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INTRODUCTION 

In this manual, Texas Instruments presents technical information on the TI 
SN74ACT8800 family of 32-bit processor "building block" circuits. The 
SN74ACT8800 family is composed of single-chip VLSI processor functions, all of which 
are designed for high-complexity processing applications. 

This manual includes specifications and operational information on the following high­
performance advanced-CMOS devices: 

• SN74ACT8818 16-bit microsequencer 
• SN74ACT8832 32-bit registered ALU 
• SN74ACT8836 32- x 32-bit parallel multiplier 
• SN74ACT8837 64-bit floating point processor 
• SN74ACT8841 Digital crossbar switch 
• SN74ACT8847 64-bit floating point/integer processor 

These high-speed devices operate at or above 20 MHz, while providing the low power 
consumption of Tl's advanced one-micron EPIC'· CMOS technology. The EPIC'· CMOS 
process combines twin-well structures for increased density with one-micron gate 
lengths for increased speed. 

The SN74ACT8800 Family Data Manual contains design and specification data for 
all five devices previously listed and includes additional programming and op~rational 
information for the '8818, '8832, and '8837/'8847. 

Introductory sections of the manual include an overview of the '8800 family and a 
summary of the software tools and design support TI offers for the chip-set. The general 
information section includes an explanation of the function tables, parameter 
measurement information, and typical characteristics related to the products listed 
in this volume. 

Package dimensions are given in the Mechanical Data section of the book in metric 
measurement (and parenthetically in inches). 

Complete technical data for any Texas Instruments semicondutor product is available 
from your nearest TI field sales office, local authorized TI distributor, or by calling Texas 
Instruments at 1-800-232-3200. 

EPIC is a trademark of Texas Instruments Incorporated. 

v 



vi 



Award Winners/1987 

Electronic Products' 

12th Annual 
Product of the Year 

Awards 
Every year, the editors of Electronic Products 

select what we judge to be the best electron­
ics products announced during the preceding 
12 months. Our goal: to honor those products that 
have contributed most to help our engineer-readers 
do their jobs better. 

We weigh several criteria as we sift through the 
thousands of products brought to our attention. 
Alone or in combination, each product must repre­
sent a significant advance in technology or its appli­
cation, a decided innovation in deSign, or a sub­
stantial gain in price-performance ratio. 

• 74ACT8836 Multiplier-Accumulator 
• 74ACT8837 Floating Point Unit 
• 74AS8840 .Crossbar Switch 
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Introduction 

Texas Instruments SN74ACT8800 family of 32-bit processor building blocks has been 3: 
Q) 

developed to allow the easy, custom design of functionally sophisticated, high- oS; 
performance processor systems. The '8800 family is composed of single-chip, VLSI Q; 
devices, each of which represents an element of a CPU. > o 
Geared for computationally intensive applications,SN74ACT8800 devices include high-
performance ALUs, multipliers, microsequencers, and floating point processors. 

The '8800 chip set provides the performance, functionality, and flexibility to fill the 
most demanding processing needs and is structured to reduce system design cost 
and effort. Most of these high-speed processor functions operate at 20 MHz and above, 
and, at the same time, provide the power savings of TI's advanced, 1 /lm EPIC'· CMOS 
technology. 

The family's building block approach allows the easy, "pick-and-choose" creation of 
customized processor systems, while the devices' high level of integration provides 
cost-effectiveness. 

Designed especially for high-complexity processing, the devices in the '8800 family 
offer a range of functional options. Device features include three-port architecture, 
double-precision accuracy, optional pipelined operation, and built-in fault tolerance. 

Array, digital signal, image, and graphics processing can be optimized with '8800 
devices. Other applications are found in supermini and fault-tolerant computers, and 
I/O and network controllers. 

In addition to the high-performance, CMOS processor functions featured in this data 
manual, the family includes several high-speed, low-power bipolar support chips. To 
reduce power dissipation and ensure reliabilty, these bipolar devices use TI's proprietary 
Schottky Transistor Logic (STL) internal circuitry. 

EPIC is a trademark of Texas Instruments Incorporated. 

1-5 



o 
< 
CD 
"'" < 
cD" 
~ 

At present, TI's .'8800 32-bit processor building block family comprises the following 
functions: 

• SN74ACT8818 16-bit microsequencer 
• SN74ACT8832 32-bit registeredALU 
• SN74ACT8836 32- X 32-bit parallel multiplier 
• SN74ACT8837 64-bit floating point processor 
• SN74ACT8841 digital crossbar switch 
• SN74ACT8847 64-bit floating point and integer processor 
• Bipolar Support Chips 

• SN74AS8833 64-bit funnel shifter 
• SN74AS8834 64 x 40 register file 
• SN74AS8838 32-bit barrel shifter 
• SN74AS8839 32-bit shuffle/exchange network 
• SN74AS8840 16 x 4 crossbar switch 

20 MIPS and Low CMOS Power Consumption 

With instruction cycle times of 50 ns or less and the low power consumption of EPICTM 
CMOS, the '8800 chip set offers an unrivaled speed/power combination. Unlike 
traditional microprocessors, which require multiple cycles to perform an operation, 
the 'ACT8800 processors typically can complete instructions in a single cycle. 

The 'ACT8832 registered ALU and 'ACT8818 microsequencer together create a 
powerful 20-MHz CPU. Because instructions can be performed in a single cycle, the 
8832/8818 combination is capable of executing over 20 million instructions per second 
(MIPS). 

For math-intensive applications, the 'ACT8836 fixed-point multiplier/accumulator 
(MAC),' ACT8837 64-bit floating point processor, and' ACT884 7 64-bit floating point 
and integer processor offer unprecedented computational power. 

The exceptional performance of the' ACT8800 family is made possible by Tl's EPICY. 
CMOS technology. The EPICY. CMOS process combines twin-well structures for 
increased density with one-micron gate lengths for increased speed. 

Customized Solution 

The '8800 family is designed with a variety of architectural and functional options 
to provide maximum design flexibility. These device features allow the creation of 
"customized" solutions with the '8800 chipset. 

A building block approach to processing allows designers to match specialized hardware 
to their specific design needs. The 8818/8832 combination forms the basis of the 
system, a high-speed CPU. For applications requiring high-speed integer multiplication, 
the' ACT8836 can be added. To provide the high precision and large dynamic range 
of floating point numbers, the 'ACT8837 or 'ACT8847 can be employed. 

1-6 



To ensure speed and flexibility, each component of the '8800 family has three data 
ports. Each data port accommodates 32 bits of data, plus four parity bits. This 
architecture eliminates many of the I/O bottlenecks associated with traditional single­
I/O microprocessors. 

The three-port architecture and functional partitioning of the '8800 chip-set opens 3: 
the door to a variety of parallel processing applications. Placing the math and shifting CI) 

functions in parallel with the ALU permits concurrent processing of data. Additional .~ 
processors can be added when performance needs dictate. ~ 

The 'ACT8800 building block processors are microprogrammable, so that their 
instruction sets can be tailored to a specific application. This high degree of 
programmability offers greater speed and flexibility than a typical microprocessor and 
ensures the most efficient use of hardware. 

A separate control bus eliminates the need for multiplexing instructions and data, further 
reducing processing bottlenecks. The microcode bus width is determined by the 
designer and the application. 

Another source of design flexibility is provided by the pipelined/flowthrough operation 
option. Pipelining can dramatically reduce the time required to perform iterative, or 
sequential, calculations. On the other hand, random or nonsequential algorithms requite 
fast flowthrough operations. The '8800 chip set allows the designer to select the mode 
(fully pipelined, partially pipelined, or nonpipelined) most suited to each design. 

Scientific Accuracy 

The '8800 family is designed to support applications which require double-precision 
accuracy. Many scientific applications, such as those in the areas of high-end graphics, 
digital signal processing, and array processing, require such accuracy to maintain data 
integrity. In general-purpose computing applications, floating point processors must 
often support double-precision data formats to maintain compatibility with existing 
software. 

To ensure data integrity, '8800 devices (excluding the barrel shifter and 
microsequencer) support parity checking and generation, as well as master/slave error 
detection. Byte parity checking is performed on the input ports, and a parity generator 
and a master/slave comparator are provided at the output. Fault tolerance is built into 
the processors, ensuring correct device operation without extra logic or costly software. 
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The SN74ACT8800 Building Block Processor System 

Some of the high-performance '8800 devices are described in the following paragraphs. 

SN74ACT8818 16-Bit Microsequencer 

s> In a high-performance microcoded system,· a fast microcode controller is required to 
~ control the flow of instructions. The SN74ACT8818 is a high-spe~d, versatile 16-bit 
< microsequencer capable of addressing 64K words of microcode memory. The 
(j)" 
~ 'ACT8818 can address the next instruction fast enough to support a 50-ns system 

cycle time. 

The' ACT8818 65-word-deep by 16-bit-wide stack is useful for storing subroutine 
return addresses, top of loop addresses, and loop counts. Addresses can be sourced 
from eight different sources: the three I/O ports, the two register counters, the 
microprogram counter, the stack, and the 16-way branch. 

SN74ACT8832 Registered ALU 

The SN74ACT8832 is a 32-bit registered ALU that operates at approximately 20 Mhz. 
Because instructions can be performed in a single cycle, the' ACT8832 is capable of 
executing 20 million microinstructions per second. An on-board 64-word register file 
is 36-bits-wide to permit the storage of parity bits. The 3-operand register file increases 
performance by enabling the creation of an instruction and the storage of the previous 
result in a single cycle. To facilitate data transfer, operands stored in the register file 
can be accessed externally, while the ALU is executing. To support the parallel 
processing of data, the' ACT8832 can be configured to operate as four 8-bit ALUs, 
two 16-bit ALUs, or a single 32-bit ALU. The' ACT8832 incorporates 32-bit shifters 
for double-precision shift operations. 

SN74ACT8836 32- x 32-Bit Integer MAC 

The SN74ACT8836 is a 32-bit integer multiplier/accumulator (MAC) that accepts two 
32-bit inputs and computes a 64-bit product. The device can also operate as a 64-bit 
by 64-bit multiplier. An onboard adder is provided to add or subtract the product or 
the complement of the product from the accumulator. 

When pipelined internally, the 1 /Lm CMOS parallel MAC performs a full 32- x 32-bit 
multiply/accumulate in a single 36-ns clock cycle. In flowthrough mode (without any 
pipelining), the' ACT8836 takes 60 ns to multiply two 32-bit numbers. The' ACT8836 
performs a 64- x 64-bit multiply/accumulate, outputting a 64-bit reSUlt, in 225 ns. 

The' ACT8836 can handle a wide variety of data types, including two's complement, 
signed, and mixed. Division is supported via the Newton-Raphson algorithm. 

SN74ACT8837 64-Bit Floating Point Unit 

The SN74ACT8837 is a high-speed floating point processor. This single-chip device 
performs 32- or 64-bit floating point operations. 
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More than just a coprocessor, the' ACT883 7 integrates on one chip a double-precision 
floating point ALU and multiplier. Integrating these functions on a single chip reduces 
data routing problems and processing overhead. In addition, three data ports and a 
64-bit internal bus architecture allow for single-cycle operations. 

The' ACT8837 can be pipelined for iterative calculations or can operate with input 
registers disabled for low latency. 

SN74ACT8841 Digital Crossbar Switch 

The SN74ACT8841 is a single-chip digital crossbar switch. The high-performance 
device, cost-effectively eliminates bottlenecks to speed data through complex bus 
architecture. . 

The' ACT8841 is ideal for multiprocessor applications, where memory bottlenecks 
tend to occur. The device has 64 bidirectional If 0 ports that can be configured as 16 
4-bit ports, 8 8-bit ports, or 4 l6-bit ports. Each bidirectional port can be connected 
in any conceivable combination. Any single input port can be broadcast to any 
combination of output ports. The total time for data transfer is 20 ns. 

The control sources for ten separate switching configurations are on-chip, including 
eight banks of programmable control flip-flops and two hard-wired control circuits. 

The EPIC'· CMOS SN74ACT8841 and its predecessor, SN74AS8840, are based on 
the same architecture, differing in power consumption, number of control registers, 
and pin-out. Microcode written for the' AS8840 can be run on the' ACT8841 . 

SN74ACT8847 64-Bit Floating Point Unit 

The SN74ACT8847 is a high-speed 64-bit floating point processor. The device is fully 
. compatible with IEEE standard 754-1985 for addition, subtraction, multiplication, 

division, square root, and comparison. Division and square root operations are 
implemented via hardwired control. 

The SN74ACT8847 FPU also performs integer arithmetic, logical operations, and logical 
shifts. Registers are provided at the inputs, outputs, and inside the ALU and multiplier 
to support multilevel pipelining. These registers can be bypassed for nonpipelined 
operations. 

When fully pipelined, the' ACT884 7 can perform a double-precision floating point or 
32-bit integer operation in under 40 ns. When in flowthrough mode, the' ACT884 7 

. takes less than 100 ns to perform an operation. 

Bipolar Support Chips 

The SN74AS8833 64-bit-to-32-bit funnel shifter can increase overall speed in systems 
where multi-bit shift operations and field masking are frequently used. The device can 
perform logical, cir~ular, and arithmetic shifts on 32-bit and 64-bit words, IEEE or IBM 
normalization, and field pack or extract operations. The 'AS8833 provides 
shift/maSk/merge capability for graphics and data compression applications. 
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The SN74AS8834 is a high-speed, three-operand, 64-word by 40-bit register file. 
Designed to expand the' ACT8832 register file, the' AS8834 is an ideal temporary 
storage device for high-speed applications. Four address ports, two write and two 
read, operate independently to support MSH/LSH swap operations. 

o The SN74AS8838 high-speed, 32-bit barrel shifter can shift upto 32 bits in a single 
~ instruction cycle of under 25 ns. Five basic shifts can be programmed: circular left, 
;: circular right, logical left, logical right, and arithmetic right. The' AS8838 offloads the 
CD" responsibility for shifting operations from the ALU, which increases shifter functionality 
~ and system throughput. 

The SN74AS8839 is a 32-bit shuffle/exchange network. The high-speed device can 
perform data permutations on one 32-bit, two 16-bit, four 8-bit, or eight 4-bit data 
words in a single instruction cycle of under 25 ns. The shuffle/exchange network is 
designed primarily for use in digital signal processing applications. 
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SN74ACT8818 
16·8it Micfosequencef 

• Addresses Up to 64K Locations of Microprogram Memory 

• CLK-to-Y = 30 ns (tpdl 

• Low-Power EPIC" CMOS 

• Addresses Selected from Eight Different Sources 

• Performs Multiway Branching, Conditional Subroutine Calls, and Nested 
Loops 

• Large 64-Word by 16-bit Stack 

• Cascadable 

Because they're microprogrammable, the ACT8800 building block processors provide 
greater speed and flexibility than does a typical microprocessor. In such a high­
performance microcoded system, a fast microsequencer is required to control the flow 
of microinstructions. 

The SN74ACT8818 is a high-speed, versatile 16-bit microsequencer capable of 
addressing 64K words of microcode memory. The 'ACT8818 can address the next 
instruction fast enough to support a 50-ns system cycle time. 

The 'ACT8818 65-word-deep by 16-bit-wide stack is useful for storing subroutine 
return addresses, top-of-Ioop addresses, and loop counts. For added flexibility, 
addresses can be selected from eight different sources: the three I/O ports, the two 
register/counters. the microprogram counter, the stack, and the 16-way branch input. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Introduction 

The SN74ACT8818 microsequencer is a low-power, high-performance microsequencer 
implemented in TI's EPIC'· Advanced CMOS technology. The l6-bit device addresses 
up to 64K locations of microprogram memory and is compatible with the SN74AS890 
microsequencer. 

The 'ACT8818 performs a range of sequencing operations in support of TI's family 00 
of building block devices and special-purpose processors such as the SN74ACT8847 .... 
Floating Point Unit (FPU). ~ ... 
Understanding the . ACT8818 Microsequencer () 

« 
The 'ACT881 8 microsequencer is designed to control execution of microcode in a CIt 

" microprogrammed system. Basic architecture of such a system usually incorporates Z 
at least the microsequencer, one or more processing elements such as the' ACT884 7 en 
FPU or the SN74ACT8832 Registered ALU, microprogram memory, microinstruction 
register, and status logic to monitor system states and provide status inputs to the 
microsequencer. 

The' ACT8818 combines flexibility and high speed in a microsequencer that performs 
multiway branching, conditional subroutine calls, nested loops, and a variety of other 
microprogrammable operations. The' ACT8818 can also be cascaded for providing 
additional register/counters or addressing capability for more complex microcoded 
control functions. 

In this microsequencer, several sources are available for microprogram address 
selection. The primary source is the 16-bit microprogram counter (MPC), although 
branch addresses may be input on the two l6-bit address buses, ORA and ORB. An 
address input on the ORA bus can be pushed on the stack for later selection. 
Register/counters RCA and RCB can store either branch addresses or loop counts as 
needed, either for branch operations or for looping on the stack. 

The selection of address source can be based on external status from the device being 
controlled, so that three-way or multiway branching is supported. Once selected, the 
address which is output on the Y bus passes to the microprogram memory, and the 
microinstruction from the selected location is clocked into the pipeline register at the 
beginning of the next cycle. 

It is also possible to interrupt the ' ACT881 8 by placing the Y output bus in a high­
impedance state and forcing an interrupt vector on the Y bus. External logic is required 
to place the bus in high impedance and load the interrupt vector. The first 

EPIC is a trademark of Texas Instruments Incorporated. 
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microinstruction of the interrupt handler subroutine can push the address from the 
Interrupt Return register on the stack so that proper linkage is preserved for the return 
from subroutine. 

Microprogramming the ' ACT8818 

Microinstructions for the' ACT8818 select the specific operations performed by the 
Y output multiplexer, the register/counters RCA and RCB, the stack, and the 
bidirectional ORA and ORB buses. Each set of inputs is represented as a separate field 
in the microinstructions, which control not only the microsequencer but also the ALU 

(J) or other devices in the system. 
Z ...., 
~ 
~ 
(') 
-I 
00 

The 3-port architecture of the 'ACT8818 facilitates both branch addressing and 
register/counter operations. Both register/counters can be used to hold either loop 
counts or branch addresses loaded from the ORA and DRB buses. Register/counter 
operations are selected by control inputs RC2-RCO. 

~ Similarly, the 65-word by l6-bit stack can save addresses from the ORA bus, the 
00 microprogram counter (MPCl. or the Interrupt Return register, depending on the settings 

of stack controls S2-S0 and related control inputs. Flexible instructions such as Branch 
ORA else Branch to Stack else Continue can be coded to take advantage of the 
conditional branching capability of the' ACT88l8. 

Multiway branching (16- or 32-way) uses the B3-BO inputs to set up a 16-way branch 
address on ORA or ORB by concatenating B3-BO with the upper 12 bits of the ORA 
or ORB bus. The resulting branch addresses ORA' (ORA l5-0RA4::B3-BO) and ORB' 
(ORB15-0RB4::B3-BO) are selected by the Y output multiplexer controls MUX2-MUXO. 
A Branch ORB' else Branch DRA' instruction can select up to 32 branch addresses, 
as determined by the settings of 83-80. 

Design Support 

Texas Instruments Regional Technology Centers, staffed with systems-oriented 
engineers, offer a training course to assist users of Tl's LSI products and their 
application to digital processor systems. Specific attention is given to the understanding 
and generation of design techniques which implement efficient algorithms designed 
to match high-performance hardware capabilities with desired performance levels. 
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Information on LSI devices and product support can be obtained from the following 
Regional Technology Centers: 

Atlanta 
Texas Instruments Incorporated 
3300 N.E. Expressway, Building 8 
Atlanta, GA 30341 
404/662-7945 

Boston 
Texas Instruments Incorporated 
950 Winter Street, Suite 2800 
Waltham, MA 021 54 
617/895-9100 

Northern California 
Texas Instruments Incorporated 
5353 Betsy Ross Drive 
Santa Clara, CA 95054 
408/748-2220 

Design Expertise 

Chicago 
Texas Instruments Incorporated 
515 Algonquin 
Arlington Heights, IL 60005 
312/640-2909 

Dallas 
Texas Instruments Incorporated 
10001 E. Campbell Road 
Richardson, TX 75081 
214/680-5066 

Southern California 
Texas Instruments Incorporated 
17891 Cartwright Drive 
Irvine, CA 92714 
714/660-8140 

Texas Instruments can provide in-depth technical design assistance through 
consultations with contract design services. Contact the local Field Sales Engineer 
for current information or contact VLSI Systems Engineering at 214/997-3970. 
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'ACT8818 Pin Grid Allocation 
(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 

A • • • • • • • • • 
B .~ . • • • • • • (!) • 
c • • • • • • • • • 
D • • • • • en 

:2 E • • • • • • 
~ 

F ~ • • • • • • 
l> G • • • • • • (") 
-t H • • • • (X) 
(X) J • • • • • • • • • -I> 

• (!) • • (!) • (X) K • • • • • 
L • • • • • • • • • 

Figure 1, 'ACT8818 . .... GC Package 
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Table 1. 'ACTSS1S Pin Grid Allocation 

PIN PIN PIN PIN 
NO. NAME NO. NAME NO. NAME NO. NAME 
A2 RC2 C2 RCO F3 RBOE Jl0 Sl 
A3 Y1 C3 GND F9 BO Jl1 STKWRN/RER 
A4 Y3 C5 GND FlO Bl Kl DRBO 
A5 Y5 C6 Y7 Fl1 MUX2 K2 SELDR 
A6 Y6 C7 Yl0 Gl DRB6 K3 DRA14 
A7 Y8 C9 GND G2 DRB5 K4 DRA12 
A8 Y11 Cl0 VCC G3 GNO K5 DRA10 
A9 Y13 Cll RE G9 CLK K6 ORA7 
Al0 NC Dl ORB12 Gl0 MUXO K7 DRA5 
Bl ORB15 D2 DRB13 Gl1 MUXl K8 DRA3 
B2 RCl 09 GNO Hl DRB4 K9 ORAO 
83 YO 010 COUT H2 DRB3 K.l0 SO 
B4 Y2 Dll INC Hl0 CC Kll S2 
B5 Y4 El ORB9 Hll ZEROUT L2 ORA15 
B6 YOE E2 DR810 Jl DRB2 L3 DRA13 
87 Y9 E3 DRBll J2 DRBl L4 DRAll 
B8 Y12 E9 INT J3 VCC L5 DRA9 
89 Y14 E10 83 J5 GNO L6 ORA8 
810 Y15 Ell B2 J6 RAO'E L7 DRA6 
Bll ZEROIN Fl DRB7 J8 DRAl L8 ORA4 
C1 DRB14 F2 ORB8 J9 GNO L9 ORA2 

L10 OSEL 
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(TOP VIEW) 

o ~N(')'<tLna: 
~ O~N(')'<tLn~~rOOm~ ~~~~~O 
wO~~~~~~~~O~~~O~~~~~~ 
~Za:a:~a:a:a:a:a:~a:a:a:Za:a:a:a:a:W 
o~ooooooooa:ooo~ooooo~ 

50 74 VCC 
51 73 DRBO 
52 72 DRB1 

en CC 71 DRB2 
Z 5TKWRN/RER 70 DRB3 
'-I ZEROUT 69 DRB4 .,:::. 
l> CLK 68 GND 
(") MUXO 67 DRB5 
-t MUX1 66 DRB6 00 
00 MUX2 65 DRB7 
...a BO 64 
00 

