PSI
nabla
integral

{3
a ,
()

1T

B
D
Q
o
M
J
y

cp U

'" H \l [

f

300(1),4014(1),4500), greekO), tc(I), nroff(1).

October 1983 - 1 -

gamma
DELTA
eta
lambda
nu
PI
SIGMA
PHI
omega
not

11
A
1I

IT
L
ct>
w

\
w
N
L
@

P
R
F
C

INET(SN) (UniSoft) INET(SN)

NAME
inet - Internet protocol family

SYNOPSIS
DESCRIPTION

The Internet protocol family is a collection of protocols layered atop the
Internet Protocol (Jp) transport layer, and utilizing the Internet address for­
mat. The Internet family provides protocol support for the SOCK_STREAM,
SOCK_DGRAM, and SOCK_RAW socket types; the SOCK_RAW interface pro­
vides access to the IP protocol.

ADDRESSING
Internet addresses are four byte quantities, stored in network standard for­
mat. The include file < netlin.h > defines this address as a discriminated
union with the following conventions,

1*
* Internet address
*/

struct in addr {
union r

struct { u_char s_bl,s_b2,s_b3,s_b4; } S_un_b;
struct { u short s wI,s w2; } S un w;
u_Iong Syddr; - - --

} Sun;
}; -
Sockets bound to the Internet protocol family utilize the following address­
ing structure,

struct sockaddr in {

};

short -
u_short
struct
char

sinJamily;
sin port;
in addr sin addr;
sin_zero[SJ;

Sockets may be created with the address INADDR ANY to effect "wildcard"
matching on incoming messages. -

PROTOCOLS
The Internet protocol family is comprised of the IP transport protocol,
Ir.t.,rnet Control Message Protocol (JCMP), Transmission Control Protocol
(TCP), and User Datagram Protocol (UDP). TCP is used to support the
SOCK_STREAM abstraction while UDP is used to support the SOCK_DGRAM
abstraction. A raw interface to IP is available by creating an Internet socket
of type SOCK_RAW. The lCMP message protocol is not directly accessible.

INTERFACES
A number of interfaces are usable with the Internet protocol family. These
include various Ethernet interfaces and standard a "software loopback"
interface.

SEE ALSO
ip(5N), 10(5N) tcp(5N), udp(5N).

July 1984 - 1 -

IP (SN) (UniSoft) IP (SN)

NAME
ip - Internet Protocol

SYNOPSIS
struct sock proto proto = { PF _INET, ? };

socket (SOCK_RA W, &proto, address, options);
struct sockaddr_in *address; int options;

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family. It
may be accessed through a "raw socket" when developing new protocols, or
special purpose applications. IP sockets are connectionless, and are normally
used with the send (2) and receive (2N) calls, though the connect (2N) call
may also be used to fix the destination for future packets (in which case the
read (2) and write (2) system calls may be used).

Outgoing packets automatically have an IP header prep ended to them
(based on the destination address and the protocol number the socket is
created with). Likewise, incoming packets have their IP header stripped
before being sent to the user. It is currently not possible to send or receive
IP options.

DIAGNOSTICS
EISCONN when trying to establish a connection on a socket which already
has one, or when trying to send a datagram with the destination address
specified and the socket is already connected;

ENOTCONN when trying to send a datagram, but no destination address is
specified, and the socket hasn't been connected;

ENOBUFS when the system runs out of memory for an internal data struc­
ture;

EADDRNOT A V AIL when an attempt is made to create a socket with a net­
work address for which no network interface exists.

SEE ALSO

BUGS

inet (5N), net (5N) .

One should be able to send and receive ip options.

The protocol should be settable after socket creation.

July 1984 - 1 -

LO(SN) (UniSoft)

NAME
loop - software loopback interface

SYNOPSIS
pseudo-device loop

DESCRIPTION

LO (SN)

The loop interface is a software loopback mechanism which may be used
for performance analysis, software testing, and/or local communication.
The interface is Internet addressable as network 127 (decimal). The local
host is host 1.

DIAGNOSTICS
lo%d: can't handle af%d

The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO
inet(5N), net(5N).

BUGS
It should handle all address and protocol families.

July 1984 - 1 -

MAN(S) MAN(S)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff - man files

troff - man [- rsl] files

DESCRIPTION
These troffil) macros are used to layout the format of the entries of this
manual. These macros are used by the man(I) command.

The default page size is 8.5"xll", with a 6.5"xlO" text area; the -rsl
option reduces these dimensions to 6"x9" and 4.75"x8.375", respectively;
this option (which is not effective in nrojf) also reduces the default type
size from 10-point to 9-point, and the vertical line spacing from 12-point to
lO-point. The - rV2 option may be used to set certain parameters to
values appropriate for certain Versatec printers: it sets the line length to 82
characters, the page length to 84 lines, and it inhibits underlining; this
option should not be confused with the -Tvp option of the manO) com­
mand, which is available at some UNIX System sites.

Any text argument below may be one to six "words". Double quotes ("")
may be used to include blanks in a "word". If text is empty, the special
treatment is applied to the next line that contains text to be printed. For
example, .1 may be used to italicize a whole line, or .SM followed by .B to
make small bold text. By default, hyphenation is turned off for nroff, but
remains on for troff.

Type font and size are reset to default values before each paragraph and
after processing font- and size-setting macros, e.g., .1, .RB, .SM. Tab stops
are neither used nor set by any macro except .DT and. TH.

Default units for indents in are ens. When in is omitted, the previous
indent is used. This remembered indent is set to its default value (7.2 ens
in troff, 5 ens in nroff-this corresponds to 0.5" in the default page size) by
.TH, .P, and .RS, and restored by .RE.

. TH t sen Set the title and entry heading; t is the title, s is the section

. SH text

. SS text

. B text

. 1 text

. SM text

.RI a b

.P

.HP in

.TP in

.IP tin

October 1983

number, c is extra commentary, e.g., "local", n is new manual
name. Invokes .DT (see below).
Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate these two
fonts for up to six arguments. Similar macros alternate
between any two of roman, italic, and bold:

.IR .RB .BR .IB .BI
Begin a paragraph with normal font, point size, and indent.
.PP is a synonym for .P.
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag. The nex.t line that
contains text to be printed is taken as the tag. If the tag does
not fit, it is printed on a separate line.
Same as .TP in with tag t, often used to get an indented para-
graph without a tag. .

- 1 -

MAN (5) MAN (5)

.RS in

.RE k

.PM m

.OT

.PO v

Increase relative indent (initially zero). Indent all output an
extra in units from the current left margin.
Return to the kth relative indent level (initially, k = 1; k = 0 is
equivalent to k= 0; if k is omitted, return to the most recent
lower indent level.
Produces proprietary markings; where m may be P for
PRIV ATE, N for NOTICE, DP for BELL LABORATORIES
PROPRIETARY, or DR for BELL LABORATORIES RES­
TRICTED.
Restore default tab settings (every 7.2 ens in tro.f!~ 5 ens in
nrojJ) .
Set the interparagraph distance to v vertical spaces. If v is
omitted, set the interparagraph distance to the default value
(O.4v in tro.f!~ 1 v in nrojJ).

The following strings are defined:

\.R ® in tro.f!~ (Reg.) in nro.f!:
\.S Change to default type size.
\.(Tm Trademark indicator.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2 ens in
tro.f!~ 5 ens in nrojJ).

LL Line length including IN.
PO Current interparagraph distance.

CAVEATS
In addition to the macros, strings, and number registers mentioned above,
there are defined a number of internal macros, strings, and number regis­
ters. Except for names predefined by tro.f!·and number registers d, m, and
y, all such internal names are of the form XA, where X is one of),), and
}, and A stands for any alphanumeric character.

If a manual entry needs to be preprocessed by cw(1), eqn(1) (or neqn) ,
and/ or tbl(1), it must begin with a special line (described in man (1», caus­
ing the man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index
for this Manual assume the NAME section of each entry consists of a single
line of input that has the following format:

name[, name, name .. .1 \ - explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity)
in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one can replace,
for example, the bold font by the constant-width font-see cw(1»). Of
course, if the input text of an entry contains requests for other fonts (e.g.,
.1, .RB, \fI), the corresponding fonts must be mounted.

EXAMPLE

FILES

nroff -man man.5

to nro.f!·this manual section.

/ usr/lib/tmac/tmac.an
/usr/lib/ macros/ cmp. [nt]. [dtl.an

October 1983 - 2 -

MAN(S) MAN(S)

/usr/lib/macros/ucmp. [nt] .an
/ usr/ man/ [ua]_ man/ manO/ skeleton

SEE ALSO
man 0), nroffO), troffO).

BUGS
If the argument to .TH contains any blanks and is not enclosed by double
quotes (""), there will be bird-dropping-like things on the output.

October 1983 - 3 -

MM(S) MM(S)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff - mm [options] [files]

nroff - em [options] [files]

mmt [options] [files]

troff - mm [options] [files]

troff - em [options] [files]

DESCRIPTION

FILES

This package provides a formatting capability for a very wide variety of
documents. It is the standard package used by the BTL typing pools and
documentation centers. The manner in which a document is typed in and
edited is essentially independent of whether the document is to be eventu­
ally formatted at a terminal or is to be. phototypeset. See the references
below for further details.

The -mm option causes nroff'and trojJ(l) to use the non-compacted ver­
sion of the macro package, while the - em option results in the use of the
compacted version, thus speeding up the process of loading the macro
package.

