KA STNERS

MEMO S
4X TI-ASC

MEMORANDUM

4 April 1972

T0 Hardware Design (15)
System Engineering
Wayne Winkelman (4)

FROM Bill Kastner

SUBJECT NEW INSTRUCTIONS FOR THE

TIMES-FOUR CENTRAL PROCESSOR

A description of all new times-four CP instructions is attached.
instructions are listed following:

1. FCRK, Fork.
2. JOIN, Join.
3. PB, Prepare to Branch.
4. LEM, Load Arithmetic Exception Mask and Condition.
5. LRL, Load Arithmetic Register Right'Half from Alpha Left Haif.
6. STRL, Store Arithmetic Register Right Half tc Alpha Left Half.
7. SCLK, Store 32-bit Fixed Point Clock.
8. Select on Equal, Select on Not Equal (Vector).
9. Replace on Equal, Replace on Not Equal (Vector).
BILL KASTNER
WDK:jc

Attachment

These‘

" ATTACHMENT

Fork FORK Mnemonic code

1 » Fork Indicator %A Op code

The FORK instruction is an advisory type instruction to the IPU
control. Executién of the FORK instruction sets the fork indicator
bit-within the IPU control and allows subsequent vector or scalar in-
structions to proceéd_tc execution independently. In the times-four
CP, this means that any combination of vector or scalar instructions
can be in execution simultaneously in each of the four MBU-AU pairs.

A

details on the effect of this instruction.

Join ~ JOIN Mnemonic code

0 » Fork Indicator 98 Op code

The JOIN instruction is an advisory type instruction to the IPU
control. Execution of the JOIN instruction resets a control bit which
then disallows parallel pipeline processing of subsequent mixtures of

vector and scalar instructions. In the times-four CP, this means that

only scalars can be in execution &% a time or conly 2 sirquiars vector
at z tirz. Combinations of vectors and scalars cannot be ir execution
simoluzvoiusly. Refer to the write-up describing FORK and JCIN control

for furzner details on the effect of this instruction.

FORK and JOIN Control -

) Purpose

use the four pipes in a parallel fashion.- For s;a]ar code of this
type, operand and instruction hazard checking hardware is built into
the IPU. This hardware prevents the IPU from using scalar operands
or instructions that have been modified by prior s;a]ar instructions
but which have not yet reached their register or memory destination.
However, when vectors and scalars are mixed, the hardware for checking
operand or instruction hazards is not effective if these two types
are in exécution simu1tane0ds]y. Therefore, the scalar FORK and JOIN
instructions have been provided to a]]ow'the user to have control
over operand and instruction hazard checking between vectors and
scalars by either allowing or disallowing their simultaneous exe-
cution. In addition to these two scaTér instructions, there also
exists a means by which the fork indicator can be turned on or off

with a VECT or VECTL instruction.

] Setting or Resetting FORK/JOIN Mode

Two methods may be used to set the Fork indicator. One of
these is by means of the scalar FORK instruction. The other is
by placing a "one" in the ALLOW FOLLOWING (AF) bit of a vector
instruction. Resetting of the Fork indicator is done by the JOIN
insfruction or by a "zero" in the AF bit of a vector instruction.
When the Fork indicator is set, parallel execution of vectors

and--scatars is-allowed by the hardware. - When the Fork indicator—-

-3-

is reset, only a éingular vector may be in execution in one of
the four pipes; or only pure scalar instructions (not mixed with
vectors) may be in execution in any of the four pipes.

4 a . .

Uses of the ALLOW CURRENT Bit

The ALLOW CURRENT (AC) bit is contained in the R-field of a
vector instruction adjacent to the ALLOW FOLLOWING b}t as shown

following:

op R T M N
i t—lﬂ\F, ALLOW FOLLOWING, bit 10
AC, ALLOW CURRENT, bit 8

This bit is used in combination with the existing mode of the

Fork indicator. The combinations are best described by using some

examples.

Example A:

JOIN instruction
Scalar 1

Scalar 2 1
. ne vectors

In example A, all scalar instructions are processed in paraliel -

up to Vector 1. Vector 1 will begin processing when all scalar

-4

writes to Central Memory are compiete; and no instructions will
modify the Vector Parameter File (VPF). This is true no matter
what the value of the AC bit is for Vector 1. If the program is
to continue in the JOIN mode, the “Allow‘?ol]owing" bit of Vector

1 must be zero.

Example B

< JOIN instruction
Scalar 1
Scalar 2
no vectors

.

Scalar n

FORK instruction
Scalar n+l
Scalar n+2
Vector 1

In example B, all scalar instructions are processed in parallel
up to Vector 1. Vector 1 must wait at level 3 of the IPU pipeline
until all scalars through "n" have completed their writes to memory,
and none of these instructions are of the type that wi11 modify the
Vector Parameter File. Any other scalar instruction, either before
or after the FORK, can be processed in parallel with Vector 1 if
Vector 1 has its "Allow Current" bit set to "one." If the AC bit
is "zero," processing of Vector 1 is held up until the preceding
conditions are true through Scalar n+2. If this is the case, the

FORK instruction had no effect.

Uses of the ALLCW FOLLOWING Bit

In certain applicaticns it may be desirable for a program to
&) i3 - o
cperate in a JOIN mode through Vector 1 but to allow parallel exe-

cution of Vectors 1 and 2. This is accomplished with the following

program:
Example C -

JOIN instruction

Scalar 1

Scalar 2

no vectors

Scalar n

Vector 1 (AC = @, AF = 1)

Vector 2 (AC = 1, AF = #)

where "@#" is a “Don't Care"

[%3

This program is the same as example A with the exception of
the inclusion of Vector 2. The "Allow Fb]]owing" bit of Vector 1
anc the "Allow Current” bit of Vector 2, both being a “one," are
the keys that unlock the pipelines for parallel processing.

If either the AF bit of Vector 1 or the AC bit of Vector 2
is “zero" in example C, Vector 2 will proceed to the point of se-

lecting a pipe and initializing that MBU but will not access memory

until Vector 1 is complete.

Example D

JOIN instruction
Scalar 1

Scalar 2|«

‘ no vectors

Scalar n

Vector 1

FORK instruction
2. Scalar n+l]

Example D is a case where the JOIN mode is desired through
Vector 1; and then the FORK instruction is encountered. For this
code to be reasonable, the "Allow FoT]owing” bit of Vector 1 is
“zero." . Vector 1 will proceed as described in example A. Vector
1 must complete before any other instruction is processed in the
IPU. This includes the FORK, so Scalar n+l will not be executed

until Vector 1 completes.

AC and AF Summary

The four cases of the AC and AF bits of a vector instruction
are summarized as follows:

(AC, AF) = (0, 0)
Finish all the preceding instructions, and then complete
this veétor before proceeding.

(AC, AF) = (0, 1)
Finish all the preceding instructions, but allow suc-
ceeding instructions to proceed while executing this

vector.

(AC, AF) = (1, 0)
Begin this vector as soon as ali instrucﬁions preceding
the FORK have been completed, and then finish this vector

* _ before proceeding.) ¢

(AC, AF) = (1, 1)
Begin this vector as soon as all instructions preceding
the FORK have been completed, but allow succeeding in-
;tructions to proceed while executing this vector.

The following table relates the AC and AF bits of the R-field

to how the instruction string would lTook without the bits:

WITH BITS WITHOUT BITS
AC AF
« JOIN
VECTOR 0 0 VECTOR
JOIN
| JOIN
VECTOR 0 VECTOR
FORK
' VECTOR
VECTOR 1 0 TN
| VECTOR
VECTOR 11 FORK

Prepare to Branch PB Mnemonic code

9t Op code

The Eyepare-tq;Branch'instruction is an‘qpvisory type instruction
to the IPU instruction look-ahead hardware. Execution of a PB instruction
does not affect fhe results of a program in ahy way;-it§ purpose is to
decrease the time taken at a branch instruction in fetching the octet
of instructions to which the branch is directed. |

The PB instruction develops a 8 address from its T-, M-, and N-fields
in the same way that a standard branch instrﬁction (BCC or BRC) would do
if it were placed at the instruction address of the PB instruction. The
- R-field of‘the PB instruction should be set to the difference between the
instruction address of the PB instruction and the intended branch in-
struction. This count may not exceed 15 since the R-fier is only four
bits. Counts of "0" and "1" have special uses.

The internal IPU hardware saves both the g address developed by the
PB instruction and the length count specified by the R-field. The length
count is decremented by one as each new instruction is entered into the |
instruction register (IR). At the octet boundary where the look-ahead
would normally request the next octet past the octet containing the
branch, it recalls the g address saved by the PB instruction and requests
it instead of the normal look-ahead octet. In this manner the fnstruction
at the branch address of the target branch instruction will be available
for immediate processing following the execution of the target branch
instruction.

Should the target branch fail to take the branch, the hardware will

realign its21f to take the downstream instructions. This is done by

-9-

rerequesting the branch instruction's octet if necessary, plus the next
octet of look-ahead instructions beyond the branch octet.

Here is an example of PB instruction usage. In this example the
R-field iéa"7,“ deé%gnating seven instfuction=1ocations from the PB to
the BLB instruction. The branch address developed by the PB is indirect
to the PB instruction address, plus eight (Program counter + 8).. At this
indireg; address we find the address of the COSINE routi#e. The BLB_
ins?ruction also uses this same indirect address but refers to it via
an indirect program'counter address plus one. By using the PB.insfructfon
in thisvmanner, the first instruction 6f the COSINE routine will be di-
rectly behind the BLB instruction in the IPU pipeline at the completion

of BLB execution.

PB 7, 05 +8
BLB B1, 8 8 +1
IND cos

Special Extension to PB Instruction

R-fie]d‘counts of 1 and 0 of the PB instruction have a special use
of enabling or disabling the dual branch hardware. If a PB of R-field 1
is executed, the dual branch mechanism is enabled. When enabled, a con-
ditional branch instruction of the type BRC, BCC, or BAE will make a
memory requestAer the octet containing the branch address while waiting

at Tevel 3 for the determination of the branch condition.

-10-

The octet containing the branch a2ddress replaces the lcck-ahead
octet on the assumption that the branch will be taken. If the branch
fails, then the octet containing the branch address is discarded; and
the normal*look-ahead octet is refetched . Dozl hranch hardware works
only if a BRC, BCC, or BAE is positioned in the first four words of an
octet.

If a PB of R-field 0 is executed, the dual branch mechanism is
v'disabléa.' whenidisabled, nothing is done to fetch an octet along the
branch path. The normal 1ook-ahéad along the downstream path will

continue to function.

Load Arithmetic Exception Mask and Condition Registers

LEM Mnemonic code

(a}g-7 » AC, AM g 1 Op code

Loads bits O throuéh 3 of the contents of location a into the four-
bit arithmetic exception condition code register, and loads bits 4
through 7 of the contents of location a into the four-bit arithmetic
exception mask register.

Bits O through 3 load the arithmetic exception condition code regis-

ter as follows:

Bit

0 Divide check

1 Fixed point overflow

2 Floating point overflow

3 F}ogting»pgjnt underf19ﬂ¢‘

-11-

Bits 4 through 7 load the aritnmetic exception mask as follows:

Bit
.2&4 Divide check .
-5 Fixed point overfiow
6 Floating point overflow
7 Floating point underflow

Result Code
" Not set.

Prqgramming‘thes
An interrupt signal from the CP to the PPU is activated if an arith-
metic exception is detected and the mask bit corresponding to that arith-
metic exception has been set to a “one." An interrupt is not possible
for that arithmetic exception if the mask bit is set to "zero."
Alteration of the AE condition register aﬁd AE mask register by a
LEM instruction will cause an érithmetic exceptioﬁ program interruption
if the correspond{ng bits of the AE condition register and AE mask regis-
ter are both “one" after the LEM instruction has passed through the CP
pipeline. Also, a program interruption will occur after completion of
a LEM instruction if any of the following pairs of bits from the contents

of location o are both "one":

(0, 4)
(1, 8)
(2, 6)
(3, 7)

-12-

This instruction is paired with the BLB and BLX instructions in

+
(@]

e [hid+e N+ + 344
ns {(pITS v Larougn h the position of

<
Ll

-
<

that the bit pos

<)

the AE condition and AE mask bits stored as a result of a previous BLB

or BLX instruction.

Load Arithmetic Register Right » LRL " Mnemonic code
Halfword From Alpha Left Halfword 10 - Op code
(aﬁ) -+ ARrh . Arithmetic register file

A halfword operand from memory is entered into the right half of
arithmetic register AR. The left half of register AR remains unchanged.
VThe operand selected is from the left ha]f of a central memory or register
whole word when not indexed. If indexed, an even index va1ue’§e1ects
words from the left half of a central memory or register whole word. An

odd index value addresses the right halfword.

Result Code: Set arithmetically.

Store Arithmetic Register Right ‘ STRL Mnemonic code
Halfword into Alpha Left Halfword 26 Op cods
(ARrh) > %

The right half of arithmetié register AR is stored into the left

half of a singleword location when not indexed. If indexed, an even

-13-

~index value selects the left half of a singleword location for storage.

An odd index value addresses. the right halfword.

Result Coda: Set arithmetically.

Store Clock | SCLK Mnemonic code

CLOCK + a - AE " Op code

Thg current value of the 32-bit fixed point CP clock is storeq

into singleword location a.
Result Code: Set arithmetically.

Vector Select on Not Equal

1)

(SVme =

A vector select on not equal instruction generates an output vector
[composed of elements from vector B. The index values given by the
elements of vector A correspond to the index location of elements that
are not selected from vector B. A1l other elements of vector B are
selected. These selected elements are the ones for which the index
values given by vector R do not correspond to the index location of

elements from vector B.

(1) Same as (1) under Select on Equal.
(2A) Same as (2A) under Select on Equal. Also, if the last index

value plus one is less than tne nunser of elaments of vector 3, then

-14-

‘the self loop length should be set equal to the number of elements of
vector B. | | |

(2B) If the last index value plus one is equal to the number of
elements of vector€§, then the index list of vector X can be examined
further to determine if the index values looking backward from this
last index 9$]ue decrease by unity for each step backward. Using this
procedure, the value of the 1a§t index value found prior’to a nonunity
decreaée of iﬁdéx values can be used for the self Toop length specifi-
cation of the vector select on not equal instruction and still obtain
the same result vector C. If an index value of zero is reached using
thi$ procedure, then no elements of vector B will be used.by this in-
struction. The self loop length can be set equal to zero in this case,
and no operation will be performed. |

(3A) Same as (3A) under Select on Equal.

(3B) Same as (3B) urder Select cn Ecual.

(¢) Same as (4) under Select on Equal.

(5) An index 1ist beginning with a vaiue of one, selects the first
element of vector B(bgy) but not the second element (by).

(6). Same as (6) under Select on Equal.

Exampie: A singleword.select on not equal instruction using one

self loop of length 8.

Halfword Singleword Singleword
Index Vector R . Vector B -~ Vector

2, 3 +16,472,-54,-75 +16,472,471,+14"

5, 6 +71,-64,-15,+14

7F,,F Fs -

-15-

Vector Replace on Not Equal

(SVmsb =1)

A vector replace on not equal 1nstruction'accept§ as inputs a con-
tiguous Tist of replacement elements from vector B and a contiguous
list of indices from vector A. Elements from vector B replace previously
existing elements in a central memory region defined as the C oufput
array. “The index values given by the elements of vector.ﬁ correspond
to the index location of elements in the C output array that are not
replaced. A1l other elements of vector C are replaced. These replaced
elements are the ones for which the index values given by vector R do

not correspond to the index location of elements in vector C.

Programming Notes:

(1) The Tength specification of the self Toop (L-field) for a
vector replace on not egual instruction shou]d be set equal to the dif-
ference between the number of elements in the T vector and the number
of indices in the R vector for a shortened vector operation. Otherwise,
the length specificatibn can be set edual to the number of elements in
the € vector providing that an index boundary 1imit equal to the largest

positive number (7FFF,__) is placed in the data location following the

hex
last index value of vector A.

(2) sSame as (2) under Replace on Equal.

(3) An index 1ist beginning with a value of "one" repléces the }irst
element of vector G (Cy) but not the second element (Cy). | |

(#Y Irmer-vr-outer Toops with vector replace on fot equal require
[

2 censiderahla amount 0f nvercarcazedirn an dnde vactar

be used.

MO

Ui

MORANDUM

24 April 1972

10

Dennis Best Bi1l Beebe
Gary Boswell Gary Cobb
John Gifford Bill Cohagan
Frank Little .

Al Riccomi

Tom Treptow

. CePY 70 Buddy Dean

Charles Stephenson
Joe Watson ‘

§

- FROM v Bill Kastnerv/

SUBJECT DECISIONS MADE ON 4X CP CONTEXT SWITCHING

Several decisions were made in a meeting on April 14 relative to
context switching on the times four CP. This memo is a confirmation-
of these decisions.

1.

Load, Store, and Exchange Status CCR commands will exist on the
4X CP. The CCR command codes for these operations will not change

“~~from those of the 1X CP. They are as follows:

4108 Store Status
4109 Load Status
£10A Exchange Status

The data stored in the Status Map consists of six octets of the
Register File, the Program Status Doubleword (PSDW), and the 32-bit
CP clock. New information stored in the PSDW for the 4X CP is

the fork indicator in bit position 21 of the first word of the
doubleword. Refer to page 3-26 of the Central Processor Hardware
Specification for the PSDW format. Four bits for disabling any

one or more of the four pipes during diagnostic tests will be
provided in bit positions 12 through 15 of the first word of the
Program Status Doubleword.

Load, Store, and Exchange Intermediate CCR commands will be changed
to Load, Store, and Exchange CP Details CCR commands on the. &Y

CP. The difference between the 0ld Store intermediate and tho

new Store CP Detaiis operation will be in the amount of data
stored. Store CP Datails is essentially the same as the Store
Maintenance-Batails -operation on-the-4X machine-with the differ-
ence being the point at which vectors are stopped. With a Store

CP Details command the circular address file of the MBU is drained
to its empty state; whereas in the case of a Store Maintenance

Deci

sions Made On

4% CP Context
Switching ~2“ V 24 April]972

Details command, the circular address file (CAF) is not emptied
since this command is primarily for maintenance use. It is
necessary during certain maintenance operations to see the CAF in
operation, so the Store Details command is being kept for this
purpose.

A recent decision, with regard to CCR commands for the CP, is the
removal of the Lock and Unlock PC maintenance commands. No satis-
factory use has been found for these commands during hardware

checkout, so they are being eliminated. Therefore, strike the

CCR commands 4102 and 4103 for Unlock PC and Lock PC, respectively,
on page 35 of Section G of the ASC System Hardware Description.

A CR-bit will be assigned to indicate when a "vector bad guy" is in
progress. The CR-bit will continuously monitor the "vector bad
guy" state of the CP. A final software check of the CP details
map in memory will be made to cover the case in which a bad guy

‘vector was just starting at the time the CR-bit was tested and

found to be "zero" or the case in which a bad guy vector had just
finished at the time the CR-bit was tested and found to be "one."
Appropriate job output messages will be printed by the operating
system in the event either of the two cases are detected during
operation. .

Addressability restrictions will be placed on the user when exe-
cuting a “vector bad guy." In the times four CP the "vector bad
guys" are the Vector Select, Replace, and Order instructions.
These vectors should not write over their input arrays. This
constraint, however, will be the responsibility of the user and
will not be protected by hardware.

Efforts to reduce the context switching time have dealt with the
possibility of using the status map for exchanging CP jobs. The
proposed plan is to Store Status when an MCW instruction is en-
countered or when a stacked MCP occurs. A CP details map will
be stored if the CP job is interrupted during execution or if an
arithmetic exception, illegal op, spec. error, or protection
violation occurs. Interrupting a job during execution is done
by issuing a Store CP Details CCR command.

The map stored into memory will contain a bit that indicates whether
it was stored as a CP Details map or as a Status map. 1en a job

is returned to CP execution, this bit is transferred tc a newly
defined CR-bit in the PPU C2-file. This CR-bit is used by the
automatic context switch mechanism to determine whether to load

a (P Detatls map or-a Status map-into the CP-when-resuming job.

RV EA

execution.

BILL KASTNER

MEMORANDUM
“19 June 1972

T0 SE Group Wayne Winkelman (4)
: Gary Cobb ’
Bill Cohagan v
Sterling Mathis
Gary Miley
Dave Paterson
Charles Stephenson (4)

FROM - Bill Kastner V///

SUBJECT INSTRUCTION MNEMONIC CODE CHANGES
FOR TIMES FOUR CENTRAL PROCESSOR

The mnemonics for the halfword Load and Store instructions are being
changed in the times four Central Processor to a more consistent set.
The new halfword Load and Store instructions in the 4X CP are LRL

and STRL. The letter sequence used.in‘these mnemonics has been:
arranged according to the order in which the register operand, then
the memory operand is specified in assembler source code. For LRL,
the RL sequence indicates the right half register word is loaded

from the left half of a central memory word. Similarily for STRL,
the RL sequence is an aid in remembering that the right half register
word is stored into the left half of a central memory word,

The halfword Load and Store instructions that were available in the
times one CP used mnemonics that are not easily associated with.
their register - memory usage. The following set of mnemonic codes
are being used for the 4XCP.

