TEXAS INSTRUMENTS

TOOLS AND UTILITIES

MANUAL REVISION HISTORY

Explorer Tools and Utilities (2549831-0001)

Original ISSUEttt i e June 1987
ReViSION A ..ttt et ittt October 1987
© 1987, Texas Instruments Incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of
Texas Instruments Incorporated.

The system-defined windows shown in this manual are examples of the soft-
ware as this manual goes into production. Later changes in the software may
cause the windows on your system to be different from those in the manual.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Com-
puter Software clause at 52.227-7013.

Texas Instruments Incorporated
ATTN: Data Systems Group, M/S 2151
P.O. Box 2909
Austin, Texas 78769-2909

PDP is a trademark of Digital Equipment Corporation.
VT100 is a trademark of Digital Equipment Corporation.
TOPS-20 is a trademark of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T.

Symbolics is a trademark of Symbolics, Inc.

LIST OF EFFECTIVE PAGES

Insert latest changed pages and discard superseded pages.

»

NOis: awr arasd e I

iote: The ¢ ext are indicated by a change number at the
bottom of the page and a vertical bar in the outer margin of the changed
page. A change number at the bottom of the page but no change bar
indicates either a deletion or a page layout change.

.
@

Explorer™ Tools and Utilities (2549831-0001 *B)

Original Issue June 1987
Change 1 i October 1987
Change 2 December 1987

© 1986, 1987, Texas Instruments Incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of
Texas Instruments.

The system-defined windows shown in this manual are examples of the sott-
ware as this manual goes into production. Later changes in the software may
cause the windows on your system to be different from those in the manual.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Com-
puter Software clause at 5§2.227-7013.

Texas Instruments Incorporated
ATTN: Data Systems Group, M/S 2151
P.O. Box 2909
Austin, Texas 78769-2909

The total pages and change numbers in this publication are as follows:

Page Change No. Page Change No. Page Change Ng.
Front Cover 2 l-1 - 12 ..ot 0 101 -10-2 0
Title Page 0 2-1 e 0 10-3 - 10-42 pa
List of Effective Pages 2 22 e 2 11-1 - 1115 O
Manuals Frontispieces(6pp) 2 2-3 <25 .. 0 12-1 - 12-31 0
b 2 31 =36 0 13-1 - 13-13 0
Xiih =xiv, 0 4-1 .. 0 14-1 - 14-5 0
Xxvexvii ... 00 L, 2 §-1-5-12 0 15-1 = 15-7 0
xvili - xxdi ..., 0 61 = 6-26 0 16-1 - 16-8 0
xxili - xxiv ..., 1 7-1=-7-38 0 17-1 = 17-18 0
XXV = 200K . oveeanan . 2 8-1-8-20 0 18-1 - 18-6 0

....... 0 9-1-9-14 0 19-1 =193 0

Pagp o Change No. Page Change No. Page Change No.

0 291 =29-3 0 B-2-B-18 0
0 30-1-30-5 0 B-19, 2
0 31-1 = 31-57 1 B-20 1
0 32-1 =327 ... 0 B-21-B-22............ 0
0 33-1 =334 0 B-23 ..., 2
0 34-1 -34-8 2 Index-1 - Index-29 2
0 35-1 =359 2 Doc. Questionnaire 0
0 A-l - A-29 0 Business Reply 0

0 B-1, 2 Back Cover 2

Introduction to the
Explorer System

Zmacs Editor
Tutorial

Master Index

Lisp Reference

Input/Output
Reference

Tools and Utilities

Zmacs Editor
Reference

Window System
Reference

Programming
Concepts

Networking
Reference

Glossary

System Software
Installation

. Technical
Summary

System Software
Design Notes

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Little/No Interest

Medium Interest

First Day of
Explorer Use

Casual or New
Developer

Experienced
Deveioper

Appiications
Programmer

Systems - -
Manager,

A ERa

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Mastering Explorer Technical Summary 2243189-0001
the Explorer Introduction 1o the Expiorer System 2243190-0001
Eavironment Expiorer Zmacs Editor Tutorial 2243191-0001
Explorer Glossary 2243134-0001
Explorer Networking Reference 2243206-0001
Explorer Diagnosticscouuuui.... 2533554-0001
Explorer Master Index to Software Manuals 2243198-0001
Explorer System Sofiware Installation Guide 2243205-0001
Programming Explorer Programming Concepts 2549830-0001
With the Explorer Explorer Lisp Referencec.cov..... 2243201-0001
Explorer Input/Output Reference. 2549281-0001
Explorer Zmacs Editor Reference 2243192-0001
Explorer Tools and Utilities 2549831-0001

Explorer Window System Reference 2243200-0001

Explorer Options

Explorer Natural Language Menu System User’s Guide 2243202-0001
Explorer Relational Table Management

System User's Guideccovvvenn.... 2243203-0001

Explorer Grasper User's Guide 2243135-0001

Explorer TI Prolog User’'s Guide 2537248-0001

Programming in Prolog, by Clocksin and Mellish 2249985-0001

Explorer Color Graphics User’s Guide 2537157-0001

Explorer TCP/IP User's Guide 2537150-0001

Explorer LX™ User'sGuidecovvuneenn.... 2537225-0001

Explorer LX System Installation e 2537227-0001

Explorer NFS™ User's Guide 2546890-0001

Explorer DECnet™ User's Guide 2537223-0001

Personal Consultant™ Plus Explorer 2537259-0001

System Software Explorer System Software Design Notes 2243208-0001
Internals Release Information, Explorer System Software 2549844-0001

Explorer LX and Personal Consultant are trademarks of Texas Instruments Incorporated.
NFS is a trademark of Sun Microsystems, Inc.
DECanet is a trademark of Digital Equipment Corporation.

THE EXPLORER™ SYSTEM HARDWARE MANUALS

System Level Explorer 7-Slot System Installation 2243140-0001
Publications Explorer System Field Maintenance 2243141-0001
Explorer System Field Maintenance Documentation Kit 2243222-0001
Explorer System Field Maintenance Supplement 2537183-0001
Explorer System Fieid Maintenance Suppiement
Documentation Kit..........., ... 2549278-0001
Explorer NuBus™ System Architecture
General Descriptionttt 2537171-0001
System Encilosure Explorer 7-Slot System Enclosure General Description 2243143-0001
Equipment Explorer Memory General Description (8-megabytes) 2533592-0001
Publications Explorer 32-Megabyte Memory General Description 2537185-0001
Expiorer Processor General Description 2243144-0001
68020-Based Processor General Description 2537240-0001
Explorer II™ Processor and Auxiliary Processor
Options General Descripdon 2537187-0001
Explorer System Interface General Description 2243145-0001
Explorer Color System Interface Board
General Descriptioncc.ovivnenennnnnnn... 2537189-0001
Explorer NuBus Peripheral Interface
General Description (NUPI board) 2243146-0001
Display Terminal Explorer Display Unit General Description 2243151-0001
Publications CRT Data Display Service Manual, Panasonic
code number FTD85055057Co..L. 2537139-0001
Explorer Color Console General Description 2537195-0001
TRINITRON® Graphic Display Monitor GDM-1603 ’
Service Manual, Sony® part number 0-558-986-01 2551107-0001
Model 924 Video Display Terminal User’'s Guide 2544365-0001
143-Megabyte Explorer Mass Storage Enclosure General Description 2243148-0001
Disk/Tape Enclosure Explorer Winchester Disk Formatter (ADAPTEC)
Publications Supplement to Explorer Mass Storage Enclosure

General Descriptionciiiiiinnnnnnvnnn.. 2243149-0001
Explorer Winchester Disk Drive (Maxtor)

Supplement to Explorer Mass Storage Enclosure

General Descriptioncccvvinereennnnnnnnnn. 2243150-0001
Explorer Cartridge Tape Drive (Cipher)

Supplement to Explorer Mass Storage Enclosure

General Descriptioncoiiiiiiininennnnn.n, 2243166-0001
Explorer Cable Interconnect Board (2236120-0001)

Supplement to Explorer Mass Storage Enclosure

General Descriptioncciiiiivnrnnenennnn. 2243177-0001

Explorer, Explorer II, and NuBus are trademarks of Texas Instruments Incorporated.
TRINITRON and Sony are registered trademarks of Sony Corporation.

143-Megabyte
Disk Drive Vendor
Publications

XT-1000 Service Manual, 5 1/4-inch Fixed Disk
Drive, Maxtor Corporation, part number 20005

(5 1/4-inch Winchester disk drive, 112 megabytes)

ACB-5500 Winchester Disk Controlle‘r User’s
Manual, Adaptec, Inc., (formartter for the

5 1/4-inch Winchester disk drive)

BTN

2249999-0001;

Dk A

W
e

2249933-0001

Series 540 Cartridge Tape Drive Product Description,
Cipher Data Products, Inc., Bulletn Number

01-311-0284~1K (1/4-inch tape drive)

MTO1 Tape Controller Technical Manual,
Emulex Corporation, part number MT0151001

(formatter for the 1/4-inch tape drive)

Viper™ Half-High Intelligent 4 1/4-Inch Streaming
Cartridge Tape Drive SCSI Models 20608 and 2125§,

Archive Corporation, part number 21136-001

2249997-0001

2243182-0001+- -

2551106-0001

182-Megabyte
Disk/Tape Enclosure
MSU 1I Publications

Mass Storage Unit (MSU II)

General Descriptioncvvueuvnnnn. ..

2537197-0001

182-Megabyte
Disk Drive Vendor
Publications '

Control Data® WREN™ III Disk Drive OEM Manual,
part number 77738216, Magnetic Peripherals, Inc.,

a Control Data Companyovvurennn...

2546867-0001

515-Megabyte Mass
Storage Subsystem
Publications

SMD/515-Megabyte Mass Storage Subsystem General
Description (includes SMD/SCSI controller

and 515-megabyte disk drive enclosure)

2537244-0001

S515-Megabyte Disk
Drive Vendor
Publications

§15-Megabyte Disk Drive Documentation Master Kit

(Volumes 1, 2, and 3), Control Data Corporation

Volume 1, General Description, Operation, Installation

and Checkout, and Part Data

Volume 2, Theory, General Maintenance, Trouble

Analysis, Electrical Checks, and Repair Information ...
Volume 3, Diagramscco.....

2246129-0002
2246125-0004

2246125-0005
2246125-0006

1/2-Inch Tape Drive
Publications

MT3201 1/2-Inch Tape Drive

General Descriptioncviinvnnnnnnn.

2537246-0001

Viper is a trademark of Archive Corporation.

Control Data is a registered trademark and WREN is a trademark of Control Data

Corporation.

s e

1/2-Inch Tape Drive
Vendor Publications

Cipher CacheTape® Documentation Manual Kit
{(Volumes 1 and 2 With SCSI Addendum and,

Logic Diagram), Cipher Data products 2246130-0001
1/2-Inch Tape Drive Operation and Maintenance
- (Volume 1), Cipher Data Products 2246126-0001
1/2-Inch Tape Drive Theory of Operation
(Volume 2), Cipher Data Products 2246126-0002
SCSI Addendum With Logic Diagram,
Cipher Data Products, 2246126-0003
Printer Model 810 Printer Installation and Operation Manual 2311356-9701
Publications Omni 800™ Electronic Data Terminals Maintenance
Manual for Model 810 Printers 0994386-9701
Model 850 RO Printer User’s Manual 2219890-0001
Model 850 RO Printer Maintenance Manual 2219896-0001
Model 850 XL Printer User’'s Manual 2243250-0001
Model 850 XL Printer Quick Reference Guide 2243249-0001
Model 855 Printer Operator’s Manual 2225911-0001
Model 855 Printer Technical Reference Manual 2232822-0001
Model 855 Printer Maintenance Manual 2225914-0001
Model 860 XL Printer User’s Manual 2239401-0001
Model 860 XL Printer Maintenance Manual 2239427-0001
Mode! 860 X! Printer Quick Reference Guide 2239402-0001
Model 860/859 Printer Technical Reference Manual 2239407-0001
Model 865 Printer Operator’s Manual 2239405-0001
Model 865 Printer Maintenance Manual 2239428-0001
Model 880 Printer User’'s Manual 2222627-0001
Model 880 Printer Maintenance Manual 2222628-0001
OmniLaser™ 2015 Page Printer Operator’s Manual 2539178-0001
OmniLaser 2015 Page Printer Technical Reference 2539179-0001
OmniLaser 2015 Page Printer Maintenance Manual 2539180-0001
Omnilaser 2108 Page Printer Operator’'s Manual 2546348-0001
OmniLaser 2108 Page Printer Technical Reference 2546349-0001
Omnilaser 2108 Page Printer Maintenance Manual 2546350-0001
Omnil.aser 2115 Page Printer Operator’s Manual 2546344-0001
Omnil.aser 2115 Page Printer Technical Reference 2546345-0001
Omnilaser 2115 Page Printer Maintenance Manual 2546346-0001
Communications 990 Family Communications Systems Field Reference 2276579-9701
Publications EI990 Ethernet® Interface Installation and Operation 2234392-9701
Explorer NuBus Ethernet Controller
General Descriptioncciviiiiinaieninnnnn 2243161-0001
Communications Carrier Board and Options
General Descriptioncciiviiiniiniinrnnnn 2537242-0001

CacheTape is a registered trademark of Cipher Data Products, Inc.
Omni 800 and Omnil.aser are trademarks of Texas Instruments Incorporated.
Ethernet is a registered trademark of Xerox Corporation.

CONTENTS

Section Title

1 New User

2 Profile

3 Login Initialization File

4 Bug Reporting

s Glossary Utility

6 UCL User Interface

7 UCL Programmer Interface
8 Using Suggestions

9 Programming Suggestions
10 Graphics Editor

11 Tree Editor

12 Font Editor

13 Debugger (Error Handler)
14 Window-Based Debugger
15 Inspector

16 Flavor Inspector

17 Peek

18 Trace

19 Stepper

20 Evalhook

21 Adyvise

22 Breakon

23 MAR

24 Crash Analysis

25 Miscellaneous Debugging Functions
26 Lisp Listener and Break
27 Performance Tools

28 Telnet

29 VT100 Emulator

30 Converse

31 Mail

32 Namespace Utilities

33 Miscellaneous Network Functions
34 Color Map Editor

35 : Visidoc

Appendix A Explorer Fonts

Appendix B Command Tables

Tools and Utilities — Change 2

xi

Conrents

Section Paragraph Title Page
About This Manual
Contents of This Manual it xxix
Notational Conventions e e XxXxi
Keystroke Sequencesot xxxi
Mouse Clcks ..ot xoexii
Lisp Language Notation0, xoxii
1 New User
2 Profile
2.1 Introductiont e e 2-1
2.2 ReqUIrEMEeNLSitiiiiiiinenenenenenn i, 2-1
2.3 Accessing the Profile Utilityot ... 2-1
2.4 Accessing Variables in the Profile Udlity 2-2
2.5 Commands in the Profile Udlityc.ciiviri.. .. 2-3
2.6 Typical Variables i 2-3
2.7 Customizing Profilec.ciiiiiiiiiiiiiiiiiin.. 2-4
3 Login Initialization File
3.1 INmOdUCHON .. ovin ettt it it e e e 3-1
3.2 Customizations That Can Be Undone 3-2
3.3 Other CUSIOMIZAtONSot vivtnitieeetneeenennenanennnens. 3-4
3.3.1 Using Profilettt 3-4
3.3.2 Customizing Zmacsoviitiiintiiiia i 3-4
3.3.3 Creating Logical Pathnamesccciuiininnn.n., 3-5
3.3.4 The with-timeout Macrovunn.. 3-5
3.3.5 The sys:load-if Functioniiiiinininn.. 3-6
4 Bug Reporting
5 Glossary Utility
S.1 INroductioniiiiiiii i i it it e 5-1
5.2 Enteringthe Glossary Utilityccciiuiriunnennn.. eee. §22
5.3 Glossary User Modecoiiiiiiininnnnnnnennninnnenennn, 5-2
5.3.1 Glossary Command Menuoiiiniiinnnennnenenenann. 5-3
5.3.2 Keyboard Typein Windowo, 5-4
5.3.3 Menu of Glossary Entries 5-4
5.3.4 Text of Selected Glossary Entries 5-4
5.3.5 Thumb Index e 5-4
xii Tools and Utilities

Cortents

Section Paragraph Title Page
S.4 Glossary Expert Mode o 3-5
5.4.1 Define Glossary 5-5
5.4.2 Delete GloSsary ...t 5-6
5.4.3 Select GlOSSaTY & - v« v iv e ettt e 5-6
5.4.4 Add or Delete Glossary ENtIY ... ovivinion e 5-7
5.4.5 Edit Glossary EQtry ... 5-7
5.4.6 Write Current GIOSSary - ..o vt v iiiiin e 5-8
5.4.7 Merge in GIOSSAIY - ..ottt 3-8
5.4.8 (Re)Generate XRefst 5-8
5.4.9 Turn On XRef Deletionooiuiunnn .. 5-9
5.4.10 Exit Expert Mode it 5-9
5.5 Using Zmacs to Create a Glossary File 5-10
5.6 Defining Glossary File Formatc.iiiniinnunon... 5-11
5.7 Defining a Glossary From the Lisp Listener 5-12
6 UCL User Interface
6.1 OverView 6-1
6.2 Basic Command Interpreter Operation 6-2
6.3 Help Featuresoiiiiiitin i, 6-3
6.3.1 Help Commandt 6-4
6.3.2 Command Type-In Helpc.oouiiiiiiiinnnenn.... 6-6
6.3.3 Command Displaycooviiiuimii i, 6-7
6.3.4 Command HiStoryoviiiiiniiniin i, 6-8
6.3.5 Command Name Searchccovuviniennnn.... 6-9
6.3.6 Keystroke Search i, 6-1
6.3.7 Command Menus PR 6-10
6.3.7.1 Mouse Documentation Window 6-10
6.3.7.2 Ioons ... 6-10
6.3.8 Completion Commandscc..vuiuinininnnnnnnn... 6-11
6.3.9 Mouse Documentation Window Help e 6-13
6.4 Environment Customization Features 6-15
6.4.1 Command Editorc.oivtiiiininiinein .. 6-16
6.4.2 Build Keystroke Macroc.vviiineiininnnnnnnnn... 6-17
6.4.3 Build Command Macrocooivinninnnnnneneennnn.. 6-18
6.4.4 Save Commandsiiiiiiii i 6-19
6.4.5 Load Commandsccoiiiniiiiiniiininnn... 6-19
6.4.6 Top Level Configurer i, 6-19
6.5 Miscellaneous Featuresc.couviirnininenennn.. 6-21
6.5.1 Typed EXPressionsouuuiuninnnennennennenennennnn. 6-22
6.5.1.1 Kinds of EXPressionsccovuevinnennnnennenennnnn.. 6-22
6.5.1.2 Implicit Message Sending (rotl) 6-23
6.5.1.3 Algorithm Used for Typed Expressions 6-23
6.5.1.4 User Configuration of Type-ln Modes 6-24
6.5.1.5 Special EXpressionsc0iiieiiiiie....... 624
6.5.2 Obtaining Argumentsc..ovuireunnennnrnnennnenn.. 6-24
6.5.3 Numeric Argumentsoiiiiiniininennnnann.. 6-25
6.5.4 RedoCommandciiiiniiniinnnn i, 6-25
6.5.5 System MenU ...ttt e e e 6-25
6.5.6 Error Catcher i i e 6-25
6.6 Command SUMMArYviiiuinineinenn e, 6-26

Tools and Utilities xiii

Contents

Section Paragraph

Title _ Page

7 UCL Programmer Interface
7.1 INodUCHOnttt e e 7-1
7.2 Basic Command Interpreter Operationc.vuvun.... 7-3
7.3 defcommand and make-command Macros 7-5
7.3.1 defcommand Macro i 7-5
7.3.2 :arguments Keyword of defcommand 7-9
7.3.3 make-command Macro i, 7-12
7.4 build-command-table Function 7-13
7.5 buildemenu Function, 7-15
7.6 Hints for Developing a UCL Application 7-19
7.7 Using and Customizing Command Interpreter Flavors 7-20
7.7.1 ucl:basic-command-loop Flavor 7-20
7.7.1.1 Basic Instance Variables i, 7-21
7.7.1.2 Instance Variables for Reading Typed Input 7-23
7.7.1.3 Instance Variables for Printing 7-24
7.7.1.4 Methods i i i et et 7-25
7.7.2 ucl:command-loop-mixin Flavor 7-27
7.7.3 Other Flavorsottt i et e e e 7-27
7.7.3.1 ucl:command-and-lisp-typein-window Flavor 7-28
7.7.3.2 ucl:typein-mode Flavorccciiiueo. ... 7-28
7.7.3.2 uclhieslactive-foatursc-mivin Flaver 7-21
7.7.4 Global Variablest iiiiiiintiieiinnnnnnn. 7-34
7.7.4.1 History Variablesc. ittt 7-34
7.7.4.2 Defaults Variables i, 7-34
7.7.4.3 Miscellaneous Variables, 7-35
7.8 Miscellaneous FUnCtionsc.cuieeinienernnnnnnnn. 7-36

8 Using Suggestions

8.1 Introduction oot iririinieiirnnnnrrnoacannennennnns 8-1
8.2 How to Access Suggestions e 8-2
8.3 Suggestions Menu Windowscoiiiiiiininonnannann.. 8-2
8.3.1 Suggestions Window Configurations 8-4
8.3.1.1 Explorer Landscape Video Display 8-4
8.3.1.2 Portrait Video Displayiiiiiiiiiiiiiiieen e, 8-4
8.3.2 . PAMES ...ttt e it teeee et 8-5
8.4 MenuExamplesci ittt iiiii i, 8-8
8.4.1 Lisp Listener Suggestionscoceeeecumennnnnenen.n. 8-9
8.4.2 Zmacs SUGBeSUONSttt iriiennecnennenenenen. 8-12
8.4.3 Inspector Suggestionsiiiiiiiiiiiii i 8-14
8.4.4 Debugger Suggestions Menuscceveneninnennnn.n. 8-15
85 MenuToolsoiiitiiiiiiiii it iinarceaceannaenannnn, 8-17
8.5.1 Back to Initial SuggestionscciiiiiiiiiiiiiiL, 8-18
8.5.2 Find Commandsciitiiiurnrmvcnneennnnnnnnn 8-18
8.5.3 Select Suggestions Applicationsccoceeiiiiin.n.. 8-18
8.5.4 Menu HiStory oottt et it it iereacnerrne e, 8-18
8.5.5 Suggestions Menu Searcho, 8-18
8.5.6 Suggestions Menus Off ccoiiniii. ... 8-18
8.5.7 Add Menuto Buffer il 8-18
8.5.8 Turn Off Pop-Up Keystrokescooiemeeneninen.n.. 8-19
8.5.9 Turn On Pop-Up Keystrokescovmeeniennnenennn. 8-19
8.5.10 Reorder Menu Items ciiiiiiieinrnnnnn.. 8-19
8.5.11 Find Functions for Menuccoiiimeinninnennnn.. 8-19
xiv Toois and Utilities

Contefits™ -

Section Paragraph Title Page
8.5.12 Remove Current Menu e ..., 815
8.5.13 Add a Symbol to a Lisp Expressions Menu 8-19

8.6 Lisp Expressions.................. e 8-19

9 Programming Suggestions

9.1 Introductioniiii 9-1
9.2 Incorporating Suggestions in an Application 9-1
9.2.1 Building the Suggestions Menus 9-1
9.2.2 Initializing Suggestionsiiii 8-2
9.2.3 Example of Building Suggestions 9-3
9.2.4 Detailed Example of Building Suggestions 9-5
9.3 sugg:suggestions-build-menu Function 9-8
9.4 sugg:initialize-suggestions-for-application Macro 9-9
9.5 Triggering Automatic Menu Changes 9-10
9.5.1 Using Inline Macros to Change Menus Automatically $-12
9.5.2 Advising Commands to Change Menus Automatically 9-14
9.5.3 Changing Menus Through the Active Command Table 9-15
10 Graphics Editor
101 Introductionc..oouuiiiuiiini 10-1
10.1.1 Worlds, Windows, and Transformations 10-2
10.1.2 Kinds of Objectsc.civiuiiiiiiiin .. 10-2
10.1.3 Grouping Objectsttt 10-3
10.1.4 Aids for Drawing Objectsoviniunvnnennnn... 10-3
10.2 Loading and Entering the Graphics Editor 10-3
10.2.1 Creating the GWIN and GED Systems 10-3
10.2.2 Entering the Graphics Editor 10-4
10.2.2.1 Usingthe SYSTEM Key ... oi it 10-4
10.2.2.2 Using the ged:ged Functionc0o... 10-4
10.3 Graphics Editor Windowcc0vtiiiiiinnnninnn... 10-4
10.3.1 Window Layoutooiiiiiniiiii i 10-4
10.3.2 Bufferso i 10-6
10.3.3 Typesof Commandsc.ccovniiiiinninnnnnnn... 10-7
10.3.4 Selecting Commandscoviiiniiniinnnnn.... 10-7
10.3.4.1 Using the Graphics Editor Command Menu 10-7
10.3.4.2 Using the Graphics Editor Submenus 10-7
10.3.4.3 Usingthe Icon Menuc0iiiiiininnennn... 10-7
10.3.4.4 Using the Keyboardcciiiiinninnnnnnnnn.. 10-7
10.3.5 Mouse and Keyboard Operationcovvvvnn..... 10-7
10.3.5.1 The Mouse CUISOrcivivinernnennnennnnnnnnn. 10-7
10.3.5.2 The Mouse BUttOnSovvitiinnniiininennnn. 10-8
1004 ObJeCtS .ottt e 10-8
10.4.1 Characteristics of Objectscoovviinineinnenennenn.. 10-8
10.4.1.1 Filled and Unfilled Objects0.... 10-8
10.4.1.2 Color of Objectscvviiiiiiiiiinin .. 10-9
10.4.1.3 ALU Valueottt i it e e 10-10
10.4.1.4 Status Variables 0 i e 10-12
10.4.2 Drawingan Objectiiiiiennininnnnnnnn... 10-12
10.4.2.1 Choosing a FUNctionc.covuuiiuinennnannn.... 10-12
10.4.2.2 Selecting and Positioning the Object 10-12