B1 63 DRBS 
B2 62 DRB9 
B3 61 DRB10 

INT 60 DRB11 
INC 59 DRB12 

COUT 58 DRB13 
RE 57 DRB14 

GND 56 DRB15 
VCC 55 RCO 

ZERO IN 54 RC1 
33 34 35 36 37 38 39 40 41 42 43 44 45 46 4748 49 50 51 52 53 

OLn'<t(,)N-OmOOr~~LnO'<t(,)N-OON 
z------~~O~~~Z~~~~~ZU 
~~~~~~~ ~ ~ ~a: 

Figure 2. 'ACT8818 ... FN Package 
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if> 
16-BIT MICROSEQUENCER 

'ACTSS1S 

CLK MASTER CLOCK 

STACK 

• i I STACK CONTROL 
WARNING FLAG 

• ZERO DETECT 

SO 

S2 

STKWRN/RER 

ZEROUT 

SELDR ORA/ORB INPUT Y-BUS OUTPUT 
...., 

YOE 

OSEL 

MUX SELECT ORA OUTPUT 
...., 

ORA OUTPUT EN ORB OUTPUT 
...., 

MUX SELECT A INT RT REG 

RAOE 00 
RBOE ~ 

RE 00 

• ~ I REGISTER/COUNTERS INCREMENTER 
• 2 A AND B CONTROLS CARRY-OUT 

, INCREMENTER 

r--.. CONDITION CODE CONTROL 

INT RT .;1 

i I BRANCH ADDRESS 

MUX CONTROL 

• • 

RCO 

RC2 

BO 

B3 

00 
COUT .... 

C,) 

INC « 
~ ,.... 

INT Z 
en 

MUXO 

MUX2 

~ I Y-OUTPUT • • 2 MUX CONTROLS ., r 
DRAO 

DRA15 

0 

~ < DATA ) 
• • • • • • • 

15 • .. 
I 

• CURRENT 
ADDRESS 

YO 

Y15 

DRBO 

DRB15 

0 

~ 
.. 

• • • • • • 
15 

Figure 3. 'ACT8818 ... Logic Symbol 
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PIN 

NAME 

BO 

B1 

B2 

B3 

ClK 

COUT 

CC 

DRAO 

DRA1 

DRA2 

DRA3 

DRA4 

DRA5 

DRA6 

DRA7 

DRA8 

DRA9 

DRA10 

DRA11 

DRA12 

D.RA13 

DRA14 

DRA15 

DRBO 

DRB1 

DRB2 

DRB3 

DRB4 

DRB5 

DRB6 

DRB7 

DRB8 

DRB10 
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GC 

NO. 

F9 

F10 

E11 

E10 

G9 

D10 

H10 

K9 

J8 

19 

K8 

l8 

K7 

l7 

K6 

l6 

l5 

K5 

l4 

K4 

L3 

K3 

l2 

K1 

J2 

J1 

H2 

H1 

G2 

G1 

F1 

F2 

E2 

Table 2. 'ACT8818 Pin Functional Description 

FN 

NO. 
I/O DESCRIPTION 

22 

23 I Input bits for branch addressing (see Table 3) 

24 

25 

18 System clock 

Incrementer carry-out. Goes high when an attempt is 

28 0 made to increment microprogram counter beyond 

addressable micromemory. 

15 I Condition code 

9 

8 

7 

6 

5 

4 

3 

2 I/O Bidirectional ORA data port. Outputs data from 

84 stack or register/counter A (RAOE = 0) or inputs 

83 external data (RAOE = 1 ). 

82 

80 

79 

78 

77 

76 

73 

72 

71 

70 Bidirectional DRB data port. Outputs data from 

69 register/counter B 

67 
I/O 

(RBOE = 0) or inputs external data 

66 

65 

63 

61 



PIN 

NAME 

DRBll 

DRB12 

DRB13 

DRB14 

DRB15 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

INC 

INT 

MUXO 

MUXl 

MUX2 

OSEL 

RAOE 

RBOE 

RCO 

RCl 

RC2 

RE 

SO 

Sl 

S2 

SELDR 

STKWRN/ 

RER 

VCC 

VCC 

Table 2. 'ACT8818 Pin Functional Description (Continued) 

GC FN 

NO. NO. 
I/O DESCRIPTION 

E3 60 

Dl 59 Bidirectional DRB data port. Outputs data from 

D2 58 I/O register/counter B (RBOE = 0) or inputs external data 

Cl 57 (RBOE=l). 

Bl 56 

C3 10 

C5 30 

C9 33 

D9 46 Ground pins. All pins must be used. 

G3 52 

J5 68 

J9 81 

Dll 27 I Incrementer control pin 

E9 26 I 
Selects INT RT register to stack, active low (see 

Table 3) 

G10 19 

Gll 20 I MUXcontrol for Y output bus (see Table 4) 

Fll 21 

L 10 11 I 
DRA output MUX select. Low selects RCA, high 

selects stack. 

J6 1 I DRA output enable, active low 

F3 64 I DRB output enable, active low 

C2 55 

B2 54 I Controls for register/counters A and B 

A2 53 

INT RT register enable, active low. A high input holds 

Cll 29 I INT RT register while a low input passes Y to INT RT 

register (see Table 3). 

Kl0 12 

Jl0 13 I Stack controls 

Kll 14 

K2 75 I 
Selects data source to DRA bus and DRB bus (See 

Table 3) 

Jl1 16 0 Stack warning signal flag 

C10 31 

J3 74 
Supply voltage (5 V) 
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PIN 

NAME 

YO 

Y1 

Y2 

Y3 

Y4 

Y5 

Y6 

Y7 

Y8 

Y9 

Y10 

Y11 

Y12 

Y13 

Y14 

Y15 

YOE 

ZEROIN 

ZEROUT 
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Table 2. 'ACT8818 Pin Functional Description (Concluded) 

GC FN 

NO. NO. 
I/O DESCRIPTION 

B3 51 

A3 50 

B4 49 

A4 48 

B5 47 

A5 45 

A6 44 

C6 43 I/O Bidirectional Y data port 

A7 41 

B7 40 

C7 39 

A8 38 

B8 37 

A9 36 

B9 35 

B10 34 

B6 42 I Y output enable, active low 

B11 32 I Forces internal zero detect high 

H11 17 0 Outputs register/counter zero detect signal 



'ACT8818 Specification Tables 

absolute maximum ratings over operating free air temperature range (unless 
otherwise noted) t 

Supply voltage, Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, 11K (VI<O or VI>VCC) ................ ±20 mA 
Output clamp current, 10K (VO<O or VO>VCC ............. ±50 mA 
Continuous output current, 10 (VO= 0 to Vcc) . . . . . . . . . . . .. ± 50 mA 
Continuous current through VCC or GND pins. . . . . . . . . . . . .. ± 100 mA 

ex) 
Operating free-air temperature range. . . . . . . . . . . . . . . . . .. OoC to 70°C or-

Storage temperature range . . . . . . . . . . . . . . . . . . . . . . .. 65°C to 1 50 °C ~ 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. 
These are stress ratings only and functional operation of the device at these or any other conditions beyond 
those indicated under "recommended operating.conditions"is not implied. Exposure to absolute maximum 
rated conditions for extended periods may affect device reliability. 

recommended operating conditions 

PARAMETER MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5 5.5 V 

VIH High-level input voltage 2 Vee V 

Vll low-level input voltage . 0 0.8 
.. 

V 

IOH High-level output current -8 mA 

IOl Low-level output current 8 mA 

VI Input voltage 0 Vee V 

Vo Output voltage 0 Vee V 

dt/dv Input transition rise or fall rate 0 15 nslV 

TA Operating free-air temperature 0 70 °e 
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electrical characteristics over recommended operating free-air temperature 
range (unless otherwise noted) 

TA - 25°C 
PARAMETER TEST CONDITIONS VCC MIN TYP MAX 

MIN TYP MAX UNIT 

4.5 V 4.48 
IOH = -20 p.A 

5.5 V 5.46 
VOH 4.5 V 4.15 3.76 

V 

IOH = -8 rnA 
5.5 V 4.97 4.76 

4.5 V 0.014 
IOL = 20 p.A 

5.5 V 0.014 
VOL 4.5 V 0.15 0.45 

V 

IOL = 8 rnA 
5.5 V 0.13 0.45 

II VI = Vee or 0 5.5 V ±1 p.A 

lee VI = Vee or 0 5.5 V 98 200 p.A 

ei VI = Vee or 0 5V 3 pF 

~Ieet 
One input at 3.4 V, other 

inputs at 0 or Vee 
5.5 V 1 rnA 

t This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather 
than 0 V or Vee. 
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maximum switching characteristics 

TO 
FROM 

PARAMETER . (OUTPUT) UNIT 
/INPUT) y ZEROUT ORA ORB STKWRN COUT 

CC 23 
27 24 16 25 

ClK 
30t 23 t 

ORA15-0RAO 23 
ORB15-0RBO 22 
MUX2-MUXO 22 

tpd RC2-RCO 26 18 
52-SO 25 19 
63-BO 19 ns 

05El 25 20 
ZERO IN 25 
5ElOR 23 

INC 20 
Y 16 

YOE 16 

ten RAOE 18 ns 

RBOE 17 
YOE 14 

tdis RAOE 13 ns 

RBOE 14 

t Decrementing register/counter A or B and sensing a zero. 
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setup and hold times 

PARAMETER FROM (INPUT) TO (OUTPUT) MIN MAX UNIT 
CC Stack 15 

Stack 9 

DRA15-DRAO RCA 6 

E 
INT RT 9 

DRB15-DRBO 
RCB 7 

INT RT 11 

en INC MPC 7 
2 INT Stack 7 ...., 
~ Stack 15 » RC2-RCO RCA, RCB 6 (") 
-I INT RT . 16 
CO Stack 13 CO tsu S2-S0 ns 
~ INT RT 13 
CO 

OSEl 
Stack 12 

INT RT 13 

Stack 8 
B3-BO 

INT RT 14 

SElDR 
Stack 10 

INT RT 10 

ZEROIN 
Stack 14 

INT RT 13 
y MPC 6 

RE INT RT (ClK) 7 

MUX2-MUXO INT RT 12 

th 
Any Any 

0 ns 
Input Destination 

clock requirements 

PARAMETER MIN MAX UNIT 

tw1 Pulse duration, clock low 7 ns 

tw2 Pulse duration, clock high 9 ns 

tc Clock cycle time 33 ns 
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Architecture 

The' ACT8818 microsequencer is designed with a 3-port architecture similar to the 
bipolar SN74AS890 microsequencer. Figure 4 shows the architecture of the 
'ACT8818. The device consists of the following principal functional groups: 

1. A 16-bit microprogram counter (MPCl consisting of a register and 
incrementer which generates the next sequential microprogram address 

2. Two register/counters (RCA and RCBl for counting loops and iterations, 
storing branch addresses, or driving external devices 

3. A 65-word by 16-bit LIFO stack which allows subroutine calls and interrupts CO 
<r­

at the microprogram level and is expandable and readable by external CO 
hardware CO 

4. An interrupt return register and Y output enable for interrupt processing at 
the microinstruction level 

5. A Y output multiplexer by which the next address can be selected from MPC, 
RCA, RCB, external buses DRA and DRB, or the stack. 

'ACT8818 control signals are summarized in Table 3. Those signals, which typically 
originate from the instruction register, are Y output multiplexer controls, MUX2-MUXO. 
These select the source of the next address; stack operation controls, S2-S0; 
register/counter operation controls, RC2-RCO; OSEL, which allows the stack to be 
read for diagnostics; input MUX select, SELDR; DRA and DRB output enables, RAOE 
and RBOE; and INT, used during the first cycle of interrupt service routines to push 
the address in the interrupt return register address onto the stack. 

Control and data signals that commonly originate from the microinstruction and from 
other hardware sources include INC, which determines whether to increment the MPC; 
DRA and DRB, used to load or read loop counters and/or next addresses; and CC, 
the condition code input. The address being loaded into the MPC is not incremented 
if INC is low, allowing wait states and repeat until flag instructions to be implemented. 
If INC originates from status, repeat until flag instructions are possible. 

The condition code input CC typically originates from ALU status to permit test and 
branch instructions. However, it must also be asserted under microprogram control 
to implement other instructions such as continue or loop. Therefore, CC will generally 
be controlled by the output of a status multiplexer. In this case, whether CC is to 
be forced high, forced low or taken from ALU status will be determined bya status 
MUX select field in the microinstruction. 
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Table 3. Response to Control Inputs 

SIGNAL LOGIC LEVEL 

NAME HIGH lOW 

Bot load stack pointer from 7 least No effect 

significant bits of ORA 

B1t Selects ORA contents as stack No effect 

input (takes priority over INT) 

CC Condition code input. May be Condition code input. For branch 

microcoded or selected from operations, low active. 

external status results. 

INC Increment address from V bus and Pass address from V bus to MPC 

load into MPC unincremented. 

INT+ Selects MPC as input to stack Selects interrupt return register as 

input to stack 

OSEl Selects stack as output from ORA Selects RCA as output from ORA 

output MUX output MUX 

MUX2-MUXO See Table 4 See Table 4 

RAOE ORA output disabled (high-Z) ORA output enabled 

RBOE ORB output disabled (high-Z) ORB output enabled 

RC2-RCO See Table 6 See Table 6 
-
RE Hold interrupt return register load address on V bus to interrupt 

contents return register 

S2-S0 See Table 5 See Table 5 

SElDR Selects ORA/ORB external data as Selects RCA (OSEl low) or stack 

inputs to ORA/ORB buses (OSEl high) to ORA bus, RCB to 

ORA bus 

VOE V output disabled (high-Z) V output enabled 

ZEROIN Sets ZERO to a high externally to No effect 

set up conditional branch 

tNo control effect when ORA' or ORB' selected (MUX2-MUXO) = HLH) because B3-BO are address inputs. 

tWhen B1 is low or B1 is not in control mode. 

Control signals which may also originate from hardware are 83-80, which can be used 
as a 4-bit status input to support 16- and 32-way branches, and VOE, which allows 
interrupt hardware to force an interrupt vector on the microaddress bus. 
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D,RA 1S-DRAO 

16 

RAOE -+---<11 

OSEL 

5T ACK POINTER 

5TKWRN/RER READ POINTER 

STACK 

S2-S0 

"-+--+---' 
INC 

COUT 

SELDR 

Y15·YO YOE 

DRB15-DRBO 

16 

r'~------------4-~ 

--------.... " ..... elK 

RC2-RCO 

ZEROIN 

ZEROUT 

Figure 4. 'ACT8818 Functional Block Diagram 

Status from the 'ACT8818 is provided byZEROUT, which is set at the beginning of 
a cycle in which either of the register/counters will decrement to zero, and 
STKWRN/RER, set at the beginning of the cycle in which the bottom of stack is read 
or in which the next to last location is written. In the latter case, STKWRN/RER remains 
high until the stack pointer is decremented from 64 to 63. 
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Y Output Multiplexer 

Address selection is controlled by the Y output multiplexer and the RAOE and RBOE 
enables. Addresses can be selected from eight sources: 

1 . 

2. 

3. 

4. 

5. 

6. 

The microprogram counter register, used for repeat (INC off) and continue 
(INC on) instructions 

The stack, which supports subroutine calls and returns as well as iterative 
loops and returns from interrupts 

The DRA and DRB ports, which provide two additional paths from external 
hardware by which microprogram addresses can be generated 

Register counters RCA and RCB, which can be used for additional address 
storage 

B3-BO, whose contents can replace the four least significant bits of the 
DRA and DRB buses to support l6-way and 32~way branches 

An external input onto the bidirectional Y port to support external 
interrupts. 

Use of controls MUX2-MUXO is explained further in the later section on 
microprogramming the' ACT88l8. 

Microprogram Counter 

Based on system status and the current instruction, the microsequencer outputs the 
next execution address in the microprogram. Usually the incrementer adds one to the 
address on the Y bus to compute next address plus one. Next address plus one is 
stored in the microprogram register at the beginning of the subsequent instruction cycle. 
During the next instruction, this 'continue' address will be ready at the Y output MUX 
for possible selection as the source of the subsequent instruction. The incrementer 
thus looks two addresses ahead of the address in the instruction register to set up 
a continue (increment by one) or repeat (no increment) address. 

Selecting INC from status is a convenient means of implementing instructions that 
must repeat until some condition is satisfied; for example, Shift ALU Until MSB = 1, 
or Decrement ALU Until Zero. The MPC is also the standard path to the stack. The 
next address is pushed onto the stack during a subroutine call, so that the subroutine 
will return to the instruction following that from which it was called. 

Register/Counters 

Addresses or loop counts may be loaded directly into register/counters RCA and RCB 
through the direct data ports DRA l5-DRAO and DRB l5-DRBO. The values stored in 
these registers may either be held, decremented, or read. Independent control of both 
the registers during a single cycle is supported with the exception of a simultaneous 
decrement of both registers. 
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Stack 

The positive edge clocked l6-bit address stack allows multiple levels of nested calls 
or interrupts and can be used to support branching and looping. Seven stack operations 
are possible: 

1. Reset, which pulls all Y outputs low and clears the stack pointer and read 
pointer 

2. Clear, which sets the stack pointer and read pointer to zero 

3. Pop, which causes the stack pointer to be decremented 

4. Push, which puts the contents of the MPC, interrupt return register, or 
ORA bus onto the stack and increments the stack pointer 

5. Read, which makes the address indicated by the read pointer available 
at the ORA port 

6. Hold, which causes the address of the stack and read pointers to remain 
unchanged 

7. Load stack pointer, which inputs the seven least significant bits of ORA 
to the stack pointer. 

Stack Pointer 

The stack pointer (SP) operates as an up/down counter; it increments whenever a push 
occurs and decrements whenever a pop occurs. Although push and pop are two event 
operations (store then increment SP, or decrement SP then read), the 'ACT8818 
performs both events within a single cycle. 

Read Pointer 

The read pointer (RP) is provided as a tool for debugging microcoded systems. It permits 
a nondestructive, sequential read of the stack contents from the ORA port. This 
capability provides the user with a method of backtracking through the address 
sequence to determine the cause of overflow without affecting program flow, the status 
of the stack pointer, or the internal data of the stack. 

Stack Warning/Read Error Pin 

A high signal on the STKWRN/RER pin indicates a potential stack overflow or underflow 
condition. STKWRN/RER becomes active under two conditions. If 62 of the 65 stack 
locations (0-67) are full (the stack pointer is at 62) and a push occurs, the STKWRN/RER 
pin outputs a high signal to warn that the !!tack is approaching its capacity and will 
be full after two more pushes. 

The STKWRN/RER signal will remain high if hold, push or pop instructions occur, until 
the stack pointer is decremented to 63. If a push instruction is attempted when the 
stack is full, the new address will be ignored and the old address in stack location 
64 will be retained. 
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The second condition in which the STKWRN/RER signal goes high is to indicate that 
the last location has been popped from the stack and the stack is empty. The user 
may be protected from attempting to pop an empty stack by monitoring STKWRN/RER 
before pop operations. A high level at this pin signifies that the last address has been 
removed from the stack (SP = 0). This condition remains until an address is pushed 
onto the stack and the stack pointer is incremented to one. 

Interrupt Return Register 

Unlike the MPC register, which normally gets next address plus one, the interrupt return 
en register simply gets next address. This permits interrupts to be serviced with zero 
~ latency, since the interrupt vector replaces the pending address. 

~ » 
(") 
-I 
CO 
CO 
~ 

CO 

The interrupting hardware disables the Y output and forces the vector onto the 
microaddress bus. This event must be synchronized with the system clock. The first 
address of the service routine must program INT low and perform a push to put the 
contents of the interrupt return register on the stack. 
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Microprogramming the ' ACT8818 

Microprogramming is unlike programming monolithic processors for several reasons. 
First, the width of the microinstuction word is only partially constrained by the basic 
signals required to control the sequencer. Since the main advantage of a 
microprogrammed processor is speed, many operations are often supported by or 
carried out in special purpose hardware. lookup tables, extra registers, address 
generators, elastic memories, and data acquisition circuits may also be controlled by 
the microinstruction. 

The number of slices in a bit-slice ALU is user-defined, which makes the microinstruction 00 
width even more application dependent. Types of instructions resulting from .... 

00 
manipulation of the sequencer controls are discussed below. Examples of some 00 
commonly used instructions can be found in the later section of microinstructions and t­
flow diagrams. The following abbreviations are used in the tables in this section: ~ 

BR A 
BR A' 
BR B 
BR B' 
BR S 
CAll A 
CALL B 
CALL A' 
CAll B' 
CAll S 
ClR SP, RP 
CONT/RPT 
ORA 
ORA' 
ORB 
ORB' 
MPC 
POP 
PUSH 
RCA 
RCB 
READ 
RESET 
RP 
SP 
STK 

Y - ORA 
Y - ORA' 
Y - ORB 
Y - ORB' 
Y - STK 
Y - ORA; STK - MPC; SP - SP + 1 
Y - ORB; STK - MPC; SP - SP + 1 
Y - ORA'; STK - MPC; SP - SP + 1 
Y - ORB'; STK - MPC; SP - SP + 1 
Y - STK; STK - MPC; SP - SP + 1 
SP - 0; RP - 0 
Y - MPC + 1 if INC = H; Y - MPC if INC = l 
Bidirectional data port (can be loaded externally or from RCA) 
ORA 15-0RA4::B3-80 
Bidirectional data port (can be loaded externally or from RCB) 
ORB15-0RB4::B3-BO 
Microprogram counter 
SP - SP - 1 
STK - MPC; SP - SP + 1 
Register/counter A 
Register/counter B 
Y - STK; RP - RP - 1 
Y - 0; SP - 0; RP - 0 
Read pointer 
Stack pointer 
Stack 
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Address Selection 

Y -output multiplexer controls MUX2-MUXO select one of eight 3-source branches as 
shown in Table4. The states of CC and ZERO determine which of the three sources 
is selected as the next address. ZERO is set at the beginning of any cycle in which 
a register/counter will decrement to zero. 

Table 4. Output Controls (MUX2-MUXOI 

MUX2-
Y OUTPUT SOURCE 

RESET CC = L 
CC - H MUXO 

ZERO - l ZERO = H 
XXX Yes 

III No 
llH No 
lHl No 
lHH No 
Hll No 
HlH No 
HHl No 
HHH No 

tORA 15-0RA4::B3-BO 
tORB15-0RB4::B3-BO 

All low 
STK 
STK 
STK 
STK 
ORA 

ORA't 
ORA 
ORB 

All low All low 
MPC ORA 
MPC ORB 
ORA MPC 

ORB MPC 

MPC ORB 
MPC ORB'+ 
STK MPC 

STK MPC 

By programming CC high or low without decrementing registers, only one outcome 
is possible; thus, unconditional branches or continues can be implemented by forcing 
the condition code. Alternatively, CC can be selected from status, in which case Branch 
A on Condition Code Else Branch B instructions are possible, where A and B are the 
address sources determined by MUX2-MUXO. 

Decrement and Branch on Nonzero instructions, creating loops that repeat until a 
terminal count is reached, can be implemented by programming CC low and 
decrementing a register/counter. If CC is selected from status and registers are 
decremented, more complex instructions such as Exit on Condition Code or End or 
Loop are possible. 

When MUX2-MUXO = HLH, the B3-BO inputs can replace the four least significant 
bits of DRA or DRB to create 16-Way branches or, when CC is based on status, to 
create 32-way branches. 

Stack Controls 

As in the case of the MUX controls, each stack-control coding is a three-way choice 
based on CC and ZERO (see Table 5). This allows push, pop, or hold stack operations 
to occur in parallel with the aforementioned branches. A subroutine call is accomplished 
by combining a branch and push, while returns result from coding a branch to stack 
with a pop. 
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S2-S0 

LLL 

LLH 

LHL 

LHH 

HLL 

HLH 

HHL 

HHH 

HHH 

Table 5. Stack Controls (S2-S0) 

STACK OPERATION 

OSEL CC - L 
CC = H 

ZERO = L ZERO = H 

X Reset/Clear Reset/Clear Reset/Clear 

X Clear SP/RP Hold Hold 

X Hold Pop Pop 

X Pop Hold Hold 

X Hold Push Push 

X Push Hold Hold 

X Push Hold Push 

H Read Read Read 

L Hold Hold Hold 

00 
~ 

ex> 
ex> 
I­
U 
ct 
.q 
I' Combining stack and MUX controls with status results and register decrements permits Z 

even greater complexity. For example: Return on Condition Code or End of Loop; Call A en 
on Condition Code Else Branch to B; Decrement and Return on Nonzero; Call 16-Way. 

Diagnostic stack dumps are possible using Read (S2-S0 = HHH) when OSEL is set high. 

Register Controls 

Unlike stack and MUX controls, register control is not dependent upon CC and ZERO. 
Registers can be independently loaded, decremented, or held using register control 
inputs RC2-RCO (see Table 6). All combinations are supported with the exception of 
simultaneous register decrements. The register control inputs can be set to store branch 
addresses and loop counts or to decrement loop counts, facilitating the complex 
branching instructions described above. 

Table 6. Register Controls (RC2-RCO) 

RC2-RCO 
REGISTER OPERATIONS 

REG A REG B 

LLL Hold Hold 

LLH Decrement Hold 

LHL Load Hold 

LHH Decrement Load 

HLL Load Load 

HLH Hold Decrement 

HHL Hold Load 

HHH Load Decrement 

The contents of RCA are accessible to the DRA port when OSEL is low and the output 
bus is enabled by RAOE being low. Data from RCB is available when DRB is enabled 
by RBOE being low. 
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Continue/Repeat Instructions 

The most commonly used instruction is a continue, implemented by selecting MPC 
at the Y output MUX and setting INC high. If MPC is selected and INC is off, the current 
instruction will simply be repeated. 

A repeat instruction can be implemented in two ways. A programmed repeat (INC 
forced low) may be useful in generating w,!it states, for example, wait for interrupt. 
A conditional repeat (INC originates from status) may be useful in implementing Do 
While operations. Several bit patterns in the MUX control field of the microinstruction 

C/) will place MPC on the microaddress bus. Continue/repeat instructions are summarized 
Z in Table 7 below . ..... 
~ 
l> Table 7. Continue/Repeat Encodings 
n 
-t 
00 
00 
~ 

00 

MUX2-MUXO S2-S0 OSEl cc - H 
lHL LLH X CONT/RPT 

lHL LHL X CONT/RPT: POP 

LHL HLl X CONT/RPT: PUSH 

LHL HHH 0 CONT/RPT 

LHL HHH 1 CONT/RPT: READ 

LHH LLH X CONT/RPT 

LHH LHL X CONT/RPT: POP 

LHH HLL X CONT/RPT: PUSH 

LHH HHH 0 CONT/RPT 

LHH HHH 1 CONT/RPT: READ 

HHL LLH X CONT/RPT 

HHL LHL X CONT/RPT: POP 

HHL LHH X CONT/RPT 

HHL HLL X CONT/RPT: PUSH 

HHL HHH 0 CONT/RPT 

HHL HHH 1 CONT/RPT: READ 

HHH LLH X CONT/RPT 

HHH LHL X CONT/RPT: POP 

HHH LHH X CONT/RPT 

HHH HLL X CONT/RPT: PUSH 

HHH HHH 0 CONT/RPT 

HHH HHH 1 CONT/RPT: READ 

Branch Instructions 

A branch or jump to a given microaddress can also be coded several ways. RCA, ORA, 
RCB, ORB, and STK are possible sources for branch. addresses (see Table 4). Branches 
to register or stack are useful whenever the branch address could be stored to reduce 
overhead. 
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The simplest branches are to DRA and DRB, since they require only one cycle and 
the branch address is supplied in the microinstruction. Use of registers or stack requires 
an initial load cycle (which may be combined with a preceding instruction), but may 
be more practical when an entry point is referenced over and over throughout the 
microprogram, for example, in error-handling routines. Branches to stack or register 
also enhance sequencing techniques in which a branch address is dynamically 
computed or multiple branches to a common entry point are used, but the entry point 
varies according to the system state. In this case, the state change might require 
reloading the stack or register. 

In order to force a branch to DRA or DRB, CC must be programmed high or low. A ~ 
branch to stack is only possible when CC is forced low (see Table 4). 00 

·00 
When CC is low, the ZERO flag is tested, and if a register decrements to zero the t­
branch will be transformed into a Decrement and Branch on Nonzero instruction. ~ 
Therefore, registers should not be decremented during branch instructions using o::t 
CC = 0 unless it is certain the register will not reach terminal count. Branch instructions ~ 
are summarized in Table 8, below. Call (Branch and Push MPC) instructions and Return en 
(Branch to Stack and Pop) instructions are discussed in later sections. 

Table 8. Branch Encodings 

MUX2-MUXO 52-SO OSEL CC - H 
LLL LLH X BA A 

LLL LHL X BA A: POP 

LLL HHH a BA A 

LLL HHH 1 BA A: AEAD 

LLH LlH X BA B 

LLH LHL X BA B: POP 

LLH HHH a BA B 

LLH HHH 1 BA B: AEAD 

HLL LLH X BA B 

HLL LHL X BA B: POP 

HLL LHH X BR B 

HLL HHH a BR B 

HLl HHH 1 BR B: AEAD 

HLH LLH X BA B' (16-way) 

HLH LHL X BR B' (16-way) : POP 

HLH LHH X BR B' (16-way) 

HLH HHH a BR B' (16-way) 

HLH HHH 1 BR B' (16-way): READ 

LLL LLH X BR S: CLR SP/AP 

LLL LHL X BR S 
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Table 8. Branch Encodings (Continued) 

MUX2-MUXO 52-SO OSEL CC - H 
LLL HLL X BR S 

LLL HHH 0 BR S 

LLL HHH 1 BR S: READ 

LLH LLH X BR S: CLR SP/RP 

LLH LHL X BR S 

LLH HLL X BR S 

LLH HHH 0 BR S 

LLH HHH 1 BR S: READ 

LHL LLH X BR S: CLR SP/RP 

LHL LHL X BR S 

LHL HLL X BR S 

LHL HHH 0 BR S 

LHL HHH 1 BR S: READ 

LHH LLH X BR S: CLR SP/RP 

LHH LHL X BR S 

LHH HLL X BR S 

LHH HHH 0 BR S 

LHH HHH 1 BR S: READ 

HLL LLH X BR A: CLR SP/RP 

HLL LHL X BR A 

HLL LHH X BR A: POP 

HLL HLL X BR A 

HLL HHH 0 BR A 

HLL HHH 1 BR A: READ 

HLH LLH X BR A' (16-way): CLR SP/RP 

HLH LHL X BR A' (16-way) 

HLH LHH X BR A' (16-way): POP 

HLH HLL X BR A' (16-way) 

HLH HHH 0 BR A' (16-way) 

HLH HHH 1 BR A' (16-way): READ 

HHL LLH X BR A: CLR SP/RP 

HHL LHL X BR A 

HHL LHH X BR A: POP 

HHL HLL X BR A 

HHL HHH 0 BR A 

HHL HHH 1 BR A: READ 



Table 8. Branch Encodings (Concluded) 

MUX2-MUXO S2-S0 OSEL cc = H 

HHH LLH X BR B: CLR SP/RP 

HHH LHL X BR B 

HHH LHH X BR B: POP 

HHH HLL X BR B 

HHH HHH 0 BR B 

HHH HHH 1 BR S: READ 

00 
t'"" 

Conditional Branch Instructions 00 
00 

Perhaps the most useful of all branches is the conditional branch. The' ACT8818 I­
permits three modes of conditional branching: Branch on Condition Code; Branch ~ 
16-Way from DRA or DRB; and Branch on Condition Code 16-Way from DRA Else o::t 
Branch 16cWay from DRB. This increases the versatility of the system and the speed ~ 
of processing status tests because both single-bit and 4-bit status are allowed. CJ) 

Testing single bit status is preferred when the status can be set up and selected through 
a status MUX prior to the conditional branch. Four-bit status allows the' ACT8818 
to process instructions based on Boolean status expressions, such as Branch if Overflow 
and Not Carry if Zero or if Negative. It also permits true n-way branches, such as If 
Negative then Branch to X, Else if Overflow, and Not Carry then Branch to Y. The 
tradeoff is speed versus program size. Since multiway branching occurs relatively 
infrequently in mos.t programs, users will enjoy increased speed at a negligible cost. 
Conditional branching codes are listed in Table 9. Call (Branch and Push MPC) 
instructions and Return (Branch to Stack and Pop) instructions are discussed in later 
sections. 

Table 9. Conditional Branch Encodings 

MUX2-

MUXO 
S2-S0 OSEL CC = L cc = H 

LLL LLH X BR S: CLR SP/RP BR A 

LLL LHL X BR S BR A: POP 

LLL HLL X SR S CALL A 

LLL HHH 0 SR S BR A 

LLL HHH 1 SR S: READ BR A: READ 

LLH LLH X BR S: CLR SP/RP BR B 

LLH HHH 0 BR S BR B 

LLH LHL X BR S BR S: POP 

LLH HLL X BR S CALL B 

LLH HHH 1 SR S: READ BR B: READ 

LHL LLH X BR S: CLR SP/RP CONT/RPT 



en z 
-.oJ 
~ 
l> 
(") 
-t 
00 
00 
...10 

00 

MUX2-

MUXO 

LHL 

LHL 

LHL 

LHL 

LHH 

LHH 

LHH 

LHH 

LHH 

HLL 

HLL 

HLL 

HLL 

HLL 

HLL 

HLH 

HLH 

HLH 

HLH 

HLH 

HLH 

HHL 

HHL 

HHL 

HHL 

HHL 

HHL 

HHH 

HHH 

HHH 

HHH 

HHH 

HHH 
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Table 9. Conditional Branch Encodings (Concluded) 

82-80 08EL CC - L CC "" H 

LHL X BR S CONT/RPT: POP 

HLL X BR S CONT/RPT: PUSH 

HHH 0 BR S CONT/RPT 

HHH 1 BR S: READ CONT/RPT: READ 

LLH X BR S: CLR SP/RP CONT/RPT 

LHL X BR S CONT/RPT: POP 

HLL X BR S CONT/RPT: PUSH 

HHH 0 BR S CONT/RPT 

HHH 1 BR S: READ CONT/RPT: READ 

LLH X BR A: CLR SP/RP BR B 

LHL X BR A BR B: POP 

LHH X BR A: POP BR B 

HLL X BR A CALL B 

HHH 0 BR A BR B 

HHH 1 BR A: READ BR B: R.EAD 

LLH X BR A' (16-way): CLR SP/RP BR B' (16-way) 

LHL X BR A' (16-way) BR B' (16-way): POP 

LHH X BR A' (16-way): POP BR B' (16-way) 

HLL X BR A' (16-way) CALL B' (16-way) 

HHH 0 BR A' (16-way) BR B'( l6-way) 

HHH 1 BR A' (16-way): READ BR B' (16-way): READ 

LLH X BR A: CLR SP/RP CONT/RPT 

LHL X BR A CONT/RPT: POP 

LHH X BR A: POP CONT/RPT 

HLL X BR A CONT/RPT: PUSH 

HHH 0 BR A CONT/RPT 

HHH 1 BR A: READ CONT/RPT: READ 

LLH X BRB: CLR SP/RP CONT/RPT 

LHL X BR B CONT/RPT: POP 

LHH X BR B: POP CONT/RPT 

HLL X BR B CONT/RPT: PUSH 

HHH 0 BR B CONT/RPT 

HHH 1 BR B: READ CONT/RPT: READ 



loop Instructions 

Up to two levels of nested loops are possible when both counters are used 
simultaneously. Loop count and levels of nesting can be increased by adding external 
counte~s if desired. The simplest and most widely used of the loop instructions is 
Decrement and Branch on Nonzero, in which CC is forced low while a register is 
decremented. As before, many forms are possible, since the top-of-Ioop address can 
originate from RCA, DRA, RCB, DRB, or the stack (see Table 4). Upon terminal count, 
instruction flow can either drop out of the bottom of the loop or branch elsewhere. 

When loops are used in conjunction with CC as status, B3-BO as status and/or stack 00 
t'"" 

manipulation, many useful instructions are possible, including Decrement and Branch 00 
on Nonzero else Return, Decrement and Call on Nonzero, and Decrement and Branch 00 
16-Way on Nonzero. Possible variations are summarized in Table 10. Call (Branch and t; 
Push MPC) instructions and Return (Branch to Stack and Pop) instructions are discussed <t 
in later sections. o::t 

Another level of complexity is possible if CC is selected from status while looping. 
This type of loop will exit either because CC is true or because a terminal count has 
been reached. This makes it possible, fOr example, to search the ALU for a bit string. 
If the string is found, the match forces CC high. However, if no match is found, it 
is necessary to terminate the process when the entire word has been scanned. This 
complex process can then be implemented in a simple compact loop using Conditional 
Decrement and Branch on Nonzero. 

" 2: 
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Table 10. Decrement and Branch on Nonzero Encodings 

MUX2· CC - L 
SE-SO OSEL CC - H 

MUXO ZERO - L ZERO = H 

LLL LLH X BR S: CLR SP/RP CONT/RPT BR A 

LLL LHL X BR S CONT/RPT: POP BR A: POP 

LLL HLL X BR S CONT/RPT: PUSH CALL A 

LLL HHH 0 BR S CONT/RPT BR A 

LLL HHH 1 BR S: READ CONT/RPT: READ BR A 

LLH LLH X BR S: CLR SP/RP CONT/RPT BR B 

LLH LHL X BR S CONT/RPT: POP BR B: POP 

LLH HLL X BR S CONT/RPT: PUSH CALL B 

LLH HHH 0 BR S CONT/RPT BR B 

LLH HHH 1 BR S: READ CONT/RPT: READ BR B 

LHL LLH X BR S: CLR SP/RP BR A CONT/RPT 

LHL LHL X BR S BR A:.POP CONT/RPT: POP 

LHL HLL X BR S CALL A CONT/RPT: PUSH 

LHL HHH 0 BR S BR A CONT/RPT 

LHL HHH 1 BR S: READ BR A: READ CONT/RPT: READ 

LHH LLH X BR S: CLR SP/RP BR B CONT/RPT 

LHH LHL X BR S BR B: POP CONT/RPT: POP 

LHH HLL X BR S CALL B CONT/RPT: PUSH 

LHH HHH 0 BR S BR B CONT/RPT 

LHH HHH 1 BR S: READ BR B: READ CONT/RPT: READ 

HLL LLH X BR A: CLR SP/RP CONT/RPT BR B 

HLL LHL X BR A CONT/RPT: POP BR B: POP 

HLL LHH X BR A: POP CONT/RPT BR B 

HLL HLL X BR A CO NT: PUSH CALL B 

HLL HHH 0 BR A CONT/RPT BR B 

HLL HHH 1 BR A: READ CONT/RPT: READ BR B: READ 

HLH LLH X BR A' (16-way): CLR SP/RP CONT/RPT BR S' (16-way) 

HLH LHL X BR A' (16-way) CONT/RPT: POP BR B' (16-way): POP 

HLH LHH X BR A' (16-way): POP CONT/RPT BR B' (16-way) 

HLH HLL X BR A' (16-way) CONT/RPT: PUSH CALL B'(16-way) 

HLH HHH 0 BR A' (16-way) CONT/RPT BR B' (16-way) 

HLH HHH 1 BR A' (16-way): READ CONT/RPT: READ BR B' (16-way): READ 

HHL LLH X BR A: CLR SP/RP BR S CONT/RPT 

HHL LHL X BRA RET CONT/RPT: POP 

HHL LHH X BR A: POP BR S CONT/RPT 

HHL HLL X BR A CALL S CONT/RPT: PUSH 

HHL HHH 0 BR A BR S CONT/RPT 

HHL HHH 1 BR A: READ BR S: READ CONT/RPT: READ 
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Table 10. Decrement and Branch on Nonzero Encodings (Concluded) 

MUX2- CC D l 
SE-SO OSEl CC = H 

MUXO ZERO - l ZERO - H 

HHH llH X BR B: CLR SP/RP BR S CONT/RPT 

HHH LHL X BR B RET CONT/RPT: POP 

HHH LHH X BR B: POP BR S CONT/RPT 

HHH HLL X BR B CALL S CONT/RPT: PUSH 

HHH HHH 0 BR B BR S CONT/RPT 

HHH HHH BR B: READ BR S: READ CONT/RPT: READ ex> 
~ ____________ ~~ ________________ ~ ____________ ~ ______________ ~ r-

Subroutine Calls 
ex> 
ex> 
I­o 

The various branch instructions described above can be merged with a push instruction <t 
to implement subroutine calls in a single cycle. Calls, conditional calls, and Decrement ~ 
and Call on Nonzero are the most obvious. Z 

Since a push is conditional on CC and ZERO, many hybrid instructions are also possible, 
such as Call X on Condition Code Else Branch, or Decrement and Return on Nonzero 
Else Branch. Codes that cause subroutine calls are summarized in Tables 11 and 12. 

Table 11. Call Encodings without Register Decrements 

MUX2-MUXO 52-SO aSEl CC - l CC - H 
LLL HLH X CALL S BR A 

LLL HHL X CALL S CALL A 

LLH HLH X CALL S BR B 

LLH HHL X CALL S CALL B 

LHL HLH X CALL S CONT/RPT 

LHL HHL X CALL S CONT/RPT: PUSH 

LHH HLH X CALL S CONT/RPT 

LHH HHL X CALL S CONT/RPT: PUSH 

HLL HLH X CALL A BR B 

HLL HHL X CALL A CALL B 

HLH HLH X CALL A' (16-way) BR B' (16-way) 

HLH HHL X CALL A' (16-way) CALL B' (16-way) 

HHL HLH X CALL A CONT/RPT 

HHL HHL X CALL A CONT/RPT: PUSH 

HHH HLH X CALL B CONT/RPT 

HHH HHL X CALL B CONT/RPT: PUSH 
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Table 12. Call Encodings with Register Decrements 

MUX2-

MUXO 
52-SO OSEL 

CC - L 

ZERO - L ZERO - H 
CC - H 

LLL HLH X CALLS CONT/RPT BR A 

III HHl X CALL S CONT/RPT CAll A 

llH HlH X CAllS CONTiRPT BR B 

llH HHl X CAll S CONT/RPT CAll B 

lHl HlH X CAll S BR A CONT/RPT 

lHl HHl X CAll S BR A CONT/RPT: PUSH 

lHH HlH X CAll S BR B CONT/RPT 

lHH HHl X CAll S BR B CONT/RPT: PUSH 

Hll HlH X CAll A CONT/RPT BR B 

Hll HHl X CAll A CONT/RPT CAll B 

HlH HlH X CAll A' (16-way) CONT/RPT BR B' (16-way) 

HlH HHl X CAll A' (16-way) CONT/RPT CAll B' (16-way) 

HHl HlH X CAll A BR S CONT/RPT 

HHl HHl X CAll A BR S CONT/RPT: PUSH 

HHH HlH X CAll B BR S CONT/RPT 

HHH HHl X CAll B BR S CONT/RPT: PUSH 

Subroutine Returns 

A return from subroutine can be· implemented by coding a branch to stack with a pop. 
Since pop is also conditional on CC and ZERO, the complex forms discussed previously 
also apply to return instructions: Decrement and Return on Nonzero; Return on 
Condition Code; Branch on Condition Code Else Return. Return encodings are 
summarized in Tables 13 and 14. 
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Table 13. Return Encodings without Register 
Decrements 

MUX2-MUXO 52-SO OSEL CC - L CC - H 

III lHH X RET BR A 

llH lHH X RET BR B 

lHl lHH X RET CONT/RPT 

lHH lHH X RET CONT/RPT 



Table 14. Return Encodings with Register Decrements 

MUX2-MUXO S2~SO OSEl 
cc - l 

ZERO = l ZERO = H 
CC ~ H 

III lHH X RET CONT/RPT BR A 

llH lHH X RET CONT/RPT BR B 

lHl lHH X RET BR A CONT/RPT 

lHH lHH X RET BR B CONT/RPT 

Reset 00 
'""" 

Pulling the 52-50 pins low clears the stack and read pointers, and zeroes the Y output ~ 
multiplexer (5ee Table 5). .... 

(.) 

Clear Pointers 

The stack and read pointers may be cleared without affecting the Y output multiplexer 
by setting 52-50 to llH and forcing CC low (see Table 5). 

Read Stack 

Placing a high value on all of the stack inputs (52-50) and a5El places the' ACT8818 
into the read mode. At each low-to-high clock transition, the address pointed to by 
the read pointer is available at the DRA port and the read pointer is decremented. The 
bottom of the stack is detected by monitoring the stack warning/read error pin 
(5TKWRN/RER). A high appears on the 5TKWRN/RER output when the stack contains 
one word and a read instruction is applied to the 52-50 pins. This signifies that the 
last address has been read. 

The stack pointer and stack contents are unaffected by the read operation. Under 
normal push and pop operations, the read pointer is updated with the stack pointer 
and contains identical information. 

Interrupts 

Real-time vectored interrupt routines are supported for those applications where polling 
would impede system throughput. Any instruction, including pushes and pops, may 
be interrupted. To process an interrupt, the following procedure should be followed: 

1. Place the bidirectional Y bus into a high-impedance state by forcing YOE high. 
2. Force the interrupt entry point vector onto the Y bus. INC should be high. 
3. Push the current value in the Interrupt Return register. on the stack as the 

execution address to return to when interrupt handling is complete. 

The first instruction of the interrupt routine must push the address stored in the interrupt 
return register onto the stack so that proper return linkage is maintained. This is 
accomplished by setting INT and 81 low and coding a push on the stack. 
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Sample Microinstructions for the ' ACT8818, 

Representative examples of instructions using the' ACT8818 are given below. The 
examples assume a one-level pipeline system, in which the address and contents of 
the next instruction are being fetched while the current instruction is being executed, 
and an ALU status register contains the status results of the previous instruction. 

Since the incrementer looks two addresses ahead of the address in the instruction 
register to set up some instructions such as continue or repeat, a set-up instruction 
has been included with each example. This shows the required state of both INC and 

en CC. CC must be set up early because the status register on which V-output selection 
~ is typically based contains the results of the previous instruction. 

~ 
l> 
(') .... 
00 
00 
...a 
00 

Flow diagrams and suggested code for the sample microinstructions are also given 
below. Numbers inside the circles are microword address locations expressed as 
hexadecimal numbers. Fields in microinstructions are binary numbers except for inputs 
on DRA or DRB, which are also in hexadecimal. For a discussion of sequencing 
instructions, see the preceding section on microprogramming. 

Continue 

To Continue (Instruction 10), this example uses an instruction in Table 7 with 
CONT/RPT in the instruction column and no stack operation. INC and CC must be 
programmed high one cycle ahead of instruction 10 for pipelining. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) 
10 Continue 

Continue and Pop 

XXX 
110 

xxx XXX 
111 XXX 

X 

o x 
1 XXXX XXXX 
X XXXX XXXX 

To Continue and decrement the stack pointer (Pop), this example uses an instruction 
in Table 7 with CONT/RPT: POP in the instruction column. INC and CC are forced 
high in the previous instruction. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX 
10 Continue/Pop 110 010 XXX X X X XXXX xxxx 

Continue and Push 

To Continue and push the microprogram counter onto the stack (Push), this example 
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC 
and CC are forced high one cycle ahead of Instruction 10 for pipelining. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) 
10 Continue/Pust"! 
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XXX 
110 

XXX XXX 
100 XXX 

X 

o 
1 

X 

1 XXXX XXXX 
X XXXX XXXX 



>--=-- IMPOSSIBLE 

Figure 5. Continue Figure 6. Continue and Pop 

Figure 7. Continue and Push 
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Branch (Example 1) 

To Branch from address 10 to addr.ess 20, this example uses a BR A instruction from 
the CC = H column of TableB. CC must be programmed high one cycle ahead of 
Instruction 10 for pipelining. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) 

10 BR A 
xxx 
000 

xxx XXX 

111 XXX 
X 
o 

1 X XXXX XXXX 

X X 0020 XXXX 

(J) Branch (Example 2) 
Z ..... 
~ 
(') .... 
00 
co 
~ 

00 

To Branch from address 10 to address 20, this example uses a BR A instruction from 
the CC = L column of Table B. CC is programmed low in the previous instruction; 
as a result, a ZERO test follows the condition code test in Instruction 10. To ensure 
that a ZERO = H condition will not occur, registers should not be decremented during 
this instruction. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X 0 X XXXX XXXX 
10 BR A 110 111 000 0 X X 0020 XXXX 

Sixteen-Way Branch 

To Branch 16-Way, this example uses a BR B' instruction in Table B. CC is 
programmed high in the previous instruction. The branch address is derived from the 
concatenation DRB15-DRB4::B3-BO. 

Address Instruction MUX2-MUXO S2-S0 R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X X XXXX XXXX 

10 BR B' 101 111 XXX 0 X X XXXX 0040 
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• no register decrement 

Figure 8. Branch Example 1 Figure 9. Branch Example 2 

Figure 10. Sixteen-Way Branch 
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Conditional Branch 

To Branch to address 20 Else Continue to address 13, this example uses the first 
instruction from Table 9 with BR A in the CC = L column and CONT/RPT in the 
CC = H column. INC is set high in the preceding instruction to set up the Continue. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

XXX XXX XXX X X 1 XXX X XXXX 
(Set-up) BR A else 

10 Continue 
110 111 000 0 X X 0020 XXX X 

Three-Way Branch en z 
...,J 
~ To Branch 3-Way, this example uses an instruction from Table 10 with BR A in the 
l> ZERO = L column, CONT/RPT in the ZERO = H column and BR B in the CC = H 
(") 
-t 
00 
00 
~ 

00 

column. To enable the ZERO = H path, register A must decrement to zero during this 
instruction (see Table 6 for possible register operations). INC is programmed high in 
Instruction 10 to set up the Continue. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXX X XXXX 
10 Continue and 

Load Reg A 110 111 010 0 t XXXX XXXX 
11 Decrement Reg A; 

Branch 3-Way 100 111 001 0 X X 0020 0030 

t Selected from external status 

Thirty-Two-Way Branch 

To Branch 32-Way, this example uses an instruction from Table 9 with BR A' in the 
CC = L column and BR B' in the CC = H column. The four least significant bits of 
the DRA' and DRB' addresses must be input at the B3-BO port; these are concatenated 
with the 12 most significant bits of DRA and DRB to provide new addresses DRA' 
(DRA 15-DRA4::B3-BO) and DRB' (DRB15-DRB4::B3-BO). 

Address Instruction 

(Set-up) 

10 32-way Branch 
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MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

XXX 
101 

XXX XXX X' 

111000 0 
XXXX XXXX 

X X 0040 0030 



H IMPOSSIBLE" 

• no register decrement 

Figure 11. Conditional Branch 

Figure 12. Three-Way Branch 

• no register decrement 

Figure 13. Thirty-Two-Way Branch 
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Repeat 

To Repeat (Instruction 10), this example uses an instruction in Table 7 with CONT/RPT 
in the instruction column. INC must be programmed low and CC high one cycle ahead 
of Instruction 10 for pipelining. 

Address 

(Set-up) 

10 

Instruction 

Continue 

MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

XXX 

110 

xxx XXX X 
111 XXX 0 

o XXXX XXXX 
X XXXX XXXX 

(J) Repeat on Stack 
z ..... 
~ » 
n 
-t 
co co 
....a 
co 

To Continue and push the microprogram counter onto the stack (Push), this example 
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC 
and CC must be forced high one cycle ahead for pipelining. 

To Repeat (Instruction 12), an BR S instruction from the ZERO = L column of Table 8 
is used. To avoid a ZERO = H condition, registers are not decremented during this 
instruction (see Table 6 for possible register operations). CC and INC are 
programmed high in Instruction 12 to set up the Continue in Instruction 11. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 

10 Continue/Push 110 100 XXX X XXXX XXXX 

11 Continue 110 111 XXX 0 0 X XXXX XXXX 

12 BR Stack 010 111 000 0 X XXXX XXXX 

INC-O CC-1 

>...;;L:;....-_ IMPOSSIBLE 

H 

V-MPC 

Figure 14. Repeat 
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• no register decrement 

Figure 15. Repeat on Stack 
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Repeat Until CC = H 

To Continue and push the microprogram counter onto the stack (Push). this example 
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC 
and CC must be forced high one cycle ahead for pipelining. 

To Repeat Until CC = H (Instruction 12), an instruction from Table 9 with BR S 
in the CC = L column and CONT/RPT: POP in the CC = H column is used. To avoid 
a ZERO = H condition, registers are not decremented (See Table 6 for possible register 
operations). CC and INC are programmed high in Instruction 12 to set up the 

(J) Continue in Instruction 11 . A consequence of this is that the instruction following 13 
Z cannot be conditional. 
--J 
~ » 
(') 
-I 
00 
00 
~ 

00 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X 1 XXX X XXXX 
10 Continue/Push 110 100 XXX X 1 XXXX XXXX 
11 Continue 110 111 XXX 0 t XXXX XXXX 
12 BR Stack else 

Continue 010 111 000 0 XXXX XXXX 

t Selected from external status 

Loop Until Zero 

To Continue and push the microprogram counter onto the stack (Push), this example 
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC 
and CC are forced high one cycle ahead for pipelining. Register A is loaded with 
the loop counter using a Load A instruction from Table 6. 

To decrement the loop count, a decrement register A and hold register B instruction 
from Table 6 is used. To Repeat Else Continue and Pop (decrement the stack pointer). 
an instruction from Table 9 with BR S in the ZERO = L column and CONT/RPT: POP 
in the ZERO = H column is used. CC is programmed low in Instruction 11 to 
force the ZERO test in Instruction 12; it is programmed high in Instruction 12 to set 
up the Continue in Instruction 11. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC DRA DRB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Continue/Push 110 100 XXX 0 XXXX XXXX 
11 Continue/Load 

Reg A 110 111 010 0 0 XXX X XXXX 
12 Decrement Reg A; 

BR 5 else 
Continue: Pop 000 010 001 XXXX XXXX 
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*no register decrement 

Figure 16. Repeat Until CC .. H 

Figure 1 7. Loop Until Zero 
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Conditional Loop Until Zero 

Two examples of a Conditional Loop on Stack with Exit are presented below. Both 
use the microcode shown below to branch to the stack on nonzero, continue and 'pop 
on zero, and branch to DRA with a pop if CC = H. In the first example, the value 
on the DRA bus is the same as the value in the microprogram counter,making the 
exit destinations on the CC and ZERO tests the same. In the second, the values are 
different, generating a two-way exit. 

To Continue and push the microprogram counter onto the stack (Push). this example 
(f) uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC :5 must be high. CC is forced high in the preceding instruction for pipelining. 

t To Continue (Instruction 11), this example uses an instruction in Table 7 with 
(") CONT/RPT in the instruction column. INC must be high. CC must be programmed 
~ high in the previous instruction. INC is programmed high to set up the Continue in 
00 Instruction 12. 
~ 

00 To Decrement and Branch else Exit (Instruction 12). an instruction from Table 10 with 
BR S in the ZERO = L column, CONT/RPT: POP in the ZERO = H column and BR A: POP 
in the CC = H column is used. 

Example 1: 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX xxx X XXXX XXXX 
10 Continue/Push 110 111 010 0 XXXX XXXX 

Load Reg A 
11 Continue 110 111 XXX 0 t ' XXXX XXXX 
12 Decrement Reg A; 

BR 5 else 
Continue: Pop 
else BR A: Pop 000 010 001 X X 0013 XXXX 

t Selected from external status 

Example 2: 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Continue/Push 110 111 010 0 XXXX XXXX 

Load Reg A 
11 Continue 110 111 XXX 0 t XXXX XXXX 
12 Decrement Reg A; 

BR 5 else 
Continue: Pop 
else BR A: Pop 000 010 001 X X X 0025 XXXX 

t Selected from external status 
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Figure 18. Conditional Loop Until Zero (Example 21 
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Jump to Subroutine 

To Call a Subroutine at address 30, this example uses the instruction from Table 11 
with CALL A in the CC = H column. CC is programmed high in the previous 
instruction. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X XXXX XXXX 
10 Call A 000 110 XXX X X X 0030 XXXX 

Conditional Jump to Subroutine 

~ To conditionally Call a Subroutine at address 20, this example uses an instruction from 
» Table 11 with CALL A in the CC = L column and CONT/RPT in the CC = H 
(") 
-I 
CO 
CO 
~ 

CO 

column. CC is generated by external status during the preceding instruction. INC is 
programmed high in the preceding instruction to set up the Continue. To avoid a 
ZERO = H condition, registers should not be decremented during Instruction 10. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X t XXXX XXXX 
10 Call A else 

Continue 110 101 000 X X 0020 XXXX 

t Selected from external status 

Two-Way Jump to Subroutine 

To perform a Two-Way Call to Subroutine at address 20 or address 30, this example 
uses an instruction from Table 11 with CALL A in the CC = L column and CALL B 
in the CC = H column. In this example, CC is generated by external status during 
the preceding (set-up) instruction. INC is programmed high in the preceding instruction 
to set up the Push .. To avoid a ZERO = H condition, registers should not be decremented 
during Instruction 10. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) XXX XXX XXX X t XXXX XXXX 
23 Call A else 

Call B 100 110 000 X X X 0020 0030 

i Selected from external status 
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Figure 19. Jump to Subroutine 

* no register decrement 

Figure 20. Conditional Jump to Subroutine 

'* no register decrement 

Figure 21. Two-Way Jump to Subroutine 
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Return from Subroutine 

To Return from a subroutine, this example uses an instruction from Table 13 with RET 
in the CC = L column. CC is programmed low in the previous instruction. To 
avoid a ZERO = H condition, registers are not decremented during Instruction 23. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

(Set-up) 

23 Return 

XXX 

010 

xxx XXX 

011 000 

X 
X 

o 
o 

X XXX X XXXX 

X XXXX XXXX 

en Conditional Return from Subroutine 
Z 
~ To conditionally Return from a Subroutine, this example uses an instruction from 
~ Table 13 with RET in the CC = L column and CONT/RPT in the CC = H column. 
a CC is selected from external status in the previous instruction. To avoid a ZERO = H 
-t condition, registers are not decremented during Instruction 23. 
CO 
CO 
~ 

CO 
Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA DRB 

(Set-up) XXX XXX XXX X t XXXX XXXX 

23 Return else 
Continue 010 011 000 X X XXXX XXXX 

t Selected from external status 

Clear Pointers 

To Continue (Instruction 101, this example uses an instruction in Table 7 with 
CONT/RPT in the instruction column. INC must be high; CC must be programmed 
high in the previous instruction. To Clear the Stack and Read Pointers and Branch to 
address 40 (instruction 11 I, this example uses a BR A: Clear SP, RP instruction in 
Table 8. CC is programmed low in instruction 10 to set up the Branch. To avoid 
a ZERO = H condition, registers are not decremented during Instruction 11. 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 
(Set-up) XXX XXX XXX X 1 1 XXXX XXX X 

10 Continue 110 111 000 0 0 X 0020 XXXX 

11 BR A and Clear 
SP/RP 110 001 000 X X X XXXX XXXX 

Reset 

To Reset the' ACT8818, pull the 52-SO pins low. This clears the stack and read pointers 
and places the Y bus into a low state. I 

Address Instruction MUX2-MUXO 52-SO R2-RO OSEL CC INC ORA ORB 

10 Reset XXX 000 XXX X X X XXXX XXXX 
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• no register decrement 

Figure 22. Return from Subroutine 

• no register decrement 

Figure 23. ·Conditional 
Return from Subroutine 
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"no register decrement 

Figure 24. Clear Pointers 
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SN74ACTB832 
CMOS 32·8it Registered ALU 

• 50-ns Cycle Time 

• Low-Power EPIC'· CMOS 

• Three-Port 1/0 Architecture 

• 64-Word by 36-Bit Register File 

• Simultaneous ALU and Register Operations 

• Configurable as Quad 8-Bit or Dual 16-Bit Single 
Instruction, Multiple Data Machine 

• Parity Generation/Checking 

The SN74ACT8832 is a 32-bit registered ALU that can operate at 20 MHz and 
20 MIPS (million instructions per second). Most instructions can be performed 
in a single cycle. The' ACT8832 was designed for applications that require high­
speed logical, arithmetic, and shift operations and bit/byte manipulations. 

The' ACT8832 can act as host CPU or can accelerate a host microprocessor. 
In high-performance graphics systems, the 'ACT8832 generates display-list 
memory addresses and controls the display buffer. In I/O controller applications, 
the ' ACT8832 performs high-speed comparisons to initialize and end data 
transfers. 

A three-operand, 64-word by 36-bit register file allows the' ACT8836 to create 
an instruction and store the previous result in a single cycle. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Introduction 
The SN74ACT8832 Registered Arithmetic/Logic Unit (ALU) holds a primary position 
in the Texas Instruments family of innovative 32-bit LSI devices. Compatible with the 
SN74AS888 architecture and instruction set, the' ACT8832 performs as a high-speed 
microprogrammable 32-bit registered ALU which can also be configured to operate 
as two 16-bit ALUs or four 8-bit ALUs in single-instruction, multiple-data (SIMD) mode. 

Besides introducing the 'ACT8832, this section discusses basic concepts of 
microprogrammed architecture and the support tools available for system development. 
Details of the' ACT8832 architecture and instruction set are presented. Pin descriptions 
and assignments for the' ACT8832 are also presented. 

Understanding Microprogrammed Architecture 

Figure 1 shows a simple microprogrammed system. The three basic components are 
an arithmetic/logic unit, a microsequencer, and a memory. The program that resides 
in this memory is commonly called the microprogram, while the memory itself is referred 
to as a micromemory or control store. The ALU performs all the required operations 
on data brought in from the external environment (main memory or peripherals, for 
example). The sequencer is dedicated to generating the next micromemory address 
from which a microinstruction is to be fetched. The sequencer and the ALU operate 
in parallel so that data processing and next-address generation are carried out 
concurrently. 

The microprogram instruction, or microinstruction, consists of control information to 
the ALU and the sequencer. The microinstruction consists of a number of fields of 
code that directly access and control the ALU, registers, bus transceivers, multiplexers, 
and other system components. This high degree of programmability in a parallel 
architecture offers greater speed and flexibility than a typical microprocessor, although 
the microinstruction serves the same purpose as a microprocessor opcode: it specifies 
control information by which the user is able to implement desired data processing 
operations in a specified sequence. The microinstruction cycle is synchronized to a 
system clock by latching the instruction in the microinstruction, or pipeline, register 
once for each clock cycle. Status results are collected in a status register which the 
sequencer samples to produce conditional branches within the microprogram. 

, ACT8832 Registered ALU 

This device comprises a 32-bit ALU, a 64-word by 36-bit register file, two shifters 
to support double-precision arithmetic, and three independent bidirectional data ports. 

The' ACT8832 is engineered to support high-speed, high-level operations. The ALU's 
13 basic arithmetic and logic instructions can be combined with a single- or double­
precision shift operation in one instruction cycle. Other instructions support data 
conversions, bit and byte operations, and other specialized functions. 
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MICROSEQUENCER MICROADDRESS BUS 

MICROINSTRUCTION BUS 

TESTED STATUS 

SYSTEM STATUS 

STATUS 

REGISTERED 
ALU 

Figure 1. Microprogrammed System Block Diagram 

The configuration of this processor enchances processing throughput in arithmetic 
and radix conversion. Internal generation and testing of status results in fast processing 
of division and multiplication algorithms. This decision logic is transparent to the user; 
the reduced overhead assures shorter microprograms, reduced hardware complexity, 
and shorter software development time. 

Support T 0015 

Texas Instruments has designed a family of low-cost, real-time evaluation modules 
(EVM) to aid with initial hardware and microcode design. Each EVM is a small self­
contained system which provides a convenient means to test and debug simple 
microcode, allowing software and hardware evaluation of components and their 
operation. 

At present, the 74AS-EVM-8 Bit-Slice Evaluation Module has been completed, and 
16- and 32-bit EVMs are in advanced stages of development. EVMs and support tools 
for other devices in the' AS8800 family are also planned for future development. 



Design Support 

Texas Instruments Regional Technology Centers, staffed with systems-oriented 
engineers, offer a training course to assist users of TI's LSI products and their 
application to digital processor systems. Specific attention is given to the understanding 
and generation of design techniques which implement efficient algorithms designed 
to match high-performance hardware capabilities with desired performance levels. 

Information on LSI devices and product support can be obtained from the following 
Regional Technology Centers: 

Atlanta 
Texas Instruments Incorporated 
3300 N.E. Expressway, Building 8 
Atlanta, GA 30341 
404/662-7945 

Boston 
Texas Instruments Incorporated 
950 Winter St. Suite 2800 
Waltham, MA 02154 
617/895-9100 

Northern California 
Texas Instruments Incorporated 
5353 Betsy Ross Drive 
Santa Clara, CA 95054 
4081748-2220 

Design Expertise 

Chicago 
Texas Instruments Incorporated 
515 Algonquin 
Arlington Heights,IL 60005 
312/640-2909 

Dallas 
Texas Instruments Incorporated 
10001 E. Campbell Road 
Richardson, TX 75081 
214/680-5066 

Southern California 
Texas Instruments Incorporated 
17891 Cartwright Drive 
Irvine, CA 92714 
714/660-8140 

Texas Instruments can provide in-depth technical design assistance through 
consultations with contract design services. Contact your local Field Sales Engineer 
for current information or contact VLSI Systems Engineering at 214/997-3970. 
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, ACT8832 Pin Descriptions 
Pin descriptions and grid allocations for the' ACT8832 are given on the following pages. 

GB . .. PACKAGE 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A • • • • • • • • • • • • • • • • • • B • • • • • • • • • • • • • • • • • 
C • • • • • • • • • • • • • • • • • 
D • • • • • • • • • • • • • • • • • 

(f) E • • • • • • • • 2 
-..J 

F • • • • • • • • ~ 
l> 

G (") • • • • • • • • 
-t 
00 
00 

H • • • • • • • • 
W J • • • • • • • • N 

K • • • • • • • • 
L • • • • • • • • 

M • • • • • • • • 
N • • • • • • • • 
P • • • • • • • • • • • • • • • • • 
R • • • • • • • • • • • • • • • • • 
S • • • • • • • • • • • • • • • • • 
T • • • • • • • • • • • • • • • • • 

Figure 2. SN74ACT8832 . .. GB Package 
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READ' · OPERAND ADDRESS • · SELECT ALU SELECT 5 

ALU/MO I WRITE I 0 
SPECIAL SHIFTER ADDRESS : · SHIFT · FUNCTION 

SELECT 5 

SIO EN 

CONFIGURATION DA I PORT 
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SELECT 

TEST PINS 
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DB I 
ALU SHIFTER I OUTPUT 

I/O PORT 
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0 

INSTRUCTIONS 

POR~I 
DA BUS 

PARITY DB BUS 

STATUS Y BUS 
7 MASTER/SLAVE 

COMPARATOR 
DAO-DA31 
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OBO-OB31 

CARRY-OUT EN 
YO-Y31 STATUS 
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STATUS 

OVERFLOW 

BYTE OVERFLOW , r 
0 0 · ~. ~ · · · · · · · · 31 31 

~ 0 · · 
" · · I INSTRUCTION) · · 31 
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Figure 3. SN74ACT8832 ... Logic Symbol 
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SELRF l-SELRFO 

AO 

A5 

BO 

B5 

co 
C5 

PAO N 
PAl M 
PA2 CO 
PA3 CO .... 
PBO () 

PBl <C 
"d" 

PB2 ,.... 
PB3 Z 

en 
PYO 

PYl 
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N 

C 

Z 

OVR 
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2 

""'" ~ » 
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""'" 

NO. 

Al 

A2 

A3 
A4 

A5 

A6 

A7 

A8 

A12 

A13 

A14 

A 15 

A16 

A17 

PIN 
NAME NO. 

Y7 C2 

Y13 C3 

Y15 C4 

BYOFl C5 

5103 C6 

5102 C7 

IE5101 C8 

iEsIoO C9 
5100 Cl0 

N Cll 

OE5 C12 

55F C13 

Y18 C14 

Y20 C15 

Y23 C16 

Y24 C17 

Y25 01 

Table 1. SN74ACT8832 Pin Grid Allocation 

PIN 
NAME 

Y5 

OEYO 

Y9 

Yll 

Y14 

0eY1 
GNO 

VCC 
C 
PERRY 

Y17 

Y22 

CiE'Y2 
Y28 

PY3 

BYOF3 

CFl 

NO. 
PIN 

NAME NO. 

YO J15 

Y4 J16 

Y30 J17 

TPO Kl 

12 K2 

13 K3 

EBl K4 
Cn K14 

ClK K15 

CF2 K16 

OEY3 K17 

11 II 

14 l2 

16 l3 

OBO l4 

EA L14 

EBO L15 

PIN 
NAME NO. 

OA28 Pl 

OA27 P2 

OA29 P3 

OB6 P4 

OB7 P5 

OAO P6 

GNO P7 

GNO P8 

OA24 P9 

OA25 Pl0 

OA26 Pll 

PBO P12 

OA2 P13 

VCC P14 
GNO P15 

GNO P16 

VCC P17 

PIN 
NAME 

OA5 

OB8 

OB12 

OA9 

OA15 

A5 

00 Bl Y6 02 Yl 

E3 

E4 

E14 

E15 

E16 

E17 

Fl 

F2 

F3 

F4 

F14 

F15 

F16 

F17 

Gl 

G2 

G3 

G4 

G14 

G15 

G16 

G17 

Hl 

H2 

H3 

H4 
H14 
H15 
H16 
H17 

GNO L 16 OB30 Rl 

Al 

VCC 
GNO 

C4 

PERRB 

GNQ 
OB22 

OA16 

OA18 

OA22 

OB27 

PAO 

OBll 

PBl 

OAll 

PAl 

A4 

~ B2 
N B3 

B4 

B5 

B6 

B7 

B8 

B9 

Bl0 

Bll 

B12 

B13 

BYOFO 03 

Yl0 04 

Y12 05 

PYl 06 

IE5103 07 

IE5102 08 
5101 09 

Z 010 

OVR 011 

M5ERR 012 

Y16 013 

Y19 014 

Y3 

PYO 

Y8 

GNO 

GNO 

GNO 

VCC 
GNO 

GNO 

GNO 

BYOF2 

Y27 

GNO L17 

15 Ml 

17 M2 

PA3 M3 

OB2 M4 

OBl M14 

VCC M15 
GNO M16 

GNO M17 

VCC Nl 
OA31 N2 

OA30 N3 

PB3 R2 
OAl R3 

OA4 R4 

OA7 R5 

GNO R6 

PA2 R7 

OB26 R8 

OB28 R9 

OB31 Rl0 

OA3 Rll 

OA6 R12 

OB9 R13 

AO 

WE2 

VCC 
Bl 

C2 

OEB 

OB18 
B14 Y21 015 Y31 Jl OB3 N4 OB13 R14 OB21 

B15 PY2 016 TPl J2 OB4 N14 OA19 R15 PB2 

B16 Y26 017 10 J3 OB5 N15 OA23 R16 OA20 

B17 Y29 El 5ELMQ J4 VCC N16 OB25 R17 OB24 

Cl Y2 E2 CFO J14 VCC N17 OB29 
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NO. 

51 

52 

53 

54 

55 

56 

57 

58 

59 
510 

511 

512 

513 

514 

515 

516 

517 

Tl 

T2 
T3 

T4 

T5 

T6 

T7 
T8 

T9 

Tl0 

Tll 

T12 

T13 

PIN 
NAME 

OB10 

OB15 
OA10 

OA13 

PERRA 

A3 

WEO 

WE3 
RFCLK 

B4 

B2 

C3 

CO 
OB17 

OB20 

OB23 

OA21 

OB14 

OA8 
OA12 

OA14 

OEA 

A2 

WEi 
5ELRFl 

5ElRFO 

B5 

B3 

BO 

C5 
T14 Cl 

T15 OB16 

T16 OB19 

T17 OA17 



Table 2. SN74ACT8832 Pin Description 

PIN 

NAME NO. 
110 DESCRIPTION 

AO R7 

A1 P7 

A2 T6 
I Register file A port read address select 

A3 56 

A4 R6 

A5 P6 

BO T12 

B1 R10 

B2 511 
I Register file B port read address select 

B3 T11 

B4 510 

B5 T10 

BYQFO B2 

BYOFl A4 
0 

Status signals indicate overflow conditions 

BYOF2 D13 in certain data bytes 

BYOF3 C17 

C C10 0 Status signal representing carry out condition 

CO 513 

C1 T14 

C2 Rll 
I Register file write address select 

C3 512 

C4 Pl0 

C5 T13 

CFO E2 
Configuration mode select, single 32-bit, two 

CF1 Dl I 

CF2 F4 
16-bit, or four 8-bit AlU' s 

Cn F2 I AlU carry input 

ClK F3 I Clocks synchronous registers on positive edge 

DAO K3 

DAl M1 

DA2 l2 

DA3 N1 

DA4 M2 A port data bus. Outputs register data (OEA ~ 0) 

DA5 Pl 
110 

or inputs external data (OEA = 1 ). 

DA6 N2 

DA7 M3 

DA8 T2 

DA9 P4 
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Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

DA10 S3 

DA11 R4 

DA12 T3 

DA13 S4 

DA14 T4 

DA15 P5 

DA16 P14 

DA17 T17 

DA1B P15 

DA19 N14 

DA20 R16 A port data bus. Outputs register data (OEA = 0) 

DA21 S17 
I/O 

or inputs external data (OEA = 1). 

DA22 P16 

DA23 N15 

DA24 K15 

DA25 K16 

DA26 K17 

DA27 J16 

DA2B J15 

DA29 J17 

DA30 H17 

DA31 H16 

DBO G1 

DB1 H2 

DB2 H1 

DB3 J1 

DB4 J2 

DB5 J3 

DB6 K1 

DB7 K2 B port data bus. Outputs register data (DEB = 0) 

DBB P2 
I/O 

or used to input external data (DEB = 1) 

DB9 N3 

DB10 S1 

DB11 R2 

DB12 P3 

DB13 N4 

DB14 T1 

DB15 S2 
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Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

DB16 T15 
OB17 S14 
OB18 R13 

OB19 T16 

OB20 S15 

OB21 R14 

OB22 P13 

OB23 S16 B port data bus. Outputs register data (OEB = 0) 
OB24 R17 

I/O 
or used to input external data (OEB = 1 ) 

OB25 N16 

OB26 M15 

OB27 P17 
OB28 M16 

OB29 N17 
OB30 L16 

OB31 M17 

ALU input operand select. High state selects 
EA G2 I external OA bus and low state selects 

register file 

EBO G3 ALU input operand select. Selects between 

EB1 F1 . I 
register file, external DB port and MQ register 

GNO C8 
GNO 06 
GNO 07 

GNO 08 

GNO .010 
GNO 011 
GNO 012 

GNO G4 

GNO G14 
Ground pins. All ground pins must be used. 

GNO H4 
GNO H14 

GNO K4 

GNO K14 

GNO L4 
GNO L14 

GNO M4 

GNO P9 

GNO P12 
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NAME 

10 

11 

12 

13 

14 

15 

16 

17 

IESIOO 

IESIOl 

IESI02 

IESI03 

MSERR 

N 

OEA 

OEB 

OES 

OEYO 

OEYl 

OEY2 

OEY3 

OVR 

PAO 

PAl 

PA2 

PA3 

PBO 

PBl 

PB2 

PB3 

PERRA 

PERRB 

PERRY 

Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NO. 
1/0 DESCRIPTION 

017 

F15 

E16 

E17 
I Instruction input 

F16 

G15 

F17 

G16 

A8 

A7 Shift pin enables, increases system speed and 
I 

B7 reduces bus conflict, active low 

B6 

Bll 0 
Master Slave Error pin, indicates error between 

data at Y output MUX and external Y port 

Al0 0 Output status signal representing sign condition 

T5 I DA bus enable, active low 

R12 I DB bus enable, active low 

All I Status enable, active low 

C3 

C7 
I Y bus output enable, active low 

C14 

F14 

Bl0 0 Output status signal represents overflow condition 

Rl 

R5 
I/O Parity bits port for DA data 

M14 

G17 

Ll 

R3 
I/O Parity bits port for DB data 

R15 

L17 

S5 0 
DA data parity error, signals error if an even parity 

check fails for any byte 

Pl1 0 
DB data parity error, signals error if an even parity 

check fails for any byte 

Cll 0 
Y data parity error, signals error if an even parity 

check fails for any byte 



NAME 

PYO 

PY1 

PY2 

PY3 

RFCLK 

SELMQ 

SELRFO 

SELRF1 

SIOO 

SI01 

SI02 

SI03 

SSF 

TPO 

TP1 

VCC 

VCC 

VCC 

VCC 

VCC 

VCC 

VCC 

VCC 

VCC 

VCC 
WEO 

WE1 

WE2 

WE3 

Table 2. SN74ACT8832 Pin Description (Continued) 

PIN 

NO. 
1/0 DESCRIPTION 

04 

B5 

B15 
1/0 Y port parity data, input and output 

C16 

S9 I 
Register File Clock, allows multiple writes to be 

performed in one master clock cycle 

E1 I 
MQ register select, selects output of ALU shifter or 

MQ register to be placed on Y bus 

T9 Register File select. Controls selection of the 
I 

T8 Register File(RF) inputs by the RF MUX 

A9 

B8 

A6 
110 Bidirectional shift pin, active low 

A5 

A12 I 
Special Shift Function, implements conditional 

shift algorithms 

E15 

016 
110 Test pins, supports system testing 

C9 

09 

H3 

H15 

J4 
Supply voltrage (5 V) 

J14 

L3 

L15 

P8 

R9 

S7 Register File WRITE ENABLE; Data is written into RF 

T7 I when write enables are low and a low to high 

R8 Register File Clock (RFCLK) transition occurs 

S8 Active low. 
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NAME 
YO 
Y1 
Y2 
Y3 
Y4 
Y5 
Y6 
Y7 
Y8 
Y9 
Y10 
Y11 
Y12 
Y13 
Y14 
Y15 
Y16 
Y17 
Y18 
Y19 
Y20 
Y21 
Y22 
Y23 
Y24 
Y25 
Y26 
Y27 
Y28 
Y29 
Y30 
Y31 
Z 

Table 2. SN74ACT8832 Pin Description (Concluded) 

PIN 
NO. 

I/O DESCRIPTION 

E3 
02 
C1 
03 
E4 
C2 
B1 
A1 
05 
C4 
B3 
C5 
B4 
A2 
C6 
A3 1/0 Y port data bus 
B12 
C12 
A13 
B13 
A14 
B14 
C13 
A15 
A16 
A17 
B16 
014 
C15 
B17 
E14 
015 
B9 0 Output status signal represents zero condition 



, ACT8832 Specification Tables 
absolute maximum ratings over operating free-air temperature range 
(unless otherwise noted) t 

Supply voltage, vee. . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, 11K (V, < 0 or V, > Vee) . . . . . . . . . . . . .. ± 20 mA 
Output clamp current, 'OK(VO < 0 or Vo > Vee) .......... ± 50 mA 
eontinuous output current, 10 (VO = 0 to Vee) ........... " ± 50 mA 
eontinuous current through Vee or GND pins. . . . . . . . . . . . .. ± 100 mA 
Operating free-air temperature range. . . . . . . . . . . . . . . . . .. ooe to 70 0 e 
Storage temperature range ...................... - 65 °e to 1 50 °e 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. 
These are stress ratings only and functional operation of the device at these or any other conditions beyond 
those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum­
rated conditions for extended periods may affect device reliability. 

Table 3. Recommended Operating Conditions 

PARAMETER MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5.0 5.5 V 

VIH High-level input voltage 2 Jt:i§c V 

VIL Low-level input voltage 0 ,;;:":;'0.8 V 

IOH High-level output current ~t"'~" -8 mA 

IOL Low-level output current ,{,;" 8 mA 

VI Input voltage Q~;,5"? Vee V 

Vo Output voltage ,.;1q~·' Vee V 

dt/dv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 °e 
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Table 4. Electrical Characteristics 

PARAMETER TEST CONDITIONS VCC 
TA = 25°C 

UNIT 
MIN TYP MAX MIN MAX 

4.5 V 4.49 
10H = -20 p.A 

5.5 V 5.49 
VOH 

~"'~;:" ,,~~ 
V 

4.5 V 3.76 
10H = -8 mA 

,,,,:~,;~j' ",,~~~;~'< 5.5 V 4.76 

4.5 V O.~;I:" (;;(;" 
10l = 20 p.A 

5,5 V ~3h i ,t~,. 

'i' 
Val 

",,"1~") ""G·I' 
V 

4.5 V 0,45 
10l = 8 mA 

5.5 V "..:;f;,) ,,"~f~f 0.45 

II VI = Vee or 0 5.5 V d;I,;'~ ,~i~,i:;:;' ±1 p.A 

ICC VI = Vee or O. 10 5.5 V 
".;, 

p.A 

ei VI = Vee or 0 5V pF 

One input at 3.4 V, 

~Ieet other inputs at 5.5 V 1 mA 

o or Vee 

Table 5. Register File Write Setup 

PARAMETER MIN MAX UNIT 

C5-CO 4 

DA/B32-DA/BO. PA/B3-PA/BO 7 

1'7-14 13 i,,;~l~ 
OEY3-0EYO 7 ~,",:~,;:"" 

Y31-YO 4 .d~(';;i'''' 

tsu WE3-WEO 4 ,,,,<~, ns 
SElRF(DA,DB,PA,PB) 5c::S 
SElRF(Y) .,':I~i 
SIO ";'10 

SElMO 9 

IESI03-IESIOO 10 

th ALL 0 

tThis is the increase in supply current for each input that is at one of the specified TTL voltge levels rather 
then 0 V to Vee. 
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Table 6. Maximum Switching Characteristics 

TO (OUTPUT) 

PARAMETER FROM (INPUT) PA/B UNIT 

Y C Z SID PERRA/B N OVR DA/B PY PERRY MSERR 

A5-AO,B5-BO 36 30 37 28 30 37 16 37 

DA31-DAO,PA3-PAO 
36 25 37 25 20 28 37 37 

DB31-DBO,PB3-PBO 

Cn 30 22 31 24 28 28 32 

EA 37 28 37 25 31 37 37 

EB1-EBO 37 28 37 25 31 37 ,0>''''''\ 37 

17-10 37 30 37 28 32 ~A,.l '~;;/ 37 

~. CF2-CFO 37 30 37 28 32 ",,;~1' 37 

OEB,OEA ,. ,:;'\" 15 
tpd 

l,·~(~:i"-' 
ns 

OEY3-0EYO 20 20 N 
SElMQ 15 1,;,11<;:',,, 20 M 

S103-5100 15 25 25 27 ~ 
ClK 21 28 

I-
(.) 

ClKMQ 37 37 « 
RClK 37 32 37 24 32 37 37 

.. 
" IE5103-IESIOO 15 25 25 27 Z 

SSF 25 30 22 30 22 30 en 
y 15 15 
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I ACT8832 Registered ALU 
The SN74ACT8832 is a 32-bit registered ALU that can be configured to operate as 
four 8-bit ALUs, two 16~bit ALUs, or a single 32-bit ALU. The processor instruction 
set is 100 percent upwardly compatible with the' AS888 and includes 13 arithmetic 
and logical functions with 8 conditional shifts, multiplication, division, normalization, 
add and subtract immediate, bit and byte operations, and data conversions such as 
BCD, excess-3, and sign magnitude. New instructions permit internal flip-flops 
controlling BCD and divide operations to be loaded or read. 

Additional functions added to the' ACT8832 include byte parity and master/slave 
operation. Parity is checked at the three data input ports and generated at the Y output 
port. The 64-word register file is 36 bits wide to permit storage of the parity bits. 
Master/slave comparator circuitry is provided at the Y port. 

The DA and DB ports can simultaneously input data to the ALU and the 64-word by 
U) 36-bit register file. Data and parity from the register file can be output on the DA and 
:2 
" DB ports. Results of ALU and shift operations are output at the bidirectional Y port. 
,J:a. The Y port can also be used in an input mode to furnish external data to the register 
f) file or during master/slave operation as an input to the master/slave comparator. 

-I 
00 
00 
W 
N 

Three 6-bit address ports allow a two-operand fetch and an operand write to be 
performed at the register file simultaneously. An MQ shifter and MQ register can also 
be configured to function independently to implement double-precision 8-bit, l6-bit, 
and 32-bit shift operations. An internal ALU bypass path increases the speeds of 
multiply, divide and normalize instructions. The path is also used by , ACT8832 
instructions that permit bits and bytes to be manipulated. 

Architecture 

Figure 4 is a functional block diagram of the' ACT8832. Control input signals are 
summarized in Table 7. Data flow and details of the functional elements are presented 
in the following paragraphs. 
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Table 7. 'ACT8832 Response to Control Inputs 

SIGNAL HIGH LOW 

CF2-CFO See Table 11 See Table 11 

EA Selects external DA bus Selects register file 

EB1-EBO See Table 9 See Table 9 

IESI03-IESI00 Normal operation Force corresponding SIO 

inputs to high impedance 

17-10 See Table 15 See Table 15 

MQSEl Selects MQ register Selects AlU 

OEA Inhibits DA and PA output Enables DA and PA output 

OEB Inhibits DB and PB output Enables DB and PB output 

OEY3-0EYO Inhibits Y and PY outputs Enables Y and PY outputs 

RFSEl1-RFSElO See Table 8 See Table 8 
SSF Selects shifted AlU output Selects AlU (unshifted) output 

TP1-TPO See Table 14 See Table 14 

WE3-WEO Inhibits register file write Byte enables for register file 

write (0 = lSB) 

Data Flow 

As shown in Figure 5, data enters the' ACT8832 from three primary sources: the 
bidirectional Y port, which is used in an input mode to pass data to the register file; 
and the bidirectional DA and DB ports, used to input data to the register file or the 
Rand S buses serving the ALU. Three associated I/O ports (PY, PA, and PBI are provided 
for associated parity data input and output. 

Data is input to the ALU through two multiplexers: R MUX, which selects the R bus 
operand from the DA port or the register file addressed by A?-AO; and S MUX, which 
selects data from the DB port, the register file addressed by B5-BO, or the multiplier­
quotient (MQI register. 

The result of the ALU operation is passed to the ALU shifter, where it is shifted or 
passed without shift to the Y bus for possible output from the' ACT8832 and to the 
feedback MUX for possible storage in the internal register file. The MQ shifter, which 
operates in parallel with the ALU shifter, can be loaded from the ALU or the MQ register. 
The MQ shift result is passed to the MQ register, where it can be routed through the 
S MUX to the ALU or to the Y MUX for output from the chip. 

An internal bypass path allows data from the S MUX to be loaded directly into the 
ALU shifter or the divide/BCD flip-flops. Data from the divide/BCD flip-flops can be 
output via the MQ register. 
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Data can be output from the three bidirectional ports, Y, DA; and DB, and their 
associated parity ports, PY, PA, and PB. DA and DB can also be used to read ALU 
input data on the Rand S buses for debug or other special purposes. 

Architectural Elements 

Three-Port Register File 

The register file is 36 bits wide, permitting storage of a 32·bit data word with its 
associated parity bits. The 64 registers are accessed by three address ports. C5·CO 
address the destination register during write operations; A5-AO and B5-80 address 
any two registers during read operations. The address buses are also used to furnish 
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immediate data to the ALU: A3-AO to provide constant data for the add and subtract 
immediate instructions; C3-CO and A3-AO to provide masks for set, reset, and test 
bit operations. 

Data is written into the register file when the write enable is low and a low-to-high 
register file clock (RFCLK) transition occurs. The separate register file clock allows 
multiple writes to be performed in one master clock cycle, allowing processors in multi­
processor environments to update one another's internal register files during a single 
cycle. 

Four write enable inputs are provided to allow separate control of data inputs in a byte­
oriented system. WE3 is the write enable for the most significant byte. 

Register file inputs are selected by the RF MUX under the control of two register file 
select signals, RFSEL 1 and RFSELO, shown in Table 8 (see also Table 10). 

Table,B. RF MUX Select Inputs 

RFSEL1 RFSELO SOURCE 

0 0 External DA input 

0 1 External DB input 

1 0 V-output MUX 

1 1 External V port 

Rand S Multiplexers 

ALU inputs are selected by the Rand S multiplexers. Controls which affect operand 
selection for instructions other than those using constants or masks are shown in 
Table 9. 

Table 9. ALU Source Operand Selects 

R-BUS S-BUS 

OPERAND OPERAND RESULT 
-SOURCE OPERAND 

SELECT SELECT DESTINATION 

EA EB1-EBO 

0 R bus -Register file addressed by A5-AO 

1 R bus -DA port 

00 S bus -Register file addressed by B5-BO 

1 0 S bus -DB port 

X 1 S bus -MQ register 
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Table 10. Destination Operand Select/Enables 

REGISTER DA DB 
Y BUS REGISTER 

FILE 
OUTPUT 

Y MUS PORT PORT 

SELECT 
FILE RESULT 

WRITE OUTPUT OUTPUT - SOURCE 

ENABLE 
ENABLE 

MOSEL 
SELECT 

ENABLE 
DESTINATION 

OEY 
ENABLE 

WE 
RFSEL 1-RFSELO 

OEA OEB 

1 0 0 X X y/py - ALU shifter/parity generate 

1 0 1 X X Y/PY - MQ register/parity generate 

0 0 0 1 0 Y/PY, RF - ALU shifter/parity generate 

0 0 1 1 0 Y/PY, RF - MQ register/parity generate 

0 1 X 1 1 RF - External Y /PY 

0 X X 0 0 1 X RF - External DA/PA 

0 X X 0 1 X 1 RF - External DB/PB 

0 DA/PA +- Rhus register file output 

1 DA/PA Hi-Z 

0 DB/PB - S bus register file output 

1 DB/PB Hi-Z 

w 
W 
w 
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Data Input and Output Ports 

The DA and DB ports can be used to load the 5 and/or R multiplexers from an external 
source or to read 5 or R bus outputs from the register file. The Y port can be used 
to load the register file and to output the next address selected by the Y output 
multiplexer. Tables 9 and 10 describe the MUX and output controls which affect DA, 
DB, and Y. 

ALU 

The ALU can perform seven arithmetic and six logical instructions on the two 32-bit 
operands selected by the Rand 5 multiplexers. It also supports multiplication, division, 
normalization, bit and byt~ operations and data conversion, including excess-3 BCD 
arithmetic. The' ACT8832 instruction set is summarized in Table 15. 

rJ) The' ACT8832 can be configured to operate as a single 32-bit ALU, two 16-bitALUs, 
~ or four8-bit ALUs (see Figures 6 and 7). It can also be configured to operate on a 
~ 32-bit word formed by adding leading zeros to the 12 least significant bits of R bus 
» data. This is useful in certain IBM relative addressing schemes. 
(") 
-I 
00 
00 
W 
N 

Cn 

SR\2 

SIOO 
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Configuration modes are controlled by three CF inputs as shown in Table 11. These 
signals also select the data from which status signals other than byte overflow will 
be generated. 

Table 11. Configuration Mode Selects 

CONTROL INPUTS 
MODE SELECTED 

DATA FROM WHICH STATUS OTHER 

CF2 CF1 CFO THAN BYOF WILL BE GENERATED 

0 0 0 Four 8-bit Byte 0 

0 0 1 Four 8-bit Byte 1 

0 1 0 Four 8-bit Byte 2 

0 1 1 Four 8-bit Byte 3 

1 0 0 Two 16-bit Least significant 16-bit word 

1 0 1 Two 16-bit Most significant 16-bit word 

1 1 0 One 32-bit 32-bit word 

1 1 1 Masked 32-bit 32-bit word 

-I ALU and MQ Shifters 
CO 
~ The ALU and MQ shifters are used in all of the shift, multiply, divide and normalize 
N functions. They can be used independently for single precision or concurrently for 

double precision shifts. Shifts can be made conditional, using the Special Shift Function 
(SSF) pin. 

Bidirectional Serial I/O Pins 

Four bidirectional. SIO pins are provided to supply an end fill bit for certain shift 
instructions. These pins may also be used to read bits that are shifted out of the ALU 
or MQ shifters during certain instructions. Use of the SIO pins as inputs or outputs 
is summarized in Table 17. 

The four pins allow separate control of end fill inputs in configurations other than 32-bit 
mode (see Table 12 and Figure 4) . 

. Table 12. Data Determining SIO Input 

SIGNAL 
CORRESPONDING WORD, PARTIAL WORD OR BYTE 

32-BIT MODE 16-BIT MODE 8"BIT MODE 

5103 - - Byte 3 

5102 - most significant word Byte 2 

SiOT - - Byte .1 

SIOO 32-bit word leilst significant word Byte 0 
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To increase system speed and reduce bus conflict,four SIO input enables 
(IESI03-IESIOO) .are provided. A low on these enables will override internal pull-up 
resistor logic and force the corresponding SIO pins to the high impedance state 
required before an input si·gnal can appear on the signal line. If the SIO enables are not 
used, this condition is generated internally in the chip. Use of the enables allow internal 
decoding to be bypassed, resulting in faster speeds. 

The IESIOs are defaulted to a high because of internal pull-up resistors. When an 
SIO pin is used as an output, a low on its corresponding IESIO pin would force 
SIO to a high impedance state. The output would then be lost, but the internal 
operation of the chip would not be affected. 

MQ Register 

Data from the MO shifter is written into the MO register when a low-to-high transition 
occurs on clock CLK. The register has specific functions in double precision shifts, N 
multiplication, division and data conversion algorithms and can also be used as a. ('I) 

temporary storage register. Data from the register file and the DAand DB buses can : 
be passed to the MO register through the ALU. t-

O 
The Y bus contains the output of the ALU shifter if MOSEL is low and the output of· « 
the MO register if MOSEL is high. If OEY is low, ALU or MO shifter output will q. 
be passed to the Y port; if OEY is high, the Y port becomes an input to the ~ 
feedback MUX.U) 

Conditional Shift Pin 

Conditional shifting algorithms may be implemented using the SSF pin under hardware 
or firmware control. If the SSF pin is high or floating, the shifted ALU'output will be 
sent to the output buffers. If the SSF pin is pulled low externally, the ALU result will 
be passed. directly to the output buffers, and MO shifts will be inhibited. Conditional 
shifting is useful for scaling inputs in data arrays or in signal processing algo.rithms. 

Master/Slave Comparator 

A master/slave comparator is provided to compare data bytes from the Y output MUX 
with data ibytes on the external Y port when OEY is high. If the data are 
not equal, a high signal is generated on the master slave error output pin (MSERR). 
A similar comparator is provided for the Y parity bits. 

Divide/BCD Flip-Ftops 

Internal muJtiply/divide flip-flops are used by certain multiply and divide instructions 
to maintain status between instructions. Internal excess-3 BCD flip-flops preserve the 
carry from each nibble in excess-3 BCD operations. The BCD flip-flops are affected 
by all instructions except NOPand "are cleared. when a. CLR instruction is executed. 
The flip-flops can be loaded and read externally using instructions LOADFF and DUMPFF 
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(see Table 151. This feature permits an iterative arithmetic operation such as 
multiplication or division to be interrupted immediately so that an external interrupt 
can be processed. 

Status 

Eight status output signals are generated by the 'ACTS632. Four signals 
(BYOF3-BYOFO) indicate overflow conditions in certain data bytes (see Table 13). The 
others represent sign (N), zero (ZERO), carry-out (Cout) and overflow (OVR). N, ZERO, 
Cout, and OVR are generated from d,ata selected by the mode configuration controls 
(CF2-CFO) as shown in Table 11. 

Carry-out is evaluated after each ALU operation. Sign and zero status are evaluated 
after ALU shift operation. Overflow (OVR) is determined by ORing the overflow result 
from the ALU with the overflow result from the ALU shifter. 

Table 13. Data Determining BYOF Outputs 

SIGNAL 
CORRESPONDING WORD. PARTIAL WORD OR BYTE 

32-BIT MODE 16-BIT MODE 8-BIT MODE 

BYOF3 32-bit word most significant word Byte 3 

BYOF2 .- - Byte 2 

BYOF1 - least significant word Byte 1 

BYOFO - - Byte 0 

Input Data Parity Check 

An even parity check is performed on each byte of input data at the DA, DB and Y 
ports. The check is performed by counting the number of ones in each byte and its 
corresponding parity bit. Parity bits are input on PA for DA data, PB for DB data and 
PYF or Y data. PAO, PBO and PYO are the parity bits for the ieast significant bytes 
of DA, DB and Y, respectively. If the result of the parity count is odd for any byte, 
a high appears at the parity error output pin (PERRA for DA data, PERRB for DB data, 
PERRY for Y data). 

Test Pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place 
all outputs in a high-impedance state, isolating the chip from the rest of the system 
(see Table 14). 
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Table 14. Test Pin Inputs 

TP1 TPO RESULT 

0 0 All outputs and I/Os forced low 

0 1 All outputs and I/Os forced high 

1 0 All outputs and I/Os placed in a high impedance state 

1 1 Normal operation (default state) 

Instruction Set Overview 

Bits 17-10 are used as instruction inputs to the' ACT8832. Table 15 lists all 
instructions, divided into five groups, with their opcodes and mnemonics. 

Table 15. 'ACT8832 Instruction Set 

GROUP 1 INSTRUCTIONS 

INSTRUCTION BITS 

13-10 MNEMONIC FUNCTION 

(HEX) 

0 Used to access Group 4 instructions 

1 ADD R + S + Cn 

2 SUBR R + S + Cn 

3 SUBS R + S + Cn 

4 INCS S + Cn 

5 INCNS S + Cn 

6 INCR R + Cn 

7 INCNR R + Cn 

8 Used to access Group 3 instructions 

9 XOR R XOR S 

A AND RAND S 

B OR R OR S 

C NAND R NAND S 

0 NOR R NOR S 

E ANDNR RAND S 

F Used to access Group 5 instructions 
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Table 15. 'ACT8832 Instruction Set (Continued) 

GROUP 2 INSTRUCTIONS 

INSTRUCTION BITS 

17·10 MNEMONIC FUNCTION 
(HEX) 

0 SRA Arithmetic right single precision shift 

1 SRAO Arithmetic right double precision shift 

2 SRl logical right single precision shift 

3 SRLO logical right double precision shift 

4 SLA Arithmetic left single precision shift 

5 SLAO Arithmetic left double precision shift 

6 SLC Circular left single precision shift 

7 SLCO Circular left double precision shift 

8 SRC Circular right single precision shift 

9 SRCO Circular right double precision shift 

A MQSRA Arithmetic right shift MQ register 

B MQSRl Logical right shift MQ register 

C MQSLl logical left shift MQ register 

0 MQSLC Circular left shift MQ register 

E lOAOMQ load MQ register 

F PASS Pass AlU to Y 



Table 15 .• ACT8832 Instruction Set (Continued) 

GROUP 3 INSTRUCTIONS 

INSTRUCTION BITS 

17-10 MNEMONIC FUNCTION 

(HEX) 

08 SET1 Set bit 1 

18 SETO Set bit 0 

28 TB1 Test bit (one) 

38 TBO Test bit (zero) 

48 ABS Absolute value 

58 SMTC Sign magnitude/two's complement 

68 ADDI Add immediate 

78 SUBI Subtract immediate 

88 BADD Byte add R to S 

98 BSUBS Byte subtract S from R 

A8 BSUBR Byte subtract R from S 

B8 BINCS Byte increment S 

C8 BINCNS Byte increment negative S 

08 BXOR Byte XOR Rand S 

E8 BAND Byte AND Rand S 

F8 BOR Byte OR Rand S 
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Table 15. 'ACT8832 Instruction Set (Continued) 

GROUP 4 INSTRUCTIONS 

INSTRUCTION BITS 

17-10 MNEMONIC FUNCTION 

(HEX) 

00 CRC Cyclic redundancy character accumulation 

10 SEL Select S or R 

20 SNORM Single length normalize 

30 DNORM Double length normalize 

40 DIVRF Divide remainder fix 

50 SDIVQF Signed divide quotient fix 

60 SMUll Signed multiply iterate 

70 SMULT Signed multiply terminate 

80 SDIVIN Signed divide initialize 

90 SDIVIS Signed divide start 

AO SDIVI Signed divide iterate 

80 UDIVIS Unsigned divide start 

CO UDIVI Unsigned divide iterate 

DO UMULI Unsigned multiply iterate 

EO SDIVIT Signed divide terminate 

FO UDIVIT Unsigned divide terminate 



Table 15. 'ACT8832 Instruction Set (Continued) 

GROUP 5 INSTRUCTIONS 

INSTRUCTION BITS 

17-10 MNEMONIC FUNCTION 

(HEX) 

OF LOADFF Load divide/BCD flip-flops 

1F CLR Clear 

2F CLR Clear 

3F CLR Clear 

4F CLR Clear 

5F DUMPFF Output divide/BCD flip-flops 

6F CLR Clear 

7F BCDBIN BCD to binary 

SF EX3BC Excess-3 byte correction 

9F EX3C Excess-3 word correction 

AF SDIVO Signed divide overflow test 

BF CLR Clear 

CF CLR Clear 

OF BINEX3 . Binary to excess-3 

EF CLR Clear 

FF NOP No operation 

Group 1, a set of ALU arithmetic and logic operations, can be combined with the user­
selected shift operations in Group 2 in one instruction cycle. The other groups contain 
instructions for bit and byte operations, division and multiplication, data conversion, 
and other functions such as sorting, normalization and polynomial code accumulation. 

Arithmetic/Logic Instructions with Shifts 

The seven Group 1 arithmetic instructions operate on data from the Rand/or S 
multiplexers and the carry-in. Carry-out is evaluated after ALU operation; other status 
pins are evaluated after the accompanying shift operation, when applicable. Group 1 
logic instructions do not use carry-in; carry-out is forced to zero. 

Possible shift instructions are listed in Group 2. Fourteen single and double precision 
shifts can be specified, or the ALU result can be passed unShifted to the MQ register 
or to the specified output destination by using the LOADMQ or PASS instructions. 
Table 16 lists shift definitions. 

When using the shift registers for double precision operations, the least significant 
half should be placed in the MQ register ano the most significant half in the At.U for 
passage to the ALU shifter. An example of a double-precision shift using the ALU and 
MQ shifters is given in Figure 8. 
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SERIAL DATA 
INPUT SIGNALS 

SIOO -1>---,'---1 

Single Precision Logical Right .Single Shift, 32-Bit Configuration 

SERIAL DATA 
INPUT SIGNALS 

SIOO-+-----, 

Double Precision Logical Right Single Shift, 32-Bit Configuration 

Figure a.Shift Examples. 32-Bit Configuration 

All Group 2 shifts can be made conditional using the conditional shift pin (SSF). If the 
SSF pin is high or floating. the shifted ALU output will be sent to the output buffers. 
MQ register. or both. If the SSF pin is pulled low. the ALU result will be passed directly 
to the output buffers and any MQ shifts will be inhibited. 

Table 16. Shift Definitions 

SHIFT TYPE NOTES 

Left Moves a bit one position towards the most significant bit 

Right Moves a bit one position towards the least significant bit 

Arithmetic right Retains the sign unless an overflow occurs, in which case, the 

sign would be inverted 

Arithmetic left May lose the sign bit if an overflow occurs. Zero is filled into 

the least significant bit unless the bit is set externally 

Circular right Fills the least significant bit in the most significant bit position 

Circular left Fills the most significant bit in the least significant bit position 

Logical right Fills a zero in the most significant bit position unless the bit 

is forced to one by placing a zero on an SIO pin 

Logical left Fills a zero in the least significant bit position unless the bit 

is forced to one by placing a zero on an SIO pin 



The bidirectional SIO pins can be used to supply external end fill bits for certain Group 2 
shift instructions. When SIO is high or floating, a zero is filled, otherwise a 1 is filled 
Table 17 lists instructions that make use of the SIO inputs and identifies input and 
output fUnctions.· 

Table 17. Bidirectional SIO Pin Functions 

INSTRUCTION SIO 

BITS 17-10 

(HEX) 
MNEMONIC 110 DATA 

0* SRA 0 Shift out 

1 * SRAD 0 Shift out 

2* SRL I Most significant bit 

3* SRLD I Most significant bit 

4* SLA I Least significant bit 

5* SLAD I Least significant bit 

6* SLC 0 Shifted input to MO shifter 

7* SLCD 0 Shifted input to MO shifter 

8* SRC 0 Shifted input to ALU shifter 

9* SRCD 0 Shifted input to ALU shifter 

A* MOSRA 0 Shift out 

8* MOSRL I Most significant bit 

C* MOSLL I Least significant bit 

0* MOSLC 0 Shifted input to MO shifter 

00 CRC 0 Internally generated end fill bit 

20 SNORM I Least significant bit 

30 DNORM I Least significant bit 

60 SMUll 0 ALUO 

70 SMULT 0 ALUO 

80 SDIVIN 0 Internally generated end fill bit 

90 SDIVIS 0 Internally generated end fill bit 

AO SDIVI 0 Internally generated end fill bit 

80 UDIVIS 0 Internally generated end fill bit 

CO UDIVI 0 Internally generated end fill bit 

DO UMULI 0 Internal input 