I usr llibl tmacl tmac. m

I usr /libl macrosl mm [nd
lusr/lib/macros/cmp. [nd. [dtl.m
I usr llibl macrosl ucmp. [nd.m

pointer to the non-compacted version of
the package
non-compacted version of the package
compacted version of the package
initializers for the compacted version of
the package

SEE ALSO
mm(1), mmt(1), nroff(1), troff(1).
MM-Memorandum Macros by D.W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

October 1983 - 1 -

MOSD (5) MOSD (5)

NAME
mosd - the OSDD adapter macro package for formatting documents

SYNOPSIS
osdd [options] [files]

mm - mosd [options] [files]

nroff - mm - mosd [options] [files]

nroff - em - mosd [options] [files]

mmt - mosd [options] [files]

troff - mm - mosd [options] [files]

troff - em - mosd [options] [files]

DESCRIPTION
The OSDD adapter macro package is a tool used in conjunction with the MM
macro package to prepare Operations Systems Deliverable Documentation.
Many of the OSDD Standards are different than the default format provided
by MM. The OSDD adapter package sets the appropriate MM options for
automatic production of the OSDD Standards. The OSDD adapter package
also generates the correct OSDD page headers and footers, heading styles,
Table of Contents format, etc.

OSDD document (input) files are prepared with the MM macros. Additional
information which must be given at the beginning of the document file is
specified by the following string definitions:

.ds HI document-number

.ds H2 section-number

.ds H3 issue-number

.ds H4 date

.ds H5 rating

The document-number should be of the standard 10 character format. The
words "Section" and "Issue" should not be included in the string
definitions; they will be supplied automatically when the document is
printed. For example:

.ds HI OPA-lp135-01

.ds H2 4

.ds H3 2
automatically produces

OPA-lp135-01
Section 4
Issue 2

as the document page header. Quotation marks are not used in string
definitions.

If certain information is not to be included in a page header, then the string
is defined as null; e.g.,

.ds H2
means that there is no section-number.

The OSDD Standards require that the Table of Contents be numbered begin­
ning with Page 1. By default, the first page of text will be numbered Page
2. If the Table of Contents has more than one page, for example n, then
either - rP n + 1 must be included as a command line option or .or P 0

must be included in the document file. For example, if the Table of

October 1983 - 1 -

MOSD(5) MOSD (5)

FILES

Contents is four pages then use - rPS on the command line or .Dr P 4 in
the document file.

The OSDD Standards require that certain information such as the document
rating appear on the Document Index or on the Table of Contents page if
there is no index. By default, it is assumed that an index has been
prepared separately. If there is no index, the following must be included in
the document file:

.nr Di 0
This will ensure that the necessary information is included on the Table of
Contents page.

The OSDD Standards require that all numbered figures be placed at the end
of the document. The .Fg macro is used to produce full page figures. This
macro produces a blank page with the appropriate header, footer, and figure
caption. Insertion of the actual figure on the page is a manual operation.
The macro usage is

.Fg page-count "figure caption"
where page-count is the number of pages required for a multi-page figure
(default 1 page).

Figure captions are produced by the .Fg macro using the .B8/.BE macros.
Thus the .B8/.BE macros are also not available for users. The .Fg macro
cannot be used within the document unless the final .Fg in a series of
figures is followed by a .8K macro to force out the last figure page.

The Table of Contents for OSDD documents (see Figure 4 in Section 4.1 of
the OSDD Standards) is produced with:

.Tc
System Type
System Name
Document Type
.Td

The. Tel. Td macros are used instead of the. TC macro from MM.

By default, the adapter package causes the NOTICE disclosure statement to
be printed. The .PM macro may be used to suppress the NOTICE or to
replace it with the PRIVATE disclosure statement as follows:

.PM none printed

.PM P PRIV A TE printed

.PM N NOTICE printed (default)

The .P macro is used for paragraphs. The Np register is set automatically
to indicate the paragraph numbering style. It is very important that the .P
macro be used correctly. All paragraphs (including those immediately fol­
lowing a .H macro) must use a .P macro. Unless there is a .P macro, there
will not be a number generated for the paragraph. Similarly, the .P macro
should not be used for text which is not a paragraph. The .8P macro may
be appropriate for these cases, e.g., for "paragraphs" within a list item.

The page header format is produced automatically in accordance with the
OSDD Standards. The OSDD Adapter macro package uses the .TP macro
for this purpose. Therefore the .TP macro normally available in MM is not
available for users.

I usr/lib/tmac/tmac.osd

October 1983 - 2 -

~OSD (5) MOSD (5)

SEE ALSO
mm(1), mmt(1), nroff(1), trotf(1), mm(S).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Operations Systems Deliverable Documentation Standards, June 1980.

October 1983 - 3 -

MPTX(S) MPTX(S)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroff - mptx [options] [files]

troff - mptx [options] [files]

DESCRIPTION

FILES

This package provides a definition for the .xx macro used for formatting a
permuted index as produced by ptx(1). This package does not provide any
other formatting capabilities such as headers and footers. If these or other
capabilities are required, the mptx macro package may be used in conjunc­
tion with the MM macro package. In this case, the - mptx option must be
invoked after the - mm call. For example:

nroff -cm -mptx file
or

mm - mptx file

/ usr / lib/ tmac/ tmac. ptx pointer to the non-compacted version of the
package

/ usr / lib/ macros/ ptx

SEE ALSO

non-compacted version of the package

mm(1), nroff(1), ptx(1), troff(I), mm(S).

October 1983 - 1 -

MV(S) MV(S)

NAME
mv - a troff macro package for typesetting view graphs and slides

SYNOPSIS
mvt [- a] [options] [files]

troff [-a] [-rXl] -my [options] [files]

DESCRIPTION
This package makes it easy to typeset view graphs and projection slides in a
variety of sizes. A few macros (briefly described below) accomplish most
of the formatting tasks needed in making transparencies. All of the facili­
ties of troff(I) , cwO), eqnO), and tblO) are available for more difficult
tasks.

The output can be previewed on most terminals, and, in particular, on the
Tektronix 4014, as well as on the Versatec printer. For these two devices,
specify the - rXl option (this option is automatically specified by the mvt
command-q.v.-when that command is invoked with the -T4014 or
-Tvp options). To preview output on other terminals, specify the -a
option.

The available macros are:

• YS en] [i] [d!

· Yw en] [i] [d!
• Yh en] [i] [d!
• YW en] [i] [d!
· YH en] [i] [d!
. Sw en] [i] [d!
. Sh en] [i] [d!
• SW en] [i] [d!
. SH en] [i] [d!
• A [x]

.B [m [s]]

October 1983

Foil-start macro; foil size is to be 7" x 7"; n is the foil .
number, i is the foil identification, d is the date; the
foil-start macro resets all parameters (indent, point
size, etc.) to initial default values, except for the values
of i and d arguments inherited from a previous foil­
start macro; it also invokes the .A macro (see below).

The naming convention for this and the following eight
macros is that the first character of the name (Y or S)
distinguishes between view graphs and slides, respec­
tively, while the second character indicates whether the
foil is square (S), small wide (w), small high (h), big
wide (W), or big high (H). Slides are "skinnier" than
the corresponding view graphs: the ratio of the longer
dimension to the shorter one is larger for slides than
for view graphs. As a result, slide foils can be used for
view graphs, but not vice versa; on the other hand,
view graphs can accommodate a bit more text.

Same as .YS, except that foil size is 7" wide x 5" high.
Same as • YS, except that foil size is 5" x 7".
Same as .YS, except that foil size is 7"x5.4".
Same as • YS, except that foil size is 7" x 9" .
Same as .YS, except that foil size is 7"x5" .
Same as .YS, except that foil size is 5"x7" .
Same as • YS, except that foil size is 7" x 5.4" .
Same as .YS, except that foil size is 7"x9" .
Place text that follows at the first indentation level (left
margin); the presence of x suppresses the lh line spac­
ing from the preceding text.
Place text that follows at the second indentation level;
text is preceded by a mark; m is the mark (default is a
large bullet); s is the increment or decrement to the
point size of the mark with respect to the prevailing

- 1 -

MV(S)

FILES

. c [m [s]]

. D [m [s]]

. T string

.1 [in] [a [x]]

.S [pI [n

. DF n f [n f .. .1

.DV [al [b] [c] [dJ

. U str 1 [str 21

MV(S)

point size (default is 0) ~ if s is 100, it causes the point
size of the mark to be the same as that of the default
mark .
Same as .R, but for the third indentation level; default
mark is a dash .
Same as .R, but for the fourth indentation level;
default mark is a small bullet.
String is printed as an over-size, centered title .
Change the current text indent (does not affect titles);
in is the indent (in inches unless dimensioned, default
is 0); if in is signed, it is an increment or decrement;
the presence of a invokes the .A macro (see below)
and passes x (if any) to it.
Set the point size and line length; p is the point size
(default is "previous"); if p is 100, the point size
reverts to the initial default for the current foil-start
macro; if p is signed, it is an increment or decrement
(default is 18 for .VS, .VH, and .SH, and 14 for the
other foil-start macros); I is the line length (in inches
unless dimensioned; default is 4.2" for . Vb, 3.8" for
.Sb, 5" for .SH, and 6" for the other foil-start macros) .
Define font positions; may not appear within a foil's
input text (i.e., it may only appear after all the input
text for a foil, but before the next foil-start macro); n
is the position of font f, up to four" n /" pairs may be
specified; the first font named becomes the prevailing
font; the initial setting is (H is a synonym for G):

.DF 1 H 2 I 3 B 4 S
Alter the vertical spacing between indentation levels; a
is the spacing for .A, b is for .R, c is for .C, and d is
for .D; all non-null arguments must be dimensioned;
null arguments leave the corresponding spacing
unaffected; initial setting is:

.DV .5v .5v .5v Ov
Underline strl and concatenate sfr2 (if any) to it .

