'EXPLORER WINDOW SYSTEM REFERENCE



MANUAL REVISION HISTORY

Explorer™ Window System Reference (2243200-0001 *B)

Original Issue . ....... .ottt ittt June 1985
Revision A ... e June 1987
Revision B . ...t December 1987

© 1987, Texas Instruments Incorporated. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of
Texas Instruments Incorporated.

The system-defined windows shown in this manual are examples of the soft-
ware as this manual goes into production. Later changes in the software may
cause the windows on your system to be different from those in the manual.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Com-
puter Software clause at 52.227-7013.

Texas Instruments Incorporated
ATTN: Data Systems Group, M/S 2151
P.O. Box 2909
Austin, Texas 78769-2909

Produced by the Publishing Center
Texas Instruments Incorporated
Data Systems Group
Austin, Texas




Required
Systems
Manager

Applications
Programmer

Developer

Medium Interest

Developer

Casual or New| Experienced

THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Little/No Interest
irst Day of
Explorer Use

F

itor
ial

1

ion to the
Explorer System
Tutor

Zmacs Ed
Master Index

Introduct

AR

Q -
[3] =3
o %=
[ - Q
5 3%
S 3%
& w.R
g K
=

SR
SRR
AR

(00000

AR

ies
tor
ing
ing

t

1

i

il

Zmacs Ed
Reference
indow System
Reference

Programm
Concepts

Network
Reference
Glossary
System Software
Installation

W

Tools and Ut

Notes

Summary
ign

Technical

System Software
Des






THE EXPLORER™ SYSTEM SOFTWARE MANUALS

Mastering Explorer Technical Summary .............ccccviivvn. 2243189-0001

the Explorer Introduction to the Explorer System ............covuvuv... 2243190-0001

Environment Explorer Zmacs Editor Tutorial ....................... 2243191-0001

Explorer GIOSSary . ... oo v viinntieninoeerannneess 2243134-0001

Explorer Networking Reference ................. ... ... 2243206-0001

Explorer DiagnostiCs . ... .vvv ittt iriineess 2533554-0001

Explorer Master Index to Software Manuals ............. 2243198-0001

Explorer System Software Installation Guide ............. 2243205-0001

Programming Explorer Programming Concepts .. .......covvvevenennenn 2549830-0001

With the Explorer Explorer Lisp Reference .............. ... o i, 2243201-0001

Explorer Input/Output Reference. ...............covvtn 2549281-0001

Explorer Zmacs Editor Reference ...................... 2243192-0001

Explorer Tools and Utilities .................... ... ... 2549831-0001

Explorer Window System Reference .................... 2243200-0001

Explorer Options Explorer Natural Language Menu System User’s Guide . ... 2243202-0001
Explorer Relational Table Management

System User’'s Guide . ........ ..o 2243203-0001

Explorer Grasper User's Guide .............o0vvvennnn, 2243135-0001

Explorer TI Prolog User’s Guide ...................... 2537248-0001

Programming in Prolog, by Clocksin and Mellish ......... 2249985-0001

Explorer Color Graphics User’'s Guide .................. 2537157-0001

Explorer TCP/IP User’s Guide ........... ..., 2537150-0001

Explorer LX™ User’s Guide ............covvevevn.. 2537225-0001

Explorer LX System Installation ................... ..., 2537227-0001

Explorer NFS™ User's Guide . ............coiiven., 2546890-0001

Explorer DECnet™ User’'s Guide ................ e 2537223-0001

Personal Consultant™ Plus Explorer .................... 2537259-0001

System Software Explorer System Software Design Notes ................. 2243208-0001

Internals Release Information, Explorer System Software .......... 2549844-0001

Explorer and NuBus are trademarks of Texas Instruments Incorporated.
Explorer LX is a trademark of Texas Instruments Incorporated.

NFS is a trademark of Sun Microsystems, Inc.

DEChnet is a trademark of Digital Equipment Corporation.

Personal Consultant is a trademark of Texas Instruments Incorporated.




THE EXPLORER™ SYSTEM HARDWARE MANUALS

System Level Explorer 7-Slot System Installation ..................... 2243140-0001
Publications Explorer System Field Maintenance .................... 2243141-0001
Explorer System Field Maintenance Documentation Kit . . . . 2243222-G001
Explorer System Field Maintenance Supplement ........., 2537183-0001
Explorer System Field Maintenance Supplement
Documentation Kit . ............................... 2549278-0001
Explorer NuBus™ System Architecture
General Description . ............covuvuunennnnn.n. .. 2537171-0001
System Enclosure Explorer 7-Slot System Enclosure General Description . . ... 2243143-0001
Equipment Explorer Memory General Description (8-megabytes) . ..... 2533592-0001
Publications Explorer 32-Megabyte Memory General Description .. ... .. 2537185-0001
Explorer Processor General Description ................. 2243144-0001
68020-Based Processor General Description ............,. 2537240-0001
Explorer II Processor and Auxiliary Processor
Options General Description ................0vvn.... 2537187-0001
Explorer System Interface General Description ........... 2243145-0001
Explorer Color System Interface Board
General Description . ............c.uuuunnennnnnn.. 2537189-0001
Explorer NuBus Peripheral Interface
General Description (NUPI board) ................... 2243146-0001
Display Terminal Explorer Display Unit General Description .............. 2243151-0001
Publications CRT Data Display Service Manual, Panasonic
code number FTD85055057C ...........coovvuu.... 2537139-0001
Explorer Color Console General Description .. ........... 2537195-0001
TRINITRON® Graphic Display Monitor GDM-1603
Service Manual, Sony® part number 0-558-986-01 ...... 2551107-0001
Model 924 Video Display Terminal User’s Guide . ........ 2544365-0001
143-Megabyte Explorer Mass Storage Enclosure General Description .. ... 2243148-0001

Disk/Tape Enclosure
Publications

Explorer Winchester Disk Formatter (ADAPTEC)
Supplement to Explorer Mass Storage Enclosure

General Description . ............c.oouvuuneinnnnn. .. 2243149-0001
Explorer Winchester Disk Drive (Maxtor)

Supplement to Explorer Mass Storage Enclosure

General Description . .............ouuuriennnnn.on.. 2243150-0001
Explorer Cartridge Tape Drive (Cipher)

Supplement to Explorer Mass Storage Enclosure

General Description . ............uvveuunnnnnnns i, 2243166-0001
Explorer Cable Interconnect Board (2236120-0001)

Supplement to Explorer Mass Storage Enclosure

General Description . ..........ouieueunununnunnnn.. 2243177-0001

TRINITRON and Sony are registered trademarks of Sony Corporation.




143-Megabyte
Disk Drive Vendor
Publications

XT-1000 Service Manual, 5 1/4-inch Fixed Disk
Drive, Maxtor Corporation, part number 20005
(5 1/4-inch Winchester disk drive, 112 megabytes)
ACB-5500 Winchester Disk Controller User’s
Manual, Adaptec, Inc., (formatter for the
5 1/4-inch Winchester disk drive)

......

--------------------

2249999-0001

2249933-0001

1/4-Inch Tape Drive
Vendor Publications

Series 540 Cartridge Tape Drive Product Description,
Cipher Data Products, Inc., Bulletin Number
01-311-0284-1K (1/4-inch tape drive)

MTO01 Tape Controller Technical Manual,
Emulex Corporation, part number MT0151001
(formatter for the 1/4-inch tape drive)

Viper™ Half-High Intelligent 4 1/4-Inch Streaming
Cartridge Tape Drive SCSI Models 2060S and 21258,
Archive Corporation, part number 21136-001

................

..........

2249997-0001

2243182-0001

2551106-0001

182-Megabyte
Disk/Tape Enclosure
MSU II Publications

Mass Storage Unit. (MSU II)
General Description

------------------------------

2537197-0001

182-Megabyte
Disk Drive Vendor
Publications

Control Data® WREN™ III Disk Drive OEM Manual,
part number 77738216, Magnetic Peripherals, Inc.,
a Control Data Company

...........................

2546867-0001

515-Megabyte Mass
Storage Subsystem
Publications

SMD/515-Megabyte Mass Storage Subsystem General
Description (includes SMD/SCSI controller
and 515-megabyte disk drive enclosure)

---------------

2537244-0001

515-Megabyte Disk
Drive Vendor
Publications

515-Megabyte Disk Drive Documentation Master Kit
(Volumes 1, 2, and 3), Control Data Corporation .......

~ Volume 1, General Description, Operation, Installation

and Checkout, and Part Data .............ccc0vvvnn,
Volume 2, Theory, General Maintenance, Trouble

Analysis, Electrical Checks, and Repair Information
Volume 3, Diagrams

-----

................................

2246129-0002
2246125-0004

2246125-0005
2246125-0006

1/2-Inch Tape Drive
Publications

MT3201 1/2-Inch Tape Drive
General Description

...............................

2537246-0001

Viper is a trademark of Archive Corporation.
Control Data is a registered trademark of Control Data Corporation.
WREN is a trademark of Control Data Corporation.




1/2-Inch Tape Drive Cipher CacheTape® Documentation Manual Kit

Vendor Publications (Volumes 1 and 2 With SCSI Addendum and,
Logic Diagram), Cipher Data products ................ 2246130-0001
1/2-Inch Tape Drive Operation and Maintenance
(Volume 1), Cipher Data Products ................... 2246126-0001
1/2-Inch Tape Drive Theory of Operation
{Volume 2), Cipher Data Products ................... 2246126-0002
SCSI Addendum With Logic Diagram,
Cipher Data Products ..............c..oiuuenunenn.., 2246126-0003
Printer Model 810 Printer Installation and Operation Manual . . ... 2311356-9701
Publications Omni 800™ Electronic Data Terminals Maintenance
Manual for Model 810 Printers .............00uv..... 0994386-9701
Model 850 RO Printer User’s Manual .................. 2219890-0001
Model 850 RO Printer Maintenance Manual . ............ 2219896-0001
Model 850 XL Printer User's Manual .................. 2243250-0001
Model 850 XL Printer Quick Reference Guide ........... 2243249-0001
Model 855 Printer Operator’s Manual .................. 2225911-0001
Model 855 Printer Technical Reference Manual .......... 2232822-0001
Model 855 Printer Maintenance Manual ................ 2225914-0001
Model 860 XL Printer User’s Manual .................. 2239401-0001
Model 860 XL Printer Maintenance Manual .. ........... 2239427-0001
Model 860 X1 Printer Quick Reference Guide ........... 2239402-0001
Model 860/859 Printer Technical Reference Manual .. .. .. 2239407-0001
Model 865 Printer Operator’s Manual .................. 2239405-0001
Model 865 Printer Maintenance Manual ................ 2239428-0001
Model 880 Printer User’'s Manual ..................... 2222627-0001
Model 880 Printer Maintenance Manual ................ 2222628-0001
OmniLaser™ 2015 Page Printer Operator’s Manual . .. ... 2539178-0001
OmniLaser 2015 Page Printer Technical Reference ....... 2539179-0001
OmniLaser 2015 Page Printer Maintenance Manual . ... ... 2539180-0001
OmniLlaser 2108 Page Printer Operator’s Manual . ....... 2546348-0001
OmniLaser 2108 Page Printer Technical Reference ...... 2546349-0001
OmniLaser 2108 Page Printer Maintenance Manual . . . ... 2546350-0001
OmniLaser 2115 Page Printer Operator’s Manual . . ...... 2546344-0001
OmniLaser 2115 Page Printer Technical Reference ...... 2546345-0001
OmniLaser 2115 Page Printer Maintenance Manual . .. ... 2546346-0001
Communications 990 Family Communications Systems Field Reference .. ... 2276579-9701
Publications EI990 Ethernet® Interface Installation and Operation ... .. 2234392-9701
Explorer NuBus Ethernet Controller
General Description ............c..couviieivennnnn... 2243161-0001
Communications Carrier Board and Options
General Description ............ccciviniinunennnn.n. 2537242-0001

CacheTape is a registered trademark of Cipher Data Products, Inc.
Omni 800 is a trademark of Texas Instruments Incorporated.
OmniLaser is a trademark of Texas Instruments Incorporated.
Ethernet is a registered trademark of Xerox Corporation.




CONTENTS

Section Title

About This Manual

1 Window System Concepts
2 Basic Windows

3 Outside Edges of Windows
4 | Sizes and Positions

5 Visibility and Exposure

6 Selection

7 Output of Text

8 Input

9 Fonts

10 Blinkers

11 The Mouse

12 Graphics

13 Typeout Windows

14 Choice Facilities

15 Frames

16 Text Scroll Windows

17 General Scroll Windows
18 Miscellaneous Features
19 Using Color
Appendix A Obsolete Symbols
Appendix B Converting Applications to Color

Window System Reference xi



Section Paragraph Title Page

About This Manual

Introduction ........ ..., xxiii
ASSUMPLONS & ottt ettt it et et e e e xxiii
Contents of This Manual .............c.00tur . xxiii
Suggestions for Using This Manual . ..............cocvuuun... Xxiv
User COMMENTS .. v vttt ettt e e e e e e, xxiv
Notational Conventions . ..........c.ouueeennmnrunmnnni. XXV
Keystroke Sequences ...........ccvirvunennnnann, Ceeeena XXV
Mouse CHCKS .ttt vii ittt ittt e et e e XXV
Lisp Language Notation .............c0.iuievrvvnvnunnnn. xxvi
Flavor Notation .. ...uveiviin oot e Xxvi
Flavor Naming Conventions ................c.ovvuvunnunn.. xxviii
Initialization Options, Methods, and Instance Variables . ....... xviii

1 Window System Concepts
1.1 General ConCepts - .« vvvt vttt et ee e s 1-1
1.1.1 Screens, Windows, and Panes .............ocoevenmrennnnn. 1-1
1.1.1.1 The Who-Line Screen ..........oovveinvnnnennenn RN 1-3
1.1.1.2 The Main Screen ...t i, 1-4
1.1.2 The Window System as a User Interface .................... 1-4
1.1.3 States of a Window . ...ttt 1-4
1.2 Windows as Instances of FIAVOTS . .....vverernennrnsnnnnnn. 1-5
1.2.1 Characteristics of Window Flavors .............vovunenenn.. 1-5
1.2.2 Mixing Flavors .. ....uuuitnn it ittt e, 1-6
1.2.3 Methods and Their FIavors ............ooirirennnnnnn. 1-6
1.3 Features Common to AIl Windows ... .......oovvrernsnnnnn... 1-7
1.3.1 Outside Edges of Windows ............couiurirnrnennnnn.n. 1-7
1.3.2 Sizes and POSIIONS .. ... vttt e e e, 1-7
1.3.3 Visibility and Exposure ................ e 1-7
1.3.4 SeleCtion . oot e 1-7
1.3.5 Output of Text .. ..ottt i it e e 1-8
1.3.6 InpUt o e 1-8
1.3.7 BOnS e 1-8
1.3.8 BHNKers ..o v e e e 1-8
1.3.9 The MoUSE . ..o ivii i i et e ettt e e e 1-9
1.3.10 Graphics . ... e e e 1-9
1.3.11 Typeout Windows . ...ttt ittt i, 1-9
1.4 Types of WIndows ... ......ouvininiunnnvinnenneneunennnn. 1-9
1.4.1 Choice Facilities . ... ..ottt it i 1-9
1.4.2 Brammes ..t e e e 1-10
1.4.3 Text Scroll Windows . ... ittt et 1-10
1.4.4 General Scroll Windows . .....covtivnir e, 1-11
1.4.5 Miscellaneous Features ... ....vueennreeeenenn.s PR 1-11
1.4.5 Optional Color .. ....vit it ittt it it e 1-11
1.5 Obsolete Symbols ........... e e e 1-11

xii Window System Reference



Section Paragraph Title Page
1.6 Designing a Window . ...ttt nnnoereianoeneees 1-12
1.7 General Choices Among Windows ............... . .ovvuunnnnn 1-13
1.7.1 For Any Window . .o oo v vttt ittt et iinnne e 1-15
1.7.1.1 Before You Begin ..........ciiiiiiiiiiiiiiiiiieiin 1-15
1.7.1.2 After You Finish ....... e e e e 1-15
1.7.2 Using a Frame ... ......ottttiiiiinininnnnnennninnnns 1-16
1.7.2.1 Questions About the Frame as a Whole .................. 1-16
1.7.2.2 Questions About a Non-Constraint Frame as a Whole . ...... 1-16
1.7.3 Types of Output WIindows . . . ....c o i i 1-17
1.7.4 Types of Input Windows . .....ovvvii i, 1-18
1.7.4.1 Obtaining Confirmation . ......... .o, 1-18
1.7.4.2 Gathering Information . ........oviiiiiiiii i, 1-19
1.7.5 Types of Standalone Windows .............. ... .o vvvnnn 1-21
1.7.6 Types of MiIXinS . ..o oo vviiiii it e it iniiiae s 1-22
2 Basic Windows
2.1 INtroduCtion . ...ttt i i e i e e e 2-1
2.2 Window System Packages ........... . i i i 2-1
2.3 Creation of Windows . ........oiiiiiiiiiiiiiiiiiianas 2-2
2.4 Basic WIndow FIavors . ......cvoviunver e nnnenensans 2-3
3 Outside Edges of Windows
3.1 IntroducCtion . v v vvv vttt i i e e i e e 3-1
3.2 Margins ... e 3-2
3.3 Borders ......... C e e e e e e e 3-2
3.3.1 Border FUNCLIONS + v v vt vt i ittt it it e it e 3-4
3.3.2 Deleting Borders on Full-Screen Windows . .........coovvnn, 3-4
3.4 Labels vt e 3-5
3.4.1 Names of Windows ... .c.iiiiiiiiiiiiiiiiirrrreneeneas 3-5
3.4.2 The w:label-mixin Flavor .........c.ciiiiiiinenean 3-5
3.4.3 Positioning the Label ......... ... ittt 3-7
3.4.4 Boxing the Label ......... v i 3-7
3.4.5 Delaying Redisplay of a Label ............. ... oot 3-9
3.5 Margin Regions .......oovtiiiniinrirnnnnnennanns b 3-9
3.5.1 About w:margin-region-function ......................... 3-11
3.5.2 Defining Margin Item Flavors . ......covviiiiivi oo, 3-12
4 Sizes and Positions
4.1 INtrodUCHON ..ottt v v tivrvennnmnnnnnronesroseaasaanssses 4-1
4.2 Initialization Options for Sizes and Positions ................... 4-1
4.3 Methods for Sizes and Positions ..........coeiiiiiiiiiien 4-4
4.3.1 The option Argument ..........ovvuienueaernrnseneonenaas 4-4
4.3.2 The Methods . oo vvrrtrrerteeeeeeenetienrrosensnsononns 4-4
4.4 Low-Level Edges Functions . .......... . ... i, 4-6
Window System Reference xiii



Section Paragraph Title Page

5 Visibility and Exposure
5.1 INtroduction .. ...uut it e 5-1
5.2 SCIEeMS ..ttt 5-2
5.3 Hierarchy of Windows . .........ouuuuen i, 5-3
5.4 Lists of Windows . ...........iiuiinininnin, 5-5
5.5 PIXelS o e 5-7
5.6 Bit-Save AITAYS .. ..vvtitutnite et 5-9
5.7 Screen Arrays and EXposure ...............oouuuneunnnnnnn.. 5-11
5.7.1 Concepts of Screen Arrays ..........oouneieeeneennnnnn.n. 5-11
5.7.2 Concepts of EXPOSUIE . ..o vvineun e nenennnnnnnnn. 5-12
5.7.3 Symbols That Manipulate Screen Arrays and Exposure . ....... 5-13
5.8 Temporary Windows . ..........c.uiiiiniinnnennennnnnnnnn. 5-16
5.8.1 Flavors and Methods . ........... ... . it 5-17
5.8.2 Temp LOcKing . ...ttt ittt et 5-18
5.9 The Screen Manager . ........uuiiien e, 5-18
5.9.1 AULOBXPOSUTE . o\ vttt et ettt ettt e e e e 5-19
5.9.2 AUtoselection . ... .. e 5-19
5.9.3 Control of Partial Visibility ................ccovvvunirn... 5-20
5.9.4 Priority Among Windows for EXposure ...............v.v... 5-21
5.9.5 Negative Priorities ............ 0, 5-22
5.9.6 Delaying Screen Management . .. .......c.oouvrneunnnennnn... 5-22
6 Selection
6.1 IntroducCtion . ..........'veiieuniinne e 6-1
6.2 How Programs Select Windows .. ...........ovuvrrnunnnnnn... 6-2
6.3 Teams of Windows .. .. ..vvunin ittt et ien 6-4
6.3.1 The System Menu Select Command ....................... 6-5
6.3.2 Selection With TERM and SYSTEM Keys .................. 6-6
6.4 Selection SUBSHUES . . . ... vvveurtiin et 6-8
6.4.1 Typeout Windows and Selection Substitutes ................. 6-9
6.4.2 Nonbhierarchical Selection Substitutes ....................... 6-10
6.5 The Status of @ Window . ..........ouuniiiinennnennnnnnnn. 6-10
6.6 Windows and Processes . ............uuvueiuueernneennnnnnnn. 6-11
6.6.1 The Inspector Example . .........c.viir i nnenns. 6-11
6.6.2 Process-Related Methods and Flavors ...................... 6-12
6.6.3 Associating a Process With a Window ...................... 6-13
6.6.4 Handling a Long-Running Process .............covvevennnn.. 6-14
7 Output of Text
7.1 INtroduction .........c.iiiiiiii i e e e 7-1
7.2 How a Character Is Displayed .. ..........coviiinninnnnnnn.. 7-3
7.3 Stream OUtPUL ..o vvititi ittt i it ittt s 7-5
7.4 Output EXCEPiONS ... vvvutitt ittt iiin i, 7-9
7.4.1 Deexposed Typeout ACtiONS . .......vvtirnnnrnenenen... 7-9
7.4.2 Output-Hold and End-of-Page Exceptions ................... 7-11
7.4.3 **MORE™** EXCePLIONS . .o v vttt enneieein e, 7-12
7.4.4 End-of-Line Exceptions . . ...........cvtvitininnennennnn.. 7-14

xiv Window System Reference



Section Paragraph Title Page
7.5 Cursor MOUON . vv vt iviuiiin i ianineeeiiansiannneeenas 7-15
7.5.1 Cursor Position for Stream Operations . ........cvvve e, 7-15
7.5.2 Cursor Position Relative to Outside Coordinates .............. 7-17
To6 Erasing ... oeutinut it innt i e 7-17
7.7 Inserting and Deleting Characters and Lines ................... 7-19
7.8 Anticipating the Effect of Qutput ............. .. o it 7-20
7.9 Explicit (Noncursor) QULPUL .. ....vviit i ranennnns 7-23
7.10 Window Parameters Affecting Text Output .................... 7-25
8 Input
8.1 IntrodUCHOn . .....viitiunine et ionnnereenannneroennnesens 8-1
8.2 Input Buffers ..........cciutiiiiiiiiiineriniienrneina, 8-2
B3 BlPS ttvevt i e e e 8-3
8.4 Input EQItOr ... .oi ittt it e 8-4
8.4.1 How the Input Editor Works ............ . oo, 8-4
8.4.2 Common Input Editors ...... ... i, 8-5
8.4.3 The w:rubout-handler Variable . .. ........................ 8-5
8.4.4 Functional Interface to an Input Editor . .. .................. 8-6
8.4.5 A Sample Input Editor Function ................. ... 0., 8-7
8.5 Stream Input Operations ...........ccoiiveitrrrernnrenesos 8-8
8.5.1 Common Lisp-Compatible Read Functions and Methods ....... 8-8
8.5.2 Methods for Stream Operations ............coovii., 8-10
8.6 I/O BUIErs ... vvvii e ittt i i e 8-13
8.6.1 I/0 Buffers and Type-Ahead ........ ...ty 8-16
8.6.2 I/0 Buffers as Input Buffers ........ ... iy 8-16
8.7 Intercepted Characters .......ovvver vt 8-18
8.7.1 Synchronously Intercepted Characters ...................... 8-18
8.7.2 Asynchronously Intercepted Characters ..................... 8-20
8.7.3 Global Asynchronous Characters ............cooeveveinen, 8-22
8.8 Querying the Keyboard Explicitly ............ ... .o, 8-25
8.9 Keyboard Parameters .. .....ovvit it 8-26
9 Fonts
9.1 IntrodUCtion ... .'..evivruer o neeinneerionnoasesnonoees 9-1
9.2 Specifying FONtS ..o ov vttt ittt innns 9-1
0.3 FONt PUIPOSES « » v vttt enneennosasonneennssnnesnnees 9-2
9.4 Flavors and Methods ... ..ottt ittt ane s 9-3
9.5 Font Specifiers .........iit it i 9-4
9.6 Attributes of FONS « oo e v i vt vt ittt iiiinnniannnananannns 9-6
9.7 Displaying FONtS . ..ot ii ittt 9-8
9.8 Format Of FONES . v v vttt it ittt itnnaennannenaanonsnonnns 9-9
10 Blinkers
10.1 Types of BINKErs . ... vvvvven i innnennneen e 10-1
10.2 Visibility and Deselected Visibility of Blinkers .................. 10-2
10.3 Blinker POSItION . ...ttt vttt ittt iivnniaer e 10-4
Window System Reference XV



- Section Paragraph Title Page

10.4  List Of BHNKEIS . o oottt t ettt ittt ee e 10-6
10.5 BHDKEr Siz€ .. ...ttiititieiin ittt eieeean, 10-7
10.6 Rectangular and Character BEnKers ...............ouvurnen... 10-7
11 The Mouse
11,1 Using the MOUSE ... .vivitiiititie e inreieeeennnennns 11-1
11.2  Mouse Variables and Functions ...................... e 11-2
11.3 Mouse Parameters .. .. ......vuvvrernerneneneenennnnenennns 11-3
11,4 MoUSe CHCKS .+t oo vttt e it in it it et et e e e et ee e 11-4
11.4.1 Button Masks .. ..ottt i e i e e 11-4
11.4.2 Encoding Mouse Clicks as Characters ...................... 11-6
11.5 Ownership of the MOUSE . .......covvviineinnrnnnnnnn.. s 11-7
11.5.1 Grabbing the MoUSE ... ....vtit ittt e nnnnn, 11-8
11.5.2 Usurping the Mouse . ........c.ciiiiuiiinennnnennnnannss 11-11
11.6 How Windows Handle the MOUSE . ..........vvunevnennnnnn.. 11-12
11.7 Mouse BHNKEIS .. ... .itiiuiinnnin e eeinennenennnnns 11-16
11.7.1 Variables and FUunctions ...:..........cciviiinnennnnnnnns. 11-17
11.7.2 Flavors for Mouse BLHNKers . ... .......oovuiiinneunnnnnnnnn. 11-17
11.7.3 Reusable Mouse Blinker Types ... ...ovviviiiinninennennn.. 11-18
11.7.4 Mapping Mouse Characters ............coevuvenemrnnnnn.. 11-19
11.7.5 Standard Values for Mouse Characters ........... e 11-21
11.7.6 Creatinga New Glyph ..................... Ceere s 11-23
11.8 Mouse Scrolling . ............c.uu... e e et 11-24
11.8.1 Scroll Bars .. .ovv i i i e e Ve 11-25
11.8.2 Scrolling Protocol .. ..o vt iiin i e e e e 11-29
11.8.3 Methods Retained for Compatibility ......... e 11-29
12 Graphics

12,1 Introduction .. ...ttt it iie it ettt et 12-1
12.2 ALU ArguUmMents . .. .vovvninnnntnnenenennnnns e 12-2
12.2.1 General ALU Arguments ..............couvueennennennnns. 12-3
12.2.2 Available Monochrome ALU Arguments .. .................. 12-4
12.3  Windows and WoOrlds . . .....ovutntiin it iieiieeneennennnn, 12-5
12.4 Methods and Flavors to Draw Graphics Images ................ 12-8
12.4.1 Methods That Use w:graphics-mixin ...................... 12-9
12.4.1.1 Smallest Size ....... ..ottt i i i, 12-9
12.4.1.2 Picture Lists ..ot it ittt ittt ittt i it e et i et 12-10
12.4.1.3 Methods That Draw Graphics ............ccvvivunen.n.. 12-10
12.4.2 Bit Block Transferring .. ........coiiiinrnnnnnnennn.n. 12-25
12.5 Drawing Graphic Images Using Subprimitives .................. 12-30
12.5.1 Preparing the Sheet ..........ciiviniinnniinenen.n. 12-32
12.5.2 Defining the Clipping Rectangle for Drawing ................. 12-32
12.5.3 Subprimitives for Drawing . .......... ... ovtiiinnennn ... 12-33
12.6  Using Graphic Objects . . ..o vii et it iie e nnrnennnn. 12-34
12.6.1 Windows With Graphic Object Capabilities .................. 12-34
12.6.2 Graphic Objects ... .ottt i i i e e 12-35
12.6.3 Graphic Characters ............covuviernennnn.n. e 12-35
12.6.4 Graphic CUrISOrS . ... v 'ttt ittt it e ittt ie e 12-35
12.6.5 Example ............. et e e e 12-36

xvi Window System Reference



Section Paragraph Title Page
12.7 Functions Used With Graphic Objects ................ ... 000 12-36
12.7.1 Functions That Return Distances ............voviiivinenn. 12-36
12.7.2 Functions That Verify Position ................... ... ... 12-37
12.7.3 Functions That Perform Transformations ................... 12-38
12.7.4 Miscellaneous FUNCLIONS .« v v vvv i i i vnii e vinine e annnnas 12-39
12.8 General Flavors Used With Graphic Objects ............ ... ... 12-40
12.8.1 World Flavor .. oo vv vttt i ittt e 12-40
12.8.1.1 Parameters « v v v v v vt e e nne et e 12-40
12.8.1.2 Display ListsS ..ot vvin it it i 12-41
12.8.1.3 Entities . ... .. O 12-42
12.8.1.4 D= 017 12-44
12.8.2 Graphics Window Flavors .......... . oot 12-44
12.8.3 Cache Window FIavor ......ovniiiiiiiii i inninnirnnnneens 12-46
12.8.4 Transform Mixin . .....citeviin ittt onnans 12-47
12.8.5 Mouse Handler MixXin .. vv ot viiiiiin ittt eiinneneens 12-48
12.8.6 Basic Cursor MixXin .. ..vvvvierienninnnnninniinnnnnans 12-50
12.8.7 CUrsor Flavor . ..o viiiie ittt ettt 12-51
12.8.8 Bitblt Blinker Flavor . ......c.ouittiiiiiitiniineeeonnnnsn 12-51
12.8.9 Block Cursor FIavor ... ..ottt iiiiinenannannnons 12-52
12.8.10 Sprite Cursor Flavor . ....ovvtir i niiineennnnees s 12-52
12.9 Standard Operations on Graphic Objects ...................... 12-54
12.10 Basic Graphics MiXin . . v viv it e i it i e 12-55
12.11 Simple Graphic Objects .......cc it aonns 12-57
12.11.1 ArC Flavor ...ttt i it e e 12-57
12.11.1.1 Creating the ObjJect ... oo ii it iii it it eness 12-58
12.11.1.2 Manipulating the Object . .......c.ovit .. 12-59
12.11.2 Circle FIavor ...ttt et ininnininininnnnninnnnnnns 12-59
12.11.2.1 Creating the Object ... .. vviiiii ittt aanens 12-59
12.11.2.2 Manipulating the Object .. ....... v, 12-60
12.11.3 Line Flavor ............. i e e e e 12-60
12.11.3.1 Creating the Object . ... vt i in it ety 12-60
12.11.3.2 Manipulating the Object ..., 12-61
12.11.4 Polyline Flavor . ..o vviviiv ittt e nnens 12-61
12.11.4.1 Creating the Object . .. ... i vttt e 12-61
12.11.4.2 Manipulating the Object . .....ccvviiiii i, 12-62
12.11.5 Rectangle Flavor ...... ..o, 12-62
12.11.5.1 Creatingthe Object .....o vt i 12-62
12.11.5.2 Manipulating the Object .. ....... ..o, 12-63
12.11.6 Spline Flavor .. .v v it iiiiii i ity 12-64
12.11.6.1 Creating the Object . . ... vvviii ittt aaas 12-64
12.11.6.2 Manipulating the Object .. ... ...y 12-64
12.11.7 Triangle Flavor .. ...ttt 12-65
12.11.7.1 Creating the Object .........coovivinnnn e 12-65
12.11.7.2 Manipulating the Object ....... ... i 12-66
12.12 Fonts and Text ODJECES . . . oo v vttt eoreaeras 12-66
12.12.1 Font Flavor ................... e e e 12-67
12.12.2 Text Flavor ..o vv ittt it i i it 12-68
12.12.2.1 Creating the Object .. ..o i 12-68
12.12.2.2 Manipulating the Object ....... ..o i 12-69
12.12.3 Basic Character MIXin . .. ..o tiiiiiine i eiiiinnetiiannnees 12-70
12.12.4 Vector Character Flavor . ........o i iiiiiineannnenas 12-70
12.12.5 Raster Character Flavor .......... i 12-71
Window System Reference xvii



Section Paragraph Title Page
12,13 Ruler Flavor ...ttt i ittt it et e e e 12-72
12.13.1 Creating the Object .. ... v iinii i i, 12-72
12.13.2 Manipulating the Object ............ ... i, 12-74
12.14 Raster Object Flavor . ........uuiininininien e, 12-74
12.14.1 Creating the Object ....................... P e 12-75
12.14.2 Manipulating the Object .............iiiinriiennn... 12-76
12,15  Picture ObJect . oot vt ittt v ettt e e e e 12-76
12.15.1 Subpicture Flavor . .......iitnniniiiiin it 12-76
12.15.1.1 Creating the Object . .......oviv ittt in s, 12-76
12.15.1.2 Manipulating the Object . ........ ..ot nen... 12-77
12.15.2 Background Picture Flavor ..............ccovvivuinnnnn... 12-78

13 Typeout Windows
13.1  Using Typeout Windows .. ........ouveriinineinenenennnn... 13-1
13.2  Activation and Deactivation ..............coouiivunennrnen... 13-2
13.3  Windows With Inferior Typeout Windows . .................... 13-3
13.4 Delaying Redisplay After Typeout . .. .....vvvveinvrnennnnnn.. 13-4

14 Choice Facilities

14.1  Introduction . .....ouiui ittt et e e 14-1
14.2 Menus Facility .. ...ovtiinin ittt i i e e 14-2
14.2.1 Menu Items . ..ottt ittt it e e e e 14-2
14.2.2 Column Specification List ... ......ovviirninrenenenennn... 14-6
14.2.3 TCOms . 14-7
14.2.4 Functions That Create Menus . ............cc00iuvnennen... 14-11
14.2.4.1 The Most General Function ..............c.oivvnvn.n... 14-11
14.2.4.2 Special Functions for Compatibility ...................... 14-14
14.2.4.3 Other Special Functions ..............covvuiunenennnn.. 14-16
14.2.5 Keyboard Interface for Menus .............covivenennnn.. 14-18
14.2.6 Flavor and Initialization Options That Define Menus .......... 14-19
14.2.6.1 Command Menus ...........iuvivnenvninenenennnnnn. 14-19
14.2.6.2 Multiple MenUs .. ....oivtitneii i it 14-20
14.2.6.3 Margin Choices ... ..ottt it i 14-21
14.2.6.4 Permanent Versus Pop-Up Menus . ...........coovvuvn.n.. 14-22
14.2.6.5 Dynamic Item List Menus .............cciiviiniennennn. 14-22
14.2.6.6 Other Kinds of Menus ................cciivniinin.n.. 14-23
14.2.6.7 General Options . ... vvititn i ittt i 14-23
14.2.7 L€ 1) T 14-26
14.2.7.1 Filled Versus Columnar Format ...........c.vvvvunnnn... 14-26
14.2.7.2 Elements of a Geometry List .........ccovtiiiinennenn.. 14-27
14.2.7.3 Initialization Options and Methods ...................... 14-28
14.2.8 Menu Format . . ...ttt ittt et et i, 14-30
14.2.9 Methods That Implement Type Value Item Types ............ 14-31
14.2.10 Methods That Operate on Menus ............cvvvinnen.n.. 14-32
14.2.11 Methods That Reposition the Menu Current Item ............ 14-33
14.3 Multiple-Choice Facility ... .. ....vuitvtnnt i inininnennnnn. 14-34
14.3.1 Multiple-Choice Functional Interface ....................... 14-34
14.3.2 Making Your Own Multiple-Choice Windows ................ 14-36
xviii Window System Reference



Section Paragraph Title Page

14.4 Choose-Variable-Values Facility ............ ... 14-38
14.4.1 Specifying the Variables ............ ... i, 14-39
14.4.1.1 Variables in Separate Items ........ooviivivinneinn. 14-39
14.4.1.2 Variables in Tables ........... .. . i, 14-41
14.4.2 Choose-Variable-Values Functional Interface ................ 14-42
14.4.3 Defining Your Own Variable Type ........... ... ot 14-52
14.4.4 Making Your Own Window ......... ... i 14-53
14.5 Mouse-Sensitive Items . ......... ... . i i e 14-58
14.5.1 How Mouse-Sensitive Items Work .......... .. ..., 14-58
14.5.2 The ~M format Directive . ......cvviiiiiiiin i 14-60
14.5.3 Using w:basic-mouse-sensitive-items ...................... 14-61
14,6 Margin ChOICES ..ot iini ittt ety 14-65
15 Frames

15,1 Using Frames .. .vvv vttt innnneernnioeennnnaessonaneens 15-1
15.2 Constraint Frames . ...... ... iiiiiiiiiiiiiiiaaroaanns 15-2
15.3 Constraint Frame Editor ........ ... it 15-4
15.3.1 Invoking WINIFRED . .......otiitiiitini iy 15-5
15.3.2 Using WINIFRED . ...... . ittt i 15-5
15.3.2.1 Initializing the Size and Position of the Constraint Frame .... 15-6
15.3.2.2 Changing the Default Values ............. ... .. 15-6
15.3.2.3 Specifying Pane Size and Position .................... ... 15-6
15.3.2.4 Specifying Pane Flavor Type and Name .................. 15-9
15.3.2.5 Writing the Code to a Bufferor File ..................... 15-10
15.3.2.6 Creating a Sample Frame ..............cooiiiiiiiioy 15-10
15.3.2.7 Exiting WINIFRED . ... .iitttiinnnnniineeervnnnees 15-11
15.3.3 Editing the Generated Code . ......... ... 15-11
15.3.4 Using the Generated Code in Your Application .............. 15-13
15.4 Constraint Frame Flavors ............ .o ... 15-13
15.5 Examples of Specifications of Panes and Constraints ............ 15-15
15.5.1 Simple Constraint Frame . . ............... e e e 15-15
15.5.2 Graphics Constraint Frame . ......oviiiiiiiniiii i, 15-16
15.5.3 Multiple-Configuration Constraint Frame .................... 15-17
15.5.4 Horizontal Constraint Frame .............. .. oo, 15-21
15.6 Specifying Panes and Constraints ...........ccoaiievivneenn., 15-22
15.6.1 Configuration .........iuuiiiii i 15-23
15.6.1.1 Configuration Description ............ ... i, 15-24
15.6.1.2 Pane-Description-Group Association List .................. 15-25
15.6.1.3 Description-Group List ... ..ovvtvietni i 15-26
15.6.1.4 Description-Group . ... oottt ini et 15-26
15.6.1.5 (070} 0115 2 11 o\ AN 15-27
15.6.1.6 Pane-Description-Group Association List .................. 15-28
15.6.1.7 Description-Group List ..o 15-28
15.6.1.8 Description-Group . .. v vttt nienonas 15-28
15.7 Constraint Frame Keys .........cutiiiiniiieinineennenn.. 15-29
15.7.1 Arguments Used With w:basic-frame ...................... 15-29
15.7.1.1 o< 010 1.2 + WA 15-29
15.7.1.2 flONUM &+ v it ittt i e 15-29
15.7.1.3 TEVEIL .+ v vttt ineen e i e 15-29
15.7.1.4 TASK v o e e e 15-30
15.7.2 The :lHmit Clause ... ...ttt ettt 15-30
15.7.3 :pane-size and Similar Methods .. ....... .. ..o 15-31

Window System Reference xix



Section Paragraph Title Page
15.8 Embedded Configurations . ..............ovurereunnnennnnn. 15-32
15.9 Constraint Frame Methods .. ..........o'ivevrunnnnnn. 15-34
15.10 Pane-Frame INteraction . ............ouverunomenn i, 15-35
15.10.1 The Selected Pane . . ...ttt i, 15-36
16 Text Scroll Windows

16.1  Using Text Scroll Windows .. ......uvviininnernnennennennnn. 16-1
16.2 Specifying the Item List . .. ....ouutune e iennrnennnn. 16-2
16.3 Function Text Scroll Windows .. .......ovvevoronenenennenn. 16-5
16.4 Item Generators .. .........vvuimuenenennennnn i 16-6
16.5 Mouse-Sensitive Text Scroll Windows . ........oveerenenn... 16-9
16.5.1 Mouse BHpPS ...ttt it i i e e e 16-11
16.6  InSpector Flavors ... .....uuiunintineineee e 16-12

17 General Scroll Windows
17.1 Using General Scroll Windows ... ........ovuverminenunnnnni.. 17-1
17.2  Specifying Items and Entries ... ......vuer v, 17-3
17.3 Using a Scroll Window . ......ovv e vee. 17-5
17.4 Inserting and Deleting Items ... .......c.vveerrmrenennonnnn.. 17-7
17.5 Automatically Updating Items . .......vvvrenenenenenenns. vee.  17-8
17.6 Representation of TEEMS . . oo vttt er v et s e, vl 17-10
17.7 Mouse-Sensitive Scroll Windows .. .....oovennnennnnn. see. 17-11
17.8  Peek Flavor .. ....iviin it et e i, vee. 17-12

18 Miscellaneous Features
18,1 Introduction .. ...vvtiiin ettt et et e, 18-1
18.2  NOtfICAtioNS ... v 'ttt ittt ittt et ettt e e 18-1
18.3 Creating and Recording Sounds .............cvveveunnnennn.. 18-4
18.3.1 BeepS .. e e e e 18-4
18.3.2 Making Sounds ... .ot e e i e e e 18-6
18.3.3 Recording and Playing Sounds. ...............ccovuniun... 18-8
18.4  Specific Types of Windows ............oiiiiniinennnnnnnnn.. 18-10
18.4.1 Lisp Listeners . . .o ottt it e it e e e 18-10
18.4.2 Editor Windows . ...ttt intt ittt e 18-11
18.4.3 Window Flavors for Other Programs ............ccoveuenn.. 18-14
18.5 The Who-Line ........o.uiiiit ittt tnee i 18-15
18.5.1 Mouse Documentation Window ...........c.cvvvveerennnn.. 18-15
18.5.2 Status Line .. ...t i i e e e 18-16
18.5.2.1 File Streams ..o vn it ittt ittt ettt eease s 18-16
18.5.2.2 N =) ¢ 18-17
18.6 The System Menu .. .........oiuuuiiininnn i enennennnen, 18-18
18.7 Window ReSOUICES + .t v vttt ittt ittt e e 18-20
18.8 Finding Windows .. ........ ittt intn i innenens, 18-21
XX Window System Reference



Section Paragraph Title Page
19 Using Color
19.1 IntroduCtion ... ...viiie et sieeeiieseeeenneeeanns 19-1
19.2 Requirements for Coding in Color .......... . covivivnennennn 19-1
19.3 How Color Works on a Monitor . . . ... .ovvvi i ivninnnn 19-2
19.3.1 Foreground and Background Colors .. ...........coovvnunnnn 19-2
19.3.2 LUTs and the Color Map .. ....vvvvviiininnnnniniinnnnnns 19-3
19.3.3 Contents of the Color Map .. ... v vviiiiii i 19-4
19.3.4 Reserved ColOrS .. vvvv e n e er i ennenenenns 19-5
19.3.5 Naming Colors ..o vvv vt iii et cntinenntoaneas 19-5
19.4 Initialization Options and Methods Used With Color Windows .... 19-7
19.5 Functions That Manipulate the Color Map .................... 19-8
19.5.1 General FUNCHONS ... v vt iiine e ittt iiinenronanns 19-10
19.5.2 Hardware-Specific Functions . . ........ ... ... oo 19-11
19.6 Color ALU FUnCtions .. ...t veviiinverionnnanreaennnssoans 19-12
19.6.1 Add and SUDLIACE ..o vvt i ittt ittt 19-14
19.6.2 Add With Saturate and Subtract With Clamping ............. 19-14
19.6.3 Minimum, Maximum, and Average ................ e 19-14
19.6.4 Background and Transparency ..........eeeveeonenoneennns 19-15
19.6.5 Color Versus Monochrome ALU Functions ................. 19-16
19.7 Profile Variables for Color ..........c.coviviiieeiiriirirnneeens 19-18
19.8 Color and Texture in Graphic Output ........... ... 0. 0ot 19-18
19.9 Printing a Color Screen on a Monochrome Printer .............. 19-21
19.10 Plane Masks ... vt ittt ittt ittt i e 19-23
19.11 Methods to Control Monitors Directly ................ ... o 19-23
Section Paragraph Title Page
A Obsolete Symbols
Al INtrodUuCtion ... ..vvuiii ettt ieeoeeonaestieonnnnenesnanss A-1
A.2 Scrolling ........ PP A-1
A.3 Graphics ........ e esa et e A-5
A3.1 tvigraphics-mixin . ...... .. i i i i A-5.
A3.2 tVIStrEAM-IMIXIN ..\ vttt i ittt ettt i e A-9
A.3.3 gwiniddraw-mixin ...... ... i i i A-9
A3.4 Primitives . ..o it i e i e e e A-11
A4 MENUS + vttt ie e v ennner ot toonsaaseesaansessanasesssennos A-12
A.4.1 Flavors and Methods . .. oot ittt it iennanonos A-12
A.4.2 Functional Interface ...........covvenviiniiiinnnn. A-13
A.4.3 GEOMELITY .+« vttt ivi it i in e ianeanasanaeonnsonsennnss A-13
A.4.4 Ordinary MENUS . . . vt v vt vt iien e tnesacnneesnennas A-14
A.4.5 Command MEeNUS ... vvvvvtteeereeeeseeoerrsonesseesssss A-17
A.4.6 Dynamic Item List Menus . ... ... A-18
A.4.7 Multiple MEINUS .. 0. v viiii i enn oot A-21
A.4.8 Making Your Own Multiple Menus .........c.coiviviiinns A-21
A5 INPUL oottt it e A-23
Window System Reference xxi



Section Paragraph Title Page
B Converting Applications to Color
B.1 Introduction .............. .. 00 B-1
B.2  Converting to COIOr ... ...\ttt e e B-1
B.2.1 Requirements . ...........ouuiiuniinnein e, B-1
B.2.2 Converting the Load Band ..............couvvuunnnnnn. .. B-1
B.3  Compatibility ISSUES . ......ovutiniiine e, B-2
B.3.1 Using the Correct ALU Arguments ........................ B-3
. B.3.2 Using Bit-Save Arrays ...........c.oouuiiiiinnnnnnnnnnn.. B-3
B.3.3 Using Drawing Methods With Added Arguments ............. B-4
B.3.4 Using Previously Unused Instance Variables ................. B-5
Figure Title Page
Figures 5-1  Overlapping WANAOWS . .o v vvvv et e eeee e 5-1
7-1  Pseudo-Code for Character Displaying ........................ 7-4
19-1 Menu Produced by w:select-texture-with-mouse ............... 19-20
Table Title Page
Tables 9-1 Some Commonly Used FONtS .. ......ovevronennnr ... 9-2
9-2  Purpose Keywords for FONtS ... ....oviuneeennn e, 9-3
12-1 Color Values for Graphic Methods for Monochrome
Environments .. ......ouiuiunen it 12-12
12-2 ALU Values for Graphic Methods ..............ccovvvuun..... 12-13
14-1 Type Value Keywords for MENUS ... ......ovvoeernnnennnnn.n. 14-4
14-2  Menu Item Modifier Keywords ..............coovvueennn..... 14-5
14-3  Predefined Variable Types for w:choose-variable-values ........ 14-43
14-4 Item Modifiers for w:choose-variable-values .................. 14-46
14-5 The w:choose-variable-value Options Keywords ............... 14-48
16-1 Keywords for the Item Generator Function .................... 16-7
19-1 Elements in the Color Map defstruct ..............oovvuun.... 19-4
19-2  Named Colors in the Default Color Map Table ................ 19-6
19-3  Color ALU OPerations . .........uuueiiunerunnennnnennnnnns 19-16
19-4 Monochrome ALU Functions Used by the Color ALU
Functions on a Monochrome System . ...................... 19-16
19-5 Truth Tables for Color ALU Functions
on Monochrome Displays .............coiiiiiininenennn., 19-17
19-6 Profile Variables for Color ............vvvininennunnnnnn... 19-18
19-7 Gray Patterns Used for Printing the Named Colors .. ............ 19-22
xxii Window System Reference



ABOUT THIS MANUAL

Introduction

The Explorer Window System Reference manual is intended to explain how
you, as a programmer, can use the set of Explorer facilities known collectively
as the window system. Specifically, this document explains how to create
windows and what operations can be performed on them. It also explains how
you can customize the windows you produce by mixing together existing
window definitions to produce a window that can perform as your program
requires.

Assumptions

This manual assumes that you have:

m A working familiarity with Lisp as documented in the Explorer Lisp
Reference manual.