Tools and Utilities — Change 2 Xv

Contents

Section Paragraph Title Page
10.4.3 Hustration Convenuionsovuriiiininnnnnnnnn. .. 10-13
10.4.4 E 10-13

10.4.4.1 Arc Definition 10-13
10.4.4.2 Drawing an ArC ...ttt ittt 10-14
10.4.5 Circles 10-14
10.4.5.1 Circle Definition i, 10-14
10.4.5.2 Drawinga Circle, 10-15
10.4.6 Lines ... e 10-15
10.4.6.1 Line Definition, 10-15
10.4.6.2 Drawinga Line 10-15
10.4.7 Paintings e e e 10-15
10.4.7.1 Painting Definitionc.cciiiiiiiiiia.... 10-15
10.4.7.2 Drawinga Paintingccciiiuiniininnnnnnnn .. 10-16
10.4.7.3 Status Variables for Paintingsco.oviunn..... 10-17
10.4.8 Polylines i i i 10-17
10.4.8.1 Polyline Definition S 10-17
10.4.8.2 Drawing a Polyline i, 10-17
10.4.9 Rectanglesttt ittt 10-18
10.4.9.1 Rectangle Definition 10-18
10.4.9.2 Drawing a Rectangle 10-18
10.4.10 Rulers 100
10.4.10.1 Ruler Definitionot 10-19
10.4.10.2 Drawing a Ruleriiiiriiinieninnnnnnnnn, 10-19
10.4.1 SPHNes ... e e 10-20
10.4.11.1 Spline Definitionoiiiiiiiin ... 10-20
10.4.11.2 Drawinga Spline i ..., 10-20
10.4.12 2 S 10-21
10.4.12.1 Text Definitioncoiiuiiiiiininnnnn... 10-21
10.4.12.2 Drawing Textciiiiiininmnnnnnniennnnnn.. 10-21
10.4.12.3 Editing Textitiiiitniinnniniiinnnn.. 10-21
10.4.13 TrHangles e e e 10-22
10.4.13.1 Triangle Definiton i L. 10-22
10.4.13.2 Drawing a Triangle oiiiiuninennnnnnann.. 10-22
10.5 FUNCHOMS ...ttt tttte e ieieeneneenenneneneenennenen. 10-22
10.5.1 Selecting Objectscoiiiuiiininninnnnnennnnn. 10-22
10.5.1.1 Selecting Objects Individually 10-22
10.5.1.2 Selecting Objects by Rubber Banding 10-23
10.5.2 Copying Objectsciiiiiiiiiiir it e iieinennnnnn. 10-23
10.5.2.1 GOy « ittt e e et e e 10-23
10.5.2.2 Drag-Copy « . it e e e e 10-24
10.5.3 Deleting Objectsoiiiiiiiniinin i iiienenn., 10-24
10.5.4 Editing Parameterscoiiiiiiin i, 10-24
10.5.5 EXINg ... i i et e e 10-25
10.5.6 Moving Objectscoiiiiiiiiniiiii i, 10-25
10.5.6.1 Moveo e e e e e 10-25
10.5.6.2 Drag-Movet i i e e 10-26
10.5.7 Scaling Objectsottt it 10-26
10.5.8 Status Variables i 10-27
10.5.8.1 Modifying Status Variables, 10-28
10.5.8.2 Saving Status Variablesot 10-28
10.5.8.3 Restoring Status Variableso o, 10-29
10.5.8.4 Reverting Status Variables 10-29
10.5.9 Undoing Commandsovvtmininninrinnnnnennnn, 10-29
10.6 PICTUIeSttt i i i i et e e e 10-30

xvi Change 2 — Tools and Ulilities

Contents

Section Paragraph Title Page
10.6.1 Background Pictures 10-30
10.6.1.1 Reading a Background 10-30
10.6.1.2 Clearing a Background 10-30
10.58.2 Changing Buffers 10-30
10.6.2.1 Selecting Buffers From the List 10-30
10.6.2.2 Movmg tothe Next Buffer 10-30
10.6.2.3 Moving to the Previous Buffer 10-31
10.6.2.4 Ordering the Buffers 10-31
10.6.3 Clearing the Foreground 10-31
10.6.4 Inserting Pictures ...t 10-31
10.6.5 Killing and Saving Buffersoovvuuinnnnn.... 10-31
10.6.5.1 Killinga Buffero, 10-31
10.6.5.2 Saving a Picturettt 10-31
10.6.5.3 Writing a Picture to a Specific File 10-31
10.6.5.4 Killing or Saving Buffers 10-32
10.6.6 Printing Picturesc..ouiiiiiiii i, 10-32
10.6.6.1 Printing From the Screen 10-32
10.6.6.2 Printing Froma File 10-32
10.6.7 Reading a Picture Filecovvunnunnnnnnnn.. .. 10-32
10.6.8 Redrawing the Picture 10-33
10.6.9 Revertinga Buffer oovvui .. 10-33
10.7 Presentationsouuuinneeeiiiinneee e 10-33
10.7.1 Graphics Editor Presentations 10-33
10.7.2 Defining Presentationsc.oouuuiiienennnnnnn.... 10-33
10.7.3 Restoring Presentation Definitions 10-34
10.7.4 Viewing Presentationsc..iiiuninnn..... 10-34
10.7.4.1 Displaying Presentations e e e, 10-34
10.7.4.2 Loading Presentationsc.oovuveununnnn.... 10-34
10.7.5 Killing and Saving Presentation Definitions 10-34
10.7.5.1 Killing a Presentation Definition 10-34
10.7.5.2 Saving a Presentation Definition 10-34
10.7.5.3 Killing or Saving Presentation Definitions 10-35
10.7.6 Listing and Selecting Presentations 10-35
10.7.7 Modifying Presentationsc00viunnnn... 10-35
10.8 SUDPICIUIES . ..o vtiiiteet ettt iiie et 10-36
10.8.1 Using Subpicturesc.cooiiiiiiiinnnnnennnnnnnn. 10-36
10.8.2 Defining Subpicturesc.c.coviuiiniiiiinnann... 10-36
10.8.3 Exploding Subpictures i 10-37
10.8.4 Inserting Subpictures il 10-37
10.8.5 Saving Subpicture Definitions 10-37
10.8.6 Restoring Subpicture Definitions 10-37
10.8.7 Undefining Subpictures, 10-38
109 Windowing ...t e 10-38
10.9.1 Panning....... ..o i 10-38
10.9.2 ZOOMUNE . .ttt ettt it et e e 10-39
10.9.3 Defining a Rewindow Areac.c0ovnvinn.... 10-39
10.9.3.1 Setting the Area With the Mouse 10-39
10.9.3.2 Showing the Entire World 10-40
10.9.3.3 Showing the Default Window 10-40
10.10 Command Names, Keystrokes, and Menus 10-40

Tools and Utilities — Change 2

xXvii

S O S 0y L OO M0 i |

Contents

Section Paragraph Title Page
11 Tree Editor
111 OVeIVIeW . oottt e e e 11-1
11.1.1 Tree Editor Display, 11-2
11.1.2 Loading the Tree Editor 11-3
11.1.3 The Sampie Interfaces 11-3
11.1.3.1 String Displayer e 11-3
11.1.3.2 Flavor Displayercciuiiiininniniiinann, 11-4
11.1.4 Running the Tree Editor 11-4
11.2 The Accessor Filec.uiuit i, 11-5
11.2.1 Adding to the List of Tree Flavorsc.covv.... 11-5
11.2.2 Defining the Function of the Mouse Buttons 11-6
11.2.2.1 Node Types ..o viiiir ittt ittt et ittt e e 11-6
11.2.2.2 Association List for the Node Types 11-6
11.2.3 Defining the Flavorciiiiiininiiinnnnnnnnnn... 11-7
11.2.4 Building a Displayable Treec.covviiiinnan.. .. 117
11.2.4.1 The first-node Method 11-7
11.2.4.2 The :children-from-data Method 11-7
11.2.4.3 The :print-name Methodcoivrvnenn... 11-8
11.2.4.4 The :font-type Method, 11-8
11.2.4.5 The :highlight-function Method 11-8
11.2.4.6 Tne :find-type Methodciiiuienunnnnnnnnn.. 11-8
11.2.4.7 The :thandle-node Method 11-9
11.2.4.8 The :get-new-tree Method 11-10
11.3 EditingMethodsciiiiiiii ittt i e 11-10
11.3.1 The :add-node-before Method 11-10
11.3.2 The :add-node-after Method 11-11
11.3.3 The :add-brother-node Method 11-11
11.3.4 The :delete-subtree Method 11-11
11.3.5 The :delete-yourself Method 11-11
11.3.6 The :get-user-data Method 11-11
11.4 Tree Editor FUNCHONScttiiintrennnnennnnneennnnees. 11-12
11.4.1 Formatting for the Scroll Window 11-12
11.4.2 Redrawingthe Treeciiiiiiiiiiiinnnnnn... 11-12
11.4.3 Expanding and Contracting Nodesc..con.. 11-12
11.4.4 Panning and Zoomingoiiiiiiiiiiiiiiiiii i 11-13
11.4.5 Displaying Error Messagesocviiiiennnenenenenen... 11-13
11.4.6 Changing How a Node is Drawn 11-14
11.5 Tree Editor Variables, 11-14
11.5.1 Local Variables it iiiiiiiiininnnn, 11-14
11.5.2 Global Variablescciiiiiiiiiiniiiiniinnnn.. 11-14
12 Font Editor
121 Introductiontiiitiiii ittt ittt 12-1
12.1.1 Properties of Fontscooiuiiiniiiniinnnennnn.n. 12-2
12.1.2 Fontsin the Video Displayc.cvviiiiniiinn... 12-3
12.1.3 Families of FONtSv0tiitininnt it iiinnannnn, 12-3
12.1.4 Font Directorycciviiiiiiiiiiiiiiiiiiii . 12-4
12.2 Font Editor Windowc.iiiitiiiitinitinnrnnennn. 12-5
12.2.1 Command Menusc.cuiineinirnnennenneennennn, 12-5
12.2.2 Editing Area e 12-6
12.2.2.1 Grid .. i e e e e e e 12-6
12.2.2.2 Character BOXottt ittt ittt e 12-6

xviii

Tools and Utilities

Contents =

Section Paragraph Title

'y
]
I
o

12.2.2.3 Black Plane 12-7
12.2.2.4 Gray Plane 12-7
12.2.3 Registers it e i2-7
12.2.4 Label Information 12-8
12.2.5 Lisp Listener Pane 0ot 12-8
12.2.6 Help Features] 12-9
12.3 Invoking the Font Editor 12-12
12,4 Exitingthe Font Editor, 12-12
12.5 Executing Commandsouuuiininininnn 2-12
12.6 Selectinga Fontto Edit, 12-12
12.6.1 Using the Select Commandcoovuvninnn. ... 12-13
12.6.2 Using the Directory Commandcc0ouun... 12-13
12.6.3 Using the Load Command 12-14
12.6.4 Using the load Function iin.. .. 12-14
12.7 Selecting a Character to Editcnviuvuenvnnn.n.... 12-14
12.7.1 The Font Displayt i 12-15
12.7.2 Using the Change Variables Command 12-16
12.7.2.1 Changing the Sample Font 12-16
12.7.2.2 Changing the Number of Columns 12-16
12.7.2.3 Changing the Base of the Number Labels 12-16
12.7.3 Changing the Configuration by Setting Variables 12-16
12.8 Editing a Characterc..couuuiiiiininnvinnnnnennnn.. 12-17
12.8.1 Changing Drawing Modecoouo.. .. L 12417
12.8.2 Choosing Mouse Cursorsoveviueunnennn.. ... 12-17
12.8.3 Drawingoiiiiii i e e 12-18
12.8.3.1 Using the Mouse to Set Pixels 12-18
12.8.3.2 Using the Keyboard to Set Pxxels 12-18
12.8.3.3 Drawing Operations:c.oviinininnennnnnennnn.. 12-18
12.8.4 Swapping and Merging 12-19
12.8.5 Moving the Contents of the Editing Area 12-19
12.8.6 Adjusting the Character Placement 12-19
12.8.6.1 Moving the Box.............ooiiinii i, 12-19
12.8.6.2 Moving the Character in the Gray Plane 12-19
12.8.7 Editing Operationscoiviiininniinnann.... 12-20
12.8.8 Erasingthe Contentscoviiuneinnininnnnnn. 12-21
12.9 Examining a CharaCtercouivevnneenennnnnnnnn. 12-22
12.9.1 Adjusting the Grid Scale 12-22
12.9.2 Modifying the Sample Stringot 12-22
12,10 Saving @ CharaCtercouviriinnnnennenneninnnennen. 12-23
12.10.1 Holding in the Registercooviiininnnnnnn.... 12-23
12.10.2 Savinginthe Font iiiiiiiinnna.. 12-23
12.11 Writinga Fonttoa Filecoiitiiniiniennnnnnn... 12-24
12.12 Creating a Modified Fontccviiviiniennn.... 12-24
12.12.1 Using the Font Editing Operations 12-24
12.12.2 Modifyinga Font ..ottt 12-26
12.13 Creating a Font From Scratchciiiiinennnn... 12-27
12.14 Performance Considerationsccvvvennennn.... 12-28
12.14.1 Execution Timecciiniiiiniiininin i, 12-28
12.14.2 Memory Allocationciieiitnnrnennrennnnnnn. 12-28
12,15 AST Files ...ttt it i et e e 12-30
12.16 Command SUMMATIYovttittn et eie e, 12-31

Tools and Utilities xix

Contents

Section Paragraph Title Page
13 Debugger (Error Handler)
13.1 INtroductioniiiiniiniiiii i i 13-1
13.2 Entering the Debugger i, 13-1
13.3 Howto Use the Debugger 13-3
13.3.1 Debugger Commandscovitiiit i 13-5
13.3.1.1 Examining Stack Frames 13-6
13.3.1.2 Examining Arguments, Locals, Functions, and Values........ 13-7
13.3.1.3 Examining Special Variables 13-10
13.3.1.4 Resuming Executionccooiiiiiiinan..... 13-10
13.3.1.5 Stepping Through Function Calls and Returns 13-10
13.3.1.6 Transferring to Other Systemscc0uvn..n. 13-11
13.3.2 Summary of Debugger Commands 13-11
13.4 Debugging After a Warm Bootcovuiiiriinnvnnnnnn.. 13-11
14 Window-Based Debugger
14,1 InmodUCHOniniiiii ittt it it et e 14-1
14.2 How to Use the Window-Based Debugger 14-1
14.3 Deexposed Windows and Background Processes 14-4
15 Inspector
15,1 Imtroductioniiiiiiniiit ittt 15-1
15.2 LispListener Paneiiiiiiininininnenenennninnn.. 15-3
15.3 Inspection Panes e e e tau et ea et e 15-4
15.4 History Panettt ittt ittt 15-6
155 Command Menu Panec.iviiiiiiinnnunennnn.. 15-7
16 Flavor Inspector
16.1 OVeIVIEWttt ittt ittt et e e e we.. 16-1
16.2 LispListener Paneoiiiiininrnennnnnenenennnnn. 16-2
16.3 Inspection Pamesoiiiiiiininiininninnnnnnnn. 16-4
16,4 History Pameciiiiiiiiiniininennennenennnnennnnnns. 16-7
16.5 Command Menu Panecivtiuininnnenennnennnns 16-8
17 Peek
17,1 Inoductionciiiiiieiinnninnnenenenennnnnennnnnns 17-1
17.2 Mode and Command Menu Windowsc....... 17-3
173 Viewing WIndowciiiiiiiiiiiiiiinnnennnanann. 17-3
17.3.1 Processes ettt e 17-4
17.3.2 Lo LT 17 17-6
17.3.3 ¥ 17-7
17.3.4 File Status it i i i e e e 17-8
17.3.5 WIRdOWS e e e e e e 17-10
17.3.6 Ly o oA 17-12
17.3.7 L 4) < 17-14

XX Tools and Utilities

Contents

Section Paragraph Title Page
i7.3.8 Funcuon Histogramco 0. 17-16
17.3.9 Host Statust 17-18
18 Trace
19 Stepper
20 Evalhook
21 Advise
21.1 Advising a FUNCHONt vvtie it e 21-1
21.2 Designingthe AdVIiCecoovvuriniirinnne e 21-3
21.3 :around AdVice ... 21-4
21.4 Advising One Function Within Another 21-4
22 Breakon
23 MAR
24 Crash Analysis
24.1 Introduction St ianee e et ettt e e 24-1
24.2 Crash Reportingcuuiiiiiiiniemiine e 24-1
243 Preparing NVRAMttt 24-2
24.4 Crash Analyzer FUNCHONSvvnitinieeenineennnn... 24-2
24.5 Shutdown Record Analysis Format e 24-4
24.6 Hardware Crash Descriptions and Troubleshooting 24-7
24.6.1 NuBus Crashesooiiiiiiii it iin i 24-8
24.6.2 Processor Fault Crashesccoviiieininnn.... 24-8
24.6.3 Power Fail Crash i, 24-9
24.6.4 Mass Storage Subsystem Crashes 24-9
24.6.5 Troubleshooting NUPI Device and Controller Error Crashes 24-11
24.6.6 Troubleshooting NUPI Special Event Crashes 24-14
24.7 The Force Crash Keychordc0vviiuieninnn.... 24-15
24.8 Software Crash DeSCriptionsooveeuuneennnn... 24-15

Tools and Utilities xxi

Contents

Section Paragraph Title Page
25 Miscellaneous Debugging Functions
Introduction i e e 25-1
Describe FUNCHONS0 o itie ittt it e iie e ie e iee e 25-2
Apropos Functions i i e 25-7
Who-Calls Functionsoiutitruinunnnnnnnnnnan., 25-11
Property List Functions0 iviitininnennn... 25-13
Print FUNCHONSttt ittt e e 25-13
Dribble File Functionscciiiuieninn .. 25-16
Environment Functions and Variables 25-18
26 Lisp Listener and Break
27 Performance Tools
27.1 OVeIVIEW . .. ittt ittt ittt e e e 27-1
27.1.1 Metering Overviewttt iiitnnernennnernnennn. 27-1
27.1.2 Timing Macros Overviewcoiitennnernneeneennnnn. 27-1
27.1.3 Function Histogram Overviewccciuenunnnennnan.. 27-2
272 Metering . ..o vitiiii it ittt i i e 27-2
27.2.1 Setting Upa Meter Partitiono vviiveennennnennnnnnn 27-5
27.2.2 Controlling Metered Dataciviiinniinnnnnn... 27-6
27.2.3 Evaluating Forms With Meteringcoiuan.... 27-7
27.2.4 Analyzing the Metered Datacoiiiiinennn... 27-8
27.2.4.1 Analyzer i it e e 27-9
27.2.4.2 Use Previous Meter Info?coiiii it 27-10
27.2.4.3 Sort Functionciiiitiintinnanennnnenannn, 27-10
27.2.4.4 Inclusive? e i e 27-11
27.2.4.5 Output Typeottt ittt 27-11
27.2.4.6 Find Callersciiiiiniiiiiii it 27-11
27.2.4.7 Summarize i e it e e e 27-12
27.2.4.8 Output File i 27-12
27.2.4.9 Edit Buffer...........cciiiiiiiiiiininnctneeeennnn. 27-12
27.2.4.10 Call Tree InSpectorciiiviivnennononanennnnenn. 27-12
27.2.4.11 Call Tree Inspector Examplescoccvvvenin.n.. 27-14
27.2.5 Resuming Garbage Collectionc.cviiviiiinnn.... 27-23
27.2.6 Customized Metering Sessionsccceeiinia... 27-23
27.2.6.1 Evaluating Formscciiiiiieiniia., 27-23
27.2.6.2 Examples0ciiitiiii it 27-25
27.2.6.3 Another Meter Analysis Function 27-28
273 Timing MacrOsoovviitieiirnnrnensernsensncnesneennns 27-30
27.4 Function HiStogramcccviivnrnennonencnsennensnsn. 27-41
27.4.1 Peek Function Histogramc.cconiniiienina.n.. 27-41
27.4.2 Function Histogram Functionscoiviviininnn. 27-42
xxii Tools and Utilities

Contents

Section Paragraph Title . Page
31.5.3 Mail FURCHUONSot e e e e 31-51
31.5.4 Mail Variables 31-52

31.5.4.1 Mail File and Inbox Variables 31-52
31.5.4.2 Mail Window and Buffer Variables 31-53
31.5.4.3 Mail Template Buffer Variables 31-55
31.5.4.4 Reformat Header Variables - 31-56
31.5.4.5 Miscellaneous Variables 31-57

32 Namespace Utilities

32,1 OVeIVIeW ... 32-1
32.2 Namespace CONCEPIS oovuiietnneennnerine e, 32-1
32.2.1 ObjeCtS ..o e 32-2
32.2.2 AllaSes 32-3
32.2.3 Retrieving Objects From a Namespace 32-4
32.2.4 Types of Namespacescccoiiiiiiininnennnnn... 32-5
32.2.4.1 Public Namespaceccoiiiiiinnnnnnnnnn.. 32-5
32.2.4.2 Personal Namespace0ivinun... 32-6
32.2.43 Symbolics Namespacecovuiiiinnnnnnnnn... 32-6
32.2.4.4 Basic Namespacec.ooiiiiiiininnin.. 32-7
32.2.5 Namespace Pathnamescccviiiiiinennnnnn.. 32-8
32.2.511 Personal Namespace Pathnames 32-8
32.2.5.2 Public Namespace Pathnames 32-8
32.2.6 Default Attributes i 32-9
32.2.6.1 Default Attributes for Personal Namespace 32-9
32.2.6.2 Default Auributes for Public Namespace 32-10
32.2.6.3 Default Attributes for Symbolics Namespace 32-11
32.2.7 Namespace Operationsovuiiniinenennun... 32-11
32.2.7.1 General Namespace Operations 32-12
32.2.7.2 Changing a Namespacec.uvuienennnnnnnnn.. 32-12
32.2.7.3 Finding and Accessing Objects 32-12
32.3 Namespace Editor (NSE)oiiiniinneein e 32-13
32.3.1 Accessing the Namespace Editor 32-14
32.3.2 Configuring the Namespaceoviinnnnann.. 32-15
32.3.3 Basic NSEOperationsooviivunennnnnnennnnn.. 32-16
32.3.4 Symbol Codesccoviiiiiniiiiiiiiii i, 32-18
32.3.5 General Commands Menucoviuniinnennn... 32-19
32.3.6 Class Commandsciiiiinrnnrnnennnrnneennnn.. 32-20
32.3.7 Object Commandscoovuiiininenenanunnnnn.n. 32-27
32.3.8 Auribute Commandsc0itiiiiii e 32-29
32.3.9 Group Attribute Commandsccoinennn.... 32-32
32.3.10 Command Summarycoivviiiniinnnnenn... 32-34
32.4 NSE CuStOmizZalionvuveueeuneennenneeneennnnn.. 32-36
32.4.1 Customization Variablesc0vvun..... 32-36
32.4.2 Filterso 32-37
32.4.3 Horizontal Formatscovuiininninnnninnnn.. 32-38
32.4.4 Expert Editors it 32-39
32.4.4.1 nse:define-nse-expert-editor Macro 32-40
32.4.4.2 Spec-List Formatscoiviniiinninnannnnn... 32-44
32.4.43 Expert Editor Variables 32-48
32444 Verification Routine Macros 32-49
32.4.4.5 Viewing Expert Editors c0iiiiinnnnn.. 32-50

xxiv Change 1 — Tools and Utilities

Contents

Section Paragraph Title Page
32,5 User FUNCUONS 32-51
32.5.1 Namespace Functions, .. 32-53
32.5.2 Modification Functionscoiriinrnnn.. 32-58
32.5.3 Retrieval Functions P 32-62
32.5.4 Object Manipulation Functionsoou...... 32-68
32.5.5 Miscellaneous Functionsviuinenninnnn.. .. 32-69
32,6 Ermor Messagesttt it 32-71
33 Miscellaneous Network Functions
33.1 Introduction ... e e e 33-1
33.2 HOSt StatUS .. .vvi ittt ittt ettt e 33-1
33.3 Resetting the Networkcouuiiiiniinennnnnnnnunnnnnn. 33-2
334 Eval Serving ... 33-2
33.5 Fingering HOStSttt 33-3
33.6 Sending and Printing Notificationscoveennenn.... 33-4
34 Color Map Editor
34.1 Introductioniiiiiiiii i e 34-1
34.2 Loading the Color Map Editor Software 34-2
34.3 Invoking the Color Map Editorcovivviineennnnnnnnnn... 34-2
34.4 Editing and Defining Colorsc.coviiiiiiiniiinn... 34-3
34.5 Color Editor Commandsc0ovvnn... e 34-5
3.6 ColorMap Commands.............coiiiuininnennnnnn.. e 34-6
34.7 Command SUMMAIYovvtinnnttinnriine e, 34-8
35 Visidoc
35,1 INroductioncuuiiiii i i e e 35-1
35.2 Installing the Visidoc Client Software 35-2
35.3 Invoking Visidocoiiiiiiniiin i 35-2
354 Exiting Visidocviitiii i i i i e e 35-2
35.5 Features of VisidoCiiiiiiiiinniin 35-3
35.5.1 Memory Characteristicsco0iivuiiininninnenn... 35-3
35.5.2 Display Characteristicsc.ovvrnirnernneinnennn... 35-3
35.5.3 Using Visidocottt it it 35-3
35.6 Making a Host a Visidoc Serverc.ccovivviennnnnnn... 35-5
35.7 Maintenance of the Visidoc Server Namespace 35-8
35.7.1 Objects in the :namespace Classc.ovvvrrnnennnns 35-8
35.7.2 Saving Your Changesc.oivviuiiinnnnninnennnnnnns 35-8
35.7.3 Maintenance of the Network Namespace :site Option 35-8