0P _CODE MNEMONIC CODE DESCRIPTION

15 LLL Load register left halfword from central
memory left halfword

19 LLR Load register left halfword from central
memory right halfword

10 LRL Load register right halfword from central
: memory left halfword

1D LRR Load register right halfword from central
, memory right halfword

25 - STLL - Store register left halfword into central
memory left halfword

Instruction Mnemonic Code
Changes for Times Four

Central Processor -2- 19 June 1972
0P CODE MNEMONIC CODE DESCRIPTION
29 ‘ STLR - Store register left halfword ingp central

memory right halfword

12? STRL Store register right halfword into central
; ‘ memory left halfword

2D : STRR _ Store register right ha]fword_into central
- into central memory right halfword

BILL KASTNER

BKfo

A SC - TECHNICAL BULLETIN

~T0:

FROM: -

CATEGORY:
SUBJECT:

CP Checkout
Hardware Development

Software Development

SDD

System Engineering
System Test
8111 Kastner

cT

June 28, 1972 Q%L(g&itp

Retrofit of ASC #1, #2, and #3 With CP Instructions LRL and STRL

The CP currently has three halfword load and three halfword store instructions.

The old and new mnemonic codes for these instructions are:

. OP CODE

15
19
1D

25
29
2D

OLD MNEMONIC

LH
LL
LR

STH
STL
STR

-NEW _MNEMONIC

LLL
LLR
LRR

STLL
STLR
STRR

Four halfword load paths exist from the left or right half memory word to
A set of four similar paths exist for

the left or right half register word.

stores.

The remaining halfword load and store path is being-included in the

times four CP instruction set and will be retrofit on ASC serial numbers 1, 2,

and 3.

These instructions are:

OP_CODE

10

26

MNEMONIC CODE

LRL

STRL

DESCRIPTION

Load Arithmetic Register
Right Half from Memory Left
Half.

Store Arithmetic Register
Right Half into Memory Left
Half.

ASC - TECHNICAL BULLETIN ' June 28, 1972

The new instructions provide the following paths from and to the arithmetic

register:

16 - Bits 16 - Bits

Arithmetic
Register

SR | mL

Central Memory
or
Register File

A significant feature of this chahge is the ability to modify the DAI, DCI,
_DAO, and DCO fields of the vector parameter file with data from the right half
..of an arithmetic register using the STRL instruction.

’BJ[_Ka/sllq%@

Bill Kastner

J&E«STEXAS INSTRUMENTS

MEMORANDUM

4 August 1972

T0

COPY TO

FROM
- SUBJECT

Hardware Development
System Engineering
System Planning and Applications

Bill Cohagan Dave Paterson
Gary Cobb Charles Stephenson
Sterling Mathis Joe Watson

Sid Nolte Wayne Winkelman (&)

Bill Kastner

NEW INSTRUCTIONS AND NEW FEATURES OF
THE TIMES-FOUR CENTRAL PROCESSOR

New vector instructions for generating and using Boolean vectors have
been added to the times-four Central Processor (4XCP), creating the
need to re-issue the list of new instructions. This Tist supersedes
the old 1ist of new instructions issued 4 April 1972. 1In addition to
this list of new instructions, all the previous instructions of the
times-one CP are impliemented on the 4XCP.

Several new features have been added to the 4XCP and are described
following the new instructions. -

WDK:jc

Attachment

pill Kostion.

BILL KASTNER

Contents

New Scalar Instructions

FORK

JOIN

PB, Prepare to Branch

LEM, Load Arithmetic Exception Mask and Condition

LRL, Load Arithmetic Register Right Half from Alpha
-~ Left Half ' ' .

STRL, Store Arithmetic Register Right Half into
Alpha Left Half

SCLK, Store 32-bit Fixed Pofnt Clock

New Vector Instructions

VMAP, Vector Map Singleword

VMAPH, Vector Map Halfword

VMAPD, Vector Map Doubleword

VSELB, Vector Select Sing]eword Boolean
VSELHB, Vector Select Halfword Boolean
VSELDB, Vector Select Doubleword Boolean
VREPB, Vector Replace Singleword Boolean
VREPHB, Vector Replace Halfword, Boolean
VREPDB, Vector Replace Doubleword Boolean
VMAPB, Vector Map Singleword Boolean
VMK?HE;‘Véctdr ﬁap:HaffWord'Bboléén |

VMAPDB, Vector Map Doubleword Boolean

27
27
30

i

Mew Vector Instructions

- UMAX, Vector Max/Min Fixed Point Sing]eword'

VMAXH, Vector Max/Min Fixed Point Halfword

VMAXF, Vector Max/Min Floating Point Sing1eworq
VMAXFD, Vector Max/Min Floating Point Doubleword

VCB, Vector Compare Fixed Point Singleword Boolean
VCHB, Vector Compare Fixed Point Ha]fwofd Boolean
VCFB, Vector Compare F}oating Point Singleword goo1ean
VCFDB, Vector Compare Floating Point Doubleword Boo]ean"
VCAB, Vector4Compafe AND Singleword Boolean
VCADB, Vector Compare AND Doubleword Boolean .
VCORB, Vector Compare OR Singleword Boolean
VCORDB, Vector Compare OR Doubleword Boolean

New Features

Pipe Disable Bits

Vector Length Field Specification

"Dual Look-Ahead

Fork : ' a FORK Mnemonic Code

1 » Fork: Indicator T ‘9A Op code

The FORK instruction is an advisory type instruction to the IPU
control. E%ecution of the FORK instrdction sets the fork indicator
bit within the IPU control and allows subsequent vector or scalar in-
‘structions to proceed to execution independently. In the times-four
CP, this means that any combination of vector or scalar instructions
. can be in execution simultaneously in each of the four MBU-AU pairs.
Refer to the write-up describing FORK and JOIN control for further
details on the effect of this instruction.

A FORK instruction with the fork indicator already "on" resuits

in the equivalent of a JOIN followed by a FORK.

Join JOIN Mnemonic code

0 = Fork Indicator 9B Op code

The JOIN instruction is an advisory type instruction to the»IPU
control. Exécution of the JOIN instruction resets a control bit which
then disallows parallel pipeline processing of subsequent mixtures of
vector and séa]ar instructions. In the times-four CP, this means that
only scalars can bé in execution at a time or only a singular Jéctor
at a time. Combinations of vectors and scalars cannot be in execution
simultaneously. Refer to the write-up describing FORK and JOIN control

for further details on the effect of this instruction.

Prepare to Branch - PB Mnemonic code

SE Op code

The Prepare-to-Branch instruction is an advisory type instruction
to the IPU instruction look-ahead hardware. Execution of a PB instruction
does not affect the results of a program in any way; its purpose is to
decrease the time taken at a branch instruction in fetching the octet
of instructions to which the branch is directed.

The PB instruction develops a g address from its T-, M-, and N-fields
in the same way that a standard branch instruction (BCC or BRC) would do
if it were placed at the instruction address of the PB instruction. The
R-field of the PB instruction should be set to the difference between the
instruction address of the PB instruction and the intended branch in-
struction. This count may not exceed 15 since the R-field is only four
bits. Counts of "0" and "1" are not used. |

The internal IPU hardware saves both the g address developed by the
. PB instrucfion and the length count specified by the R-field. The length
count is decremented by one as each new instruction is entered into the
instruction register (IR). At the octet boundary where the Took-ahead
would normally request the next octet past the octet containing the
branch, it recalls the g address saved by the PB instruction and requests
it instead of the normal look-ahead octet. In this manner theﬂinstructidn
at the branch address of the target branch instruction will be available
for immediate processing following the execution of the target branch
instruction.’

Should the target branch fail to take the branch, the hardware will

realign itself to take the downstream instrfuctions. This is done by

-3-

rerequesting the branch ins?ruction's octet if necessary, plus the next
octet of look-ahead instructions beyond the branch octet.

Here is an example of PB instruction usage. In this example the
R-field is "7," designating seven instruction locations from the PB.to
the BLB instruction. The branch address developed by the PB is indirect
to the PB instruction address, plus eight (Program counter + 8). At this
indirect address we find the address of the COSINE routine.' TheVBLB
instruction also uses this same indirect éﬁdress but refers to it via
an indirect program counter address plus one. By using the PB instructioh
in this manner, the first instruction of the COSINE routine will be di-
rectly behind the BLB instruction in the IPU pipeline at the completion

of BLB execution.

PB 7, @$ +8

BLB Bl, @ % +1
IND oS

-4

Load Arithmetic Exception Mask and Condition Registers

"LEM Mnemonic code

(a)g.7 » AC, AM n Op code

Loads bits 0 through'3 of the contents of location « into the four-
bit arithmetic exception condition code register and loads bits 4 through
7 of the contehts of location a into the four-bit arithmetic exception
mask register.

Bits O through 3 load the arithmetic exception conditicn code register
as follows:

 Bit
0 Divide check
1 Fixed point overflow
2 Floating point overflow
3 Floating point underflow

Bits 4 through 7 load the arithmetic exception mask as follows:

Bit -

4 Divide check

5 Fixed point overflow

6 F1oafing point overflow
7 Floating point underflow

Result Code
Not set. .
Programming Notes
An interrupt signal from the CP to the PPU is activated if an arith-

metic exception is detected and if the mask bit corresponding to that

-5-

arithmetic exception has been set to a "one." An interrupt is not possible
for that arithmetic exception if the mask bit is set to "zero." |
A]terafion of the AE condition register and AE mask register by a
LEM instruction will cause an arithmetic exception program interruption
uif the corresponding bits of the AE condition register and the AE mask
register are both "one" after the LEM instruction has passed through the
CP pipeline. This implies that a program interruption will occuf after
completion of a LEM instruction if any ofathe following pairs of bi;s
from the contents of location a are both "one":
(0, 4) |
(1, 5)
(2, 6)
(3, 7)
This instruction is pairedAwith the BLB and BLX instructions in
that the bit positions (bits O through 7) agree with the position of
the AE conditiqn and AE mask bits stored as a result of a previous BLB

or BLX instruction..

Load Arithmetic Register Right LRL Mnemonic code
Halfword From Alpha Left Halfword 10 Op code \
(o) > ARy

A,halfhord operand from memory is entered into the right half of
arithmetic register AR. The left half or register AR remains unchanged.
‘The operand selected is from the left half of a central memory or register
whole word when not indexed. If indexed, an even 1ndek value selects
~ words from the left half of a central memory or register whole word. An

odd index value addresses the right halfword.

Result Code

Set arithmetically.

Store Arithmetic Register Right ‘ STRL Mnemonic code
Halfword Into Alpha Left Halfword 26 Op code
(AR) > e

The right half of arithmetic register AR is stored into the left
half of a singleword location when not indexed. If indexed, an even
index value selects the left half of a singleword location for storage.

An odd index value addresses the right halfword.

Result Code

Set "arithmetically.

Store Clock SCLK Mnemonic code

CLOCK + o AE 0Op code

The current value of the 32-bit, fixed-point CP clock is stored into
singleword location a. This clock is incremented by "one" every CP clock
pulse. It cycles modulo 232 approximately once every four minutes (based

on a 60 ns clock rate).

. Result Code

Set arithmetically.

-9-

New Vector Instructions

Mnemonic ' Operation
Code Instruction Code
VMAP ; Vector Map Singlewcrds F8
VMAPH - Vector Map Halfwords FS

VMAPD Vector Map Doublewords ' FB

Vector-Map-cn-Equal, Svmsb option bit.='0w

H

A Vector-Map-on-Equal instruction accepts as inputs a contiguous list
of indices from vector A and a set of source mapping elements from vector
B. The elements of vector B that are mapped are those elements for which
the index location in §'corresponds to the indeg value given by the ele-
ments of vector A. Elements from source mapping'vector B replace previously
existing elements in a central memory region defined as the ¢ output
vector. Elements of the T output vector that are replaced are those ele-
ments for which the index Teocation in o corresponds to the index value "
given by the e]emen?s of vector R. Elements of vector B do not replace
elements of vector C for those index locations in C that are not represented
in the index list given by vector E. .

This instruction differs from the Vecto; Replace instruction in the
manner in which elements of vector B are used. Vector Replace uses con-
secutive elements of vector B, whereas Vector Map uses only those elements
of Vector B that are mapped by the specification of vector E.

Programming Notes
For self-loops:
1A) The length specification of the self-loop (L-field) for a

Vector-Map-on-Equal instruction should be set equa1‘to the

-10-.

number of elements of a self-loop of the € vector. Or, if
the B vécfor*is_the'greater in length, then set the L-field

equal to the number of elements of vector B.

1B) It is possible to shorten the vector operation and still
obtain the same result vector C by setting the self-loop
length equal to one plus the value of the last index in

vector A. ¢

2A) If the vector length is specified according to 1A above,
then an index boundary 1imit equal to the largest positive
number (7FFF hex) must be placed in the data location fol- -

lowing the last index value of vector R.

2B) If the vector length is specified according to 1B above,

then the index boundary 1limit is not necessary.

3) Each index value given by vector Risa positive, fixed-
point halfword. Vector A should be a contiguous 1ist of

monotone increasing halfwords.

4) An index value of zero maps the first element of vecto;'§

into the first element of vector C.

Example 1: A singleword Vector-Map-on-Equal (SVme=0) instruction

using a self-loop of length 8.

-11-

Singleword n Singleword Singleword
Index Singleword Vector C Before ~Vector C After
Vector R - Vector B - Replacement Replacement
2,3 EERVE 16 16
5, 6 : -70 i 82 , 82
7FFF, - -25 | 27 -25.
-34 36 -34
-69 n ' ’ 71
-30 35 =30

-6 8 -6
12 14 14

-12-
Vector-Map-on-Not-Equal, SVmsb option bit =1

A Vectpr-Map;dn-th?Equa1 instruction accepts as inputs a contiguous
list of indices from vecéor E and a set of source mapping elements from
vector B. The elements of vector B that’are mapped are those elements
for which the index location in B is not represented in the index list
given by vector K. Elements from source mapping vector B replace previously
existing elements in a central memory region defined as the o output vector.
Elements of the C output vector that are replaced are those elements for
which the index location in T is not represented in the index list given
by vector E. Elements of vector B do not replace elements of vector T
for those index locations that correspond to the index value giQen by

the elements of vector R.

Programming Notes
For self-loops:
(1) The length specification of the self-loop (L-field) for a
Vector-Map-on-Not-Equal instruction should be set equal to
the number of elements of a self-loop of the T vector. Or,
if the B vector is the greater in length, then set the L-field ’

equal to the number of elements of vector B.
[

(2) An index boundary 1imit equal to the largest positive number
(7FFF hex) must be placed in the data location following the

last 1ndéx value of vector A.

(3) Each index value given by vector A is a positive, fixed-
point halfword. Vector R should be a contiguous list of

monotone increasing halfwords.

-13-

(4) An index 1ist beginning with a value of "one" maps the first
elements of vector B into C but not the second element {element

Co is replaced with Bg but not C; by B;).

Example 2: A singleword Vector-Map-on-Not-Equal (SVme=1) instruction

using a self-loop of length 8.

Singleword Singleword Singleword
Index Singleword Vector C Before Vector T After -
Vector A Vector B Replacement Replacement
2,3 a8 16 14
5, 6 | -70 | :7 | -70
JFFF, - - =25 27 27
-34 36 36
-69 no -69
-30 ' 32 . 32
-6 8 - 8

12 14 | -12

14

Mnemonic . ‘ Operatibn
Code o Instruction _ ' ~ Code
VSELB . Vector Select Singleword Boolean B4
VSELHB : Vector Select Halfword Boolean B5
VSELDB Vector Select Doubleward Boolean B7

option bit = 0

‘Vector—Se1ect—on—0n¢, SVinsb

P

&

A Vector-Select-on-One instruction generates an output vector C
- composed of elements from vector B. The elements selected from vector
B are those for which the location in vector B corresponds to the lo- A
cation of nonzero elements of vector A. Selected elements are stored

%

into contiguous locations of vector C.
Vector-Select-on-Zero, SVme option bit =1

A Vector-Select-on-Zero instruction generates.an output vecfor t
composed of elements from vector B. The elements selected from vecfor
B are those for which the location in vector B corresporids to the lo-
cation of zero elements of vector . Selected elements are stored into

contiguous locations of vector C.

Programming Notes
For self-loops:
(1) The length specification of the self-loop (L-field) for a
~ Vector-Select-Boolean instruction is set equal to the number

of elements of vector A or B.
(2) Each element of vector A is a halfword that assumes one of two
Boolean values. . "Zero" is assumed if the value is zero, and "one"

is assumed if the value is nonzero.

-15-

Exampie.1: A singleword Vector-Select-on-One (SVme=O) instruction

using a self-loop of length 8.

Halfword ' _ Singleword
Boolean . Singleword : Selected
Vector A Vector B Vector ©
0, 0 416 -54
1, 1 ' +82 -75
0, 1 -54 -64
1, 0 | =75 -15¢
+71
-64
-15 ‘
+14

Example 2: A singleword Vector-Select-on-Zero (Svmsb=i) instruction

using a self-loop of length 8.

Halfword Singleword
Boolean Singleword _ Selected
Vector A ’ Vector Vector C
0,0 +16 _— +16
1, 1 +82 - v 182
0, 1 ' -54 L+
1, 0 -75 ‘ T 414
+71
-64
-15

-16-

MnemonicA) Operation
Code - . Instruction , Code
VREPB ‘Vécth}Rep]ace Singleword Boolean BC
VREPHB ‘ . Vector Replace Halfword Boolean. .. BD
VREPDB - Vector Rep]aée Doubleword Boolean BF .

Vector-Replace-on-One, SV__, option bit = 0

msb
A Vector-Replace-on-One instruction_accepts as inputs a continuous.
1ist of replacement elements from vector §:and a continuous list of |
Boolean elements from vector A. Elements from vector B replace previously
existing elements in a central memory region defined as the C output
vector. Elements of the C outputvvector that are replaced With elements
of vector B are those elements for which the lTocation in the T output
vector corresponds to the location of nonzero elements of vector R.
Elements of the C output vector remain unchanged in those locations for

which the corresponding location in vector R is zero.

Vector-Replace-on-Zero, SV option bit =1

msb

A Vector-Replace-on-Zero instruction accepts as inputs a continuous '
list of replacement elements from vector B and a continuous Tist of
Boolean elements from vector R. Elements from vector B replace previously
existing elements in a central memory region defined as the C thpUt |
vector. Elements of the C output vector that are replaced with elements
of vector B are tho§e elements for which the location in thé t output
vector corresponds to the location of zero elements of vector R. Elements -
of the T output vector remain unchanged in those‘locations for whiqh the

corresponding Tocation in vector R is nonzero.

Programming Notes

For self-loops:

-17--

(1) The Tength specification of the self-loop (L-field) for a

(2)

Vector-Replace-Boolean instruction is set equal to the number

of elements of vector & or C.

Each element of vector A is a halfword that assumes one of

two Boolean values.

and "one" is assumed if the value is nonzero.

"Zero" is assumed if the value is zero,

Example 1: A singleword Vector-Replace-on-One (Svm55=0) instruction

using a self-loop of length 8.

Ha]fwbrd
Boolean

Vector A

0,0
1, 1
0, 1

Example 2: A singleword Vector Replace on Zero (SV

tion using a'self-loop length of 8.

Singleword
Vector B

-54
=72
=64
-15

Singleword .
Vector T Before
Replacement

16
82
27
36
n
32
8
14

Singleword
Vector U After
Replacement

msb
(Following page.)

16

82
-54
-72

{1
-64
r

-15
14

=1) instruc-

-18-

Halfword : Singleword Singleword
Boolean Singleword - Vector C Before Vector T After
Vector A . Vector § - Replacement Replacement
0,0 -54 - 16 54
1, 1 : -72 ‘ 82 , -72_
0, 1 -64 27 27
1, 0 -15 36 - 36
| 71 -6
35 32 i
8 8

14 -15

-19-

MnemonicA | . Operation
Code ‘ - Instruction , Code.
VMAPB o ’:~Vébtor-Mab Singleword Boolean FC
VMAPHB ' Vectér Map Halfword Boolean FD
VMAPDB ' ~ Vector Map Doubleword Boolean FF -

Ve;tor-Map-on—One, SVmsb option bit = 0

A Vector-Map-on-One instruction accepts as inputs'a continuous list
| of Boolean elements from vector A& and a set of source mapping elements
from vector B. The elements of vector B that are mapped are those ele-
ments for which the location in B corresponds to the location of nonzero
elements of vector A. Elements from source mapping vector B replace
previously existing elements in a cenﬁra] memory region defined as the
t output vector.