The last four macros in the above list do not cause a break; the .1 macro
causes a break only if it is invoked with more than one argument; all the
other macros cause a break.

The macro package also recognizes the following upper-case synonyms for
the corresponding lower-case troffrequests:

.AD .BR .CE .FI .HY .NA .NF .NH .NX .SO .SP .TA .TI

The Tm string produces the trademark symbol.

The input tilde (-) character is translated into a blank on output.

See the user's manual cited below for further details.

/ usr / lib/ tmac/ tmac. v
/ usr / lib/ macros/ vmca

SEE ALSO
cw(1), eqn(1), mmt(1), tbl(1), troff(1).
A Macro Package for View Graphs and Slides by T. A. Dolotta and

October 1983 .., 2 -

MV(5)

BUGS

MV(5)

D. W. Smith.

The . VW and .SW foils are meant to be 9" wide by 7" high, but because
the typesetter paper is generally only 8" wide, they are printed 7" wide by
5.4" high and have to be enlarged by a factor of 9/7 before use as view
graphs; this makes them less than totally useful.

October 1983 - 3 -

NET(SN) (UniSoft) NET(SN)

NAME
net - introduction to networking facilities

SYNOPSIS
DESCRIPTION

This section briefly describes the networking facilities available on the sys­
tem.

All network protocols are associated with a specific protocol-family. A
protocol-family provides basic services to the protocol implementation to
allow it function within a specific network environment. These services
may include packet fragmentation and reassembly, routing, addressing, and
basic transport. A protocol-family may support multiple methods of
addressing, though the current protocol implementations do not. A
protocol-family is normally comprised of a number of protocols, one per
socket (2N) type. It is not required that a protocol-family support all socket
types. A protocol-family may contain multiple protocols supporting the
same socket abstraction.

A protocol supports one of the socket abstractions detailed in socket (2N).
A specific protocol may be accessed either by creating a socket of the
appropriate type and protocol-family, or by requesting the protocol explicitly
when creating a socket. Protocols normally accept only one type of address
format, usually determined by the addressing structure inherent in the
design of the protocol-family/network architecture. Certain semantics of
the basic socket abstractions are protocol specific. All protocols are
expected to support the basic model for their particular socket type, but
may, in addition, provide non-standard facilities or extensions to a mechan­
ism. For example, a protocol supporting the SOCK_STREAM abstraction
may allow more than one byte of out-of-band data to be transmitted per
out-of-band message.

A network interface is similar to a device interface. Network interfaces
comprise the lowest layer of the networking subsystem, interacting with the
actual transport hardware. An interface may support one or more protocol
families, and/or address formats.

PROTOCOLS
The following protocol family identifiers are in use,

One must be specified in the sockproto structure supplied at socket creation
time,

struct sockproto {
short sp family; /* protocol family */
short sp=protocol; /* protocol within family */

};

ADDRESSING
The following address formats are in use:

ROUTING
The network facilities provided limited packet routing. A simple set of data
structures comprise a "routing table" used in selecting the appropriate net­
work interface when outputing packets. This table contains a single entry
for each route to a specific network or host. A user process, the routing
daemon, maintains this data base with the aid of three socket specific ioctl
(2N) commands: SIOCADDRT, SIOCDELRT, SIOCCHGRT. The commands
allow the addition, deletion, or change of a single routing table entry,

July 1984 - 1 -

NET(SN) (UniSoft) NET(SN)

respectively. Routing table manipulations may only be carried out by super
user and are subject to certain restrictions. The restrictions are:

1. No identical entries may be present.

2. No entry may be deleted or changed while the entry is in use (to be
explained further below).

A routing table entry has the following form, as defined in < netlroute.h >;
struct rtentry {

u_Iong
struct
struct
short
short
u_long
struct

} ;

rt hash;
sockaddr rt_ dst;
sockaddr rt gateway;
rt flags; -
rerefcnt;
rt use;
ifnet *rt_ifp;

with r~fiags defined from,

Routing table entries come in two flavors, for a specific host or for all hosts
on a specific network. When the system is booted, each network interface
which configures itself installs a routing table entry when it wishes to have
packets sent through it. Normally the interface specifies the route through
it is a "direct" connection to the destination host or network. If the route is
direct, the transport layer of a protocol family usually requests the packet
be sent to the same host specified in the packet. Otherwise, the interface
may be requested to address the packet to an entity different from the
eventual receipient (i.e., the packet is forwarded).

Routing table entries installed by a user process may not specify the hash,
reference count, use, or interface fields; these are filled in by the routing
routines. In addition, a request to delete or change an existing routing
table entry may be denied or partially performed depending on the state of
the route. If a route is currently in use (the reference count field is non­
zero), a request to delete the entry will result in the route being marked
"down" and the error EBUSY returned. If the route was to be changed, but
it was in use, only the flags value is updated and the error EBUSY is
returned. These semantics are intended to allow a routing daemon to
invalidate an entry, await freeing of the entry from use, then modify it at a
later time.

The routing code may return EEXIST if requested to add an already existent
entry, ESRCH if requested to delete or change an entry and it couldn't be
found, or ENOBUFS if requested to add an entry and the system was low on
resources.

There currently is no support for reading the routing tables; user processes
are expected to read the kernel's memory through /dev/kmem.

The use field is used by the routing code in providing a simple round-robin
scheme of route selection when multiple routes to a destination are present;
the heuristic is to choose the least used route.

SEE ALSO
socket(2N) .

July 1984 - 2 -

REGEXP(S) REGEXP(S)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT < declarations>
#define GETCO <getc code>
#define PEEKC () < peekc code>
#define UNGETC(c) < ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(vaI) <error code>

#include <regexp.h>

char -compile<instring, expbuf, endbuf, eot)
char -instring, -expbuf, -endbuf;

int step (string, expbuf)
char -string, -expbuf;

DESCRIPTION
This page describes general purpose regular expression matching routines in
the form of ed(1), defined in /usr/include/regexp.h. Programs such as
ed(1), sed(1), grep(1), bs(1), expr(1), etc., which perform regular expres­
sion matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
"#include < regexp.h> " statement. These macros are used by the compile
routine.
GETCO

Return the value of the next character in the regular expression
pattern. Successive calls to GETC () should return successive char­
acters of the regular expression.

PEEKC()
Return the next character in the regular expression. Successive
calls to PEEKC () should return the same character (which should
also be the next character returned by GETCO).

UNGETC(c)
Cause the argument c to be returned by the next call to GETCO
(and PEEKCO). No more that one character of pushback is ever
needed and this character is guaranteed to be the last character read
by GETCO. The value of the macro UNGETC(c) is always ignored.

RETURN (pointer)
This macro is used on normal exit of the compile routine. The
value of the argument pOinter is a pointer to the character after the
last character of the compiled regular expression. This is useful to
programs which have memory allocation to manage.

ERROR(val)

October 1983

This is the abnormal return from the compile routine. The argu­
ment val is an error number (see table below for meanings). This
call should never return.

- 1 -

REGEXP(5) REGEXP(5)

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \ (\) imbalance.
43 Too many \ <.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \ (\).
49 () imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eo£)

The first parameter instring is never used explicitly by the compile routine
but is useful for programs that pass down different pointers to input charac­
ters. It is sometimes used in the INIT declaration (see below). Programs
which call functions to input characters or have characters in an external
array can pass down a value of «char *) 0) for this parameter.

The next parameter expbuj is a character pointer. It points to the place
where the compiled regular expression will be placed.

The parameter endbuj is one more than the highest address where the com­
piled regular expression may be placed. If the compiled expression cannot
fit in (endbuj- expbuj) bytes, a call to ERROR(50) is made.

The parameter eoj is the character which marks the end of the regular
expression. For example, in ed(1}, this character is usually a I.
Each program that includes this file must have a #define statement for
INIT. This definition will be placed right after the declaration for the func­
tion compile and the opening curly brace (0. It is used for dependent
declarations and initializations. Most often it is used to set a register vari­
able to point the beginning of the regular expression so that this register
variable can be used in the declarations for GETC() , PEEKC() and
UNGETC(). Otherwise it can be used to declare external variables that
might be used by GETC() , PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expres­
sion matching, one of which is the function step. The call to step is as fol­
lows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter expbuj is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns one, if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match,
two external character pointers are set as a side effect to the call to step.
The variable set in step is loel. This is a pointer to the first character that

October 1983 - 2 -

REGEXP(S) REGEXP (S)

matched the regular expression. The variable loc2, which is set by the
function advance, points the character after the last character that matches
the regular expression. Thus if the regular expression matches the entire
line, locI will point to the first character of string and loc2 will point to the
null at the end of string.

Step uses the external variable eire! which is set by compile if the regular
expression begins with A. If this is set then step will only try to match the
regular expression to the beginning of the string. If more than one regular
expression is to be compiled before the first is executed the value of eire!
should be saved for each compiled expression and eire! should be set to
that saved value before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argun ~nt and call advance
until advance returns a one indicating a match or until the end of string is
reached. If one wants to constrain string to the beginning of the line in all
cases, step need not be called, simply call advance.