Tools and Utilities — Change 2 XXV

Contents

Appendix Paragraph Title Page
A Explorer FONIS ittt ittt e A-1
B Command Tablesuviiunieuneieneeeaeannnns, B-1
Index
Figure Title Page
Figures 1-1 Inital Screen of the New User Window 1-2
2-1 Typical Profile Utility Window T 2-2
5-1 The Glossary Frame S 5-3
6-1 UCL Menu of Help Optionscouiitiniinennnennnnn. 6-5
6-2 Inspector Helpttt 6-5
6-3 Command Type-In Help A-6
6-4 Command Displaycoiiiiiiiiiniii ittt 6-7
6-5 Command Historycuiiniintiininnrinnennennnennenn. 6-8
6-6 Command Name Search e et e e e e, 6-9
6-7 Mouse Documentation Window and an Icon Menu 6-11
6-8 Completion Listing Produced by Pressing SUPER-/ 6-13
6-9 Function Argument List in Mouse Documentation Window 6-14
6-10 Customization Menuccoiuiiiirinninenennennn... 6-15
6-11 Command Editor Display and Menu Used for
Editing a Command it 6-17
6-12 Build Command Macrocoivititniinnnninenn.n, 6-18
6-13 Top Level Configurer Window, 6-21
8-1 Suggestions System Menu Interactionoovuvuvn.... 8-3
8-2 Suggestions Frame, Explorer Landscape Configuration 8-4
8-3 Suggestions Frame, Portrait Configuration 8-5
8-4 Listener Suggestions Basic Menucoiiiiiiinn. 8-6
8-5 Zmacs Suggestions Menu With Keystroke Display 8-7
8-6 Evaluation of a Symbol Using Lisp Listener Suggestions 8-8
8-7 Invoking the Display Recent Deletions Menu
Using Listener Suggestionsc.otieimennennnnennnn.. 8-9
8-8 Result of Selecting the Listener List Menus Option 8-10
8-9 Result of Selecting the List Apropos Completions Option 8-11
8-10 Result of Selecting the Zmacs List Menus Option 8-12
8-11 Example Keystroke Commands Listed in Zmacs Suggestions 8-13
8-12 Inspector Suggestions Menusc.oiiiiniiiiiin... 8-14
8-13 Debugger Suggestions Menuscovuenenene... I 8-16
8-14 Menu Tools Pop-Up Windowcovviiiininnnn... 8-17
8-15 Lisp Expressions Menuscvitineiinnennnninen.. 8-20
11-1 Vertical Window Displayoitiuiientinnnnennnn, 11-2
11-2 Horizontal Window Displayo, 11-3
12-1 Font Editor Command Display [12-10
12-2 SYMBOL-HELP Keyboard Mapcvitiiennnnnnnnn.. 12-11
xxvi Change 2 — Tools and Utilities

Contents

Figure Title Page
14-1 Window-Based Debugger 14-2
15-1 Inspector Frameooiiunun 15-2
16-1 Flavor Inspector Framec.uuumununnennon. 16-2
17-1 Exampie of the Peek Window 17-2
17-2 Example of the Peek Processes Screen 17-5
17-3 Exampie of Counters Screenouuen . 17-6
17-4 Exampie of the Areas Screencoournoii .. 17-7
17-5 Example of File Status Screen 17-9
17-6 Exampie of the Peek Windows Screen 17-11
17-7 Example of Peek Servers Screencoouinn.. .. 17-13
17-8 Example of Peek Network Screen 17-15
17-9 Example of Peek Function Histogram Screen 17-16

17-10 Example of Peek Host Status Screen 17-18
18-1 Trace Menu ...ttt e e 18-1
24-1 Sample Output From report-all-shutdowns 24-4
27-1 Sample Call Tree Inspector Displayc.ccouvuu.... 27-4
27-2 Meter-Analyze Menuttt 27-8
27-3 Call Tree Inspector Windowsovvueennennn... 27-13
27-4 Call Tree Inspector — Initial Screen 27-15
27-5 Call Tree Inspector = Clicking Lccovvun.. ... 27-16
27-6 Call Tree Inspector — Middle Window Items 27-17
27-7 Call Tree Inspector — Clicking Land M 27-18
27-8 Call Tree Inspector — Clicking L2cvnuevun... 27-20
27-9 Call Tree Inspector — Clicking L on a * n Function 27-21

27-10 Call Tree Inspector — Clicking L2 on a ®* n Function 27-22

27-11 Exampie of Peek Function Histogram Screen 27-42
31-1 Typical Summary Buffercoiiiiininnennnnn.. 31-3
31-2 Typical Message Buffercoviunniinnnnennnnnn... 31-4
31-3 List Mail Buffers Displayoviieinnniniinnnnnn... 31-19
32-1 Namespace Editor Displayovviiiiniinninnnenenn... 32-13
32-2 Horizontally Expanded Classoovvieeenennennn.. 32-25
34-1 Color Map Editor Displaycooviuiiiiinnnnnnnnnn... 34-4

Table Title Page

Tables 6-1 Completion Commandsuoitiiiniinninennennnnn.. 6-12
6-2 UCL Keystroke Commandsovverunenneenneennennn..n 6-26
10-1 Color Values for Graphic Methods for Monochrome
Environmentsottt e 10-9
10-2 Named Colors in the Default Color Mapcv..... 10-10
10-3 Common ALU Valuesovviniinnninn .. 10-11
10-4 Color ALU Operationsevueerneunnenneennnnnn. 10-12
10-5 Graphics Editor Keystroke Assignments 10-40
12-1 Some Commonly Used FONtSvvvunnnennnnnnnnnn.. 12-4
12-2 Font Editor Keystroke Assignments 12-31

Tools and Utilities — Change 2 ' xxvii

Contents

Tabie Title Page
13-1 Special Variable Bindings in the Debugger 13-4
13-2 Summary of Debugger Commands 13-12
14-1 Window-Based Debugger Commands 14-3
15-1 Summary of Inspector Keyboard Commands 15-3
15-2 Inspector Display According to Object Type 15-6
16-1 General Flavor Inspector Commands 16-4
16-2 Flavor Commandscouuiiuiininenenannann, 16-6
16-3 Method Commandsc..ovuiinininnnnennannnn... 16-7
17-1 Peek Modes and Commandsccuuivneeeirunnnn ... 17-3
19-1 Stepper Commandsc.ocuivtennnnenennnnennennnnan.. 19-3
24-1 NUPI Device and Controller Error Codes 24-11
24-2 NUPI Special Event Codescounivrnirmnennnnnn... 24-14
24-3 Software Crash DesCriptionsooeueeuneunnnnn.. 24-16
28-1 Telnet Commandsccouuivrnriieninennennenennennn.. 28-3
29-1 VTI100 Commandsuvieunennennnnnenneennennnnnnnns. 29-3
30-1 Converse Commandsouivimunennnneennnennnnnnnn. 30-2
31-1 Explorer Mail Reader Keystroke Commands 31-38
32-1 Namespace Editor Keystroke Commands 32-34
34-1 Color Map Editor Commandscovveieennennnnn.... 34-8
B-1 Completion Commandsuouvuieunennennnennennnnnnn. B-2
B-2 UCL Keystroke Commandsvuvuuneennnernnnennnn... B-3

B-3 Font Editor Keystroke Assignments B-4
B-4 Graphics Editor Keystroke Assignments B-5
B-5 Summary of Debugger Commands B-7
B-6 Window-Based Debugger Commands B-9
B-7 Summary of Inspector Keyboard Commands B-11
B-8 General Flavor Inspector Commandsc..cuun.. B-13
B-9 Peek Modesand Commandscovuivnernennnnnnn... B-14
B-10 Stepper Commandsiviuiriiinrnnie i B-15
B-11 Telnet Commandsc.uuuiiiunennennernnennreneennn. B-16
B-12 VTI100 Commandscuuuniunneneenneneenneennennnnnnn. B-17
B-13 Converse Commandsc.couuiiinernnnnnnnnnnnnnnnnnn. B-18
B-14 Explorer Mail Reader Keystroke Commands B-19
B-15 Namespace Editor Keystroke Commands B-21
B-16 Color Map Editor Commandscoivenieennennnnn.... B-23

xxviii

Change 2 — Tools and Utilities

ABOUT THIS MANUAL

Contents of
This Manual

The Explorer Tools and Utilities manual discusses the tools and utilities
available on the Explorer system. The manual includes the following sections
and appendixes, as well as an index:

Section 1: New User — Performs helpful operations for a new user, such as
setting up a personal directory.

Section 2: Profile — Provides an easy way to change the system environment
by changing the values of variables.

Section 3: Login Initialization File — Allows you to customize your environ-
ment when you log in.

Section 4: Bug Reporting — Provides an easy-to-use menu for reporting bugs.

Section 5: Glossary Utility — Provides an online glossary of terms relating to
the Lisp language and the Explorer system.

Section 6: UCL User Interface — Tells how to use the Universal Command
Loop (UCL), which simplifies and standardizes the process of constructing
command interfaces to interactive programs.

Section 7: UCL Programmer Interface — Shortens program development
tme by providing a ready-to-use command interpreter with built-in help
features.

Section 8: Using Suggestions — Tells how to use the Suggestions system.,
which displays menus appropriate for different contexts of an application.

Section 9: Programming Suggestions — Tells how to add Suggestions to your
application.

Section 10: Graphics Editor — Allows you to interactively create and modify
pictures consisting of graphics objects.

Section 11: Tree Editor — Allows you to display any kind of data organized
in a tree structure.

Section 12: Font Editor — Describes how to create and modify fonts.

Section 13: Debugger (Error Handler) — Allows you to examine the environ-
ment in which an error condition is signaled in your program.

Section 14: Window-Based Debugger — Provides a window-based alternative
to the regular debugger.

Section 15: Inspector — Provides a window-based utility for observing and
modifying Lisp objects.

Tools and Utilities — Change 2 xxix

About This Manuai

Section 16: Flavor Inspector — Provides a window-based utility for observing
and modifying flavors.

Section 17: Peek — Provides a window-based utility that displays a continu-
ally updating system status of items such as processes, windows, network pro-
tocols, and file system activity.

Section 18: Trace — Allows you to trace certain functions and macros. When
a function is traced, certain special actions are taken when the function is
called and when it returns.

Section 19: Stepper — Allows you to follow every step of the evaluation of a
form and examine what is going on.

Section 20: Evalhook — Allows you to change the way the evaluator works or
to write your own evaluator.

Section 21: Advise — Allows you to tell a function to do something in
addition to its actual definition.

Section 22: Breakon — Allows you to request that the debugger be entered
whenever a certain function is called. When the function is called, you can
evaluate lexically scoped variables and see who is calling the function and
with what arguments.

Section 23: MAR — Signals a MAR break condition when a particular word
or words in memory are referenced. The MAR can be a useful debugging tool
if you want to know when a particular memory location (a program variable,
for example) is read or written.

Section 24: Crash Analysis — Describes the Explorer crash reporting and
analysis utilities.

Section 25: Miscellaneous Debugging Functions — Provides an assortment of
helpful debugging functions.

Section 26: Lisp Listener and Break — Discusses the functions and variables
available in the Lisp top-level, read-eval-print loop.

Section 27: Performance Tools — Provides details on the metering system,
timing macros, and function histogram.

Section 28: Telnet — Allows you to use the Explorer screen as a terminal to
another host.

Section 29: VT100 Emulator — Allows you to use the Explorer screen as a
VT100 terminal.

Section 30: Converse — Discusses the interactive message editor that displays
all messages that you have sent and received.

Section 31: Mail — Discusses the electronic mail system that allows the
exchange of messages between users on a computer network.

Section 32: Namespace Utilities — Allow you to create a database for your
network configuration as well as create other types of databases, such as data-
bases for your personal use.

XXX

Change 2 — Tools and Utilities

About This Manuai

Section 33: Miscellaneous Network Functions — Discusses an assortment of
helpful functions for network activities.

Section 34: Coior Map Editor — Tells vou how to edit the colors in the color

100 > AW L

map on an Explorer color system.

Section 35: Visidoc — Describes the Visual Interactive Documentation
Online Manual Viewer (Visidoc), which allows you to view documentation

inror [iem Zaf
ore’?

APPENDIXES

Appendix A: Explorer Fonts — Shows the fonts that are automatically loaded
with the Explorer system.

Appendix B: Command Tables — Lists the command tables that are avail-
able for utilities such as the font editor, graphics editor, debugger, Stepper,
Mail, and so on. You can also find these tables in their respective sections.

Notational
Conventions

Keystroke Sequences

The following paragraphs describe the notation for keystroke sequences,
mouse clicks, and Lisp syntax.

Many of the commands used with the Explorer system are executed by a
combination or sequence of keystrokes. Keys that should be pressed at the
same time, or chorded, are listed with a hyphen connecting the name of each
key. The following table explains the conventions used in this manual to de-
scribe keystroke sequences.

Keyboard Sequence Interpretation

META-CTRL-D Hold the META and CTRL keys while
pressing the D key.:

CTRL-X CTRL-F Hold the CTRL key and press the X key,
release the X key, and then press the F key.
Alternately, press CTRL-X, release both
keys, and press CTRL-F.

META-X Find File Hold the META key while pressing the X
RETURN key, release the keys, type the letters find
file and then press the RETURN key.

TERM - SUPER-HELP Press the TERM key and release it, press the
minus key (=) and release it, then press and
hold the SUPER key while pressing the
HELP key.

Tools and Utilities — Change 2 xxxi

About This Manuai

Mouse Clicks The mouse has three buttons that enable you to execute operations from the
mouse without returning your hand to the keyboard. Pressing and releasing a
button is called clicking. The following table lists abbreviations used to de-
scribe clicking the mouse.

Abbreviation

Action

L

M

L2, M2, R2

Click the left button (press the left button
once and release).

Click the middle button (press the middle
button once and release).

Click the right button (press the right button
once and release).

Click the specified button twice quickly.
Alternately, you can press and hold the
CTRL key while you click the specified
button.

LHOLD, MHOLD, RHOLD Press the specified button and hold it down.

Lisp Language The Lisp language notational convention helps you distinguish Lisp functions
Notation and arguments from user-defined symbols. The following table shows the
three fonts used in this manual to denote Lisp code.

Typeface

Meaning

boldface

italics

monowidth

System-defined words and symbols, including names of
functions, macros, flavors, methods, variables,
keywords, and so on—any word or symbol that appears
in the system source code.

Example names or an argument to a function, such as a
value or parameter you would fill in. Names in italics can
be replaced by any value you choose to substitute.
(Italics are also used for emphasis and to introduce new
terms.)

Examples of program code and output are in a monowidth
font. System-defined words shown in an exampie are
also in this font.

For example, this sentence contains the word setf in boldface because setf is
defined by the system.

xxxii

Tools and Utilities

Contents

Section Paragraph Title Page
28 Telnet
28.1 INroduchion 28-1
28.2 Entering a Telnet Windowo, 28-2
28:3 Teinet Commandsc.vuvuiiiinin it 28-3
28.4 Telnet Servert 28-4
29 VT100™ Emulator
30 Converse
30.1 Imtroductioniuiiiiiiiii i e 30-1
30.2 Zmacs Editor Commands With Converse 30-2
30.3 Converse FUNCHONSvvieninvnnnnnnenen e 30-3
30.4 User Options With CONVersecoviiuiunnnininenennn.. 30-4
31 Mail
31,1 IntroduCHON .. vittitti ittt ee it et e 31-1
31.2 Mail Reader — Getting Startedccoviinniinnnnnnnn... 31-1
31.2.1 Entering and Exiting the Mail Reader 31-2
31.2.2 Gemting Help i 31-5
31.2.3 Mail Displays ..ottt i i e 31-5
31.2.4 Executing Mail Commands 317
31.2.5 Basic Mail Commandsoviiiinnnin i, 31-8
31.3 Mail Reader Commandsc.cvvivnenunenninenennnan.. 31-11
31.3.1 Mail Filesand Inboxescoivviiiiiiinnnnnn. 31-11
31.3.1.1 Mail File Formatscoiiiiiiinninnnn.. 31-12
31.3.1.2 Inbox Locations e e e 31-12
31.3.1.3 Mail File and Inbox Commands 31-13
31.3.2 Mail Buffers and Windows iu... 31-16
31.3.3 Mail Messagescoiiiiiniiiii it e 31-22
31.3.3.1 Selecting and Viewing Messages 31-24
31.3.3.2 Sending Mailottt i e 31-27
31.3.3.3 Deleting and Expunging Messages 31-31
31.3.3.4 Editing Messagescoiiiiiiiii it 31-33
31.3.3.5 Printing Messagesc.uoiuiiinnrniniinrennnininnn. 31-33
31.3.3.6 Message Keywordsoiiiiiiiiinnnn., 31-34
31.3.3.7 Miscellaneous Mail Commands 31-34
31.3.3.8 Command SUmMmAaryc.coouiviennnnnnnnnnannnnn, 31-38
314 Mailer ..o e e e e 31-40
31.4.1 Mail Addressesccoviiiiiiiiiiiiii i 31-40
31.4.1.1 Mailing LiStSvvveneennennenn i, 31-40
31.4.1.2 User Mail Forwardingcoovivinennienea... 31-42
31.4.2 Address Routingcoiviininn ittt 31-43
31.4.2.1 Options Affecting Address Routing 31-43
31.4.2.2 Address-Routing Algorithmo, 31-45
3143 Mail Daemonciiiiii it in it it 31-46
31.5 Customizing the Mail Systemccocivuinennnnn.. 31-46
31.5.1 Defining Mail Filters e 31-48
31.5.2 Defining Mail Template Buffers 31-48

Tools and Utilities — Change | xxiii

About This Manua!

Some function and method names are very long—for exampie, get-ucode-
version-of-band. Within the text, long function names may be split over two
lines because of typographical constraints. When you code the function name
get-ucode-version-of-band, however, you should not split it or include any
spaces within it. ‘

Within manual text, each example of actual Lisp code is shown in the
monowidth font. For instance:

(setf x 1 y 2) => 2
(+ X y) => 3

The form (setf x 1 y 2) sets the variables x and y to integer values;
then the form (+ x y) adds them together.

In this example of Lisp code with its explanation, setf appears in the
monowidth font because it is part of a specific example.

For more detailed information about Lisp syntax descriptions, see the
Explorer Lisp Reference.

Tools and Utilities xxxiii

NEW USER

The New User utility does the following for you:

Identifies you to other users on the network

Lists the name and synonyms of the machine you are using
Creates a user directory in your name

Creates an initialization file in your user directory

Describes how to log out this session and how to log in for your next
session on this machine

Because the New User utility creates a new directory each time you invoke it,
you should execute this utility only once for each login directory you want to
create. (You may want a different environment for working on different
programs, for example.) The system you are using must include a local file
system where the utility can create a directory.

You can execute the New User utility by selecting the New User item from
the System menu or by issuing the (new-user) function to the Lisp Listener.
Answer the prompts to complete the utility. The initial screen that appears is
similar to that shown in Figure 1-1.

Tools and Utilities

1-1

New User

Figure 1-1 Initial Screen of the New User Window

$60064668000844
1600060400064

o 4
1800000000 00000000000000000000600446466400000000000000000000600060046408000580000¢

1222222222000

Hello and welcone to ti-7.
You are using Romeo (whose list of synonyms is: NiL).

?

You have logged in as MARK.
If you look at the bottom-left corner of the screen, you will see
the tine (3719,67 18:43:87) and MARK (your current user-ID).

This utility perforns the follouwing initializations for you:
1) Establishes your personal user-ID.

2202223220020 0020202222222 000000020 202000 000000440440¢

2) Creates a directory for you to use.
3) Creates an initialization file that uwill be read each tine you login.

Press the ABORY Key at any time to abort this newu-user utility.

any other key to continue.

P 00O PO II0000500000000000500000000000000¢0¢000500000080004
4

122 R R e 0000222002222 8 2022200000800 2202828821

1046460640400 04
12822222228 2224

000000002000 0¢00000000000000000000000000000e08e00000000000000000000000000e0ttettstoneotsttetttttsettttttettettttetertseseesss

A: Bring up the System Menu.

1-2 Tools and Utilities

PROFILE

Introduction

2.1 The Profile utility provides a simple way to change the system environ-
ment by changing the values of variables. You can change your environment

TIPPAMT COCCIAM ton A A el ermas meme mmam e aa o o1 o ey N
fc;’ Lhe current session; in aqgqilon, YOuU Call CTEdle zan initiauzanion riie inar

sets up the same environment each time you log in and returns the environ-
ment to its default condition when you log out.

Requirements

2.2 Before you can use all the features of the Profile utility, you must fulfill
certain requirements:

8 To use the Profile utility, you must be logged in.

B To create an initialization file, you must have an existing login directory,
which is a directory with the same name as your login name.

Accessing the
Profile Utility

2.3 To access the Profile utility, you select the Profile option in the System
menu or by issuing the (profile) function to the Lisp Listener. The Profile
utility displays a window that consists of three parts: a choose-variable-values
menu, a menu of actions or commands, and a menu of types of variables.
When you first invoke the Profile utility, the menu displayed at the top is the
Important Variables menu, as indicated by the item Important Variables
displayed in reverse video. A typical window displayed by the Profile utility is
shown in Figure 2-1. From the Profile utility window, you can change the
values of variables or execute commands.

Tools and Ultilities

2-1

Profile

Figure 2-1 Typical Profile Utility Window

I’ll RI ~U=g= [H
SPRINT-LENGTHS
*PRINT-LEVEL »:
*PRINT-STRUCTURE:
SREAD~BRSE®: -
PROFILE: Q.DCK-fORHN‘ R
E4: 9ENT ER=4 | NDOW-DEBUGBER 8
E: OUSE~-OLD~DEBUBGERS: - -
PROFILE: :XEYCLICK=-STATE: ..
PROFILE: : LOAD-PRTCHES-AT -LDB! N -
PROFILE: :NJHBE&-CF-HOUSE- nocurimn
PROF[LE: :P-L1SP-MODE: -
PROFILE:: SﬂVE-BLFFERS-RT -LOGOUY -ac? l ON:

-8inary Octai Oscasmai =exigecwnal

-NIL

-NIL .

-7 [yea] N [na]

-Ginary Octal Omoimal Merxigdecima|

- 24 Hour Cloet 12 M Dlack

‘MR [never wee it] T [ask] CALWAYS [always use it]
T Lyes] (e

"' [7"] ML [re}

~m JETAUSP

-Via Meny Vig Prompts Don’t Save Buffers

- 8iack on White White ea Back

=T [yes] MR [ne]

- THREE<PANES CNE-PANE TWO-HORIZONTAL-PANES TWO-VERTICAL-PANES
- THREE «<PANES CNE-PANE TWO-HORIZONTAL-PANES TWO-VERATICAL-PANES
-T [yes] N [no]
-COMMONSLISP 2ETALSP TEXT MACSYMA MIDAS TEX ZTOP
-NIL

- UNDERLINE REVERSE-VIDEC

PROF I LE: : SCREEN~REVERSE~V 1 DEO~FUNCT [DN
PROF ILE : : SUGDEST IONS-MENUS-ON?2 --moeooeee
TV: : oFLAVOR=1NSPECTOR-CONF] GURAT ION
TU:: s INSPECTOR-CONF 1 BURRT IDNe: .-
TV:MORE-PROCESSING-GLOBRL~ENABLE
1 «JEFRUL T -MRJOR=-PODES: -
: 1 9{NITIRL-MINOR-NODES»:
2ZWE] : : REGI ON-MARKING-MODE = :

Actions
[Store Options Festore System Defauks Hestore User Uefauks Bt
Veriabies currently dii
20 o anal (7 GC Variables
Compiler Vanabies Mail Veriables Zmacs Varigbles Mouse Variables Input Verisbles
ile System Variables Evaluation Variables Common Lisp Globais Display Varables Coior System Variabies

T1¢ Frase |
£: move to an item and sclect it, H: nmn:manm:nmuhtm

Accessing Variables 2.4 The variables changed by the Profile utility are grouped according to

in the Profile Utility the area they affect, such as Input Variables, Display Variables, Zmacs Vari-
ables, and so on. The Important Variables grouping includes variables from
several other areas that are frequently changed.