Elements of the € output vector that are replaced are those elements
for which the location in C corresponds to the location of nonzero elements
of vector R. Elements of the T output vector remain unchanged in those

locations for which-the corresponding location in vector R is zero.

Vector-Map-on-Zero, SV option bit =1

msb

A Vector-Map-on-Zero instruction accepts as inputs a contipuous Tist
of Boolean elements from vector A and a set of source mapping elements
from vector B. The elements of vector B that are mapped are those elements
for which the location in B corresponds to the 1o¢ation of zero elements
of vector A.: Elements from source mapping vector B replace previously
existing e]ements‘inzg cgqtral memory“region‘dgfined g; the‘f‘qutput’r

vector.

-20-

Elements of the C output-vector that are replaced are those elements
for which the location.in C corresponds to the location of zero elements
of vector . Elements of the C output vector remain unchanged in those

locations for which the corresponding location in vector X is nonzero.

Programming Notes
For self-loops: ‘ ’
(1) The length specification of the;se]f—loop (L-field) for a Vector-
Map-Boolean instruction is set equal to the number of e]e&ents

of vector A. Vectors B and € should be of this same length.

(2) Each element of vector & i$ a-halfword that assumes one of
two Boolean values. "Zero" is assumed if the value is zero, and

"one" is assumed if the value is nonzero.

Example 1: A singleword Vector-Map-on-One (Svmsb=0) instruction

using a self-Toop of length 8.

Halfword ’ Singleword . Singleword
Boolean Singleword Vector C Before ~ Vector C After
~Vector A Vector B Mapping ngping
0, 0 -54 6 . 16
1,1 2 82 | | 82
0, 1 -64 27 | © 64
1, 0 -15 36 -15
« =29 71 71
-5 32 -5
-47 B .8 o -47

-2 14 14

-21-

-

Example 2: A sing]éword.Vectcr-Map-on-Zero (sv__.=1) instructionv

) msb
using a self-loop of length 8.
Halfword : "~ Singleword Singleword
Boolean Singleword Vector C Before Vector C After
Vector A Vector B : Mapping Mapping
0, 0 -54 16 -54
1,1 72 82 - R
0,1 -64 27 | 27
1, 0 -15 36 36,
-29 o 7 -29
-5 32 32
-47 8 8

-2 14 : -2

-22-

Mnemonic ' o Operation
Code o Instruction » : - __Code
VMAX : Vecﬁor ﬁax]Min-Fixed—Point Singleword F4
VMAXH Vector Max/Min Fixed-Point Halfword F5
VMAXF | Vector Max/Min Floating-Point Singleword F6
VMAXD Vector Max/Min Floating-Point Doubleword F?

Vector Maximum, SV option bit = 0

msb 3

A Vector-Maximum instruction forms an output vector [composed of
the larger of the elements from either vector R or vector B. That is,

element C; assumes the larger arithmetic value of the elements a. or

1 &
bs.

c; = MAX(ai, bi

)

Yector Minimum, SV option bit =1

msb

A Vector-Minimum instruction forms an output vector T composed of
the smaller of the elements from either vector R or vector B. That is,

element C; assumes the smaller arithmetic value of the elements aj or bi'

*

)

c; = MIN(ai, bi

: L
Example 1: A Fixed-Point, Singleword-Vector-Maximum instruction

with a self-loop of length 8.

Vector A Vector B Vector C
40 ‘ 72 72
75 20 : 75

N 45 45

-23-

Vector R " Vector B Vector ¢
56 : : 56 | | 56
2 -9 32
16 64 : 64
97 28 - 97
21 - 20 o 2

¢

Example 2: A Fixed-Point, Singleword-Vector-Minimum instruction with

¥

- a self-Toop length of 8.

Vector R : Vector B | Vector €
0 72 o 40
75 20 20
Y 45 : o 1
56 56 56
32 -9 B -9
16 | 64 ' 16
97 . 28 o 28

21 : 20 - 20

f24':

Mnemonic ' Operation
Code Instruction Co ~ __Code
VCB Vector Comparg Fixéd-Point Singleword Boolean FO
VCHB Vector Compare Fixed-Point Halfword Boolean F1
VCFB Vector Compare Floating-Point Singleword Boolean F2
VCFDB Vector Compare Floating-Point Doubleword Boolean ?3

A11 ALCT options of the arithmetiC«éompare instructions on page 3-200
can be used to generate Boolean vector outputs. A Boolean vector is a
vector containing elements having a value of either “zero" or "one." For
the arithmetic compare instructions, a "one" is placed in the ¢ output
vector in each halfword location corresponding to the location ofitrue
comparisons of elements in the input vectors R and B. A "zero" is placed
in the halfword location corresponding to the iocation of false comparisons
of the R and B input vectors. | |

No item count is stored for any of the Boolean vector compare‘instruc—

tions.

Example 1: A Vector Compare Fixed-Point Singleword Boolean instruction

with ALCT comparison option set to search for "greater than or equal to."

Singleword i Singleword Halfword

Vector Vector B ~_Vector T
40 72 0
75 20 1
-1 45 | 0
56 56 : 1
32 a -9 | - 1

16 64 0

Singleword

Vector

97

21

-25- -

Singleword

Vector

28
20

Halfword
. Vector C

1

1

-26- .

Mnemonic

. Operation
Code Instruction ' Code
VCAB _ Vector Comparé AND, Singleword Boolean | EA
VCADB Vector Cémpare AND, Doubleword -Boolean EB
- VCORB ' Vector Compare OR, Singleword Boolean EE -
VCORDB Vector Compare OR, Doubleword Boolean EF

A11 ALCT options of the logical compare instructions on pagé 3-203
can be used to generate Boolean vector oufputs. A Boolean vector is a
vector éontaining elements having a value of either "zero" or “one.;
For the logical compare instructions, a "one" is p]aced in the 6'output
vector in each halfword location corresponding to the location of true
comparisons of elements in the input vectors & and B. A “"zero" is placed
in the halfword location corresponding to the 1b¢ation of false compari-
sons of the A and § input vectors.

No item count is stored for any of the Boolean vector compare'in-

strqctions.

- Example 1: A Vector Compare OR Singléword Boolean instruction with

ALCT comparison option set to search for "mixed zeros and ones."

%

Singleword Singleword o . Halfword

Vector R Vector B - ' Vgctor C
005A 0000 | 0
0000 | 0000 | 00
0048 :) - 0024 _ A 01

SASA - | ASAS | o)

-27-

New Features

Pipe Disable Bits‘

The times-four CP is provided with four bits in the Program Status
Doubleword (PSDW) for individually disabling any combination of the four
parallel pipelines. Bit positions 12, 13, 14, and 15 of the first word
of the PSDW disables pipes 0, 1, 2, and 3, respectively, when the bits

are "one." A "zero" in these bit positions enables the pipes if they
exist in the system. The Program Status Doubleword information is for-
matted és shown following. A description of the various fields is given

in the 1X CP Hardware Specifications on pages 3-19 through 3-27.

&

0 12 16 20. 24 28
: PIPE :
@ NOT USED DISABLE . CMU BSR cC RC
0 4 3 . : 31
at] AE AE
- COND| MASK PC .

The pipe'disabie bits are primarily intended for use by maintenance
and diagnostic testing. As an example of a diagnostic_applicatign, if is.
possible to disable all pipes, except pipe 0; and run an AU or MBU diag-
nostics program. Then, pipes 0, 2, and 3 can be disabled and pipe 1
enab]ed and the AU or MBU tests repeated. In this manner, aTl four pipes
can be tested, one at a time. If a particular pipe fails the test, then
the operating systém can be informed of the malfunctioning pipe. The |
operating system can be instructed to turn off the pipe in which the
failure was found by setting the proper disable bit in the PSDW of sub-

sequent jobs as they are assigned to the CP. The CP can continue processing

-28-

jobs in this degraded mode until the failure can be corrected. Also,

if the complete system files and status could be saved at periodic check-
points fo]fowing successful diagnostic tests, then it would be possible
to rerun all jobs executed since the last good checkpoint prior to the

detection of a failure by the diagnostic test program.

-29-

Vector Length Field Specification

This variation in-hardware design existing,betweeﬁ the timeé-one IPU
and the timés-four IPU has to do with a value of zero in the NI- or Ng-fields
of the vector parameter file. In the times-one IPU, if NI is zero, the
uself-loop routine is executed once, there is no inner loop, and the outer
loop count (N#) is not examined. Also, if N@ is zero, the specified
vector operation is executed NI times; and, then, the operation fs termi-
nated. This is no longer true in the 4X'6P. ‘

In the 4X CP, the vector operaticn becomes a NO OPERATION if any |
of the L-, NI-, or N@-fields are zero; In fact, the MBU will not even
be initialized with data from the vector parameter file. The IPU4 detects

the zero field condition and terminates the vector before it has had a

chance to start initialization.

-30-

Dual Look-Ahead

A dual 1ook-ahéad»pto¢edure is implemented in the 4X CP hardware
for decreaéing the wait time for acquiring instructions at the branch
address of a conditional branch instruction. In this method, two instruc-
ltion buffers (KA and KB) hold instructions to be executed. Each buffer
contains eight instructions. These buffers operate in a toggling fashion
such that one contains the octet of instructions from which the éurrent
instruction is being read, while the other octet contains the 1ook—qhead
octet (eight words) of instructions. These roles are reversed when the
address of the current instruction moves across the octet boundary into
the octet of instructions that were fetched by the look-ahead hardware.

A branch instruction breaks the normal flow of instructions through
the instruction processing pipeline when the brahch is taken. A delay
in addition to the wait time for acquiring instructions along the branch
path is due to the time taken in waiting for the branch condition to
be determined. For example, a Branch-on-Result-Code instruction must
wait for the result code to be set by the last result code modifying
instruction prior to the branch.

The dual look-ahead hardware prefetches the address of the branch
instruction before it is known whether the branch will be taken. .How-
ever, the request for the branch address is made only if the‘céhditiona]
branch instruction is located in one of the first four words of an octet.

Imposing th1s restriction on the location of the branch 1nstruct1on
is for the purpose of instruction recovery in cases where ‘the branch is

not taken. In cases where the branch fails, there will be four instruc-

=31~

tions remaining in the current instruction buffer which provide work for
the instruction preprocessor that can be overlapped with the request to
recover inétructions along the'nonbranch path.

In cases where the branch is taken, the instructions along the
;branch path will be available for execution earlier than if the dual
look-ahead hardware were not used. This is because the time required
to fetch the instructions at the branch address can be ovef1apped with

the determination of the branch condition;

ASC

T0:

FROM;

. CATEGORY:

SUBJECT:

- TECHNICAL BULLETIN

August 8, 1972

CP Checkout .

Hardware Development
Software Development
SDD '
System Engineering
System Test

bﬁi]] Kastner
CT

CP Instruction Clarifications and Instruction Timing Changes

The clarifications and changes of this bulletin are to be made in the Volume
titled "The ASC System Central Processor - May 1971". The clarifications involve
(1) the 1imits that must be observed when using large numbers in the BCLE and BCG

instructions and (2) the scale factor size when using the conversion instructions.
The changes are the latest figures for divide times in the Arithmetic Unit.

The BCG and BCLE instructions (operation codes 84, 85, 86, and 87)

require clarification concerning the range of numbers over which these
instructions are effective. Programming Notes are being added to these
four instructions as follows:

1)

2)

BCLE, Op. code 84 and
BCG, Op code 85

Programming Notes: This instruction is effective for numbers within
the range |(AR) + (AT) - (AT+1)| < 23'-1. | |

Also, neither indexed nor indirect branch addressing is possible
for BCLE or BCG instructions.

BCLE, Op. code 86 and
BCG, Op code 87

Programming Notes: This instruction is effective for numbers within
the range |(XR) + (AT) - (AT+1)] 5_23] '

.. Also,. neither indexed nor indirect branch addressing is possible
for BCLE or BCG instructions. '

-1
ie

éé?ﬂfXASINSTquEyTS

ASC

-

These Programming Notes will appear under the BCLE
3-135 through 3-138 cf the Volume "Th

= w1 ¥ 1A LES R Y J HH i1

-
w
I,
)
—ln
=
n
&
5
o
0
o
e 0
o
=3
n
=)
=

S
May 1971" when it is re-issued.
B. A clarification of the size of scale factor is needed for both
scalar and vector conversion instructions. The instructions covered

. by this clarification are:

Floating Point to Fixed Point Conversion

Scalar Vector
FLFX VFLFX
FLFH VFLFH
FDFX VFDFX

Fixed Point to Floating Point Conversion

Scalar Vector
FXFL VFXFL
FXFD VFXFD
FHFL VFHFL
FHFD VFHFD

For these instructions, the scale factor is supplied as one of the arguments
for the conversion process and is obtained from halfword location e The scale
factor is a 9 - bit signed integer and is represented in 2's complement notation
for negative numbers. The sign bit is located in bit position 7 (counting 0
through 15) of the 16-bit halfword.

b

C. Timing changes have occurred, particularily in the scalar and vector
divide operations. The Arithmetic Unit time for division in CP clock times
is as follows:

{é’_jTEXAs INSTRUMENTS
1 M C O L 3N -]

aPoOmaAT

ASC

Scalar

D

DI

© DH
DIH
DF
DFD

Changes to Table I

on page 2-

Divide

30
30
30
30
15
26

4.

Vector
Divide
VD 18
VDH 18
VDF 8
VDFD 18

Changes to Table 3
on page 2-22.

Timing changes have also occurred in the scalar Increment (Decrement) and °
Skip instructions and in the Stack Modify instruction. These changes are to

be made in Table 1 on page 2-6.

ISE
ISKE
DSE
DSNE

MOD

was is now
3 4
3 4
3 4
3 4
3** 5**

** Modify takes 2 passes through the CP pipeline from level 3.

%&iﬂIXASlNSTRUMENTS
I NCORPORATILID

Bl FdaZaon

Bill Kastner

MEMORANDUM -
25 August 1972

T0 Al Riccomi

COPY TO - Gary Boswell
Charles Stephenson
Joe Watson

FROM © Bill Kastner

SUBJECT PROPOSED VIRTUAL MEMORY/DEMAND PAGING
. 'HARDWARE DESIGN FOR ASC

When an instruction request is made outside the page boundary (page
‘ fault), the following is possible with changes:

1. The protection registers for read, write, and execute are used to
define page boundaries. If more than one page is defined, then
additional pages must be defined over consecutive virtual addresses.

2. A request for an address outside the resident page boundary results
in a protection violation (PV) associated with the octet of in-
structions reguested for the KA or KB files.

3. VWhen an instruction with a PY flag reaches level 3, the PV signal
is sent to Master Hard Core causing a CP Details exchange. This
is different than the present design in that a PV resuits in a CP
maintenance exchange which is more abrupt, and the job is not
restartable.

4, Following the exchange, the operating system must examine the CP
details map and determine the cause of the protection violation -
whether it is caused by:

4 Reéister
(a) Instruction request o . (P3, LA)
(b) Load File - - (AR)
(c) Store File ‘ S (AR)
"(d) Indirect request (AR)
(e) Scalar read XBA

(f) Scatar store : , IBA

Al Riccomi S -2- ' 25 August 1972

Register
"(g) Vector read -
(h) Vector store ' ZBA

5. Upon determining the cause by examining the various registers listed
in the preceding, the operating system can load the non-resident
page into real memory and then reschedule the CP job for execution.

If the request is made by a Load File, Store File, or Indirect instruction,
then the page fault address can be found in the AR register of the CP
details map. The control register (C3) at level 3 would have to be
examined to determine whether AR contained an address of a LF, LFM, ST,
SFM, or Indirect instruction before it would be worthwhile to check AR

for its. page fault address.

Branch instructions cause an instruction request, but the branch address
in AR is moved to LA when the recuest is made; so it would be easier to
lTook to LA for an address that is not in real memory for branches.

Operand requests by scalars are sent through the XBA register of the
MBU, so read addresses would be found in the XBA location of the CP
details map.

Scalar Stores are more difficult to implement. The Hard Core of the MBU
would have to be changed to cause a final store of data still residing
in the ZB-buffer. The forced store must take place because the MCU

does not accept data for which an address protection volation occurs.
The operating system would then have to extract the ZB octet from the

CP details map and insert it into the virtual page space where it was

to be stored but could not be stored because of the page fault. Vector
stores to memory could be handled in an identical way, obtaining the
storage address in each case from ZBA of the CP details map.

Vector reads are the most difficult of all because the page fault address
has been discarded by the CP. The look-ahead hardware continues past

the PV-causing address and does not save requested addresses. Also,

the vector parameter file (VPF) that initialized the vector has been
overwritten by a possible next vector instruction. Lesing the VPF means
that the pattern of addressing memory cannot be recontructed by the
operating system.

A possible solution exists to this problem. "That is, halting the CP
for a PV, then sending three CCR commands to the MBU, requesting the
hard core register PA containing the PV address. Now, a CCR command

is sent to the'CP requesting the CP details exchange. A1l of the pro-
cess of examining the different registers and control information in

the CP details map would still have to be performed to determine whether

Al Riccomi . . -3- 25 August 1972

the CP was running a vector which caused the page fault. If a vector
read caused the fault, then the CCR-extracted address would be used to
call in the new page.

The process proposed is far from being "clean" or efficient; it is only
a possible solution to the Virtual Memory/deman paging problem.

BILL KASTNER
WDK:jc

Ell,

1. Prage fadle will occor w Uik
The region dotied ag exceccle
allowed /? 77 o /NZZ.;Z'IM yo5. 70 em
peirs. Lo E

|
{

vaux% Mﬁwr&/

[T W T

e MAP

LECI(TERC

e

2
3
e
£ KeeuTd & —\
ALiowep /’a7a. foud T geevrs ,’"74
azZ'Z}h/f Ji amacle Ca)

€4<&Cu5} yﬁ—z;v///%ﬁnfg,/
A% _
\/ /e iy /,‘,éu [u,’./«Z’

™

s?\)m

e —

S Cec vpg //_7[c_(//ﬁz‘-ﬁ/l ,’f

4 —
pmade Lo exei—lo

,Vn}b/uhf /ﬂ;j e f’ //A//»/

14 Z nvd—VeC(a’e.Vh-(/i

Crrityr

Q‘ A/dl/e ,)/dv cd«r/‘a/e,rez/ aqy M C(/ é/&iq/c e é'a
/l/“'ﬂ'é—e G v C'/e-v’ﬂ-a\ e ‘ fﬁr/‘f f/_’dq j[Cj’ S oA /rr//&.zv-«f ‘? ﬂ

MEMORANDUM
20 September 1972

T0 A1l ASC Personnel
FRCM Bill Kastner

SUBJECT VECTOR IﬁNER OR OUTER LOOP LENGTH
: SPECIFICATION CHANGE

Assembly Language programmers should take special note of the vector)
length specification change on the times four CP and subsequent ASC's
using the 4X CP Instruction Processing Unit. This change requires
that assembly code previously containing values of "zero" for the
inner or outer loop counts must now contain the value "one." If
a count of “"zero" is placed in any one or more of the L, NI, or NO

fields of the vector parameter file, then the vector becomes a
NOP.

BILL KASTNER

BKfo Bl o gtron

MEMORANDUM
20 December 1972
T0

&

COPY TO

FROM
SUBJECT

Hardware Development

System Planning and Applications

4X CP Test Development

Bi1l Cohagan
Tom Courtney

Dave Paterson

Joe Watson

Wayne Yinkelman

—>Bi1l Kastner

MULTILCOP BEHAVIOR OF SELECT,
REPLACE, AND MAP INSTRUCTIONS

Clarification of the Select, Replace, and Map instructions is needed,

particularly for multiple locp operations.

First, in order to bring

the varying lengths of these vectors to 1light, observe the table and
figure following representing the vector lengths for one self-loop.

Index

Vectdr Self-
Loop Length
Inst. Index Boolean

Select A Shert Long
B Long Long
C Short Short
Replace A Short Long
B Short Short

C Long Long

Map A Short Long
B Long Long

C Long Long

W >

S

()

Boolean

Z

Multiloop Behavior of
Select, Replace, and

Map Instructions -2~ 15 December 1972

The figure shows six cases - two for each of, the Select, Repiace, and
Map instructions. The index vector is the A vector and is normally the
short vector for the three index cases. Boolean vectors use a long A
vector_épr the Boolean operators. These Boolean vectors are as long

as the B vector for_%glect and Map and as long as the C vector for Re-
place and Map. The C vector is short for Select, while the B vector is

short for Replace for both index and Boolean operators.