B Some experience with the user interface of the Explorer system, includ-
ing how to manipulate windows, such as the Edit Screen, Split Screen,
and Create commands from the System menu.

B An understanding of the following;:
= What message passing is
» How message passing is used on the Explorer
m  What a flavor is
= What a mixin flavor is

m  How to define a new flavor by mixing existing flavors

These concepts are explained in the Explorer Programming Concepts manual
and in the Explorer Lisp Reference manual.

To use the predefined flavors and methods, you need not be familiar with
how methods are defined and combined. However, to use the information
provided here on where to add :before and :after methods, you must be
thoroughly familiar with programming with flavors.

Contents of
This Manual

The first section of this manual, Basic Concepts:

m Discusses the concepts upon which the window system is based. You must
understand these concepts before you can understand the discussions in
the other sections.

m Briefly describes the contents of each of the other sections.

B Gives a simple example of creating a window.

Window System Reference



About This Manual

B Lists a simple decision tree to help you identify the features you want for
a particular window. This tree lists where to find more information about
a feature.

Section 2, Basic Windows, discusses the underlying flavors of the window
system, such as w:minimum-window.

The remaining sections of this manual each describe a particular behavior or
type of window and discuss the flavors, methods, initialization options, vari-
ables, and functions that provide that behavior or type.

Appendix A, Obsolete Symbols, describes the symbols that are no longer
supported and that will be not be available in the next release.

Suggestions for
Using This Manual

If you are unfamiliar with creating windows, you should read Section 1 care-
fully, examining the various windows already existing on the system. After
you have an idea of how you want your window to behave, refer to the
section that includes the specific behavior you want to include in your
window.

If you are already familiar with using the window system, you should refer to
the section that includes the specific behavior you want to include in your
window.

User Comments

We are trying to make this manual an easily understood tool to aid you in
using the window system. If you have questions, criticisms, or suggestions for
improvement, please use the User Response Sheet provided at the back of
the manual.

XXiv

Window System Reference



About This Manual

Notational
Conventions

Keystroke Sequences

Mouse Clicks

The following paragraphs describe the notation for keystroke sequences,
mouse clicks, and Lisp syntax, as well as flavors, initialization options,
methods, and instance variables.

Many of the commands used with the Explorer system are executed by a
combination or sequence of keystrokes. Keys that should be pressed at the
same time, or chorded, are listed with a hyphen connecting the name of each
key. Keys that should be pressed in a particular sequence are listed with a
space separating the name of each key. The following table explains the con-
ventions used in this manual to describe keystroke sequences.

Keyboard Sequence Interpretation

META-CTRL-D Hold the META and CTRL keys while
pressing the D key.

CTRL-X CTRL-F Hold the CTRL key and press the X key,

release the X key, and then press the F key.
Alternately, press CTRL-X, release both
keys, and press CTRL-F.

META-X Find File Hold the META key while pressing the X

RETURN key, release the keys, type the letters find
file and then press the RETURN key.

TERM - SUPER-HELP Press the TERM key and release it, press the

minus key (-) and release it, then press and
hold the SUPER key while pressing the
HELP key.

The mouse has three buttons that enable you to execute operations from the
mouse without returning your hand to the keyboard. Pressing and releasing a
button is called clicking. The following table lists abbreviations used to
describe clicking the mouse.

Abbreviation Action

L Click the left button (press the left button
once and release).

M Click the middle button (press the middle
button once and release).

R Click the right button (press the right button
once and release).

L2, M2, R2 Click the specified button twice quickly.
Alternately, you can press and hold the
CTRL key while you click the specified
button once.

LHOLD, MHOLD, RHOLD Press the specified button and hold it down.

. Window System Reference

XXv



About This Manual

Lisp Language The Lisp language notational convention helps you distinguish Lisp functions
Notation and arguments from user-defined symbols. The following table shows the
three fonts used in this manual to denote Lisp code.

Typeface Meaning

boldface System-defined words and symbols, including names of
functions, macros, flavors, methods, variables,
keywords, and so on—any word or symbol that appears
in the system source code.

italics Example names or an argument to a function, such as a
value or parameter you would fill in. Names in italics can
be replaced by any value you choose to substitute.
(Ttalics are also used for emphasis and to introduce new
terms.)

monowidth Examples of program code and output are in a monowidth
font. System-defined words shown in an example are
also in this font.

For example, this sentence contains the word setf in boldface because setf is
defined by the system.

Some function and method names are very long—for example, get-ucode-
version-of-band. Within the text, long function names may be split over two
lines because of typographical constraints. When you code the function name
get-ucode-version-of-band, however, you should not split it or include any
spaces within it.

Within manual text, each example of actual Lisp code is shown in the
monowidth font. For instance:

(setf x 1y 2) => 2
(+ xy) =>3

The form (setf x 1 y 2) sets the variables x and y to integer values;
then the form (+ x y) adds them together.

In this example of Lisp code with its explanation, setf appears in the
monowidth font because it is part of a specific example.

For more information about Lisp syntax descriptions, see the Explorer Lisp
Reference manual.

Flavor Notation The window system is composed of various flavors and associated symbols,
such as methods, initialization options, and instance variables. Some flavors
require certain symbols to operate properly. For example, any window built
with the w:mouse-blinker-mixin flavor also requires the w:blinker flavor to
be in the component list. In this manual, such requirements are shown as
follows:

w:mouse-blinker-mixin Flavor
Required flavor: w:blinker

Makes a blinker suitable for use as the mouse blinker. Not all blinkers....

xxvi Window System Reference



About This Manual

You can also find the requirements for a flavor by using the describe func-
tion. For example, if you typed the form (describe ‘w:mouse-blinker-mixin)
in a Lisp Listener, the system returns the following:

Symbol W:MOUSE-BLINKER-MIXIN is in the W package.

W:MOUSE-BLINKER-MIXIN has property SYS::DOCUMENTATION-PROPERTY: (DEFFLAVOR "Blinker that is
capable of being MOUSE-BLINKER A MIXIN Flavor.")

W:MOUSE-BLINKER-MIXIN has property SYS:FLAVOR: #<FLAVOR W:MOUSE-BLINKER-MIXIN 61200463>

Flavor #<FLAVOR W:MOUSE-BLINKER-MIXIN 61200463> directly depends on flavors: none

and is directly depended on by W::MOUSE-MULTIPLE-RECTANGLE— BLINKER,

W: :MOUSE-FOLLOWING-ARROW-BLINKER, W:MOUSE-BOX-STAY-INSIDE- BLINKER,

W:MOUSE-BOX-BLINKER, W:MOUSE-~HOLLOW-RECTANGULAR- BLINKER, W:MOUSE-RECTANGULAR-BLINKER,
W:BITBLT-BLINKER, W::MOUSE-BLINKER-FAST-TRACKING-MIXIN

Not counting inherited methods, the methods for #<FLAVOR W:MOUSE-BLINKER-MIXIN 61200463>

are: 1
: TRACK-MOUSE
:SET-OFFSETS

:OFFSETS
Instance variables that may be set by initialization: W:X-OFFSET, W:Y-OFFSET 2
Defined in package W
Properties:

:DOCUMENTATION: (:MIXIN "Blinker that is capable of being MOUSE-BLINKER")
:REQUIRED-FLAVORS: (W:BLINKER) 4
SYS: :INSTANCE~-AREA-FUNCTION: NIL

SYS: :REQUIRED-INIT-KEYWORDS: NIL

SYS: :REMAINING-INIT~KEYWORDS: NIL

SYS: : REMAINING-DEFAULT-PLIST: NIL

SYS::ALL-INITTABLE-INSTANCE-VARIABLES: NIL

SYS: :ALL-SPECIAL-INSTANCE-VARIABLES: NIL

SYS: :INSTANCE-VARIABLE-INITIALIZATIONS: NIL

SYS: :MAPPED-COMPONENT-FLAVORS ¢ NIL

SYS: : UNMAPPED-INSTANCE-~VARIABLES: (W:X-POS W:Y-POS W:SHEET ...)
COMPILE-FLAVOR-METHODS: NIL
SYS: :ALL-INSTANCE-VARIABLES-SPECIAL: NIL
SYS: : ADDITIONAL-INSTANCE-VARIABLES: NIL
Flavor #<FLAVOR W:MOUSE-BLINKER-MIXIN 61200463> does not yvet have a method hash table

This is an ART-Q type array.
It is 20 long.

W:MOUSE-BLINKER-MIXIN has property :SOURCE-FILE-NAME: ((DEFFLAVOR # FS::REMOTE-LM-PATHNAME
"DLS: WINDOW; WDEFS.#" # FS::LOGICAL-PATHNAME "SYS: WINDOW; WDEFS.#" )) B
W:MOUSE-BLINKER-MIXIN

Note the following parts of the description:

@ Methods defined for this flavor. These methods do not include the
methods inherited from component flavors.

@ Initialization options for this flavor. Another part of the flavor descrip-
tion, not shown here, consists of the instance variables that are gettable
and settable.

@ The documentation string for this flavor.
@ The required flavors for this flavor.

B The pathname of the source file. You can examine the source file to see
the component list for this flavor.

Other important information, which in the case of this flavor is nil, includes
required initialization options (the REQUIRED-INIT-KEYWORDS), the default
values for instance variables (the REMAINING-DEFAULT-PLIST or the INSTANCE-
VARIABLE-INITIALIZATIONS), and required methods.

Window System Reference xxvii



About This Manual

Flavor Naming
Conventions

frobboz

Conventions are different for instantiable flavors (which are complete and
can support instances of themselves) and mixin flavors (which are incomplete
and supply only one particular aspect of behavior).

In the following convention examples, the word frobboz is used to stand for
any feature, attribute, or class of windows that would appear in a flavor
name.

Flavor

An instantiable flavor whose most distinguishing characteristic is that it is a
complete Lisp object. As a complete Lisp object, frobboz has the minimum
attributes needed to make it instantiable. The frobboz name is preferred to
the frobboz-window name except when it is necessary to make a distinction
between a window having frobboz attributes and the frobboz flavor.

frobboz-mixin Flavor

baz-mixin

Initialization Options,
Methods, and
Instance Variables

Provides the frobboz feature when mixed into other flavors, but frobboz-
mixin is not instantiable by itself. Such mixins may have components such as
other mixins; may have no components, only required flavors; or may not
have required flavors because the mixin is a general-purpose mixin used by
several flavors.

Required flavors are flavors that must be present as a component of the flavor
at some level. This manual uses the following convention to indicate that a
mixin requires a flavor:

Flavor
Required flavor: frobboz-mixin

Requires the frobboz-mixin flavor as a component flavor, either directly or
through inheritance.

Rather than separately listing each method, this manual uses the following
convention to document initialization options and :get- and :set- methods. In
most cases, the initialization option is documented rather than the instance
variable. For example, the following syntax line documents the :hysteresis
initialization option, the :hysteresis method, and the :set-hysteresis method.
Methods so documented may simply access the instance variable, or the
methods may do other things as well.

thysteresis hysteresis Initialization Option of w:hysteretic-window-mixin

Gettable, settable. Default: 25.

The value, in pixels, of the hysteresis...and so on.

If the initialization option and both methods were listed explicitly, they would
appear as follows:

thysteresis hysteresis Initialization Option of w:hysteretic-window-mixin

thysteresis

Default: 25.
Method of w:hysteretic-window-mixin

:set-hysteresis hysteresis Method of w:hysteretic-window-mixin

xxviii

Window System Reference



About This Manual

In cases where a :set- method uses more than one argument, that method is
listed separately, as in the following example.

offsets Method of w:mouse-blinker-mixin
Returns two values: the x and y offsets of the blinker. The values...and so on.

:set-offsets x y Method of w:mouse-blinker-mixin

Sets the offsets of the blinker to the values specified by x and y...and so on.

Window System Reference xxix






WINDOW SYSTEM CONCEPTS

General Concepts

Screens, Windows,
and Panes

1.1 This section is designed to introduce you to the concepts that form the
basis of the window system. You must understand these concepts to under-
stand the discussions in this manual. After the discussion of the very basic
concepts, this section then briefly describes the contents of each of the other
sections and gives a simple example of creating a window.

The final portion of the section provides a simple decision tree to help you
identify the features you want for a particular window. This tree lists where to
find more information about a feature.

1.1.1 The window system is a hierarchical input/output (I/O) interface
between the Explorer system, its peripherals, and the user. Windows are
generally thought of as areas shown on the video display; however, this is not
necessarily so. Windows can also exist as areas in memory waiting to be
displayed.

A screen is the topmost node of the window system hierarchy; it defines an
area of the physical display. A screen has no superior windows, and windows
in one screen cannot be extended into another screen. Each screen object
usually corresponds to a particular location in the Explorer memory.

A process is often associated with a window and uses that window for input
and output. Thus, a window can act as a stream. Each window is an instance
of a specific flavor. A frame is a collection of inferior windows, or panes, that
can be manipulated as a single window. An example of a frame is the
Inspector. The Inspector frame contains three history panes, an interaction
pane, a command menu pane, and a summary pane. You specify the relative
size and location for each of the panes in a set of constraints. The constraint
frame editor, or WINIFRED™, is a window-driven interface that enables you
to develop constraint frames easily.

The Explorer video display shows windows and screens. A window may or
may not appear on the video display, but a screen always appears on the
video display. Screens are divided into windows, and the windows can be
subdivided into inferior windows or panes. Historically, windows and screens
collectively are called sheets. The term sheet frequently appears in the source
code. By convention (and in common usage) frames, panes, sheets, and
screens are often referred to simply as windows.

WINIFRED is a trademark of Texas Instruments Incorporated.

Window System Reference

1-1



Window System Concepts

The Explorer window system can be used on either a monochrome system or
on an optional color system. This manual describes the features that are com-
mon to both and also the differences. Your application can be coded to work
correctly on either a monochrome or a color system. However, certain guide-
lines must be followed. The following list describes the main places in this
manual (and other manuals) where color is discussed:

Functions and concepts that are specific to color are described in Section
19, Using Color.

Problems that may arise when converting applications to color are
discussed in Appendix B, Converting Applications to Color.

Several text output functions now have a new optional color argument, as
described in Section 7, Output of Text.

The color argument in the graphics methods allows you to use color on a
color system, as described in Section 12, Graphics.

A broad overview on color concepts is presented in the Color Concepts
section of the Explorer Programming Concepts manual.

Refer to the description of Edit Attributes in the Customizing Your Envi-
ronment section of the Introduction to the Explorer System to merely
change the foreground, background, label, background label, and border
color of a window.

To edit the colors that can be displayed in a window, refer to the Color
Map editor section in the Explorer Tools and Utilities manual.

1-2

Window System Reference



Window System Concepts

The physical display area is divided logically into two screens: the who-line
screen on the bottom of the video display, and the main screen on the top.

FINBPEG 1OR-INTERAG1ION-PANE Inspector Interaction Pane & 3106067 expose
An object of flavor TUiiINSPECTOR-INTERACTION-PANE. Function is ONEG-HRSH-THBLE (Funcallable) 34221037>

TV : SCREEN-ARRRY : #<ART-1B-56-1024 15291338>
TU:LOCAT 10NS~-PER=-LINE: 32

TW:0LD- SCREEN ARRAY : NIL

TV 1B] T-RRRAY H#<ART-1B-741-1029 7447750>
5|7V : NAME : “Inspector Interaction Pane S*
#<{FONT GPTFONT 71301833>

Named structure of type FONT

TU:FONT-FILL-POINTER: 256

TV s FONT-NRME : FONTS: :CPTFONT

TV :FONT-CHAR-HEIBHT : 11

TU:FONT-CHAR-WIDTH:

|7V :FONT-RASTER-HEIGHT 2 11

#<51ANDARD-SCREEN Maln Scresn 40100143 axposed>

An object of flavor TV::STANDARD-SCREEN. Function is M<EQ-HASH-TRBLE (Funcallable) 11761872>

TV :SCREEN-ARRRY : BART-1B-754-1029 71861442
TV 1LOCATIONS-PER-LINE: 3z R
TV OLD-: SCREEN fARRAY ¢ anRT-lB-?54-IE4 71001442> main

&?Em screen” screen
TV: LDCK COUNT ¢ ]
TV:SUPERIOR: NIL
TU:INFER!ORS (#<INSPECT-FRAME Inspect Frame 3 4184142 exposed> #<ZMACS-FRANE Zmacs Frame | 4188172 dee~pol
TV :EXPOSE. T
TV ENSESED-INFERIORS: éMlNSPECT-FRRHE Inspect. Frame 3 4194142 exposed®)
TV:
TV:Y-OFFSET: ]
TV:HIDTH: 1024
TUtHEIGHT : 354
]
740
g
TU:LEFT~MARBIN~§]1ZE s ]
TV:RIGHT-MARBIN-SIZE: ]
TV:FLAGE 32768

9
#<ART-0-26 -85544460>
g(FONT CPTFONT 713@1633>

TU:LINE-HETGHT : 13

auins Dot EXIE Detete A<INSPECTOR-TNTERAGTION-PANE Inspector Interaction rane 5 4105057 exposed> o
Set= Refresh Modify Config #<FONT CPTFONT 71381633>

Mode Print Edit #<STANDRRD-SCREEN Main Screen 42188143 exposed»

nspect: tviselected-vindow
Inspect: fonts:cptfont
Inspect: tuimain-screen
Inspect:

ENEC ARE 3
M2: LocksUnluck inspector pane, 2: Bystem Menu. _
who-line

screen

316,67 20:45:04AM RALPH B 0 + Romeo: WEBB; SYMBOLS.LISPH! @

mouse
documentation

status line window

The Who-Line Screen 1.1.1.1 The main screen covers the major portion of the video display; this
is the screen that the user interacts with and that programs use to display
output. The who-line screen is a screen at the bottom of the video display
made up of two areas:

m The mouse documentation window displays useful information such as
mouse click documentation.

M The status line, the last line on the video display, shows the user infor-
mation about the status of the Explorer.

The window system software implements the who-line as a separate screen
even though it appears on the same video display as the main screen. This
separation into two screens is why you cannot move the mouse into the
mouse documentation window or make windows on the main screen cover it.

Window System Reference 1-3



Window System Concepts

The Main Screen

The Window System
as a User Interface

States of a Window

1.1.1.2 You have encountered windows many times in your use of the
Explorer system. Sometimes there is only one window visible on the video
display.

Using the System menu's Create, Edit Screen, or Split Screen options, a user
can make windows of various sizes and flavors and position them on the
video display. Similarly, you can write programs to control the size, position,
and behavior of windows using the information in this manual.

1.1.2 The window system refers to a large body of software used to manage
communications between the user and programs in the Explorer, via the
Explorer system console, sometimes called the display unit. The console
consists of a keyboard, a mouse, and a monitor.

Windows can function as streams by accepting all the operations that streams
accept. Input operations on windows read from the keyboard or mouse; out-
put operations on windows type out characters or graphics on the screen. The
value of *terminal-io* is normally a window, so I/O functions on the
Explorer system send their I/O to windows by default. Other standard
streams, such as *standard-output*, *standard-input*, and so on are
synonym streams of *terminal-io* so they also send I/O to windows by
default.

The window system controls the keyboard, encoding the shifting keys, inter-
preting special commands from the TERM and SYSTEM Keys, and directing
input to the correct place. The window system also controls the mouse, track-
ing it on the screen, interpreting clicks on the buttons, and routing its effects
to the correct places. The most important part of the window system is its
control of the screens, which it subdivides into windows so that many
programs can coexist and even run simultaneously without getting in each
other’s way, sharing the screen space according to a set of established rules.

1.1.3 A window can be in different states:

B A visible window is a window that is currently displayed on a screen. A
window is fully visible if no other window is covering any part of it; a
window is partially visible if another window(s) is covering part of it.

B An exposed window is a window that is enabled to accept output from a
process. An exposed window need not be visible. For a window to be
exposed, the window’s superior must have some place to put its output
(that is, it must have a bit-save array).

B The selected window is the window that receives the input from the key-
board. Only one window can be selected at one time, and when a window
becomes selected, it is exposed and made fully visible automatically. The
currently selected window is usually indicated by a blinking keyboard
cursor.

B A deexposed window is a window that had been exposed but is no longer
exposed. This can happen either when a program or user explicitly
deexposes a window, or when another window is selected.

1-4

Window System Reference



Window System Concepts

B An active window is a window that is capable of being exposed. Active
windows are part of a list of windows (a stack) that can be exposed with-
out allocating more memory or creating another window. All visible
windows and all exposed windows are active. In addition, other windows
(windows that are not visible or that are not exposed) are active if they
are resident in memory.

W A deactivated window is a window that is not exposed nor selected and
that is not on the stack. When a window is first created, it is deactivated
until it is exposed or selected.

You can bury an active window—put it logically at the end of the stack of
windows, and make the next window(s) in the stack visible. A buried window
is still active, but it is not selected. The buried window may or may not be
partially visible, depending on the sizes of the other windows in the stack.

You can kill a window—make it both inactive and deexposed, remove it from
the stack, and delete it from memory. If a process is associated with a
window, when you Kill the window you also Kkill the associated process.

Windows as
Instances
of Flavors

Characteristics
of Window Flavors

1.2 In the Explorer system, each window is a flavor instance. Many differ-
ent window flavors are available; those that you can use are described in this
manual. Because windows are flavors, they have certain characteristics. You
should be aware of the facilities available on the Explorer system for using,
mixing, and examining flavors.

1.2.1 Because windows are flavors, they share the following characteristics
with all flavors:

B Have instance variables, which can be gettable, settable, and inittable.
Many instance variables can also be accessed by macros or defsubsts.

B Have methods that perform various operations on the windows. These
methods can include :before and :after daemons and wrappers to
customize the methods as you desire.

m Can be mixed as needed.

M Are instantiated with make-instance.

B Contain the sys:vanilla-flavor methods.

If you are unfamiliar with flavors, you should refer to the explanation of

flavors in the Explorer Programming Concepts manual and in the Explorer

Lisp Reference manual.

This manual describes the initialization options and methods of various

flavors of windows. They are grouped in each section of this manual by the
functions they perform.

Window System Reference

1-5



Window System Concepts

Mixing Flavors

Methods and
Their Flavors

1.2.2 Many programs never need to create any new windows. Often you can
use the standard input, output, and graphics methods on an existing window,
such as a Lisp Listener, which is the value of *terminal-io* when your
program is called. For example, the following code defines a function that,
when executed, draws a pattern of XORed circles on any window that has
w:graphics-mixin (such as a Lisp Listener).

(defun green-hornet (&optional (window *terminal-io*) (separation 40))
(send window :clear-screen)
(send window :home-down)
(multiple-value-bind (iw ih)
(send window :inside-size)
(let ((center-x1 (- (truncate iw 2)
(truncate separation 2)))
(center-x2 (+ (truncate iw 2)
(truncate separation 2)))
(center-y (truncate ih 2)))
(do ((i (- (min center-y center-x1) 10.) (1- i)))
((<= i §))
(send window :draw-circle
(if (bit-test #020 i) center-x1 center-x2)
center-y i)))) -
(read-char window)
t)

Often you must mix flavors to make windows behave as you want. When
mixing flavors, you must pay attention to the correct ordering of flavor
components. The earlier components override later ones. For example, if you
want to make a window that prints out notifications on itself by mixing in
w:notification-mixin, you must put w:notification-mixin before w:window:

(defflavor my-window () ; Correct ordering
(w:notification-mixin
w:window))

However, if you put w:window in front of w:notification-mixin, you get
something equivalent to wi:window:

(defflavor my-window () ; Incorrect ordering
(w:window
w:notification-mixin))

In the second example, the effect of w:notification-mixin is completely lost.
The whole purpose of w:notification-mixin is to override some methods of
wiwindow (inherited from w:delay-notification-mixin), and, in fact, it
defines the same methods in a different way. If w:notification-mixin comes
last, it is overridden instead.

1.2.3 Methods are usually associated with a particular flavor. For example,
the :print-notification-on-self method is a method of the w:notification-
mixin. However, because some flavors are very basic, this manual documents
some methods and initialization options differently:

W All the methods, instance variables, and initialization options of
w:minimum-window are documented as being of windows rather than of
any specific flavor.

® Al the methods, instance variables, and initialization options of w:sheet
are documented as being of windows and screens.

1-6

Window System Reference



Window System Concepts

Features Common
to All Windows

Outside Edges
of Windows

Sizes and Positions

Visibility and
Exposure

Selection

1.3 All windows share some features, such as borders, names, blinkers,
input and output operations, and so on. The following sections discuss the
features that can be used on almost all windows.

1.3.1 Windows usually have a border (a thin black line around the edges of
the window), and they frequently have a label at the top or in the lower left
corner. The border helps you see where all the windows are, what kind of
windows they are, and what parts of the screen they are using.

A window’s area of the screen is divided into two parts. Around the edges of
the window are the four margins. While margins can have zero size, there
usually is a margin on each edge of the window, holding a border and some-
times other things, such as a label. The rest of the window is called the inside;
regular character output and graphic drawings all occur on the inside part of
the window. The margins and the inside of the window are managed sepa-
rately so mixins that add things to the margins can be independent of the
program that draws in the window’s inside.

Mixins usually override similar attributes in flavors to which the mixins are
added. One exception occurs with flavors of margin items in which the
ordering controls the spatial position of the margin items.

Section 3, Outside Edges of Windows, discusses the flavors, methods, and
variables that produce margins, borders, and labels.

1.3.2 Every window has a size and position. You can specify these in several
ways: specify numerically, use the mouse, cause a window to be displayed
near some point or some other window, and so on.

Section 4, Sizes and Positions, discusses the flavors, methods, and variables
affecting the size and position of a window.

1.3.3 A window can be fully visible (you can see the entire window) or only
partially visible (some of the window is covered by another window). A
window may or may not be exposed; an exposed window can have output
drawn on it.

Section 5, Visibility and Exposure, discusses the flavors, methods, and
variables affecting visibility and exposure of windows. This section also
discusses bit-save arrays.

1.3.4 Before a window can receive input from the keyboard, the window
must be selected. Windows can be selected by programs, or a user can select
a window either with keystroke sequences (for example, the user can select
the Inspector window by pressing SYSTEM I), by using the System menu, or
by moving the mouse blinker into a partially visible window and clicking the
left button.

Section 6, Selection, discusses how to select a window, and how selection can
be controlled when several windows are involved.

Window System Reference



Window System Concepts

Output of Text

Input

Fonts

Blinkers

1.3.5 Windows handle the standard output stream operations and can be
passed as the output stream to functions such as print and format. You can
output characters at a cursor position, move the cursor around, selectively
clear parts of the window, insert and delete lines and characters, and so on,
by means of stream operations. Output of text on windows provides
additional features. For example, characters can be drawn in any of a large
set of fonts (typefaces), and you can switch from one font to another within a
single window. Windows can define their own actions for exceptional condi-
tions that affect output, such as attempting output beyond the right or bottom
edge of the window or printing more than a window-full without pausing.

Section 7, Output of Text, discusses how output is actually performed, how to
cause output to appear or disappear from a window, and what exception
conditions are handled by windows.

1.3.6 A window whose flavor incorporates the w:stream-mixin flavor
supports all the standard input stream operations and can be passed as the
input stream to functions such as read and read-line. Each such window has
an input buffer that holds input for the window that has not been read yet.
You can force keyboard input into a window’s input buffer; frequently two
processes communicate by one process forcing keyboard input into an input
buffer that another process is reading.

Asynchronously intercepted characters (such as CTRL-ABORT) take effect
immediately when typed and are handled by the selected window. Each
window can specify its own asynchronously intercepted characters as well as
synchronously intercepted characters.

Section 8, Input, discusses input, 1/O buffers, and intercepted characters.

1.3.7 Fonts control the appearance of text on the window.

Section 9, Fonts, discusses how fonts are specified and the attributes and
format of fonts.

1.3.8 Blinkers are used to add either visual cues to a window or temporary
modifications to a window’s normal display. Blinkers are flavor instances with
their own standard operations. Each window can have many blinkers. Most
windows have one blinker that follows the window’s cursor position; this
blinker normally appears as a blinking rectangle. However, blinkers need not
follow the cursor and need not actually blink (some do and some do not).

Blinkers are not always rectangular. The arrow that follows the mouse is a
blinker, but the mouse blinker is not always an arrow. For example, the
Zmacs editor shows you the character the mouse is pointing to by changing
the mouse blinker to a hollow rectangle.

Section 10, Blinkers, discusses various types of blinkers and how to use them.

1-8

Window System Reference



The Mouse

Graphics

Typeout Windows

Window System Concepts

1.3.9 Windows are the standard interface to the mouse. Both mouse motion
and mouse clicks are normally handled by messages sent to the window over
which the mouse is positioned.

Section 11, The Mouse, discusses different ways of controlling the mouse,
operations to use to find out the current status of the mouse, and the scrolling
facility. :

1.3.10 In addition to characters from fonts, you can also draw graphics
(pictures) on windows. You can use functions, methods, and subprimitives to
draw lines, circles, triangles, rectangles, arbitrary polygons, circle sectors, and
cubic splines.

Section 12, Graphics, describes the functions, methods, and subprimitives
that draw graphics on windows.

1.3.11 Typeout windows allow windows such as scroll windows and editor
windows to print output in response to individual commands. The typeout
window is an inferior of the other window, and exposes itself when output is
drawn on it.

Section 13, Typeout Windows, discusses how to use a typeout window. The
section includes an example of a standalone typeout window.

Types of Windows

Choice Facilities

1.4 Sections 14 through 18 discuss windows that are of different types. In
general, these types of windows are mutually exclusive. For example, if a
window is a choice facility, it is not a general scroll window. These windows
use many of the features discussed in paragraph 1.3, Features Common to All
Windows.

1.4.1 Choice facilities consist of menus, multiple choice windows, and
choose-variable-values windows.

Menus allow the user to choose one or several of a fixed set of items. The
System menu produced by the double-click-right sequence is an example of
such a menu.

Explorer System Menu
USER AIDS: ’ PROGRAMS: WINDOWS: DEBUG TOOLS:
Blossary Backup Arrest Flavor lnspector
New User Converse Bury Inspector
Profile Font Editor Change Layouts Network
Suggestions Hardcopy Menu Create Peek

Lisp Listener Edit Attributes Trace
Mail Edit Screen

Namespace Editor Kill

Telnet Refresh

VUT100 emulator Reset
Zmacs Editor BeTect] -
Split Screen

Window System Reference

1-9



Window System Concepts

Page Heading Line:

screen Image Print Parameters

rinter Device: ... 2016-P

Dots per Inch: - BEST
Include Mouse Blinker: YES NO

Print Header Page: ... YES NO

Multiple-choice windows allow the user to specify an answer to each of a set
of similar multiple-choice questions. The Kill or Save Buffers window from
the Zmacs editor is an example of a multiple-choice menu.

Butfer |

* sgdufter-1+

¢ ==FROM-JAN-25.D0C#> WEBB.WINDOW.CODE; Lima:
$14-CODE.DOC#> WEBB.WINDOW.CODE; Lima:

m Lima: WEBB; #.##% (1)

Hbort

Save Kill UnMod Compile-File |
Ll

Choose-variable-values windows allow the user to view and modify the values
of a set of variables. Each variable is printed and read according to its own
range of possible values. One variable might allow only numbers, while
another variable’s value might be restricted to a list of pathnames. The Hard
Copy choice in the System menu invokes a choose-variable-values window.

CMINT-S DABP DABS DLS-866 DOUG EIGHT ESDI GUMBY-855 IMAGEN IMAGEN-SYS-ENGR
A-PRINTER MARKS-PRINTER-P MARKS-PRINTER-8 PCAI-S RBEA-866 RUMP TALARIS TI-8566 UNIFORM-S
- SCREEN SCREEN WITH WHOLINE FRAME WINDOW RECTANGLE

-~ PORTRAIT LANDSCAPE BEST

Frames

Text Scroll
Windows

Section 14, Choice Facilities, discusses how to use choice facilities. For each
choice facility, the window system includes an easy-to-use interface.

1.4.2 For greater flexibility in subdividing a window into multiple areas for
different uses, you can create inferior windows or panes within the window.
The main window is then called a frame. Each pane can be of a different
flavor suitable to its own purpose. For example, Peek uses a menu frame and
a scrolling window as its two panes.

Section 15, Frames, discusses how to use frames by specifying the panes that
comprise them, and shows examples of different configurations. This section
also describes the constraint frame editor, which enables you to quickly
generate the code for a constraint frame.

1.4.3 Text scroll windows provide a simple way to display and scroll a
number of lines of similar material on a window. For example, editor
windows and menus can scroll.

The lines displayed by text scroll windows are Lisp objects. How these Lisp
objects are displayed depends on how certain methods are defined.

Section 16, Text Scroll Windows, discusses the uses of text scroll windows
and how to specify them.

1-10

Window System Reference



General Scroll
Windows

Miscellaneous
Features

Optional Color

Window System Concepts

1.4.4 General scroll windows are an independent facility from text scroll
windows. Although these windows are called scroll windows, the windows do
not actually scroll. The contents of the windows are updated as items in the
windows change. Peek is a good example of a general scroll window.

General scroll windows display continuously maintained items, which can
vary in size. Each item in the window takes up an entire line, and each item
can be composed of one or more subitems arranged vertically. Each subitem
can fill one or more lines and can contain subsubitems. The lowest level of
subdivision of subitems consists of entries that are arranged in a horizontal
sequence. New subitems, at any level, can be added and deleted automati-
cally, and the display is updated automatically by moving lines around on the
window.

Section 17, General Scroll Windows, discusses the uses of general scroll
windows and how to specify them.

1.4.5 Section 18 discusses miscellaneous topics:

m Notification windows are used to notify a user of the occurrence of a
particular event.

B Beeps can provide audible feedback to the user.

B You can also program the Explorer system to create sounds or to record
and play back sounds.

B Some programs, such as the Lisp Listener or the Zmacs editor, have
flavors that can be used to include their facilities in a window.

B The user can specify some aspects of the appearance of the mouse docu-
mentation window and status line.

m The System menu provides a menu interface to most of the programs and
features of the Explorer system.

B Window resources help conserve system memory and speed execution.

m The Explorer system includes functions to help you find existing
windows, resources, flavors, and methods.

1.4.6 Section 19 discusses the concepts and functions for using an optional
color system. Appendix B, Converting Applications to Color, discusses how
to convert from a monochrome load band to one that uses color, and lists
problem areas that may arise when you convert an existing monochrome
application to use color.

Obsolete Symbols

1.5 This release of the Explorer window system replaces some code with
improved code of similar names. The obsolete symbols are documented in
Appendix A and are marked with an /o] symbol in the syntax line.

Window System Reference

1-11



Window System Concepts

Designing a
Window

1.6 When you start to design a new window for your application, you should
use the simplest mechanism that meets your needs. The steps are presented
as follows in order of increasing complexity:

1.

S.

If possible, choose a functional interface that creates a particular window
automatically. Many temporary windows, such as menus and notifi-
cations, can be created using function calls.

Use a utility that generates the window code for you. The frame editor,
described in paragraph 15.3, Constraint Frame Editor, is one such utility.

Create a new window instance by using existing flavors and mixins.

Customize the methods of an existing flavor or mixture of flavors to pro-
duce special results.

Build your own window flavor.

The remainder of this section includes the following:

B A simple decision tree that may help you to decide what kind of window

you want, including a general explanation of each of the choices of the
decision tree

Short explanations of the functions and flavors available to implement
each leaf of the decision tree

1-12

Window System Reference



Window System Concepts

General Choices 1.7 The following tree summarizes the general choices you should make

Among Windows when you design a window. The following pages describe these choices in
each leaf in more detail and refer you to the portion of the manual that
describes that feature. Some references are to other manuals.

for any window...
(see paragraph 1.7.1)

[permanent or temporary? |

[a frame or a single window? | [for output or input? |
frame output input
(see paragraph 1.7.2) (see paragraph 1.7.3) | | (see paragraph 1.7.4)

|standalone window or mixin?l

standalone

(see paragraph 1.7.5)

window created from mixins
(see paragraph 1.7.6)

For any Window...

Answer the questions listed in paragraph 1.7.1 for any window or pane.

Permanent or Temporary?

Use permanent windows when you want the window to (almost) always
appear when the user is interacting with your software. If you have cases
when you need to display or gather information, you can associate
various temporary windows with your main permanent window.

Use temporary windows when you want to display information briefly,
notify the user of some condition that may require attention, or
infrequently get information from the user.

A Frame or a Single Window?

Use a frame to display a group of panes as a single window. Examples of
panes are the Inspector and Peek. Note that you can include Suggestions
on a window without the window being a frame.

Use a single window if one window can serve all your needs. For
example, the new user utility uses a single window.

Window System Reference

1-13



Window System Concepts

Existing Standalone Window or Mixin?

For Output Or Input?

W Use an instance of an existing standalone window, if possible, to serve
your needs. You can customize many features of standalone windows
using existing initialization options and methods. For example, any
initialization option or method marked as being of windows and screens
works on all windows based on the w:sheet flavor, which includes
virtually all window flavors.

B Create your own window flavor using the w:minimum-window flavor (or
another flavor based on these) with various mixins to create a specialized
window.

Whether you use an existing window or you create your own window flavor,
you can redefine existing methods to customize window behavior.

You can use a window as a stream by incorporating w:stream-mixin in its
flavor. You can also use other, more specialized windows for more specific
purposes:

B Use a window for output if you want the user to be able to see infor-
mation but not change it. Some output windows can be mouse-sensitive;
that is, a user can select a portion of the output to display more
information, and so on.

B Use a window for input if you want to gather information from or other-
wise interact with the user. Input windows include notifications, menus,
choose variable values windows, and so on.

1-14

Window System Reference



For Any Window

Before You Begin

After You Finish

Choose As Many
As Desired

Window System Concepts

1.7.1 For any window, there are some decisions you should make before
you begin. There are other decisions you should consider after you have
created and tested your window.

1.7.1.1 Before you start building your window, decide whether your appli-
cation is going to include a command loop. If it is, you should consider using
the Universal Command Loop (UCL), described in the Explorer Tools and
Utilities manual. The UCL offers various menu and help interfaces that make
writing code simpler. In addition, by using the UCL, you provide a user inter-
face that is similar to most utility interfaces already on the Explorer system.

1.7.1.2 After you have developed and tested the window for your appli-
cation, you should consider these questions:

Explanation and Reference

Should this window
be listed in one of
the columns of the
System menu?

How often is the
window used, and
how quickly should
the window appear?

Should this window
include Suggestions
menus?

After you make the window selectable as described in Section 6,
Selection, use the w:add-to-system-menu-column function described in
paragraph 18.6, The System Menu, to add your application to the System
menu.

If this window is used frequently, you may want to create a resource for
it. As a resource, the program allocates memory for the window once
rather than allocating memory for the window each time it is invoked and
then discarding the memory after it is deactivated. If you want to use a
resource, examine the list of resources contained in the w:window-
resource-names variable. Use one of the existing resources if possible; if
not, create your own resource using the function described in paragraph
18.7, Window Resources.

See the Explorer Tools and Utilities manual for a description of
Suggestions menus.

Window System Reference

1-15



Window System Concepts

Using a Frame

Questions
About the Frame
as a Whole

Choose As Many
As Desired

1.7.2 If your application calls for a frame, use the constraint frame editor
(WINIFRED, discussed in Section 15, Frames) to create it. Before you do
so, however, you should:

1. Make certain decisions about the frame as a whole.

2. Decide on the characteristics of each pane by answering the questions in
the decision tree for each separate pane.

3. Finally, use WINIFRED to create the constraint frame.

1.7.2.1 Consider each of the following features for the frame as a whole.

Explanation and Reference

Should it include a
label?

Should it include a
border?

Should the panes of
the frame share an
input buffer?

Should the panes of
the frame share a
selection substitute?

If so, create a flavor that includes one of the constraint frame flavors
(described in paragraph 15.4, Constraint Frame Flavors) and w:label-
mixin (described in paragraph 3.4.2).

Use one of the bordered constraint frame flavors described in paragraph
15.4, Constraint Frame Flavors.

Use one of the constraint frame flavors that explicitly share an input
buffer, as described in paragraph 15.4, Constraint Frame Flavors.

First, be sure that you include w:select-mixin as part of your frame
flavor. Then, set a selection substitute as described in paragraph 15.10.1,
The Selected Pane.

Questions About
a Non-Constraint
Frame as a Whole

Choose As Many
As Desired

1.7.2.2 If you decide not to use constraint frames, answer the following
questions for your frame:

Explanation and Reference

Should the screen
manager not
interfere with
inferiors?

Should the inferiors
of the window not be
in the Select menu
of the System menu?

If not, use the wino-screen-managing-mixin flavor, described in para-
graph 5.9.2, Autoselection.

If so, use the w:inferiors-not-in-select-menu-mixin flavor, described in
paragraph 6.3.1, The System Menu Select Command.

1-16

Window System Reference



Types of
Output Windows

Choose One

Window System Concepts

1.7.3 Certain features can be included in a window to allow output in a
special window or buffer that appears. You can also associate these features
with a particular pane of a constraint frame.

From the following questions, choose the one that best describes what you
want the window to do.

Explanation and Reference

Is the output simple
and relatively brief
(only a line or two)?

Do you want to
allow scrolling in
only one direction?

Do you want to
allow scrolling in
both directions?

Do you want a fea-
ture similar to Peek,
where each line lists
a separate item or

subitem, but that is
not mouse-sensitive?

Do you want a fea-
ture similar to the
Inspector, where you
can display a num-
ber of similar lines
with scrolling?

Do you want a tem-
porary window that
displays text?

Do you want a
window whose lines
truncate rather than
wrap?

Use notifications. Include either the w:notification-mixin flavor or the
w:delay-notification-mixin flavor as part of your window, and then use
either the w:careful-notify function or the w:notify function to produce
the notification. These flavors and functions are described in paragraph
18.2, Notifications.

Use a typeout window. These windows are typically used to display help
and error messages. Use w:essential-window-with-typeout-mixin or an
associated flavor, described in paragraph 13.1, Using Typeout Windows
and in paragraph 13.3, Windows With Inferior Typeout Windows.

This type of window displays information that a user may want to look at
several times. Use the zwei:view-file function.

Use a general scroll window.

m If you do not want a typeout window associated with the window, use
either the w:basic-scroll-window mixin or the w:scroll-window
flavor, described in paragraph 17.3, Using a Scroll Window.

m If you do want a typeout window associated with the window, use
either the w:scroll-window-with-typeout-mixin or the w:scroll-
window-with-typeout flavor, described in paragraph 17.3, Using a
Scroll Window.

To provide mouse-sensitivity, use the flavors described in paragraph 17.7,
Mouse-Sensitive Scroll Windows

Use a text scroll window, such as the w:text-scroll-window mixin
(described in paragraph 16.1, Using Text Scroll Windows) or the w:text-
scroll-window-typeout-mixin flavor (described in paragraph 16.3,
Function Text Scroll Windows). If you want to dynamically define func-
tions to display windows, use the w:function-text-scroll-window flavor,
described in paragraph 16.3, Function Text Scroll Windows.

Use one of the pop-up text window resources or flavors described in para-

graph 18.4.3, Window Flavors for Other Programs.

Use either the w:line-truncating-mixin or the w:truncating-window
flavor, described in paragraph 7.4.4, End-of-Line Exceptions.

Window System Reference

1-17



Window System Concepts

Types of
Input Windows

1.7.4 In general, input windows are of two types: those that simply require
confirmation (your application may do a certain action depending on whether

Obtaining
Confirmation

Choose One

the user confirms), and those that actually require the user to make a choice
or otherwise supply information. The following functions and flavors typically
use the mouse as the primary input device rather than the keyboard, although
menus also support keystrokes as well as mouse clicks.

1.7.4.1 Do you simply want the user to confirm or not confirm an action? If
s0, use one of the following:

Explanation and Reference

Is the output simple
and relatively brief
(only a line or two)?

Should the user just
select yes or no with
the mouse from a
pop-up window?

Should the user con-
Jirm either by select-
ing an item with the
mouse or by pressing
a key?

Should the confirma-
tion be requested
through the Listener
or minibuffer rather
than through a pop-
up window?

Use notifications. Include either the w:notification-mixin flavor or the
w:delay-notification-mixin flavor as part of your window, and then use
either the w:careful-notify function or the w:notify function to produce
the notification. These flavors and functions are described in paragraph
18.2, Notifications.

Use the w:mouse-y-or-n-p function, described in paragraph 14.2.4.3,
Other Special Functions, of the Functions That Create Menus paragraph.
This function requires the user to click on either a yes item or a no item
to make the window disappear.

Use the w:mouse-confirm function, described in paragraph 14.2.4.3,
Other Special Functions, of the Functions That Create Menus paragraph.
This function requires the user, to specify yes, to either click on a yes
item or press the END key. To specify no, the user must either click on a
no item or press the ABORT Kkey.

See the Explorer Input/Output Reference manual for descriptions of func-
tions that obtain confirmation without using a pop-up window, such as the
y-or-n-p function.

1-18

Window System Reference



Gathering
Information

Choose One

Window System Concepts

1.7.4.2 Do you want to obtain information from the user? If so, use one of
the following:

B Menus

B Choose variable values windows

B Mouse-sensitive typeout

M Zmacs-like functions

Menus Menus provide a series of choices from which the user can choose.
What kind of choices do you want the user to make, and what features do

you want to provide?

Explanation and Reference

Should the user
choose from a
menu?

Should the user
select boxes in
columns to indicate
choices?

Use the w:menu-choose function, described in paragraph 14.2.4.1, The
Most General Function, of the Functions That Create Menus paragraph.
w:menu-choose provides the general features of menus and can be used
to produce highlighting, dynamic, multicolumn, permanent or temporary
menus. This function also enables you to specify the geometry of a menu,
specify an abort item to be executed if the user aborts from a menu,
specify alignment of menu items, specify sorting of menu items (alphabeti-
cally, ascending or descending, or with another sorting algorithm), and
enable scrolling, among others.

You can also use w:menu, the analogous resource or flavor, described in
paragraph 14.2.6, Flavor and Initialization Options That Define Menus.

Use the w:multiple-choose function, described in paragraph 14.3.1,
Multiple-Choice Functional Interface. w:multiple-choose lets you specify a
label for each column, where the menu appears, how many lines are
displayed before scrolling is enabled, and the superior of the menu. This
menu is always temporary. An example of this type of menu is the Kill or
Save Buffers menu in the Zmacs editor.

If the function does not give you the features you want, try using the
w:itemporary-multiple-choice-window resource or flavor, the w:multiple-
choice flavor, or the w:basic-multiple-choice mixin flavor. These flavors
are described in paragraph 14.3.2, Making Your Own Multiple-Choice
Windows.

Choose-Variable-Values Windows Choose-variable-values windows allow a
user to supply values for various variables. Depending on how you program
the window, the user can choose one of a list of values, toggle between yes
and no, choose from a menu, or enter a new value. You can also program the
window to accept only values within a certain limit or values of a
particular type. A choose-variable-values window can be either temporary or
permanent.

For most purposes, you should be able to use the w:choose-variable-values
function, described in paragraph 14.4.2, Choose-Variable-Values Functional
Interface. If this function does not provide the features you want, you can use
one of the flavors described in paragraph 14.4.4, Making Your Own Window,
of the Choose-Variable-Values Facility paragraph.

Window System Reference

1-19



Window System Concepts

Choose One

Mouse-Sensitive Typeout Some typeout can be mouse-sensitive, such as
the List Buffers display of Zmacs. This enables the user to choose an item
with the mouse after the item is displayed. Use one of the following features
to provide mouse-sensitive typeout:

Explanation and Reference

Is the output brief
enough that you can
draw it using a
format statement?

Do you want a fea-
ture similar to Peek,
where each line can
be described
separately?

Do you want a
Sfeature similar to
the Inspector?

Use the -M format directive, described briefly in paragraph 14.5.2. This
feature provides mouse sensitivity within the output of a format statement.
For more information about the general features of a format statement,
see the Explorer Lisp Reference manual.

Use a general scroll window (described in Section 17) with either
w:essential-scroll-mouse-mixin or w:scroll-mouse-mixin as a component
of the flavor. If you actually want a Peek window, use the tv:peek-frame
flavor.

Use the w:mouse-sensitive-text-scroll-window flavor (described in Sec-
tion 16). If you actually want an Inspector window or frame, use either
the w:inspect-frame-resource or the w:inspect-frame flavor.

Choose One

Zmacs-Like Functions The following are specialized functions that offer
features similar to features in the Zmacs editor:

Explanation and Reference

Is there a string that
the user should edit?

Are you asking the
user for a pathname
that could be
partially supplied by
default?

Use the zwei:pop-up-edstring function, described in paragraph 18.4.3,
Window Flavors for Other Programs.

Use the zwei:read-defaulted-pathname-near-window function, described
in paragraph 18.4.3, Window Flavors for Other Programs.

1-20

Window System Reference



Types of
Standalone Windows

Choose One

Window System Concepts

1.7.5 The following are some of the kinds of standalone windows that are
available. You can either use an instantiation of the flavor by itself, or you
can mix other flavors with these windows to provide particular features.

Explanation and Reference

Do you want a
window that is the
simplest available?

Do you want a win-
dow that allows you
to use fonts, perform
graphics operations,
and create labels
and borders?

Do you want a
window similar to
the one just
described but whose
lines truncate rather
than wrap?

Do you want a Lisp
Listener?

Do you want a Peek
window?