To edit a group of variables, you select the group name in the bottom menu.
When you select a different area of variables to change, the previously
selected item is displayed in normal video, the newly selected item is dis-
played in reverse video, and the displayed variables are replaced by a menu
of variables from the new area.

You can edit the values of the variables listed in the display just as you would
edit the values in a choose-variables-values menu. A description of the vari-
able appears in the mouse documentation window.

2-2 Change 2 — Tools and Utilities

Profile

Commands in
the Profile Utility

2.5 In addition to changing the values of variables, you can select one of
the actions listed in the Actions menu.

Description

Store Options

Restore System Defauits

Restore User Defaults

Exit

Creates or updates a special initialization file
in the directory with the same name as your
login name. This initialization file specifies
yOur login environment (o be the same as
the current environment. When you log out,
the system returns most variables to their

default values.

Restores the original system default values
to all variables.

Restores the default values listed in the
initialization file for the login directory.

Ends the Profile utility and returns to the
window from which you called it. You
should select the Exit item to quit the utility.

Typical Variables

2.6 The following variables from the Input Variables menu are examples of
the kinds of items that can be changed by using the Profile utility:

Label

Description

Continuous Repeat Delay

Initial Repeat Delay

Mouse Handedness

Keyclick State
Read Base

Sets the amount of delay in 60ths of a
second between each repeated appearance
of a character while you hold that key.

Sets the amount of delay in 60ths of a
second between the time you press a key
and the time the key begins to repeat.
Setting this value to zero disables the
repeating features of keys.

Specifies whether the mouse is a
right-handed or a left-handed mouse.

Enables or disables the audible key click.

Specifies the base or radix of numbers you
type. By default, the system assumes that
you type decimal numbers rather than
hexadecimal, octal, or binary numbers.

Tools and Utilities

Profile

Customizing Profile 2.7 You can use the profile:define-profile-variable macro and the

profile:profile-setq function to customize Profile. The profile:define-
profile-variable defines a Profile variable. The profile: profile-setq function
initializes a Profile variable. You can use profile:profile-setq forms in your
login initialization file.

profile:define-profile-variable variable variable-classes Macro

Arguments:

&Kkey :cvv-type :declare-special-p :documentation :get-value
:set-effect :name :variable-init :long-time-to-set-p :form-for-init-file

The profile:define-profile-variable macro defines a Profile variable. You
can use this macro to make any bound variable known to the Profile utility.
After the first two arguments, all arguments are optional keyword arguments.
All arguments should be unquoted (they are not evaluated).

variable — A symbol (bound variable) that is being defined as a Profile
variable.

variable-classes — A list of keywords designating the Profile classes that con-
tain the variagble. This list of keywords tells Profile in which menu or
menus this variable should be displayed. The following are recognized
keywords:

:important — Variables that are most often modified by users.
tucl — Variables that affect the Universal Command Loop (UCL).
:network — Variables that affect the way the network works.

:file — Variables that affect the file system.

:mouse — Variables that affect the way the mouse works.
:compile — Variables that affect the way the compiler works.
:display — Variables that affect the display.

:common — Common Lisp global variables.

:eval — Variables that affect the evaluation of code.

:input — Variables that affect the way the mouse works.

:zmacs — Variables that affect the way Zmacs works.

:mail — Variables that affect the Mail system.

:gc — Variables that affect the way garbage collection (GC) works.
:error — Variables that affect error handling.

icvv-type — A choose-variable-values (CVV) keyword or a list whose first
element is a CVV type keyword. Any valid CVV menu item type works.
This keyword controls how the variable is displayed and how it is up-
dated. Refer to the Explorer Window System Reference for details.

:declare-special-p — Declares a Profile variable as special. This is only done
with variables unique to the Profile utility.

:documentation — The documentation string for the variable. This keyword
defaults to the string that is already present.

:get-value — The form to evaluate to obtain the value of this variable.

:set-effect — The form to evaluate after each time the value of this variable is
changed within the Profile utility.

Tools and Utilities

Example:

Profile

:name — The name of the variable used for display purposes. If unspecified,
the print name of the variable is used.

:variable-init — The form to evaluate to initialize this variable upon entering
the Profile uriliry

:long-time-to-set-p — This keyword should be non-nil if the variable takes
more than a few seconds to set and execute the proper :set-effect. The

default is nil.

:form-for-init-file — A one-argument lambda _expression or function name

? - ORI
gt refurms s iom apprﬁpﬂase LGI. S%t‘dng the 21 Utu‘: variaoieé to ulc Cor-

rect value. The Profile variable is the argument to the lambda expression.

{profile:define-profile-variable user:my-variable (:important)
:evv-type :string-or-nil
:documentation "Some variable I want in Profile."
:variable-init "Initial value”
:form-for-init-file (lambda (var) ‘(profile:profile-setq ,var
,user:my-variable)))

profile: profile-setq variable value Function

Arguments:

Example:

Initializes a variable recognized by the Profile utility to value.

Also note that profile:profile-setq forms appear in your login initialization
file after you have chosen the Store Options menu item from the Profile
utility. These profile:profile-setq forms initialize the variables to your
customized values as well as perform some other side effects for the Profile
utility. The profile: profile-setq function is similar to the login-setq function
because it places the variable on the logout-list. (Refer to Section 3, Login
Initialization File.)

variabie — The name of the variabie that is recognized by the Profile utility.

value — The initial value of the Profile variable. This value can be a form to
be evaluated, a previously defined and bound variable, a symbol, a key-
word, or a string.

(profile-setq zwei:=*region-marking-mode* ‘:reverse-video)

Tools and Utilities

2-5

LOGIN
INITIALIZATION FILE

Introduction

3.1 The login initialization file, commonly referred to as the login-init file,
allows you to customize your environment when you log in. The login-init file
is loaded when you log in, evaluating any Lisp forms that are in the file.
Although you can put any Lisp form in your login-init file, you should mainly
use one of the functions discussed in paragraph 3.2, Customizations That Can
Be Undone. These functions will undo the customizations when you log out.

The Other Customizations paragraph (3.3) discusses other useful operations
typcially performed in a login-init file. The topics covered are using the
Profile utility, using the Zmacs customization utilities, creating logical path-
names, and prompting yourself on whether to load certain files when you log
1.

First, you need to create a login-init file in your login directory on the local
machine. (The login directory is the directory with the same name as your
login name.) If you have used the New User or Profile utility, you have al-
ready created this login-init file. You can edit this file as you would any other
file.

The name of this file must be LOGIN-INIT. For example, if your login name
is JONES, your login-init file is LM: JONES; LOGIN-INIT.LISP. You can
also use a compiled version of the file.

To load your login-init file when you log in, you use the login function:

login user-name &optional host inhibit-init-file-p Function

Arguments:

The login function provides access to the file system and to the Mail utility.

user-name — Provides a logical address for electronic mail or messages and
specifies your default directory. The user-name argument can be either a
symbol, such as “name or a string such as "name". If you use a symbol, the
letters are changed to all lowercase or all uppercase letters, depending on
certain system variables. If you use a string, the case of the letters
remains the same.

host — Specifies which host’s file system to use. The specified host becomes
your default file server; all references to files that do not specify another
host use files in that system. The default value is the local machine (Im).
In particular, this is where your login-init file comes from. If you specify
host as t, then login assumes that host equals Im and inhibit-init-file-p
equals true.

inhibit-init-file-p — Specifies whether to use a login-init file. If inhibit-init-
file-p is nil, the system attempts to find a file called LOGIN-INIT.LISP
or PROFILE-LISPM.INIT saved under a directory of the same name as
user-name on host. If the system cannot find a login-init file, it simply
returns the Lisp Listener prompt. The default value of inhibit-init-file-p is
nil, which means to use a login-init file if one exists.

Tools and Utilities

31

Login Initialization File

Examples:

If your login name is JONES, the following list shows the various options you
have when logging in:

(login “jones)
Attempts to load host:JONES;LOGIN-INIT.LISP, where host is the
value of sys:associated-machine.

(login “jones “lm) or
(login “jones t)

Either of these forms attempts to load LM:JONES;LOGIN-INIT.

(login “jones “bart)

Attempts to load BART:JONES;LOGIN-INIT.

(login “jones “1lm t)
Does not load any login-init file because the value of the inhibit-init-file-p
argument is t.

Customizations
That Can Be
Undone

3.2 The functions described in this paragraph allow login-init file customi-
zations that are undone at logout. All of these functions push forms onto
the logout-list variable. When you log out, these forms are evaluated to
perform the undo. Note that you can also push your own forms onto this

logout-list variable to have additional operations performed when you log
out.

login-forms &body forms Macro

Executes forms, arranging to undo them at logout. The forms that are
supported are setq, psetq, setf, psetf, defun, macro, deff, defsubst,
advise, or any form that has an :undo-function property with its value being
a function that will undo that form. These undo functions are pushed onto
the logout-list variable so that the effects of these forms are undone at
logout. If a form does not have an :undo-function property, a warning is
issued indicating that the effects of this form are permanent.

The following login-forms example shows how you can set variables; define
functions, macros, and deffs; turn on advise; and so on for your own session.
All of these effects are returned to their original form when you log out.

(login-forms
(setq foo ‘bar) ;foo has value ’bar only while logged in
(defun my-fun () t) ;my-fun available only while logged in
(macro my-mac (form) ;my-mac macro available only while logged in
“(cons , (cadr form)))
(advise my-fun) ;function is advised only while logged in
(deff foo ‘bar)) ;function foo will act like function bar

login-setq "e &rest variables-and-values Special Form

Like setq except that the changes are undone at logout. Sets the value of one
or more variables, which are specified as variable value variablel valuel ...
variableN valueN. The variable arguments are not evaluated, and the value
arguments are evaluated. Forms are pushed onto the logout-list variable that
will undo these changes at logout.

3-2

Tools and Utilities

Login Initialization File

The foiiowing iogin-setq example customizes Zmacs. The example changes
the display of a marked region from underlining to reverse video. It checks
for unbalanced parentheses when saving a Common Lisp mode or Zetalisp
mode buffer. When you log out, these changes will be undone. Note that this

mmaetf et o mn meccd el bt 3 S— s Ao leor o tha Denfila HHH
articular Zmacs Customization is t ically done by using the Profile utility.
Y Y y -] Yy

(login-setq zwei:*region-marking-mode* :reverse-video
zwei:*check-unbalanced-parentheses-when-saving* t)

login-eval form Function

Arranges to undo the effects of form at logout. The value produced by form is
assumed to be another form that will undo it. That value is pushed onto the
logout-list variable so that the effects of form are undone at logout.

The following login-eval example loads the file LM:FONT;MY-MOUSE
when logging in and loads the file LM:FONT;DEFAULT-MOUSE when
logging out.

(login-eval
(progn (load "lm:font;my-mouse") ;do this first
‘(load "1lm:font;default-mouse®))) ;return this form for login-eval

login-fdefine function-spec definition Function

logout-list

Like fdefine except that the changes are undone at logout. Changes the
definition of a function-spec. For details on the fdefine function, refer to the
Explorer Lisp Reference.

In the following example, the function definition of foo is replaced with the
lambda definition, which is exactly what fdefine would do. However, when
you log out, login-fdefine restores the original function definition of foo.

(login-fdefine “foo #(lambda (x) (list (cadr x) (caddr x))))

In the next example, the definition of the function push is changed to the
definition of the function my-push (whatever that is) until you log out.

(login-fdefine ‘push ‘my-push)

Variable

List of forms to evaluate at logout, to undo the effects of the init file. Note
that you can also push your own forms onto this logout-list variable to have
additional operations performed when you log out.

Tools and Ultilities

3-3

Login Initialization File

Other
Customizations

Using Profile

Customizing Zmacs

3.3 The following discussion describes other useful operations typically
performed in a login-init file. The topics covered are as follows:

W Using the Profile utility

W Customizing Zmacs

B Creating logical pathnames
W Using the with-timeout macro
W Using the sys:load-if function

3.3.1 When you make customizations in the Profile utility, you can option-
ally save them into your login-init file by using the Store Options command.
You can also set the Profile variables yourself in your login-init file if you do
not want the Profile utility to do this for you. These customizations are un-
done when you log out. (Refer to Section 2, Profile.)

The following example shows some of the Profile options you can save in your
login-init file by using the Store Options command. You can find documenta-
tion in the Profile utility on these variables and many more.

(PROGN
:PROFILE-OPTIONS
(PROFILE: : PROFILE-SETQ ZWEI: : *MAIL - SUMMARY -MODE* ‘:FILTERED)
(PROFILE: : PROFILE-SETQ FS:USER-PERSONAL-NAME-FIRST-NAME-FIRST
‘"Rosemary")
(PROFILE: : PROFILE-SETQ ZWEI: :*DEFAULT-BASE* ‘10)
(PROFILE: : PROFILE-SETQ ZWEI: : *REGION -MARKING -MODE* “ :REVERSE-VIDEO)
(PROFILE: :PROFILE-SETQ ZWEI: :*INITIAL-MINOR-MODES*
“ (ZWEI: : ANY -BRACKET -MODE ZWEI: :ELECTRIC-FONT-LOCK-MODE))
(PROFILE: : PROFILE-SETQ W: :*SUGGESTIONS-MENUS-ON7* ‘T))

3.3.2 Zmacs provides many customization features. The following briefly
lists some of the customizations you can perform in your login-init file. Refer
to the Explorer Zmacs Editor Reference manual for details.

B You can perform many Zmacs customizations by using the Profile utility.

B Zmacs provides utilities to allow you to create your own Zmacs
commands and to bind keystrokes to commands. Typically, you define
and load these commands from your login-init file:

» zwei:defcom macro — Creates a Zmacs command that you can
invoke with META-CTRL-X and the name of the command.

= zweiiset-comtab function — Assigns a keystroke to a Zmacs
command.

= zwei:set-comtab-return-undo function — Same as zwei:set-comtab
except that it returns a form to execute to undo this command. You
can use zwei:set-comtab-return-undo with login-eval.

3-4

Tools and Utilities

Creating Logical
Pathnames

The with-timeout
Macro

with-timeout

Login Initialization File

3.3.3 You can simplify your access to long, complicated, or frequently-used
pathnames by creating logical pathname translations. A logical pathname
allows you to define your own pathname that maps to a real pathname. Refer
to the Explorer Input/Output Reference for details on creating logical
pathnames. Also, you can permanently create these logical pathnames in

vallr namacnana BRafar tAn Qantinn 29 Nlamaaonana TTtilitiae in thic Evnlasas
yVUL laiuvopale. Wi WU OVLUIIVLL J&y LYALIIVOpaL ey ULLLLILICD,y L LD ‘.IAP"V' cr

Tools and Utilities manual and to the Explorer Networking Reference.

The following example allows you to access the pathname ADOLF-HITLER-
HOST:SYSTEM.UTILITES.GAMES;F00.BAR with the much simpler pathname
A:GAMES ;FOO.BAR!

(fs:add-logical-pathname-host "A" "ADOLF-HITLER-HOST"
i3 A is a logical host for ADOLF-HITLER-HOST

“(("GAMES" "SYSTEM.UTILITIES.GAMES;")
;5 Defines mapping for A:GAMES;

("EDIT" "SYSTEM.APPLICATIONS.EDITOR;")))
;3 Defines mapping for A:EDIT;

NOTE: Currently, there is no way to undo a logical host when you log out.
You can redefine a logical host and its translations, but you cannot remove it
(in a standard way) once you create it, without cold booting.

3.3.4 Many people use the with-timeout macro to specify a time limit on a
prompt to load files when they log in. If they do not respond to the prompt
within the time limit, the files are loaded.

(duration . timeout-forms) &body body Macro

Executes body with a timeout set for duration sixtieths of a second from time
of entry. If the timeout elapses while body is still in progress, the timeout-
forms are executed and their values returned. Whatever is left of body is not
done, except for its unwind-protects. If body returns, its values are returned
and the timeout is cancelled. The timeout is also cancelled if body throws out
of the with-timeout.

The following with-timeout example prompts to load some files for you. If
you dc not respond within about a minute, it assumes yes.

(when (with-timeout ((* 80 80) t) ;60 seconds in 60ths of a second.
;35 Prompts you with the following string and you have to answer
;; either yes or no.
(y-or-n-p "Load XNS file transfer code?"))
i3 If yes, it does the following; if no, it exits.
(load "lm:xns;exp-defsystem")
(make-system “xns :noconfirm))

NOTE: In this case, the changes made in the environment cannot be undone
without cold booting.

Tools and Utilities

Login Initialization File

The sys:load-if 3.3.5 The sys:load-if function loads a file only if it has been changed since
Function it was last loaded or if it has not been loaded previously. The sys:load-if
function is similar to the load function, which unconditionally loads a file.

sys:load-if pathname &optional &key :package :verbose Function
:set-default-pathname :if-does-not-exist :print

Loads this pathname if it needs to be loaded (that is, if pathname has been
changed since last loaded or it has not been loaded at all). Refer to the load
function in the Explorer Lisp Reference for documentation on the remaining
arguments.

The following examples illustrates the use of the sys:load-if function:
(sys:load-if "lm:dir;foo.lisp") ;Loads the file the first time

(sys:load-if "lm:dir;foo.lisp") ;Does nothing since the file is already loaded
Also refer to the Maintaining Large Systems section in the Explorer Lisp

Reference for documentation on the following similar functions: sys:compile-
if, sys:compile-load-if, sys:dep-compile-if, and sys:dep-compile-load-if.

3-6 Tools and Utilities

BUG REPORTING

You can use one of the following procedures to submit a bug report:

= Enter the function

wrilealsid

(huey in a Lisn Listener.
AMWmE s AR B SISy SeSTRIIRS e

B Enter the META-X Bug command in Zmacs.

B Press CTRL-M from the debugger or window-based debugger. A back-
trace of n frames is provided (the default is 5). If you supply a numeric
argument such as CTRL-1 CTRL-5 with CTRL-M, a backtrace of 15
frames is provided.

Each one of these commands creates a preformatted mail message with infor-
mation about the current environment. You can then describe the problem or
design request by using the available Zmacs and Mail commands. You may
find it useful to move around to other windows or buffers to collect informa-
tion for the bug report after it has been started. Please include a detailed
description of the problem and information leading up to the problem.
Examples showing how to reproduce the error are valuable.

For more information on how to submit a bug report, refer to the file
SYS: HELP; HOW-TO-REPORT-BUGS.TEXT.

If you have access to the bug mailbox via the network, press the END key to
electronically mail this information to the mailbox. If you do not have access
to the bug mailbox, create a hardcopy of the bug report by using the
META-X Print Buffer command and send the report via postal mail to the
address shown at the end of the bug template.

If you attempt to fill out a bug report when in the cold-load stream {that is,
the window system is not available), the bug information is obtained from
various prompts for keyboard input and is mailed to the address specified.

Tools and Utilities

4-1

GLOSSARY UTILITY

Introduction 5.1 Both the Lisp language and the Explorer system employ very specific
terminology to effectively communicate the many concepts innate to this type
of hardware and software. To help you understand this terminoiogy, the
Explorer system provides a Glossary utility.

The Glossary utility accesses an expandable list of terms that are cross refer-
enced so that you can trace your way through several related definitions to
understand any given subject.

This section discusses the following topics:

Entering the Glossary utility — Describes how to enter the Glossary utility.
Glossary User mode — Tells how to use the Glossary utility.

Glossary Expert mode — Discusses how to create and modify your own
glossaries.

Using Zmacs to create a glossary file — Describes how to create a glossary
file using Zmacs.

Defining glossary file format — Tells how to define your own glossary file
format.

Defining a glossary from the Lisp Listener — Tells how to use the define-
glossary function to load your own glossary file (instead of the standard
glossary file) when the Glossary utility is invoked. You can enter this
function from the Lisp Listener or from your login initialization file. Your
glossary file of terms must already exist before you can use this function.

For a printed copy of the terms available in the standard glossary file, refer to
the Explorer Glossary.

Tools and Ultilities

Glossary Utility

Entering the
Glossary Utility

5.2 To enter the Glossary utility, perform one of the following steps:
B Display the System menu and select the Glossary item with the mouse
M Press SYSTEM Z on the keyboard

W Enter the gloss:glossary function

gloss:glossary &optional entry-name-string Function

The optional argument entry-name-string is the name of a glossary entry that
you want to look up (not the name of a glossary). If you specify entry-name-
string, you enter the Glossary utility in the current glossary. (The currently
selected glossary is the one displayed by the utility, and the one with which
you interact.) If an entry exists in the current glossary for the value of entry-
name-string, then that definition is displayed.

Any of these steps places you in the User mode of the Glossary utility. The
default mode is the User mode; however, if you leave the Glossary and then
reenter it by pressing SYSTEM Z, the utility returns you to the glossary mode
you left. If you left while in the Expert mode, then you reenter in the Expert
mode.

The standard glossary file, complete with cross-references, is defaulted into
the system. If you want to specify another glossary as the currently selected
glossary, you can modify your initialization file so that another glossary file is
loaded when the Glossary utility is invoked. This subject is discussed in more
detail later in this section. See paragraph 5.7, Defining a Glossary From the
Lisp Listener.

Glossary 5.3 On entering the User mode, the Explorer system formats a display to
User Mode facilitate interaction between you and the Glossary utility. The formatted dis-
play you see is the glossary frame. Figure 5-1 shows the glossary frame as it
appears when you first enter the utility.
In the User mode, the major components of the glossary frame are as follows:
B Glossary Command Menu
B Keyboard Typein Window
® Menu of Glossary Entries
B Text of Selected Glossary Entries
B Thumb Index
5-2 Tools and Utilities

Glossary Utility

Figure 5-1 The Glossary Frame

I
!

¥

3
o
.

NN
.
as

N

,
R
RS
g

%
R
AR

A

PR

T

>
%
S
&

X oS e
R
e
.
$ S

S SATA NS 3 IR Yt S %
%Wm N SN
. .

S «\ﬂm«@ Mm vvmw,ww.wm A e RN %%mww«» A
L xw&%@% o %%ﬁ,%mm o
o L
.

% SRR NV SR 3 AR AN o
e e
v A N

% wmw,«w% R S : 23 N
N S

2

?3\)«

RNy

AR Y
AR i .wm.\w
i
AT

%
I3V

A

o 2 3
Y ww%f e
ARG R R R 3 % SRR S A
3 R 3 RaaaNR
.
a,,w« S SR
A RN TR IR
e o
AR «VMW‘ wa\\w % % R
AR .,W,wﬁ‘é%»%/«m m.u..«
3 2% VI A 25
R ..n..m\z.w.s/, RIS AN
A S ,&,ﬂv S %
. .
W Sl ey

s w«‘\, “@Mu&«w@. .« ~w . .»s#,
.ﬁ@%%@%@@w%@w
3 3 R T SRS
o .
. L

SUALY 2 3 3

S

VAR 5 3

- S
o L

o S
L L

CAUABNLO T ~=¥ASZ0 Ol D> 3 XN

%

Thumb 1

Clear Text Dispiay
o

Keyboard 7 ype

§ .
5 E 3 o
g 8 » i
2 erSk £ M +) =
325888858 55.. 3 s »3% gse.gl .38 .
R EE RN JES3r8ud ¥ W £3 Zwels !
nm_umwmmmm. 338 IR MR TR L) .
SR T A A r NP EEEEER RS 1 i
R R AN F LR S AR AR Al 42 3 P H
O U L
P AL S T Fl

]

‘e of Glossary Entries
ossary System -

Glossary Command Menu

Help

Exit Glossary

S

ire pane
5-3

inimum of three mouse-

Help, Clear Text Display, and Exit Glossary.
ty clears the ent

ili

1

ns a m

utility displays a help menu listing each pane of

+ Lima: HEBB; IMAGE.XLD#!

the
When you choose an entry from this submenu, the

isplays information about how to use that pane.

.
.

k on Clear Text Display, the ut
ing the Glossary utility (Lisp Listener, Zmacs, Inspector, and so

k on Help,

Keuboard

ic

you clic
the Text of Selected Glossary Entries.

wing

1 The Glossary Command Menu conta
to enter:

ossary

3

FRED:
prior
n).