The vector self-loop length, L, for Select, Replace, and Map is based
on the long vecfor length. For either index or Boolean operations, the
long vector is B for Select and Map and’t for Replace and Map.

A key hardware concept is that vector address generation is independent

of vector element usage. That is, the Memory Buffer Unit (MBU) develops
vector addresses and counts down its vector length register some interval
of time ahead of vector element usage by the Arithmetic Unit (AU). For
these vectors, the AU does not know of the end of a self-ioop. The AU
simply continues processing data as it appears at the AU receiver register.

-tp

The application of inner or outer loop deltas to the.K'and B vector ad-
dresses occur after L (self-loop length) element addresses have been
generated, regardless of the number of elements that have been used up

to this point in the vector operation. The only way an inner or outer
loop delta can be applied at the proper end of self-loop of a short
vector is by finding a problem for which the number of indices per self-
loop is a constant; and this constant times another multiplier, K, is
equal to L (the 1on3’vector length). Even for this rare case, the deltas
are applied to the A vector only once every K times that the data vector
length L is reached. If this unlikely condition is not satisfied, then
the inner or outer loop delta will be applied somewhere in the middle of
a self-loop of the short vector. Therefore, if multiple self-loops are
used, then it js safer to use a delta value of one (1) for inner or outer
loop increments in order to avoid having the index vector jump some non-
unity distance out in the middle of a self-loop.

To summarize the use of loop increments, all short vectors listed in the
table preceding should use inner and outer delta increments that are +1.
Any long vector in the table may use arbitrary increments for inner or
outer loop deltas.

Another important fact to remember when using the indexed Select, Replace,
and Map instruction is that the AU accumulator is not reset to "zero"

at the end of each self-loop. The AU, accumulator is compared acainst

the index value presented by vector A to determine which elements are

to be transferred by the vector operation. Therefore, in order to make
these multiloop vectors work, the index values presented to the AU on

Multiloop Behavior of
Select, Replace, and
Map Instructions ' ‘ -3- ’ 15 December 1972

the'ﬁ vector side should continue to increase in value from one self-loop
to the next. Such index vectors are generated by the Vector Compare and
Peak Pick instructions with the VI most significant bit set to "one."

The indexed Select, Replace, and Map instructicns do not employ the VI
most significant bit option but do act as though this option bit was set
to "one."

BILL KASTNER
WDK:ic

-~ MEMORANDUM
9 April 1973
T0 ' System Planning Group
“COPY TO ‘ Gary Boswell Al Riccomi
Gary Cobb Charles Stephenson
Bi11 Cohagan Marvin Talbott
Sid Nolte Hollie Thompson
FROM Bill Kastner
SUBJECT TIMES-FOUR INSTRUCTION PROCESSING UNIT

SECTIONAL DESCRIPTION

A general description of the Times-Four Central Processor is included

as an attachment to this memo. This material was originally written
for, and has since been incorporated in, the Central Processor Volume
of the ASC System Hardware Manual. This material may be found beginning
on page 1-14 of this manual. It is released here in memo form for ease
of access.

BILL KASTNER

WDK:jsc
Attachment

GENERAL DESCRIPTION OF. THE
TIMES-FOUR CENTRAL PROCESSOR

- The times-four Central Processor (4XCP) is comprised of nine units --
one Instruction Processing Unit (IPU4) to process the CP commands, four
Memory Buffer Units (MBU's) to provide central memory operands, and
four Arithmetic Unitsr(AU's) to perform the specified arithmetic opera-

tions. The structuring of these units is shown in Figure 1.

IPU4

AU : AU AU AU

FIGURE 1. 4XCP UNIT STRUCTURE

The times-four IPU may also be used in a 1X, 2X, or 3X configuration
to achieve the corresponding proportional increase in computational

power. Figure 2 shows the unit arrangement for these three machine

powers.

IPU4 IPU4 IPU4

- U L -
MBU o MBU "1 MBU MBU MBU MBU
AU AU AU AU AU AU
1X ¢p 2X CP 3X CP

FIGURE 2. THE IPU4 CAN BE USED IN A 1X, 2X, OR 3X
CONFIGURATION IN ADDITION TO THE 4XCP ARRANGEMENT OF FIGURE 1.

The 4XCP provides four parallel execution pipelines below the IPU.
Any mixture of scalar or vector instructions may be in execution simul- |
taneously in the four pipes. -In any of the CP configurations, the inter-
action between an IPU, MBU, and AU is equivalent to that of one pipeline.
‘The flow of data is from the IPU to the MBU, from the MBU to the AU, and
then from the AU back to the MBU for stores to memory or back to the IPU
for arithmetic results to the register file. The IPU is the only unit
related to the configuration, and it performs ai] decisions pertaining
to the routing of inétructions to various pipes. MBU's and AU's dre:not
’awaré»:6f=~.:o'theri’-"MBU‘-AU, ‘pairs.

Four identical IPU-MBU interfaces exist at the IPU for data and
control. A spec1f1c MBU is act1vated by contro] s1gnals from the IPU
when data is transferred to that MBU F1gure 3 shows the 1nteract1on

of an IPU4, MBU, and AU for a 1XCP tonfiguration.

‘ . "INSTRUCTION
M <€ > PROCESSING
UNIT

"

R Rl
l]
[
: 1
V.

MEMORY
(M € 3 BUFFER
UNIT

g

___DATA

ARITHMETIC
' --- CONTROL

UNIT

FIGURE 3. ARRANGEMENT OF UNITS FOR 1XCP.

In the MU1tip}ehpipe1ine CP's, each MBU has its own dedicated memory
port. The tihes-four CP, for example, uses five memory ports - one for
the IPU4 and four for the MBU's.

The AU details information is loaded from or stored into memory
only during maintenance commands and context switching. AU memory re-
quests, therefore, occur infrequently and are routed through an expander

cascaded on another expander as in Figure 4.

— AuO
[AUY
_ | L AU2
MEMORY PORT [~ 3 OTHER LOW a3
~ — 1 DATA RATE |
~—} DEVICES

FIGURE 4. AU DETAILS MAP IS LOADED OR STORED
INTO MEMORY THROUGH EXPANDERS.

The function of the IPU1, MBU, and AU is covered in Section Bl of
the ASC Hardware System Manual. Section Bl of this manual gives a general
'description of the times-one Central Processor and will serve useful in
 providing a basic understanding of the CP in preparation for the material

on the times-four block diagrams that follow.

IPU4 Sectional Description

The Instruction Processing Unit (IPU4) for the 4XCP contains six
functional sections. These are shown in the block diagram of Figure 5

and listed following:

Instruction Address Development
Instruction and Register Files
Instruction Processing |
Register Stack

Register Comparisons

Level 0 Through 4 Control

These functional sections are now described.

Alweet SS

P\

<(:: TWO-WAY BU

3

INST
AND

REG.

FILES

AU

DA LA, PA
- DEVELOPMENT
AR | P3 PA
LN LEVEL 0-4
BR e CONTROL
S ~ Vv
INSTRUCTION
R PROCESSING
Ap
>
RO |~
’ -
REGISTER
. COMPARISONS
LA
v v REG.
R AP
STACK
FIGURE 5. INSTRUCTION PROCESSING UNIT BLOCK DIAGRAM

-S-

-6-

] Instruction Address Development Section

PR

jon Address Development Section are

ct

3 $rans
tions of the Instruc

m

as follows:

Maintain the current instruction address

Generate the look-ahead instruction address

Save the LLA and PB instruction address

Make all IPU memory requests
Figure 6 shows the registers and data paths of the instruction address
devé]opment section. The present address register (PA) holds the in-
struction address of the instruction currently being fetched from one
of the instruction files, KA or KB. PA is incremented by one each -
clock that a new instruction is loaded into level 1 of the instruction
processing pipeline.

,A branch instruction at level 3 loads its branch address into PA,

LA, and PA when a branch is taken. LA is the look-ahead register and
normally keeps one octet ahead of the present address in PA. @A holds
the memory address while it is being sent to the MCU over the memory
address lines.. @A is the register through which all IPU memory re-
quests are made for instructions, indirect cells, objects of executes,
load file, store file, and vector p@rameter loads.

BA is the branch address registér used to save the LLA and PB in-
Strﬁction'branch address. The address in BA is requested when the length
counter for the LLA and PB instructions counts down to a point indicating
that BA should be requested instead of the normé] next look-aghead address
in LA, After'BA is-requested, the next downstream instruction dddress at

the target branch is saved. This provides a recovery address so that the

AR

A

-5
P3
o
v
BA
¢
¢
] l
LA i
& +8
2 g
&
&
W l v v ‘
PA PA '3
L—fs (1]

\
FIGURE 6. INSTRUCTION ADDRESS DEVELOPMENT SECTION

1

-L-

-8-

program can continue at an address one past the address of the target

° Instruction and Register Files

The instruction files are ~the KA and KB buffers of the IPU. Each
buffer holds eight 32-bit instruction words. These buffers are used
alternately such that a set of eight look-ahead instructions are being
fetched from memory for one buffer while a set of eight current instruc-
tions are being read from the other buffer. The LA and PA addresses
correspond to instruction octets associated with the KA and KB buffers.
The sense of the relationship (LA with KA and PA with KB or vice versa)
changes with each crossing of an octet boundary as instructions are
read from the instruction files.

Figure 7 is a diagram of the instruction and register files. In
Figure 7, KCM is a set of eight synchronizing registers to capture in-
structions or data on the two-way MCU data bus. KCM also holds the
octet for‘an indirect address request or a request for the object of
an execute instruction. When KCM is used for executes or indirects,
the instructions in KA or KB are not disturbed. A path (line 1) is
shown in Figure 7 from KCM to the instruction register (IR) at level 1
of the instruction processing section for routing indirect cé]]s or
execute objects to the instruction processing pipeline.

The register files are the program-addressable registers of the CP.

These files are separated into octets (eight 32-bit registers) labeled

~ TWO-WAY 1
BUS ~ ‘
] KCM] AN
| —af KA '
IR
->
& KB
INSTRUCTION
FILES

| T
, A

2°y3
| w > XR
B oo
21 31 a
J i
C
D

I KCM

A

= B

v

A
v RP
D

7 - Vv

REGISTER \g
FILES

p OCTET SELECTION
W WORD SELECTION
SD STORE DETAILS

FIGURE 7. INSTRUCTION AND REGISTER FILES

metic:regsﬁtefs. I is the set of eight index registers, of which only
seven can be used in indexing operations. Index register 0 cannot be
used for indexing but can be used for scratch pad operations. V is the
set of eight vector parameter registers.
| The output lines to the right side of Figure 7 are inputs to the
- following list of registers in the instruction processing section:
IR Instruction register
BR Base register
XR Index register
AP Address output
RO Regisier output
Inputs to the register file may come from KCM in the case of a Load
File instruction, from another file of the register file in the case of
file-to-file operations; or from cne of four Arithmetic Units in the case
of AU results. Load File from memory operations (line 3) or file-to-file
operations (1ine 5) use the octe% selection network of A@ and then feed
dataAto the register file inputs over line 2. AU_outputs afe routed to
the alignment hardware in the lower left of Figure 7 and then to the register

file inputs over line 7.

° Instruction Processing Section
Four pipelined levels are contained in the IPU. The registers and
data paths of the instruction processing pipeline are shown in Figure 8.

The basic function of each of these four levels is as follows:

Level Function
1 Instruction decode
2 Base and index selection
3 Address development
4 Register operand selection

Level 1 accepts one 32-bit instruction word at a time from the KA and

KB instruction buffers. In parallel with this instruction transfer, the
instruction address contained in the present address register, PA, of the
instruction address development section is moved into register P1 of
level 1.

Program counter values are held at each of the first three levels
of the pipe and correspond to the address of instructions at each level.
The instruction address is used at level 2 if the instruction is a pro-
gram counter relative branch. The address is also used at level 3 if the
instruction is a Branch and Load Base or Index type operation (BLB or BLX).
These data paths are shdwn in Figure78 from P2 to the ADDER in level 2 for
- the case of program cohhter relative operations and from P3 to the Address
Output register (A@) of level 4 for fhe BLB and BLX operations.

Instruction decode is accomplished at level 1 by means of a read- -
oth memory (ROM), shown in Figure 8 between the registers of level 1]
and 2. Each instructioh arriving at the IR register of level 1 applies
its 8-bit operation codé'field to the address input of ROM1. These eight
bits address one of 256 ROM locations. The ROM output is a 32-bit word
contaihing control information for instruction processing at level 2.
Another ROM i driven at Tevel 2 by op code information handed down from
Tevel 1 when the instruction at level 1 moves to 2. These two ROM's pro-

vide operation deccding for various signals used to sequence controllers

-12-

at levels 2 and 3 of the instruction processing section. Control register
C4 receives a sma}l portion of its information from C3 and the remainder
froh control signal outputs of the level 3 controller. These signals from
C4 control the interface to the Memory Buffer Units (MBU's).

Turning to the registers on the left side of Figure 8, we find the
- effective address development hardware. The effective address is formed
from the addition of an index, base, and displacement value that is entered
into the XR, BR, and NR registers, respectively, of level 2. These registers
are entered with their selected values as the instruction which selects
them moves from level 1 to level 2.

The selection df XR and BR is done by the selection networks in the
Instruction and Register Files Section shown previously in Figure 7. The
NR register receives a’cépy of the N-field of the instruction word; this
was contained in register IR on the previous clock, assuming that instruc-
tions move through IR at the rate of one per clock. This assumption is
made for ease of descrfption and does nbt represent the real case for an
‘ordinary mix of instructions.

The shift logic following the XR register performs displacement in-
dexﬁng for different word size instructions. For example, a doubleword
instruction causes a left shift of one bit position before the index
register value in XR is added to the sum of BR and NR. A singleword
operation causes no shift, and a halfword operation causes a one-bit right
shift.

Addition of XR, BR, and NR takes place in the 3-input adder of level
2. The resutt-of this-additionis-placed—in the address register, AR, of
level 3. For branches using program counter relative branch addresses, the
program counter value in P2 becomes one of the inputs to the.3-input adder,

replacing the base address in BR.

-13-

Immediate operand development also employs the adder of level 2 to
perform the summation of an index plus an immediate value from the N-field
of the 1n§truction word. Arithmetic immediate operands require sign ex-
tension if the value is negative. This is carried out by the sign extension
hardware at the output of register AR. From the‘immediate operand speci-
fications for singleword operands, the sign extension occurs over the
eight most Significant bits of AR. Immediate operands are passed on to
the MBU from the AP register at level 4.

Instructions that ordinarily reference memory may reference the
register file if the effective address (alpha) is less than or equal to
2F (hex.),#aﬁd:the“MAffer‘ofzthe instruction word is equal to zero. If
alpha < 2F and M = 0, then a register of the register file is selected
by the Ap selection network of Figure 7 and entered into the AP register
at level 4. This alpha register operand is sent to the MBU in parallel
with the register operand from register RP. R@ selection is also shown
in Figure 7, the outpdt of which appears as an input to the R@ register
of_Figure 8. RO denotés register output, and A@ denotes address output
from the IPU tovthe MBU. AQ is used for memory operand éddresses to the
MBU for ordinary memory referencing instructions when the condition, alpha
< 2F and M = 0, is not satisfied.

Register AR has twelve additional outputs going to four XA registers,
four YA registers, and four ZP registers. The XA and YA registers hold
the memory octet addresées of resident data in the X and Y buffers of the
four MBU's. Subsequent addresses arriving in AR are compared with the
addresses of resident data contained-in these X and-Y buffers. Eight
comparisons are made, four of the type AR versus XA(p) and four of the

type AR versus YA{p), where p represents pipes O through 3. If a com-

_-V l-

LEVEL 3
CONTROL

IR PA
~\
! |
IR P1 LEVEL 1 -
| 'li. “ROMI)
: : o | =
NR P2 LEVEL 2 T2 Re| - c2
COMPARISON
LOGIC
(: ROM2
¥ -JLq]
P3 LEVEL 3 R3 C3
SIGN EXT
bo b} i ij __.
XA(0- 3) _YA(0-3) | Zp(0-3) |_LD(0-3) R:L-] I!
ZB(0-3) 1] 1
b [Tv__l Lb

FIGURE 8.

V

TO COMPARISON LOGIC

INSTRUCTION PROCESSING SECTION

TO MBU S

-15-

selection?is partially based on the residency of read and write data
within the MBU's.

The ZP(p) and ZB(p) registers represent the Z-pipe model and are
used to keep track of memory write addresses for scalar data to be stored
as the data passes down through the MBU and AU portions of tﬁe central
processor. A Store instruction entering pipe p transfers its memory
storage octet address from the effective address register (AR) of level
3 to the‘Z-pfpe register, ZP(p), of level 4. This address is held in
ZP(p), while the data to be stored passes through the: CP:pipélire into
the Z buffer of the MBU. The octet address remains in ZP(p) as long as
the data is resident in Z. As this data is forced out of Z into ZB due
to a scalar write into another octet (entering pipe p) or due to a vector
operation starting in'pipe p, the address in ZP(p) is transferred to
ZB(p). The octet addfess remains in ZB(p), while the memory write opera-
tion is taking place. Register ZB(p) becomes inactive again as soon as
the write cycle has completed. The usage of these Z-pipe registers for
monitoring read-write.address conflicts is explained more fully in the

‘,hazard,cohparison description.
~ Continuing with a descriptioq of the registers shown in Figure 8;
~the T2 and T3 registers are seen linked to the instruction register,
IR. The T-field of the instruction word in IR is copied into T2 and then
into T3 as the instruction passes down through levels 2 and 3. At level
1 the three least significant bits of the T-field in IR are used to

select an index register. The contents of the selected index register

-16-

are entered into the XR register of level 2. Bias hits are supplied

by hard wired 1ines to the most significant end of register T2 in order
to select.the index file of the register file. Also, T2 is used to
Tocate index register hazards for the case of a Store at level 3 writing
into an index register.

T3 is used for index or arithmetic register selection by special
register modification, test, and branch instructions (BCG and BCLE).

For these instructions, T3 selects both a register to be used as an addend
for the modification as well as a register to be used for the limit
value ih the comparison test. These two registers are selected from
an even-odd registef address pair, so the T-field of the instruction

word must be even. |
| M2 is used to defect base register hazards by comparing the value
in M2 (biased by an amount to select the base register file) with an
' addresé developed by a Store instruction at level 3. The Store instruc-
tion must have an effective address in AR that points to the needed base
régister (alpha <2Fand M = 0) for the hazard to exist.

Registers R2, R3; and R4 carry the address of the register operand
specified by the instruction word. The R-field in IR is four bits,
speéifying one of a set of sixteen possible registers. The register
set is specified by the iype of instruction; i.e., arithmetic, index, or
base type. Two bias bits are appended to the most significant end of
the R-field, while one bit is appended to the least significant end of
the four-bit R-field. These three additional bits come from ROMI and
appear as deceding of the instruction type. The three bits are inserted

at level 2 and included as part of registers R2, R3, and R4 forming a

-17-

seven-bit register address. The six MSB's specify one of 48 singleword
registers of the register file, while the LSB is used to specify the left
or right halfword for halfword instructions.

R3 contains the register address which is used for source register
selection. This address is applied to the R@ selection network of Figure
7. The output of the selection network goes to the RJ register at level
4. Doublewords are selected into Rp. Alignment of singlewords and half-
words from this doubleword is done by the Memory Buffer Unit.

Another output from R3 goes to the register hazard comparison logic
described shortly under "Register Comparisons." R4 copies R3 and forms
the beginning of the register stack which drives the register comparison
logic.

Registers LD(0) through LD(3) are the four last destination registers.
LD(p) is updated with the address of the register being modified. This
information is needed for detecting a condition where the last register
modification instruction to have entered a given pipe happens to be mod i fying
the source register needed for the current instruction at level 3. Rather
' thén waiting for the modification to take place in the register file, it
is possible to use special hardware pathsfrom the output of the Arith-
metic Unit (AU) to the input of the AU. Using this path, the current
instruction can pick up the modified register value at the input to the
AU. Therefore, the current instruction may proceed to the AU input of
the pipe containing the required register value and obtain that value via
the AU short-circuit path without waiting at level 3.

This.cgmgletesmamdescniptionuofuthe‘instructionwprocessﬁng~section"

of Figure 8. Ve proceed now to the Register Stack shown in Figure 9.