When advance encounters a • or \ { \} sequence in the regular expression it
will advance its pointer to the string to be matched as far as possible and
will recursively call itself trying to match the rest of the string to the rest of
the regular expression. As long as there is no match, advance will back up
along the string until it finds a match or reaches the point in the string that
initially matched the. or \{ \}. It is sometimes desirable to stop this back­
ing up before the initial point in the string is reached. If the external char­
acter pointer locs is equal to the point in the string at sometime during the
backing up process, advance will break out of the loop that backs up and
will return zero. This is used by ed(l) and sed(l) for substitutions done
globally (not just the first occurrence, but the whole line) so, for example,
expressions like s/y.llg do not loop forever.

The routines ecmp and getrange are trivial and are called by the routines
previously mentioned.

EXAMPLE

FILES

The following is an example of how the regular expression macros and calls
look from grep(l):

#define INIT
#define GETC()
#define PEEKC ()
#define UNGETC(c)
#define RETURN (c)
#define ERROR (c)

#include < regexp.h>

register char *sp = instring;
(*sp+ +)
(*sp)
(- -sp)
return;
regerr()

compile (*argv, expbuf, &expbuf(ESIZE], \0');

if(step(linebuf, expbuf»
succeed();

/ usr/ include/ regexp.h

SEE ALSO
ed(1), grep(1), sed(l).

October 1983 - 3 -

REGEXP(S) REGEXP(S)

BUGS
The handling of cire/is kludgy.
The routine eemp is equivalent to the Standard 110 routine strnemp and
should be replaced by that routine.
The actual code is probably easier to understand than this manual page.

October 1983 - 4 -

STAT(S)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

STAT(S)

The system calls stat and Jstat return data whose structure is defined by this
include file. The encoding of the field sLmode is defined in this file also.
/ *

* Structure of the result of stat
*/

FILES

struct stat {

dev_t
ino_t
ushort
short
ushort
ushort
dev t
offj
time_t
time_t
time_t

st_dev;
st ino;
st-mode;
st-nlink;
st-uid;
st-gid;
s(rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

#define S IFMT 0170000
#define S -IFDIR 0040000
#define S -IFCHR 0020000
#define S -IFBLK 0060000
#define S -IFREG 0100000
#define S -I FIFO 0010000
#define S-ISUID 04000
#define S -ISGID 02000
#define S -ISVTX 01000
#define S -IREAD 00400
#define S -IWRITE 00200
#define S)EXEC 00100

/ usr / include/ sys/ types.h
/usr/include/sys/stat.h

SEE ALSO
stat(2), types(5).

October 1983

/ * type of file */
/ * directory * /
/ * character special * /
/ * block special */
1* regular *1
/* fifo */
/* set user id on execution */
/* set group id on execution */
/* save swapped text even after use */
/* read permission, owner */
/* write permission, owner *1
/* execute/search permission, owner */

- 1 -

TCP(SN) (UniSoft) TCP(SN)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
struct sock proto proto = { PF INET, IPPROTO TCP };
socket(SOCK STREAM, &proto, address, options);
struct sockaddr_in *address; int options;

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission
of data. It is a byte-stream protocol used to support the SOCK STREAM
abstraction. TCP uses the standard Internet address format and, in-addition,
provides a per-host collection of "port addresses". Thus, each address is
composed of an Internet address specifying the host and network, with a
specific TCP port on the host identifying the peer entity.
Sockets utilizing the TCP protocol are either "-active" or "passive". Active
sockets initiate connections to passive sockets. By default TCP sockets are
created active; to create a passive socket the SO_ACCEPTCONN option must
be supplied. Only passive sockets may use the accept (2N) call to accept
incoming connections. Only active sockets may use the connect (2N) call to
initiate connections.

Passive sockets may "underspecify" their location to match incoming con­
nection requests from multiple networks. This technique, termed "wildcard
addressing", allows a single server to provide service to clients on multiple
networks. To create a socket which listens on all networks, the Internet
address INADDR_ANY is specified. The TCP port may still be specified at
this time; if the port is not specified, the system will assign one. Once a
connection has been established the socket's address is fixed by the peer
entity's location. The address assigned .the socket is the address associated
with the network interface through which packets are being transmitted and
received. Normally this address corresponds to the peer entity's network.

OPTIONS
The TCP implementation supports two non-standard features: "keep-alives"
and "true out-of-band" data transmission.

Keep-alives are a mechanism used to check if a peer entity is still func­
tional. This is implemented by periodically "polling" the remote machine if
the connection has been idle. The current implementation transmits keep­
alive packets on a connection which has been idle for longer than 1 minute.
If, despite the keep-alive packets, no response has been seen within 4
minutes, the connection is aborted. This mechanism applies only to con­
nection in an "established" state; if a connection is idle for 1 minute but not
yet established, it is simply aborted. The keep-alive mechanism is enabled
by creating a socket with the SO_KEEPALIVE option. [N.B.: TCP imple­
mentations which do not closely follow the TCP specification may not
respond to keep-alive messages, causing connections to be closed without
reason; in this case keep-alives should not be used]

In order to transmit "true" out-of-band data, the SO_TRUEOOB option may
be specified. This facility requires cooperation by 'lIe peer to function prop­
erly; this is negotiated through TCP options at the time a connection is esta­
blished. When this mechanism is used, one byte of data may be sent as an
urgent, high-priority message to the peer. This data utilizes a separate,
out-of-band data sequence space and is not subject to the normal flow

July 1984 - 1 -

TCP(SN) (UniSoft) TCP(SN)

control mechanisms imposed by TCP. In addition, the data stream is also
marked to indicate the point at which the out-of-band data was sent. A
process may send out-of-band data with the SIOCSENDOOB call,

ioctl (fd, SIOCSENDOOB, &data);

and receive out-of-band data with the SIOCRCVOOB call,

ioctl(fd, SIOCRCVOOB, &data);

To find out if the read pointer is at the mark in the data stream, the
SIOCA TMARK call may be used,

ioctl(fd, SIOCATMARK, &yesno);

The variable yesno will be a 1 if the read pointer currently points at the
mark, and 0 otherwise.

DIAGNOSTICS
EISCONN when trying to establish a connection on a socket which already
has one;

ENOBUFS when the system runs out of memory for an internal data struc­
ture;

ETIMEDOUT when a connection was dropped due to excessive retransmis­
sions;

ECONNRESET when the remote peer forces the connection to be closed;

ECONNREFUSED when the remote peer actively refuses connection estab­
lishment (usually because no process is listening to the port);

EADDRINUSE when an attempt is made to create a socket with a port which
has already been allocated;

EADDRNOTA V AIL when an attempt is made to create a socket with a net­
work address for which no network interface exists.

SEE ALSO

BUGS

inet(SN), net(SN).

V cUUt; aooeo "featureS" such as "keep-alives" and "true" out-of-band are
experimental and not part of the protocol standard.

July 1984 - 2 -

TERM (5) TERM (5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., nroff, mm(1), man(1),
tabs(1» and are maintained as part of the shell environment (see sh(I),
projile(4), and environ(5» in the variable STERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631 - c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASIIDTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASI/DTC/GSI 300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE® Terminal Model 33 KSR
37 TELETYPE Terminal Model 37 KSR
40-2 TELETYPE Terminal Model 40/2
40-4 TELETYPE Terminal Model 40/4
4540 TELETYPE Terminal Model 4540
3270 IBM Model 3270
4000a Trendata 4000a
4014 Tektronix 4014
43 TELETYPE Model 43 KSR
450 DASI450 (same as Diablo 1620)
450 - 12 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

sync

hp
lp
tn1200
tn300

line-feed and other special escape sequences
generic name for synchronous TELETYPE
4540-compatible terminals
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [-a-zO-91, make up a basic terminal
name. Terminal sub-models and operational modes are distinguished by
suffixes beginning with a -. Names should generally be based on original
vendors, rather than local distributors. A terminal acquired from one ven­
dor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept
arguments of the form - T term where term is one of the names given
above; if no such argument is present, such commands should obtain the
terminal type from the environment variable STERM, which, in turn,

October 1983 - 1 -

TERM(S) TERM (S)

should contain term.

See fete/termeap on your system for a complete list.

SEE ALSO
mm(1), nroff(1), sh(1), stty(1), tabs(1), tplot(1G), profile(4), environ(S).

BUGS
This is a small candle trying to illuminate a large, dark problem. Programs
that ought to adhere to this nomenclature do so somewhat fitfully.

October 1983 - 2 -

TERMCAP(5) TERMCAP (5)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals used, e.g., by vi(l). Terminals
are described in termcap by giving a set of capabilities which they have, and
by describing how operations are performed. Padding requirements and ini­
tialization sequences are included in termcap.

Entries in termcap consist of a number of ':' separated fields. The first
entry for each terminal gives the names which are known for the terminal,
separated by 'I' characters. The first name is always 2 characters long and is
used by older version 6 systems which store the terminal type in a 16 bit
word in a systemwide data base. The second name given is the most com­
mon abbreviation for the terminal, and the last name given should be a
long name fully identifying the terminal. The second name should contain
no blanks; the last name may well contain blanks for readability.