EO SDIVT 0 Internally generated end fill bit 

FO UDIVIT 0 Internally generated end fill bit 

7F BCD BIN I Least significant bit 

OF BINEX3 0 Shifted input to MO register 

3A5 

N 
M 
CO 
CO 
I­
(.) 

~ ,.... 
z 
en 



en z 
...... 
~ » 
(') 
-t 
CO 
CO 
W 
J\) 

Other Arithmetic Instructions 

The 'ACT8832 supports two immediate arithmetic operations. ADDI and SUBI 
(Group 3) add or subtract a constant between the values of 0 and 15 from an operand 
on the S bus. The constant value is specified in bits A3-AO. 

Twelve Group 4 instructions support serial division and multiplication. Signed, unsigned 
and mixed multiplication are implemented using three instructions: SMUll, which 
performs a signed times unsigned iteration; SMUL T, which provides negative weighting 
of the sign bit of a negative multiplier in signed multiplication; and UMULI, which 
performs an unsigned multiplication iteration. Algorithms using these instructions are 
given in Tables 18, 19, and 20. These include: signed multiplication, which performs 
a two's complement multiplication; unsigned multiplication, which produces an 
unsigned times unsigned product; and mixed multiplication which multiplies a signed 
multiplicand by an unsigned multiplier to produce a signed result. 
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Table 18. Signed Multiplication Algorithm 

OP CLOCK INPUT INPUT OUTPUT 

CODE 
MNEMONIC 

SPORT R PORT Y PORT CYCLES 

E4 LOADMO 1 Multiplier - Multiplier 

60 SMUll N-1 t Accumulator Multiplicand Partial product 

70 SMULT 1 Accumulator Multiplicand Product (MSH):I: 

Table 19. Unsigned Multiplication Algorithm 

OP CLOCK INPUT INPUT OUTPUT 

CODE 
MNEMONIC 

CYCLES SPORT R PORT Y PORT 

E4 LOADMO 1 Multiplier - Multiplier 

DO UMULI N-1 t Accumulator Multiplicand Partial product 

DO UMULI 1 Accumulator Multiplicand Product (MSH):I: 

Table 20. Mixed Multiplication Algorithm 

OP CLOCK INPUT INPUT OUTPUT 

CODE 
MNEMONIC 

CYCLES SPORT R PORT Y PORT 

E4 LOADMO 1 Multiplier - Multiplier 

60 SMUll N-1 t Accumulator Multiplicand Partial product 

60 SMUll 1 Accumulator Multiplicand Product (MSH):I: 

tN =·8 for quad 8-bit mode, 16 for dual 16-bit mode, 32 for 32-bit mode. 
tThe least significant half of the product is in the MQ register. 



Instructions that support division include start. iterate and terminate instructions for 
unsigned division routines (UDIVIS, UDIVI and UDIVIT); initialize, start, iterate and 
terminate instructions for signed division routines (SDIVIN, SDIVIS, SDIVI and SDIVIT); 
and correction instructions for these routines (DIVRF and SDIVQF). A Group 5 
instruction, SDIVO, is available for optional overflow testing. Algorithms for signed 
and unsigned division are given in Tables 21 and 22. These use a nonrestoring 
technique to divide a 16 N-bit integer dividend by an 8 N-bit integer divisor to produce 
an 8 N-bit integer quotient and remainder, where N == 1 for quad 8-bit mode, N = 2 
for dual 16-bit mode, and N = 4 for 32-bit mode. 

Table 21. Signed Division Algorithm 

OP CLOCK INPUT INPUT OUTPUT 
MNEMONIC 

CODE CYCLES SPORT R PORT Y PORT 

E4 LOADMQ 1 Dividend (LSH) - Dividend (LSH) 

80 SDIVIN 1 Dividend (MSH) Divisor Remainder (N) 

AF SDIVO 1 Remainder (N) Divisor Overflow Test 

Result 

90 SDIVIS 1 Remainder (N) Divisor Remainder (N) 

AO SDIVI N-2t Remainder (N) Divisor Remainder (N) 

EO ,SDIVIT 1 Remainder (N) Divisor Remainder§ 

40 DIVRF 1 Remainder t Divisor Remainder' 

50 SDIVQF 1 MQ register Divisor Quotient # 

tN = 8 for quad 8-bit mode. 16 for dual 16-bit mode, 32 for 32-bit mode. 
lThe least significant half of the product is in the MO register. 
§Unfixed 
, Fixed (corrected) 
# The quotient is stored in the MO register. Remainder can be output at the Y port or stored in 

the register file accumulator. 

Table 22. Unsigned Division Algorithm 

OP CLOCK INPUT INPUT 

CODE 
MNEMONIC 

CYCLES SPORT R PORT 

E4 LOADMQ 1 Dividend (LSH) -

BO UDIVIS 1 Dividend (MSH) Divisor 

CO UDIVI N-1 t Remainder (N) Divisor 

FO UDIVIT 1 Remainder (N) Divisor 

40 DIVRF 1 Remainder§ Divisor 

tN = 8 in quad 8-bit mode, 16 in dual 16-bit mode, 32 in 32-bit mode 
lUnfixed 
§Fixed (corrected) 

OUTPUT 

Y PORT 

Dividend (LSH) 

Remainder (N) 

Remainder (N) 

Remainder t 

Remainder§ 
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Data Conversion Instructions 

Conversion of binary data to one's and two's complement can be implemented using 
the INCNR instruction (Group 1). SMTC (Group 3) permits conversion from two's 
complement representation to sign magnitude representation, or vice versa. Two's 
complement numbers can be converted to their positive value, using ABS (Group 3). 

SNORM and DNORM (Group 4) provide for normalization of signed, single- and double­
precision data. The operand is placed in the MQ register and shifted toward the most 
significant bit until the two most significant bits are of opposite value. Zeroes are shifted 
into the least significant bit, provided SIO is high or floating. (A low on SIO will shift 
a one into the least significant bit.) SNORM allows the number of shifts to be counted 
and stored in one of the register files to provide the exponent. 

Data stored in binary-coded decimal form can be converted to binary using BCD BIN 
C/) (Group 5). A routine for this conversion, given in Table 23, allows the user to convert 
2 an N-digit BCD number to a 4N-bit binary number in 4N + 8 clock cycles . 
...... 
~ 
l> Table 23. BCD to Binary Algorithm 
n 
-I 
(X) 
(X) 

W 
N 

OP CLOCK INPUT INPUT OUTPUT 

COOE 
MNEMONIC 

SPORT R PORT DESTINATION CYCLES 

E4 LOADMQ 1 BCD operand - MQ reg: 

D2 SUBR/MQSLC 1 Accumulator Accumulator Accumulator/MQ reg. 

D2 SUBR/MQSLC 1 Mask reg. Mask reg. Mask reg/MQ reg. 

D1 MQSLC 2 Don't care Don't care MQ reg. 

68 ADDI (15) 1 Accumulator Decimal 15 Mask reg. 

REPEAT N-1 TIMES t 

DA AND/MQSLC 1 MQ reg. Mask reg. Interim reg/MQ reg. 

D1 ADD/MQSLC 1 Accumulator Interim reg. Interim reg/MQ reg. 

7F 8CDBIN 1 Interim reg. Interim res. Accumulator/MQ reg. 

7F BCDBIN 1 Accumulator Interim reg. Accumulator/MQ reg. 

END REPEAT 

FA I AND 1 MQ reg. Mask reg. Interim reg. 

D1 ADD MQSLC 1 Accumulator Interim reg. Accumulator 

tN = Number of BCD digits 

BINEX3, EX3BC, and EX3C assist binary to excess-3 conversion. Using BINEX3, an 
N-bit binary number can be converted to an N/4- digit excess-3 number. For an 
algorithm, see Table 24. 
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Table 24. BCD to Binary Algorithm 

OP CLOCK INPUT INPUT OUTPUT 

CODE 
MNEMONIC 

CYCLES SPORT R PORT DESTINATION 

E4 LOADMQ 1 Binary numbe - MQ reg. 

D2 SUBR 1 Accumulator Accumulator Accumulator 

D2 SET1 (33)16 1 Accumulator Mask (33)16 Accumulator 

REPEAT N TIMESt 

DF BINEX3 1 Accumulator Accumulator Accumulator/MQ reg 

9F EX3C 1 Accumulator Internal data Accumulator 

END REPEAT 

tN = Number of bits in binary number 

N 
Bit and Byte Instructions ~ 

00 Four Group 3 instructions allow the user to test or set selected bits within a byte. ..... 
SET1 and SETO force selected bits of a selected byte (or bytes) to one and zero, U 
respectively. TBl and TBO test selected bits of a selected byte (or bytes) for ones ~ 
and zeros. The bits to be set or tested are specified by an a-bit mask formed by the " 
concatentation of register· file address inputs C3-CO and A3-AO. The register file :2 
addressed by B5-BO is used as the destination operand for the set bit instructions. en 
Register writes are inhibited for test bit instructions. Bytes to be operated on are 
selected by forcing SIOn low, wheren represents the byte position and 0 represents 
the least significant byte. A high on the zero output pin signifies that the test data 
matches the mask; a low on the zero output indicates that the test has failed. 

Individual bytes of data can also be manipulated using eight Group 3 byte 
arithmetic/logic instructions. Bytes can be added, subtracted, incremented, ORed, 
ANDed and exclusive ORed. Like the bit instructions, bytes are selected by forcing 
SIOn low, but multiple bytes can be operated on only if they are adjacent to one another; 
at least one byte must be nonselected. 

Other Instructions 

SEL (Group 4) selects one of the ALU's two operands, S or R, depending on the state 
of the SSF pin. This instruction could be used in sort routines to select the larger or 
smaller of two operands by performing a subtraction and sending the status result 
to SSF. CRC (Group 4) is designed to verify serial binary data that has been transmitted 
over a channel using a cyclic redundancy check code. An algorithm using this instruction 
is given in Table 25. 
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Table 25. CRC Algorithm 

OP CLOCK 

CODE 
MNEMONIC 

CYCLES 

E4 LOADMQ 1 

F6 INCR 1 

F2 SUBR 1 

REPEAT n/8N TIMES t 

00 CRC 1 

E4 LOADMQ 1 

END REPEAT 

tN = Number of bits in binary number 
n = Length of the code vector 

INPUT INPUT 

SPORT R PORT 

Vector c'(x)t -
- Polynomial g(x) 

Accumulator Accumulator 

Accumulator Poly reg. 

Vector c'(x) t -

OUTPUT 

DESTINATION 

MQ reg. 

Poly reg. 

Accumulator 

Accumulator 

MQ reg. 

'-01 CLR forces the ALUoutput to zero and clears the internal BCD flip-flops used in excess-3 :t BCD operations. NOP forces the ALU output to zero, but does not affect the flip-flops. 

n 
-t 
(X) 
(X) 
W 
N 

Configuration Options 

The' ACT8832 can be configured to operate in 8-bit, l6-bit, or 32-bit modes, depending 
on the setting of the configuration mode selects (CF2-CFO). Table 11 shows the control 
inputs for the' four operating modes. Selecting an operating configuration other than 
32-bit mode affects ALU operation and status generation in several ways, depending 
on the mode selected. 

Masked 32-Bit Operation 

Masked 32-bit operation is selected to reset to zero the 20 most significant bits of 
the R Mux input. The 12 least significant bits are unaffected by the mask. Only Group 
1 and Group 2 instructions can be used in this operating configuration. Status 
generation is similar to unmasked 32-bit operating mode. 

Shift Instructions 

Shift instructions operate similarly in 8-bit, 16-bit, and 32-bit modes. The serial I/O 
(SI03'-SI00') pins are used to select end-fill bits or to shift bits in or out, depending 
on the operation being performed. Table 12 shows the SIO signals associated with 
each byte or word in the different modes, and Table 17 indicates the specific function 
performed by the SIO pins during shift, multiply, and divide operations. 

Figures 9 and 10 present examples of logical right shifts in 16-bit and 8-bit 
configurations. 
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SERIAL DATA 
INPUT SIGNALS 

SIOO~--------------------~--------, 

Single Precision Logical Right Single Shift, 16-Bit Configuration 

SERIAL DATA 
INPUT SIGNALS 

SIOO~--------~-------------------, 

Double Precision Logical Right Single Shift, 16-Bit Configuration 

Figure 9. Shift Examples. 16-Bit Configuration 

Bit and Byte Instructions 

The' ACT8832 performs bit operations similarly in 8-bit, 16-bit, and 32-bit modes. 
Masks are loaded into the R MUX on the A3-AO and C3-CO address inputs, and the 
bytes to be masked are selected by pulling their 510' inputs low. Instructions which 
set, reset, or test bits are explained later 

Byte operations should be performed in 32-bit mode to get the necessary status 
outputs. While byte overflow signals are provided for all four bytes (BYOF3-BYOFOI, 
the other status signals (C, N, Z) are output only for the word selected with the 
configuration control signals (CF2-CFO). 

Status Selection 

Status results (C, N, Z. and overflow) are internally generated for all words in all modes. 
but only the overflow results (BYOF3-BYOFO) a"re available for all four bytes in 8-bit 
mode or for both words in 16-bit mode. If a specific application requires that the four 
status results are read for two or four words, it is possible to toggle the configuration 
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SERIAL DATA 
INPUT SIGNALS 

SIOO~.~----------------------------------------------~ 

Siij1~------------~------------------, 
~~----------------. 

,...---.rnr-----, 

Single-Precision Logical Right Shift. 8-81t Configuration 

SERIAL DATA 
INPUT SIGNALS 
SIOO~----------------------------------------------~ 

Siij1~.~~-----------------------------, 
~~----------------~ 

Double-Precision Logical Right Shift. 8-8it Configuration 

Figure 10. Shift Examples, 8-Bit Configuration 

con~rol signals (CF2-CFO) within the same clock cycle and read the additional status 
results. This assumes that the necessary external hardware is provided to toggle 
CF2-CFO and collect the status for the individual words before the next clock signal 
is input. 

Instruction Set 

The' ACT8832 instruction set is presented in alphabetical order on the following pages. 
The discussion of each instruction includes a functional description, list of possible 
operands, data flow diagram, and notes on status and control bits affected by the 
instruction. Microcoded examples are also shown. 

Mnemonics and opcodes for instructions are given at the top of each page. Opcodes 
for instructions in Groups 1 and 2 are four bits long and are combined into eight"bit 
instructions which select combinations of arithmetic, logical, and shift operations. 
Opcodes for the other instruction groups are all eight bits long. . 

An asterisk in the left side of the opcode box for a Group 1 instruction indicates that 
a Group 2 opcode is needed to complete the instruction. An asterisk in the right side 
of a box indicates that a Group 1 opcode is required to combine with the Group 2 
opcode in the left side of the box. 



ABS Absolute Value I 4 I 8 I 

FUNCTION 

Computes the absolute value of two's complement data on the S bus. 

DESCRIPTION 

Two's complement data on the S bus is converted to its absolute value. The carry 
must be set to one by the user for proper conversion. ABS causes S' + Cn to be 
computed; the state of the sign bit determines whether S or S' + Cn will be selected 
as the result. SSF is used to transmit the sign of S. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 
No No No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

Si03 No Inactive 

Cn Yes . Should be programmed high for proper conversion. 
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1418 Absolute Value 

Status Signals 

if result = 0 

1 if MSB (input) = 1 

ZERO 

N 
OVR 1 if input of most significant byte is 80 (Hex) and inputs (if any) in all 

other bytes are 00 (Hex). 

C=1ifS=0 

EXAMPLES (assumes a 32-bit configuration) 

ASS 

Convert the two's complement number in register 1 to its positive value and store 
the result in register 4. 

(f) 
2 

Instr Oprd Oprd Oprd Sel Dest Destination Selects; 

" ~ » o 

Code 
17-10 

01001000 

Addr 

A5-AO 

XX XXXX 

Addr EB1-

B5-6O EA EBO 

00 0001 X 00 

Addr WE3- SELRF1-

C5-CO SELMO WED SELRFO i5EA 
000100 0 0000 10 X 

~ Example 1: Assume register file 1 holds F6D81340 (Hex): 
00 
~ Source 11110110110110000001001101000000 I S - RF(1) 

OEB 

X 

Destination 00001001 00100111 11101100 11000000 I RF(4) - S + Cn 

Example 2: Assume register file 1 holds 09D527CO (Hex): 

Source 00001001 1101 0101 00100111 11000000 I S - RF( 1) 

Destination 00001001 1101 0101 00100111 11000000 I RF(4) - S 
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ADD Add with Carry (R + S + Cn) * I 1 

FUNCTION 

Adds data on the Rand S buses to the carry-in. 

DESCRIPTION 

Data on the Rand S buses is added with carry. The sum appears at the ALU and MQ 
shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble {I7·14} of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Ves No Ves No 

Available S Bus Source Operands 

RF MO 
DB-Port 

(B5-BO) Register 

Ves Ves Ves 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
V-Port ALU MO 

Ves No Ves Ves Ves 
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Add with Carry (R + S + Cn) ADD 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

instruction field. 

5100 No Inactive 

SiOT No Inactive 
Si()2 No Inactive 

SI03 No Inactive 

Cn Yes Increments sum if set to one. 

en Status Signals t 

2 ...., 
~ 
l> 
(") 
-4 
CO 
CO 
W 
N 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

t C is ALU carry out arid is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLES (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with carry-in and pass the result to the 
MQ register. 

Instr Op,d Op,d Op,d Sel Oest Destination Selects 

Code Add, Add, E81· Add,' WE3· SELRF1· om· CF2· 

17·10 A5·AO .85·80 EAEao C5·CO SELMQ WEO SELRFO OEA 0eB OEYO 0eS Cn CFO 

1110 eOOl 000001 XX XXX X 0 10 XX XXXX 0 1111 10 X X XXX X 0 0 110 

.Assume register file 1 holds 0802C618 (Hex and DB bus holds. 1 E007530 (Hex): 

Source 00001000000000101100011000011000 I R - RF(l) 

Source 0001 1110000000000111 0101 0011 0000 I S - DB bus 

Destination 0010011000000011 0011 1011 0100 1000 I MQ register - R + S + Cn 
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ADDI ADD Immediate I 6 I 8 I 

FUNCTION 

Adds four-bit immediate data on A3-AO with carry to S-bus data. 

DESCRIPTION 

Immediate data in the range 0 to 15, supplied by the user at A3-AO, is added with 
carry to S. 

Available R Bus Source Operands (Constant) 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed 

Mask 

No Yes No No 

Available S Bus Source Operands 

RF MQ 

(85-80) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (85-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

SiOT No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Increments· sum if set to one. 
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I 6 I 8 I ADD Immediate 

Status Signals 

ZERO 

N 
OVR 

C 

1 if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

1 if carry-out = 1 

EXAMPLES (assumes a 32-bit configuration) 

ADDI 

Add the valule 12 to data on the DB bus with carry-in and store the result in register 
file 1. 

en 
2: ...., 
~ 

Instr 

Code 

17-10 

01101000 

Oprd 

Addr 

A5-AO 
00 1100 

Oprd Oprd Sel 

Addr EB1-
B5-BO EA EBO 

XX XXXlC X 10 

Cest Destination Selects 

Addr W5- SELRF1- om 
C5-CO SELMa WeO SELRFO 0eA DeB 0EY0 

00 0001 0 0000 10 X X XXXX 

l> Assume bits A5-AO hold OC (Hex) and DB bus holds 24000100 (Hex): 
n 
-t 
00 
00 
tAo) 
N 

Source 000000000000 0000 0000 0000 0000 1100 I R - A5-AO 

Source 001001000000000000000001 00000000 I 5 - DB bus 

Destination 00100100000000000000,000100001100 I RF(1) - R +5 + Cn 
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AND Logical AND (R AND S) 

FUNCTION 

Evaluates the logical expression RAND S. 

DESCRIPTION 

Data on the R bus is ANDed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

'The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

instruction field. 

SIOO No Inactive 

SI01 No Inactive 

5102 No Inactive 

SI03 No Inactive 

Cn No Inactive 
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Cf) 

2 
-.oJ 
~ 
:t> 
(") 
-4 

I * I A I 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
o 

Logical AND (R AND S) 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLES (assumes a 32-bit configuration) 

Logically AND the contents of register 3 and register 5 and store the result 
in register 5. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- 0eY3 
17-10 AS-AO· BS-8O EAEBO CS-CO SELMO WEO SELRFO 0eA ore 0eY0 l5Es 

11111010 000011 000101 0 00 000101 0 0000 10 X X XXX X 0 

AND 

CF2-

Cn CFO 

X 110 

~ Assume register file 3 holds F617D840 (Hex) and register file 5 holds 15F6D842 (Hex): 

W 
N Source 1111 01100001 0111 1101 100001000000 I R - RF(3) 

Source 0001 0101 1111 01101101 1000 0100 0010 I S - RF(5) 

Destination 0001 01000001 01101101 100001000000 I RF(5) - RAND S 
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ANDNR Logic AND Negative R (R' AND S) * I E 

FUNCTION 

Computes the logical expression S AND NOT R. 

DESCRIPTION 

The logical expression S AND NOT R is computed. The result appears at the ALU and 
MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibblf;t (/7-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

instruction field. 

SIOO No Inactive 

SI01 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn No Inactive 
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2 ...., 
~ 
l> 
(") 
-t 
CO 

Logic AND Negative R (R' AND S) ANDNR 

Status Signals t 

I 

ZERO = 1 if result 

N = 0 

OVR 0 

C 0 

=0 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Invert the contents of register 3, logically AND the result with data in register 5 
and store the result in register 10. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- orn-
17-10 A5-AO B5-BO EAEBO C5-CO SELMO WEb SELRFO 0eA 0eB CWo DeS 

11111110 000011 000101 0 00 001010 0 0000 10 X X XXX X 0 

CF2-

Cn CFO 

X 110 

CO Assume register file 3 holds 15F6D840 (Hex) and register file 5 hold F617D842 (Hex): 
W 
N 

0001 0101 1111 01101101 100001000000 I R - RF(3) Source 

Source 11110110000101111101100001000010 I S - RF(5) 

Destination 1110001000000001 00000000 0000 0010 I RF( 1 0) - RAND S 
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BADD Byte Add R to S with Carry I 8 I 8 I 

FUNCTION 

Adds S with carry-in to a selected byte or selected adjacent bytes of R. 

DESCRIPTION 

S103-S100 are used to select bytes of R to be added to the corresponding bytes of 
S. A byte of R with SIO programmed low is selected for the computation of 
R + S + en. If the SIO signal for a byte of R is left high, the corresponding byte 
of S is passed unaltered. Multiple bytes can be selected only if they are adjacent to 
one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte select 

5101 Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; increments 

selected byte(s) if programmed high. 
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I 8 I 8 Byte Add R to S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) = 1 

EXAMPLE (assumes a 32-bit configuration) 

BADD 

Add bytes 1 and 2 of register 3 with carry to the contents of register 1 and store the 
result in register 11. 

en z 
...... 
~ 

Instr 

Code 

17·10 

01001000 

Oprd Oprd 

Addr Addr 

AS-AD B5-BO 

000011 000001 

Oprd Sel Dest 

EB1- Addr 

EAEeo C5-CO SELMQ 

0 00 001011 0 

Destination Selects 

WE3. SELRF1· OEY3- CF2- SiOO· IEsi03· 
WEO SELRFO OEA 0Eii 0EY0 0Es Cn CFO SiOo IESiOO 
0000 10 X X XXXX 0 1 110 1001 0000 

» Assume register file 3 holds 2CO 18181 (Hex) and register file 1 holds 7 A8FBE3E (Hex): 
(") 

~ Source 0010110000000001 10000001 10000001 I Rn +- RF(3)n 
00 
CAl 
N Source 01111010100011111011111000111110 I Sn +- RF(1)n 

ALU 101001101001 0001 01000000 11000000 I Fn +- Rn + Sn + Cn 

Destination 01111010100100010100111100111110 I RF(11)n +- Fn or Sn t 

t F = ALU result 
n = nth byte 
Register file 11 gets F if byte selected, S if byte not selected. 
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BAND Byte AND RAND S (Byte Logical ANDR AND S) I E I 8 I 

FUNCTION 

Evaluates the logical AND of selected bytes of R-bus and 5-bus data. 

DESCRIPTION 

Bytes with their corresponding 510 signals programmed low compute RAND 5. Bytes 
with 510 Signals programmed high, pass 5 unaltered. Multiple bytes can be selected 
only jf they are adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Ves No Ves No 

Available S Bus Source Operands 

RF 
DB-Port 

MQ 

(B5-BO) Register 

Ves Ves Ves 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
V-Port ALU MQ 

Ves No Ves None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Forced low 
§iOO Ves Byte select 

SiOT Ves Byte select 

ID02 Ves Byte select 

Si03 Ves Byte select 

Cn No Inactive 



en 
:2 

" ~ 

IE 18 I Byte AND RAND S (Byte Logical AND RAND S) 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

BAND 

Logically AND bytes 1 and 2 of register 3 with input on the DB bus; store the result 
in register 3. 

Instr Op,d Op,d Op,d .Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1- om- CF2- Si(53: 1'Esi03-

17-10 A5-AO B5-BO EA EBO C5-CO SELMa WEo SELRFO 0eA 0Es 0EY0 5ES Cn CFO SiOO IESiOO 
11101000 000011 XX XXXX 0 10 000011 0 0000 10 X X XXXX 0 X 110 1001 0000 

» Assume register file 3 holds 398FBEBE (Hex) and input on the DB port is 4290BFBF 
~ (Hex): 
(X) 
(X) 
W 
N. 

Source 001110011000·11111011111010111110 I Rn 4- RF(3)n 

Source 01000010100100001011111110111111 Sn 4- DBn 

Destination 010000101000 0000 1011 11101011 1111 RF(3)n 4- Fn or Sn t 

t F = ALU result 
n = nth byte 
Register file 3 gets F if byte selected, S if byte not selected. 
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BCDBIN BCD to Binary I 7 I F 

FUNCTION 

Converts a BCD number to binary. 

DESCRIPTION 

This instruction allows the user to convert an N-digit BCD number to a 4N-bit binary 
number in 4(N-1) plus 8 clocks. The instruction sums the Rand 5 buses with carry. 

A one-bit arithmetic left shift is performed on the ALU output. A zero is filled into bit 0 
of the least significant byte unless 5100 is set low, which would force bit 0 to one. 
Bit 7 of the most significant byte is dropped. 

Simultaneously, the contents of the MQ register are rotated one bit to the left, Bit 
7 of the most significant byte is rotated to bit 0 of the least significant byte. 

Recommended R Bus Source Operands 

C3-CO 

RF A3-AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 

Yes No No No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 

(85-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No No Left Left 
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I 7 I F BCD to Binary BCDBIN 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

IDC50 Yes If high or floating, fills a zero in LSB of ALU shifter; 

if low, fills a one in LSB of ALU shifter. 

SiOT No Inactive in 32-bit configuration. Used in other 

5102 No configurations to select endfill in LSBs. 

SI03 No 

Cn Yes Should be programmed low for proper conversion. 

en Status Signals 

2 

" .J::o » 
(') 
-f 
CO 
CO 
W 
N 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB =1 

1 if signed arithmetic overflow 

1 if carry-out = 1 

ALGORITHM 

The following code converts an N-digit BCD number to a 4N-bit binary number in 4(N-1 ) 
plus 8 clocks. It employs the standard conversion formula for a BCD number (shown 
here for 32 bits): 

ABCD = [(A X 10 + B) X 10 + C) X 10 + D. 

The conversion begins with the most significant BCD digit. Addition is performed in 
radix 2. 
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LOADMO NUM 

SUB ACC, ACC, SLCMO 

SUB MSK, MSK, SLCMO 

SLCMO 

SLCMO 

ADDIACC,MSK,15 

Load MO with BCD number. 

Clear accumulator; 
Circular left shift MO. 

Clear mask register; 
Circular left shift MO. 

Circular left shift MO. 

Circular left shift MO. 

Store 1 5 in mask register. 



BCDBIN BCD to Binary I 7 I F I 

Repeat N-1 times: 

(N = number of BCD digits) 

AND MO, MSK, R1, SLCMO 

ADD, ACC, R1, R1, SLCMO 

BCDBIN R1, R1, ACC 

BCDBIN ACC, R1, ACC 

(END REPEAT) 

AND MO MSK, R1 

ADD ACC, R1, ACC 

Extract one digit; 
Circular left shift MO. 

Add extracted digit to accumulator, and 
store result in R 1; Circular left shift MO. 

Perform BCDBIN instruction, and store 
result in accumulator 
[4 x (ACC + 4 x digit)]; 
Circular left shift MO. 

Perform BCD BIN instruction, and store 
result in accumulator 
[10 x (ACC + 10 x digit)]; 
Circular left shift MO. 

Fetch last digit. 

Add in last digit and store result in 
accumulator. 
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Icla Byte Increment Negative S with Carry BINCNS 

FUNCTION 

S' + Cn for selected bytes of S. 

DESCRIPTION 

Bytes with SIOO programmed low compute S' + Cn. Bytes with SIOO programmed 
high pass S unaltered. Multiple bytes can be selected only if they are adjacent to one 
another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3·CO 

RF A3·AO .. 
DA·Port 

(A5·AO) Immed A3·AO 

Mask 

No No No No 

-t Available S Bus Source Operands 
CO 
CO 

'W 
N 

RF MQ 

(B5·BO) 
DB·Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 
Y·Port 

(C5·CO) (B5·BO) 
ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte select 

SiOT Yes Byte select 

SI02 Yes Byte select 

SI03 Yes Byte select 

Cn Yes Propagates through nonselected bytes; increments 

selected byte(s) if programmed high. 
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BINCNS Byte Increment Negative S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I c I 8 I 

Invert bytes 0 and 1 of register 3 and add them to the carry (bytes 2 and 3 are not 
changed). Store the result in register 3. 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, E61- Add, WEJ- SELRF1- om- CF2-

17-10 A5-AO 65-60 EAEBO C5-CO SELMa WEo SELRFO OEA 0Es 5EYo 5Es Cn CFO 

1100 1000 XX XXXX 000001 X 00 000011 0 0000 10 X X XXXX 0 1 110 

Assume register file 3 holds A3018181 (Hex): 

Source 10100011 00000001 10000001 10000001 Sn'" RF(3)n 

ALU 01011100111111100111111001111111 Fn ... S'n + Cn 

Destination 10100011 0000 0001 0111 11100111 1111 RF(3)n ... Fn or Sn t 

tF = ALU result 
n = nth byte 
Register file 3 gets F if byte selected, S if byte not selected_ 

Sili3- iESi5'3-
SiOo IESIOO 

1100 0000 
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IBla Byte Increment S with Carry BINCS 

FUNCTION 

Increments selected bytes of S if the carry is set.' 

DESCRIPTION 

Bytes with SIO' inputs programmed low compute S + Cn. Bytes with SIO inputs 
programmed high, pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must be nonsselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 
No No No No 

-t Available S Bus Source Operands 
CO 
CO 
W 
N 

RF MQ 
(B5-BO) 

DB-Port 
Register 

Ves Ves Ves 

Available Destination Operands Shift Operations 

RF RF 
V-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Ves No Ves None None 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

SiOO Ves Byte select 

SiOf Ves Byte select 

5102 Ves Byte select 

SI03 Ves Byte select 

Cn Ves Propagates through nonselected bytes; increments 

selected byte!s) if programmed high. 



BINCS Byte Increment S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I B I 8 I 

Add bytes 1 and 2 of register 7 to the carry (bytes 0 and 3 are not changed). Store 
the result in register 2. 

Instr Op,d Oprd Op,d Sal Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1- om- CF2- Sili3- iEsi'1i3-
17-10 A5-AO B5-BO EA EBO C5-CO SELMQ WEo SELRFO OEA OEe 0EY0 0Es Cn CFO SiOo iESiOo 

1011 1000 XX XXXX 000111 X 00 000010 0 0000 10 X X XXXX 0 1 110 1100 0000 

Assume register file 7 holds 408FBEBE (Hex): 

Source 01000000100011111011111010111110 I Sn - RF(7)n 

ALU 01000000100011111011111110111110 I Fn - Sn + Cn 

Destination 0100000010001111 1011 1111 1011 1110 I RF(2)n - Fn or Sn t 

tF = ALU result 
n = nth byte 
Register file 11 gets F if byte selected, S if byte not selected. 



lolF Binary to Excess·3 BINEX3 

FUNCTION 

Converts a binary number to excess·3 representation. 

DESCRIPTION 

This instruction converts an N-digit binary number to a N/4 digit excess-3 number 
representation in 2N + 3 clocks. The data on the Rand S buses are added to the carry­
in. which contains the most significant bit of the MQ register. The contents of the 
MQ register are rotated one bit to the left. The most significant bit is shifted out and 
passed to the least significant bit position. Depending on the configuration selected. 
this shift may be within the same byte or from the most significant byte to the least 
significant byte. . 

tJ) Recommended R Bus Source Operands 
2 ..... 
~ 
(') 
-t 
00 
00 
Co\) 
N 

C~-CO 

RF A~-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Ves No No No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 

(B5-BO) Register 

Ves Ves No 

Recommended Destination Operands Shift Operations 

RF RF 
V-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Ves No Ves None Left 

Control/Dilta Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SiOO No Inactive 

~ No Inactive 

Si02 No Inactive 

Si03 No Inactive 

Cn No Holds MSB of MQ register. 
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BINEX3 Binary to Excess·3 I 0 I F I 

Status Signals 

ZERO 1 if result = 0 

N 1 if MSB = 1 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out = 1 

ALGORITHM 

The following code converts an N-digit binary number to a N/4 digit excess-3 number 
in 2N + 3 clocks. It employs the standard conversion formula for a binary number: 

an 2n + an-1 2n-1 + an_2 2n-2 + . .. + ao = 

([(2an + an-1) x 2 + an-1] x 2+ . , . + ao} x 2 + aO• ~ 
CO 
CO 

The conversion begins with the most significant bit. Acldition during the BINEX3 I-
instruction is performed in radix 10 (excess-3). ~ 

'I:t 
LOADMO NUM Load MO with binary number. ro-

Z 
SUB ACC, ACC, ACC Clear accumulator; en 
SET1 ACC, 33 (Hex) 

Repeat N times: 

Store 33 (H~~) in all bytes of 
accumulator. 

(N = number of bits in binary number) 

BINEX3 ACC, ACC, ACC 

EX3C ACe 

(END REPEAT) 

Double accumula~or and add in most 
significant bit of MO register. Circular left 
shift MO. 

Perform excess-3 correction. 
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FUNCTION 

Byte OR Rand S 
(Byte Inclusive OR Rand S) 

Evaluates R OR S of selected bytes. 

DESCRIPTION 

BOR 

Bytes with SIO inputs programmed low evaluate R OR S. Bytes with SIO inputs 
programmed high, pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must benonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Ves No Ves No 

-4 Available S Bus Source Operands 
00 
00 
Co\) 
N 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Ves Ves Ves 

Available Destination Operands Shift Operations 

RF RF 
V-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Ves No Ves None None 

ContrOl/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Ves Byte select 

SI01 Ves Byte select 

SI02 Ves Byte select 

~ Ves Byte select 

Cn No Inactive 
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BOR 
Byte OR Rand S 

(Byte Inclusive OR Rand S) 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

I F I 8 I 

Logically OR bytes 1 and 2 of register 12 with bytes 1 and 2 on the DB bus. Concatenate 
with DB bytes 0 and 3, storing the result in register 12. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr We3- SELRF l- orn- CF2- SiOO- IEs'i03-
17-10 A5-AO 85-BO EA E80 C5-CO SELMO WEo SELRFO 0eA Oeii 0EY0 OES Cn CFO SIoO IESiOO 

1111 1000 001100 XX XXXX 0 10 001100 0 0000 10 X X XXXX 0 X 110 1001 0000 

N 
M 
CO 
CO 

Assume register file 12 holds 578FBEBE (Hex) and the DB bus holds 1 C90BEBE (Hex): ~ (.) 

Source I 01010111100011111011111010111110 I Rn +- RF(12)n 

Source I 0001 1100 1001 0000 1011 11101011 1100 I Sn +- DBn 

Destination I 0001 11001001 1111 1011 11101011 1110 I RF(12)n +- Fn or Sn t 

t F = ALU result 
n = nth package 
Register file 12 gets F if byte selected, S if byte not selected_ 
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I A I 8 Byte Subtract R from S with Carry BSUBR 

FUNCTION 

Subtracts R from S in selected bytes. 

DESCRIPTION 

Bytes with SIO inputs programmed low compute R' + S +Cn. Bytes with SIO inputs 
programmed high, pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At .least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

-I Available S Bus Source Operands 
00 
00 
W 
N 

RF MQ 

(85-80) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

SIOO Yes Byte select 

"SiOf Yes Byte select 

Si02 Yes Byte select 

5103 Yes Byte select 

Cn Yes Propagates through nonselected bytes; should be 

set high for two's complement subtraction. 
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BSUBR Byte. Subtract R from S with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I A I 8 I 

Subtract bytes 1 and 2 of register 1 with carry from bytes 1 and 2 of register 3. 
Concatenate with bytes 0 and 3 of register 3, storing the result in register 11. 

Instr Op.d Op.d Op.d Sel Dest Destination Selects 

Code Add. Add. EB1- Add. WE3- SELRF1- om- CF2- 'Si03- iESiOO-
17-10 AS-AO BS-BO EA EBO CS-CO SELMQ WEo SELRFO OEA 0Eii 0EY0 0Es Cn CFO SiOo' IESIOO 

10101000 000001 000011 0 00 001011 0 0000 10 X X XXXX 0 1 110 1001 0000 

N 
(Y) 

CO 
CO 

Assume register file 1 holds 09185858 (Hex) and register file 3 holds 703A9898 (Hex): I-
U 

Source 000010010001 10110101 10000101 1000 I Rn +- RF(1)n ~ 
...... 
Z 

Source 01110000001110101001100010011000 I Sn +- RF(3)n CJ) 

ALU 01100111 0001 1111 0100000001000000 I Fn +- R'n + Sn + Cn 

Destination 0111 00000001 1111 01000000 1001 1000 I RF( 11)n +- Fn or Sn t 

t F = ALU result 
n = nth package 
Register file 11 gets F if byte selected. S if byte not selected. 
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I 9 I 8 Byte Subtract S from R with Carry BSUBS 

FUNCTION 

Subtracts S from R in selected bytes. 

DESCRIPTION 

Bytes with SIO inputs programmed low compute R + S' + Cn. Bytes with SIO inputs 
programmed high, pass S unaltered. Multiple bytes can be selected only if they are 
adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

l> Available S Bus Source Operands 
(") 
-t 
ex) 
ex) 
W 
N 

RF MO 

(B5-BO) 
DB-Port 

I Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MO 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 Yes Byte select 

SiOf Yes Byte select 

8102 Yes Byte select 

5103 Yes Byte select 

en Yes Propagates through nonselected bytes; should be 

set high for two's complement subtraction. 



BSUBS Byte Subtract S from R with Carry 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
if signed arithmetic overflow (selected bytes) 

if carry-out (most significant selected byte) 

EXAMPLE (assumes a 32-bit configuration) 

I 9 I 8 I 

Subtract bytes 1 and 2 of register 3 with carry from bytes 1 and 2 of register 1. 
Concatenate with bytes 0 and 3 of register 3, storing the result in register 11. 

Instr Oprd Op.d Op.d Sel Dest Destination Selects 

Code Add. Add. EBI- Add. WE3- SELRF1- om- CF2- Sr03- iEsi'03-
17-10 A5-AO 85-80 Eli" EBO C5-CO SELMa WED SELRFO OEA 0Eii 0eY0 DEs Cn CFO SiOo iESiOO 

1001 1000 000001 000011 0 00 00 1011 0 0000 10 X X XXXX 0 1 110 1001 0000 N 
('I) 

Assume register file 1 holds 52888888 (Hex) and register file 3 holds 143A9898 (Hex): CO 
CO 

Source 01010010100010001011100010111000 I Rn +- RF(1)n 

Source 0001 01000011 10101001 1000 1001 1000 I Sn +- RF(3)n 

ALU 0011 11100100 11100010000000100000 I Fn +- Rn + S'n + Cn 

Destination 010100100100 111000100000 10111000 I RF(11)n +- Fn or Sn t 

tF = AlU result 
n = nth byte 
Register file 11 gets F if byte selected. S if byte not selected. 
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FUNCTION 

Byte XOR Rand S 
(Byte Exclusive. OR Rand S) 

Evaluates R exclusive OR S in selected bytes. 

DESCRIPTION 

BXOR 

Bytes with SIO inputs programmed low evaluate R exclusive OR S. Bytes with SIO 
inputs programmed high, pass S unaltered. Multiple bytes can be selected only if they 
are adjacent to one another. At least one byte must be nonselected. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

l> Available S Bus Source Operands 
(') 
-t 
CO 
CO 
W 
N 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No Inactive 

SIOO Yes Byte select 

SiOT Yes Byte select 

5102 Yes Byte select 

5103 Yes Byte select 

Cn No Inactive 
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BXOR 
Byte XOR Rand S 

(Byte Exclusive OR Rand S) 

Status Signals 

ZEAO 

N 

OVA 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

I 0 I 8 I 

Exclusive OR bytes 1 and 2 of register 6 with bytes 1 and 2 on the DB bus; concatenate 
the result with DB bytes 0 and 3, storing the result in register 10. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE- SELRF1- om- CF2- Si03- iESi'03-
17-10 A5-AO B5-BO EA EBO C5-CO SELMa WEci SELRFO OEA 0eB 0eY0 0Es Cn CFO SiOO iESiOO 

1101 1000 000110 XX xxx x 0 10 001010 0 0000 10 X X XXXX 0 1 110 1001 0000 

Assume register file 6 holds 938FBEBE (Hex) and the DB bus holds 4190BEBE (Hex): 

Source 1001 0011 1000 1111 1011 1110 10111110 I An - AF(6)n 

Source 01000001 1001 0000 1011 1110 1011 1110 I Sn - DBn 

Destination 01000001 0001 1111 00000000 1011 1110 I AF(' O)n +- Fn or Sn t 

tF = AlU result 
n = nth package 
Register file 10 gets F if byte selected, S if byte not selected. 
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I 1 I F It CLEAR 

FUNCTION 

Forces ALU output to zero and clears the BCD flip-flops. 

DESCRIPTION 

ALU output is forced to zero and the BCD flip-flops are cleared. 

tThis instructio~ may also be coded with the following opcodes: 
[2) [F). [3) [F). [4) [F). [6) [F). [B) IF). [e) [F). [E) [F) 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AOI [mmed A3-AO 

Mask 

No No No No 

~ Available S Bus Source Operands 

-4 
00 
00 
W 
N 

RF 
DB-Port 

MQ 

(B5-BOI Register 

No No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-COI (B5-BOI 

Ves No 

Status Signals 

IZE~ 
OVR 
. Cn 
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V-Port ALU MQ 

Ves None None 

CLR 



CRC Cyclic Redundancy Character Accumulation I 0 I 0 I 
FUNCTION 

Evaluates R exclusive OR S for use with cyclic redundancy check codes. 

DESCRIPTION 

Data on the R bus is exclusive ORed with data on the S bus. If MOO XNORed with 
SO is zero (MOO is the LSB of the MO register and SO is the LSB of S-bus data), the 
result is sent to the ALU shifter. Otherwise, data on the S bus is sent to the ALU shifter. 

A right shift is performed; the MSB is filled with RO (MOO XOR SO). where RO is the 
LSB of R-bus data. A circular right shift is performed on MO data. 

Recommended R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No No No 

N 
M 
CO 
CO 
I­
(,) 

~ 
o:::t 

" Recommended S Bus Source Operands Z 
U') 

RF MO 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MO 

Yes No No Right Right 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

5100 No Inactive 

SiOT No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Inactive 
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1010 Cyclic Redundancy Character Accumulation 

Status Signals 

I 

ZERO = 1 if result. = 0 
N = 0 

OVR = 0 

en = 0 

CYCLIC REDUNDANCY CHARACTER CHECK 

DESCRIPTION 

CRC 

Serial binary data transmitted over a channel is susceptible to error bursts. These bursts 
may be detected and corrected by standard encoding methods such as cyclic 
redundancy check codes, fire codes, or computer generated codes. These codes all 

en divide the message vector by a generator polynomial to produce a remainder that :5 contains parity information about the message vector. 
~ 
l> 
n 
-t 
ex) 
CO 
eN 
N 

If a message vector of m bits, a(x), is divided by a generator polynomial, g(xl. of order 
k-1, a k bit remainder,r(x), is formed. The code vector, c(xl. consisting of m(x) and 
r(x) of length n = m + k is transmitted down the channel. The receiver divides the 
received vector by g(x). 

After m divide iterations, r(x) will be regenerated only if there is no error in the message 
bits. After k more iterations, the result will be zero if and only if no error has occurred 
in either the message or the remainder. 

ALGORITHM 

An algorithm for a cyclic redundancy character check, using the 'ACT8832 as a 
receiver, is given below: 

LOADMQ VEC(X) Load MQ with first 32 message bits of 
received vector c'(x). 

LOAD POLY 

CLEAR SUM 

REPEAT (n/32) TIMES: 

SUM = SUM CRC POLY 

LOADMQ VEC(X) 

(END REPEAT) 

3-86 

Load register with polynomial g(x). 

Clear register acting as accumulator. 

Perform CRC instruction where 
R Bus = POLY 
S Bus = SUM 

Store result in SUM. 

Load MQ with next 32 message bits of 
received vector c'(x). 



CRC Cyclic Redundancy Character Accumulation I 0 I 0 I 

SUM now contains the remainder [r'(x)) of c'(x). A syndrome generation routine may 
be called next, if required. 

Note that the -most significant bit of 

g(x) = (gk-1 IIxk-1) + (9k_2I1xk-2) + .. (gollxO) 

is implied and that POL V(O) is. set to zero if the length of g(x) requires fewer bits than 
are in the machine word width. 
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1410 Divide Remainder Fix DlVRF 

FUNCTION 

Corrects the remainder of nonrestoring division routine if correction is required. 

DESCRIPTION 

DIVRF tests the result of the final step in nonrestoring division iteration: SDIVIT (for 
signed division) or UDIVIT (for unsigned division). An error in the remainder results 
when it is nonzero and the signs of the remainder and the dividend are different. 

The R bus must be loaded with the divisor and the S bus with the most significant 
half of the previous result. The least significant half is in the MQ register. The Y bus 
result must be stored in the register file for use during the subsequent SDIVQF 
instruction. 

(/') DIVRF tests to determine whether a fix is required and evaluates: 
~ Y +- S + R' + 1 if a fix is necessary 
~ Y +- S + R + 0 if a fix is unnecessary 
~ 
n Overflow is reported to OVR at the end of the division routine (after SDIVQF). 
-4 
00 
00 Recommended R Bus Source Operands 
W 
N C3-CO 

RF A3-AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 

Yes No No No 

Recommended S Bus Source Operands 

RF MO 
D8-Port 

(85-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (85-80) 
Y-Port ALU MO 

Yes No No None None 
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DlVRF 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

SiOO No 

SiOT No 

S'i"a2 No 

Si03 No 

Cn Yes 

Status Signals 

ZERO 

N 

OVR 

Cn 

1 if remainder = 0 

o 
o 
1 if carry-out = 1 

Divide Remainder Fix 

Use 

Inactive 

Inactive 

Inactive 

Inactive 

Inactive 

Should be programmed high 

I 4 I 0 I 

N 
.('1) 

ex) 
ex) .... 
u « 
~ 

" Z 
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I 3 I 0 I Double-Length Normalize DNORM 

FUNCTION 

Tests the two most significant bits of a double precision number. If they are the same. 
shifts the number to the left. 

DESCRIPTION 

This instruction is used to normalize a two's complement. double precision number 
by shifting the number one bit to the left and filling a zero into the L5B unless 5100 
is low. The 5 bus holds the most significant half; the MQ register holds the least 
significant half. 

Normalization is, complete when overflow occurs. The shift is inhibited whenever 
normalization is attempted on a number already normalized. 

~ Available R Bus Source Operands 

-..J 
~ » 
(') 
-4 
(X) 
(X) 
W 
N 

RF A3-AO 
DA-Port 

(A5-AO) Immed 

No No No 

Recommended S Bus Source 
Operands (MSH) 

RF MQ 

(B5-80) 
DB-Port 

Register 

Yes No No 

Recommended Destination 
Operands 

RF RF 
(C5-CO) (B5-BO) 

Y-Port 

Yes No No 

3-90 

C3-CO 

.. 
A3-AO 

Mask 

No 

Shift Operations 
(conditional) 

ALU MQ 

Left Left 



DNORM Double-Length Normalize I 3 I 0 I 
Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

SIOO Yes When low, selects a one end-fill bit in lSB 

SI01 No Passes internally generated end-fill bits 

SI02 No 

SI03 No 

Cn No 

Status Signals 

ZERO 

N 

OVR 

Cn 

1 if result = 0 

1 if MSB = 1 

1 if MSB XOR 2nd MSB = 

o 

EXAMPLE (assumes a 32-bit configuration) 

Normalize a double-precision number. 

(This example assumes that the MSH of the number to be normalized is in register 3 
and the LSH is in the MQ register. The zero on the OVR pin at the end of the instruction 
cycle indicates. that normalization is not complete and the instruction should be 
repeated). 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Add, Add. EB1· Addr W§. SELRF1· om· CF2· 

17·10 A5·AO B5·BO EA EBO C5·CO SELMQ WeO SELRFO OEA Oeii 0eY0' 0eS Cn CFO 

00110000 XXXXXX 000011 X 00 000011 0 0000 10 X X XXXX 0 X 110 

Assume register file 3 holds FA75D84E (Hex) and MQ register holds 37F6D843 (Hex): 

Source 1111101001110101 1101 1000 01001110 I ALU shifter +- RF(3) 

Source 00110111111101101101100001000011 MQ shifter +- MQ register 

Destination 11110100 1110 10111011000010011101 8RF(3) +- Result (MSH) 

Destination 0110 1111 1110 1101 1011 0000 10000110 I MQ register +- Result (LSH) 

GJ OVR +- ot 

tNormalization not complete at the end of this instruction cycle. 
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I 5 I F I Output DividelBCD Flip-Flops DUMPFF 

FUNCTION 

Output contents of the divide/BCD flip-flops. 

DESCRIPTION 

The contents of the divide/BCD flip-flops are passed through the MQ register to the 
Y output Imultiplexer. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

(') Available S Bus Source Operands 
~ 
(X) 
(X) 
eN 
N 

RF MQ 
DB-Port 

(B5-BO) Register 

No No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 

No No 

Status Signals 

IZER~ 
OVR 

Cn 
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Y-Port ALU MQ 

Yes None None 



DUMPFF Output Divide/BCD Flip-Flops 

EXAMPLES (assumes a 32-bit configuration) 

Dump divide/BCD flip-flops to Y output. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects --Code Addr Addr EB1- Addr WE3- SELRF1-

17-10 AS-AO 85-80 EAE80 CS-CO SELMO WEO SELRFO OEA 0Eii 
0101 1111 XX XXXX XX XXXX X XX XX XXXX 1 XXXX XX X X 

Assume divide/BCD flip-flops contain 2A055470 (Hex): 

I 5 I F 

0eV3- CF2-

0Ev0 0Es Cn CFO 

0000 X X 110 

Source 001010100000 0101 0101 01000111 0000 I MQ register - Divide/BCD flip-flops 

Destination 0010101000000101 0101 01000111 0000 I Y output - MQ register 
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(J) 

I 8 I F Excess·3 Byte Correction EX3BC 

FUNCTION 

Corrects the result of excess-3 addition or subtraction in selected bytes. 

DESCRIPTION 

This instruction corrects excess-3 additions or subtractions in the byte mode. For 
correct excess-3 arithmetic, this instruction must follow each add or subtract. The 
operand must be on the S bus. 

Data on the S bus is added to a constant on the R bus determined by the state of 
the BCD flip flops and previous overflow condition reported on the SSF pin. Bytes with 
SIO inputs programmed low evaluate the correct excess-3 representation. Bytes with 
SIO inputs programmed high or floating, pass S unaltered. 

:2 Available R Bus Source Operands 
-....I 
~ 
l> 
(") 
~ 
00 
00 
W 
N 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No No No No 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No Inactive 

SIOO Yes Byte select 

SiOT Yes Byte select 

SI02 Yes Byte select 

SI03 Yes Byte select 

Cn No Inactive 
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EX3BC Excess-3 Byte Correction I 81 F I 

Status Signals 

ZERO 0 

N 0 

OVR if arithmetic signed overflow 

en if carry-out = 1 

EXAMPLE (assumes a 32-bit configuration) 

Add two BCD numbers and store the sum in register 3. Assume data comes in on 
DB bus. 

1. Clear accumulator (SUB ACC, ACC) 
2. Store 33 (Hex) in a" bytes of register (SET1 R2, H/33/l 
3. Add 33 (Hex) to selected bytes of first BCD number (BADD DB, R2, R1) 
4. Add 33 (Hex) to selected bytes of second BCD number (BADD DB, R2, R3) 
5. Add selected bytes of registers 1 and 3 (BADD, R1, R3, R3) 
6. Correct the result (EX3BC, R3, R3) 

Instr Oprd Op,d Op,d S.I Dest 

Cod. Add, Add, EB1- Add, 

17-10 AS-AD B5-BO EA EBO . C5-CO 

1111 0010 000010 XX XXX X 0 XX 000010 

0000 1000 000010 XX XXXX 0 XX 00 0010 

1000 1000 000010 XX XXXX 0 10 00 0001 

10001000 000010 XX XXXX 0 10 000011 

1000 1000 000001 000011 0 00 00 0011 

10001111 XXXXXX 000011 X 00 000011 

Destination Selects 

WE3. SELRF1- 0eY3- CF2- Si03- 'iESi03-
SELMQ WED SELRFO '1i'EA Oeii OEYO 0eS Cn CFO SiOo iESiOO 

o 0000 10 X X XXXX 0 1 110 XXXX XXXX 

o 0000 10 X X XXXX 0 X 110 XXXX XXXX 

o 0000 10 X X XXXX 0 0 110 1100 0000 

o 0000 10 X X XXXX 0 0 110 1100 0000 

o 0000 10 X X XXXX 0 0 110 1100 0000 

o 0000 10 X X XXXX 0 0 110 1100 0000 

Assume DB bus holds 51336912 at third instruction and 34867162 at fourth 
instruction. 

0000 0000 0000 0000 0000 0000 0000 0000 I RF(2) +- 0 

2 00000000000000000011 0011 0011 0011 RF(2) +- 00003333 (Hex) 

3 0101 0001 0011 0011 1001 110001000101 RF(l) ... RF(2) + DB 

4 0011 0100 10000110101001001001 0101 RF(3) +- RF(2) + DB 

5 0011 01001000011001000000 1101 1010 I RF(3)n'" RF( l)n + RF(3)n 

6 0011 0100 1000 0110 0100 0000 0111 0100 I RF(3)n .... Corrected RF(3)n result 
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I 9 I F Excess·3 Word Correction EX3C 

FUNCTION 

Corrects the result of excess-3 addition or subtraction. 

DESCRIPTION 

This instruction corrects excess-3 additions or subtractions in the word mode. For 
correct excess-3 arithmetic. this instruction must follow each add or subtract. The 
operand must be on the S bus. 

Data on the S bus is added to a constant on the R bus determined by the state of 
the BCD flip-flops and previous overflow condition reported on the SSF pin. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

N Available S Bus Source Operands 

RF MO 
D8-Port 

(85-80) Register 

Yes No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (85-80) 
Y-Port ALU MO 

Yes No Yes No No 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

5100 No Inactive 

5101 No Inactive 

SiO'2 No Inactive 

5103 No Inactive 

Cn No Inactive 



EX3C Excess·3 Word Correction 

Status Signals 

ZERO 

N 

OVR 

en 

o 
1 if MSB = 

1 if arithmetic signed overflow 

1 if carry-out = 1 

EXAMPLE (assumes a 32-bit configuration) 

I 9 I F 

Add two BCD numbers and store the sum in register 3. Assume data comes in on 
DA bus. 

1. Clear accumulator (SUB ACC, ACC) 
2. Store 33 (Hex) in all bytes of register (SET1 R2, H/33/) 
3. Add 33 (Hex) to all bytes of first BCD number (ADD DB, R2, R1) 
4. Add 33 (Hex) to all bytes of second BCD number (ADD DB, R2, R3) 
5. Add the excess-3 data (ADD, R1, R3, R3) 
6. Correct the excess-3 result (EX3C, R3, R3) 
7. Subtract the excess-3 bias to go to BCD result. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- om- CF2-

17-10 AS-AO B5-SO EAEBO C5-.CO SELMa WEO SELRFO l5EA OEB OEYO i5ES Cn CFO 

11110010 000010 XX XXXX 0 xx 00 0010 0 0000 10 X X XXXX 0 1 110 

00001000 000010 XX XXXX 0 xx 000010 0 0000 10 X X XXXX 0 X 110 

1111 0001 000010 XX XXXX 0 10 00 0001 0 0000 10 X X xxx x 0 0 110 

1111 0001 000010 XX XXXX 0 10 000011 0 0000 10 X X XXXX 0 0 i 10 

1111 0001 000001 00 '0011 0 00 000011 0 0000 10 X X XXXX 0 0 110 

1001 1111 XX XXXX 000011 X 00 000011 0 0000 10 X X xxxx 0 0 110 

11110010 000010 000011 0 00 00 0011 0 0000 10 X X XXXX 0 0 110 



en 
2 
..... 
.,::. 
l> 
(") 
.... 
CO 
CO 
eN 
N 

I 9 IF Excess·3 Word Correction EX3C 

Assume DB bus holds 51336912 at third instruction and 34867162 at fourth 
instruction. 

Results of Instruction Cycles: 

1 0000 o()oo 0000 0000 0000 0000 0000 0000 1 RF(2) - 0 

2 1 0011 0011 0011 0011 0011 0011 0011 0011 RF(2) - 33333333 (Hex) 

3 1 10000100011001101001 110001000101 RF(1) - RF(2) + DB 

4 1 01100111 1011 1001 101001001001 0101 RF(3) - RF(2) + DB 

5 111011000010000001000000110110101 RF(3)-RF(1) + RF(3) 

6 1011 1001 0101 0011 0111 0011 10100111 1 RF(3) - Corrected RF(3) result 

7 100001100010000001000000011101001 RF(3) +- RF(3)-RF(2) 
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INCNR Increment Negative R using Carry (R' + Cn) 

FUNCTION 

Evaluates R' +Cn. 

DESCRIPTION 

Data on the R bus is inverted and added with carry. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Ves No Ves No 

Available S 8us Source Operands 

RF 
DB-Port 

MQ 

(B5-80) Register 

No No No 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) (B5-BO) 
V-Port 

Shifter Shifter 

Ves No Ves Ves Ves 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

~ No 

5102 No 

8m No 

Cn Ves Increments if programmed high. 
.. 
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1 * 17 Increment Negative Rusing Carry (R' + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

INCNR 

Convert the data on the DA bus to two's complement and store the result in register 4. 

C/) 

2 
-..J 
~ » 
n 

Instr 

Code 

17·10 

1111 0111 

Oprd 

Addr 

A5·AO 

XX XXXX 

Oprd Oprd Sel 

Addr EB1· 

B5-8O EA EBO 

XX XXXX 1 XX 

Dest Destination Selects 
Addr WE3. SELRF1· 

C5·CO SELMQ WeO SELRFO OEA OEB 

000100 0 0000 10 X X 

~ Assume register file 1 holds 3791 FEF6 (Hex): 
CO 
tAo) 
N Source 00110111 100100011111111011110110 I R ..... DA 

Destination 1100100001101110000000010000 1010 I RF(4) ..... R' + Cn 
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0Ev3. CF2· 

"O'E'YO 0eS Cn CFO 

XXXX 0 1 110 



INCNS Increment Negative S using Carry (S' + Cn) 

FUNCTION 

Evaluates S' + en. 

DESCRIPTION 

Data on the S bus is inverted and added to the carry. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying Ii shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MO 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MO 
(C5-CO) (B5-BO) 

Y-Port 
Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

SiOf No 

SI02 No 

SI03 No 

Cn Yes Increments if programmed high. 



Increment Negative S using Carry (S' + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

if carry-out = 1 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

INCNS 

Convert the data on the MQ register to one's complement and store the result in 
register 4. 

en 
2 
-..J 
~ » 
(") 
""'t 

Instr 

Code 

17-10 

11110101 

Oprd 
Add, 

A5-AO 

XX XXXX 

Oprd Oprd Sel 

Add, EB1· 

85-80 EA E80 

XX XXXX X 11 

Dest Destination Selects 

Add, WE3- SELRF1-

C5-CO SELMQ WeO SELRFO OEA OEB 
000100 .0 0000 10 X X 

00 Assume MO register file 1 holds 3791 FEF6 (Hex): 
00 
Co\) 
N Source 00110111100100011111111011110110 I S - MQ register 

Destination 110010000110111000000001 00001001 RF(4)- S' + Cn 

3-102 

om- CF2-

0W0 0Es Cn CFO 

XXXX 0 0 110 



INCH Increment H using Carry (H + Cn) I * I 6 I 

FUNCTION 

Increments R if the carry is set. 

DESCRIPTION 

Data on the R bus is added to the carry. The sum appears at the ALU and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

RF A3-AO 

(A5-AO) Immed 
DA-Port 

Yes No Yes 

Available S Bus Source 
Operands (MSH) 

RF MQ 
DB-Port 

(B5-BO) Register 

No No No 

C3-CO 

.. 
A3-AO 

Mask 

No 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) (B5-BO) 
Y-Port 

Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn Yes Increments R if programmed high. 
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I * I 6 I Increment R using Carry (R + Cn) 

Status Signals t 

ZERO 

N 
OVR 

Cn 

if result = 0 

1 if MSB = 1 

1 if signed arithmetic overflow 

1 if carry-out = 1 

INCR 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated after shift 
operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Increment the data on the DA bus and store the result in register 4. 

en 
2: 
..... 
~ 

Instr 

Code 
17-10 

1111 0110 

Op,d Op,d 

Add, Addr 
A5-AO B5-BO 

XX XXXX XX XXXX 

Op,d Sel Dest 
EB1- Addr 

EAEBO C5-CO SELMQ 

1 XX 00 0100 0 

~ Assume register file 1 holds 3791 FEF6 (Hex). 

-I 

Destination Selects 
'We3- SELRF1-

WEo SELRFO 0eA 0eB 
0000 10 X X 

~ Source 00010111100100011111111011110110 I R - DA 
W 
N 

Destination 0001 0111 1001 0001 1111 1110 1111 0111 RF(4) - R + Cn 
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INC8 Increment 8 using Carry (8 + Cn) 

FUNCTION 

Increments S if the carry is set. 

DESCRIPTION 

Data on the S bus is added to the carry. The sum appears at the ALU and MQ shifters. 

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) (B5-BO) 
Y-Port 

Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SI01 No 

SI02 No 

SI03 No 

Cn Yes Increments S if programmed high. 
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en 
2 

'" ~ » 

Increment S using Carry (S + Cn) 

Status Signals t 

ZERO 

N 
OVR 

C 

1 if result = 0 

1 if MSB = 1 
if signed arithmetic overflow 

if carry-out == 1 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Increment the data in the MQ register and store the result in register 4. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr ES1- Addr WE3- SELRF1- 0Ev3-
17-10 A5-AO B5-80 EA EBO C5-CO SELMQ WeO SELRFO OEA Oeii 0eY0 DeS 

11110100 XX XXXX XX XXXX X 11 000100 0 0000 10 X X XXX X 0 

~ Assume MQ register holds 54FFOOFF (Hex): 
CO 
CO 
W 
N 

Source 0101 0100 1111 1111 0000 0000 1111 1111 5 +- MQ register 

Destination 0101 0100 1111 1111 0000 0001 00000000 I RF(4) +- 5 + Cn 
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LOADFF Load Divide/BCD Flip-Flops I 0 I F I 

FUNCTION 

Load divide/BCD flip-flops from external data input. 

DESCRIPTION 

Uses an internal bypass path to load data from the S MUX directly into the divide/BCD 
flip-flops. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
D8-Port 

(85-80) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (85-801 Shifter Shifter 

No No No No No 

ControllData Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

STOT No Inactive 

SI02 No Inactive, 

SI03 No Inactive 

Cn No Inactive 
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I 0 IF 

Status Signals 

IZERO =. 0 N = 0 

OVR = 0 

C = 0 

Load Divide/BCD Flip-Flops 

EXAMPLE (assumes a 32-bit configuration) 

Load the divide/BCD flip-flops with data from the DB input bus. 

en z 

Instr 

Code 

17-10 

00001111 

Oprd Oprd 

Addr Addr 

A5-AO B5-BO 

XX XXXX XX XXXX 

Oprd Sel Dest 

EB1- Addr 

EAEBO C5·CO SELMQ 

X 10 XX XXXX X 

~ Assume DB input holds 2A08C618 (Hex): 

Destination Selects 

WE'3- SELRF1-

WEo SELRFO 0eA 0eB 
XXXX XX X X 

» 
(") Source I 001010100000 1000 110001100001 1000 Is ... DB bus 
-f 
CO 

LOADFF 

Ci'EY3- CF2-

0eY0 DEs Cn CFO 

XXXX X X 110 

~ Destination I 0010 10100000 1000 110001100001 1000 I Divide/BCD flip-flops - S 
N 
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lOADMO Pass (Y - F) and load MO with F 

FUNCTION 

Passes the result of the ALU instruction specified in the lower nibble of the instruction 
field to Y and the MQ register. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y and the MQ register . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

Available Destination Operands 

RF RF 

(C5-CO) (B5-BO) 
V-Port 

Ves No Ves 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Outputs MQO (LSB) 

SIOO' No Inactive 

SIOl No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn No Inactive 

Status Signals t 

ZERO 1 if result = 0 

N 1 if MSB of result = 

o if MSB of result = 0 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out = 1 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

N 
M 
00 
00 
I­o 
<t 
.q-
...... 
Z 
CIl 



Pass (Y - F) and Load MQ with F LOADMQ 

EXAMPLE (assumes a 32-bit configuration) 

Load the MQ register with data from register 1, and pass the data to the Y port. 

(In this example, data is passed to the ALU by and INCR instruction without carry-in.) 

Inst' Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1- Offi- CF2-

17-10 A5-AO B5-8O EAEBO C5-CO SELMQ WEO SELRFO 0eA DEB 0'EY0 OES Cn CFO 
11110110 00 0001 XX XXXX 0 XX XX XXXX 0 XXXX XX X X XXXX 0 0 110 

Assume register file 1 holds 2A08C618 (Hex): 

Source 001010100000 1000 1100011000011000 I R - RF(1) 

tn 
2: Destination 00101010000010001100 0110 0001 1000 I MQ register - R + en .... 
~ » 
(") .... 
00 
00 
W 
N 
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MOSLC Pass (Y - F) with Circular Left MO Shift I 0 I * I 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs a circular left shift on MQ. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MQ register are rotated one bit to the left. The MSB is rotated 
out and passed to the LSB of the same word, which may be 1, 2, or 4 bytes long. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the MQ register. If SSF is low, the MQ register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

Available Destination Operands (ALU Shifter) 

RF RF 
Y-Port 

(C5-CO) (85-80) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

5100 No Inactive 

5101 No Inactive 

5102 No Inactive 

5103 No Inactive 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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10 I * Pass (V -- F) with Circular Left MO Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out = 1 

MOSLC 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data. on the DB bus with carry-in and store the unshifted 
en result in register 1 . Circular shift the contents of the MO register one bit to the left. 
Z 

""'" t 
C') 
-4 
CO 
CO 
W 
N 

Instr Dp,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Addr WE3- SELRF1- om- CF2-

17-10 A5-AO 85-80 EAE80 C5-CO SELMa WED SELRFO OEA 0Eli 0eY0 DeS Cn CFO 

1101 0001 000001 XX XXXX 0 10 000001 0 0000 10 X X XXXX 0 1 110 

Assume register file 1 holds 2508C618 (Hex), DB bus holds 11007530 (Hex), and 
MO register holds 4DA99AOE (Hex). 

Source 00100101 00001000110001100001 1000 I R - RF(1) 

Source 0001 0001 0000000001 i 1 0101 0011 0000 I S - DB bus 

Destination 0011 01100000 1001 0011 1011 0100 1001 I RF( 1) - R + S + Cn 

Source 01001101 1010 1001 1001 10100000 1110 I MQ shifter - MQ register 

Destination 1001 1011 0101 0011 0011 01000001 1100 I MQ register - MQ shifter 
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MOSLL Pass (Y ... F) with Logical Left MO Shift I c I * 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs a left shift on MO. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MO register are shifted one bit to the left. A zero is filled into 
the least significant bit of each word unless the SIO input for that word is programmed 
low; this will force the least significant bit to one. The MSB is dropped from each word, 
which may be 1, 2, or 4 bytes long, depending on the configuration selected. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result N 
will be sent to the MO register. If SSF is low, the MO register will not be altered. ~ 

* A list of ALU operations that can be used with this instruction is given in Table 15. ~ 
(,) 

Shift Operations :; 

Available Destination Operands (ALU Shifterl 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

SIOO Yes Fills a zero in LSB of MQ shifter if high or floating; 

sets LSB to one if low. 

SiOT No Inactive in 32-bit configuration; used in 

Si02 No configurations to lIelectend-fili in LSBs. 

SiOO No 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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Ie I * Pass (Y - F) with Logical Left MO Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out = 1 

MOSLL 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 7 to data on the DB. bus with carry-in and store the unshifted 
en result in register 7. Shift the contents of the MO register one bit to the left, filling 
Z a zero into the least significant bit . ..., 

Instr Op,d Op,d Op,d Sol Dest Destination Selects 

Codo Add, Add, E61· Add, "WE3. SELRF 1· om- CF2- 5103- iESiOO-
17-10 A5-AO 65-BO EA E60 C5-CO SELMO WEo SELRFO 0eA 0Es 0eY0 OES Cn CFO SiOO IESIOO 

11000001 000111 XX XXXX 0 10 00 0111 0 0000 10 X X XXXX 0 1 110 1111 0000 

~ 
l=­
ei 
-I 
CO 
CO 
W 
N Assume register file 7 holds 7308C618 (Hex), DB bus holds 54007530 (Hex)' and 

MO register holds 61A99AOE (Hex). 

Source 0111 0011 0000 1000 110001100001 1000 I R +- RF(7) 

Source 0101 0100000000000111 0101 0011 0000 Is+- DB bus 

Destination 11000111 00001001 0011 1011 01001001 I RF(7) +- R + S + Cn 

Source 01100001 1010 1001 1001 10100000 1100 I MQ shifter +- MQ register 

Destination 11000011 0101 0011 0011 01000001 1000 I MQ register +- MQ shifter 
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MQSRA Pass (V - F) with Arithmetic Right MQ Shift 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs an arithmetic right shift on MO. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MO register are rotated one bit to the right. The sign bit of the 
most significant byte is retained. Bit 0 of the least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the MO register. If SSF is low, the MO register will not be altered. 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

MQ Shifter 

Arithmetic Right 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

SIOO No Outputs LSB of MQ shifter (inverted). 

SiOT No Inactive in 32-bit configurations; used in other 

~ No configurations to output LSBs from MQ shifter 

SI03 No (inverted). 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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Pass (V - F) with Arithmetic Right MQ Shift 

Status Signals t 

ZERO 

N 

1 if result = 0 

1 if MSB of result = 

o if MSB of result = 0 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out = 1 

MQSRA 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data in register 10 with carry-in and store the unshifted result 
en in register 1. Shift the contents of the MQ register one bit to the right, retaining the 
2 sign bit. 
"'-I 
~ » 
(') 
-t 
00 
00 
W 
N 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRF1- 0Ev3- CF2-
17-10 A5-AO B5-BO EA EBO C5-CO SELMa 'WEo SELRFO OEA 0Ee 15Evii 0eS Cn CFO 

10100001 00 0001 00 1010 0 00 000001 0 0000 10 X X XXXX 0 1 110 

Assume register file 1 holds 5608C618 (Hex). register file 10 holds 14007530 (Hex), 
and MQ register holds 98A99AOE (Hex). 

Source 0101 011000001000110001100001 1000 I R - RF(1) 

Source 0001 0100 00000000 0111 0101 0011 0000 I S - RF(10) 

Destination 0110101000001001 0011 1011 01001001 I RF( 1) - R + S + Cn 

Source 1001 100010101001 1001 101000001110 I MO shifter - MO register 

Destination 1100110001010100 1100 110100000111 MO register - MO shifter 
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MOSRL Pass (V - F) with Logical Right MO Shift 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. Performs aright shift on MO. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-10) is passed unshifted to Y MUX. 

The contents of the MO register are shifted one bit to the right. A zero is placed in 
the sign bit of the most significant byte unless the SIO input for that byte is set to 
zero; this will force the sign bit to 1. Bit 0 of the least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the MO register. If SSF is low, the MO register will not be altered. N 

(\') 
* A list of ALU operations that can be used with this instruction is given in Table 15. 00 

00 
I-

Shift Operations U 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high or floating; retains MQ 

without shift if low. 

5100 Yes Fills a zero in LSB of MQ shifter if high or floating; 

sets LSB to one if low. 

5101 No Inactive in 32-bit configuration; used in other 

5102 No configurations to select end-fill in LSBs. 

5103 No 

Cn No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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I B I * Pass (Y- F) with logical Right MQ Shift MQSRl 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 

o if MSB of result = 0 

1 if signed arithmetic overflow 

1 if carry-out = 1 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with carry-in and store the unshifted 
result in register 1. Shift the contents of the MQ register one bit to the left. 

Inst, Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, E81· Add, We3- SELRF1- 0eYa- CF2-

17-10 A5-AO 85-80 EAE80 C5-CO SELMQ WEli SELRFO OEA 0Eii 0eY0 OES Cn CFO 
10110001 00 0001 XX XXXX 0 10 00 0001 0 0000 10 X X XXXX 0 1 110 

Assume register file 1 holds 5608C618 (Hex), DB bus holds 14007530 (Hex), and 
MQ register holds 98A99AOE (Hex). 

Source 1 0101 011000001000 1100 0110 0001 1000 1 R +- RF(1) 

Source 1 0001 01000000 0000 0111 0101 0011 0000 1 S +- DB bus 

Destination 1011010100000100100111011010010011 RF(1)-R + S + Cn 

Source 1 1001 1000 1010 10011001 10100000 1110 1 MQ shifter - MQ register 

Destination 1 0100 1100 0101 0100 1100 1101. 0000 0111 MQ register - MQ shifter 
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NAND Logical NAND (R NAND S) * I c I 

FUNCTION 

Evaluates the logical expression R NAND S. 

DESCRIPTION 

Data on the R bus is NAN Oed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

·The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
'OA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5"BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) (B5-BO) 
Y-Port 

Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Affect shift instructions programmed in bits 17-14 of 

SiO'O No instruction field. 

5101 'No 

SI02 No 

SI03 No 

en Inactive 
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Status Signals t 

ZERO 

N 
OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
o 

Logical NAND (R NAND S) 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Logically NAND the contents of register 3 and register 5, and store the result 
in register 5. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1· Addr WE3. SELRF1· 0eV3. 
17·10 A5·AO B5·BQ EA EBO CS·CO SELMa WeD SELRFO 0eA 0eB 0eY0 DEs 

1111 1100 000011 000101 0 00 000101 0 0000 10 X X XXXX 0 

NAND 

CF2· 
Cn CFO 

X 110 

CO Assume register file 1 holds 60F6D840 (Hex) and register file 5 holds 13F6D377 (Hex). 
CO 

~ Source 01100000111101101101100001000000 I R-RF(3) 

Source 00010011 111101101101001101110111 S - RF(5) 

Destination 1111 1111 0000 1001 0010 1111 1011 1111 RF(5) - R NAND S 

3·120 



NOP No Operation I F I F I 

FUNCTION 

Forces AlU output to zero. 

DESCRIPTION 

This instruction forces the AlU output to zero. The BCD flip-flops retain their old value. 
Note that the clear instruction IClR) forces the AlU output to zero and clears the BCD 
flip-flops. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

No No No 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 

Yes No 

Status Signals 

IZER~ 
OVR 

C 

1 

o 
o 

= 0 

Y-Port ALU MQ 

Yes None None 
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I FI F No Operation 

EXAMPLE (assumes a 32-bit configuration) 

Clear register 12. 

Instr Oprd Oprd Oprd Sel Dest 

Code Addr Addr EB1- Addr We3-
17-10 A5-AO B5-BO EAEBO C5-CO SELMa WEO 

11111111 XX XXXX xx XXXX x xx 00 1100 0 0000 

Destination Selects 

SELRF1-

SELRFO 0eA me 
10 X X 

Destination I 000000000000000000000000 0000 0000 I RF(12) - 0 
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NOR Logical NOR (R NOR S) 

FUNCTION 

Evaluates the logical expression R NOR S. 

DESCRIPTION 

Data on the R bus is NORed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

'The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-141 of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO ., 
DA-Port 

(AS-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF 
Y-Port 

ALU MQ 

(C5-CO) (B5-BO) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SI01 No 

SI02 No 

SI03 No 

Cn No Inactive 
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Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 
o 
o 

Logical NDR(R NOR· S) 

tc is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Logically NOR the contents of register 3 and register 5, and store the result 
in register 5. 

Inst, Oprd Op,d Op,d Sel Cast Oestinetion Selects 

Code Add, Add, , EB1· Add, WE3. SELRF1· om· 
17-10 A5-AO B5-BO EAEBO C5-CO SELMQ WeO SELRFO OEA 0eB 0EY0 0eS 

11111011 000011 000101 0 00 000101 0 0000 10 X X XXXX 0 

NOR 

CF2· 
Cn CFO 
X 110 o 

-I 
00 Assume register file 3 holds 60F6D840 (Hex) and register file 5 holds 13F6D371 (Hex). 
00 

~ Source 01100000 111101101101100001000000 I R- RF(3) 

Source 00010011111101101101001101110111 I S - RF(5) 

Destination 1000 1100 0000 1001 00100100 1000 1000 I RF(5) - R NOR S 
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OR Logical OR (R OR S) I * IB I 

FUNCTION 

Evaluates the logical expression R OR S. 

DESCRIPTION 

Data on the R bus is ORed with data on the S bus. The result appears at the ALU 
and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MO 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MO 
Y-Port 

Shifter Shifter (C5-CO) (B5-BO) 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

55F No Affect shih instructions programmed in bits 17-14 of 

5100 No instruction field. 

5101 No 

5102 No 

5103 No 

Cn No Inactive 
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Status Signals t 

ZERO 

N 
OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
o 

Logical OR (R OR S) 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

logically OR the contents of register 5 and register 3, and store the result in 
register 3. 

InSlr Oprd Oprd Oprd Sel Desl Destination Selects 

Code Addr Addr EB1- Addr "We3- SELRF1- om-
17-10 A5-AO B5-BO EAEBO C5-CO SELMO WeO SELRFO l5EA Oeii 0eY0 OES 

1111 1011 000101 000011 0 00 000011 0 0000 10 X X XXXX 0 

OR 

CF2-

Cn CFO 

X 110 

00 Assume register file 5 holds 60F6D840 (Hex) and register file 3 holds 13F6D377 (Hex). 
00 

~ Source 01100000111101101101100001000000 I R +- RF(5) 

Source 00010011111101101101001101110111 S +- RF(3) 

Destination 0111 0011 1111 0110 1101 1011 0111 0111 RF(3) +- R OR 5 
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PASS Pass (Y - F) F 

FUNCTION 

Passes the result of the ALU instruction specified in the upper nibble of the instruction 
field to Y MUX. 

DESCRIPTION 

The result of the arithmetic or logical operation specified in the lower nibble of the 
instruction field (13-101 is passed unshifted to Y MUX . 

• A list of ALU operations that can be used with this instruction is given in Table 1 5. 

Available Destination Operands 

RF RF ALU MO 
Y-Port 

(C5-CO) (B5-BO) Shifter Shifter 

Yes No Yes None None 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Inactive 

SiOo No Inactive 

SI01 No Inactive 

Si02 No Inactive 

SI03 No Inactive 

Cn ,No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if Signed arithmetic overflow 

if carry-out condition 

, 

t C is ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 



IF 1* Pass(Y - F) PASS 

EXAMPLE (assumes a 32-bit configuration) 

Add data in register 1 to data on the DB bus with carry-in and store the unshifted 
result in register 10. 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WE3- SELRF1: 0eY3- CF2-

17-10 AS-AO B5-BO EA EBO C5-CO SELMQ WEO SELRFO 0eA 0e'i3 0eYci DeS Cn CFO 

1111 0001 000001 XX XXXX 0 10 001010 0 0000 10 X X XXXX 0 1 110 

Assume register file 3 holds 9308C618 (Hex) and DB bus holds 24007530 (Hex). 

Source 100100110000 1000 1100011000011000 I R +- RF(1) 

Source 00100100000000000111 0101 0011 0000 Is+- DB bus 

Destination 1011 0111 00001001 0011 1011 01001001 RF(10) +- R + S + en 
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SDIVI Signed Divide Iterate I A 10 I 

FUNCTION 

Performs one of N-2 iterations of nonrestoring signed division by a test subtraction 
of theN-bit divisor from the 2N-bit dividend. An algorithm using this instruction is 
given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

SDIVI performs a test subtraction of the divisor from the dividend to generate a quotient 
bit. The test subtraction passes if the remainder is positive and fails if negative. If 
it fails, the remainder will be corrected during the next instruction. 

SDIVI checks the pass/fail result of the test subtraction from the previous instruction, 
and evaluates 

F +- R + S if the test fails N 
F +- R' + S + Cn if the test passes M 

00 
A double precision left shift is performed; bit 7 of the most significant byte of the MO ~ 
shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 of (,) 
the most significant byte of the ALU shifter is lost. The unfixed quotient bit is circulated « 
into the least significant bit of the MO shifter. ~ 

The R bus must be loaded with the divisor, the S bus with the most significant half ~ 
of the result of the previous instruction (SDIVI during iteration or SDIVIS at the beginning 
of iteration). The least significant half of the previous result is in the MO register. Carry-
in should be programmed high. Overflow occurring during SDIVI is reported to OVR 
at the end of the signed divide routine (after SDIVOF). 

Available R Bus Source Operands 

C3-CO 
RF A3-AO .. 

(A5-AO) Immed 
DA-Port 

A3-AO 

Mask 
Yes No Yes No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MO 
(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MO 

Yes No Yes Left Left 
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IAlo Signed Divid., Iterat., 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

SiOO No Pass internally generated end-fill bits. 

~ No 

!i02 No 

Si03 No 

Cn Yes Should be programmed high 

Status Signals 

en ZERO = 1 if .intermediate result = 0 
2 N = 0 ..... 
~ OVR = 0 

~ C = 1 if carry-out 

-I 
CO 
CO 
Co\) 
N 
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SDIVIN . Signed Divide Initialize I 8 I 0 I 

FUNCTION 

Initializes' ACT8832 for nonrestoring signed division by shifting the dividend left and 
internally preserving the sign bit. An algorithm using this instruction is given in the 
"Other Arithmetic Instructions section. 

DESCRIPTION 

This instruction prepares for signed divide iteration operations by shifting the dividend 
and storing the sign for future use. 

The preceding instruction should load the MO reqister with the least significant half 
of the dividend. During SDIVIN, the S bus should be loaded with the most significant 
halfof the dividend, and the R bus with the divisor. V-output should be writteh back 
to the register file for use in the next instruction. 

N 
A double precision logical left shift is performed; bit 7 of the most significant byte (W) 

of the MO shifter is transferred to bit 0 of the least significant byte of the ALl) shifter. ~ 
Bit 7 of the most significant byte of the ALU shifter is lost. The unfixed quotient sign I­
bit is shifted into the least significant bit of the MO shifter. ~ 

q-
Available R Bus Source Operands ,.... 

Z 
VJ C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 
Yes No Yes No 

Recommended S Bus Source Operands 

RF 
D8-Port 

MQ 
(85-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
(C5-CO) (85-80) 

Y-Port ALU MQ 

Yes No Yes Left Left 
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I 8 I 0 I 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

5100 No 

SiOT No 

Si02 No 

5103 No 

Cn No 

Status Signals 

~ IZER~ 
~ OVR 

l> Cn 
(") 
-I 
00 
00 
W 
N 
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1 if divisor = 0 

o 
o 
o 

Signed Divide Initialize SDiVIN 

Use 

Inactive 

Pass internally generated end-fill bits. 

Inactive 



SOIVIS Signed Divide Start I 9 I 0 I 

FUNCTION 

Computes the first quotient bit of nonrestoring signed division. An algorithm using 
this instruction is given in the "Other Arithmetic Instructions" section .. 

DESCRIPTION 

SDIVIS computes the first quotient bit during nonrestoring signed division by subtracting 
the divisor from the dividend, which was left-shifted during the prior SDIVIN instruction. 
The resulting remainder due to subtraction may be negative. If so, the subsequent 
SDIVI instruction will restore the remainder during the next subtraction. 

The R bus must be loaded with the divisor and the S bus with the most significant 
half of the remainder. The result on the Y bus should be loaded back into the register 
file for use in the next instruction. The least significant half of the remainder is in the 
MQ register. Carry-in should be programmed high. 

A double precision left shift is performed; bit 7 of the most significant byte of the 
MQ shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit.is 
circulated into the least significant bit of the MQ shifter. 

Overflow occurring during SDIVIS is reported to OVR at the end of the signed division 
routine (after SDIVQF). 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

RecommendedS Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended· Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes Left Left 
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t/) 
2 
'-J 
~ 
l> 
(") 
~ 
CO 
CO 
W 
N 

19 10 Signed Divide Start 

ControlfData Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

5100 No Pass internally generated end-fill bits. 

5101 No 

5102 No 

5103 No 

Cn Yes Should be programmed high. 

Status Signals 

ZERO 

N 

OVR 

C 
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1 if intermediate result = 0 

o 
o 
1 if carry-out 
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SDiVIT Signed Divide Terminate I E I 0 I 

FUNCTION 

Solves the final quotient bit during nonrestoring signed division. An 
algorithm using this instruction is given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

SDIVIT performs the final subtraction of the divisor from the remainder during 
nonrestoring signed division. SDIVIT is preceded by N-2 iterations of SDIVI, where 
N is the number of bits in the dividend. 

The R bus must be loaded with the divisor, and the S bus must be loaded with the 
most significant half of the result of the last SDIVI instruction. The least significant 
half lies in the MQ register. The Y bus result must be loaded back into the register 
file for use in the subsequent DIVRF instruction. Carry-in should be programmed high. 

N 
SDIVIT checks the pass/fail result of the previous instruction's test subtraction and ('f) 

CO 
evaluates; CO 

Y+-R+S if the test fails 
Y +- R' + S + Cn if the test passes 

The contents of the MQ register are shifted one bit to the left; the unfixed quotient 
bit is circulated into the least significant bit. 

Overflow during this instruction is reported to OVR at the end of the signed division 
routine (after SDIVQF). 

Available R Bus Source Operands 

C3cCO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Ves No Ves No 

Recommended S Bus Source Operands 

RF MO 
DB-Port 

(B5-8O) Register 

Ves Ves No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-80) 
V-Port ALU MO 

Ves No Ves Left Left 
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I E I 0 I Signed Divide Terminate 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Pass internally generated end-fill bits. 

mer No 

Si02 No 

SiOO No 

Cn Yes Should be programmed high 

Status Signals 

<J) ZERO 1 if intermediate result = 0 

o Z 
...... 

~ 
(') 
-t 
CO 
CO 
W 
N 

N 

OVR 

C 
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SDIVO Signed Divide Overflow Test I A I F I 

FUNCTION 

Tests for overflow during nonrestoring signed division. An algorithm using this 
instruction is given in the "Other Arithmetic Instructions section. 

DESCRIPTION 

This instruction performs an initial test subtraction of the divisor from the dividend. 
If overflow is detected, it is preserved internally and reported at the end of the divide 
routine (after SO IV OF) . If overflow status is ignored, the SOIVO instruction may be 
omitted. 

The divisor must be loaded onto the R bus,; the most significant half of the previous . 
SOIVIN result must be loaded onto the S bus. The least significant half is in the MO 
register. 

The result on the Y bus should not be stored back into the register file; WE' should .~ 
be programmed high. ..~ 

t-
Carry-in should also be programmed high. 0 

« 
JIt Available R Bus Source Operands ..... 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Sourc.e Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

2: 
tJ) 



IAIF Signed Divide Overflow Test SDIVO 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

Si'OT No Inactive 

Sf02 No Inactive 

5103 No Inactive 

Cn Yes Should be programmed high 

Status Signals 

en ZERO 1 if divisor = 0 
2 N 0 ...., 

OVR ~ 0 
l> C 1 if carry-out 
(') 
-t 
ex) 
ex) 
Co\) 
N 

3-138 



SDIVQF Signed Divide Quotient Fix I 5 I 0 I 

FUNCTION 

Tests the quotient result after nonrestoring signed division and corrects it if necessary. 
An algorithm using this instruction is given in the "Other Arithmetic Instructions" 
section. 

DESCRIPTION 

SDIVQF is the final instruction required to compute the quotient of a 2N-bit dividend 
by an N-bit divisor. It corrects the quotient if the signs of the divisor and dividend are 
different and the remainder is nonzero. 

The fix is implemented by incrementing S: 

v-S+ 
v-S+O 

if a fix is required 
if no fix is required N 

M 
The R bus must be loaded with the divisor, and the S bus with the most significant· IX) 

half of the result of the preceding DIVRF instruction. The least significant half is in ~ 
the MQ register. (.) 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
(C5-CO) (B5-BO) 

Y-Port ALU MQ 

Yes No Yes None None 
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..... 
~ » 
n 
-I 
CO 
CO 
W 
N 

1510 Signed Divide Quotient Fix 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

SI01 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Should be programmed high 

Status Signals 

ZERO 

N 

OVR 

C 
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SEL Select SIR 1 I 0 J 

FUNCTION 

Selects S if SSF is high; otherwise selects R. 

DESCRIPTION 

Data on the S bus is passed to Y if SSF is programmed high or floating; data on the 
R bus is passed without carry to Y if SSF is programmed low. 

Av,llabie R Bus Source Operands 

RF A3-AO 

(A5-AO) Immed 
DA-Port 

Yes No Yes 

Available S Bus Source 
Operands (MSH) 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

C3-CO 

.. 
A3-AO 

Mask 

No 

Available Destination Operands 

RF RF 
(C5-CO) (85-BO) 

Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 

Shift Operadons 

ALU MQ 

None None 

Use 

SSF Yes SelectsS if high, R if low. 

~ No Inactive 

~ No Inactive 

'S"m No Inactive 

.~ No Inactive 

Cn No Inactive 



I l' I 0 I 
Status Signals 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 

o 
o 

Select SIR 

EXAMPLE (assumes a 32-bit configuration) 

SEt 

Compare the two's complement numbers in registers 1 and 3 and store the larger in 
register 5. 

1. Subtract (SUBS) data in register 3 from data in register 1 and pass the result 
to the Y bus. 

2. Perform Select SIR instruction and pass result to register 5. 

t/) [This example assumes the SSF is set by the negative status (N) from the previous 
:2 instruction] . ...... 
~ » 
n 
-I 
CO 
CO 
Co\) 
N 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1- Addr WE3- SELRFI - 0Ev3- CF2-

17-10 A5-AO B5-80 EAE80 C5-CO SELMa WEo SELRFO OEA l5Eii 0eY0 0eS Cn CFO 

11 I 1 0011 000001 000011 0 00 xx xxx x 0 xxxx xx x x 0000 0 1 110 

0001 0000 000001 000011 0 00 000101 0 0000 10 X X xxxx 0 0 110 

Assume register file 1 holds 00849700 (Hex) and register file 3 holds 01 C35250 (Hex). 

Instruction Cycle 1 

Source 00000000 1000 0100 1001 0111 1101 0000 I R +- RF( 11 

Source 00000001 11000011 0101 00100101 0000 Is+- RF(31 

Destination 11111110110000010100010110000000 I Y bus +- R + S' + Cn 

Instruction Cycle 2 

Source 00000000 1000 0100 1001 0111 1101 0000 I R"" RF( 1) 

GJ SSF"" 1 

Source 0000 0001 11000011 0101 00100101 0000 Is .... RF(3) 

Destination 0000 0001 11000011 0101 00100101 0000 I RF(51"" S 
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SETO Reset Bit 1 8 

FUNCTION 

Resets bits in selected bytes of S-bus data using mask in C3-CO::A3-AO. 

DESCRIPTION 

The register addressed by 85-80 is both the source and destination for this instruction. 
The source word is passed on the S bus to the ALU, where it is compared to an 8-bit 
mask, consisting of a concatenation of the C3-CO and A3-AO address ports 
(C3-CO::A3-AO). The mask is input via the R bus. All bits in the source word that are 
in the same bit position as ones in the mask are reset. Bytes with their SIO inputs 
programmed low perform the Reset 8it instruction. Bytes with their SIO inputs 
programmed high or floating pass S unaltered. 

AvaiiableR Bus Source Operands 

RF A3-AO 
DA-Port 

(A5-AO) Immed 

No No No 

Available S Bus Source 
Operands (MSHI 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

C3-CO 

.. 
A3-AO 

Mask 

Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-COI (B5-BOI 
Y-Port ALU MQ 

No Yes Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Byte-select 

SI01 No Byte-select 

SI02 No Byte-select 

SI03 No Byte-select 

Cn No Inactive·· 
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en z 

I 1 I 8 Reset Bit 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit confiQuration) 

SETO 

Set bits 3-0 of bytes ·1 and 2 of. register file 8 to zero and store the result back in 
register 8. 

Instr Mask Oprd Oprd Sel Mask Destination Selects 

Code ILSH) Addr EB1- IMSH) WE:i- SELRF1- om- CF2- S'iOO- i'ESi03-
17-10 A3-AO B6-BO EAEeo C3-CO SELMO .\iiiEO SELRFO OEA 0Ee 0EY0 0Es' Cn CFO 5100 iEsiOo 

0001 1000 1111 001000 X 00 0000 0 0000 10 X X XXXX 0 X 110 1001 0000 

" ~ Assume register file 8 holds A083BEBE (Hex). 
» 
(') 
-4 
CO 
CO 
W 
N 

Source 00001111000011110000111100001111 Rn ..... C3-CO::A3-AO 

Source 10100000100000111011111010111110 I Sn ..... RF(3)n 

ALU 10100000100000001011 00001011 1110 I Fn ..... Sn AND Rn 

Destination 10100000100000001011000010111110 I RF(8)n ..... Fn or Sn t 

tF = ALU result 
n = nth byte 
Register file 8 gets F if byte selected, S if byte not selected. 
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SET1 Set Bit I 0 I 8 I 

FUNCTION 

Sets bits in selected bytes of S-bus data using mask in C3-CO::A3-AO. 

DESCRIPTION 

The register addressed by B5-BO is both the source and destination for this instruction. 
The source word is passed on the S bus to the ALU, where it is compared to an 8-bit 
mask, consisting of a concatenation of the C3-CO and A3-AOaddress ports 
(C3-CO::A3-AO). The mask is input via the R bus. All bits in the source word that are 
in the same bit position as ones in the mask are forced to a logical one. Bytes with 
their SIO inputs programmed low perform the Set Bit instruction. Bytes with their 
SIO inputs programmed high or floating pass S unaltered. 

Available R Bus Source Operands 

RF A3-AO 

(A5-AO) Immed 
DA-Port 

No No No 

Available S Bus Source 
Operands (MSH) 

RF MO 
DB-Port 

(B5-BO) Register 

Yes Yes Yes 

C3-CO 

.. 
A3-AO 

Mask 

Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MO 

No Yes Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte-select 

SiOT No Byte-select 

S'i'02 No Byte-select 

5103 No Byte-select 

Cn No Inactive 
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10 I 8 I Set Bit 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) = 0 

o 
o 
o 

EXAMPLE (assumes a 32-bit configuration) 

SET1 

Set bits 3-0 of byte 1 of register file 1 to zero and store the result back in register 1. 

Instr Mask Op,d Op,d Sel Mask Destination Selects 

Code (LSH) Add, EB1- (MSH) WE3- SELRF1-

17-10 A3-AO 85-80 EAE80 C3-CO SELMO WeO SELRFO OEA 0Es 

(J) 
00001000 1111 000001 X 00 0000 0 0000 10 X X 

2 Assume register file 8 holds A083BEBE (Hex) . ..... 

om-
0eY0 0Es Cn 

XXXX 0 X 

~ Source 000011110000 1111000011110000 1111 Rn - C3-CO::A3-AO 
("') 
-t 
CO 
CO 
W 
N 

Source 10100000100000111011111010111110 I Sn - RF(1)n 

ALU 10100000 1000 0011 1011 1111 1011 1110 I Fn - Sn OR Rn 

Destination 10100000 100000111011111110111110 I RF(1)n - Fn or Sn t 

t F = ALU result 
n = nth byte 
Register file 1 gets F if byte selected, S if byte not selected. 
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SLA Arithmetic Left Single Precision Shift 14 1 * 

FUNCTION 

Performs arithmetic left shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the left. A zero is filled into bit 0 of the. least significant byte of each word unless 
the SIO input is programmed low; this will force bit 0 to one. Bit 7 is dropped from 
the most significant byte in each word, which may be 1, 2, or 4 bytes long, depending 
on the configuration selected. 

The shift may be made conditional on SSF. If SSF is high pr floating, the shift result 
will be sent to the MO register. If SSF is low, the MO register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter 

Arithmetic Left 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) 
Y-Port 

(B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shift result if high; passes ALU result if low. 

SIOO Yes Fills a zero in LSB of each word if high; fills a 

Si01 Yes one in LSB if low. 

SI02 Yes 

SI03 Yes 

en No Affects arithmetic operation programmed in bits 

13-10 of instruction field. 
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Arithmetic Left Single Precision Shift SLA 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow or if MSB XOR MSB-1 

1 if carry-out condition 

1 before shift 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Perform the computation A = 2(A + B), where A and B are single-precision, two's 
en complement numbers. Let A be stored in register 1 and B be input via the DB bus. 
:2 
-..J 

~ 
(') 
-I 
00 

Instr 

Code 

17·10 

01000001 

Oprd Oprd 

Addr Addr 

A5·AO B5·BO 

000001 XX xxxx 

Oprd Sel Dest 

EB1· Addr 

EA EBO C5·CO SELMQ 

0 10 000001 0 

Destination Selects -WE3· SELRF1· OEY3· CF2· S103· IESID3· 

WEo SELRFO OEA DEB 0eY0 DEs en CFO SiOo iESiOo 
0000 10 X X xxxx 0 0 110 1110 0000 

~ Assume register file 1 holds 1308C618 (Hex), DB bus holds 44007530 (Hex). 
N 

Source 

Source 

Intermediate 
Result 

0001001100001000110001100001 1000 I R +- RF(1) 

01000100000000000111 0101 0011 0000 Is+- DB bus 

0101 0111 00001001 0011 1011 01001000 I ALU Shifter +- R + S + Cn 

Destination 101011100001 00100111 01101001 0001 RF( 1) +- ALU shift result 

3-148 

SSF 

1 



SLAD Arithmetic Left Double Precision Shift 

FUNCTION 