When you click on Exit Glossary, the utility returns you to where you were

ain
selectable entries
When you cl
the glossary frame
Explorer system d
When
sho
o

Glossary 5

Command Menu

95,0887 865:20:20AN webb
Tools and Utilities

Glossary Utility

Keyboard
Typein Window

Menu of
Glossary Entries

Text of Selected
Glossary Entries

Thumb Index

If more than one glossary is loaded into the system, a fourth command,
Select Glossary, appears. This command allows you to designate which of the
loaded glossaries is to be the currently selected glossary. With the mouse,
click on the Select Glossary command. When you do so, a pop-up window
appears with a mouse-sensitive list of all defined glossaries. With the mouse,
choose which glossary you want the utility to display. When you click the
mouse, the pop-up window disappears, and whichever glossary you specified
becomes the currently selected glossary. If the file containing terms and
definitions must first be loaded, the Explorer system does so at this time. For
more information, see paragraph 5.4.3, Select Glossary.

When the glossary has no predefined terms, for instance, when you are
creating a glossary interactively, the Menu of Glossary Entries is empty. The
Text of the Selected Glossary Entries pane retains any definitions you investi-
gated from the previously selected glossary; otherwise, it is empty.

5.3.2 The Keyboard Typein Window allows you to locate any glossary entry
by typing the entry on the keyboard. When you finish typing the entry, press
RETURN, and if such an entry exists, its definition appears in the pane
labeled Text of Selected Glossary Entries. In addition, this entry and all
entries following it alphabetically appear in the pane labeled Menu of
Glossary Entries. If no such entry exists, a message appears in the Keyboard
Typein Window to inform you of this fact; however, the Menu of Selected
Glossary Entries displays those entries closest alphabetically to what you
wanted to see.

5.3.3 The Menu of Glossary Entries displays the available terms in alpha-
betical order. Each displayed entry has a definition in the glossary. The menu
begins with entries starting with the letter a and lists as many entries as fit in
the pane. To see the other available entries, you can use the mouse for
scrolling, as described in the Introduction to the Explorer System, or use the
Thumb Index, which is described later in this section.

5.3.4 The glossary frame contains a pane titled Text of Selected Glossary
Entries. This pane displays the definitions of terms selected from the Menu of
Glossary Entries or typed into the Keyboard Typein Window. Any displayed
definition may also have other terms in it that are defined in the glossary.
These terms appear in boldface and can be selected by clicking on them with
the mouse.

Each new definition is added to the window above the currently displayed
definition. The oldest terms begin to scroll off the screen after the pane is
filled and new definitions are added; however, you can see the text for any
previously selected entry by using the cursor keys to scroll forward and back-
ward. (The mouse can be used for scrolling also; see the Introduction to the
Explorer System.) To completely clear the pane of all text, select the Clear
Text Display command in the Glossary Command Menu.

5.3.5 The Thumb Index displays the characters of the alphabet. When you
select a character with the mouse, the utility displays entries beginning with
this character in the Menu of Glossary Entries. This allows you to move
around quickly in the Menu of Glossary Entries.

5-4

Tools and Utilities

Glossary Utility

Glossary
Expert Mode

Define Glossary

5.4 While in the Glossary User mode, you have a handy reference for
Explorer system and Lisp terms. However, the Glossary utility can do much
more in the Expert mode. To enter the Expert mode, press META-CTRL-T.
When you do so, the Glossary Command Menu expands, displaying these
additional commands:

M Define Glossary

Delete Glossary

Select Glossary

Add Glossary Entry
Delete Glossary Entry
Undelete Glossary Entry
Edit Glossary Entry
Write Current Glossary
Merge in Glossary
(Re)Generate XRefs

Turh on XRef Deletion

Exit Expert Mode

5.4.1 The Define Glossary command makes a glossary known to the system.
You can have more than one glossary on your system. For example, you may
have glossaries for individual applications. To create a new glossary, you must
first define it. When you seiect the Define Glossary command with the
mouse, the Keyboard Typein Window prompts you as follows:

Name of new glossary:

Glossary names are strings. They need not represent a specific file or direc-
tory. After typing a string into the Keyboard Typein Window, press
RETURN, and the following prompt appears in the Keyboard Typein
Window:

Filename of glossary entries:

The filename can reside under any directory on the system; however, you
might want to keep a glossary-related directory and file descriptive pathname
such as the following:

LM: GLOSSARY; DEFINITIONS.TEXT
In this example, the directory component is GLOSSARY, the specific file-

name is DEFINITIONS, and the file type is TEXT. You can create other file
formats as described in paragraph 5.6, Defining Glossary File Format.

Tools and Utilities

5-5

Glossary Utility

Delete Glossary

Select Glossary

If you already have a file that contains your new glossary entries, enter this
filename and press RETURN.

At this point, the Glossary utility creates the necessary overhead information
for you to select the newly defined glossary. See paragraph 5.4.3, Select
Glossary.

NOTE: If you are creating a new glossary and plan to add terms and
definitions interactively with the Glossary utility, you must select the newly
defined glossary before going any further.

You can load user-defined glossaries either before a disk-save operation or at
run time when the glossary is first referenced.

An alternate means to define a glossary exists. Because this method is
intended for use with initialization files, see paragraph 5.7, Defining a
Glossary From the Lisp Listener.

5.4.2 To delete a glossary, select the Delete Glossary command from the

Glogsarvy mand Menu. When voui dnsa_ 2 nop-up window appears writh o
(xlgssary Command Menu. When vou G0 £0, 2 PODR-UN WINCGOW appears with a

mouse-sensitive list of all defined glossaries. With the mouse, choose which
glossary you want to delete. When you click the mouse, the pop-up window
disappears, and the utility then removes the glossary from the list of glossaries
that the Glossary utility knows to exist. It does not actually delete the file
containing the glossary terms.

If you choose to delete the currently selected glossary, you are prompted to
specify which defined glossary is to replace it. This glossary then becomes the
currently selected glossary upon deletion of the original.

5.4.3 To access a glossary other than the main glossary, use the mouse to
click on Select Glossary in the Glossary Command Menu. When you do so, a
pop-up window appears with a mouse-sensitive list of all defined glossaries.
With the mouse, choose which glossary you want the utility to display. When
you click the mouse, the pop-up window disappears, and the utility loads the
glossary file containing terms and definitions into the glossary buffer.

Notice the run bars near the bottom center of your screen in the status line.
Depending on the length of your input file, loading can take from a few
seconds to a few minutes.

When the glossary has no predefined terms (for instance, when you are
creating a glossary interactively), the Menu of Glossary Entries is empty. The
Text of Selected Glossary Entries pane retains any definitions you investi-
gated from the previously selected glossary; otherwise, it is empty.

5-6

Tools and Utilities

Add or Delete
Glossary Entry

Edit Glossary Entry

Glossary Utility

5.4.4 You can add entries to the currently selected glossary by selecting
Add Glossary Entry from the Glossary Command Menu. The following
prompt then appears in the Keyboard Typein Window:

Entry Name:

As you enter the term, it appears in the Keyboard Typein Window. Press
RETURN to complete entering the term. In response, the Keyboard Typein
Window displays the following prompt:

Now type in text for "x":

In this prompt, “x” is the term you are ready to define. As you enter the
term’s definition, it appears in the Text of Selected Glossary Entries pane.
You signal the end of the definition by pressing END. You can now access the
new glossary entry with any of the methods described in the User mode
portion of this section.

When you select the Delete Glossary Entry command from the Glossary
Command Menu, the utility displays the following prompt in the Keyboard
Typein Window:

Click on the name of the entry to be deleted.

Click on any term in the Menu of Glossary Entries or in the Text of Selected
Glossary Entries. The utility deletes the indicated entry.

Should you delete an entry by accident, you can simply undelete it by
selecting the Undelete Glossary Entry command from the Glossary Command
Menu. ‘

NOTE: Remember that you must resave the currently selected glossary
before exiting your session on the Explorer system. Otherwise, the entries you
add are not permanently added to the currently selected glossary, and the
entries you delete are not actually deleted from the glossary file. For more
information on saving the glossary, see paragraph 5.4.6, Write Current
Glossary.

5.4.5 When you select this command from the Glossary Command Menu,
the utility displays the following prompt in the Keyboard Typein Window:

Click on the name of the entry to edit.

Click on any term in the Menu of Glossary Entries or in the Text of Selected
Glossary Entries. The utility places the indicated entry at the top of the Text
of Selected Glossary Entries pane. At this point you can edit the entry just as
you would in Zmacs. When satisfied with your changes, press END.

Remember that you must resave the currently selected glossary before exiting
your session on the Explorer system. Otherwise, the entries you modified are

Tools and Ultilities

5-7

Glossary Utility

Write
Current Glossary

Merge in Glossary

not permanently added to the glossary file. For more information on saving
the glossary, see paragraph 5.4.6, Write Current Glossary.

5.4.6 To preserve newly created glossaries or entries to existing glossaries,
you must write the glossary in question before exiting the Explorer session. To
do so, be sure that the glossary you are going to write is the selected glossary;
then click on the Write Current Glossary command in the Glossary Command
Menu. At this point, the Keyboard Typein Window displays the following
prompt:

Name of file to write: (default is xxxxxxxx)

In this case, xxxxxxxx is the default value (the name of the file provided
when the glossary was created). You can either accept the default by pressing
RETURN, or enter another filename. The filename can reside under any
directory on the system; however, you might want to keep a glossary-related
directory and file descriptive pathname such as the following:

LM: GLOSSARY; DEFINITIONS.TEXT

In this example, the directory component is GLOSSARY, the specific
filename is DEFINITIONS, and the file type is TEXT. '

When you finish entering the filename, press RETURN. A pop-up menu then
appears, requesiing that you specify the fiie’s format. The file can have one
of several formats, including text, binary, or a format that you define your-
self. For more information on file formats, see paragraph 5.6, Defining

Glossary File Format.

When you select a format with the mouse, the utility saves the contents of the
currently selected glossary to the specified file. You can then end the
Explorer session without losing any modifications that you made to this
glossary.

5.4.7 You can merge the definitions and terms of any existing glossary with
those of the currently selected glossary. To do so, click on the Merge in
Glossary command from the Glossary Command Menu. A pop-up window
prompts you to click on the name of the glossary you want to merge with the
current glossary. You can abort the merge operation by moving the mouse
away from the pop-up window or by pressing the ABORT key.

Merging two glossaries does not automatically combine the cross-references
for both. You must regenerate all cross-references via the (Re)Generate
XRefs command from the Glossary Command Menu.

When you merge two glossaries, both are placed in the destination glossary.
The other original disappears from the glossary menus. (That is, the Glossary
utility no longer knows about it. The actual file containing the glossary terms
is not touched.)

5-8

Tools and Utilities

(Re)Generate XRefs

Turn On
XRef Deletion

Exit Expert Mode

Glossary Utility

5.4.8 After merging a glossary with the current glossary or adding or deleting
glossary entries, you must then regenerate all cross-references for the cur-
rently selected glossary. To do so, use the mouse to select the (Re)Generate
XRefs command from the Giossary Command Menu. When you click on the
command, the Glossary utility regenerates all the cross-references. Defini-
tions that vou view after performing this command display all other entries for
the newly merged glossary in boldface.

Remember that you must resave the currently selected glossary before exiting
your session on the Expiorer system. Otherwise, those cross-references you
generated disappear when you end this session. For more information on
saving the glossary, see paragraph 5.4.6, Write Current Glossary.

5.4.9 If, for any reason, you want to delete cross-references for a glossary
entry, you can do so with the Turn On XRef Deletion command from the
Glossary Command Menu. Notice that when you select this command with
the mouse, the displayed command changes to Turn Off XRef Deletion.

Once you have turned on XRef Deletion, select any displayed cross-reference
with the mouse, click right, and all cross-references for this term are deleted.
The entry is no longer displayed in boldface for any definitions you will view
in the future.

NOTE: When you finish deleting cross-references, be sure you return to the
Glossary Command Menu and select the Turn Off XRef Deletion command.
This action prevents accidental deletion of cross-references by clicking right
while XRef Deletion is in effect. (Clicking left selects a cross-reference, but
you may accidentally click right.)

Remember that you must resave the currently selected giossary before exiting
your session on the Explorer system. Otherwise, the cross-references you
deleted are not deleted from the glossary file. For more information on saving
the glossary, see paragraph 5.4.6, Write Current Glossary.

5.4.10 By selecting this command from the Glossary Command Menu, you
can return to the Glossary User mode.

Tools and Utilities

Glossary Utility

Using Zmacs
to Create a
Glossary File

5.5 As an alternative to creating a glossary file interactively, you can create
a glossary file in text-file format by using Zmacs. One drawback to creating
the glossary file via Zmacs is the likelihood of introducing errors; a situation
not likely to occur if you create your glossary file interactively.

To create the glossary file via Zmacs, first find the value of the gloss:*entry-
name-left-margin* variable (the default is 12). This is the value you must
use for the beginning column to list all terms to be defined in your glossary
file.

Next, find the value of the gloss:*entry-text-left-margin* variable (the
default is 16). This is the value you must use for the beginning column of all
the definitions in your glossary file. Also, note that each definition must be on
a separate line from the term itself.

Here are some tips when using Zmacs. Refer to the Explorer Zmacs Editor
Reference for details.

B Use the Zmacs CTRL-= command to find out what column you are in.

B Do not use tab characters when spacing out to the column. Make sure
they are spaces. To remove tabs, mark your text as a region and enter the
Zmacs META-X Untabify command.

B Make sure there are no spaces or tabs after the name of the term.

Once you complete the file and save it, you can then define your glossary

according to the instructions described for Define Glossary. When the
Filename of glossary entries prompt appears, enter your glossary filename.

5-10

Tools and Utilities

Glossary Utility

Defining Glossary 5.6 You can use the following function to define your own glossary file
File Format format if you want a format not already provided. You may want your
glossary file to be readable by some other system or application.

define-glossary-file-format name leetype entry-wrzte -method Function

slossarv-read-method &ovtional priority PPPRPY S S
glossary-read-method &optional priority documenitation-sir ing

nt to call the file format
some m emomc quahty

Arguments: name — This argument 81mply indicates what you wa
you are defmmg It is normally a keyword with

awliu craatad formar Cam
}'elauﬂg ic {ﬂe n\/vaJ vivailvu iuililiidal. OJUlLLl

formats include:

:text — The :text keyword describes the text file format used. In order
for the utility to read glossaries properly, the glossary entry names
must begin in column gloss:*entry-name-left-margin*, and all the
definitions for the glossary entries must be indented to the right of
the value specified for gloss:*entry-text-left-margin¥*.

:binary — This keyword describes a binary format.

filetype — This argument is the type of file to use for this format, such as
:text or :xld.

entry-write-method — This keyword is the message name that is sent to a
glossary-entry object to write itself to a file (for example, :write-cgloss-
self). The method takes one argument, specifying the stream to write to.

glossary-read-method — This keyword is the message name that is sent to a
glossary object to load the glossary from a file. The method accepts one
optional argument: the namestring or pathname object to load.

priority — The priority argument is an integer that specifies the priority of
loading this type of glossary format relative to the other formats. The
priority is based on how fast the file can be loaded and how much infor-
mation (such as cross-references or no cross-references) the format con-
tains. A high value for priority means that the format with this priority
takes precedence over a format with a lower priority value. The following
are the current values of each format’s priority:

M :binary — 8
H text — 2

For example, suppose your glossary is saved in two formats: MY-
GLOSS.TEXT and MY-GLOSS.XLD. If you load MY-GLOSS without
specifying the file type, priority tells the system which file type you meant
(as a default). Otherwise, you can specify the file type in the pathname to
“load the file with the format you want.

documentation-string — The documentation string is a string of text in which
you can briefly describe the newly defined glossary, that is, its purpose,
intended audience, and so on.

Tools and Utilities 5-11

Glossary Utility

Defining a
Glossary From

the Lisp Listener

5.7 You can use the define-glossary function to define a glossary from the
Lisp Listener or from your login initialization file. Your glossary file of terms
must already exist before you can use this function. This function gives
you the option of loading your own glossary file instead of the standard
Explorer glossary file when you invoke the Glossary utility.

define-glossary glossary-name file-to-load Function

Arguments:

Example:

&key :load-immediately-p :make-current-glossary-p

glossary-name —This argument is a string, just as with the other methods of
defining glossaries. Again, the string need not represent a specific file or
directory, merely something easily recognizable by a user.

file-to-load — The file-to-load argument must be the namestring or pathname
object of a file that contains the terms and definitions for the glossary you
are defining.

The optional keywords of this function are as follows:

:load-immediately-p — This keyword determines whether the file containing
the terms and definitions for the newly defined glossary should be loaded
immediately (non-nil) or loaded when the glossary is first referenced by
the Glossary utility (nil). The default is nil.

:make-current-glossary-p — This keyword determines whether the newly
defined glossary is to be the currently selected glossary (non-nil if so, nil
if not). The default is nil.

The following list describes what happens when you use these optional
keywords:

B If you accept the default of nil for :load-immediately-p and :make-
current-glossary-p, your glossary is listed by the Select Glossary com-
mand. The standard Explorer glossary file is loaded when you invoke the
Glossary utility, and it is selected.

m If you specify non-nil for :load-immediately-p and :make-current-
glossary-p, your glossary is the currently selected glossary when you in-
voke the Glossary utility. The standard Explorer glossary file is not
loaded unless you select it with the Select Glossary command.

WM If you specify :load-immediately-p non-nil and :make-current-
glossary-p nil, your glossary is loaded immediately, and it is listed by the
Select Glossary command. The standard Explorer glossary file is the
currently selected glossary.

W You cannot specify :load-immediately-p nil and :make-current-
glossary-p non-nil because the file must be loaded in order to be the
currently selected glossary.

Assume the following example code is in your login initialization (file.
When you log in, the glossary named Druid is defined to the system and is
immediately loaded. When you invoke the Glossary utility, it is the currently
selected glossary. The standard Explorer glossary file is not loaded unless you
select it with the Select Glossary command.

(define-glossary "Druid" "lm: glossary; trees.text"
:load-immediately-p t :make-current-glossary-p t)

5-12

Tools and Utilities

UCL USER INTERFACE

Overview

6.1 The Universal Command Loop (UCL) simplifies and standardizes the
process of constructing command interfaces to interactive programs. It pro-

1 1
wnidag tha flavare and fiimatrinng th Yo rorwal NAMIMan 2T ne
vides tne [1avors and muncuoins that construct a command inie yrexer, onuneg

help features, and environment customization features.

This section describes how to use the features that UCL provides for any
application. The next section, Section 7, describes how to incorporate UCL
into your application.

This section discusses the following topics:

Basic command interpreter operation — Provides an overview of how the
UCL command interpreter works.

Help features — Discusses the interpreter’s help mechanisms that are invoked
from one universal command bound to the HELP key. These help
commands (and the environment customization commands) are known
collectively as the universal commands because they are available in any
UCL application.

By pressing the HELP key, you can easily access an application’s custom
online documentation, browse through documentation for commands,
and perform searches on keystrokes and command names. Because the
UCL can process various kinds of typed expressions, the HELP key aiso
provides documentation on the syntax for each kind of expression when
you select the Command Type-In Help option.

Environment customization features — Allows you to modify and enhance the
standard features provided by the application. For example, if a com-
mand is assigned to a keystroke that you feel is difficult to type or if a
command is used so frequently that you want to simplify the keystroke,
then you can reassign the keystroke. If a command does not have a key-
stroke assigned to it, you can assign one. You can build command macros
to execute sequences of commands in order to use the application more
efficiently. You can save this customized working environment to a file
and reload it for subsequent sessions.

Miscellaneous features — Includes implicit message sending to a flavor in-
stance, acceptance of typed commands and arguments, recognition of
numeric arguments to keystroke commands, and user-friendly error
catching that avoids invoking the debugger for insignificant errors.

Tools and Utilities

6-1

UCL User Interface

Basic Command
Interpreter
Operation

6.2 The UCL command interpreter is helpful to users having different levels
of expertise. UCL commands can be executed by the following kinds of user
input:

B Keystroke sequences — Keystroke sequence input allows the expert user
to work efficiently because using keystroke sequences is faster than using
the other methods of input.

B Mouse button clicks — Input from mouse clicks is especially useful for
applications that manipulate graphics objects with the mouse. For in-
stance, a mouse click can execute a command that performs an operation
on the graphics object the mouse cursor is near.

B Command menus — Command menus are designed to meet the needs of
the novice. Although typing a keystroke command is slightly faster than
using a menu, the command menus allow the novice to be productive
while learning new commands. The menus also help an experienced user
locate infrequently used commands.

B Typed command names — Typed command name input is useful in appli-
cations that contain large command sets. This capability allows you to
execute a command by typing the command name instead of attempting
to remember the keystroke assigned to a command.

Tools and Utilities

UCL User Interface

Help Features

6.3 The follow{ng paragraphs describe each of the help mechanisms
provided by the UCL.

Help command — Displays a pop-up menu that contains help options for
the Explorer system in general and for the current program. You invoke

+lan ITn nA
the Help command by pressing the HELP key. If your application is set

up to handle the Help option and the Tutorial option, they are also
included in the menu.

Command type-in help — Provides help on what kind of typed expres-
sions are processed by the application.

Command display — Displays the currently active UCL commands and
allows you to execute them.

Command history — Shows previously executed significant UCL com-
mands in a command display window and allows you to execute them.

Command name search — Searches for UCL commands whose names
contain a string that you specify and allows you to execute them.

Keystroke search — Displays UCL commands assigned to a keystroke
and allows you to execute them.

Command menus — Discusses the help that UCL command menus
provide: mouse documentation window help and icon representation.

Completion commands — Discusses the commands that help you
complete typed input.

Mouse documentation window help — Talks about the help that the
mouse documentation window provides on symbols, command names,
function names, and some of the completion commands.

Most of these features are automatically included by the UCL in an applica-
tion; they are among the collection of universal commands that you can
execute on demand. Two help mechanisms, the UCL command menus and
mouse documentation window help, provide passive help to you and are
optionally included in the application.

Tools and Utilities

UCL User Interface

Help Command 6.3.1 The universal command Help, assigned to the HELP key, displays a

pop-up menu of help options (see Figure 6-1). This menu is divided into two
parts:

B General help options that describe basic features of the Explorer system.

B Local help options that describe features of the current UCL application
and environment. Some of these local help options are universal and
work the same in all applications.

If your application is set up to handle the Application Help option and the
Tutorial option, they are included in the menu. These options do whatever
your program specifies. The following describes typical uses of these options:

B Application Help option — Prints a message describing the application.
The name of this help option is specific to the current UCL application
(for example, Lisp Listener Help). Figure 6-2 shows the Inspector Help
option screen.

M Tutorial option — Executes a tutorial that explains the current UCL
application oriented toward the novice.

The following describes the general help options:

B Explorer Overview — Displays a simple overview of the Explorer system
and its capabilities.

W System Menu — Displays the System menu. (Press the right mouse button
also displays this menu.)

W System Application — Displays a list of all the system applications
installed on the Explorer system. (Pressing SYSTEM HELP also displays
this list.)

B TERM Key Help — Displays all the TERM key features. (Pressing TERM
HELP also displays these features.)

Most of the other help options described in the following paragraphs appear
in this pop-up Help menu. The menu also contains the title of a submenu that
provides the environment customization features described in paragraph 6.4,

The help options that appear in the Help menu also have associated key-
strokes. When you position the mouse cursor over an option in the menu, the
mouse documentation line displays its keystroke. The keystrokes are also
listed in the Command Display window (described later). Also refer to
paragraph 6.6, Command Summary.

6-4

Tools and Utilities

UCL User Interface

Figure 6-1 UCL Menu of Help Options

General Help

Explorer Overvieuw

s imbom Mami

Systen Manu I

System Applications
Term Key Help

Command Name Search

Command Tupe-in Help
Command History
Keystroke Search
Customization Menu

{Local Help
Lisp Listener Help
3

Figure 6-2 Inspector Help

INSPECTOR HELP

OPTIONAL THIRD INSPECTION PANE ee»
Displays previously inspected itenm.

s&s OPTIONAL SECOND INSPECTION PANE ###
Displays previously inspected itenm.

#3« MAIN [NSPECTION PANE e#s

This pane displays the structure of the most recently inspected itenm.
Specify objects to inspect by either:

& Entering them into the Inspection Pane
* Clicking Mouse-Left on the mouse-sensitive slements of previously inspected items
Clicking Mouse-Right on items in this pane tries to inspect the item’s functlon definition.

Wnen locked, the inspected item in that pane will be frozen until unlocked. Only tuc of the
3 panes may be locked.

C%:SND E ¥ax HISTORY PANE s

| This pane displays a list of the objects that have been inspected.

[C1ick Mouse-Left |

Ftc select a i To bring an object back into the Main Inspection Pane, click

command . | Mouse-Left on that object in this pane.
|
|
|
|
|

To remove an item from the History Pane, position the mouse-cursor to the
Jeft of the item until the cursor becomes a right-pointing arrou (this is
the item’s "line area”). HNow click Mouse-Middle.

»ss INTERACTION PRNE »%x
Enter items to inspect in this pane.

This pane can alsc be used for command name typein and for Lisp typein. For Lisp
typein, use the Mode command.