CAP ABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

N arne Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am boo 1 Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw boo 1 Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da boo 1 Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
de str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode

October 1983 - 1 -

TERMCAP(S) TERMCAP(S)

ei str End insert mode; give :ei =: if ie
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default "L)
hc bool Hardcopy terminal
hd str Half-line down (forward 112 line feed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 112 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im str Insert mode (enter); give :im =: if ie
in boo I Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by other function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of keypad transmit mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of other keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in keypad transmit mode
ku str Sent by terminal up arrow key
10-19 str Labels on other function keys
li num Number of lines on screen or page
II str Last line, first column (if no em)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
ms bool Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock).
nc boo I No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \0)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines even though it doesn't overstrike

October 1983 - 2 -

TBRMCAP(S)

up str
us str
vb str
ve str
vs str
xb bool
xn bool
xr bool
xs bool
xt bool

A Sample Entry

Upline (cursor up)
S tart underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (fl = escape, f2 = ctrl C)

TBRMCAP(S)

A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)
Tabs are destructive, magic so char (Teleray 1061)

The following entry, which describes the Concept-l00, is among the more
complex entries in the term cap file as of this writing. (This particular con­
cept entry is outdated and is used as an example only.)

ell el 00 I conceptI OO:is = \EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al=3*\E"R:am:bs:cd= 16*\E"C:ce= 16\E"S:cl=2*"L:cm=\Ea%+ %+ :co:/.
:dc= 16\E" A:dl=3*\E"B:ei=\E\200:eo:im =\E"P:in:ip= 16*:li#24:mi:nd=\
:se= \Ed\Ee:so = \ED\EE:ta = 8\ t:ul:up = \E;:vb = \Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character
of a line, and that empty fields may be included for readability (here
between the last field on a line and the first field on the next). Capabilities
in termcap are of three types: Boolean capabilities which indicate that the
terminal has some particular feature, numeric capabilities giving the size of
the terminal or the size of particular delays, and string capabilities, which
give a sequence which can be used to perform particular terminal opera­
tions.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Con­
cept has automatic margins (i.e. an automatic return and linefeed when the
end of a line is reached) is indicated by the capability am. Hence the
description of the Concept includes am. Numeric capabilities are followed
by the character '#' and then the value. Thus co which indicates the
number of columns the terminal has gives the value '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence)
are given by the two character code, an '=', and then a string ending at the
next following ':'. A delay in milliseconds may appear after the '=' in such
a capability, and padding characters are supplied by the editor after the
remainder of the string is sent to provide this delay. The delay can be
either a integer, e.g. '20', or an integer followed by an '*', i.e. '3*'. A '*'
indicates that the padding required is proportional to the number of lines
affected by the operation, and the amount given is the per-affected-unit
padding required. When a ,*, is specified, it is sometimes useful to give a
delay of the form '3.5' specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities
for easy encoding of characters there. A \E maps to an ESCAPE character,
AX maps to a control-x for any appropriate x, and the sequences \n \r \t \b
\f give a newline, return, tab, backspace and formfeed. Finally, characters
may be given as three octal digits after a \, and the characters" and \ may
be given as \" and \ \. If it is necessary to place a : in a capability it must
be escaped in octal as \072. If it is necessary to place a null character in a

October 1983 - 3 -

TERMCAP(5) TERM CAP (5)

string capability it must be encoded as \200. The routines which deal with
term cap use C strings, and strip the high bits of the output very late so that
a \200 comes out as a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the descrip­
tion of a similar terminal in term cap and to build up a description gradually,
using partial descriptions with ex to check that they are correct. Be aware
that a very unusual terminal may expose deficiencies in the ability of the
term cap file to describe it or bugs in ex. To easily test a new terminal
description you can set the environment variable TERMCAP to a pathname
of a file containing the description you are working on and the editor will
look there rather than in /etc/termcap. TERM CAP can also be set to the
termcap entry itself to avoid reading the file when starting up the editor.
(This only works on version 7 systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co
numeric capability. If the terminal is a CRT, then the number of lines on
the screen is given by the Ii capability. If the terminal wraps around to the
beginning of the next line when it reaches the right margin, then it should
have the am capability. If the terminal can clear its screen, then this is
given by the cl string capability. If the terminal can backspace, then it
should have the bs capability, unless a backspace is accomplished by a char­
acter other than "H (ugh) in which case you should give this character as
the be string capability. If it overstrikes (rather than clearing a position
when a character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in
term cap are undefined at the left and top edges of a CRT terminal. The edi­
tor will never attempt to backspace around the left edge, nor will it attempt
to go up locally oft' the top. The editor assumes that feeding oft' the bottom
of the screen will cause the screen to scroll up, and the am capability tells
whether the cursor sticks at the right edge of the screen. If the terminal
has switch selectable automatic margins, the term cap file usually assumes
that this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus
the model 33 teletype is described as

t31331 tty33 :co#72:os

while the Lear Siegler ADM - 3 is described as

clladm3~~si adm3:am:bs:cl = AZ:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a em string capability,
with prinif(3s) like escapes %x in it. These substitute to encodings of the
current line or column position, while other characters are passed through
unchanged. If the em string is thought of as being a function, then its
arguments are the line and then the column to which motion is desired,
and the % encodings have the following meanings:

October 1983

%d
%2

as in print/, 0 origin
like %2d

- 4 -

TERMCAP(S) TERMCAP(S)

October 1983

%3
%.
%+x
%>xy
%r
%i
%%
%n
%B
%D

like %3d
like %c
adds x to value, then %.
if value> x adds y, no output.
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (I6*(x/l0» + (x%10), no output.
Reverse coding (x-2*(x%16», no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to
be sent \E&aI2c03Y padded for 6 milliseconds. Note that the order
of the rows and columns is inverted here, and that the row and
column are printed as two digits. Thus its em capability is
cm = 6\E&%r%2c%2Y. The Microterm ACT-IV needs the current row
and column sent preceded by a AT, with the row and column simply
encoded in binary, cm="T%.% .. Terminals which use %. need to be
able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary
because it is not always safe to transmit \t, \n AD and \r, as the sys­
tem may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset
by a blank character, thus cm=\E=%+ %+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, then this sequence
should be given as nd (non-destructive space). If it can move the
cursor up a line on the screen in the same column, this should be
given as up. If the terminal has no cursor addressing capability, but
can home the cursor (to very upper left corner of screen) then this
can be given as ho; similarly a fast way of getting to the lower left
hand corner can be given as II; this may involve going up with up
from the home position, but the editor will never do this itself (unless
II does) because it makes no assumption about the effect of moving
up from the home position.

Area clears

If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as ceo If the
terminal can clear from the current position to the end of the display,
then this should be given as cd. The editor only uses cd from the first
column of a line.

Insert/ delete line

If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is on, then
this should be given as dl; this is done only from the first position on
the line to be deleted. If the terminal can scroll the screen backwards,
then this can be given as sb, but just al suffices. If the terminal can
retain display memory above then the da capability should be given; if

- 5 -

TERMCAP(S) TERMCAP(S)

October 1983

display memory can be retained below then db should be given.
These let the editor understand that deleting a line on the screen may
bring non-blank lines up from below or that scrolling back with sb
may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to
insert! delete character which can be described using termcap. The
most common insert/delete character operations affect only the char­
acters on the current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and the Perkin
Elmer Owl, make a distinction between typed and untyped blanks on
the screen, shifting upon an insert or delete only to an untyped blank
on the screen which is either eliminated, or expanded to two untyped
blanks. You can find out which kind of terminal you have by clearing
the screen and then typing text separated by cursor motions. Type
abc def using local cursor motions (not spaces) between the abc and
the def. Then position the cursor before the abc and put the terminal
in insert mode. If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the abc shifts
over to the def which then move together around the end of the
current line and onto the next as you insert, you have the second type
of terminal, and should give the capability in, which stands for insert
null. If your terminal does something different and unusual then you
may have' to modify the editor to get it to use the insert mode your
terminal defines. We have seen no terminals which have an insert
mode not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and
terminals which send a simple sequence to open a blank position on
the current line. Give as im the sequence to get into insert mode, or
give it an empty value if your terminal uses a sequence to insert a
blank position. Give as ei the sequence to leave insert mode (give
this, with an empty value also if you gave im so). Now give as ic any
sequence needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not give ie, ter­
minals which send a sequence to open a screen position should give it
here. (Insert mode is preferable to the sequence to open a position on
the screen if your terminal has both.) If post insert padding is needed,
give this as a number of milliseconds in ip (a string option). Any
other sequence which may need to be sent after an insert of a single
character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the inser­
tion position). If your terminal allows motion while in insert mode
you can give the capability mi to speed up inserting in this case.
Omitting mi will affect only speed. Some terminals (notably
Datamedia's) must not have mi because of the way their insert mode
works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and de to delete a single character while in delete
mode.

- 6 -

TERMCAP(5) TERM CAP (5)

October 1983

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these
can be given as so and se respectively. If there are several flavors of
standout mode (such as inverse video, blinking, or underlining - half
bright is not usually an acceptable standout mode unless the terminal
is in inverse video mode constantly) the preferred mode is inverse
video by itself. If the code to change into or out of standout mode
leaves one or even two blank spaces on the screen, as the TVI 912
and Teleray 1061 do, then ug should be given to tell how many spaces
are left.