Performs arithmetic left shift on MO register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double-precision word, the contents of the MO register as the lower half. 

The contents of the MO register are shifted one bit to the left. A zero is filled into 
bit 0 of the least significant byte of each word unless the SIO input for the word is 
set to zero; this will force bit 0 to one. Bit 7 of the most significant byte in the MO 
shifter is passed to bit 0 of the least significant byte of the ALU shifter. Bit 7 of the 
most significant byte in the ALU shifter is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sentto the Y MUX and MO register. If SSF is low, the ALU output and MO 
register will not be altered . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

. ALU Shifter MQ Shifter 

Arithmetic Left Arithmetic Left 

Available Destination Operands IALU Shifter) 

RF RF 
Y-Port 

IC5-CO) (85-801 

Yes No Yes 

Control/Data Signals 

Sighal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low. 

SIOO Yes Fills a zero in LS8 of each word if high; fills a 

5101 Yes one in LS8 if low. 

Si02 Yes 

5103 Yes 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 5 I * Arithmetic Left Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result '" 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow or if MSB XOR MSB-1 

1 if carry-out condition 

1 before shift 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SLAD 

Perform the computation A = 2(A + B), where A and B are two's complement numbers. 
en Let A be a double precision number residing in register 1 (MSH) and the MQ register 
~ (LSH). Let B be a single precision number which is input through the DB bus. 

~ 
l> 
() 
-t 
Q) 
Q) 
W 

'Instr 

Code 

17-10 

0101 0001 

Oprd Oprd 

Addr Addr 

AS-AD B5-BO 

00 0001 XX XXXX 

Oprd Set Dest -ES1- Addr WE3-
- -
EA ESO C5-CO SELMQ WED 

a 10 00 0001 a 0000 

Destination Selects - iESi03-SELRFl - OEY3- CF2- SID3-- 0EY0' $ELRFO OEA DEB DES Cn CFO SIOO IESIOO SSF 

10 X X XXXX 0 0 110 1110 0000 1 

N Assume register file 1 holds 2408C618 (Hex), DB bus holds 26007530 (Hex), and 
MQ register holds 50A99AOE (Hex). 

MSH 

Source 0010 0100 0000 1000 1100 0110 0001 1000 1 R ... RF(1) 

Source 0010 0110 0000 0000 0111010100110000 1 S ... DB bus 

Intermediate 
Result 0100 1010 0000 1001 0011 1011 0100 1000·1 ALU Shifter'" R + S + Cn 

Destination 1001 0100 0001 0010 0111 0110 1001 0000 1 RF(1) +- ALU shift register 

LSH 

Source 0101 0000 1010 1001 1001 1010 0000 1110 1 MQ shifter +- MQ register 

Destination 1010 0001 0101 0011 0011 0100 0001 1101 MQ register +- MQ shift result 
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SLC Circular Left Single Precision Shift I 6 I * I 

FUNCTION 

Performs circular left shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is rotated one bit 
to the left. Bit 7 of the most significant byte in each word is passed to bit a of the 
least significant byte in the word, which may be 1, 2, or 4 bytes long. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to Y MUX. If SSF is low, F is passed unaltered . 

• A list of ALU operations that can be used with this instruction is given in Table 1 5. 

Shift Operations 

ALU Shifter MQ Shifter 
Circular Left None 

Available Destination Operands (ALU Shifter) 

RF RF 
V-Port 

(C5-CO) (B5-BO) 

Ves No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low. 
5100 No Bit 7 of ALU result 
5101 No Bit 1 5 of ALU result 

5102 No Bit 23 of ALU result 

5103 No Bit 31 of ALU result 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 

3-151 



rJ) 
Z 
-...J 
~ » 
n 
-t 

I 6 I * Circular left Single Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Perform a circular left shift of register 6 and store the result in register 1. 

Instr Oprd Oprd Oprd Sel Oest Destination Selects 

Code Addr Addr EB1- Addr WEJ- SELRF1- OEY3-

17-10 A5-AO B5-BO Eli: EBO C5-CO SELMQ WEo SELRFO OEA 0Ee 0eY0 DES Cn 

01100110 000110 XX XXXX 0 00 000001 0 0000 10 X X XXXX 0 -0 

00 Assume register file 6 holds 3788C618 (Hex). 
00 

~ Source 0011 0111 1000 1000 110001100001 1000 I R +- RF(6) 

Intermediate 
Result 0011 0111 10001000110001100001 1000 I ALU Shifter +- R + Cn 

Destination 0110 1111 0001 0001 1000 11000011 0000 I RF( 1) +- ALU shifter result 
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SLCD Circular Left Double Precision Shift 7 

FUNCTION 

Performs circular left shift on MO register (LSH) and result of ALU operation specified 
in lower nibble of instruction field (MSH). 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double-precision word, the contents of the MO register as the lower half. 

The contents of the MO and ALU registers are rotated one bit to the left. Bit 7 of the 
most significant byte in the MO shifter is passed to bit 0 of the least significant byte 
of the ALU shifter. Bit 7 of the most significant byte is passed to bit 0 of the least 
significant byte in the MO shifter. 

The shift may be made conditional on SS~. If SSF is high or floating, the shift result N 
will be sent to Y MUX. If SSF is low, F is passed unaltered and the MO register is ~ 
not changed. CO .-
*A list of ALU operations that can be used with this instruction is given in Table 15. U « 

~ 
Shift Operations " 

Z 
ALU Shifter MQ Shifter CJ) 

Circular Left Circular Left 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) 
Y-Port 

(B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result if low; 

SIOO No Bit 7 of ALU result 

SI01 No Bit 1 5 of ALU result 

SI02 No Bit 23 of ALU result 

5103 No Bit 31 of ALU result 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 



Circular Left Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

1 if carry-out condition 

tc is AlU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after AlU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SLCD 

Perform a circular left double precision shift of data in register 6 (MSH) and MO (LSH), 
(J) and store the result back in register 6 and the MO register. 
:2 
~ 
~ » 
(") 
-4 
CO 
CO 
CN 
N 

Instr Oprd Oprd Oprd Sel 

Code Addr Addr EB 1-

17-10 A5-AO B5-BO Eft: EBO 

01110110 000110 XXXXXX 0 00 

Dest 

Addr 

C5-CO 

000110 

Destination Selects 

WE3- SELRF1- 0eY3- CF2-

SELMa WED SELRFO 0Eii 0eB 6EYo OES Cn CFO SSF 

o 0000 lOX X XXXX 0 0 110 1 

Assume register file 6 holds 3708C618 (Hex) and MO register holds 50A99AOE (Hex). 

MSH 

Source 

Intermediate 
Result 

Destination 

LSH 

0011 0111 00001000110001100001 1000 I R +- RF(6} 

0011 0111 00001000 110001100001 1000 I ALU Shifter +- R + Cn 

01101111 0001 0001 1000 11000011 0000 I RF(6} +- ALU shifter result 

Source 0101 00001010 1001 1001 101000001110 I MQ register ..... MQ register 

Destination 10100001 0101 0011 0011 01000001 1100 I MQ register +- MQ shift result 
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SMTC Sign Magnitude/Two's Complement I 5 I 8 I 

FUNCTION 

Converts data on the S bus from sign magnitude to two's complement or vice versa. 

DESCRIPTION 

The S bus provides the source word for this instruction. The number is converted by 
inverting S and adding the result to the carry-in, which should be programmed high 
for proper conversion; the sign bit of the result is then inverted. An error condition 
will occur if the source word is a negative zero (negative sign and zero magnitude). 
In this case, SMTC generates a positive zero, and the OVR pin is set high to reflect 
an illegal conversion. 

The sign bit of the selected operand in the most significant byte is tested; if it is high, 
the converted number is passed to the destination. Otherwise the operand is passed 
unaltered. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(AS-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (85-80) 
V-Port ALU MQ 

Yes No Yes None None 
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I 5 I 8 Sigm Magnitude/Two'sComplement 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

SI01 No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Should be programmed high for proper conversion 

Status Signals 
(J) 
2 

" ~ 
l> 
(") 
-I 
CO 
CO 
W 
N 

ZERO 

N 

OVR 

1 if result = 0 

1 if MSB = 1 

1 if input of most significant byte is 80 (Hex) and results in all other 

bytes are 00 (Hex). 

C = 1 if S = 0 

EXAMPLES (assumes a 32-bit configuration) 

SMTC 

Convert the two's complement number in register 1 to sign magnitude representation 
and store the result in register 4. 

Instr Op,d Op,d Op,d Sel Des! Destination Selects 

Code Add, Add, EB1· Add, We3. SELRF1· OEY3· CF2· 

17·10 A5·AO B5·BO EA EBO C5·CO SELMO WeO SELRFO OEA OEB OEYO 0eS Cn CFO 

0101 1000 XX XXXX 000001 X 00 000100 0 0000 10 X X XXXX 0 1 110 

Example 1: Assume register file 1 holds C3F6D840 (Hex). 

Source 11000011 1111 01101101 100001000000 Is+- RF(1) 

Destination 1011 110000001001 00100111 11000000 I RF(4) +- S' + Cn 

Example 2: Assume register file 1 holds 550927CO (Hex). 

Source 0101 0101 00001001 00100111 11000000 Is+- RF(1) 

Destination 0101 0101 0000 1001 00100111 11000000 I RF(4) ..... S 
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SMUll Signed Multiply Iterate I 6 I 0 I 

FUNCTION 

Computes one of N-1 signed or N mixed multiplication iterations for computing an 
N-bit by N-bit product. Algorithms for signed and mixed multiplication using this 
instruction are given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

SMUll checks to determine whether the multiplicand should be added with the present 
partial product. The instruction evaluates: 

F - R + S + Cn 
F-S 

if the addition is required 
if no addition is required 

A double precision right shift is performed. Bit 0 of the least significant byte of the 
ALU shifter is passed to bit 7 of the most significant byte of the MQ shifter; carry-out N 
is passed to the most significant bit of the ALU shifter. C") 

CO 
The S bus should be loaded with the contents of an accumulator and the R bus with 
the multiplicand. The Y bus result should be written back to the accumulator after 
each iteration of UMULI. The accumulator should be cleared and the MQ register loaded 
with the multiplier before the first iteration. 

Available R Bus Source Operands 

C3-CO 

RF A3·AO 
DA-Port 

.. 
(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No No Right Right 
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16 10 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

SIOO No 

SIOl No 

SI02 No 

SI03 No 

Cn Yes 

Status Signals 

en ZERO 
2 N 
-...I 
~ OVR 

» C 
(") 
-I 
CO 
CO 
W 
N 
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1 if result = 0 

1 if MSB = 1 

o 
1 if carry-out 

Signed Multiply Iterate SMUll 

Use 

Inactive 

Passes LSB from ALU shifter to MSB of MQ shifter. 

Should be programmed low 



SMULT Signed Multiply Terminate I 7 I 0 I 

FUNCTION 

Performs the final iteration for computing an N-bit by N-bit signed product. An algorithm 
for signed multiplication using this instruction is given in the "other Arithmetic 
Instructions" section. 

DESCRIPTION 

SMUll checks the present multiplier bit (the least significant bit of the MOregister) 
to determine whether the multiplicand should be added with the present partial product. 
The instruction evaluates: 

F +- R' + S + en 
F-S 

if the addition is required 
if no addition is required 

with the correct sign in the product. 

A double precision right shift is performed. Bit 0 of the least significant byte of the 
ALU shifter is passed to bit 7 of the most significant byte of the MO shifter. 

The S bus should be loaded with the contents of an register file holding the previous 
iteration result; the R bus must be loaded with the multiplicand. After executing SMUL T, 
the Y bus contains the most significant half of the product, and MO contains the least 
significant half. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes No 

Available Oestination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No No Right Right 
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I 7 I 0 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

5100 No 

SI01 No 

SI02 No 

SI03 No 

Cn Yes 

Status Signals 

fJ) ZERO 
Z N ....., 
~ OVR 
l> C 
(") 
-f 
CO 
(X) 
W 
N 

3-160 

1 if result = 0 

1 if MSB = 1 

o 
1 if carry-out 

Signed Multiply Terminate SMULT 

Use 

Inactive 

Passes lSB from AlU shifter to MSB of MQ shifter. 

Should be programmed low 



SNORM Single· Length Normalize I 2 I 0 I 

FUNCTION 

Tests the two most significant bits of the MQ register. If they are the same, shifts 
the number to the left. 

DESCRIPTION 

This instruction is used to normalize a two's complement number in the MQ register 
by shifting the number one bit position to the left and filling a zero into the LSB (unless 
the SID input for that word is low). Data on the S bus is added to the carry, permitting 
the number of shifts performed to be counted and stored in one of the register files. 

The shift and the S bus increment are inhibited whenever normalization is attempted 
on a number already normalized. Normalization is complete when overflow occurs. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

No No No No 

Available S Bus Source Operands (Count) 

RF MO 

(95-80) 
DB-Port 

Register 

Yes No No 

Available Destination Operands 

(Count) 

RF RF 

(C5-CO) (85-80) 
Y-Port 

Yes No Yes 

Shift Operations 

( Conditional) 

ALU MO 

No Left 

3-161 

N 
('I) 
CO 
CO 
~ 
u « 
~ 

" Z 
(/) 



C/) 

:2 ...., 
~ 
l> 

~ 

I 2 I 0 I Single-Length Normalize 

Control/Data Signals 

User 

Signal Programmable Use 

SSF No Inactive 

SIOO No Passes internally generated end-fill bit. 

SiOT No 

SI02 No 

SI03 No 

Cn Yes Increments S bus (shift count) if set to one. 

Status Signals 

1 if result = 0 ZERO 

N 1 if MSB of MO register = 

OVR 1 if MSB of MO register XOR 2nd MSB = 

C 1 if carry-out = 1 

SNORM 

CO EXAMPLE (assumes a 32-bit configuration) 
CO 
W 
N Normalize the number in the MQ register. storing the number of shifts in register 3. 

Instr Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1· Add, VTe3. SELRF1· C5"EY3. CF2· 

17-10 A5·AO B5·BO EA EBO C5-CO SELMO WEo SELRFO 0eA Oeii 5EvO 0Es Cn CFO 

00100000 XX XXXX 000011 X 00 000011 0 0000 10 X X XXXX 0 1 110 

Assume register file 3 holds 00000003 (Hex) and MQ register holds 3699D84E (Hex). 

Operand 

Source 00110110 100110011101100001001110 I MO shifter +- MO register 

Destination 0110 1101 0011 0011 1011 0000 1001 1100 I MO register +- MO shifter 

Count 

Source 00000000 0000 0000 0000 0000 0000 0011 S +- RF(3} 

Destination 0000 0000 0000 0000 0000 0000 0000 0100 I RF(3} +- S + Cn 
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SRA Arithmetic Right Single Precision Shift 

FUNCTION 

Performs arithmetic right shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the right. The sign bit of the most significant byte is retained unless it is inverted 
as a result of overflow. Bit 0 of the least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed unshifted to 
the Y MUX . 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Arithmetic Right None 

Available Destination Operands (ALU Shifterl 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shifted output if high; passes ALU result 

if low. 

SIOO No LSB is shifted out from each word, which may be 

SI01 No 1, 2, or 4 bytes long depending on selected 

SI02 No configuration 

SI03 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 0 I * Arithmetic Right Single Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

o 
1 if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SRA 

Perform the computation A = (A + B)/2, where A and B are single-precision numbers. 
en Let A reside in register 1 and B be input via the DB bus. 
2! 
-..J 
~ 
:l=­
n 
-f co 
co 
tAl 
N 

Instr Oprd Oprd Oprd Sel 

Code Addr Addr EB 1· 

17-10 A5-AO B5-BO EA EBO 

00000001 000001 XX XXXX 0 10 

Dest 

Addr 

C5-CO 

000001 

Destiaation Selects 

WE3- SELRF1· 0EY3- CF2· 

SELMO WEc5 SELRFO OEA OEB 0EY0 0eS Cn CFO SSF 

o 0000 lOX X XXXX 0 0 110 1 

Assume register file 1 holds 6A08C618 (Hex) and DB bus holds 51007530 (Hex). 

Source 

Source 

Intermediate * 
Result 

Destination 

0110101000001000110001100001 1000 I R .... RF(1) 

0101 0001 000000000111 0101 0011 0000 IS .... DB bus 

1011 1011 00001001 0011 1011 01001000 I ALU Shifter .... R + S + Cn 

01011101100001001001110110100100 I RF(1) .... ALU shift result 

tAfter the intermediate operation (ADD), overflow has occurred and OVR status signal is set high. When the 
arithmetic right shift is executed. the sign bit is corrected (see Table 16 for shift definition notes). 
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SRAD Arithmetic Right Double Precision Shift 1 

FUNCTION 

Performs arithmetic right shift on MQ register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double precision word, the contents of the MQ register as the lower half. 

The contents of the ALU are shifted one bit to the right. The sign bit of the most 
significant byte is retained unless the sign bit is inverted as a result of overflow. Bit 0 
of the least significant byte in the ALU shifter is passed to bit 7 of the most significant 
byte of the MQ register. Bit 0 of the MQ register's least significant byte is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result N 
will be sent to the Y MUX. If SSF is low, the Al::U result will be passed unshifted to ('t) 

the Y MUX. ~ 
l-

• A list of ALU operations that can be used with this instr~ion is given in Table 15. (.) 

« 
~ 

Shift Operations ..... 

2 
ALU Shifter MQ Shifter C/) 

Arithmetic Right Arithmetic Right 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shifted output if high; passes ALU result 

if low. 

SIOO No LSB of ALU shifter is passed to MSB of MQ shifter, 

SI01 No and LSB of MQ shifter is dropped. 

SI02 No 

SI03 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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Arithmetic Right Double Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result 1 

o if MSB of result 0 

o 
1 if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR(overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SRAD 

Perform the computation A = (A + B)/2, where A and B are two's complement numbers. 
en Let A be a double precision number residing in register 1 (MSH) and MO (LSH). Let 
2 B be a single precision number which is input through the DB bus. 
~ 
~ » 
(") 
-i 
(X) 
(X) 

Instr 

Code 

17-10 

00010001 

Oprd Oprd 

Add, Add, 

A5-AO B5-BO 

000001 XX XXXX 

Oprd Sel Dest 

EB1- Add, 

EA EBO C5-CO 

0 10 000001 

Destination Selects 

WE3- SELRF1- OEY3- CF2-

SELMO WEO SELRFO OEA OEB Offij 5ES Cn CFO SS 

0 0000 10 X X XXXX 0 0 110 1 

~ Assume register file 1 holds 4A08C618 (Hex), and DB bus holds 51007530 (Hex), 
and MOregister holds 17299AOF (Hex). 

MSH 

Source 010010100000 1000 110001100001 1000 I R -- RF( 1) 

Source 0101 0001 000000000111 0101 0011 0000 I S -- DB bus 

Intermediate~ 
Result 1001 1011 00001001 0011 1011 0100 1000 I AlU Shifter -- R + S + Cn 

Destination 01001101100001001001110110100100 I RF(1) -- AlU shift result 

LSH 

Source 0001011100101001 1001 101000001111 MQ shifter <- MQ register 

Destination 0000 10111001 0100 1100 1101 00000111 MQ register <- MQ shift result 

tAfter the intermediate operation (ADD). overflow has occurred and OVR status signal is set high. When the 
arithmetic right shift is executed, the sign bit is corrected (see Table 16 for shift definition notes). 
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SRC Circular Right Single Precision Shift 

FUNCTION 

Performs circular right shift on result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the right. Bit 0 of the least significant byte is passed to bit 7 of the most significant 
byte in the same word, which may be 1, 2, or 4 bytes long depending on the selected 
configuration. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed unshifted to 
the Y MUX. 

• A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Circular Right None 

Available Destination Operands (ALU Shifter) 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF Yes Passes shift result if high; passes ALU result 

if low. 

5100 No Rotates LSB to MSB of the same word, which may 

5101 No be 1, 2, or 4 bytes long depending on configuration 

5102 No 

5103 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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CJ) 
Z ...., 
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l> 
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I 8 I * Circular Right Single Precision Shift 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out condition 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation'. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Perform a circular right shift of register 6 and store the result in register 1. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1· Addr WE3. SELRF1· om· 
17-10 A5·AO B5-BO EA EBO C5-CO SELMO WeO SELRFO O'EA DEB 0eY0 0eS Cn 

10000110 000110 XX XXXX 0 XX 000001 0 0000 10 X X XXXX 0 0 

~ 
CO Assume register file 6 holds 3788C618 (Hex). 
CO 

~ Source 0011 0111 1000 1000 110001100001 1000 I R .... RF(6) 

Intermediate 
Result 

Destination 

0011 0111 10001000110001100001 1000 I ALU Shifter .... R + Cn 

0001 1011 1100010001100011 00001100 I RF(1)"'" ALU shift result 

SRC 

CF2-

CFO SSF 

110 1 



SRCD Circular Right Double Precision Shift 

FUNCTION 

Performs circular right shift on MO register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double precision word, thecontents of the MO register as the lower half. 

The contents of the ALU and MO shifters are rotated one bit to the right. Bit Oof the 
least significant byte in the ALU shifter is passed to bit 7 of the most significant byte 
of the MO shifter. Bit a of the least significant byte is passed to bit 7 of the most 
significant byte of the ALU shifter. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result N 
will be sent to the Y MXU and MO register. If SSF is low, the Y MUX and MO register M 
will not be altered. ~ 

.... 
• A list of ALU operations that can be used with this instruction is given in Table 15. (J 

~ 
.;:r 

Shift Operations " 
Z 

ALU Shifter MQ Shifter fn 
Circular Right Circular Right 

Available Destination Operands (ALU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF Yes Passes shift result if high; passes ALU result and 

retains MQ register if low. 

SIOO No Rotates LSB of ALU shifter to MSB of MQ shifter, 

SI01 No and LSB of MQ shifter to MSB of ALU shifter 

SI02 No 

SI03 No 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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I 9 I * Circular Hight Double Precision Shift 

Status Signals t 

ZERO 

N 

1 if result = 0 

1 if MSB of result = 

o if MSB of result = 0 

OVR 1 if signed arithmetic overflow 

C 1 if carry-out condition 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU !lperation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SHCD 

Perform a circular right double precision shift of the data in register 6 (MSH) and MQ 
CI) (LSH), and store the result back in register 6 and the MQ register. 
2 
...... 
~ 
l> 
n 
-4 
00 
00 
W 
N 

Inst, Op,d Op,d Op,d Sel Dest Destination Selects 

Code Add, Add, EB1- Add, WEa- SELAF1- om- CF2-

17-10 A5-AO B5-8O EAE80 C5-CO SELMQ WEo SELAFO 0eA Oeii 0eY0 i5Es Cn CFO 

10010110 000110 XX XXXX 0 XX 00 0110 0 0000 10 X X XXXX 0 0 110 

Assume register file 6 holds 3788C618 (Hex) and MQ register holds 50A99AOF (Hex). 

MSH 

Source I 0011 0111 0000 1000 1100 0110 0001 1000 I R'" RF(6) 

Intermediate ' I 
Result I 0011 0111 0000 1000 1100 0110 0001 1000 ALU shifter'" R + Cn 

Destination 1001 1011 10000100 0110 0011 00001100 I RF(6)'" ALU shift result 

lSH 

Source I 0101 0000 ;010 1001 1001 10100000 1111 MQ shifter'" MQ register 

Destination I 001010000101 0100 1100 1101 0000 0111 MQ register ... MQ shift result 
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SRL Logical Right Single Precision Shift 

FUNCTION 

Performs logical right shift on .result of ALU operation specified in lower nibble of 
instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit 
to the right. A zero is placed in the bit 7 of the most significant byte of each word 
unless the SIO input for the word is programmed low; this will force the sign bit to 
one. The LSB is dropped from the word, which may be 1, 2, or 4 bytes long depending 
on selected configuration. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX. If SSF is low, the ALU result will be passed ul1shifted to 
the Y MUX. 

* A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MQ Shifter 

Logical Right None 

Available Destination Operands IALU Shifter) 

RF RF 
(C5-CO) 

Y-Port 
(B5-BO) 

Yes No Yes 

Control/Data Signals * 
Signal 

User 

Programmable 
Use 

SSF Passes shift result if high or floating; passes ALU 

result if low. 

SiOO Yes Fills a zero in MSB of the word if high or floating; 

SRIT Yes fills a one in MSB if low. 

Si02 Yes 

Sl'03 Veli 
·Cn Inactive 

:t:Cn is ALU carry-out and is evaluated before shift operation. ;ZERO and N (nl!gative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 
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Logical Right Single Precision Shift SRL 

EXAMPLE (assumes a 32-bit ,configuration) 

Perform a logical right single precision shift on data on the DA bus, and store the result 
in register 1. 

Instr Op,d Oprd Oprd Sel Dest Destination Selects 
- -Code Add, Addr EB1- Addr WE3- SELRF 1- OEV3- CF2- 5103-- WEo 17-10 A5-AO B5-BO EA EBO C5-CO SELMQ SELRFO OEA OEB OEVO OES Cn CFO 5100 

00100110 XX XXXX XX XXXX 1 XX 00 0001 0 0000 10 X X XXXX 0 0 110 XXXl 

Assume DA bus holds 2DA8C615. 

Source 00101101 10101000110001100001 0101 R - DA bus 

Intermediate 
Result 

Destination 

00101101 10101000 1100 0110 0001 0101 ALU Shifter - R + en 

000101101.10101000110-0011 0000 1010 I RF(1) - ALU shift result 

--IESI03-

iESiOO SSF 

0000 1 



SRLD Logical Right Double Precision Shift 

FUNCTION 

Performs logical right shift on MQ register (LSH) and result of ALU operation (MSH) 
specified in lower nibble of instruction field. 

DESCRIPTION 

The result of the ALU operation specified in instruction bits 13-10 is used as the upper 
half of a double precision word, the contents of the MQ register as the lower half. 

The ALU result is shifted one bit to the right. A zero is placed in the sign bit of the 
most significant byte unless the SIO input for that word is programmed low; this will 
force the sign bit to one. Bit 0 of the least significant byte is passed to bit 7 of the 
most significant byte of the MQ shifter. Bit 0 of the least significant byte of the MQ 
shifter is dropped. 

The shift may be made conditional on SSF. If SSF is high or floating, the shift result 
will be sent to the Y MUX and MQ register. If SSF is low, the ALU result and MQ 
register will not be altered. 

* A list of ALU operations that can be used with this instruction is given in Table 15. 

Shift Operations 

ALU Shifter MO Shifter 

Logical Right Logical Right 

Available Destination Operands (AlU Shifter) 

RF RF 

(C5-CO) (B5-BO) 
Y-Port 

Yes No Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF Yes Passes shift result if high; passes ALU result and 

retains MO 

SIOO Yes Fills a zero in MSB if high or floating; 

SI01 Yes fills a one MSB if low. 

SI02 Yes 

SI03 Yes 

Cn No Affects arithmetic operation specified in bits 13-10 of 

instruction field. 
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Logical Right Double Precision Shift . 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result =0 

1 if MSB of result = 1 

o if MSB of result = 0 

1 if signed arithmetic overflow 

if carry-out condition 

t C is AlU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after· shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SRLD 

Perform a logical right double precision shift of the data in register 1 (MSH) and MQ 
en (LSH). filling a one into the most significant bit. and store the result back in register 1 
:2 and the MQ register . ..... 
~ » 
(') 

Instr . 

Code 

17·10 

00110110 

Op,d Op,d 

Add, Add, 

AS-AO B5-80 

XX XXXX 000001 

-
Op,d Sel Dest 

EB1- Add, 

Eli: EBO C5-CO 

X 00 00 0001 

Destination Selects 

WE3- SELRF ,. orn· CF2· S'i03- i'ESi03-
SELMO WeO SELRFO 0eA Oeii· 0eY0" 0Es Cn CFO SiOo iEsiOo 

0 0000 10 X X XXXX 0 0 110 1110 0000 

-4 
ClO 
ClO 
W 
N Assume register file 1 holds 2DA8C615 (Hex) and MQ register holds 50A99AOE (Hex). 

MSH 

Source 

Intermediate 
Result 

00101101101010001100 0110 00010101 R - RF(1) 

00101101101010001100011000010101 ALU Shifter - S + Cn 

Destination 10010110110101000110001100001010 I RF(1) - ALU shift result 

LSH 

Source 0101 0000 1010 1001 1001 101000001110 I MQ shifter - MQ register 

Destination 1010 1000 0101 0100 1100 1101 0000 0111 MQ register - MQ shift result 



SUBI Subtract Iml1lediate I 7 I 8 I 

FUNCTION 

Subtracts four-bit immediate data on A3-AO with carry framS-bus data. 

DESCRIPTION 

Immediate data in the range 0 to 15, supplied by the user at A3-AO, is inverted and 
added with carry to S. . 

Available R Bus Source Operands (Constantl 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) 'Immed A3-AO 

Mask 

No Yes No No 

Available S Bus Source Operands 

RF MQ 
(S5-BO) 

DB-Port 
Register 

Yes Yes Yes 

Available Destination Operands Shift Operations 

RF RF 

(C5-CO) (B5-BO) 
Y-Port ALU MQ 

Yes No Yes None None 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Inactive 

SKIT No Inactive 

SI02 No Inactive 

SI03 No Inactive 

Cn Yes Two's complement s!Jbtraction if programmed high. 
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I 7 I 8 I Subtract Immediate 

Status Signals 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

1 if arithmetic signed overflow 

if carry-out 

EXAMPLE (assumes a 32-bit configuration) 

SUBI 

Subtract the value 12 from data on the DB bus, and store the result into register file 1. 

en z 

Instr 

Code 
17-10 

01111000 

Oprd 

Addr 

AS-AO 

00 1100 

Oprd Oprd Sel 

Addr EB1-

BS-BO EA EBO 

XX XXX X X 10 

Des! Destination Selects 

Addr iiVE3'- SELRF1- 0EY3-
C5-CO SELMO WEO SELRFO OEA OEB 0eY0 

000001 0 0000 10 X X XXXX 

...... Assume bits A3-AO hold C (Hex) and DB bus holds 24000100 (Hex). 
~ » 
(') 
-t 
CO 
CO 
W 
N 

Source 0000 0000 0000 0000 0000 0000 0000 1100 I R +- A3-AO 

Source 001001000000000000000001 00000000 Is+- DB bus 

Destination 00100100000000000000000011110100 I RF(l) +- R' + S + en 

3'176 
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SUBR Subtract R with Carry (R' + _ S + Cn) 

FUNCTION 

Subtracts data on the R bus from S with carry. 

DESCRIPTION 

Data on the R bus is subtracted with carry from data on the S bus. The result appears 
at the ALU and MQ shifters. 

"The result of this instruction can be shifted in the same mi~rocycle by specifying a shift instruction in- the 
upper nibble 117-14) of the instruction field. The result mlilY also be passed without shift. Possible instructions 
are listed in Tlilble 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(85,-80) 
D8-Port 

Register 

Yes Yes Yes 

Available Destination Operl!nds 

RF RF ALU MQ 
Y-Port 

Shifter (C5-CO) (85-80) Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SiOT No 

Si02 No 
-SiQ3 No 

Cn Yes Two's complement subtraction if programmed high. 

N 
M 
CO 
CO 
t­
O· 
ct 
~ .... -z 
tJ) 
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en z .... 
-1=10 
l> 
(") 

Subtract H with Carry (H' + S + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

if signed arithmetic overflow 

if carry-out 

SUBH 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated after shift 
operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

Subtract data in register 1 from data on the DB bus, and store the result in the MQ 
register. 

Instr Op,d Oprd Op,d Sel Des! Destination Selects 

Code Add, Add, E61- Addr WE3- SELRF1- 0Ev3- CF2-

17-10 A5-AO 65-60 EA EBO C5-CO SELMa Wfij SELRFO OEA 0eB 0eY0 DeS Cn CFO 

11100010 000001 XX XXXX 0 10 XX XXXX 1 XXXX XX x x XXXX 0 1 110 

-t 
CO Assume register file 1 holds 15008400 (Hex) and DB bus holds 4900C350 (Hex). 
CO 

~ Source 00010101000000001000010011010000 I R -- RF(l) 

Source 01001001 00000000 11000011 0101 0000 Is+- DB bus 

Destination 0011 0100000000000011 111010000000 I MQ register +- R' + S + en 
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SUBS Subtract S with Carry (R + S' + Cn) * I 3 

FUNCTION 

Subtracts data on the S bus from R with carry. 

DESCRIPTION 

Data on the S bus is subtracted with carry from data on the R bus. The result appears 
at the ALU and MQ shifters. 

'The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble (17-14) ofthe instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF MQ 

(B5-BO) 
DB-Port 

Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 

(C5-CO) 
Y-Port 

Shifter (B5-BO) Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

User 
Signal Use 

Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SIOl No 

SI02 No 

Si03 No 

Cn Yes Two's complement subtraction if programmed high. 

3-179 



CJ) 

2 ...., 
~ » 
n 
-t 
00 
00 
W 
N 

I * I 3 Subtract S with Carry (R + S' + Cn) 

Status Signals t 

ZERO 

N 

OVR 

C 

if result = 0 

1 if MSB = 1 

if signed arithmetic overflow 

if carry-out 

, 

tc is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

SUBS 

Subtract data on the DB bus from data in register 1, and store the result in the MQ 
register. 

Instr Oprd Oprd Oprd Sel Dest Destination Selects 

Code Addr Addr EB1· Addr WE3· SELRF1· OEY3- CF2-

17-10 A5-AO B5-BO EA EBO C5-CO SELMa WEO SELRFO OEA OEB 5EYo 5ES Cn CFO 

1110 0011 00 0001 XX xxxx a 10 xx XXXX 1 XXXX XX x x XXXX 0 1 110 

Assume register file 1 holds 150084DO (Hex) and DB bus holds 4900C350 (Hex). 

Source 000101010000 0000 1000 0100 11010000 I R +- RF(1) 

Source 0100 1001 0000 0000 1100 0011 0101 0000 Is+- DB bus 

Destination 1100 1011 1111 1111 1100 0001 1000 0000 MQ register +- R + S' + Cn 
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TBO Test Bit (Zero) I 31 81 

FUNCTION 

Tests bits in selected bytes of 5-bus data for zeros using mask in C3~CO::A3-AO. 

DESCRIPTION 

The 5 bus is the source word for this instruction. The source word is passed to the 
ALU. where it is compared to an 8-bit mask. consisting of a concatenation of the C3-CO 
and A3-AO address ports (C3-CO::A3-AO). The mask is input via the R bus. The test 
will pass if the selected byte has zeros at all bit locations specified by the ones of 
the mask. Bytes are selected by programming th~ 510 inputs low. Test results are 
indicated on the ZERO output. which goes to one if the test passes. Register write 
is internally disabled during this instruction. ' 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5~AO) Immed A3-AO 

Mask 

No No No Yes 

Available S Bus Source Operands 

RF MG 

(B5-80) 
DB-Port 

Register 

Yes Yes Yes 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO Yes Byte Select 

SiOT Yes Byte Select 

Si'02 Yes 8yte SeleCt 

SI03 Yes Byte Select 

Cn No Inactive 
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I 3 I 8 

Status Signals 

ZERO 

N 

1 if result (selected bytes) 

o 
OVR 0 

C =,0 

Test Bit (lero) 

Pass 

EXAMPLE (assumes a 32-bit configuration) 

Test bits 7, 6 and 5 of bytes 0 and 2 of data in register 3 for zeroes. 

CJ) 

:2 

Instr 

Code 

17-10 

00111000 

Mask 

ILSH) 

A3-AO 

0000 

Oprd Oprd Sel 

Addr EB1, 

B5-BO EA EBO 

00 0011 X 00 

Mask Destination Selects 

IMSHI WE3- SELRF1-

C3-CO SELMa WEe SELRFO OEA DEB 

1110 X xxxx xx x x 

" Assume register file 3 holds 881 CD003 (Hex). 
~ 

om- CF2-

0EY0 0Es en CFO 

xxxx a x 110 

Si03-
SiOo 
lOla 

~ Source 11100000 11100000 11100000 11100000 I R +- Mask (C3-CO::A3-AO) 
-i 
(X) 

~ Source 10001000000111001101000000000011 I SN +- RF(3)n t 

N 

Output [2] ZERO +- 1 

t n nth byte 
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TB1 Test Bit (One) I 2 I 81 

FUNCTION 

. Tests bits in selected bytes of S~bus data for ones using mask in C3cCO::A3~AO. 

. 

DESCRIPTION 

The S busis the source word for this instruction. The source word is passed to the 
ALU, where it is compared to an a-bit mask, consisting of a concatenation of the C3-CO 
and A3-AO address ports (C3-CO::A3-AOI. The mask is input via the R bus;.The test 
will pass if the selected byte has ones at all bit locations specified by the ones· of the 
mask. Bytes are selected by programming the 510 inputs low. Test results are indicated 
On the ZERO output, which goes to. one if the test passes. Register write is internally 
disabled for this instruction. 

Available RBus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

.. 
(A5~AO) Imrned A3-AO 

Mask 

No No No Yes 

Available SBu, Source Operands 

RF MQ 

(B5-BOI 
DB-Port 

Register 

Yes Yes Yes 

Control/Dat.a Signals 

Signal 
User 

, Use 
Programmable 

SSF No Inactive 

5100 Yes Byte Select 

5101 Yes Byte Select 
5102 . Yes Byte Select 

~ Yes Byte Select 

en No Inactive 



12 18 

Status Signals 

ZERO 

N 

OVR 

C 

1 if result (selected bytes) 

o 
o 
o 

Test Bit (One) 

Pa'ss 

EXAMPLE (assumes a 32-bitconfiguration) 

Test bits 7, 6 and 5 of bytes 1 and 2 of data in register 3 for ones. 

en 
2 

Instr 

Code 

17-10 

00101000 

Mask 

ILSHI 

A3-AO 

0000 

Oprd Oprd Sel 

Addr EB1-

B5-BO EA EBO 

000011 X 00 

Mask Destination Selects 

IMSHI WE3- SELRF1-

C3-CO SELMQ WeO SELRFO 0eA DEs 
1110 X XXXX XX X X 

-...I Assume register file 3 holds 881CF003 (Hex). 
~ 

OEY3- CF2-

0EY0 OES Cn CFO 

XXXX 0 X 110 

5103-

5100 

1001 

l> 
(") Mask 11100000 11100000 11100000 1110 0000 I Rn <- Mask (C3-CO::A3-AO) 
-f 
(X) 
(X) 
W 
N 

Source 

tn nth byte 

3-184 

1000 1000 0001 1100 1101 0000 0000 0011 I Sn <- RF(3)n t 
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UDIVI Unsigned Divide Iterate I c I 0 I 

FUNCTION 

Performs one of N-2 iterations of nonrestoring unsigned division by a test subtraction 
of the N-bit divisor from the 2N-bit dividend. An algorithm using this instruction can 
be found in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

UDIVI performs a test subtraction of the divisor from the dividend to generate a quotient 
bit. The test subtraction may pass or fail and is corrected in the subsequent instruction 
if it fails. Similarly a failed test from the previous instruction is corrected during 
evaluation of the current UDIVI instruction (see the "Other Arithmetic 
Instructions" section for more details). 

The R bus must be loaded with the divisor,the S bus with the most significant half 
of the result of the previous instruction (UDIVI during iteration or UDIVIS at the N 

M 
beginning of iteration). The least significant half of the previous result is in the MQ CO 
register. CO 

I­
UDIVI checks the result of the previous pass/fail test and then evaluates: 

F-R+S if the test is failed 
F - R' + S + en if the test is passed 

A double precision left shift is performed; bit 7 of the most significant byte of the 
MQ shifter istransferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit is 
circulated into the least significant bit of the MQ shifter. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 
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Ie 10 I -Unsigned Divide Iterate 

Recommended Destination Operands Shift Operations 

en z 
" ,J:I. 
l> 

RF RF 

(C5-CO) 
Y-Port 

(85-80) 

Yes No Yes 

Control/Data Signals 

User 

Signal Programmable 

SSF No 

SIOO No 

SiOT No 

'Si'52 No 

5103 No 

Cn Yes 

n Status Signals ..... 
(X) 
(X) 
W 
N 

ZERO 

N 

OVR 

C 

3-186 

1 if result = 0 

o 
o 
1 if carry-out 

ALU MQ 

Left Left 

Use 

Inactive 

Passes internally generated end-fill bit. 

Should be programmed high. 
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UDIVIS Unsigned Divide Start I B I 0 I 

FUNCTION 

Computes the first quotient bit of nonrestoring unsigned division. An 
algorithm using this instruction is given in the "Other Arithmetic Instructjions" section. 

DESCRIPTION 

UDIVIS computes the first quotient bit during nonrestoring unsigned division by 
subtracting the divisor from the dividend. The resulting remainder due to subtraction 
may be negative; the subsequent UDIVI instruction may have to restore the remainder 
during the next operation. 

The R bus must be loaded with the divisor and the S bus with the most significant 
half of the remainder. The result on the Ybus should be loaded back into the register 
file for use in the next instruction. The least significant half of the remainder is in the 
MO register. ~ 

UDIVIS computes: 

F +- R' + S + Cn 

A double precision left shift is performed; bit 7 of the most significant byte of the 
MO shifter is transferred to bit 0 of the least significant byte of the ALU shifter. Bit 7 
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit is 
circulated into the least significant bit of the MO shifter. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(AS-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF 
DB-Port 

MQ 

(85-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 

(C5-CO) (85-60) 
Y-Port ALU MQ 

Yes No Yes Left Left 
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IBID Unsigned Divide Start 

Control/Data Signals 

Signal 
User 

Programmable 
Use 

SSF No Inactive 

SIOO No Passes internally generated end-fill bit. 

SI01 No 

SI02 No 

SI03 No 

en Yes Should be programmed high. 

Status Signals 

ZERO 

N 

OVR 

C 
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1 if intermediate result = 0 

o 
if divide overflow 

1 if carry-out 

UDIVIS 



UDiVIT Unsigned Divide Terminate F I 0 I 

FUNCTION 

Solves the final quotient bit during nonrestoring unsigned division. An algorithm using 
this instruction is given in the "Other Arithmetic Instructions" section. 

DESCRIPTION 

UDIVIT performs the final subtraction of the divisor from the remainder during 
nonrestoring signed division. UDIVIT is preceded by N-l iterations of UDIVI, where 
N is the number of bits in the dividend. 

The R bus must be loaded with the divisor, the S bus must be loaded with the most 
significant half of the result of the last UDIVI instruction. The least significant half 
lies in the MO register. The Y bus result must be loaded back into the register file for 
use in the subsequent DIVRF instruction. 

UDIVIT checks the results of the previous pass/fail test and evaluates: 

Y+-R+S if the test is failed 
Y +- R' + S + en if the test is passed 

N 
M 
CO 
CO ..... 
() 
<t: The contents of the MO register are shifted one bit to the left; the unfixed quotient 'd" 

bit is circulated into the least significant bit. '" 
Z 
CIJ 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
DA-Port 

(A5-AO) Immed A3-AO 

Mask 

Yes No Yes No 

Recommended S Bus Source Operands 

RF MQ 
DB-Port 

(B5-BO) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (B5-BO) 
ALU MQ 

Yes No Yes None Left 
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I Flo Unsigned Divide Terminate 

Control/Data Signals 

Signal 
User 

Use 
Programmable 

SSF No Inactive 

5100 No Passes internally generated end-fill bit. 

SiOT No 

5102 No 

5103 No 

Cn Yes Should be programmed high. 

Status Signals 

ZERO 

N 

OVR 

C 

3-190 

1 if intermediate result = 0 

o 
o 
1 if carry-out 
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UMULI Unsigned Multiply Iterate o o 

FUNCTION 

Performs one of N unsigned multiplication iterations for computing an N-bit by N-bit 
product. An algorithm for unsigned multiplication using this instruction is given in the 
"Other Arithmetic Instructions" section. 

DESCRIPTION 

UMULI checks to determine whether the multiplicand should be added with the present 
partial product. The instruction evaluates: 

F - R + S + Cn 
F-S 

if the addition is required 
if no addition is required 

A double precision right shift is performed. Bit 0 of the least significant byte of the 
ALU shifter is passed to bit 7 of the most significant byte of the MQ shifter; carry-out 
is passed to the most significant bit of the ALU shifter. 

The S bus should be loaded with the contents of an accumulator and the R bus with 
the multiplicand. The Y bus result. should be written back to the accumulator after 
each iteration of UMULI. The accumulator should be cleared and the MQ register loaded 
with the multiplier before the first iteration. 

R Bus Source Operands 

C3-CO 
RF A3-AO .. 

(A5-AO) Immed 
DA-Port 

A3-AO 
Mask 

Yes No Yes No 

Recommend.ed S Bus Source Operands 

RF 
DB-Port 

MQ 
(B5-80) Register 

Yes Yes No 

Recommended Destination Operands Shift Operations 

RF RF 
Y-Port 

(C5-CO) (85-80) 
ALU MQ 

Yes No Yes Right Right 
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en 
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("") 

IDlo 

Control/Data Signals 

Signal 
User 

Programmable 

SSF No 

SIOO No 

SI01 No 

SI02 No 

SI03 No 

Cn Yes 

Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
1 if carry-out 

Unsigned Multiply Iterate 

Use 

Holds LSB of MQ. 

Passes internal input (shifted bit). 

Should be programmed high. 

-4 tValid only on final execution of mUltiply iteration 
00 
00 
W 
N 
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XOR Exclusive OR (R XOR S) 9 

FUNCTION 

Evaluates the logical expression R XOR S. 

DESCRIPTION 

Data on the R bus is exclusive ORed with data on the S bus. The result appears at 
the ALU and MQ shifters. 

"The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the 
upper nibble 117-141 of the instruction field. The result may also be passed without shift. Possible instructions 
are listed in Table 15. 

Available R Bus Source Operands 

C3-CO 

RF A3-AO .. 
(A5-AO) Immed 

DA-Port 
A3-AO 

Mask 

Yes No Yes No 

Available S Bus Source Operands 

RF 
DB-Port 

MQ 

(B5-BO) Register 

Yes Yes Yes 

Available Destination Operands 

RF RF ALU MQ 
Y-Port 

(C5-CO) (B5-80) Shifter Shifter 

Yes No Yes Yes Yes 

Control/Data Signals 

User 
Use Signal 

Programmable 

SSF No Affect shift instructions programmed in bits 17-14 of 

SIOO No instruction field. 

SI01 No 

SI02 No 

SI03 No 

Cn No Inactive 
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Status Signals t 

ZERO 

N 

OVR 

C 

1 if result = 0 

1 if MSB = 1 

o 
o 

Exclusive OR (8 XOR S) 

t C is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated 
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation. 

EXAMPLE (assumes a 32-bit configuration) 

XOR 

Exclusive OR the contents of register 3 and register 5, and store the result in register 5. 

en 
2 

'" .;. 
» 

Instr 

Code 
17-10 

1111 1001 

Oprd Oprd 

Addr Addr 

AS-AO B5-BO 

000011 000101 

Oprd Sel Dest 

EB1- Addr 

EA ESO C5-CO 

0 00 000101 

Destination Selects 

WE3- SELRF1- 0EY3 CF2-

SELMO WEci SELRFO OEA Oeli 0EY0 0Es Cn CFO 

0 0000 10 X X XXXX 0 X 110 

C') Assume register file 3 holds 33F6D840 (Hex) and register file 5 holds 90F6D842 (Hex) .. 
-4 
CO 
CO Source 0011 0011 1111 01101101 100001000000 I R +- RF(3) 
W 
N 

Source 1001 00001111 01101101 100001000010 Is+- RF(5) 

Destination 10100011 000000000000000000000010 I RF(5) +- R XOR S 
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SN74ACT8836 32·8it by 32·8it 
Multiplier/Accumulator 

The SN74ACT8836 is a 32-bit integer multiplier/accumulator (MAC) that accepts 
two 32-bit inputs and computes a 64-bit product. An on-board adder is provided 
to add or subtract the product or the complement of the product from the 
accumulator. 

To speed-up calculations, many modern systems off-load frequently-performed 
multiply/accumulate operations to a dedicated single-cycle MAC. In such an 
arrangement, the 'ACT8836 MAC can accelerate 32-bit microprocessors, 
building block processors, or custom CPUs. The' ACT8836 is well-suited for 
digital signal processing applications, including fast fourier transforms, digital 
filtering, power series expansion, and correlation. 
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• Performs Full 32-Bitby 32-Bit 
Multiply/Accumulate in Flow-Through Mode 
in 60 ns (MaxI 

• Can be Pipelined for 36 ns (MaxI Operation 

• Performs 64-Bit by 64-Bit Multiplication in 
Five Cycles 

• Supports Division Using Newton-Raphson 
Approximation 

• Signed, Unsigned, or Mixed-Mode Multiply 
Operations 

• EPIC~ (Enhanced-Performance Implanted 
CMOSI 1-l'm Process 

description 

SN74ACT8836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

03046. JANUARY 1988 

• Multiplier, Multiplicand, and Product Can be 
Complemented 

• Accumulator Bypass Option 

• TTL I/O Voltage Compatibility 

• Three Independent 32-Bit Buses for 
Multiplicand, Multiplier, and Product 

• Parity Generation/Checking 

• Master/Slave Fault Detection 

• Single 5-V Power Supply 

• Integer or Fractional Rounding 

The' ACT8836 is a 32-bit by 32-bit parallel multiplier/accumulator suitable for low-power. high-speed 
operations in applications such as digital signal processing, array processing, and numeric data processing. 
High speed is achieved through the use of a Booth and Wallace Tree architecture. 

Data is input to the chip through two registered 32-bit DA and DB input ports and output through a registered 
32"bit Y output port. These registers have independent ciock enable signals and can be made transparent 
for flowthrough operations. 

The device can perform two's complement, unsigned, and mixed,data arithmetic .. lt can alsooperateas 
a 64-bit by 64-bit multiplier. Five clock cycles are required to perform a 64-bit by 64-bit multiplication 
and multiplex the 128-bit result. Division is supported using Newton-Raphson approximation. 

A multiply/accumulate mode is provided to add or subtract the accumulator from the product or the 
complement of the product. The accumulator is 67 bits wide to accommodate possible overflow. A warning 
flag (ETPERR) indicates whether overflow has occurred. 

A rounding feature in the' ACT8836 allows the result to be truncated or rounded to the nearest 32-bits. 
To ensure data integrity, byte parity checking is provided at the input ports, and a parity generator and 
master/slave error detection comparator are provided at the output port; 

The SN74ACT8836 is characterized for operation from OOC to 70°C. 

EPIC is a trademark, of Texas In$tr.um,ents,-Incorporated 

ADVANCE INFORMATION .d.Guments Gontain 

~=:=rono='::of~=,~p::a!~.eC=::='st':! 
ilata and other specifications are subject to change 
without notice. 

TEXAS • 
INSTRUMENTS 

POST OFFICE BOX 655012·· DALLAS, TEXAS 75265 

Copynght © 1988, Texas Instruments Incorporated 

4-5 

II 
co 
M 
00 
00 .... 
u « 
'¢ 
I' 
Z 
Ul 

2 
o 
i= 
<C 
:E 
a: 
o 
LL 
2 

w 
(J 
2 
<C 
> c 
<t 



SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

logic symbol 

32 x 32 MULTIPLIER/ 
ACCUMULATOR 

... 
74ACTSS36 

ClK 
(H11 

ClK OA PORT 

DB PORT 

CKEA 
(H15) '" OA REG PAR V PORT 

CKEB 

CKEI 

CKEV 

(H2) r-... DB REG 
STAT 

CLK MASTER/SLAVE 
(G14) ,.... 

I REG EN EaUAL CHK 
(C12) 

'" V REG 

0 

OASGN 
(F15) V PORT 

OBSGN 

COMPl 

RNOO 

RN01 
ACCO 

II ACC1 

SFTO 

SFT1 en 
:2 FTO 

" ~ FT1 

» 
(') SElV 

-I SElO 

CD EA 
CD Eii 
eN 

(G131 PARITV 

(H121 110 
3 

(G12) INSTR 
(E15) INPUTS 

(C141 
0 

(013) DA 
PORT 

PARITV 3 
(F1) INPUTS 0 
(G41 o I SHIFTER 

1 CONTROL DB 
PORT 

(H13) 
o I FEEOTHROUGH 3 

(G151 
1 CONTROL 

(B3) EXTENDED I 0 

(G11 
YMUX PRECISION 
OMUX INPUT 2 

(H14) ,.... 
(C3) r-... 

RMUX SELECT 

SMUX V OUT/EN 

m 
SELREG 

WEMS 

WELS 

l> 
C 

(E71 
TESTI 0 RA or RB I (011 ,.... 

MS 32-BITS WRITE PINS 1 
(G3) .... ENABLE 

LS 32-BITS , r 
< OAO 

l> z 
n OA31 

m 
OBO 

Z 
." 
0 OB31 

0 

• • I DAT~ • • 
• • 

~ 0 31 • 
I RESULTs) 

• 
0 • 

I DAT~ 31 • • • • • • 
31 

::xJ 
3: 
l> 
::j 
0 
Z 
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(BSI 

(aSI 

(C15) 

(E141 

(0151 

(014) 

(A151 

(E14) 

(B15) 

(MSI 

(aSI 

(PSI 

(a10) 

(a5) 

(M7) 

(a61 

(a7) 

(B131 

(B12) 

(B14) 

....., (C131 

(031 

(021 

• • • 

PERRA 

PERRB 

PERRV 

MSERR 

ETPERR 

PVO 

PV1 

PY2 

PY3 

PAO 

PA1 

PA2 

PA3 

PBO 

PB1 

PB2 

PB3 

YETPO 

VETP1 

VETP2 

TPO 
TP1 

VO 

Y31 



functional block diagram (positive logic) 

PA3-PAO +---I-c.;4:......-+-___ -f 
PB3-PBO +-_-f'-4 __ -f-___ -I 

PERRA -+------+-----' 
PERRB +----+------'--' 

32 

OA31-0AO +-_+3:;.:2=-._._-----. 

CKEA~----~----_f---;--I 

CKEI+---t--I 

EA+---t----+------~ 

SN74ACT8836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

SGNEXT 
SELO 

2 
SFT1-SFTO 

2 
SELREG 

WEMS 
WElS 

32 

32 
OB31-0BO 

CKEB 

1------++-+ EB 
'---.---' 

OASGN 

OBSGN 

RND1-RNDO 

COMPL 

ACC1-ACCO 

'----------1 MULTIPLIER/ADDER STAGE 1 

Fn-FTo...-..,4-

TPHPO~ 
CLK+-­

vCC~ 
GND~ 

PIPEliNE REGISTER 

MULTIPLIER/ADOER STAGE 2 

67 

J-----------+CKEY 

~---------~~SELY 

PERRY 

OEY~----------~-4~;---__ -+_---~ 

ETPERR YETP2-YETPO Y31-YO 

TEXAS.~ 
INSTRUMENTS 

MSERR PY 3-PYO 
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SN74ACT8836 
32·BIT BY 32·BITMULTlPLIER/ACCUMULATOR 

GB PIN-GRID-ARRA V PACKAGE 
(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A • • • • • • • • • • • • • • • • B 
• @ • • • • • • • • • • • @ • 

c • • • • • • • • • • • • • • • 
D • • • • • • • • • 
E • • .. • • • 
F • • • • • • 
G • • • • • • • • 
H • • • • • • • • 
J • • • • • • • • 
K • • • • • • 
L • • • • • • 

M • • • • • • • • • 
N • • • • • • • • • • • • • • • 
p • @ • • • • • • • • • • • @ • 
R • • • • • • • • • • • • • • • 

GB PACKAGE PIN ASSIGNMENTS 

PIN PIN PIN PIN PIN 
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME 
Al V8 812 YETPl 014 PYD H12 CDMPl M3 OB18 
A2 Yl0 B13 YETPO 015 ETPERR H13 FTO M7 PBl 
A3 Yll B14 YETP2 El SElREG H14 EA M8 PAD 
A4 Y13 815 PY3 E2 Y3 H15 CKEA Ml0 OA6 
A5 Y14 Cl YO E3 GNO Jl 082 M13 DA16 
A6 Y16 C2 Y4 E13 GND J2 DB3 M14 DA17 
A7 Y18 C3 EB E14 PY2 J3 DB5 M15 DA25 
A8 Y19 C4 Y5 E15 RNDl J4 OB7 Nl DB10 
A9 Y21 C5 VCC Fl SFTO J12 DA26 N2 DB19 
Al0 Y23 C6 GND F2 Yl J13 DA24 N3 DB20 
All Y25 C7 Y15 F3 GND J14 DA30 N4 DB21 
A12 Y27 C8 GND' F13 GND J15 DA31 N5 DB23 
A13 Y28 C9 Y22 F14 MSERR Kl DB4 N6 DB27 
A14 Y30 Cl0 GND F15 DASGN K2 DB9 N7 VCC 
A15 PYl Cll VCC Gl SELD K3 DBll N8 GND 
Bl Y2 C12 CKEY G2 SGNEXT K13 DA22 N9 DAD 
82 Y6 C13 OEY G3 WElS K14 DA28 Nl0 DA4 
83 SElY C14 ACCD G4 SFTl K15 DA29 Nll DA10 
B4 Y7 C15 PERRY G12 RNDO II DB6 N12 DA13 
85 Y9 Dl WEMS G13 DBSGN l2 D815 N13 DA15 
86 Y12 02 TPl G14 CKEI l3 DB13 N14 DA19 
B7 Y17 D3 TPD G15 FTl l13 DA18 N15 DA23 
B8 Y20 D7 GND Hl ClK l14 DA20 Pl DB12 
B9 Y26 D8 VCC H2 CKEli l15 DA27 P2 D816 
Bl0 Y29 D9 Y24 H3 DBD Ml DB8 P3 DB24 
Bl1 Y31 013 ACCl H4 DBl M2 DB17 P4 DB22 
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PIN 
NO. NAME 
P5 OB25 
P6 DB29 
P7 OB31 
P8 PERRA 
P9 PA2 
Pl0 DA2 
Pl1 DA8 
P 12 DA12 
P13 DA14 
P14 DAll 
P 15 DA21 
Rl DB14 
R2 0826 
R3 0828 
R4 DB30 
R5 PBO 
R6 P82 
R7 P83 
R8 PERRB 
R9 PAl 
Rl0 PA3 
Rl1 DAl 
R12 DA3 
R13 DA5 
R14 DA7 
R15 DA9 



PIN 

NAME NO. 

ACCO C14 
ACCl 013 
CLK Hl 

CKEA H15 

CKEB H2 

CKEI G14 

CKEY C12 

COMPL H12 

DAO N9 
DAl Rll 
DA2 Pl0 
DA3 R12 
DA4 Nl0 
DA5 R13 
DA6 Ml0 
DA7 R14 
DA8 Pll 
DA9 R15 
DAlC Nll 
DAll P14 
DA12 P12 
DA13 N12 
DA14 P13 
DA15 N13 
DA16 M13 
DA17 M14 
DA18 L13 
DA19 N14 
DA20 L14 
DA21 P15 
DA22 K13 
DA23 N15 
DA24 J13 
DA25 M15 
DA26 J12 
DA27 L15 
DA28 K14 
DA29 K15 
DA30 J14 
DA31 J15 

DASGN F15 

110 

I 

I 

I 

I 

I 

I 

I 

I 

I 

SN74ACT8836 
32·BIT BY 32·81T MULTIPLIER/ACCUMULATOR 

DESCRIPTION 

Accumulate mode opcode (see Table 2) 

System clock 

Clock enable for A register, active low 

Clock enable for B register, active low 

Clock enable for I register, active low 

Clock enable for Y register, active low 

Product complement control; high complements multiplier result, low passes multiplier unaltered 

to accumulator, 

DA port input data bits 0 through 31 

Sign magnitude control; high identifies OA input d.,ta as two's complement, low identifies DA input 

data as unsigned 

TEXAS ." 
INSTRl:JMENTS 4-9 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PIN 

NAME NO. 

OBO H3 

OB1 H4 

OB2 J1 

OB3 J2 

OB4 K1 

DB5 J3 

OB6 L 1 

OB7 J4 

OB8 M1 

OB9 K2 

0810 N1 
0611 K3 

OB12 P1 

OB13 L3 
OB14 R1 

0615 L2 

OB16 P2 

0617 M2 

0618 M3 

OB19 N2 

OB20 N3 

0621 N4 

OB22 P4 

0623 N5 

0624 P3 

0825 P5 

OB26 R2 

0627 N6 

0628 R3 

0629 P6 

0630 R4 

0631 P7 

OBSGN G13 

EA H14 

Eli C3 

ETPERR 015 

FTO H13 

FT1 G15 

4-10 
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DESCRIPTION 

DB port input data bits 0 through 31 

Sign magnitude control; high identifies 08 input data as two's complement, low identifies DB input 

data as unsigned. 

Core multiplier operand select. A high on this signal selects OA register for input on the R bus; a 

low selects the swap MUX. 

Core multiplier operand select. A high on this signal seleqs DB register for input on the S bus; a 

low selects the swap MUX. 

Equality check result. A low on this signal indicates that bits 67 through 64 of the core multiplier 

results are equal to bit 63. 

Feedthrough control signals for A, B, I, Pipeline and Y registers (see Table 4). 

TEXAS • 
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PIN 

NAME NO. 
110 

GND C6 
GND C8 
GND C10 
GND D7 
GND E3 
GND E13 
GND F3 
GND F13 
GND N8 

MSERR F14 0 

OEY C13 I 

PAO M8 
PAl R9 

I 
PA2 P9 
PA3 R10 
PBO R5 
PBl M7 
PB2 R6 

I 

PB3 R7 
PYO D14 
PYl A15 

110 
PY2 E14 
PY3 B15 
PERRA P8 0 
PERRB RS 0 
PERRY C15 0 
RNOO G12 I 

RNOl E15 I 

SELD Gl I 

SELREG El I 

SELY B3 I 

SGNEXT G2 I 

SFTO F1 I 

SFTl G4 
TPO 03 

I 
TPl 02 

VCC C5 

VCC Cll 

VCC 08 

Vec N7 

WEMS D1 I 

WELS G3 I 

SN74ACT8836 
32·BIT BY 32·BITMULTlPlIER/ACCUMULATOR 

DESCRIPTION 

Ground pins. All ground pins should be used and connected. 

Master/slave error flag. This signal goes high when the contents of the Y output multiplexer and 

the value at the external port are not equal. 

y, YETP2· YETPO, and PY3·PYO output enable, active low. 

Parity input data bus for DA input data 

Parity input data bus for 08 input data 

Y output parity data bus. Outputs data from parity generator (OEY = L) or inputs external parity 

data 10EY ~ HI. 

DA port parity status pin. Goes high if even-parity test on any byte fails. 

DB port ,parity status pin. Goes high if even-parity test on any byte fails. 

Y port parity status pin. Goes high if even-parity test on any byte fails. 

Multiplier/accumulator rounding control; high rounds integer result; low leaves result unaltered. 

Multiplier/accumulator rounding control; high rounds fractional result; low leaves result unaltered. 

o multiplexer select. High selects DA and DB ports; low selects multiplier core output. 

Write enable for temporary register and accumulator. High enables the temporary register; low enables 

the accumulator. 

Y multiplexer select. High selects most significant 32 bits of Y register" output; low selects least 

significant 32 bits. 

Sign extend control for multiplexer. A low fills shift matrix bits 66-64 with zeros; a high fills DA31 

in bits 66·64, 

Shift multiplexer control (see Table 4). 

Test pins Isee Table 51 

Supply voltage (5 VI 

Write enable for most significant 32 bits of temporary register and accumulator active low. 

Write enable for least significant 32 bits of temporary register and accumulator active low, 

TEXAS ~ 
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SN74ACT8836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

PIN 
NAME NO. 

110 DESCRIPTION 

YO Cl 
Yl F2 
Y2 Bl 
Y3 E2 
Y4 C2 
Y5 C4 
Y6 B2 
Y7 B4 
Y8 Al 
Y9 B5 
Y10 A2 
Yll A3 
Y12 B6 
Y13 A4 
Y14 A5 
YI5 C7 Y port data bus. Outputs data from Y register (OEY :::; L); inputs data to master/slave comparator 

Y16 A6 
110 

(OEY = HI. 
Y17 B7 
Y18 A7 
Y19 A8 
Y20 88 
Y21 A9 
Y22 C9 
Y23 Al0 
Y24 D9 
Y25 All 
Y26 B9 
Y27 A12 
Y28 A13 
Y29 Bl0 
Y30 A14 
Y31 811 
YETPO B13 

Data bus for extended precision product. Outputs three most significant bits of the 67-bit multiplier 
YETPI B12 1/0 

YETP2 B14 
core result; inputs external data to master/slave comparator. 

TABLE L INSTRUCTION INPUTS 

Signal High Low 
DASGN Identifies DA Input data as two's complement Identifies DA input data as unsigned 

DBSGN Identifies DB input data as two's complement Identifies DB input data-as unsigned 

RNDO Rounds integer result Leaves integer result unaltered 

ANDI Rounds fractional result Leaves fractional result unaltered 

COMPL Complements the product from the multiplier Passes the product from the multiplier to the 

before passing it to the accumulator accumulator unaltered 

ACCO See Table 2 See Table 2 
ACCI 

4-12 
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SFT, 

L 

L 

H 

H 

data flow 

SN74ACT8836 
32-BIT BY 32-BIT MULTIPLIER/ACCUMULATOR 

TABLE 2. MULTIPLIER/ADDER CONTROL INPUTS 

ACC' ACCO EA EB Operation 

0 0 X X ±(R x 51 + 0 

0 1 X X ±(R x 51 + ACC 

1 0 X X ± (R x 51 - ACC 

1 1 0 0 ± 1 x 1 + 0 

1 1 0 1 ± 1 x DB + 0 

1 1 1 0 ±DA x 1 + 0 

1 1 1 1 ±DA x DB + 0 

Ace is the data stored in the accumulator 

TABLE 3. SHIFTER CONTROL INPUTS 

SFTO Shifter Operation 

L Pass data without shift 

H Shift one bit left; fill with zero 

L Swap upper and lower halves of temporary register 

H Shift 32 bits right; fill with sign bit 

TABLE 4. FLOWTHROUGH CONTROL INPUTS 

Control Inputs Registers Bypassed 

FTl FTO Pipeline V I A B 

L L Yes Yes Yes Ves Yes 

L H Yes No No No No 

H L Yes Ves No No No 

H H No No No No No 

TABLE 5. TEST PIN CONTROL INPUTS 

TP' TPO Operation 

L L All outputs and II0s ,forced low 

L H All outputs and liDs forced high 

H L All outputs placed. in a high impedance state 

H H Normal operation (default state) 

Two 32-bit input data ports, DA and DB, are provided for input of the multiplicand and multiplier to registers 
A and B and the multiplier/adder. Input data can be clocked to the A and B registers before being passed 
to the multiplier/adder if desired. Two multiplexers, RandS; in conjunction with a flowthrough decoder 
select the multiplier operands from DA and DB inputs, A and B registers, or the temporary register. Data 
is supplied to the temporary register from a shifter that operates on external DA/DB data or a previous 
multiplier/adder result. The 67-bit multiplier/adder result can be output through the Y port or passed through 
the shifter to the accumulator. 

External DA and DB data is also available to the accumulator via the shifter. This 64-bit data can be extended 
with zeros or the sign bit. The 64 least significant bits from the shifter may also be latched in the 64-bit 
temporary register and input to the multiplier through the Rand S multiplexers. Aswap option allows the 
most significant and least significant 32-bit halves of temporary register data to be swapped before being 

. made availahle to the Rand S multiplexers .. This aflows either 32-bit half of the temporary register to be 
used as a multiplier. 

TEXAS ~ 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

architectual elements 

Included in the functional block diagram of the 'ACT8836 are the following blocks. 

1. Two 32-bit registered input data ports DA and DB 
2. A parity checker at tile DA and DB inputs 
3. An instruction decoder (I register) 
4. A flowthrough decoder that permits selected registers to be bypassed to support up to three 

levels of pipelining 
5. Rand S multiplexers to select operands for the multiplier/ adder from DA and DB inputs, registers 

A and B, or temporary register 
6. A 0 multiplexer th~t selects the operand for the shifter from the 67 -bit sign-extended DA and 

DB inputs or the multiplier/adder output 
7. A shifter block that operates on DA/DB input data or on multiplier/adder outputs for scaling or 

Newton-Raphson division 
8. A Y output multiplexer that selects the most significant half or the least significant half of the 

multiplier/ adder result for output at the registered Y port 
9. An extended precision error check that tests for overflow 

10. A master/slave comparator and parity generator/comparator at the Y output port for master/slave 
and parity checking 

• 

11. Registers at the external data and instruction input ports and the shifter and multiplier/adder 
~ output port to support pipe-lining 

input data parity checker 

:t> 
C 
< :t> 
:2 
o 
m 
:2 -n 
o 
::n 
s: 
~ -o 
:2 

An even-parity check is performed on each byte of input data at the DA, DB and Y ports. If the parity 
test fails for any byte, a high appears at the parity error output pin (PERRA for DA data, PERRB for DB 
data, PERRY for Y data). 

A and B registers 

Register A can be loaded with data from the DA bus, which normally holds a 32-bit multiplicand. Register 
B is loaded from the DB bus which holds a 32-bit multiplier. Separate clock enables, CKEA and CKEB, allow 
the registers to be loaded separately. This is useful when performing double precision multiplication or 
using the temporary register as an input to the multiplier/adder. The registers can be made transparent 
using the FT inputs (see Table 4). 

instruction register 

Instruction inputs to the device are shown in Table 1. These signals control signed, unsigned, and mixed 
multiplication modes, fractional and integer rounding, accumulator operations and complementing of 
products. They can be latched into instruction r,egister I when clock enable CKEI is low. 

Sign control inputs DASGN and DBSGN identify DA and DB input data as signed (high) or unsigned (low). 

Rounding inputs RNDO and RND1 control rounding operations in the multiplier/adder. A low on these inputs 
passes the results unaltered. If a high appears on RND 1, the result will be rounded by adding a one to 
bit 30. RND 1 should be set high if the multiplier/adder result is to be shifted in order to maintain precision 
of the least significant bit following the shift operation. If a high appears on RNDO, the result will be rounded 
by adding a one to bit 31. This code should be used when the adder result will not be shifted. 

A complement control, COMPL, is used to complement the product from the muliplier before passing it 
to the accumulator. The complement will occur if COMPL is high; the product will be passed unaltered 
if COMPL is low. 

ACC1-ACCO control the operation of the multiplier/adder. Possible operations are shown in Table 2. 
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32 

r---e~~3:.:;2"DB31.DBO 

I-++-..... CKEB 

EA~-+---~------~ ~---~--+EB 

DASGN 

DBSGN 

RND1·RNDO 

COII(IPL 

ACC1·ACCO 

~--~-----I MULTIPLIER/ADDER STAGE 1 

PIPELINE REGISTER 

MULTIPLIER/ADDER STAGE 2 

INPUT REGISTERS AND PARITY CHECK 

I, S, and swap multiplexers 

67 

The Rand S multiplexers select the multiplier/adder operands from external data or from the temporary 
register. 

When EA is low, the R multiplexer selects data from the swap multiplexer. When EA is high, the R multiplexer 
selects data from DA or the A register, depending on the state of the flowthrough control inputs (see 
Table 4). When EB is low, the S multiplexer selects data from the swap multiplexer. When EB is high, the S 
multiplexer switches data from DB or the B register, depending on the state of the flowthrough control inputs. 

EA and EB are also used in conjunction with the multiplier/adder control inputs to force a numeric one 
on the R or S inputs (see Table 2). 

The swap multiplexers are controlled by the shifter control inputs. When SFT1 is high and SFTO is low, 
the most significant half of the temporary register is available to the S multiplexer, and the least significant 
half is available to the R multiplexer. When SFT1-SFTO are set to other values, the most significant half 
of the temporary register is available to the R multiplexer, and the least significant half is available to the 
S multiplexer. 

lultiplier/adder 

The multiplier performs 32-bit multiplication and generates a 67-bit product. The product can be latched 
in the pipeline to increase cycle speed. The product is complemented when COMPL is set high as shown 
in Table 1. The adder computes the sum or the difference of the accumulator and the product and gives 
a 67-bit sum. Bits 66-64 are used for overflow and sign extension. 
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32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

o multiplexer 

The D multiplexer selects input data fot the shifter. Two sources are available to the multiplexer: a 64-bit 
word formed by concatenating DA and DS bus data, and the 61-bit sum from the multiplier/adder. IfSELD 
is high, external DA/DS data is selected; if SELD is low, the sum is selected. 

If the 64-bit word is selected for input to the shifter, three bits are added to the word based on the state 
of the sign extend signal (SGNEXT). If SGNEXT is low, bits 66-64 are zero-filled; if SGNEXT is 'high, bits 
66-64 are filled with the value on DA31. 

temporary register and accumulator (Figure 11 

Output from the shifter will be stored in the temporary register if SELREG is high and in the accumulator 
register if SELREG is low. The 64-bit temporary register can be used to store temporary data, constants 
and scaled binary fractions. 

Separate clock controls, WELS and WEMS, allow the most significant and least significant halves of the 
shifter output to be loaded separately. The 32 least significant bits of the selected register are loaded when 
WELS is low; the most significant bits when WEMS is low. When WELS and WEMS are both low, the 
entire word from the shifter is loaded into the selected register. 

OA31-0AO 
32 

CKEA 

EA 
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shifter 
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The shifter can be used to multiply by two for Newton-Raphson operations or perform a 32-bit shift for 
double precision multiplication. The shifter is controlled by two SFT inputs, as shown in Table 3. 

Y register 

Final or intermediate multiplier/adder results will be clocked into Y register when CKEY is low. 

Results can be passed directly to the Y output multiplexer using flowthrough decoder signals to bypass 
the register (see Table 4). 

Y multiplexer and Y output multiplexer 

The Y multiplexer allows the 64-bit result or the contents of the Y register to be switched to the Y bus, 
depending upon the state of the flowthrough control outputs. The upper 32 bits are selected for output 
when the Y output multiplexer control SEL Y is high; the lower 32 bits are selected for output when SEL Y 
is low. Note that the Y output multiplexer can be switched at twice the clock rate SO that the 64-bit result 
can be output in One clock cycle. 

flowthrough decoder 

To enable the device to operate in pipelined or flowthrough modes, on-chip registers can be bypassed using 
flowthrough control signals FT1 and FTO. Up to three levels of pipeline can be supported, as shown in .. 
Table 4. ... 

FT1·FTO 

MULTIPLIER/ADDER STAGE 1 

PIPELINE REGISTER 

MULTIPLIER/ADDER STAGE 2 

~----------~~~~t-------------------~CKEY 

Y31·YO 

FIGURE 2. Y OUTPUT 
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Y 
REGISTER ~-------------------4-CKEY 

~------------------~SELY 

PERRY 

OEY~-------------------r~~1------t--+-------~ 

ETPERR YETP2-YETPO Y31-YO MSERR PY3-PYO 

FIGURE 3_ OUTPUT ERROR CONTROL 

extended precision check 

Three extended product outputs, YETP2-YETPO, are provided to recover three bits of precision during 
overflow. An extended precision check error signal (ETPERR) goes high whenever overflow occurs. If sign 
controls OASGN and OBSGN are both low, indicating an unsigned operation, the extended precision bits 
66-64 are compared for equality. Under all other sign control conditions, bits 66-63 are compared for 
equality. 

00 master slave comparator 
00 
W 
0) 
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A master/slave comparator is provided to compare data bytes from the Y output multiplexer with data 
bytes on the external Y port when OEY is high. A comparison of the three extended precision bits of the 
multiplier/adder result or Y register output with external data in the YETP1-YETPO port is performed 
simultaneously. If the data is not equal, a high signal is generated on the master slave error output pin 
(MSERR). A similar comparison is performed for parity using the PY3-PYO inputs. This feature is useful 
in fault-tolerant design where several devices vote to ensure hardware integrity. 

test pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place all outputs in a 
high-impedance state, isolating the chip from the rest of the system (see Table 5), 

data formats 

The 'ACTBB36 performs single-precision and double-precision multiplication in two's complement, unsigned 
magnitude, and mixed formats for both integer and fractional numbers. 

Input formats for the multiplicand (R) and multiplier (S) are given below, followed by output formats for 
the fully extended product. The fully extended product (PROT) is 67 bits wide. It includes the extended 
product (XTP) bits YETP1-YETPO, the most significant product (MSP) bits Y63~Y32, and the least significant 
product (LSP) bits Y31-YO. 
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This can be represented in notational form as follows: 

PRDT XTP : : MSP : : LSP 
or 

PRDT YETP2 - YETPO : : Y63 - YO 

Table 6 shows the output formats generated by two's complement, unsigned and mixed-mode 
multiplications. 

TABLE 6. GENERATED OUTPUT FORMATS 

Two's Complement Unsigned Magnitude 

Two's Complement Two's Complement Two's Complement 

Unsigned Magnitude Two's Complement Unsigned Magnitude 

examples 

Representative examples of single-precision multiplication, double-precision multiplication, and division using 
Newton-Raphson binary division algorithm are given below. 

single-precision multiplication 

31 

_231 

'Sign 1 

31 

2 31 

31 

-2° 
,ig") 

Microcode for the multiplication of two signed numbers is shown in Figure 1. In this example, the result 
is rounded and the 32 most significant bits are output on the Y bus. A second instruction (SEL Y = 0) 
would be required to output the least significant half if rounding were not used. 

Unsigned and mixed mode single-precision multiplication are executed using the same code. (The sign 
controls must be modified accordingly.) Following are the input and output formats for signed, unsigned, 
and mixed mode operations. 

30 29 

2 30 2 29 

30 29 

2 30 2 29 

30 29 

2-1 2- 2 

Two's Complement Integer Inputs 
'nput Operand A 

............ 2 0 I 31 30 29 

22 2' 20 _231 2 30 229 
(Sign 1 

Unsigned Integer Inputs 
Input Operand A 

............ ' 2 0 31 30 29 

........ , . 22 2' 20 2 31 2 30 229 

Two's Complement Fractional Inputs 
Input Operand A 

2 

..... 2-29 

0 I I 31 30 

2-30 2-3• -2° 2-1 

(Sign 1 
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Input Operand B 

. . . . . . . . . . . . . . . . . 2 0 

22 2' 20 

Input Operand B 

. . . . . . . . . . 2 0 

22 2' 20 

In put 0 perand B 

2 0 

.. 2-29 2-30 2-31 
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SN74ACT8836 
32·BI1 BY 32·BIT MULTIPLIER/ACCUMULATOR 

31 30 29 

2- 1 2-2 2-3 

Extended 
Product 

IYETP2-YETPO) 

Unsigned Fractional Inputs 
Input Operand A 

2 0 1 31 30 29 

.. 2-30 2-31 2-32 2-1 2-2 2-3 

Two's Complement Integer Outputs 

Most Significant Product 
IY63-Y32) 

Input Operand B 

2 

......... . ........ 2-30 

Least Significant Product 
IY31-YO) 

0 1 

2- 31 2-32 

1 66 65 64 1 1...1.c..63.:..-_6_2_.:.6_1 __ -,--,-.c...c.._.:.30,--....:3.c..1_.:.32:....111 I... ..:.3.:.1 -.-.:3;.:0_::.;29'-----'.c...:.'---'--....:2=--.c...c.._--..:.0-J� 
_266 265 264 
'-.,-' 

(Sign) 

Extended 
Product 

IYETP2-YETPO) 

66 65 64 

Extended 
Product 

(YETP2-YETPO) 

1 66 65 64J 

_24 23 22 
'-.,-' 

(Sign) 

Extended 
Product 

(YETP2-YETPO) 

234 233 232 231 230 229 

Unsigned Integer Outputs 

Most Significant Product 
IY63-Y32) 

Least Significant Product 
(Y31-YO) 

20 

L.-6_3_6_2 __ 6_1 ____________ 30 ___ 3_1 ___ 3_2~1 1...1_3_1 __ 3_0 ___ 2_9 ___________ 2 ________ 0~1 

263 262 261 234 233 232 231 230 229 22 

Two's Complement Fractional Outputs 

Most Significant Product 
(Y63-Y32) 

63 62 61 '30 31 32 

Least Significant Product 
(Y31-YO) 

31 30 29 2 

21 20 

o 1 
21 20 2- 1 2-28 2-29 2-30 2-31 2-32 2-33 2-60 2-61 2-62 

Unsigned Fractional Outputs 

Most Significant Product 
(Y63-Y32) 

Least Significant Product 
(Y31-YO) 

L.-6_6 ___ 6....:5 ___ 6_4~1 L.1_6_3 ___ 6_2 ___ 6_1 ____________ 30 ____ 31 ___ 3_2~ 31 30 29 2 0 I 
22 21 20 2-1 2-2 2-3 2-33 2-34 2-35 2-62 2-63 2 - 64 
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To simplify discussion of double-precision multiplication, the following example implements an algorithm 
using one' ACT8836 device. It should be noted that even higher speeds can be achieved through the use 
of two 'ACT8836s to implement a parallel multiplier. 

The example is based on the following algorithm where A and Bare 64-bit signed numbers. 

Let 
Am = as,a62, a61,· .. , a32 

and 
AI = a31. a30, a29, ... , ao (ao LSBI 

Therefore: 
A = (Am x 2321 + AI 

Likewise: 
B = (Bm x 2321 + B, 

Thus: 
A x B = [(Am x 2321 + Ali x [(Bm x 2321 + B,] 

= (Am x Bm) 264 + (Am x B, + Ail x Bm)232 + AI x B, 

Therefore, four products and three summations with rank adjustments are required. 

Basic implementation of this algorithm uses a single' ACT8836. The result is a two's complement 128-bit 
product. Microcode signals to implement the algorithm are shown in Figure 4. 

The first instruction cycle computes the first product, AI x B,. The least significant half of the result is 
output through the Y port for storage in an external RAM or some other 32-bit register; this will be the 
least significant 32-bit portion of the final result. 

The instruction also uses the shifter to shift the AI x B,product 32 bits to the right in order to adjust 
for ranking in the next multiplication-addition sequence. The least significant half of the shift result is stored 
in the lower 32-bit portion of the accumulator; the upper 32 bits contain the zero and fill. 

The second instruction produces the second product, AI x Bm, adds it to the contents of the accumulator, 
and stores the result in the accumulator for use in the third instruCtion. 

Instruction 3 computes Am x B" adds the result to the accumulator, and outputs the least significant 
32 bits of the addition for use as bits 63-32 of the final product. 

This instruction also shifts the result 32 bits to the right to provide the. necessary rank adjustment and 
stores the shift result (the most significant half of the addition result) in the lower 32 bits of the accumulator. 
Bits ACC63-ACC32 are filled with zeros; the sign is e.xtended into the three upper bits (ACC66-ACC64). 

Instruction 4 computes the fourth product (Am x Bm), adds it to the accumulator, and outputs the least 
significant half at the Y port for use as bits 95~64 of the final product. 

This example assumes that the chip is operating in feed-through mode. A fifth instruction is therefore required 
to perform the fourth iteration again so that bits 127-96 of the final product can be output. 
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Example 1. Single Precision Multiply. 32-Bit Result 

Operand 
Instruction Inputs 

Select Product Multiplierl Register Register Feed-
R bus Rounding Comple- Adder O·MUX Sign Shift-MUX Load Write through 
S bus Sign Control ment Mode Select Extend Control Select Enable Control 

EAEB OASGN OBSGN RN01 RNOO COMPL ACC1 ACCO SELD SGNEXT 8FT1 SFTO SELREG !wEll WEL FT1 FTO 

1 1 1 1 0 1 0 0 0 0 X 
L ________ 

Example 2. Double-Precision Multiply. 64-Bit Result 

Operand 
Instruction Inputs 

Select Product Multiplierl 
Instruction R bus Rounding Compte- Adder O-MUX 

Number S bus Sign Control ment Mode Select 

EAEB OASGN OBSGN RN01 RNOO COMPL ACC1 ACeO SELD 

111 1 1 0 0 0 0 0 0 0 0 

121 1 1 0 1 0 0 0 0 1 0 

131 1 1 1 0 0 0 0 0 1 0 

141 1 1 1 1 0 0 0 0 1 X 

151 1 1 1 1 0 0 0 0 1 X -

Example. 3. Newton-Raphson Division 

Operand 
Instruction Inputs 

Select Product Multiplier! 
Instruction R bus Rounding Comple- Adder O-MUX 

Number 5 bus Sign Control ment Mode Select 

EAEB OASGN OBSGN RND1 RNOO COMPL ACCl ACCO SELD 

Repeat N Times * 

111 0 1 0 0 0 0 0 0 0 0 

121 0 0 a 0 0 1 0 0 0 0 

'End Repeat 

131 0 1 0 0 0 0 0 0 0 0 

141 0 0 0 0 0 0 0 0 0 0 

"N '" ~ Where m "" number of bits in the seed (assuming 32-bits of precisionl 
2m+ 1 

0 0 0 0 0 

Register 
Sign Shift-MUX Load 

Extend Control Select 

SGNEXT SFT1 SFTO SELREG 

0 1 1 0 

0 0 0 0 

0 1 1 0 

0 0 0 X 

0 0 0 X 

Register 
Sign Shift-MUX Load 

Extend Control Select 

SGNEXT SFTl SFTO SELREG 

0 1 1 1 

0 0 1 1 

0 1 1 1 

0 0 1 1 

FIGURE 4. MICROCODED EXAMPLES 
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Feed- Clock Enables 
through Y-MUX 
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FT1 FTO CKE' CKEA CKEB CKEY SELY 

0 0 1 1 1 1 0 

0 0 1 1 1 1 X 

0 0 1 1 1 1 0 

0 0 1 1 1 1 0 

0 0 1 1 1 1 1 

Feed- Clock Enables 
through Y-MUX 
Control I A B Y Select 

FTl FTO eKEI CKEA CKEB CKEY SELY 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 

1 0 0 0 0 0 1 
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Newton-Raphson binary division algorithm 

The following explanation illustrates how to implement the Newton-Raphson binary division algorithm using 
the 'ACT8836 multiplier/accumulator. The Newton-Raphson algorithm is an iterative procedure that 
generates the reciprocal of the divisor through a convergence method. 

Consider the equation Q = A/B. This equation can be rewritten as Q = A x (1/8). Therefore, the quotient 
Q can be computed by simply multiplying the dividend A by the reciprocal of the divisor (B). Finding the 
divisor reciprocal l/B is the objective of the Newton-Raphson algorithm. 

To calculate liB the Newton-Raphson equation, Xi + 1 = Xi(2-BXi) is calculated in an iterative process. 
In the equation, 8 represents the divisor and X represents successively closer approximations to the 
reCiprocal 1/8. The following sequence of computation illustrates the iterative nature of the Newton-Raphson 
algorithm. 

Step 1 
Step 2 
Step 3 

Step n 

Xl 
X2 
X3 

XO(2-BXO) 
Xl (2-8Xl) 
X2(2-BX2) 

Xn = Xn-l (2-BXn-l ) 

The successive approximation of Xi, for all i, approaches the reciprocal 118 as the number of iterations 
increases; that is 

lim Xi = 1/8 
i -+ n 

The iterative operation is executed until the desired tolerance or error is reached. The required accuracy 
for 118 can be determined by subtracting each xi from its corresponding xi + 1. If the difference I Xi + 1 
_. Xi I is less than or equal to a predetermined round off error, then the process is terminated. The desired 
tolerance can also be achieved by executing a fixed number of iterations based on the accuracy of the 
initial guess of 1/8 stored in RAM of PROM. 

The initial guess, XO, is called the seed approximation. The seed must be supplied to the Newton-Raphson 
process externally and must fall within the range of 0 <XC <2/8 if B is greater than 0 or 2/B <XO<O 
if B is less thanO. 

To perform the Newton-Raphson binary division algorithm using the' ACT8836, the divisor, B, must be 
a positive fraction. As a positive fraction, 8 is limited within the range of 1 12 ~ 8 < 1. 

Since Xi from Newton-Raphson must lie between 0 < Xi < 2/B and since the range of the positive fraction 
8 is 1 12 ~ 8 < 1, then the limits of Xi become 1 ~ Xi < 2. 

The range of - BXi will therefore be - 2 ~ - BXi ~ - 1/2. 

The limits of - 8Xi are shown in Table 7 as they would appear in the' ACT8836 extended bit, binary fraction 
format. 

TABLE 7. LIMITS OF -BXi IN 'ACT8836 EXTENDED BIT FORMAT 

Extended Bits 
63 62 61 2 

66 65 64 
...... 

-2 1 1 1 0 0 0 . . .... 0 

-% 1 1 1 1 1 0 ... 0 

The diagram indicates that - 8Xi is always of the form: 

11 1 dO . dl d2 ............ dn - 2 dn-l 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

The next step in Newton-Raphson is to complete the 2 - BXi equation. The fractional representation of 2 is: 

001 0 . 00 ........... 00 

Completion of the 2 - BXi equation is shown in Table 8. 

TABLE 8. COMPLETION OF 2-BXj EQUATION 

Extended Bits 
63 62 61 1 0 

66 65 64 
., , ... 

1 1 1 dO dl d2 " . dn -2 dn -l 

+ 0 0 1 0 0 0 ..... 0 0 

= 0 0 0 dO dl d2 ...... dn -2 dn -l 

Since this step only affects the extended bits (66-64) on the' ACT8836. this step can be skipped. The 
following algorithm can therefore be used to perform Newton-Raphson binary division with the' ACT8836. 

Assuming B is on the DB bus (or stored in the B register) and Xi is stored in the temporary register: 

Step 1 

Step 2 

Step 3 

Accumulator <- - (DB x temporary register) 
= 2-BXi 

Temporary Register <- Left shift one bit of 
(accumulator times temporary register) 

Xi+1 

= Xi (2-BXiI 

Repeat Steps 1 and 2 until I Xi + 1 - Xi I :5 a predetermined round-off error 

Two cycles are required for each iteration. The left shift that is performed in Step 2 is required to realign 
Xi after the signed fraction mUltiply. Microcode for this example is shown in Figure 4. 
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absolute maximum ratings over operating free-air temperature range (unless otherwise notedl t 

Supply voltage, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, 11K (VI < 0 or VI> Vee) ................................... ± 20 mA 
Output clamp current, 10K (VO<O or Vo>Vee) . . . . .. .. . . . . . ... . .. . . . .. . . . . . ±50 mA 
eontinuous output current, 10 (VO = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA 
eontinous current through Vee or GND pins. . . . . . . . . . . . . . . . . . . . . . . . ± 100 mA 
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e 
Storage temperature range ......................................... - 65 °e to 150 °e 

t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings 
only and fUnctional operation of the device at these or any other conditions beyond those indicated under "recommended operating 
conditions" is not implied. Exposure to absolute-maxi mum-rated conditions for 'extended periods may affect device reliability. 

recommended operating conditions 

MIN NOM MAX UNIT 

Vee Supply voltage 4.5 5 5.5 V 

VIH High~Jevel input voltage 2 Vee V 

Vil Low-level input voltage 0 0.8 V 

10H High-level output current -8 rnA 

10l Low-level output current 8 rnA 

V, Input voltage 0 Vee V 

Vo Output voltage 0 Vee V 

dt/dv Input transition rise or fall rate 0 15 nsN 

TA Operating free-air temperature 0 70 Qe 

electrical characteristics over recommended operating free-air temperature range (unless otherwise 
notedl 

PARAMETER TEST CONDITIONS Vee 
TA = 25°e TA - oQe to 10'e 

UNIT 
MIN TYP MAX MIN MAX 

-20 pA 
4.5 V 4.4 4.4 

IOH ~ 
5.5 V 5.4 5.4 

VOH V 
4.5 V 3.8 3.7 

10H = -8 rnA V 
5.5 V 4.8 4.7 

10l = 20 pA 
4.5 V 0.1 0.1 

5.5 V 0.1 0.1 
VOL V 

4.5 V 0.32 0.4 
10l = 8 rnA V 

5.5 V 0.32 0.4 

II VI = Vee or 0 5.5 V 0.1 ± 1.0 pA 

ICC VI ~ Vee or 0.10 5.5 V 50 100 pA 

ei VI - Vee or 0 5V 5 10 10 pF 

"Iee t 
One input at 3.4 V, 

other ihputs at 0 or Vee 5.5 V 1 1 rnA 

IOZH VI ~ Vee or 0 5V 0.5 5 pA 

10Zl VI = Vee or 0 5V -0.5 -5 pA 

t This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 or Vee. 
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SN14ACTB836 
32-BITBY 32-BIT MULTIPLIER/ACCUMULATOR 

setup and hold times 

tsul Instruction before ClK! 

tsu2 Data before ClK! 

tsu3 CKEA before ClK! 

tsu4 CKEB before ClK! 

tsu5 CKEi before ClK! 

tsu6 CKEY before ClK! 

tsu7 SElREG before ClK! 

tsu8 WEMS before ClK! 

tsu9 WElS before ClK! 

thl Instruction after ClK! 

th2 Data after ClK! 

th3 CKEA after ClK! 

th4 CKE8 after ClK! 

th5 CKEI after ClK! 

th6 C.KEY after ClK! 

th7 SElREG after elK! 

th8 WEMS after ClK! 

th9 WElS after ClK! 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

switching characteristics over recommended ranges of supply voltage and free-air temperature (see 
Figure 21 for load circuit and voltage waveforms 1 

FROM TO 
PARAMETER FT MOOE (FTl-FTO) MIN TYP MAX UNIT 

(INPUT) (OUTPUT) 

tpdl t ClK PIPE 11 36 

tpd2 t PIPE Y REG 11 36 

tpd3 t PIPE ACCUM 11 36 

tpd4 t Y REG Y All modes 18 

tpd5 SElY Y All modes 18 

tpd6 t ClK Y REG 01 54 

tpd7 t ClK ACCUM 10 or 01 67 

tpd8 ClK Y 10 67 

tpd9 DATA Y 00 60 

tpdl0 t DATA ACCUM 00 56 

tpdll ClK YETP 11 or 10 18 

tpd12 ClK ETPERR 11 or 10 18 

tpd13 elK YETP 00 67 

tpd14 ClK ETPERR 01 67 ns 

tpd15 DATA YETP 00 60 

tpd16 DATA ETPERR 00 60 

tpd17 PA PERRA All modes 20 

tpd18 DA PERRA All modes 20 

tpd19 P8 PERRB All modes 20 

tpd20 D8 PERRB All modes 20 

tpd21 PY PERRY All modes 20 

tpd22 Y MSERR All modes 22 

tpd23 YETP MSERR All modes 22 

ten2 OEY YETP All modes 20 

tenl OEY Y All modes 20 

tdisl OEY YETP All modes 15 

tdis2 OEY y All modes 15 

clock requirements 

PARAMETER 
SN74ACT8836 

MIN MAX 
UNIT 

twl ClK high 5 
ns 

tw2 ClK low 20 

tThese parameters cannot be measured but can be inferred from device operation and other measurable parameters. 
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SN74ACT8836 
32·BIT BY 32·BI1 MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 

eLK I/??????ZZ??????????????)?????????????????????????????ZZZZZZZZZZZZZZZ 
CKEA,CKEB~n-________________________________________________________________ ___ 

CKEI, CKEY ZZf 
I 

INSTR~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::X:::: 
, , 
I 

DATAZZX====================================================X=== I 

, 
SELY--+:------------------------------------------_______ 1 

I I 
I I 

OEY SSSSS\SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS '> I 
I , , 
I ~ten2 I 
" Ipd9 "I ~ tpd5 

Y31-YO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSX LSP X 

FIGURE 5, FULL FLOWTHROUGH MODE 1FT - 00) 

«ZZZZ 
tdiS2~ 

I 
MSP x:s 

CLK __________________________________________ ~~L------------------_ 

I 
CKEA,CKEB~r_--------------------------------------~I------------------------_ 
CKEI, CKEY Z4' I 

I I 
INSTR 2X:::::::::::::::::::::::::::::::::::::::::t'::::::::::::::::::::x:::: 

I I 
I I 
I , 

DATA~~==================================II==============:::X=== I I 
I I 
I , 

I I 

SELREG __ \~\\'>'\'>'>'>YYY\'''Y\'"\'\.:YYYYY\'\)':YYY\;''\\)''\''\,'>1> I, gIZZ??Z?ZZ? 

iNm'S, WELS tSU7-tsU9~: 
~th7-th9-_ 
I 

SUM-OF-:~::::::::::::::::::::::::::::::::::::::==*::::::::::JA~C~CU~M::::::::::: 
PRODUCT 

I 
I, tpd10 ., 
I I 

SELY I I 
I I 
I I 

OEY sssssssssssssssssssssssssssssssssssssss ~ I 
I I I 
I, tpd9 I ., 

I ,I 

Y31-YO s\Ss\SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSlSSSX 
ten2~ 

-r"..----~~~~ 

I 
I 
I 
I 

tpd5~ 
I 
I 

LSP l!C 

(7Z7Z 
tdis2~ 

I 
I 

MSP xs: 

FIGURE 6_ FULL FLOWTHROUGH MODE, ACCUMULATOR MODE 1FT = 00) 
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SN74ACT8836 
32-81T BY 32-81T MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 

CLK __________ ~r____I~ __________________ ~r____I~ ____________________ __ 
, 1 

1 I 

CKEA, eKES ~: : 422222ZZZZ22222227ZZZZ; 
CKEI, CKEY :+-tsu3-tsuS-.! 11+.--~.,~th3-thS 

INSTR::J!<: >,t================= _tau1---+! 1 

1 ... ,.----th1---_.' 
"=================::: DATA:::X i A,. * 
I 1 1 
i+-- tsu2---+! I 

, 1 

I+1.----th2-----+l., , 
PRODUCT=====:ti============::f::======]YR~EG[:====::: 

I 1 
, .... ------tpdS-------ot., 

I 
SELY 1 ~,.----------... ~::-<:""~~ 

--------------------------------------~,----------, , : 
OEY SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS" : 1 4Z7U 

: ~ tpd4: tdis2-l+--+1 

: : tpd5~ : 

Y31-YO SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS]( LSP X::=JM~S[P ==XS 
1 1 

ten2 I. .1 

FIGURE 7. FLOWTHROUGH PIPE ONLY VOLTAGE WAVEFORMS (FT - 01) 
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SN74ACT8836 
32:81T 8Y 32·81T MULTIPLIER/ACCUMULATOR 

ClK , 
I 

PARAMETER MEASUREMENT INFORMATION 

CKEA.CKEB , 

CKEI.CKEY ~~3k~'~~~~;;;;;;I;;;;;;;;;;;~;;;;;;;;;;;;~;t;;;;;;;;~~~~~~~~ --+i !+-tsu3-tsu6 

INSTR S)K , lIe::±====::J 
-.: :.-tsu 1 : 

~th1-----.t 

DATA:SX: A. B *:::::t===::::::: 
-.l :--tsu2 : : 
_th2~ , 
, 1 

SElREG I 1 I 1 
WEMS. WElS S SS(;SSSSSSS). ..cZZZZZzzzzzzzzzzzzZZZZZZZZZZZZZZZZZZZZZ 

, t su7-tsu9 14 .' I I I i , I I , 
i I+-- t h7-th9---.t I I 

SUM-OF- 1 I I::======:::jl=======±==== PRODUCT SSSSSSSSSSSSSSSSS'1iC ACCUM:t< , 

I I 1 ' 
~tpd7----+! I I 
, I 1 : 

PRODUCT SSSSSSSSSSSSSSSS'X 1 YRE. xq:~======::j:, =======::::==== 
I I' i 
~tpd6----+1 II I 1 

I 1 I 
SElY-------------------T:-----------i:~;:-----------'(~SSf$sSSSSSSS~S~,~S~S~S~S~S~SSS~fSSSSSS~S~S~S~S~ 

i , Ii: 
<lEY ssssssssssssssSS\ I : : .pzzzzazzzvzzzzzzzzazz 

I I 1 I I ' 
I ~tpd4 I I I I ' 
1 1 II iii 

Y31-YO SSSSSSSSSSSSSSSSSSSSS~ LSP' * MSP lie: zzzzzzzzzzzzzzzzzazz 
1 1 'I , I 

ten2 14 ~ f4---.--of- tpd5 ~ tdis2 

FIGURE 8. FLOWTHROUGH PIPE ONLY, ACCUMULATOR MODE (FT - 01) 

2 ______________________________________________ _ 
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SN14ACT8836 
32·81T 8Y 32·81T MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 

ClK __________________ ~r----1~--~--------------------------------------
I 
I+- th3·th5 .... CKEA. CKEB ~ I I 

~ I <!ssssssssssssssss, CKEI i+---tsu3.tsu5~ 

INSTR::::X I *============ 
:. tsu1 ~: : 

1414------th1------+l~1 

DATA:Jk=========t:==:JA[.[B========:::*============ I I I 
114.----t.u2---~~1 I 

I I 
.. 1.------th2------+l~1 
I SElY __________________ ~I--~----__ ------------------___ 1( 
1 1 
: I 

~ SSSSSSSSSSSSSSSSSSSSSSSSSSSssSSSsss» i 
:l+---+r-ten2 I 

.czz; 
tdis2....J4...-.1 

I 
1 I. tpdB ~: ~tpd5 

Y3HO >SSSSSSSSSSSSSssss\ssSSSSSSSSSSSSSSSSSS* lSP X MSP XS 

FIGURE 9. FLOWTHROUGH PIPE AND Y ONLY 1FT = 10) 

ClK 
I I 

~ ~tsu3·tsu5 th3·th5~ CKEA. CKEB ">.'{,.I : }z 
CKEI ~~~I--------------~-------------r--------------;---------------~I----~~ 

INSTR ~ l!< x x )(C~: === 
-..I ~tsu1 : I 

i+---th1_ I 
I I 

DATA~ I A,S * X X xC~I===: 
I I I I 
~tsu2 I 1 

I 1 I 
'---th2----.1 I 

SElREG: I I 1 WEMS.WElS ~SSSSSSS» 1 <f2ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
I ~tsu7·tsu9 I I I 1 
I I. I I : 1 
I I4---th7·th9--..i I 1 I 

SUM.OF. I I I : : 
PRODUCT ZZZZZZZZZZZ722ZZZZX ACCUM * 

I 1 I I 
;..........--tpd7~ I 

: . 1 ~--~------------~I~------------~------
I I -( I 
I I 1 1 

~ SSS<SSSSSSSSSSS)-. : ! -flZZz)zzzzzzzzzzazhzzzm 
1 . ~ten2 I Iii I 
I. tpd8 I .1 tpd5~1 tdis2"*--! I 1 
I I I II I I I 

SElY 

Y3HO ZZZZZZZZZZZZZZZZZZ2X lSP l!< MSP l!< ZZZZZZZZZZZZZZZZ7777Z2/ 

FIGURE 10. FLOWTHROUGH PIPE AND Y ONLY, ACCUMULATOR MODE 1FT - 10) 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 

ClK 
, I 

_ "'- t su3-tsu6 I 
CKEA. CKEB ~ I I 
CKEI. CKEY - : I 

I 
INSTR::::!< : ' x : x xCI! =====>q:===::) 

--+i ~tsul : I I 
-thl- I : 

DATA:::K: 8PI1l *: CO!2l x X I 

-..: ;"'tsu2 :: I : 

_th2-o1 I : : 

INTR. PRODUCT ~A'S\\§.\S\s,* ptPE X PIPE *c:=====~====::::====:±== 
!.--tpdl--": i I I 

I I I I c=::~::::::::~I::::::::::t:::= PRODUCT s&~"'~""'-\'L~'\$'>S* I YREG X ! YREG X I 
: ~~~ I I I 
I I : I : I 
I, : I ~~Ir-----~~ __ -+ ____ ~~(----rl----~\~"~S~'~SS~S~S~SS~s~S~S 
I I I I I I I I : 

SElY 

I I I I I I I I I 

~ S\\\f%SS\\\\\\\fSSSS\\\SS\S~ : : : : I : : 122?vymm 
I I I J4-.tpd4..... I I tpd5~ I tpd5~ I I 
I I J. I I ' I I I I I I I 

Y31~YO'~""~'§»%»&~%,,$S\$S\SS$* lSP1: * MSP1 * LSP2 * MSP2 :X1Vifi?V! 
[ I' I 

4-32 

_te"2_ ~tpd5 _ /+-ldis2 

FIGURE 11. ALL REGISTERS ENABLED 1FT - 11) 
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SN74ACT8836 
32·BIT BY 32·BIT MULTIPLIER/ACCUMULATOR 

PARAMETER MEASUREMENT INFORMATION 

ClK 
I I 

~ r4- 'h3"suS I 
CKEA. CKEB ~ I I 
CKE!. CKEY I I 

INSTR :JI< : I * : 
-.I ,..tsu 1 I 

.......----th1--.i 

DATA:::':; A.B"I * 
-.J !"-'su2 : 

:+--th2_ I 

INTR. PRODUCT ~'''''*'''\§'X , I 

-'pd1~ 
SELREG I I 

~'§S\~ : WEMS. WElS, I I 

:tSU7-'SU9~ 

C, D 121 

PI" 

: th3-thS-': f4-
I : k2z'l 
: I I 

xd==~xq====Xx~, ==~x¢:===~ 
: I I 

I : I 

xd==~xq====XX~: ==~X¢:===~ 
I 
I 

* I 

I I 
I I 
I I 

PIPE * , 
I I i I : I 
~ 'h7-th9-oi I : I ' 

SUM-OF- \'S.\w~&'$%\\S%.&~ ACCUM 

PRODUCT I I. I 

I ' I , 

: ,I x: : . X ACCUM. . '. • 

I tpd3"""""'- I I 
I I 

I I 
PRODUCT S\»SSS\S§SS\SSS$S§\* VREG : 

I I, I 
x xc:==t=:==::t: ====::== YREG 

, tpd2~ J I I : 

I ! I ,( \.~ __ -tII-,/-------r'''''';;:<::~$::S$:S$\:S:$'::::>::S$SS\:S:$~9;S~SSS:$::::$;SS SElY 
: : : : : I I I 

OEY sssK~,*,\S\\\~\§\§\§$l>t: : : : : 4ZZ2(2Wzdww 
I I I ......... t pd4 : I I I I I 

I I " I 'pd5~ I: : : : : 
Y31-YO SS$SSSS\$SSS~"-\\&~%,K lSPl * MSP1 I *=Jl!lSP2:2=:JXC=]MmSrlp2c'::jI,)X;;I~:SSS')'.S:SS:$S:SS:S':::S~S:SS\:S:S::::$::S::S' 

I , I I 
---.I-'.n2 I+-.J-tpd5 .-.I ~tdi.2 

FIGURE 12. ALL REGISTERS ENABLED, ACCUMULATOR MODE 1FT - 11) 

TEST 

rVCC 

S1 

FROM OUTPUT __ P .... O.IN_T __ "Rl,.,.._-. 

UNDER TEST 

lOAD CIRCUIT 

PARAMETER Rl clt S1' 
tPZH 

'en 1 kll 
tpZL 

50 pF 
OPEN 

CLOSED 

tpHZ 
'dis 1 kll 

'PlZ 
50 pF 

OPEN 
CLOSED 

'cd - 50 pF OPEN 

t Cl includes probe and test fixture capacitance 

S2 
CLOSED 

OPEN 
CLOSED 

OPEN 
OPEN 