-18-

R4

& |5 ¥ »
R5(0) R5(1) R5(2) R5(3)
;— : !— H—
R6(0) R6(1) R6(2) R6(3)
v_ w—* v Y
R7(0) R7(1) R7(2) R7(3)
& £ Y] 2 £
R8(0) R8(1) R8(2) R8(3) I
—L:a—‘ _L_z__ _l_L__ l 3
R9(0) 1 Rro(1) R9(2) R9(3)
I—$ _J_.L_. l s
R10(0) R10(1) R10(2) R10(3)
[R11(0) R11(1) R11(2) | R11(3)
| Rr12(0) | R12(1) R12(2) |_R12(3)
FIGURE 9. REGISTER STACK

-19-
Register Stack

Destination register addresses are kept in the register stack; this
stack holds the addresses of registers to be modified by instructions

still being processed below level 3 of the CP pipé]ine. The register
stack begins with one register at level 4; it then becomes four registers
wide af level 5 and continues this width through level 12. A width of

4 is provided to a]]ow four pipes to process scalars in parallel. The
singular register (R4) at the top of Figure 9 is the same R4 register

as shown in Figure 8.

For a given pipe, each register of the register stack holds the
register destination address of an instruction currently being processed
at each level. These instructions have data which is destined to modify
one of the program-addressable registers of the register file (files A,

B, C, D, I, and V). Other information pertaining to a given instruction

is kept in the register stack and travels along with the instruction as

it proceeds down the pipe. This other information deals with the type

of instruction; i.e., word size, result code setting, compare code setting,
arithmetic exception possibilities, Z-store type instructions, etc.

The register stack has two main purposes: (1) it provides the neces-
sary control signals at the AU output level for routing data either to
the IPU or to the MBU; (2) it supplies the register comparison section
with the register destination addresses of instructions below level 3.

Registers 5, 6, 7, and 12 of the register stack correspond to the
MBU input, MBU output, AU receiver, and AU output Tevels, respectively.
Registers 8, 9, 10, and 11 represent internal Tevels of the Arithmetic
Unit but ar» 121 in a cne-tc-one relationship with sections of the AU.

These regic'er- ar> intended for timing; that is, to keep track of in-

-20-

structions while they are passing through the internal levels of the

AU. Figure 9 shows the output from register 7 going to the input of
registers 8, 9, 10, 11, and 12. These paths allow the timing from AU
receiver (level 7) to AU output (level 12) to be varied from one to five
clocks. The one-clock path goes directly from 7 to 12, while the five-
clock path goes through all registers (from 7 through 8, 9, 10, 11, and
12). For example, a one-clock AU operation is a Load, Store, or Logicé]
instruction which goes directly from the AU receiver to the AU output
Tevel. Logical operations are performed in the AU output section. A
floating-point add instruction takes five clocks in the AU and uses all
registers of the register stack. The AU sections used for the floating-
point add are the Egbonent Subtract, Align, Add, Normalize, and Output.
Most scalar instructions fall within the AU timing range of one to five
clocks. However, the floating-point doubleword multiply and all divide
instructions take longer than five clocks in the AU. Tracking of these
instructions is accomplished by holding data at level 8 of the register
stack until four clocks before the end of the operation. In this manner
the register address and control information arrive at level 12 of the
register stack simultaneously with the arrival of the AU result at the
AU output.

Outputs from each register of Figure 9 go to the destination inputs
of the register hazard detection logic of Figure 10. The destiﬁation
inputs enter from the left side of each of the four pipe columns shown
in Figure 1. source register inputs appear at the top of each column.
Each of the snurce register inputs (T1, M1, R3, and AR) is repeated four
times for each matrix of comparisons, whereas the destination inputs

come. from separatz registers of the four register stacks. The symbol,

SOURCE —

I__-” DESTINATION

- ¥

R8(0)

R9(0)

R12(0)
R2

At A A DDA D
AN VAN VARN VAR VAR VAR VAR VAR Y,
AN AW AWANWANWAANWAANAL
SIA AN ZEANVARN VAR N VA U7 A NV N~
MDA DD D DD s
=N VAN VAL VAL VAN VAAN VRNV AN
DM D MDD DM
SNV VAAN VAN VAN VAL VAR VRNV
e M MDD DD DD
EANVAAN VAN VAN VAN VALV ARN VARV
wdD MDD MDD D DM
SAVZEANVALN VAL NVALN VAL NVALN VAR U7 AR
D MDD MDD DM D =
=V U U UV WUV U U WV
DD MDD DD DD
AN VANV AN VAN VAR VARG VAR G VAR VA
ed DN DD DN DD DN
CANVAAN VAR VAL VAL VAN VAL VAR
MDA MDD MDD MDD DA
e\ UV U WUV U UV UV UV H
AW ANWANAN AN AN
=V \UV WUV WUV UV U U UV
DD D DD DD
SN ZEANZERN VRN VAN VAN VRN VAN
A ADANDDADADADDDAL D
/TH.[\/\/\/\/\M L/
N A MDD DM
U CN\ VAR VAR VAR VARG VA S B g Y
e D D D DL DD DD
s N4/ O\ U/ U/ UV UV UV UV UV
o \T M D MDD DD DD
A /.Mx U UV U I\ L U/ UL U

AR

R3

PIPE O

REGISTER HAZARD DETECTION LOGIC

FIGURE 10.

-22-

{Ef); at the intersection of register inputs represent a 7-bit comparison.

n

ame register address

A comparison at an intersection is true if the
appears‘&n both horizontal and vertical lines at that intersection. If
~ both source and destination are halfwords, then a register hazard exists
if the address agrees in all 7-bit positions. If the larger of either
the source or destination register is a singleword, then a register hazard
exists if the address agrees in the six most significant bit positions.
A register hazard exists if the address agrees in the five MSB's for the
cases where the larger of either the source or destination register is
a doubleword. |

The table following shows the number of most significant bits in-
volved in the hazard detection for register sources (R3 and AR) versus

the register destination stack for the various word sizes.

Source Word Size

Destination Double- Single- Half-
Word Size word word word
Doubleword 5 5 5

Singleword 5 ., b 6
Halfword 5 6 7

The specific type of hazard detected by the comparison logic of

Figure 10 is 1isted as follows:

T1 vs. (R2 through R12 and AR) Index hazards
M1 vs. (R2 through R12 and AR) Base hazards
R3 vs. {(R&-through R12) " — Register hazards

AR vs. (R4 through R12) Alpha register hazards

-23-

T2 vs. AR , Near range index hazard

M2 vs. AR Near range base hazard

Last destination comparisons are shown in Figure 11. In this figure
the LD(p) registers hold the register address of the last instruction
entering pipe p that had a register destination. Comparisons from LD
are made against both R3 and AR. R3 contains the register operand source
address, and AR contains the alpha register operand source address. Only
the seven LSB's of AR become involved in the comparison and those only
when the address in AR is less than or equal to 2F and the M-field of the
instruction is zero (Alpha < 2F and M = 0). It is this condition which
specifies that the address in AR will be used to address a register of
the register file.

A true comparison of LD(p) versus R3 indicates that it is possible
for the instruction at Tevel 3 to proceed down pipe p and pick up its
register operand at the Arithmetic Unit rather than to wait for the last
register destination instruction of that pipe to place its result in the
_ register file. The process of picking up an operand at the AU involves
using the AU "short-circuit" path from the output to the input of the AU.
Two paths are provided, one for register short circuits (LD versus R3
comparisons) and the other for alpha register short circuits (LD versus
AR comparisons). Outputs from these eight comparisons are used in the
scalar routing logic that determines which pipe will be selected for a
given instruction at level 3.

The 1ogj¢a1 §§ructqre“qf thg cpmparison to determine‘X,VY, and Z
buffer residency as well as instruction and operand hazard checking is

shown in Figure 2. This figure is composed of registers LA and PA from

-24-

R3 !

o me e -

AR3

LD

(0)

LD(1)

LD(2)

LD(3)

FIGURE 11.

LAST DESTINATION COMPARISONS

-25-

AR

21

—®— LA

ZP1

P2 |-@—

ZP3

1 _zpo

21
780 &

o4

ZB1

ZB2

B3 O

Npupupupes
NpupuPUP|

P1

P2

P3

21

—®— PA

24

24

XAO

XA2 |

21
—-@——

—®— XAl

__®@—
—@— XA3

o & & of o—

ST e —

YA3

21

—®— YAO

@ a1

@ YA

@

FIGURE 12. HAZARD COMPARISONS

-26-

Figure 6 and registers P1, P2, P3, AR, XA(0-3), YA(0-3), ZP(0-3), and
ZB(0-3) from Figure 8. The first comparison on the left side of Figure 12
is LA versus AR. This comparison is for the purpose of detecting instruc-
tion hazards caused by a Store instruction at level 3 with its storage
address in AR. Since LA contains the look-ahead address of instructions
already requested from memory, a true comparison of LA versus AR means
that at least one instruction in the octet addressed by LA will be an old
instruction. It will not contain the modified instruction caused by the
Store into that location. An octet comparison (21 bits) is made since

the entire octet will have to be refetched regardless of the number of
instructions modified within that octet. This involves a comparison of
bit positions 8 through 28 of register AR, where the bit positions of

AR are numbered from O through 31 from left to right.

PA versus AR works similar to LA. Both PA and LA mark their in-
sﬁruction hazards adjacent to the file that buffers the instructions (files
KA and KB): When instructions are read from a file having its hazard
flag set, this flag is picked up and travels down through levels 1, 2,
and 3 with the instruction. Instruction hazard recovery is not initiated
until the hazard flag reaches level 3, since a branch instruction ahead
of the instruction with hazard could deflect the instruction ﬁath away
from-the hazard such that a refetch of the flagged octet is no longer
required.

In addition to the AR versus LA and PA comparisons for the detection
of hazards, these comparisons are used to find resident instructions in
the KA or KB buffers for cases when a Branch instruction is at level 3

and the branch octet address in AR is equal to the address in LA or PA.

-27-

when this occurs, the branch address is not requested from memory. Instead,
the address simply replaces the present address in PA; -and-the KR tag is
togg\ed, 1f necessary, to the buffer containing the resident branch octet.
Program counter registers P1 and P2 are compared against AR across
the full 24-bit address. This cdmparison detects conditions when a branch .
instruction at level 3 is branching.to an instruction that is presently
resident in levels 1 or 2. If AR equals P1, then the branch is either
to program counter location $¥2 and both levels 1 and 2 are activey or the
branch is to ## and 1eve1 2 is not active. In the first case the instruc-

tion at level 2 is skipped and a branch is taken to the instruction at

-28-

four YA versus AR cpmparisons. These serve the function of locating
resident X or Y octets. Registers XA 0 through 3 contain the octet ad-
dress of data resident in the X buffer of pipes 0 through 3. From the
instruction processing section of Figure 8, it was observed that the octet
address of a read in register AR is passed to the XA(0-3) or YA(0-3)
registers from AR when the read request was made. Active and full flags
are kept on each of these octet address registers. Similar statements

are true for registers ZP(0-3) when a Store instruction moves from level
'3. That is, the first four comparisons in the upper right-hand column

of Figure 12 (AR = ZP(0-3)) are for the purpose of locating resident Z-
storage octets. Data corresponding to these addresses are resident in the
Z buffer of each Memory Buffer Unit. The next four comparisons (AR =
ZB(0-3)) monitor the octet address of data in the process of being stored
into memory from the Z buffers. This check is needed so that read re-
quests in level 3 will be held up until data resides in memory for cases
when the read octet is the same as the octet being written.

Other important facts are obtained from the set of sixteen compari-
sons consisting of AR versus XA, YA, ZP, and ZB. For example, when both
AR versus XA(0) and AR versus ZP(0) comparisons are true, the implication
is that both a read and a write to the same octet have occurred in pipé 0.
Should another read request arrive for the resident X octet, no memory
request will be issued; and pipe zero will be told to do a Z to X update.
The Z to X update moves data from the Z buffer into X according to words
of Z tﬁat have been modified. That is, if one word of Z has been written,
then only one word of X needs to be updated.

In cases where a read address exists in AR and AR equals ZP(0) but
AR‘does not equal any XA or YA, then the read request for the memory octet

must be made and received prior to the occurrence of a Z to X update.

-29-

The four comparisons on the left side of the ZP registers of Figure
12 detect near-range instruction hazards. This hazard is termed "near
range" because of the proximity of the instruction at level 3 to the Store
instruction causing the hazard. Also included in the set of near-range
hazards are:the four comparisons connecting P3 to the ZB(0-3) registers.
Any octet address agreement between an instruction address in P3 and a
Storage address in ZP(0-3) or ZB(0-3) indicates that the instruction at
Tevel 3 is being modified by a prior Store operation.

If the comparison true is from ZB, then the store is currently in the
process of being written to memory; and the instruction hazard recovery
process can start as soon as ZB clears. ZB clears when data has reached
its destination in the memory module. If the comparison true is from
ZP, then}the store octet is either still in the pipeline or is currently
resident in the Z buffer of the MBU. Before the process of instruction
hazard recovery can start, the pipe must first clear itself of stores,
then initiate a forced write request to purge the Z buffer of its in-
struction modifying contents. It is observed that P3 is the "last change®
point for the detection of instruction hazards. Past this point, instruc-
tions are committed for execution. For example, a Store instruction that
modifies the véry next instruction would be detected by means of this
near-range hazard logic.

The remaining sixteen comparisons of Figure 12 are the far-range
hazards. These sixteen comparisons consist of the matrix whose horizontal
inputs are the four ZB(0-3) registers and whose vertical inputs are the
four instruction address registers - LA, PA, P1, and P2. The term "far
range" has reference to theispaté bétween instrdcfions Aétecfed by thfs
set of hazard logic, the: furthest range being the comparison between the

Took-ahead register LA and the four ZB(0-3) registers. Each instruction

-30-

address register (PA, P1, and P2) at lower levels of the pipe become pro-

gressive

ly "nearer" to the store that caused the instruction hazard.

The ‘action taken for the process of instruction hazard recovery is
similar to that just described for near-range hazards, the:only.différence:
being the fact that the process of instruction hazard recovery does not
start until the instruction experiencing the hazard reaches level 3. That
is, a hazard detection by LA or PA is simply marked by a flag associated
with the KA or KB buffer holding the group of instructions, one or more
of which has just been modified. A flag is used for P1 and P2 comparison§
at levels 1 and 2. These flags are carried with the instruction as it
moves down the instruction processing pipe to level 3. If the instruction
with a hazard flag reaéhes level 3, then the instruction hazard is called
and the process of recovery}starts. This is done so that extranecus memory
requests will not be iésued for cases where a branch is taken prior to
the arrival of hazardous instructions at level 3.

This completes a description of the hazard comparison logic of Figure
12. It also completes a description of all sections of the instruction
~protessing unit block dfagram of Figure 5, except for the level 0-4 control
section. This section is described by a set of detailed flow charts for

each level (0 through 4) of the IPU.

MEMORANDUM
10 April 1973

T0 System Planning Group
Compiler Group

COPY TO Dennis Best Al Riccomi
Gary Boswell Charles Stephenson
Gary Cobb Dave Stevens
Bill Cohagan Marvin Talbott
Richard Hatcher Hollie Thompson
Mike Miller Freddie Walker
Sid Nolte :

FROM “SA\.Bi11 Kastner

SUBJECT TIMES FOUR CENTRAL PROCESSOR HAZARD CONDITIONS

A description of the Times Four Central Processor hazards is included
as an attachment to this memo. -

This document lists the types of hazard conditions that occur in the
times-four CP. These hazards are divided into three main categories:
(1) those involving only scalar instructions, (2) those in which both
scalars and vectors are in progress at the same time, and (3) those
involving only vectors. These categories are further subdivided in
the outline on the following page.

This information is intended primarily for the Compiler Group, but it

also has more general application as a description of Central Processor
behavior. : :

BILL KASTNER
BK:Jjc
Attachment

I. Scalar Hazards
A. Register Hazards
1. Register Operand Hazards
2. Alpha Register Operand Hazards
3. | Index or Base Hazards
4.* Destination Hazards
5.* Largest Word Size Hazard
B. Central Memory Address Hazards
1. Store-Read Hazards
Store-Load File Hazards
S%bre—Store File Hazards
S%bre-Fi]e and Load-File R-Octet Hazards

S%ore File Hazard

[e)] (3] L) w N
. . - N .

Store File-Read Hazard
C. Instruction Hazards
1. Sfbring Over Instructions
2. Store File Over Instructions
3. 'Véétors Storing Over Instructions
D. Arithméfic Exception Hazards
1. Loéd Arithmetic Exception Mask or Condition Hazards
2. Store Program Status Hazards
E. Branch Hazards
1. Regult Code Hazard
2. Coﬁdﬁtion Code Hazard

3. Arffhmetic Exception Branch Hazard

*New 2X, 3X, and 4X Hazards

II.

I

Scalar-Vector Hazards

A.
B.
C.
D.

VPF Modification
Scalars Writing Over Vector Input Arrays
Vectors Writing Over Scalar Read Data

Alpha Hazards During Vectors in Fork and Join Mode

Vector Hazards

A.
B.

Vectors Storing Over Theirk0wn Input Data Arrays

Addressing Conflicts Between Two Vectors Executing
Simultaneously in Parallel Pipes

Halfword Z-fill-in Hazard

-4~

Throughout this description, operand and instruction conflicts
are referred to as hazards. The intended meaning of "hazard" as used
here should be "something to avoid if possible." In most cases not

| staying away from hazards will result only in a slower execution rate
| ~ due to instruction delays while waiting for the hazard to clear, but
the hazard will not affect the logical results of a program. In other
cases, such as those involving the "vector hazard rule," a hazard is
quite critical and will result in numerical program errors or loss of
program control if the hazard rule is not taken into account. The
difference in terminology between these two uses of the word "hazard"
is distinguishable in this description by a block to the right of each

hazard heading which indicates the following:

DELAY |} for delay-producing hazards which do not affect program

resu1 ts.

FUNCTIONAL | for error-producing hazards.

I.

Scalar Hazards

A.

Register Hazards

]‘

Register Operand Hazards - DELAY

Two conditions are necessary for a register operand
hazard to exist. These conditions are:

(a) A first instruction of an instruction stream having
a register destination aimed at one of the registers
of the register file. This instruction is located
below level 3 of the CP pipeline but has not yet

..entered its result into the register file.

(b).- A second instruction, occurring at a later point in
- the instruction stream, having arrived at level 3
of the CP pipeline, and having a register source

requirement to read a portion or all of the register
ipresently destined to be modified by the first in-
‘struction.

- Hardware solution: Logic is provided to detect this

hazard. Register operand hazards are cleared when the
first instruction has modified its destination register.

Delay avoidance: It is possible to avoid some of

the delay due to register operand hazards. Two methods
exist.
(a) Using the short-circuit path -
Two short-circuit data paths exist from the output
_to _the input of the arithmetic unit. One is for
Register Short Circuits, and the other is for Alpha

Register Short Circuits.

(b)

-6-

The Register Short-Circuit path is used when
a second instruction experiencing a register hazard
determines that a first instruction causing the hazard
is still the last instruction to have entered a given
pipe. Other instructions may have occurred between
the "first" and "second" instructions, but none of
these have taken the same pipe as the first instruc-
tion.

For this short circuit to take place, the word
sizes of the éource and destination registers of the
two instructions must be the same. An exception to
this rule is that halfword-to-halfword short circuits
are not provided. In addition to the same word size
short circuits, there also exists short circuits for

doubleword results feeding back to second instruction

singleword register sources with even register addresses.

Instruction insertion -

In some cases it may be possible to insert other
instructions between the twc that cause a register
operand hazard. The hazard is not actually avoided
by this method; it is just postponed to the point
where it does not exist any more. The method does,

however, allow the CP to perform other useful compu-

tations during time that the CP would normally be

waiting for the hazard to clear. Of course, the other

Vwofkubé?forméd could not use the register which is

causing the hazard.

-7-

Delay time: Register operand hazard delay is dependent

upon the pipe time of instruction I1 which is 4 clocks +

AU time + memory time, providing the AU output does not
become blocked due to multiple AU outputs destined for the
register file. AU time is found listed in Table 1 of the

CP timing section (B2) of the CP Hardware Volume. Memory
time is eight clocks if instruction I1 makes a memory read
request. This time delay equation assumes an initially
empty pipé. For accurate timing estimates, all pipe con-
ditions prior to instruction I1 must be taken into account.

Example of register operand hazard:

Inst

_# Inst R, o Pipe Comment
In . LOAD A1, CMI (0)
I2 LOAD A2, CM2 (0) Assume AR=ZP(0)
I3 - ADD A1, CM3

- For this hazard to appear in the 4X CP, operation of
the AU short=circuit path must be blocked by one or more
other instructions using a different register between the
two instructions that cause the hazard. The other instruc-
tion(s) must use the same pipe in order to block the short-
circuit path. For purposes of this example, it is assumed
that a prior store instruction has left the Z-buffer of
pipe 0 with data destined for octet CM2 in central memory.
This condition forces instruction 12 down pipe 0, thereby
blocking I3 from picking up its register operand (Al) over

the AU register short-circuit path from the prior result

-8-

of instruction I1. Without the short circuit, I3 must
Wait in level 3 until Al has been modified by instruction

It.