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such as
the Microterm Mime, this can be given as uc. Of the underline code
does not move the cursor to the right, give the code followed by a
nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout
mode when they move to a new line or the cursor is addressed. Pro­
grams using standout mode should exit standout mode before moving
the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different mode
during open and visual modes of ex, this can be given as vs and ve,
sent at the start and end of these modes respectively. These can be
used to change, e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and teo This arises, for example, from terminals like the
Concept with more than one page of memory. If the terminal has
only memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a blank,
then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted HP 2621 keys). If the keypad can be set
to transmit or not transmit, give these codes as ks and ke. Otherwise
the keypad is assumed to always transmit. The codes sent by the left
arrow, right arrow, up arrow, down arrow, and home keys can be
given as kl, kr, ku, kd, and kh respectively. If there are function
keys such as fO, fl, ... , f9, the codes they send can be given as kO, kl,
000, k9. If these keys have labels other than the default fO through f9,
the labels can be given as 10, 11, 000, 19. If there are other keys that
transmit the same code as the terminal expects for the corresponding

- 7 -

TERMCAP(S) TERMCAP(S)

October 1983

function, such as clear screen, the term cap 2 letter codes can be given
in the ko capability, for example, :ko = cl,ll,sf,sb:, which says that the
terminal has clear, home down, scroll down, and scroll up keys that
transmit the same thing as the cl, 11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which
have single character arrow keys. It is obsolete but still in use in ver­
sion 2 of vi, which must be run on some minicomputers due to
memory limitations. This field is redundant with kl, kr, ku, kd, and
kh. It consists of groups of two characters. In each group, the first
character is what an arrow key sends, the second character is the
corresponding vi command. These commands are h for kl, j for kd,
k for ku, I for kr, and H for kh. For example, the mime would be
:ma=AKj"ZkAXI: indicating arrow keys left ("H), down ("K), up
("Z), and right ("X). (There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a char­
acter other than AI to tab, then this can be given as tao

Hazeltine terminals, which don't allow ,-, characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following linefeed
should indicate nco Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate xn. If an erase-eol is
required to get rid of standout (instead of merely writing on top of it),
xs should be given. Teleray terminals, where tabs turn all characters
moved over to blanks, should indicate xt. Other specific terminal
problems may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal,
and if, the name of a file containing long initialization strings. These
strings are expected to properly clear and then set the tabs on the ter­
minal, if the terminal has settable tabs. If both are given, is will be
printed before if. This is useful where if is lusrllibltabsetlstd but is
clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability tc can
be given with the name of the similar terminal. This capability must
be last and the combined length of the two entries must not exceed
1024. Since term lib routines search the entry from left to right, and
since the tc capability is replaced by the corresponding entry, the capa­
bilities given at the left override the ones in the similar terminal. A
capability can be cancelled with xx@ where xx is the capability. For
example, the entry

hnI2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and
hence does not turn on the function key labels when in visual mode.
This is useful for different modes for a terminal, or for different user
preferences.

- 8 -

TERMCAP (S) TERM CAP (5)

FILES
/etc/termcap file containing terminal descriptions

SEE ALSO

BUGS

ex(1), more(1), tset(1), uI(l), vi{l), termcap(3).

Ex allows only 256 characters for string capabilities, and the routines in
termcap(3) do not check for overflow of this buffer. The total length of a
single entry (excluding only escaped new lines) may not exceed 1024.

The rna, VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not sup­
ported by any program.

AUTHOR
William Joy
Mark Horton added underlining and keypad support

October 1983 - 9 -

TYPES(S) TYPES (S)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX System code;
some data of these types are accessible to user code:

typedef struct { int r[1]; } * physadr;
typedef long daddr _ t;
typedef char * caddr t;
typedef unsigned int uint; -
typedef unsigned short ushort;
typedef ushort ino t;
typedef short cnt-t;
typedef long time t;
typedef int label t[10];
typedef short dev t;
typedef long off j;
typedef long paddr _ t;
typedef long key _ t;

The form daddr t is used for disk addresses except in an i-node on disk,
see /s(4). Times are encoded in seconds since 00:00:00 GMT, January 1,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are measured in
bytes from the beginning of a file. The labelt variables are used to save
the processor state while another process is running.

SEE ALSO
fs(4).

October 1983 - 1 -

UDP(SN) (UniSoft) UDP(SN)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
struct sock proto proto = { PF INET, IPPROTO UDP };
socket(SOCK DGRAM, &proto~ address, options);
struct sockaddr_in .address; int options;

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support the
SOCK DGRAM abstraction for the Internet protocol family. UDP sockets are
connectionless, and are normally used with the send (2) and receive (2N)
calls, though the connect (2N) call may also be used to fix the destination
for future packets (in which case the read (2) and write (2) system calls may
be used).
UDP address formats are identical to those used ·by TCP. In particular UDP
provides a port identifier in addition to the normal Internet address format.
Note that the UDP port space is separate from the TCP port space (i.e., a
UDP port may not be "connected" to a TCP port). In addition broadcast
packets may be sent (assuming the underlying network supports this) by
using a reserved "broadcast address"; this address is network interface
dependent.

DIAGNOSTICS
EISCONN when trying to establish a connection on a socket which already
has one, or when trying to send a datagram with the destination address
specified and the socket is already connected;

ENOTCONN when trying to send a datagram, but no destination address is
specified, and the· socket hasn't been connected;

ENOBUFS when the system runs out of memory for an internal data struc­
ture;

EADDRINUSE when an attempt is made to create a socket with a port which
has already been allocated;

EADDRNOT A V AIL when an attempt is made to create a socket with a net­
work address for which no network interface exists.

SEE ALSO
inet(5N), net(5N).

July 1984 - 1 -

INTRO (6) INTRO (6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational programs found in
the directory /usr/games. The availability of these programs may vary
from system to system.

October 1983 - 1 -

ADVENTURE (6) (Unisoft) ADVENTURE (6)

NAME
adventure - an exploration game

SYNOPSIS
/usr/gaDles/adventure

DESCRIPTION

BUGS

The object of the game is to locate and explore Colossal Cave, find the
treasures hidden there, and bring them back to the building with you. The
program is self-describing to a point, but part of the game is to discover its
rules.

To terminate a game, type "quit"~ to save a game for later resumption,
type "suspend".

Saving a game creates a large executable file instead of just the information
needed to resume the game.

October 1983 - 1 -

ALIENS (6) (UniSoft)

NAME
aliens - The alien invaders attack the earth

SYNIOPSIS
/usr / games/ aliens

DESCRIPTION

ALIENS (6)

This is a UNIX version of Space Invaders. The program is pretty much self
documenting.

FILES

BUGS

/usr/games/lib/aliens.log Score file

The program is a CPU hog. It needs to be re-written. It doesn't do well on
terminals that run slower than 9600 baud.

October 1983 - 1 -

ARITHMETIC (6) ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+ - x/] [range

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to
be typed in. If the answer is correct, it types back "Right!", and a new
problem. If the answer is wrong, it replies "What?", and waits for another
answer. Every twenty problems, it publishes statistics on correctness and
the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be gen­
erated; +, -, x, and / respectively cause addition, subtraction, multiplica­
tion, and division problems to be generated. One or more characters can
be given; if more than one is given, the different types of problems will be
mixed in random order; default is + - .
Range is a decimal number; all addends, subtrahends, differences, multipli­
cands, divisors, and quotients will be less than or equal to the value of
range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem
which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate them.
Thus the program is intended to provide drill for someone just past the first
learning stage, not to teach number facts de novo. For almost all users, the
relevant statistic should be time per problem, not percent correct.

October 1983 - 1 -

AUTOROBOTS (6) (UniSoft) AUTOROBOTS (6)

NAME
autorobots - Escape from the automatic robots

SYNOPSIS
/usr/garnes/autorobots

DESCRIPTION
The object of the game autorobots is to move around inside of the box on
the screen without getting eaten by the robots chasing you and without run­
ning into any robots or junk heaps. The robots move continuously.

If a robot runs into another robot or junk heap while chasing you, they
crash and leave a junk heap.

You start out with 10 robots worth 10 points each. If you defeat all of
them, you get 20 robots worth 20 points each. Then 30, etc. Until you get
eaten!

The game keeps track of the top ten scores and prints them at the end of
the game.

The valid commands are described on the screen.

October /983 - 1 -

BACK(6) BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
/usr/games/back

DESCRIPTION

FILES

BUGS

Back is a program which provides a partner for the game of backgammon.
It is designed to play at three different levels of skill, one of which you
must select. In addition to selecting the opponent's level, you may also
indicate that you would like to roll your own dice during your turns (for the
superstitious players). You will also be given the opportunity to move first.
The practice of each player rolling one die for the first move is not incor­
porated.

The points are numbered 1-24, with 1 being white's extreme inner table,
24 being brown's inner table, 0 being the bar for removed white pieces and
25 the bar for brown. For details on how moves are expressed, type y
when back asks "Instructions?" at the beginning of the game. When back
first asks "Move?", type? to see a list of move options other than enter­
ing your numerical move.

When the game is finished, back will ask you if you want the log. If you
respond with y, back will attempt to append to or create a file back.log in
the curren t directory.

I usr I gamesl Ii bl backrules
Itmp/b*
back.log

rules file
log temp file
log file

The only level really worth playing is "expert", and it only plays the for­
ward game.

Back will complain loudly if you attempt to make too many moves in a
turn, but will become very silent if you make too few.

Doubling is not implemented.

October 1983 - 1 -

BCD (6) (UniSoft)

NAME
bcd - convert to antique media

SYNOPSIS
/usr/gaDles/bed text

DESCRIPTION
Bcd converts the literal text into a form familiar to old-timers.

This program works best on hard copy terminals.

October 1983 - 1 -

BCD (6)

BJ(6) B1(6)

NAME
bj - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or
twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2.
Both dealer and player naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an
"insurance" bet against the chance of a dealer natural. If this bet is not
taken, play resumes as normal. If the bet is taken, it is a side bet where
the player wins $2 if the dealer has a natural and loses $1 if the dealer
does not.