~II input pulses are supplied by generators having the following characteristics: PRR :s; 1 MHz, Zout = 50 0, tr ::::: 50 n, tf = 6 ns. 

FIGURE 13. LOAD CIRCUIT 
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SN74ACT8837 
64·8it Floating Point Unit 

• Multiplier and ALU in One Chip 

• 60-ns Pipelined Performance 

• Low-Power EPIC'M CMOS 

• Meets IEEE Standard for 32- and 64-Bit Multiply, 
Add, and Subtract 

• Three-Port Architecture, 64-Bit Internal Bus 

• Pipelined or Flowthrough Operation 

• Floating Point-to-Integer and Integer-to-Floating 
Point Conversions 

• Supports Division Using Newton-Raphson 
Algorithm 

• Parity Generation/Checking 

The SN74ACT8837 single-chip floating point processor performs high-speed 32-
and 64-bit floating point operations. More than just a coprocessor, the' ACT8837 
integrates on one chip, two double-precision floating point functions, an ALU 
and multiplier. 

The wide dynamic range and high precision of floating point format minimize 
the need for scaling and overflow detection. Computationally-intense 
applications, such as high-end graphics and digital signal processing, need double­
precision floating point accuracy to maintain data integrity. Floating point 
processors in general-purpose computing must often support double-precision 
formats to match existing software. 

By integrating its two functions on one chip, the' ACT8837 reduces data routing 
problems and processing overhead. Its three data ports and 64-bit internal bus 
structure let the user load two operands and take a result in a single clock cycle. 

EPIC is a trademark of Texas Instruments Incorporated. 
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Introduction 

Each of these floating point units (FPU), the SN74ACT8837 combines a multiplier and 
an arithmetic-logic unit in a single microprogrammable VLSI device. The' ACT8837 
is implemented in Texas Instruments one-micron CMOS technology to offer high speed 
and low power consumption in an FPU with exceptional flexibility and functional 
integration. The FPU can be microprogrammed to operate in multiple modes to support 
a variety of floating point applications. 

The 'ACT8837 is fully compatible with the IEEE standard for binary floating point 
arithmetic, STD 754-1985. This FPU performs both single- and double-precision 
operations, including division and square-root using the Newton-Raphson algorithm. 

Understanding the ' ACT8837 Floating Point Unit 

To support floating point processing in IEEE format, the' ACT8837 may be configured 
for either single- or double-precision operation. Instruction inputs can be used to select 
three modes of operation, including independent ALU operations, independent multiplier 
operations, or simultaneous ALU and multiplier operations. 

Three levels of internal data registers are available. The device can be used in 
flowthrough mode (all registers disabled). pipe lined mode (all registers enabled). or 
in other available register configurations. An instruction register, a 64-bit constant 
register, and a status register are also provided. '" 

('t) 
The FPU can handle three types of data input formats. The ALU accepts data operands CO 
in integer format or IEEE floating point format. In the' ACT8837, integers are converted. ~ 
to normalized floating point numbers with biased exponents prior to further processing. U 
A third type of operand, denormalized numbers, can also be processed after the ALU <t 
has converted them to "wrapped" numbers, which are explained in detail in a later ~ 
section. The' ACT8837 multiplier operates only on normalized floating-point numbers Z 
or wrapped numbers. C/) 

Microprogramming the ' ACT8837 

The' ACT8837 is a fully microprogrammable device. Each FPU operation is specified 
by a microinstruction or sequence of microinstructions which set up the control inputs 
of the FPU so that the desired operation Is performed. 

5-13. 



The microprogram which controls operation of the FPUis stored in the microprogram 
memory (or control store). Execution of the microprogram is controlled by a 
microsequencer such as the TI SN74ACT8818 16-bit microsequencer. A discussion 
of microprogrammed architecture and the operation of the 'ACT8818 is presented 
in this Data Manual. 

Support Tools 

Texas Instruments has developed a functional evaluation model of the' ACT8837 in 
software which permit designers to simulate operation of the FPU. To evaluate the 
functions of an FPU, a designer can create a microprogram with sample data inputs, 
and the simulator will emulate FPU operation to produce sample data output files, as 
well as several diagnostic displays to show specific aspects of device operation. Sample 
microprogram sequences are included in this section. 

Texas Instruments has also designed a family of low-cost real-time evaluation modules 
(EVM) to aid with initial hardware and microcode design. Each EVM is a small self­
contained system which provides a convenient means to test and debug simple 
microcode, allowing software and hardware evaluation of components and their 
operation. 

At present, the 74AS-EVM-8 Bit-Slice Evaluation Module has been completed, and 
a 16-bit EVM is in an advanced stage of development. EVMs and support tools for 
devices in the VLSI family are planned for future development. 

Design Support 
en :2 Texas Instruments Regional Technology Centers, staffed with systems-oriented 
...... engineers, offer a training course to assist users of TI LSI products and their application :t to digital processor systems. Specific attention is given to the understanding and 
("') generation of design techniques which implement efficient algorithms designed to 
-t match high-performance hardware capabilities with desired performance levels. 
00 
00 
W 
...... 
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Information on VLSI devices and product support can be obtained from the following 
Regional Technology Centers: 

Atlanta 
Texas Instruments Incorporated 
3300 N.E. Expressway, Building 8 
Atlanta, GA 30341 
404/662-7945 

Boston 
Texas Instruments Incorporated 
950 Winter Street, Suite 2800 
Waltham, MA 02154 
617/895-9100 

Northern California 
Texas Instruments Incorporated 
5353 Betsy Ross Drive 
Santa Clara, CA 95054 
4081748-2220 

Design Expertise 

Chicago 
Texas Instruments Incorporated 
51 5 Algonquin 
Arlington Heights, IL 60005 
312/640-2909 

Dallas 
Texas Instruments Incorporated 
10001 E. Campbell Road 
Richardson, TX 75081 
214/680-5066 

Southern California 
Texas Instruments Incorporated 
1 7891 Cartwright Drive 
Irvine, CA 92714 
714/660-8140 

Texas Instruments can provide in-depth technical design assistance through. 
consultations with contract design services. Contact your local Field Sales Engineer 
for current information or contact VLSI Systems Engineering at 214/997-3970. 
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'ACT8837 Pin Descriptions 
Pin descriptions and grid allocations for the' ACT8837 are given on the following pages. 

PIN 

NO. NAME 

Al NC 
A2 NC 
A3 Y5 
A4 Y8 
A5 Yll 
A6 Y14 
A7 Y17 
A8 Y20 
A9 Y21 
Al0 Y24 
All Y27 
A 12 Y29 
A13 PYO 
A14 PV3 
A15 IVAL 
A16 NC 
A17 NC 
Bl NC 
82 Y2 
B3 Y4 
B4 Y7 
B5 Yl0 
86 Y13 
B7 Y16 
BB Y19 
89 Y22 
810 Y25 
811 Y28 
812 Y31 
813 PY2 
814 OVER 
815 RNDCO 
816 DENORM 
B17 NC 
Cl PERR8 
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Table 1 .• ACT8837 Pin Grid Allocations 

PIN PIN PIN PIN 

NO. NAME NO. NAME NO. NAME NO. NAME 

C2 YO E3 FA5T J15 NC Pl NC 
C3 Y3 E4 GND J16 SRCC P2 PIPESO 
C4 Y6 E14 GND J17 BYTEP P3 RE5ET 
C5 Y9 E15 AGT8 Kl 5ELOP3 P4 P81 
C6 Y12 E16 AEOB K2 SELOP4 P5 DBl 
C7 Y15 E17 M5ERR K3 SELOP5 P6 DB5 
C8 Y1S Fl 15 K4 GND P7 DB9 
C9 Y23 F2 13 K14 GND P8 DB16 
Cl0 V26 F3 RNDO K15 PAl P9 DB21 
Cll Y30 F4 GND K16 PA2 Pl0 DB28 
C12 PVl F14 GND K17 PA3 Pl1 DAO 
C13 UNDER F15 PERRA L1 5ELOP6 P12 DA4 
C14 INEX F16 OEY L2 5ELOP7 P13 DA8 
C15 DENIN F17 OES L3 CLK P14 DA12 
C16 5RCEX Gl 17 L4 VCC P15 DA19 
C17 CHEX G2 16 L14 GND P16 DA22 
Dl 11 G3 14 L15 DA30 P17 DA23 
02 RNDl G4 VCC L16 DA31 Rl PIPE51 
03 Yl G14 VCC L17 PAO R2 HALT 
04 GND G15 OEC Ml ENRB R3 PB2 
05 VCC G16 5ELM5rLS M2 ENRA R4 DB2 
06 GND G17 TPl M3 CLKC R5 DB6 
D7 GND Hl 19 M4 GND R6 D810 
D8 VCC H2 NC M14 VCC R7 DB14 
09 GND H3 18 M15 DA27 R8 DB18 
Dl0 GND H4 GND M16 DA28 R9 DBn 
011 VCC H14 GND M17 DA29 Rl0 DB27 
D12 GND H15 TPO Nl CONFIGO Rll 0831 
D13 GND H16 5EL5Tl N2 CONFIGl R12 DA3 
D14 VCC H17 5EL5TO N3 CLKMODE R13 DA7 
D15 5TEXl Jl SELOP2 N4 PIPES2 R14 DAll 
D16 5TEXO J2 5ELOPl N14 DA18 R15 DA16 
D17 UNORD J3 5ELOPO N15 DA24 R16 DA20 
El 12 J4 VCC N16 DA25 R17 DA21 
E2 10 J14 VCC N17 DA26 

PIN 

NO. NAME 

51 NC 
52 PBO 
53 DBO 
54 DB4 
55 DB11 
56 DB12 
57 D815 
58 DB19 
59 DB23 
510 D826 
511 D830 
512 DA2 
513 DA6 
514 DAlO 
515 DA14 
516 DA15 
517 DA17 
T1 NC 
T2 P83 
T3 083 
T4 DB7 
T5 DB8 
T6 DB13 
T7 DB17 
T8 0820 
T9 D824 
T10 D825 
Tll 0829 
Tl2 DAl 
Tl3 DA5 
T14 DA9 
Tl5 DA13 
Tl6 NC 
Tl7 NC 
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PIN 

NAME 

AEQB 

AGTB 

BYTEP 

CHEX 

ClK 
ClKC 

ClKMODE 

CONFIGO 
CONFIG1 
DAO 
DA1 
DA2 
DA3 
DA4 
DA5 
DA6 
DA7 
DA8 
DA9 
DA10 
DA11 
DA12 
DA13 
DA14 
DA15 
DA16 
DA17 
DA18 
DA19 
DA20 
DA21 
DA22 
DA23 

Table 2. 'ACT8837 Pin Functional Description 

NO. 
1/0 DESCRIPTION 

Comparison status 1 zero detect pin. When high. 

E16 I/O 
indicates that A and B operands are equal during a 
compare operation' in the AlU. If not a compare, a 
high signal indicates a zero result. 

E15 I/O 
Comparison status pin. When high, indicates that A 
operand is greater than B operand. 
When high, selects parity generation for each byte 

J17 I 
of input (four parity bits for each bus). 
When low, selects parity generation for whole 
32-bit input (one parity bit for each bus). 
Status pin indicating an exception during a chained 

C17 I/O 
function. If 16 is low. indicates the multiplier 
is the source of the exception. If 16 is high, 
indicates the AlU is the source of the exception. 

l3 I Master clock for all registers except C register 
M3 I C register clock 

Selects whether temporary register loads only on 
N3 I rising clock edge (ClKMODE = l) or on falling 

edge (ClKMODE = HI. 
N1 I Select data sources for RA and RB registers from 
N2 DAbus. DB bus and temporary register. 
P11 
T12 
S12 
R12 
P12 
T13 
S13 
R13 
P13 
T14 
S14 

DA 32-bit input data bus. Data can be latched in a 
R14 I 
P14 

64-bit temporary register or loaded directly into an 

T15 
input register. 

S15 
S16 
R15 
S17 
N14 
P15 
R16 
R17 
P16 
P17 



Table 2. 'ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

OA24 N15 
OA25 N16 
OA26 N17 

OA .32-bit input data bus. Data can be latched in a 
OA27 M15 
OA28 M16 

64-bit temporary register or loaded directly into an 

OA29 M17 
input register 

OA30 L15 
OA31 L16 
OBO 53 
OB1 P5 
OB2 R4 
OB3 T3 
OB4 54 
OB5 P6 
OB6 R5 
OB7 T4 
OB8 T5 
OB9 P7 
OB10 R6 
OB11 55 
OB12 56 
OB13 T6 
OB14 R7 

DB 32-bit input data bus. Data can be latched in a 
OB15 57 
OB16 P8 

I 64-bit temporary register or loaded directly into an 

OB17 T7 
input register 

OB18 R8 
OB19 58 
OB20 T8 
OB21 P9 
OB22 R9 
OB23 59 
OB24 T9 
OB25 T10 
OB26 510 
OB27 R10 
OB28 P10 
OB29 T11 
OB30 511 
OB31 R11 

5tatus pin indicating a denormal input to the 
OENIN C15 I/O multiplier. When OENIN goes high. the 5TEX pins 

indicate which port had the denorrnal input. 

"'" M 
00 
00 .... 
(.) 
« 
~ 

"'" z 
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Table 2. 'ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
110 DESCRIPTION 

Status pin indicating a denormal output from the 

DENORM B16 1/0 
ALU or a wrapped output from the multiplier. In 
FAST mode, causes the result to go to zero when 
DENORM is high. 
When high, enables loading of RA register on a 

ENRA M2 I rising clock edge if the RA register is not disabled 
(see PIPESO below). 
When high, enables loading of RB register on a 

ENRB M1 I rising clock edge if the RB register is not disabled 
(see PIPESO below). 

When low, selects gradual underflow (IEEE mode). 
FAST E3 I When high, selects sudden underflow, forcing all 

denormalized inputs and outputs to zero. 
GND 04 
GNO 06 
GND 07 
GNO 09 
GND D10 
GND D12 
GND 013 
GNO E4 Ground pins. NOTE: All ground pins should be 
GNO E14 used and connected. 
GND F4 
GND F14 
GND H4 
GNO H14 
GND K4 
GND K14 
GND L14 
GND M4 

HALT R2 I 
Stalls operation without altering contents of 
instruction or data registers. Active low. 

10 E2 
11 01 
12 E1 
13 F2 
14 G3 I Instruction inputs 
15 F1 
16 G2 
17 G1 
18 H3 
19 H1 
INEX C14 1/0 Status pin indicating an inexact output 

5-20 



Table 2 .• ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

Status pin indicating that an invalid operation or a 
IVAL A15 I/O non number (NaN) has been input to the multiplier 

or ALU. 

MSERR E17 a Master/Slave error output pin 

A1 
A2 
A16 
A17 
B1 
B17 

NC H2 No internal connection. Pins should be left floating. 
J15 
Pl 
81 
T1 
T16 
T17 

OEC G15 I Comparison status output enable. Active low. 

OES F17 I 
Exception status and other status output enable. 
Active low. 

OEY F16 I Y bus output enable. Active low. 

Status pin indicating that the result is greater the 
OVER B14 I/O largest a"owable value for specified format 

(exponent overflow). 

PAO L17 
PAl K15 

I Parity inputs for DA data 
PA2 K16 
PA3 K17 
PBO S2 
PBl P4 

I Parity inputs for DB data 
PB2 R3 
PB3 T2 

PERRA F15 a DA data parity error output. When high, signals a 
byte or word has failed an even parity check. 

PERRB Cl a DB data parity error output. When high, signals a 
byte or word has failed an even parity check. 
When low. enables instruction register, RA and RS 

PIPESO P2 I input registers. When high, puts instruction 
register. RA and RB registers in flowthrough mode. 
When low, enables pipeline registers in ALU and 

PIPESl Rl I multiplier. When high, puts pipeline registers in 
flowthrough mode., 
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Table 2 .• ACT8837 Pin Functional Description (Continued) 

PIN 

NAME NO. 
1/0 DESCRIPTION 

When low, enables status register, product (P) and 
PIPES2 N4 I sum (S) registers. When high, puts status register, 

P and S registers in flowthrough mode. 

PYO A13 
PYl C12 

I/O Y port parity data 
PY2 B13 
PY3 A14 

RESET P3 I 
Clears internal states and status with no effect to 
data registers. Active low. 

RNOO F3 
I 

Rounding mode control pins. Select four IEEE 
RNOl 02 rounding modes (see Table 18). 

RNOCO B15 I 
When high, indicates the mantissa of a wrapped 
number has been increased in magnitude by 
rounding. 
When low, selects LSH of 64-bit result to be 

SELMS/LS G16 I output on the Y bus. When high, selects MSH of 
64-bit result. 

SELOPO J3 
SELOPl J2 
SELOP2 Jl 
SELOP3 Kl 

I 
Select operand sources for multiplier and ALU 

SELOP4 K2 (See Tables 6 and 7) 
SELOP5 K3 
SELOP6 Ll 
SELOP7 L2 
SELSTO H17 

I 
Select status source during chained operation 

SELST1 H16 (see Table 16) 
When low, selects ALU as data source for C 

SRCC J16 I register. When high, selects multiplier as data 
source for C register. . 

SRCEX C16 I/O Status pin indicating source of status, either 
ALU (SRCEX = L) or multiplier (SRCEX = H) 

STEXO 016 
Status pins indicating that a nonnumber (NaN) or 

STEXl 015 
I/O denormal number has been input on A port 

(STEX1) or B port (STEXO). 

TPO H15 
I Test pins (see Table 19) 

TPl G17 
Status pin indicating that a result is inexact and 

UNDER C13 I/O less than minimum allowable value for format 
(exponent underflow). 
Comparison status pin indicating that the two 

UNORO 017 I/O inputs are unordered because at least one of them 
is a nonnumber (NaN). 



Table 2. 'ACT8837 Pin Functional Description (Concluded) 

PIN 

NAME NO. 
I/O DESCRIPTION 

VCC 05 
VCC 08 
VCC 011 
VCC 014 
VCC G4 5-V power supply 
VCC G14 
VCC J4 
VCC J14 
VCC l4 
VCC M14 
YO C2 
Y1 03 
Y2 B2 
Y3 C3 
Y4 B3 
Y5 A3 
Y6 C4 
Y7 B4 
Y8 A4 
Y9 C5 
Y10 B5 
Y11 A5 
Y12 C6 
Y13 B6 
Y14 A6 
Y15 C7 I/O 32-bit Y output data bus 
Y16 B7 
Y17 A7 
Y18 C8 
Y19 B8 
Y20 A8 
Y21 A9 
Y22 B9 
Y23 C9 
Y24 A10 
Y25 B10 
Y26 C10 
Y27 A 11 
Y28 B11 
Y29 A12 
Y30 C11 
Y31 B12 
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, ACT8837 Specification Tables 

absolute maximum ratings over operating free-air temperature range 
(unless otherwise noted) t 

Supply voltage, Vee ..... . . . . . . . . . . . . . . . . .. -0.5 V to 6 V 
Input clamp current, 11K (VI < 0 or VI > Vee) ........ ± 20 mA 
Output clamp current, 10K (VO <0 or Vo > Vee) ..... ± 50 mA 
eontinuous output current, 10 (VO = 0 to Vee) . . . . . .. ± 50 mA 
eontinuous current through Vee or GND pins ...... " ± 100 mA 
Operating free-air temperature range . . . . . . . . . . . .. ooe to 70 0 e 
Storage temperature range. . . . . . . . . . . . . . . .. - 65 °e to 150 °e 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage 
to the device. These are stress ratings only and functional operation of the device at these or 
any other conditions beyond those indicated under "recommended operating ~onditions" is 
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

recommended operating conditions 

PARAMETER 
SN74ACT8837 

MIN NOM MAX 
UNIT 

Vee Supply voltage 4.75 5.0 5.25 V 

VIH High-level input voltage 2 V,dt: V 

VIL Low-level input voltage 0 ,,·t1:~;~'O'. 8 V 

IOH High-level output current 
,:"",,~\ .. 

";~~ -~~, -8 mA 

IOL Low-level output current .~;:;p' 8 mA 

VI Input voltage (Q:j,V Vee V 

Vo Output voltage '\0 Vee V 

dt/dv Input transition rise or fall rate 0 15 ns!V 

TA Operating free-air temperature 0 70 °e 
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electrical characteristics over recommended operating free-air 
temperature range (unless otherwise noted) 

TEST CONDITIONS 
TA - 25°C SN74ACT8837 

PARAMETER VCC 
MIN TYP MAX MIN TYP MAX 

4.5 V 
10H = -20 p,A 

5.5 V 
VOH 

4.5 V 3.76 
10H = -8 rnA 

5.5 V 4.76 ,,',\ 

10L = 20 p,A 
4.5 V ,,",;,;\,j\>;:"" " 

5.5 V ,el'\, '1/ 
VOL 

4.5 V .,w:,(jI::i" 0.45 
10L = 8 rnA 

5.5 V " 0.45 

'I V, = Vee or 0 5.5 V ±1 

lee V, = Vee or 0, 10 5.5 V 200 

ei Vi = Vee or 0 5V 

switching characteristics (see Note) 

SN74ACT8837-65 
PARAMETER 

MIN MAX 

tpd1 
Propagation delay from DAIDB!! inputs 

125 
to Y output 

tpd2 
Propagation delay from input register to 

118 
output buffer 

'~'" 

tpd3 
Propagation delay from pipeline register to ,j,~;5;:"\:{'~'~ 
output buffer 

tpd4 
Propagation delay from output register to 

,;:;,dd,,:'i:"'\ 30 
output buffer 

tpd5 Propagation delay from SELMS/LS to Y output ''.; 32 

td1 
Propagation delay from input register to 

95 
output register 

td2 
Delay time, input register to pipeline register or 

65 
pipeline register to output register 

UNIT 

V 

V 

p,A 

p,A 

pF 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Note: Switching data must be used with timing diagrams for different operating modes. 
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setup and hold times 

PARAMETER 

tsu1 Setup time, Instruction before ClK! 

tsu2 Setup time, data operand before ClK! 

Setup time, data operand before second ClK! 

tsu3 for double-precision operation (input register 

not enabled) 

th1 Hold time, Instruction input after ClK I 

clock requirements 

PARAMETER 

I ClK high 
tw Pulse duration I ClK low 

Clock period 
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SN74ACT8837-65 
UNIT 

MIN MAX 

18 dC." ~ ns 

18 ",,9.~'l' ns 

~oQ\)C;'\ 
ns 

0 ns 

SN74ACT8837-65 

MIN M,M\~ 
tJ-INIT 

.¥' 
15 "c1 V'Y""" 

?tlILJV 
ns 

ns 



SN74ACT8837 FLOATING POINT UNIT 
The SN74ACT8837 is a high-speed floating point unit implemented in TI's 
advanced 1-llm CMOS technology. The device is fully compatible with IEEE 
Standard 754-1985 for addition, subtraction and multiplication operations. 

The' ACT8837 input buses can be configured to operate as two 32-bit data buses 
or a single 64-bit bus, providing a number of system interface options. Registers are 
provided at the inputs, outputs, and inside the ALU and multiplier to support multilevel 
pipelining. These registers can be bypassed for nonpipelined operation. 

A clock mode control allows the temporary register to be clocked on the rising edge 
or the falling edge of the clock to support double precision operations (except 
multiplication) at the same rate as single precision operations. A feedback register with 
a separate clock is provided for temporary storage of a multiplier result, ALU result 
or constant. 

To ensure data integrity, parity checking is performed on input data, and parity is 
generated for output data. A mastei"lslave comparator supports fault-tolerant system 
design. Two test pin control inputs allow alii/Os and outputs to be forced high, low, 
or placed in a high-impedance state to facilitate system testing. 

Floating point division using a Newton-Raphson algorithm can be performed in a sum­
of-products operating mode, one of two modes in which the multiplier and ALU operate 
in parallel. Absolute value conversions, floating point to integer and integer to floating 
point conversions, and a compare instruction are also available. 

Data Flow '" M 
IX) 

Data enters the' ACT8837 through two 32-bit input data buses, DA and DB. The buses IX) 

can be configured to operate as a single 64-bit data bus for double precision operations .... U 
(see Table 7). Data can be latched in a 64-bit temporary register or loaded directly ~ 
into the RA and RB registers for input to the multiplier and ALU. ..... 

Four multiplexers select the multiplier and ALU operands from the input register, C 
register or previous multiplier or ALU result. Results are output on the 32-bit Y bus; 
a Y output multiplexer selects the most significant or least significant half of the result 
for output. The 64-bit C register is provided for temporary storage of a result from 
the ALU or multiplier. 

Input Data Parity Check 

When BYTEP is high, internal odd parity is generated for each byte of input data at 
the DA and DB ports and compared to the PA and PB parity inputs. If an odd number 
of bits is set high in a data byte, the parity bit for that byte is also set high. Parity 
bits are input on PA for DA data and PB for DB data. PAO and PBO are the parity bits 
for the least significant bytes of DA and DB, respectively. Ifthe parity comparison 
fails for any byte, a high appears on the parity error output pin (PERRA for DA data 
and PERRB for DB data). 
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A parity check can also be performed on the entire input data word by setting BYTEP 
low. In this mode, PAO is the parity input for DA data and PBO is the parity input for 
DB data. 

Temporary Input Register 

A temporary input register is provided to enable double precision numbers on a single 
32-bit input bus to be loaded in one clock cycle. The contents of the DA bus are loaded 
into the upper 32 bits of the temporary register; the contents of DB are loaded into 
the lower 32 bits. A clock mode signal (ClKMODE) determines the clock edge on which 
the data will be stored in the temporary register. When ClKMODE is low, data is loaded 
on the rising edge of the clock; when ClKMODE is high, data is loaded on the falling 
edge. 

RA and RB Input Registers 

Two 64-bit registers, RA and RB, are provided to hold input data for the multiplier 
and AlU. Data is taken from the DA bus, DB bus and the temporary input register, 
according to configuration mode controls CONFIG1-CONFIGO (see Tables 3 and 5). 
The registers are loaded on the rising edge of clock ClK. For single-precision operations, 
CON FIG 1-CONFIGO should ordinarily be set to 0 1 (see Table 4). 

Table 3. Double-Precision Input Data Configuration Modes 

LOADING SEQUENCE 

DATA LOADED INTO 

TEMP REGISTER ON FIRST DATA LOADED INTO 

CLOCK AND RAJRB RA/RB REGISTERS ON 

REGISTERS ON SECOND SECOND CLOCK 

CLOCKt 

CONFIG1 CONFIGO DA DB DA DB 

0 0 B operand B operand A operand A operand 
(MSH) (LSH) (MSH) (LSH) 

0 A operand B operand A operand B operand 
(LSH) (LSH) (MSH) (MSH) 

0 A operand B operand A operand B operand 
(MSH) (MSH) (LSH) (LSH) 

A operand A operand B operand B operand 
(MSH) (LSH) (MSH) (LSH) 

t On the first active clock edge (see CLKMODE, Table 17), data in this column is loaded into the temporary 
register. On the next rising edge, operands in the temporary register and the DAtDB buses are loaded into 
the RA and RB registers. 
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Table 4. Single-Precision Input Data Configuration Mode 

DATA LOADED INTO 

RA/RB REGISTERS ON 

FIRST CLOCK. 

CON FIG 1 CONFIGO DA DB NOTE 

This mode is ordinarily 
0 1 A operand B operand used for single-precision 

operations. 

Table 5. Double-Precision Input Data Register Sources 

RA SOURCE RB SOURCE 

CONFIG1 CONFIGO MSH LSH MSH LSH 

0 0 DA DB TEMP REG TEMP REG 
(MSH) (LSH) 

0 1 DA TEMP REG DB TEMP REG 
(MSH) (LSH) 

1 0 TEMP REG DA TEMP REG DB 
(MSH) (LSH) 

1 1 TEMP REG TEMP REG DA DB 
(MSH) (LSH) 

Multiplier/ALU Multiplexers 

Four multiplexers select the multiplier and ALU operands from the RA and RB registers, 
the previous multiplier or ALU result, or thee register. The multiplexers are controlled 
by input signals SELOP7-SELOPO as shown in Tables 6 and 7. 

Table 6. Multiplier Input Selection 

A1 (MUX1) INPUT B 1 (MUX2) INPUT 

SELOP7 SELOP6 OPERAND SOURCE SELOP5 SELOP4 OPERAND SOURCE 

0 0 Reserved 0 0 Reserved 

0 1 C register 0 1 C register 

1 0 ALU feedback 1 0 Multiplier feedback 

1 1 RA input register 1 1 RB input register 

Table 7. ALU Input Selection 

A2 (MUX3) INPUT B2 (MUX4) INPUT 

SELOP3 SELOP2 OPERAND SOURCE SELOP1 SELOPO OPERAND SOURCE 

0 0 Reserved 0 0 Reserved 

0 1 C register 0 1 C register 

1 0 Multiplier feedback 1 0 ALU feedback 

1 1 RA input register 1 1 RB input register 
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Pipe lined ALU 

The pipelined ALU contains a circuit for addition and/or subtraction of aligned operands, 
a pipeline register, an exponent adjuster and a normalizer/rounder. An exception circuit 
is provided to detect denormal inputs; these can be flushed to zero if the fast input 
is set high. A denorm exception flag (DENORM) goes high when the ALU output is 
a denormal. 

The ALU may be operated independently or in parallel with the multiplier. Possible ALU 
functions during independent operation are given in Tables 8 and 9. Parallel 
ALU/multiplier functions are listed in Table 11. 

Pipelined Multiplier 

The pipelinedmultiplier performs a basic multiply function, A * B. The operands can 
be single-precision or double-precision numbers and can be converted to absolute values 
before multiplication takes place. Multiplier operations are summarized in Table 10. 

An exception circuit is provided to detect denormalized inputs; these are indicated 
by a high on the DENIN signal. 

The multiplier and ALU can be operated simultaneously by setting the 19 instruction 
input high. Possible operations in this chained mode are listed in Table 13. 

Product. Sum. and C Registers 

The results of the ALU and multiplier operations may optionally be latched into two 
output registers on the rising edge of the system clock (CLK). The P (product) register " 
holds the result of the multiplier operation; the S (sum) register holds the ALU result. ('I) 

An additional 64-bit register is provided for temporary storage of the result of an ALU 
or multiplier operation before feedback to the multiplier or ALU. The data source for 
this C register is selected by SRCC; a high on this pin selects the multiplier result; 
a low selects the ALU. A separate clock, CLKC, has been provided for this register. 

Parity Generators 

Even parity is generated for the Y multiplexer output,either for each byte or for each 
word of output, depending on the setting of BYTEP. When BYTEP is high, the parity 
generator computes four parity bits, one for each byte of Y multiplexer output. Parity 
bits are output on the PY3-PYO pins; PYO represents parity for the least significant 
byte. A single parity bit can also be generated for the entire output data word by setting 
BYTEP low. In this mode, PYO is the parity output. 
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Table 8. Independent ALU Operations, Single Operand (19 0, 16 .. 0) 

CHAINED PRECISION PRECISION OUTPUT OPERAND ABSOLUTE ALU OPERATION 
OPERATION RA RB SOURCE TYPE VALUE A 

19 18 17 16 15 14 13·10 RESULT 

o = Not o = A(SP) o = B(SP) o = ALU 1 = Single O=A 0000 Pass A operand 
Chained 1 = A(DP) 1 = B(DP) result Operand 1 = IAI 0001 Negate A operand 

0010 Integer to floating point 
conversion t 

0011 Floating point to integer 
conversion 

0100 Undefined 
0101 Undefined 
0110 Floating point to floating 

point conversion:!: 
0111 Undefined 
1000 . Wrap (denormal) .input 

operand 
1001 Undefined 
1010 Undefined 
1011 Undefined 
1100 Unwrap exact number 
1101 Unwrap inexact number 
1110 Unwrap rounded input 
1111 Undefined 

tThe precision of the integer to floating point conversion is set by lB. 
tThis converts single precision floating point to double precision floating point and vice versa. If the IB pin is low to indicate a single-precision input, the result 
of the conversion will be double precision. If the IB pin is high, indicating a double-precision input, the result of the conversion wiU be single precision. 



Table 9. Independent ALU Operations, Two Operands (19 = 0, 15 = 0) 

CHAINED PRECISION PRECISION OUTPUT OPERAND ABSOLUTE ABSOLUTE ABSOLUTE ALU OPERATION 
OPERATION RA RB SOURCE TYPE VALUE A VALUE B VALUE Y 

19 18 17 16 15 14 13 12 11-10 RESULT 

o = Not o = A(SP) o = B(SP) 0= ALU 0= Two O=A 0= B 0= V 00 A + B 
chained 1 = A(OP) 1 = B(OP) result operands 1 = IAI 1 = IBI 1 = IVI 01 A - B 

10 Compare A, B 
11 B - A 

Table 10. Independent Multiplier Operations (19 = 0,16 = 1) 

CHAINED PRECISION PRECISION OUTPUT ABSOLUTE ABSOLUTE NEGATE 
OPERATION RA RB SOURCE VALUE A VALUE B RESULT WRAP A WRAP B 

19 18 17 16 15 14t 13 t 12t 11 10 
o = Not o = A(SP) o = B(SP) 1 = Multi- 0 O=A 0= B 0= V o = Normal o = Normal 
chained 1 = A(OP) 1 = B(OP) plier 1 = IAI 1 = ;BI 1 = IVI format format 

result 1 = A is a 1 = B is a 
wrapped wrapped 

number number 

tSee Table 15. 
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Table 11. Independent Multiplier Operations Selected by 14-12 (19 0,16 1 ) 

ABSOLUTE ABSOLUTE NEGATE OPERATION SELECTED 
VALUE A VALUE B RESULT 

14 13 12 14-12 RESULTS 

0= A 0= B O=Y 000 A'B 
1 = IAI 1 = I BI 1 = -y 001 -(A' B) 

010 A * IBI 
011 -(A' IBI) 
100 IAI * B 
101 -(IAI ' B) 
110 IAI • IBI 
111 -(IAI ' IBI) 

Table 12. Operations Selected by 18-17 (19 = 0, 16 = 1) 

PRECISION 
PRECISION 

PRECISION 
PRECISION PRECISION' 

SELECT RA SELECT RB 
18 

RAINPUT 
17 

RBINPUT OF RESULT 

0 Single 0 Single Single 

Single 
0 Converted 1 Double Double 

to Double 

Single 
1 Double 0 Converted Double 

to Double 

1 Double 1 Double Double 

Master/Slave Comparator 

A master/slave comparator is provided to compare data bytes from the Y output 
multiplexer and the status outputs with data bytes on the external Y and status ports 
when DEY, DES and DEC are high. If the data bytes are not equal, a high signal is 
generated on the master/slave error output pin (MSERR). 

Status and Exception Generator/Register 

A status and exception generator produces several output signals to indicate invalid 
operations as well as overflow, underflow, nonnumerical and inexact results, in 
conformance with IEEE Standard 754-1985. If output registers are enabled 
(PIPES2 = 0), status and exception results are latched in a status register on the rising 
edge of the clock. Status results are valid at the same time that associated data results 
are valid. Status outputs are enabled, by two signals,OEC for comparison status and 
DES for other status and exception outputs. Status outputs are summarized in 
Tables 14 and 15. 

During a compare operation in the ALU, the. AEQ8 output goes high when the A and 
B operands are equal. When any operation other than a compare is performed, either 
by the ALU or the multiplier, the AEQB signal is used as a zero detect. 
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Table 13. Chained Multiplier/ALU Operations (19 = 1) 

CHAINED PRECISION PRECISION OUTPUT MULTIPLY NEGATE NEGA TE MUL TI- ALU 
OPERATION RA RB SOURCE ADD ZERO BY ONE ALU RESULT PLiER RESULT OPERATIONS 

19 18 17 16 15 14 13 12 11-10 RESULT 

1 = Chained o = A(SP) o = B(SP) 0= ALU o = Normal o = Normal o = Normal o = Normal 00 A + B 
1 = A(DP) 1 = B(DP) result operation operation operation operation 01 A - B 

1 = Multi- 1 = Forces 1 = Forces 1 = Negate 1 = Negate 10 2 - A 
plier B2 input B1 input ALU multiplier 11 B - A 

result of ALU of multi- result result 
to zero plier to 

one 
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STEX1 
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Table 14. Comparison Status Outputs 

RESULT OF COMPARISON (ACTIVE HIGH) 

The A and B operands are equal. (A high signal on the AEQB output indicates a 
zero result from the selected source except during a compare operation in the 
ALU.) 

The A operand is greater than the B .operand. (Only during a compare operation 
in the ALU) 

The two inputs of a comparison operation are unordered, i.e., one or both of 
the inputs is a NaN. 

Table 15. Status Outputs 

STATUS RESULT 

If 16 is low, indicates the multiplier is the source of an exception during a 
chained function. If 16 is high, indicates the ALU is the source of an exception 
during a chained function. 

Input to the multiplier is a denorm. When DENIN goes high, the STEX pins 
indicate which port had a denormal input. 

The multiplier output is a wrapped number or the ALU output is a denorm. In 
the FAST mode, this condition causes the result to go to zero. 

The result of an operation is not exact. 

A NaN has been input to the multiplier or the ALU, or an invalid operation 
(0 * 00 or ± 00+ 00) has been requested. When IVAL goes high, the STEX 
pins indicate which port had a NaN. 

The result is greater than the largest allowable value for the specified format. 

The mantissa of a wrapped number has been increased in magnitude by 
rounding and the unwrap round instruction can be used to unwrap properly 
the wrapped number (see Table 8). 

The status was generated by the multiplier. (When SRCEX is low, the status 
was generated by the ALU.) 

A NaN or a denorm has been input on the B port. 

A NaN or a denorm has been input on the A port. 

The result is inexact and less than the minimum allowable value for the 
specified format. In the FAST mode, this condition causes the result to go to 
zero. 



In chained mode, status results to be output are selected based on the state of the 
16 (source output) pin (if 16 is low, ALU status will be selected; if 16 is high, multiplier 
status will be selected). If the nonselected output source generates an exception, CHEX 
is set high. Status of the nonselected output source can be forced using the SELST 
pins, as shown in Table 16. 

Table 16. Status Output Selection (Chain Mode) 

SELST1-
STATUS SELECTED 

SELSTO 

00 Invalid 
01 Selects multiplier status 
10 Selects ALU status 
11 Normal operation (selection based on result source specified by 16 input) 

Flowthrough Mode 

To enable the device to operate in pipelined or flowthrough modes, registers can be 
bypassed using pipeline control signals PIPES2-PIPESO (see Table 17). 

Table 17. Pipeline Controls (PIPES2-PIPESO) 

PIPES2-
REGISTER OPERATION SELECTED 

PIPESO 

X X 0 Enables input registers (RA, RB) 

X X 1 Disables input registers (RA, RB) 

X 0 X Enables pipeline registers 

X 1 X Disables pipeline registers 

0 X X Enables output registers (P, S, Status) 

1 X X Disables output registers (P, S, Status) 

FAST and IEEE Modes 

The device can be programmed to operate in FAST mode by asserting the FAST pin. 
In the FAST mode, all denormalized inputs and outputs are forced to zero. 

Placing a zero on the FAST pin causes the chip to operate in IEEE mode. In this mode, 
the ALU can operate on denormalized inputs and return denormals. If a denorm is input 
to the multiplier, the DENIN flag will be asserted, and the result will be invalid. If the 
multiplier result underflows, a wrapped number will be output. 
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Rounding Mode 

The' ACT8837 supports the four IEEE standard rounding modes: round to nearest, 
round towards zero (truncate), round towards infinity (round up), and round towards 
minus infinity (round down). The rounding function is selected by control pins RND1 
and RNDO, as shown in Table 18. 

Table 18. Rounding Modes 

RND1-
ROUNDING MODE SELECTED 

RNDO 

o 0 Round towards nearest 

0 1 Round towards zero (truncate) 

1 0 Round towards infinity (round up) 

1 1 Round towards negative infinity (round down) 

Test Pins 

Two pins, TP1-TPO, support system testing. These may be used, for example, to place 
all outputs in a high·impedance state, isolating the chip from the rest of the system 
(see Table 19). 

Table 19. Test Pin Control Inputs 

TP1-
OPERATION 

TPO 

0 0 All outputs and liDs are forc~d low 

0 1 All outputs and liDs are forced high 

1 0 All outputs are placed in a high impedance state ' 

1 1 Normal operation 

W Summary of Control Inputs 
-...J 

Control input signals for the' ACT8837 are summarized in Table 20. 
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SIGNAL 
BYTEP 

ClK 

CLKC 

CLKMODE 

CONFIG1-
CONFIGO 

ENRA 

ENRB 

FAST 

HALT 

OEC 

OES 

OEY 

PIPES2-
PIPESO 

RESET 

RND1-
RNDO 

SELOP7-
SELOPO 

SElMS/LS 

SELSTl-
SELSTO 

SRCC 

TP1-TPO 

Table 20. Control Inputs 

HIGH lOW 
Selects byte parity generation Selects single bit parity generation 
and test and test 

Clocks all registers except C No effect 

Clocks C register No effect 

Enables temporary input register Enables temporary input register load 
load on falling clock edge on rising clock edge 

See Table 3 (RA and RB register See Table 3 (RA and RB register data 
data source selects) source selects) 

If register is not in flow through, If register is not in flow through, holds 
enables clocking RA register contents of RA register 

If register is not in flow through, If register is not in flow through, holds 
enables clocking of RB register contents of RB register 

Places device in FAST mode Places device in IEEE mode 

No effect Stalls device operation but does not 
affect registers, internal states, or 
status 

Disables compare pins Enables compare pins 

Disables status outputs Enables status outputs 

Disables Y bus Enables Y bus 

See Table 17 (pipeline mode See Table 17 (pipeline mode control) 
control) 

No effect Clears internal states and status but 
does not affect data registers 

See Table 18 (rounding mode See Table 18 (rounding mode control) 
control) 

See Tables 6 and 7 See Tables 6 and 7 (multiplier/ALU 
(multiplierl ALU operand selection) operand selection) 

Selects MSH of 64-bit result for Selects lSH of 64-bit result for output 
output on the Y bus on the Y bus (no effect during single 

precision operation) 

See Table 15 (status output See Table 15 (status output sel.ection) 
selection) 

Selects multiplier result for input Selects ALU result for input to C 
to C register register 

See Table 19 (test pin control See Table 19 (test pin control inputs) 
inputs) 
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INSTRUCTION SET 
Configuration and operation of the' ACT8837 can be selected to perform single- or 
double-precision floating-point calculations in operating modes ranging from 
flowthrough to fully pipelined. Timing and sequences of operations are affected by 
settings of clock mode, data and status registers, input data configurations, and 
rounding mode, as well as the instruction inputs controlling the ALU and the multiplier. 
The ALU and the multiplier of the' ACT8837 can operate either independently or 
simultaneously, depending on the setting of instruction inputs 19-10 and related controls. 

Controls for data flow and status results are discussed separately, prior to the 
discussions of ALU and multiplier operations. Then, in Tables 22 through 25, the 
instruction inputs to the ALU and the multiplier are summarized according to operating 
mode, whether independent or chained (ALU and multiplier in simultaneous operation). 

Loading External Data Operands 

Patterns of data input to the' ACT8837 vary depending on the precision of the operands 
and whether they are being input as A or B operands. Loading of external data operands 
is controlled by the settings of CLKMODE and CON FIG 1-CONFIGO, which determine 
the clock timing and register destinations for data inputs. 

Configuration Controls (CONFIG 1-CONFIGO) 

Three input registers are provided to handle input of data operands, either single 
precision or double precision. The RA, RB, and temporary registers are each 64 bits 
wide. The temporary register is only used during input of double-precision operands. 

~ When single-precision or integer operands are loaded, the ordinary setting of CONFIG1-
~ CONFIGO is LH, as shown in Table 4. This setting loads each 32-bit operand in the 
» most significant half (MSH) of its respective register. The operands are loaded into 
~ the MSHs and adjusted to double precision because the data paths internal to the device 
CO are all double precision. It is also possible to load single-precision operands with 
~ CON FIG 1-CONFIGO set to HH but two clock edges are required to load both the A 
-..J and B operands on the DA bus. 

Double-precision operands ar.e loaded by using the temporary register to store half 
of the operands prior to inputting the other half of the operands on the DA and DB 
buses. As shown in Tables 3 and 5, four configuration modes for selecting input sources 
are available for loading data operands into the RA and RB registers. 

CLKMODE Settings 

Timing'of double-precision data inputs is determined by the clock mode setting, which 
allows the temporary register to be loaded on either the rising edge (CLKMODE = L) 
or the falling edge of the clock (CLKMODE = H) .. Since the temporary register is not 
used when single-precision operands are input, clock modes 0 and 1 are functionally 
equivalent for single-precision operations. 
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The setting of CLKMODE can be used to speed up the loading of double-precision. 
operands. When the CLKMODE input is set high, data on the DA and DB buses are 
loaded on the falling edge of the clock into the MSH and LSH, respectively, of the 
temporary register. On the next rising edge, contents of the DA bus, DB bus, and 
temporary register are loaded into the RA and RB registers, and execution of the current 
instruction begins. The setting of CONFIG 1-CONFIGO determines the exact pattern 
in which operands are loaded, whether as MSH or LSH in RA or RB. 

Double-precision operation in clock mode 0 is similar except that the temporary register 
loads only on a rising edge. For this reason the RA and RB registers do not load until 
the next rising edge, when all operands are available and execution can begin. 

A considerable advantage in speed can be realized by performing double-precision ALU 
operations with CLKMODE set high. In this clock mode both double-precision operands 
can be loaded on successive clock edges, one falling and one rising, and the ALU 
operation can be executed in the time from one rising edge of the clock to the next 
rising edge. Both halves of a double-precision ALU result must be read out on the Y 
bus within one clock cycle when the' ACT8837 is operated in clock mode 1. 

Internal Register Operations 

Six data registers in the' ACT8837 are arranged in three levels along the data paths 
through the multiplier and the ALU. Each level of registers can be enabled or disabled 
independently of the other two l.evels by setting the appropriate PIPES2-PIPESO inputs. 

The RA and RB registers receive data inputs from the temporary register and the DA 
and DB buses. Data operands are then multiplexed into the multiplier, ALU, or both.,.... 
To support simultaneous pipelined operations, the data paths through the multiplier M 
and the ALU are both provided with pipeline registers andoutput registers. The control ~ 
settings for the pipeline and output registers (PIPES2-PIPES 1) are registered with the t­
instruction inputs 19-10. U <t 
A seventh register, the constant (C) register is available for storing a 64-bit constant 
or an intermediate result from the multiplier or the ALU. The C register has a separate 
clock input (CLKC) and input source select (SRCC). The SRCC input is not registered 
with the instruction inputs. Depending on the operation selected and the settings of 
PIPES2-PIPESO, an offset of one or more cycles may be necessary to load the desired 
result into the C register. 

Status results are also registered whenever the output registers are enabled. Duration 
and availability of status results are affected by the same timing constraints that apply 
to data results on the Y output bus. 

Data Register Controls (PIPES2-PIPESO) 
Table 17 shows the settings of the registers controlled by PIPES2-PIPESO. Operating 
modes range from fully pipelined (PIPES2-PIPESO = tLL) to flowthrough 
(PIPES2-PIPESO = HHH). 
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In flowthrough mode all three levels of registers are disabled, a circumstance which 
may affect some double-precision operations. Since double-precision operands require 
two steps to input, at least half of the data must be clocked into the temporary register 
before the remaining data is placed on the DA and DB buses. 

When all registers (except the C register) are enabled, timing constraints can become 
critical for many double-precision operations. In clock mode 1, the ALU can perform 
a double-precision operation and output a result during every clock cycle, and both 
halves of the result must be read out before the end of the next cycle. Status outputs 
are valid only for the period during which the Y output data is valid. 

Similarly, double-precision multiplication is affected by pipelining, clock mode, and 
sequence of operations. A double-precise multiply requires two cycles to execute, 
depending on the settings of PIPES2-PIPESO. The output may.be valid for one or two 
cycles, depending on the precision of the next operation. 

Duration of valid outputs at the Y multiplexer depends on settings of PIPES2-PIPESO 
and CLKMODE, as well as whether all operations and operands ar.e of the same type. 
For example, when a double-precision multiply is followed by a single-precision 
operation, one open clock cycle must intervene between the dissimilar operations. 

C Register Controls (SRCC, CLKC) 

The C register loads from the P or the S register output, depending on the setting of 
SRCC, the load source select. SRCC = H selects the multiplier as input source. 
Otherwise the ALU is selected when SRCC = L. In either case the C register only loads 

en the selected input on a rising edge of the CLKC signal. 
Z 
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The C register does not load directly from an external data bus. One method for loading 
a constant without wasting a cycle is to input the value as an A operand during an 
operation which uses only the ALU or multiplier and requires no external data inputs. 
Since the B operand can be forced to zero in the ALU or to one in the multiplier, the 
A operand can be passed to the C register either by adding zero or multiplying by one, 
then selecting the input source with SRCC and causing the CLKCsignal to go high. 
Otherwise, the C register can be loaded through the ALU with the Pass A Operand 
instruction, which requires a separate cycle. 

Operand Selection (SELOP7-SELOPO) 

As shown in Tables 6 and 7, data operands can be selected as five possible sources, 
including external inputs from the RA and RB. registers, feedback from the P and S 
registers, and a stored value in the C register. Contents of the C register may be selected 
as either the A or the B operand in the ALU, the multiplier, or both. When an external 
input is selected, the RA input always becomes the A operand, and the RB input is 
the B operand. 
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Feedback from the ALU can be selected as the A operand to the multiplier or as the 
B operand to the ALU. Similarly, multiplier feedback may be used as the A operand 
to the ALU or the B operand to the multiplier. 

Selection of operands also interacts with the selected operations in the ALU or the 
multiplier. ALU operations with one operand are performed only on the A operand. 
Also, depending. on the instruction selected, the B operand may optionally be forced 
to zero in the ALU or to one in the multiplier. 

Rounding Controls (RND 1-RNDO) 

Because floating point operations may involve both inherent and procedural errors, 
it is important to select appropriate modes for handling rounding errors. To support 
the IEEE standard for binary floatingcpoint arithmetic, the' ACT8837 provides four 
rounding modes selected by RND 1-RNDO. 

Table 18 shows the four selectable rounding modes. The usual default rounding mode 
is round to nearest (RND 1-RNDO = LL). In round-to-nearest mode, the' ACT8837 
supports the IEEE standard by rounding to even (LSB = 0) when two nearest 
representable values are equally near. Directed roundingtoward zero, infinity, or minus 
infinity are. also available. 

Rounding mode should be selected to minimize procedural errors which may otherwise 
accumulate and affect the accuracy of results. Rounding to nearest introduces a 
procedural error not exceeding half of the least significant bit for each rounding 
operation. Since rounding to nearest may involve rounding either upward or downward 
in successive steps, rounding errors tend to cancel each other. .'" 

M 
In contrast, directed rounding modes may introduce errors approaching one bit for ex) 

each rounding operation. Since successive rounding operations in a procedure may ~ 
all be similarly directed, each introducing up to a one-bit error, rounding errors may U 
accumulate rapidly, especially in single-precision operations. <C 

Status Exceptions 

Status exceptions can result from one or more error conditions such as overflow, 
underflow, operands in illegal formats, invalid operations, or rounding. Exceptions may 
be grouped into two classes: input exceptions resulting from invalid operations or 
denormal inputs.to the multiplier, and output exceptions resulting from illegal formats, 
rounding errors, or both. 

To simplify the discussion of exception handling, it is useful to summarize the data 
formats for representing IEEE floating-point numbers which can be input to or output 
from the FPU (see Table 21). Since procedures for handling exceptions vary according 
to the requirements of specific applications, this .discussion focuses on the conditions 
which cause particular status exceptions to be signalled by the FPU. 
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Table 21. IEEE Floating-Point Representations 

TYPE OF EXPONENT (e) FRACTION (f) HIDDEN VALUE OF NUMBER REPRESENTED 
OPERAND SP (HEX) DP (HEX) (BINARY) BIT SP (DECIMAl) t DP (DECIMAL) t 

Normalized 
FE 7FE All 1'5 1 (-1)5 (2127) (2-2 -23) ( - 1)5 (2 1023) (2 - 2 - 52) 

Number (max) 
Normalized 

01 001 All 0'5 1 ( - 1)5 (2- 126) (1) (-1)5 (2- 1022) (1) 
Number (min) 
Denormalized 

00 000 All 1 '5 0 (1-)5 (2- 126) (1-2~23) ( - 1)5 (2 - 1022) (1 - 2 - 52) 
Number (max) 
Denormalized 

00 000 000 ... 001 0 ( - 1)5 (2 - 126) (2 - 23) (-1)5 (2-1022) (2-52) 
Number (min) 
Wrapped 

00 000 All 1 '5 1 (- 1)5 (2 - 127) (2 - 2 - 23) ( - 1)5 (2 - 1023) (2 - 2 - 52) 
Number (max) 
Wrapped 

EA 7eD An 0'5 1 (-1)5 (2-22+127) (1) ( - 1)5 (2 - 51 + 1023) (1) 
Number (min) 
Zero 00 000 Zero 0 (-1)5 (0.0) (-1)5 (0.0) 

Infinity FF 7FF Zero 1 ( - 1) 5 (infinity) ( - 1)5 (infinity) 
NAN (Not a 

FF 7FF Nonzero N/A None None 
Number 

---- ---- - -- -----_ .. _-- -- -- --- 1..--- ___ 
~-

t s sign bit 



IEEE formats for floating-point operands, both single and double precision, consist of 
three fields: sign, exponent, and fraction, in that order. The leftmost (most significant) 
bit is the sign bit. The exponent field is eight bits long in single-precision operands 
and 11 bits long in double-precision operands. The fraction field is 23 bits in single 
precision and 52 bits in double precision. Further details of IEEE formats and exceptions 
are provided in the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 
Std 754-1985. 

Several status exceptions are generated by illegal data or instruction inputs to the FPU. 
Input exceptions may cause the following signals to be set high: IVAL, DENIN, and 
STEX1-STEXO. If the IVAL flag is set, either an invalid operation has been requested 
or a NaN (Not a Number) has been input. When DENIN is set, a denormalized number 
has been input to the multiplier. STEX 1-STEXO indicate which port (RA, RB, or both) 
is the source of the exception when either a denormal is input to the multiplier 
(DEN IN = H) or a NaN (lVAL = H) is input to the multiplier or the ALU. 

NaN inputs are all treated as IEEE signaling NaNs, causing the IVAL flag to be set. 
When output from the FPU, the fraction field from a NaN is set high (all 1 's), regardless 
of the original fraction field of the input NaN. 

Output exception signals· are provided to indicate both the source and type of the 
exception. DENORM, INEX, OVER, UNDER, and RNDCO indicate the exception type, 
and CHEX and SRCEX indicate the source of an exception. SRCEX indicates the source 
of a result as selected by instruction bit 16, and SRCEX is active whenever a result 
is output, not only when an exception is being signaled. The chained-mode exception 
signal CHEX indicates that an exception has be generated by the source not selected " 
for output by 16. The exception type signaled by CHEX cannot be read unless status M 
select controls SELST1 -SELSTO are be used to force status output from the deselected ~ 
source. 

Output exceptions may be due either to a result in an illegal format or to a procedural 
error. Results too large or too small to be represented in the selected precision are 
signalled by OVER and UNDER. Any ALU output which has been increased in magnitude 
by rounding causes INEX to be set high. DENORM is set when the multiplier output 
is wrapped or the ALU output is denormalized. Wrapped outputs from the multiplier 
may be inexact or increased in magnitude by rounding, which may cause the INEX 
and RNDCO status signals to be set high. A denormal output from the ALU 
(DENORM = H) may also cause INEX to be set, in which case UNDER is also signalled. 

Handling of Denormalized Numbers (FAST) 

The FAST input selects the mode for handling denormalized inputs and outputs. When 
the FAST input is set low, the ALU accepts denormalized inputs but the multiplier 
generates an exception when a denormal is input. When FAST is set high, the DENIN 
status exception is disabled and all denormalized numbers, both inputs and results, 
are forced to zero. 
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A denormalized input has the form of a floating-point number with a zero exponent, 
a nonzero mantissa, and a zero in the leftmost bit of the mantissa (hidden or implicit 
bit). A denormalized number results from decrementing the biased exponent field to 
zero before normalization is complete. Since a denormalized number cannot be input 
to the multiplier, it must first be converted to a wrapped number by the ALU. When 
the mantissa of the denormal is normalized by shifting it left, the exponent field 
decrements from all zeros (wraps past zero) to a negative two's complement number 
(except in the case of .IXXX ... ,where the exponent is not decremented). 

Exponent underflow is possible during multiplication of small operands even when the 
operands are not wrapped numbers. Setting FAST = L selects gradual underflow so 
that denormal inputs can be wrapped and wrapped results are not automatically 
discarded. When FAST is set high, denormal inputs and wrapped results are forced 
to zero immediately. 

When the multiplier is in IEEE mode and produces a wrapped number as its result, 
the result may be passed to the ALU .and unwrapped. If the wrapped number can be 
unwrapped to an exact denormal, it can be output without causing the underflow status 
flag (UNDER) to beset. UNDER goes high when a result is an inexact denormal, and 
a zero is output from the FPU if the wrapped result is too small to represent as a 
denormal (smaller than the minimum denorm). Table 22 describes the handling of 
wrapped multiplier results and the status flags that are set when wrapped numbers 
are output from the multiplier. 

Table 22. Handling Wrapped Multiplier Outputs 

TYPE STATUS FLAGS SET 
NOTES 

OF RESULT DENORM INEX RNDCO UNDER 
Wrapped, 

1 0 0 0 
Unwrap with 'Wrapped 

exact exact' ALU instru.ction 

Wrapped, 
1 1 0 1 

Unwrap with 'Wrapped 
inexact inexact' ALU instruction 

Wrapped, 
increased in 

1 1 1 1 
Unwrap with 'Wrapped 

magnitude by rounded' ALU instruction 
rounding 

When operating in chained mode, the multiplier may output a wrapped result to the 
ALU during the same clock cycle that the multiplier status is output. In such a case 
the ALU cannot unwrap the operand prior to using it, for example, when accumulating 
the results of previous multiplications. To avoid this situation, the FPU can be operated 
in FAST mode to simplify exception handling during chained operations. Otherwise, 
wrapped outputs from the multiplier may adversely affect the accuracy of the chained 
operation, because a wrapped number may appear to be a large normalized number 
instead of a very small denormalized number. 
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Because of the latency associated with interpreting the FPU status outputs and 
determining how to process the wrapped output, it is necessary that a wrapped operand 
be stored external to the FPU (for example, in an external register file) and reloaded 
to the A port of the ALU for unwrapping and further processing. 

Data Output Controls (SELMS/LS, OEY) 

Selection and duration of results from the Y output multiplexer may be affected by 
several factors, including the operation selected, precision of the operands, registers 
enabled, and the next operation to be performed. The data output controls are not 
registered with the data and instruction inp"uts. When the device is microprogrammed, 
the effects of pipelining and sequencing of operations should be taken into account. 

Two particular conditions need to be considered. Depending on which registers are 
enabled, an offset of one or more cycles must be allowed before a valid result is available 
at the Y output multiplexer. Also, certain sequences of operations may require both 
halves of a double-precision result to be read out within a single clock cycle. This is 
done by toggling the SELMS/LS signal in the middle of the clock period. 

When a single-precision result is output, the SELMS/LS signal has no effect. The 
SELMS/LS signal is set low only to read out the LSH of a double-precision result. 
Whenever this signal is selecting a valid result for output on the Y bus, the OEY enable 
must be pulled low at the beginning of that clock cycle. 

Status Output Controls (SELST1-SELSTO, OESiOEC) 

Ordinarily, SELSTl-SELSTO are set high so that status selection defaults to the output ,.... 
source selected by instruction input 16. The ALU is selected as the output source when M 
16 is low, and the multiplier when 16 is high. 00 

00 
When the device operates in chained mode, it may be necessary to read the status 
results not associated with the output source. As shown in Table 16, SELSTl-SELSTO 
can be used to read the status of either the ALU or t!1e multiplier regardless of the 
16 setting. 

Status results are registered only when the output (P and S) registers are enabled 
(PIPES2 = L). Otherwise, the status register is transparent. In either case, status 
outputs can be read by pulling the output enables low (OES, OEC, or both). 

Stalling the Device (HALT) 

Operation of the' ACT8837 can be stalled nondestructively by means of the HALT 
signal. Pulling the HALT input low causes the device to stall on the next low level 
of the clock. Register contents are unaltered when the device is stalled, and nor'11al 
operation resumes at the next low clock period after the HALT signal is set high. Using 
HALT in microprograms can save pow.er, especially using high clock frequencies and 
pipe lined stages. 
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For some operations, such as a double-precision multiply with CLKMODE = 1, setting 
the HALT input low may interrupt loading of the RA. RB, and instruction registers, 
as well as stalling operation. In clock mode 1, the temporary register loads on the falling 
edge of the clock, but the HALT signal going low would prevent the RA, RB, and 
instruction registers from loading on the next rising clock edge. It is therefore necessary 
to have the instruction and data inputs on the pins when the HALT signal is set high 
again and normal operation resumes. 

Instruction Inputs (19-10) 

Three modes of operation can be selected' with inputs /9-10, including independent 
ALU operation, independent multiplier operation, or simultaneous (chained) operation 
of ALU and multiplier. Each operating mode is treated separately in the following 
sections. 

Independent ALU Operations 

The ALU executes single- and double-precision operations which can be divided 
according to the number of operands involved, one or two. The ALU accepts integer, 
normalized, and de normalized numbers as operands. Table 22 shows independent ALU 
operations with one operand, along with the inputs 19-10 which select.each operation. 
Conversions from one format to another are handled in this mode, with the exception 
of adjustments to precision during two-operand ALU operations. Wrapping and 
unwrapping of operands is also done in this mode. 

Table 24 presents independent ALU operations with two operands. When the operands 
VJ are different in precision, one single and the other double, the settings of the precision­
Z selects 18-17 will identify the single-precision operand so that it can automatically be 
-...J reformatted to double precision before the selected operation is executed, and the 
~ result of the operation will be double precision. 
(") 
-f 
ex> 
ex> 
w 
-...J 

Independent Multiplier Operations 

In this mode the multiplier operates on the RA and RB inputs which can be either single 
precision, double precision, or mixed. Operands may be normalized or wrapped 
numbers, as indicated by the settings for instruction inputs 11-10. As shown in Table 25, 
the multiplier can be set to operate on the absolute value of either or both operands, 
and the result of any operation can be negated when it is output from the multiplier. 
Converting a single-precision denormal number to double precision does not normalize 
or wrap the denormal, so it is still an invalid input to the multiplier. 
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Table 23. Independent ALU Operations with One Operand 

ALU OPERATION INSTRUCTION 
NOTES 

ON A OPERAND INPUTS 19·10 
Pass A operand Ox 001x 0000 

Negate A operand Ox 001x 0001 
Convert from integer to 
floating point t Ox 0010 0010 

Convert from floating 
point to integer Ox 001x 0011 

Undefined Ox 001 x 0100 
x = Don't care 

Undefined Ox 001 x 0101 
18 selects precision of A operand: 

Convert from floating Ox 001x 0110 
a = A (SP) 

point to floating point 1 = A (OP) 

(adjusts precision of 14 selects absolute value of A operand: 

input: SP-OP, OP-SP) O=A 

Undefined OxOOlxOl11 1 = IAI 
Wrap denormal operand Ox 001x 1000 During integer to floating point conversion, 

Undefined Ox 001x 1001 I A I is not· allowed as a result. 

Undefined Ox 001x 1010 

Undefined I Ox 001x 1011 

Unwrap exact number OxOOlxll00 

Unwrap inexact number Ox 001 x 1101 

Unwrap rounded input Ox 001x 1110 

Undefined Ox 001 x 1111 

t During this operation. 18 selects precision of the result. 
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Table 24. Independent ALU Operations with Two Operands 

ALU OPERATIONS INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 19-10 

Add A + B Ox xOOO OxOO 

Add IAI + B Ox x001 OxOO 

Add A + IBI OX xOOO 1xOO 

Add IAI + IBI OX x001 1xOO x = Don't Care 

Subtract A - B Ox xOOO Ox01 18 selects precision of A operand: 

Subtract I A I - B Ox x001 Ox01 o = A (SP) 

Subtract A - I B I Ox xOOO lxOl 1 = A (DP) 

Subtract I A I - I B Ox x001 1 x01 17 selects precision of B operand: 

Compare A, B Ox xOOO Ox10 o = B (SP) 

Compare I A I, B Ox x001 Ox10 1 = B (DP) 

Compare A, I B I Ox xOOO 1x10 12 selects either V or its absolute value: 

Compare IAI, IBI OX x001 1 x1 a 0= V 

Subtract B - A Ox xOOO Ox11 1 = IVI 

Subtract B-1 A I Ox x001 Ox11 

Subtract I B I - A Ox xOOO 1 x11 

Subtract I B I - I AI Oxx0011x11 

Table 25. Independent Multiplier Operations 

MULTIPLIER OPRATION INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 19-10 

Multiply A * B Ox x100 OOxx x = Don't Care 

Multiply - (A * B) Ox x100 01xx 18 selects A operand 

Multiply A * I B I Ox x100 10xx 
precision (0 = SP, 1 = DP) 

Multiply -(A * IBI) OX x100 11 xx 
17 selects B operand 
precision (0 = SP; 1 = DP) 

Multiply I A I * B Oxx10100xx 
11 selects A operand format 

Multiply - ( I A I * B) Ox x101 01xx (0 = Normal, 1 = Wrapped) 
Multiply I A I * IBI OX x101 10xx 10 selects B operand format 
Multiply - ( I A I * IBI) Oxx101 11xx (0 = Normal, 1 = Wrapped) 



Chained Multiplier/ALU Operations 

In chained mode, the' ACT8837 performs simultaneous operations in the multiplier 
and the ALU. Operations include addition, subtraction, and multiplication, except 
multiplication of wrapped operands. Several optional operations also increase the 
flexibility of the device. 

The B operand to the ALU can be set to zero so that the ALU passes the A operand 
unaltered. The B operand to the multiplier can be .forced to the value 1 so that the 
A operand to the multiplier is passed unaltered (see Table 26). 

Table 26. Chained Multiplier/ALU Operations 

CHAINED OPERATIONS OUTPUT INSTRUCTION 
NOTES 

MULTIPLIER ALU SOURCE INPUTS 19·10 

A * B A+B ALU lx xOOO xxOO 

A * B A + B Multiplier lx xl00 xxOO 

A * B A-B ALU lx xOOO xxOl 

A*B A - B Multiplier 1 x xl00 xxOl 

A * B 2 - A ALU lx xOOO xxl0 x = Don't Care 

A*B 2 - A Multiplier 1 x xl00 xxl 0 18. selects precision of 
A*B B-A ALU 1 x xOOO xxll RA inputs: 

A*B B-A Multiplier 1 x xl 00 xx 11 o = RA (SP) 

A * B A + 0 ALU lx xOl0 xxOO 1 = RA (DP 

A*B A +0 Multiplier lx xll0 xxOO 17 selects precision of 

A * B o -' A ALU lxx010xxll RB inputs: 

A * B 0- A Multiplier 1 x x 11 0 xx 11 o = RB (SP) 

A * 1 A + B AlU lx xOOl xxOO 1 = RB (DP) 

A * 1 A + B Multiplier lx xl0l xxOO 13 negates ALU result: 

A * 1 A - B ALU 1 x xOOl xxOl o = Normal 

A * 1 A - B Multiplier lx xl0l xxOl 1 = Negated 

A * 1 2 - A ALU 1 x xOOl xxl0 12 negates multiplier 

A * 1 2 - A Multiplier 1 x xl 01 xxl0 result: 

A * 1 B-A AlU lxxOOlxxll o = Normal 

A * 1 B-A Multiplier 1 x xl0l xx 11 1 = Negated 

A * 1 A+O AlU .1 x xOll xxOO 

A * 1 A+O Multiplier lx xll1 xxOO 

A * 1 0- A AlU lxxOl1xxll 

A * 1 0- A Multiplier lXxl11 xxll 
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MICROPROGRAMMING THE ' ACT8837 
Because the' ACTSS37 is microprogrammable, it can be configured to operate on either 
single- or double-precision data operands, and the operations of the registers, ALU, 
and multiplier can be programmed to support a variety of applications. The following 
examples present not only control settings but the timings of the specific operations 
required to execute the sample instructions. 

Timing of the sample operations varies with the precision of the data operands and 
the settings of CLKMODE and PIPES. Microinstructions and timing waveforms are given 
for all combinations of data precision, clock mode, and register settings. Following 
the presentation of ALU and multiplier operations is a brief sum-of-products operation 
using instructions for chained operating mode. 

Single-Precision Operations 

Two single-precision operands can be loaded on the 32-bit input buses without use 
of the temporary register so CLKMODE has no effect on single-precision operation. 
Both the ALU and the multiplier execute all single-precision instructions in one clock 
cycle, assuming that the device is not operating in flowthrough mode (all registers 
disabled). Settings of the register controls PIPES2-PIPESO determine minimum cycle 
time and the rate of data throughput, as evident from the examples below. 

Single-Precision ALU Operations 

Precision of each data operand is indicated by the setting of instruction input IS for 
single-operand ALU instructions, or the settings of IS-17 for two-operand instructions. 

~ When the ALU receives mixed-precision operands (one operand in single precision and 
...... the other in double precision). the single-precision data input is converted to double 
~ and the operation is executed in double precision. 
l> 
n 
-I 
CO 
CO 
W 
...... 

If both operands are single precision, a single-precision result is output by the ALU. 
Operations on mixed-precision data inputs produce double-precision results. 

It is unnecessary to use the 'convert float-to-float' instruction to convert the single­
precision operand prior to performing the desired operation on the mixed-precision 
operands. Setting IS and 17 properly achieves the same effect without wasting an 
instruction cycle. 

Single-Precision Multiplier Operations 

Operand precision is selected by IS and 17, as for ALU operations. The multiplier can 
multiply the A and B operands, either operand with the absolute value of the other, 
or the absolute values of both operands. The result can also be negated when it is 
output. If both operands are single precision, a single-precision result is output. 
Operations on mixed-precision data inputs produce double-precision results. 
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Sample Single-Precision Microinstructions 

The following four single-precision microinstruction coding examples show the four 
register settings, ranging from flowthrough to fully pipelined. Timing diagrams 
accompany the sample microinstructions. 

In the first example PIPES2-PIPESO are all set high so the internal registers are all 
disabled. This microinstruction sets up a wrapped result from the multiplier to be 
unwrapped by the ALU as an exact denormalized number. In flowthrough mode the 
'unwrap exact' operation is performed without a clock as Soon as the instruction is 
input. Single-precision timing in flowthrough mode is shown in Figure 2. 

CLKMODE = 0 PIPES = 111 Operation: Unwrap A operand exact 

S 
E 

C C C L 
L 00 PP SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

00 0010 1100 0 01 111 xxxx 11 xx 00 0 1 1 0 1 0 0 0 x 11 1 1 11 

FIRST INSTRUCTION SECOND INSTRUCTION 

INSTRUCTION: FUNC{9,O), RND{1,O), FAST 

===><~ ____ FIR_S_T_O_PE_R_AN_D_S ____ -J)(~ ____ S_E_CO_N_D_O_PE_R_AN_D_S __ --J)(~ ______________ _ 
DATA{31,O) A AND B INPUTS 

~tpd1----+1 

OUTPUT{31,O), STATUS{13,O) 

FIRST ~ SECOND ~ 
RESULT ~ RESULT ~ 

~tpd1~ 

Figure 2. Single-Precision Operation, All Registers Disabled 
(PIPES - 111, CLKMODE == 0) 
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The second example shows a microinstruction causing the ALU to compare absolute 
values of A and B. Only the input registers are enabled (PIPE52-PIPE50 = 110) so 
the result is output in one clock cycle. 

CLKMODE = 0 PIPE5=110 Operation: 

C C C 
L 00 P P 55 
K N N I I EE 
M F F P P LL RR 
0 II EE 00 NN 

I I D G G 55 PP DD 
9-0 E 1-02-0 7-0 1-0 

000001 1010 o 01 110 xxxx 1111 00 

Load First Operands 
Begin First Operation 

~ 

Compare I A I ' I B I 

5 
E 
L 
M 55 
5 BEE R 

FEE 5 I Y L L E H 
ANNR 000T55SATT 
5RRCLEEEETTELPP 
TAB C 5 Y C 5 P 1 -0 T T 1.,..0 

o 1 10 1 0 0 0 x 11 

Load Second Operands 
Begin Second Operation 

~ 

1 1 11 

en elK 1 
Z ,.-_-i-'_"" ..... 
.j::lo 
l> 
(") 
-i 
00 
00 
W ..... 

I 
~tsu1-t1.-"'''+-1 th1 , , 

I , 
( OP~:!~DS ~ o~~~~~~s ~ 
I+-tsu2 ..... th1~ ~tsu2""'''~~I--~''I-th1 
DATA(31,O) A AND B INPUTS 

... tpd1---"'~ I+lf---tpd2---+l"1 
OUT(31,O) STATUS(13.0) 

Figure 3. Single-Precision Operation, Input Registers Enabled 
(PIPES - 110, CLKMODE - 0) 
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Input and output registers are enabled in the third example, which shows the subtraction 
B. - A. Two clock cycles are required to load the operands, execute the subtraction, 
and output the result (see Figure 4). 

CLKMOOE = 0 PIPES = 010 Operation: Subtract B - A 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P LL RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I o G G S S PP DO SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

0000000011 o 01 010 xxx x 1111 00 00001 OOOx 11 1 1 11 

load First Operands 
Begin First Operation 

load Second Operands 
Begin Second Operation 

elK 

~ ~ 

I 
It-------td1-------+l~1 

I 
I " M 

00 
00 .... 
u « 

~~ 
CJ) 

l4-tsu2 ........ th1+l 

DATA(31.0) A AND B INPUTS 

__________________ >@<FIRSTRESULT 

OUT(31.0) STATUS(13.0) 

358 

Figure 4. Single-Precision Operation, Input and Output Registers Enabled 
(PIPES ... 010, CLKMOOE .. 0) 



The fourth example shows a multiplication A * B with all registers enabled. Three 
clock cycles are required to generate and output the product. Once the internal registers 
are all loaded with data or results, a result is available from the output register on every 
rising edge of the clock. The floating point unit produces its highest throughput when 
operated fully pipelined with single-precision operands. 

CLKMODE = 0 PIPES = 000 Operation: Multiply A * B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOT$SSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

0001000000 o 01 000 1111 xxxx 00 o 1 1 1 1 0 0 0 x 111 1 11 
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CJ1 
en 
'-J 

Load Third Load Fourth Load Fifth 
Operands Operands Operands 

Load Second 
Operands Begin Third Begin Fourth Begin Fifth 

Load First Operation Operation Operation 
Operands Begin Second 

Operation Load PipeUne Load Pipeline Load Pipeline 
Begin First 
Operation Load Pipeline Load Output Load Output Load Output 

~ + ~ + + 
I' I I --I ---. L 
CLK 

1 
If---- td2 111M td2 ----+I 
I I 
I I 

THIRD FOURTH 
INSTRUCTION INSTRUCTION 

FIFTH 
INSTRUCTION 

I th1 I th1 
14- tsu1 ~ _I M-- tsu1 ~ _ll4-- t su1 

th1 th1 
M----+I..-tsu1 _~ _1M-- tsu1 ~ 

I 

INSTRUCTION: FUNC(9.01. RND(1.OI.FAST 
) 

FIRST 
OPERANDS 

th1 
M-- tsu2 ~ ~ M-- tsu2 

DATA(31.0) A AND B INPUTS 

OUT(31.01 STATUS(1.3.01 

I 

THIRD 
OPERANDS 

FOURTH 
OPERANDS 

FIFTH 
OPERANDS 

I th1 th1 th1 th1 
~ M-- tsu2 ~ _1..-tsu2 ~ .. ..-tsu2 .... -I 

I+-tpd4 +I I+tpd4+1 I+-tpd4+1 

Figure 5. Single-Precision Operation, All Registers Enabled 
(PIPES = 000, CLKMODE ... 0) 
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Double-Precision Operations 

Double-precision operations may be executed separately in the ALU or the multiplier, 
or simultaneously in both. Rates of execution and data throughput are affected by 
the settings of the register controls (PIPES2-PIPESO) and the clock mode (CLKMODE). 

The temporary register 9an be loaded on either the rising edge (CLKMODE = L) or 
the falling edge of the clock (CLKMODE = H). Double-precision operands are always 
loaded by using the 64-bit temporary register to store half of the operands prior to 
inputting the other half of the operands on the DA and DB buses. 

Input configuration is selected by CON FIG 1-CONFIGO, allowing several options for 
the sequence in which data operands are set up in the temporary register and the RA 
and RB registers. Operands are then sent to either the ALU or multiplier, or both, 
depending on the settings for SELOP 7-0. 

The ALU executes all double-precision operations in a single clock cycle. The multiplier 
requires two clock cycles to execute a double-precision operation. When the device 
operates in chained mode (simultaneous ALU and multiplier operations). the chained 
double-precision operation is executed in two clock cycles. The settings of 
PIPES2-PIPESO determine whether the result is output without a clock (flowthrough) 
or after up to five clocks for a double-precision multiplication (all registers enabled 
and CLKMODE = L). 

Double-Precision ALU Operations 

Eight examples are provided to illustrate microinstructions and timing for double­
~ precision ALU operations. The settings of CLKMODE and PIPES2-PIPESO determine 
~ how the temporary register loads and which registers are enabled. Four examples are 
); provided in each clock mode. 

(") 
~ 
CO 
CO 
W 
~ 

Double-Precision ALU Operations with CLKMODE = 0 

The first example shows that, even in flowthrough mode, a clock signal is needed 
to load the temporary register with half the data operands (see Figure 6). The selected 
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operation is executed without a clock after the remaining half of the data operands 
are input on the RA and RB buses: 

CLKMODE = 0 PIPES = 111 

C C C 

Operation: Add A + I B I 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 

L 00 P P 
K N N I I 
M F F P P 
o II EE 
D G G S S 
E 1-02-0 

SS 
EE 
LL 
00 
PP 
7-0 

NN ANNR OOOTSS SATT 
I I 

9-0 
DD SRRCLEEEETTELPP 
1 -0 TAB C S Y C S P 1 -0 T T 1-0 

01 1000 1000 0 11 111 xxx x 1111 00 0110xOOOx111111 

Load Half of Data 

~ 

CLK 

(FIRST INS~RUCTION 

INSTRUCTION: FUNC(9,O), RND(1,O),FAST 
I 
I 

( HALF OF X REST OF 
~ ____ ~D~_T_A ____ J ~ ____ DA_T_A ______________________________________ _ 

I 
14- tsu2 ____ th 1 --.! 

DATA(31,O) A AND B INPUTS 

SELMS/LS 

~REST ________ ~--.:.F __ IR __ S __ T ___________ _ 

I4-tpdt ..... 
OUT/3t,O) STATUS(t3,O) 

Figure 6, Double-Precision ALU Operation, All Registers Disabled 
(PIPES .. 111. CLKIVIODE = 0) 
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In the second example the input register is enabled (PIPES2-PIPESO = 110). Operands 
A and B for the instruction, I B I - I A I, are loaded using CONFIG = 00 so that B is 
loaded first into the temporary register with MSH through the DA port and LSH through 
the DB port. On the second clock rising edge, the A operand is loaded in the same 
order directly to RA register while B is loaded from the temporary register to the RB 
register (see Figure 7). 

CLKMODE = 0 PIPES = 110 Operation: I B I - IAI 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DD SRRClEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

01 1001 1011 o 00 110 xxxx 1111 00 0110xOOOx11 1 1 11 
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If 
en 

load Half 
of First 
Operands 

load Rest 
of First 
Operands 

load Half 

load Rest 
of Second 
Operands 

Begin First of Second Begin Second 
Operation Operands Operation 

+ • + + 
I I I I ~I ---. L 
ClK 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

J I 
14-- tsu1~ th1~ I+-- tsu1---+! I+ th1'" I4:- tsu1-+1 

INSTRUCTION: FUNC(9,OI, RND(1,OI,FAST 
I 

HALF 
1ST OPS 

J 

REST 
1ST OPS , 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

I+-- tsu2 .14 ., 14-- tsu2 __ th 1'" 14- tsu2 ___ th 1'" 14-tsu2 ---+t4- th 1+1 I+-- tsu2 -+14- th 1 +I I+-- tsu2 -.; 
th1 

DATA(31,O} A AND B INPUTS 

'---------"-1'--_----' 
SELMS/lS 

OUT(31,O} STATUS(13,OI }4-tpd2+1 I4--+1-tpd5 }4-tpd2 +I I4--*-tpd5 I+-tpd2+1 

Figure 7. Double-Precision ALU Operation, Input Registers Enabled 
(PIPES ... 110. CLKMODE ... 0) 
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Both the input and output registers are enabled (PIPES2-PIPESO = 010) in the third 
example. The instruction sets up the ALU to wrap a denormalized number on the DA 
input bus. The wrapped output can be fed back from the S register to the multiplier 
input multiplexer by a later microinstruction. Timing for this operation is shown in 
Figure 8. 

CLKMODE = 0 

I I 
9-0 

PIPES = 010 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
D G G S S 
E 1-02-0 

Operation: Wrap Denormal Input 

SS 
E E 
LL 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 
NN ANNR OOOTSSSATT 
DD SRRCLEEEETT ELPP 
1 -0 TAB C S Y C S P 1 -0 T T 1-0 

01 1010 1000 0 01 010 xxxx 11 xx 00 0 1 1 0 x 0 0 0 x 11 1 1 11 
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01 m 
w 

Load Rest Load Rest 
of First Load Half of Sec(lnd Load Half 
Operands of Second Operands (If Third 

L(lad Half Operands Operands 
(If First Begin First Begin Sec(lnd 
Operands Operati(ln L(lad Output Operation Load Output 

+ ~ + + ~ 

l I f U L 
I 

CLK 14--- tdl ~ 
I 

FIRST INSTRUCTION 

I 
I4-tsu1-.! 

I 

SECOND INSTRUCTION 

I 
..,th1+1l4-tsu1-.! 
I 

INSTRUCTION: FUNC(9.01. RND(1.01. FAST 
1 
I 

THIRD INSTRUCTION 

14th 1+1 14-tsu 1--.r I4-thl+1 

HALF REST HALF REST HALF REST 
1ST OPS 1ST OPS 2ND OPS 2ND OPS 3RD OPS 3RD OPS 

th1 I 
I4-t su2 ~t4 IlIl4-tsu2'-+14-th1*l4-tsu2 __ thl*l+-tsu2-+tot-thl+1 J4- tsu2-+14th1* I4- tsu2__+�4_thl+1 

DATA(31.01A ANDB INPUTS 

·1,,"",,"-----, 
SELMS/LS 

OUT(31.01 STATUSI13.01 If-tpd4+1 If-lpds+l If-tpd4+1 M-tpd5+1 

Figure 8. Double-Precision ALU Operation, Input and Output Registers Enabled 
(PIPES .. 010, ClKMODE - O) 
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In the fourth example with CLKMODE = L, all three levels of internal registers are 
enabled. The instruction converts a double-precision integer operand to a double­
precision floating-point operand. Figure 9 shows the timing for this operating mode. 

CLKMODE = 0 PIPES = 000 Operation: Convert Integer to Floating Point 

S 
E 

C C C L 
L 00 P P 88 M 88 
K N N I I EE 8 BEE R 
M F F P P L L RR FEE 8 / Y L L E H 
0 II EE 00 NN ANNR OOOT888ATT 

I I D G G 88 PP DD 8RRCLEEEETTELPP 
9-0 E 1 -02-0 7-0 1 -0 TAB C 8 Y C 8 P 1 -0 T T 1-0 

01 10100010 o 1 1 000 xxx x 1100 00 011 OxOOOx 11 1 1 11 
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Oi 
en 
CJ1' 

Load Half 
of First 
Operands 

Load Rest 
of First 
Operands 

Begin First 

Load Half 
of Second 
Operands 

Load Rest 
of Second 
Operands 

Begin Second 
Operation 

Operation Load Pipeline Load Output 

~ ~ ~ ~ 

I I I I I L 
I 
~ td2 .14 td2 ----+t CLK 
I 
I 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

I I 
I+- tsu 1 -+I th1 ~ I+-- tsu 1-+1 th 1 --14-----+1 I+-- tsu 1 --.! th1~ 

I 

INSTRUCTION: FUNC(9.0). RND(1.0). FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

I 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

f4-- tsu2 ---+t+---toI I+-- tsu2 
th1 

~ I+-tsu2.14 .1 I+- tsu2 ~14--tsu2 
th1 

~ I+--tsu2 ~4 .1 th1 

DATA(31.0) A AND B INPUTS 

SELMS/LS 

OUT(31.0) STATUS(13.0) 

th1 th1 

~ 

tpd4 
14-+1 
tpd5 

th1 

1+-+1 
tpd4 

Figure 9. Double-Precision ALU Operation, All Registers Enabled 
(PIPES = 000, CLKMODE = 0) -SN74ACT8837 
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Double-Precision ALU Operations with CLKMODE = 1 

The next four examples are similar to the first four except that CLKMOOE = H so that 
the temporary register loads on the falling edge of the clock. When the ALU is operating 
independently, setting CLKMOOE high enables loading of both double-precision 
operands on successive falling and rising clock edges. 

In this clock mode a double-precision ALU operation requires one clock cycle to load 
data inputs and execute, and both halves of the 64-bit result must be read out on 
the 32-bit Y bus within one clock cycle. The settings of PIPES2-PIPESO determine 
the number of clock cycles which elapse between data input and result output. 

In the first example all registers are disabled (PIPES2-PIPESO = 111), and the addition 
is performed in flowthrough mode. As shown in Figure 10, a falling clock edge is needed 
to load half of the operands into the temporary register prior to loading the RA and 
RB registers on the next rising clock. 

CLKMOOE = 1 PIPES = 111 Operation: Add A + IBI 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I EE S BEER 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 
o G G S S PP DO SRRCLEEEETTELPP ~ II 

-...J 9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 
~ 

~ 01 1000 1000 1 11 111 xxxx 1111 00 0 1 1 0 x 0 0 0 x xx 1 1 11 
-I 
CO 
CO 
W 
-...J 
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<r' 
O'l 
--.J 

----------~f LOAD HALF .. OPERANDS 

ClK ~------------------------------------------------------------------

~ . FIRST INSTRUCTION 

l1li tsu1 ~ 
INSTRUCTION: FUNC(9.01. RND(1.01. FAST 

I 

~ HALF 1~;-O;S~- - '1..,, ____________________________ _ 
~ tsu2 ~ th1--+1 

REST 1ST OPS 

DATA(31.0IA AND B INPUTS 

SELMSILS 

~. HALF .~ REST 
____________________ ~~ FIRST ~ FIRST 

OUT(31.01 STATUS (13.01 ~ tpd1 ~ j.--tpd5---+1 

Figure 10. Double-Precision ALU Operation, All Registers Disabled 
(PIPES - 111, CLKMODE = 1) 

SN74ACT8837 



(J) 
:2 ...., 

The second example executes subtraction of absolute values for both operands. Only 
the RA and RB registers are enabled (PIPES2-PIPESO = 110). Timing is shown in 
Figure 11. 

CLKMODE = 1 PIPES = 110 Operation: Subtract IBI - IAI 

S 
E 

C C C L 
L 00 P P SS M S S 
K NN I I E E S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR 555TSSSATT 

I I D G G 5S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

01 1001 1011 11 110 xxxx 1111 00 o 1 1 0 x 000 x xx 1 1 11 

Load half Load Rest load Half Load Rest Load Half Load Rest 
of First of First of Second of Second of Third of Third 
Operands Operands Operands Operands Operands Operands 

• .. .. .. • • I I I I I 
ClK 

I 
I 
I 
I 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

~ I I 
l> I<t--tsu1~ I+- th1 ~ 14---* tsu1 

~ INSTRUCTION: FUNCI9.0). ~NDI1.0). FAST 
(X) : 
(X) 

eN ...., 
I 

I4-tsu2~ I+--tsu2~ I+--tsu2~'" ~ \4- t su2-t1+-th1-.t ~th1~ ~tsu2*-*thl 
th1 thl thl tsu2 

OATAI3l.0) A AND B INPUTS 

SELMS/lS 

OUTI3l.0) STATUSI13.0) 14---+1 
tpd2 
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The third example shows a single denormalized operand being wrapped so that it can 
be input to the multiplier. Both input and output registers are enabled 
(PIPES2-PIPESO = 010). Timing is shown in Figure 12. 

CLKMODE = 1 PIPES = 010 Operation: Wrap Denormal Input 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 TTl -0 

01 1010 1000 11 010 xxxx.l1xx 00 o 1 0 0 x 0 0 0 x xxl 1 11 
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I 
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THIRD INSTRUCTION 

W-- tsu1-+1 th1~ ~tsu1-+f I.- th1 +I j4-tsu1-+1 ~th1-+1 
I 

INSTRUCTION: FUNC(9.01. RND(1.01. FAST 
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I 

I 

HALF 
2ND OPS 
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2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

tsu2" ~ .. I.-tsu2----'" ..--tsu2~1h1-+1 ~ th1 -+I 14 .... th1 -+114+14- th1 -+I 
th1 th1 tsu2 tsu2 tsu2 

DATA(31.01 A AND B INPUTS 

'-------'rn

- L 
SElMS/lS 

OUT(31.0) STATUS(13.01 ~ 
tpd4 

14--+1 
tpd5 

14--+1 
tpd4 

Figure 12. Double-Precision ALU Operation, Input and Output Registers Enabled 
(PIPES = 010, CLKMODE - 1) 
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The fourth example shows a conversion from integer to floating point format. All three 
levels of data registers are enabled (PIPES2-PIPESO) so that the FPU is fully pipelined 
in this mode (see Figure 13). 

CLKMODE = 1 

I I 
9-0 

PIPES = 000 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
D G G S S 
E 1-02-0 

Operation: Convert Integer to Floating Point 

SS 
EE 
LL 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 
NN ANNR OOOTSSSATT 
DD SRRCLEEEETTELPP 
1 -0 TAB C S Y C S P 1-0 T T 1-0 

01 10100010 0 11 000 xxxx 1100 00 0 1 1 x x 0 0 0 x xx 1 1 11 
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INSTRUCTION 

I 

SECOND 
INSTRUCTION 

THIRD 
INSTRUCTION 

FOURTH 
INSTRUCTION 

tsu1~ th1~ I4---+t- tsu1 th1~ t4----*tsu1 th1-!+--+1 t4----* tsu1 th1-l4---+t 

INSTRUCTION: FUNC(9,O), RND(1,O), FAST 
I 
I 

I 
14 ~.. ~ 14 ~14 ~ 14 ~\4 ~ ,4 ~'4 ~'14 ~I" ~I ,4 ~14 ~I 14 ~,.. ~I '4 ~,.. ~I 

tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th1 

DATA(31,O) A AND B INPUTS 

SELMS/LS 

OUT(31 ,0) STATUS(13,O) 

~I-l L 

tpd4~ tpdS-l4'-+I tpd4~ tpdS......-.t tpd4......-.t tpds~ 

Figure 13. Double-Precision ALU Operation, All Registers Enabled 
(PIPES '" 000, CLKMODE = 1) 



Double-Precision Multiplier Operations 

Independent multiplier operations may also be performed in either clock mode and with 
various registers enabled. As before, examples for the two clock modes are treated 
separately. A double-precision multiply operation requires two clock cycles to execute 
(except in flowthrough mode) and from one to three other clock cycles to load the 
temporary register and to output the results, depending on the setting of 
PIPES2-PIPESO. 

Even in flowthrough mode (PIPES2-PIPESO = 111) two clock edges are required, the 
first to load half of the operands inthe temporary register and the second to load the 
intermediate product in the multiplier pipeline register. Depending on the setting of 
CLKMODE, loading the temporary register may be done on either a rising or a falling 
edge. 

Double-Precision Multiplication with CLKMODE = 0 

In this first example, the A operand is multiplied by the absolute value of 8 operand. 
Timing for the operation is shown in Figure 14: 

CLKMODE = 0 PIPES = 111 Operation: Multiply A * 181 

S 
E 

ecc L 
L 00 P P SS M S5 
K N N I I EE S 8 E E R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I o G G S S PP DO SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 T A 8 C S Y C S P 1-0 T T 1-0 

01 11001000 o 11 111 1111 xxx x 00 o x x x x 0 0 0 x xx 1 1 11 
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~ 
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Load Half of _______ ~r-· r--
CLK 

FIRST INSTRUCTION ~ I 
~tsu1~ 
INSTRUCTION: FUNC(9.01. RND(1.01. FAST 

[ HALF X REST 
I 1STOPS ~ ____ ~1S~T~O~P~S ____ ~ ______________________________________________________ ___ 

I I 
~tsuz .j.th1 ~ tsu3 ti 
DATA(31.01 A AND B INPUTS 

SELMS/LS 

~ HALF ~ REST 
____________ ----__ ~ FIRST ~ FIRST 

OUT(31.01 STATUS(13.01 ~ tpdZ .1 j4--tpd5~ 

Figure 14. Double-Precision Multiplier Operation. All Registers Disabled 
(PIPES - 111. CLKMODE - 0) 



The second example assumes that the RA and RB input registers are enabled. With 
CLKMODE = 0 one clock cycle is required to input both the double-precision operands. 
The multiplier is set up to calculate the negative product of I A I and B operands: 

CLKMODE = 0 PIPES = 110 Operation: Multiply -(IAI * B) 

S 
E 

C C C L 
L 00 P P SS M S S 
KNN I I EE S BEE R 
M F F P P LL RR FEE S / Y L'L E H 
0 II EE 00 NN ANNR 555TSSSATT 

I I D G G S S PP DD SRRC[EEEETTELPP 
9-0 E 1-02-0 7-0 1~0 TAB C S Y C S P 1 -0 T T 1-0 

01 1101 0100 0 11 11 0 1111 xxxx 00 a 1 1 x x a 0 0 x xx 1 1 11 

load Rest Load Rest 
of First load Half of Second 
Operands of Second Operands 

load half Operands 
of First Begin First Begin Second 
Operands Operation load Pipeline Operation 

+ + + + 
l I I I I 

I I 
ClK I j+-- td2 --+I I 

I I 
I I 

FIRST INSTRUCTION SECOND INSTRUCTION 

14-- tsu 1"""": :.- th 1 .-t 14- tsu 1 -.! , 
INSTRUCTION: FUNC(9,01, RND(1,01, FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

HALF 
2ND OPS 

REST 
2ND OPS 

I+- tsu2 --.}4-- th 1 ~ 14-- tsu2 --.l.- th 1--.1 I+- tsu2 +14-- th 1 --.I If _If th 1 -+I 

DATA(31.01 A AND B INPUTS tsu2 

SElMS/LS 

~.. HALF REST HALF REST 
1ST 1ST 2ND 2ND 

--------~------~------------~ 
. OUT(31 ,01 STATUS(13,01 ~ ~ f4-t'( I4-+t 

tpd2 tpd5 tpd2 tpd5 

Figure 15. Double-Precision Multiplier Operation, Input Registers Enabled 
(PIPES == 110,ClKMODE = 0) 
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en 

Enabling both input and output registers in the third example adds an additional delay 
of one clock cycle, as can be seen from Figure 16. The sample instruction sets up 
calculation of the product of I A I and I B I : 

CLKMODE = 0 

I I 
9-0 

01 1101 1000 

load Half 
of First 

PIPES = 010 

CCC 
L 00 P P 
K N N I I 
M F F P P 
0 II EE 
DGGSS 
E 1-02-0 

Operation: Multiply I A I * I B I 

S 

SS 
EE 
LL RR 
00 NN 
PP DO 
7-0 1-0 

E 
L 
M 
S 

FEE S / 

S S 
BEE R 
Y L L E H 

ANNR OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P1 -0 T T 1-0 

o 10 010 1111 xxxx 00 o 1 1 x x 0 0 0 x xx 1 1 11 

load Rest 
of First 
Operands 

Begin First 
Operation 

+ 

load Half 
of Second 
Operands 

load Rest 
of Second 
Operands 

Begin Second 
Operation 

Z ClK ...... 
~ 
:t:-
O 
-I 
(X) 
(X) 
eN 
...... 

FIRST INSTRUCTION 

14 .1 tsu1 :...- th1 ~ I+tsu1~ 
I 

INSTRUCTION: FUNC(9,O), RND(1,OI. FAST 
I 

I 

I 

SECOND INSTRUCTION THIRD INSTRUCTION 

REST 
3RD OPS 

14-tsu2 +14- th 1 -.I 14- tsu2" th 1 ~ 14- tsu2 +14- th 1 +I 14- tsu2 ~ th 1 +I 

DATA(31,O) A AND B I/IIPUTS 

L 
SElMS/Ls 

~ 

.,....---------------------'~ 
OUT(31,O) STATUS(13,O) tpd4 --I1~4 --".1 

Figure 16. Double-Precision Multiplier Operation, Input and Output Registers Enabled 
(PIPES - 010. CLKMODE = 0) 
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With all registers enabled, the fourth example shows a microinstruction to calculate 
the negated product of operands A and B: 

CLKMODE = 0 

I I 
9-0 

PIPES = 000 

CCC 
L 00 P P 
K N N I I 
M F F P P 

o " EE 
D G G S S 
E 1-02-0 

SS 
EE 
LL 
00 
PP 
7-0 

Operation: Multiply - (A * B) 

S 
E 
L 
M SS 
S BEE R 

RR FEES! YLLEH 
NN ANNR 555TSSSATT 
DD SRRCLEEEETTELPP 
1 -0 TAB C S Y C S P 1 -0 T T 1-0 

01 11000100 0 01 000 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 
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U1 

.!.J 
ex> 

L£881.0\1vLNS 
load Rest 
of Second load Half 

load Rest Operands of Third 
of First load Half Operands 
Operands of Second Begin Second 

load Half Operands Operetion load Pipeline 
of First Begin First 
Operands Operation load Pipeline load Pipeline load Output 

+ + + ~ ~ 

I 
I+-- td2 .'4 td2 .'4 td2 ~ , ClK 
I 
I 

FIRST 
INSTRUCTION 

SECOND 
INSTRUCTION 

I 
I+-tsu1~ 

INSTRUCTION: 

th1~ ~tsu1 
I 

FUNC{9.0). RND'1.01. FAST , 
I 

th1-'-

THIRD 
INSTRUCTION 

14 ., tsu1 I+-th1~ 

~tsu2~ 14 .14 ., 14 .'4 th1 ~ 
th1 tsu2 tM tsu2 th1 tsu2 th1 tsu2 th 1 tsu2 

DATA(31,OI A ANDB INPUTS 

SElMS/LS 

------------------------------------------------------------~ 
OUT(31.0) STATUS{13,OI 14-----1>1 

tpd4 
14-----1>1 

tpd5 
14-----1>1 

tpd4 

Figure 17. Double-Precision Multiplier Operation, All Registers Enabled 
(PIPES - 000, CLKMODE - 0) 

~ 

tpd5 



Double-Precision Multiplication with CLKMODE = 1 

Setting the CLKMOOE control high causes the temporary register to load on the falling 
edge of the clock. This permits loading both double-precision operands within the same 
clock cycle. The time available to output the result is also affected by the settings 
of ClKMOOE and PIPES2-PIPESO, as shown in the individual timing waveforms. 

The first multiplication example with CLKMOOE set high shows a multiplication in 
flowthrough mode (PIPES2-PIPESO = 111). Figure 18 shows the timing for this 
operating mode: 

CLKMODE = 1 PIPES = 111 Operation: Multiply A * 181 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S 8 E E R 
M F F P P LL RR FEE S I Y L L E H 
0 " EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DO SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 T A 8 C S Y C S P 1 -0 T T 1-0 

01 1100 1000 1 11 111 1111 xxxx 00 0 x x x x 0 0 0 x xx 1 1 11 

5-79 



en z 
...,j 

Load Half 
of Operands 

+ 
I 

eLK : 

( FIRST I~STRUCTION ' 

I+- tsu1-.l 

INSTRUCTION: FUNC(9.0). RND(1.0). FAST 

Load Pipeline 

+ 

I 
I 
I 
I 
I 

L 

< l~:~~S )(~_l_:_i_~~~s ________________ ~: ____________________________ __ 
I+-tsu2~ '4 tsu3-----.t~: 

th1 

DATA(31.0) A AND B INPUTS 

SELMS/LS 

~ 

-----------------------------'~ 
OUT(31.0) STATUS(13.0) 

Figure 18; Double-Precision Multiplier Operation, All Registers Disabled 
(PIPES .. 111. CLKMODE = 1) 

t In the second example, the input registers are enabled and the instruction is otherwise 
C') similar to the corresponding example for CLKMODE = O. Timing is shown in Figure 19. 
-I 
00 
00 
eN 
...,j 

CLKMODE = 1 

I I 
9-0 

PIPES = 110 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
D G G S S 
E 1-02-0 

Operation: Multiply - ( I A I * B) 

SS 
EE 
LL 
00 
PP 
7-0 

RR 
NN 
DD 
1-0 

S 
E 
L 
M SS 
S BEE R 

FEES! YLLEH 
ANNR OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P 1-0 T T 1-0 

01 1101 0100 1 11 110 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 
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Load Half 
of First 
Operands 

~ 

Load Rest 
of First 
Operands 

Begin First 
Operation 

~ 

Load Pipeline 

Load Rest 
of Second 
Operands 

of Second Begin Second 
Operands Operation 1 Load Half 

~ ~ 
~~~~II ~ --~ __ _ 