Do you want an
Inspector frame?

Do you want a
Telnet window?

Do you want a
Zmacs editor?

Use w:minimum-window, described in paragraph 2.4, Basic Window
Flavors.

Use w:window, described in paragraph 2.4, Basic Window Flavors.

Use w:truncating-window, described in paragraph 7.4.4, End-of-Line
Exceptions.

Use w:lisp-listener for a Lisp Listener than can be selected with the
SYSTEM L keystroke sequence. Use w:lisp-interactor for a Lisp Listener
than cannot be selected with the SYSTEM L keystroke sequence. These
flavors are described in paragraph 18.4.1, Lisp Listeners.

Use the tv:peek-frame flavor (described in paragraph 17.8, Peek
Flavors). Similar features are available with a general scroll window; use
either w:essential-scroll-mouse-mixin or w:scroll-mouse-mixin as a
component of the flavor. These flavors are described in paragraph 17.7,
Mouse-Sensitive Scroll Windows.

Use either the w:inspect-frame-resource or the w:inspect-frame flavor
(described in paragraph 16.5, Inspector Flavors). Similar features are
available with a text scroll window; use the w:mouse-sensitive-text-scroll-
window flavor, described in paragraph 16.5, Mouse-Sensitive Text Scroll
Windows.

Use either the supdup:telnet flavor or the supdup:telnet-windows
resource, described in paragraph 18.4.3, Window Flavors for Other
Programs.

B For a Zmacs editor that uses the same process as all Zmacs windows
in the system, use the zwei:zmacs-frame flavor.

m For a Zmacs editor with a separate process and a permanently visible
minibuffer, use the zwei:standalone-editor-window flavor.

m For a Zmacs editor with a separate process that pops up a mode line
or a minibuffer when needed, use the zwei:standalone-editor-frame
flavor.

All these flavors are described in paragraph 18.4.2, Editor Windows.

Window System Reference

1-21



Window System Concepts

Types of
Mixins

Choose As Many
As Desired

1.7.6 Using the following questions, decide what features you want for your
window or pane. Note each feature that you want. When you have identified
all the features, create your flavor using those mixins or initialization options.

Explanation and Reference

Include borders?

Don’t include borders?

Symbols related to
borders

Include labels?

Symbols related to
labels.

Include a bit-save
array?

Include shadow
borders?

M To specify the width of a border, use the :borders initialization option
or the :set-borders method, described in paragraph 3.3, Borders.

B To specify the width of border margins, use the :border-margin-width
initialization option or the :set-border-margin-width method,
described in paragraph 3.3, Borders.

B To use a fancy border (one that is not a simple rectangle), create a
special drawing function. This process is described in paragraph 3.3.1,
Border Functions.

If your window is the full size of the main screen and you do not want
borders, include the w:full-screen-hack-mixin flavor, described in
paragraph 3.3.2, Deleting Borders on Full-Screen Windows.

Constraint frames have their own flavors and mixins that enable or disable
borders.

B The default label for the window is its name with a numeric counter.
You can set a window name by using the :name initialization option,
described in paragraph 3.4.1, Names of Windows.

M To specify a label of a particular size, font, vertical spacing, or posi-
tion, use the :label initialization option or the :set-label method,
described in paragraph 3.4.1, Names of Windows.

B To position a label automatically, use the appropriate keyword for the
:label initialization option or use either the w:top-label-mixin or the
w:centered-label-mixin flavor. The mixins are described in paragraph
3.4.3, Positioning the Label.

B By default, the label of a window is not boxed. To box the label for
the window, use one of w:box-label-mixin, w:top-box-label-mixin,
or w:centered-box-label-mixin flavor (all described in 3.4.4, Boxing
the Label), depending on where the label should appear.

Labels on menus and temporary windows are usually defined by a
keyword or argument of the functional interface or flavor. See the appro-
priate function or flavor for the window you are creating.

Include the :save-bits initialization option or the :set-save-bits method,
described in paragraph 5.6, Bit-Save Arrays.

Shadow borders are typically used only on temporary windows.

To include them on your window, use the w:shadow-borders-mixin,
described in paragraph 5.8.1, Flavors and Methods, of the Temporary
Windows paragraph.

Continued

1-22

Window System Reference



(Continued)
Choose As Many
As Desired

Window System Concepts

Explanation and Reference

What should happen
if the window is not
Sfully visible?

Be selectable?

Be associated with a
process?

Should the process,
if any, be reset when
it tries to write on a
window that is not
exposed?

Should the window
accept input?

Use line truncation
rather than
wrapping?

Typically, a window that is not fully visible is displayed if it or one of its
superiors has a bit-save array. However, you can also choose one of the
following behaviors:

W To display the contents of the partially visible window that does not
have a bit-save array, use the w:show-partially-visible-mixin.

W To display only the borders of a window with the inside of the window
a shade of gray, use either the w:gray-deexposed-right-mixin or the
w:gray-deexposed-wrong-mixin.

M To never display the window (even it could become partially visible),
until it is first explicitly exposed, use the w:initially-invisible-mixin.

These mixins are all described in paragraph 5.9.3, Control of Partial
Visibility.

The user cannot select a window unless you make that window selectable.
In general, you can choose to make a window selectable in one of three
ways:

B To make the window selectable in and of itself, use the w:select-
mixin, described in paragraph 6.2, How Programs Select Windows.

B To make a window selectable by selecting its superior, use w:not-
externally-selectable-mixin, described in paragraph 6.3.2, Selection
With TERM and SYSTEM Keys.

B To make a window serve as the selected window for all its inferiors,
use w:alias-for-inferiors-mixin, described in paragraph 6.3.2,
Selection With TERM and SYSTEM Keys.

The last two choices are called selection substitutes.

To associate a process with a window, use w:process-mixin, described in
paragraph 6.6.2, Process-Related Methods and Flavors.

Use w:reset-on-output-hold-flag-mixin, described in paragraph 6.6.2,
Process-Related Methods and Flavors.

Use w:stream-mixin, described in paragraph 8.2, Input Buffers. Typically,
input windows are appropriate only for windows such as I/0 buffers. For
windows that can be less restricted than interaction windows or I/O
buffers, consider using a temporary input window.

Use w:line-truncating-mixin, described in paragraph 7.4.4, End-of-Line
Exceptions.

Continued

Window System Reference

1-23



Window System Concepts

(Continued)
Choose As Many
As Desired

Explanation and Reference

What kind of mouse
handling?

Should the window
scroll?

Include graphics?

If the window is
smaller than the
main screen, should
it be greedy about
giving up the mouse?

When the user clicks the mouse, you can specify whether the system sees
a mouse click or a mouse blip (a list that includes the click, the mouse

position, and the window).

M To include a mouse click, use w:kbd-mouse-buttons-mixin.

B To include a mouse blip, use w:list-mouse-buttons-mixin.

Both of these flavors are described in paragraph 11.4.2, Encoding Mouse

Clicks as Characters.

Use w:scroll-bar-mixin, described in paragraph 11.8, Scrolling.

Use w:graphics-mixin for drawing simple graphics. Use the GWIN flavors
for graphic objects and more complicated graphics. These flavors are
described in paragraph 12.4, Methods and Flavors to Draw Graphics

Images.

If so, use the w:hysteretic-window-mixin and set the sensitivity of relin-
quishing the mouse with either the :hysteresis initialization option or the
:set-hysteresis method, described in paragraph 11.5, Ownership of the

Mouse.

1-24

Window System Reference



BASIC WINDOWS

Introduction

2.1 This section briefly describes some of the basics underlying the Explorer
window system: its package structure, how to create an instance of a window,
and the basic window flavors.

Window System
Packages

2.2 The window system code is in three packages:

M The W package contains new code for this release and inherits code from
the TV package.

B The TV package contains code from earlier releases.

m The GWIN package contains the code that handles the graphics objects
and worlds.

Some symbols have definitions in both the W and the TV packages. In these
cases, you should use the code in the W package; it is updated and typically
more efficient to use. If desired, you can access the version of the symbol
defined in the TV package by including an explicit package prefix. (For
example, invoking tv:menu.)

Typically, you can avoid explicitly specifying a package name within code by
including the appropriate package name in the file attribute line. Thus, within
a file that contains code in the W package, you can omit all the W and TV
package prefixes except when you want to use the obsolete (that is, the TV)
version of a symbol.

Window System Reference

2-1



Basic Windows

Creation of
Windows

2.3 When you want to create a flashy and sophisticated user interface, espe-
cially involving mouse sensitivity or automatic updating, you should consider
creating your own windows (and your own window flavors, perhaps).

To create a window, you should use the make-instance function.

make-instance flavor-name &rest initialization-options Function

Creates, initializes, and returns a new instance of the specified flavor. The
initialization-options argument contains alternating keywords and values; the
keywords must be initialization options accepted by the flavor you are using.
The initialization options accepted by various window flavors are described in
this manual.

When executed, this example prompts you for the upper left and lower right
corners of the window, then creates an instance of a Lisp Listener with large
characters and lots of vertical space between lines.

(setq my-window (make-instance ‘w:lisp-listener
:borders 4
:font-map (list fonts:bigfnt)
:vsp 8
:edges-from :mouse)

However, this code only creates an instance; it does not expose or select that
instance. (Technically, the window instance is deactivated.) To select the
window, you must send a :select message to the window instance, as follows:

(send my-window :select)

You can also expose the window instance at the time of creation by including
an :expose-p initialization option with a value of t, as shown in the following
code:

(setq my-window (make-instance ‘w:lisp-listener
:borders 4
:font-map (list fonts:bigfnt)
:vsp 8
:edges-from :mouse
:expose-p t)

For more information on the make-instance function, see the Explorer Lisp
Reference manual.

You can also obtain a window from a resource rather than explicitly creating
your own. (A resource is a pool of interchangeable objects that can be used
temporarily and then returned to the pool.) Windows as resources are
explained more fully in paragraph 18.7, Window Resources.

Window System Reference



Basic Windows

Basic Window
Flavors

2.4 All window flavors are ultimately based on the w:minimum-window
flavor, which includes the w:sheet flavor component. A simple instantiable
flavor often used for testing is the w:window flavor. Applications typically use
more special-purpose windows than instances of w:window.

w:minimum-window Flavor

w:sheet

w:window

Provides the minimum functionality needed for a window. All existing
window flavors are built on the w:minimum-window flavor; you should
include this component or a mixin that contains this component in any
window flavors that you define. This flavor itself is made of the following
components:

w:essential-window w:essential-set-edges
w:essential-activate w:essential-mouse
w:essential-expose

The w:minimum-window flavor has no methods of its own; all are inherited
from these components. At times—such as in the debugger—you may encoun-
ter methods of these component flavors. You may also encounter methods of
w:sheet, a component of w:essential-window. As a programmer, you usually
need not pay attention to the distinctions between these flavors. In this man-
ual, all the methods, instance variables, and initialization options of
w:minimum-window are documented as being of windows rather than of any
specific flavor.

Flavor

Provides the structure required by the low-level display primitives. w:sheet is
a component of w:essential-window. In this manual, methods defined by
w:sheet are documented as being of windows and screens.

Flavor

Includes several mixins that provide most of the generally useful features,
including the ability to use fonts, perform graphics operations, and create
labels and borders. This flavor is normally used only for testing purposes
because it contains everything but the kitchen sink.

Window System Reference

2-3






OUTSIDE EDGES OF WINDOWS

Introduction

3.1 Margins are located at the edges of a window. Each edge of a window
has a separate margin. Each margin can contain an item such as the

following:

W A border, a rectangular box drawn around the window. Borders delineate
where a window is drawn on the screen.

B A text string called a label, which helps identify the window. Although
labels can be inside or outside the borders, the label is usually inside.

These margin items are discussed in this section. Another typical margin item

is a scroll bar.

To prevent text from being obscured by the border or by margin items,
windows leave a small space—typically one pixel wide—between the border
and the text. The width of this space is called a border margin width.

inside

edge \

outside

edge ™~

scroll
bar
margin~
area

border
margin —»
area

Text
(forms in the listener...)

The inside of
a window is
the portion of
the window that
is NOT in the
margins.

border
margin
width
area

/

label margin area

bottom margin size

possible

Window System Reference

31



Outside Edges of Windows

Margins 3.2 In a window, margins are the area between the inside and outside edges
of the window. Margins may contain margin regions, which in turn may
contain margin items. In any flavor of window, one of the margin items is the
innermost; this item is the item closest to the inside part of the window. Each
successive margin item is outside the previous one; the last margin item is just
inside the edges of the window. Each margin item is created by mixing in a
flavor. The flavors you mix in and the order that the flavors are mixed in
control what items are in the margins and the order of the items. Margin item
flavors closer to the beginning of the component flavor list are closer to the
outside of the margins. The w:window flavor has w:borders-mixin and
w:label-mixin for components, in that order, so the label is inside the
border.

:margins Method of windows

Returns four values: the sizes—measured in pixels—of the left, top, right, and
bottom margins, respectively. Each value is the sum of the sizes of the
borders, labels, and anything else that pertains to that margin. For a window
with no margins, all four values are zero.

:left-margin-size Method of windows
w:sheet-left-margin-size window Macro
:top-margin-size Method of windows
w:sheet-top-margin-size window Macro
:right-margin-size Method of windows
w:sheet-right-margin-size window Macro
:bottom-margin-size Method of windows
w:sheet-bottom-margin-size window Macro

Returns the size of the respective margin in pixels. There are no methods to
set these sizes nor initialization options to initialize them. The margin sizes
are always computed from the labels, borders, and other margin items as
described later in this section.

The macros return the value of the respective sizes of window. The :outside-
accessible-instance-variables option of the defflavor function creates these
macros.

Borders 3.3 A border is the rectangular box drawn around a window to show where
the edges of the window are located.

Borders also include space left between the borders and the inside of the
window. The thickness of this space is called the border margin width. This
space prevents characters and graphics next to the edge of the inside of the
window, or the next-innermost margin item, from merging with the border.

You can control the thickness of each of the four borders separately or of all
of them together. You can also specify your own function to draw the borders
if you want something more elaborate than simple lines.

If your application is running in a color environment, you can also set the
color of the border by using the :border-color operation, as explained in
paragraph 19.4, Initialization Options and Methods Used With Color
Windows.

3-2 Window System Reference



Outside Edges of Windows

w:borders-mixin Flavor

Creates the borders around windows that you often see when using the
Explorer system.

:borders argument Initialization Option of w:borders-mixin

Gettable, settable. Default: 1.
Initializes the w:borders instance variable to the parameters of the borders.
argument can have any of the following values:

E nil, which means there are no borders at all.

B Symbols or numbers that apply to each of the four borders. These can be
either of the following:

= A symbol — The function that draws and defines the default thick-
ness of the border in pixels.

= A number — The thickness of the border in pixels.

W A list of the form (left top right bottom) that specifies each of the
borders at the four edges of the window. The items of the list can be any
of the following:

m A symbol — The function that draws and defines the default thick-
ness of the border in pixels.

®= A number — The thickness of the border in pixels.
» nil — The edge should not have a border.

m t — The border should be drawn by the default function that also
defines the thickness of the border in pixels.

B A list of the form (keywordl specl keyword2 spec2...) — The borders at
the edges selected by the keywords, which can be :left, :top, :right, and
:bottom.

B A cons (function . thickness) — The function that draws the border and
the thickness the border will be.

Note that setting border specifications to a border width of 0 is not the same
as giving nil as the argument to this option. When 0 is the specified border
width, space is allocated for the border margin width. When nil is the speci-
fied border width, space is not allocated.

:border-margin-width n-pixels Initialization Option of w:borders-mixin

Gettable, settable. Default: 1.

Initializes the w:border-margin-width instance variable to the width of the
white space in the margins between the borders and the inside of the window.
n-pixels is specified in pixels. If the specification for the border is nil, then
:border-margin-width does not produce a border margin, regardless of the
value of n-pixels; if the specification for the border is 0, however, :border-
margin-width does produce a border margin.

Window System Reference

3-3



Outside Edges of Windows

Border Functions

3.3.1 w:draw-rectangular-border is the only border function supplied by
the system. ‘

widraw-rectangular-border window alu left top right bottom Function

Draws a one-pixel wide border around a window by default.

To define your own border function, create a Lisp function that takes six
arguments: the window on which to draw the label, the ALU argument used
to draw the label, and the left, top, right, and bottom edges of the area that
the border should occupy. The returned value is ignored. The function runs
inside the w:sheet-force-access macro. Place a w:default-border-size prop-
erty on the name of the function whose value is the default thickness of the
border; the default thickness is used when a specification is a non-nil symbol.

If you specify a border function in the argument to the :borders message,
you should specify both the name of the function and its width, as in the
following example that uses the existing border function:

(make-instance ‘w:window

cexpose-p t

:edges-from :mouse

:borders ‘((w:draw-rectangular-border . 8)
(w:draw-rectangular-border . 8)
(w:draw-rectangular-border . 4)
(w:draw-rectangular-border . 2))

‘name "Text Window"

:label :top

)

This code prompts you to specify the upper left and lower right corners of the
window, then creates and exposes it with a top border 8 pixels thick, a left
border 6 pixels thick, a bottom border 4 pixels thick, and a right border 2
pixels thick.

Deleting Borders on 3.3.2
Full-Screen Windows
w:full-screen-hack-mixin Flavor

Required flavor: w:borders-mixin

Offers the user the option of requesting that these windows have no borders
when they occupy the full screen. This flavor is included in many system
flavors, such as Lisp Listeners and Zmacs frames. '

w:flush-full-screen-borders &optional (flush-p t) Function

Eliminates (when flush-p is t) or reinstates (when flush-p is nil) the borders
of all full-screen-sized windows that use the w:full-screen-hack-mixin flavor.

34

Window System Reference



Outside Edges of Windows

Labels

Names of Windows

‘name name

The w:label-mixin
Flavor

w:label-mixin

3.4 A label is a text string within the margin of a window. It is possible to
have more than one line of text within the margin. The default for the label
of a window is its name. For example, the label of the initial Lisp Listener is
Lisp Listener 1.

3.4.1

Initialization Option of w:minimum-window
Gettable. Default: The flavor name and a counter ID

Sets the name of a window to name, which can be either a symbol or a string.
The main use of the name is for the default value for the label, if there is a
label.

3.4.2

Flavor

Creates the labels in the margins of windows that you often see when using
the Explorer system. w:label-mixin allows you to control the text of the
label, the font in which the label is displayed, and whether the label appears
at the top or bottom of the window.

w:label Instance Variable of w:label-mixin

Describes the label of the window. It is either nil (for no label) or a list of

length eight whose elements are one of the following:

m w:label-left, w:label-top, w:label-right, and w:label-bottom — The
rectangle allocated to the label. All four edges are relative to the
window’s outside upper left corner.

®m w:label-font — The font to use for the label.

® w:label-string — The string to display in the label.

m w:label-vsp — The separation between lines in the label.

m w:label-centered — Whether the label should be centered. When
w:label-centered is non-nil, the label text is horizontally centered.

:label-size Method of w:label-mixin

Returns the width and height, in pixels, of the area occupied by the label.

:1abel specification Initialization Option of w:label-mixin

Gettable, settable.

Sets the string displayed as the label, the font in which the label is displayed,
and whether the label is at the top or the bottom of the window. If you do not
specify every parameter, the parameters not specified default to standard
values for :label. The :set-label method overwrites any previous specifi-
cations. Any parameters not specified use the default values.

Window System Reference



Outside Edges of Windows

By default, the string is the same as the name of the window, the font is the
screen’s standard font for :label, and the label is at the bottom of the
window.

specification can be one of the following:

nil — No label.

t — The label is given all the default characteristics.

itop — The label is put at the top of the window.

:bottom — The label is put at the bottom of the window.

A string — The text displayed in the label.

A font — The font for the text displayed in the label.

A list of the form (keywordl argl keyword2 ...) — The attributes corre-
sponding to the keywords are set; the rest of the attributes default. For
keywords that do not require arguments, you do not supply one.

The following keywords can be given:

Keyword and

Argument Description

:top The label is put at the top of the window.

:bottom The label is put at the bottom of the window.

‘centered The label is printed horizontally centered,
rather than starting at the left edge.

:string string Thg text in the label is the text specified by
string.

:font font-specifier The font used for the text in the label is
specified by font-specifier, which can be any
font specifier.

'VSp n-pixels When the label has multiple lines, the number
of pixels separating the lines is specified by
n-pixels.

:color color In a color environment, this is the foreground

color of the label (that is, the color of the text
of the label).

:background color In a color environment, this is the background
color of the label (that is, the color behind the
text of the label).

3-6

Window System Reference



Outside Edges of Windows

For example, consider the following labels:

P {TE0E T-EREMP 182 (defun label-example2 ()
(setq 11 (make-instance ‘w:window
:label “default-label
:top 50 :left 50
_ :height 50 :width 300))
DEFRULT-LABEL (setq 12 (make-instance ‘w:window
:label fonts:bigfnt
This 1s a string.l :top 125 :left 50
. theight 50 :width 300))
Window 10 (setq 13 (make-instance “w:window
:label "A string label"
Ts7is a string.N :top 200 :left 50
:height 50 :width 300))
(setq 14 (make-instance ‘w:window

his is a string.

A string label

:label ; A list of keyword-value pairs
ThifiTslalbinctlhat extends ‘(:centered
over several lines :string "A label that extends
over several lines" ; Note the explicit carriage return
:font fonts:bigfnt
ivsp 5)
ttop 2758 :left 50

. :height 50 :width 800))
(send 11 :expose)

(send 11 :string-out "This is a string.")
(send 12 :expose)

(send 12 :string-out "This is a string.")
(send 13 :expose)

(send 13 :string-out "This is a string.")
(send 14 :expose)

(send 14 :string-out "This is a string.")

Positioning the Label 3.4.3

w:top-label-mixin Flavor

Causes the label to appear in the top margin of the window by default instead
of at the bottom. The w:top-label-mixin flavor does not override an explicit
specification of the label position.

w:centered-label-mixin Flavor
Required flavor: w:label-mixin -

Centers the label string horizontally within the width of the window. Unlike
witop-label-mixin, the w:centered-label-mixin flavor does override an
explicit specification of the label position.

Boxing the Label 3.4.4 These boxing mixins make the label appear to be in a box by drawing
a line, one pixel in width, just on the inside of the label. The other three sides
of the box are drawn by the window’s borders. Because the existence of a
label adjusts the size of the margin and thus the border, the calculations for
the border must be made before the adjustment for the label. Therefore, the
w:borders-mixin must precede the various boxing mixins or the label
appears on top of the border.

w:box-label-mixin Flavor
Required flavor: w:label-mixin

Makes the label appear to be in a box by drawing a line just on the inside of
the label. This combines with the window’s borders, which surround the other
three sides of the label, to make a box. The extra line is present only if the

Window System Reference 3-7



Outside Edges of Windows

label is turned on. Menus use w:box-label-mixin. For example, any menu
you get from the Split Screen option in the System menu shows the label with
a box around it.

:label-box-p t-or-nil Initialization Option of w:box-label-mixin
Default: t
Puts a box around the label if t-or-nil is t. If this option is nil, the box around
the label is inhibited.

w:top-box-label-mixin Flavor

w:bottom-box-label-mixin Flavor

Makes the label appear to be in a box, either at the top or the bottom of the
window, respectively, by drawing a line just on the inside of the label. These

flavors must be combined with the w:borders-mixin flavor.

For example, consider the following labels:

; The first window uses the default label for w:window, so it does not have a separate defflavor.

(defflavor wd-top-label () (w:top-label-mixin w:window)
(:default-init-plist :height 50 :width 300))

(defflavor wd-centered-label () (w:centered-label-mixin w:window)
(:default~init-plist :height 50 :width 300))

(defflavor wd-bottom-box-label () (w:borders-mixin w:bottom-box-label-mixin w:wincdow)
(:default-init-plist :height 50 :width 300))

(defflavor wd-top-box-label () (w:borders-mixin w:top-box-label-mixin w:window)
(:default-init-plist :height 50 :width 300))

(defflavor wd-centered-box-label () (w:borders-mixin w:box-label-mixin

w:centered-label-mixin w:window)

(:default-init-plist :height 50 :width 300))

(defun label-example ()
(setq wl (make-instance “w:window :label ‘default-label
:top 50 :left 50
:height 50 ; For the others, these options
:width 300)) ; are in the default-init-plist.
(setq w2 (make-instance ‘wd-top-label :label “top-label
:top 125 :left 50))
(setq w3 (make-instance ‘wd-centered-label :label ‘centered-label
ttop 200 :left 50))
(setq w4 (make-instance ‘wd-bottom-box-label :label “box-label
:top 50 :left 375))
(setq w5 (make-instance ‘wd-top-box-label :label ‘top-box-label
:top 125 :left 378%))
(setq w6 (make-instance ‘wd-centered-box-label
:label ‘centered-box-label
ttop 125 :left 375))
(send wl :expose) (send w2 :expose) (send w3 :expose)
(send w4 :expose) (send w§ :expose) (send w6 :expose)

> (1abeT-example)

I:EFHULT--LHBEL L:Jw:tnm
TOP-LABEL ~BUR-LABEL
r CENTERED-LABEL [T CENTERED-BUR-LFEEC ]

3-8 Window System Reference



Outside Edges of Windows

Delaying Redisplay 3.4.5
of a Label

w:delayed-redisplay-label-mixin Flavor
Required flavor: w:label-mixin

:delayed-set-label specification Method of w:delayed-redisplay-label-mixin

:update-label Method of w:delayed-redisplay-label-mixin

Adds the :delayed-set-label and :update-label methods to your window.
The :delayed-set-label method changes the label in such a way that the label
is not actually displayed until the :update-label method executes. This is
especially useful for programs that suppress redisplay when there is type-
ahead; the user’s commands can change the label several times, and you may
want to suppress the redisplay of the changes in the label until there is no
type-ahead. Paragraph 8.6.1, I/0 Buffers and Type-Ahead, discusses type-
ahead.

w:sheet-label-needs-updating window Macro

Determines whether the :update-label method should update the label.
w:label-needs-updating is non-nil if :delayed-set-label has executed but
the updated label has not been displayed yet. The :outside-accessible-
instance-variables option of the defflavor function creates this macro.

Margin Regions 3.5 Margin regions are a general facility for allocating space in a window’s
margin for specific purposes. Each region can display text or graphics and can
be mouse-sensitive. Margin choices are implemented using margin regions.

w:margin-region-mixin Flavor
Required flavors: w:essential-mouse, w:essential-window
Gives a window the ability to have margin regions. This allows the window to
have separate mouse handling in parts of the margins.

:set-region-list new-region-list Method of w:margin-region-mixin

Sets the list of margin regions. The new list should be a list of margin region
descriptors as described under w:region-list, but only the first three elements
of each descriptor need be filled in. The rest are set up automatically.

:region-list list-of-descriptors Initialization Option of w:margin-region-mixin
Sets the list of margin region descriptors. Each descriptor specifies one
margin region and is a list of this form:

(function margin size left top right bottom)

The list can be longer than seven, but you must define the meaning of the
extra elements. The following table gives the meaning of the seven standard
elements and names of the macros provided to access them. Each macro

Window System Reference 3-9



Qutside Edges of Windows

takes the current region as an argument and returns the margin region object

for the current region.

Standard

Element Macro Description of Macro

Junction wimargin-region-function = Handles various operations on the margin region. It
is called with a method name as the first argument,
so it could be a flavor instance, but no flavors are
predefined for the purpose. See paragraph 3.5.1,
About w:margin-region-function, for more details.

margin w:margin-region-margin The name of the margin that this region lives in;
either :left, :top, :right, or :bottom.

size wimargin-region-size The thickness in pixels of the margin region,

left, top, right,
and bottom

w:margin-region-left,
w:margin-region-top,
w:margin-region-right,
and
w:margin-region-bottom

perpendicular to the edge it is next to. (The other
dimension is controlled by the size of the window,
which can be diminished by space already reserved
for other margin items.)

The edges of the rectangle assigned to the margin
region. If positive, they are relative to the outside
upper left corner of the window. If negative, they are
relative to the outside lower right corner. These values
are computed by the :redefine-margins method,
which divides the margin space; they are recorded
here so that the margin region can be displayed and
found by the mouse.

For example, the :mouse-click method of w:margin-region-mixin, shown
following, processes mouse clicks other than double-click right.

(defmethod (margin-region-mixin :mouse-click (button x y)
(cond ((and current-region (not (= button #\mouse~r-2)))
(funcall (margin-region-function current-region) :mouse-click x y
current-region

w:margin-region-area descriptor

button)
t)))

The margin region descriptor can be longer than seven. Additional elements
are not used by w:margin-region-mixin and therefore can be used by
higher-level facilities to record their own information with each margin

region.

Function

Returns the four edges of the rectangle allocated to the margin region
specified by the descriptor argument, all relative to the window's outside
upper left corner. The w:margin-region-area function can only be used
inside of methods of the window whose margin region is being operated on.

For example:

(defmethod my-flavor :my-method ()
(multiple-valve-bind (left top right bottom)
(margin-region-area
(assoc ’my-region-function region-list :test #°eq))

3-10

Window System Reference



About
w:margin-region-
function

Outside Edges of Windows

3.5.1 The w:margin-region-function macro, mentioned in the table on the
preceding page, handles various operations on the margin region.

The function of a margin region should handle the following methods (key-
words). For all of these, the descriptor argument is described above in the
discussion of w:region-list.

m :refresh descriptor — The :refresh method should draw this region on
the screen in the position specified.

B :mouse-enters-region descriptor — Moving the mouse blinker into a
region invokes the :mouse-enters-region method.

B :mouse-leaves-region descriptor — Moving the mouse blinker out of a
region invokes the :mouse-leaves-region method.

B :mouse-moves x y descriptor — Moving the mouse blinker while within a
region invokes the :mouse-moves method. Moving the mouse blinker
into a region also invokes the :mouse-moves method after invoking the
:mouse-enters-region method. The x and y arguments specify the new
mouse blinker position, relative to the outside of the window.

B :mouse-click x y descriptor mouse-char — With the exception of double-
click-right, clicking a mouse button on a region invokes the :mouse-click
method. If the method does nothing, the mouse click has no effect. The
argument mouse-char is like that of the :mouse-click window method.

B :who-line-documentation-string descriptor — This method returns a
string or list for the mouse documentation window explaining the mean-
ing of mouse clicks when a mouse button is clicked on the item where the
mouse blinker is located. The structure of the list is described with the
:who-line-documentation-string method in paragraph 11.6, How
Windows Handle the Mouse.

Usually, the function is defined to have a case statement with each element
being the same as a method name. The margin region descriptor itself is
always one of the arguments, to identify the region being operated on.

Window System Reference

3-11



Outside Edges of Windows

For example, consider the following code. Note that this code does not
implement all the needed code for line areas.

(defun line-area-region (op &optional ignore y ignore bd)
(declare (:self-flavor w:line-area-text-scroll-mixin))
(case op

((:refresh :mouse-moves) nil)
(:mouse-enters-region
i+ Change the mouse to a rightward pointing arrow.
(w:mouse-set-blinker-definition :character 13. 6. :on
:set-character
w:mouse—-glyph-thick-right-arrow))
(:mouse-leaves-region
i+ Leaving the line area region; change the mouse back.
(w:mouse-standard-blinker))
(:mouse-click
i+ If the mouse is near an item, send a mouse blip indicating
;3 which item it is.
(let (item line)
(if (and (>= y (w:sheet-inside-top))
(setq line (+ top-item (w:sheet-line-no nil y)))
(< line (array-active-length items)))
(progn
(setq item (aref items line))
(send self :force-kbd-input
*(:line-area ,item ,self ,bd)))
;; else
(beep))))
(:who-line-documentation-string
;3 Display defauit mouse documentation for line areas.
(send self :line-area-mouse-documentation))))

Defining 3.5.2 Assume that you want to define something called a frobboz that goes
Margin Item Flavors in a window’s margins in the same way that labels and borders do. You create
a flavor called frobboz-margin-mixin that implements the feature.

Your frobboz-margin-mixin flavor should have certain instance variables,
which will be used only by the methods of frobboz-margin-mixin, so the
instance variables’ precise format is up to you. The following examples
describe these instance variables:

M The current-frobbozes instance variable should be the specification of
what frobbozes this window should have. It might record text to display
for the frobbozes, a font to use, and so on.

B The frobboz-margin-area instance variable should record the rectangle
within the window where the frobbozes should go. Everything that deals
with the location of the frobbozes on the screen should act on the basis of
the value of this variable. It is recommended that you use a list of four
values: the left, top, right, and bottom edges of the rectangie, all relative
to the upper left outside corner of the window.

Some margin mixins have only a single variable whose value is a list contain-
ing both the contents and the position of the margin item.

3-12 Window System Reference



Outside Edges of Windows

The following example shows how to define your frobboz-margin-mixin
flavor. The :before :init method verifies the values of the current-frobbozes
instance variable.

(defflavor frobboz-margin-mixin
( (current-frobbozes nil) frobboz-margin-area)

QO
(:required-flavors w:minimum-window)
(:inittable-instance-variables current-frobbozes))

(defmethod (frobboz-margin-mixin :before :init) (ignore)
(setq current-frobbozes
(cancnicalize-and-validate-frobboz-spec current-frobbozes)))

Now you must create methods for at least two standard operations to perform
margin computation and display, and to interface frobboz-margin-mixin to
the rest of the system. These methods are :compute-margins and :refresh-
margins. You also may wish to provide the user with a method to change the
window’s frobbozes. This method should use the :redefine-margins method.

:compute-margins Im tm rm bm ) Method of windows

The system uses :compute-margins to find out how much space is needed in
each margin of the window by borders, labels, and anything else. Each flavor
that implements a kind of margin item must define a method for it.
:compute-margins uses the :pass-on method combination so the values from
one method become the arguments to the next. (See the Explorer Lisp
Reference manual for a description of the :pass-on method.) The Im, tm,
rm, and bm arguments are interpreted as the width in pixels for each margin.
Each method increments one or more of these arguments by the amount of
space needed by that mixin.

:refresh-margins Method of windows

The :refresh method of tviminimum-window erases the margins, then calls
the :refresh-margins method. The :refresh-margins method and its :before
and :after methods redraw the contents of the window margins.

Assume that the frobbozes always go in the left margin. Consequently, it is
always the left margin’s width that is incremented, and the others are
returned just as they were passed. Also assume that frobboz-margin-width is
a function you have defined that computes the width of space that the frob-
bozes need.

In addition to returning modified versions of its arguments, the :compute-
margins method also sets up the value of frobboz-margin-area. This is the
only place it is necessary to set that variable. By recording the position of
each margin item this way, you take into account how one margin item affects
the position of the others. For example, the frobbozes might fall inside the
borders, and then the Im, tm, rm, and bm values will already contain the
width of the borders. In this case, frobboz-margin-area describes a rectangle
that is within the borders.

The following is one way to define the :compute-margins method:

(defmethod (frobboz-margin-mixin :compute-margins)
(Im tm rm bm)
(let ((wid (frobboz-margin-width current-frobbozes)))
(setq frobboz-margin-area
(list 1m tm (+ lm wid) (- w:height bm)))
(values (+ 1lm wid) tm rm bm)))

Window System Reference

3-13



Outside Edges of Windows

Usually an additional mixin-specific method is introduced into this method,
as follows:

(defmethod (frobboz-margin-mixin :compute-margins)
(Im tm rm bm)
(send self :recalculate-frobboz-margins 1lm tm rm bm))

(defmethod (frobboz-margin-mixin :recalculate-frobboz-margins)
(Im tm rm bm)
(let ((wid (frobboz-margin-width current-frobbozes)))
(setq frobboz-margin-area (list 1lm tm (+ 1lm wid) (- w:height bm)))
(values (+ lm wid) tm rm bm)))

This way, other mixins can be defined to modify where the frobbozes go by
replacing the :recalculate-frobboz-margins method.

You must also provide a method for :refresh-margins to draw the frobbozes
in the margin. You can assume that the margin is clear to start with.

(defmethod (frobboz-margin-mixin :after :refresh-margins) ()
(w:sheet-force-access (self) .
(draw-frobbozes current-frobbozes frobboz-margin-area))}

You may wish to provide the user with a method to change the window’s
frobbozes. This method should use the :redefine-margins method.

:redefine-margins Method of windows

Recomputes how much margin space is needed for all of the margin items by
invoking the :compute-margins method and then actually changes the win-
dow margin sizes, if necessary.

If the margin sizes have changed, then the window is erased and :refresh-
margins is invoked. The w:restored-bits-p instance variable (present in all
windows) is left set to nil. If the margin sizes have not changed, no output is
done, and w:restored-bits-p remains set to t. All this is done using the
irefresh method. For example:

(defmethod (frobboz-margin-mixin :set-frobbozes) (new-frobbozes)
(setq current-frobbozes
(canonicalize-and-validate-frobboz-spec new-frobbozes))
(send self :redefine-margins)
(when w:restored--bits-p
(w:sheet~force-access (self)
(erase-frobboz-area frobboz-margin-area)
(draw-frobbozes current-frobbozes frobboz-margin-area))))

The frobbozes are explicitly erased and drawn when the total sizes of the
margins have not changed (and therefore no screen updating has been
done), in case the contents of the frobbozes have changed.

3-14

Window System Reference



SIZES AND POSITIONS

Introduction

4.1 This section discusses how to examine and set the sizes and positions of
windows. Many different methods let you express things in different forms
that are convenient in varying applications. Sizes are usually specified in units
of pixels. Widths are sometimes referred to in units of characters, and heights
are sometimes expressed in units of lines. The number of horizontal pixels in
one character is called the character width, and the number of vertical pixels
in one line is called the line height; these two quantities are explained in the
introduction to Section 7, Output of Text.

A window has two parts: the inside and the margins. Some of the methods in
the following paragraphs deal with the outside size (including the margins),
and some deal with the inside size. Margins include borders and labels, while
the inside is used for drawing characters and graphics.

0,0

' Outside width |

Inside width

margin width

My Superior Window 1

Initialization
Options for
Sizes and Positions

4.2 Because a window’s size and position are usually established when the
window is created, this paragraph begins by discussing the initialization
options that let you specify the size and position of a new window. For your
convenience, there are many ways to express what you want. The idea is that
you specify various things, and the window system computes whatever you

. leave unspecified. For example, if you specify the left edge and the width of a

window, the position of the right edge is computed using the left edge and
width.

If you do not specify some parameters, defaults are used. Each edge defaults
to the corresponding inside edge of the superior window. For example, if you
specify the position of the left edge but do not specify the width or the posi-
tion of the right edge, then the right edge defaults to the inside right edge of

Window System Reference

4-1



Sizes and Positions

left left-edge
:x left-edge

:top top-edge
y top-edge

the superior. If you specify the width but neither edge position, the left edge
defaults to the inside left edge of the superior; the same goes for the height
and the top edge.

Before a window can be exposed, its position and size must be such that it fits
within the inside of the superior window. If a window is not exposed, there
are no constraints on its position and size; it may overlap its superior’s
margins or even be outside the superior window altogether.

Initialization Option of windows
Initialization Option of windows
Sets the left edge of the window relative to the left edge of the window’s
superior. left-edge specifies the offset of the window’s left edge in pixels.
Initialization Option of windows
Initialization Option of windows

Sets the top edge of the window relative to the top edge of the window’s
superior. top-edge specifies the offset of the window’s top edge in pixels.

:position position-list Initialization Option of windows

Sets the left and top edge of the window relative to the left and top edges of
the window’s superior. position-list is a list of the form (left-edge top-edge)
where left-edge and top-edge specify the offset of the window’s left and top
edges, respectively, in pixels.

rright right-edge Initialization Option of windows

Sets the right edge of the window relative to the left edge of the window’s
superior. right-edge specifies the offset of the window’s right edge in pixels.

:bottom bottom-edge Initialization Option of windows

Sets the bottom edge of the window relative to the top edge of the window’s
superior. bottom-edge specifies the offset of the window’s bottom edge in
pixels.

redges edges-list Initialization Option of windows

Sets the edges of the window. edges-list is a list of the form (left-edge
top-edge right-edge bottom-edge) where the values of left-edge, top-edge,
right-edge, and bottom-edge specify the new edges of the window in pixels.

NOTE: All edge parameters are relative to the outside of the superior
window.

swidth outside-width Initialization Option of windows
theight outside-height Initialization Option of windows

:size size-list

Initialization Option of windows

Sets the outside width and/or height of the window to the value of the
argument(s). The arguments are expressed in pixels. size-list is a list of the
form (outside-width outside-height).

Window System Reference



Sizes and Positions

:inside-width inside-width Initialization Option of windows
:inside-height inside-height Initialization Option of windows
:inside-size size-list Initialization Option of windows

Sets the inside width and/or height of the window to the value of the
argument(s). The arguments are expressed in pixels. size-list is a list of the
form (inside-width inside-height).

:character-width spec Initialization Option of windows
:character-height spec Initialization Option of windows

Another way of specifying the width or height of the window. spec is either a
number of characters or a character string. The inside width or height,
respectively, of the window is made wide or high enough to display those
characters in the current font.

:integral-p t-or-nil Initialization Option of windows
Default: nil

Specifies whether the inside dimensions of the window can contain a number
of lines (no fractional parts) and characters. If t is specified, the inside
dimensions of the window are made to be an integral number of characters
wide and lines high by moving the margins to make the window larger.

:edges-from source Initialization Option of windows
Specifies that the window is to use the edges (position and size) specified by
source.

The source argument can be one of the following:

B A string — The inside size of the window is made large enough to display
the string in the |current font.

B A list of the form (left-edge top-edge right-edge bottom-edge) — These
edges, relative to the superior, are used exactly as if you had used the
:edges initialization option.

® :mouse — The user is asked to point the mouse to where the top left and
bottom right corners of the window should go. (This is what happens
when you use the Create command in the System menu.)

® A window — That window’s edges are copied.

nimum-width n-pixels Initialization Option of windows
nimum-height n-pixels Initialization Option of windows

(==

These initialization options, in combination with the :edges-from :mouse
initialization option, specify the minimum size of the rectangle that can be
accepted from the user. If the user tries to specify a size smaller than one or
both of these minimums, the system sounds a beep and prompts the user to
start over again with a new top left corner. n-pixels is the minimum width or
height in pixels.

Window System Reference 4-3



Sizes and Positions

Methods for

Sizes and Positions

The Option Argument

The Methods

4.3 The methods discussed in the following paragraphs examine or change
the size or position of a window.

4.3.1 Many methods that change the window's size or position use an argu-
ment called option. This argument deals with new sizes or positions that are
not valid. A size may not be valid because it may be so small that there is no
room for the margins. If the new width is smaller than the sum of the sizes of
the left and right margins, then the new width is not valid. A new setting of
the edges is also invalid if the window is exposed and the new edges are not
enclosed inside its superior. In all of the methods that use the option
argument, option can be either nil or :verify:

B nil means that you want to set the edges, but if the new edges are not
valid, an error should be signaled.

m :verify means that, rather than changing the edges, you want to check
whether the new edges are valid. If the edges are valid, the method with
:verify returns t; otherwise, it returns two values: nil and a string
explaining what is wrong with the edges.

NOTE: It is valid to set the edges of a deexposed inferior window in such a
way that the inferior is not enclosed inside the superior; however, you cannot
expose the inferior until it is enclosed inside the superior. This requirement
makes it more convenient to change the edges of a deexposed window and all
of its inferiors sequentially, because you do not have to be careful about the
order in which you change the edges.

4.3.2

theight Method of windows
:width Method of windows
Returns the window’s outside height or width, respectively, in pixels.
w:sheet-width window Defsubst
w:sheet-height window Defsubst

Returns the outside width or height of the window identified by window.

You should usually use higher-level methods to deal with edges, since higher-
level methods perform error checking to ensure that you do not inadvertently
introduce problems.

When used without an argument, w:sheet-width refers directly to the
w:width instance variable; w:sheet-height refers directly to the w:height
instance variable. Therefore, these defsubsts must be called from methods or
functions that use (declare (:self-flavor ...)).

4-4

Window System Reference



Sizes and Positions

:size Method of windows
:inside-size Method of windows

Returns two values: the width and height in pixels. :size returns the outside
measurements; ;inside-size returns the inside measurements.

:set-size new-width new-height &optional option Method of windows
:set-inside-size new-inside-width new-inside-height Method of windows
&optional option

Sets the width and height of the window without changing the position of the
upper left corner. new-width and new-height are specified in pixels. :set-size
sets the outside size. :set-inside-size sets the inside size, and the margin sizes
are recomputed according to their contents. In simple cases, the margin sizes
stay the same.

sinside-height Method of windows
w:sheet-inside-height &optional (window self) Macro
:inside-width Method of windows
w:sheet-inside-width &optional (window self) Macro

Returns the window’s inside height or width, respectively, in pixels. window
specifies the window whose inside height or width, respectively, is to be
determined.

When used without an argument, these macros refer directly to the instance
variables containing the locations of the window margins and size, and there-
fore they must be called from methods or functions that use (declare
(:self-flavor ...)).

:position Method of windows
Returns two values: the x and y positions of the upper left corner of the
window, in pixels, relative to the superior window.

:set-position new-x new-y &optional option Method of windows

Sets the x and y position of the upper left corner of the window, in pixels,
relative to the superior window’s coordinate system.

w:sheet-inside-left &optional (window self) Macro
w:sheet-inside-top &optional (window self) Macro
w:sheet-inside-right &optional (window self) Macro
w:sheet-inside-bottom &optional (window self) Macro

Returns the position of the respective inside edge of the window, relative to
the top left outside corner of the window. If used with no argument, these
macros expand into direct references to instance variables and therefore can
be used only within methods or (declare (:self-flavor ...)) functions.

tedges Method of windows
tinside-edges Method of windows

Returns four values: the left, top, right, and bottom edges, in pixels. The
:edges method returns the outside edges relative to the superior window; the
:inside-edges method returns the inside edges relative to the top left corner
of this window. The :inside-edges method can be useful for clipping, that is,
truncating the portions of images that would appear outside a certain
boundary.

Window System Reference 4-5



Sizes and Positions

NOTE: See paragraph 4.3.1, The option Argument, for an explanation of the
option argument.

:set-edges new-left new-top new-right new-bottom Method of windows

&optional option

:inferior-set-edges window new-left new-top new-right Method of windows

new-bottom &optional option

Sets the edges of the window to the values of the arguments, in pixels. For
:set-edges, the values are relative to the superior window. For :inferior-set-
edges, the window specified by window is an inferior of the window being
sent the :inferior-set-edges message; the edge values are relative to window’s
superior.

:center-around x y Method of windows

Positions the window so that its center is as close to the point (x,y) as possible
without hanging off an edge. :center-around does not change the size of the
window. The coordinates are in pixels relative to the superior window.

:change-of-size-or-margins &rest options Method of windows

The primitive method for changing a window's size or the size of its margins.
All the other methods that do this call :change-of-size-or-margins after the
other methods have done error checking.

You should not use the :change-of-size-or-margins method to manipulate a
window directly. Instead, you should use :set-size or another higher-level
method to change size and use flavors that compute the margins (such as
w:borders-mixin) to manage margin sizes. However, the :change-of-size-or-
margins method is a good place to add :after methods to recompute other
data structures or change the size of inferiors according to the window’s new
size. In the :after method, the window’s size and margins will already be
altered to their new values.

Two related symbols, the :expose-near method and the w:position-window-
next-to-rectangle function, are described in paragraph 5.7.3, Symbols That
Manipulate Screen Arrays and Exposure.

Low-Level Edges

4.4 The following low-level instance variables, macros, and functions should
be used with care. Although these primitives may be very fast, they may only
do one thing—which may not be sufficient to complete a task. You should
typically use the methods discussed previously to examine or alter the sizes
and positions of windows.

Instance Variable of windows
Instance Variable of windows

Sets the x or y position of the window’s outside left edge relative to the
window’s superior.

Functions
w:x-offset
w:y-offset

4-6

Window System Reference



Sizes and Positions

w:sheet-x-offset window Defsubst
w:sheet-y-offset window Defsubst

Returns the x or y offset of the window identified by window.

You should usually use higher-level methods to deal with edges, because
higher-level methods perform error checking to ensure that you do not
inadvertently introduce problems.

w:sheet-calculate-offsets window superior Function

Returns, as two values, the x and y positions of a window’s upper left corner
in its superior. If window and superior are the same window, the values are 0.
window must be an indirect inferior of superior zero or more levels down.

w:sheet-number-of-inside-lines &optional (window self) Macro

Returns the number of lines (of height equal to w:line-height) that fit in the
inside height of window.

When used without an argument, this function refers directly to the instance
variables containing the locations of the window margins and size, and there-
fore it must be called from methods or functions that use (declare
(:self-flavor ...)).

w:sheet-overlaps-p window left top width height Function
w:sheet-overlaps-edges-p window left top right bottom Function

Calculates the position of the window edges using the last four arguments.
Both functions return t if window overlaps the specified rectangle. The edges
specified are relative to the superior of window.

w:sheet-overlaps-sheet-p window-a window-b Function
Returns t if window-a and window-b overlap. This is a geometric test; it does
not matter where the two windows are in the hierarchy.

w:sheet-within-p window left top right bottom Function
Calculates the position of the window edges using left, top, right, and bottom
and returns t if window is contained within the specified rectangle relative to
the superior of window.

w:sheet-within-sheet-p window outer-window Function
Returns t if window is within outer-window. This is a geometric test; it does
not matter where the two windows are in the hierarchy.

w:sheet-bounds-within-sheet-p left top width height outer-window Function

Calculates the position of the window edges using left, top, width, and height
and returns t if the specified rectangle is within outer-window. The edges are
specified relative to the superior of outer-window.

w:sheet-contains-sheet-point-p window top-window x y Function

Returns t if window contains the point specified by x and y in the superior
identified by top-window.