If the player is dealt two cards of the same value, he is allowed to "dou­
ble" . He is allowed to play two hands, each with one of these cards.
(The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may "double
down". He may double the bet ($2 to $4) and receive exactly one more
card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his
total is not over twenty-one. If the player "busts" (goes over twenty­
one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he
attains a total of seventeen or more. If the dealer busts, the player wins
the bet.

If both player and dealer stand, the one with the largest total wins. A
tie is a push.

The machine deals and keeps score. The following questions will be asked
at appropriate times. Each question is answered by y followed by a new­
line for "yes", or just new-line for "no".

? (means, ~'do you want a hit?")
Insurance?
Double down?

Every time the deck is shuffied, the dealer so states and the "action" (total
bet) and "standing" (total won or lost) is printed. To exit, hit the inter­
rupt key (DEL) and the action and standing will be printed.

October 1983 - 1 -

CHASE(6) (UniSoft) CHASE(6)

NAME
chase - Try to escape the killer robots

SYNOPSIS
/usr/games/chase [nrobots 1 [nfences 1

DESCRIPTION
The object of the game chase is to move around inside of the box on the
screen without getting eaten by the robots chasing you and without running
into anything.

If a robot runs into another robot while chasing you, they crash and leave a
junk heap. If a robot runs into a fence, it is destroyed.

If you can survive until all the robots are destroyed, you have won!

If you do not specify either nrobots or nfences, chase will prompt you for
them.

The valid commands are described on the screen.

October 1983 - 1 -

CRAPS (6) CRAPS(6)

NAME
craps - the game of craps

SYNOPSIS
/usr/gaDles/craps

DESCRIPTION
Craps is a form of the game of craps that is played in Las Vegas. The pro­
gram simulates the roller, while the user (the player) places bets. The
player may choose, at any time, to bet with the roller or with the House. A
bet of a negative amount is taken as a bet with the House, any other bet is
a bet with the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total
bankroll is rejected and the program prompts with bet? until a proper bet is
made.

Once the bet is accepted, the roller throws the dice. The following rules
apply (the player wins or loses depending on whether the bet is placed with
the roller or with the House; the odds are even). The first roll is the roll
immediately following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2, 3, or 12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:

point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player
an additional $2,000. The program will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a
bet is placed, how many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers
exceeds $2,000, the House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the loan. If
only 1 marker is outstanding, it is immediately repaid. However, if more
than 1 marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or
just a carriage return), an appropriate message is printed and the program
will prompt with How Dlany? until a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the
House), the program informs the player of the situation and exits.

October 1983 - 1 -

CRAPS (6) CRAPS (6)

Should the bankroll of a player who has outstanding markers exceed
$50,000, the total amount of money borrowed will be automatically repaid
to the House.

Any player who accumulates $100,000 or more breaks the bank. The pro­
gram then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of
bet? or How many?). To exit, send an interrupt (break), DEL, or control­
D. The program will indicate whether the player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from
the time of day. Depending on system usage, these numbers, at times,
may seem strange but occurrences of this type in a real dice situation are
not uncommon.

October 1983 - 2 -

CRIBBAGE (6) (UniSoft) CRIBBAGE (6)

NAME
cribbage - the card game cribbage

SYNOPSIS
/usr/games/cribbage [-[r][e][q]] name ...

DESCRIPTION
Cribbage plays the card game cribbage, with the program playing one hand
and the user the other. The program will initially ask the user if the rules
of the game are needed -- if so, it will print out the appropriate section
from According to Hoyle with more (JJ.
Cribbage options include:

-e

-q

-r

When the player makes a mistake scoring his hand or crib, provide an
explanation of the correct score. (This is especially useful for beginning
players.)

Print a shorter form of all messages -- this is only recommended for
users who have played the game without specifying this option.

Instead of asking the player to cut the deck, the program will randomly
cut the deck.

Cribbage first asks the player whether he wishes to playa short game (once
around, to 61) or a long game (twice around, to 121). A response of's'
will result in a short game, any other response will playa long game.

At the start of the first game, the program asks the player to cut the deck
to determine who gets the first crib. The user should respond with a
number between 0 and 51, indicating how many cards down the deck is to
be cut. The player who cuts the lower ranked card gets the first crib. If
more than one game is played, the loser of the previous game gets the first
crib in the current game.

For each hand, the program first prints the player's hand, whose crib it is,
and then asks the player to discard two cards into the crib. The cards are
prompted for one per line, and are typed as explained below.

After discarding, the program cuts the deck (if it is the player's crib) or
asks the player to cut the deck (if it's its crib); in the later case, the
appropriate response is a number from 0 to 39 indicating how far down the
remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who
doesn't have the crib) leading the first card. Play continues, as per crib­
bag-e-,-untilaUcards are exhausted. The program keeps track of the scoring
of all points and the total of the cards on the table.

After play, the hands are scored. The program requests the player to score
his hand (and the crib, if it is his) by printing out the appropriate cards
(and the cut card enclosed in brackets). Play continues until one player
reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing
the lowest legal value; when cutting the deck this is equivalent to choosing
the top card.

October 1983 - 1 -

CRIBBAGE (6) (UniSoft) CRIBBAGE (6)

FILES

Cards are specified as rank followed by suit. The ranks may be specified as
one of: 'a', '2', '3', '4', '5', '6', '7', '8', '9', 't', 'j', 'q', and 'k', or alterna­
tively, one of: ace, two, three, four, five, six, seven, eight, nine, ten, jack,
queen, and king. Suits may be specified as: 's', 'h', 'd', and 'c', or alterna­
tively as: spades, hearts, diamonds, and clubs. A card may be specified as:
< rank> < suit>, or: < rank> of < suit>. If the single letter rank and
suit designations are used, the space separating the suit and rank may be
left out. Also, if only one card of the desired rank is playable, typing the
rank is sufficient. For example, if your hand was 2H, 4D, 5C, 6H, JC, KD
and it was desired to discard the king of diamonds, any of the following
could be typed: k, king, kd, k d, k of d, king d, king of d, k diamonds, k of
diamonds, king diamonds, or king of diamonds.

/usr/games/cribbage

AUTHOR
Earl T. Cohen

October 1983 - 2 -

FISH (6) (UniSoft) FISH (6)

NAME
fish - play "Go Fish"

SYNOPSIS
/usr/games/fish

DESCRIPTION
Fish plays the game of Go Fish, a childrens' card game. The Object is to
accumulate 'books' of 4 cards with the same face value. The players alter­
nate turns; each turn begins with one player selecting a card from his hand,
and asking the other player for all cards of that face value. If the other
player has one or more cards of that face value in his hand, he gives them
to the first player, and the first player makes another request. Eventually,
the first player asks for a card which is not in the second player's hand: he
replies 'GO FISH!' The first player then draws a card from the 'pool' of
undealt cards. If this is the card he had last requested, he draws again.
When a book is made, either through drawing or requesting, the cards are
laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3,4, 5, 6, 7, 8,
9, 10, j, q, or k when asked. Hitting return gives you information about
the size of my hand and the pool, and tells you about my books. Saying 'p'
as a first guess puts you into 'pro' level; the default is pretty dumb.

October 1983 - 1 -

FORTUNE (6) (UniSoft)

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
fortune

DESCRIPTION
Fortune prints out a random adage.

FILES
I usr I gamesl libl fortunes

October 1983 - 1 -

FORTUNE (6)

HANGMAN (6)

NAME
hangman - guess the word

SYNOPSIS
/usr/games/hangman [arg]

DESCRIPTION

HANGMAN (6)

Hangman chooses a word at least seven letters long from a dictionary. The
user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
/usr/lib/w2006

BUGS
Hyphenated compounds are run together.

October 1983 - 1 -

LIFE (6) (UniSoft) LIFE (6)

NAME
life - play the game of life

SYNOPSIS
life [-rJ

DESCRIPTION
Life is a pattern generating game set up for interactive use on a video ter­
minal. The way it operates is: You use a series of commands to set up a
pattern on the screen then let it generate further patterns from that pattern.

The algorithm used is: For each square in the matrix, look at it and its
eight adjacent neighbors. If the present square is not occupied and exactly
three of its neighbor squares are occupied, then that square will be occupied
in the next pattern. If the present square is occupied and two or three of
its neighbor squares are occupied, then that square will be occupied in the
next pattern. Otherwise, the present square will not be occupied in the
next pattern.

The edges of the screen are normally treated as an unoccupied void. If you
specify the -r option on the command line, the screen is treated as a
sphere~ that is, the top and bottom lines are considered adjacent and the
left and right columns are considered adjacent.

The pattern generation number and the number of occupied squares are
displayed in the lower left hand corner.

Below is a list of commands available to the user. A # stands for any
number. A A followed by a capital letter represents a control character.

#,#a Add a block of elements. The first number specifies the hor­
izontal width. The second number specifies the vertical width.
If a number is not specified, the default is 1.

#c Step through the next # patterns. If no number is specified,
step forever. The operation can be aborted by typing rubout
{delete} .

#,#d Delete a block of elements. The first number specifies the hor­
izontal width. The second number specifies the vertical width.
If a number is not specified, the default is 1.

#f Generate a little flier at the present location. The number
{modulo 8} determines the direction.

#,#g Move to absolute screen location. The first number specifies the
horizontal location. The second number specifies the vertical
location. If a number is not specified, the default is O.

#h Move left # steps. If no number is specified, the default is 1.

#j Move down # steps. The default is 1.