CLK 

FIRST INSTRUCTION 

~th1 
I 

INSTRUCTION: FUNC(~.OI. RND(1.01. FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

14- tsu2 ~ 14 ~i. th1-.t 
th1 tsu2 

DATA(31.01 A AND B INPUTS 

SELMS/LS 

SECOND INSTRUCTION 

HALF 
2ND OPS 

REST 
2ND OPS 

tsu2 I.. ~I" ~II.. ~I" th1--t>! 
th1 tsu2 

~ 

---------------------~-------
OUT(31.01 STATUS(13.01 

Figure 19. Double-Precision Multiplier Operation, Input Registers Enabled 
(PIPES = 110, CLKMODE = 1) 
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With both input and output registers pipelined, the third example calculates the product 
of I A I and I B I .. Enabling the output register introduces a one-cycle delay in outputting 
the result (see Figure 20): 

CLKMODE = 1 PIPES = 010 Operation: Multiply I A I * IBI 

S 
E 

C CC L 
L a a P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I Y L L E H 
a II EE 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DD SRRCLEEEETTELPP 
9-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

01 1101 1000 1 11 010 1111 xxxx 00 a 1 1 x x a a a x xx 1 1 11 
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Load Rest 
of First 
Operands Load Half 

Load Half of Second 

of First Begin First Operands 

Operands Operation Load Pipeline I 
~ ~ ~ ~ 

FIRST INSTRUCTION SECOND INSTRUCTION 

~tsu1-----..t I.----th1 I+- tsu1-+1 
I 

INSTRUCTION: FUNC(9.01. RND (1.01. FAST 
I 

HALF 
1ST OPS 

I 

HALF 
2ND OPS 

Load Rest 
of Second 
Operands 

Begin Second 
Operation 

Load Output 

~ 

~tsu2~ "" ~4 tt 
th1 tsu2 th1 

~ tsu2 .'4 .. ""."" ., th1 
th1 tsu2 

DATA(31.01 A AND.B INPUTS 

SELMS/LS 

~~ 
~(X) 

.. O-U-T-(-3-1-.0-I-S-T-A-TU-S-(-1-3-.0-1------------- ""14--IO+-1 tpd4 """,,-__ .+-I tpd5 ~ 

Figure 20. Double-Precision Multiplier Operation. Input and Output Registers Enabled 
(PIPES .. 010. CLKMODE = 1) 
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The fourth example shows the instruction and timing (Figure 21) to generate the 
negated product of the .A and B operands. This operating mode with CLKMODE set 
high and all registers enabled permits use of the shortest clock period and produces 
the most data throughput, assuming that this is the primary operating mode in which 
the device is to function. 

Additional considerations affecting timing and throughput are discussed in the section 
on mixed operations and operands. 

CLKMODE = 1 

I I 
9-0 

PIPES = 000 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II EE 
D G G S S 
E 1-02-0 

Operation: Multiply - (A * B) 

SS 
EE 
LL 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RR FEES! YLLEH 
NN .ANNR OOOTSSSATT 
DD SRRCLEEEETT ELPP 
1-0 TAB C S Y C S P 1-0 T T 1-0 

01 11 00 0100 1 11 000 1111 xxxx 00 0 1 1 x x 0 0 0 x xx 1 1 11 
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C11 

Co 
C11 

load Rest 
of Second 

load Pipeline 
load Rest Operands 
of First load Pipeline load Output 
Operands 

1 
Begin Second 

1 
load Half load Half Operation load Half 
of First Begin First of Second of Third 
Operands Operation Operands load Pipeline Operands 

• • .. .. • u-LJL 
I 1 

ClK I I+- td2 ·14 td2 .14 td2 --+t 
I 
I 
I 

FIRST INSTRUCTION V SECOND INSTRUCTION X THIRD INSTRUCTION 

I 1 
14--- tsu1---'; ~ 14-tsu1~ 

1 th1 
I 

INSTRUCTION: FUNC(9.0). RND(1.0). FAST 

HALF 
1ST OPS 

I 

HALF 
2ND OPS 

I+----.; I+--tsu1 ~ 
th1 

HALF 
3RD OPS 

load Rest 
of Third 
Operands 

Begin Third 
Operation 

load Pipeline • 

I4---.t 
th1 

I+--tsu2~ 
I 

114 .14 .1 
I tsu2 th1 

I4-t su2 .1011 •• '4 .1 I+--t su2 ~I I4---.t 
th1 th1 th1 1 I th1 

--+' t.-th1 ~ *-tus2 
DATA(31.0) A AND B INPUTS 

SElMS/lS 

-------------------------~ tpd4 tpd5 tpd4 tpd5 
OUT(31.0) STATUS(13.0) ~ ~ ~ ~ 

Figure 21. Double-Precision Multiplier Operation. All Registers Enabled 
(PIPES .. 000. CLKMODE = 1) 
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Chained Multiplierl ALU Operations 

Simultaneous multiplier and ALU functions can be selected in chained mode to support 
calculation of sums of products or products of sums. Operations selectable in chained 
mode (see Table 25) overlap partially with those selectable in independent multiplier 
or ALU operating mode. Format conversions, absolute values, and wrapping or 
unwrapping of denormal numbers are not available in chained mode. 

To calculate sums of products, the FPU can operate on external data inputs in the 
multiplier while the ALU operates on feedback from the previous calculation. The 
operand selects SELOPS7-SELOPSO can be set to select multiplier inputs from the 
RA and RB registers and ALU inputs from the P and S registers. 

This mode of chained multiplier and ALU operation is used repeatedly in the division 
and square root calculations presented later. The sample microinstruction sequence 
shown in Tables 27 and 28 performs the operations for multiplying sets of data 
operands and accumulating the results, the basic operations involved in computing 
a sum of products. 

Table 27 represents the operations, clock cycles, and register contents for a single­
precision sum of four products. Registers used include the RA and RB input registers 
and the product (P) and sum (S) registers. 

Table 27. Single-Precision Sum of Products (PIPES2-PIPESO =·010) 

CLOCK MULTIPLIER/ALU 
PSEUDOCODE 

CYCLE OPERATIONS 

1 Load A. B A -+ RA. B -+ RB 
A * B 

2 Pass P(AB) to S 
C -+ RA. D -+ RB 

Load C. D 
A * B -+ P(AB) 

C * D 
3 S(AB) + P(CD) P(AB) + 0 .... S(AB) 

Load E. F E -+ RA, F -+ RB 
E * F C * D -+ P(CD) 

4 S(AB + CD) + P(EF) S(AB) + P(CD) -+ S(AB + CD) 
Load G. H G -+ RA. H -+ RB 
G * H E * F -+ P(EF) 

5 S(AB + CD) + EF) + P(GH) S(AB + CD) + P(EF) -+ S(AB + CD + EF) 
G * H -+ P(GH) 

6 New Instruction S(AB + CD + EF) + P(GH) -+ S(AB + CD + EF + GH) 

A microcode sequence to generate this sum of product is shown in Table 28. Only 
three instructions in chained mode are required, since the multiplier begins the 
calculation independently and the ALU completes it independently. 
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Table 28. Sample Microinstructions for Single-Precision Sum of Products 

5 
E 

C CC L 
L 00 pp 55 M 5 5 
K NN I I E E 5 BEE R 
M FF pp LL RR FEE 5 / Y L L E H 
0 II EE 00 NN ANN R 000T55 5 A T T 

I I D GG 55 pp DD 5 R R C LEE E E TT E L P P 
9-0 E 1-0 2-0 7-0 1-0 TABC5YC5 P 1-0 T T 1-0 

0001000000 0 01 010 1111 xxxx 00 0 x x x x x x xx 11 
1001100000 0 01 010 1111 xxxx 00 0 x x x x x x xx 11 
1000000000 0 01 010 1111 1010 00 0 x x x x x x xx 11 
1000000000 0 01 010 xxxx 1010 00 0 x x x x x x xx 11 
0000000000 0 01 010 xxxx 1010 00 o x x x x x x x x xx 11 
xx xxxx xxxx x xx xxx xxxx xxxx xx x x x x x 000 x xx 11 

Fully Pipelined Double-Precision Operations 

Performing fully pipelined double-precision operations requires a detailed understanding 
of timing constraints imposed by the multiplier. In particular, sum of products and 
product of sums operations can be executed very quickly, mostly in chained mode, 
assuming that timing relationships between the ALU and the multiplier are coded 
properly. 

I""­
Pseudocode tables for these sequences are provided, (Table 29 and Table 30) showing M 
how data and instructions are input in relation to the system clock. The overall patterns ~ 
of calculations for an extended sum of products and an extended product of sums .... 
are presented. These examples assume FPU operation in CLKMODE 0, with the CONFIG U 
setting HL to load operands by MSH and LSH, all registers enabled :; 
(PIPES2 - PIPESO = LLL), and the C register clock tied to the system clock. I""-

2 
In the sum of products timing table, the two initial products are generated in en 
independent multiplier mode. Several timing relationships should be noted in the table. 
The first chained instruction loads and begins to execute following the sixth rising 
edge of the clock, after the first product P1 has already been held in the P register 
for one clock. For this reason, P1 is loaded into the C register so that P1 will be stable 
for two clocks. 

On the seventh clock, the ALU pipeline register loads with an unwanted sum, P1 + P1. 
However, because the ALU timing is constrained by the multiplier, the S register will 
not load until the rising edge of CLK9, when the ALU pipe contains the desired sum, 
P1 + P2. The remaining sequence of chained operations then execute inthe desired 
manner. 
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(J1 

Co 
(Xl 

CLK 
DA 

BUS 

I1 A1 MSH 

I2 A1 LSH 

I3 A2 MSH 

I4 A2lSH 

I5 A3 MSH 

I6 A3lSH 

I7 A4 MSH 

IS A4lSH 

I9 A5 MSH 

IlO A5lSH 

I11 A6MSH 

I12 

L£88.L:J'<ftrLNS 

Table 29. Pseudocode for Fully Pipelined Double-Precision Sum of Products 
(CLKM = 0, CON FIG ... 1 0, PIPES == 000, CLKC-SYSCLK) 

DB TEMP INS INS RA RB MUL P C 

BUS REG BUS REG REG REG PIPE REG REG 

B1 MSH A1,B1MSH A1 *B1 

B1 LSH A1,B1MSH A1 *B1 A1 *B1 A1 B1 

B2 MSH A2,B2MSH A2*B2 A1 *B1 A1 B1 A1 *B1 

B2 lSH A2,B2MSH A2*B2 A2*B2 A2 B2 A1 *B1 

PR+CR 
B3 MSH A3,B3MSH 

A3*B3 
A2*B2 A2 B2 A2*B2 P1 

PR+CR PR+CR, 
B3lSH A3,B3MSH 

A3*B3 A3*B3 
A3 B3 A2*B2 P1 P1 

PR+SR PR+SR, 
B4 MSH A4,B4MSH 

A4*B4 A3*B3 
A3 B3 A3*B3 P2 P1 

PR+SR PR+SR, 
A3*B3 B4lSH A4,B4MSH A4 B4 P2 P1 

A4*B4 A4*B4 

PR+SR PR+SR, 
B5 MSH A5,B5MSH 

A5*B5 A4*B4 
A4 B4 A4*B4 P3 P2 

PR+SR PR+SR, 
B5 lSH A5,B5MSH 

A5*B5 A5*B5 
A5 B5 A4*B4 P3 P3 

PR+SR PR+SR, 
B6 MSH A6,B6(M) 

A6*B6 A5*B5 
A5 B5 A5*B5 P4 P3 

ALU S y 

PIPE REG BUS 

P1 +P1 

P1 +P1 

S1 +P2 S1 

S1 +P3 S1 

xxxxx S2 

- .. _- ------



DA 
ClK 

BUS 

I1 A1(M) 

I2 A1(l) 

I3 A2(M) 

I4 A2(L) 

I5 A3(M) 

I6 A3(L) 

I7 XXX 

I8 A4(M) 

I9 A4(L) 

flO xxx 

I" A5(M) 

I12 A5(l) 
------------

01 

Table 30. Pseudocode for Fully Pipelined Double-Precision Product of Sums 
(CLKM-O. CONFIG=10. PIPES=OOO. CLKC-SYSCLK) 

DB TEMP INS INS RA RB MUl P C 

BUS REG BUS REG REG REG PIPE REG REG 

B1(M) A 1 ,B1(M) A1 +B1 

B1(L) A1.B1(M) A1 +B1 A1 +B1 A1 B1 

B2(M) A2.B2(M) A2+B2 A1 +B1 A1 B1 

B2(L) A2.B2(M) A2+B2 A2+B2 A2 B2 

B3(M) A3.B3(M) 
CR*SR 

A3+B3 
A2+B2 A2 B2 S1 

B3(L) A3.B3(M) 
CR*SR 

A3+B3 

CR*.SR 

A3+B3 
A3 B3 S1 

SP Add 
CR*SR 

XXX XXX 
A3+B3 

A3 B3 S1 *S2 S1 

PR*SR CR*SR ENRA=L ENRB=L 
B4(M) A4.B4(M) S1 *S2 S1 

A4+B4 A3+B3 A3 B3 

PR*SR PR*SR 
B4(L) A4.B4(M) A4 B4 XXX P1 S1 

A4+B4 A4+B4 

PR*SR xxx xxx SP Add 
A4+B4 

A4 B4 P1 *S3 P1 S1 

PR*SR PR*SR ENRA=l ENRB=L xxx B5(M) A5.B5(M) P1 *S3 S1 
A5+B5 A4+B4 A4 B4 

PR*SR PR*SR 
P2 S1 B5(l) A5.B5(M) A5 B5 xxx 

A5+B5 A5+B5 

Co NOTE: On ClK 7 and ClK 10. put 0000000000 (Single-Precision Add) on the instruction bus. 
(£) 

SN74ACT8837 

ALU S y 

PIPE REG BUS 

A1 +B1 

A1 +B1 S1 I 

A2+B2 S1 

A2+B2 S2 

A3+B3 S2 . 

A3+B3 XXX 

XXX S3 

A4+B4 S3 

A4+B4 xxx 

xxx S4 



In the product of sums timing table, the two initial sums are generated in independent 
ALU mode. The remaining operations are shown as alternating chained operations 
followed by single-precision adds. The SP adds are necessary to provide an extra cycle 
during which the multiplier outputs the current intermediate product. The current sum 
and the latest intermediate product are then fed back to the multiplier inputs for the 
next chained operations. In this manner,a double-precision product of sums is 
generated in three system clocks, as opposed to two clocks for a double~precision 
sum of products. 

Mixed Operations and Operands 

Using mixed-precision data operands or performing sequences of mixed operations 
may require adjustments in timing, operand precision, and control settings. To simplify 
microcoding sequences involving mixed operations, mixed-precision operands, or both, 
it is useful to understand several specific requirements for mixed-mode or mixed­
precision processing. 

Calculations involving mixed-precision operands must be performed as double-precision 
operations (see Table 12). The instruction settings (18-17) should be set to indicate 
the precision of e.ach operand from the RA and RB input register.s. (Feedback operands 
from internal registers are also double-precision.) Mixed-precision operations should 
not be performed in chained mode. 

Timing for operations with mixed-precision operands is the same as for a corresponding 
double-precision operation. In a mixed-precision.operation, the single-precision operand 

en must be loaded into the upper half of its input register. 

2 .... 
.~ 

» 
(") 

; 
CO 
W .... 

Most format conversions also involve double-precision timing. Conversions between 
single- and double-precision floating point format are treated as mixed-precision 
operations. During integer to floating point conversions, the integer input should be 
loaded into the upper half of the RA register. 

In applications where mixed-precision operations is not required, it is possible to tie 
the 18-17 instruction inputs together so that both controls always select the same 
precision. 
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Sequences of mixed· operations m~y require changes in multiple control settings to 
deal with changes in timing of input, .execution, and output of results. Figure 22 shows 
a simplified timing waveform for a series of mixed operations: 

CLOCK CYCLE 

FUNCTION 
AND DATA 

RESULTS 
AND STATUS 

A.S 

2 3 

A.S C,D 

XXXX 

4 5.6 

C,D E,F 

A.S XXXX C.D 

7 8 9 10 11 12 13 

G,H G.H I.J I.J K,L M.N 

E.F E.F G.H G.H I.J K.L M •. N 

A,B,C,D- double precIsion multiply; ,E,F - single'precision operation; G,H,I,J - double 
precision add; K,L - single precision opration. A double precision number is not required to 
be held on the outputs for two cycles unless it is followed by a like double precision function. 
If a double precision multiply is followed by single precision operation, there must be One open 
clock cycle. 

Figure 22. Mixed Opera~ions and Operands 
(PIPES2-PIPESO - 110, CLKMODE -01 

In this sequence, the fifth cycle is left open because a single-precision multiply follows 
a double-precision multiply. I.f the SP multiply were input during the period fQJlowing 
the fourth rising clock edge, the result of the preceding operation would be overWritten, 
since an SP multiply executes in one clock cycle:To avoid such a condition,tRe FPU 
will not load during the required open cycle. ',: 

Becausethe sequence of mixe.doperations places .constraints on output timi~'9,only 
one cycle is available to output the double-precision (e * 0), result. By contrast, the 
SP multiply (E * FI is available for two cycles because the operation which follows 
it does not output a result in the period following the seventh rising clock edge. In 
general, the precision and timing of each operation affects the timing of adjacent 
operations. 



en 
2 
-..J 
~ 
l> 

Control settings for CLKMODE and registers must also be considered in relation to 
precision and speed of execution. In Figure 23, a similar sequence of mixed operations 
is set up for execution in fully pipelined mode: 

CLOCK CYCLE 

FUNCTION 
AND DATA 

RESULTS 
AND STATUS 

A.B 

2 3 

C.D 

4 5 6 

E.F G.H 

A.B A.B 

7 8 9 10 11 12 13 

I.J K.L M.N O.P a.R 

C.D E.F G.H I.J K.L M.N M.N 

A.B.C.D - double precision multiply; E.F - single precision operation; G.H. - double precision 
add; I.J.K.L,M,N - single precision operation; Q,P,Q,R - double precision mUltiply. In clock 
mode 1. a double precision result is two cycles long only when a double precision multiply is 
followed by a double precision mUltiply. 

Figure 23. Mixed Operations and Operands 
(PIPES2-PIPESO - 000, CLKMODE - 11 

Although the data operands can be loaded in one clock cycle with CLKMOOE set high, 
enabling two additional internal registers delays the (A * BI result one cycle beyond 
the previous example. Again, an open cycle is required after the (C * 01 operation 
because the next operation is single precision. The result of the (C * 0) multiply is 
available for one cycle instead of two, also because the following operation is single 
precision. With this setting of CLKMODE and PIPES2-PIPESO, a double-precision result 
is only available for two clock cycles when one DP multiply follows another DP mUltiply. 

~ Matrix Operations 
0) 
0) 
W 
-..J 

The' ACT8837 floating point unit can also be used to perform matrix manipulations 
involved in graphics processing or digital signal processing. The FPU multiplies and 
adds data elements, executing sequences of microprogrammed calculations to form 
new matrices. 

Representation of Variables 

Instate representations of control systems, an n-th order linear differential equation 
with constant coefficients can be represented as a sequence of n first-order linear 
differential equations expressed in terms of state variables: 
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dx1 
dt 

'" x 2, ... , 
dx(n -1) 

dt 
'" xn 



For example, in vector-matrix form the equations of an nth-order system can be 
represented as follows: 

x1 a11 a12 a1n 

~ 
b11 b1n 

~ d 
x2 x2 u2 

dt 
: + 

xn an1 an2 ann xn bn1 bnn un 

or, X = ax + bu 

Expanding the matrix equation for one state variable, dx 1 /dt, results in the following 
expression: 

X1 = (a11 * x1 + ... + a1n * xnl + (b11 * u1 + ... + b1n * unl 

where X 1 = dx 1 /dt. 

Sequences of multiplications and additions are required when such state space 
transformations are performed, and the 'ACT8837 has been designed to support such 
sum-of-products operations. An n x n matrix A multiplied by an n x n matrix X yields 
an n x n matrix C whose elements cij are given by this equation: 

n 
,.... 
('I) 

cij =.E aik * xkj for i=1, ... ,n j=1, ... ,n (11 ~ 
k=1 

For the cij elements to be calculated by the' ACT8837, the corresponding elements 
aik and xkj must be stored outside the' ACT8837 and fed to the' ACT8837 in the 
proper order required to effect a matrix multiplication such as the state space system 
representation just discussed. 

Sample Matrix Transformation 

The matrix manipulations commonly performed in graphics systems can be regarded 
as geometrical transformations of graphic objects. A matrix operation on another matrix 
representing a graphic object may result in scaling, rotating, transforming, distorting, 
or generating a perspective view of the image. By performing. a matrix operation on 
the position vectors which define the vertices of an image surface, the shape and 
position of the surface can be manipulated. 
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The generalized 4 x 4 matrix for transforming a three-dimensional object with 
homogeneous coordinates is shown below: 

a b c d 
e f 9 h 

T k I 
..... ... 

m n 0 : p 

The matrix T can be partitioned into four component matrices, each of which produces 
a specific effect on the resultant image: 

3 
3 x 3 x 

1 

1 x 3 1 x 1 

The 3 x 3 matrix produces linear transformation in the form of scaling, shearing and 
rotation. The 1 x 3 row matrix produces translation, while the 3 x 1 column matrix 
produces perspective transformation with multiple vanishing points. The final single 

en element 1 x 1 produces overall scaling. Overall operation of the transformation matrix 
2 T on the position vectors of a graphic object produces a combination of shearing, 
-...J rotation, reflection, translation, perspective, and overall scaling. 

t 
("') 
-I 
00 
00 
W 
-...J 

The rotation of an object about an arbitrary axis in a three-dimensional space can be 
carried out by first translating the object such that the desired axis of rotation passes 
through the origin of the coordinate system, then rotating the object about the axis 
through the origin, and finally translating the rotated object such that the axis of rotation 
resumes its initial position. If the axis of rotation passes through the point P = [a b c 11. 
then the transformation matrix is representable in this form: 

[x y z hI = [x y z 11 1 
0 
0 

-a 
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0 0 
1 0 
0 1 

-b -c 

~ 
translation 
to origin 

0 
0 
0 
1 

R 

rotation 
about 
origin 

1 0 0 0 
0 1 0 0 
0 0 1 0 
a b c 1 

~ 
translation 

back to initial 
position 

(2) 



where R may be expressed as: 

R 

and 

n12 + (1-n)2 costj> n1n2(1-costj»+n3sintj> n1n3(1-costj»-n2sin</> 0 

n1n2(1-costj»-n3sintj> n22 + (1-n2)2costj> n2n3( 1-costj» + n 1 sintj> 0 

n1n3(1-costj»+n2sintj> n2n3(1-costj»-n1sintj> n32 + (1-n3)2 cos</> 0 

o o 

n1 = q1/(q1 2 + q22 + q32)1/2 

o 

direction cosine for x-axis of 
rotation 

n2 = q2/(q 12 + q22 + q32) 1 /2 = direction cosine for y-axis of rotation 

n3 = q3/(q1 2 + q22 + q32) 1 /2 = direction cosine for z-axis of rotation 

h = (n1 n2 n3) = unit vector for 0: 

0: = vector defining axis of rotation = [q1 q2 q3) 

tj> = the rotation angle about 0: 
...... 
M 

A general rotation using equation (2) is effected by determining the [x y z) coordinates CO 
of a point A to be rotated on the object, the direction cosines of the axis of rotation ~ 
[n1, n2, n3]. and the angle tj> of rotation about the axis, a.II of which are needed to U 
define matrix [R). Suppose, for example, that a tetrahedron ABCD, represented by <{ 
the coordinate matrix below is to be rotated about an axis of rotation RX which passes o::t ...... 
through a point P = [5 - 6 3 11 and whose direction cosines are given by unit vector Z 
[n1 = 0.866, n2 = 0.5, n3 = 0.707). The angle of rotation 0 is 90 degrees (see CJ) 

Figure 24). The rotation matrix [R) becomes 

2 -3 3 A 
1 -2 2 B 
2 -1 2 C 
2 -2 2 D 

0.750 1.140 0.112 0 

R 
-0.274 0.250 1.220 0 

= 
1.112 -0.513 0.500 0 
0 0 0 1 
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r-­
I BT 

(211 AT 

°T 

y 

Z' 

+- - - -- - - - - - - - - - -, 

Q 1(1\ 
55· I 

I I 
x,+-----------~7.7~~~~~--------~-----------------~)X 

I 
L _.-. 

BR 
I 

Z I c' 
I (3) L ____ -+ 

B' t- 0' 

(1) THIS ARROW DEPICTS THE FIRST TRANSLATION 
(2) THIS ARROW DEPICTS THE 90· ROTATION 
(3) THIS ARROW DEPICTS THE BACK TRANSLATION 

90· 
P (5, -6,3) 

Figure 24, Sequence of Matrix Operations en z 
'J 
~ The point transformation equation (2) can be expanded to include all the vertices of 
» the tetrahedron as follows: 
(") 
-4 
CO 
CO 
W ..... 

xa ya za h1 
xb yb zb h2 
xc yc zc h3 
xd yd zd h4 

2 -3 3 1 0 
01 
00 

00 
00 
1 0 

1 - 2 2 1 
2 -1 2 1 
2 -2 2 1 -56-31 
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translation 
to origin 

0.750 1.140 0.112 0 
-0.274 0.250 1.22 0 

1.112 -0.5130.5000 
0 0 0 1 

rotation about origin 

1 000 
0 1 0 0 
0 010 
5-6 3 1 

translation 
back to 

initial 
position 

(3) 



The 'ACT8837 floating-point unit can perform matrix manipulation involving 
multiplications and additions such as those represented by equation (1). The matrix 
equation (3) can be solved by using the' ACT8837 to compute, as a first step, the 
product matrix of the coordinate matrix and the first translation matrix of the right­
hand side of equation (3) in that order. The second step involves postmultiplying the 
rotation matrix by the product matrix. The third step implements the back-translation 
by premultiplying the matrix result from the second step by the second translation 
matrix of equation (3). Details of the procedure to produce a three-dimensional rotation 
about an arbitrary axis are explained in the following steps: 

Step 1 

Translate the tetrahedron so that the axis of rotation passes through the origin. This 
process can be accomplished by multiplying the coordinate matrix by the translation 
matrix as follows: 

2 
1 
2 
2 

-3 
-2 
-1 
-2 

3 
2 
2 
2 

1 
0 
0 

-5 

0 0 
1 0 
0 1 
6 -3 

~ 
translation 
to origin 

-3 
-4 
-3 
-3 

0 
0 
0 
1 

+3 0 
+4 -1 

+5 -1 
+4 -1 

(2-5) (-3+6) (3-3) 
(1 - 5) (-2+6) (2-3) 
(2-5) (-1 +6) (2-3) 
(2-5) (-2+6) (2-3) 

l 
vertices of translated 

tetrahedron 

AT 
BT 
CT 
DT 

1 
1 
1 
1 

The' ACT8837 could compute the translated coordinates AT, BT, CT, DT as indicated 
above. However, an alternative method resulting in a more compact solution is 
presented below. 
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en 
Z 
....,J 
~ 
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(") 
-"4 
CO 
CO 
eN 
....,J 

Step 2 

Rotate the tetrahedron about the axis of rotation which passes through the origin after 
the translation of Step 1. To implement the rotation of the tetrahedron, postmultiply 
the rotation matrix [R) by the translated coordinate matrix from Step 1 . The resultant 
matrix represents the rotated coordinates of the tetrahedron about the origin as follows: 

-3 3 0 1 0.750 1.140 0.112 0 -3.072 -2.670 3.324 1 
-4 4 -1 1 -0.274 0.250 1.22 0 -5.208 -3.047 3.932 1 
-3 5 -1 1 1.112 -0.513 0.500 0 -4.732 -1.657 5.264 1 
-3 4 -1 1 0 0 0 1 -4.458 -1.907 4.044 1 

~ 
rotation about origin rotated coordinates 

Step 3 

Translate the rotated tetrahedron back to the original coordinate space. This is done 
by premultiplying the resultant matrix of Step 2 by the translation matrix. The following 
calculations produces the final coordinate matrix of the transformed object: 

- 3.072 - 2.670 3.324 1 1 0 0 0 1.928 - 8.670 6.324 
-5.208 -3.0473.9321 0 1 0 0 -0.208 -9.047 6.932 
-4.732 -1.657 5.264 1 0 0 1 0 0.268 -7.657 8.264 
-4.458 -1.907 4.044 1 5 -6 3 1 0.542 -7.907 7.044 

~ ~ 
translate back final rotated coordinates 



A more compact solution to these transformation matrices is a product matrix that 
combines the two translation matrices and the rotation matrix in the order shown in 
equation (3). Equation (3) will then take the following form: 

xa ya za hl 
xb yb zb h2 
xc yc zc h3 
xd yd zd h4 

2 -3 3 0.750 1.140 0.112 0 
1 -2 2 -0.274 0.250 1.220 0 
2 -1 2 1.112 -0.513 0.500 0 
2 -2 2 -3.730 -8.661 8.260 1 

~ 
transformation matrix 

The newly transformed coordinates resulting from the postmultiplication of the 
transformation matrix by the coordinate matrix of the tetrahedron can be computed 
using equation (1) which was cited previously: 

I' 
('I) 

n 

cij = 1:; aik * xkj for i = 1, ... ,n j = 1, ... ,n 

k=l 

CO 
CO 

(1) t; 
<t 
'd" 
I' 
Z 
fJ) 
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For example, the coordinates may be computed as follows: 

xa = c 11 a 11 * x 11 + a 12 * x21 + a 13 * x31 + a 14 * x41 
2 * 0.750 + (-3) * (-0.274) + 3 * 1.112 + 1 * (-3.73) 
1.5 + 0.822 + 3.336 - 3.73 
1.928 

ya = c12 a11 * x12 + a12 * x22 + a13 * x32 + a14 * x42 
2 * 1.140 + (-3)* 0.250 + 3 * (-0.513) + 1x(-8.661) 
2.28 -0.75 - 1.539 - 8.661 
-8.67 

za = c13 a11 * x1.3 + a12 * x23 + a13 * x33 + a14 * x43 
2 * 0.112 + (-3) * 1.220 + 3 * 0.500 + 1 * 8.260 
0.224 - 3.66 + 1.5 + 8.260 
6.324 

h 1 = c 1 4 = a 11 * x 14 + a 1 2 * x24 + a 13 * x34 + a 14 * x44 
2 * 0 + (- 3) * 0 + 3 * 0 + 1 * 1 
o + 0 + 0 + 1 
1 
A' = [1.928 - 8.67 6.324 11 

en The other rotated vertices are computed in a similar manner: 

2 

" ,J::o 
l> 
(") 
-t 
IX) 
IX) 
CN 

" 

8' 
C' 
D' 

[-5.208 -3.0473.93211 
[-4.732 -1.6575.2641) 
[-4.458 -1.9074.044 11 

Microinstructions for Sample Matrix Manipulation 

The' ACT8837 FPU can compute the coordinates for graphic objects over a broad 
dynamic range. Also, the hQmogeneous scalar factQrs h1, h2, h3 and h4 may be made 
unity due tQ the availability.of large dynamic range. In the example presented below, 
some .of the calculations pertaining to vertex A' are shown but the same apprQach 
can be applied tQ any number .of points and any vector space. 

The calculations belQw shQW the sequence of operations for generating tWQ 
coordinates, xa and ya, .of the vertex A' after rQtation. The same sequence CQuid be 
continued to generate the remaining two cOQrdinates for A' (za and h1). The other 
vertices of the tetrahedron, 8', C', and D', can be calculated in a similar way. 
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A microcode sequence to generate this matrix multiplication is shown in Table 31. 
Table 32 presents a pseudocode description of the operations, clock cycles, and register 
contents for a single-precision matrix multiplication using the sum-of-products sequence 
presented in an earlier section. Registers used include the RA and RB input registers 
and the product (P) and sum (S) registers. 

Table 31. Microinstructions for Sample Matrix Multiplication 

C C C 

S 
E 
L 
M SS 
S BEE R 

R R FEES / Y L L E H 

L 00 P P 
K N N I I 
M F F P P 
o II EE 
o G G S S 
E 1-0 2-0 

SS 
E E 
L L 
00 
PP 
7-0 

NN ANNR OOOTSSSATT 
I I 

9-0 
DDS R R C [ EE E E T TEL P P 
1-0 TAB C S Y C S P 1-0 T T 1-0 

0001000000 0010101111 xxxx 00 01 
1001100000 0010101111 xxxx 00 01 
1 a 0000 0000 a a 1 a 1 a 1 1 1 1 1 a 1 a 00 a 1 
1 a 0000 0000 a a 1 a 1 a 1 11 1 10 10 00 a 1 
1 a 0000 0000 a a 1 01 0 1 11 1 1 a 1 a 00 a 1 

x x x x x x xx 
x x x x x x xx 
x x x x x x xx 
x x x x x x xx 
x x x x x x xx 

11 
11 
11 
11 
11 

10 0110 0000 
10 0000 0000 
10 0000 0000 
10 0000 0000 
10 0110 0000 

a 01 
a 01 
a 01 
a 01 
a 01 

0101111 
0101111 
0101111 
0101111 
0101111 

xxxx 
1010 
1010 
1010 

00 a 1 
00 a 1 
00 a 1 
00 a 1 
00 

x x x x x x xx 
x x x x x x xx 
x x x x x x xx 
x x x x x x xx 
x x x x x x xx 

11 '" M 
11 co 
11 co .... 
11 (.) 

xxxx a 1 11 « 
~ 

Six cycles are required to complete calculation of xa, the first coordinate, and after 
four more cycles the second coordinate ya is output. Each subsequent coordinate can 
be calculated in four cycles so the 4-tuple for vertex A' requires a total of 18 cycles 
to complete. 

Calculations for vertices B~, C', and 0', can be executed in 48 cycles, 16 cycles for 
each vertex. Processing time improves when the transformation matrix is reduced, 
i.e., when the last column has the form shown below: 
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2 ..... 
~ » 
(") 
-4 
00 
00 
eN ..... 

Table 32. Single-Precision Matrix Multiplication (PIPES2-PIPESO - 010) 

CLOCK MUL TIPLIER/ALU 
PSEUDOCODE 

CYCLE OPERATIONS 
1 Load a 11, x 11 a 11 - RA, x 11 -RB 

SP Multiply p1 = a11 * x11 

2 Load a12, x21 a12 -RA, x21 -RB 
SP Multiply p2 = 812 * x21 
Pass P to S p1 - P(p1) 

3 Load a13, x31 a13 - RA, x31 -RB 
SP Multiply p3 = a13 * x31, p2 -P(p2) 
Add P to S . P(p1) + 0-S(p1) 

4 Load a14, x41 a14 ..... RA, x41 ..... RB 
SP Multiply p4 = a14 * x41, p3 ..... P(p3) 
Add P to S P(p2) + S(p1) ..... S(p1 + p2) 

5 Load a 11, x 1 2 a11 ..... RA,x12 ..... RB 
SP Multiply p5 = a11 * x12, p4 ..... P(p4) 
Add P to S P(p3) + S(p1 + p2) ..... S(p1 + p2 + p3) 

6 Load a12, x22 a12 ..... RA, x22 ..... RB 
SP Multiply p6 = a12 * x22, p5 ..... P(p5) 
Pass P to S P(p4) + S(p1 + p2 + p3) ..... 
Output S S(p1 + p2 + p3 + p4) 

7 Load (113, x32 a 13 ..... RA, x32-+ RB 
SP Multiply p7 = a13 * x32. p6 -+ P(p6) 
Add P to S P(p5) + 0 ..... S(p5) 

8 Load a14, x42 a14 ..... RA, x42 ..... RB 
SP Multiply p8 = a14 * x42. p7 - P(p7) 
Add P to S P(p6) + S(p5)- S(p5 + p6) 

9 Next operands A ..... RA, B ..... RB 
Next instruction pi = A * B, p8 ..... P(p8) 
Add P to S P(p7) + S(p5 + p6) - S(p5 + p6 + p7) 

10 Next operands C - RA, D ..... RB 
Next instruction pj = C * D, pi':" P(pi) 
Output S. P(p8) + S(p5 + p6 + p7) ..... 

S(p5 + p6 + p7 + p8) 

The h-scalars h1, h2. h3, and h4 are equal to 1. The number of clock cycles to generate 
each 4-tuple can then be decreased from 16 to 13 cycles. Total number of clock cycles 
to calculate all four vertices is reduced from 66 to 54 clocks. Figure 25 summarizes 
the overall matrix transformation. 
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1° 
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I 
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I C' 
I 

Z 
B' 0' .-0. 

90° 

:A' P (5, -6,3) 
I 
I 
I 
I 

Y' 

Figure 25, Resultant Matrix Transformation 

This microprogram can also be written to calculate sums of products with all pipeline " 
registers enabled so that the FPU can operate in its fastest mode; Because of timing M 
relationships, the C register is used in some steps to hold the intermediate sum of 00 

00 
products. Latency due to pipelining and chained data manipulation is 11 cycles for .... 
calculation of the first coordinate, and four cycles each for the other three coordinates. U 

c:x: ..,. 
After calculation of the first vertex, 16 cycles are required to calculate the four 
coordinates of each subsequent vertex. Table 33 presents the sequence of calculations 
for the first two coordinates, xa and ya. 
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Table 33. Fully Pipe lined Sum of Products (PIPES2-PIPESO = 000) 
(Bus or Register Contents Following Each Rising Clock Edge) 

CLOCK I DA DB I RA RB MUL ALU P S C 
CYCLE BUS BUS BUS REG REG REG PIPE PIPE REG REG REG 

0 Mul x11 a11 
1 Mul x21 a12 Mul x11 a 11 
2 Chn x31 a13 Mul x21 a12 p1 
3 Mul x41 a14 Chn x31 a13 p2 p1 
4 Chn x12 a 11 Mul x41 a14 p3 51 p2 
5 Chn x22 a12 Chn x12 a 11 p4 t p3 51 p2 
6 Chn x32 a13 Chn x22 a12 p5 52 p4 t p2 
7 Chn x42 a14 Chn x32 a13 p6 53 p5 52 p2 
8 Chn x13 a11 Chn x42 a14 p7 54 p6 53 52 
9 Chn x23 a12 Chn x13 a 11 p8 xa p7 54 p6 
10 Chn x33 a13 Chn x23 a12 p9 55 p8 xa p6 
11 Chn x43 a14 Chn x33 a13 p10 56 p9 55 p6 
12 Chn x14 a 11 Chn x43 a14 p11 57 p10 56 55 
13 Chn x24 a12 Chn x14 a 11 p12 ya p11 57 p10 
14 Chn x34 a13 Chn x24 a12 p13 58 p12 ya p10 
15 Chn x44 a14 Chn x34 a13 p14 59 p13 58 p10 

t Contents of this register are not valid during this cycle. 

Y 
BUS 

xa 

ya 

Products in Table 33 are numbered according to the clock cycle in which the operands 
and instruction were loaded into the RA, RB, and I register, and execution of the 
instruction began. Sums indicated in Table 33 are listed below: 
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s1 
52 
53 
s4 

p1 + 0 
p1 + p3 
p2 + p4 
p5 + 0 

55 = p5 + p7 
56 p6 + p8 
57 p9 + 0 
58 p9 + p11 

59 = p10 + p12 
xa p1 + p2 + p3 + p4 
ya = p4 + p5 + p6 + p7 



SAMPLE MICROPROGRAMS FOR BINARY DIVISION AND 
SQUARE ROOT 
The SN74ACT8837 Floating Point Unit supports binary division and square root 
calculations using the Newton-Raphson algorithm. The' ACT8837 performs these 
calculations by executing sequences of floating-point operations according to the 
control settings contained in specific microprogrammed routines. This implementation 
of the Newton-Raphson algorithm requires that a seed ROM provide values for the 
first approximations of the reciprocals of the divisors. 

This application note presents several microprograms for floating-point division and 
square root using the Newton-Raphson algorithm. Each sample program is analyzed 
briefly to show details of the floating-point procedures being performed. 

Binary Division Using the Newton-Raphson Algorithm 

Binary division can be performed as an iterative procedure using the Newton-Raphson 
algorithm. For a dividend A, divisor B, and quotient Q, this procedure calculates a value 
for .1 /B which is then used to evaluate the expression Q = A * 1/B. The calculation 
can be performed with either single- or double-precision operands, and examples of 
each precision are shown. 

The basic algorithm calculates the value of a quotient Q by approximating the reciprocal 
of the divisor B to adequate precision and thel] multiplying the dividend A by the 
approximation of the reciprocal: . 

Q = A/B = A * Xn, where Xn = the value of X after the nth iteration 
n = the number of iterations to achieve the 

desired precision 

Intermediate values of X are calculated using the following expression: 

Xi + 1 = Xi * (2 - B * Xi), where XO = approximates 1/B for 
the range 0 < XO < 2/B 

" ('I) 
(Xl 
(Xl 
I­
U 
~ 
o::t 

" Z 
To illustrate a program using the Newton-Raphson algorithm, the sequence oftn 
calculations is presented in detail. For double-precision operations, three iterations are 
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needed to· achieve adequate precision in the value of 1/B. A value for the seed XO 
(approximately equal to 1/B) is assumed to be given, and the following operations are 
performed to evaluate Q from double-precision inputs: 

X1 == XO(2 - B * XO) 

X2 == X1 (2 - B * X1) == XO(2 - B * XO) * (2 - B * XO(2 - B * XO)) 

X3 == X2(2 - B * X2) 

X3 == XO(2-B * XO) * (2-B * XO(2-B * XO)) * (2-B * XO * (2-B 
* XO) * (2-B * XO * (2-B * XO))) 

Q == A * 1/B == A * X3 

AlB = A * XO(2-B * XO) * (2-B * XO(2-B * XO)) * (2-B * XO 
* (2-B * XO) * (2-B * XO * (2-B * XO))) 

X1 X1 X1 X1 

X2 X2 

X3 

(J) Table 36 presents decimal and hexadecimal values for A, B, and XO, which are used 
~ in the sample calculation. The computed value of the quotient Q is also included, 
~ showing the representations of the results of this sample division. 
l> 
~ Table 34. Sample Data Values and Representations 

CX) 
CX) 
W 
...,J 

DECIMAL REPRESENTATION IEEE HEXADECIMAL 
TERM 

VALUE MANTISSA • 2 EXPONENT REPRESENTATION 
A 22 1.375 * 2 4 40360000 00000000 
B 7 1.75 * 2 2 401 COOOO 00000000 

XO 117 1.140625 * 2 (-3) 3FC24000 00000000 
Q 22/7 1.5714285714285713 * 2 1 40092492 49249249 

In Table 35, the sequence and timing of this procedure is shown exactly as performed 
by the' ACT8837. This example shows the steps in a double-precision division requiring 
three iterations to achieve the desired accuracy. In this table each operation is 
sequenced according to the clock cycles during which the instruction inputs for that 
operation are presented at the pins of the 'ACT8837. Operations are accompanied 
by a pseudocode summary of the operations performed by the' ACT8837 and the clock 
cycle when an operand is available or a result is valid. 

Each line of pseudocode indicates the operands being used, the operations being 
performed, the registers involved, and the clock cycles when the results appear. Each 
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register is represented by its usual abbreviation (RA, RB, P, S, or C) followed by the 
number of the clock cycle when an operand will be valid or available at the register; 
For example, "P.4" refers to the contents of the Product Register after the fourth 
clock cycle. 