Window System Reference 4-7






VISIBILITY AND EXPOSURE

Introduction 5.1 This section explains the two most important aspects of a window:
whether it is visible on the screen and whether it is exposed. Understanding
these concepts is essential if you use the window system.

M A visible window is displayed, either completely or partially, on the video
display. Windows that are only partially visible are overlapped by another
window.

B An exposed window can accept output. All fully visible windows are
exposed. A window that is not fully visible can be exposed if it has a
bit-save array, an array that saves the contents of the window.

If a fully visible window does not completely cover the video display, the
screen manager determines what window is partially visible according to a
strict hierarchy. The hierarchy takes into account things such as the priority
assigned to a window and which window was last visible.

Figure 5-1 shows an example of overlapping windows. Both Lisp Listener 2
and Lisp Listener 3 windows are exposed, and both overlap Lisp Listener 1.

Figure 5-1 Overlapping Windows

fully visible window fully visible window
main
screen
Lisp Listener 3
Lisp Listener 2
partially visible window
Lisp Listener 1
mouse
documentation
window

status line

Window System Reference 5-1



Visibility and Exposure

The part of the hierarchy that is immediately inferior to the main screen
includes the frames and windows that, when visible, usually cover the main
portion of the video display. This part of the hierarchy is commonly referred
to as the stack. Each frame in the stack includes its panes as inferiors.

You can show the hierarchy of windows by examining the Windows option of
the Peek utility. For example, the following is part of the hierarchy for the
system that contains the three Lisp Listeners shown in Figure §-1. Note that
the topmost window in the stack is currently the Peek window, followed by
Lisp Listener 3, Lisp Listener 2, and then Lisp Listener 1. Other windows are
automatically created by the Explorer system when you boot.

Screen Main Screen
Peek Frame 1
Basic Peek 1
Dynamic Highlighting Command Menu Pane 1
Dynamic Highlighting Command Menu Pane 2
Lisp Listener 3
Lisp Listener 2
Lisp Listener 1
Suggestions Frame Off 1
Menu Manip Strip 38

The screen manager continually updates the frames in the stack as the user
selects different frames.

Screens

wiscreen

w:sheet-area

5.2 Screens, which are at the top of the window hierarchy, are instances of
the wiscreen flavor. Each screen object usually represents an individual piece
of display hardware. However, the main black-and-white video display that
all Explorers have is logically divided into two screens, with different screen
objects: the w:main-screen at the top and the w:who-line-screen on the
bottom. An example of these is shown in Figure 5-1. Because these are
separate screens, windows on the main screen cannot be extended onto the
who-line screen, the mouse cannot move onto the who-line screen, and so
on.

Flavor

Screens are also flavor instances whose flavors incorporate w:screen. Screens
are not windows, but they have much in common with windows because both
incorporate the w:sheet flavor. There is only one w:sheet-area for each
hardware display.

Variable

The area in which windows are created by default. For a discussion of areas,
see the section about storage management in the Explorer Lisp Reference
manual.

w:sheet-get-screen window &optional highest Function

Returns window if window is a screen; otherwise, returns the screen that is the
ultimate superior of window. In other words, w:sheet-get-screen searches for
the highest level superior of window that is either a screen or is not active.
window identifies the window or screen where w:sheet-get-screen begins the
search for the screen. If highest is non-nil, inferiors of highest are treated like
screens.

5-2

Window System Reference



Visibility and Exposure

w:main-screen Variable
The screen object representing the Explorer black-and-white display, except
for the who-line screen.

w:who-line-screen Variable
The screen object representing the who-line screen. Each field of the who-
line is a separate window on this screen.

w:default-screen Variable
The default superior for windows created with the make-instance function. It
is initialized to be the main screen.

w:all-the-screens Variable

A list of all screen objects. Using the contents of w:all-the-screens, you can
search through all the active windows, much like the w:map-over-sheets
function does. The following is a typical value for w:all-the-screens:

(#<STANDARD-SCREEN Main Screen 3840128 exposed>
#<WHO-LINE-SCREEN Who Line Screen 4300000 exposed>)

Hierarchy 5.3 Windows are arranged in a hierarchy, each window having one direct

of Windows superior and a list of inferiors. The top of the window hierarchy is a screen.
Windows can have several indirect superiors; however, the window has only
one direct superior.

Each superior keeps a list of all of its active inferiors using the w:inferiors
instance variable. Each inferior window keeps track of its superior using the
w:superior instance variable. Superior windows do not keep track of their
inactive inferiors; this allows unused windows to be reclaimed by the garbage
collector. When a window is deactivated, the window system does not use it
until it is activated again.

If you deactivate a window, the pointer to the window is removed from the
w:inferiors instance variable kept by the window’s superior. If there is no
other reference to the window, the window can be reclaimed by the garbage
collector. To prevent the garbage collector from reclaiming a deactivated
window, put a pointer to the window in a variable. In this way, you can reacti-
vate the window should you need to.

Inactive windows are never visible; a window must become active to be
visible.

For example, when the Inspector window is invoked using the SYSTEM I
keystroke sequence, the superior of the Inspector window is the screen, and
the subwindows in the Inspector window are inferiors of the Inspector
window. The screen itself has no superior (if you ask for its superior, nil is
returned). You can examine the window hierarchy from the Peek utility. If

Window System Reference 5-3



Visibility and Exposure

you first select the Inspector and then Peek, Peek displays something similar
to the following:

Screen Main Screen
Peek Frame 1
Basic Peek 1
Dynamic Highlighting Command Menu Pane 1
Dynamic Highlighting Command Menu Pane 2
Inspect Frame 2
Inspect Window 4
Inspect Window 8
Inspect Window With Typeout 2
Inspector Interaction Pane 2
Inspector Pane Menu 2
Inspect History Window 2

Normally, the Edit Screen command from the System menu edits the
arrangement of the windows on a screen, but it can also edit the arrangement
of inferiors (panes) of a window in the same fashion.

The Edit Screen item, then, manipulates a set of inferiors of a specific
superior, which may or may not be a screen. The set of inferiors is called the
active inferiors set; that is, each inferior in this set is said to be active. The
active inferiors can be visible on their superior. If no two active inferiors
overlap, there is no problem; they can all be exposed. This is the case for the
panes within the Peek frame and the Inspector frame. However, when two
inferiors overlap, only one of them can be exposed. The screen manager
chooses which inferior to expose. The Edit Screen item of the System menu
lets you override this choice.

The following symbols affect the hierarchy of windows.

:superior superior Initialization Option of windows and screens
Gettable, settable. Default: w:default-screen, which is initially the main
screen.

w:sheet-superior window-or-screen Macro

Returns either the superior of this window, or nil for a screen. The macro can
access the instance variable to get or change the value of the variable,
depending on how the macro is used in code.

:inferiors Method of windows and screens
Default: nil
w:sheet-inferiors window-or-screen Macro

Returns a list of the active inferiors. The macro can access the instance
variable to get or change the value of the variable, depending on how the
macro is used in code.

> (w:shest-inferiors w:who-line-screen)

(#<WHO~-LINE-SHEET Who Line Sheet 5 4300068 exposed>
#<WHO-LINE-FILE-SHEET Who Line File Sheet 1 4800140 exposed:>
#<WHO~LINE-SHEET Who Line Sheet 4 4800220 exposed>
#<WHO--LINE-SHEET Who Line Sheet 3 4300275 exposed>
#<WHO-LINE-SHEET Who Line Sheet 2 4800852 exposed>»
#<WHO-LINE-SHEET Who Line Sheet 1 4300427 exposed>)

Window System Reference



Visibility and Exposure

w:sheet-me-or-my-kid-p window me Function

:activate

Returns t if window ‘is equal to the window me or if window is an inferior of
me (that is, if window is in the w:inferiors instance variable for me). Inferiors
are sometimes referred to as descendants, hence the kid in w:sheet-me-or-
my-kid-p.

Method of windows

Makes the window active in its superior by putting a pointer to the window in
the w:inferiors instance variable of the window’s direct superior.

:activate-p &optional t-or-nil Initialization Option of windows and screens

Specifying this option as non-nil when you create a window causes the
created window to be active. t-or-nil specifies whether the window will be
activated when the window is created. The following cases are possible:

Value Action

No value The window is created but not activated. You can use
:expose-p to force activation.

t The window is activated when it is created.

nil The window is created but not activated. You can use
either :activate-p or :expose-p to activate the window.

:active-p t-or-nil Method of windows and screens

:deactivate

:kill

Returns t if this window is active in its superior. A screen is always considered
active.

Method of windows
Deactivates a window by removing any reference to the window from the
w:inferiors instance variable of the window’s superior.

Method of windows

Deactivates and also makes a positive effort to get rid of other entities that
may be associated with the window (such as processes or network connec-
tions). If a window has associated entities, garbage collection alone may not
be satisfactory. Therefore, :kill is preferable to :deactivate.

Lists of Windows

5.4 The following functions provide ways to manipulate lists of windows
(windows are also called sheets). The w:map-over-exposed-sheets and
w:map-over-exposed-sheet functions map only exposed windows. The
w:map-over-sheets and w:map-over-sheet functions perform in a similar
manner, except they map over active windows.

w:map-over-exposed-sheets function Function

Calls the function identified by function on every exposed sheet, starting with
the screens, their inferiors, and so on down the hierarchy.

The following example defines a function that prints out the name, height,
and width for each window. The argument to this new function is a single

Window System Reference

5-5



Visibility and Exposure

window. The w:map-over-exposed-sheets function calls this function once
for each exposed window.

(w:map-over-exposed-sheets
#° (lambda (a-window)
(format t "~%Window is ~A, height=~A, width=~A"
a-window
(send a-window :height)
(send a-window :width))))

If Lisp Listener 1 is the only exposed window, the example returns the
following. If other windows are exposed, you get a different output.

Window is Lisp Listener 1, height=734, width=1024
Window is Main Screen, height=754, width=1024

Window is Who-Line Sheet 5, height=37, width=1024
Window is Who-Line File Sheet 1, height=14, width=512
Window is Who-Line Sheet 4, height=14, width=168
Window is Who-Line Sheet 3, height=14, width=80
Window is Who-Line Sheet 2, height=14, width=104
Window is Who-Line Sheet 1, height=14, width=160
Window is Who-Line Screen, height=54, width=1024

Note that this example was defined using lambda notation. The special
notation, sharp-sign single quote (#-), tells the Lisp interpreter or compiler
that the next expression is a function that can be evaluated.

w:map-over-exposed-sheet function window Function
w:map-over-sheet function window Function

Calls function on window and on every exposed inferior (for w:map-over-
exposed-sheet) or on every active inferior (for w:map-over-sheet) of
window to all levels. window is the window or screen level where the function
begins execution.

For example, if you print the height and width of the exposed windows using
the following code:

(w:map-over-exposed-sheet
# (lambda (aw)
(format t "~%Window is ~A, height=~A, width=~A" aw
(send aw :height) (send aw :width))) w:main-screen)

Depending on the windows active in your system, the output may look like
the following:

Window is Menu Manip Strip 8, height=18, width=1022
Window is Suggestions Frame Off 1, height=20, width=1024
Window is Lisp Listener 1, height=734, width=1024
Window is Main Screen, height=754, width=1024

w:map-over-sheets function Function

Calls function on every active window, starting with the screens, their inferi-
ors, and so on down the hierarchy.

For example, suppose you print the names of the active windows using the
following code:

(w:map-over-sheets
#° (lambda (aw)
(format t "-%-A" aw) w:main-screen))

Window System Reference



Visibility and Exposure

Then, depending on the windows active in your system, the output may look
like the following:

Lisp Listener 1

Menu Manip Strip 8
Suggestions Frame Off 1
Editor Typeout Window 8
Edit: MH: WEBB; *.*x#% (1)
Typein Window 4
Zwei Mini Buffer
Mode Line Window
Menu Manip Strip
Menu Manip Strip
Label Pane Manip Strip 1

Nice Scrolling Suggestions Window 1
Suggestions Frame 1

Main Screen

Who Line Sheet 5

Who Line File Sheet 1

Who Line Sheet 4

Who Line Sheet 3

Who Line Sheet 2

Who Line Sheet 1

Who Line Screen

D WD

Pixels

5.5 A screen displays an array of picture elements (pixels). Each pixel is a
little dot of some brightness; a screen displays a big array of these dots to
form a picture. Everything you see on the screen, including borders, graphics,
characters, and blinkers, is made from pixels.

Each physical screen has a display memory that stores the values of all the
pixels. On regular black-and-white screens, each pixel has one of only two
values: lit or unlit. Thus, the pixel is represented in memory by one bit.
Usually 0s are used for the background of a window, and the characters or
lines on it are made of 1s. So 1 can be considered on and 0 off.

Black-and-white screens have a hardware flag that controls the visual appear-
ance of 1 and 0 pixels. In black-on-white mode, 1 is dark and 0 is bright, so
windows appear with dark text on a white background. This mode is the
default. In white-on-black mode, 1 represents white and 0 represents black.
Users can switch between these modes using the TERM C Kkeystroke
sequence.

An individual window can specify 1 for background and 0 for text; this is

‘independent of white-on-black mode (which applies to the whole screen) and

is requested with the :reverse-video-p initialization option or the :set-
reverse-video-p method. These work by controlling the arithmetic logic unit
(ALU) arguments used for drawing and erasing characters. Programs that use
the window’s recommended ALU arguments for their drawing and erasing
will automatically display in reverse video. The mouse documentation window
is an example of a window that uses reverse video.

On a color monitor running in a color environment, each pixel can have one
of 256 values, ranging from 0 to 255. Thus, a pixel is no longer just on or off,
black or white, or 0 or 1, but rather it is an integer with a range of values.

Window System Reference

5-7



Visibility and Exposure

The color controller actually generates 24 bits of color information per 8-bit
pixel to drive the color monitor. These 24 bits are composed of 8 bits for
RED, 8 bits for GREEN, and 8 bits for BLUE.* So, each of the three colors
(R, G, and B) can take on one of 256 values, with 0 being completely off and
255 being full strength. Thus, taken in all possible combinations, there are
over 16 million possible colors. Since each pixel can take on one of 256
possible values, each 8-bit pixel value is translated by the hardware into a
24-bit RGB value by indexing into a data table called the Color Look-Up
Table (LUT). Thus, up to 256 different colors can be displayed on the color
monitor.

Note that the color associated with an integer may change as the contents of
the LUT change. This integer value is referred to as either the logical color
of a pixel or the pixel value. The value generated by the LUT that corre-
sponds to the logical color is the physical color.

In a color environment, reverse video is achieved by transposing the values of
the foreground and background colors instead of by manipulating ALUs. For
details on color, refer to Section 19, Using Color.

w:black-on-white Function
Displays 1-bits as black, and 0-bits as white. (This is the default mode.) This
function works by setting a bit in the display hardware.

w:white-on-black Function

Makes the monitor display 1-bits as white and 0-bits as black.

w:complement-bow-mode Function
In a monochrome environment, this function switches between displaying
1-bits as white or as black. (The bow in the name is an abbreviation of black-
on-white.) The TERM C keystroke sequence uses this function.

:complement-bow-mode Method of windows
In a color environment, this method transposes the values of the foreground
and background colors for the window.

w:bits-per-pixel Instance Variable of w:screen

For a black-and-white screen, one bit per pixel.

* The RGB model for representing color is based on the three color photoreceptors in the
human eye, which detect either red, green, or blue.The RGB model is not based on the
three primary colors red, blue, and yellow, which many people might expect.

5-8 Window System Reference



Visibility and Exposure

:reverse-video-p t-or-nil Initialization Option of windows

Gettable, settable. Default: nil

Sets the use of reverse video display. When ¢-or-nil is t in a monochrome
environment, the background of the window is black; when ¢-or-nil is nil,
the background of the window is white.

When t-or-nil is t in a color environment, the background color of the win-
dow is the value of the window’s background color instance variable; when
t-or-nil is nil in a color environment, the background color of the window is
the value of the window's foreground color instance variable.

The :reverse-video-p initialization option is separate from the whole screen’s
reverse video mode. In a monochrome environment, the TERM C keystroke
sequence sets the whole screen’s reverse video mode. In a color environ-
ment, the :complement-bow-mode method sets the whole screen’s reverse
video mode.

w:buffer Instance Variable of w:screen
The address of the screen memory; the address is stored as a fixnum.
NOTE: The w:buffer and w:buffer-halfword-array instance variables are
used during system initializations and are not intended to be changed by the
user.

w:buffer-halfword-array Instance Variable of w:screen

An art-16b array containing the screen memory.

Bit-Save Arrays

5.6 The pixel values that make up a window’s screen image are called its
contents. When a window is fully visible, its contents are displayed on a
screen so they can be seen. When a window is not fully visible, its contents
are lost unless there is a place to save them. Such a place is called a bit-save
array. :

A bit-save array is an array of bits large enough to hold a copy of the contents
of the window. If a window has a bit-save array, its contents are copied into
the array when the window ceases to be fully visible. If the window becomes
fully visible again, the contents are copied from the bit-save array back onto
the screen. During the interim, programs can use the w:sheet-force-access
macro to output to the bit-save array while the window is not visible, and the
window’s inferiors, if any, can be exposed and do output. (See paragraph
5.7, Screen Arrays and Exposure.)

When a window with a bit-save array is partially visible, the visible parts can
be displayed correctly by copying them from the bit-save array. This occurs
when a small window is completely surrounded by a full-screen window, such
as the initial Lisp Listener, as shown in Figure 5-1. The visible parts of the
larger window are copied from the window’s bit-save array.

If a window does not have a bit-save array, there is no place to put its
contents when it is not visible, so they are lost. When the window becomes
visible again, it tries to redraw its contents, that is, to regenerate the contents

Window System Reference

5-9



Visibility and Exposure

w:bit-array

from state information in the window. This is done by the :refresh method
documented later. Some windows can do this; for example, editor windows
can regenerate their contents based on the editor buffers they are displaying.
Other windows, such as Lisp Listeners, cannot regenerate their previous
contents. Such windows simply leave their contents blank, except for the
margins, which all windows can regenerate.

The advantage of having a bit-save array is that losing and regaining visibility
does not require the contents to be regenerated; this feature is desirable
because regeneration may be computationally expensive, or even impossible.
The disadvantage is that copying the bit-save array to disk and returning it to
memory may take too much time.

Furthermore, bit-save arrays on a color system are eight-bit arrays, which
require more memory, so their use should be limited.

When a frame is in use, giving the frame a bit-save array enables the contents
of the frame and all the panes to be preserved if the frame ceases to be fully
visible. Bit-save arrays for the panes would be needed only if panes were
shuffled or substituted within the frame. In most applications, this situation
rarely happens, but if it does, it is accompanied by a complete redisplay.
Thus, the frame normally gets a bit-save array and the panes do not.

Instance Variable of windows

w:sheet-bit-array window Macro

The window’s bit array if the window has a bit array. If the window does not
have a bit array, the w:bit-array instance variable is nil. The macro can
access the instance variable to get or change the value of the variable,
depending on how the macro is used in code.

:save-bits flag Initialization Option of windows

Gettable, settable. Default: nil

Determines whether the bits are saved and when the bit-save array is created,
if the bits are to be saved. flag can be t, nil, or :delayed:

B t causes the bits to be saved.
B nil causes the bits not to be saved.

B :delayed causes the window to create a bit-save array the first time it is
deexposed, but not before.

:refresh &optional (type :complete-redisplay) Method of windows

Restores the saved contents of the window or regenerates the contents,
according to the value of type and whether the window has a bit-save array.

If you define your own window flavor—or redefine a standard window
flavor—you should include :after methods so the :refresh method can
complete the job of redrawing a window. Unless you do this, the system may
redraw the window in a manner you do not want. When these :after methods
run, the w:restored-bits-p instance variable is non-nil if the window contents
were restored from a bit-save array. If this is so, the :after methods need not
do anything unless the window’s inside size has changed. type determines

5-10

Window System Reference



Visibility and Exposure

how the window uses its bit-save array. The following keywords are the possi-
ble values of type: -

M :complete-redisplay specifies that window’s current bit image be
completely discarded and regenerated from scratch. The margins are
redrawn by invoking the :refresh-margins method. The default defini-
tion of :refresh leaves the inside portion of the window blank except for
refreshing any exposed inferiors. If the window has no bit-save array,
type is ignored and the actions for :complete-redisplay are always used.

W :use-old-bits specifies that the complete contents are restored from the
bit-save array. This is specified by the system when a window is exposed.

M :size-changed is a flag that indicates that the window size has been
changed. The contents are restored from the bit-save array, and then the
margins are refreshed with the :refresh-margins method.

W :margins-only is a flag that indicates that only the borders have changed.
You should use this keyword when the inside portion of the window is
completely undisturbed and only the margins need to be refreshed. The
system treats :margins-only just like :size-changed.

w:restored-bits-p Instance Variable of windows

Indicates whether the contents of the window have been restored. If
w:restored-bits-p is nil, the inside of the window was left blank and must be
regenerated to whatever extent possible. In the :after methods of the
:refresh method (and therefore also of the :expose method), w:restored-
bits-p is t if the contents were restored from a bit-save array.

Screen Arrays
and Exposure

Concepts of
Screen Arrays

5.7 Screen arrays and exposure control how the system decides where to
put a window’s contents (its pixels), how the notion of visibility on the screen
is extended into a hierarchy of windows, and how programs can control
which windows are visible,

5.7.1 Each window or screen can have a screen array, which is where out-
put to the window should be drawn. Drawing characters or graphics is done
by changing pixels of the window’s screen array. The screen array is stored in
the w:screen-array instance variable. If the variable is nil, the window does
not have a screen array now.

A screen array is normally put in the special memory used by the hardware to
display the screen. A visible window has a screen array; the array is an
indirect array that points into the area of the superior’s screen array where
the inferior is displayed on the superior. For example, consider a visible
window whose superior is a screen and whose upper left corner is at location
100,100 in the screen. The window’s screen array would be an indirect array
whose 0,0 element is the same as the 100,100 element of the screen; that is,
every pixel of the visible window is displaced by 100,100. If you set a pixel at
the visible window coordinates x,y, the system adds 100 to each coordinate
and sets the pixel corresponding to x + 100,y + 100 in the screen array. The
following figure shows this displacement.

A visible window more than one level down from the screen has a screen
array that is displaced more than once. If the visible window is displayed on
its superior at the superior’s coordinates of 50,50 and the visible window’s

Window System Reference

5-11



Visibility and Exposure

Concepts of
Exposure

superior is displayed at its superior’s—assume the superior is the screen—
coordinates 100,100, the system puts all pixels located at coordinates x,y in
the visible window at 100 + 50 + x,100 + 50 + y on the screen. The window’s
screen array points into the middle of its superior’s screen array, which points
into the middle of the superior’s superior’s screen array, and so on until the
main screen is reached. When typeout is done on the window, the typeout
appears on the screen, offset by the combined offsets of all the ancestors, so
that it appears in the correct absolute position on the screen.

The following figure illustrates the idea of displacement by showing the screen
and two windows: the first window is displaced 100 pixels down and 100
pixels to the right of the screen’s top left corner; the second window is
displaced 10 pixels down and 30 pixels to the right of its superior’s top left
corner.

\0 0 / Displaced 100,100 from the origin of W1

w3

\Displaced 30,10 from the
origin of W2 and 130,110
w2 from the origin of W1

w1l

5.7.2 An exposed window can accept output. Most visible windows are also
exposed, but not all exposed windows are visible. If an exposed window is not
visible, you can still output to its bit-save array. If that window does not have
a bit-save array, but an ancestor of that window does have one, output goes
to the ancestor’s bit-save array. If an exposed window is not visible, output to
that window is not visible either until the window becomes visible.

The :expose method makes a window exposable; it does not automatically
expose the window. If, at the time a window is made exposable, its superior
has a screen array (that is, if its superior is visible), the window actually
becomes exposed.

If the superior of a window that is exposable, but not currently exposed, later
acquires a screen array, the window becomes exposed at that time. The supe-
rior can acquire a screen array by being exposed, or the superior can be given
a bit-save array with the :set-save-bits method.

Having a superior exposable but not exposed is simple to demonstrate. To
show this, follow these steps:

1. Select the Inspector by pressing SYSTEM I or by selecting it from the
System menu.

2. Select the Peek utility by pressing SYSTEM P or by selecting it from the
System menu.

5-12

Window System Reference



Visibility and Exposure

3. Select the window option of the Peek utility by pressing W (for window)
or by selecting the Window item from the command menu.

The system displays all active windows, including the Inspector frame and
each of its inferior panes.

4. Click on the name of one of the Inspector windows in the list of windows.

The system displays a menu of actions that can be performed on this
object.

5. Select the Describe item.
In the first line of the display, the system describes the pane as exposed.
The pane itself, however, is not visible. Thus, the pane is exposable but
not exposed.

The panes actually become exposed when their ancestor (the Inspector
frame) acquires a screen array.

The :deexpose method makes a window not exposed; such a window must be
explicitly exposed again with an :expose method. What happens when you
attempt to output to a deexposed window depends on the window’s
deexposed typeout action (described in paragraph 7.4.1). You can override
this action by using the w:sheet-force-access macro.

Symbols That 5.7.3
Manipulate
Screen Arrays
and Exposure
w:sheet-force-access (window ignore) &body body Macro

Executes body, outputting to window whether window is exposed or not.
Thus, code within body can output even if window does not ordinarily allow
output while deexposed. If window is deexposed and has no bit array, then
body is not executed at all, but window refreshes completely when it is
exposed.

texpose &optional inhibit-blinkers bits-action Method of windows and screens

new-left new-top

Makes the window exposable and exposed, if possible. If the window is not
active in its superior, it is first activated. A window cannot be made exposable
unless its full size fits within the superior.

This is a very useful method to attach :before and :after methods to, but
remember that this method can be performed only on a window that is
already exposable. The :before and :after methods must not make the
assumption that the window is becoming exposable.

The arguments to the :expose method are supplied by the system and are
usually of interest only to the system’s methods. User invocations of this
method usually should supply no arguments.

Window System Reference

5-13



Visibility and Exposure

:expose-near mode &optional (warp-mouse-p t) Method of windows
w:expose-window-near window mode &optional (warp-mouse-p t)

Arguments:

(expose-p t) Function

If the window is not exposed, changes the window’s position according to
mode and exposes it using the :expose method. If the window is already
exposed, does nothing. :

mode — A list that can be one of the following:

:point x y positions the window so that its center is at the point x,y, in
pixels, relative to the upper left corner of the superior window, or as
close as possible without hanging off an edge of the superior. The
mouse blinker moves to the superior window’s x,y coordinates.

B :mouse is like the :point mode, but the x and y come from the
current mouse blinker position instead of the arguments. This key-
word behaves like pop-up windows (such as the System menu). In
addition, if warp-mouse-p is non-nil, the mouse blinker is warped to
the center of the window. (The mouse blinker moves only if the
window is near an edge of its superior; otherwise, the mouse blinker
is already at the center of the window.)

® :window window-1 window-2 window-3... positions the window next
to but not overlapping the rectangle that is the bounding box of all
the arguments to :window. You must provide at least one argument.
Usually, you specify only one window; thus, the window is positioned
touching one edge of that specified window. In addition, if warp-
mouse-p is non-nil, the mouse blinker is warped to the center of the
window.

B :rectangle left top right bottom specifies a rectangle, in pixels, rela-
tive to the superior window. The window is positioned near but not
overlapping the rectangle. In addition, if warp-mouse-p is non-nil,
the mouse blinker is warped to the center of the window.

warp-mouse-p — Determines whether the mouse blinker moves to the center
of the window on which the :expose-near method operates, according to
the value of mode.

expose-p — For the w:expose-window-near function, determines whether
the window is exposed. If expose-p is non-nil, the window is exposed.

w:position-window-next-to-rectangle window position Function

left top right botiom

Moves window near the rectangle specified by left, top, right, and bottom.
left, top, right, and bottom specify a rectangle using the inside pixel coordi-
nates of window’s superior.

Unlike the :expose-near method, this function aligns the window with the
rectangle, and other alternatives are attempted depending on the suggested
position. The :expose-near method does not allow a suggested position.

position is a keyword or a list of keywords that indicates where to put the
window. Possible values for position are :above, :below, :left, or :right; or a
list of these keywords. If position is a single keyword and there is not enough
room to place the window without obscuring the rectangle, then the alter-

5-14

Window System Reference



Visibility and Exposure

natives shown in the following table are attempted in order of most preferable
to least. If position is a list, then only those alternatives are attempted.

Alternative Preferences

Initial Preference First Second Third
:above left :right :below
:below :right left :above
:left :below :above :right
:right :above tbelow :left

rexpose-p t-or-nil ' Initialization Option of windows and screens
Gettable. Default: nil

wisheet-exposed-p window-or-screen Macro

Initializes the w:exposed-p instance variable that determines whether to
expose the window or leave it deexposed. If non-nil, the window is made
exposable after it is created. The default is to leave the window deexposed.

The macro can access the instance variable to get or change the value of the
variable, depending on how the macro is used in code.

:exposable-p Method of windows and screens

Returns t if the window is exposable.

:exposed-inferiors list-of-inferiors Method of windows and screens
Default: nil
w:sheet-exposed-inferiors window-or-screen Macro

Returns a list of all exposable inferiors of this window or screen. The macro
can access the instance variable to get or change the value of the variable,
depending on how the macro is used in code.

iscreen-array array Method of windows and screens
Default: nil
w:sheet-screen-array window-or-screen Macro

Returns the window or screen’s screen array, or nil if the screen has no array.
Normally, you do not need to access the wiscreen-array instance variable
directly. wiscreen-array is a displaced array that points to a special memory
that is the bit-mapped memory for the Explorer monitor. (See the section
about arrays in the Explorer Lisp Reference manual for details about
displaced arrays and the general-purpose functions that manipulate arrays.)
The Explorer system displays the wiscreen-array on the video display. When
you change an element in the w:screen-array, the change is immediately
visible on the video display.

Each window has a w:screen-array, and the 0,0 element of a window’s
w:screen-array corresponds to the upper left corner of the video display.
The dimensions of the w:screen-array are the dimensions of the screen and
have no correlation to the window’s w:width and w:height instance vari-
ables. (These variables contain the dimensions of the active part of the array,
not the dimensions of the entire array.) It is possible, then, to access parts of
the w:screen-array that are outside this instance of the window. This feature
is normally important only when the :bitblt method and variants of the
:bitblt method are in use. When executing a :bitblt method, you must
ensure that only those bits that are within the window are transferred. Also,

Window System Reference 5-15



Visibility and Exposure

you must ensure that the array elements that are the destination of the :bitblt
method are correct.

The aref function can access individual elements of the wiscreen-array.
Remember, the upper left corner of the video display corresponds to the 0,0
element of w:screen-array, and the useful parts of the array are kept in the
w:height and w:width instance variables.

The macro can access the instance variable to get or change the value of the
variable, depending on how the macro is used in code.

:deexpose &optional (save-bits-p :default) Method of windows and screens

Arguments:

(screen-bits-action :noop) (remove-from-superior t)

Makes the window not exposed and not exposable when this method is sent.
This is a useful method to add :before and :after methods to.

The arguments to the :deexpose method are supplied by the system and are
usually of interest only to the system’s methods.

save-bits-p — One of the following:

B :default means the bits are saved if the window has a bit-save array.
This is the default value.

® :force gives the window a bit-save array if it does not already have
one, so the bits are always saved.

B nil does not save the bits.

screen-bits-action -- What to do to the bits on the screen. screen-bits-action
can be either :noop (does nothing to the bits) or :clean (erases the bits
from the screen). The default is :noop.

remove-from-superior — 1If you specify remove-from-superior, you should
always use t (the default). If remove-from-superior is nil, the window
remains exposable. The window system uses nil as part of implementing
deexposure of an exposable window whose superior loses its screen array.
Using nil at any other time leads to incorrect results.

w:with-sheet-deexposed window body Macro

Executes the code in body with window deexposed. If window had been
exposed, it is reexposed when the code in body completes execution. Meth-
ods that change things about the window often make use of this macro to
reduce the complicated case of an exposed window to the simpler case of a
deexposed window.

Temporary
Windows

5.8 Normally, when a window is exposed in an area of the screen already
occupied by other exposed windows, the windows covered by the newly
exposed window are deexposed automatically by the window system. This
occurs because the window system does not normally leave two overlapping
windows exposed. (Temporary windows are the common exception.)

Sometimes, though, windows appear on the screen for a very short time. The
most obvious examples of these are the pop-up menus that appear only long
enough for you to select an item. If windows were deexposed every time a
pop-up menu appeared, the windows without bit-save arrays would have their

5-16

Window System Reference



Visibility and Exposure

screen images destroyed, forcing them to regenerate their screen images or to
reappear empty. The ones with bit-save arrays would not be damaged in this
way, but they would have to be deexposed, and deexposure is a relatively
expensive operation, in terms of both of memory and CPU time.

This problem is solved for pop-up menus by making them temporary
windows. Temporary windows work differently from other windows in the
following way. When a temporary window is exposed, it saves the pixels that
it covers up, then restores these pixels when the temporary window is
deexposed. These pixels may come from several different windows. In this
way, temporary windows do not change the area of the screen that they use,
even if they cover up some windows that do not have bit-save arrays.

Also, a temporary window, unlike a normal window, does not deexpose the
windows that it covers up. In this way, the covered windows need not save
their bits in their bit-save arrays (if they have bit-save arrays) nor regenerate
their contents (if they do not have bit-save arrays). Regular windows never
notice that the temporary window was there.

Flavors and 5.8.1

Methods

w:temporary-window-mixin : Flavor
Makes a temporary window.

w:shadow-borders-mixin Flavor
Required flavor: w:borders-mixin
Implements a window shadowing effect that makes a window appear as if it is
raised away from the screen. This produces a three-dimensional effect.
w:shadow-borders-mixin is mixed in with most flavors that produce
temporary windows. The window has a default border width of 3.

:right-shadow-width new-width Initialization Option of w:shadow-borders-mixin
Settable. Default: 6.

:bottom-shadow-width new-width Initialization Option of w:shadow-borders-mixin
Settable. Default: 6.
Sets the width of the shadow effect for the right or bottom edge of the
window, respectively, to the size specified by new-width. The value of new-
width is specified in pixels.

:shadow-draw-function function Initialization Option of w:shadow-borders-mixin
Settable. Default: w:draw-shadow-border
Sets the function that draws the shadow border around temporary windows,
such as the System menu.

:temporary-bit-array Method of windows
Returns non-nil if the window is a temporary window.

w:temporary-shadow-borders-window-mixin Flavor

Defines a mixin that is similar to w:temporary-window-mixin but that
includes shadow borders.

Window System Reference 5-17



Visibility and Exposure

Temp Locking 5.8.2 Problems could occur if temporary windows were this simple. Suppose

that a temporary window appears over a normal window; some of the
contents of the normal window are saved in an array inside the temporary
window. Now, if the normal window were moved somewhere else, possibly
became deexposed or overlapped by other windows, and then the temporary
window was deexposed, the temporary window would restore its saved bits
where the normal window used to be. This restoration would overwrite some
other window.

Furthermore, even though the normal window is still exposed, output on it
must not be permitted while the temporary window is exposed. Such output
could overwrite the temporary window.

Because of problems like these, when a temporary window is exposed on top
of some other windows, all the windows that it covers up (fully or partially)
become temp-locked. While a window is temp-locked, any attempt to type
out on it is delayed until it is no longer temp-locked. Furthermore, any
attempt to deexpose, deactivate, move, or reposition a temp-locked window
is delayed until the window is no longer temp-locked. The temp-locking is
undone when the temporary window is deexposed.

Because of temp-locking, you should never write a program that puts a
temporary window on the screen for a long time. Some action by the user,
such as moving the mouse, should make the temporary window deexpose
itself. While the temporary window is in place, it blocks many important win-
dow system operations over its area of the screen. The windows it covers
cannot be manipulated, and programs that try to manipulate them must wait
until the temporary window goes away.

Two or more temporary windows can be exposed at the same time without
causing problems. If you expose a temporary window and then expose
another temporary window, and they do not overlap each other, they can be
deexposed in either order. Any windows that both temporary windows cover
up are temp-locked until both temporary windows are deexposed. If tempo-
rary window B covers up temporary window A, then A is temp-locked exactly
like any other window, so A cannot be deexposed until B has been
deexposed.

w:lock-sheet window &body body Macro

Implements temp-locking of windows. That is, executes body while window is
locked against output and refresh. Typically, body includes methods rather
than functions. You do not need to enclose functional interfaces such as the
wi:menu-choose function or w:notify within a w:lock-sheet macro.

The Screen
Manager

5.9 Fully visible windows do not always use the entire screen. This situation
does not happen in elementary use of the Explorer system, because initial
windows in the system are all the same size as the screen. If you create a
small Lisp Listener with the System menu Create command, the rest of the
screen is unclaimed by any fully visible window. The part of the window
system responsible for dealing with unclaimed parts of the screen is called the
Screen manager.

The screen manager fills unclaimed areas by looking for deexposed windows
that fall entirely or partly within them. Only active immediate inferiors of the

5-18

Window System Reference



Autoexposure

Autoselection

Visibility and Exposure

screen are considered, and they are considered in a specific priority order
described in paragraph 5.9.4, Priority Among Windows for Exposure.

5.9.1 A window that falls entirely within unclaimed areas can be made
visible without deexposing any other windows. This is called autoexposure.
Because the window is a direct inferior of the screen, exposing it always
makes it visible. The screen manager continues to consider the remaining
deexposed windows, but with less screen area unclaimed.

A window located in an area of the screen that no other window uses can be
visible to the user. However, if the window is also located in a portion of
the screen used by another window, the window cannot be fully visible to the
user; only that portion of the window that is outside the area used by another
window can be visible. Overlapping windows are shown in Figure 5-1. The
window is not treated as visible or exposed in any other sense. The windows
appear to be overlapping pieces of paper on a desktop. The deexposed
window is partially covered by the visible windows, but you can still see those
parts that are not covered. The contents are copied from the window’s bit-
save array. Windows without bit-save arrays are by default ineligible for
partial visibility, so other windows with a lower priority get a chance for the
same screen area. It is possible, however, to arrange for windows without
bit-save arrays to be partially visible (though the displayed contents may not
be accurate).

A window whose size or position precludes it from fitting entirely within the
bounds of its superior cannot be exposed. The screen manager does not try to
autoexpose this type of window. The portion of the window that lies within its
superior’s bounds can be displayed as a partially visible window.

5.9.2 Besides controlling autoexposure, the screen manager can also select a
window if no window is selected. This is called autoselection. A window is a
candidate for autoselection if it is an exposed inferior of the screen and its
:name-for-selection method returns a non-nil value. (This method is
described in paragraph 6.3.1, The System Menu Select Command.)

The screen manager manages the inferiors of windows or sheets as well as the
inferiors of screens. The system invokes the screen manager on a sheet’s
inferiors by sending the sheet a :screen-manage message. This happens for
all visible sheets regardless of their flavors.

:screen-manage Method of windows and screens

Autoexposes and displays partially visible windows among the active inferiors
of this window or screen, as described previously.

:screen-manage-autoexpose-inferiors Method of windows and screens

Autoexposes the active inferiors of this window or screen. This method is
used in the default definition of the :screen-manage method.

w:no-screen-managing-mixin Flavor

Prevents the screen manager from dealing with the inferiors of a window by
redefining the :screen-manage method to do nothing.

When a single program uses a frame, that program usually has sole control
over exposure of panes. w:no-screen-managing-mixin prevents the screen
manager from interfering. This mixin is normally not used with constraint

Window System Reference

5-19



Visibility and Exposure

frames because constraint frames avoid problems while changing configu-
rations by deactivating any panes that do not belong in the configuration.
Zmacs frames use this mixin so that the screen manager does not autoexpose
various editor wincdows that belong to the frame.

Control of 5.9.3 This paragraph discusses flavors, methods, and variables that affect
Partial Visibility partial visibility of windows.

:screen-manage-deexposed-visibility Method of windows

Returns non-nil if parts of this window can be displayed when the window is
partially visible.

w:show-partially-visible-mixin . Flavor

If a window has this flavor mixed in, the screen manager attempts to show the
window to the user when the window is partially visible, even if the window
does not have a bit-save array. If the window does not have a bit-save array,
there are no saved contents to display, and the screen manager must give the
window a screen array temporarily, send it a :refresh message so it can draw
itself on the screen array, and then display whatever is found there. This
often means that you see the label and borders of the window, but not the
inside.

w:gray-deexposed-right-mixin Flavor
w:gray-deexposed-wrong-mixin Flavor

Makes any visible parts of the window appear gray if the window is not fully
visible. Thus, these flavors provide something other than blank space when
the window should be partially visible. w: gray-deexposed-right-mixin works
for all windows; w:gray-deexposed-wrong-mixin is faster but cdoes not work
for windows that have inferiors.

You can use either mixin in windows that have no bit-save arrays as a quicker
alternative to w:show-partially-visible-mixin.

:gray-array array Initialization Option of w:gray-deexposed-right-mixin

Gettable, settable. Default: w:12%-gray

igray-array array Initialization Option of w:gray-deexposed-wrong-mixin

Gettable, settable. Default: w:12%-gray

Initializes the percentage of gray displayed. The value must be a two-
dimensional array of bits that bitblt can replicate; the array’s width must be a
multiple of 32. Useful values for w:gray-array include w: 100%-black,
w:66%-gray, and w:12%-gray. See the description of the w:make-gray
function in paragraph 12.4.2, Bit Block Transferring, for a complete list and
examples of the predefined gray patterns.

w:initially-invisible-mixin Flavor

Stops a window from appearing through screen management, even partially,
until it has first been explicitly exposed. Specifically, this flavor creates
window instances that have a priority of -2. This flavor is used in some
window flavors (such as editor windows and others) of which instances are
present in the saved system environment even without the user’s ever having
requested them. These windows can be active and can be selected using the
SYSTEM key, but they do not become partially visible if some other window
is made smaller.

5-20

Window System Reference



Visibility and Exposure

Recall that if a deexposed window has its deexposed typeout action set to
:permit, output on the window can proceed but is sent to the bit-save array
rather than to the screen. If the window is partially visible, such output could
modify the visible parts of the window. You can request that the screen man-
ager check periodically for such output and copy the changed contents to the
screen.

wiscreen-manage-update-permitted-windows Variable

Priority
Among Windows
for Exposure

Controls whether the screen manager looks for partially visible windows with
deexposed typeout actions of :permit and updates the visible portion of their
contents on the screen. If this variable is nil, as it is initially, the screen
manager does not update the visible portion of the window. Otherwise, the
value should be the interval between screen updates, expressed in 60ths of a
second.

5.9.4 Suppose there is a portion of the screen where there are no exposed
windows, and more than one active, deexposed window could be exposed to
fill this area. However, two windows overlap so both cannot be exposed. The
screen manager decides which window gets exposed on the basis of a priority
ordering. All of the active inferiors of a window are maintained in a specific
order, from highest to lowest priority. When there is a portion of the screen
on which more than one active inferior might be displayed, the inferior with
the highest priority is the window that gets displayed. This priority ordering is
like the relative heights of pieces of paper on a desk; the highest piece of
paper at any point on the desk is the one that you see, and the rest are
covered.

:order-inferiors Method of windows

Sorts the list of active inferiors of this window or screen into the proper order
for considering them for autoexposure or partial visibility. The w:inferiors
instance variable is the list of active inferiors. The inferior at the beginning of
w:inferiors has the highest priority.

The default definition of :order-inferiors uses a complicated algorithm that
puts the most recently exposed windows first but also allows the programmer
to specify priorities explicitly.

The algorithm involves a value assigned to each window, called its priority,
that can be a fixnum or nil. Thus, windows with higher numerical priority
values have higher priority to appear on the screen. The default value for the
priority is nil, which is considered less than any positive numeric value.

The standard ordering of inferiors puts all exposable inferiors first, followed
by the unexposable inferiors in order of decreasing priority. Each group of
unexposable inferiors with the same priority is ordered by how recently they
were exposable. The longer an inferior has gone without being exposable, the
lower the inferior’s priority.

Computation of the current ordering is based on the past ordering as stored in
the old value of w:inferiors. When the window system does anything to
change the ordering, such as making a window exposable or not exposable, it
invokes the :order-inferiors method to update the recorded ordering.

Window System Reference

5-21



Visibility and Exposure

The ordering is updated by moving the exposable windows to the front and
sorting the unexposable ones by priority. The sort is stable; that is,
unexposable windows with the same priority value keep their previous order-
ing. Because numerical priorities are not typically used (that is, the priorities
of most windows are nil), the ordering generally changes only as a result of
exposing and deexposing windows. When a window becomes exposable, the
window’s priority increases; when other windows become exposable instead,
this window’s priority becomes lower. Thus, the ordering simply shows how
recently each window was exposable.

ipriority priority Initialization Option of windows

:bury

Negative Priorities

Delaying
Screen Management

Gettable, settable. Default: nil

Sets the window’s priority value. This can be a number or nil.

Method of windows

Buries the window, which deexposes the window and puts it at the end of its
priority grouping in the ordering. A program typically buries its window when
it thinks that the user is not interested in that window and would prefer to see
some other windows. The user can bury a window using the Bury command
in the Edit Screen mode of the System menu.

Also, the w:deselect-and-maybe-bury-window function is a convenient
interface to the :bury method. This function is described in paragraph 6.2,
How Programs Select Windows.

5.9.5 Negative priorities have a special meaning. If the value of a window’s
priority is ~1, then the window is never visible, even if it is only partially
covered; however, it is still autoexposed. If the value of priority is -2 or less,
then the window is not autoexposed, so it is never seen unless sent an explicit
:expose message.

5.9.6 At times, you may want to inhibit automatic reexposure by the screen
manager. The screen manager can potentially interfere with the actions of a
program that explicitly deexposes windows. Suppose you send a :deexpose
message to an exposed window. The exposed window certainly does not over-
lap any still visible windows, and it is the most exposed window, so it is the
first candidate for autoexposure. The screen manager runs and probably
autoexposes that very window, canceling the effect of the :deexpose method.

Explicit deexposure is usually performed at the beginning of a sequence of
window rearrangements. For example, moving an exposed window deexposes
it, changes its position (which is easy when it is deexposed), and reexposes it.
The screen manager should run only when the whole sequence is complete; it
should not consider the transient intermediate states. Even if the screen man-
ager did not directly interfere with the program’s deliberate actions, it would
waste time and confuse the user by displaying partially visible windows in
temporarily unclaimed screen areas for which the program is already
preparing a new use.

You can shut the screen manager off within the w:delaying-screen-
management macro. While the body of this macro is being executed, events
that would normally bring about screen management are recorded on a queue
instead. After exiting the macro (whether normally or by throwing), the
screen manager looks at the queue and performs all necessary screen
management at once.

5-22

Window System Reference



Visibility and Exposure

Sometimes screen management cannot be done when the w:delaying-
screen-management form is exited because relevant windows are locked by
other processes. Then the entries are left on the queue. They are handled at
some later time when the necessary locks are freed by a background process
called Screen Manager Background. The necessary screen management,
then, always gets done eventually.

When w:delaying-screen-management forms are nested, only the outermost
one does any screen management when it is exited.

w:delaying-screen-management body Macro

Evaluates the forms in body sequentially with screen management delayed.
The value of the last form is returned. For example, the system delays screen
management while the user is resizing a window with the Edit Screen com-
mands. By delaying screen management, the system redisplays the contents
of the screen only once, after the user has completed all the changes.

w:without-screen-management body ' Macro

Evaluates the forms in body sequentially with screen management delayed.
Moreover, if the body completes normally, the entries put on the queue by
the body’s execution are removed from the queue, on the assumption that
the body has done all appropriate screen redisplay. If the body terminates
abnormally with a throw, the queued entries remain on the queue and even-
tually are processed by the screen manager.

Window System Reference

5-23






SELECTION

Introduction

6.1 At any given time, programs (or the system) responding to user
commands can select only one window and send keyboard input to only one
window. This window is called the selected window. A process trying to input
through another window normally waits until that window is selected.

A window’s cursor marker is a blinker that normally blinks only when the
window is selected; thus, this cursor-following blinker usually indicates which
window is selected. You can control what happens to each blinker when its
window becomes selected. (See paragraph 10.2, Visibility and Deselected
Visibility of Blinkers.)

A user can change the selected window using the TERM and SYSTEM Keys
or the System menu. Also, moving the mouse blinker to a window and click-

" ing the left button one time selects that window if the window can be selected.

For example, suppose there are several Lisp Listeners displayed on the main
screen at the same time. One of the windows displays a flashing blinker and
echoes keyboard input there. The processes in the other screens suspend
keyboard input; you can see this if one of the windows on the screen is a
Peek window. The mouse or the TERM O keystroke sequence can be used to
select a different window.

The selected window must handle some operations that windows in general
do not have to handle. The w:select-mixin flavor defines these methods and
should be used in flavors of windows that are going to be selected. The
w:window flavor includes the w:select-mixin flavor. A window can be useful
without being selectable.