The last three inspected objects are stored in the top three Inspection Panes.

lIPress the space bar to remove this message.l

ibocurmentation for Inspector
; Bring up the System MeniL

Tools and Utilities 6-5

UCL User Interface

Command
Type-In Help

6.3.2 Command Type-In Help is a help menu option that tells you what
kind of typed expressions are processed by the application. For example, in a
UCL application set up to interpret typed command names and Prolog
expressions, this option displays documentation on the format of command
names and Prolog expressions. In an application that accepts the default
expression processing, this option displays documentation on typed command
names and Lisp forms. (Paragraph 6.5.1 discusses the processing of typed
expressions.) Figure 6-3 shows an example of Command Type-In Help.

Figure 6-3 Command Type-In Help

4 [Separate multiple words in the command with dashes (i.e. "Command-Disp
i inot *Command Display*).

Help on Typed Expressions

The current program allous you to type in and do completion on several types of
il lexpressions. The follouing describes each of the tupein-modes which handle

typed expressions:

COMMAND-NRHES :

i An active command in the current program may be executed by typing its command
] (name (instead of its keystroke). Hitting the SPACE Bar corpletes a partially

typed-in command name.
lay”,
As an example, tupe KEY and press the SPACE Bar.

This completes to be Keystroke-Search, uhich is the name of & command. Press
TURN and the command will be executed.

You may type any arguments after the command name. If more arguments are

, & pop-up window will prompt you for the arguments. To try this, type

1 needed,
| |LORD-COMMANDS and press RETURN. Rbort out of the window that is popped U

P.
Then tupe LORD-COMMANDS "sdfflkj" and press RETURN. This will use SDFFLKJ as
the command’s argument.

INPLICIT-MESSAGES :

Handles an abbreviated form of message sending, aiso permits completion on
method names. 7o run, execute the function ROTL (Run Object Top Level) vith a
flavor instance as argument. Messages may be sent to that flavor instance by
typing the message followed by any arguments. For example, (ROTL #TERMINAL-IOw)
sets the current flavor instance to the uindow you are typing into. Tuyping
:STRING-OUT *Foo-Bar* and pressing RETURN tupes out ‘‘Foo-Bar. The Mouse
Documentation Window displays the method’s arguments and return list after
pressing the SPACE Bar follouwing the message name. To turn off implicit message
sending, tupe (ROTL NIL). HNote that whils running ROTL, the instance variables
of the current flavor instance are bound at top level. This means that you can
evaluate or SETQ them. See documentation on ROTL for more information.

FUNCTIONS :
Handles typed Lisp function calls (expressions starting wvith a left

parenthesis).

and Edit Documentation History: — & to bxit — D for Zmacs Help.

Tools and Utilities

UCL User Interface

Command Display 6.3.3 The universal command Command Display shows in a scroll window
the currently active UCL commands. Each line of the scroll window contains
the following information for a command:

B Name

B Keystroke

m Short description

Figure 6-4 shows a sample command display. A command can be executed
from the display by boxing it with the mouse cursor and clicking left. Full
documentation for the command is displayed by clicking middle.

Figure 6-4 Command Display

URIVERSAL COMMANDS:
Command Name

Build Command Macro
Build Keystroke Macro
Command Dispiay
Command Editor
Command History
Command Name Search
Configure Type-In Modes
Help

Keystroke Search

Load Commands

Numeric Argument

Redo Command

Save Commands

System Herw

Top Level Configurer

NPUT EINTOR COMMANDS:
Command Name

Apropos Complete
Backuward Character
Backuard Parentheses
Backward Hord

Basic Help

Beginning Of Buffer
Beginning Of Line
Clear Input

Complete

Delete Character
Delete Parentheses
Delete Word

Display Internal State
End Of Buffer

End Of Line

Exchange uords

Forvard Character
Forward Parentheses
Forward Word

Kill Line

K111 Region

List Apropos Completions
List Commands

List Completions

List Input Ring

List Kill Ring

List Speliing Completions
Mark Beginning

Mark End

Menu Pop Up Input Ring
Menu Pop Up K111 Ring
Command Display

Assigned
HYPER-CTRL-C
HYPER-CTRL-M
HYPER-CTRL-HELP
HYPER-CTRL-STATUS
HYPER-CTRL-P
HYPER-CTRL-N
HYPER-CTRL-(

HELP

HYPER~-CTRL-K
HYPER-CTRL-L
HYPER-SUPER-META-CTRL-9 or
HYPER-CTRL-R
HYPER-CTRL-S
Mouse-RIBHT
HYPER-CTRL-T

Assigned Keystroke
SUPER-ESCRPE
CTRL-B or «
HETA-CTRL-B or META-CTRL-+
METR-B or META-«
HELP

METR-< or HYPER-t
CTRL-A or SUPER-+
CLEAR-INPUT
ESCAPE

CTRL-D
METR-CTRL-K
HMETAR-D
META-CTRL-HELP
META-> or HYPER-I
CTRL-E or SUPER-—
META-T

CTRL-F or =+
META-CTRL-F or META-CTRL-»
METR-F or METR-»
CTRL-K

CTRL-W

SUPER-/

CTRL-HELP

CTRL-/
METR-STATUS
META-CTRL~-STATUS
HYPER-/

CTRL-<

CTRL->

STATUS
CTRL-STATUS

(Pross IG5 to esit)

0
R:Gommand Menu R2:8ystem Menu

Descripton

Creates a command which queues other commands for execution.

Creates a command which forces a sequence of keys into the [0 buffer.
Displays the currently active commands in a scroll windou.

Allows editing of this program’s commands in a scroll window.
Displays previous significant commands in a scroll wvindow.

Lists commands whose names contain a given substring.

Allows modification of the modes used in interpreting and completing 4
Pops up a menu of help-oriented commands.

Lists commands assigned to a given keystroke or keystroke segquence.
Load UCL commands saved earlier

Passes a numeric argument to next command(s)

Repeats previous command using same arguments.

Save all of the user’s tailored commands out to disk.

Pops up the sustem merw for selection of prograns, vindows
Modify the attributes of Command & Lisp tupe-in.

etc.

Descriptien))

Completes input as a substring, similar to the APROPOS function.
Moves the cursor backuard one character.

HWoves the cursor backward one sat of paranthesss.

Moves the cursor backward one word.

suggests various ways of getting help.

Moves the cursor to the beginning of the current input.

Moves the cursor to the beginning of the current line.

Clears the current input.

Completes using Recognition style of completion.

Deletes the character under the cursor.

Deletes the Lisp form to the right of the cursor.

Deletes the vord to the right of the cursor.

Displays the internal state of the Input Editor.

Moves cursor to the and of current input.

Mouves cursor to the end of current 1ine.

Exchanges vords on either side of cursor.

Moves the cursor foruard one character.

Moves the cursor foruard one set of parentheses.

Moves the cursor foruward one wvord.

Kills input right of cursor on the current l1ine.

Kills a region of input marked by user.

Lists possible Apropos-style completions on a symbol left of cursor.
Displays information on Input Editor commands in a scroll window.
Lists possible ESCAPE (Recognition) style completions on a symbol left
Displays the input ring.

Displays the Zmacs kill ring.

Lists possible Spelling corrections on a sumbol left of cursor.
Marks ki1l region as input from cursor to beginning of buffer.
Marks ki1l region as input from cursor to end of buffer.

Displays the input ring in a pop-up menu for input selection.
Displays the Zmacs k111 ring in a pop-up menu for input selection.

Tools and Utilities

UCL User Interface

Command History

6.3.4 The universal command Command History shows previously executed
significant UCL commands in a scroll window (Figure 6-5). Only significant
commands are shown; those commands marked as insignificant by the pro-
grammer are not displayed. The most recent command appears at the top of
the display, with the commands displayed in reverse sequence of execution.
You can view command documentation and execute a command by selecting

it with the mouse.

Figure 6-5 Command History

Comimand History:

Comnand History
Help

System Henu
Flavins

Command History
Help

Doc

Refresh

Print

Config

Doc

Edit

Modify

Comnand History
Help

HYPER-CTRL-P
HELP
Mouse-R1IGHT
HYPER-F
HYPER-CTRL~P
HELP

CTRL~HELP or META-HELP
CTRL-R

SUPER-P

SUPER-C

CTRL-HELP or META-HELP
HYPER-E

CTRL-M

HYPER-CTRL-P

HELP

Command Display (Press = to exit)

f.Command Menu [M2:System Menu

Displays previous significant commands in a scroll uindou.

Pops up a menu of help-oriented commands.

Pops up the system menu for selection of programs, uindous, etc.
Flavor Inspect a Flavor or Method.

Displays previous significant commands in a scroll uwindou.

Pops up a menu of help-oriented commands.

Display some brief documentation about each of the Inspector’s panes.
Redisplay the inspected objects, updating any fields that have changed
Bring up a menu that will allow the modification of various printing ¥
Select a new inspector pane configuration.

Display some brief documentation about each of the lnspector’s panes.
Edit the definition of something.

Modify a slot in an inspected object bu clicking on it and then choosi]
Displays previous significant commands in a scroll vindou.

Pops up a menu of help-oriented commands.

Tools and Utilities

Command
Name Search

UCL User Interface

6.3.5 The universal command Command Name Search is derived from the
Zmacs Apropos command. It reads a search string and displays all of the
commands whose names contain the search string (see Figure 6-6). The
search string can contain special search operators (described in the oniine
documentation when you press CTRL-H HELP) to constrain the search, such

as the following:

VAT SVAIWALlE-

B Not next character

WM Match any whitespace character

B Match any character

The UCL commands that meet the search criteria are then listed and dis-

played in a scroll window. You can view the command documentation and
execute a command by selecting it with the mouse.

Figure 6-6 Command Name Search

Results of command name search:

Build Command Macro
Command Display
Command Editor
Command History
Command Name Search
Load Commonds

Redo Command

Save Commands

List Commands

Command Display (Press =%

HYPER-CTRL-C Creates a command uhich queues other commands for execution.

HYPER-CTRL-HELP Displays the currently active commands in a scroll window.

HYPER-CTRL-STATUS Allows editing of this program’s commands in a scroll window.

HYPER-CTRL-P Displays previous significant commands in a scroll window.

HYPER-CTRL-N Lists commands whose names contain a given substring.

HYPER-CTRL-L Load UCL commands saved earlier

HYPER-CTRL-R Repeats previous command using same arguments.

HYPER-CTRL-S Save all of the user’s tailored commands out to disk.

CTRL-HELP Displays information on Input Editor commands in a scroll windou.
X

to exit)

£: Bring up the System Menu.

Tools and Utilities

6-9

UCL

User Interface

Keystroke Search

Command Menus

Mouse
Documentation
Window

Icons

6.3.6 The universal command Keystroke Search displays UCL commands
assigned to a keystroke or keystroke sequence that you input. The commands
are displayed in a command display (scroll) window. You can view the com-
mand documentation and execute a command by selecting it with the mouse.

6.3.7 UCL command menus help the novice user learn application com-
mands and provide an efficient means of inputting the commands. Two fea-
tures that the command menus provide are documentation in the mouse
documentation window and icon representation, as described in the following
paragraphs.

Note that these features of UCL command menus depend on how the UCL
application is written, using the tools described in Section 7, UCL
Programmer Interface.

6.3.7.1 UCL command menus display commands using their assigned
names (by default), but, unlike many application command menus, UCL also
displays documentation for the command. The command name usually does
not provide enough information for a novice user to determine what a com-
mand does. Thus, the user is forced either to blindly execute the command
or search for the command documentation. To solve this problem, UCL
command menus provide informative documentation in the mouse documen-
a command in the menu, the mouse documentation window displays a short
description of the command.

The mouse documentation window also displays the keystrokes (if any) that
execute the command. This helps novice users learn a more efficient way to
input the command. Figure 6-7 shows an example of the documentation in
the mouse documentation window for a command on the graphics editor
command menu. This figure also shows an icon menu, which is described in
the next paragraph. The menu item lists for these menus are built using the
UCL.

6.3.7.2 Instead of (or in addition to) displaying command names, UCL
command menus can represent commands as icons. An icon is simply a char-
acter or shape that represents an action. Several fonts provide common
icons, such as arrows, scissors, and paint brushes. You can use the font editor
to construct new icons appropriate for your application. (The font editor is
described in Section 12.)

Icon menus can help novice or infrequent users understand an application
through graphic representation of the command action. Icon menus also help
expert users by taking up less screen space than an ordinary text menu. An
example of an icon menu is shown in Figure 6-7.

6-10

Tools and Utilities

UCL User Interface

Figure 6-7

Mouse Documentation Window and an Icon Menu

i ,
gzg @ 3K G chmedid XM 2 FEM-Z1O INTT

Functions Picturss Pressntations Subpictures Windowing
Gopy Objects Mode Glaar Backgrnd Picturea Define Presentation Define Subpictura Pan Down
Delete Objects Mode Clear Picture Display Presentation Explode Subpicture Pan Down Half
Drag Move Mode Find Picture K#l Presentation Insert Subpicture Pan Left
iPaint Mode Drag-GCopy Objs Mode Insert Picture Kil/8ave Presentations Restore Subpicture Pan Left Half
Polyline Mode Edit Parameters Kil or 8ave Pictures List Presentations Save Subpicture Pan Right
‘Rectangle Mode Exit KN Picture Load Presentation Undefine subpicture Pan Right Half
|Ruler Mode Move Objects Mode List Pictures Modify Presentation Pan Up
fSpInsMude Restore User Status Next Picture Restore Presentation Pan Up Half
Text Mode Revert Picture 8tatus Previous Pictura 8ave Presentation 8et rewindow area
‘Triangle Mode Revert User Status Print Graphics 8how default window
Bave User Btatus Read Background Picturs Show entire picture
8cale Objects Mode Redraw Picture Zoom In
Undo FAeorder Pictures Zoom I Two
ew or Statug Revert Picture Zoom Out
Save Picture Zoom Out Two
Write Picture

&&H!CS EE;EOP q

View or modity GED status variable settings

Key assignments: STATUS

Completion
Commands

6.3.8 The UCL gives an application the ability to read part of an expression
that you are typing and then, upon your command, to complete the rest of

the expression for you automatically. The UCL completion commands are
keystrokes that invoke different styles of completion on various kinds of
typed expressions. (The different kinds of typed expressions recognized by
the UCL are discussed in paragraph 6.5.1.) Completion commands are actu-
ally implemented by another system component known as the input editor
(see the Introduction to the Explorer System).

By default, the UCL can perform completion on such expressions as Lisp
function names and command names, but completion is also possible on
other types of expressions (even application-specific types).

Table 6-1 describes each completion command and the keystroke that
invokes it.

Tools and Utilities

6-11

UCL User Interface

Table 6-1 Completion Commands

Command Key

Completion Description

ESCAPE

SUPER-ESCAPE

HYPER-ESCAPE

Space bar

CTRL-/

SUPER-/

HYPER-/

Recognition completion treats the typed input as
the initial substring and completes the word when
possible. If several words start with the substring,
the word is completed as far as possible.

For instance, in an application that has commands
named print-results and print-query, the typed
character p followed by pressing the ESCAPE key
causes the word to complete as print-. Whereas,
if print-query is not in the application, the same
typed input using the ESCAPE key completes as
the full command name print-results.

Apropos completion treats the typed input as a
substring included anywhere in the completing
word and attempts to complete it.

For instance, (output-to-string followed by
pressing SUPER-ESCAPE completes as follows,
which is the only Lisp function that contains this

(with-output-to-string

Spelling-corrected completion attempts to complete
a word by treating the input string as slightly
misspelled with missing, extra, or misplaced
characters.

Auto-completion is recognition completion on
typed command names. This allows you to type
part of an application command name and then
press the space bar to complete the name.

Displays a mouse-sensitive menu of possible
recognition completions.

Displays a mouse-sensitive menu of possible
apropos completions. Refer to Figure 6-8.

Displays a mouse-sensitive menu of possible
spelling-corrected completions.

6-12

Tools and Utilities

UCL User Interface

Figure 6-8 Completion Listing Produced by Pressing SUPER-/

RDJUST -RRRRY
ADJUST-ARRAY-~51ZE
ADJUSTABLE-ARRAY-P
APPEND-TO-ARRAY
ARRAY

ARRAY-#-DINS
ARRAY-ACTIVE-LENGTH
ARRAY-BI TS-PER-ELEMENT
ARRAY-DIMENSION
ARRAY~-DIMENSION-N
ARRAY-DIMENSIONS

ARRAY -DI SPLACED-P

ARRAY-ELEMENT-SIZE

-
ARRAY-ELEMENT-TYPE
ARRAY-ELEMENTS-PER-Q
ARRAY -BROMW
ARRAY-HAS~F1LL-POINTER-P
ARRAY-HAS-LERDER-P Rubout Last Char

ARRAY- I N-BOUNDS-P Delete Character

2222¥_%23?2§g;fp Retrieve Last Input
Retrieve Last Kill

ARRAY-INITIALIZE

ARRAY-~LERDER

ARRAY-LEARDER-LENGTH

ARRAY-LENGTH

ARRAY ~PUSH-EXTEND

ARRAY ~RANK

ARRAY -ROW-MAJOR-INDEX

ARRAY-TOTAL-SIZE

ARRAY-TYPE

ARRAY-TYPES

ARRAYCALL

RARRAYDING

ARRAYP

COPY-RARRAY-CONTENTS

COPY-ARRAY-CONTENTS-AND-LERDER

COPY-ARRAY-PORTION

D[SPLACED-ARRAY-P

F [LLARRAY

GET-LOCAT I VE-POINTER-INT0-ARRAY

LIST-ARRAY-LERDER

LISTARRAY

MAKE-ARRAY

MAKE-ARRAY - 1NTO-NAMED~STRUCTURE

MAKE-P I REL-ARRAY

NUMBER- | NTO-ARRAY

P 1 XEL-ARRAY -HEIGHT

P1XEL-ARRAY-HIDTH

RETURN-ARRAY
SORT-GROUPED-ARRAY -BROUP-KEY

lS'f ORE-RRRAY-LEADER I
isp Listener 1

:Returns the last used element of ABHAY, and decrements the till pointer.

For an ART-Q-1IST array, the ok codes are updated so that the averlayed list

Mouse 6.3.9 As you are typing expressions, the UCL uses the mouse docu-
Documentation mentation window to display various kinds of helpful information, such as
Window Help command arguments or alternative completions.

When you press the space bar after typing the first symbol of the input line,
the UCL attempts to tell you something about the symbol:

W If the symbol is a function name preceded by a left parenthesis, the
function’s argument list is displayed. (Figure 6-9 shows an example of the
function documentation in the mouse documentation window.)

B If the symbol is an implicit message (see paragraph 6.5.1, Typed
Expressions), the message argument list is displayed.

B If the symbol is an application command name, the command’s short
description and required arguments (if any) are displayed in the mouse
documentation window.

m If the symbol is a special expression that the application processes, the
application can easily designate what help is provided in the mouse docu-
mentation window.

Tools and Utilities 6-13

UCL User Interface

When you execute the ESCAPE, HYPER-ESCAPE, or SUPER-ESCAPE
completion commands, the mouse documentation window displays the
possible completions if there are several. If there are no completions, an
error message is displayed.

NOTE: All of these uses of the mouse documentation window are optional,
depending on how the UCL is written and on your default UCL options (refer
to paragraph 6.4.6, Top Level Configurer).

Figure 6-9 Function Argument List in Mouse Documentation Window
> (sus:receive-band

Lisp:
Suggestions Menus Off

Help
Lisp Expressions
List Menus
Menu Tools
Fasic MENU

Cliear Screen
Start Input Over
Forward

Backuard

Forvard Hord
Backward Hord
Beginning of Line
z End of Line

= Rubout Last CThar
Delete Character
Retrieve Last Input
Retrieve Last Kill

Lisp Listener 3 -
SYS:NECLIVE-DAND: (FNOM-MACGHINE FROM-PART TO-UNIT TO-PANT &OPTIONAL (SUBSE.T-STAfT 0) SUBSET-N-BLOGKS)

6-14 Tools and Utilities

UCL User Interface

Environment
Customization
Features

Figure 6-10

6.4 UCL provides the following environment customization mechanisms:

B Command Editor — Allows you to modify commands.

B Build Keystroke Macro — Creates a command that executes a series of
commands that vou snecifv bv their kevstrokes.
WASLLLLLAW LAY MEAS P il v B St A
B Build Command Macro — Creates a command that executes a series of
commands that you specify by their names.

B Save Commands — Saves all of your changes so you can reload them in a
later session.

B Load Commands — Loads the customizations that you saved with Save
Commands.

B Top Level Configurer — Sets default UCL options and tailors how typed
expressions are processed. You can also save these changes and reload
them in a later session.

These customization mechanisms are automatically added to an application
by the UCL; they are among the universal commands. All are accessible from
the Help command menu that is invoked by pressing the HELP key
(described in paragraph 6.3.1). When you select the Customization Menu
option from the Help command menu, the pop-up menu shown in Figure
6-10 is displayed. Additional menus are shown, as appropriate, for any item
you choose that creates a new element. The following paragraphs describe
each of the options on the Customization menu.

Note that these options also have associated keystrokes. When you position
the mouse cursor over an option in the menu, the mouse documentation line
displays its keystroke. The keystrokes are also listed in the Command Display
window.

Customization Menu

Gustomization Menu

Build Keystroke Macro,
Build Command Macro
Load Commands

Save Commands

Top Level Configurer

Tools and Utilities

6-15

UCL User Interface

Command Editor

6.4.1 The Command Editor command displays all of the commands of the
current application in a scroll window similar to the command display (see
Figure 6-11). Clicking left on a command (the entire line, including the com-
mand name, keystroke, and description should be boxed) pops up a window
that allows you to modify any of the command’s data, including the following;

B Command names

W Keystrokes

W Description

B Documentation

B Menus

8 Function or method to execute

If you want to modify only the command name, keystroke, or description,
you can box only that part of the line where the command is listed.

The command editor allows you to control the command environment. You
can bind Keystrokes to the key or mouse button that is most convenient to
use, change command names to whatever is easier to type or remember, and
reconfigure command menus to display the desired commands.

For sophisticated users, the command editor has an option for finding and
editing the source code of a command. You click right on the entire line
containing the command name and select Edit Command Source. Another
option allows you to define and add new commands to the application. You
click right on the command table item, such as UNIVERSAL cOMMANDS, and
select Add Command.

6-16

Tools and Utilities

UCL User Interface

Figure 6-11 Command Editor Display and Menu Used for Editing a Command

Tl PSP i3
¥ 1YPER-CTRL ~-HELP
Description: --- Displays the curr...
Documentation: This command disp...
Menus: - - NIL
Icons: - - NIL
Activeness - Yes No
Visibility - Yes No
Tutorial: - NIL
Def inition - UCL::DISPLAY~-COMMAND-TABLES
Rrguments: - NIL
lMlst:. data: -..... NIL
Abort L[] To 1t LJ He1p L -
Epromp
Save Commands HYPER-CTRL-S
System Menu Mouse-RIBHT
Top Level Configurer HYPER-CTRL-T
INPUT EIXTOR COMMANDS:
Cornmand Name Assigned
Rpropos Complete SUPER-ESCAPE
Backward Character CTRL-B or +
Backward Parentheses META-CTRL-B or META-CTRL-«
Backward Word META-B or META-«
Basic Help HELP
Beginning Of Buffer METR-< or HYPER-t
Beginning Of Line CTRL-A or SUPER-+
Clear Input CLEAR-INPUT
Complete ESCAPE
Delete Character CTRL-D
Delete Parentheses META-CTRL-K
Delete Hord META-D
Display Internal State META-CTRL~HELP
End Of Buffer META-> or HYPER-4
End Of Line CTRL~-E or SUPER-+
Exchange Words META-T
Forward Character CTRL-F or =+
Forward Parentheses METRA-CTRL-F or META-CTRL-»
Forward Word META-F or META--»
Kill Line CTRL-K
Kill Region CTRL-W
List Apropos Completions SUPER-/
List Commands CTRL-HELP
List Completions CTRL-/
List Input Ring META-STATUS
List K111 Ring META~-CTRL-STARTUS
List Speiiing Completions HYPER-/
Mark Beginning CTRL-<
Mark eEnd CTRL->
Menu Pop Up Input Ring STATUS
Command Editor (Press & to exit)

Ghange the names which are assigned tu this command.

Description

Creates a command which queues other commands for execution.

Creates a command uhich forces a sequence of keys into the IO0 buffer.
Displays the currently active commands in a scroll uindou.

Allows editing of this program’s commands in a scroll window.
Dispiays previous significant commands in & SCroll windcs.

Lists commands whose names contain a given substring.

Allows modification of the modes used in interpreting and completing t
Pops up a menu of help-oriented commands.

Lists commands assigned to a given keystroke or keystroke sequence.
Load UCL commands saved earlier

Pasges a numeric argument to next command(s)

Repeats previous command using same arguments.

Starts new 1ine and reprompts (in appropriate applications).

save all of the user’s tailored commands out to disk.

Pops up the system menu for selection of programs, uindous, etc.
Modify the attributes of Command & Lisp type-in.

Deecription

Completes input as a substring, similar to the APROPOS function.
Moves the cursor backuard one character.

Moves the cursor backward one set of parentheses.

Moves the cursor backward one word.

Suggests various ways of getting help.

Moves the cursor to the beginning of the current input.

Moves the cursor to the beginning of the current line.

Clears the current input.

Completes using Recognition stule of completion.