2.

-9-

Alpha Register Operand Hazards DELAY

Two conditions are necessary for an alpha register
operand hazard to exist. These conditions are:

(a) A first instruction of an instruction stream having
a register destination aimed at one of the registers
of the register file. This instruction is located
in the CP pipeline between levels 4 through 12 in-
clusive.

(b) A second instruction, occurring at a later point in
the instruction stream, having arrived at level 3 of
the CP pipeline and having an effective address a<2F
and an M-field of zero, such that an alpha register
source requirement exists to read a portion or all

~all of the register presently destined to be modified
by the first instruction.

Hardware solution: Logic is provided to detect this

hazard. Alpha register operand hazards are cleared when
the first instruction has modified its destination register.

Delay avoidance: The same two methods that were used

to avoid delays due to register operand hazards are also
useful for avoiding delays due to alpha register operand
hazards. |

Delay time: Alpha register hazard delay is dependent
upon the pipe time of instruction I1 which is 4 clocks +
AU time + memory time, providing the AU output does not

BééSEé blocked due to multiple AU outputs destined for the

-10-

register file. AU time is from Table 1, and memory time i

{s eight clocks if instruction I1 makes a memory read

request.

Inst

_# Inst R, o Pipe Comment
I LOAD A1, CMI (0)
I2 LOAD A2, CM2 (0) Assume AR=ZP(0)
I3 ADD A3, Al - {0)

In this example instruction I2 takes pipe 0 because
its central memory read data, CM2, is assumed to be resident
in the Z-buffer of pipe 0. 12 blocks the possibility of
instruction I3 picking up its alpha registef operand (A1)
via the AU alpha register short-circuit path from the out-
- put of instruction I1. Without the short circuit, I3 must
wait in level 3 until Al has been modified by I1.

-11-

3. Index or Base Hazards DELAY

Two conditions necessary for an index or base hazard
are:

(a) A first instrdction of an instruction stream having
a register destination aimed at one of the index or
base registers of the register file. This instruc-
tion is located in the CP pipeline between levels 2
through 12 inclusive.

(b) A second instruction, occurring at a later point in
the instruction stream, having the requirement to
use the index or base register presently destined to
be modified_by the first instruction.

| Hardware solution: Logic is provided to detect this

hazard. Index or base hazards are cleared when the first
instruction has modified its destination register. Index

or base hazards hold the second instruction at level 1

until the hazard is cleared. However, late index or base
hazards occur when a Store instruction into a base or index
register immediately precedes a second inétruction requiring
the index or base register at level 2. For late hazards

of this type, the second instruction will refetch its index
-or base register at level 2 when the hazard has cleared.

Delay avoidance: There is no hardware short circuit

to decrease the delay due to index or base hazards. The
method of instruction insertion can be used to perform
other work while waiting'for the index or base hazard to

clear.

-12-

Delay time: Index or base hazard delay is dependent
upon the pipe time of instruction I1 which is 6 clocks +
AU time + memory time, providing the AU output does not
become blocked due -to multiple AU outputs destined for
the register file. AU time is frdm Table 1, and memory
time is eight.clocks if instruction I1 makes a memory read
request.

Example of Index hazard:

Instruction # Insf R, o
I LOAD X1, CM1
12 : ADD A1, CM2, X1

x'In this example, instruction I1 modified index register
X1; then the next instruction, I2, uses index register X1
to develop its effective address, CM2 + (X1). The second
instruction must wait in level 1'unt11 instruction I1 has

modified index register X1.

4,

-13-

Destination Hazards DELAY

Destination hazards exist in a 2X, 3X, or 4X C&,bgt.-

not in a 1X CP. This hazard is due to a Load, Interpret,

“or Normalize instruction having the same register destina-

tion address as that of some prior instruction which has
not yet entered its result into the register file. The

prior instruction is any type that has a register destina-

© tion.

If this hazard were not detected by the 2X, 3X, and
4x machines, then‘it would be possible for a second in-
strJétion to overtake a first instruction, via anofher
MBU-AU pair, and place its result #n the register file

priof to the result of the first instruction. Results

- occurring out of sequence in this manner would not leave

the latest value in the register file at the common -
register address of the two instructions. Hardware pro-

tects against this type of hazard.

Hardware solution: Logic is enabled in a 2X, 3X, or
4X configuration for detecting destination hazards. This
logic .is'disabled in a 1X configuration, since one instruc-
tion éahnot pass another instruction in a one-pipe machine.
Also, hérdware is provided in the 2X, 3X, and 4X machines
to force Load type instructions down the pipe in which

the destination hazard exists for cases when the effective

address is selecting a register}qf_the register file

(o < 2F and M = 0). Forcing the instruction into the pipe

-14-

behind the destination hazard has the effect of preventing
the instruction race condition, while at the same time
allowing the Load type instruction to proceed without ex-';
periencing a destination hazard'de]éy.

For the case when the effective address of a Load
type instruction. is sélecting a central memory operand,
a destination hazard causes further checking by hardware
to determine whether the Load address (in register AR of
level 3) is equal to the Z-octet address contained in pipes
other than the one causing the destination hazard. If
there is address agreement, then the destination hazard
causes a delay until the hazard clears. This delay pre-
vents a forced write of Z in the other pipe and a read
request for the Load address from the destination hazard
pipe.. If there is no address agreement, then the Load
takes the pipe causing the destination hazard, and no
de15y occurs.

Delay avoidance: Delays due to destination hazards

are avoided by hardware for the cases when: the Load ad-
dress is selecting a register of the register file; or
when the Load address is selecting central memory and the
address is also resident in the Z-buffer of the destina-
tion bipe; or when the Coad address is nét resident in the
Z-buffer of any of the pipes. |

The method of instruction insertion can be used to
v‘fi11vfh:tﬁé dead'tiﬁéwﬁaif{ﬁé‘fﬁf.ﬁ‘ﬁeéfiﬁation hézard |

to clear.

-15-

Delay time: A destination hazard clears when the
reéister destination instruction causing the hazard has
placed its result in the register file. For meaningful
code, the register destination instruction (I1) should
be followed by a Store, then by the Load type instruc-
~tion (I3) experiencing the delay. Otherwise, I3 will
simply write.oVer data entered into the destination regis-
ter by I1. If, for example, I1 were an ADD, then the
result of the addition would be lost because of the Load
into the same register.

With the Store instruction between I1 and I3, the
deéfination hazard delay due to I1 is 3 clocks + AU time +
membfy time, providing the AU output does not become blocked
duebio mﬁltip]e AU outputs destined for the register file.

i Examp]e of destination hazard is as follows:

In;fﬁuction # _ Inst R, o
n © DIVIDE A1, CM1-
12 LOAD A1, CM2

EIn this example, the divide instruction could be re-
p]acéd by any instruction with a register destination of
Al. The Load does not see a source register operand hazard
beca0$e its source operand is from central memory. It
wou1dibe all right for the Load to take a different pipe
if it were not possible for the Load to overtake and pass
the divide. To guard against this possibility, the Load
instruction is routed down the same pipe taken by the

divide. The divide pipe is taken assuming that CM2 is not

~-16-

rasident in tha 7-huffer of anv cther pipe. If residency

exists, then the iocad waits at Tevel 2 until the destina-

tion hazard due to the divide has cleared.

Nnote tha®t this examnle shows meaningless code, since

the result of the division is destroyed hy the Load.

5.

Largest Word Size Hazard ‘ DELAY

" Four conditions must exist for

=17~

<}
)
W
-3
«©
13
wn
ot
®
Q
-3
Q.
w
ande
N
(1]

11
WA LENG 3 [28] Hia ¥

hazard to occur. These conditions are:

(a)

(b)

(c).

Only two types of second instructions can cause this

hazard. They are Multiply instructions (Op codes

6C and 7C) with an even addressed arithmetic register
specification and fixed to floating point conversion

instructions (Op codes AA, A9, and AB; mnemonic éodes
FXFD, FHFL, and FHFD, respectively). These two types
of instructions are the only ones which use a larger

register destination word size than their own source

word size.

The second instruction must be preceded by a first

instruction with a register destination of smaller

"word size than that of the second instruction's

register destination.

The register destination of the first instruction

' ‘mUSt be contained within the register modification

(d)

space of the destination register of the second in-
struction.

The register destination of the first instruction

does not have the same address as the source register
of the second instruction. Otherwise, if the addresses
were the same, then the hazard would be classified as

a register operand hazard. =

-18-

Hardware solution: Hardware detects largest word size

hazards and holds the second instruction in level 3 until
the haiard clears.

Delay avoidance: The method of instruction insertion

can be used to fill in the dead time waiting for a largest
word size hazard to clear.

Delay time: Largest word size hazard delay time is -
dependent upon the time for instruction I1 to clear the
pipe. This time is 4 clocks + AU time + memory time,

- providing the AU output does not become blocked due to
~multiple AU outputs destined for‘the‘register file. AU
time is from Table 1, memory time is eight clocks if in-
struction I1 makes a memory read request.

Example of largest word size hazard:

. An example of an instruction sequence with a largest
word size hazard is given following ih which a Load to
an arithmetic register is followed by a multiply using .

an.adjacent, evenly addressed arithmetic register.

Instruction # A Inst R, @
n LOAD A1, CMI
I2 MULTIPLY AO, CM2

- The source register of the multiply does not show up as
a register operand hazard with the destination register
of the load instruction. The maltiply instruction, using

even address register A0, will place its result into the

even-odd register address pair AO-Al. If, for example,

-19-

the read octet of the multiply was resident in one of the
four pipes and the read octet of the Load was not resident,
then it would be possible for the multiply to place its '
doubleword result into registers A0 and Al prior to Al being.
entered by the Eoad instruction. If Al were entered late

by the foad, thén the expected final doubleword product

of the multiply would be overwritten in its least signifi-

. cant half. Largest word size hazard logic in the CP does
not allow this to happen.

Another example is presented to shoW‘that the hard-
ware does not call out a largest word size hazard unneces-
sarily. In this example, an evenly addressed register
(AO)(is used by the foad, while an odd register (A1) is
used by the multiply. This is just opposite to the regiéter

"usage of the previous example.

Instruction # Inst R, o
oo | LOAD AO, CM1
12 | MULTIPLY A1, CM2

The multiply instruction does not have a source regisfer
operand hazard or a largest word size hazard. The multiply
selecte its pipe according to the z.zlar routing rules.

There is no hazard delay for this instruction sequence.

B.

-20-

Central Memory Address Hazards

1.

Stqre-Read Hazards DELAY

A Store instruction followed by a read from the same
octet of memory causes store-read hazards. Several Store-
read sequences are considere& in order to see how timing
betweeh instructions influences whether this type of hazard
appears or not.

Example Bil.1

Insfructjon“f Inst R, « Pipe
11 STORE A1, CM1 (0)
1z ADD A2, CMI (X) {i;g I no SC

For this example, instruction I2 at level 3 determines
that there is address agreement between address register
AR and the Z-pipe register, ZP(p), for one of the pipes (p).

The ZP registers cover Store instructions from levels 4

_ through 12 and the Z-buffer. Another set of four registers,

ZB(p), holds the Store address of data being written into
memory.

At this point in the determination of pipe selection,
it is possib1e‘for instruction I2 to have a register operand
hazard and find that it can pick up its register operand |
(A2) by using the AU short-circuit path. If an AU short
circuit is found, then instruction I2 will initially try

to take a pipe other than 0 because pipe 0 contains a last

destination register address of Al. The register source

-21-

address of an instruction is placed in the last destina-
tion register for Store instructions if they do not modify
data when passing through the arithmetic unit. Store
Negative is an example of a Store type 1hstruction that
modifies its register source data in the AU.
If the Add initially tries to take a different'pipe'-

becausé of both a register hazard and a short-circuit con-

dition, then a forced write to central memory wﬁ]T be «*
| started for octet CM1 in pipe 0. This forced write occurs
so that the data from location CM1 can be read by another
pipe."The only data path from the output of one pipe to
the input of another pipe is by means of central memory.
Before the read request can be issued by another pipe, |
the complete write cycle for that memory location must
_have finished. This is because the four pipes aré connected
to memory over separate memory ports, and the Memory Control
Unit (MCU) does not gﬁarantee that a write to memory will
be processed first for the case of a write then a read to
the'same octet on two diffefent ports. ‘

| The timing delay for both a write and a read cycle
is Shbwn as casé 1 in the store-read timing diagram of
Figure;l.' ThevADD is completed on c1ock 30 for case 1.

| It'is highly 1ikely that the register will clear before
the forced write is complete; in which case, the Add instruc-
tion may choose any other pipe for its read from 1ocation

‘CM1. This change in routing does not affect the delay

-22.

fimé if the forced write has been initiated. However, if
the register hazard clears before the forced write is
‘initiated, then the read from location CM1 can be done
from pipe 0. If octet CM1 is not resident iﬁ the X- or
Y-buffers of pipe 0; then a memory read request is re-
quired before the Z-to-X update cén occur. This is shown
as case 2 of Figuré 1, in which the Add is completed on
clock 17. This is thirteen clocks earlier than the time
for completion in case 1. |

Case 3 occurs when the store immediately precedes . the
add, there is no short-circuit condition to cause the Add
to select another p%pe; and the X--or'Y-buffer has a resi-
dent octet containing location CM1. The resident X or Y
is the result of a prior memory read request for data with-
in the octet containing word CM1. The Add is allowad to
move into level 6 when there are no Z-stores in the pipe
and the update from Z to X has taken place. The Add is
completed on clock]2,'some eighteen clocks earlier than
case 1.

Case 4 is one 1in which there are no Z-stores between
Tevels 4 through 12 of pipe 0, but pipe 0 contains a resident
Z-octet of address CM1. This implies that the Store into -
CM1 occurred prior to the arrival of the Add at level 3
and that there were other TnStructions between the Store

and the Add which allowed time for the Store to péss through

Eﬁémbfﬁéf;ﬁém¥ﬁtd fhé Z;bufferQ A]so,'there is assumed to

-23-

be a resident X as a result of a prior memory read request.
The Add is completed on c1o§k 9 for this case. ThiS is
twenty-one clocks earlier than case 1.

The Store-read example used for the purpose of this
- description is functionally the same as |

Ii : STORE Al, CM1

12 ADD A2, Al
Using this code, the Add takes the same pipe as the Store
because of the alpha short circuit on register Al. There
is no long writé then read delay as previously~described.
~ Therefore, it is apparent from what has goné before that
code should be written as in the preceding whenever possible

in place of the Store-add example given earlier.

CASE 1. STORE INTO CM1, THEN ADD WITH SHbRT CIRCUIT TO ANOTHER PIPE, NONRESIDENT X.
‘CASE 2. STORE INTO CM1, THEN ADb WITH UPDATE FROM Z TOIX, NONRESIDENT X.

CASE 3. STORE INTO CM1, THEN ADD WITH UPDATE FROM Z TO X, RESIDENT X.

CASE 4. RESIDENT Z OF OCTET CM1, THEN ADD WITH UPDATE FROM Z TO X, RESIDENT X.

TIME |
LEVEL 0 1 2 3 4 65 6 78 91011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3 S A , ‘—b ’
4 S A . A
5 S A ' — A >
6 S A A A A
7 S A A A A
8 A A A A
12 S A A A A
Z S
RF A A A A
CASE 4 CASE 3 CASE 2 | CASE 1

FIGURE‘1. STORE-READ TIMING

-VZ—

2.

-25-

Store-Load File Hazards DELAY

This hazard is caused by CP code of the form -

Instruction # Inst R, o
I ‘ ' _ STORE A1, CM1
12 LOAD FILE R, CMI1

Store-Load File hazards are the result of a Load File
instruction requesting the same octet from memory as was
written into by a previous Store instrucpion. The Store
could have been the immediately precedﬁdggg;:ohe~which'
occurred some time ago but which left its Z-octet resident
in the pipe that was taken; i.e., no other Stores to}diféz
ferent octets have taken that pipe since the Store to CM1.

Since the Store octet is resident in one of the pipes,

1ts’address, CM1, is in some ZP (p) register. The Load-

File address, CM1, is compared against all ZP addresses

~ when the Load File reaches level 3 of the IPU; Addfess

agreement from this‘cdmparison is called an alpha hazard.l
At this point the LF instruction at level 3 finds

the pipe (p) in which the resident Z-octet of address CM1

is located. A check is made to see if the hazard is due

to a vector in progress rather than a scalar Store to

memory. If the hazard is due to a vector in progress,

then the alpha comparison is ignored; and the Load File

proceeds to execution. The alpha comparison is ignored

in this case because compiled code will no% contain vectors

-26-

that write over scalar déta areas when the CP is placed
in the FORK mode. If the CP is placed in the JOIN mode, %'<:
then it is not possible for subsequent scalar instructions -
to proceed to execution until the vector has completed.
If a véctor is not in progress in the pipe (p) in

which fhe alpha hazard exists, then the LF instruction in
level 3 waits until there are no Z-stores in pipe p. This
wait insures that the Z-octet buffer has all its data before
a "start forced write" command is issued to the MBU.

| The LF instruction continues to wait at level 3 until
the storage of octet CM1 is completed to central memory.

It then proceeds to execution at level 3, making its load
file request via the’IPU4 memory port.

Hardware solution: Logic is provided to detect this

hazard. Store-Load File hazards are cleared when the Z-octet
contdining the ‘load-File data has been written into memory. |
The Load File i§<held in level 3 until the hazard is cleared;
then it is executed at Tevel 3. A load-File instruction ‘
does not use the}CP pipeline below level 3.

Delay avoidance: Delay cannot be avoided for adjacent

Store-Lload File instructions. The method of instruction
insertion can be used to make the instructions nonadjacent.
If this method is used, then a second Store to a different
octet should be forced down the pipe containing CM1 by m=ans
of a short circuit to the register address of the Store.

Hdwévéf; be cafefu]’éeIebtfhg‘é different octet for~storage

-274-

because, if the different octet happens to be resident in
somerther pipe, then the Store will take that other resi-
dent pipe. Also, the X- and Y-buffers must not contain the-
address of the second Sfore (ST2) because thén ST2 would
"have to wait on outstanding reads before the forced write
of ST1 could be issued. Also, the second Store must not
occur before the first Store has had time to pass through
the pipe; otherwise, the sécond Store would have to wait
inllevel 3; and that is what is to be avoided. The 1ist
- of contingencies on the second Store woufd seem to preclude
its use as an effective means to avoid a Store-foad File
hazard; however, this method is given in hopes that it can
be used to advantage.

Delay time: Store-Load File delay depends on the time
for the first Store to pass through the pipe into‘Z, then
- for the Z-octet to be written into memory. This time is
5 clocks + memorvarite time if the Store immediately pre-
cedes the Load File. The five clocks are the pipe time of
the Store and can be deleted if it s known that there are
no Stores fn the pipe; i.e., that the resident Z-octet has
all its data. Also, this timing equation assumes that the
AU output does not becomz blocked due to multiple AU ocutputs
destined for the register file. This would be due to in-
structions prior to the Store. Memory write time in this

equation is normally equal to eight clocks.

-27h-

poJed o ade spdezey (L4 vuoq 9403S *puezeYy SLY3 39238p 03 .pepiAoad st 91607 :TUOLINLOS SACRpAE]

*A4OWE KDIUL UDIILJM UDDG SBY BIRP S| L4 PROT 9Y3} BuLuLeIU0d 33390-7 Byl UBYM

*SUO0L]ONUISUL 21L4 PEOT-2403S JuddRlpe 104 vmvwo>c eq jouued Aejeq :TOUBPLOAL AEleq

‘USADMOH *8403S Ul JO SSOUPPR USISLBOU BYl 03 FLNDALD 2404S B JO sutal £q

S=

-P® 3y} ULEIUOD J0U ISNW SUBJING-=A PUR =X Y3 ‘osly -adid- juepiy,

o
)
=3
v
(i}

o=

24048Q 4ND20 J0U ISNW S403S PUOISS 2yl 0S|y
03 SL JBYM SL JBY3 puR S§ |SAS| UL 2LEM

8sn s3} apniosad 03 weas pLnoM
[+1]

w

2 ‘L4 pEOT-2403S ©

effective means to avoid

*papLoAe aq
d Store -

YL
1 ON

list of contingencies on the sec

awiq pey sey 8403S 3SJ4L4 oYl

” gfid Store would have to

ao pass through the pipe; otherwise, the se

asnedaq (g1S) 94035 puodss ayj jJO SSaJp
the forced write of ST1 could be

then ST2 zocda have to wait on ozﬁmﬁmsa*su reads cmwosm

26eu03S 4104 19300 JUBUBISLP © BuLI9|3S |nsaded aq
~ pipe, then the Store will take that other re

because, if the a*ﬁwmsmsﬂ cctet happens to am resident in some other

9yl oyew 03 PIsn 39 UBD UOL]ADSUL UOLIONJISUL 4O poyaw ay|

damﬁscoeﬁo:m nonadjacent. If this method is :mma then a second mﬂosm to a dif-

' ferent octet should be forced down the pipe containing CM]
A Load-File instruction does not use the CP pipeline below level 3.