If two processes try to read from the same window (or windows sharing an
input buffer), you cannot predict which process will get the input. If you are
designing an application where this might occur, you must make sure that you
do not have two processes actually active and reading input from the same
source at the same time. In most applications, only one process can read
input from any one window or input buffer. In these applications you should
use w:process-mixin in the window flavor to tell the window which process is
associated with it.

The selected window controls the actions performed by the system at the
instant a character is typed on the keyboard. Because typed-ahead com-
mands (such as END in the editor) switch windows, there is no way to know
for certain which window will eventually read a character being typed at a
given moment. Letting the selected window determine asynchronous process-
ing for the character avoids this problem. Asynchronous processing options
include asynchronous intercepted characters (as described in paragraph
8.7.2) and case conversion of control characters (see paragraph 8.7.3,
Global Asynchronous Characters).

The selected window determines which process the :process method acts on
when asynchronously intercepted characters (such as the CTRL-ABORT key-
stroke sequence) are intercepted. The status line normally does the same

Window System Reference

6-1



Selection

thing to find the process whose run state should be displayed. If you use
w:process-mixin, the :process method returns the process associated with
the window; otherwise, a default definition of :process is inherited from
w:select-mixin and returns whichever process last read input from the win-
dow—or from any other window sharing the same input buffer. You should
use w:process-mixin whenever possible. Not using w:process-mixin can
lead to unexpected results in the CTRL-ABORT keystroke sequence (this is,
however, acceptable for the status line).

If a process tries to get input from a window whose input buffer is empty and
is not selected, it cannot get any input and must wait. The input buffer is
selected if this window, or any other window sharing the same input buffer, is
the selected window. The wait ends when input appears in the buffer, or
when the buffer becomes selected and there is keyboard input available.
If the window is not even exposed, the program can also specify a notifi-
cation. The window’s deexposed type-in action controls whether notifications
can happen. See paragraph 18.2, Notifications.

How Programs 6.2
Select Windows
w:selected-window | Variable

The selected window. The system maintains the variable; you should not set
it. Note that constraint frames do not use this variable; instead, they use the
w:selected-pane method.

w:select-mixin Flavor

Required flavor: w:essential-window
Required instance variable: w:io-buffer

To be selected, the flavor for a window must include the w:select-mixin
flavor. wiselect-mixin is part of the wiwindow flavor but not part of the
w:minimum-window flavor.

A window whose flavor does not contain this mixin flavor can be sent the
:select message only if the window has designated another window as a selec-
tion substitute. The last substitute selected must have w:select-mixin.

:select &optional (remember-previous t) Method of windows

Makes this window (or its selection substitute, if any) the selected window.
Many application window flavors define :before and :after methods for this
method. The :before and :after methods run whenever this method is
invoked, even if the window is already selected. To test for a window being
selected, use the :self-or-substitute-selected-p method described in para-
graph 6.4, Selection Substitutes.

If remember-previous is not nil (and only then), the previously selected win-
dow is entered on the list of previously selected windows for the TERM and
SYSTEM keys to use. The default is t.

Neither the :select nor the :mouse-select methods should be called in the
mouse process. If you want to use these methods in a :mouse-click, :mouse-
buttons, or :handle-mouse method, you must include the following in your
code:

(process-run-function "Select" window-to-select :select)

6-2

Window System Reference



Selection

This causes the :select method to be executed in its own process.

:mouse-select args Method of windows

Selects a window for mouse click or asynchronous keyboard input such as is
done when the TERM Key is pressed. The args are sent to the :select
method.

While the :mouse-select method is generally the same as sending a :select
message to the window’s alias for selected windows (as explained in para-
graph 6.3, Teams of Windows), the :mouse-select method does not change
which window gets type-ahead input. (See the description of w:*terminal-
keys* in paragraph 8.7.3, Global Asynchronous Characters, for more details
about specifying where type-ahead input should go.)

Neither the :select nor the :mouse-select methods should be called in the
mouse process. If you want to use these methods in a :mouse-click, :mouse-
buttons, or :handle-mouse method, you must include the following in your
code:

(process-run-function "Select" window-to-select :mouse-select)

This causes the :mouse-select method to be executed in its own process.

:deselect &optional (restore-selected t) Method of windows

Invoked automatically when a window ceases to be selected, whether because
the window is no longer visible, or because another window is being selected.
Many application window flavors define :before and :after methods for the
:deselect method.

restore-selected controls whether this window is stored in the w:previously-
selected-windows array used by the TERM S and SYSTEM keys. The
:deselect method determines whether to select this or some other window
found in that array. The possible values for restore-selected are the following:

®m :dont-save — Does not put the window being deselected in the array, and
no other window is selected.

H :beginning or nil — Puts the window being deselected at the front of the
array, and no other window is selected.

B :end — Puts the window being deselected at the end of the array, and no
other window is selected.

B :first — Selects the window at the front of the array, then puts the win-
dow being deselected at the front of the array. This is similar to what the
TERM S Kkeystroke sequence does.

B :last or t — Puts the window being deselected at the end of the array and
selects the window at the front of the array. This is the default.

w:deselect-and-mayﬁe-bury-window window deselect-mode Function

Deselects window and selects the previously selected window. If this
deexposes the deselected window, then the deselected window is buried.
deselect-mode is passed to the :deselect method and is used as its restore-
selected argument. See the previous discussion of :deselect for its possible
values.

Window System Reference

6-3



Selection

w:window-call (window-to-select &optional exit-method Macro

exit-args) &required body

w:window-mouse-call (window-to-select &optional exit-method exit-args) Macro

&required body

Executes body on the window specified as window-to-select. w:window-call
uses the :select method; w:window-mouse-call uses the :mouse-select
method. On exit, both macros reselect the window that had been selected
before and send the selected window the specified arguments.

exit-method 1is invoked after body has been executed. The value used for
exit-method is often :deactivate. If exit-method is omitted, nothing is done to
window-to-select except for deselecting it because some other window is
selected. exit-args are passed, along with exit-method, to window-to-select.

For example, the following code creates an instance of a mouse-sensitive
window along with its item types. The w:window-call form exposes and
selects the window, outputs a mouse-sensitive sentence, waits for the user to
make a choice, returns the value of that choice, deactivates the mouse-
sensitive window, and selects the previous window.

(defflavor mouse-sensitive-window ()
(w:basic-mouse-sensitive-items w:window))

(setq my-window (make-instance ‘mouse-sensitive-window
:item-type-alist
‘((word-item left-click-word "a word type item.")

(phrase-item left-click-phrase "a phrase type item.")
(sentence-item left-click-sentence "a sentence type item."))))

(w:window-call (window :deactivate)
(format my-window "this -M contains -VM mouse-sensitive -1M."
"sentence"
‘word-item "some"
"words and phrases")
(send my-window :any-tyi)

You may find that using selection substitutes is better than using w:window-
call for controlling selection among windows of a team. (Selection substitutes
are described in paragraph 6.4.)

Teams of Windows

6.3 The principle of selecting a single window is based on the concept of
windows that are independent competitors for the user’s input, such as a pair
of Lisp Listeners. Normally a team of windows is a single frame and its panes,
managed by a single process. The windows of a team often share an input
buffer to make it easier for one process to read input from all of the windows
at one time. This is an important procedure, which you should read about if
you are designing a team of windows. Note that a constraint frame is a
specific type of team.

Teams are not actual Lisp objects but merely concepts understood by the user
and programmer. The window system cannot have a selected team; one win-
dow of the team must be selected. Each team’s program selects a window of
the team as the team’s selection representative. The selected window should
then be the selection representative of your selected team. The selected win-
dow can change when the user selects a new team, or when your selected
team chooses a new selection representative.

Window System Reference



The System Menu
Select Command

Selection

To implement this, the programmer of the team first selects one window of
the team to be the leader. This is not the same as the selection representative.
The selection representative can change from moment to moment, but the
leader must be fixed. When the team is a frame and its panes, it is natural to
make the frame be the leader. Standard mixins are provided to make this
easy to do. These mixins and the procedures for using them are described in
the following paragraphs.

The selection representative is implemented as the leader’s selection substi-
tute. Then the team can be selected using the :select method on its leader
window,

Even when the team allows the user to select from the windows of the team
(such as when a Zmacs frame in two-window mode allows the user to click a
mouse button on either of the editor windows to select the window), this
selection is best represented by the idea of a team that does all selection
under program control. The appropriate mouse clicks are defined as
commands that tell the team’s program to change the team’s selection
representative.

You usually want only a single item representing the team to appear in the
Select menu, invoked from the System menu. If the team consists of a
frame—which is the leader—and its panes, selection can be done with
w:inferiors-not-in-select-menu-mixin in the frame’s flavor. More complex
behavior is also possible. For example, Zmacs frames in two-window mode
allow each editor window to have its own entry in the Select menu.

Also, the TERM and SYSTEM Kkeys should reselect the team by selecting its
current selection representative. This is done by making them record and
reselect the team’s leader. If the team consists of a frame—which is the
leader—and the frame’s panes, selection can be done with w:alias-for-
inferiors-mixin in the frame’s flavor. (Zmacs frames follow this pattern
exactly. The frame is the alias for any editor windows inside the frame.)

The following paragraphs describe the details of how these things are done.

6.3.1 When the Select command in the System menu is used, it gets the list
of alternatives by invoking the :selectable-windows method on each screen.
This method travels down the window hierarchy and determines whether
each window should be included. Each window is sent a :name-for-selection
method. The value sent should be either nil (meaning omit this window) or a
string (to be used as the window’s name). If the value is a string, the string is
displayed in the menu of windows.

w:inferiors-not-in-select-menu-mixin Flavor

Required flavor: w:basic-frame

Redefines the :selectable-windows method to ignore the window’s inferiors.
The inferiors are not asked whether they should be included.

:selectable-windows Method of windows

Returns an association list of strings versus windows that become part of the
association list displayed in the Select menu. The association list returned
should describe this window and its inferiors, or whichever of them ought to
appear in that menu.

Window System Reference

6-5



Selection

Normally this method uses the string returned by a window’s :name-for-
selection method as the first element of the association list, or it omits this
window if its :name-for-selection returns nil. :selectable-windows then
appends the values returned from the window’s inferiors.

:name-for-selection Method of windows

Selection With
TERM and
SYSTEM Keys

Either returns a string to display in the Select menu for this window, or
returns nil (meaning do not list this window in the menu).

The default definition uses the window’s label string, if any, or its name.
Many applications redefine :name-for-selection. For example, w:not-
externally-selectable-mixin redefines :name-for-selection to return nil. If
you want more complex behavior from a team than simply having a single
entry, you redefine :name-for-selection on the flavors of many different
windows in the team.

The :name-for-selection method also affects autoselection, which is done by
the screen manager. A window can be autoselected only if its :name-for-
selection is not nil.

6.3.2 The TERM S keystroke sequence can be thought of as acting on a
combined list that contains the selected window followed by the previously
selected windows. The TERM n S keystroke sequence rotates the first n ele-
ments of this list, makes the selected window the first previously selected
window, and makes the nth previously selected window the selected window.
The SYSTEM Key also uses this database to find a window of the appropriate
flavor to select or to rotate through all the windows of that flavor.

Windows are put into the w:previously-selected-windows array and
removed from it automatically when they are selected, deselected, activated,
or deactivated. The applications programmer must identify only teams of win-
dows that should be treated as a unit. The system uses the :alias-for-
selected-windows method to determine whether a window can be selected. If
two windows are in a hierarchy, one above the other, and both have the
w:alias-for-inferiors-mixin flavor, then the window having the higher
priority is selected.

NOTE: No record is kept of which window in a team was actually selected
most recently. The w:previously-selected-windows variable records only the
alias or team leader window, and this is the window that receives the :select
message if the TERM Kkey is pressed to switch back to that team. To ensure
that the proper window within the team is selected, use selection substitutes as
described in the following paragraphs.

w:not-externally-selectable-mixin Flavor

Makes a window and its descendants have the window’s superior as an alias
and keeps the window out of the Select menu.

Using this flavor you can control which windows appear in the Select menu or
which can be selected by the TERM key. Specifically selected descendants
are given this mixin so that they do not appear in the Select menu; any other
descendants do appear in the Select menu.

Window System Reference



Selection

w:alias-for-inferiors-mixin Flavor

Makes a window be an alias for all of its inferiors. Thus, the window and all
of its inferiors form a team considered as a unit by the TERM and SYSTEM
keys, and this window is the leader.

:alias-for-selected-windows Method of windows

Returns the alias that represents this window in the w:previously-selected-
windows variable. When this window gets deselected, its alias is recorded in
that variable. In the example of independent Lisp Listeners, the alias of each
Lisp Listener is itself. For a window in a team, this method should return the
team’s leader window.

The default definition of this method either returns the superior’s :alias-for-
inferiors method if that is non-nil, or it returns this window.

:alias-for-inferiors Method of windows

Returns a window to act as the alias for all inferiors for all levels of this
window, if needed. Otherwise, it returns nil.

The default definition returns the :alias-for-inferiors for this window’s supe-
rior. Thus, if an ancestor of this window wants to be an alias for all of its
descendants, its request is sent to whatever invokes this method; otherwise,
the descendants decide for themselves.

w:previously-selected-windows Variable

An array whose contents are all the active windows—not including the
selected window—that the TERM and SYSTEM keys should know about for
window selection. The windows of a team are generally all represented by a
single member of the team, which is the leader. The leader is usually a frame
that contains the remainder of the team as panes, but this is not required.

Typically, you want the process associated with the selected window to run
with a higher priority than processes associated with deselected windows. For
example, if you do a make-system in a Lisp Listener, you probably would
like to go to an editor window and still get good response. Two variables
enable this: w:*selected-process-priority* and w:*deselected-process-
priority*.

w:*selected-process-priority* Variable

Default: 0

The priority of the process associated with the selected window is raised to
w:*selected-process-priority*. The process priority is reset to its previous
value when a new window is selected. Setting this variable to nil causes
process priorities to be unaffected by window selection.

You should not set this variable to a value greater than zero to avoid prob-
lems caused by locking out system processes running at the default priority of
zero. To avoid this problem, you can set the following variable to a negative
number, thus effectively lowering the priority of processes associated with
deselected windows.

Window System Reference



Selection

w:*deselected-process-priority* Variable

Default: -1

When a window is deselected, the priority of the process associated with it is
normally reset to what it was before the window was selected. When this
previous priority is equal to w:*selected-process-priority*, the priority of the
deselected window is set to w:*deselected-process-priority* instead of its
previous value.

The window system includes safeguards so:

W When a process priority is set above zero, the window system never
lowers the priority.

M When a process priority is set below zero, the window system does not
raise the priority when the window is deselected.

However, when a window is selected, the window system raises the window’s
priority to w:*selected-process-priority*, which is typically the correct
action.

Selection
Substitutes

6.4 All windows have the ability to designate a selection substitute. If a
window has a substitute, any requests to select or deselect the original window
are passed along to the substitute. The substitute can have a substitute of its
own, and so on. A window’s selection substitute is remembered in the
w:selection-substitute instance variable, whose value is either another
window or nil.

The main use of selection substitutes is for controlling selection within a team
of windows. The team has one window designated as the leader; all requests
to select members of the team are accomplished with :select methods.
Selection is made as described in the previous paragraphs. As a result, the
team’s program can choose a selected window within the team by making that
window the leader’s selection substitute.

To avoid paradoxical results when pressing TERM S, the :alias-for-selected-
windows method should be the same for both the substitute window and for
the window for which it substitutes. With a hierarchical team of windows, this
substitution is usually arranged by using w:alias-for-inferiors-mixin in the
top window of the team. The substitute window should not appear in the
Select menu, because its entry and the entry of the window for which it
substitutes would be duplicates. The w:inferiors-not-in-select-menu-mixin
flavor in the top window of the team prevents the duplicate entry.

NOTE: When the team’s program uses the :set-selection-substitute method
on the team’s leader window to change the selected pane within the team, it
does not matter whether the team is currently selected. The correct results
occur regardless of whether the team is deselected and reselected at any given
time.

Window System Reference



Selection

:selection-substitute Method of windows
Settable. Default: nil

Returns this window’s selection substitute or nil if the window does not cur-
rently have one. For :set-selection-substitute, if this window or its substitute
was previously selected, then the window’s new substitute (or the window
itself) is selected afterward. Thus, the value of :self-or-substitute-selected-p
on this window is not changed by this method.

:ultimate-selection-substitute Method of windows

Returns this window’s substitute, then the substitute’s substitute, and so on
until a window is reached that has no substitute. If this window has no
substitute, the window itself is returned.

:self-or-substitute-selected-p Method of windows
Returns t if this window, or its substitute, or its substitute’s substitute, and so
on, is selected; otherwise, it returns nil.

w:with-selection-substitute (window for-window) body Macro

Executes a body of Lisp code with window defined as the selection substitute
for for-window. On exit, w:with-selection-substitute sets the selection substi-
tute back to whatever it was previously and deexposes or deactivates the
substitute, if appropriate.

You should use w:with-selection-substitute to switch the selected pane
temporarily.
w:preserve-substitute-status window body Macro

Executes body, then selects window if window or its substitute had been
selected immediately before this macro was executed.

Typeout Windows 6.4.1 Typeout windows use the selection substitute mechanism to select
and themselves to receive output. The typeout window makes itself the substitute
Selection Substitutes of a suitable superior in the hierarchy. The typeout window does not neces-
sarily substitute itself for its immediate superior. This allows output to go to
the typeout window although the typeout window’s immediate superior is not
the selected window. For example, when you press the META-X HELP key-
stroke sequence in the Zmacs editor, a typeout window substitutes itself for
the selected window so you can use the Help facility.

When a typeout window substitutes itself for a superior, the typeout window
may not have been the substitute for that superior. To resolve this problem,
the typeout window records the selection substitute of the superior, makes
itself the selection substitute, and exposes itself. Once the typeout window is
deexposed, it restores the original selection substitute for the superior.

:remove-selection-substitute window-to-remove Method of windows
suggested-substitute

Ensures that window-to-remove is not this window’s substitute, suggesting
suggested-substitute (possibly nil) as a substitute instead. The standard
implementation of this method sets the substitute of this window to suggested-
substitute if the substitute of this window was window-to-remove. This method
is used and documented so that specific windows can define their own ways
of calculating the new value for the substitute, perhaps ignoring suggested-
substitute. :

Window System Reference ; 6-9



Selection

Nonhierarchical
Selection Substitutes

When a typeout window is deactivated, :remove-selection-substitute ensures
that the typeout window ceases to be another window’s substitute.

6.4.2 Some programs need to temporarily replace one window with another.
For example, the telnet function can behave this way, giving the appearance
of temporarily changing the Lisp Listener or other window in which it is
called into a Telnet window. Substitution is accomplished by creating a suit-
able Telnet window and making it the substitute for the original window. In
this case, the substitute window has the same edges and the same superior as
the original window, but it is not an inferior of the original window. The
substitute window need not be the same size as the original.

Noninferior selection substitutes are usually established and deestablished by
using the w:with-selection-substitute macro in a straightforward manner.
However, you must be sure that the original window is the :alias-for-
selected-windows method of the substitute. In the case of the telnet func-
tion, this substitution creates the illusion that the Lisp Listener has changed
temporarily into a Telnet window. Because the substitute window is not a
descendant of the original one, it must have some other way to find the origi-
nal window (such as an instance variable for this specific purpose) and a
specially defined :alias-for-selected-windows method to return the original
window.

The Status of a

6.5 A window’s status is represented by a keyword that encodes whether

Window the window is selected, exposed, or active.
:status Method of windows
Settable.
Returns the status of the window, which is one of the following:
Keyword Status of the Window
:selected The selected window.
:expesed Exposed but not selected. The window may not be
visible if its deexposed typeout action is :permit.
:exposed-in-superior Exposable but its superior has no screen array.
:deexposed Active in its superior but not exposable.
:deactivated Not active. This is the status of a window that has
been created but never exposed or selected.
The :status and :set-status methods are useful for selecting a window tempo-
rarily and then restoring everything as it was. :set-status can deexpose the
window or deactivate it in addition to deselecting it.
6-10 Window System Reference



Selection

Windows and
Processes

The Inspector
Example

6.6 A self-contained interactive system that has its own window(s) usually
has its own process to drive the window(s). Peek, Zmacs, and the Inspector
all do this when called through the SYSTEM key. Normally each window you
create has its own process. For example, there is a process for each Peek
window, so different Peek windows run independently.

Whether a window is managed by a dedicated process or by various processes
is not a crucial decision. The program that reads commands from the window
and draws on the window can always be run in one dedicated process or in
different processes at different times—though if you run it in two processes at
one time, you should be careful to keep the processes from confusing each
other. (See paragraph 6.3, Teams of Windows.)

The mechanisms of selection and exposure control whether input and output
are possible on a window at a given time, and these mechanisms work auto-
matically on any process(es) that tries to do input or output. When there is a
dedicated process for a window, often the only connection between the
process and the window is that the dedicated process is running a program
that has a pointer to that window (typically the value of *terminal-io* in the
process is that window). Thus, when in another process, setting *terminal-
io* to the window where output is to go causes the output of functions such as
print to send their output to the correct window by default.

6.6.1 For example, the Inspector window you invoke with the SYSTEM I
keystroke sequence has a dedicated process, whereas the Inspector window
you get by typing (inspect) while in a Lisp Listener runs in the process that
calls the Inspector program. These two Inspector windows have the same
flavor; the same function, w:inspect-command-loop, does the main work.
The only differences between these two Inspector windows are in deciding
when to deexpose the window, what to do when that happens, when it can be
reused, what to do if the user presses the END key, and anything else related
directly to the difference in the two user interfaces for entering and exiting.

The Inspector window makes an instructive example for comparing these two
ways of managing a window. The inspect function allocates a window out of a
resource of reusable windows of the correct flavor. The inspect function
sends the window some messages to initialize the Inspector window for this
particular session; this is how inspect tells the window about the object that is
the argument to inspect. Then it selects the window using the w:window-call
macro and calls the Inspector program. When the user presses the END key,
the program returns, the w:window-call macro reselects the old window and
deactivates the Inspector window, and inspect returns. The inspect function
uses an unwind-protect macro so that aborting outside of inspect for any
reason brings back the old window.

Pressing the SYSTEM 1 keystroke sequence finds or creates an Inspector
window of the same flavor. When no initialization options are specified, this
flavor’s default initialization property list specifies the creation of a process,
which is initialized to call the Inspector program. If the user presses the END
key—or clicks on Exit—and the Inspector command loop returns, the top-
level function in the dedicated process buries the Inspector window and loops
back to the beginning. That is all that is required to make the SYSTEM I
keystroke sequence work.

Window System Reference

6-11



Selection

Process-Related

Methods and Flavors

6.6.2 The following process-related methods are defined on the w:select-
mixin flavor so that they are always supported by the selected window.
Because windows lacking w:process-mixin do not explicitly remember a
process, a heuristic is used to produce a process: it is the last process to have
read input from this window’s input buffer.

When you use both w:process-mixin and w:select-mixin, you should always
put the w:process-mixin flavor before the w:select-mixin flavor in the com-
ponents of a window flavor, so the methods in w:process-mixin override
methods in w:select-mixin.

The w:select-mixin and w:process-mixin flavors both have a :process
method. When you use the :process method of the w:process-mixin flavor,
it replaces the :process method of the w:select-mixin flavor.

w:process-mixin Flavor

Provides the w:process instance variable that can remember a process associ-
ated with the window. Windows that are sometimes used with a dedicated
process should use this mixin.

The most valuable service that w:process-mixin provides is an easy way to
create and initialize a process for each window created and to inform the
process which window it was created for. Once this is done, the desired
results generally follow without special effort.

Selecting the window or making it visible gives the process a run reason. The
window itself is used as the run reason. (See the description of processes in
the Explorer Lisp Reference manual for details on run reasons.) Also, this
resets the process if it is flushed, waiting with false as its wait function.

The :kill method on the window calls the :kill method on the process.
Using w:process-mixin guarantees that the :process method returns the

explicitly specified process, regardless of which process has most recently
read from the window.

:process process Initialization Option of w:process-mixin

:process

Gettable, settable. Default; nil

Sets the process associated with the window either to process or to nil.
process can be either a process or a list used as a description for creating a
process. The following shows what the list looks like:

(initial-function make-process-options)

When the process starts up, it calls initial-function with the window as its sole
argument. Normally initial-function should bind *terminal-io* to the
argument.

Method of w:select-mixin
Settable.

Returns a process with this window, heuristically if necessary. The :process
method provided by w:select-mixin is invoked if the window was not created
using the w:process-mixin flavor.

6-12

Window System Reference



iprocesses

:arrest
sun-arrest

:call

Selection

Method of windows

Returns a list of processes dedicated to this window. The :append method
combination is used so that all the processes used by any of the methods are

-put into the returned list. These are the processes that the :kill method Kills.

The default is to return nil if no processes are found. The w:process-mixin
flavor contains the w:process instance variable, which holds the name of the
process associated with this window. Therefore, adding w:process-mixin to
the window flavor provides the information needed by :processes.

Method of w:select-mixin
Method of w:select-mixin

Arrests or unarrests the process returned by the :process method.

Method of w:select-mixin

Selects an idle Lisp Listener window, which could be this window. If the
window selected is not this window, :call arrests this window’s process with
arrest reason :call. This arrest reason is removed automatically by selecting
this window again.

w:reset-on-output-hold-flag-mixin Flavor

Associating a Process
With a Window

Resets any process that tries to draw on this window when it has an output
hold condition. (See the :reset method in the description of processes in the
Explorer Lisp Reference manual.) Specifically, this flavor sets :deexposed-
typeout-action to “# for its window instances, which means that the :reset-
on-output-hold-flag method is invoked, sending a :reset message to the
current process.

The w:truncating-pop-up-text-window-with-reset flavor creates a tempo-
rary window that truncates lines and resets processes that try to output on it
when its output hold is set.

6.6.3 In most cases when you want to associate a process with a window you
also want to make that window selectable—that is, you want the user to be
able to select the window by pressing a SYSTEM keystroke. This procedure is
described in paragraph 8.7.3, Global Asynchronous Characters.

If you want to create a window with an associated process that is not invoked
by pressing the SYSTEM keystroke, you must do something similar to the
following code. This code enables the Profile utility to be selected from a
listing in the System menu.

(defmethod (profile-frame :after :init) (&rest ignore)
"Sets up the various panes."
(setq selection-menu-pane (send self :get-pane ‘selection-menu-pane)

action-menu-pane (send self :get-pane ‘action-menu-pane)
cvv-pane (send self :get-pane ‘cvv-pane))

(unless (boundp ‘“w:typeout-window)
(setq w:typeout-window

(make-instance ‘w:typeout-window
:deexposed-typeout-action ‘ (:expose-for-typeout)
:font-map ‘(fonts:tri2 fonts:tri2i fonts:tri2b fonts:tri2bi)
:io-buffer w:io-buffer
:superior self)))

(setq tv:process (make-process w:name :special-pdl-size 4000.

:regular-pdl-size 4000))

(process-preset tv:process self :command-loop)
(send tv:process :run-reason self)
(send selection-menu-pane :add-highlighted-value “*important-variables*))

Window System Reference

6-13



Selection

Handling a
Long-Running
Process

6.6.4 Sometimes you might want to execute a 'make-system or some other
long-running process in a Lisp Listener, but you do not want to wait for the
function to complete before you can perform some other task. Yet if you
deexpose the Lisp Listener, the process executing in the Lisp Listener may
stop if it must perform any typeout on the deexposed Lisp Listener.

The following example shows a solution to this problem: set the Lisp
Listener’s deexposed-typeout action to :permit and the process priority to a
low value. Because the default deexposed typeout action for the Lisp Listener
is :permit, this example is present only for illustrative purposes.

(defun window-permit (flavor &optional priority quantum)
'Find a flavor window and set its deexposed-typeout-action to
:permit.
If the optional priority parameter is given, set the window’s
process priority.
If the optional quantum parameter is given, set the window’s process
quantum. "
(check-arg priority (or (null priority) (numberp priority))
"a number")
(check-arg quantum (or (null quantum) (numberp quantum)
(plusp quantum)) "a positive number")
(let ((this-window (or (and (eq (typep w:selected-window) flavor)
w:selected-window)
(w: find-window-of-flavor flavor))))
(unless (boundp ‘this-window)
(setq this-window (make-instance flavor
:superior w:default-screen))
(send this-window :activate))
(send this-window :set-deexposed-typeout-action :permit)
(when priority
(send (send this-window :process) :set-priority priority))
(when quantum
(send (send this-window :process) :set-quantum quantum))))

(window-permit ‘w:lisp-listener -2 15.)
(window-permit ‘w:telnet)

6-14

Window System Reference



OUTPUT OF TEXT

Introduction

7.1 All windows can function as output streams, displaying output as if it
were on the screen of an ordinary video display terminal. The w:minimum-
window flavor implements the methods of the Explorer output stream proto-
col as well as many additional output methods such as :insert-line. (See the
Explorer Input/Output Reference manual for a description of the standard
output methods.) Every window has a current cursor position; its main use is
to show where to put characters that are drawn. Windows handle typeout by
drawing characters at the cursor position and moving the cursor position
forward past the just-drawn character.

Cursor position arguments to stream methods are always expressed as inside
window coordinates, that is, coordinates relative to the upper left corner of
the inside part of the window; therefore the margins do not count in cursor
positioning. The cursor position always stays in the inside portion of the
window and never enters the margins. The point (0,0) is at the top left corner
of the window; x coordinate values increase to the right, and y coordinate
values increase towards the bottom.

margin size
\

~ .

0,0 X increases

y increases

Label

The x cursor position is the position of the left edge of the character box of
the next character output. The leftmost nonzero pixels of the character can
be either left or right of the edge of the character box, according to the left
kern of the character. (See paragraph 9.8, Format of Fonts, for more details
about left kern values.)

The y cursor position is the position of the top of the character on the line
being output. If only a single font is in use, the top of the character box is at
this vertical position.

In fact, characters are positioned so that their baselines come out on the
baseline of the line. When characters of different fonts are used in the line,

Window System Reference

7-1



Output of Text

they come out with baselines aligned rather than with their top edges aligned.
The position of the character’s baseline is a property of its font. The
window’s baseline is computed from the set of fonts in use to provide enough
space above the baseline for any of the fonts.

baseline

—

— = vsp

IM' line height
L l baseline
—-—_ = ZE —_— = vsp

|

Every window has a font map, an array of fonts in which characters on the
window can be typed. At any given time, one of these is the window’s current
Jont. The methods that type out characters always use the window’s current
font. For now, fonts are described only enough to explain the character
width and line height of the window; these two units are used by many of the
methods documented in this section. The character width is the char width
attribute—the amount of space that the cursor moves when it prints the char-
acter, which is typically the width of the character—of the first font in the font
map.

The line height is the sum of the vertical spacing of the window and the
maximum of the char height of the fonts. The vertical spacing is an attribute
of the window that controls how much vertical spacing there is between
successive lines of text. That is, each line is as tall as the tallest font is, and
you can add vertical spacing between lines by controllmg the vertical spacing
of the window. Methods for controlling the vertical spacing are documented
in paragraph 7.10, Window Parameters Affecting Output. No instance
variable holds the vertical spacing, but the system can compute it from the
line height and the font map.

Every window has a current font, which the window’s methods use to deter-
mine the font to type in. If you are not interested in fonts, you can allow the
system to supply a default font. In some fonts, all characters have the same
width; these are called fixed-width fonts. The default font is an example of a
fixed-width font. In other fonts, each character has its own width; these are

called variable-width fonts. With variable-width fonts, it is not meaningful to
express horizontal positions in numbers of characters, because different char-
acters have different widths.

When a character is drawn, it is combined with the existing contents of the
pixels of the window according to an ALU argument. The different ALU
arguments for a monochrome environment are described in paragraph 12.2,
ALU Arguments. When characters are drawn, the value of the window’s
w:char-aluf instance variable is the ALU argument used. Normally w:char-
aluf says that the bits of the character should be bit-wise logically ORed with
the existing contents of the window. This means that if you type a character,
set the cursor position back to where it was, and type out a second character,
then the two characters both appear, ORed together one on top of the other.
This is called overstriking. Erasure is also done using an ALU argument,
which the window can specify, called the w:erase-aluf instance variable.

Window System Reference



w:char-width

Output of Text

Normally this is an ALU argument that ANDs the old pixel value with the
complement of the area erased.

Windows display reverse video by interchanging the normal values of the
w:char-aluf and w:erase-aluf so that erasing an area sets it to 1 and drawing
a character clears the character’s pixels to 0.

The same ALU operations that are available in the monochrome environ-
ment are also available in the color environment, as well as other operations.
The color ALU arguments are described in paragraph 19.6, Color ALU
Functions. Anything drawn on the window using the general ALU arguments
writes in the foreground color and erases to the background color. If an exist-
ing application uses the general arguments, in most cases you need do nothing
to update them for color. However, if an existing application uses w:alu-xor
to draw output to the window, you should use a color ALU function while
running in a color environment.

If you plan to use your application on both color and monochrome systems,
you should use w:char-aluf or w:combine (w:alu-transp) and w:erase-aluf
or w:erase (w:alu-back) for the two general ALUs. These two ALUs have
the desired effect on a color system while behaving as if they were w:alu-ior
and w:alu-andca on a monochrome system. However, w:alu-transp and
w:alu-back are not merely different names for w:alu-ior and w:alu-andca.

Instance Variable of windows

w:sheet-char-width window Macro

w:line-height

Contains the character width of the window. The character width is not used
for ordinary output, because each font determines its own widths. w:char-
width, which is expressed in pixels, is used for interpreting cursor positions
expressed in characters. The macro can access the instance variable to get or
change the value of the variable, depending on how the macro is used in
code.

Instance Variable of windows

w:sheet-line-height window Macro

Contains the line height of the window. The line height is actually used for
outputting a #\return character. w:line-height, which is expressed in pixels,
is used for interpreting cursor positions expressed in lines.

How a Character
Is Displayed

7.2 Typeout does more than just draw a character on the screen; typeout
also handles these situations:

M Moving the cursor to the proper place
B Processing nonprinting characters reasonably
M Attempting to display outside the edges of the window

W Enabling **MORE** processing, which causes **MORE** breaks to
occur at the proper time

Figure 7-1 shows a pseudo-code example of the logic that types out char-
acters to the window. For information about the Explorer character set, see
the discussion of input functions in the Explorer Input/Output Reference
manual.

Window System Reference



Output of Text

The following paragraphs use the sharp-sign backslash construct for special
character codes. This construct is discussed in the section on characters in
the Explorer Lisp Reference manual.

Figure 7-1 Pseudo-Code for Character Displaying
Handle output exceptions [

IF character is printable
THEN
print the character

move the cursor to the right by the width of the
character
ELSEIF character is a #\tab
THEN @
move the cursor to the next tab stop
ELSEIF character is a #\return
THEN @
IF cr-not-newline flag = O
THEN
move the cursor to the far left and down one line
ELSE
display the character as a lozenge
ENDIF
ELSEIF character is a #\backspace
THEN
IF backspace-not-overprinting flag = 0
THEN 5]
move the cursor left by one character width
but not past the inside-left edge
ELSE ©
display the character as a lozenge
ENDIF
ELSEIF character is a defined character code
THEN rd
display the character as a lozenge
ELSE E]
display the character’s octal code number as a lozenge

ENDIF

In more detail, the system uses the following procedure to output characters:

@ First, any output exceptions that are present are dealt with and made to
disappear. (See paragraph 7.4, Output Exceptions.)

If the character is a printable character, the character is typed in the
current font at the current cursor position, and the cursor position moves
to the right by the width of the character.

If the character is one of the format constructs #\tab, #\return, or #\back-

space, the character is handled in a special way.

The #\tab construct causes the cursor to move one position to the right
to the next tab stop, moving at least one character width. Tab stops are
equally spaced across the window. The :tab-nchars initialization option
sets the distance between tab stops using the w:char-width instance
variable. The :tab-nchars initialization option defaults to eight but can be
changed.

7-4 Window System Reference



Output of Text

@ Normally, the #\return construct causes the cursor position to be moved
to the inside left edge of the window one line down, and clears the line.
The #\return construct also initiates **MORE** processing and the
end-of-page condition processing. However, if the window’s :cr-not-
newline-flag initialization option is on, the #\return construct is not
regarded as a format construct and is displayed as GETURED, like other
special characters.

If the character being typed out is #\backspace, the result depends on the
value set by the window’s :backspace-not-overprinting-flag initialization
option.

If :backspace-not-overprinting-flag is 0, as is the default, the cursor
position is moved left by one character width, or to the inside left edge,
whichever is less.

@ If :backspace-not-overprinting-flag is 1, #\backspace is treated like all
other special characters.

@ All special characters other than #\tab, #\return, or #\backspace have
their names typed out in tiny letters surrounded by a lozenge, and the
cursor position is moved right by the width of the lozenge. For example,
\#escape would be displayed as E=cifF©.

® If an undefined character code is typed out, the character is treated like
a special character; the octal code number of the special character is
displayed in a lozenge.

Stream Output

7.3 The following paragraphs discuss methods affecting stream output.

:tyo char &optional font color Method of windows
wisheet-tyo window char &optional font color Function

Types a character specified by char on the window (either the current
window or window) at the current cursor position and advances the cursor to
the next position. font is the font object to use when typing out the character.
If font is not specified, :tyo uses the current font.

The optional color argument specifies the value or name of a color in the
color map. The value can range from range 0 to 255; an example of a name
is w:green. The system-defined color names are listed in Table 19-2, Named
Colors in the Default Color Map Table. The default color is the value of
w:sheet-foreground-color (the foreground color of the window to which you
are drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and mono-
chrome systems.

:string-out string &optional (start 0) (end nil) color Method of windows
:line-out string &optional (start 0) (end nil) color Method of windows
:fat-string-out string &optional (start 0) (end nil) color Method of windows

Types a string on the window. These methods are more efficient than moving
characters singly.

:string-out performs as if each character in the string, or the specified sub-
string, were printed with the :tyo method, but :string-out is much faster.
:line-out does the same thing as :string-out and then advances the cursor to

Window System Reference

7-5



Output of Text

Arguments:

the next line, like typing a #\return construct. The execution of :line-out is
not affected by the :cr-not-newline-flag initialization option.

:fat-string-out types a string on the window using the font attribute of each
character. The window’s current font is not used. This method is similar to
the one used by the Zmacs editor to display lines that contain characters from
different fonts.

string — The string to be typed on the window.

start — The first character of the string to be printed. Recall that the
Explorer system uses a zero-based index for strings.

end — The last character to be printed. If end is nil, all of string from start to
the last character of the string is typed on the window.

If neither start nor end is specified, the entire string is typed.

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is w:green. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

For example, the following code types a string on the window in the color
red:

(send my-window :line-out "This is a red string" 0 20 w:red)

:string-out-up string &optional (start 0) (end nil) color Method of windows
:string-out-down string &optional (start 0) (end nil) color Method of windows

Prints a string that is rotated. :string-out-up prints string on the window by
drawing the characters turned 90° counter-clockwise and moving up toward
the top of the window. :string-out-down prints string on the window by
drawing the characters turned 90° clockwise and moving down toward the
bottom of the window. The arguments to these methods are the same as the
arguments to the :string-out method.

These methods execute very slowly, but they are useful for labelling the y-axis
of a graph.

For example, when the following code is evaluated in a Zmacs buffer, it
produces an image similar to the following:

(send w:selected-window :set-cursorpos 200 500)

(send w:selected-window :string-out-up "This string goes up. ")
(send w:selected-window :string-out " XXX ")

(send w:selected-window :string-out-down "This string goes down. ")

X

This string goes up
umop saob Buus

Window System Reference



Output of Text

w:draw-char font char x y alu window-or-array &optional color Function
w:draw-char-up font character &optional (x nil) (y nil) Function

(alu nil) (window w:selected-window) color

w:draw-char-down font character &optional (x nil) (y nil) Function

(alu nil) (window w:selected-window) color

Draws char of font on window-or-array using alu. The upper left corner of
char begins at (x,y). x and y are relative to window’s outside edges. char can
have a width greater than 32.

The optional color argument specifies the value or name of a color in the
color map. The value can range from range 0 to 255; an example of a name
is w:green, The system-defined color names are listed in Table 19-2, Named
Colors in the Default Color Map Table. The default color is the value of
w:sheet-foreground-color (the foreground color of the window to which you
are drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and mono-
chrome systems.

w:draw-char-up draws characters that advance up the video display;
w:draw-char-down draws characters that advance down the video display.
These functions are analogous to the :string-out-up and the :string-out-
down methods.

:draw-char font char x y &optional alu color Method of w:stream-mixin

Draws char of font using alu. The upper left corner of char begins at (x,y). x
and y are relative to window’s outside edges. font need not be a member of
the window’s font map. alu defaults to the value of the w:char-aluf instance
variable for the window.

The optional color argument specifies the value or name of a color in the
color map. The value can range from range 0 to 255; an example of a name
is wi:green. The system-defined color names are listed in Table 19-2, Named
Colors in the Default Color Map Table. The default color is the value of
w:sheet-foreground-color (the foreground color of the window to which you
are drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and mono-
chrome systems.

:string-out-centered string &optional left right top color Method of windows

Arguments:

Outputs a string to the window and centers the string within specified
parameters. The cursor is at the end of the string when this method
completes execution. If the string contains multiple lines, the entire rectangu-
lar shape it occupies is centered as a unit. To center lines individually, you
should output each line individually with this method.

string — The string to be typed on the window.

left, right — The leftmost or rightmost position, in pixels, of the window that
determines centering. left defaults to 0; right defaults to the inside width
of the sheet.

top — The vertical position, in pixels, of the top of the output, relative to the
window’s top margin.

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is wigreen. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-

Window System Reference

7-7



Output of Text

:fresh-line

foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

Method of windows
Moves the cursor position to the beginning of a blank line. :fresh-line does

this in one of two ways:

m If the cursor is already at the beginning of a line (that is, at the inside left
edge of the window), :fresh-line clears the line to make sure it is blank
and leaves the cursor where it was.

B Otherwise, :fresh-line advances the cursor to the next line and clears the
line just as if a #\return had been output.

The execution of this method is not affected by the :cr-not-newline-flag
initialization option.

:display-lozenged-string string &optional color Method of windows

Arguments:

Outputs the value of string enclosed in a lozenge. This is how special char-
acters are echoed, such as for the RETURN Kkey.

string — The string to be typed on the window.

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is w:green. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

w:sheet-line-out window string &optional (start 0) (end nil) Function

Arguments:

set-xpos set-ypos dwidth color

Performs a line output function, handling font changes and line overflows. If
any existing characters are present, w:sheet-line-out erases them from the
line of the window. The font changes are stored in the font attribute of each
character. Line overflows are handled if the right-margin-character flag is set
for this window; otherwise, the line is truncated. w:sheet-line-out is used for
line redisplay in the Zmacs editor.

window — The window on which the text is displayed.

string — The string to be displayed. The start and end arguments can specify
that only a part of string be displayed.

start — The first character of the string to be printed. Recall that the
Explorer system uses a zero-based index for strings.

end — The last character to be printed. If end is nil, all of string from start to
the last character of the string is typed on the window.

set-xpos, set-ypos — The x and y window coordinates, in pixels, where the
first character of string is displayed. If either or both of these arguments
are nil or are not specified, the appropriate coordinate of the current
cursor position is used.

7-8

Window System Reference



Output of Text

dwidth — Prevents inadvertently erasing the end of an existing line. For
example, if the line being displayed is italic font, the last character may
extend into the area where wisheet-line-out displays string. Because
w:sheet-line-out erases all existing characters between start and end,
dwidth allows w:sheet-line-out to redisplay the last character you want of
the existing line and then to display string. Specifying dwidth makes sense
only if start is specified.

color — The value or name of a color in the color map. The value can range
from range O to 255; an example of a name is w:green. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of wisheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

Output Exceptions

Deexposed Typeout
Actions

7.4 Before sending output to a window, the window system checks for
various exceptional conditions. If an exceptional condition is discovered, the
window system invokes a standard method to handle it. Redefining or adding
:before and :after methods to these methods can change the handling of
exceptions. For example, output that puts the cursor too close to the right
margin causes an end-of-line exception; the handling of this exception moves
the cursor to the next line or truncates the line or whatever the window’s
flavor specifies. There are four exceptional conditions: end-of-line, end-of-
page, more, and output-hold.

The exceptions are actually indicated by flag bits that are automatically set in
the window. If the method handling the exception is invoked, it should do
nothing unless the corresponding flag is set and should not return with the
flag still set; otherwise, an error is signaled.

B The end-of-line, end-of-page, and more flags are set and cleared auto-
matically by moving the cursor; the flags are set if and only if the cursor is
in the right place for them. Thus, the exception handler need only make
sure to move the cursor to a proper place.

B The output-hold flag is set when a window is deexposed. Usually, the
output-hold exception handler simply waits for or brings about a situation
in which the reason for the output-hold exception is no longer valid,
typically because the window has been exposed.

7.4.1 When a process attempts to type out on a window that is deexposed
and that has its output hold flag set, what happens depends on the window’s
deexposed typeout action. The deexposed typeout action can be any of
certain keyword symbols, or it can be a list. After the specified action is
taken, if the output hold flag is still set, the process waits for it to clear. The
action may affect the value of the output hold flag.

Window System Reference

7-9



Output of Text

:deexposed-typecut-action action Initialization Option of windows
Gettable, settable. Default: :normal
w:sheet-deexposed-typeout-action window Macro

Initializes a window’s deexposed typeout action to action. The macro returns
the value. The deexposed typeout action can have any of the following

values:
Value Description
:normal No action—the process waits for the output hold flag to clear.
iexpose Sends the window an :expose message. If the superior has a screen-array,

this message may expose the window; if it does expose the window, the
output hold flag is probably cleared, allowing typeout to proceed
immediately. If the superior is the screen, :expose provides a very
different user interface from :normal.

‘permit Permits typeout even though the window is not exposed, as long as the
window has a screen array; that is, the window can type out on its own
bit-save array even though it is not exposed. The next time the window is
exposed, the updated contents are retrieved from the bit-save array.

:permit turns off the output hold flag if the window has a screen array.
This mode has the disadvantage that output can appear on the window
without anything being visible to the user, who might never see what is
going on and might miss something interesting.

You can request that output in this mode to partially visible windows be
transferred to the screen periodically. See the description of the
wiscreen-manage-update-permitted-windows variable in paragraph 5.9.3,
Control of Partial Visibility.

:notify Notifies the user when there is an attempt to do output on the window by
sending a :notice message to the window with an toutput argument. (The
:notice message is described in paragraph 18.2, Notifications.) The default
response to this message is to notify the user that the window wants to
type out and to put the window on a list for TERM 0 S to select it. Telnet
windows have :notify deexposed typeout action by default.

rerror Signals an error.

a list of the form (operation arguments...)
Sends the window a message with operation and arguments.

7-10 Window System Reference



Output of Text

(Continued)
Value Description
Functions such as ed, whose purpose is to select a window for the user,
should not return immediately. If ed returns immediately, then when it is
called in a Lisp Listener with its deexposed typeout action set to :expose, the
system would immediately switch back to the Lisp Listener after printing the
value returned by ed. Because this would not allow a user to see the printed
value, this action defeats the purpose of ed. To avoid this behavior, ed calls
w:await-window-exposure.
w:await-window-exposure Function
Waits to return until *terminal-io* is exposed (more precisely, until its
:await-exposure operation returns).
:await-exposure Method of windows
Does not return until the window is exposed. (Some window flavors imple-
ment it differently.)
w:sheet-force-access (window) body Macro

Output-Hold and
End-of-Page
Exceptions

Allows you to do typeout on a window that has a screen array even if its
output hold flag is set. It works by turning off the output hold flag temporarily
around the execution of body. This is useful for drawing on a window while it
is not visible. For example, changing the menu items of a menu redraws the
menu contents immediately even if the menu is not visible; this is because it
looks better to the user for the menu to become visible in one instant with the
correct contents.

If the window is exposed, w:sheet-force-access outputs to it. If the window is
not exposed but has a bit-save array, the output goes into the bit-save array.
If the window is not exposed and does not have a bit-save array, w:sheet-
force-access does nothing; it returns without evaluating body.

For example, when a text scroll window is given a new item generator, the
new generator completely changes the text that it should display. The window
is redisplayed in its bit-save array if necessary.

(defmethod (w:text-scroll-window :set-item-generator)
(new-item-generator)
(setq item-generator new-item-generator)
(w:sheet-force-access (self)
(send self :clear-screen)
(send self :redisplay O
(w:sheet-number-of-inside-lines))))

7.4.2 Output-hold and end-of-page exceptions cause the window system to
perform two actions. First, if the window’s output-hold flag is set, an output-
hold exception occurs. The window system invokes the :output-hold-
exception method to handle it.

Next, if the end-of-page flag is set, the window system invokes the
:end-of-page-exception method to handle an end-of-page exception. The
end-of-page flag is usually set if the y position of the cursor is less than one
line height above the inside bottom edge of the window.

Window System Reference

7-11



Output of Text

:handle-exceptions Method of windows

Performs all the exception processing described in the rest of this section.
Exceptions are processed in the following order: output-hold, end-of-page,
more, and end-of-line.

routput-hold-exception Method of windows

Should not return until the output-hold is cleared. :output-hold-exception
may wait for the output-hold flag to be cleared or try to cause it to be cleared.
The window’s deexposed typeout action determines the default action for this
method. For example, if the window’s deexposed typeout action is :notify, a
window pops up to let the user know that the original window is trying to send
output.

w:sheet-output-hold-flag &optional window Macro
Returns the output-hold flag of window, which is 1 if there is a hold and 0 if
there is no hold. This macro can be used with setf.