Deletes the character under the cursor.

Deletes the Lisp form to the right of the cursor.

Deletes the word to the right of the cursor.

Displays the internal state of the Input Editor.

Moves cursor to the end of current input.

Moves cursor to the end of current line.

Exchanges words on either side of cursor.

Moves the cursor foruard one character.

Moves the cursor forward one set of parentheses.

Moves the cursor forward one word.

Kills input right of cursor on the current line.

Kills a region of input marked by user.

Lists possible Apropos-style completions on a symbol left of cursor.
Displays information on Input Editor commands in a scrall window.
Lists possible ESCAPE (Recognition) style comptetions on a symbol left]
Displays the input ring.

Displays the Zmacs ki1l ring.

Lists possible Spelling corrections on a symbol left of cursor.
Marks kill region as input from cursor to beginning of buffer.
Marks ki1l region as input from cursor to end of buffer.
Displays the input ring in a pop-up menu for input selection.

Build Keystroke
Macro

6.4.2 The Build Keystroke Macro command allows you to create a macro
command that forces a series of keystrokes into the selected input/output
(I/0) buffer. You can supply in the choose-variable-values window a name
and description for the macro and a keystroke or keystroke sequence to in-
voke the macro. When you click on Do It, the next keystrokes you press are
collected for the macro. When you press HYPER-CTRL-M, collecting stops.

Keystroke macros give you a fast way to input often-used keystroke
sequences. The macros can be designed to execute sequences of keystroke
commands, automate the typing of expressions, or do both. For instance, a
Lisp Listener keystroke macro can be built and assigned to a single keystroke
to invoke the following:

(print -herald)
(print-disk-label)
(hostat)

CTRL -4

CTRL-C

This results in calls to the functions print-herald, print-disk-label, and
hostat, followed by two input editor commands (CTRL-4 CTRL-C) that copy
previously typed expressions into the 1/0 buffer. All of this is accomplished
by simply pressing the macro’s assigned keystroke.

Tools and Utilities

6-17

UCL User Interface

Build Command 6.4.3 The Build Command Macro command allows you to create a macro
Macro command that directly executes a series of other commands. The Build
Command Macro displays a choose-variable-values window that allows you to
enter the macro name, its description, and the keystrokes that will invoke it.
When you click on Do It, a menu appears that lists the commands in the
currently active command tables. You select the commands in the order you

want them executed and click on Do It when finished.

Command macros are provided for situations in which keystroke macros are
not sufficient for executing the desired command sequence. For instance,
applications with large command sets do not always assign keystrokes to every
command. Command macros can be built for these applications because they
do not depend on assigned keystrokes to execute.

Figure 6-12 shows this option executed from the window-based debugger. At
the left is a menu of window-based debugger commands with the selected
ones highlighted. The next column to the right shows the order of the
selected commands. When executed, this macro command moves down the
stack and displays information about the stack frame.

Figure 6-12 Build Command Macro

'Choose commands _in order [Boun stack

Show A11 Specials
Show Handlers

Currently active command tables:

Debugger Commande to Examine Current Stack Frame
A List of Dbg Commands

Brief Backtrace

Clear & Show Error

Clear & Show More

Full Backtrace

Full Backtrace Gf A1l

Get Function

Bet Nth Argument

Bet Nth Local
Bet Nth Value
Shou R Special

to Select Stack Frames

Doun Stack &Show More
Down Stack -Any Frame
Doun Stack If Internal
Search For String

Up Stack

Up Stack & Show Hore
Up Stack - Any Frame

Commands to Proceed From Error
Abort Out Of Error
Describe Proceed Tupes
Proceed From Error
Reinvoke Function
Reinvoke Hith New fArgs
Return A Value
Throw To Tag
Throuw To Top Level

Super Gommands to Procesd From This Errorf
no-action
Restart process Zmacs Frame 2.
ADOrt o fo Tt [
L: Select or Remove item, M: Select or Heselect item
Move to top of stack Keystrokes: MFTA=C

6-18 Tools and Utilities

Save Commands

Top Level
Configurer

UCL User Interface

6.4.4 The Save Commands command saves all your command modifica-
tions, keystroke and command macros, and added commands in a file that
you specify, normally in your login directory. This command not only saves
the modifications made to the current application but saves modifications
made to any UCL application; that is, it saves your entire command environ-
ment in one file that can be loaded at a later time.

1I1 QLI 1210 18t L2221 LT DB

6.4.5 The Load Commands command loads your command environment
customizations that were previously saved using Save Commands described in
the preceding paragraph. Load Commands reinstalls macro commands, key
bindings, and any other modifications that you made. You can invoke this
command after logging in or can include a load form in your LOGIN-INIT
file to load the command environment file that was saved by the Save
Commands command.

6.4.6 The Top Level Configurer command allows you to set default UCL
options and to tailor how typed expressions are processed in the UCL com-
mand interpreter to suit your preference and skill level. For instance, if you
reset the Prompt String option, it is reset for the Lisp Listener, break, and
any other UCL applications that use the default prompt. The Top Level
Configurer window is shown in Figure 6-13.

The Top Level Configurer command provides an easy-to-use window
interface. When you finish setting the configuration, a prompt is shown that
allows you to save the configuration into your LOGIN-INIT file for use in
future sessions.

Initially, the options are set to a configuration (the standard configuration)
that is most helpful for novice users. Expert users can configure the options
for improved efficiency by using the expert configuration. The vanilla con-
figuration turns off all features (that can be turned off). The following are
descriptions of the options that can be configured:

W Prompt — A string or a function that returns a prompt string. The default
prompt is the greater-than sign (>).

B Read Function — The read function called for reading typed expressions.
The default is ucl:read-for-ucl, which can read both multi-line function
calls (enclosed in parentheses) and multiple symbols on one line (for
implicit message sending and implicit parentheses function calling). You
might prefer read-for-top-level if you merely want to type standard func-
tion calls and single symbols since read-for-top-level terminates reading
of symbols when you press the space bar.

W Print Function — The function called for printing results of evaluated
Lisp forms. The default pretty prints the results. Some users prefer a
more efficient print function.

B Max Command History — The maximum number of commands to store
and display using the Command History command (described in
paragraph 6.3.4).

B Max Output History — The maximum number of Lisp forms to store and
to display using the HYPER-STATUS command. (HYPER-STATUS dis-
plays the previous output values in a pop-up menu for input selection.)

Tools and Utilities

6-19

UCL User Interface

Type-In Modes — The hierarchy of modes used for interpreting and for
completing partially typed expressions. You can reorder, activate, and
deactivate modes as preferred. For instance, you can deactivate implicit
message sending mode if it is never used and can activate implicit paren-
thesis function call mode when it would be convenient. (See paragraph
6.5.1 for more information about type-in modes.)

Search other symbol packages? — Specifies whether the UCL should
search other packages for unrecognized Lisp symbols.

Mouse Documentation Window Help? — Specifies whether the mouse
documentation window should display help on typed expressions and
completion, as described in paragraph 6.3.9. Expert users can disable the
help for greater efficiency.

Auto-complete? — Specifies whether auto-completion should be at-
tempted when the space bar is pressed after typing the first symbol, as
described in paragraph 6.3.8, Completion Commands.

Default Completion Package — Specifies the package to search when you
complete on a Lisp symbol that has no package prefix. The choices are
current package only, global package only, or both the current and the
global packages.

Scrolling Increment — Controls the scrolling in Lisp Listeners. Scrolling
can be made faster (iess smooth), siower (more smooihj, or can be
turned off. When scrolling is turned off, output that exceeds the window
space wraps to the top of the window.

6-20

Tools and Utilities

UCL User Interface

Figure 6-13 Top Level Configurer Window

’ Lisp:
Suggestions Menus Off
Help
Lisp Expressions
Ligt Menug
Menu Tools
Bast NU
uggested configurations: Teees-eeee STANDARD~CONFIGURATION EXPERT~CONFIGURATION ¥YANILLA-CONFIGURATION asic ML
Prompt: - ‘ Clear Screen
Read function: - IREAD-FOR-UCL Start Input Over
Print function: 8Y8: :PPRINI &?f_‘lﬂﬂf_‘gd
Max Command History 16 Backwaid
Max Output Historg - 26 Sor:ardduordd
Tupe-in Modes: - (COMMAND-NAMES IMPLICIT-MESSAGES FUNCTIONS SYMBOLS PRTHNAHE-COMPLE 8‘”: war “ﬂff‘
Search other sgnbo'l packages‘?: -+- Yes No Eeginl;lilr}g of Line
Mouse Docunentation Hindou Help? Yes No Rn Ot ng c
Auto-complete?: - -+ Yes No DU?Og Eas har
Default Cnnmetiun Package CURRENT -OR~GLOBAL -PACKAGE CURRENT-PACKAGE GLOBAL-PACKAGE eiete Character
Scro11ing Increments -16 Retrieve Last Input

Retrieve Last Kill

ort L4 Tone L[Help [

jLisp Listener 1
|Either a prompt string or a function to retumn a prompt string.
;Ta turn off prompting, type the empty string. Try UGL:PACKAGL -PNOMPT to get a prompt showing the current symbol package.

Miscellaneous 6.5 The following miscellaneous UCL features that enhance applications
Features are described in subsequent paragraphs:

m Interpreting various kinds of typed expressions
m Sending messages implicitly to a designated flavor instance
|

Reading command arguments

Reading numeric arguments to commands
B Redoing the previous command
B Displaying the System menu

m Catching errors

Tools and Utilities 6-21

UCL User Interface

Typed Expressions

Kinds
of Expressions

6.5.1 The UCL has a flexible mechanism for interpreting and performing
completion on different kinds of typed expressions. The following paragraphs
describe the expression types that are processed, the algorithm used, user
configuration of the feature, and suggestions for the processing of special
types of expressions.

6.5.1.1 Six kinds of expressions are processed, allowing you to type and
complete on application command names, various types of Lisp expressions,
and pathnames. The following discussion describes each kind of expression:

command-names — Command names in the current application can be
typed to execute the corresponding command. If a command accepts
arguments from the user, you can type the arguments next to the com-
mand name (see paragraph 6.5.2, Obtaining Arguments). Auto-
completion may be available for command names, but generally it is not
used because of efficiency.

functions — A normal Lisp function call can be either typed or partially
typed and completed. A function call is entered by typing it enclosed in a
matching set of parentheses. The call is evaluated and the returned
values are printed.

symbols — Lisp symbols can be typed and completed. The value of the
symbol is printed.

implicit-paren-functions — Function calls can be made without typing the
outer set of parentheses. By default, this type of expression entry is
deactivated because ambiguities occur between Lisp function names and
symbols.

pathname-completion — This allows you to use completion on a path-
name that is partially typed when typing a pathname as an argument to a
command, function call, or implicit message.

implicit-messages — Refer to paragraph 6.5.1.2 for details.

NOTE: By default, all of the expression types are active except for implicit-
paren-functions. You can make implicit-paren-functions active by adding it to
the type-in modes list in the Top Level Configurer. Refer to paragraph 6.4.6.

6-22

Tools and Utilities

Implicit Message
Sending (rotl)

Algorithm Used for
Typed Expressions

UCL User Interface

6.5.1.2 An implicit-messages expression is used to send a message 10 a
designated flavor instance. This type of expression is useful when you are
working with flavors. It both reduces the amount of typing you need to do
and helps you locate a flavor’s method names through the use of completion.
The following list describes how to make use of this type of expression:

B implicit-messages must be in the type-in modes list that you can see in
the Top Level Configurer. The default value of this list contains
implicit-messages.

Call the function rotl (Run Obje
the argument.

® While implicit message sending is active, function calls, symbol
evaluations, and implicit messages are made with the instance variables of
the designated flavor instance bound.

B Messages can then be sent to the instance by typing the message followed
by any arguments. The returned values are printed. Auto-completion is
available on these message names. In Lisp Listeners, a message’s
argument list is displayed in the mouse documentation window, just as
function argument lists are displayed (see paragraph 6.3.9).

H (rotl nil) turns off implicit message sending.

6.5.1.3 Although several kinds of expressions are processed, you do not
have to specify the kind of expression; the UCL determines what kind of
expression it is.

Each type of expression has a defined type-in mode that handles completion
and processing. The type-in modes are stored in a list in the order that deter-
mines their precedence when ambiguities occur during completion and
processing of expressions. When you type an expression or invoke comple-
tion on it, the list is searched sequentially; each type-in mode is given the
chance to claim responsibility for the expression.

The modes use the syntax of the expression to help determine whether to
claim it. For example, the mode that handles normal function calls claims
expressions that are enclosed in parentheses. The mode that handles symbol
evaluation claims expressions consisting of one symbol. The command-
names, implicit-messages, and implicit-paren-functions modes all claim
expressions starting with a symbol followed by zero or more forms.

Ambiguities occur occasionally. For instance, suppose an application has a
command name Load and the Lisp symbol load is set to some value. If you
type Load, the list of modes is searched. Because the command-names mode
occurs on the list before the symbol mode, the Load command in the
application is executed.

Tools and Utilities

6-23

UCL User Interface

User Configuration
of Type-In Modes

Special Expressions

Obtaining Arguments

6.5.1.4 Each kind of typed expression is processed by an object know as a
type-in mode. The universal command Configure Type-In Modes (HYPER-
CTRL-() can be used to modify the hierarchy of the modes that handle com-
pletion and processing of typed expressions. It also can be used to activate or
deactivate modes. For instance, if you like implicit-paren-functions mode,
you can activate it. If you want to have completion on Lisp symbols but find
that the presence of application commands interferes with completion, you
can move the symbols mode above the command-names mode in the prece-
dence list. The Configure Type-In Modes command provides a quick means
of modifying the modes; the universal Top Level Configurer command pro-
vides a similar mechanism and allows you to store a mode precedence list in
your LOGIN-INIT file.

6.5.1.5 The UCL processing of typed expressions can be easily customized
for an application. Applications can specify a list of type-in modes to process,
instead of accepting the modes described previously. For example, an appli-
cation intended for a user who knows nothing about Lisp can specify a list
that contains no Lisp processing modes.

It is relatively simple to create special-purpose type-in modes. The following
are three reasons why you would want to do so:

B To build Lisp type-in modes for user convenience, such as a function call
mode that automatically quotes unbound symbols.

B To construct interpreters for languages such as Prolog or Scheme.

B To process typed expressions that are not commands but have some
meaning within an application. For instance, an expert system could have
a type-in mode that recognizes typed rule names and prints information
about rules.

Special type-in modes can perform all of the tasks that the other modes do,
including mouse documentation window help and completion. Implementa-
tion of special type-in modes is discussed in Section 7, UCL Programmer
Interface.

6.5.2 The UCL provides a feature for defining commands that obtain
arguments from the user. If you input a command by typing its name (instead
of selecting it from a menu or pressing its keystroke), you can type the
arguments to the right of the name. The mouse documentation window dis-
plays any arguments the command accepts when you type a space after the
command name. (The mouse documentation window display is discussed in
paragraph 6.3.9.)

If you input a command by using a menu, keystroke, or mouse button or by
typing the command name followed by an incorrect number of arguments, a
choose-variable-values window pops up that requests the required arguments.
Default values, prompt strings, and data types can be provided for each
argument obtained.

6-24

Tools and Utilities

Numeric Arguments

Redo Command

System Menu

Error Catcher

UCL User Interface

6.5.3 The UCL allows you to supply numeric arguments to Keystroke com-
mands by typing an integer with a modifier key before the keystroke (or
keystroke sequence) of the command. By default, a numeric argument causes
the command to be repeated the specified number of times. However,
application commands can be defined to handle the argument differently,
instead of executing repeatedly. For example, a hypothetical Delete Rule
command could be defined to delete the nth rule when a numeric argument is
supplied.

R e - 3 v 3 -.'\

A numeric argument is input by chording any bination of the %,
SUPER, META, and CTRL keys with a number key. This provides an initial,
one-digit value. Further digits can be added in the same manner.
Additionally, CTRL-U, the universal argument, can be pressed to multiply
the current numeric argument value by four. Once the desired value is
reached, you then type the keystroke sequence for the command.

. s . s oL TrermTT
e nyv Aanamikin
t ;] CoOm aneon Or ine Hyrne

An additional feature allows you to use a numeric argument to perform a
series of keystroke commands. Once a numeric argument is input, you can
press cTRL- (followed by any number of command keystrokes, terminated by
pressing cTRL-). The sequence of commands is then repeated the desired
number of times. This feature saves you from having to construct a keystroke
macro for an operation that is to be used only once.

6.5.4 The universal command Redo Command (HYPER-CTRL-R) repeats
the previously executed command, reusing any arguments it previously calcu-
lated or obtained from you (see paragraph 6.5.2, Obtaining Arguments). This
command permits you to reexecute a command without having to retype its
command name and arguments.

6.5.5 The universal command System Menu displays the System menu. It is
invoked by clicking right, unless an application command claims that button.
This command is provided to support the system convention of assigning the
right mouse button to the System menu, unless you have reassigned the right
mouse button for use in the given application.

6.5.6 The UCL provides a feature that shields a naive user from the
debugger. Inexperienced users have trouble recovering from errors, especially
when the debugger has filled the application windows with internal
information the user does not understand. When an error occurs in a UCL
application, a window pops up, displays the error message, and asks the user
whether to enter the debugger or to return to the top level of the command
interpreter. Often the error condition is local to particular commands, and
possibly the user can continue with the application by choosing not to enter
the debugger. You can remove the error catcher feature in applications for
which it is not appropriate. For example, the Lisp Listeners do not use the
error catcher because programmers usually want to enter the debugger when
an error occurs.

Tools and Utilities

6-25

UCL User Interface

Command Summary 6.6 Table 6-2 lists the UCL keystroke commands.

Table 6-2

UCL Keystroke Commands

Command Name

Keystroke

Help

Application Help
Tutorial

Explorer Overview
System Menu

System Application
TERM Key Help
Command Type-In Help
Command Digplay
Command History
Command Name Search
Keystroke Search
Command Editor

Build Keystroke Macro
Build Command Macro
Save Commands

Load Commands

Top Level Configurer

Redo

HELP

Select from Help menu
Select from Help menu
Select from Help menu
Mouse right

SYSTEM HELP
TERM HELP

Select from Help menu
HYPER-CTRI -HELP
HYPER-CTRL-P
HYPER-CTRL-N
HYPER-CTRL-K
HYPER-CTRL-STATUS
HYPER-CTRL-M
HYPER-CTRL-C
HYPER-CTRL-S
HYPER-CTRL-L
HYPER-CTRL-T

HYPER-CTRL-R

6-26

Tools and Utilities

UCL PROGRAMMER
INTERFACE

Introduction

7.1 The Universal Command Loop (UCL) is a tool that can shorten
program development time by provxdmg a ready-to-use command 1nterpreter

TnAtianag

+l. La.asle hatw £a T A +hAa wfn
Wllll UuuL-ul llcn) Acalugcx 11ii3 ‘CLLAULI GiSCUSSEs e uxuxxalxuxlcx interiace to

UCL. (Section 6 discusses the user interface to the UCL.)

The UCL provides the following macros, functions, and flavors for use in
constructing an application command interpreter:

defcommand and make-command macros — The defcommand and
make-command macros create a command object, an instance of the
ucl:command flavor. A command instance is defined by the code that
the command executes, as well as other data, such as command names,
command keystrokes, and command documentation.

build-command-table function — The build-command-table function
collects a group of commands defined by defcommand or make-
command into a command table. A command table, which is an instance
of the ucl:command-table flavor, is used to determine which application
commands are active. Most applications require only one command
table. Some applications may use several command tables to represent
different application contexts.

build-menu function — The build-menu function is a powerful tool for
defining command menus. This function generates a command menu
item list that is used by other UCL functions to automatically construct
command menus.

ucl:basic-command-loop and ucl:command-loop-mixin flavors — A
UCL application command interpreter (or command loop) is an instance
of the ucl:basic-command-loop flavor. Alternatively, your application
command interpreter can be an instance of your own flavor, which uses
the ucl:command-loop-mixin. A command loop performs the basic
function of reading user input, recognizing command names and key-
strokes, and executing the appropriate command object. Many other ad-
vanced features for displaying help information and controlling user input
are built into the ucl:basic-command-loop and ucl:command-loop-
mixin flavors.

Because UCL commands and command interpreters are implemented
with flavors, you can customize the basic UCL features for your
application by using method daemons, wrappers, and redefinitions. For
example, although the basic UCL command interpreter responds to un-
recognized user input by beeping, you can modify a method of ucl:basic-
command-loop to respond instead by printing an error message.

Tools and Utilities

UCL Programmer Interface

Here is an example of a simple UCL application. It contains five commands
that do the following: beep, make the sound of a doorbell, make the sound of
a richochet, pop up a menu of sounds, and exit.

First, a flavor is created that contains the command-loop flavor and some
suitable application window flavor. Only one command table is defined, and
it is always active (that is, its commands are executable).

;s Define an application command-loop window flavor.

(defflavor sound-demo ()
(ucl:basic-command-loop
w:window i Your program must specify the
; window mixins you need.

The following keywords are instance variables that your program
must initialize. The active-command-tables instance variable
specifies a list of command tables of active commands. The
all-command-tables instance variable is used
by UCL to access all the commands in your application for various
; help and customization features, such as Command Name Search.
(:default-init-plist
ractive-command-tables ‘(sound-commands)
:all-command-tables ‘ (sound-commands)
)

w we we s we e

e @o we we we we

)
i+ Create the application command-loop object.
(defparameter sound-demo-loop (make-instance ‘sound-demo))
;3 Define five application commands.

(defcommand beep-command ()
“(:description "A beep sound"

:names ("Beep")
:keys (#\control-b)
)

(beep)

)

(defcommand doorbell-command ()
‘(:description "A doorbell sound”
:names ("Doorbell™)
:keys (#\control-d)

)
(beep :doorbell)
)

(defcommand ricochet-command ()
“(:description "A ricochet sound"
‘names ("Ricochet")
:keys (#\control-r)

)
(beep :shoop)
)

(defcommand display-sounds-menu ()
“(:description "Pop up a menu of sounds"
:names ("Sounds™")
:keys (#\mouse-r-1)
)
(ucl:pop-up-command-menu ‘sound-command-menu)
)

Tools and Utilities

UCL Programmer Interface

(defcommand quit ()
‘(:description "End the sounds demo"
:nanmes ("Quit")
:keys (#\end)
)
(send sound-demo-100p :quit)

)
;s Build an application command table.

(build-command-table “sound-commands °sound-demo
‘ (display-sounds-menu
beep-command
doorbell-command
ricochet-command
quit
)
)

;3 Create the item list used by the command menu.

(build-menu ‘sound-command-menu ‘sound-demo
:item-list-order

* (beep-command
doorbell-command
ricochet-command
quit
)

)

;3 Select the application command-loop window and begin processing

i+ user input. You should try to:

HH — Invoke a command by typing the command name. (Note that a typein window
K appears after you start typing.)

HH — Invoke a command by pressing the command keystrokes.

HH — Invoke a command from the pop-up command menu.

— Press HYPER-CTRL-HELP to see the Command Display.

— Use some of the other UCL universal commands.

(w:window-call (sound-demo-loop :deactivate)
(send sound-demo-loop :command-loop)

)

NOTE: The file SYS:UCL; STARTER-KIT.LISP contains examples of many
of the UCL features described in this section.

Basic Command
Interpreter
Operation

7.2 On every iteration of its command loop, the basic UCL command
interpreter reads standard Lisp machine input: a keystroke, mouse button
click, menu blip, or typed expression (which can be a command name, Lisp
form, or whatever the application permits). The interpreter tries to convert
the input into an executable command. If the conversion is successful, the
command is executed. If not, the interpreter notifies the user by beeping or
printing an error message, whichever is appropriate.

The following list describes this process:

1. Read one object that is input from the user. The object is read from the
stream that is the value of the *standard-input* variable.

Tools and Utilities

7-3

UCL Programmer Interface

2. Try to translate the object into a command to execute. The object can be
one of the following:

a. Menu blip. First, execute the blip. (Refer to the Explorer Window
System Reference for information about blips.)

If the execution returns an instance of a UCL-defined command (the
usual case for UCL command menus) and the command is in one of
the active command tables, go to Step 3. :

Otherwise, if the execution returns an inactive command, go to
Step 4.

Otherwise, return to Step 1. (The execution is assumed to have
caused some desirable side effect.)

b. Mouse button or keystroke. Mouse clicks are processed like key-
strokes. The list of active command tables is searched for a match to
the button or keystroke input.

If one of the command tables contains a ucl:command that claims
(matches) the key or that directs the fetching of more keystrokes (as
would be the case for the Zmacs commands that use a CTRL-X
prefix), then go to Step 3.

Otherwise, if the key has control bits (such as CTRL, META,
SUPER, HYPER, or a mouse blip), assume that the user typed an
incorrect keystroke and go to Step 4.

Otherwise, assume the input is a typed expression. Read the
expression. (At this point, UCL completion commands can be used
to complete a partial command expression; refer to paragraph 6.3.8,
Completion Commands.)

» If the list of active command tables contains a UCL-defined
command with that name, go to Step 3.