Table 35. Binary Division Using the Newton-Raphson Algorithm 

CLOCK 
OPERATIONS PSEUDOCODE 

CYCLES 
1, 2 B * XO B -+ RA.2. XO -+ RB.2 

RA.2 * RB.2 -+ P.4 

3, 4 2 - B * XO 2 - P.4-+ 5.6 

5, 6 Xl = XO(2 - B * XO) RB.2 * 5.6 -+ P.8 

7, 8 B * Xl RA.2 * P.8 ..... P.l0 

9. 10 2 - B * Xl P.8 ..... C.9, 2 - P.l0 ..... 5.12 

11. 12 X2=Xl(2-B*Xl) C.9 * 5.12 P.14 

13, 14 B * X2 RA.2 * P.14 ..... P.16 
15. 16 2 - B * X2 P.14-+ C.15, 2 - P.16 ..... 5.18 

17, 18 X3 = X2(2 - B * X2) A ..... RA.18, C.15 * 5.18 ..... P.20 

19,20 A * X3 RA.18 * P.20 ..... P.22 

21, 22 Output M5H P.22.M5H ..... Y 

The sequence of operations can be microcoded for executio'n exactly as listed in the 
table above. Sample microprograms (with data and parity fields provided) are given 
below. To make the programs easier to follow, comment lines have been included to 
indicate clock timing, calculation performed by the instructions being loaded, and ~ 
operations being represented, in the same pseudocode as in the preceding table. The CX) 

fields in the microinstruction sequences presented below are arranged in the following CO .... 
order: t) 

S 
E 

N CC L 
S LC M 

L T KOP S S BSR T 
I C R MNI E FEE S I YEE'HE 0 0 
N C L U OFPLRANNR OOOTLS.AS A DB 0 
ELK C DIE 0 N S R R C [ E E E ES E L T 3 A3 B P P 
# K C T EGSPDTABCSYCSPTTTP 1-----01-----0 A B 

d h h hhh h h h hh h h h h h h h h h h h h h h hhhhhhhh hhhhhhhh h h 

All fields in the sample microcode sequences (except for line numbers) are represented 
as hexadecimal numbers. Line numbers are the only decimal numbers in thesamples. 
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Single-Precision Newton-Raphson Binary Division 

Use of the Newton-Raphson algorithm is similar for both single- and double-precision 
operands. However, for implementations which handle both single- and double­
precision division, it may be preferable to use a double-precision seed ROM, converting 
the double-precision seeds to single precision when necessary. 

The following sample program involves conversion of a double-precision seed XO for 
use in single-precision division. Since 8 is given as a single-precision number, it must 
be converted to double precision in order to address a double-precision seed ROM. 
Then the seed XO, which is double precision, must be converted to single precision 
for the actual calculation. 

Two iterations are used in the single-precision example. Thus, the formula 
Q = A * 1/8 may be rewritten with n = 2: 

Q == A * 1/8 = A * X2 

where X2 = X1 * (2 - 8 * X1) and X1 = XO * (2 - 8 * XO) 

A * 118 = A * XO * (2 - 8 * XO) * [2 - 8 * XO * (2 - 8 * XO)] 

Table 36 presents a single-precision division using a double-precision seed ROM. This 
example divides 2217. 
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Table 36. Single-Precision Newton-Raphson Binary Division 

;Lines 1-2 Calculation: B s.p. -+ d.p. 
Operations: B - RA.1, (s.p. to d.p.)(RA.1)- S.2 

01 0 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40EOOOOO 00000000 0 0 
02 1 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40EOOOOO 00000000 0 0 

;Lines 3-4 Calculation: load XO 
Operations: XO - RA.4 

03 0 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FC24000 00000000 0 0 
04 1 0 126 1 0 2 FF 0 0 1 0 1 1 a a 0 0 3 1 3 3FC24000 00000000 0 0 

;lines 5-6 
Calculation: XO d.p. - s.p. 
Operations: (d.p. to s.p.)(RA.4) - S.6 

05 0 0 126 1 a 2 FF a 0 1 a 1 1 0 a a a 3 1 3 3FC24000 00000000 0 0 
06 1 0 126 1 0 2 FF 0 a l' 0 1 1 0 a a a 3 1 3 3FC24000 00000000 0 0 

;Lines 7-B Calculation: load B, B * XO 
Operations: S.6 -+ C. 7, B - RA.B RA.B * C.7 - P.l a 

" M 
00 
00 
I-

07 0 1 040 1 a 2 DF 0 a 1 a a 1 a a a a 3 1 1 3 40EOOOOO 00000000 0 0 ~ 
OB 1 a 040 1 a 2 DF 0 a 1 a a 1 a a 0 0 3 1 1 3 40EOOOOO 00000000 0 a ~ 

;Lines 9-10 Calculation: 2 - (B * XO) 
Operations: 2 - P.l0 -+ S.12 

09 0 0 202 0 0 2 FB a a 0 0 1 0 0 a a 3 1 3 00000000 00000000 0 0 
10 1 a 202 0 a 2 FB 0 a 0 0 1 a a 0 a 3 1 3 00000000 00000000 0 0 

;Lines 11-12 Calculation: Xl = XO(2-B * XO) 
Operation: C.7 * S.12 - P.14 

11 a a 040 0 0 2 9F a a 0 0 1 1 0 a a a 3 1 3 00000000 00000000 0 a 
1 2 1 0 040 0 0 2 9F a a 0 0 1 1 a 0 0 a 3 1 3 00000000 00000000 0 a 

" 2 
en 



Table 36. Single-Precision Newton-Raphson Binary Division (Concluded) 

;Lines 13-14 Calculation: B * X 1 
Operation: RA.8 * P.14 ~ P.l6 

13 0 0 040 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
14 1 0 040 0 0 2 EF 0 000 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 15-16 Calculation: 2 - (B * Xl) 
Operations: P.14~C.15, 2 - P.16-S.18 

1 5 0 0 202 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3. 1 3 00000000 00000000 0 0 
16 1 0 202 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 17-18 Calculation: X2 = Xl (2 - B * Xl) 
Operations: A .... RA.18, C.15 * S.18 .... P.20 

1 7 0 0 040 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 41 BOOOOO 00000000 0 0 
18 1 0 040 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 41 BOOOOO 00000000 0 0 

Ch ;Lines 19-20 
Z 

Calculation: A * X2 
Operations: RA.18 * P.20 .... P.22 ....., 

~ » 
(') 
~ 
00 
00 
W ....., 

19 0 0 040 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
20 1 0 040 0 0 2 EF 0·0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 21-22 Operation: P.22'" Y 

21 0 0 020 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
22 1 0 020 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

5-110 



Double-Precision Newton-Raphson Binary Division 

If the value of B is given as a double-precision number and XO is looked up in a double­
precision seed ROM, no conversions are required prior to performing a double-precision 
division using the Newton-Raphson algorithm. Three iterations are used in the double­
precision example (n = 3). The following formula represents the sequence of 
calculations to be performed: 

AlB = A * XO * (2 - B * XO) * [2 - B * XO * (2 - B * XO)) 
* (2 - B * XO .(2 - B * XO) * [2 - B * XO .(2 - B * XO))) 

Table 37 shows a double-precision division using a double-precision seed ROM. The 
example divides 2217. 

Table 37. Double-Precision Newton-Raphson Binary Division 

;lines 1-4 Calculation: B * XO 
Operations: B -+ RA.4, XO -+ RB.4, RA.4 * RBA -+ P.8 

01 0 0 1 CO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 3FC24000 00000000 0 0 
02 1 0 1 CO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 3FC24000 00000000 0 0 
03 0 0 1 CO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 1 3 401 COOOO 00000000 0 0 
04 1 0 1 CO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 13 401COOOO 00000000 0 0 

;Lines 5-8 Calculation: 2 - (B * XO) 
Operation: 2 - P.8 -+ S.12 

I' 
M 
CC 
CC 
~ 
(,) 

« 
05 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
06 1 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
07 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
08 1 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 

3 00000000 00000000 0 0 ;:! 
3 00000000 00000000 0 0 Z 
3 00000000 00000000 0 0 U) 

3 00000000 00000000 0 0 

;Lines 9-12 Calculation: Xl = XO(2-B * XO) 
Operation: RB.4 * S.12 -+ P.16 

09 0 0 1 CO 0 0 2 BF 0 0 0 0 1 
1 0 1 0 1 CO 0 0 2 BF 0 0 0 0 1 
11 0 0 1 CO 0 0 2 I3F 0 0 0 0 1 
1 2 1 0 1 CO 0 0 2 BF 0 0 0 0 1 

000031 
1 0 0 0 0 3 1 
1 0 0 003 1 
1 0 0 003 1 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
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Table 37. Double-Precision Newton-Raphson Binary Division (Continued) 

;Lines 13-16 Calculation: B * Xl 
Operations: RA.4 * P.16 -+ P.20 

1 3 0.0 1 CO 0 0 2 EF 0 0 0 0 1 
14 1 0 1 CO O. 0 2 EF 0 0 0 0 1 
1 5 0 0 1 CO 0 0 2 EF 0 0 0 0 1 
16 1 0 1 CO 0 0 2 EF 0 0 0 0 1 

1000031 
1 0 0 0 0 3 1 
1 0 0 0 0 3 1 
1 0 0 0 0 31 

;Lines 17-20 Calculation: 2 - (B * Xl) 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

Operations: P.16 -+ C.18, 2 - P.20 -+ S.24 

17 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
1 8 1 1 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
19 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
20 1 0 382 0 0 2 FB 0 0 00 1 1 0 0 0 0 3 1 

;Lines 21-24 Calculation: X2 = X 1 (2-B * Xl) 
Operations: C.18 * S.24 -+ P.28 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

(J) 21 0 0 1 CO 0 0 2 9F 0 0 0 0 1 
Z 22 1 0 1 CO 0 0 2 9F 0 0 0 0 1 
-...I 23 0 0 1 CO 0 0 2 9F 0 0 0 0 1 t 24 1 0 1 CO 0 0 2 9FO 0 0 0 1 
(") 

1 000 0 3 1 
1000031 
1000031 
1 00 0 0 3 1 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

-4 
(X) 
(X) 

W 
-...I 

;Lines 25-28 Calculation: B * X2 
Operations: RA.4 * P.28 -+ P.32 

25 0 0 lCO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 
26 1 0 lCO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 
27 0 0 1 CO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 
28 1 0 1 CO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 

;Lines 29-32 Calculation: 2 - (B * X2) 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

Operations: P.28 -+ C.30, 2 - P.32 -+ S.36 

29 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
30 1 1 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
31 0 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 
32 1 0 382 0 0 2 FB 0 0 0 0 1 1 0 0 0 0 3 1 

5-112 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 



Table 37. Double-Precision Newton-Raphson Binary Division (Concluded) 

;Lines 33-36 Calculation: X3 = X2(2-B * X2) 
Operations: A -+ RA.36, C.30 * S.36 -+ P.40 

33 0 0 1 CO 0 3 2 9F 0 0 1 
34 1 0 1 CO 0 3 2 9F 0 0 1 
35 0 0 1 CO 0 3 2 9F 0 0 1 
36 1 0 1 CO 0 3 2 9F 0 0 1 

1000031 
1000031 
1000031 
1000031 

;Lines 37-40 Calculation: A * X3 
Operations: RA.36 * P.40 -+ P.44 

3 40360000 00000000 0 0 
3 40360000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

37 0 0 1 CO 0 0 2 EFO 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
38 1 0 1 CO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
39 0 0 1 CO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
40 1 0 1 CO 0 0 2 EF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 41-44 Operation: P.44.MSH -+ Y 

,...... 
41 0 0 120 0 0 2 FF 0 0 0 0 1 
42 1 0 120 0 0 2 FF 0 0 0 0 1 
43 0 0 1 20 0 0 2 FF 0 0 0 0 1 
44 1 0 120 0 0 2 FF 0 0 0 0 1 

1 00 0 0 3 1 
000031 
00003 1 
o 000 3 1 

3 00000000 00000000 0 0 M 

;Line 45 Operation: P.44.LSH -+ Y 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

45 0 0 120 0 0 2 FF 0 0 0 0 1 0 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
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Binary Square Root Using the' Newton-Raphson Algorithm 

Square roots may be calculated iteratively using the Newton-Raphson algorithm. The 
procedure is similar to Newton-Raphson division and involves evaluating the following 
expression: 

A = B * Xn 

where Xn = the value of X after the nth iteration given 

Xi + 1 = 0.5 * Xi * [3 - B * (Xi ZZ 2)) 

XO = a guess at 1/sqrt(B) where 0 < XO < sqrt(3/B) 

and n = number of iterations to achieve the desired precision 

Single-Precision Square Root Using a Double-Precision Seed ROM 

When the value of B is given in single precision, it must be converted to a double~ 
precision number before it can be used to address a double-precision seed ROM. Since 
the seed XO is stored as a double-precision number, it must first be converted to single 
precision before it is used in the calculation. 

Two iterations (n = 2) are used in a single-precision calculation so the following 
expression for sqrt(B) is to be evaluated: 

A = 'B * X2 

where X2 = 0.5 * X1 * [3 - B * (X1 2)) 

and X1 = 0.5 * XO * [3 - B* (XO 2)) 

A = B * 0.5 * 0.5 * XO * [3 - B * (XO 2)) 
* [3 - B * (0.5 * XO * [3 - 8 * (XO 2))) 2) 
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Table 38. Single-Precision Binary Square Root 

;Lines 1-2 Calculation: B s.p. -+ d.p. 
Operations: B -+ RA.l, (s.p. to d.p.)(RA.l) -+ S.2 

01 0 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40000000 00000000 0 0 
02 1 0 026 1 3 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 40000000 00000000 0 0 

;Lines 3-4 Calculation: Load XO 
Operation: XO -+ RA.4 

03 0 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 
04 1 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 

;Lines 5-6 Calculation: XO d.p. -+ s.p. 
Operations: (d.p. to s.p.)(RA.4) -+ S.6 

05 0 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 
06 1 0 126 1 0 2 FF 0 0 1 0 1 1 0 0 0 0 3 1 3 3FE6AOOO 00000000 0 0 

;Lines 7-8 Calculation: Load B, B * XO 
Operations: S.6 -+ C. 7, B -+ RB.8, RB.8 * C.7 -+ P.l 0 

,..... 
M 
00 
00 

07 0 1 040 1 0 2 7F 0 0 0 1 0 1 0 0 0 0 3 1 
08 1 0 040 1 0 2 7F 0 0 0 1 0 1 0 0 0 0 3 1 

3 40000000 00000000 0 0 .... 
3 40000000 00000000 0 0 U <t 

;Lines 9-10 Calculation: B * XO 2 
Operations: P.l0 * C.7 -+ P.12, 3 -+ RA.l0 -+ S.12 

09 0 0 260 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 3 40400000 00000000 0 0 
10 1 0 260 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 3 40400000 00000000 0 0 

;Lines 11-12 Calculation: 3 - (B * XO 2) 
Operation: S.12 - P.12 -+ S.14 

11 0 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
12 1 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
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en z 

Table 380 Single-Precision Binary Square Root (Continued) 

;Lines 13-14 Calculation: XO * (3 - (B * XO 2)) 
Operations: C07 * So14 -+ Po16, 1/2 -+ RAo14 -+ So16 

13 0 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 000000000 0 
14 1 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 

;Lines 15-16 Calculation: 1/2 * XO * (3-(B * Xo 2)) -+ Xl 
Operations: So16 * Po16-Po18, 0-RAo16, 

RAo16 + RB08 So18 

1 5 0 0 240 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
16 1 0 240 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 17-18 Calculation: B * Xl 
Operations: So18 * Po18 - P020 

1 7 0 0 040 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
1 8 1 0 040 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

""'" ;Lines 19-20 .;:. Calculation: B * Xl 2 
Operations: Po18 - Co19, P020 * Co19 - P022, 

3 -+ RA020 -+ S022 
l> 
(") 
-I 
ex> 
ex> 
eN 

""'" 

19 0 1 260 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 40400000 00000000 0 0 
20 1 0 260 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 40400000 00000000 0 0 

; Lines 21-22 Calculation: 3 - (B * Xl 2) 
Operations: S022 - P022 -+ S024 

21 0 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
22 1 0 003 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 23-24 Calculation: Xl * (3 - (B * Xl 2)) 
Operations: Co19 * S024 -+ P026, 112 - RA024 -+ S026 

23 0 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 
24 1 0 260 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 3 3FOOOOOO 00000000 0 0 
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Table 38. Single-Precision Binary Square Root (Concluded) 

;Lines 25-26 Calculation: 1/2 * X1 * (3 - (B * X1 2)) - X2 
Operations: S.26 * P.26- P.28, 0 - RA.26, 

RA.26 + RB.8 S.28 

25 0 0 240 0 0 2 AF 0 0 1 0 1 0 00 0 3 1 3 00000000 00000000 0 0 
3 00000000 00000000 0 0 26 1 0 240 0 0 2 AF 0 0 1 0 1 0 0 0 0 3 1 

;Lines 27-28 Calculation: B * X2 -+ A 
Operations: S.28 * P.28 -+ P.30 

27 0 0 040 0 0 2 AF 0 000 1 0000 3 1 3 00000000 00000000 0 0 
28 1 0 040 0 0 2 AF 0 0 0 0 1 0 0 0 0 3 1 3 00000000 00000000 0 0 

;Lines 29-30 Calculation: NOP 
Operation: Y - Output 

29 0 1 OOA 00 2 FF 0 0 0 0 1 1 00 0 0 3 1 1 3 00000000 00000000 0 0 
30 1 0 OOA 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 11 3 00000000 00000000 0 0 

Double-Precision Square Root 

,..... 
M 
ex) 
ex) 

The value of B is given as a double-precision number so XO can be looked up from ..... 
a double-precision seed ROM without conversion fromone precision to the other. Three (.) 

~ iterations (n = 3) are required in the double-precision calculation, and the following ...r 
formula for sqrt(B) is to be evaluated: ,..... 

Z 
CJ) A = B * 0.5 * 0.5 * 0.5 * XO * [3 - B * (XO 

* [3 - B * (0.5 * XO * [3 - B * (XO 2)]) 21 
* [3 - B * (0.5 * 0.5 * XO * [3 - B * (XO 2)J 
* [3 - B * (0.5 * XO * [3 - B * (XO 2)]) 2]) 2J 

2)J 
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Table 39. Double-Precision Binary Square Root 

;Lines 1-4 Calculations: Load B, Load XO, B * XO 
Operations: B -+ RB.4, XO -+ RA.4, RA.4 * RB.4 -+ P.8 

RA.4 -+ S.8 -+ C.1 0 

01 0 0 3EO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 
02 1 0 3EO 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 
03 0 0 3EO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 
04 1 0 3EO 0 0 2 FF 0 0 1 1 1 1 0 0 0 0 3 1 

;Lines 5-8 Calculations: B * XO 2 

3 40000000 00000000 0 0 
1 3 40000000 00000000 0 0 
1 3 3FE6AOOO 00000000 0 0 
1 3 3FE6AOOO 00000000 0 0 

Operations: P.8 * S.8 -+ P.12, 3 -+ RA.8 -+ S.12 

05 0 0 3EO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
06 1 0 3EO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
07 0 0 3EO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 
08 1 0 3EO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 

3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 40080000 00000000 0 0 
1 3 40080000 00000000 0 0 

;Lines 9-12 Calculations: 3 - (B * XO 2) 
Operations: S.12 - P.12 -+ S.16 

2 09 0 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

~ 10 1 1 183002 FA 000001 0000 3 1 
l> 11 0 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 
(") 12 1 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 
-f 
(X) 
(X) 
W 
-..J 

;Lines 13-16 Calculations: XO * (3 - (B * XO 2)) 
Operations: C.l0 * S.16 -+ P.20, 1/2 -+ RA.16 -+ S.20 

13 0 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
14 1 0 3EO 0 0 2 9F 0 0 0 0 , 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
15 0 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
16 1 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 000000000 0 
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Table 39. Double-Precision Binary Square Root (Continued) 

;Lines 17-20 Calculations: 1/2* XO * (3-(B * XO 2))"'" Xl 
Operations: S.20 * P.20 ..... P.24 ..... C.25, 0"'" RA.20, 

RA.20 + RBA"'" S.24 

1 7 0 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
18 1 0 3CO 0 0 2 AF 0 0 0 01 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
1 9 0 0 3CO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
20 1 0 3CO 0 0 2 AF 0 0 .1 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

; Lines 21-24 Calculations: B * Xl 
Operations: S.24 * P.24 ..... P.28 

21 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 13 00000000 00000000 0 0 
22 1 0 1 CO 0 02 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
23 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
24 1 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 25-28 Calculations: B * Xl 2 
Operations: P.28 * C.25 ..... P.32, 3 --- RA.28 --- S.32 

" M 
25 0 1 3EO 0 0 2 6F 0 0 0 0 1 
26 1 0 3EO 0 0 2 6FO 0 0 0 1 
27 0 0 3EO 0 0 2 6F 0 01 0 1 
28 .1 0 3EO 0 0 2 6F 0 0 1 0 1 

1 000 0 3 1 
1000031 
1000031 
1 0 0 0 0 3 1 

3 00000000 00000000 0 0 00 

;Lines 29-32 

1 3 00000000 00000000 0 0 00 I-
1 3 40080000 00000000 0 0 (.) 
1 3 40080000 00000000 0 0 « q-

Calculations: 3 - (B * Xl 2) 
Operations: S.32 - P.32 ..... S.36 

" z 
en 

29 0 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
30 1 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
31 00 18300 2 FA 0 0 0 0 1 1 00003 1 1 3000000000000000000 
32 1 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
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Table 39. Double-Precision Binary Square Root (Continued) 

;Lines 33-36 Calculations: X1 * (3 - (B * X1 2)) 
Operations: C.25 * 8.36 - P.40, 1/2 - RA.36 8.40 

33 0 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
34 1 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
35 0 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
36 1 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 

;Lines 37-40 Calculations: 1/2 * X 1 * (3 - (B * X 1 2)) - X2 
Operations: 8.40 * P.40 - P.44 - C.45, 0 - RA.40, 

RA.40 + RB.4 8.44 

37 0 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
38 1 0 3CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 
39 0 0 3CO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 
40 1 0 3CO 0 0 2 AF 0 0 1 0 1 1 0 0 0 0 3 1 

;Lines 41-44 Calculations: B * X2 

1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

3 00000000 00000000 0 0 

Operations: 8.44 * P.44- P.48 

-..J 41 0 0 1 CO 0 0 2 AF 0 0 0 0 1 :t 42 1 0 1 CO 0 0 2 AF 0 0 0 0 1 
(") 43 0 0 1 CO 0 0 2 AF 0 0 0 0 1 
.... 44 1 0 1 CO 0 0 2 AF 0 0 0 0 1 CX) 

1 0 0 0 0 3 1 
1000031 
1000031 
1000031 

1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

CX) 
eN 
-..J 

;Lines 45-48 Calculations: B * X2 2 
Operations: P.48 * C.45 - P.52, 3- RA.48 - 8.52 

45 0 1 3EO 0 0 2 6F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
46 1 0 3EO 0 0 2 6F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
47 0 0 3EO 0 0 2 6F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 40080000 00000000 0 0 
48 1 0 3EO 0 0 2 6F 0 0 1 01 1 0 0 0 0 3 1 1 3 40080000 00000000 0 0 
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Table 39. Double-Precision Binary Square Root (Continued) 

;Lines 49-52 Calculations: 3 - (B * X2 2) 
Operations: S.52 - P.52 ... S.56 

49 00 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
50 1 0 183 0 0 2 FA 0 0 0 0 0 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
51 0 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
52 1 0 183 0 0 2 FA 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

;Lines 53-56 Calculations: X2 * (3 - (B * X2 211 
Operations: C.45 * S.56 -+ P.60, 1/2 -+ RA.56 -+ S.60 

53 0 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 000000000 0 
54 1 0 3EO 0 0 2 9F 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 000000000 0 
55 0 0 3EO 0 0 2 9F 0 0 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 0 0 
56 1 0 3EO 0 0 2 9F 00 1 0 1 1 0 0 0 0 3 1 1 3 3FEOOOOO 00000000 00 

;Lines 57-60 Calculations: 1/2 * X2 * (3 - (B * X2 II'" X3 
Operations: S.60 * P.60 -0. P.64, 0 -+ RA.60, 

RA.60 + RB.4 -+ S.64 ,.... 

57 0 0 3CO 0 0 2 AF 0 0 0 0 1 
58 1 0 3CO 0 0 2 AF 0 0 0 0 1 
59 0 0 3COO 0 2 AF 0 0 1 0 1 
60 1 0 3CO 0 0 2 AF 0 0 1 0 1 

1000031 
1000031 
1000031 
1 000 0 3 1 

M 
1 3 00000000 00000000 0 0 ~ 
1 3 00000000 00000000 0 0 .... 
1 3 000000000000000000 U 
1 3 00000000 00000000 0 0 c:( o:::t ,.... 

;Lines 61-64 Calculations: B * X3 -+ A 
Operations: S.64 * P.64 -+ P.68 -+ Y.MSH 

61 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
621 0 1CO 0 0 2 AF 0 0 0 0 1 1 0000 3 1 1 3 000000000000000000 
63 0 0 1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 
64 1 0 .1 CO 0 0 2 AF 0 0 0 0 1 1 0 0 0 0 3 1 1 3 00000000 00000000 0 0 

2 
en 



Table 39. Double-Precision Binary Square Root (Concluded) 

;Lines 65-68 Calculation: NOP 
Operation: Y.MSH -+ Output 

65 0 1 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 
66 1 0 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 
67 0 0 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 
68 1 0 18A 0 0 2 FF 0 0 0 0 1 1 0 0 0 0 3 1 

;Line 69 Calculation: NOP 
Operation: Y.LSH -+ Output 

3 00000000 00000000 0 0 
3 00000000 00000000 0 0 

1 3 00000000 00000000 0 0 
1 3 00000000 00000000 0 0 

69 0 0 18A 00 2 FF 0 0 0 0 1 00000 31 1 300000000 00000000 0 0 
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GLOSSARY 
Biased exponent - The true exponent of a floating point number plus a constant called 
the exponent field's excess. In IEEE data format, the excess or bias is 127 for single­
precision numbers and 1023 for double-precision numbers. 

Denormalized number (denorm) - A number with an exponent equal to zero and a 
nonzero fraction field, with the implicit leading (leftmost) bit of the fraction field being O. 

NaN (not a number) - Data that has no mathematical value. The' ACT8837 I' ACT884 7 
produces a NaN whenever an invalid operation such as 0 * 00 is executed. The output 
format for an NaN is an exponent field of all ones, a fraction field of all ones, and a 
zero sign bit. Any number with an exponent of all ones and a nonzero fraction is treated 
as a NaN on input. 

Normalized number - A number in which the exponent field is between 1 and 254 
(single precision) or 1 and 2046 (double precision). The implicit leading bit is 1. 

Wrapped number - A number created by normalizing a denormalized number's fraction 
field and subtracting from the exponent the number of shift positions required to do 
so. The exponent is encoded as a two's complement negative number. 
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Implementing a Double-Precision Seed ROM 
The seed ROM assumed in the previous microcode examples is a double-precision seed 
ROM containing both division and square root seeds. Six chips are necessary to build 
this seed ROM: five 4 x 4096 registered PROMs and one latch (ordinarily implemented 
in a PAL). Figure 26 shows a sample implementation for a double-precision seed ROM. 

Three of the PROMs are for generating the exponent part of the seed. AII11 exponent 
lines are necessary to accurately determine the exponent of the seed. There are 
12 address lines in a 4 x 1024 PROM, so the last address line can be used for a 
microcode bit that tells whether a divide or square root seed is being read. Since there 
are only 11 bits in the exponent and three PROMs are used, there are 12 output bits 
but one bit is not used. The equations giving the contents of the PROMs is given in 
a later section. 

The other two PROMs generate the mantissa part of the seed. One address line of 
the PROMs is used for the microcode bit telling whether a divide or square root seed 
is to be used. For a square root seed, the least significant bit of the exponent is needed 
in generating the mantissa seed. Therefore, another address line of the PROMs is used 
by the least significant exponent bit. This leaves 10 address lines to be used to look 
up the mantissa seed. Since there are eight output bits from the two PROMs, an eight­
bit seed is generated. 

The sign bit of B needs to be preserved for use when the seed is read. In the case 
of binary division, this requirement is obvious .. In the square root calculation, the sign 
bit of B should always be zero. This condition should be tested by the microprogram. 

Since every real square root has two answers, normally the positive answer is assumed . 
However, since the sign of B is meaningless to Newton-Raphson unless it is positive, 
the example microprograms assume that a negative B simply means that the negative 
of the square root of B is the desired answer instead of the positive root. This is 
accomplished by using the absolute value of B in all computations except for looking 
up the seed. If the seed is negative, then the answer generated will be the negative root. 

PROM Contents 

Because one address line of the PROMs selects divide or square root, the PROMs can 
be considered to be divided functionally into two halves: the divide half and the square 
root half. Each functional half is discussed separately in the sections below. 

Divide PROMs 

The exponent part of the seed is defined in the following manner. Assuming that 
B = m * (2e) and XO = m' * (2e\ e' is computed as e' = - e. Using the definition 
of an IEEE number, the value of m can be represented as a number within the following 
interval: 1 s m < 2. 
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This range of values of m can be subdivided into two cases: 
m = 1, or 1 < m < 2 

Since m' is computed as m' = 1 I m, the range of m' will be 

m' = 1, or 1/2 < m' < 1 

To be represented as a normalized IEEE number, m" would be 

m" = m' * (21) = 21m 

This would make the range of m" 

m" = 2, or 1 < m" < 2 

(1 ) 

This is still not quite in the range of a valid IEEE number; however, m" = 2 only when 
m = 1. Therefore, m" can be forced to be just less than 2 in this case. 

Since XO = m' * (2e'), to use m" in the PROMs, we must have an e" in the exponent 
such that XO = m" * (2e"). This is true for e" = e' - 1. Since, XO = m" * (2e''), 
the following substitution can be made: 

XO = (m' * (2 1)) * (2(e'-1)) 
= m' * (21) * (2e') * (2(-1)) 
= m' * (2e') * (2(1-1)) 
= m' * (2e') * (20 ) 
= m' * (2e') 

~ Therefore, if e" is used in the exponent PROMs and m" is used in the mantissa PROMs, 
'" a normalized IEEE seed can be generated. The only exception to the formula is that 
~ for m = 1, » 
(") m" = 2 I m - delta 
-t 
~ Where delta = 2(-8) 
W 
'" So m" = 2 I m, and e" = (- e) - 1. 

Since IEEE exponents are represented in excess 1023 notation, a formula for X" must 
be determined, given that X is the IEEE exponent. As an IEEE exponent, 
X = e + 1023 - e = X - 1023 and X" = e" + 1023. So, forX" in terms of X, 

X" = e" + 1 023 
= (-e) - 1 + 1023 
= (- (X - 1023)) + 1022 
= 1023 - X + 1022 
= 2045 - X 

So given the 11 bits of X as address of the seed exponent, the value stored at address 
X is 

X" = 2045 - X (2) 
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Given that the mantissa seed ROM uses 10 bits of the mantissa to determine the seed, 
each seed Xm will be used for some range of mantissas, Bm to (Bm + 2 * delta). 
The formula for Xm is from formula (1). 

2/Bm -Xm 
2/(Bm + 2 * delta) -Xm 

Where delta = 2( -11) 

This value is used since the actual Xm should be generated by the mantissa in the 
center of the given range: 

Xm = 2/(Bm + delta) 

This would result in a more accurate seed on the average. Therefore, the formula used 
to generate the mantissa part of the seed is 

Xm = 2/(Bm + (2( - 11 I)) 

Square Root PROMs 

(3) 

The seed for the square root, XO, is actually the reciprocal of the square root of the 
data, B: 

XO = 1 I (B(1/2)) 

Given B = m * (2e) and XO = m' * (2e'), the expression for XO can be evaluated 
by substitution and reduction: 

XO = 1 I ((m * (2e))(1!2)) 
= 1 I (m(1 12) * (2(e/2))) 
= m( - 1/2) * (2( - e/2)) 

Then m' and e' may be written as m' = m( - 1/2) and e' = - e/2. 

Next, it is necessary to verify that the above m' and e' form a valid normalized IEEE 
number. When e is an odd number, e' is not an integer and, therefore, it is not valid 
IEEE exponent. If the above expression is separated into two cases, e' can be 
represented in terms of a valid IEEE exponent, e": 

e' = -e/2 
e' = e" + 1 12 

for e even 
for e odd 

Rewriting e" in terms of e produces this expression: 

e" = e' - 112 = (-e/2) - 1/2 for e odd 

Then a valid IEEE exponent, e", can be written for all e as 

e" = -e/2 
e" = (-e/2) - 1/2 

for e even 
for e odd 
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This is equivalent to e" = intI - e/2) for all e. However, the 112 affects the mantissa: 

XO = m' * (2e') 
XO = m' * (2(e" + 1 12)) 
XO = m' * (21/2) * (2e") 

for odd e 
for odd e 

Since. XO = m" * (2e") m" can be rewritten as 

m" = m' 
m" = m' * (21/2) 

In terms of m, m" = m -112 

for even e 
for odd e 

m" = (m- 1/2 ) * (2112) 

Simplifying m" for odd e, 

m" (1/m1/2) * (21/2) 
m" = (21m 1 12) 

for even e 
for odd e 

for odd e 
for odd e 

Just as the divide exponent needed to be converted to excess 1023 notation, so the 
same must be done for the square root: 

X" = e" + 1023 
X = e + 1023 
X" = intI - e/2) + 1023 
X" = int((1023-X) I 2) + 1023 

en The IEEE bits for the exponent seed, X", can be expressed in terms of the IEEE bits 
:2 for the exponent of B, X: 

'" t X" = intI (1023-X) 12) + 1023 

~ Because the formula for m" depends on the least significant bit of e, that bit must 
CO be used as an address line to the mantissa. 
CO 
W Since X = e + 1023, an odd value of e will result in an even value of X, and an even 
'" value of e will result in an odd value of X. Therefore, 
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SN74ACT8841 
. Digital Crossbar Switch 

The SN74ACT8841 is a single-chip digital crossbar switch that cost-effectively 
eliminates bottleneck~ to speed data through complex bus architectures. 

The' ACT8841 has 16 four-bit bidirectional ports which can be connected in 
any conceivable combination. Total time for data transfer is 14-ns flowthrough. 

The' ACT8841 is ideal for multiprocessor application, where memory bottlenecks 
tend to occur. For example, four 32-bit buses can be easily connected by two 
'ACT8841 devices. System architectures based on the 16-port 'ACT8841 can 
include up to 16 switching nodes (Le., processors, memories, or bus interfaces). 
Larger processor arrays can be built with multistage interconnect schemes. 
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• High-Speed Programmable Switch for 
Parallel Processing Applications 

• Dynamically Reconfigurable for Fault­
Tolerant Routing 

• 64 Bidirectional Data 1I0s in 16 Nibble 
(Four-Bit) Groups 

• Data 110 Selection Programmable by Nibble 

• Eight Banks of Control Flip-Flops for Storing 
Configuration Programs 

• Two Selectable Hard-Wired Switching 
Configurations 

• Selectable Stored-Data or Real-Time Inputs 

• 156-Pin Grid-Array Package 

• CMOS 1 pm EPIC~ Process 

• Single 5-V Power Supply 

description 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

GB PACKAGE 
(TOPVIEWI 

JUNE 1988 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A ••••••••••••••• 

B ••••••••••••••• ........ . . . . . 
o ••• • • • • • • 

:~~~:D 
• • • 

l • 

• • • 
• • • 

• ••• 
• ••• · . . . · . . 

• •• 
M ••• • • • • • • 
N ••••••••••••••• 

p ••••••••••••••• 

A ••••••••• 

The SN74ACT8841 is a flexible. high-speed digital crossbar switch. It is easily microprogram mabie to 
support user-definable interconnection patterns. This crossbar switch is especially suited to multiprocessor 
interconnects that are dynamically reconfigurable or even reprogram mabie after each system clock. The 
• ACT8841 is built in Texas Instruments advanced 1 JLm EPIC~ CMOS process to enhance performance 
and reduce power consumption. The switch requires only a 5-V power supply. 

Because the' ACT8841 is a 16-port device. system architectures based on the' ACT8841 can include 
up to 16 switching nodes. which may be processors, data memories, or bus interfaces. Larger processor 
arrays can be built with multistage interconnection schemes. Most applications will use the crossbar switch 
as a broadband bus interface controller, for example, between closely coupled processors which must 
exchange data with very low propagation delays. 

The' ACT8841 has ten selectable control sources, including eight banks of programmable control flip-flops 
and two hard-wired control circuits. The device can switch from 1 to 16 nibbles (4 to 64 bits) of data 
in a single cycle. 

The 64 110 pins of the' ACT8841 are arranged in 16 switch able nibbles (see Figure 1). A single input nibble 
can be broadcast to any combination of 1 5 output nibbles, or even to 16 nibbles (including itself) if operating 
off registered data. Multiple input nibbles can be switched to multiple outputs, depending on the programmed 
configurations available in the control flip-flops. 

The digital crossbar switch is intended primarily for multiprocessor interconnection and parallel processing 
applications. The device can be used to select and transfer data from multiple sources to multiple 
destinations. Since it can be dynamically reprogrammed, it is suitable for use in reconfigurable networks 
for fault-tolerant routing. 

EPIC is a trademark of Texas Instruments Incorporated 

PRODUCT PREVIEW documents contain information 
on products in the formative or design phase of 
development. Characteristic data and other 
specifications are design goals. Texas Instruments 
reserves the right to change or discontinue these 
products without notics. 

TEXAS • 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 

Copyright @ 1988, Texas Instruments Incorporated 
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SN74ACTB841 
DIGITAL CROSSBAR SWITCH 

description (continued) 

NO, 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

Al0 

All 

A12 

A13 

A14 

A15 

61 

62 

63 

64 

65 

66 

67 

68 

69 

610 

611 

612 

613 

614 

615 

Cl 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 
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The' ACT8841 and the bipolar SN74AS8840 share the same architecture, Microcode for the' AS8840 
can be run on the' ACT8841 if the additional control inputs to the' ACT8841 are properly terminated, 
However, because the' ACT8841 is a CMOS device with six additional control inputs, the' AS8840 and 
the' ACT8841 are not socket-compatible and cannot be used interchangably, A summary of the differences 
between the SN74AS8840 and the SN74ACT8841 is provided in the 'AS8840 and 'ACT8841 
FUNCTIONAL COMPARISON at the end of the data sheet, 

The SN74ACT8841 is characterized for opertion from O°C to 70°C, 

PIN 

NAME NO. 

GNO Cl0 

GNO Cll 

037 C12 

035 C13 

033 C14 

WE C15 

CRAORl 01 

CNTR7 02 

CNTR4 03 

l5'EEi7 07 

029 08 

027 09 

025 013 

GNO 014 

GNO 015 

GNO El 

GNO E2 

039 E3 

036 E13 

034 E14 

l5E56 E15 

CRAORO Fl 

CRSRCE F2 

CNTR5 F3 

030 F13 

028 F14 

026 F15 

024 Gl 

GNO G2 

GNO G3 

041 G4 

040 G12 

GNO G13 

038 G14 

0Ei'i9 G15 

032 Hl 

VCC H2 

CRCLK H3 

CNTR6 H4 

Table 1. 'ACT8841 Pin Grid Allocation 

PIN PIN 
NAME NO. 

031 H12 

l5E56 H13 

VCC H14 

GNO H15 

023 Jl 

021 J2 

043 J3 

042 J4 

VCC J12 

GNO J13 

VCC J14 

GNO J15 

022 Kl 

020 K2 

019 K3 

045 K13 

044 K14 

C5E'OfO K15 

5ED5 L 1 

018 L2 

017 L3 

OEOll L13 

046 L14 

047 L 15 

016 Ml 

OE04 M2 

CRSEL3 M3 

CNTR6 M7 

CNTR9 M8 

CNTR10 Ml0 

GNO M13 

GNO M14 

CRSEL2 M15 

CRSEL1 Nl 

CRSELO N2 

CNTRll N3 

SELOMS N4 

MSCLK N5 

VCC N6 

TEXAS ~ 
INSTRUMENTS 

NAME 

VCC 
LSCLK 

SELOLS 

CNTR3 

OEC 
CRWRITEO 

CRWRITEl 

GNO 

GNO 

CNTR2 

CNTRl 

CNTRO 

CRWRITE2 

OE012 

048 

015 

014 

0ED3 
049 

050 

OED13 --
OE02 

012 

013 

051 

052 

054 

GNO 

VCC 
GNO 

VCC 
010 

011 

053 

055 

GNO 

VCC 
0B514 
063 

POST OFFICE BOX 655012 ~ DALLAS TEXAS 75265 

PIN 
NO, NAME 

N7 CNTR13 

N8 CREAOO 

N9 VCC 
Nl0 DO 
Nll 03 

N12 06 

N13 GNO 

N14 08 

N15 09 

Pl GNO 

P2 GNO 

P3 056 

P4 058 

P5 060 

P6 062 

P7 CNTR12 

P8 CNTR15 

P9 TPO 

Pl0 0Ei50 
Pll 02 

P12 04 

P13 07 

P14 GNO 

P15 GNO 

Rl GNO 

R2 GNO 

R3 057 

R4 059 

R5 061 

R6 OE015 

R7 CNTR14 

R8 CREAOl 

R9 CREA02 

Rl0 TPl 

Rll 01 

R12 OEOl 

R13 05 

R14 GNO 

R15 GND 



PIN 

NAME NO. 

CNTRO J15 

CNTRl J14 

CNTR2 J13 

CNTR3 H15 

CNTR4 A9 

CNTR5 89 

CNTR6 C9 

CNTR7 A8 

CNTR8 Gl 

CNTR9 G2 

CNTR10 G3 

CNTRll Hl 

CNTR12 P7 

CNTR13 N7 

CNTR14 R7 

CNTR15 P8 

CRADRO 87 

CRADRl A7 

CRClK C8 

CAEADO· N8 

CREAD1 A8 

CAEAD2 A9 

CASElO G15 

CASEll G14 

CRSEl2 G13 

CASEl3 F15 

CASRCE 88 

I/O 

I/O 

I 

I 

I 

I 

I 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functional Description 

DESCRIPTION 

Control 1/0. Inputs four control words to the control flip-flops on each CRCLK cycle. As outputs, the 

same add~esses can be used to read the flip-flop settings. 

Control register address. Selects 16·bits of control flip-flops as a source/destination for outputs/inputs 

on CNTRO·CNTR15. (see Table 71 

Control register clock. Clocks CNTRO-CNTR15 into the control flip-flops on low-ta-high transition. 

Selects one of eight banks of control flip-flops to read out on CNTRO-CNTR 15 in 16-bit words 

addressed by CAADA l-CAADAO. 

Selects one of ten control configurations. 

Load source select. When low selects CNTR inputs, when high selects DATA inputs. 

TEXAS ", 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

PIN 

NAME NO. 

CRWRITEO J2 

CRWRITEl J3 

CRWRITE2 Kl 

DO Nl0 

01 Rll 

02 Pll 

03 Nll 

04 P12 

05 R13 

06 N12 

07 P13 

08 N14 

09 N15 

010 M14 

011 M15 

012 L14 

013 L15 

014 K14 

015 K13 

016 F13 

017 E15 

018 E14 

019 015 

020 014 

021 C15 

022 013 

023 C14 

024 813 

025 A13 

026 812 

027 A12 

028 811 

029 All 

030 810 

031 Cl0 

032 C6 

033 A5 

034 85 

035 A4 

6-8 

1/0 

I 

1/0 

110 

Table 2. 'ACT8841 Pin Functional Description (continued} 

DESCRIPTION 

Destination select. Selects one of eight control banks. (see Table 4) 

1/0 data bits 0 through 31 (data bits 0 through 31 are the least signIficant half). 

I/O data bits 32 through 35 (data bits 32 through 63 are the most significant half). 

TEXAS • 
INSTRUMENTS 
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PIN 

NAME NO. 

036 84 
037 A3 
038 C4 
039 83 
040 C2 
041 Cl 
042 02 
043 01 
044 E2 
045 El 
046 F2 
047 F3 
048 K3 
049 L1 
050 L2 
051 Ml 
052 M2 
053 Nl 
054 M3 
055 N2 
056 P3 
057 R3 
058 P4 

059 R4 

060 P5 
061 A5 
062 P6 
063 N6 
GNO Al 
GNO A2 
GNO A14 
GNO A15 
GNO 81 
GNO 62 
GNO 614 
GNO 615 
GNO C3 
GNO C13 
GNO 07 
GNO 09 
GNO G4 
GNO G12 

1/0 

I/O 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functional Description {continuedl 

DESCRIPTION 

liD data bits 36 through 63 (data bits 32 through 63 are the most significant half)' 

Ground (all pins mus~ b,e usedl. 

TEXAS ." 
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SN74ACTB841 
DIGITAL CROSSBAR SWITCH 

Table 2 ..• ACT8841 Pin Functional Description (continued I 

PIN -
NAME NO. 

1/0 OESCRIPTION 

GNO J4 
GNO J12 . 

GNO M7 
GNO M1D 
GNO N3 
GNO N13 
GNO Pl 
GNO P2 

Ground (all pins must be used). 

GNO P14 
GND P15 
GNO Rl 
GNO R2 
GND R14 
GND R15 
LSCLCK H13 I Clocks the least significant half of data inputs into the input registers on a low-ta-high transition. 

MSCLK H3 I Clocks the most significant half of data inputs into the input registers on a low-ta-high transition. 

OEC Jl I Output enable for control flip-flops. active low 

OEOD P1D 
OEOl R12 
OE02 L13 
OE03 K15 
OE04 F14 
0E05 E13 
OE06 ell 
0E07 A1D 
OEDS 

I Output enables tor data nibbles, active low 
86 

OE09 C5 
OE01D E3 
OEDll Fl 
OE012 K2 
0ED13 L3 
OED14 N5 
OED15 RS 

TEXAS ." 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Table 2. 'ACT8841 Pin Functional Description (concluded) 

OESCRIPTION 
NAME NO. 

SELOLS H14 I 
When tow, selects the stored, least significant data input to the main internal bus. When high, real-

time data is selected. 

SELOMS H2 I 
When low, selects the stored. most significant data input to the main internal bus. When high, real-

time data is selected. 

TPO P9 
I Test pins. High during normal operation. (see Table 9} 

TPl R10 

Vee e7 
Vee e12 

Vee 03 
Vee 08 
Vee H4 

Vee H12 
5-V supply 

Vee M8 

Vee M13 
Vee N4 

Vee N9 
wt A6 I Write enable for control flip-flops. active low 

overview 

The 64 I/O pins of the' ACT8841 are arranged in 16 nibble (four-bit) groups where each set of four pins 
serves as bidirectional inputs to and outputs from a nibble multiplexer. During a switching operation, each 
nibble passes four bits of either stored or real-time data to the main internal 64-bit data bus. Each output 
multiplexer will independently select one of the 16 nibbles from this 64-bit data bus. 

Data nibbles are organized into two groups: the least significant half (D31-DO) and the most significant 
half (063-032). Stored versus real-time data inputs (:an be selected separately for the LSH and the MSH. 
Two clock inputs, LSCLK and MSCLK, are available to latch LSH and MSH data inputs, respectively, into 
the data register. 

The pattern of output nibbles resulting from the switching operation is determined by a selectable control 
source, either one of eight banks of programmable control flip-flops or one of two hard-wired switching 
configurations. Inputs to the control flip-flops can be loaded either from the data bus or from controll/Os. 
A separate clock (CRCLK) is provided for loading the banks of control flip-flops . 
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SN74ACTB841 
DIGITAL CROSSBAR SWITCH 

." logic symbol 
::J:J 
0 DIGITAL CROSSBAR SWITCH 

C * 
c: ACT8841 WRITE EN WE 

(") 
REG 8ANK\ 

CREADO 

-t CREAD1 

CREAD2 

." CRClK 
SELECT 

DESTINATION I 
CRWRITEO 

::J:J 
m CRWRITE1 

< _CRWRITE2 

SOURCE ---+-- CRSRCE 

m 
SELECT I 

CRSElO 

:E DEC 

READ 
CRSEl2 

CNTR3-CNTRO CONTROL 
CONTROL I CRSEl3 
REGISTER 

CNTR7-CNTR4 \l ADDRESsi 
CRADRO 

CNTR1 1 -CNTR8 lOAD -+-CRADR1 

CNTR1 5-CNTR1 2 
TEST I TPO 

TP1 

LSCLK ClK 

ilSH 
MSHI 

ClK 

SElDlS I SELDMS 

MUX 

03 DO 
0 D35-D32 

MUX 
OED1 oEi59 

07-04 D39D36 

MUX MUX 
OED2 

D1108 
10 D43-o40 

MUX 
OE03 OED11 

11 
015-012 047-044 

lSH MSH 

rJ) MUX MUX 

Z OE04 OE012 

019-016 
4 12 051-048 

'" ~ MUX 
DATA 

» MUX 
OED13 

(") 13 
055-052 

-t 
ex> MUX 

ex> 
~ 027-024 

14 

~ 

MUX MUX 
OEo15 OE07 

15 
063-060 o31-o2B 

FIGURE 1 
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architecture 

SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

The' ACT8841 digital crossbar switch has its 64 data II0s arranged in 16 multiplexer logic blocks, as shown 
in Figure 2. Each nibble multiplexer logic block handles four bits of real-time input and four bits of stored­
data input, and either input can be passed to the common data bus. 

Two input multiplexer controls are provided to select between stored and real-time inputs. SELOLS controls 
input data selection for the LSH (031-00) of the 64-bit data input, ~nd SELOMS for the MSH (063-D32) . 
The input register clocks, LSCLK and MSCLK, are grouped in the same way and are used to clock data 
into the registers in the multiplexer logic blocks. The 1 6 data input nibbles make up the 64 data bits on 
the internal main bus. 

This common bus supplies 16 data nibbles to a 16-to-1 output multiplexer in each multiplexer logic block 
(see Figure 3). As determined by one of ten selectable control sources, the 16-to-1 output multiplexer 
selects a data nibble to send to the outputs via the three-state output driver. 

Control of the input and output multiplexers determines the input-to-output pattern for the entire crossbar 
switch. Many different switching combinations can be set up by programming the control flip-flop 
configurations to determine the outputs from the 16-to-1 multiplexers. 

For example, the switch can be programmed to broadcast one data input nibble through the other 15 nibbles 
(60 outputs). Conversely, a 15-to-1 nibble multiplexer can be configured by programming the switch to 
select and output a single data nibble from the 64-bit bus. Several examples are described in more detail 
in a later section. 
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DIGITAL CROSSBAR SWITCH 

"'0 functional block diagram ::a 
0 SELDLS 

C LSCLK 

C 
(") 
-I 03·00 

"'0 m. ::a 
m 
< 07-04 

iii m, 
=e 

011·08 

(jljj, 

015-012 

m, 

019-016 

m. 

023020 

m. 

027024 

DED6 

031028 

en 
2 OED7 

..... 
~ » 
(") 
-I 
00 em: 
00 
~ ..... 

6·14 

FIGURE 2 
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SELDMS 

M$CLK 

035-032 

m. 

039-036 
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043·040 

i5H'ii10 

047·044 

OED 11 

051·048 

OED12 

055·052 

OEl113 

059·056 

0E014 

063·060 

0ED1S 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

, multiplexer logic group 

There are 16 multiplexer logic blocks, one for each nibble, External data flows from ·four data 1/0 pins 
into a logic block, A block diagram of the multiplexer logic is shown in Figure 3, The data inputs are either 
clocked into the data register or passed directly to the main internal bus. The 64 bits of data from the 
main bus are presented to a 16-to-l multiplexer, which selects the data nibble output. 

Each of the 16 nibble multiplexer logic blocks contains eight control flip-flop (CF) groups, one for each 
of the control banks. A control bank stores one complete switching configuration. Each CF group consists 
of four O-type edge-triggered flip-flops. In Figure 3, the CF groups are shown as CFXXO to CFXX7, where 
XX indicates the number of the nibble multiplexer logic group (0 < = XX < '" 15). CFXXO represents the 
16 CF groups (one from each logic block) which make up flip-flop control bankO, CFXXl the 16 CF groups 
in bank 1, etc. 

In addition to the eight banks of programmable flip-flops, two hard-wired switching configurations can 
be selected. The MSH/LSH exchange directs the input nibbles from each half of the switch to the data 
outputs directly opposite. This switching pattern is shown in Table 3 below. For example, data input on 
011-08 is output on 043-040, and data input on 043-040 is output on 011-08. 

6-16 

Table 3. MSH/LSH Exchange 

LSH MSH 

03-00 035-032 

07-04 039-036 

011-08 043-040 

015-012 047-044 

019-016 051-048 

023-020 055-052 

027-024 059-056 

031-028 063-060 

The second hard-wired configuration, a read-back function, causes all 64 bit to be output on the same 
I/Os on which they were input. Neither of the hard-wired control configurations affects the contents of 
the control banks, 

The control source select, CRSEL3-CRSELO, determines which switching pattern is selected, as shown 
in Table 4, 

Table 4, 16-to-l Output Multiplexer Control Source Selects 

CRSEL3 CRSEL2 CRSELl 

L L L 

L L L 

L L H 

L L H 

L H L 

L H L 

L H H 

L H H 

H X X 

H X X 

*Hard-wired switching configuration 
X = don't care 

CRSELO CONTROL SOURCE SELECTEO 

L Control bank 0 (programmable) 

H Control bank 1 (programmable) 

L Control bank 2 (programmable) 

H Control bank 3 (programmable) 

L Control bank 4 (programmable) 

H Control bank 5 (programmable) 

L Control bank 6 (programmable) 

H Control bank 7 (programmable) 

L MSHfLSH exchange * 

H Read-back (output echoes inpuU * 

TEXAS ." 
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SN74ACT8S41 
DIGITAL CROSSBAR SWITCH 

A CF group can store a four-bit control word (CFN3-CFNO) to select the output of the 16-to-1 multiplexer 
for that nibble port. One control word is loaded in each CF group. A total of 16 words, one per multiplexer 
logic block, are loaded in a bank to configure one complete switching pattern. Table 5 lists the control 
words and the input data each selects. 

Each control word can be stored in a CF group and sent as an internal control signal to select the output 
of a 16-to-1 multiplexer in a nibble logic block. For example, any CF group loaded with the word "LHHH" 
will select the data input on 031-028 as the outputs of the associated nibble. If all 16 CF groups in a 
bank were loaded with "LHHH," the same output (031-028) would be selected by the entire switch. 

Table 5. 16-to-1 Output Multiplexer Control Words 

INTERNAL SIGNALS INPUT DATA SelECTED AS 

CFN3 CFN2 CFNl CFNO MULTIPLEXER OUTPUT 

l l l l 03-00 

l l l H 07-04 

l l H l 011-08 

l l H H 015·012 

l H L L 019D16 

L H L H 023-D20 

L H H L 027-024 

L H H H D31·028 

H L I, L 035-032 

H L L H 039-036 

H L H L 043-040 

H L H H 047-044 

H H L L 051-048 

H H L H 055-052 

H H H L 059-056 

H H H H 063-060 

loading control configurations 

CRWRITE2-CRWRITEO select which control bank is being loaded, as shown in Table 6. 

Table 6. Control Flip-Flops Load Destination Select 

CRWRITE2 

L 

l 

l 

l 

H 

H 

H 

H 

CRWRITEl CRWRITEO 

l l 

l H 

H l 

H H 

l l 

L H 

H L 

H H 

TEXAS ~ 
INSTRUMENlS 

DESTINATION 

Control bank 0 

Control bank 1 

Control bank 2 

Control bank 3 

Control bank 4 

Control bank 5 

Control bank 6 

Control bank 7 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

The control words for a bank can be loaded either 16 bits at a time on the control 110 pins (CNTR 1 5-CNTRO) 
or all 64 bits at once on the data inputs (063-00). If the control load source select, CRSRCE, is high, the 
words are loaded from the data inputs. When CRSRCE = L, the CNTR inputs are used. 

When a control bank is loaded from the data inputs, WE, CRSRCE, CRWRITE2-CRWRITEO, and the control 
register clock CRCLK are used in combination to load all 16 control words (64 bits) in a single cycle. A 
MSH/LSH exchange like that shown in Table 3 is used to load the flip flops on a rising CRCLK clock edge. 
For example, data inputs 03-00 go to the data bus and then to the CF group that selects the data outputs 
for 035-032. CRWRITE2-CRWRITEO select the control bank that is loaded (see Table 6). 

The CNTRI5-CNTRO inputs can also be used to load the control banks. The bank is selected by 
CRWRITE2-CRWRITEO (see Table 6), Four control words per CRCLK cycle can be input to the CF groups 
(CFXX) that make up the bank. The CF groups loaded are selected by CRAORI-CRAORO, as shown in 
Table 7. Four CRCLK cycles are needed to load an entire control bank. 

Table 7. Loading Control Flip-Flops from CNTR liDs 

CF GROUPS LOADED BY 

CRAD1 CRADO WE CRCLK CONTROL (CNTR) 110 NUMBERS 

15-12 11-8 7-4 3-0 

L L L S CF12 CF8 CF4 CFO 

L H L S CF13 CF9 CF5 CFl 

H L L S CF14 CFlO CF6 CF2 

H H L J- CF15 CFll CF7 CF3 

X X H X Inhibit write to flip-flops 

To read out the control settings, the same address signals can be used, except that no CRCLK signal is 
needed and OEC is pulled low. CREA02-CREAOO select the bank to be read; the format is the same as 
for CRWRITE2-CRWRITEO, shown in Table 6. 

Using the control II0s to read the control bank settings can be valuable during debugging or diagnostics. 
Control settings are volatile and will be lost if the' ACT8841 is powered off. An external program controlling 
switch operation may need to read the control bank settings so that it can save and restore the current 
switching configurations. 

test pins 

TP1-TPO test pins are provided for system testing. As Table 8 shows, these pins should be maintained 
high during normal operation. To force all outputs and II0s low, low signals are placed on TP1-TPO and 

C/) all output enables (OEDI5-0EOO and OEC). To force all outputs and II0s high, TPI and all output enables 
2 are pulled low, and TPO is driven high. When TPO is left low and a high signal is placed on TP1, all outputs 
....... on the' ACT8841 are placed in a high-impedance state, isolating the chip from the rest of the system. 

~ l> Table 8. Test Pin Inputs 

("') 
-t 
0) 
0) 
~ 
~ 

6-18 

TP1 

L 

L 

H 

H 

TPO 

L 

H 

L 

H 

OED15-

OEDO 

L 

L 

X 

X 

DEC RESULT 

L All outputs and 1I0s forced low 

L All outputs and II0s forced high 

X All outputs placed in a high-impedance state 

X Normal operation (default state) 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

Most' ACT8841 switch configurations are straightforward to program, involving few control signals and 
procedures to set up the control words in the banks of flip-flops. Control signals and procedures forloading 
and using control words are shown in the following examples. 

broadcasting a nibble 

Any of the 16 data input nibbles can be broadcast to the other 15 data nibbles for output. For ease of 
presentation, input nibble 063-060 is used in this example. Example 1 presents the microcode sequence 
for loading flip-flop bank 0 and executing the nibble broadcast. 

The low signal on CRSRCE selects CNTR15-CNTRO as the input source, and the low signals on 
CRWRITE2-CRWRITEO select flip-flop bank 0 as the destination. Table 5 shows that to select data on 
063-060 as the output nibble, the four bits in the control word CFN3-CFNO must be high: therefore the 
CNTR15-CNTRO inputs are coded high. The four microcode instructions shown in Example 1 load the same 
control word from CNTR15-CNTRO into all 16 CF groups of bank O. 

Once the control flip-flops have been loaded, the switch can be used to broadcast nibble 063-060 as 
programmed. The microcode instruction to execute the broadcast is shown as the last instruction in 
Example 1. WE is held high and the data to be broadcast is input on 063-060. The high signal on SELDMS 
selects a real-time data input for the broadcast. MSCLK and LSCLK (not shown) can be used to load the 
input registers if the input nibble is to be retained. No register clock signals are needed if the input data 
is not being stored. 

The banks of control flip-flops not selected as a control source can be loaded with new control words 
or read out on CNTR15-CNTRO while the switch is operating. For example, the MSH data inputs can be 
used to load flip-flop bank 1 of the LSH while bank 0 of the LSH is controlling data I/O. 

TEXAS ." 
INSTRUMENTS 

POST OFFICE 80X 655012 • DALLAS. TEXAS 75265 

~ 
w 
:> 
w 
a: 
0.. 

.... 
(.) 
:::::> 
c 
o 
a: 
0.. 



Ol 
~ 
o 

z 
~r;;1 
~~ 
Z 
Ciloet 

tNST. 

NO. 
CR$RCE 

1 0 

2 0 

3 0 

4 0 

5 X 

INST 
CRSRCE 

NO. 

1 0 

2 0 

3 0 

4 0 

5 x 

Lv88J.O"vLNS M31A3Hd J.onaOHd 

Example 1. Programming a Nibble Broadcast 

CRWRlTE2 CRWRITEl CRWRITEO CRADRl CAADAO 
CNTA 110 NUMBERS 

CRSEL3 CRSEL2 CRSEl' CRSELO WE sELOMS SElDlS 0ED15-0EOO O£C CRCU< 
15-12 11-8 7-4 3-0 

0 0 0 0 0 1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx xxxx 1 r 
0 0 0 0 1 1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx XXXX 1 J 
0 0 0 1 0 1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx XXXX 1 J 
0 0 0 1 1 1111 1111 1111 1111 X X X X 0 X X xxxx xxxx xxxx XXXX 1 J 
X X X X X xxxx xxxx xxxx xxxx 0 0 0 0 1 1 X 1000 0000 0000 0000 1 None 

Common .. 

INST. NO. COMMENT 

loads CF12, CF8, CF4. CFO of bank 0 

Loads eFt3, CF9, CF5, eFt of bank 0 

loads CF14. eFtO, CF6, CF2 of bank 0 

loads eFtS, eF", CF7, CF3 of bank 0 

Selects bank 0 for switching control 
Selects real-time data inputs 

Example 2. Programming an MSH/LSH Exchange on CNTR Inputs 

CAWAlTE2 CAWRITEI CRWRITEO CRADAI CRAORO 
CNTR I/O NUMBERS 

CASEl3 CRSEL2 CQSEL 1 CASEtO WE SELDMS SELOlS OE015·0E50 liEC CRClK 
15-12 "-8 H 3-0 

1 1 1 0 0 0100 0000 ,,00 1000 x x x x 0 x x xxxx xxxx xxx x xxxx 1 

1 1 1 0 1 0101 0001 1101 1001 X X X X 0 X X xxxx xxxx xxxx XXXX 1 

1 1 1 1 0 0111 0011 1111 1011 X X X X 0 X X xxxx xxxx xxx x XXXX 1 ; 
1 1 1 1 1 0111 0011 1111 1011 X X X X 0 X X xxxx xxxx xxxx xxxx 1 

X x x x x xxxx xxxx xxxx xxxx 0 1 1 1 1 0 0 0000 0000 0000 0000 1 None 

Commentl 

INST. NO COMMENT 

loads CF12, eF8. CF4, CfO of bank' 

Loads CF13, CF9. CFS, CF1 of bank 7 

Loads CF14. CF10, Cf6, CF2 of bank 1 

Loads,CF1S. CF11. CFl. Cf3 of bank 7 

Selects bank 7 for SWltchrng contrOl 

$elects regIstered data rnputs 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

programming an MSH/LSH exchange 3: 
A second, more complicated example involves programming the switch to swap corresponding nibbles W 
between the MSH and the LSH (first nibble in the LSH for first nibble in the MSH, and so on). This swap > 
can be implemented using the hard-wired logic circuit selected when CRSEL3 is high and CRSELO is low. W 
Programming this swap without using the MSH/LSH exchange logic requires loading a different control a: 
word into each mux logic block. This is described below for purposes of illustration. Il. 
Each nibble in one half, either LSH or MSH, selects as output the registered data from the corresponding I­
nibble in the other half. The registered data from 035-032 is to be output on 03-00, the registered data U 
from 03-00 is output on 035-032, and so on for the remaining nibbles. As shown in Table 4, the flip-flops :::> 
for 03-00 have to be set to 1000 and the 035-032 inputs must be low. The CF groups and control words C 
involved in this switching pattern are listed in Table 9. 0 

a: 
Table 9. Control Words for an MSH/LSH Exchange Il. 

CNTR INPUTS CONTROL 
CF 

TO LOAD WORD RESULTS 
GROUP 

FLlP·FLOPS LOADED 

CF15 0111 031-028 -'- 063-060 

CF14 CNTA15- 0110 027-024 - 059-056 

CF13 CNTA12 0101 023-020 - 055-052 

CF12 0100 019-016 - 051-048 

CF11 0011 015-012 - 047·044 

CF10 CNTA11- 0010 011-08 - 043-040 

CF9 CNTA8 0001 07-04 - 039-036 

CF8 0000 03-00 - 035-032 

CF7 1111 063-060 - 031-028 

CF6 CNTA7- 1110 cc 059-056 - 027-024 

CF5 CNTA4 1101 055-052 - 023-020 

CF4 1100 051-048 - 019-016 

CF3 1011 047-044 - 015-012 

CF2 CNTA3- 1010 043-040 - 011-08 

CFl CNTAO 1001 039-036 - 07-04 

CFO 1000 035-032 - 03-00 

With this list of control words and the signals in Table 7, the 16-bit control inputs on CNTR15-CNTRO 
can be arranged to load the control flip-flops in four cycles. Example 2 shows the microcode instructions 
for loading the control words and executing the exchange. 

In Example 2, bank 7 of flip-flops is being programmed. Bank 7 is selected by taking CRWRITE2-CRWRITEO 
high and leaving CRSRCE low (see Table 4) when the control words are loaded on CNTR15-CNTRO. With 
WE held low, the CRCLK is used to load the four sets of control words. Once the flip-flops are loaded, 
data can be input on 063-00 and the programmed pattern of output selection can be executed. A 
microinstruction to select registered data inputs and bank 7 as the control source is shown as the last 
instruction in Example 2. The data must be clocked into the input registers, using LSCLK and MSCLK, 
before the last instruction is executed. 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

The control flip-flops could also have been loaded from the data input nibbles in one CRCLK cycle. Input 
nibbles from one half are mapped onto the control flip-flops of the other half. All control words to set up 
a switching pattern should be loaded before the bank of flip-flops is selected as control source. The 
microcode instructions to load bank 1 with the 16 control words in one cycle are presented in Example 3. 

Example 3. Loading the MSH/LSH Exchange from Data Inputs 

CRWRlTE2 CRWRITEI CRWRITEO WI! SELOMS SELDLS m16·m60 

o 0 I 0 II" lUI"" 1111 

These control nibbles may be loaded from the input as a 64-bit real-time input word or as two 32-bit words 
stored previously. To use stored control worels, MSCLK and LSCLK are used to load the LSH and MSH 
input registers with the correct sequence of control nibbles. Whenever the flip-flops are loaded from the 
data inputs, "II 64 bits of control data must be present when the CRCLK is used so that all control nibbles 
in a program are loaeled simultaneously. Example 4 presents the three microcode instructions to load the 
MSH and LSH input registers and then to Pass the registered data to flip-flop bank 2. 

Example 4. Loading Control Flip-Flops from Input Registers 

INST. 
CRSRCE CRWRITE2 CRWRITEI CRWRITEO WI! SELDMS SELOLS 

l5Ei516-
CRCLK MSCLK LSCLK COMMENTS 

NO_ m60 

1 X X X X 1 X X 1 None S None 
load inputs 

063-032 

2 X X 
X X 1 X X 1 None None S 

load inputs 

031-00 

3 1 0 1 0 0 0 0 1 S None None 
Load control 

bank 2 

The control words in a program can also be read back from the flip-flop.s using the CNTR outputs. Four 
instruction.s are necessary to read the 64 bits in a bank of flip-flops out on CNTR15-CNTRO. WE is held 
high and OEC is taken·low. No CRCLK signal is required. CREAD2-CREADO select bank 2.of flip-flop~, 
and CRADR l-CRADRO select in sequence the four addresses of the l6-bit words to be read out on the 
CNTR outputs. Example 5 shows the four microcode instructions. . 

Example 5. Reading Control Settings on CNTR Outputs 

INST. 
~ WI! 

CNTR 110 NUMBERS 

NO. 
CREAO;! CREAOI CREAPO CRAORI CRAORO 

15-12 11-8 7-4 3-0 
COMMENT 

1 0 1 0 0 0 0 1 0100 DODO 1100 1000 Read CF12. CF8. CF4. CFO 

2 0 1 0 0 0 1 1 0101 0001 1101 1001 Read CF13. CF9. CF5. CFl 

3 0 1 0 0 1 0 1 0110 0010 1110 1010 Read CF14. CF10. CF6. CF2 

4 0 1 0 0 1 1 1 0111 0011 1111 lOll Read CF16. CFll. CF7. CF3 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t 

Supply voltage, VCC . . . . . . . . . . ................. -0.5 V to 6 V 
Input clamp current, 11K IVI < 0 or VI > Vce) . . . . . . . . . . . . . . . . . . . . .......... ±20 mA 
Output clamp current, 10K (Vo < 0 or Vo > Vcc) ... . . . . . . . . . . ±50 mA 
Continuous output current, 10 (VO = 0 to VCC) ........... ±50 mA 
Continuous current through VCC or GND pins. . . . . . . . . . . . . . . . . .. ± 100 mA 
Operating free-air temperature range . .. ooC to 70°C 
Storage temperature range .. . . . . . . . . . . . . . . . . . . .. - 65°C to 150°C 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings 
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating 
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 

recommended operating conditions 

PARAMETER MIN NOM MAX UNIT 

vee Supply voltage 4.5 5.0 5.5 v 

VIH High-level input voltage 2 Vee v 
Vil low-level input voltage 0 0.8 V 

10H High-level output current -8 mA 

10l low-level output current 8 mA 
VI Input voltage 0 Vee V 
Vo Output voltage 0 Vee V 
dt/dv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 De 

electrical characteristics over recommended operating free-air temperature range (unless otherwise 
noted) 

PARAMETER TEST CONDITIONS VCC 
TA - 25 DC 

MIN TYP MAX 
MIN TYP MAX UNIT 

4.5 V 4.4 
10H ~ -20,A 

5.4 5.5 V 
VOH V 

4.5 V 3.8 3.7 
10H ~ -8 mA 

4.8 4.7 5.5 V 
4.5 V 0.1 

IOl ~ 20 pA 
5.5V 0.1 

VOL V 
4.5 V 0.32 0.4 

10l ~ 8 mA 
5.5 V 0.32 0.4 

10l Vo ~ Vee or 0 5V ±O.5 ±0.5 ,A 

II VI - Vee or 0 5.5 V 0.1 ± 1 ,A 

ICC VI ~ Vee or O. 10 5.5 V 100 ,A· 

el VI ~ Vee or 0 5V pF 

lThis is'the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or Vee-
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

l! switching characteristics over recommended ranges of supply voltage and operating free-air temperature o (unless otherwise noted I 
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PARAMETER FROM TO MIN Typt MAX UNIT 

Data in 7 14 

MSCLK, LSCLK 10 18 

SELDMS, SELDLS Data out 9 15 

CRCLK 12 19 

tpd CRSEL3-CRSELO 12 19 ns 

CREAD2-CREADO 10 18 

CRCLK CNTRn 10 18 

CRAD 1, CRADO 8 16 

TP1, TPO AU outputs 10 19 

TP1, TPO All outputs 10 15 

'en OED Data out 7 12 ns 

OEC CNTRn 8 14 

TP1, TPO All outputs 10 15 

tdis om Data out 5 8 ns 

GEC CNTRn 6 10 

tAli typical values are at vee = 5 V, TA = 25°C. 

timing requirements over recommended ranges of supply voltage and operating free-air temperature 
(unless otherwise noted I 

PARAMETER MIN MAX UNIT 

tw Pulse duration LSCLK, MSCLK, CRCLK high or low 7 ns 

Data 7 

CNTRn 7 

SELDMS, SELDLS 9 

tsu Setup time before CRClK CRADR1,CRADRO 8 ns 

CRSRCE, CRWRITE2-CRWRITEO 8 

LSCLK, MSCLK 10 

WE 8 

tsu Setup time. data before LSCLK or MSClK 7 ns 

Data 0 

CNTRn 0 

SELDMS, SELDLS 0 
'h Hold time after CRCLK ns 

CRADR 1, CRADRO 0 

CRSRCE, CRWRITE 0 

WE 0 

th Hold time, data after LSCLK or MSCLK 0 ns 
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SN74ACT8841 
DIGITAL CROSSBAR SWITCH 

'AS8840 AND 'ACT8841 FUNCTIONAL COMPARISON 

differences between the SN74AS8840.and the SN74ACT8841 

The SN74AS8840 and the SN74ACT8841 digital crossbar switches essentially perform the same function·. 
The SN74AS8840 and the SN74ACT8841 are based on the same 16-port architecture, differing in the 
number of control registers, power consumption, and pin-out. 

One difference is in the number of programmable control flip-flop banks available to configure the switch. 
The 'AS8840 has two programmable control banks, while the 'ACT8841 has eight. Both have two 
selectable hard-wired switching configurations. 

The increased number of control banks in the' ACT8841 require six additional pins not found on the 
'AS8840. These are: CRWRITE2, CRWRITE1, CREAD2, CREAD1, CRSEl3, and CRSEl2. CREAD and 
CRWRITE on the '8840 become CREADO and CRWRITEO on the '8841. On the '8840, CRSEl1 selects 
the hardwired control functions when high. This function is performed by the CRSEl3 signal on the '8841. 
Therefore, CRSEl2 and CRSEl1 are actually the added signals. 

The 'ACT8841 is a low-power CMOS device requiring only 5-V power. Because of its STl internal logic 
and TTL liDs, the' AS8840 requires both 2-Vand 5-V power. 

Both the' AS8840 and the' ACT8841 are in 156 pin grid-array packages, however, the two devices are 
not pin-for-pin compatible. Control signals were added to the' ACT8841 and the 2-V VCC pins (' AS8840 
only) were assigned other functions in the' ACT8841 . 

changing 'AS8840 microcode to 'ACT8841 microcode 

Since only six signals have been added to the 'ACT8841, changing existing 'AS8840 microcode to 
'ACT8841 microcode is straight forward. CRSEl3 on the' ACT8841 is functionally equivalent to CRSEl 1 
on the 'AS8840. CREAD2, CREAD1, CRWRITE2, CRWRITE1, CRSEl2, and CRSEl1 bits must be added. 
These can always be 0 if no additional control banks are needed. Additional control configurations can 
be stored by programming these bits. 

All other signals in the' AS8840 microcode remain the same when converting to 'ACT8841 microcode. 
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SN74ACT8847 
64·8it Floating Point Unit 

• Superset of Tl's SN74ACT8837 

• 30-ns, 40-ns and 60-ns Pipelined Performance 

• Low-Power EPIC'· CMOS 

• Meets IEEE Standard for Single- and Double­
Precision Formats 

• Performs Floating Point and Integer Add, 
Subtract, Multiply, Divide, Square Root, and 
Compare 

• 64-Bit IEEE Divide in 11 Cycles, 64-Bit Square 
Root in 14 Cycles 

• Performs Logical Operations and Logical Shifts 

The SN74ACT8847 is a high-speed, double-precision floating point and integer 
processor. It performs high-accuracy, scientific computations as part of a 
customized host processor or as a powerful stand-alone device. Its advanced 
math processing capabilities allow the chip to accelerate the performance of both 
CISC- and RISC- based systems. 

High-end computer systems, such as graphics workstations, mini-computers and 
32-bit personal computers, can utilize the single-chip' ACT884 7 for both floating 
point and integer functions. 

EPIC is a trademark of Texas Instruments Incorporated. 

7-3 



7-4 



Contents 

Page 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 7-15 

Understanding the' ACT8847 Floating Point Unit ......... . 7-15 
Microprogramming the ' ACT884 7 .................... . 7-15 
Support Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 
Design Support .................................. . 7-16 
, ACT884 7 Logic Symbol ........................... . 7-17 
Design Expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18 
, ACT8847 Pin Descriptions ......................... . 7-18 
, ACT884 7 Specifications ........................... . 7-26 

SN74ACT8847 Floating Point Unit . ..................... . 7-33 

Data Flow ...................................... . 7-33 
Input Data Parity Check ........•.................... 7-35 
Temporary Input Register ........................... . 7-35 
RA and RB Input Registers .......................... . 7-35 
Multiplier/ALU Multiplexers .......................... . 7-37 
Pipe lined ALU ................................... . 7-37 
Pipe lined Multiplier ................................ . 7-41 
Product, Sum, and C Registers ....................... . 7-42 
Parity Generators ................................. . 7-42 
Master/Slave Comparator ........................... . 7-42 

. Status and Exception Generation ..................... . 7-42 
Flowthrough Mode ................................ . 7-45 
Fast and IEEE Modes .............................. . 7-46 
Rounding Mode .................................. . 
Test Pins ....................................... . 

7-46 
7-46 " ~ 

Summary of Control Inputs ......................... . 7-46 ClO 
ClO .... 
U 
~ 
~ 

" 2: 
en 

7-5 



Contents (Continued) 

Page 

Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 -48 

Loading External Data Operands. . . . . . . . . . . . . . . . . . . . . . 7 -48 
Configuration Controls (CONFIG1-CONFIGO) . . . . . . . . . . . . . 7-48 
CLKMODE Settings .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7-48 
Internal Register Operations . . . . . . . . . . . . . . . . . . . . . . . . . 7 -49 
Data Register Controls (PIPES2-PIPESO) . . . . . . . . . . . . . . . . 7-50 
C Register Controls (SRCC, CLKC, FLOWC, ENRC) . . . . . . . . 7-50 
Operand Selection (SELOP7-SELOPO) . . . . . . . . . . . . . . . . . . 7-51 
Rounding Controls (RND1-RNDO) . . . . . . . . . . . . . . . . . . . . . 7-51 
Status Exceptions ........ . . . . . . . . . . . . . . . . . . . . . . . . 7 -51 

Handling of Denormalized Numbers (FAST) . . . . . .. . . . . . 7-54 
Exception Disable Mask Register ................... 7-55 

Data Output Controls (SELMS/LS, OEY) . . . . . . . . . . . . . . . . 7-56 
Status Output Controls (SELST1-SELSTO, OES, OEC) . . . . . . 7-56 
Stalling the Device (HALT) . . . . . . . . . . . . . . . . . . . . . . . . . . 7-56 
Instruction Inputs (110-10). . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57 

Independent ALU Operations ...................... 7-57 
Independent Multiplier Operations. . . . . . . . . . . . . . . . . . . 7-60 
Chained Multiplier/ALU Operations. . . . . . . . . . . . . . . . . . 7-61 

Microprogramming the 'ACT884 7 ...................... 7 -64 

7-6 

Single-Precision Operations ........................ . 
Single-Precision ALU Operations ................... . 
Single-Precision Multiplier Operations ............... . 
Sample Single-Precision Microinstructions ............ . 

Double-Precision Operations ........................ . 
Double-Precision ALU Operations .................. . 

Double-Precision ALU Operations with CLKMODE = 0 .. 
Double-Precision ALU Operations with CLKMODE = 1 .. 

Double-Precision Multiplier Operations ............... . 
Double-Precision Multiplication with CLKMODE = 0 
Double-Precision Multiplication with CLKMODE = 1 .... 

7-64 
7-64 
7-64 
7-65 
7-70 
7-70 
7-70 
7-78 
7-85 
7-85 
7-91 



Contents (Concluded) 

Division and Square Root Operations ................. . 
Division Microinstructions ........................ . 

Single-Precision Floating-Point Division ............ . 
Double-Precision Floating-Point Division ........... . 
Integer Division ............................. . 

Square Root Microinstructions .................... . 
Single-Precision Floating-Point Square Root ......... . 
Double-Presion Floating-Point Square Root ......... . 
Integer Square Root .......................... . 

Chained Multiplier/ALU Operations ... ; ............... . 
Fully Pipelined Double-Precision Operations ............. . 
Mixed Operations and Operands ..................... . 
Matrix Operations ............................... . 

Representation of Variables ...................... . 
Sample Matrix Transformation .................... . 
Microinstructions for Sample Matrix Manipulation ...... . 

Glossary . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . , . . . . . . 