:end-of-page-exception Method of windows
Handles the end-of-page exception when present. It does nothing if invoked
when the flag is 0.

The default definition is simply to move the cursor to the top line, clear that
line, and set the vertical position for the next **MORE*" if **MORE**
processing is enabled.

w:sheet-end-of-page-flag &optional window Macro

Returns the end-of-page flag of window, which is 1 if the next output method
should wrap and 0 otherwise. This macro can be used with setf.

**MORE** 7.4.3 If the window’s more flag is set, a **MORE** exception happens.

Exceptions The more flag is set when the cursor is moved to a new line; for example,
when a #\return is typed, the cursor is positioned below the more vpos of the
window. If w:more-processing-global-enable is nil, this exception is
suppressed and the more flag is turned off. The :more-exception method is
invoked to handle the exception.

The more flag is set only when the cursor moves to the next line because a
#\return is typed out, after a :line-out, or by the :end-of-line-exception
method. The more flag is not set when the cursor position of the window is
explicitly set—for example, with :set-cursorpos. In fact, explicitly setting the
cursor position clears the more flag. When typeout is being output sequen-
tially to the window, **MORE** exceptions happen at the proper times to
pause while the user reads the text that is being typed. When cursor position-
ing is being used, however, the system cannot guess what order the user is
reading text in and when (if ever) is the proper time to stop. In this case, it is
up to the application program to provide any necessary pauses.

The algorithm that sets the vertical position in the next **MORE** exception
never overwrites something before you have had a chance to read it, and the
algorithm tries to execute a **MORE** only if a large amount of output
occurs. However, if output starts near the bottom of the window, there is no
way to tell how much output will occur. If little output is processed, you do
not want to be bothered by a **MORE**, so the algorithm does not execute
one immediately. This postponement may make it necessary to cause a
**MORE** break somewhere other than at the bottom of the window. As

7-12

Window System Reference



Output of Text

additional output happens, the position of successive **MORE** exceptions
migrates and eventually ends up at the bottom of the window.

w:sheet-more-flag &optional window Macro

Returns the more flag, which is 1 if the next output method should execute a
**MORE**, and 0 otherwise. This macro can be set using setf.

:more-vpos Method of windows
w:sheet-more-vpos window Macro

Returns the vertical position at which the next **MORE** should happen
during output to the window. The macro accesses the instance variable.

w:more-processing-global-enable Variable
Default: nil

Determines whether **MORE** processing occurs. **MORE** processing
does not happen if this variable is nil during the output method in which the
**MORE** would have happened.

:more-exception Method of windows

Invokes a :clear-eol method, types out **MORE**, reads a character using
the :tyi method, restores the cursor position to where it was originally when
the :more-exception was detected, executes another :clear-eol to wipe out
the **MORE**, and resets the w:more-vpos instance variable. The char-
acter read in is ignored.

:more-exception works by calling w:sheet-more-handler if the more flag is
set. :more-exception should do nothing if the flag is set to 0. If you want to
customize :more-exception, you should redefine :more-exception to call the
wisheet-more-handler function with different arguments and to do other
things as well. You should not write a new definition from scratch, because of
the complexity of the wisheet-more-handler function.

w:sheet-more-handler &optional (method read-char) Function
(more-string w:*unidirectional-more-standard-message*)

Implements the standard handling of **MORE** exceptions.

Arguments:  method — The method to use when reading input.

more-string — The output to be printed and then erased.

w:*unidirectional-more-standard-message* . Variable
Default: “**MORE**”

A default string displayed to indicate that more information can be displayed
than is currently visible. The user can request the next window of text by
pressing the space bar. Once text has scrolled off the display, however, the
user cannot look at that text again (hence the name unidirectional). For
example, typeout windows are unidirectional.

w:*bidirectional-more-standard-message* Variable
Default: “~-MORE--"

A default string displayed to indicate that more information can be displayed
than is currently visible. The user can move towards the beginning or end of
the text by using the CTRL-V and META-V keystroke sequences, respec-
tively. For example, the buffers invoked by the Zmacs View File command
are bidirectional.

Window Systém Reference 7-13



Output of Text

w:iautoexposing-more-mixin : Flavor

End-of-Line
Exceptions

If a window includes the w:autoexposing-more-mixin flavor, the window is
exposed when a :more-exception method executes, meaning that an :expose
message is sent to it. This flavor is intended to be used with a deexposed
typeout action of :permit so that a process can type out on a deexposed
window and then have the window expose itself when a **MORE** break
happens.

7.4.4 1If the cursor is at or near the end of the line so that there is no room
to output the next character, an end-of-line exception happens. The :end-of-
line-exception method is invoked to handle it. A flag is not used to trigger
this exception because the condition depends on the width of the character
output.

The way the cursor position advances to the next line when it reaches the
right edge of the window is called horizontal wraparound or continuation. If
you prefer, you can make windows that truncate lines instead of wrapping
around by using w:line-truncating-mixin.

:end-of-line-exception Method of windows

Defined by default to advance the cursor to the next line, just as typing a
#\return character does normally. Using this method may, in turn, cause an
end-of-page exception or a more exception to happen. Furthermore, if
w:right-margin-character-flag is on, then before going to the next line, an
exclamation point in the current font is typed at the cursor position. When
this flag is on, end-of-line exceptions occur earlier to make room for the
exclamation point.

:tyo-right-margin-character xpos ypos ch Method of windows

Arguments:

Prints a right margin character when the right margin character is to be
printed. This is the facility that prints a ! at the right margin in Zmacs when
text extends over more than one line.

xpos — Is ignored; the right margin is used instead.

ypos — The y pixel position where the margin is to be drawn.

ch — The character to be drawn as the right margin character.

w:line-truncating-mixin Flavor

Required flavor: w:stream-mixin

Gives a window the ability to truncate lines at the right margin instead of
continuing output onto the next line as usual. Truncation is performed if the
window’s truncate-line-out flag is set. When the cursor position is near the
right-hand edge of the window and there is an attempt to type out a char-
acter, the character simply is not typed out.

truncate-line-out-flag flag Initialization Option of w:line-truncating-mixin
wisheet-truncate-line-out-flag &optional window Macro

Initializes the truncate-line-out flag of the window to the value of Jflag: 1
causes truncation and 0 does not. The macro returns or sets this flag for
window.

7-14

Window System Reference



Output of Text

w:truncating-window Flavor

Built on the w:window flavor with w:line-truncating-mixin mixed in. A
window instantiated of this flavor is like regular windows of flavor w:window
except that lines are truncated instead of wrapping around (that is, the
truncate-line-out flag is set to 1).

Cursor Motion

Cursor Position
for Stream
Operations

7.5 The window’s cursor position is where the upper left corner of the next
output character appears, with a vertical offset if necessary to match up the
baselines of various fonts.

cursor position

A\

—_— < vsp

7.5.1 Recall that cursor position arguments and values of stream methods
are relative to the inside upper left corner of the window. Using the following
methods, the end-of-page, more, and end-of-line exception flags are set if the
cursor is moved to a position where the flags should be on, and the flags can
be cleared if they were previously on and the cursor is moved to a place
where the flags should be off.

:read-cursorpos &optional (units :pixel) Method of windows

Returns two values: the x and y coordinates of the cursor position. These
coordinates are expressed in pixels by default, but if units is :character, the
coordinates are given in character widths and line heights. Character widths
are of little significance when you are using variable-width fonts.

:increment-cursorpos x y &optional (units :pixel) Method of windows

Arguments:

Advances the cursor position the specified amount for each coordinate. This
method moves the cursor through a variable amount of space, rather than
instantaneously jumping it to another position. This means that exceptions
can happen, just as if output were being processed. Thus, the cursor wraps
around at the margins or does whatever this window does when :end-of-line-
exception, :end-of-page-exception, or **MORE** processing happens at
the appropriate place.

x, y — The number of units, specified by the units argument, that the cursor
position is adjusted.

units — A unit of measure. The default is :pixel, but :character can also be
used. :character implies the character height and width, in pixels, of the
current font. Character widths are of little significance when you are
using variable-width fonts.

Window System Reference

7-15



Output of Text

iset-cursorpos x y &optional (units :pixel) Method of windows
w:sheet-set-cursorpos window x y Function

:home-cursor

:home-down

Moves the cursor position to the specified coordinates immediately, without
moving through the intervening space. If the coordinates are outside the
window, this method moves the cursor position to the place within the
window nearest the specified coordinates. The arguments for this method are
identical to the arguments for :increment-cursorpos.

Method of windows

Moves the cursor to the upper left corner of the window.

Method of windows

Moves the cursor to the lower left corner of the window.

:forward-char &optional char Method of windows
:backward-char &optional char Method of windows

Moves the cursor forward or backward, respectively, one character position,
or, if char is specified, the width of char in the current font. Exceptions are
processed. :forward-char is like outputting a space that has the appropriate
width. With :backward-char, however, there is no reverse wraparound—if
the cursor is at the left margin, the cursor does not move.

:size-in-characters Method of windows

Returns two values: the dimensions of the window in units of character widths
and in line heights.

:set-size-in-characters width-spec height-spec &optional option Method of windows

Arguments:

Sets the inside size of the window to the specified width and height, without
changing the position of the upper left corner.

width-spec — Either a number of characters or a character string. The inside
width of the window is made wide enough to display those characters in
the current font.

height-spec — Either a number of lines or a character string containing a
certain number of lines separated by carriage returns. The inside height
of the window is made high enough to display those lines in the current
font.

option — Passed along to the :set-edges method. (This method is described
in paragraph 4.3.2.)

NOTE: Character widths are of little significance when you are using
variable-width fonts.

7-16

Window System Reference



Cursor Position
Relative to Outside
Coordinates

wicursor-x

Output of Text

7.5.2

Instance Variable of windows

w:sheet-cursor-x window Defsubst

wicursor-y

Instance Variable of windows

w:sheet-cursor-y window Defsubst

Contains the x or y coordinate of the window’s current cursor position. Note
that these are outside coordinates. Unlike the arguments to stream methods,
the coordinates refer to the outside upper left corner of the superior at the
highest level in the window hierarchy containing this window. The instance
variables are the number of pixels from coordinate 0,0 of the screen; see
paragraph 5.7.1, Concepts of Screen Arrays, for an explanation of offsets.

The defsubsts access the respective instance variables. You can set these by
using setf.

Erasing

7.6 Erasing methods and macros operate on window pixels by drawing the
area to be erased using the window’s w:erase-aluf instance variable as the
ALU argument. This is by default w:alu-back, which clears the screen bits of
the screen area drawn. (See paragraph 12.2, ALU Arguments, for more
details about w:erase-aluf and w:alu-back. Also see w:erase in Table 12-2,
ALU Values for Graphics Methods.)

:clear-char &optional char Method of windows
w:sheet-clear-char window &optional char Macro

Erases the character at the current cursor position for window. char deter-
mines the width of the character being erased. When variable-width fonts are
used, the character code of the character being erased specifies how wide the
character is. The default is the current font. If you do not specify char, the
:clear-char method simply erases a character width of the current font,
which is fine for fixed-width fonts. You should specify char when you are
working with variable-width fonts.

:clear-string string &optional start end Method of windows

Erases enough space, starting at the cursor, to contain a string or a portion of
a string printed in the current font. Using a fixed-width font is equivalent to
executing :clear-char once for each character in the string. The :clear-string
method is necessary because of variable-width fonts.

If string contains return characters, then each part of string clears characters
from successive lines of the screen. That is, the first part of string, from the
beginning to the first return, clears space on the first line of the screen equal
to the length of the first part of string. The next part of string, from the first
return to the next return, clears space on the next line of the screen equal
to the length of that part of string, and so on. For example, consider the
following code:

(progn ()
(send w:selected-window :clear-string
"ABCDEFGH
12345
987654321")
(send w:selected-window :set-cursorpos 500 §00))

Window System Reference

7-17



Output of Text

Suppose that the screen contents are as follows:

Text that originally covers the screen
so that you can see the effect of
the :clear-string method.

Then, when the code is executed, the screen appears as follows:

t originally covers the screen
at you can .see the effect of
r-string method.

Arguments:  string -—— How much space on the window is to be erased. The entire height of
the line is erased, so it does not matter whether the text on the screen is
string or something else; string determines how far horizontally to erase.

start — The index position in the string where erasing is to begin. Recall that
the Explorer system uses a zero-based index for strings.

end — The index position of the string where erasing is to end.

:clear-eol Method of windows
w:sheet-clear-eol window Function

Erases from the current cursor position to the end of the current line. That is,
iclear-eol erases a rectangle horizontally from the cursor position to the
inside right edge of the window, and vertically from the cursor position to one
line height below the cursor position.

:clear-eof Method of windows
w:sheet-clear-eof window Function

Erases from the current cursor position to the bottom of the window. In more
detail, :clear-eof first executes a :clear-eol, and then clears all of the window
beyond the current line.

:clear-screen Method of windows
wisheet-clear window &optional (margins-p nil) Function

Erases the whole window and moves the cursor position to the upper left
corner of the window. For the w:sheet-clear function, if margins-p is t, the
function erases the margins of window as well as the contents of window.

:clear-between-cursorposes start-x start-y end-x end-y Method of windows

Erases an area starting at cursor position start-x and start-y, wrapping
around, if necessary, at the end of the line or the page, and ending at end-x
and end-y.

Though the arguments are expressed as cursor positions relative to window’s
inside coordinates, the cursor position of the window is not changed.

7-18

Window System Reference



Output of Text

Inserting and
Deleting
Characters
and Lines

7.7 Inserting a character means printing it at the current cursor position and
pushing the rest of the text on the line toward the right margin. Similarly,
deleting a character means pulling the following text on the line back toward
the left so that the position occupied by the character is closed up. Inserting
or deleting lines works the same way vertically, moving the lines below the
cursor down or up.

Some methods use a numeric argument to specify the amount of space to
insert or delete. These methods also use an argument to specify the unit in
which the space is measured—either :pixel or :character. The unit can be
the same as in the :read-cursorpos method, but the default is :character
rather than :pixel.

:insert-char &optional (n 1) (unit :character) Method of windows

Arguments:

:insert-string

Arguments:

Opens up a space in the line the cursor is currently on. This space is equal to
the width of the specified number of characters or pixels and is created by
shifting the characters to the right of the cursor farther to the right to make
room. Characters pushed past the right edge of the window are lost.

n — The number of character widths or pixels to open up in the line.

unit — Whether :insert-char opens up character widths or pixel widths in the
line. If unit is :pixel, :insert-char opens up the specified number of
pixels. If unit is :character, :insert-char opens up the specified number
of character widths. In this case, :insert-char assumes that all characters
are one character width wide and thus does nothing useful with variable-
width fonts.

string &optional (start 0) (end nil) Method of windows
(type-too t) color

Inserts a string at the current cursor position by moving the rest of the line to
the right to make room for it. Characters pushed past the right edge of the
window are lost.

string — The string to insert. This argument can also be a number, in which
case the character with that code is inserted.

start — The index position in the string of the first character to be inserted.
Recall that the Explorer system uses a zero-based index for strings.

end — The index position in the string of the last character to be inserted.

type-too — Whether string is actually typed in the space opened up. If type-
too is nil, string is not actually printed; the space opened up is big enough
for the string but is left blank.

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is wigreen. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

Window System Reference

7-19



Output of Text

:insert-line &optional (n 1) (unit :character) Method of windows

Moves the line the cursor is currently on, as well as all the lines below it,
down far enough to insert the specified number of lines. The line containing
the cursor is moved in its entirety, not broken, no matter where the cursor is
on the line. A blank line is created at the cursor position. Lines pushed off
the bottom of the window are lost.

Arguments:  n -- The number of lines or pixels of space to open up.

unit — Whether :insert-line opens up a specified number of lines (for
:character) or pixels (for :pixel).

:delete-char &optional (n 1) (unit :character) Method of windows

Deletes the character at the current cursor position and moves any remaining
text on the line to the left to close up the empty space.

Arguments: n — The number of characters or pixels to delete, starting at the current
cursor position and deleting the specified number to the right.

unit — Whether to delete characters or pixels. If unit is :character, :delete-
char deletes characters, and the method assumes that all characters are
one character width wide. Thus, :delete-char does not do anything
useful with variable-width fonts.

:delete-string string &optional (start 0) (end nil) Method of windows

Uses string to determine the region to be removed from its window. :delete-
string should be used to delete strings containing variable-width fonts.

If string is a string (or a substring specified by start and end) :delete-string
removes a region exactly as wide as that (sub)string beginning at the current
cursor position, and closes the gap by moving to the left the part of the
current line that is to the right of the removed region. If string is a number, it
is considered to be a character code. The single character is treated like a
string containing that character.

:delete-line &optional (n 1) (unit :character) Method of windows

Deletes the line at the current cursor position and closes the empty space by
moving up any remaining text below the current line.

Arguments: n — The number of lines or pixels to delete, starting at the current cursor
position and deleting the specified number.

unit —- Whether to delete characters or pixels. If unit is :pixel, :delete-line
deletes rows of pixels; if unit is :character, :delete-line deletes lines. If
unit is :character, this argument assumes that all characters on the line
are one character height high.

Anticipating the 7.8 The following methods do not produce output but provide information

Effect of Output about what would happen to the cursor and the screen if output were
produced.

:character-width char &optional (font w:current-font) Method of windows

Returns the width in pixels of the specified character.

7-20 Window System Reference



Arguments:

Output of Text

char — The character whose width is to be returned. If char is #\tab, the
value returned depends on the current position of the cursor. If char is
#\return, the value returned is 0. If char is #\backspace, the value
returned is a negative number. For other cases, the actual width of the
character is returned.

font — The font of the character. If font is not specified, the current font is
used.

:compute-motion string &optional (start 0) (end nil) Method of windows

(x wicursor-x) (y w:cursor-y) (cr-at-end-p nil) (stop-x 0) stop-y
bottom-limit right-limit font line-height tab-width

w:sheet-compute-motion window x y string &optional (start 0) (end nil) Function

Arguments:

(cr-at-end-p nil) (stop-x 0) (stop-y nil)
bottom-limit right-limit font line-height tab-width

Determines where the cursor would be if a string were displayed on the
window using the :string-out method. :compute-motion returns the follow-
ing four values:

1. final-x — The x position where output is computed to stop.
2. final-y — The y position where output is computed to stop.
3. final-index — One of three values:

M The index in string where output would stop, which is useful for
inserting strings at start-x and end-x positions

m nil if the output would reach the end of the string

m tif the string itself was processed but not the implicit return that was
supposed to follow the string

4. maximum-x — The largest x position value reached during processing.

All coordinates for this method are cursor positions, relative to the window’s
inside edges. However, if you specify all the arguments, you can use the
origin of a different coordinate system as long as you interpret the values in
the same coordinate system.

string — The string that would be typed on the ‘window. This can be either a
normal string or an array that contains elements of type :character.

start — The first character of the string. If start is nil, :compute-motion
starts with the first character in the string. Recall that the Explorer system
uses a zero-based index for strings.

end — The last character of the string. If end is nil, all of string from start to
the last character of the string is used.

x, y — The starting x and y coordinates of the position where string would be
typed. If either of these is not specified, the appropriate part of the
current cursor position is used.

cr-at-end-p — Whether to perform the computations for a :string-out
method (if cr-at-end-p is nil) or for a :line-out method (if cr-at-end-p
is t). A :string-out method does not output a RETURN (a carriage
return, or cr) at the end of the string; a :line-out method does.

stop-x, stop-y — Define the size of an imaginary window in which the string
would be printed. :compute-motion stops if the cursor position becomes

Window System Reference

7-21



Qutput of Text

simultaneously greater than or equal to both of these arguments. These
arguments default to the lower left corner of the window. This corner is
reached before the right one, because output goes from left to right on
each line.

bottom-limit — The vertical position where wraparound begins. This argu-
ment defaults to the inside height of the window. bottom-limit differs
from stop-y in that it causes :compute-motion to assume that text wraps
around rather than stopping when the bottom of the window is reached.

right-limit — The farthest position to the right. where text is typed. This
argument defaults to the inside width of the window. right-limit differs
from stop-x in that it causes :compute-motion to assume that text wraps
around rather than stopping when the farthest position to the right in the
window is reached.

font — The font to use in the computation. The computation normally uses
JSont, or the current window’s font if font is nil. If string is an array that
contains elements of type :character, each character’s font attribute is
used as an index in the window’s font map to find the font for that char-
acter, and font is ignored except possibly for defaulting the tab-width.

line-height — The vertical spacing to be used in the computation. The default
for line-height is the line height of font if font is non-nil; otherwise, the
default for line-height is the window’s line height.

tab-width — The number of pixels between tab stops. If tab-width is omitted,
icompute-motion defaults to one of the following:

B If no font is specified — (w:sheet-tab-width self)

W If a font is specified — (w:sheet-tab-nchars self) multiplied by
(w: font-char-width font) :

:string-length string &optional (start 0) (end nil) stop-x Method of windows

Sfont (start-x 0) tab-width

Determines how far the cursor would move if the string were to be displayed.
The :string-length method is very much like :compute-motion, but works in
only one dimension.

:string-length returns three values:

1. final-x — Where the imaginary cursor ends up.

2. final-index — The index of the next character in the string—the length of
the string if the whole string were processed—or the index of the char-
acter that would have moved the cursor past stop-x.

3. maximum-x — The maximum x coordinate reached by the cursor. This is
the same as the first value unless there are #\return or #\backspace

characters in the string.

See the :compute-motion method, described previously, for details about the
arguments.

7-22

Window System Reference



Output of Text

Explicit
(Noncursor)
Output

7.9 A window has certain information about its state that can change as
output is produced. This information includes the cursor position, the current
font, alu argument, and exception flags. The presence of this information
makes the window behave coherently as a stream so that the output from one
method follows that of the previous method. Sometimes this behavior is not
desirable. The explicit output methods use a window only for its position and
size, with all additional information passed by the caller explicitly. In this
way, multiple streams of output to the same window can exist without inter-
fering with each other by trying to use a single cursor.

The x and y position arguments used by the following methods are relative to
the outside edges of the window. This is different from the stream and higher-
level methods, because these explicit output methods are frequently used for
drawing parts of the margins, such as labels and margin regions.

:string-out-explicit string start-x start-y x-limit y-limit font Method of windows

Arguments:

alu &optional (start 0) end multi-line-line-height color

Prints a string or a portion of a string on the window without using or moving
the cursor position.

:string-out-explicit returns three values: the final x position, the final y posi-
tion, and the final index in the string. You can use these values to execute
multiple methods in consecutive places on the screen.

string — The string to be typed on the window.

start-x, start-y — The position where the first character of string is to be
typed.

x-limit, y-limit — The window coordinates where output of string stops. If
x-limit or y-limit is non-nil, output stops if it reaches that position before
typing out the entire string.

font — The font to use. There is no default; you must specify a font.

alu — Used when typing string on the window. The window’s current ALU
argument is not used or altered.

start — The index in string where output begins. The default displays the first
character. Recall that the Explorer system uses a zero-based index for
strings.

end — The index in string where output stops. If end is nil, all of string from
start to the last character of the string is typed on the window.

multi-line-line-height — Line output height. If multi-line-line-height is a
number, then the window’s line height is ignored and the horizontal out-
put position moves to start-x rather than the left margin for the next line
of output. If #\return constructs are in the output and multi-line-line-
height is nil, they are printed as GETURND. ‘

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is w:green. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

Window System Reference

7-23



Output of Text

istring-out-centered-explicit string &optional left y-pos right Method of windows
y-limit font alu (start 0) end multi-line-line-height color

Outputs a string or a portion of a string, and centers the string horizontally.

Arguments:  string — The string is the string to be output.

left — The left bounding window coordinate within which string is to be
centered. This argument defaults to the inside left edge of the window.

y-pos — The vertical position where string is to be centered. This argument
defaults to the inside top edge of the window.

right — The right bounding window coordinate within which string is to be
centered. This argument defaults to the inside right edge of the window.

y-limit — The vertical limit where output is to stop if all of string has not been
printed. The argument defaults to the inside bottom edge of the window.

font — The font to be used. This argument defaults to the window’s current
font.

alu — The ALU argument to be used. This argument defaults to the
window’s current ALU argument.

start — The index in string where output begins. The default displays the first
character. Recall that the Explorer system uses a zero-based index for
strings.

end — The index in string where output stops. If end is nil, all of string from
start to the last character of the string is typed on the window.

multi-line-line-height — Line output height. If multi-line-line-height is a
number, then the window’s line height is ignored.

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is w:green. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

:string-out-x-y-centered-explicit string &optional left top right Method of windows
bottom font alu start end multi-line-line-height color
Outputs a string centered both horizontally and vertically. It is horizontally
centered between left and right, and vertically between top and bottom.
Arguments:  string — The string is the string to be output.

left, top, bottom, right — The bounding window coordinates within which
string is to be centered. These arguments default to the inside edges of
the window.

Jont — The font to be used. This argument defaults to the window’s current
font.

alu — The ALU argument to be used. This argument defaults to the
window’s current ALU argument,

start — The index in string where output begins. Recall that the Explorer
system uses a zero-based index for strings.

end — The index in string where output stops.

7-24 Window System Reference



Qutput of Text

multi-line-line-height — Line output height. If multi-line-line-height is a
number, then the window’s line height is ignored.

color — The value or name of a color in the color map. The value can range
from range 0 to 255; an example of a name is w:green. The system-
defined color names are listed in Table 19-2, Named Colors in the
Default Color Map Table. The default color is the value of w:sheet-
foreground-color (the foreground color of the window to which you are
drawing). Note that in a monochrome environment the color argument is
ignored; therefore, your application can be used on both color and
monochrome systems.

NOTE: Many of the :string-out methods also have an associated function
who name begins with w:sheet.

Window
Parameters
Affecting Text
Output

7.10 The following methods and initialization options initialize, get, and set
various window attributes that are relevant to typing out characters. See also
the methods that manipulate the current font in paragraph 9.4, Flavors and
Methods, and the functions that manipulate pixels in paragraph 5.5, Pixels.

:more-p t-or-nil Initialization Option of windows

:vsp n-pixels

Gettable, settable. Default: t

Determines whether the window has **MORE** processing. t enables
**MORE** processing; nil disables it. (See paragraph 7.4.3, **MORE**
Exceptions.)

Initialization Option of windows
Gettable, settable. Default: 2.

Sets the amount of vertical spacing, in pixels, between lines of text for this
window. The argument is the number of pixels.

:right-margin-character-flag x Initialization Option of windows

Default: 0.

w:sheet-right-margin-character-flag &optional (window self) Macro

Initializes the right-margin-character flag, which can be either 0 or 1. If x is
1, the ‘window should print an exclamation point in the right margin when an
end-of-line exception happens; if x is 0, it should not. The default is 0. (See
paragraph 7.4.4, End-of-Line Exceptions for more details about the
exception.)

This macro allows the value of the right-margin-character flag to be changed
using the setf function. When used without an argument, w:sheet-right-
margin-character-flag refers directly to the associated instance variable and
therefore must be called from methods or functions that use (declare
(:self-flavor ...)).

Window System Reference

7-25



Output of Text

:backspace-not-overprinting-flag x Initialization Option of windows
Default: 0.
wisheet-backspace-not-overprinting-flag &optional (window self) Macro

Initializes the window’s backspace-not-overprinting flag, which can be either
0 or 1. If x is 0, output of #\backspace moves the cursor position backward;
ifitis 1, it displays the overstrike character in a lozenge. #\backspace, which
is the synonym for the #\overstrike character, is exactly like other special
characters. The default is 0. See paragraph 7.2, How a Character Is
Displayed, for a description of how special characters are handled.

This macro allows the value of the right-margin-character flag to be changed
using the setf function. When used without an argument, w:sheet-back-
space-not-overprinting-flag refers directly to the associated instance
variable and therefore must be called from methods or functions that use

(declare (:self-flavor ...)).

icr-not-newline-flag x Initialization Option of windows
Default: 0.

wisheet-cr-not-newline-flag &optional (window self) Macro

Initializes the window’s cr-not-newline flag, which can be either 0 or 1. If x is
0, output of #\return moves the cursor position to the beginning of the next
line and clears that line; if x is 1, the output of a #\return character displays
the word return in a lozenge. That is, #\return is treated exactly like other
special characters. The default is 0. This flag affects neither the behavior of
the :line-out nor the :fresh-line methods.

This macro allows the value of the right-margin-character flag to be changed
using the setf function. When used without an argument, w:sheet-cr-not-
newline-flag refers directly to the associated instance variable and therefore
must be called from methods or functions that use (declare (:self-flavor
).

:tab-nchars n Initialization Option of windows
Default: 8.
wisheet-tab-nchars &optional (window self) Macro

Initializes the window's tab size. The n argument specifies the separation of
tab stops on this window, expressed in units of the window’s character width.
This initialization option controls how the #\tab construct prints.

This macro allows the value of the right-margin-character flag to be changed
using the setf function. When used without an argument, w:sheet-tab-nchars
refers directly to the associated instance variable and therefore must be called
from methods or functions that use (declare (:self-flavor RSO

w:sheet-tab-width &optional (window self) Macro
Default: 64.

Returns the distance between tab stops, measured in pixels. To alter the tab
width, you should use w:sheet-tab-nchars instead of this macro.

7-26 Window System Reference



INPUT

Introduction

8.1 Windows can function as input streams. (See the discussion of streams
in the Explorer Input/Output Reference manual.) The w:stream-mixin
flavor, a component of w:window, provides this ability. Input characters nor-

. mally come from the terminal keyboard but can also come from clicking the

mouse buttons or from programs.

Window selection controls which process reads keyboard input because all
keyboard input passes through the selected window. In fact, the concept of
selection exists to control which process receives input by selecting the
appropriate window.

Reading characters from a window normally returns a character object that
represents a character in the Explorer character set. Character constants in
code are written with the #\ or #/ construct and are described in the Explorer
Lisp Reference manual.

Programs decode character objects with the Common Lisp character func-
tions. For example, the char-code function can be used to return the char-
acter code of a character object. Other functions can be used to extract other
components, such as:

v

(char-mouse-button #\mouse-m-2) =
(char-mouse-clicks #\mouse-m-2) =>
(char-bit #\mouse-m-2 :mouse) => t
(char-font #38\A) => 8

(char-bits #\control-A) => 1

1
1

Characters behave just like fixnums in arithmetic operations and are similar
(=) but not identical (eq) to fixnums. :tyi and related stream methods con-
tinue to return fixnums, while new methods and functions are defined that
return character objects instead. When you extract components of a char-
acter that is actually a fixnum, you should convert the fixnum to a character
object before invoking the extraction function. For example,

(char-code (int-char 65)) => 65

where (int-char 65) converts the fixnum e5 to a character object, which is
then passed to the char-code function.

The keyboard hardware actually sends codes to the Explorer whenever a key
is pressed or lifted; thus, the Explorer system knows at all times which keys
are pressed and which are not. You can use the w:key-state function to
check whether a key is down or up. You can also program a window to read
the raw hardware codes, exactly as they are sent, by putting a non-nil value
of the :raw property on the property list of the input buffer; however, the
format of the raw codes is dependent on the hardware implementation, and it
is not documented here.

Window System Reference

8-1



Input

Input Buffers

8.2 Input buffers are examples of input/output (I/O) buffers, a general
facility provided by the window system. Every window generating input or
from which input is read must have an input buffer that holds characters
typed by the user before any program reads the characters. When you type a
character, the character enters the selected window’s input buffer. 1/0
buffers are explained in paragraph 8.6. Reading input from a window with the
read-char function removes objects from the window’s input buffer. The
wistream-mixin flavor gives the window an input buffer, but other flavors,
such as command menus, provide an input buffer without w:stream-mixin.
The window’s w:io-buffer instance variable points to the input buffer.

You can explicitly manipulate input buffers in order to perform certain
advanced functions by using the :io-buffer initialization option and the
:io-buffer and :set-io-buffer methods. Also, you can put properties on the
I/O buffer’s property list; this capability lets you use various special features.

A window can be thought of as generating input when the keyboard is used
while the window is selected. This is how ordinary characters enter the input
buffer. The :force-kbd-input method can generate input at any place in the
program. For example, mouse clicks are often handled by forcing input,
which the window’s command-interpreting process reads. Thus, the mouse
click can also be said to generate input.

All the input, no matter how it is generated, goes to the same input buffer in
chronological order. All the input methods remove input from the buffer in
chronological order, that is, in a first-in, first-out (FIFO) order.

All windows can share a single input buffer; thus, all input generated by all
windows goes into one buffer, and the input can be read through any of the
windows. All keyboard input directed at a window and all mouse clicks on the
windows are merged into a single chronological input stream. The program
simply reads input from one of the windows (always the same one if the
programmer prefers) and receives all the input intended for the program.

The input buffer does not record which window was responsible for generat-
ing input to be read from a shared input buffer. For mouse clicks, the
program may need to know which window was selected with the mouse in
order to respond to the command properly. The standard way to pass this
information is to use a list as the input character and make the window
selected by the mouse one of the elements of the list. Such a list is called a
blip.

Windows that use input methods must use w:stream-mixin. The other win-
dows need to use a function such as w:io-buffer-put to put their input into
the proper input buffer. It is often easiest to use w:stream-mixin to create
buffers and to generate the input with :force-kbd-input. However, for
windows that support the :io-buffer method, returning the correct shared
input buffer and putting the generated input into that buffer is sufficient. This
procedure works for input generated by the w:io-buffer-put function and for
input sent to other windows by the :force-kbd-input method, if these other
windows use w:stream-mixin.

If a frame includes a pane that is handled by its own process (such as a
Zmacs frame), this pane should not share the input buffer usec by the rest of
the panes. In general, there should be one input buffer for each process you
are using, and this input buffer should be shared by the windows used by that
process.

8-2

Window System Reference



Input

Normally, to make windows share an input buffer, you should create the
buffer using w:make-default-io-buffer and specify the input buffer for the
:jo-buffer initialization option when each pane is created. Also, certain
frame flavors automatically make the panes share an input buffer. See para-
graph 15.2, Constraint Frames, for details.

wistream-mixin Flavor

Defines the standard input stream methods for entering input from the key-
board, as well as some nonstandard input methods. The nonstandard :bitblt
methods are discussed in paragraph 12.4.2, Bit Block Transferring.

w:kbd-last-activity-time Variable

The value returned by the time function when the last input character was
typed, or a mouse button was pressed, whichever is later.

sio-buffer spec Initialization Option of w:stream-mixin

Gettable, settable.

Initializes the w:io-buffer instance variable to be the input buffer of the
window. The spec argument can be an I/O buffer, a number, or a list. If spec
is a number, an I/O buffer is made with the size specified by spec, no input
function, and the default output function. If spec is a list, spec is interpreted
as (size input-function output-function). If output-function is nil or omitted,
w:kbd-default-output-function is used.

Blips

8.3 Input doesnot have to be in the form of characters; lists are often used
as well for program-generated input, especially for representing mouse clicks
in different kinds of mouse-sensitive areas. Such lists are called blips. The
car of the list is, by convention, a symbol that identifies the kind of blip.
Various methods create blips, including the :command-menu method of
w:menu and the :io-buffer method of w:basic-choose-variable-values.
Details about blips are described with the method that produces the blip.

CAUTION: When using blips, you should keep in mind that the blips
may be discarded if the process has called any function that does not
know what to do with them. Two such functions are debugger and break,
so this situation can happen at any time.

Blips should either describe mouse actions, which can safely be ignored if
they happen when they are not meaningful, or blips should notify the process
to check other data structures. A blip should not be used to indicate a request
or response from another process because this information must not be lost.
Instead, put the data on a separate queue and have the process check the
queue after every command. A blip that does nothing serves to wake up the
process if it is waiting for input when the data goes on the queue.

Using the :around method for :read-any causes blips to be processed even in
the middle of calls to read, to the debugger, and to other programs that do
not look for blips. The :around method can examine the value being
returned. If the value is one of certain types of blips, you can process it and
then loop around, calling the original :read-any handler again without
returning to the caller. If the value is anything else, simply return it.

Window System Reference

8-3



Input

Input Editor

How the
Input Editor Works

8.4 The input editor, formerly known as the rubout handler, is a feature of
all interactive streams, that is, streams that connect to terminals. Its purpose
is to allow the user to edit minor mistakes in type-in. At the same time, it is
not supposed to get in the way; input should be seen by Lisp as soon as a
syntactically complete form has been typed. The definition of syntactically
complete form depends on the function that is reading from the stream; for
read, a syntactically complete form is a Lisp expression.

There are three types of common input editors, which offer varying
capabilities:

B Some interactive streams, such as editing Lisp Listeners, have an input
editor with the full power of the Zmacs editor.

B  Most windows have an input editor that imitates Zmacs, implementing
more than thirty common Zmacs commands. ‘

M The cold load stream has a simple input editor that allows the user to rub
out single characters and includes a few simple commands such as clear-
ing the screen and erasing the entire input typed so far.

All three kinds of input editor use the same protocol. The three types of input
editor and their common protocol are described in the following paragraphs.

8.4.1 The most difficult task for an input editor is to decide when the user is
finished typing. The idea of an input editor is that the user can type in char-
acters, and they are saved up in a buffer so that if the user changes his or her
mind, the user can rub them out and type different characters. However, at
some point, the input editor has to decide that the time has come to stop
putting characters into the buffer and to let the function parsing the input,
such as read, return. This is called activating. The right time to activate
depends upon the function calling the input editor, and may be very compli-
cated (if the function is read, figuring out when one Lisp expression has been
typed requires knowledge of all the various printed representations, what all
currently-defined reader macros do, and so on).

Input editors should not have to know how to parse the characters in the
buffer to figure out what the caller is reading and when to activate; only the
caller should have to know this. The input editor interface is organized so
that the calling function can do all the parsing while the input editor does all
the handling of rubouts, and the two are kept completely separate.

Basically, the input editor works as follows. When an input function that
reads characters from a stream, such as read or read-line, is invoked with a
stream that has :rubout-handler in its :which-operations list, that function
enters the input editor. The input function then goes ahead reading char-
acters from the stream. Because control is inside the input editor, the stream
echoes these characters so that the user can see what is being typed.
(Normally, echoing is considered to be a higher-level function outside the
province of streams, but when the higher-level function tells the stream to
enter the input editor, the higher-level function is also handing the responsi-
bility for echoing to the input editor.) The input editor is also saving all these
characters in a buffer (why it saves them is discussed shortly). When the
function, read or whatever, decides it has enough input, it returns and
control leaves the input editor. That is the easy case.

8-4

Window System Reference



Common
Input Editors

The w:rubout-handler
Variable

Input

If the user types a rubout, a throw is done out of all recursive levels of read,
reader macros, and so forth back to the point where the input editor was
entered. Also, the rubout is echoed by erasing from the screen the character
that was rubbed out. Now the read is tried over again, rereading all the char-
acters that have not been rubbed out but not echoing them this time. When
the saved characters have been exhausted, additional input is read from the
user in the usual fashion.

The effect of this is a complete separation of the functions of the input editor
and parsing, while at the same time the execution of these two functions
mingles in such a way that input is always activated at the proper time.
Because of this mingling, the parsing function (in the usual case, read and all
macro-character definitions) must be prepared to be thrown through at any
time; the function should have only trivial side effects because it may be
called multiple times.

If an error occurs while inside the input editor, the error message is displayed
and then additional characters are read. When the user types a rubout, it
rubs out the error message as well as the character that caused the error. The
user can then proceed to type the corrected expression; the input is reparsed
from the beginning in the usual fashion.

8.4.2 The common input editor recognizes a subset of the Zmacs editor
commands, including RUBOUT, CTRL-F, META-F and others. Pressing
CTRL-HELP while in the input editor displays a list of the commands. The
kill and yank commands in the input editor use the same kill history as
Zmacs. so you can kill an expression in Zmacs and yank it back into the
input editor with CTRL-Y. The input editor also keeps a command history of
the most recent input strings (a separate command history for each stream),
and the CTRL-C and META-C commands retrieve from this history just as
CTRL-Y and META-Y do for the kill history.

When not inside the input editor, and when entering characters to a program
that uses control characters for its own purposes, the control characters are
treated the same as ordinary characters.

Some programs, such as the debugger, allow the user to type either a control
character or an expression. In such programs, you are really not inside the
input editor unless you have typed the beginning of an expression. When the
input buffer is empty, a control character is treated as a command for the
program (such as, CTRL-C to continue in the debugger); when there is text
in the input editor buffer, the same character is treated as a input editor
command. Another consequence of this is that the message you get by typing
help varies, being either the input editor’s documentation or the debugger’s
documentation.

8.4.3 The way that the input editor is entered is complicated, because a
catch must be established. The w:rubout-handler variable is non-nil if the
current process is inside the input editor. This is used to handle recursive
calls to read from inside reader macros and the like. If w:rubout-handler is
nil and the stream being read from has a :rubout-handler in its :which-
operations, functions such as read send the :rubout-handler message to the
stream with the arguments of a list of options, the function, and its
arguments. The input editor initializes itself and establishes its catch, then
calls back to the specified function with w:rubout-handler bound to t.

Window System Reference

8-5



Input

User-written input reading functions should follow this same protocol to get
the same input editing benefits as read and read-line.

w:rubout-handler Variable

Specifies whether the current process is in the input editor.

Functional Interface 8.4.4 The easiest way to invoke an input editor for a particular piece of
to an Input Editor code is to use the with-input-editing special form. This special form provides
the same functionality as the :rubout-handler method, but is typically more

convenient to use.

with-input-editing stream options {pody-form}* Special Form

Executes body-form inside stream’s :rubout-handler method. If body-form
does input from stream, such input is done with whatever rubout processing
that stream implements.

options is an association list of keyword symbols and the arguments to them.
The following options are acceptable to windows: ‘

Keyword Description

(:activation function x-args)
Junction is used to test characters for being activators. function’s argu-
ments are the character read followed by the x-args from the option. If
function returns non-nil, then the blip (:activation numeric-argument) is
placed where it can be read with a ‘read-any-tyi method. numeric-
argument is either 1 or -1: it is 1 if the current value of the numeric
argument specified by the user of the input editor is either positive or
unspecified, or it is -1 if the value is negative.

(:command function x-args)
Similar to :activation in terms of the test for characters, but command
characters are handled differently. If Sunction returns non-nil, the
character is a command character and the :rubout-handler method
immediately returns two values: (:command character numeric-argument)
and :command. numeric-argument is either 1 or -1: it is 1 if the current
value of the numeric argument specified by the user of the input editor is
either positive or unspecified, or it is -1 if the value is negative. The input
that was buffered remains in the buffer.

(:do-not-echo charl char2 ...)
Similar to the :activation option except that:

1. Characters are listed explicitly.

2. The character itself is returned when it is read, rather than an :activation
blip.

(:editing-command (char doc)...)
Specifies user-implemented editing commands. If any char in the alist is
read by the input editor, it is returned to the caller (for example, to a
:read-any-tyi method called by the function specified in the :rubout-
handler method). The function specified in the :rubout-handler method
should process these characters in appropriate ways and keep reading.

8-6 Window System Reference



(Continued)
Keyword

Input

Description

(:full-rubout flag)

(:initial-input string)

(:initial-input-pointer n)

If the user erases all of the characters and then presses the rubout char-
acter once more, control is returned from the input editor immediately.
Two values are returned: nil and flag. In the absence of this option, the
input editor simply waits for more characters.

Treats the characters in string as type-ahead before reading anything from
the keyboard.

Specify this option to start out with editing pointer n characters from the
start.

(:pass-through charl char2 )

(:preemptable token)

This option treats the characters charl, char2 and so forth as ordinary
characters even if they are normally special commands to the input editor.
This can be useful for getting characters such as HELP into the buffer.

This option makes all blips act like command characters. If the input
editor encounters a blip while reading input, it immediately returns two
values: the blip itself, and the specified token. Any buffered input remains
buffered for the next request for input editing.

(:prompt function-or-string)

If function-or-string is a function, it is called before reading any char-
acters; typically, the function displays a prompt. The arguments to the
function are the window and a flag. When the input editor is first entered,
the flag is nil, but if it is necessary to prompt again (for example, if the
user clears the screen), the function is called again with the character the
user typed. If function-or-string is a string, then that string is displayed
before reading any characters, or when it necessary to prompt again.

(:reprompt function-or-string)

Acts the same as :prompt except that functidn-or-string is not used on
initial entry. If both :prompt and :reprompt are specified. :prompt is
used on initial entry and :reprompt is used for redisplay.

A Sample
Input Editor
Function

For example, the following code prompts the user from the stream and then
reads one line of input from the user.

(with-input-editing
(my-stream ‘((:prompt "Hello there"))) ; options
(read-line my-stream)) ; body form

8.4.5 The following explanation describes how to write your own function
that invokes the input editor. The read and read-line functions both work
this way. You should use the readlinel example below as a template for
writing your own input editor function.

The following code is a simplified version of the read-line function. This
function does not handle end-of-file conditions, use :line-in for efficiency,
and so on.

Window System Reference



Input

(defun readlinel (stream)
;3 If stream does input editing, get inside the input editor.
(if (and (not w:rubout-handler)
(member :rubout-handler (send stream :which-operations)
:test #7eq))
(send stream :rubout-handler () #‘readlinel stream)
;3 ELSE
;3 Accumulate characters until return.
(loop for ch = (read-char stream)
with string = (make-array 0 :element-type :string-char
:fill-pointer 0)
until (or (null ch) (char= ch #\return))
do (vector-push-extend ch string)
finally (return string))))

The first argument to the :rubout-handler message is a list of options. The
second argument is the function that the input editor should call to do the
reading, and the rest of the arguments are passed to that function. Note that
in the example above, readline1 is passing itself to the :rubout-handler mes-
sage as the function and is passing its own arguments as the arguments. This
case occurs frequently. The returned values of the message are normally the
returned values of the function (except sometimes when the :full-rubout
option is used).

Stream Input 8.5 You can use either stream operations (that is, methods) to obtain input
Operations from windows, or you can use Common Lisp-compatible functions to obtain
input from windows.

Common Lisp- 8.5.1 The functions discussed below follow the Common Lisp standard of
Compatible returning a character object rather than a fixnum. There are
Read Functions analogous methods; however, in most cases you should use the function
and Methods rather than the method because the function generally executes faster than
the equivalent method. The methods are supplied for those cases where it is

difficult to call the function.

The two most commonly used functions, read and read-no-hang, are
described in the Explorer Input/Output Reference manual.

All of the functions and methods discussed in this paragraph include the
same arguments:

stream -— The stream from which the character or blip is read. By default,
stream is *standard-input*.

eof-errorp — A flag that indicates whether to signal an error when an end of
file is encountered, or whether to return eof-value. By default (t), the
function signals an error when it encounters an end of file.

eof-value — The value returned when eof-errorp is not t and the function
encounters an end of file.

recursive-p — Ignored. This argument is included for compatibility with
Common Lisp.

8-8 Window System Reference



Input

w:read-any &optional (stream *standard-input*) Function
(eof-errorp t) eof-value recursive-p '

:read-any &optional (stream *standard-input*) Method of w:stream-mixin
(eof-errorp t) eof-value recursive-p

w:read-any-no-hang &optional (stream *standard-input*) Function
(eof-errorp t) eof-value recursive-p

:read-any-no-hang Method of w:stream-mixin

&optional (stream *standard-input*) (eof-errorp t)
eof-value recursive-p

Reads one character or blip from stream. If no input is available, w:read-any
waits until a character of input becomes available. The character comes from
the window’s input buffer if the buffer contains any characters; otherwise, the
character comes from the keyboard.

w:read-any-no-hang returns nil immediately if the buffer is empty rather
than waiting. This function is used by programs that first execute continuously
until a key is pressed, then examine the key and decide what to do next.

w:unread-any char &optional (stream *standard-input*) Function
:unread-any char &optional (stream *standard-input*) Method of w:stream-mixin

Puts the character just read back into the window’s input buffer so that it is
the next character returned by w:read-any. This character must be the very
last character that was read. It is illegal to perform two w:unread-anys in a
row. w:unread-any is used by parsers, such as read, that look ahead one
character. char is the character just read from the window’s input buffer.

w:read-list &optional (stream *standard-input*) Function
(eof-errorp t) eof-value recursive-p

:read-list &optional (stream *standard-input*) Method of w:stream-mixin
(eof-errorp t) eof-value recursive-p

Reads one blip from stream.

w:read-mouse-or-kbd &optional (stream *standard-input*) Function
(eof-errorp t) eof-value recursive-p
:read-mouse-or-kbd Method of w:stream-mixin

&optional (stream *standard-input*) (eof-errorp t)
eof-value recursive-p

w:read-mouse-or-kbd-no-hang &optional (stream *standard-input*) Function
(eof-errorp t) eof-value recursive-p
:read-mouse-or-kbd-no-hang Method of w:stream-mixin

&optional (stream *standard-input*) (eof-errorp t)
eof-value recursive-p

Reads one character or :mouse-button blip from stream, except that certain
kinds of blips are not discarded and do count as input. All other blips (that is,
all blips whose car is not the symbol :mouse-button) are discarded. If these
functions read a blip whose car is the symbol :mouse-button, they return
three values:

1. The third element (caddr) of the blip, which is always a fixnum.
2. The whole blip.
3. A character whose mouse bit is 1. This bit identifies the mouse button

that was clicked. (See paragraph 11.4.2, Encoding Mouse Clicks as
Characters.)