The Load File is held in level 3 until the hazard is odmmﬁmaw then it is executed at Tevel 3.

-28- .

3. Store-Store File Hazards A DELAY

~This hazard is essentially the same as the Sfofe-toad
File hazard just described. In fact, the same descriptions’
can be used for the hardware solution, delay avoiéance,
and delay time sections by replacing the words "Load File"
‘with "Store F'ﬂe.-;l

In order for this hazard to exist, the Store instruc-
tion's address must be contained w{thin the octet.address
space of the Store File instruction. This is an unlikely
condition for reasonable code, since data stored is imme¢
diately written over by the Store File instruction.

Prior to execution of the Store File, the Store in-
struction is forced out of the CP pipeline into memory so
that the Store File is certain to place ité data into memdry
after the store. This is done to preserve the order of

instructions.

-29-

Store File and Load File R-Octet Hazards DELAY

This hazard is common to both Load File and Store-

File instructions. The delay occurs when the'octet selected
by the Load-File or Store File instruction at Tevel 3 (as
specified by the R-field) covers a register being modified
by an instruction.below level 3.

- In the case of a Load File, the purpose of the delay
is to insure that all registers have been modified for a]i
instructions'below lTevel 3 that have register destinations
targeted for the same octet as that specified by the Load
Filé. ‘Otherwise, if the delay were not applied, a late
arriving register destination could modify a register within
| the octet entered by the Load File after the Load File was
completed. The ordek of instructions would not be preserved
if the Load File were executed without testing fof an R-
octet hazard.

" For a Store File instruction, the purpose of the delay
is to insure that the register file octet to be stbred has |
been modified by all instructions below level 3 that have
register destinations targeted for the same octet as that
to be stored. This is so the Store File will have all its

data to be stored.

-30-

Store File Hazard : DELAY

A Store Fite hazard is due to a memory read instruc-
tion followed shortly by a Store File to the same memory
octet. The memory read is positioned in time such that
it has reqdested memory but has not yet received ifs data
'from memory. With this condition true, the Store File can-
not proceed to execution because, if it did, then it is
possible for the Store-File data to be written into memory
brior to data being read from memory by the instruction
using a memory operand. Since the read énd write operations
take place on different memory ports, the Memory Control
Unit (MCU) cannbt guarantee that a read arriving first will
be processed first; For this reason, the Store File must
wait until the memory data has been received.

Hardware solution: Hardware detects this hazard.

Stofe File hazards are cleared when the X-or Y-buffer of the
MBU,‘which had an outstanding request for an octet of.memory
of the}same address as the Store File, has reeeived its |
data. The Store File vaits at level 3 until the hazard

has cleared.

Delay avoidance: This delay can be avoided by sepaw

rating memory reads to a given octet from Store Files to
that same octet. The separation can be done by instruction
insertion. Enough time must be allowed forvthe read data

to be received before the Store File arrives at level 3

for execution.

- -31-

Delay time: Store-File hazard delay depends on the -
memory time of the instruction causing the hazard. If the
memory read instruction is immediately ahead of the Store
File, then the Store-File wait time can be as high as ten
- clocks, assuming no memory interference.

Example: An example of CP code producing this hazard

is as follows:

Instruction # Inst R, a
Il ADD A1, CM1

12 : STORE FILE R, CM1

-32-

Store File-Read Hazards DELAY

This hazard is caused by CP code of the form:

Instruction # | Inst R, a
I : STORE FILE R, CM1
12 - | ADD AL, CMI

which is just the reverse of the code given in the previous
example for a Store File hazard. - |

To be sure of geiting the latest data, the Add must
wait for the Store File to complete its write to memory
before the Add can request memory.l This hazard delay
occurs as a normal part of a Store File instruction. That
- 1s, the second instruction i$ delayed regardless of its
instruction type or memory address.

Hardware solution: This hazard is protected by the

level 1 controller of the IPU. When a Store File instruc-
tion is detected at level 2, the level 1 controller goes
into the "Store File state" and blocks any subsequent in-
structions from reaching level 2. Subsequent instructions
are held at 1eve] 1 until the "write acknowledge" signal
1s_received from the MCU and fhe "data available" signal
has returned to "zero." These conditions indicate that

the Store-File'data has been received by the MCU and that ’
the process of writing data into the memory module has been
injtiated. At this point the instruction following the

~ Store File is released from Tevel 1.

-33-

Delay avoidance: This delay cannot be avoided; it is

inherent in the operation of the Store File instruction.
Delay time: Store File reéd hazards cause a delay of -
eight clocks in the execution of the "read" instruction at
1evé1 3, assuming that there is no wait for "write acknowl-
edge" or for "data available" due to memory interference.
These eight clocks are to be considered as the time to
éxecute the Store File and not as any additional delay

caused by the fictitious Store File read hazard.

-34-

C. Instruction Hazards

1. Storing Over Instructions , DELAY

Scalar Store instructions that modify other instruc-
tions may cause an instruction hazard delay. In particular,
vhen the address being stored into by a Store instruction
(below level 3) is equal to the instruction address of an
instruction at Tevels 1, 2, or 3 or is contained within
the octet of instructions requested or resident in the
KA or KB buffers, then an instruction hazard flag will be
set. |

l Store instructions below level 3 include Stores resi-

' dent in the Z-buffers of each of the four pipes. These
Storés have not yet been written into memory. Stores in
the'pipe1ine or.in the Z-buffers ho1d their storage ad-
dresses in the ZP registers. Stores being transferred
to memory from the Z-buffers through the ZB-buffers hold
their storage addresses in the ZB-registers during the
transfer. The ZP- and ZB-registers are compared with
the program counter values from level 3 upwards through
the present address (PA) and look-ahead address (LA)
registers, A true comparison indicates an instruction
hazard.

Instkuction hazard recovery takes place if the in-
struction so marked as having an instruction hazard
reaches Tlevel 3 for execution. Level 3 is the point at

which a flagged instruction hazard becomes a real in-

-35-

struction hazard. This distinction is made because it

is possible for an instruction to be marked as having a
potentié] instruction hazard but to never require the
instruction hazard recovery process as a result of a '
Branch instruction taking the branch prior to the flagged
instructions arrival af level 3. In this case the
flagged instruction is not executed; and, 50, there is

no need to recover the modified instruction.

Thé process of instruction hazard recovery involves
performing a forced write operation on the pipe that
contains the Store which caused the instruction hazard.
Once the Store octet has been written into memory, the
IPU ﬁny refetch the instruction address that was marked
as Having an instruction hazard.

/ Hardware solution: Instruction hazards are divided

int6 two classes for the purposes-6f hardware implemen-
tatian. These classes are: near-range hazards and far-
range hazards. A near-range hazard occurs when there

is a true comparison between the program counter at level
3 (P3) and the ZP- or ZB-registers of any of the four
pipes.. This condition causes a forced write and then an
immediate instruction hazard recovery. It is not a po-
tential but a real instruction hazard when it occurs at

Tevel 3.

-36-

A far-range hazard is when there is a true compari-

son between the following pairs of registers:

Look-ahead | LA vs. ZP for all pipes
Present address PA vs. ZP "

Level 1 Pl vs. ZP . »

Level 2 P2 vs. ZP w

These comparisons are flagged as potential hazards at the
appropriate level of the pipeline. - A far-range hazard may
~never reach level 3 if a branch is taken before the flagged
instruction arrives at level 3. However,Aif it arrives

at level 3, then a forced write is sent to the pipe con-
tainﬁng the Store that caused the hazard. Instruction
hazard recovery starts after the forced write is complete.
| - Recovery is accomplished by fetching the modified instruc-

tion from memory.

Delay aVoidance: The simplest and most effective way
‘to»avbfd instruction hazards is to abide by the rule "never
modify instructions."

Delaz time: For the tase of a Store Negative (STN)
instruction directly ahead of an instruction which the
STN modifies, it takes six cldcks for the Store to reach
the Z-buffer from level 4, another six clocks to complete
1 the forced write to memory, eight clocks to fetch the
modified instruction into the KA- or KB-buffer, and three
more clocks to get it down to Tevel 3 where it was when the
iﬁgkaEéfQﬁ'héiafd‘ﬁaskdétéé%é&:ﬂrfhiéhfdfalg twehiy;fﬁree

clocks for a worst case instruction hazard recovery.

2.

-37-

Store File Over Instructions DELAY

This hazard is basically the same as storing err
instructions (C1). The main difference is that the com-
parisons with program counter addresses P1, PA, and LA
are made against AR instead of ZP and ZB. The octet ad-
dress being stored into is in the AR register at the time

the Store File is executed. This address does not pass

~through the ZP-: and ZB-registers as does the address of a

Store instruction. Also, there is no need for AR to be
compared against the program counter registers at levels 2
and 3 (P2 and P3) because level 2 is blocked from holding
any instructions during a Store File and level 3 is where
thehStoré File is being executed; i.e., an instruction
cannot modify itself.

No forced write is necessary as a part of Stofe File
insfhﬁction‘hazards, Completion of execution of the Store
Ff]élfmplieﬁ that the Store File octet is in memory. A
refetch of the instruction address occurs when the instruc-
tion»marked with an instruction hazard reaches level 3.

Hardware solution: Store File instruction hazards

are detected by the hardware. AR is compared with P1; PA,
and LA.onban octet level. If the hazard reaches level 3,
instruction hazard récovery starts immediately by fetching
the modified 1nstruction octet from memory.

Delay avoidance: Do not modify instructions.

-38-

Delay time: Since the.instruction hazard recovery pro- -
cess does not start until the flagged instruction reaches
level 3, the delay is equivalent to a Branch to a honresident
octet at ihat point in the program. This delay is eleven

clocks.

-39- .

Vectors Storing Over Instructions FUNCTIOMAL

Several possibilities exist for this hazard; these
may be divided into two classes: (1) a vector storing
over subsequent vector instructions and (2) a vector
storing over subsequent scalar instructions. For both
classes, the FORK/JOIN mode determines the way in which
hardware deals with the hazard.

Consider a first vector instruction which has its
"Allow Following" bft set to "zero" so that subsequent
scalar or vector instructions are not allowed to start
execution until all vectors in progress have completed.

If the next (second) instruction is a vector, then it is
allowed to request the vector parameter file and initialize
the‘Memory Buffer Unit (MBU) of the selected pipe. Or, if
the second instruction is a Load File (LF), then the opera-
tion of loading the register file can be completed; but that
is all; no other instructions can be executed in the JOIN
mode.

 In either case, the hardware monitors for instruction
hazards. This is done by comparing the C vector addresses
of all vectors in progress with the program counter of the
instruction at Tevel 3. If a true comparison is found,
then the level 3 far—ranée hazard flag is set. This flag
causes an instruction refetch of the modified second instruc-

tion after all vectors‘havg comp1eted.4’_

-40-

If the second instruction is chahged to something

other than the instruction it was, then there is no way
the register file can be reinstated to what it was before
execution of the second instruction (the VECTL or LF exe-
cuted while the first vector or vectors were running).
If the conditions of this hazard have occurred as statéd,
then the program will lose control, or produce incorrect
answers, as a result of the register file being modified
by an instruction that was modified.

If the second instruction is anything other than a
Vector or Load File, the hardware monitors for an instruc-
tion‘hazard. This is done by comparing the C vector ad-
dresses of all vectors in progress with the program counter
of‘the second instruction at level 3. A true comparison
will set the level 3 far-range hazard flag, which - in
turn - will cause an instruction hazard recovery request
after all vectors in progress have completed. In this case
n6 damage has been done since the second instruction at
1evei 3 was never executed before its modification (as
was the case with a VECTL or LF instruction); The modified
instruction will be executed after the instruction recovery
process has been completed.

Consider now a*first.vector fnstruction which-has its
“Allow Following" bit set to "one" so that subsequent
scalar or vector instructions are allowed to proceed in

parallel with the first vector. If the C vector addresses

-41-

of the first vector happen to write over instruction ad-
dresses of subsequent instructions in or above level 3

(but within the IPU), then the near-range hazard sfgna?

or the far-range hazard flag will become true, resulting

in a refetéh of the modified instruction when the hazardous
instruction reaches level 3.

This hazard has the potential of causing intermittent
problems during checkout because a hazard may show up or
not depending upon the phasing of C vectors with respect
~ to instructions in the upper half of the pipe. However,
to isolate the problem to some extent, the "Allow Following"
bit can be set to zero and the level 3 far-range hazard
flag checked at the completion of the vector to see if the
next instruction address at level 3 has been overwritten.

Hardware Solution: Instruction hazards are marked

- in the JOIN mode when vectors write over subsequent in-
structions in the IPU5 ‘These hazards may or may not occur,
vdepending on vector-scalar phasing in the FORK mode.

Marked instructions make an instruction hazard recovery
‘request to obtain the modified instruction.

Delay avoidance: Do not allow vectors to write over

instruction areas of memory.

Delay time: Instruction hazard recovery time is
eleven clocks. Recovery occurs after all véctors have
completed for the case in which the last vector had the

Moy Following® bit set to zor0.

-42-

If the original and modified instruction was a VECTL
or LF, then the file load time is lost. Also, the second
vector initialization time is lost if a VECTL or VECT is

“modified.

D.

-43-

Arithmetic Exception Hazards

].

Load Arithmetic Exception Mask or AE DELAY

Condition Hazards

Three instructions exist which load the arithmetic
exception condition or mask registers. These are:

LAM Load arithmetic exception}maskv

LAC Load arithmetic exception condition

LEM Load arithmetic exception mask and condition
These three instructions must wait until none or only one
pipe contains instructions that may modify the arithmetic
exception (AE) condition or mask registers. Instfuctions
that modify the AE condition register are an LAC, LAM, or

any arithmetic operation that has the potential of setting

any of the AE condition bits. These bits are:

Divide check

Fixed-point overflow

Floating-point exponent overflow

Floating-point exponent underflow
Instructions that modify the AE mask register are an LAM
or LEM.

If only one pipe contains instructions that may modify
the AE condftion or mask registers (these instructions
generate an AE hazard signal in the pipeline below level 3),
then that pipe will be selected, providihg the effective
address is big (to central memory, a > 2F), If the addréss

is small (o < 2F and M = 0), then the addressed register

-44-

must not durrent1y be undergoing modification by another
pipe. If no modification‘is taking place, then the pipe
containing the AE hazard will be selected. If modification
is taking place,and:thbecurrentimodification is by the
selected pipe, then the instruction performing the modifi-
cation must bevthe}1ast instruction to have entered the
pipe containing the AE hazard. In other words, if alpha
is small and an alpha register hazard exists, then the
short circuit on alpha must occur in the pipe containing
the singular AE hazard. If these conditions exist, the
AE'hazard'w111 not cause a delay.

"The AE hazard just described is possible on the LAM,
LAC, and LEM instructions. Another delay, closely associated |
with the AE hazard delay, is encountered when ah arithmetic
instruction, capable of producing an arithmetic exception

-condition, finds an LAM, LAC, or LEM instruction at a

lower level of any of the four pipes. If found, the arith-
metic instruction must wait at level 3 until the LAM, LAC,
or LEM instruction has completed its operation (the pipes
are clear of any of these three instructions).

Hardware solution: An§ LAM, LAC, LEM, or arithmetic

instruction capable of producing an arithmetic exception
condition will insert an AE hazard bit into the pipe selected
by the said instruction. This bit travels_with the instruc-
tion as it moves down the pipeline. Any subsequent LAM,
LAC, or LEM instruction waits at level 3 until onTy‘one

or none of the AE hazard bits exist in the four pipes. If

-45-

only one pipe contains an AE hazard, then that pipe is
selected according to the previously stated conditions.

If no AE hazards exist, then the pipe is selected according
to the known scalar routing rules based on register hazards,
short circuits, and X, Y, Z buffer activity.

Also, an instruction which has the potential of an
arithmetic exception condition will make a test to see if
any LAM or LAC indicator bits are below Tevel 3. If so,
then the AE possible instruction waits at level 3 until

the LAM or LAC instruction has been cleared from the pipe.

"Delay:avoidance: Insert other non-AE hazard instruc-
tions in front of LAM, LAC, or LEM.instructions to allow
time for the AE hazard to clear. Also, perform nonarithmetic
operations after LAM or LAC instructions to allow time for
the LAM or LAC to clear the pipe.

| Delay time: AE hazard delay time amounts fo four
c]oéks plus AU time plus memory time if the AE hazard pro-
ducing instruction immediately preceded the LAM, LAC, or

LEM instruction.

-46-

Store Program Status Hazard DELAY

Before a Store Program Status (SPS) instruction can
leave level 3, it must have the final result code and
condition code for instructions prior to the SPS. Of the
four fields stored by the SPS (CP memory usage, BSR, CC,
and RC), only the CC and RC can be modified while the SPS
is in level 3. CP memory usage does not change during
program execution, and the BSR field can only change while
an Execute instruction is in level 3. The SPS waits until
all result code or condition code modifying instructions
have cleared all four pipes. It then proceeds down the
pipe selected according to the SPS storage address.

Hardware solution: An SPS instruction makes a test

for‘a signal called hex register hazard in the level 3
contro]]er.- This signal will be true if any result code
or cohdition code modifying instructions are in any of

the ﬁipes below Tevel 3. When the last instruction to set
the result code or to set the condition code (prior to

the SPS) has cleared its selected pipe, then the SPS is
released from level 3.

Delay avoidance: There is no easy way to avoid a hex

register hazard since nearly all instructions either modify
the result code or the condition code. The instructions
remaining after the RC and CC modifying types are removed
~constitute only the special aperation type instructions:

LEM, LAM, LAC, LLA, XCH, LF, LFM, STF, STFM, SPS, LEA,

47~

MCP, MCW, INT, PSH, PUL, MOD, BLB, BLX, FORK, JOINM, PO,
BRC, and BAE, Ecariy aevery ocn2 of thase has its cwn spasial
delay except for LLA, LEA, and INT. Very 1ittle pro-
grarming can'be done using these remining threz instrus-
tions.

Delay time: SPS hazard delay time-is dependent upon
the time for the last result code or condition code modi-
fying instruction to clear the pipe. If this instruction
immediately precedes the SPS, then the delay time is four
clocks plus AU time plus memory time, providing the AU
output does not become blocked due to multiple AU outputs
destined for the registér file. AU tim2 is from Table 1.
Memory time is eight clocks if the hex register hazard
produc1ng instruction makes a memory request. It is zero

if no request is made.

~48-

E. Branch Hazards

1.

Pesult Code Hazard _DELAY |

This hazard occurs when a "Branch on Result Code"
{BRC) instruction arrives at level 3 for execution and
the latest result code value has not been set yet. The
latest result code modifying instruction is below level 3
but has not cleared the pipe. The result code will be set

simultaneously with the AU result being placed in the

register file. A BRC instruction waits in level 3 until

the last instruction to modify the result code has cleared
the pipe. There may, at this time, still be other prior
result code sétting instructions in other pipes, but these
result codes were evidently not needed and, in fact, will
nevéf'affect the result code if somz other result code
modif&ing instruction came later and was the last one
before a BRC instruction.

Unconditional branch instructions (branches:with an
R-fiéid of 7) do not experience this delay; they simply
make}their branch address request upoh arrival at level 3.
A conditional branch instruction within the top four words
of an octet will make a request for its branch address on
the aésumption that the branch will be taken. This feature
employs the "dual look-ahead" hardware of the IPU which is

based on the concept that the branch octet of instructions

“will be akailable in one of the instruction buffers (either

KA or KB) by the time the branch decision is made. 7. i :

-49-

In the event that the branch is not taken, then the fact
that at least four instructions along the downstream path
still reside in the current instruction buffer allows the
normal look-ahead octet of instructions to be refetched
while the four remaining downstream instructions are being
processed.

Hardware solution: Branch hazards are monitored by

examining one of three signals, depending upon the type
- of branch instruction. The three types of branch instruc-
tions are:

| BRC Branch on result code

" BCC Branch on condition code

; BAE Branch on arithmetic exception
TheQE three branch instructions each check for their own
typeQOf hazard:

“BRC checks for result code hazards

BCC checks for condition code hazards

éTBAE checks for arithmetic exception hazards
The ;égister stack contains, as one of its components,
thre§:c01umns of bits, one for each type of hazard. These
bits‘track the instructions down the pipe. When all bits
in a?particular column have cleared, then that hazard
associated with that column has cleared. The branch
decision can be made when the hazard associated with that

branch has cleared.