#k Move up # steps. The default is 1.

#1 Move right # steps. The default is 1.

#0 Step through the next # patterns. If no number is specified,
generate the next pattern. The operation can be aborted by typ­
ing rubout {delete}.

p Put the last yanked or deleted block at the present location.

October 1983 - 1 -

LIFE (6) (UniSoft) LIFE (6)

BUGS

q

#,#y

Quit.

Yank a block of elements. The first number specifies the hor­
izontal width. The second number specifies the vertical width.
If a number is not specified, the default is 1.

C Clear the pattern.

#F Generate a big flier at the present location. The number
(modulo 8) determines the direction.

#H Move to the left margin.

#J Move to the bottom margin.

#K Move to the top margin.

#L Move to the right margin.

#AH Move left # steps. If no number is specified, the default is 1.

#A J Move down # steps. The default is 1.

#AK Move up # steps. The default is 1.

#AL Move right # steps. The default is 1.

AR Redraw the screen. This is used for those occasions when the
terminal screws up.

Repeat the last add (a) or delete (d) operation.

Repeat the last move (h, j, k, I) operation.

The following features are planned but not implemented:

,#8 Save the selected area in a file.

R Restore from a file.

m Generate a macro command.

Shell escape.

e Edit a file.

Input commands from a file.

AUTHOR
Asa Romberger

October 1983 - 2 -

MAZE(6)

NAME
maze - generate a maze

SYNOPSIS
/usr/galDes/lDaze

DESCRIPTION
Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

October 1983 - 1 -

MAZE(6)

MOO(6)

NAME
moo - guessing game

SYNOPSIS
/usr/gannes/nnoo

DESCRIPTION

MOO(6)

Moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses four
distinct digits being scored on each guess. A "cow" is a correct digit in an
incorrect position. A "bull" is a correct digit in a correct position. The
game continues until the player guesses tl!e number (a score of four bulls).

October 1983 - 1 -

NUMBER(6) (UniSoft)

NAME
number - convert Arabic numerals to English

SYNOPSIS
/usr/games/number

DESCRIPTION

NUMBER(6)

Number copies the standard input to the standard output, changing each
decimal number to a fully spelled out version.

October 1983 - 1 -

QUIZ (6) QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [- i file] [- t] [categoryl category2]

DESCRIPTION

FILES

BUGS

QUiz gives associative knowledge tests on various subjects. It asks items
chosen from category] and expects answers from category2, or vice versa.
If no categories are specified, quiz gives instructions and lists the available
categories.

Quiz tells a correct answer whenever you type a bare new-line. At the end
of input, upon interrupt, or when questions run out, quiz reports a score
and terminates.

The - t flag specifies "tutorial" mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

The - i flag causes the named file to be substituted for the default index
file. The lines of these files have the syntax:

line
category
alternate
primary
option

category new-line I category : line
alternate I category I alternate
empty I alternate primary
character I (category) I option
(category)

The first category on each line of an index file names an information file.
The remaining categories specify the order and contents of the data in each
line of the information file. Information files have the same syntax.
Backslash \ is used as with sh(1) to quote syntactically significant characters
or to insert transparent new-lines into a line. When either a question or its
answer is empty, quiz will refrain from asking it.

I usr I games/lib/ quiz/ index
lusr/games/libl quiz/·

The construct "alab" doesn't work in an information file. Use "a{b}".

October J 983 - 1 -

RAIN (6) (UniSoft)

NAME
rain - animated raindrops display

SYNOPSIS
rain

DESCRIPTION

RAIN (6)

Rain's display is modeled after the VAX/VMS program of the same name.
The terminal has to be set for 9600 baud to obtain the proper effect.

As with all programs that use term cap , the TERM environment variable
must be set (and exported) to the type of the terminal being used.

FILES
/ etc/ termcap

AUTHOR
Eric P. Scott

October 1983 - 1 -

ROBOTS (6) (UniSoft) ROBOTS (6)

NAME
robots - Escape from the robots

SYNOPSIS
/usr/gaDles/robots

DESCRIPTION
The object of the game robots is to move around inside of the box on the
screen without getting eaten by the robots chasing you and without running
into anything.

If a robot runs into another robot while chasing you, they crash and leave a
junk heap.

You start out with 10 robots worth 10 points each. If you defeat all of
them, you get 20 robots worth 20 points each. Then 30, etc. Until you get
eaten!

The game keeps track of the top ten scores and prints them at the end of
the game.

The valid commands are described on the screen.

October 1983 - 1 -

TREK(6) (UniSoft) TREK (6)

NAME
trek - trekkie game

SYNOPSIS
/usr/games/trek [[- a 1 file 1

DESCRIPTION
Trek is a game of space glory and war. Below is a summary of commands.
For complete documentation, see Trek by Eric Allman.

If a filename is given, a log of the game is written onto that file. If the - a
flag is given before the filename, that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses
are short, medium, and long. You may also type restart, which restarts a
previously saved game. You will then be prompted for the skill, to which
you must respond novice, fair, good, expert, commadore, or impossible.
You should normally start out with a novice and work up.

In general, throughout the game, if you forget what is appropriate the game
will tell you what it expects if you just type in a question mark.

COMMAND SUMMARY
abandon
cloak up/down
computer request; ...
destruct
help
lrscan
phasers automatic amount
phasers manual amtl course! spread! ...
torpedo course [yes] angle/no
ram course distance
shell
srscan [yes/no]
status
undock
warp warp_factor

AUTHOR
Eric Allman

October 1983 - ! -

capture

damages
dock
impulse course distance
move course distance

rest time
shields up/down

terminate yes/no
visual course

TWINKLE (6) (UniSoft) TWINKLE (6)

NAME
twinkle - twinkle stars on the screen

SYNOPSIS
/usr/games/twinkle [- + [s save]] [densityl1 [density2]

DESCRIPTION
Twinkle causes a specified density of 'stars' to twinkle on the screen. The
following options are available;

print out the present screen density (the percentage of the screen
that will be filled with stars) in the lower left hand corner of the
screen. This number will change as stars go on and off.

+ do not 'randomize' before starting. The screen starts out com­
pletely blank and stars are added, bit by bit. In this case the density
rises beyond the specified density, then falls to the required percen­
tage.

s save binary density on file 'save', in case you want to see the den­
sity curve that a particular density specification produced during the
life of the show.

density If no density is specified, density is .5 (50% of the screen will be
filled with stars).

EXAMPLE

If only density 1 is given, density is 1 / density 1
If both densityl and density2 are given, density is the resultant of
density 1 / density 1 + density2.

twinkle -+ 2 6

would start from a blank screen and twinkle stars to a final density of 2/8,
or 25%. The densities would be shown in the lower left hand corner, as a
three-place decimal.

AUTHOR
Asa Rom berger

October 1983 - 1 -

WORMS(6) (UniSoft)

NAME
worms - animate worms on a display terminal

SYNOPSIS
worms [-field] [-length #] [-number #] [-trail]

DESCRIPTION

WORMS (6)

-field makes a "field" for the worm (s) to eat; -trail causes each worm to
leave a trail behind it. You can figure out the rest by yourself.

FILES
/ etc/ termcap

DIAGNOSTICS
Invalid length

BUGS

Value not in range 2 < = length < = 1024

Invalid number of worms
Value not in range 1 < = number < = 40

TERM: parameter not set
The TERM environment variable is not defined. Do

TERM = terminal type
export TERM

Unknown terminal type
Your terminal type (as determined from the TERM environment vari­

able) is not
defined in /etc/termcap.

Terminal not capable of cursor motion
Your terminal is too stupid to run this program.

Out of memory
This should never happen.

The lower-right-hand character position will not be updated properly on a
terminal that wraps at the right margin.

Terminal initialization is not performed.

AUTHOR
Eric P. Scott

October J 983 - 1 -

	0001
	0002
	001
	002
	003
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	03-001_Section_2
	03-002
	03-003
	03-004
	03-005
	03-006
	03-007
	03-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041
	03-042
	03-043
	03-044
	03-045
	03-046
	03-047
	03-048
	03-049
	03-050
	03-051
	03-052
	03-053
	03-054
	03-055
	03-056
	03-057
	03-058
	03-059
	03-060
	03-061
	03-062
	03-063
	03-064
	03-065
	03-066
	03-067
	03-068
	03-069
	03-070
	03-071
	03-072
	03-073
	03-074
	03-075
	03-076
	03-077
	03-078
	03-079
	03-080
	03-081
	03-082
	03-083
	03-084
	03-085
	03-086
	03-087
	03-088
	03-089
	03-090
	03-091
	03-092
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098
	03-099
	03-100
	03-101
	03-102
	03-103
	03-104
	03-105
	03-106
	03-107
	03-108
	03-109
	03-110
	04-001_Section_3
	04-002
	04-003
	04-004
	04-005
	04-006
	04-007
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020
	04-021
	04-022
	04-023
	04-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	04-031
	04-032
	04-033
	04-034
	04-035
	04-036
	04-037
	04-038
	04-039
	04-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075
	04-076
	04-077
	04-078
	04-079
	04-080
	04-081
	04-082
	04-083
	04-084
	04-085
	04-086
	04-087
	04-088
	04-089
	04-090
	04-091
	04-092
	04-093
	04-094
	04-095
	04-096
	04-097
	04-098
	04-099
	04-100
	04-101
	04-102
	04-103
	04-104
	04-105
	05-01_Section_4
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	06-01_Section_5
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	07-01_Section_7
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27