Window System Reference 8-9



Input

Methods for

Stream Operations

If no input is available, w:read-mouse-or-kbd waits for input; w:read-
mouse-or-kbd-no-hang returns nil rather than waiting.

8.5.2 The methods of w:stream-mixin and w:preemptable-read-any-tyi-
mixin flavors provide stream input operations. Some of the methods have an
optional eof-action argument; this argument is included because it is part of
the input stream protocol. It is ignored because end-of-file is not meaningful
for windows.

force-kbd-input input Method of w:stream-mixin

:listen

Inserts input into the window’s input buffer to be read by read-char in its
turn. This method is the standard way of putting blips into the input stream.
If input is a character or a list, input is forced into the input buffer. If input is
a string, each character in the string is forced into the input buffer, one by
one.

Method of w:stream-mixin

Returns t if there are any characters available to :any-tyi, or nil if there are
not. For example, the editor uses :listen to defer redisplay until the editor
has processed all of the characters that have been typed in.

:string-in eof-action string &optional (start 0) end Method of w:stream-mixin

Arguments:

Operates like read-char, except that it reads a string from the input buffer.
:string-in reads characters into a string using read-char until no more room
remains in the string.

eof-action — Ignored because end-of-file is not meaningful for windows.
string — The string to be affected by the input.

start — The first character of string into which input is placed. If start is nil,
:string-in starts reading with the first character in the string. Recall that
the Explorer system uses a zero-based index for strings.

end — The last character string into which input is placed. If end is nil, all of
string from start to the last character of the string is to be affected by the
input.

Suppose that you evaluate the following code:

(setq string-var "A string")
(send w:selected-window :string-in t string-var 3 6)

If you type 123 in the input buffer, the new value of string-var is:

"A s128ing"

:string-line-in eof-action string &optional (start 0) end Method of w:stream-mixin

Operates like read-char, except that it reads a line from the input buffer.
:string-line-in reads characters into a string using read-char urntil a #\return
is encountered or no more room remains in the string. The arguments for
:string-line-in are identical to the arguments used for :string-in.

:string-line-in returns three values:

1. An index, pointing to the position in string where the next character is
placed.

8-10

Window System Reference



Input
2. Either t (if the end-of-file character was read) or nil (otherwise).
3. Either nil (if a #\return character was read) or t (otherwise).

The following are the possible permutations of these values.

Index EOF
nnn nil
nnn nil
nnn t
nnn t

Value

Returned Where the Index Points

t The position in string where the next character read will be
put—the eof was not reached, but the end of string was
reached.

nil The position in string where the next character read will be

put—the eof was not reached, and a #\return character was
not the last character read.

t One position beyond the end of string—the eof and end of
string were reached simultaneously. This is an unlikely
occurrence.

nil The position in string where the next character read will be

put—the eof was reached, and a #\return character was the
last character read. This is an unlikely occurrence.

NOTE: nnn represents any number that can be returned by :string-line-in as a value.

:wait-for-input-with-timeout timeout Method of w:stream-mixin

:clear-input

:playback

Waits until either input is available or a specific time period elapses. timeout
is the time period, specified in 60ths of a second, that :wait-for-input-with-
timeout waits.

Method of w:stream-mixin

Clears this window’s input buffer. :clear-input flushes all the characters that
have been typed in at this window but have not yet been read.

Method of w:stream-mixin

Returns an array of the last n characters read from this window, where n is
the size of the array. The array elements are used in a circular fashion, the
last element being followed by the first one, and array leader element 1
containing the index of the last array element into which a character was
read. The editor command HELP L uses this method. n is the value of w:io-
buffer-record-length, which has a default of 60.

:rubout-handler options function &rest args Method of w:stream-mixin

Applies function to the arguments inside an environment where input opera-
tions from this window echo the characters typed and provide for simple
input editing.

options is an association list of keyword symbols and the arguments to them.
These options are listed in paragraph 8.4.4, Functional Interface to an Input
Editor, followed by an example of using the :rubout-handler method. In
most cases, it is more convenient to use the with-input-editing special form
(also described in paragraph 8.4.4) than to use the :rubout-handler method.

Window System Reference

8-11



Input

:save-rubout-handler-buffer Method of w:stream-mixin

Returns the input editor buffer’s contents and then clears the buffer. Two
values are returned: a string and a fixnum. The fixnum is the current cursor
index in the string. (Rubout handler is a historical term for input editor.)

:save-rubout-handler-buffer is used on entry to the break function so that
pressing the BREAK key interfaces properly with rubout handling.

‘restore-rubout-handler-buffer string index Method of w:stream-mixin

Arguments:

Loads the contents of the input editor buffer from string and sets the cursor
position. The arguments are usually two values obtained from :save-rubout-
handler-buffer.

string — The string returned by the :save-rubout-handler-buffer method; it
specifies the new buffer contents for the input editor after :restore-
rubout-handler-buffer executes.

index — The fixnum returned by :save-rubout-handler-buffer method. The
index argument sets the cursor position in string.

:refresh-rubout-handler &optional discard-last-character Method of w:stream-mixin

Requests the input editor to reprint its buffer and then reprompt. If discard-
last-character is non-nil, the last character in the buffer is discarded.
:restore-rubout-handler-buffer uses :refresh-rubout-handler.

If you are reading input using the input editor but want to process certain
characters immediately (perhaps the character Help) and not leave them as
part of the ordinary input, you should use this method and specify discard-
last-character as t.

w:preemptable-read-any-tyi-mixin Flavor

Defines the :preemptable-read method.

:preemptable-read options function Method of w:preemptable-read-any-tyi-mixin

&rest arguments

Forces the window to read a blip immediately.

You may have noticed that when you use the mouse to select an object in the
Inspector or the window error handler, the program sees the object you
select. If, while typing a Lisp expression, you use the mouse to select an
object, the blip sent by the mouse process is put at the end of the input buffer
and is not read because of the characters that you have typed, unless you
force the window to provide special handling for the mouse blip. The
:preemptable-read method corrects this problem by putting the mouse blip
at the front of the input buffer.

The :preemptable-read method uses the same arguments as the normal
:rubout-handler method (discussed previously) and does the same thing if
the mouse is not used. In fact, :preemptable-read, despite the name, has
nothing to do with the read function. The :preemptable-read method
returns the blip sent to the window as the first value and the :mouse-char
symbol as the second value. (:preemptable-read does this even if the blip
did not come from the mouse; however, most blips do.) The characters that
were in the input editor buffer when the blip arrived come back the next time
a :preemptable-read method is used, so the user can keep typing in his or
her expression. :

8-12

Window System Reference



Input

1/0 Buffers 8.6 An 1/0 buffer is an array of fixed size used as a ring buffer. Typically,
characters are put into the buffer by one process and removed by another in
FIFO order. The process that is removing characters can wait if the buffer is
empty, and a process that is putting in characters can wait if the buffer is full,
or either process can throw away the characters. Each window using the
w:stream-mixin flavor has an input buffer that is an I/O buffer, and there is
also one global I/O buffer for the keyboard itself.

NOTE: 1/0O buffers are typically used for storing characters, which can also
be lists. However, any Lisp objects can be stored in an I/O buffer; they do
not have to be characters.

To provide easy access to slots in the I/O buffer leader, the following macros
are defined for the slots. These macros work in a manner similar to standard
macros. See the discussion of array leaders in the Explorer Lisp Reference
manual for more information.

Slot Name Description

w:io-buffer-size io-buffer _
The number of elements in the input buffer.

w:io-buffer-input-pointer io-bujffer
The index pointing* to where the next character inserted should be
stored.

w:io-buffer-output-pointer io-buffer
The index pointing* to the next available character.

w:io-buffer-input-function io-buffer
Either a function called when characters are inserted, or nil. The window
system does not actually use this feature. The calling conventions are the
same as for the output function.

w:io-buffer-output-function io-buffer
Either a function called when characters are removed, or nil. w:io-buffer-
output-function is called with the buffer and the character as arguments.
The value of w:io-buffer-output-function should be a translated version
of the character; this value is usually the same as the argument.
w:io-buffer-output-function can also return a non-nil second character,
indicating that the character should be discarded. In this case,
w:io-buffer-get removes the following character or waits for one.

In window input buffers, this slot is usually a function that checks for and
handles synchronous interception.

Note:

If the input and output pointers are equal, the buffer is empty. If w:io-
buffer-output-pointer points at the slot after the input pointer, the buffer
is considered full—in fact, one slot is still empty but cannot be used.

Continued

Window System Reference 8-13



Input

(Continued)

Slot Name

Description

w:io-buffer-state io-buffer

One of the following, which controls the use of the buffer:

Value Characters Can Be
t Inserted or removed
nil or :input Inserted

nil or :output Removed

w:io-buffer-plist io-buffer

A property list that can contain one of the following:

M :raw is specified non-nil to inhibit translation of characters from
hardware codes to the Explorer character set. The effect of :raw is
hardware dependent.

B :asynchronous-characters is an association list controlling which char-
acters are intercepted asynchronously when this window is selected.
See paragraph 8.7.2, Asynchronously Intercepted Characters, for
details.

B :dont-upcase-control-characters specifies whether letters entered in
conjunction with the CTRL, META, HYPER, or SUPER keys receive
special treatment or not. If :dont-upcase-control-characters is nil,
lowercase letters are converted to uppercase and uppercase are con-
verted to lowercase. If it is t, the case of the letters does not change.

w:io-buffer-last-input-process io-buffer

The last process that put a character in this I/O buffer.

w:io-buffer-last-output-process io-buffer

The last process that removed a character from this I/O buffer.

w:io-buffer-record io-buffer

An array that records the last n characters read from this 1/0 buffer,
where n is the value of the w:io-buffer-record-length constant. This array
is also a ring buffer, but nothing is ever removed from it; after it is full, it
contains the last n characters stored in it. The w:io-buffer-record-pointer
macro gets the index of the last slot stored into.

w:io-buffer-record-pointer io-buffer Macro
Gets the index of the last slot of the w:io-buffer-record array.

w:io-buffer-empty-p io-bujffer : Macro
Returns t if io-buffer is empty, nil if it is not.

w:io-buffer-full-p io-buffer Macro
Returns t if io-buffer is full, nil if it is not.

8-14

Window System Reference



Input

w:make-io-buffer size &optional input-function output-function Function
plist state

Creates and returns an I/0O buffer, initializing some of the slots from its argu-
ments and the other slots in a default or reasonable fashion. The buffer,
initially empty, is of size size + 2, because 2 elements must always be empty.

The arguments for w:make-io-buffer are the same as the respective slots
described previously. Also see the w:make-default-io-buffer function
described in paragraph 8.6.2, I/O Buffers as Input Buffers.

w:io-buffer-put buffer character &optional (no-hang-p nil) Function
w:io-buffer-push buffer character Function

Inserts character into buffer. w:io-buffer-put puts the character at the end
of the buffer; w:io-buffer-push puts the character at the beginning of the
buffer, that is, as the next character to be removed. Thus, w:io-buffer-put
implements a FIFO buffer, and w:io-buffer-push implements in a last-in,
first-out (LIFO) buffer.

no-hang-p specifies whether w:io-buffer-put waits for a full I/O buffer to
empty or not. If no-hang-p is t and the buffer is full, this function does not
write to the buffer; instead, it exits and returns nil. If no-hang-p is nil and the
buffer is full, this function waits for the buffer to empty, writes to the buffer,
and then returns t.

w:io-buffer-get buffer &optional (no-hang-p nil) Function

Removes the next character from buffer. The character removed is put in the
buffer’s 1/0 buffer record array. w:buffer-get also waits if the buffer’s state
does not permit output. However, if no-hang-p is non-nil and buffer is empty,
w:buffer-get returns nil immediately. w:io-buffer-get returns two values—
the character and either t (if the method actually got a character) or nil (if
the method did not get a character).

w:io-buffer-unget buffer character Function

Inserts character into buffer as the next character to be removed rather than
as the last one to be removed. w:io-buffer-unget reverses the action of
w:io-buffer-get and returns an error if the character does not match the last
character removed by w:io-buffer-get. The character is removed from the
1/O buffer record array by backing up the array’s pointer to avoid duplication
when the character is read a second time.

This function should not be used more than once between input operations.

w:io-buffer-clear bujfer Function
Empties the 1/O buffer identified by buffer.

w:process-typeahead bujfer function Function

Uses another function as a filter for the characters in the buffer.

Arguments:  buffer — The buffer that w:process-typeahead accesses.

function — The function called once for each character in buffer; the char-
acter is its sole argument. If function returns non-nil, the returned value
is stored back in buffer instead of the original character that was in the
buffer. If function returns nil, the character is deleted from the buffer.

Window System Reference 8-15



Input

I/0 Buffers and 8.6.1 Generally, keyboard input goes into the selected window’s input

Type-Ahead buffer. However, this is not always true. Program-generated input from
methods using :force-kbd-input goes directly into the window’s input buffer,
but keyboard input actually goes into another I/O buffer called the keyboard
input bujfer. There is only one keyboard input buffer in the system. The
characters move from the keyboard input buffer to the selected window’s
input buffer whenever a program tries to read input from the window’s input
buffer while the buffer is empty. The keyboard input is not assigned to a
selected window until the instant the program is ready to read it.

Asynchronous window-switching commands, such as TERM S and mouse
clicks that select a window, actually copy the contents of the keyboard input
buffer into the buffer of the window that is being deselected. If you type
commands to the editor and then type SYSTEM L before the editor has read
its commands, those commands still go to the editor, not to the Lisp Listener
you have selected.

By contrast, synchronous window-switching (such as is done by the functions
ed and inspect, and by Exit commands in various programs) does not per-
form this copying operation, because any further typed-ahead input should go
to the program being switched to.

1/0 Buffers as 8.6.2 The following paragraphs discuss functions that affect the use of 1/O
Input Buffers buffers as input buffers.

w:make-default-io-buffer Function

Creates and returns an I/O buffer of the type used for window input buffers
with all slots properly initialized. This function uses w:kbd-default-output-
function as the output function.

w:kbd-default-output-function buffer char Function

Checks the character char from buffer against the value returned by w:kbd-
intercepted-characters and also checks w:kbd-tyi-hook. This function must
be called with the inhibit-scheduling-flag variable set to t; the function may
set the flag to nil. This is the default function for a window input buffer’s
output function.

w:*default-read-whostate* Variable
Default: “Keyboard”

Contains the default whostate displayed for various conditions, as explained
below. This variable is referenced by several functions and methods, includ-
ing :tyi, :any-tyi, and so on.

w:kbd-io-buffer-get buffer &optional (no-hang-p nil) Function
(whostate w:*default-read-whostate*)

Removes a character from bujfer, or possibly from the keyboard input buffer.
When a character is read from the keyboard input buffer, the buffer’s output
function is executed, as if the character had been put into buffer and then
read from there.

Arguments:  buffer — The buffer from which this function removes a character. w:kbd-io-
buffer-get reads from the keyboard input buffer only if buffer is the
input buffer of the selected window, and then only if buffer is empty.

8-16

Window System Reference



Input

no-hang-p — If this argument is non-nil and buffer is empty, this function
returns nil immediately.

whostate — The string that appears in the status line while this function waits.

w:kbd-wait-for-input-with-timeout buffer timeout Function

Arguments:

&optional (whostate w:*default-read-whostate*)

Waits either until w:kbd-io-buffer-get goes into a wait state because the
buffer is empty or until timeout elapses. The string specified by whostate
appears in the status line while you wait.

buffer — The buffer from which this function removes a character. w:kbd-
wait-for-input-with-timeout reads from the keyboard input buffer only
if buffer is the input buffer of the selected window, and then only if
buffer is empty.

timeout — The time period to wait before this function times out. timeout is
specified in 60ths of a second.

whostate — The string that appears in the status line while this function waits.

w:kbd-wait-for-input-or-deexposure bujffer window Function

Arguments:

&optional (whostate w:*default-read-whostate*)

Waits until w:kbd-io-buffer-get goes into a wait state because the buffer or
the window is not exposed.

buffer — The buffer from which this function removes a character. w:kbd-
wait-for-input-or-deexposure reads from the keyboard input buffer
only if buffer is the input buffer of the selected window, and then only if
buffer is empty.

window — The window to check for deexposure. If window becomes
deexposed, this function returns immediately.

whostate — The string that appears in the status line while this function waits.

w:kbd-snarf-input buffer &optional no-hardware-chars-p Function

Moves all characters that can be obtained through the w:kbd-io-buffer-get
function into buffer. Asynchronous selection commands use w:kbd-snarf-
input to ensure that type-ahead for the window being deselected remains with
that window.

no-hardware-chars-p is nil if w:kbd-snarf-input is to get the characters
directly from the hardware.

w:kbd-char-typed-p Function

Returns non-nil if input is available in the selected window. This function,
which can be used in programs that loop with interrupts disabled, indicates
when the user presses a key, that is, when input is typed.

Window System Reference

8-17



Input

Intercepted
Characters

Synchronously
Intercepted
Characters

8.7 The window system intercepts two categories of characters:

W Synchronously intercepted characters are intercepted when a process tries
to read them.

®  Asynchronously intercepted characters are intercepted as soon as they are
typed. Asynchronous characters are either global asynchronous char-
acters, such as #\terminal and #\system, which are always available, or
characters defined by the selected window, such as CTRL-ABORT.

An application program can specify the function keys, F1 through F4, as
either synchronously or asynchronously intercepted characters. If you use the
function keys in an application, you should also document their use in the
mouse documentation window.

8.7.1 The io-buffer-output-function of the window input buffer performs
synchronous interception. By default, this function is w:kbd-default-output-
function, which uses the w:kbd-intercepted-characters variable to decide
which characters to intercept and how to handle them. A program can
change the set of synchronously intercepted characters for the program’s
window simply by binding this variable before reading input. Its default value
specifies the characters ABORT, META-ABORT, BREAK, and META-
BREAK.

By convention, all programs are expected to use the ABORT key as a com-
mand to abort operations in some sense appropriate for that program. If you
do not do anything special, ABORT is intercepted automatically. However,
you may want some programs to do something other than the system default
action when the user presses ABORT. The system default action can be
replaced by binding the w:kbd-intercepted-characters variable so that
ABORT goes to your own intercept routine instead of to w:kbd-intercept-
abort, or so that ABORT is read as an input character from the stream and is
then handled by your program.

w:kbd-intercept-abort char &rest ignore Function
w:kbd-intercept-abort-all char &rest ignore Function
w:kbd-intercept-break char &rest ignore Function
wikbd-intercept-error-break char &rest ignore Function

Implements the standard meanings of various keystrokes and keystroke
sequences, as follows:

Function Implements Keystroke

w:kbd-intercept-abort ABORT and CTRL-ABORT

w:kbd-intercept-abort-all META-CTRL-ABORT and
META-ABORT

w:kbd-intercept-break BREAK

w:kbd-intercept-error-break META-BREAK

8-18

Window System Reference



Input

In addition, w:kbd-intercepted-characters uses the following keystroke
sequences for special purposes:

B ABORT signals the sys:abort condition.

m META-CTRL-ABORT and META-ABORT reset the current process.
m BREAK calls the break function.

m META-BREAK calls the debugger.

If you want to handle ABORT, META-CTRL-ABORT, or META-ABORT
differently, redefine either w:kbd-intercept-abort or w:kbd-intercept-
abort-all, as appropriate, to perform as desired.

If *terminal-io* handles the :inhibit-output-for-abort-p method and
:inhibit-output-for-abort-p returns non-nil, the string [Abort] is not

printed.

The char argument is not used.

w:kbd-intercepted-characters Variable

An association list specifying the characters to be intercepted synchronously,
that is, when the characters are read by the program. Because a subroutine of
the read-char function examines w:kbd-intercepted-characters, the current
binding at the time read-char executes is important.

Each element of w:kbd-intercepted-characters should have the format of
(character function). With this format, a function specified by function is
called if character is read, with character as the argument.

function should return two values: a character and either t or nil. The second
value determines whether the first value is accepted as input:

m If the second value is t, function processes character, and character is
ignored.

m If the second value is nil, character is to be inserted into the input buffer.
In practice, function usually returns its argument and t.

On entry, function needs to set the inhibit-scheduling-flag to nil to ensure
proper changing of the w:kbd-intercepted-characters variable. (The
inhibit-scheduling-flag is described in the Explorer Lisp Reference manual.)

New entries can be added to the top-level value of w:kbd-intercepted-
characters and can also bind w:kbd-intercepted-characters for programs. It
is unwise to remove the standard entries in the top-level value. The default
value for w:kbd-intercepted-characters is the value of w:kbd-standard-
intercepted-characters, which is the following:

- ((#\abort kbd-intercept-abort)
(#\m-abort kbd-intercept-abort-all)
(#\break kbd-intercept-break)
(#\m-break kbd-intercept-error-break)))

See the previous discussion of w:kbd-intercept-abort and related functions
for a description of specific keystrokes and their meanings.

Window System Reference

8-19



Input

w:kbd-standard-intercepted-characters Variable

The initial value of w:kbd-intercepted-characters. The w:kbd-standard-
intercepted-characters variable can be used to reset w:kbd-intercepted-
characters to its original value after a program finishes special handling of
intercepted characters.

The default value for w:kbd-standard-intercepted-characters is the
following:

“ ((#\abort kbd-intercept-abort)
(#\m-abort kbd-intercept-abort-all)
(#\break kbd-intercept-break)
(#\m-break kbd-intercept-error-break)))

w:kbd-tyi-hook Variable

When this variable is non-nil, a user can process synchronously intercepted
characters.

w:kbd-default-output-function checks whether the value of w:kbd-tyi-hook
is non-nil before w:kbd-default-output-function does anything else. If the
value is non-nil, w:kbd-default-output-function assumes that the value is a
function of one argument and applies the function to the character that was
typed. If the function returns a non-nil value, then the character is not
returned to callers of read-char or other input operations; otherwise, the
character is processed normally.

This variable allows you to write a function that intercepts anything passing
through an input buffer using w:kbd-default-output-function. Your function
intercepts the character and returns either nil if it does not want to handle
the character, or t if your function processes the character.

Asynchronously 8.7.2 Each window that uses wistream-mixin can define a set of characters
Intercepted to be intercepted asynchronously when that window is selected. The intercep-
Characters tion is performed through a different mechanism than the one used for
synchronous interception, but the same handling functions, such as w:kbd-
intercept-abort, can ultimately be used. By default, a window performs
asynchronous interception on the four characters generated by the CTRL-
ABORT, META-CTRL-ABORT, CTRL-BREAK, and META-CTRL-BREAK
keystrokes. You can change the set of such asynchronous keys on a window

by window basis.

The keyboard process and its handler function perform asynchronous inter-
ception. Therefore, asynchronous interception must obey certain strict
conventions: asynchronous interception must not perform any 1/0, wait for
anything, run very long, or get an error. It is usually easiest to create another
process and perform the real work there, using process-run-function.

Because the interception is performed by the keyboard process, the char-
acters cannot be directly specified by a variable for the program to bind. So
each window has a list of asynchronously intercepted characters. The list is
actually stored as the :asynchronous-characters property on the input
buffer’s property list.

8-20 Window System Reference



Input

w:kbd-standard-asynchronous-characters Variable

Contains the default set of characters that are asynchronously intercepted.
This set includes the following:

‘ ((#\c-abort kbd-asynchronous-intercept-character

(:name "abort" :priority 50) kbd-intercept-abort)
(#\c-m-abort kbd-asynchronous-intercept-character

(:name "Abort all" :priority 50) kbd-intercept-abort-all)
(#\c-break kbd-asynchronous-intercept-character

(:name "break" :priority 40) kbd-intercept-break)
(#\c-m-break kbd-asynchronous-intercept-character

(:name "Error break" :priority 40)

kbd-intercept-error-break)))

:asynchronous-characters alist Initialization Option of w:stream-mixin
Default: w:kbd-standard-asynchronous-characters

Specifies the list of characters intercepted asynchronously while this window
is selected.

alist specifies the characters to be intercepted asynchronously. Each element
of alist consists of a character, a function to call, and optionally some extra
arguments to be passed to the function. When the function is called, the
function’s arguments specify the character, the selected window, and any
specified additional arguments from alist.

:asynchronous-character-p character Method of w:stream-mixin
Returns non-nil if this window defines a character for asynchronous intercep-
tion. character is the character that can be intercepted.

thandle-asynchronous-character character Method of w:stream-mixin

Invokes the handler function in your current process as defined for asynchro-
nous interception of a character. character is the character to be immediately
intercepted when it is typed.

:add-asynchronous-character character handler-function Method of w:stream-mixin
&rest additional-args

Defines a character for asynchronous interception in this window, that is,
adds the element (character handler-function . additional-args) to the asso-
ciation list on the input buffer’s property list.

:remove-asynchronous-character character Method of w:stream-mixin

Removes a character’s element from the association list so that the character
is no longer intercepted asynchronously in this process. character is the char-
acter to be removed.

w:kbd-asynchronous-intercept-character character window Function
&optional process-run-options function
Provides a convenient way to handle asynchronously intercepted char-
acter(s). This function enables you to use the same functions used for
synchronous interception.

Arguments:  character — The character to be intercepted.
window — The window that intercepts character.

process-run-options — The option list for process-run-function, which is
described in the Explorer Lisp Reference manual.

Window System Reference 8-21



Input

function — The subhandler function that actually performs the asynchronous
action. When the function is called, it is passed the character and window
as arguments.

The following example creates a process named Break with priority 40 and
calls w:kbd-intercept-break in that process:

(#\ctrl-break w:kbd-asynchronous-intercept-character
(:name "Break" :priority 40.)
w:kbd-intercept-break)

Global 8.7.3 The TERM and SYSTEM keys are also intercepted asynchronously,

Asynchronous but because their functions do not usually relate to the selected window, they

Characters are not controlled by the selected window’s association list of asynchronous
characters. These are called global asynchronous characters.

The TERM and SYSTEM keys are defined to call functions that read a
second character and then execute an operation depending on what that sec-
ond character is. The meaning of the second character is controlled by an
association list, so you can define new terminal and system commands.

w:kbd-global-asynchronous-characters Variable

An association list that controls the characters intercepted regardless of the
selected window. Its elements look and work exactly like those of the associa-
tion list specified in the :asynchronous-characters initialization option for a
window.

The initial value of w:kbd-global-asynchronous-characters is the following:

((#\term w:kbd-terminal)
(#\system w:kbd--sys)
(#\c-clear-input kbd-terminal-clear))

w:*terminal-keys* Variable

w:add-terminal-key char function &optional documentation Function
&rest options

w:remove-terminal-key char &rest ignore Function

w:*user-defined-terminal-keys* Variable

Default: nil

The variables are association lists; each entry describes a subcommand of the
TERM key. w:*terminal-keys* is the default list defined for the Explorer
system; w:*user-defined-terminal-keys* is the list of terminal keys added by
the user. You should use w:add-terminal-key or w:remove-terminal-key to
modify the lists; these functions modify the appropriate list, as needed.
Entries on the list have the following form.

char function documentation optionl option2 ...
where:

char — The character that should be typed after pressing the TERM key
to get the new command. The character is mapped to uppercase before it
is searched for in w:*terminal-keys* list, so you should not use lower-
case characters.

Junction — Either a list to be evaluated or a symbol that is the name of a
local function to be applied to one argument. The argument passed to

8-22 Window System Reference



Input

function is either the numeric argument specified by the user (for exam-
ple, the 0 in TERM 0 S) or nil if the user gave no argument.

documentation — A string giving brief documentation, or a form that is
evaluated and that returns either a string or nil. The string is displayed by
pressing the TERM HELP keystroke sequence. A value of nil causes this
character to be omitted from the TERM HELP display.

optionl and option2 — Keywords with no associated values. The
keywords can be one of the following:

m :keyboard-process — function runs in the keyboard process.
(function is normally evaluated or applied in a new process created
for the purpose.) The :keyboard-process option exists because some
built-in commands must work this way. If you add your own com-
mands, you should not use this option, because you do not want to
interfere with the operation of the keyboard process.

m :typeahead — Everything typed before pressing the TERM Kkey is
inserted into the selected 1/O buffer; that is, this text is treated as
type-ahead to the currently selected window. You should use
:typeahead with commands that change the selected window, to
ensure that the user’s typed input goes where he or she expects it
to go. These commands should set w:kbd-terminal-time to nil as
soon as they change the selected window, unless they complete
quickly. (You should never gather characters for a TERM command
while w:kbd-terminal-time is non-nil.)

m :system — The code is actually overriding the system code rather
than adding a different user-defined command.

The following are typical entries of w:*terminal-keys*:

(#\CLEAR-INPUT tv:kbd-terminal-clear *Discard type-ahead" :keyboard-process)
(#\RESUME (tv:kbd-terminal-resume)
"Allow deexposed typeout in window that TERM-0-8 would select.")
(#\A tv:kbd-terminal-arrest "Arrest process in status line (minus means unarrest)"
:keyboard-process)
(#\B tv:kbd-bury "Bury the selected window" :typeahead)

(#\C tv:kbd-complement - (

vComplement video black-on-white state"

" With an argument, complement the who-line documentation window")
:keyboard-process)

w:*system-keys* Variable
w:add-system-key char find documentation &optional (create t) Function
w:remove-system-key char Function

The variable is an association list; each entry describes a subcommand of the
SYSTEM key. You should use w:add-system-key or w:remove-system-key
to modify the list. Entries on the list have the following form. The arguments
for w:add-system-key are analogous to these entries.

char find documentation create

where:

char — The character that should be typed after pressing the SYSTEM
key to get the new command. The character is mapped to uppercase

‘before it is searched for in the w:*system-keys* list, so you should not

use lowercase characters. You can also use modified characters such as
META-A, SUPER-B, and HYPER-C. CTRL is reserved for creating a

Window System Reference

8-23



Input

Value of find

new instance of the window and process. For example, SYSTEM
CTRL-E creates a new Zmacs editor. If you assign SYSTEM SUPER-F as
the keystroke associated with the frobboz process, SYSTEM SUPER-
CTRL-F creates a new frobboz process.

find — One of the following:

Description

An instance of a flavor

The name of a flavor

A list

Otherwise

The instance should be a window, and pressing the SYSTEM key
selects that particular window.

This is the typical case. Pressing the SYSTEM Kkey initiates a search of
the w:previously-selected-windows variable. If this search finds a
window having the proper flavor, the window is selected. If the
currently selected window is of that flavor, the system causes a beep.
Otherwise, the system creates a window of the proper flavor,
establishes the process, and selects the window, among other
operations.

find is evaluated, and the value should be a window or a flavor name
to be used as described previously.

SYSTEM evaluates create.

documentation should be a string to be printed by SYSTEM HELP.
create — Can be one of the following:
B nil — The system beeps when you press the SYSTEM key.

Bt — A new window of flavor find is created by calling make-instance
with no options, and create is selected.

B A symbol — The name of the flavor of a window to be created.
(create can be different from the flavor to look for, which might be a
mixin that is a component of several different flavors, all of which are
suitable to select when the SYSTEM key is pressed.)

B Other cases — A form to be evaluated to create a window. SYSTEM
starts a newly created process, and create is evaluated in its own
process, not in the keyboard process.

If—after the SYSTEM key is pressed—the next key pressed is pressed in
conjunction with the CTRL key, existing windows are ignored, and a new
window is created according to create.

For example, the list in w:*system-keys* that includes the Zmacs editor on
the System menu is as follows:

(#\E zwei:zmacs-frame "Editor" t)

To add items to the System menu, use the :w:add-to-system-menu-column
function described in paragraph 18.6, The System Menu.

If you do not bind a window with a process to a SYSTEM keystroke, you
must explicitly select, expose, and bind the process to the window, and then

8-24

Window System Reference



Input

reset the process and establish its run reason. An example of this is in para-
graph 6.6.3, Associating a Process With a Window.

w:find-window-of-flavor flavor-name Function

Returns a previously selected window. This function searches the
w:previously-selected-windows variable for a window of the specified flavor
and uses the typep method to check the window.

w:select-or-create-window-of-flavor find-flavor Function
&optional (create-flavor find-flavor)

Selects a previously selected window or, if none exists, creates a new one and
selects it. find-flavor is the window flavor to select. create-flavor is the flavor
to use if a window must be created.

Querying the 8.8 The keyboard is often read as a stream of input; however, the keyboard
Keyboard Explicitly can be treated as a random-access device, and the instantaneous state of any
key can be examined.

w:key-state key-name Function

Returns t if the keyboard key specified by key-name is currently pressed, or
nil if it is not. This argument can be either a character code or the symbolic
name of a shift key:

B The character code of a key is the character produced when you type
that key without any shifts: a lowercase letter, a digit, or a special char-
acter. These names or Keys are predefined. (See the Explorer Lisp
Reference manual for a list of characters.)

m  Shift keys that come in pairs (such as SHIFT, META, and so forth) have
three symbolic names: one for the left key only, one for the right key
only, and one for both. The following table lists the symbolic names for
the shift keys.

Symbolic Symbolic Name Symbolic Name
Key Name for for the for the
Pressed Either Key Left-Hand key Right-Hand Key
SHIFT :shift :left-shift :right-shift
SYMBOL :symbol :left-symbol :right-symbol
CTRL :control :left-control :right-control
META :meta :left-meta :right-meta
SUPER :super :left-super :right-super
HYPER :hyper :left-hyper :right-hyper
CAPS LOCK :caps-lock —

MODE LOCK :mode-lock —

For example, the following code displays a message in the status line while it
waits for you to press the a key. The system ignores any other alphanumeric

Window System Reference 8-25



Input

or symbol keys pressed until you press that key, then inserts all the keystrokes
into the input buffer.

(defun key-test ()
(let ((sel-wd w:selected-window))
(cond ((neq (send sel-wd :read-any
(process-wait "Press the ‘a‘’ key."
#-w:key-state #\a))
(char-int #\a)))
1))

Other keys require more complicated code to verify whether a pressed key is

the same as a particular key you are checking for. The following table shows
tests for some of the more common Keys:

Key Name Used

Key Being Tested for

With charint

Code Used to Compare

Any lowercase alphanumeric key
or unshifted symbol key, such as
a, 1, or.

Any uppercase alphanumeric or
shifted symbol key, where you
obtained the uppercase by pressing
the SHIFT key, such as A, @,

or >

Any named key, such as HELP or
ESCAPE

Any key that includes a modifier,
such as META-HELP or CTRL-
SHIFT-E

(char-int #\a)

(char-int #\A)

(char-int #\help)

(char-int
#\meta-help)

(#°w:key-state #\a)

#7 (lambda ()
(and (w:key-state #\a)
(w:key-state :shift)))

(#’w:key-state #\help)

#7 (lambda ()
(and (w:key-state #\help)
(w:key-state :meta)))

Keyboard 8.9 The following operations are used to tailor the keyboard to the user’s
Parameters needs.
w:setup-keyboard-keyclick &optional (state nil) Function

:keypad-enable ¢-or-nil

Sets whether the keys, when pressed, make an audible click. state can be
either t (when a key is pressed or released, it makes a clicking sound) or nil
(the keys are silent),

Initialization Option of windows

Default: nil, the keypad and the rest of the keyboard produce the same char-
acter codes

Determines whether pressing the keys on the keypad produces the same char-
acter codes as pressing the analogous keys on the keyboard or whether it
produces unique character codes. When this initialization option is set and a
keypad key is pressed, the code produced by that keypad key has its keypad
character object bit set to t. The char-bit and set-char-bit functions can
accept the :keypad keyword as their bit map arguments, which allows a pro-
gram to distinguish keypad characters.

8-26

Window System Reference



FONTS

Introduction

9.1 If you have used the Explorer system for a while, you have probably
noticed that characters can be typed out in any of a number of different
typefaces. Some text is printed in characters that are small or large, boldface
or italic, or in different styles altogether. Each such typeface is called a font.
A font is an array, indexed by character code, of pictures showing how each
character should be drawn on the screen.

A font is represented inside the Explorer system as a Lisp object. Each font
has a name. The name of a font is a symbol, usually in the fonts package, and
the symbol is bound to the font. A typical font name is tr8. In the initial Lisp
environment, the symbol fonts:tr8 is bound to a font object whose printed
representation is something like the following:

#<font trs 234712342>

The initial Lisp environment includes many fonts. Usually, there are more
fonts stored in xld files. New fonts can be created, saved in xlId files, and
loaded into the Lisp environment; they can also simply be created inside the
environment.

The drawing of characters in fonts is performed by microcode and is very
fast. The internal format of fonts is arranged to make this drawing as fast as
possible.

You can use the List Fonts command in Zmacs to display a list of all of the
fonts that are currently loaded into the Lisp environment. Table 9-1 is a list
of some of the useful fonts. For a complete list of all fonts that are loaded
with the Explorer system, see Appendix A of the Explorer Tools and Utilities
manual.

Specifying Fonts

9.2 You can control which font is used when output is sent to a window.
Every window has a font map and a current font. The font map is an array of
fonts; the font map associates a font with a small, nonnegative integer. The
current font of a window is always one of the fonts in the window’s font map.
Whenever output is sent to a window, the characters are printed in the
current font. You can change the font map and the current font of a window
at any time with the appropriate methods.

Windows have a font map rather than merely a current font because it is
necessary to know all the fonts in use before processing any output to ensure
that output is positioned properly (so that output in different fonts on the
same line is aligned correctly).

In addition, certain output methods can accept arrays that contain elements
of type :string-char, and regard the font field as a font number to look up in
the font map. These methods include :compute-motion, :string-length, and
:fat-string-out.

Window System Reference

9-1



Fonts

Table 9-1 Some Commonly Used Fonts
Font Description
cptfont The default font for the U.S. market, used for almost
everything.
medfnt The default font in menus. It is a fixed-width font with

characters somewhat larger than those of cptfont.

medfntb A boldface version of medfnt; the default font for the
European market. When you use the Split Screen, for
example, the Do It and Abort items are in this font.

hl10 A very small font used for items in choose-variable-
values windows that are currently not selected.

hl10b A boldface version of hl10, used for selected items in
choose-variable-values windows.

hl12i A variable-width italic font. It is useful for italic items
in menus.

tr10i A very small italic font.

mouse A font that contains the glyphs used as mouse cursors
and icons.

533 ~%- Mode:Common-Lisp; Fonts:(CPTFOMT MEDFNT MEDFNTB HL12I TRi1@Gl HL1G HL1GB MOUSE); Base:10 -u#-
A sample of cptfont. abcdefghijkInnoparstuvuxyz ABCDEFGHI JKLMNOPORSTUVHRYZ 1284567896~= '~ o 82 &% ()_+{}
A sample of medfnt. abedefghi jklmnoparstuvixyz ABCDEFGHIJKLMNOPORSTUVMXYZ 123456P890-="~ lans% 2 () _+{>

R sample of medfntb. abcdefghi jklanoparstuvuxyz RABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890-="" |@au$X &u()!
_+{}

A sampla of h110. abcdafghijkimnopgrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWAYZ 1234567890-xt~ 1Q#E%RAEH()_+{}

A of W 10b. ab 1jkin vwxyz ABCDEFQHIJKLMNOPQRSTUVWXYZ 1234567B90~at~ IQ¥#$%~&*()_+{}

4 sample of hi121. abodefphljkimnopqretuvwsyz ABCDEFGHIJKIMNOPQRSTUVWXYZ 1284667 890-='~ 1@RE% &™) +{}

A sample of 101, abedefghijkimnoperstevwxys ABCDEFCHIIKLMNOPQRSTUVWXYZ 1334567890-v'~ 1@HIRE*() +{}

e Xt FO. O MJ A+ X¢ @000 11T [~} T~ T o 2 XTI RS
ABEIRHEET - X WNOwG e - K BOO XTAE ®

Font Purposes 9.3 Because different users prefer different fonts, a facility called font
purposes is provided. Wherever a font specifier is used, the program can
specify a purpose keyword instead. This keyword means, use whatever font
the user prefers for this particular purpose. The window remembers when a
purpose keyword is specified instead of a particular font so that if the user
associates a different font with that purpose, all the existing windows that use
that purpose use the newly-associated font.

9-2 Window System Reference



Table 9-2

Fonts

Each screen has its own association list that maps font purposes to font
names, but normally they are all altered in parallel. Defined purpose key-
words include the following:

Purpose Keywords for Fonts

Keyword Description

:default The font name for ordinary output. It is also called
the default font.

‘menu The font name for use in most menu items.

:menu-standout The font name for menu items that are supposed to
stand out. It is normally a bold font.

:label The font name used by default for labels.

:margin-choice The default font name for margin choice boxes.

See paragraph 9.5, Font Specifiers, for a description of functions that can be
used to manipulate font purposes.

Flavors and 9.4
Methods
:font-map new-map Initialization Option of windows
Gettable, settable. Default: w:*window-standard-font-map*
w:sheet-font-map window Macro

Initializes the w:font-map instance variable to contain the fonts given in new-
map. new-map can be one of the following:

M An array of font specifiers — This array is installed as the new internal
array of the window, and the font specifiers are replaced by fonts. A font
or the name of a font can be used in the array. (Font specifiers are
described in paragraph 9.5.)

W A list of font specifiers.
® nil — The font map is set to w:*window-standard-font-map*.
new-map has a maximum length of 26.

The current font is set to the first font in the list or array. The line height and
baseline of the window are adjusted appropriately.

The chosen font specifiers are remembered so that the :change-of-default-
font method can cause the map to be recomputed from them. This feature is
provided in case one of the specifiers is a font purpose keyword.

The :font-map method returns the array that is actually being used to repre-
sent the font map inside the window. The elements are actual font objects.
You should not alter anything about this array because the window depends
on it to function correctly. To change the font map, use the :set-font-map
method.

Window System Reference

9-3



Fonts

:current-font

The macro accesses the instance variable.

The following example of the :font-map initialization option sets up the font
map for the hl12b font.

(:font-map (list fonts:hli2b))

Method of windows
Settable. Default: The first font in the font map

w:sheet-current-font window Macro

Returns the window’s current font. :set-current-font can take either of the
following as arguments:

W A number — That element of the font map becomes the current font.
The number 0 corresponds to the first font in the font map.

B A font specifier — The font that the specifier describes is used. If that
font is not in the font map, an error is signaled. Only fonts already in the
font map can be selected.

The macro accesses the instance variable.

Font Specifiers

9.5 Different kinds of screens require different kinds of fonts. However, it
is preferable to be able to write programs that work no matter what screen
their window is created on. The problem is that if your program specifies
which fonts to use by actually naming specific fonts, then the program works
only if the window that you are using is on the same kind of screen as that for
which the fonts you are using were designed.

To solve this problem, a program does not have to specify the actual font to
be used. Instead, it specifies a symbol that stands for a collection of fonts. All
of these fonts are the same except that they work on different kinds of
screens. The symbol that you use is the name of the member of the collection

.that works on a black-and-white screen. In other words, when you want to

specify a font, always use the name of a black-and-white font rather than a
font itself. Every screen knows how to understand these symbols and how to
find an appropriate font to use. This symbol is called a font specifier because
it describes a font rather than actually naming a font.

For example, if you want to use cptfont, you would specify it as the symbol
fonts:cptfont, which for a black-and-white screen is also the name of the
font. For use with the IMAGEN printer, the symbol fonts:cptfont is inter-
preted as imagen-fonts:cmasc10 (a font specific to the IMAGEN printer). If
you added a frobboz brand color monitor to the system, you could create a
font designed to work with that particular monitor. Assume you named this
font color-cptfont. Then you could add color-cptfont to the property list of
the fonts:cptfont symbol by executing the following form:

(setf (get “fonts:cptfont) fonts:color-cptfont)

Thus, whenever you output text to the frobboz-brand monitor, text that
would be in cptfont on the default monitor would be displayed in the color-
cptfont instead.

A font object can be supplied as a font specifier. This does not mean to use
the font as specified; it means to use the font's name as a font specifier.

9-4

Window System Reference



Fonts

The functions that understand font specifiers have some intelligence to make
life easier for you. If you enter the name of a font that is not loaded into the
Lisp environment, an attempt is made to load it from the file server, using the
name of the font as the name of the file, leaving the version and type
unspecified, and using the load function. The pathname used is
SYS:FONTS;fontname. XLD.

:parse-font-specifier font-specifiér Method of w:screen

Parses a font specifier in the proper way for this window, according to the
screen the window is on. The value returned is a font object. font-specifier
can be any of the things previously discussed in Table 9-1,Table 9-2, and the
beginning of this paragraph.

:parse-font-name font-specifier Method of w:screen

Parses a font specifier in the proper way for this window, according to the
screen the window is on. The value returned is a font name: a symbol that,
when evaluated, produces a font.

w:font-evaluate font-name &optional (screen w:main-screen) Function

Returns the font specified by font-name. font-name can be a font specifier or
a font purpose keyword. The optional screen argument is needed only where
font-name is a font purpose keyword. In this case, screen is either a sheet or
screen object used to determine the screen for which the font purpose is
evaluated. font-name is evaluated repeatedly until the result is not a symbol,
is an unbound symbol, or is nil.

:change-of-default-font old-font new-font Method of windows

Informs the window that the meaning of some standard font-name symbols
has changed. If the window uses any of them, it may need to recompute the
parameter that must change when a font changes. For example, if the
changed font is used in the label, the window’s inside size may be changed; if
it is used in the window's font map, the line height may be changed. Either
situation may cause the number of lines to change, and this may require
adjustment of other data. This adjustment can be performed by an :after
method on this method.

In addition, the method must be passed along to all inferiors and potential
inferiors.

w:set-standard-font font-purpose font-specifier Function
w:set-screen-standard-font screen font-purpose font-specifier Function

Arguments

Sets the standard font. w:set-standard-font sets the standard font on all
screens. All windows on the screen that were set up to use the standard font
for this purpose switch to using the newly specified font. w:set-screen-
standard-font sets the standard font only on the screen specified by screen,
rather than on all screens.

font-purpose — The purpose of the font. The font-purpose keywords are
:default, :menu, :menu-standout, :label, and :margin-choice, which
are described in Table 9-2.

font-specifier — The font that is to be the standard font.

Window System Reference



Fonts

w:get-standard-font font-purpose &optional (the-screen w:default-screen) Function

Returns the font object assigned for this font-purpose. font-purpose is a key-
word, one of those described in Table 9-2, that indicates the kind of use.
the-screen is the screen associated with this font purpose.

w:make-font-purpose font-specifier font-purpose Function

Adds or alters the font-purpose to be associated with a particular font (font-
specifier). This function affects all the screens.

For example, consider the following code, which defines the font purpose
:flashy to be the 43vxms font, a gigantic gothic font.

(w:make-font-purpose fonts:43vxms :flashy)

Any reference to the :flashy font purpose refers to the font 43vxms. For
example, the following form

(defvar my-window)
(progn
(setq my-window
(make-instance ‘w:window :font-map ‘(:flashy) :expose-p t))
(send my-window :string-out “A flashy window. "))

creates an instance of a window with the font map set to the font purpose
:flashy. Any output displayed on this window instance is done using the font
43vxms.

Suppose you want to change the :flashy font purpose to be a different font,
say hl12bi. The following form accomplishes this change.

(w:make-font-purpose fonts:hli2bi :flashy)

This function first verifies that the :flashy font purpose already exists, and
then changes it to be a different font, hl12bi. Subsequent output to any win-
dow referring to the :flashy font purpose in its font map uses hl12bi instead
of 43vxms.

- Attributes of Fonts 9.6 Fonts, and characters in fonts, have several attributes. One attribute of
each font is its character height. This is a nonnegative fixnum used to deter-
mine how tall to make the lines in a window. Recall that each window has a
certain line height. The line height is computed by examining each font in the
font map and finding the one with the largest character height. This largest
character height is added to the vsp specified for the window, and the sum is
the line height of the window. The line height, therefore, is recomputed every
time the font map is changed or the vsp is set. This procedure ensures that
there is always enough room on any line for the largest character of the
largest font to be displayed, while still leaving the specified vertical spacing
between lines. One effect of this feature is that if you have a window that has
two fonts, one large and one small, and you produce output in only the small
font, the lines are still spaced far enough apart that characters from the large
font fit. This spacing is used because the window system cannot predict when
you might, in the middle of a line, suddenly switch to the large font.

9-6 Window System Reference



:baseline

Fonts

Another attribute of a font is its baseline. The baseline is a nonnegative fix-
num that is the number of raster lines between the top and base of each
character. The base is usually the lowest point in the character, except for
letters that descend below the baseline such as lowercase p and g. The
baseline is stored so that when you are using several different fonts side by
side, they are aligned at their bases rather than at their tops or bottoms.
When you output a character at a certain cursor position, the window system
first examines the baseline of the current font, then draws the character in a
position adjusted vertically to make the bases of all the characters line up.

y cursor -«——— character
position E i T/ height

l g i baseline
— JE— RS n__a — J—— JUUI —

— vVvsp

_Fine height
baseline

—IE::.vsp

Note that the boxes that surround the characters are analogous to the boxes
used in the font editor to create the characters.

Method of windows

w:sheet-baseline window Macro

Returns the position of the baseline of a text line—in pixels—measured from
the top of the line’s vertical extent (its cursor position).

The bases of all characters are aligned a specific number of pixels below the y
cursor position, which is the top of the line on which the characters are
printed. When a character is drawn, it is drawn below the cursor position by
an amount equal to the difference between the number returned by the
:baseline method and the baseline of the font of the character.