-50-

Delay avoidance: For branch on compare code instruc-

tions, result code setting instructions can be inserted
between the branch (BCC) and the compare code setting in-
struction. In this instance, the inserted instructions
may be selected from a wide variety of the CP instruction
set. This is not quite so true wfth BRC or BAE instruc-
tions since they have the characteristic of waiting on
result producing instructions. It is hard to find more
than one compare code setting instruction that can be in-
serted between a BRC or BAE and the last result code or
AE setting instruction.

_Delax time: Branch hazard delay time is dependent
upon the time for the last RC , CC, or AE setting instruc-
tioﬁ to clear the pipe for a BRC, BCC, or BAE instruction,

. resbective1y. If the hazard causing instruction immediately
precedes the BRC, BCC, or BAE instruction, then the delay
time’is four clocks plus AU time plus memory time, providing
the AU output does not become blocked due to multiple AU
results destined for the register file. AU time is from
Table 1. Memory time is'eight clocks if the haiard-causing
1nstfpption makes a memory read request. It is zero if no

request is made.

2.

-51-

Condition Code Hazard DELAY

This hazard occurs when a “Branch on Condition Code"
(BCC) instruction arrives at level 3 for execution and
the latest condition code value has not been set yet.

This hazard is similar to the Result Code Hazard just

~described in section E.T.

Arithmetic Exception Branch Hazard DELAY

This hazard occurs when a "Branch on Arithmetic

; Excéption“ (BAE) instruction arrives at level 3 for exe-

cution and the latest arithmetic exception condition code
has not been set yet. This hazard is similar to the Re-

sult Code Hazard just described in section E.1.

II.

-52-

Scalar-Vector Hazards

A.

Vector Parameter File Modification DELAY

Before a vector fnstruction can transmit the vector
parameters to the Memory Buffer Unit (MBU), it must have the
final values in the vector parameter file (VPF). The VPF con-

sists of the lower eight registers of the forty-eight-word

register file (words 27 through 2F hex). This file may be "

acquired from memory (VECTL), or it may be the current con-
tents of the VPF. In either case there must not be any scalar

instructions currently in the CP pipeline that will modify

‘thevvector parameter file registers. If any such VPF modifying
instruction exists below level 3, then the vector instruction

at 1evefi3 will wait until the VPF hazard clears.

Hardware solution: A vector instruction at level 3 tests

a signaf called "any V haz" to-determine whether -any register:

* of the vector-parameter £i1&will-be modified by an instiuction

below IeQeT 3. The "any V haz" signal is made from an ORing

of four columns of bits in the register stack. These bits
track the instruction as it moves down the CP pipeline. The
top bit of this column is set when an instruction with an index
or vector“register destination moves from level 3 to 4. The
column sﬁlits into four columns at level 5, at the point where
four pipes begin.

From the statement describing the setting of the top most
bit,”it'ig appakent_that_the signal "any V haz" alsa detects

any index register modifying instructions. This protects

-53-

against picking up a wrong index value when the starting

aadl

3 in
dices are added to the vector starting addresses as part of

the vector initialization process.

Delay avoidance: Avoid modifying index registers or
~ vector parameter registérs immediately before a vector. In-
sert other arithmetic or base register modifying instructions
before vectors.

Delay time: Vector parameter file hazards are dependent
upon the pipe time of the index or vector modifying instruc-
| tion. If‘the VPF destination'instruction immediately precedes
the vecfor, then the de]ay time is four clocks plus AU time
plus memory time, providiﬁg the AU output does not become
blocked due to multiple AU results destined for the register
file. AU time is from Table 1, and memory time is eight clocks

if the scalar instruction makes a memory read request.

-54-

- B. Scalars Uriting Over Vector Input Arrays FUNCTIONAL

There is no hardware checking to guard against scalar
store instructions writing over vector read data arrays. For
this functional hazard to exist, the following conditions musf
be true: |
(a) The CP must have been in the fork mode when the scalar

store was executed and must remain in that mode until a

~ first vector after.the scalar store is executed with the

"allow current" bit set to “one."

(b) The first vector must closely follow the scalar store
type instruction. Store types are all stores, push, pull,
modify, or exéhange instructions.

(c) The scalar store type instruction must write into an area
of memory that is used for the initial input data by the
vector. TiLirefore

Thérefore, in order to not encounter this type of scalar-vettor

hazard, complement the sense of any condition a, b, or ¢ above.

In particular, the simplest method of preventing the acquisition

- of old data (if condition C is a requirement of the prograh)

is to turn "off" (zero) the "allow current" bit of the first

vector after the scalar store.

Hardware solution: Turning "off" (zeroing) the "allow

current” bit causes the vector to wait until all pipes have
been emptied and all stores currently residing in the Z buffers
of the MBU's to be forced into memory. The vector is‘aT]owed
to make its ve@tor parameter file request while the Z buffers

are being emptied.

-55-

It is also possible to place the CP in the join mode
during execution of the scalar store instruction and then
return to the fork mode prior to the vector. If the vector
has "allow current" on, then only those pipes executing stores
in the join mode will perform a forced write operation to purge
their Z buffers of write data. Other non-Z-join pipes are
not required to force their data into memory.

Delay avoidance: Negate any of the three conditions a,

b;'br ¢ above. Preferably, use the join mode to prevent vector
read data from béing picked up from a given memory area before
.scalar stores have had time to write into that same memory
area.

~ Delay time: Assume that condition; b and ¢ are program
requirements. If this is so, then it is necessary to invoke |
the jofn'mode to prevent the acquisition of old rather than
new data. Now, if the first vector after a scalar store is a
VECTL, then the delay time for emptying the joined pipes is
overlapped with the load file fetch time for obtaining the
vector parameters of the VECTL instruction. The emptying of
the joinéd pipes may also be overlapped with the transmittal
of the vector parameters to fhé MBU. If the joiﬁed pipes are
not emptied by the time: that the vector is ready to request
its first read data from memory, then the read requests are
held up until the joinéd pipes are cleared.

If the first vector is a VECT, then the time for emptying

the joinéd pipes can only be overlapped with vector initiali-

-56-

to the MBRU,

zation

oo

the time requ

ing upon

, depend

ipes.

dp

joine

clear the

o
M

- -57-

Vectors Writing Over Scalar Read Data FUNCTIONAL

“hwis This hazard is essentially the reverse of hazard II.B ~

Just described. In this case a similar set of conditions

must be true for the functional hazard to exist:

(a) The vector must have the "allow following" bit set to
"one."

(b) The first scalar read must closely follow the vector,:ard
there must not have been any intervening join instruc-
tions. |

(c) The vector must write into an area of memory from which

the scalar read data is obtained.

’ Therefore, in order to not encounter vet¢tor-scalar hazards,

complement the sense of any condition a, b, or ¢ above. In

particular, the easiest method of preventing the acquisition

-of old data (if condition ¢ is a requirement of the program)

is to zero the "allew following" bit of the vector.

‘Hardware solution: Turning "off" (zeroing) the "allow

following" bit causes the vector to enter a state where it
waits fof any vectors in progress to complete before executing

the next instruction at level 3. Any vector in progress in-

cludes the current vector, so it is not possible for a subse-

quent scalar (except for a load file instruction) to begin

execution until the current vector and all preceding vectors

- have completed. This also includes the completion of all

outstanding scalar rcads that may be in progress in other pipes

during the’ current vector execution.

-58-

- Preventing the subsequent scalar from beginning execution
guarantees that vector output data will have been written into
memory before a scalar read request is issued for the same
area of central memory.

Notice that load file scalar requests are allowed in the
join mode. This is for the purpose of obtaining a new vector
parameter file and then making singleword or halfword modifi-
cations before executing a VECT instruction. The memory address
of the load file octet is monitoréd throughout the duration
of the vector with "allow following off." Should the vector
write over the load file octet location, a flag (a]pha hazard
flag) will be set to "one." This flag causes the load file
octet to be refetched at the completion of the vector.

A hazard that is noncorrectable, along this same line of
thought, is when the vector writes over the instruction location
of the 1oéd file instruction. Should this happen, it is not
possible to reconstruct the state of the register file prior to
execution of fhe load file instruction. If the load file instruc-
tion 1oca£ion is MOdified to anything other than a load file to
the}same register file, then the program will most likely produce. :
erronéous results. Again, the rule "never modify instructions"

should prevent most individuals from making this mistake.

Delay avoidance: Negate any of the three conditions a,
b, or ¢ preceding. Preferably, turn off the "allow following"
bit to prevent reading scalar data before the preceding vector

has written into a given area of memory.

of subsequent scalars

{except for load file instructions) if the "allow following"
bit is "zero." Prior vectors may continue processing in parallel
with the last vector if the prior vectors had their "allow fol-
lowing" set to "one." However, the next scalar after the last
vector must wait until the longest vector has completed since
it waits for all vectors to complete. The longest vector may
not necessarily be the last vector. Therefore, the actual
delay may exceed the expected delay unless the length of all
vectors are taken into account.

If the next instruction after the vector with "allow fol-
lowing" set to "zero" is another vector, then the next vector
is al]dwéd to request its vector parameter file and to initialize

the MBU but to go no further.

-60-

D. Alpha Hazards During Vectors in the Fork { FUNCTIONAL |

and Join Mode ' DELAY

To begin with, scalar instructions by themselves cannot
cause a funétiona] alpha operand hazard. Emphasis here should
be placed on the word "functional" as that means a possible
error-producing hazard. Aipha operand delays do occur among
purely scalar instructions (scalars executed by themselves;
clear of vectors), but these delays do not produce errors in
results. These delay-generating conditions were described in
section B under Centra] Memory Address Hazards. |

Scalar instruction hazards were discussed in sections I.C.1
and I.C.2 for scalars operating clear of vectors and in section
‘1.C.3 for scalars and vectors operating in parallel.

What fs of concern in this section is scalar alpha hazards

"caused by a prior vector.. That is, a vector writing over the
memory location of a subseqﬁeht vector parameter file of a VECTL
‘instrdction or a subsequent Load File from memory. Vectors
4writing over scalar read data was discussed in Section II.C.
| Assume that the join mode has been estab]ished within

some 1ist of scalar instructions prior to the arrival of a

first vector at level 3. If the vector is a VECTL, which
receives fis vecfor parameter file (VPF) from memory, a test is
made for éh alpha hazard before issﬁing the load file request.
Since being in the join_mode prior to the arrival of this vector

guarantees that there are currently no other vectors in progress,

-61-

the alpha hazard detection hardware initiates a forced write
signal to the MBU containing the hazard-producing store; i.e,,
. the store whose address agrees with the alpha address of the -
vector instruction. The VPF Toad request is issued after the
forced write has been completed. Delay, in this case, is due
to waiting for write data to arrive in memory prior to isshing
the read request. Had the alpha hazard not existed, the forced
write operation would have taken place as a normal part of

the preparation for the vector in the join mode; buf the VPF
load would not have had to wait on the write to complete.

Now, consider the case where a first vector is executed
in the fbrk mode but has its "allow following" bit set to "zero";
then, suppose a second vector follows immediately. This second
vector mékes its test for alpha hazards in the “vector plus one"
state. Here‘the situation is different because now it is possible
- for BothSVectors and scalars to be in progress simultaneously
in any of the four pipes. The alpha hazard logic cannot issue -
a forced @rite command to a pipe that is executing a vector.
because (fortunately) that pipe will simply ignore the command.
The Togic will, however, issue a forced write to the pipes
containing scalar stores; and, in addition, the alpha hazard
- logic will cause the VPF load request to be delayed until the
scalar forced writes are completed. The unprotected case is
seen to be when the first vector, with "allow following" off,
 writes over the vector parameter file (in memory) of the suc-

. ceeding vector. It is difficult to protect against this case

with h

he vector parameter file address that

o
3
o
=
0
=5
a)
»
=
=)
O
i
ck

is contained in the AR register of Tevel 3 is erased during
vector initialization. That is, register AR becomes involved
in the process of transmitting vector parameters to the MBU

and cannot continue the function of monitoring a VPF address

in AR against all outpnt addresses of the first C vector.

It is more important, in terms of time that would otherwise

be Tost on all joined vector initializations, for the initiali-
zation to proceed and to sacrifice the alpha hazard hardware
checking for this case. Protection of a VPF in memory can

be insured by software by using the sequence:

SEQT VECTL "AF" = 0
LF (load VPF)
VECT

instead of,

SEQZ .VECTL "AF" = 0

VECTL

The VPF of the sécond VECTL of sequence 2 is unprotected sinceA
the second VECTL proceeds through initialization while the
first VECTL is still executing. In sequence 1 the a}pha address
of the LF instruction is checked against all E’vector addresses
of the first VECTL, so the VPF for VECT is protected against
modification by VECTL.

Hardware solution: A test is made for scalar alpha hazards

. prior to making the load file request for a VECTL instruction.

This is done regardless of the fork or join mdde but is intended

-63-

for the join mode. If an alpha hazard, due to a prior scalar
étoring over a VECTL's alpha address, is seen during the fork
mode, then the forced write takes place the same as in the join
mode. However, if a prior vector writes over a VECTL's alpha
address and the VECTL is executed, all the while remainihg iﬁ
the fork mode, then the alpha hazard wi]]}not be seen and the
VECTL can pick up its VPF prior to modification by the first
vector.

Delay avoidance: Avoid modifying vector parameter files

(VPF) of subsequent vectors by means of scalar stores or vector
writes (to memory) which are in the immediate vicinity of a
vector using the VPF being modified. If separation of modifi-
cation from use by the method of instruction insertion is not
feasible, then at least insert a join instruction between modifi-
cation and use to prevent functional errors.

Delay time: Needs FUSS prediction.

-64-

III. Vector Hazards

A. Vectors Storing Over Their Own Input Data Arrays !F"NCTIQNAL

This hazard results from a violation of the familiar
"Vector Hazard Rule," which states that:

A "hazard condition" occurs whenever the present
octet address of input vector & or B or the next four
octet addresses for each of vectorsfﬁ’or'ﬁ’is the same
as the presenf result octet address or the eight past
result octet addresses of output vector C.

If the Vector Hazard Rule is violated, the "old" rather
than the»"néw“ (updated) information is used as the operand.
For example, a vector will use the "old" values for the B
vector operands if the element address of ¢; is one greater
than thé element address of by and all vectors are assigned
a pOSitivé increment direction during the self-loop. Hardware
is not built in to detect this hazard. Also, delay avoidance

and delay time descriptions do not apply to functional hazards.

B.

-65-

Addressing Conflicts Between Two or More
Vectors Executing Simultaneously in Parallel ! {}:FUNCTIONAL

Pipes

This addressing conflict is caused by the independence
of separate pipes executing in parallel. Unless one is care-
ful, two vectors started in separate but parallel pipes can
have their data paths (in memory) cross one another. Input

paths crossing input paths cause no trouble. However, let an

~input data path cross behind an output data path of an‘edrtier

vector; andiprbgram errors are almost certain. If the memoty
paths cross like an "X,"lthen the time and phase (ahead or
behind) relationship of reaching the intercept point is impor-
tant. Since vector rates are influenced by memory interference,
it is difficult to predict the time of reaching the intercept
point for either vector. Therefore, rate control is impossible.
So, to prevent memory read-write collisions between vectorﬁ,
these intercepting vectors must be executed independently of
one another. |

Another type of intercept would be the parallel path

- type, particularly when the parallel paths form a single line

trac1ng the same area of memory. In this case the vector

rates are also quite critical to program execution. For example,
if the output vector were trailing an input vector through
contiguous locations, all would be fine (assuming the output
vector was the second vector to start execution). Suppose

that, subsequently, the output vector of pipe 1 caught up with

-66-

and passed the input vector of pipe 2. Now, the first vector
would be reading output data %rom the second vector, a diffi-
cult condition to contend with, especially when trying to
interpret program results following execut{on; i.e;; man,
take a look at that dump! AThese'vectors must also be executed
independently 6f one another.

Hardware is not implemented to detect this hazard. Also,
delay avoidance and delay time descriptions do not apply to

functional.hézards.

C.

-67-

Halfword Z-fi11-in Hazards _ FUNCTIONAL

This hazard is similar to the one just described in sec-
tion III.B since it is caused by two or more vectors executing
simultaneously in parallel pipes. An unusual characteristic
of this hazard is that it is due to two or more halfword gg;,
put vectors writing over the same area of memory. It is also
quite difficult to predict thé hazard based on Fortran compi]ér
algorithms for finding two vectors writing into the same memory
space because the errors may arise in halfword locations within

the octet being modified and not necessarily at the ha]fword

location common to both vectors.

The hazard is due to the fact that halfword output vectors,
which do not fill up an entire octet with halfwords, require
a halfword Z-fi11-in operation. A Z-fill-in involves both a
read and a write cycle, controlled by the Memory Buffer Unit.
Since memory only accepts singleword stores (there are eight
zone enaBTe lines controlling the word of an octet to be stored),
the MBU must recognize halfword stores which do not fill both

halves of a singleword location. This is done by examining the

sixteen halfword zone bits of the Z buffer of the MBU. Any

even-odd bit pair forming a true exclusive or logical combina-
tion indicates the need for a Z-fill-in operation.
The operation is as follows:
(1) The address of the octet to be stored into memory
s first sent to memory as a read request for that

octet.

(2)

(3)

(4)

-68~

~The requested octet is loaded into the ZB buffer of

the MBU,

The "filled" halfwords of the Z buffer are trans-

~ferred to the ZB buffer. "Unfilled" halfwords are

not transferred.

The "now updated" ZB buffer is written into memory
at the storage octet address. Zone enable lines
are a Togical "one" for those singlewords that have

been updated.

A halfword Z-fill-in hazard occurs when the following

sequence occurs:

(1)

(2)

(3)

(4)

A first pipe requests an octet for the purpose of

Z-fill-in.

A second pipe requests the same octet for the pur-
pose of Z-fill-in, '

The first pipe modifies one halfword of the octet
and then stores the octet back into memory.

The second pipe modifies some other halfword of

the same octet and then stores it back into memory.

Operétion 4 above has just erased the work done by the

first pipe. Results in the common octet which weretto!have

been storéq by the first pipe are lost,zand recovery is im-

possible.

In order to protect against this functional hazard, one

must make a complete examination of’ha1fwordf6'output vectors,

that are running simultaneously in the fork mode, to be sure

or

—de

eing used.
is not possible, then vectors with halfword outputs
should be run with “aT1ow following" tuﬁnéd of%§fset to zero.
Hardware is not implemented to détect tﬁis hazard. Also,
delay avoidance and delay time descriptions ddfnpt apply to

functional hazards.

	000
	01_00
	01_01
	01_02
	01_03
	01_04
	01_05
	01_06
	01_07
	01_08
	01_09
	01_10
	01_11
	01_12
	01_13
	01_14
	01_15
	02_01
	02_02
	03_01
	03_02
	04_01
	04_02
	05_000
	05_001
	05_002
	05_01
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	05_09
	05_10
	05_11
	05_12
	05_13
	05_14
	05_15
	05_16
	05_17
	05_18
	05_19
	05_20
	05_21
	05_22
	05_23
	05_24
	05_25
	05_26
	05_27
	05_28
	05_29
	05_30
	05_31
	06_01
	06_02
	06_03
	07_01
	07_02
	07_03
	07_04
	08_01
	09_01
	09_02
	09_03
	10_00
	10_01
	10_02
	10_03
	10_04
	10_05
	10_06
	10_07
	10_08
	10_09
	10_10
	10_11
	10_12
	10_13
	10_14
	10_15
	10_16
	10_17
	10_18
	10_19
	10_20
	10_21
	10_22
	10_23
	10_24
	10_25
	10_26
	10_27
	10_28
	10_29
	10_30
	11_01
	11_02
	11_03
	11_04
	11_05
	11_06
	11_07
	11_08
	11_09
	11_10
	11_11
	11_12
	11_13
	11_14
	11_15
	11_16
	11_17
	11_18
	11_19
	11_20
	11_21
	11_22
	11_23
	11_24
	11_25
	11_26
	11_27
	11_27a
	11_28
	11_29
	11_30
	11_31
	11_32
	11_33
	11_34
	11_35
	11_36
	11_37
	11_38
	11_39
	11_40
	11_41
	11_42
	11_43
	11_44
	11_45
	11_46
	11_47
	11_48
	11_49
	11_50
	11_51
	11_52
	11_53
	11_54
	11_55
	11_56
	11_57
	11_58
	11_59
	11_60
	11_61
	11_62
	11_63
	11_64
	11_65
	11_66
	11_67
	11_68
	11_69