= Otherwise, if the expression is a valid Lisp form, evaluate the
form, print the results, and return to Step 1. This alternative is
easily customized by the programmer; if you do not want Lisp
processing in your application, you can disable it.

= Otherwise, go to Step 4.

3. Execute the command. The input is translated into a command and exe-
cuted by sending the command an :execute message, which in turn calls
the function or method defined for the command. Go to Step 1.

4. Handle unknown input. Beep on bad keystrokes, mouse clicks, and
menu blips; print an error message for mistyped command names. This
behavior is easily customized by the programmer. Go to Step 1.

In addition to the command-loop processing outlined previously, the basic
UCL command interpreter automatically handles a number of special input
conditions:

B Input editor commands — Before any command expression has been
typed, the interpreter recognizes and executes any input editor

7-4 Tools and Utilities

UCL Programmer Interface

command. For example, a user can press CTRL-C to recall the previous
typed expression or CLEAR SCREEN to clear the type-in window.

B Preempted input — A partially typed command expression can be
preempied by another command {for example, by clicking on a com-
mand in a command menu). In this case, the preempting command is
executed, and the preceding typed expression input is saved. After
execution of the preempting command, the preceding partially typed
command expression is redisplayed. The user can then either finish

typing the expression or preempt it again.

defcommand and
make-command
Macros

defcommand
Macro

defcommand

7.3 The defcommand and make-command macros create a command
object (typically, an instance of the ucl:command flavor) by using various
data that define the name, keystrokes, and code for the command.

If you use defcommand, you can choose from two different ways of saving
the code executed by the command: either as a function or as a method of
the application command-loop flavor. You should define a command as a
method if the command code makes direct references to the instance
variables of the application command-loop flavor. Otherwise, you should
probably specify that the command code is to be saved as a function.

The make-command macro is essentially the same as defcommand. The
difference is that, for a command created by make-command, the command
code is given by a function/method defined elsewhere by a defun/defmethod
form. This means that make-command is particularly useful for integrating
an existing application with the UCL.

7.3.1 The following describes the defcommand macro.

defname lambda-list keyword-values . body Macro

Defines a command and returns a command object instance. The
defcommand macro expands into two forms that do the following:

1. Define a function or method to execute the command.
2. Store all of the command data in a ucl:command flavor instance.
The first expanded form is either a defun or a defmethod using the defname,
lambda-list, and body arguments. The particular expansion depends on
defname:
B If defname is a symbol, the expansion is as follows:
(defun defname lambda-list . body)
B If defname is a list, the first element is the name of the application
command-loop flavor and the second is a method name. The expansion

is as follows:

(defmethod defname lambda-list . body)

Tools and Utilities

UCL Programmer Interface

Arguments:

Keyword and Default

A UCL command interpreter executes a command defined as a function by
calling the defined function. A command defined as a method is executed by
sending a message to the application command-loop object.

The second expanded form of defcommand creates a ucl:command flavor
instance that holds the data supplied by keyword-values. The keyword-values
argument is a form that defcommand evaluates. The evaluation is done to
permit the convenient use of the backquote syntax. For example, the
following defcommand calls a function to supply the :documentation value:

(defcommand (foo-application :quit) ()
*(:names "exit"
:keys #\super-end
:documentation , (fetch-documentation :quit))
(send self :bury))

defname — Either a symbol or a method specification list.
lambda-list — The lambda list of the function or method defined.

keyword-values — A form (usually a quoted list) that is evaluated to produce
a list of all the command data, including command names, keystrokes,
short description, long description, and so forth, that document the com-
mand and specify how the command is is to input. The ucl:get-
command function can be used to access the ucl:command instance that
stores this data.

All kpvwnrrk allowed in bauwnnl.\mlupc are optional: dafault values

oY
MRS A%} DL VRimeo o

prov1ded when a keyword is omitted. The followmg keywords are
available:

Description

:active?
Default: t

:active-in-display?
Default: t

rarguments
Default: nil

:command-flavor
Default: ucl:command

:description
Default: The first line of
:documentation

A flag indicating whether this command is executable through normal
input by the user. If the flag is nil, the command causes the console
to beep instead of executing the defined function or method. This
keyword allows you to deactivate a command until it is debugged or
implemented.

A flag indicating whether this command is executable when the user
selects it for execution from the UCL Command Display window (see
paragraph 6.3.3, Command Display). The default is t because most
commands can be executed from the display. If the flag is nil, the
user cannot execute this command from the Command Display
window. For example, a command that uses the location of the mouse
in its computation must be input by a mouse click and thus is not
executable from the display.

A list describing the arguments applied to the function or method to
execute this command. Because this keyword has several options and
its details are complex, it is described in paragraph 7.3.2, :arguments
Keyword of defcommand.

The name of a flavor to use for instantiating the command. This
option provides a way of using your own command flavors. If you
construct your own flavor, be sure to mix in ucl:command.

A one-line text string that describes this command. The string is used
in help features such as the Command Display and the mouse docu-
mentation window for UCL command menus.

7-6

Tools and Utilities

Keyword and Default

UCL Programmer Interface

Description

:documentation
Default: “command-
name command”

ricons

Default: nil
Default font-spec:
fonts:mouse

:keys
Default: none

:menus
Default: nil

A form whose value is a string that contains the full documentation of
the command. The string can contain several pages of text. This string

A list of icon characters that can be used as the printed representation
of this command in UCL command menus (see the subsequent
:menus option). Entries in this list are of the form n or

(n :font font-spec), where n is an integer character code.

A list of keystroke sequence entries. Each entry is a list of one or
more characters representing a keystroke sequence that the user can
press to execute this command. For example, the following list
specifies that the user can press either the END key or CTRL-X
CTRL-Z to execute this command.

:keys ((#\end) (#\ctrl-x #\ctrl-z))

Entries can contain mouse button characters, such as #\mouse-r,
because the UCL treats mouse clicks as keystrokes. In addition, the fol-
lowing abbreviations are accepted for this option:

:keys #\f is treated as :keys ((#\f))
tkeys (#\f #\g) is treated as :keys ((#\f) (#\g))

A list of menu item descriptors. This option can be used to construct
command menus in a bottom-up fashion. Each menu item descriptor
in the list defines how the command is displayed in a command menu.
Each menu item descriptor is one of the following:

B Menu symbol — A symbol that is subsequently used as the first argu-
ment in a call to build-menu (see paragraph 7.5, build-menu
Function).

m List of menu symbol and keyword-value pairs — A list consisting
of a menu symbol followed by keyword-value pairs. Any menu
item keyword, such as :font or :documentation, is allowed (refer
to the Choice Facilities section in the Explorer Window System
Reference). Usually, the :type menu item keyword is not given
here because the preferred item type for command menus is
generated by default. In addition, the following two keywords are
also accepted:

s :column column-heading — The column-heading is a string
that identifies the menu column under which the command is
displayed. Use of this option establishes the menu given by the
menu symbol as a multicolumn menu. Any other command
definition that places a command in this menu must also
specify the column option. Otherwise, an error is signaled.

Tools and Utilities

7-7

UCL Programmer Interface

Keyword and Default

Description

‘names
Default: ’'(defname)

» :print-form keyword-list — The value is a list of keyword-value
pairs that specify which command name or icon to use in the
menu item (see the :names and :icons options for
defcommand). The available keywords for :print-form are as
follows:

» :use-icon — If non-nil, a command icon is displayed in
the menu item. The default value is nil, which means that
‘a command name is displayed.

» index — An integer index that selects one of the com-
mand’s list of names (or icons). The default value is 0,
which selects the first name or icon.

The following examples demonstrate the use of the :menus option:

(defcommand command-in-menul ()
‘(:menus (menul)))

(defcommand command-in-menu2 ()
‘(:menus ((menu2 :font fonts:hli2b))))

(defcommand command-in-two-menus ()
“(:menus ((menul :print-form (:use-icon t :index 1))

{menu2 :fonl fonts:hlizZb :colummn “Column A%))
:names ("First Name" "Second Name")
ticons ((1 :font fonts:mouse) (2 :font fonts:mouse))
))

A list of command names for this command. The first entry of this list
is used as the default command name in command menus and in help
features such as the Command Display command. Each entry of this -
list is either a string or a list containing a string followed by the
:typein-name? keyword and its value.

The :typein-name? keyword controls whether the command can be
executed by typing the associated command name string. If the value
for :typein-name? is nil, then the string can appear in command
menus and help displays but cannot be typed to execute the
command. An application can use this keyword for command name
abbreviations used only for command menus; in this case, it may be
more efficient and less confusing to prevent the user from typing the
abbreviated name. By default, the value of :typein-name? is t, which
means that the command name string can be typed to execute the

command.

The following example shows the use of the :names option:

(defcommand a-command ()
“ (:names
("First Name" ; can be typed
("Second Name") ; can be typed
("Yet Another Name" :typein-name? nil)))) ; cannot be typed

Tools and Utilities

Keyword and Defauit

UCL Programmer Interface

Description

:property-list
Default: nil

:tutorial
Default: nii

:visible?
Default: t

A property list for storing command information that does not fit
anywhere else. It is intended for the programmer’s use. This property
list is provided by sys:property-list-mixin, which gives the associated
methods :get, :putprop, and :remprop to the ucl:command instance.

Information stored in this property list must include only objects such

as lists, strings, atoms, and fixnums, not structures, arrays, or flavor
instances. This limitation is required because the data fields of
commands are saved in source form when the user saves the
command environment.

A form whose value is a string that contains a brief tutorial on the use
of this command. Users can access this command tutorial from the
UCL Command Display.

A flag indicating whether the command is to be shown in UCL
command menus and the Command Display. It allows your application
to have commands that are active but not visible to the user.

:arguments Keyword
of defcommand

7.3.2 The UCL gives the programmer many different ways to specify exactly
how a command obtains its arguments. Basically, the programmer can decide
which of the command’s argument values are coded in and which are given
by the user interactively. The two different types of arguments are thus re-
ferred to as program-supplied and user-supplied. Furthermore, the UCL pro-
vides the user two different methods of entering a value for a user-supplied
argument. A user-supplied argument can be typed after typing the command
name (see paragraph 6.5.2, Obtaining Arguments). Otherwise, executing a
UCL command automatically pops up a choose-variable-values window that
allows the user to input a value for any user-supplied argument not yet typed.

The :arguments keyword specifies, for each argument of the command’s
function or method, how to determine the argument’s value when the com-
mand is executed. The :arguments option must be given unless the function
or method has no arguments. Its value is a list that contains an entry for
each argument to the command, in calling-sequence order. Entries in the
:arguments list can be any of the following:

W argument form — A form that is evaluated each time the command
executes, binding the value of the form to the command argument. Such
a form is used for all program-supplied arguments.

B :label keyword-value — The :label keyword indicates that the following
entry in the :arguments list is a string. This string is the label that appears
at the top of a choose-variable-values window used to input user-supplied
arguments.

B user-supplied keyword — The :user-supplied keyword indicates that
subsequent entries are to be interpreted as user-supplied argument
descriptors. See the subsequent description.

W :program-supplied keyword — The :program-supplied keyword turns
off user-supplied arguments and indicates that subsequent entries are to
be interpreted as argument forms, as described previously.

Tools and Utilities

UCL Programmer Interface

B user-supplied argument descriptor — A user-supplied argument descriptor
defines a choose-variable-values item that determines how an argument is
presented and how its value is to be input from a choose-variable-values
window. A user-supplied argument descriptor can be either of the

following:

= String — A string defines a nonselectable choose-variable-values
item. This type of item is useful as a heading that separates other
items.

= List of keyword-value pairs — This kind of descriptor is used for each
user-supplied command argument. The keywords available include a
subset of those used for a general choose-variable-values item, plus
others unique to :arguments, as follows:

= :label string — The value is a string that is displayed as the name
of the argument in the choose-variable-values window. This
keyword is required.

= :type type-specifier — The value is any valid choose-variable-
values item type specifier, such as :number, :string, :pathname,
and so on. (Refer to the Choice Facilities section in the Explorer
Window System Reference.) The default item type is :sexp.

= :default argument-form — The value is a form that is evaluated
and displayed as the default argument value. This value is as-
signed to the argument if it is not modified interatively by the
user. The default value for :default is nil.

Note that the :arguments list can freely alternate between user-supplied and
program-supplied argument entries by using the :user-supplied and
:program-supplied keywords. Arguments up to the first :user-supplied
keyword are assumed to be program-supplied.

The following example demonstrates the use of the :arguments keyword:

(defcommand a-command (argl arg2 arg8 arg4 argd args)

“(:arguments
(3 i A program-supplied form
(list ‘a “list) ; A program-supplied form
:label "Enter three arguments:" ; A label for CVV
:user-supplied ; Here begin user-supplied arguments
nu ;s Just a nonselectable string
(:label "A number"

:type (:documentation "A user-supplied number" :number)

:default 42) ; A user-supplied number
" ; Just a nonselectable string
(:label "A sexp"

:default (list ‘a “sexp)) ; A user-supplied sexp
:program-supplied ; Here resume program-supplied arguments
‘argument -5 i A program-supplied form
tuser-supplied ; Here resume user-supplied arguments

no ; Just a nonselectable string
(:label "A pathname"
:type (:documentation "A user-supplied pathname":pathname)

:default "lm:-") ; A user-supplied pathname -
))
(format t
"-%Argument 1: -a-%Argument 2: ~a-%Argument 3: -a"
argl arg2 args)
(format t
"-%Argument 4: -a-%Argument 5: -a-%Argument 6: -a"
arg4 args args)

7-10 Tools and Utilities

UCL Programmer Interface

Assuming a-command belongs to an active command table, typing a-command
and pressing RETURN causes the following choose-variable-values window to
appear:

p
0

FE T6 1€ 7 Felp T

If the user immediately clicks on the Do It margin choice, the result of the
command is as follows:

Argument 1: 3

Argument 2: (A LIST)
Argument 3: 42
Argument 4: (A SEXP)
Argument 5: ARGUMENT-5
Argument 6: lm:~;

If the user types in a-command 5, clicks on the pathname argument and enters
SYS:UCL;COMMAND.LISP, then clicks on Do It, the result of the
command is as follows:

Argument 1: 3

Argument 2: (A LIST)

Argument 3: 5

Argument 4: (A SEXP)

Argument 5: ARGUMENT-§

Argument 6: SYS:UCL;COMMAND.LISP

A few other features that the UCL offers for inputting command arguments
are worth mentioning here:

B Aborting a command — The choose-variable-values window for user-
supplied arguments presents an Abort margin choice. Selecting Abort
terminates command input immediately without executing the command.

m Displaying command documentation — The choose-variable-values win-
dow for user-supplied arguments presents a Help margin choice. Selecting
Help displays command documentation in a view documentation window.
This window also contains any other previously displayed documentation.

® Numeric arguments with commands — By default, numeric arguments
instruct the UCL command interpreter to repeat the subsequent com-
mand. (Refer to paragraph 6.5.3, Numeric Arguments.) You can over-
ride this behavior by including the symbol ucl:numeric-argument among
the program-supplied arguments of the command. This binds the value of
the numeric argument to one of the command’s arguments. The com-
mand function or method is then free to interpret the numeric argument
in its own fashion. For example, this technique is used by the input
editor’'s Yank Kill History command (CTRL-Y) to allow CTRL-5
CTRL-Y to yank the fifth kill entry.

Tools and Utilities

7-11

UCL Programmer Interface

make-command
Macro

7.3.3 The following describes the make-command macro.

make-command defname keyword-values Macro

Arguments:

Defines a command and returns a command object instance.

The make-command macro is essentially the same as defcommand. The
difference is that, for a command created by make-command, the command
code is given by a function/method defined elsewhere by a defun/defmethod
form. This means that make-command is particularly useful for integrating
an existing application with the UCL. The make-command macro also
permits several commands to share the same code (perhaps with different

arguments).

defname — The same as the defname argument for defcommand (refer to
paragraph 7.3.1, defcommand Macro).

keyword-values — Any of the defcommand keyword-value pairs are allowed.
An additional keyword, :definition, is also available.

:definition — The name of the function or method that implements the com-
mand code. The value is either a symbol that is a function name or a
method specification list of the form (application-command-loop-flavor-
name method-name). If you omit this option, the function or method
given by defname is used. The default is defname.

The following example illustrates the use of make-command:

(make-command hello
“(:documentation "Prints the string \"Hello!\""

:definition print
:keys #\meta-control-h
;arguments ("Hello!")

)

(make-command ciao
“(:documentation "Prints the string \"Ciao!\""

:definition print
:keys #\meta-control-c
:arguments ("Ciao!"™)

)

(make-command (ucl:basic-command-loop :quit)
‘(:keys #\meta-control-q
))

7-12

Tools and Utilities

UCL Programmer Interface

build-command-table 7.4 The following describes the build-command-table function.

Function

build-command-table command-tabie-name flavor defnames Function

Arguments:

Keyword

&key (:init-options nil)

Creates a command table that contains the given list of commands. The
command-table-name symbol is bound to a command table instance. By de-
fault, an instance of the ucl:command-table flavor is created, although you

[REYEIG e tAavea A ate a Aiffarant fla ™™™
to create a different flavor of command table.

Most applications require only one command table. Some applications use
several command tables to represent different application contexts. If you
have an application with a large number of commands, you may find that
organizing the commands as a set of several command tables makes the com-
mand structure more comprehensible to the user. Note that the Command
Display groups commands by command table and allows the user to request
command table documentation.

command-table-name — A symbol that is bound to the command table in-
stance. This symbol is used by the UCL command interpreter to refer to
the command table (see ucl:active-command-tables and ucl:all-
command-tables in paragraph 7.7.1, ucl:basic-command-loop Flavor).

flavor — The name of your application command-loop flavor. Because this
argument is used only to complete abbreviated method names (see the
description of defnames), the flavor can be nil if defnames does not con-
tain any abbreviated method names.

defnames — A list that represents the commands in the command table.
Each entry in this list is one of the following types:

M A function name or logical command name that appears as the first
argument in a defcommand or a make-command.

B A method specification of the form (:method flavor method-name),
where (flavor method-name) appears as the first argument in a
defcommand or a make-command.

B A method name, where (flavor method-name) appears as the first
argument in a defcommand or a make-command. This type of entry
is simply an abbreviated form of the previous type of entry.

:init-options — A list of keyword-value pairs used to initialize various
attributes of the command table instance. This list can contain any of the
- following keywords.

Description

:name string

:documentation string

The name displayed for the command table in the Command
Display window. The default value is “Command Table”.

A string containing complete documentation of the command
table. A user can view this string by clicking on the command
table name in the Command Display. This string typically
consists of a general overview of the command table and its
purpose. The default value is nil.

Tools and Utilities

7-13

UCL Programmer Interface

Keyword

Description

:visible? boolean

:editable? boolean

Used to make the command table invisible. The commands of
the command table are displayed in the Command Display,
unless the value of this keyword is nil. Note that this keyword
has no effect on whether the command table is active or not.
The default value is t.

Used to protect the command table from user editing. The
commands of the command table are displayed in the
Command Editor, where they can be modified by a user
interactively, unless the value of this keyword is nil. The
default value is t.

:command-table-flavor flavor Used to customize the flavor of the command table instance

:name-table array
:key-table array
:commands array

created. The value is the name of an application flavor, which
should mix in ucl:command-table. The default value is
ucl:command-table.

:name-lookup-fun function

:key-lookup-fun function

:command-lookup-fun function

:table-sorts sort-functions These options can be given io initialize the command tabie’s

b LS

instance variables that are used to look up command names
and keystrokes. For most applications, there is no reason to
change the default values of these instance variables. However,
they are available if you want to implement special search hash
tables and search functions. For more information, see the
source code for the ucl:command-table flavor.

The following example illustrates the use of the build-command-table
function. Refer to the sample application example given at the beginning of
this chapter.

i+ Define two sound-demo methods.

(defmethod (sound-demo :print-active-command-tables) ()
(format t "-%The active command tables for -a are -a"
self ucl:active-command-tables)
)

(defmethod (sound-demo :help) ()
(eval (send self :basic-help))
)

i+ Define commands for the previous methods.

(make-command (sound-demo :print-active-command-tables)
“(:documentation "Prints a list of the active sound demo command
tables"
:keys #\control-t
))

(make-command (sound-demo :help)
‘(:documentation "Displays help for the sound demo"
:keys #\control-h
))

7-14

Tools and Utilities

UCL Programmer Interface

;; Build a command table for the sound demo.

(build-command-table ‘sound-commands ‘sound-demo
’(display-sounds-menu
beep -command
doorbell -command
ricochet -command
(:method sound-demo :help)
:print-active-command-tables
quit
)
:init-options
‘ (:namns "Sound Demo Commands"
:documentation "This is a table of commands used to demonstrate
the various sounds that can be produced using
the BEEP function."

build-menu
Function

7.5 The following describes the build-menu function.

build-menu menu-name flavor &key (:sort-items nil) Function

(:item-list-order nil) (:default-item-options nil)

(:item-form ucl:general-parse-menu-item) (:sort-columns nil)
(:column-list-order nil) (:temporary? nil) (:superior-menus nil)
(:documentation nil)

Constructs a list of menu items for a command menu. Refer to the Choice
Facilities section of the Explorer Window System Reference for a complete
discussion of menu items. Entries in the list given by the :item-list-order
keyword argument describe how each command is displayed as a menu item.
The build-menu function uses this and other keyword arguments to construct
a menu item list and to bind it as the value of the menu-name symbol.

The menu-name symbol is used by the UCL command interpreter and other
UCL functions whenever the menu item list that this symbol contains is
needed to define and present the command menu. For example, the
ucl: pop-up-command-menu function (refer to paragraph 7.8, Miscellaneous
Functions) creates and displays a pop-up command menu by using a menu
item list built by build-menu. The UCL command interpreter looks for such
menu-name symbols in its ucl:menu-panes instance variable (refer to para-
graph 7.7.1.1, Basic Instance Variables) when updating its command menus
to reflect changes in the command environment (for example, changes made
interactively by the user from the Command Editor).

The build-menu function is closely related to the :menus option of
defcommand and make-command. The :menus option in a command defi-
nition adds the command as an item in a command menu; the final menu
item list includes any such items, together with those given by the build-
menu :item-list-order (if any). Most of the build-menu keyword options
apply to all entries in the menu item list, to those given by command defini-
tions as well as those given by :item-list-order.

You may prefer to develop your application command menus using the
various choice facilities of the window system. However, there are some ad-
vantages in using build-menu. You must use build-menu if command menus
are to be updated dynamically by the UCL. Many of the details of specifying
a command menu item (such as providing useful mouse documentation) can
be done by default with build-menu. Furthermore, using build-menu
defaults provides a consistent interface style among your UCL applications
and system utilities such as the Inspector.

Tools and Utilities

7-15

UCL Programmer Interface

Arguments: menu-name — A symbol that is to be bound to a command menu item list.
The UCL command interpreter also uses the property list of this symbol
to record information needed to update the command menu during
execution.

flavor — The name of the application command-loop flavor. Because this is
needed only to complete abbreviated method names in the :item-list-
order argument (described next), it can be nil if no abbreviated method
names are used.

Keywords: :item-list-order — An ordered list that represents the commands and special
menu items displayed in the command menu. Each entry in this list is one
of the following types:

Command — A command entry has the same form as entries in the
defnames argument for build-command-table (refer to para-
graph 7.4, build-command-table Function). That is, it can be a
defcommand/make-command defname, a method specification list,
or an abbreviated method name.

Command and keywords — An entry can consist of a list containing a
command entry, as described previously, followed by a sequence of
keyword-value pairs. The keywords can be any of those allowed for
the :menus option of defcommand (refer to paragraph 7.3.1,
defcommand Macro).

String — A siring entry is displayed as a nonseleciabie menu iiem.
This type of item is useful as a heading or to add blank space be-
tween other items. A nonselectable string entry can also be a list of
the form (string keyword arg ...), where the keywords are either of
the following:

font font-spec
:documentation string

Special menu item — A special menu item entry is a list of the form
(string keyword arg keyword arg ...). You can use this Kind of entry
to specify any of the usual menu items described in the Choice
Facilities section of the Explorer Window System Reference.

:column-list-order — A list that defines the order of columns in a multi-
column command menu. The command menu is multicolumn if at least
one entry in the menu item list specifies a :column keyword (refer to the
:menus option of defcommand in paragraph 7.3.1, defcommand
Macro). Each entry in the :column-list-order list is either a column
name string or a list containing a column name string followed by
keyword-value pairs. The keywords can be :font or any of the other
keywords allowed in a column specification list (refer to the Choice
Facilities section of the Explorer Window System Reference). The default
value of :column-list-order is nil.

:default-item-options — A list of menu item keyword-value pairs that are
used as defaults for all items in the command menu. The keywords can
be any of those allowed in the :menus options of defcommand. For any
menu item, these default options are overridden by the options specified
by the entry in the menu item list. The default value is nil.

:documentation — A string used as the mouse documentation for the com-
mand menu’s entry in a superior menu. See the subsequent description
of :superior-menus. The default value is nil.

7-16

Tools and Utilities

UCL Programmer Interface

:item-form — A symbol that is the function used to transform an :item-list-
order list entry into a menu item understood by a w:menu instance
(refer to the Choice Facilities secti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>