Another attribute of a font is the character width. The character width is the
amount by which the cursor position should be moved to the right when a
character is output to the window. Note that the character width does not
necessarily correspond to the actual width of the bits of the character
(although it usually does); it is simply defined to be the amount by which the
cursor should be moved. Width can be an attribute either of the font as a
whole or of each character separately.

Another attribute of each separate character is the left kern. Usually, its value
is 0, but it can also be a positive or negative fixnum. When the window system
draws a character at a given cursor position and the left kern is nonzero, then
the character is drawn to the left of the cursor position by the amount of the

- left kern, instead of being drawn exactly at the cursor position. In other

words, the cursor position is adjusted to the left by the amount of the left
kern of a character when that character is drawn, but only temporarily; the
left kern affects only where the single character is drawn and does not have
any cumulative effect on the cursor position.

Window System Reference



Fonts

A font that does not have separate character widths for each character and
does not have any nonzero left kerns is called a fixed-width font. The char-
acters are all the same width, so they line up in columns, as in typewritten
text. Other fonts are called variable-width because different characters have
different widths, so characters do not line up in columns. Fixed-width fonts
are typically used for programs where columnar indentation is used, while
variable-width fonts are typically used for English text, because they tend to
be easier to read and to take less space on the screen.

Each font also has attributes called the blinker width and blinker height.
These are two nonnegative fixnums that tell the window system an appro-
priate width and height to make a rectangular blinker for characters in this
font. These attributes are independent of other attributes and are used only
for making blinkers. Typically, you should readjust the blinker width for each
character in a variable-width font, making a wide blinker for wide characters
and a narrow blinker for narrow characters. If you do not want to go to this
trouble or do not necessarily know which character the blinker is on top of,
you can use the font’s blinker width as the width of your blinker. For a fixed-
width font, the font’s blinker width is always appropriate.

Each font has a char-exists table, which is an art-1b array with a value of 1
for each character that actually exists in the font and a value of 0 for other
characters. This table is not used by the character-drawing software; it is used
for information purposes. Characters that do not exist have pictures with no
bits in them, exactly like the space character. Most fonts implement most of
the printing characters in the character set, but some are missing some
characters.

Displaying Fonts

9.7 You can use one of the following to display fonts:

B The font editor commands Select and Display. See the Explorer Tools
and Utilities manual for more information about the font editor.

B The Zmacs command META-X List Fonts. When you execute this com-
mand, the Zmacs editor lists all the loaded fonts. You can then select a
font and Zmacs displays a table of the selected font and a sample font.
See the Explorer Zmacs Editor Reference manual for more information
about this command.

M The w:display-font function. This function is used by the preceding
commands to display the font.

w:display-font font &key (:window w:selected-window) Function

Arguments

:columns (:label-base 8) (:label-font fonts:cptfont)
(:sample-font fonts:cptfont) (:header-font fonts:hl12b)
‘mouse-sensitive-item-type :reset-cursor-p

Displays a table showing font compared to :sample-font on :window.

Jont — The font to be displayed.
:window — The window in which the table is displayed.

:columns — The number of columns to use for the display. This value
defaults to largest power of 2 that fits within the width of the window.

:label-base — The base to use for printing the label numbers.

:label-font — The font to use for printing the label numbers.

9-8

Window System Reference



Fonts

:sample-font — The font to print as a comparison to font.
:header-font — The font to use for printing the heading.

:mouse-sensitive-item-type — Whether the characters in the display are
mouse-sensitive. If the value for this keyword is non-nil, the user can
select a character with the mouse. This is typically useful only for the font
editor.

:reset-cursor-p — Where to place the cursor on the display. If the value for
this keyword is non-nil, the cursor is placed at 0,0 for :window. Other-
wise, the cursor is placed at the end of the table.

For example, if you execute the following code in a Lisp Listener, it clears
the display and produces a figure similar to the one shown:

(w:display-font fonts:courier)

COURIER
Bl23456?101112131415161?29212223242526278_%l 33 34 35 36 37
e-;aﬁ«-‘cnxss1zo»acvnuuaoz+;qsosz-v
eldlxlplal-]efnin|z|s|t]|z|o|ulac|a|n|ulV|T]|e|e|e|r]2|¢|<L|2|m]V
4@ v (v lalslzleal*fc]yfwl+l,1-].|s|@ft]2{3]a|S|6[7|B|9]:|:]|<¢]=]>]"
!"#SX&'()*+,—./0123456?69:;<->?
1e6 [efalslc!Iple|{Filo[nfr oL iM|{NjO|P|@[RIS]TIU|VIHIXIY|Z[L|IN]TT]-
¢|A|BIC|DIE|FIGIH|I[J|KILI{M|N|O|P|Q[R{S|T|U|VIWIXIY|Z|L{\NT]7]-
199 [ [alo|cld]elf]lgln{i{dix|1|minlofplalris|tujviuixfulz|(]I]}]"|S
‘lalbleldlelflgihi1i|i|k|limin]o|p|alr|s|t|u|v]w|x|v|z|{]|1{}[{~]|S
200
240 P|le|£ja|¥|i]S§ olalgl~|~|e[-lelxlz|3l [pn]a]-|, | |e|®|%|%]|%]|
Ple|Efs|¥|i18 olajg|{~|~|® elt|2|3] Inj9f-|.|t|e(>|%|%¥ %]
g00 |alalalalalalefc|2|e|efe|t |t )|s|Ti|p|R|d]|6)6|B|6|(x|a{o]d|Oojulv|P|n
alalalalalale|c|a|eleig|i|f|2|i{p|R|o|s{a|d|o|x|@|U|O{U|UT|Y|P|B
340 |nafalul|alaje|lc]|ale|ele|r|tjefi|a|m|{o|s|o|8|[s|+|a|b|ajail|g(P|y
alalalalalalal|c|ale|e|s|rli]i|i|ajnld|o|d|8]|o]|+|e|ujajb|0]|g|D|D
T
>

Format of Fonts

9.8 This paragraph explains the internal format in which fonts are
represented. Most users do not need to know anything about this format. You
can skip the discussion of format of fonts without loss of continuity.

Fonts are represented as arrays. The body of the array holds the bits of the
characters, and the array leader holds the attributes of the font and char-
acters as well as information about the format of the body of the array. Note
that one large array holds all the characters rather than a separate array for
each character. The format in which the bits are stored is specially designed
to maximize the speed of character drawing and to minimize the size of the
data structure. Drawing speed is maximized by minimizing the number of
words that need to be read from memory.

The font editor operates on a font by converting it into a different type of
object containing the same data. This new object is called a font descriptor.
See the files SYS:FONT-EDITOR;FNTDEF.LISP for the format of font
descriptors, and SYS:FONT-EDITOR; FNTCNV.LISP for functions to oper-
ate on them and to convert between font descriptors and fonts.

Window System Reference

9-9



Fonts

If the font contains any characters that are wider than 32 bits, the font format
works in a slightly different way. If such characters exist in a font, then the
font is considered to be wide, and a single character can be made up of
several subcharacters to be drawn side by side. A wide font stores sub-
characters (instead of characters as such) and has a table indicating which
subcharacters belong to each character of the character set. The following
paragraphs discuss only narrow fonts in which there is no need to distinguish
characters from subcharacters because each character is made of a single
subcharacter.

Each character in a font can be thought of as having an array of bits stored
for it. The dimensions of this array are called the raster width and raster
height. The raster width and raster height are the same for every character of
a font; they are properties of the font as a whole, not of each character
separately. Consecutive rows are stored in the array; the number of rows per
character is the raster height, and the number of bits per row is the raster
width. An integral number of rows is stored in each word of the array. If
there are any bits left over, those bits are unused. Thus, no row is ever split
over a word boundary. When there are more rows than will fit into a word,
the next word is used. Remaining bits to the left of the last word are ignored,
and the next row is stored right-adjusted in the next word, and so on. An
integral number of words is used for each character.

For example, consider a font in which the widest character is seven bits wide
and the tallest character is six bits tall. The raster width of the font is seven
and the raster height is six. Each row of a character is seven bits, so four of
them fit into a 32-bit word, with four bits wasted, as shown in the following
figure. ‘

bit position 31 bit position 0

first word

\ 7\

AN

432176543217654321765432‘1

7/ \

/\. /

76 5 4321

A4
unused

\V
row 4

\"4
row 3

A4
row 1

r(::vz /

second word column index

21

765 4321765143
/\ -

\Y4 "4 V
unused row 6 row 5

\ /\

Values within each used bit position are either 0 or 1,
depending on the character.

2288065
The remaining two rows require a second word, the rest of which are unused
because the number of words per character must be an integer. Thus, this
font has four rows per word and two words per character.
9-10 Window System Reference



Fonts

To find the bits for character 3 of the font, you multiply the character num-
ber—3—by the number of words per character—2—and find that the bits for
character 3 start in word 6. The rightmost seven bits of word 6 are the first
row of the character, the next seven bits are the second row, and so on. The
rightmost seven bits of the seventh word are the fifth row, and the next seven
bits of the seventh word are the sixth and last row.

Note the focus of this discussion is on words of the array. The character-
drawing microcode does not actually care what type the array is; it only looks
at machine words as a whole, unlike most of the array referencing in the
Explorer. In an array that holds Lisp objects, such as an art-q array, the
leftmost seven bits are not under control of the user, so these kinds of arrays
are not suitable for fonts. In general, you need to be able to control the
contents of every bit in the array, so fonts are usually art-1b arrays.

If any characters in the font are wider than 32 bits, then even a single row of
the font does not fit into a word. Such characters are divided into sub-
characters no more than 32 bits wide, and the character is drawn by drawing
all of its subcharacters, one by one, side by side. The character-drawing
microcode, which can handle only ordinary narrow characters, is invoked
once for each subcharacter to draw a wide character. To make this process
work, the wide font stores subcharacters in the same way a narrow font stores
its characters.

In addition, the wide font has a font indexing table, which gives the first
subcharacter number for each character code. In a narrow font, the font
indexing table is nil. The character W is drawn by finding the value at index
87 (the character code for W) in the font indexing table, and the value at
index 88. Suppose that these are 171 (for W) and 173 (for X). Then W is
made up of two subcharacters: 171 and 172. Either of these subcharacters’
bits can be found in the same way that the bits for character code 171 or 172
are found in a narrow font.

The array leader of a font is a structure defined by defstruct. The following
functions access the elements of a font leader array.
w:font-name font Function

Returns the name of font.

w:font-baseline font Function
Returns the baseline of font. The value returned is a nonnegative fixnum.

w:font-blinker-width font Function

w:font-blinker-height font Function
Returns the blinker width or height, respectively, of font.

w:font-char-height font Function
Returns the character height of font. The value returned is a nonnegative
fixnum.

w:font-char-width font ) Function

Returns the character width of fonmt, which is typically the width of a
lowercase m. The value returned is a nonnegative fixnum. If w:font-char-

Window System Reference 9-11



Fonts

width-table of this font is non-nil, then this element is ignored except to
compute the distance between horizontal tab stops.

w:font-char-width-table font Function

Returns an array that contains the character width of each character of font.
If this value is nil, then all the characters of the font have the same width
(the width returned by w:font-char-width). Otherwise, this function returns
an art-q array of nonnegative fixnums, one for each logical character of the
font, giving the character width for that character. Note that the width of a
character is actually the number of pixels that the cursor moves when the
character is drawn, rather than the width of the actual character glyph.

w:font-left-kern-table font Function

Returns an array containing the kern of each character in font. If this value is
nil, then all characters of the font have 0 left kern. Otherwise, this function
returns an array of fixnums, one for each logical character of the font, giving
the left kKern for that character. A character has a positive left kern when any
pixel of the character glyph extends outside the left edge of the character
box. (The visual representation of width limits used in the font editor.) A
character has a left negative kern when both of the following conditions are
met:

B The leftmost pixel of the glyph starts to the right of the leftmost column
of the character box. That is, the leftmost column(s) of the character box
are empty.

W The columnar distance from the rightmost pixel to the left edge of the
character box is greater than the raster width but the glyph width is less
than or equal to the raster width. In such a case, the character can still be
stored in the allocated raster width. A negative left kern value tells the
routines drawing the character to displace the output to the right, rather
than to the left.

The left kern value is the number of pixels that the leftmost pixel of the glyph
is displaced from the leftmost column of the character box. If the glyph width
is ever wider than the raster width (which can occur when you are creating a
font), the raster width is increased.

9-12 Window System Reference



Fonts

For example, consider the following characters:

left kern = 0 ] left kern = 2 [ left kern = -1
raster width = 10 raster width = 10 raster “:ldth =10
glyph width = 7 glyph width = 10 glyph width =10

the leftmost column distance > raster width
left kern = 0 of the glyph is 2 left 11 >10 AND glyph

of the leftmost width = raster width
column of the box, AND the leftmost columrl
so left kern = 2 of the glyph is 1 right

of the leftmost

column of the box,

so left kern = -1

A character that has left kerning is drawn, not at the current x position, but
at the x position minus the kern value. After the character is drawn, the
cursor moves to a new x position equal to the original x position plus the
character width. The character width is taken from either the font char-width
table, or, if the table is nil, from w:font-char-width. For example, consider
the following characters shown drawn on the video display, along with their
character boxes for reference:

.}

Consider the characters as they would appear on the screen, with no extra

reference marks:
. I.-'-.I FI.-'-.I - I.-"-.lnl

w:font-chars-exist-table font Function

Returns an art-1b array with one element for each logical character of font.
The value of the element is 1 if the character exists and 0 if the character
does not exist.

X positions

N

Window System Reference 9-13



Fonts

w:font-raster-height font Function
w:font-raster-width font Function

Returns the raster height or width, respectively, of fon¢t. The returned value is
a positive fixnum.

w:font-rasters-per-word font Function

Returns the number of rows of a character stored in each word of Jont. The
returned value is a positive fixnum.

w:font-words-per-char font Function

Returns the number of words stored for each character or subcharacter in
font. The returned value is a positive fixnum.

w:font-indexing-table fon: Function

Returns an array that is the indexing table of font. If this value is nil, then no
characters of this font are wider than 32 bits. Otherwise, this is the font
indexing table of font, an array indexed by character code that contains the
number of the first subcharacter for that character code. An extra array
element, referenced by an index number that is one greater than the largest
character code, indicates where the subcharacters of the largest character
code stop.

9-14

Window System Reference



BLINKERS

Types of Blinkers

w:blinker

10.1 Like windows, blinkers are instances of flavors, but they are a differ-
ent kind of flavor and support a different set of standard operations. The
window system provides several kinds of blinkers, which differ in the way
they appear on the screen.

Blinkers add visual cues to a window, but while programs are examining and
altering the contents of a window, the blinkers all disappear. Before char-
acters are output or graphics are drawn, the blinker is turned off; it comes
back on later. Turning a blinker off is called opening the blinker. The
w:prepare-sheet macro does this. You can see this happening with the mouse
blinker when you move the mouse on the Explorer display.

To make this work, blinkers are drawn with an ALU operation that combines
the blinker image’s pixels with the screen’s pixels in a reversible manner.
That is, drawing the blinker image again restores the screen to its original
appearance. On a monochrome system, this effect has been traditionally
achieved by using the w:alu-xor ALU argument to draw the blinker the first
time and w:alu-xor again the second time to restore the screen. On a color
system, an equivalent effect can be achieved by first using w:alu-add for the
first draw operation and w:alu-sub for the second draw operation. If w:alu-
add and w:alu-sub are used on a monochrome system, the effect is the same
as if w:alu-xor had been used both times. Thus, the most general way to
draw blinkers is with w:alu-add and w:alu-sub because they exhibit the
desired effect on both monochrome and color systems. (Table 12-2, ALU
Values for Graphic Methods, lists several ALU values. For information on
color ALUs, refer to paragraph 19.6, Color ALU Functions.)

Blinkers can be of many types and sizes. Some blinkers have geometric
shapes, such as an arrow (mouse blinker), rectangle (cursor-following
blinker), hollow rectangle (mouse blinker when positioned over a mouse-
sensitive item), or any character of any font. The kind of blinker that you see
most often is a blinking rectangle the same size as the characters you are
typing. This blinker shows you the cursor position on the window. Another
blinker often seen is the corresponding opening parenthesis when you are
entering Lisp code while in the Lisp mode in the Zmacs editor. Blinkers do
not always blink. For example, the mouse arrow does not blink at all. Mouse
blinkers are discussed in detail in paragraph 11.7.

A window can have any number of blinkers on it at one time. They need not
follow the cursor (some do and some do not). The ones that do are called
following blinkers; the others have their position set by explicit operations.

In a color environment, you can set the color of the blinker as explained in
paragraph 19.4, Initialization Options and Methods Used With Color
Windows.

Flavor
Required methods: :blink, :size

The basic flavor for all blinkers.

Window System Reference

10-1



Blinkers

w:make-blinker window &optional (flavor w:rectangular-blinker) Function

Arguments:

&rest options

Creates and returns a new blinker.

window — The window that the new blinker is to be associated with.

Jlavor — The flavor the blinker will be given. The default is wirectangular-
blinker. Other useful flavors of blinker are documented later in this
section.

options — Initialization options to the blinker flavor. w:make-blinker accepts
any initialization keywords and values that are accepted by make-
instance. All blinkers include the w:blinker flavor, so initialization
options taken by w:blinker work for any flavor of blinker. Other initiali-
zation options work only for particular flavors.

w:with-blinker-ready do-not-open-p body Macro

Arguments:

Used in writing methods of blinkers that change the size, position, shape, or
anything else that affects how the blinker appears. This macro disables inter-
rupts so that if the blinker is opened (that is, temporarily turned off), it
remains open for the duration of the execution of body. Once the blinker is
opened, its instance variables can be set.

do-not-open-p — Determines whether the blinker should be opened first or
not. If do-not-open-p is nil, the blinker is actually opened before body is
executed. Specifying a non-nil value for do-not-open-p causes the blinker
to remain on the screen in case the caller wishes to avoid updating the
blinker if no change is needed. If a change is needed, body can call the
w:open-blinker function to open the blinker.

body — Lisp code to be executed. w:with-blinker-ready executes body after
preparing to remove the blinker self from the screen. This macro
executes within a blinker method; therefore, self is the blinker instance.

Visibility and
Deselected Visibility
of Blinkers

10.2 Blinkers can have two modes: visible and deselected visible. The
:visibility and :deselected-visibility initialization options describe the blink-
er’s current visible attributes.

The blinker’s visibility is controlled by its visibility and deselected visibility
attributes combined with whether or not the window is selected. Usually, only
the blinkers of the selected window actually blink, which shows where your
keyboard input goes on the window.

While a blinker’s current visibility is frequently changed by the program using
the blinker, the deselected visibility is usually fixed and indicates something
about how the blinker is generally used. When the window is deexposed,
each blinker’s visibility is initialized from its deselected visibility. When the
window is selected, visibilities of :on or :off are changed to :blink. Blinkers
whose visibility is t, nil, or :blink are not affected. These attributes are
discussed with the :visibility and :deselected-visibility initialization options.

10-2

Window System Reference



Blinkers
ivisibility visibility Initialization Option of w:blinker
Gettable, settable. Default: :blink
Initializes the w:visibility instance variable to the current visibility of the
blinker, which can be one of the following:

B :blink — The blinker blinks on and off periodically. The rate at which it
blinks is called the half-period and is a fixnum giving the number of 60ths
of a second between when the blinker turns on and when it turns off.

W :on or t — The blinker is visible but not blinking; it simply stays on.

W :off or nil — The blinker is invisible. When a blinker is invisible, it can-
not be seen but is still in the window.

:deselected-visibility visibility Initialization Option of w:blinker
Gettable, settable. Default: :on
Initializes the w:deselected-visibility instance variable to the blinker’s
deselected visibility, which can be one of the following:

B :on — The blinker should be solid when deselected, blinking when
selected. This is the most commonly used value and is the default for the
blinkers that show the cursor position in a window.

M :off — The blinker should be off (that is, invisible) when deselected, and
blinking when selected. When a blinker is invisible, it cannot be seen, but
is still in the window.

W :blink — The blinker should be blinking whether selected or not.
B t — The blinker should be solid whether selected or not.
B nil — The blinker should be off whether selected or not.

:blinker-deselected-visibility visibility Initialization Option of windows
Default: :on

Initializes the visibility of the window’s cursor-following blinker. visibility
specifies the blinker’s visibility.

:half-period half-period Initialization Option of w:blinker
Gettable, settable. Default: 15.

Initializes the interval, in 60ths of a second between successive blinks of a
blinker. w:half-period is specified in 60ths of a second. This instance vari-
able is relevant only if the visibility is :blink or if the deselected visibility is

:on or :off.
w:time-until-blink Instance Variable of w:blinker
Default: 0.

The time interval in 60ths of a second until the next time this blinker should
blink. For a blinking blinker, this instance variable controls the next turning
on or off.

w:time-until-blink is set to the value of the w:half-period instance variable
and is decremented by 1 every 60th of a second. When w:time-until-blink
reaches 0, the blinker blinks and w:time-until-blink is reset to the value of
w:half-period.

Window System Reference 10-3



Blinkers

A nonblinking blinker does not necessarily change its state at the specified
time; the blinker is checked at that time and displayed if the blinker is sup-
posed to be visible but is not. This procedure is how blinkers reappear after
being opened so that output can be done.

:defer-reappearance Method of w:blinker

Is invoked whenever a blinker is opened to prepare a sheet if the visibility is
not set to :blink and if the blinker is scheduled to reappear in less than
25/60ths of a second. By default, :defer-reappearance is defined to delay
the blinker’s reappearance until one-half second after the present.

w:open-blinker blinker Function

Clears blinker from the screen if it is currently drawn, and then redraws it if it
is supposed to be visible. Blinkers that are supposed to be visible but are not
on the screen are occasionally put back on the screen by the scheduler. A
blinker, then, can be relied on to stay open only as long as interrupts are
disabled. Thus, the caller must turn off interrupts of the blinker should stay
open during the execution of any specific piece of code.

Blinker Position

10.3 Every blinker is associated with a particular window. The blinker is
displayed on this window so that its image can appear only within the window.
When characters are output or graphics are drawn on a window, only the
blinkers of that window and ‘its ancestors are opened (because blinkers of
other windows cannot occupy screen space that might overlap this output or
graphics). The mouse blinker is free to move all over the screen it is on; it is
therefore associated with the screen itself rather than a window and must be
opened whenever anything is drawn on any window on the screen.

A blinker has a position, which gives the location of the blinker’s upper left
corner relative to the blinker’s window. The blinker’s lower right corner is
controlled by the blinker’s size together with its position. The blinker position
must remain within the window’s area. This restriction does not force the
blinker’s lower right corner to be within the window’s area, but if it is not, the
blinker’s image is clipped, and the part outside the window does not appear.

X,y position—the upper left corner
of the blinker

v
R

width

w:sheet-following-blinker window Function

Returns either a blinker that follows window’s cursor, or nil if window has no
such blinker. If there is more than one blinker, this function returns the first
one it finds. (Although a window can have more than one cursor-following
blinker, having more than one would be confusing.)

10-4

Window System Reference



Blinkers

w:turn-off-sheet-blinkers window Function
w:turn-on-sheet-blinkers window Function

Sets the visibility of all blinkers on window to :off or :on, respectively. Blink-
ers in the window’s inferior windows are not affected.

w:turn-off-all-sheets-blinkers window Function
Turns off all the blinkers of window, including inferiors.

w:get-visibility-of-all-sheets-blinkers window Function
w:set-visibility-of-all-sheets-blinkers window blinker-list-values Function

Returns or sets the visibility of all window’s blinkers, including inferiors.
blinker-list-values is a list of values to be set. Each value in blinker-list-values
corresponds to a blinker in window.

w:open-all-sheets-blinkers window Function

Executes the w:open-blinkers function (described earlier in this section) for
all the blinkers of window, including inferiors. w:open-all-sheets-blinkers
should be done called within a without-interrupts macro to ensure that all
blinkers are turned off when an operation completes execution.

:sheet new-window Initialization Option of w:blinker
Gettable, settable. Default: none

Sets the window or screen on which this blinker appears.

The :set-sheet method moves the blinker to another window specified by
new-window. If the old window is an ancestor or descendant of new-window,
:set-sheet adjusts the (relative) position of the blinker so that it does not
appear to move. Otherwise, :set-sheet moves the blinker to the point (0,0) in
the new window.

:blinker-p t-or-nil Initialization Option of windows
Default: t

Initializes the w:blinker-list instance variable to contain a cursor-following
blinker for this window. t-or-nil specifies the blinker’s visibility.

In effect, :blinker-p creates one cursor-following blinker for a window; any
other cursor-following blinkers you want for a window can be created
manually in an :init method or elsewhere.

:blinker-flavor flavor-name Initialization Option of windows
Default: wirectangular-blinker

Specifies a flavor for a cursor-following blinker.

1X-pos x Initialization Option of w:blinker
Gettable. Default: 0.

1y-pos y Initialization Option of w:blinker
Gettable. Default: 0.

Sets the initial x or y position, respectively, of the blinker within the window.
These options are irrelevant for blinkers that follow the cursor (the values
would be nil). The initial position for nonfollowing blinkers defaults to the
current cursor position, which defaults to (0,0).

Window System Reference 10-5



Blinkers

:read-cursorpos Method of w:blinker

Returns two values—the x and y components of the position of the blinker
that is inside the window.

tset-cursorpos x y Method of w:blinker

Sets the position of the blinker, relative to the inside of the window. If the
blinker has been a cursor-following blinker, then it ceases to be one, and
from this point on moves only when :set-cursorpos is invoked. x and y
specify the x and y position within the window where the blinker position is to
be set.

After using the :set-cursorpos method, you should call the :set-follow-p
method and specify a non-nil value for its argument to reset the blinker to
follow the cursor. The preferred way to change the position of the following
blinker of a window is to call the :set-cursorpos method for the window, not
for the blinker.

:follow-p t-or-nil Initialization Option of w:blinker

:phase

:blink

Gettable, settable. Default: nil

Sets whether the blinker follows the cursor (t) or not (nil).The default is nil,
so the blinker’s position is set explicitly. If you specify nil for the argument to
the :set-follow-p method, the blinker stops following the cursor and stays
where it is until explicitly moved. Otherwise, the blinker starts following the
cursor.

Method of w:blinker

Returns the current phase of the blinker: t when the blinker is present on the
screen, or nil when the blinker is not on the screen. The w:phase and
w:time-until-blink instance variables determine if a blinker blinks.

Method of w:blinker

Draws or erases the blinker. Because the blinker is always drawn using the
w:alu-xor, drawing it and erasing it are usually exactly the same. The :blink
method can examine the w:phase instance variable to determine the phase of
a blinker, but usually there is no need to know. The :blink method can
assume that the blinker’s sheet is prepared for output. :blink, which is a
required method of w:blinker, should always be called with interrupts
disabled.

List of Blinkers

:blinker-list

10.4 The :blinker-list method and w:sheet-blinker-list macro act on the
blinkers listed in w:blinker-list.

Method of windows and screens

w:sheet-blinker-list window Macro

The list of all blinkers associated with this window or screen. The macro
accesses the instance variable for window.

10-6

Window System Reference



Blinkers

Blinker Size 10.5

:size Method of w:blinker

Returns two values indicating the width and height of the blinker area meas-
ured in pixels. Each flavor of blinker implements this method differently.
:size is a required method for w:blinker.

:set-size new-width new-height : Method of w:blinker

Sets the size of the blinker’s displayed pattern. Not all blinker flavors actually
do anything, but they all allow this method. For example, character blinker
size cannot change because there is no mechanism for automatically scaling
fonts. The arguments specify the new width and height of the blinker,
measured in pixels.

:set-size-and-cursorpos new-width new-height x y Method of w:blinker

Sets the width and height of the blinker, in pixels as well as its position, all in
one operation. This method prevents the blinker from appearing on the
screen with its old size and new position, or vice versa.

Arguments:  new-width, new-height — The blinker width and height, measured in pixels.

x, y — The window coordinates, relative to the inside of the window, where
the blinker is to appear.

Rectangular and 10.6 In addition to blinkers that follow the cursor, you can use rectangular,

Character Blinkers hollow rectangular, and character blinkers. The window system has flavors
that use w:blinker to draw special blinkers on the window. You can specify
the size of some of these blinkers. Some, especially those drawn using char-
acter fonts, have a fixed size.

. rectangular-blinker I_ ibeam-blinker

D hollow-rectangular-blinker %character-blinker

D box-blinker 4 reverse-character-blinker

The window system uses other flavors for the mouse blinker; these are
discussed in paragraph 11.7, Mouse Blinkers.

w:rectangular-blinker Flavor

Displays a solid rectangular blinker; this is the kind of blinker you see in Lisp
Listeners and editor windows. You can use the :set-size method to control
the width and height of the rectangle.

:width n-pixels Initialization Option of w:rectangular-blinker
Default: the font-blinker-width of the first font in the font map of the
associated window

theight n-pixels Initialization Option of w:rectangular-blinker
Default: the font-blinker-height of the first font in the font map of the
associated window

Sets the initial width or height, respectively, of the blinker, measured in
pixels.

Window System Reference . ‘ 10-7



Blinkers

:set-size new-width new-height Method of w:rectangular-blinker
Sets the width and height of the blinker, measured in pixels.
:set-size-and-cursorpos new-width new-height x y Method of

w:rectangular-blinker

Sets the width and height of the blinker, measured in pixels, and its x,y

position.
w:hollow-rectangular-blinker Flavor
w:box-blinker Flavor

Displays a hollow rectangle. w:hollow-rectangular-blinker draws a box one
pixel thick; w:box-blinker draws a box two pixels thick. These flavors
include w:rectangular-blinker. The Zmacs editor uses such blinkers of
flavor w:hollow-rectangular-blinker to show you which character the mouse
is pointing at.

w:stay-inside-blinker-mixin Flavor
Required flavor: w:rectangular-blinker

Keeps the corners of a rectangular blinker, or any modified version thereof,
inside the blinker’s window. Normally, a blinker flavor only makes sure that a
blinker’s position (its upper left corner) is within the window. w:stay-inside-
blinker-mixin positions a blinker as close to the requested place as possible
while keeping the entire blinker within the window.

w:ibeam-blinker Flavor

Displays a blinker that looks like an I beam (an uppercase I). Its height can
be controlled using the :height initialization option. The vertical line is two
pixels wide, and the two horizontal lines are nine pixels wide. An example of
this kind of blinker is shown on the previous page.

:height n-pixels Initialization Option of w:ibeam-blinker
Default: The line height of the window

Sets the initial height of the blinker. n-pixels specifies the blinker height,
measured in pixels.

w:character-blinker Flavor

Draws a blinker that is a character from a font. You can control which font
and which character within the font that w:character-blinker uses by supply-
ing initialization options.

For example, the following code creates a blinker that is an A in the 43vxms
font at the current cursor position. The blinker remains at that position until
explicitly moved.

(w:make-blinker w:selected-window
‘w:character-blinker
:font fonts:43vxms
:character #\A)

10-8

Window System Reference



:font font

Blinkers

Initialization Option of w:character-blinker

Sets the font that w:character-blinker uses to draw the blinker. This font
can be anything acceptable to the :parse-font-specifier method of the win-
dow’s screen. You must provide the value for w:character-blinker. font
specifies the font for w:character-blinker to use.

:character new-character Initialization Option of w:character-blinker

Gettable. Default: None; you must specify a character

:set-character new-character &optional new-font Method of w:character-blinker

Sets the value for w:character-blinker, which you must provide (no default
is provided). new-character is the character used to draw the blinker; new-
font is the font used. new-font can be anything acceptable to the :parse-font-
specifier method of the window’s screen. If new-font is not specified, the
font remains unchanged.

NOTE: For mouse blinkers, use the w:mouse-set-blinker-definition func-
tion instead of :set-character.

w:reverse-character-blinker Flavor

Creates a blinker as a solid rectangle with a character removed from it. That
is, a solid rectangle and the character are both drawn and XORed with each
other.

All the methods and initialization options of w:character-blinker are
provided, though this flavor does not depend on w:character-blinker. This
flavor includes w:bitblt-blinker.

The position of the blinker is at the upper left corner of the rectangle. The
initialization options :character-x-offset and :character-y-offset specify the
position of the upper left corner of the character with respect to the
rectangle.

:character-x-offset n-pixels Initialization Option of w:reverse-character-blinker

Gettable.

:character-y-offset n-pixels Initialization Option of w:reverse-character-blinker

Gettable.

Specifies the x-offset or y-offset, respectively, of the character’s upper left
corner from the blinker’s upper left corner. n-pixels specifies the amount of
offset, measured in pixels.

For example, the following code creates a blinker that is an E in the bigfnt
font at the current cursor position. The blinker remains at that position until
explicitly moved.

(w:make-blinker w:selected-window ‘w:reverse-character-blinker
:font fonts:bigfnt
:character #\E)

Window System Reference

10-9



Blinkers

w:bitblt-blinker Flavor

Displays a blinker by copying a two-dimensional array of pixels onto the
screen. The array’s size must be at least the size of the blinker. This flavor
also has the ability to be the mouse blinker. You must specify an array, either
with the :array initialization option or with both the :height and :width
initialization options.

NOTE: Do not use w:bitblt-blinker to define the mouse blinker. The mouse
blinker has a flavor with its own associated initialization options, methods,
and instance variables.

iarray array Initialization Option of w:bitblt-blinker
Gettable, settable.Default: none

Specifies the array of pixels to be used to display the blinker. You should use
wimake-sheet-bit-array to create the array. If you do not specify this initiali-
zation option, you must specify both the :height and :width initialization
options, which are used to create an empty array of that size. array is the
array of pixels used to display this blinker.,

:height n-pixels Initialization Option of w:bitblt-blinker
:width n-pixels Initialization Option of w:bitblt-blinker

Sets the initial height or width of the blinker, respectively, in pixels. n-pixels
is the number of pixels to which the dimension is set. If you do not specify
the :array initialization option, you must specify both the :height and :width
initialization options.

:size Method of w:bitblt-blinker

Returns the width and height of the blinker. If these values are less than the
size of the blinker’s array, then only part of the array is used, starting at the
upper left corner.

:set-size width height Method of w:bitblt-blinker

Sets the size of the blinker, making a new array if the old one is not as big as
the new size. The arguments specify the new dimensions of the blinker,
measured in pixels.

w:magnifying-blinker Flavor

Provides a kind of bitblt blinker that automatically displays a magnified
version of some of the dots underneath it. A small square of screen pixels is
magnified by replacing each pixel with an n by n square of identical pixels,
where n is the blinker’s magnification factor. w:magnifying-blinker includes
the w:bitblt-blinker flavor, so all initialization options and methods of
w:magnifying-blinker can use w:bitblt-blinker.

The x-offset and y-offset, which the blinker has by virtue of w:mouse-
blinker-mixin, help determine the center of magnification. The position of
the magnifying blinker is, as always, the position of its upper left corner.

10-10 Window System Reference



Blinkers

However, the cursor position plus the offsets give the point that the blinker is
indicating (this is the place where the mouse position would be if this blinker
were the mouse blinker). The magnification does not change that point on
the window.

:magnification factor Initialization Option of w:magnifying-blinker

Gettable, settable. Default: 3.

Specifies the magnification factor of the magnifying blinker. The height,
width, and offsets of the blinker should be multiples of the magnification.
factor is the degree of magnification.

For example, the following code creates a blinker at the current cursor posi-
tion that magnifies whatever character is under it (in the following figure,
an n). The blinker remains at that position until explicitly moved.

(w:make-blinker w:selected-window
‘w:magnifying-blinker
:height 82 :width 16
:magnification 4)

(u:nake—mr w:selected-window

Window System Reference

10-11






THE MOUSE

Using the Mouse

11.1 The mouse is an input device used by programs and windows. With the
mouse, a user can move the cursor position and indicate choices from a
menu or actions to be performed.

At any given time, the mouse is considered to be indicating a certain position
on the screen, called the mouse cursor position. The mouse cursor is a con-
ceptual entity that is regarded as what moves inside the machine when the
user moves the mouse.

The mouse cursor position is indicated on the screen by a blinker called the
mouse blinker, an actual Lisp object of the sort described in paragraph 10.1,
Types of Blinkers. Different blinkers can be the mouse blinker at different
times because each window can decide what to use as the mouse blinker
when that window has control of the mouse.

There can be more than one screen, but the mouse cursor position is limited
to one screen, called the mouse sheet. (It does not have to be a screen, but it
normally is.) Mouse cursor positions are usually represented relative to the
outside of the mouse sheet, though in operations on windows they are some-
times represented relative to the particular window.

The mouse cursor usually moves only if the user moves the mouse. The
program, however, can move the mouse cursor and change the logical posi-
tion of the mouse at any time. This is called warping the mouse. For example,
double click left in the editor warps the mouse to where the editor cursor is
currently located. Because there is no fixed association between positions of
the physical mouse on the pad and screen positions, warping the mouse does
not result in any inconsistency.

Tracking the mouse means examining the hardware mouse interface, noting
how the mouse is moving, and adjusting the mouse cursor position and the
mouse blinker accordingly. Mouse tracking is performed by either microcode
(when the mouse is within a window) or by a process called the mouse
process (when the mouse moves between windows). The mouse process also
keeps track of which window has control of the mouse at any time. For
example, when the mouse enters an editor window, the editor window
becomes the owner, and to indicate this, the blinker becomes a northeast
arrow. These changes are performed by the mouse process.

In general, the mouse process decides how to handle the mouse based on the
flavor of the window that owns the mouse. Some flavors handle the mouse
themselves, running in the mouse process, which enables them to put boxes
(and the like) around things. Boxing an item usually indicates that clicking a
button would affect the boxed item or perform some function determined by
the boxed item. The effect of clicking the mouse buttons is also determined
by the flavor of the window owning the mouse. The editor, the Inspector,
menus, and other system facilities do this.

Window System Reference

11-1



The Mouse

The functions, variables, and flavors described in this section allow you to use
the mouse to do some simple things. This section also explains how to use
advanced mouse behavior in your programs. The Zmacs editor uses the vari-
ous functions, flavors, initialization options, and methods described in this
section. Alternatively, you can invoke the built-in choice facilities, such as
menus and multiple-choice windows; these high-level facilities are described
in Section 14, Choice Facilities.

This section does not discuss how to create mouse-sensitive items. This is
described in paragraph 14.5, Mouse-Sensitive Items.

Mouse Variables 11.2 The following variables and functions affect the position of the mouse
and Functions on a window.
sys:mouse-x Variable
sys:mouse-y Variable

The x or y position of the mouse measured, in pixels, from the outside upper
left corner of the mouse sheet. The process handling the mouse—normally
the mouse process—should maintain these variables. Note that the w:mouse-
input function does not automatically maintain the sys:mouse-x and
sysimouse-y variables. You must add the code to maintain these variables if
you want to track the cumulative mouse position.

w:mouse-sheet Variable
The mouse sheet, the one on which the mouse cursor moves.

w:mouse-set-sheet window Function

Sets w:mouse-sheet to window. Only inferiors of the mouse sheet (to any
number of levels) can own the mouse.

wimouse-set-sheet-then-call window function &rest args Function

Changes the value of the w:mouse-sheet variable to window, applies function
to the variable, then resets the value of the w:mouse-sheet variable to the
value it had before the w:mouse-set-sheet-then-call function was called.
args are the argument(s) to be used by function.

w:mouse-speed Variable
Default: 0.

The speed the mouse has been moving recently, in units approximating
inches per second.

wimouz 2-warp x y &optional (relative nil) Function

Warps the mouse to the positions specified by the x and y arguments. The x
and y arguments are the respective outside x and y coordinates within the
mouse sheet. If relative is t, w:mouse-warp moves the mouse relative to its
current position. If relative is nil, w:mouse-warp moves the mouse to the
position x,y.

11-2

Window System Reference



The Mouse

w:mouse-fast-motion-speed Variable
Default: 30. units approximating inches per second

w:mouse-fast-motion-cross-size Variable
Default: 40. pixels for each arm of the cross

w:mouse-fast-motion-cross-time Variable
Default: 2000. iterations of a do loop

w:mouse-fast-motion-bitmap-time Variable

Default: 16000. iterations of a do loop

Variables that determine the behavior of the mouse when the user moves the
mouse very quickly. Moving faster than w:mouse-fast-motion-speed causes
the cursor-following blinker to change to either a cross that is w:mouse-fast-
motion-cross-size in width, or a bitmap image, as determined by the value of
w:mouse-fast-track-bitmap-mouse-p.

Either the large cross or bitmap image appears while a do loop iterates the
number of times specified by their respective variables (w:mouse-fast-
motion-cross-time or w:mouse-fast-motion-bitmap-time).

w:mouse-fast-track-bitmap-mouse-p Variable
Default: nil, which means to use the default cross
w:bitmap-mouse-pathname Variable

Default: “SYS:WINDOW;GODZILLA-MOUSE.BITMAP”

Specifies whether to use a bitmap image or a default large cross when the
mouse is moved faster than w:mouse-fast-motion-speed. A value of nil
means use the default cross; a non-nil value means use the bitmap image
found in w:bitmap-mouse-pathname.

Mouse Parameters 11.3 The following are used to tailor the mouse to the user’s needs.

w:mouse-bounce-time Variable
Default: 2000. microseconds

The delay in microseconds that the system waits before reexamining the
status of a mouse button. That is, when a mouse button is clicked, the system
records the click and then waits the duration specified by w:mouse-bounce-
time before examining the same mouse button again.

w:mouse-double-click-time Variable
Default: 200,000. microseconds (0.2 seconds)
The delay in microseconds after which the system gives up checking for an
additional mouse-click. ‘

w:mouse-discard-clickahead Function
Clears out the microcode buffer in which the mouse-tracking microcode
records mouse-clicks.

w:use-kbd-buttons Variable
Default: t

Determines whether to interpret the LEFT, MIDDLE, and RIGHT keyboard
keys as mouse clicks. A value of t specifies to treat input from those keys
exactly as if the input was from mouse clicks.

Window System Reference 11-3



The Mouse

w:*mouse-incrementing-keystates* Variable

Default: (:control :shift :hyper)

A list of keys (valid arguments for w:key-state). When the mouse is clicked,
each of these keys that is held down adds 1 to the number of clicks. Thus, if
you perform a single click with the CTRL key pressed down, this single click
is treated as a double click.

w:mouse-handedness Variable

Default: :right

Determines whether the mouse is configured to be used by a left-handed or
right-handed user. Possible values are :left and :right.

Switching from one value to another automatically changes how the mouse
reacts to clicks. For example, with the default value of :right, a user working
in the Zmacs editor would double click right to invoke the System menu,
click middle to mark a region, and click left to move the mouse cursor to
point. With a value of :left, the clicks are mirrored—that is, the user would
double click left to invoke the System menu, click middle to mark a region,
and click right to move the mouse cursor to point.

A user can set this variable in the Profile utility, or execute one of the
following functions.

w:setup-mouse-left-handed Function
w:isetup-mouse-right-handed Function

Changes the mouse handling to be normal for a left-handed or right-handed
person, respectively.

Mouse Clicks

Button Masks

11.4 The system can interpret the signal producecd when a user presses a
mouse button as one of a button mask, a character, or a blip.

B Button masks can indicate any of the actual hardware conditions. For
example, a button mask can indicate when a user has pressed two buttons
simultaneously. Buttons masks are only used by low-level mouse handlers
because they are not as obvious as the equivalent encoded character
when placed in code.

B Encoded characters symbolize certain actual hardware conditions, and so
are more obvious when placed in code than the equivalent button mask.
For example, the mouse character #\mouse-L-1 is more obvious than its
equivalent button mask (a value of 1).

B Blips are similar to encoded characters but include more information,
such as the position of the mouse when the click occurred. Blips are
discussed in general in paragraph 8.3, Blips. Specific blips are described
with the methods that generate them.

11.4.1 A button mask is the internal representation of which mouse buttons
are depressed. The numbers 1, 2, and 4 represent the left, middle, and right
buttons, respectively, and the value of the mask is the sum of the numbers
representing the buttons that were being held down. For example, a value of
5 indicates that both the left and right buttons were depressed.

11-4

Window System Reference



The Mouse

w:mouse-last-buttons Variable

Contains a mask describing the mouse buttons as they were the last time the
process handling the mouse looked at them.

w:mouse-buttons &optional peek Function

Returns four values:

1. The current state of the mouse buttons, in the format used by w:mouse-
last-buttons, by examining the hardware mouse registers.

2. The time when the values item 1 were the true state of the buttons.

3. The x coordinate of the mouse at the time reported in item 2.

4. The y coordinate of the mouse at the time reported in item 2.

If peek is non-nil, the function examines and returns the state without remov-
ing the state from the input buffer. Processes other than the mouse process
use this option. The value for peek defaults to t if it is called from the mouse

process, and to nil otherwise. Typically, you should allow the function to
default this argument.

NOTE: If you incorrectly specify peek as nil, subsequent mouse operations—
even after you exit the process that calls w:mouse-buttons—may be
interpreted incorrectly.

w:mouse-character-button-encode buttons-down Function

Interprets pressing a mouse button as a click. This function monitors the
mouse button and determines whether a single click or double click occurs; it
returns either nil (if no button is pushed), or an encoded character
describing the click (as explained in paragraph 11.4.2, Encoding Mouse
Clicks as Characters). This function is used in the :mouse-click method of
w:essential-mouse-mixin. '

w:mouse-character-button-encode is called only when a button has just
been pressed; that is, a button is pressed down that was not down before. You
must pass buttons-down, which is a bit mask specifying which buttons were
pressed, that is, which are down now that were not down before. The follow-
ing form computes this mask:

(logand (logxor old-buttons —1)' new-buttons)

where:
old-buttons is a mask of the buttons that were down before.
new-buttons is a mask of the buttons that are down now.

w:merge-shift-keys char Function

Modifies char by setting the bits corresponding to all the shift keys currently
pressed down on the keyboard and then returns char. The shift keys include
SHIFT, CTRL, META, HYPER, SUPER, and SYMBOL.

Window System Reference 11-5



The Mouse

Encoding
Mouse Clicks
as Characters

This function is useful on the result returned by w:mouse-character-button-
encode if you wish to record the state of the shift keys in the description of a
mouse click so that the shift keys can alter the meaning of the click. For
example, if a Zmacs buffer contains the form:

(w:merge-shift-keys #\A)
and you evaluate that form using the Evaluate Region command (that is, you

mark the form and press CTRL-SHIFT-E), the system returns #\c-A because
the CTRL key was depressed when the form was evaluated.

11.4.2 Clicks on the mouse are sometimes encoded into characters. Such
characters are normally forced into input buffers of windows, so they are
distinguished from regular keyboard characters by having the mouse bit
turned on. Encoding of clicks is done with the w:mouse-character-button-
encode function (described previously).

Mouse clicks can also be done on the keyboard. See the variables w:use-
kbd-buttons and w:*mouse-incrementing-keystates* in paragraph 11.3,
Mouse Parameters.

The following subtle point explains some difficulties you may have with the
w:kbd-mouse-buttons-mixin and w:list-mouse-buttons-mixin flavors. The
characters (or blips) created by these two mixins go straight into the window’s
input buffer. Under some circumstances they may bypass pending characters
that have been typed ahead at the keyboard. Thus, if you type some text and
then select an item with the mouse in rapid succession while your program is
busy, the program may see the mouse click before it sees the character from
the keyboard. See paragraph 8.6.1, I/0 Buffers and Type-Ahead, for further
discussion of these issues.

The w:kbd-mouse-buttons-mixin and w:list-mouse-buttons-mixin flavors
handle mouse clicks by forcing keyboard input describing the click.

w:kbd-mouse-buttons-mixin Flavor

Required flavor: w:essential-mouse

Handles mouse clicks by encoding them as characters that are forced into the
window’s input buffer. Single clicking the left button on an unselected win-
dow selects that window; double clicking the right button calls the System
menu. Otherwise, the encoded character representation of the click is forced
into the input buffer of the window. (Specifically, the input is sent as a
fixnum via :force-kbd-input; which button was clicked is stored by using the
wimouse-buttons function; the number of clicks is stored by using the char-
mouse-clicks function.)

The state of the CTRL, META, SUPER, and HYPER keys is included in the
bits attribute of the encoded character field. This state can be tested using the
w:key-state function, described in paragraph 8.8, Querying the Keyboard
Explicitly.

w:list-mouse-buttons-mixin Flavor

Similar to w:kbd-mouse-buttons-mixin, except that a blip is placed in the
input buffer rather than simply an encoded character. The blip has the
following form:

(:mouse-button encoded-char window x y)

11-6

Window System Reference



The Mouse

This blip is more useful than the encoded character: the blip tells you where
the mouse was (relative to the outside part of the window) and which window
the mouse was over (this is useful primarily if several windows are sharing the
same input buffer).

The encoded character returned in the blip contains information about which
mouse button was pressed, the number of clicks, and the state of the CTRL,
META, SUPER, and HYPER keys when the mouse was pressed. You can
retrieve this information by using the char-mouse-buttons, char-mouse-
clicks, and char-bits functions. See the Explorer Lisp Reference manual for
more information about these functions.

The state of the CTRL, META, SUPER, and HYPER keys is included in the
bits attribute of the encoded character field. This state can be tested using the
w:key-state function, described in paragraph 8.8, Querying the Keyboard
Explicitly.

Ownership of
the Mouse

11.5 The window that the mouse is positioned over usually handles the
mouse; this w