Page 

7-98 
7-98 
7-98 
7-102 
7-107 
7-110 
7-111 
7-115 
7-119 
7-123 
7-124 
7-127 
7-129 
7-129 
7-130 
7-137 

7-142 

7-7 





List of Illustrations 

Figure 

1 ' ACT884 7 Floating Point Unit .................... . 
2 Single-Precision Operation, A" Registers Disabled 

(PIPES = 111, CLKMODE =0) ................. . 
3 Single-Precision Operation, Input Registers Enabled 

(PIPES = 110, CLKMODE = 0) ................. . 
4 Single-Precision Operation, Input and Output Registers 

Enabled (PIPES = 010, CLKMODE = 0) ........... . 
5 Single-Precision Operation, A" Registers Enabled 

(PIPES = 000, CLKMODE = 0) ................. . 
6 Double-Precision ALU Operation, A" Registers Disabled 

(PIPES = 111, CLKMODE = 0) ................. . 
7 Double-Precision ALU Operation, Input Registers Enabled 

(PIPES = 110, CLKMODE = 0) ................. . 
8 Double-Precision ALU Operation, Input and Output 

Registers Enabled (PIPES = 010, CLKMODE = 0) ..... 
9 Double-Precision ALU Operation, A" Registers Enabled 

(PIPES = 000, CLKMODE = 0) ................. . 
10 Double-Precision ALU Operation, A" Registers Disabled 

(PIPES = 111, CLKMODE = 1) ................. . 
11 Double-Precision ALU Operation, Input Registers Enabled 

(PIPES = 110, CLKMODE = 1) ................. . 
12 Double-Precision ALU Operation, Input and Output 

Registers Enabled (PIPES = 010, CLKMODE = 1) ..... 
13 Double-Precision ALU Operation, A" Registers Enabled 

(PIPES = 000, CLKMODE = 1) ................. . 
14 Double-Precision Multiplier Operation, A" Registers 

Disabled (PIPES = 111, CLKMODE = 0) .......... . 
15 Double-Precision Multiplier Operation, Input Registers 

Enabled (PIPES = 110, CLKMODE = 0) ........... . 
16 Double-Precision Multiplier Operation, Input and Output 

Registers Enabled (PIPES = 010, CLKMODE = 0) ..... 
1 7 Double-Precision Multiplier Operation, A" Registers 

Enabled (PIPES = 000, CLKMODE = 0) ........... . 
18 Double-Precision Multiplier Operation, A" Registers 

Disabled (PIPES = 111, CLKMODE = 1) .......... . 

Page 

7-34 

7-65 

7-66 

7-67 

7-67 

7-71 

7-73 

7-75 

7-77 

7-79 

7-80 

7-81 

7-84 

...... 
7-86 ~ 

ex) 
ex) 

7-87 ~ 
« 

7-88 ~ 
2 

7-90 en 

7-92 

7-9 



Figure 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
31 
32 . 
33 
34 

List of Illustrations (Continued) 

Double-Precision Multiplier Operation, Input Registers 
Enabled (PIPES = 110, CLKMODE = 1) .......... . 

Double-Precision Multiplier Operation, Input and Output 
Registers Enabled (PIPES = 010, CLKMODE = 1) .... 

Double-Precision Multiplier Operation, All Registers 
Enabled (PIPES = 000, CLKMODE = 1) .......... . 

Single-Precision Floating Point Division 
(PIPES2-PIPESO = 110) ...................... . 

Single-Precision Floating Point Division 
(PIPES2-PIPESO = 100) ...................... . 

Single-Precision Floating Point Division 
(PIPES2-PIPESO = 010) ...................... . 

Single-Precision Floating Point Division 
(PIPES2-PIPESO = 000) ...................... . 

Double-Precision Floating Point Division 
(PIPES2-PIPESO = 110) ...................... . 

Double-Precision Floating Point Division 
(PIPES2-PIPESO = 100) ...................... . 

Double-Precision Floating Point Division 
(PIPES2-PIPESO = 010) ...................... . 

Double-Precision Floating Point Division 
(PIPES2-PIPESO = 000) ...................... . 

Integer Division (PIPES2-PIPESO = 110) ........... . 
Integer Division (PIPES2-PIPESO = 100) ........... . 
Integer Division (PIPES2-PIPESO = 010) ........... . 
Integer Division (PIPES2-PIPESO = 000) ........... . 
Single-Precision Floating Point Square Root 

(PIPES2-PIPESO = 110) ...................... . 
35 Single-Precision Floating Point Square Root 

(PIPES2-PIPESO = 100) ...................... . 
36 Single-Precision Floating Point Square Root 

(PIPES2-PIPESO = 010) ...................... . 
37 Single-Precision Floating Point Square Root 

(PIPES2-PIPESO = 000) ...................... . 
38 Double-Precision Floating Point Square Root 

(PIPES2-PIPESO = 110) ...................... . 
39 Double-Precision Floating Point Square Root 

(PIPES2-PIPESO = 100) ...................... . 

7-10 

Page 

7-93 

7-95 

7-97 

7-99 

7-100 

7-101 

7-102 

7-103 

7-104 

7-105 

7-106 
7-107 
7-108 
7-109 
7-110 

7-111 

7-112 

7-113 

7-114 

7-115 

7-116 



Figure 

40 

41 

42 
43 
44 
45 
46 

47 

48 
49 

List of Illustrations (Concluded) 

Double-Precision Floating Point Square Root 
(PIPES2-PIPESO = 010) ....................... . 

Double-Precision Floating Point Square Root 
(PIPES2-PIPESO = 000) ....................... . 

Integer Square Root (PIPES2-PIPESO = 110) ........ . 
Integer Square Root (PIPES2-PIPESO = 100) ........ . 
Integer Square Root (PIPES2-PIPESO = 010) ........ . 
Integer Square Root (PIPES2-PIPESO = 000) ........ . 
Mixed Operations and Operands 

(PIPES2-PIPESO = 110, CLKMODE = 0) .......... . 
Mixed Operations and Operands 

(PIPES2-PIPESO = 000, CLKMODE = 1) 
Sequence of Matrix Operations ................... . 
Resultant Matrix Transformation .................. . 

Page 

7-117 

7-118 
7-119 
7-120 
7-121 
7-122 

7-128 

7-128 
7-133 
7-140 

7,-11 



7-12 



List of Tables 

Table Page 

1 ' ACT884 7 Pin Grid Allocations .................. . 7-19 
2 ' ACT884 7 Pin Functional Description .............. . 7-20 
3 Double-Precision Input Data Configuration Modes ..... . 7-36 
4 Single-Precision Input Data Configuration Mode ...... . 7-36 
5 Double-Precision Input Data Register Sources ........ . 7-36 
6 Multiplier Input Selection ....................... . 7-37 
7 ALU Input Selection .......................... . 7-37 
8 Independent ALU Operations, Single Floating Point 

Operand ................................. . 7-38 
9 Independent ALU Operations, Two Floating Point 

Operands ................................ . 7-39 
10 Independent ALU Operations, Single Integer Operand .. . 7-39 
11 Independent ALU Operations, Two Integer Operands .. . 7-40 
12 Independent Multiplier Operations ................ . 7-40 
13 Independent Multiplier Operations Selected by 14-12 ... . 7-41 
14 Independent Divide/Square Root Operations 

Selected by 14-12 ........................... . 7-41 
1 5 Formats Selected by 18-17 ...................... . 7-42 
16 Chained Multiplier/ALU Operations ................ . 7-43 
17 Comparison Status Outputs ..................... . 7-44 
1 8 Status Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44 
19 Status Output Selection (Chain Mode) ............. . 7-45 
20 Pipeline Controls (PIPES2-PIPESO) ................ . 7-45 
21 Rounding Modes ............................. . 7-46 
22 Test Pin Control Inputs ........................ . 7-46 
23 Control Inputs ............................... . 7-47 f' 
24 IEEE Floating-Point Representations ............... . 
25 Handling Wrapped Multiplier Outputs .............. . 

7-53 ~ 

7-54 00 
00 

26 Loading the Exception Disable Mask Register ........ . 
27 Independent ALU Operations with One Floating Point 

7-55 t-
O « 

Operand ................................. . 
28 Independent ALU Operations with Two Floating Point 

7-58 ~ 
f' 
Z 

Operands ................................ . 7-59 CI) 

29 Independent ALU Operations with One 
Integer Operand ........................... . 7-59 

7-13 



Table 

30 

31 
32 

33 

34 
35 
36 

37 

38 

39 

40 
41 

42 

7-14 

List of Tables (Concluded) 

Independent ALU Operations with Two 
Integer Operands" " " " " " " " " " " " " " " " " " " " " " " " " " " " 

Independent Floating Point Multiply Operations """"""" 
Independent Floating Point Divide/Square Root 

Operations """""""""""""""""""""""""""""""" 
Independent Integer Multiply/Divide/Square Root 

Operations "".""""""""""""""""""""""""""""" 
Chained Multiplier/ALU Floating Point Operations" " " " " " 
Chained Multiplier/ALU Integer Operations" " " " " " " " " " " 
Single-Precision Sum of Products 

(PIPES2-PIPESO = 010) " " " " " "" " " " " " " " " " " " " " " " " 
Sample Microinstructions for Single-Precision 

Sum of Products " " " " " " " " " " " " " " " " " " " " " " " " " " " " 
Fully Pipelined Double-Precision Sum of Products 

(CLKM = 0, CONFIG = 10, PIPES = 000, 
CLKC+-+SYSCLK) " ,; " " " " " " " " " " " " " " " " " " " " " " " " 

Fully Pipelined Double-Precision Product of Sums 
(CLKM = 0, CONFIG = 10, PIPES = 000, 
CLKC+-+SYSCLK) " " " " " " " " " " " " " " " " " " " " " " " " " "" 

Microinstructions for Sample Matrix Manipulation" " " " " " 
Single-Precision Matrix Multiplication 

(PIPES2-PIPESO = 010)" " " " " . " " " " " " " " " " " " " " " " " 
Fully Pipelined Sum of Products 

(PIPES2-PIPESO = 000) " " " " " " " " " " " " " " " " " " " " " " ; 

Page 

7-60 
7-60 

7-61 

7-61 
7-62 
7-63 

7-123 

7-124 

7-125 

7-126 
7-138 

7-139 

7-141 



Introduction 

The SN74ACT8847 combines a multiplier and an arithmetic-logic unit in a single 
microprogrammable VLSI device. The' ACT884 7 is implemented in Texas Instruments 
one-micron CMOS technology to offer high speed and low power consumption with 
exceptional flexibility and functional integration. The FPUs can be microprogrammed 
to operate in multiple modes to support a variety of floating point applications. 

The 'ACT884 7 is fully compatible with the IEEE standard for binary floating point 
arithmetic, STD 754-1985. This FPU performs both single- and double-precision 
operations, integer operations, logical operations, and division and square root 
operations (as single microinstructions). 

Understanding the ' ACT884 7 Floating Point Unit 

To support floating point processing in IEEE format, the' ACT884 7 may be configured 
for either single- or double-precision operation. Instruction inputs can be used to select 
three modes of operation, including independent ALU operations, independent multiplier 
operations, or simultaneous ALU and multiplier operations. 

Three levels of internal. data registers are available. The device can be used in 
flowthrough mode (all registers disabled), pipelined mode (all registers enabled), or 
in other available register configurations. An instruction register, a 64-bit constant 
register, and a status register are also provided. 

Each FPU can handle three types of data input formats. The ALU accepts data operands 
in integer format or IEEE floating point format. A third type of operand, denormalized 
numbers, can also be processed after the ALU has converted them to "wrapped" 
numbers, which are explained in detail in a later section. The' ACT884 7 multiplier 
operates on normalized floating-point numbers, wrapped numbers, and integer 
operands. 

Microprogramming the ' ACT884 7 

The' ACT884 7 is a fully microprogrammable device. Each FPU operation is specified 
by a microinstruction or sequence of microinstructions which set up the control inputs 
of the FPU so that the desired operation is performed. 

The microprogram which controls operation of the FPU is stored in the microprogram 
memory (or control store). Execution of the microprogram is controlled by a 
microsequencer such as the TI SN74ACT8818 l6-bit microsequencer. A discussion 
of microprogrammed architecture and the operation of the' ACT8818 is presented 
in this Data Manual. 
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Support Tools 

Texas Instruments has developed functional evaluation models of the 'ACT884 7 in 
software which permit designers to simulate operation of the FPU. To evaluate the 
functions of an FPU, a designer can create a microprogram with sample data inputs, 
and the simulator will emulate FPU operation to produce sample data output files, as 
well as several diagnostic displays to show specific aspects of device operation. Sample 
microprogram sequences are included in this section. 

Texas Instruments has also designed a family of low-cost real-time evaluation modules 
(EVM) to aid with initial hardware and microcode design. Each EVM is a small self­
contained system which provides a convenient means to test and debug simple 
microcode, allowing software and hardware evaluation of components and their 
operation. 

At present, the 74AS-EVM-8 Bit-Slice Evaluation Module .has been completed, and 
a 16-bit EVM is in an advanced stage of development. EVMs and support tools for 
devices in the VLSI family are planned for future development. 

Design Support 

Texas Instruments Regional Technology Centers, staffed with systems-oriented 
engineers, offer a training course to assist users of TI LSI products and their application 
to digital processor systems. Specific attention is given to the understanding and 
generation of design techniques which implement efficient algorithms designed to 
match high-performance hardware capabilities with desired performance levels. 

Information on VLSI devices and product support can be obtained from the following 
Regional Technology Centers: 

Atlanta 
Texas Instruments Incorporated 
3300N.E. Expressway, Building 8 
Atlanta, GA 30341 
404/662-7945 

Boston 

Chicago 
Texas Instruments Incorporated 
51 5 Algonquin 
Arlington Heights, IL 60005 
312/640-2909 

Dallas 
Texas Instruments Incorporated 

CJ) 950 Winter Street, Suite 2800 Z 

Texas Instruments Incorporated 
10001 E. Campbell Road 
Richardson, TX 75081 
214/680-5066 

"-oJ Waltham, MA 02154 
~ 617/895-9100 
l> 
n 
-t 
CO 
CO 
~ 
"-oJ 

Northern California 
Texas Instruments Incorporated 
5353 Betsy Ross Drive 
Santa Clara, CA 95054 
408/748-2220 
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. ACT884 7 Logic Symbol 

CLK 

CLKC 

CLKMODE 

BYTEP 

CONFIG1~0 

FAST 

RND1~0 

SRCC 

ENRC 
FLOWC 

SELOP7·0 
SELST1~O 

SELMS/LS 

TP1~0 

10 
11 
12 
13 
14 
15 
16 
17 

18 
19 

110 

ENRA 
ENRB 

OES 
OEC 
OEY 

DAO 

DA31 

080 

DB31 

Lr::,. 

~ 

LJ::::. 

_l'--, 
r-., 

'" 

· • · 
· · • 

4> 
ACT8847 

64-Bit Floating Point Unit 

CLEARS STATES 
MASTER CLOCK (EXCEPT C REGISTER) & STATUS 

C REGISTER CLOCK STAllS OPERATION 

CLOCK EDGE INSTRUCTION. RA. & RB I FlOWTHROUGH 

PARITY GENERATION REGISTERS EN 

DATA SOURCE 

SUDDEN IUNDER' 
ALU AND MULTIPLIER I FlOWTHROUGH 

GRADUAL FLOW PIPELINE REGISTERS EN 

ROUNDING MODE SELECT STATUS. P. AND S I FLOWTHROUGH 

MUL TIPLIER I REGISTERS EN 

;R~TE C REG DA DATA 
PARITY I 

BYPASS If 0 
DB DATA 

OPERAND SOURCE Y BUS 

STATUS SOURCE 

MSHI I DA DATA 
LSH Y BUS STATUS 

PARITY DB DATA 
MASTER/SLAVE 

COMPARATOR 

0 
COMPARISON I 

STATUS 

INSTRUCTION 

EXCEPTION 

10 AND 
OTHER 

STATUS 
LOAD RA REGISTER 
LOAD RB REGISTER 
EXCEPTION & OTHER STATUS EN 
COMPARISON STATUS 
Y31~YO. PY3~PYO 

-, r 
0 0 · ~ ~ · · · · · 31 31 

0 · ~ · • 
31 

/1 

/1 

~ 

~ 

~ 

. . 
~ 

PIPE SO 

PIPES1 

P)PES2 

PA3~0 

PB3~0 

PY3~0 

PERRA 

PERRB 

MSERR 

UNORD 

AGTB 

AEUB 

ED 
DIVBYO 
IVAL 
INEX 
OVER 
UNDER 
DENORM 
DEN IN 
RNDCO 
SRCEX 
CHEX 
STEX1~0 

NEG 
INF 

YO 

Y31 
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Design Expertise 

Texas Instruments can provide in-depth technical design assistance through 
consultations with contract design services. Contact your local Field Sales Engineer 
for current information or contact VLSI Systems Engineering at 214/997-3970. 

, ACT884 7 Pin Descriptions 

Pin descriptions and grid allocation for the' ACT884 7 are given on the following pages. 

208 PIN ... GA PACKAGE 

(TOP VIEW) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

A • • • • • • • • • • • • • • • • • 
B • • • • • • • • • • • • • • • • • 
C • • • • • • • • • • • • • • • • • 
D • • • • • • • • • • • • • • • • • 
E • • • • • • • • 
F • • • • • • • • 
G • • • • • • • • 
H • • • • • • • • 
J • • • • • • • • 
K • • • • • • • • 
L • • • • • • • • 

M • • • • • • • • 
N • • • • • • • • CJ) 

Z p • • • • • • • • • • • • • • • • • ..... 
~ R • • • • • • • • • • • • • • • • • » 
(") 

S • • • • • • • • • • • • • • • • • • -t 
(Xl 
(Xl T • • • • • • • • • • • • • • • • • 
~ ..... 
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Table 1. 'ACT8847 Pin Grid Allocation 

PIN PIN PIN PIN PIN PIN 
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME 

A1 NC C2 YO E3 FAST J15 FLOWC P1 ENRC S1 NC 
A2 INF C3 Y3 E4 GND J16 SRCC P2 PIPESO S2 PBO 
A3 Y5 C4 Y6 E14 GND J17 8YTEP P3 RESET S3 DBO 
A4 Y8 C5 Y9 E15 AGT8 K1 SELOP3 P4 P81 S4 DB4 
A5 Y11 C6 Y12 E16 AEQ8 K2 SELOP4 P5 D81 S5 DB11 
A6 Y14 C7 Y15 E17 MSERR K3 SELOP5 P6 D85 S6 DB12 
A7 Y17 C8 Y18 F1 15 K4 GND P7 D89 S7 DB15 
A8 Y20 C9 Y23 F2 13 K14 GND P8 D816 S8 DB19 
A9 Y21 C10 Y26 F3 RNDO K15 PA1 P9 D821 S9 DB23 
A10 Y24 C11 Y30 F4 GND K16 PA2 P10 D828 S10 DB26 
Al1 Y27 C12 PY1 F14 GND K17 PA3 P11 DAO S11 DB30 
A12 Y29 C13 UNDER F15 PERRA L1 SELOP6 P12 DA4 S12 DA2 
A13 PYO C14 INEX F16 OEY L2 SELOP7 P13 DA8 S13 DA6 
A14 PY3 C15 DENIN F17 OES L3 CLK P14 DA12 S14 DA10 
A151VAL C16 SRCEX G1 17 L4 VCC P15 DA19 S15 DA14 
A16 NEG C17 CHEX G2 16 L14 GND P16 DA22 S16 DA15 
A17 NC D1 11 G3 14 L15 DA30 P17 DA23 S17 DA17 
81 ED D2 RND1 G4 VCC L16 DA31 R1 PIPES1 T1 NC 
82 Y2 D3 Y1 G14 VCC L17 PAO R2 HALT T2 P83 
83 Y4 D4 GND G15 OEC M1 ENR8 R3 P82 T3 DB3 
84 Y7 D5 VCC G 16 SELMS/LS M2 ENRA R4 D82 T4 DB7 
85 Y10 D6 GND G17 TEST1 M3 CLKC R5 D86 T5 DB8 
86 Y13 D7 GND H1 110 M4 GND R6 D810 T6 DB13 
B7 Y16 D8 VCC H2 19 M14 VCC R7 DB14 T7 DB17 
B8 Y19 D9 GND H3 18 M15 DA27 R8 DB18 T8 DB20 
89 Y22 D10 GND H4 GND M16 DA28 R9 D822 T9 DB24 
B10 Y25 D11 VCC H14 GND M17 DA29 R10 DB27 T10 DB25 
B11 Y28 D12 GND H15 TESTO N1 CONFIGO R11 D831 T11 DB29 
B12 Y31 D13 GND H16 SELST1 N2 CONFIG1 R12 DA3 T12 DA1 
B13 PY2 D14 VCC H17 SELSTO N3 CLKMODE R13 DA7 T13 DA5 
B14 OVER D15 STEX1 J1 SELOP2 N4 PIPES2 R14 DA11 T14 DA9 
815 RNDCO D16 STEXO J2 SELOP1 N14 DA18 R15 DA16 T15 DA13 
B16 DENORM D17 UNORD J3 SELOPO N15 DA24 R16 DA20 T16 NC 
B17 DIV8YO El 12 J4 VCC N16 DA25 R17 DA21 T17 NC 
C1 PERRB E2 10 J14 VCC N17 DA26 
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Table 2. 'ACT8847 Pin Functional Description 

PIN 
1/0 DESCRIPTION 

NAME NO. 

Comparison status or zero detect pin. When high, 

AEQB E16 I/O 
indicates that A and B operands are equal during a 
compare operation in the AlU. If not a compare, a 
high signal indicates a zero result on the Y bus. 

AGTB E15 I/O 
Comparison status pin. When high, indicates that A 
operand is greater than B operand. 
When high, selects parity generation for each byte 

BYTEP J17 I 
of input (four parity bits for each bus). When low, 
selects parity generation for whole 32-bit input 
(one parity bit for each bus). 
Status pin indicating an exception during a chained 

CHEX C17 I/O 
function. If 16 is low, indicates the multiplier is the 
source of an exception. If 16 is high, indicates the 
AlU is the source of an exception. 

ClK l3 I Master clock for all registers except C register 
ClKC M3 I C register clock 

Selects whether temporary register loads only on 
ClKMODE N3 I rising clock edge (ClKMODE = l) or on falling 

edge (ClKMODE = H). 
CONFIGO Nl 

I 
Select data sources for RA and RB registers from 

CONFIGl N2 DA bus, DB bus and temporary register 
DAO Pll 
DAl T12 
DA2 S12 
DA3 R12 
DA4 P12 
DA5 T13 
DA6 S13 
DA7 R13 
DA8 P13 
DA9 T14 
DA10 S14 
DAll R14 DA 32-bit input data bus. Data can be latched in a 
DA12 P14 I 64-bit temporary register or loaded directly into an 
DA13 T15 input register 
DA14 S15 
DA15 S16 
DA16 R15 
DA17 S17 
DA18 N14 
DA19 P15 
DA20 R16 
DA21 R17 
DA22 P16 
DA23 P17 
DA24 N15 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 

NAME NO. 
110 DESCRIPTION 

OA25 N16 
OA26 N17 
OA27 M15 OA 32-bit input data bus. Data can be latched in a 
OA28 M16 I 64-bit temporary register or loaded directly into an 
OA29 M17 input register. 
OA30 L15 
DA31 L16 
OBO S3· 
DBl P5 
DB2 R4 
DB3 T3 
DB4 S4 
DB5 1"6 
DB6 R5 
DB7 T4 
DB8 T5 
DB9 P7 
OB10 R6 
OBll S5 
DB12 S6 
OB13 T6 
DB14 R7 

DB 32-bit input data bus. Data can be latched in a 
DB15 S7 I 
D816 P8 

64-bit temporary register or loaded directly into an 

OB17 T7 
input register. 

OB18 R8 
OB19 S8 
OB20 T8 
DB21 P9 
OB22 R9 
DB23 S9 
OB24 T9 
OB25 Tl0 
DB26 S10 
OB27 Rl0 
0828 Pl0 
D829 Tl1 
DB30 S11 
DB31 Rl1 

Status pin indicating a denormal input to the 
DENIN C15 I/O multiplier. When OENIN goes high, the STEX pins 

indicate which port had the denormal input. 
Status pin indicating a denormal output from the 

DENORM B16 110 
AlU or a wrapped output from the muHiplier. In 
FAST mode, causes the. result to go to zero when 
DENORM is high. 
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Table 2 .• ACT8847 Pin Functional Description (Continued) 

PIN 

NAME NO. 
1/0 DESCRIPTION 

OIVBYO B17 110 
Status pin indicating an attempted operation 
involved dividing by zero 
Exception detect status signal representing logical 

ED B1 110 OR of all enabled exceptions in the exception 
disable register 
When high. enables loading of RA register on a 

ENRA M2 I rising clock edge if the RA register is not disabled 
(see PIPESO below). 
When high, enables loading of RB register on a 

ENRB M1 I rising clock edge if the RB register is not disabled 
(see PIPESO below). 

ENRC P1 I When low, enables write to C register when CLKC 
goes high. 
When low, selects gradual underflow (IEEE modell. 

FAST E3 I When high, selects sudden underflow. forcing all 
denormalized inputs and outputs to zero. 
When high, causes product or sum to bypass 
C register, so that product or sum appears on the 
C register output bus. Timing is similar to P register 

FLOWC J15 I or S register feedback operands. C register remains 
unchanged. Product or sum may also be 
simultaneously fed back in usual manner (not 
through C register). 

GND 04 
GNO 06 
GNO 07 
GND 09 
GNO 010 
GNO 012 
GNO 013 
GNO E4 

Ground pins. NOTE: All ground pins should be 
GNO E14 
GNO F4 

used and connected. 

GNO F14 
GNO H4 
GNO H14 
GNO K4 
GNO K14 
GNO L14 
GNO M4 

HALT R2 I 
Stalls operation without altering contents of 
instruction or data registers. Active low. 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 
DESCRIPTION 

NAME NO. 
1/0 

10 E2 
11 D1 
12 E1 
13 F2 
14 G3 
15 F1 I Instruction inputs 
16 G2 
17 G1 
18 H3 
19 H2 
110 H1 
INEX C14 I/O Status pin indicating an inexact output 

INF A2 I/O When high, indicates output value is infinity. 

Status pin indicating that an invalid operation or a 
IVAL A15 0 non number (NaNl has been input to the multiplier 

or ALU. 

MSERR E17 0 Master/Slave error output pin 

NC A1 
NC A17 
NC S1 

No internal connection. Pins should be left floating 
NC T1 
NC T16 
NC T17 

NEG A15 I/O When high, indicates result has negative sign. 

OEC G15 I Comparison status output enable. Active low. 

OES F17 I 
Exception status and other status output enable; 
Active low. 

OEY F16 I Y bus output enable. Active low. 
Status pin indicating that the result is greater the 

OVER B14 I/O largest allowable value for specified format 
(exponent overflowl. 

PAO L17 
PAl K15 

I Parity inputs for DA data 
PA2 K16 
PA3 K17 

PBO S2 
PB1 P4 

I Parity inputs for DB data 
PB2 R3 
PB3 T2 

PERRA F15 0 
DA data parity error output. When high, signals a 
byte or word has failed an even parity check. 

PERRB C1 0 
DB data parity error output. When high, signals a 
byte or word has failed an even parity check. 
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Table 2 .• ACT884 7 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

When low, enables instruction register and, 

PIPESO P2 I 
depending on setting of ENRA and ENRB, the RA 
and RB input registers. When high, puts instruction, 
RA and RB registers in flowthrough mode. 

When low. enables pipeline registers in ALU and 
PIPES1 R1 I multiplier. When high, puts pipeline registers in 

flowthrough mode. 

When low. enables status register, product (P) and 
PIPES2 N4 I sum (S) registers. When high, puts status register, 

P and S registers in flowthrough mode. 

PYO A13 
PY1 C12 

I/O Y port parity data 
PY2 B13 
PY3 A14 

Clears internal states, status, and exception disable 

RESET P3 I 
register. Contents of internal pipeline registers are 
lost. Does not affect other data registers. Active 
low. 

RNDO F3 
I 

Rounding mode control pins. Select four IEEE 
RND1 D2 rounding modes. 

RNDCO B15 I/O 
When high, indicates the mantissa of a wrapped 
number has been increased in magnitude by 
rounding. 

SELOPO J3 
SELOP1 J2 
SELOP2 J1 
SELOP3 K1 

I Select operand sources for multiplier and ALU 
SELOP4 K2 
SELOP5 K3 
SELOP6 L1 

• SELOP7 L2 

SELSTO H17 
I Select status source during chained operation 

SELST1 H16 
When low, selects LSH of 64-bit result to be 

SELMS/LS G16 I 
output on the Y bus. When high, selects MSH of 
64-bit result. (No effect on single-precision 
operations. ) 

When low, selects ALU as data source for C 
SRCC J16 I register. When high, selects multiplier as data 

source for C register. 

SRCEX C16 I/O 
Status pin indicating source of exception, either 
ALU (SRCEX = L) or multiplier (SRCEX = H). 

STEXO D16 
Status pins indicating that a nonnumber (NaN) or 

STEX1 D15 
I/O denormal number has been input on A 

port (STEX 1) or B port (STEXO). 
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Table 2. 'ACT8847 Pin Functional Description (Continued) 

PIN 

NAME NO. 
I/O DESCRIPTION 

TESTO H15 
I Test pins 

TESTl G17 
Status pin indicating that a result is inexact and 

UNOER C13 I/O less than minimum allowable value for format 
(exponent underflow). 

Comparison status pin indicating that the two 
UNORO 017 I/O inputs are unordered because at least one of them 

is a nonnumber (NaN). 

VCC 05 

VCC 08 

VCC 011 

Vce 014 

VCC G4 
5-V power supply 

VCC G14 

VCC J4 

VCC J14 

VCC L4 

VCC M14 

YO C2 
Yl 03 
Y2 B2 
Y3 C3 
Y4 B3 
Y5 A3 
Y6 C4 
Y7 B4 
Y8 A4 
Y9 C5 
Y10 B5 
Yl1 A5 
Y12 C6 
Y13 86 
Y14 A6 
Y15 C7 lID 32-bit Y output data bus 
Y16 B7 
Y17 A7 
Y18 C8 
Y19 88 
Y20 A8 
Y21 A9 
Y22 89 
Y23 C9 
Y24 Al0 
Y25 810 
Y26 Cl0 
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Table 2. 'ACT8847 Pin Functional Description (Concluded) 

PIN 

NAME NO. 
I/O DESCRIPTION 

Y27 A 11 
Y28 B11 
Y29 A12 1/0 32-bit Y output data bus 
Y30 e11 
Y31 B12 

, ACT884 7 Specifications 

absolute maximum ratings over operating free-air temperature range 
(unless otherwise noted) t 

Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . .. ~0.5 V to 6 V 
Input clamp current, 11K (VI < 0 or VI > Vcc) ........ ± 20 mA 
Output clamp current, 10K (Vo < 0 or Vo > VCC). . . .. ± 50 mA 
Continuous output current, 10 (VO = VCC ........... ± 50 mA 
Continuous current through VCC or GND pins , . . . . . .. ± 100 mA 
Operating free-air temperature range . . . .. . . . . . . .. ooC to 70 0 C 
Storage temperature range. . . . . .. . . . . . . . . .. - 65 DC to 150 DC 

tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage 
to the device. These are stress. ratings only and functional operation of the device at these or 
any other conditions beyond those indicated under "recommended operating conditions" is 
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

recommended operating conditions 

SN74ACT8847 
PARAMETER UNIT 

MIN NOM MAX 

Vee Supply voltage 4.75 5.0 5.25 V 

VIH High-level· input voltage 2 VCIi: V 

VIL Low-level input voltage 0 ... \<~.'8 V 

10H High-level output current ,d;;:'!"· -8 mA 

IOL Low-level output current ... {<';, 8 mA 

VI Input voltage 9;c:;5>" Vee V 

Vo Output voltage <i"fft Vee V 

dtldv Input transition rise or fall rate 0 15 ns/V 

TA Operating free-air temperature 0 70 °C 
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electrical characteristics over recommended operating free-air 
temperature range (unless otherwise noted) 

TEST CONDITIONS 
TA - 25°C SN74ACT8847 

PARAMETER VCC 
MIN TYP MAX 

UNIT 
MIN TYP MAX 

4.5 V 
10H = -20/LA 

5.5 V 
VOH V 

4.5 V 3.76 
10H = -8 mA 

5.5V 4.76 

4.5 V • .:V~ 
10l = 20/LA 

5.5 V ~~", ... 
VOL 

.4" V 

10l = 8 mA 
4.5 V .... ri>Vv' 0.45 

5.5 V '\,>'(>~ 0.45 

II VI = VCC or 0 5.5 V ±1 /LA 

ICC VI = Vce or 0, 10 5.5 V 200 /LA 

Ci Vi = VCC or 0 5V pF 

switching characteristics (see Note) 

SN74ACT8847·30 
,. 

PARAMETER 
MIN MAX 

UNIT 

tpd1 
Propagation delay from DAtDBII input register 

72 ns 
to Y output 

tpd2 
Propagation delay from input register to 

70 
output buffer 

ns 

tpd3 
Propagation delay from pipeline register to 

45 ns 
output buffer 

tpd4 
Propagation from output register to 

"I\~~ ns 
output buffer 

tpd5 Propagation delay from SElMStlS to Y output ~\ \C'1 ~"t:. ... 18 ns 

td1 
Propagation delay time, input register to ~~V"" 

56 ns 
output register 

td2 
Delay time, input register to pipeline register or 

30 ns 
pipeline register to output register . 

Delay. time, ClKC after ClK to insure data 

td3 captured in C register is data clocked into the 8 ns 

sum or product register by that clock 

Delay time, ClKC after ClK to insure data 

td4. captured in C register is data clocked into the 2 ns 

sum or product register by. the previous· clock 

Note.: Switching data must be used with timing diagrams for different operating modes. 

• ..... 
~ 
00 
00 

t; 
« 
~ ..... 
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setup and hold times 

PARAMETER 
SN74ACT8847-30 

UNIT 
MIN MAX 

Instruction before ClK I 10 
Data operand before ClK I 10 

tsu Setup time 
Data operand before second ClK I for 

ns 
double-precision operation (input register 40 ~ti,'t~J \ 't:'l'l 
not enabled) , \(":1 
SRCC with respect to ClKC I",~;')V '" 4 

Instruction input after ClK I 0 
Valid Y bus output of the previous ClK 

5.5 
th Hold time cycle after rising clock edge ns 

Valid status output of the previous ClK 

cycle after rising clock edge 
3 

clock requirements 

PARAMETER 
SN74ACT8847-30 

MIN MAX 
UNIT 

ClK high 10 

tw Pulse duration ClK low 10 ns 

CLK low l 10 

Clock period ns 

tClock mode 1 cannot be used. 
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switching characteristics (see Note) 

PARAMETER 
SN74ACT8847-40 

UNIT 
MIN MAX 

tpd1 
Propagation delay from DAIDSII input register 

95 ns 
to Y output 

tpd2 
Propagation delay from input register to 

90 ns 
output buffer 

tpd3 
Propagation delay from pipeline register to 

60 ns 
output buffer 

tpd4 
Propagation from output register to 

output buffer 
,~;(;~;~~:~" 20 ns 

tpd5 Propagation delay from SElMS/lS to Y output i,'it ' 20 ns 

td1 
Propagation delay time. input register to ,,(~;3:)"" 75 ns 
output register 

td2 
Delay time. input register to pipeline register or ':;r~O ns 
pipeline register to output register 

Delay time. ClKC after ClK to insure data 

td3 captured in C register is data clocked into the 9 ns 

sum or product register by that clock 

Delay time. ClKC after ClK to insure data 

td4 captured in C register is data clocked into the 2 ns 

sum or product register by the previous clock 

Note: Switching data must be used with timing diagrams for different operating modes. 
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setup and hold times 

PARAMETER 
SN74ACT8847-40 

MIN MAX 
UNIT 

Instruction before elK f 12 
Data operand before elK f 12 

Setup time 
Data operand before second ClK f for 

!'~t;>$,j tsu ns 
double-precision operation (input registe 52 
not enabled) ."'i~,J:,,\)G"{ 
SRCC with respect to ClKC 4.5 
Instruction input after elK f 0 

Valid Y bus output of the previous ClK 
5.5 

th Hold time cycle after rising clock edge ns 

Valid status outPUt of the previous ClK 
4 

cycle after rising clock edge 

clock requirements 

SN74ACT8847-40 
PARAMETER 

MIN MAX 
UNIT 

elK high 15 .. H~\t 
tw Pulse duration ClK low ,~.?-.l ,C·{ f'tl.';;· ns 

elK lowt [1'·',6 
Clock period ns 

tClock mode 1 cannot be used. 
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switching characteristics (see Note) 

PARAMETER 
SN74ACT8847-60 

UNIT 
MIN MAX 

tpdl 
Propagation delay from DA/DS/I input register 

125 ns 
to Y output 

tpd2 
Propagation delay from input register to 

120 ns 
output buffer 

tpd3 
Propagation delay from pipeline register to 

'"~i,, ns 
output buffer 

tpd4 
Propagation from output register to <i;;':~;"::';'"~~ ns 
output buffer 

tpd5 Propagation delay from SElMS/lS to Y output .,:,·F"! 28 ns 

tdl 
Propagation delay time, input register to ';i,~S:;!'l 100 ns 
output register 

td2 
Delay time, input register to pipeline register or 

60 ns 
pipeline register to output register 

Delay time, ClKC after ClK to insure data 

td3 captured in C register is data clocked into the 12 ns 

sum or product register by that clock 

Delay time, ClKC after ClK to insure data 

td4 captured in C register is data clocked into the 2 ns 

sum or product register by the previous clock 

Note: Switching data must be used with timing diagrams for different operating modes. 
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setup and hold times 

PARAMETER 
SN74ACT8847-60 

MIN MAX 
UNIT 

Instruction before ClK I 16 

Data operand before ClK I 16 

Setup time 
Data operand before second ClK I for 

75 ~'t'.\n't'.\j'\ t~u ns 
double-precision operation (input register 

not enabled) .ooOUC'1 ? 
SRCC with respect to ClKC 6 
Instruction input after ClK I 0 

Valid Y bus output cif the previous ClK 
5.5 

th Hold time cycle after rising clock edge ns 

Valid status output of the previous ClK 
4 

cycle after rising clock edge 

clock requirements 

PARAMETER 
SN74ACT8847-60 

MIN" MAX 
UNIT 

ClK high 20 .~'\.n"f."t 
tw Pulse duration ClK low "~Q..\\C" rw ns 

ClK lowt "'''Y1 
Clock period ns 

tClock mode 1 cannot be used. 
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SN74ACT8847 FLOATING POINT UNIT 
The SN74ACT8847 is a high-speed floating point unit implemented in Tl's advanced 
1-/lm CMOS technology. The device is fully compatible with IEEE Standard 754-1985 
for addition, subtraction, multiplication, division, square root, and comparison. 

The' ACT884 7 FPU also performs integer arithmetic, logical operations, and logical 
shifts. Absolute value conversions, floating point to integer conversions, and integer 
to floating point conversions are available. The ALU and multiplier are both included 
in the same device and can be operated in parallel to perform sums of products and 
products of sums (see Figure 1). 

IEEE formatted denormal numbers are directly handled by the ALU. Denormal numbers 
must be wrapped by the ALUbefore being used in multiplication, division, or square 
root operations. A fast mode in which all denormals are forced to zero is provided 
for applications not requiring gradual underflow. 

The' ACT884 7 input buses can be configured to operate as two 32-bit data buses 
or as a single 64-bit bus, providing a number of system interface options. Registers 
are provided at the inputs, outputs, and inside the ALU and multiplier to support 
multilevel pipelining. These registers can be bypassed for nonpipelined operation. 

A clock mode control allows the temporary input register to be clocked on the rising 
edge or the falling edge of the clock to support double-precision ALU operations at 
the same rate as single-precision operations. A feedback register (C register) with a 
separate clock is provided for temporary internal storage of a multiplier result, ALU 
result or constant. 

To ensure data integrity, parity checking is performed on input data, and parity is 
generated for output data. A master/slave comparator supports fault-tolerant system 
design. Two test pin control inputs allow all I/Os and outputs to be forced high, low, 
or placed in a high-impedance state to facilitate system testing. 

Data Flow 

Data enters the' ACT884 7 through two 32-bit input data buses, DA and DB. The buses 
can be configured to operate as a single 64-bit data bus for double precision operations 
(see Table 3). Data can be latched in a 64-bit temporary register or loaded directly 
into the RA and RB registers for input to the multiplier and ALU. 

Four multiplexers select the multiplier and ALU operands from the input registers, 
C register or previous multiplier or ALU result. Results are output on the 32-bit Y bus; 
a Y output multiplexer selects the most significant or least significant half of the result 
if a double-precision number is being output. The 64-bit C register is provided for 
temporary storage of a result from the ALU or multiplier. 
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Input Data Parity Check 

When BYTEP is high, internal odd parity is generated for each byte of input data at 
the DA and DB ports and compared to the PA and PB parity inputs. If an odd number 
of bits is set high in a data byte, the parity bit for that byte is also set high. Parity 
bits are input on PA for DA data and PB for DB data. PAO and PBO are the parity bits 
for the least significant bytes of DA and DB, respectively. If the parity comparison 
fails for any byte, a high appears on the parity error output pin (PERRA for DA data 
and PERRB for DB data). 

A parity check can also be performed on the entire input data word by setting BYTEP 
low. In this mode, PAO is the parity input for DA data and PBO is the parity input for 
DB data. 

Temporary Input Register 

A temporary input register is provided to enable loading of two double- precision 
numbers on two 32-bit input buses in one clock cycle. The contents of the DA bus 
are loaded into the upper 32 bits of the temporary register; the contents of DB are 
loaded into the lower 32 bits. 

A clock mode signal (ClKMODE) determines the clock edge on which the data will 
be stored in the temporary register. When ClKMODE is low, data is loaded on the 
rising edge of the clock. With ClKMODE set high, the temporary register loads on 
a falling edge and the RA and RB registers can then be loaded on the next rising edge. 

RA and RB Input Registers 

Two 64-bit registers, RA and RB, are provided to hold input data for the multiplier 
and ALU. Data is taken from the DA bus, DB bus and the temporary input register, 
according to configuration mode controls CONFIG1-CONFIGO (see Tables 3 and 5). 
The registers are loaded on the rising edge of clock ClK. For single-precision operations, 
CONFIG1-CONFIGO should ordinarily be set to 0 1 (see Table 4). 
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Table 3. Double Precision Input Data Configuration Modes 

lOADING SEQUENCE 

DATA LOADED INTO TEMP 
DATA LOADED INTO RA/RB 

REGISTER ON FIRST CLOCK 
ANDR.A/RB REGISTERS ON 

REGISTERS ON SECOND 

SECOND CLOCKt 
CLOCK 

CONFIG1 CONFIGO DA DB DA DB 

0 0 
B operand B operand A operand A operand 

(MSH) (LSH) (MSH) (LSH) 

0 1 
A operand B operand A operand B operand 

(LSH) (LSH) (MSH) (MSH) 

1 0 
A operand B operand A operand B operand 

(MSH) (MSH) (LSH) (LSH) 

1 1 
A operand A operand B operand B operand 

(MSH) (LSH) (MSH) (LSH)) 

t On the first active clock edge (see CLKMODE, Table 62). data in this column is loaded into the temporary 
register. On the next rising edge, operands in the temporary register and the DAIDB buses are loaded into 
the RA and RB registers. 

Table 4. Single Precision Input Data Configuration Mode 

DATA LOADED INTO 
RA/RB REGISTERS ON 

FIRST CLOCK 

CONFIG1 CONFIGO DA DB NOTE 

0 1 A operand B operand 
This mode is ordinarily used for single-
precision operations. 

Table 5. Double Precision Input Data Register Sources 

RA SOURCE RB SOURCE 

CONFIG1 CONFIGO MSH LSH MSH LSH 

o 0 DA DB 
TEMP REG TEMP REG 

(MSH) (LSH) 

o DA 
TEMP REG 

(MSH) 
DB 

TEMP REG 
(LSH) 

0 
TEMP REG DA TEMP REG 

DB 
(MSH) (LSH) 

TEMP REG TEMP REG 

(MSH) (LSH) 
DA DB 
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Multiplierl ALU Multiplexers 

Four multiplexers select the multiplier and ALU operands from the RA and RB registers, 
the previous multiplier or ALU result, or the C register. The multiplexers are controlled 
by input signals SELOP7-SELOPO as shown in Tables 6 and 7. For division and square 
root operations, operands must be sourced from the input registers, RA and RB. 

Table 6. M41tiplier Input Selection 

A1 (MUX1) INPUT 131 (MUX2) INPUT 

SELOP7 SElOP6 OPERAND SOURCEt SElOP5 SElOP4 OPERAND SOURCEt 

0 0 Reserved 0 0 Reserved 
0 1 C register 0 1 C register 
1 0 ALU feedback 1 0 Multiplier feedback 
1 1 RA input register 1 1 RB input register 

t For division or square root operations, only RA and RS registers can be selected as sources. 

Table 7. ALU Input Selection 

A2 (MUX3) INPUT 132 (MUX4) INPUT 

SELOP3 SElOP2 OPERAND SOURCEt SELOP1 SElOPO OPERAND SOURCEt 

0 0 Reserved 0 0 Reserved 
0 1 C register 0 1 C register 
1 0 Multiplier feedback 1 0 AlU feedback 
1 1 RA .input register 1 1 RB input register 

t For division or square root operations, only RA and RB registers can be selected as sources. 

Pipelined ALU 

The pipelined ALU contains a circuit for floating point addition and/or subtraction of 
aligned operands, a pipeline register, an exponent adjuster and a normalizer/rounder. 
An exception circuit is provided to detect denormal inputs; these can be flushed to 
zero if the fast input is set high. If the FAST input is low, the ALU accepts a denormal 
as input. A denorm exception flag (DENORM) goes high when the ALU output is a 
denormaL 

Integer processing in the ALU includes both arithmetic and logical operations on either 
two's complement numbers or unsigned integers. The ALU performs addition, 
subtraction, comparison, logical shifts, logical AND, logical OR, and logical XOR. 

The ALU may be operated independently or in parallel with the multiplieL Possible ALU 
functions during independent operation are given in Tables 8 through 11. Parallel 
ALU/multiplier functions are listed in Table 16. 
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Table 8. Independent ALU Operations, Single Floating·Point Operand 

(110 = 0,19 = 0,17 = 0, 16 =0) 

CHAINED OPERAND PRECISION PRECIS ON OUTPUT OPERAND ABSOLUTE 

OPERATION FORMAT RA RB SOURCE TYPE VALUE A 

110 19 18 17 16 15 14 13-10 

o = Not 0= o = A(SP) o = B(SP) 0= ALU 1 = Single O=A 0000 
Chained Floating 1 = A(DP) result Operand 1 = IAI 0001 

point 0010 

0011 

0100 

0101 
0110 

0111 

1000 

1010 

1100 
1101 
1110 

- ---------------_ ... - .. -

tThe precision of the integer to floating point conversion is set by 18. 

ALU OPERATION 

RESULT 

Pass A operand 
Pass - A operand 
2's complement integer 
to floating point 
conversion t 
Floating point to 2's 
complement integer 
conversion 
Move A operand (pass 
without NaN detect or 
status flags active) 
Pass B operand 
Floating point to floating 
point conversion l 

Floating point to 
unsigned integer 
conversion 
Wrap (denormal) input 
operand 
Unsigned integer to 
floating point conversion 
Unwrap exact number 
Unwrap inexact number 
Unwrap rounded input 

'This converts single-precision floating point to double-precision floating point and vice versa. If the 18 pin is low to indicate a single-precision input. the result 
of the conversion will be double precision. If the 18 pin is high, indicating a double-precision input, the result of the conversion will be single preCision. 
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<.0 

CHAINED 

OPERATION 

110 

o = Not 
chained 

CHAINED 

OPERATION 

110 

o = Not 
Chained 

OPERAND 

FORMAT 

19 

0= 
Floating 

point 

Table 9. Independent AlU Operations. Two Floating-Point Operands 
(110 = O. 19 = O. 15 = 0) 

PRECISION PRECISION OUTPUT OPERAND ABSOLUTE ABSOLUTE ABSOLUTE 

RA RB SOURCE TYPE VALUE A VALUE B VALUE Y 

18 17 16 15 14 13 12 

o = A(SP) 0 B(SP) 0= ALU 0= Two 0= A 0= B 0= V 
1 = A(DP) 1 = B(DP) result. operands 1 = iAI 1 = IBI 1 = IVI 

Table 10. Independent AlU Operations. Single Integer Operand 
(110 = 0, 19 = 1, 16 = 0) 

ALU OPERATION 

11-10 RESULT 

00 A+B 
01 A - B 
10 Compare A, B 
11 B - A 

OPERAND FORMAT/PRECISION OUTPUT OPERAND ALU OPERATION 
SOURCE TYPE 

19 18 17 16 15 14-10 RESULT 

1 = 0 o = SP 2's o = ALU 1 = Single 00000 Pass A operand 
Integer complement result Operands 00001 Pass - A operand 

0 1 = SP 00010 Negate A operand (1' s complement) 
00101 Pass B operand 

unsigned 01000 Shift A operand left logical t 
integer 01001 Shift A operand right logical t 

01101 Shift A operand right arithmetic t 

t B operand is number of bit positions A is to be shifted (See instruction description for "Independent ALU Operations".) 
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CHAINED 

OPERATION 

110 

o = Not 
Chained 

--- - ----_ .. _-

CHAINED 

OPERATION 

110 

o = Not 
chained 

Table 11. Independent ALU Operations, Two Integer Operands 
(110 = 0,19 = 1, 16 = 0) 

OPERAND FORMAT/PRECISION OUTPUT OPERAND ALU OPERATION 
SOURCE TYPE 

19 18 17 16 15 14-10 RESULT 

1 = 0 o = SP 2's 0= ALU 0= Two 00000 A+B 
Integer complement result Operands 00001 A-B 

0 1 = SP 00010 Compare A, B 
unsigned 00011 B -A 
integer 01000 Logical AND (A, B) 

01001 Logical AND (A, NOT B) 
01010 Logical AND (NOT A, B) 
01100 Logical OR (A, B) 

. . ----~ --- '-------
01101 Logical XOR (A, B) 

-- -----

Table 12. Independent Multiplier Operations 

ABSOLUTE 

OPERAND FORMAT/PRECISION OUTPUT MULTIPLY/ ABSOLUTE VALUE B/ NEGATE 

SOURCE DIVIDE VALUE A DIV/SQRT RESULT WRAP A 

19 18 17 16 15 14t 13t 12t 11 

0= o = A(SP) o = B(SP) 1 = 0= 0= A 0= B 0= Y o = Normal 
floating 1 = A(DP) 1 = B(DP) Multi- multiply 1 = IAI 1 = IBI 1 = -y format 
point plier 1 = A is a 

result 1 = o = A 0= Div wrapped 
1 = 0 o = SP 2's Div/SORT 1 = IAI 1 = SORT number 
integer complement 

0 1 = SP 
unsigned 
integer 

--~--- ... -.--- - -----

WRAPB 

10 

o = Normal 
format 

1 = B is a 
wrapped 
number 

tSee also Tables 13 a.nd 14. Operations involving absolute values or negated results are valid only when floating·point format is selected 119 0). 



Pipelined Multiplier 

The pipe lined multiplier performs a basic multiply function, division and square root. 
The operands can be single-precision or double-precision numbers and can be converted 
to absolute values before multiplication takes place. Independent multiplier operations 
are summarized in Tables 12 through 15. 

An exception circuit is provided to detect denormalized inputs; these are indicated 
by a high on the DENIN signal. Denormalized inputs must be wrapped by the ALU before 
multiplication, division, or square root. If results are wrapped (signaled by a high on 
the DENORM status pin), they must be unwrapped by the ALU. 

The multiplier and ALU can be operated simultaneously by setting the 110 instruction 
input high. Possible operations in this chained mode are listed in Table 16. Division 
and square root are performed as independent multiplier operations, even though both 
multiplier and ALU are active during divide and SQRT operations. 

Table 13. Independent Multiply Operations Selected by 14-12 (110 .. 0,16 .. 1,15 .. 0) 

ABSOLUTE 

VALUE A 

14 

0= A 
1 = IAI 

ABSOLUTE 

VALUE A 

14 

o = A 

l=A 

ABSOLUTE NEGATE 

VALUE B RESULT 
OPERATION SELECTED 

13 12 14-12 RESULTSt 

0= B o = Y 000 A*B 

1 '" IBI 1 = -y 001 -(A * B) 
010 A * IBI 
011 -(A * IBI) 
100 IAI * B 
101 - !lAI * B), 
110 IAI * IBI 
111 -(IAI * IBI) 

Table 14. Independent Divide/Square Root Operations 
Selected by 14-12 1110 .. 0, 16 .. 1, 15 .. 1) 

DIVIDEI NEGATE 

SQRT RESULT 
OPERA TlON SELECTED 

13 12 14-12 RESULTSt 

o = Divide 0= Y 000 AlB 

1 = SORT 1 = -y 001 -(A I B) 

010 SORT A 

011 -(SORT A) 

100 IAII B 

101 -(IAI / B) 

110 SORT IAI 

111 -(SORT IAI) 

.' 

t Operations involving absolute values or negated results are valid only when floating, point format is selected 
(19 ~ 0), 
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Table 15. Formats Selected by 18-17 (110 - 0, 19 -0, 16 -1) 

PRECISION 
PRECISION 

PRECISION 
PRECISION PRECISION 

SELECT RA SELECT RB 
RAINPUT RBINPUT OF RESULT 

18 17 

0 Single 0 $ingle Single 

Single 
0 (Converted 1 Double Double 

to Double) 

Single 
1 Double 0 (Converted Double 

to Double) 

1 Double 1 Double Double 

Product, Sum, and C Registers 

The results of the AlU and multiplier operations may optionally be latched into two 
output registers on the rising edge of the system clock (ClK). The P (product) register 
holds the result of the multiplier operation; the S (sum) register holds the AlU result. 

An additional 64-bit register is provided for temporary storage of the result of an AlU 
or multiplier opration l?efore feedback to the multiplier or AlU. The data source for 
this C register is selected by SRCC; a high on this pin selects the multiplier result; 
a low selects the AlU. A separate clock, ClKC, has been provided for this register. 

Parity Generators 

Odd parity is generated for the Y multiplexer output, either for each byte or for each 
word of output, depending on the setting of BYTEP. When BYTEP is high, the parity 
generator computes four parity bits, one for each byte of Y multiplexer output. Parity 

. bits are output on the PY3-PYO pins; PYO represents parity for the least significant 

. byte. A single parity bit can also be generated for the entire output data word by setting 
BYTEP low. In this mode, PYO is the parity output. 

Master/Slave Comparator 

A master/slave comparator is provided to compare data bytes from the Y. output 
C/) multiplexer and the status outputs with data bytes on the external Yand status ports :s when OEY, OES and OEC are high. If the data bytes are not equal, a high signal is 
,f:I. generated on the master/slave error output pin (MSERR). 
l> 
(') Status and Exception Generation 
-oJ 
OJ A status and exception generator produces several output signals to indicate invalid 
~ operations as well as overflow, underflow, nonnumerical and inexact results, in 
"'-J conformance with IEEE Standard 754-1985. If output registers are enabled 

(PIPES2 = 0), status and exception results are latched in a status regis~er on the rising 
edge of the clock. Status results are valid at the same time that associated data results 



Table 16. Chained Multiplier/AlU Operations (110 = 1) 

NEGATE NEGATE 
ALU 

CHAINED OPERAND FORMAT/PRECISION OUTPUT ADD MULTIPLY ALU MULTIPLIER 
OPERATIONS 

OPERATION SOURCE ZERO BY ONE RESULT RESULT 

110 19 18 17 16 15 14 13 t 12t 11-10 RESULT 

1 = 0= o = A(SP) o = B(SP) 0= 0= o = 0= 0= 00 A+B 
Chained floating 1 = A(DP) 1 = B(DP) ALU Normal Normal Normal Normal 01 A-B 

point result operation operation operation operation 10 2 - A 
1 = 1 = 1 = 1 = 11 B - A 

1 = 0 o = SP 2's 1 = Forces Forces Negate Negate 
integer complement Multi- B2 input B1 input ALU multiplier 

0 1 = SP plier of ALU of multi- result result 
unsigned result to zero plier to 

,- - -
integer one 

------------

t Operations involving negated results are valid only when floating-point format is selected (19 0). 

-.J 

~ 
tv 
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are valid. Status outputs are enabled by two signals, OEC for comparison status and 

OES for other status and exception outputs. Status outputs are summarized in 
Tables 17 and 18. 

Table 17. Comparison Status Outputs 

SIGNAL RESULT OF COMPARISON (ACTIVE HIGH) 

AEOB The A and B operands are equal. (A high signal on the AEOB output indicates a 
zero result from the selected source except during a compare operation in the ALU. 
During integer operations, Indicates zero status output.) 

AGTB The A operand is greater than the B operand. 

UNORD The two inputs of a comparison operation are unordered, i.e., one or both of the 
inputs is a NaN. 

Table 18. Status Outputs 

SIGNAL STATUS RESULT 

CHEX If 16 is low, indicates the multiplier is the source of an exception during a chained 
function. If 16 is high, indicates the ALU is the source of an exception during a 
chained function. 

DENIN Input to the multiplier is a denorm. When DENIN goes high, the STEX pins indicate 
which port had the denormal input. 

DENORM The multiplier output is a wrapped number or the ALU output is a denorm. In the 
FAST mode, this condition causes the result to go to zero. 

DIVBYO An invalid operation involving a zero divisor has been detected by the multiplier. 

ED Exception detect status signal representing logical OR of all enabled exceptions 
in the exception disable register. 

INEX The result of an operation is not exact. 

INF The output is the IEEE representation of infinity. 

IVAL A NaN has been input to the multiplier or the ALU, or an invalid operation 
(0 • 00 or ± 00 ± 00) has been requested. This signal also goes high if an operation 
involves the square root of a negative number. When IVAL goes high, the STEX 
pins indicate which port had the NaN. 

NEG Output value has negative sign 

OVER The result is greater than the largest allowable value for the specified format. 

RNDCO The mantissa of a wrapped number has been increased in magnitude by rounding 
and the unwrap round instruction must be used to properly unwrap the wrapped 
number (see Table 8). 

SRCEX The status was generated by the multiplier. (When SRCEX is low, the status was 
generated by the ALU.) 

STEXO A NaN or a denorm has been input on the B port. 
STEX1 A NaN or a denorm has been input on the A port. 
UNDER The result is inexact and less than the minimum allowable value for the specified 

format. In the FAST mode, this condition causes the result to go to zero. 
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An exception mask register is available to mask selected exceptions from the multiplier, 
ALU, or both. Multiply status is disabled during an independent ALU instruction, and 
ALU status is disabled during multiplier instructions. During chained operation both 
status outputs are enabled. 

When the exception mask register has been loaded with a mask, the mpsk is applied 
to the contents of the status register to disable unnecessary exceptions. Status results 
for enabled exceptions are then ORed together and, if true, the exception detect (ED) 
status output pin is set high. Individual status outputs remain active and can be read 
independently from mask register operations. 

During a compare operation in the ALU, the AEQB output goes high when the A and 
B operands are equal. When any operation other than a compare is performed, either 
by the ALU or the multiplier, the AEQB signal is used as a zero detect. 

In chained mode, results to be output are selected based on the state of the 16 (source 
output) pin (if 16 is low, ALU status will be selected; if 16 is high, multiplier status 
will be selected). If the. nonselected output source generates an exception, CHEX is 
set high. Status of the nongelected output source can be forced using the SELST pins, 
as shown in Table 19. 

Table 19. Status Output Selection (Chained Model 

SELST1-

SELSTO 
STATUS SELECTED 

00 Logical OR of ALU and multiplier exceptions (bit by bit) 
01 Selects multiplier status 
10 Selects ALU status 
11 Normal operation (selection based on result source specified by 16 input) 

Flowthrough Mode 

To enable the device to operate in pipelined or flowthrough mode.s, registers can be 
bypassed using pipeline control signi'Jls PIPES2-PIPESO (see Table 20). 

Table 20. Pipeline Controls (PIPES2-PIPESOI 

PIPES2-

PIPESO 
REGISTER OPERATION SELECTED 

X X 0 Enables input registers (RA, RB) 
X X 1 Disables input registers (RA, Ra) 
X o X Enables pipeline registers 
X 1 X Disables pipeline registers 
o X X Enables output registers (P, S, Status) 
1 X X Disables. output registers (p, S, Status) 
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FAST and IEEE Modes 

The device can be programmed to operate in FAST mode by asserting the FAST pin. 
In the FAST mode, all denormalized inputs and outputs are forced to zero. 

Placing a zero on the FAST pin causes the chip to operate in IEEE mode. In this mode, 
the ALU can operate on denormalized inputs and return denormals. If a denorm is input 
to the multiplier, the DENIN flag will be asserted, and the result will be invalid. Denormal 
numbers must be wrapped before being input to the multiplier. If the multiplier result 
underflows, a wrapped number will be output. 

Rounding Modes 

The' ACT884 7 supports the four IEEE standard rounding modes: round to nearest, 
round towards zero (truncate), round towards infinity (round up), and round towards 
minus infinity (round down). The rounding function is selected by control pins RNDl 
and RNDO, as shown in Table 21. 

Table 21. Rounding Modes 

RND1· 

RNDO 
ROUNDING MODE SEI..ECTED 

0 0 Round towards nearest 
0 1 Round towards zero (truncate) 
1 0 Round towards infinity (round up) 
1 1 Round towards negative infinity (round down) 

Test Pins 

Two pins, TP1·TPO, support system testing. These may be used, for example, to place 
all outputs in a high·impedance state, isolating the chip from the rest of the system 
(see Table 22). 

Table 22. Test Pin Control Inputs 

TP1· 
OPERATION 

TPO 

0 0 All outputs and I/Os are forced low 
0 1 All outputs and I/Os are forced high 
1 0 All outputs are placed in a high impedance state 
1 1 Normal operation 

Summary of Control Inputs 

Control input signals for the 'ACT8847 are summarized in Table 23. 
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SIGNAL 

BYTEP 

CLK 

CLKC 
CLKMODE 

CONFIG1-
CONFIGO 
ENC_._B 

ENRA 

ENRB 

FAST 
FLOW~C 

HALT 

OEC 
OES 
OEY 

PIPES2-
PIPESO 
RESET 

RND1-
RNDO 

SELOP7-
SELOPO 

SELMS/LS 

SELST1-
SELSTO 

SRCC 

TP1-TPO 

Table 23. Control Inputs 

HIGH 

Selects byte parity generation and test 

Clocks all registers (except C) on rising 
edge 
Clocks C register on rising edge 
Enables temporary input register load on 
falling clock edge 
See Table 3 (RA and RB register data 
source selects) 
No effect 

If register is not in flow through, enables 
clocking of RA register 

If register is not in flow through, enables 
enables clocking of RB register 
Places device in FAST mode 
Causes output value to bypass C 
register and appear on C register output 
bus. 
No effect 

Disables compare pins 
Disables status outputs 
Disables Y bus 
See Table 20 (Pipeline Mode Control) 

No effect 

See Table 21 (Rounding Mode Control) 

See Tables 6 and 7 (Multiplier/ALU 
operand 
selection) 
Selects MSH of 64-bit result for output 
output on the Y bus (no effect on single­
precision operands) 
See Table 19 (Status Output Selection) 

Selects multiplier result for input to C 
register 
See Table 22 (Test Pin Control Inputs) 

lOW 

Selects single bit parity 
generation and test 
No effect 

No effect 
Enables temporary· input· register 
load on rising clock edge 
See Table 42 (RA and RB 
register data source selects) 
Enables C register load when 
CLKC goes high. 
If register is not in flow through, 
through, holds contents of RA 
register 
If rflgister is not in flow through, 
holds contents of RB register 
Places device in IEEE mode 
No effect 

Stalls device operation but 
does not affect registers, internal 
states, or status 
Enables compare pins 
Enables status outputs 
Enables Y bus 
See Table 20 (Pipeline Mode 
Control) 
Clears internal states, status, 
internal pipeline registers, and 
exception disable register. Does 
not affect other data registers. 
See Table 21 (Rounding Mode 
Control) 
See Tables 6 and 7 
(Multiplier/ALU operand selection 

Selects LSH of 64-bit result for 
output on the Y bus (no effect on 
single-precision operands) 
See Table 19 (Status Output 
Selection) 
Selects ALU result for input to C 
register 
See Table 22 (Test Pin Control 
Inputs) 
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Instruction Set 

Configuration and operation of the' ACT884 7 can be selected to perform single or 
double-precision floating-point and integer calculations in operating modes ranging from 
flowthrough to fully pipe lined. Timing and sequences of operations are affected by 
settings of clock mode, data and status registers, input data configurations, and 
rounding mode, as well as the instruction inputs controlling the ALU and the multiplier. 
The ALU and the multiplier of the 'ACT884 7 can operate either independently or 
simultaneously, depending on the setting of instruction inputs 110-10 and related 
controls. 

Controls for data flow and status results are discussed separately, prior to the 
discussions of ALU and multiplier operations. Then, in Tables 27 through 35, the 
instruction inputs to the ALU and the multiplier are summarized according to operating 
mode, whether independent or chained (ALU and multiplier in simultaneous operation). 

loading External Data Operands 
Patterns of data input to the' ACT884 7 vary depending on the precision of the operands 
and whether they are being input as A or B operands. Loading of external data operands 
is controlled by the settings of CLKMODE and CON FIG 1-CONFIGO, which determine 
the clock timing for loading and the registers that are used. 

Configuration Controls (CON FIG 1-CONFIGO) 

Three input registers are provided to handle input of data operands, either single 
precision or double precision. The RA, RB, and temporary registers are each 64 bits 
wide. The temporary register is (ordinarily) used only during input of double-precision 
operands. 

When single-precision or integer operands are loaded, the ordinary setting of CONFIG 1-
CONFIGO is LH, as shown in Table 4. This setting loads each 32-bit operand in the 
most significant half (MSH) of its respective register. The operands are loaded into 
the MSHs and adjusted to double precision because the data paths internal to the device 
are all double precision. It is also possible to load single-precision operands with 
CONFIG 1-CONFIGO set to HH but two clock edges are required to load both the A 
and B operands on the DA bus. 

en Double-precision operands are loaded by using the temporary register to store half 
~ of the operands prior to inputting the other half of the operands on the DA and DB 
~ buses. As shown in Tables 3 and 5, four configuration modes for selecting input sources 
:t> are available for loading data operands into the RA and RB registers. 
("') 
-I 
CO 
CO 
~ 
-..J 

ClKMODE Settings 
Timing of double-precision data inputs is determined by the clock mode setting, which 
allows the temporary register to be loaded on either the rising edge (CLKMODE = L) 
or the falling edge of the clock (CLKMODE = H). Since the temporary register is not 
used when single-precision operands are input, clock modes 0 and 1 are functionally 
equivalent for single-precision operations. 
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The setting of CLKMODE can be used to speed up the loading of double-precision 
operands. When the CLKMODE input is set high, data on the DA and DB buses are 
loaded on the falling edge of the clock into the MSH and LSH, respectively, of the 
temporary register. On the next rising edge, contents of the DA bus, DB bus, and 
temporary register are loaded into the RA and RB registers, and execution of the current 
instruction begins. The setting of CON FIG 1-CONFIGO determines the exact pattern 
in which operands are loaded, whether as MSH or LSH in RA or RB. 

Double-precision operation in clock mode 0 is similar except that the temporary register 
loads only on a rising edge. For this reason the RA and RB registers do not load until 
the next rising edge, when all operands are available and execution can begin. 

A considerable advantage in speed can be realized by performing double-precision ALU 
operations with CLKMODE set high. In this clock mode both double-precision operands 
can be loaded on successive clock edges, one falling and one rising and the ALU 
operation can be executed in the time from one rising edge of the clock to the next 
rising edge. Both halves of a double-precision ALU result must be read out on the Y 
bus within one clock cycle whIm the' ACT884 7 is operated in clock mode 1. 

Internal Register Operations 

Six data registers in the 'ACT8847 are arranged in three levels.albngthe data paths 
through the multiplier and the ALU. Each level of registers can be enabled or disabled 
independently of the other two levels by setting the appropriate PIPES2-PIPESO inputs. 

The RA and RB registers receive data inputs from the temporary register and the DA 
and DB buses. Data operands are then multiplexed into the multiplier, ALU, or poth. 
To support simultaneous pipelined operations, the data paths through the multiplier 
and the ALU are both provided with pipeline registers and output registers. The control 
settings for the pipeline and output registers (PIPES2-PIPES 1 ) are registered with the 
instruction inputs 110-10. 

A seventh register, the constant (C) register is available for storing a 64-bit constant 
or an intermediate result from the multiplier or the ALU. The C register has a separate 
clock input (CLKC), input source select (SRCC) and write enable ENRC (active low). 
The SRCC input is not registered with the instruction inputs. Depending on the operation 
selected and the settings of PIPES2-PIPESO, an offset of one or more cycles may be 
necessary to load the desired result into the C register. When the flowthrough control 
FLOWC is high, the output value bypasses the C register without affecting C register 
CQntents. Timing for FLOWC feedback is similar to P or S register feedback, which 
is not affected by FLOWC feedback. 

" q-
ex) 
ex) 

~ 
(.) 

~ 
Status results are also registered whenever the output registers are enabled. Duration q-

" and availability of status results are affected by the same timing constraints that apply Z 
to data results on the Y output bus. CJ) 
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Data Register Controls (PIPES2-PIPESO) 

Table 20 shows the settings of the registers controlled by PIPES2-PIPESO. Operating 
modes range from fully pipe lined (PIPES2-PIPESO = 000) to flowthrough 
(PIPES2-PIPESO = 111). 

In flowthrough mode all three levels of registers are disabled, a circumstance which 
may affect some double-precision operations. Since double-precision operands require 
two steps to input, at least half of the data must be clocked into the temporary register 
before the remaining data is placed on the DA and DB buses. 

When all registers (except the C register) are enabled, timing constraints can become 
critical for many double-precision operations. In clock mode 1, the ALU can perform 
a double-precision operation and output a result during every clock cycle, and both 
halves of the result must be read out before the end of the next cycle. Status outputs 
are valid only for the period during which the Y output data is valid. 

Similarly, double-precision multiplication is affected by pipelining, clock mode, and 
sequence of operations. A double-precise multiply may require two cycles to execute 
and two cycles to output the result, depending on the settings of PIPES2-PIPESO. 

Duration of valid outputs at the Y multiplexer depends on settings of PIPES2-PIPESO 
and CLKMODE, as well as whether all operations and operands are of the same type. 
For example, when a double-precision multiply is followed by a single-precision 
operation, one open clock cycle must intervene between the dissimilar operations. 

C Register Controls (SRCC, CLKC, FLOWC, ENRC) 

The C register loads from the P or the S register output, depending on the setting of 
SRCC, the load source select. SRCC = H selects the multiplier as input source. 
Otherwise the ALU is selected when SRCC = L. In either case the C register only loads 
the selected input on a rising edge of the CLKC signal when ENRC is low. 

The C register does not load directly from an external data bus. One method for loading 
a constant without wasting a cycle is to input the value as an A operand during an 
operation which uses only the ALU or multiplier and requires no external data inputs. 
Since the B operand can be forced to zero in the ALU or to one in the multiplier, the 
A operand can be passed to the C register either by adding zero or multiplying by one, 

~ then selecting the input source with SRCC and causing the CLKC signal to go .high. 
-..J Otherwise, the C register can be loaded through the'ALU with the Pass A Operand 
~ instruction, which requires a separate cycle. 
l> 
(') 
~ 
(X) 
(X) 

~ 
-..J 

Separate controls are available to enable the C register (ENRC) or to bypass the C 
register when feeding an operand back on the C register output bus (FLOWC). 
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Operand Selection (SELOP7-SELOPO) 

As shown in Tables 6 and 7, data operands can be selected five possible sources, 
including external inputs from the RA and RB registers, feedback from the P andS 
registers, and a stored value in the C register. Contents of the C register may be selected 
as either the A or the B operand in the ALU, the multiplier, or both. When an external 
input is selected, the RA input always becomes the A operand, and the RB input is 
the B operand. 

Feedback from the ALU can be selected as the A operand to the multiplier or as the 
B operand to the ALU. Similarly, multiplier feedback may be used as the A operand 
to the ALU or the B operand to the multiplier. During division or square root operations, 
operands may not be selected except from the RA and RB input registers 
(SELOPS7-SELOPSO = 11111111). 

Selection of operands also interacts with the selected operations in the ALU or the 
multiplier. ALU operations with one operand are performed only on the A operand. 
Also, depending on the instruction selected, the B operand may optionally be forced 
to zero in the ALU or to one in the multiplier. 

Rounding Controls (RND1-RNDO) 

Because floating point operations may involve both inherent and procedural errors, 
it is important to select appropriate modes for handling rounding errors. To support 
the IEEE standard for binary floating-point arithmetic, the' ACT884 7 provides four 
rounding modes selected by RND1-RNDO. 

Table 21 shows the four selectable rounding modes. The usual default rounding mode 
is round to nearest (RND1-RNDO = Ll). In round-to-nearest mode, the 'ACT8847 
supports the IEEE standard by rounding to even (LSB = 0) when two nearest 
representable values are equally near. Directed rounding toward zero, infinity, or minus 
infinity are also available. 

Rounding mode should be selected to minimize procedural errors which may otherwise 
accumulate and affect the accuracy of results. Rounding to nearest introduces a 
procedural error not exceeding half of the least significant bit for each rounding 
operation. Since rounding to nearest may involve rounding either upward or downward 
in successive steps, rounding errors tend to cancel each other. f' 

~ 
In contrast, directed rounding modes may introduce errors approaching one bit for ex) 

ex) 
each rounding operation. Since successive rounding operations in a procedure may ~ 
all be similarly directed, each introducing up to a one-bit error, rounding errors may U 
accumulate rapidly, especially in single-precision operations. ~ 

Status Exceptions 

Status flags are provided to signal both floating point and integer exceptions. Integer 
status is provided using AEQB for zero (Z), NEG for sign, and OVER for 
overflow/carryout. 
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Status exceptions can result from one or more error conditions such as overflow, 
underflow, operands in illegal formats, invalid operations, or rounding. Exceptions may 
be' grouped into two classes: input exceptions resulting from invalid operations or 
denormal inputs to the multiplier, and output exceptions resulting from illegal formats, 
rounding errors, or both. 

To simplify the discussion of exception handling, it is useful to summarize the data 
formats for representing IEEE floating-point numbers which can be input to or output 
from the FPU (see Table 24). Since procedures for handling exceptions vary according 
to the requirements of specific applications, this discussion focuses on the conditions 
which cause particular status exceptions to be signalled by the FPU. 

IEEE formats for floating-point operands, both single and double precision, consist of 
three fields: sign, exponent, and fraction, in that order. The leftmost (most significant) 
bit is the sign bit. The exponent field is eight bits long in single-precision operands 
and 11 bits long in double-precision operands. The fraction field is 23 bits in single 
precision and 52 bits in double precision. Further details of IEEE formats and exceptions 
are provided in the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 
Std 754-1985. 

Several status exceptions are generated by illegal data or instruction inputs to the FPU. 
Input exceptions may cause the following signals to be set high: IVAL, DIVBYO, DENIN, 
and STEX 1-STEXO. If the IVAL flag is set, either an invalid operation, such as the square 
root of - I x I, has been requested or a NaN (Not a Number) has been input. When 
DENIN is set, a denormalized number has been input to the multiplier. DIVBYO is set 
when the divisor is zero. STEX 1-STEXO indicate which port (RA, RB, or both) is the 
source of the exception when either a denormal is input to the multiplier (DEN IN = H) 
or a NaN (lVAL = H) is input to the multiplier or the ALU. 

NaN inputs are all treated as IEEE signaling NaNs, causing the IVAL flag to be set. 
When output from the FPU, the fraction field from a NaN is set high (all 1 's), regardless 
of the original fraction field of the input NaN. 

Output exception signals are provided to indicate both the source and type of the 
exception. DE NORM, INEX, INF, NEG, OVER, UNDER, and RNDCO indicate the 
exception type, and CHEX and SRCEX indicate the source of an exception. SRCEX 
indicates the source of a result as selected by instruction bit 16, and SRCEX is active 

C/) whenever a result is output, not only when an exception is being signaled. The chained­
~ mode exception signal CHEX indicates that an exception has be generated by the source 
~ not selected for output by 16. The exception type signaled by CHEX cannot be read 
l> unless status select controls SELST1-SELSTO are used to force status output from 
~ the deselected source. 
00 
00 Output exceptions may be due either to a result in an illegal format or to a procedural 
~ error. Results too large or too small to be represented in the selected precision are 

signalled by OVER and UNDER. When INF is high, the output is the IEEE representation 
of infinity. Any ALU output which has been increased in magnitude by rounding causes 
INEX to be set high. DE NORM is set when the multiplier output is wrapped or the ALU 
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Table 24. IEEE Floating Point Representations 

TYPE OF EXPONENT (e) FRACTION Ifl HIDDEN VALUE OF NUMBER REPRESENTED 
OPERAND SPIHEX) DP IHEX) (BINARY) BIT SP IDECIMAL) t DP (DECIMAL) t 
Normalized 

FE 7FE All 1'5 1 (-1)5 (2127) (2-2-23) (-1)5 (2 1023) (2-2- 52) 
Nutnber(max) 

Normalized 
01 001 All 0'5 1 (-1)5 (2- 126) (1) (_1)5 (2- 1022) (1) 

Number (min) 

Denormalized 
00 000 All 1'5 0 (1 _)5 (2 - 126) (1 - 2 - 23) ( - 1)5 (2 - 1022) (1 - 2 - 52) 

Number (max) 

Denormalized 
00 000 000 ... 001 0 ( - 1)5 (2 - 126) (2 - 23) (-1)5 (2-1022) (2-52) 

Number (min) 

Wrapped 
00 000 All 1'5 1 (-1)5 (2- 127) (2-2- 23) ( - l)S (2 - 1023) (2 - 2 - 52) 

Number (max) 

Wrapped 
EA 7CD All O's 1 {-1)S (2-(22+127» (1) (-1)5 (2-(51 +1023)) (1) 

Number (min) 

Zero 00 000 Zero 0 (-1)5 (0.0) (-1)5 (0.0) 

Infinity FF 7FF Zero 1 ( - 1)5 (infinity) ( - 1)5 (infinity) 

NAN (Not a 
FF 7FF Nonzero N/A None None 

Number) 

t = sign bit. 

-...j 

0, 
CAl 
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output is denormalized. Wrapped outputs from the multiplier may be inexact or 
increased in magnitude by roun'ding, which may cause the INEX and RNDCO status 
signals to be set high. A denormal output from the ALU (DENORM = H) may also cause 
INEX to be set, in which case UNDER is also signalled. 

Handling of Denormalized Numbers (FAST) 

The FAST inputselects the mode for handling denormalized inputs and ,outputs. When 
the FAST input is set low, the ALU accepts denormalized inputs but the multiplier 
generates an exception when a denormal is input. When FAST is set high. the DENIN 
status exception is disabled and all denormalized numbers, both inputs and results, 
are forced to zero. 

A denormalized input has the form of a floating-point number with a zero exponent, 
a nonzero mantissa, and a zero in the leftmost bit of the mantissa (hidden or implicit 
bit). A denormalized number results from decrementing the biased exponent field to 
zero before normalization is complete. Since a denormalized number cannot be input 
to the multiplier, it must first be converted to a wrapped number by the ALU. When 
the mantissa of the denormal is normalized by shifting it left, the exponent field 
decrements from all zeros (wraps past zero) to a negative two's complement number 
(except in the case of .1 XXX ... , where the exponent is not decremented. 

Exponent underflow is possible during multiplication of small operands even when the 
operands are not wrapped numbers. Setting FAST = L selects gradual underflow so 
that denormal inputs can be wrapped and wrapped results are not automatically 
discarded. When FAST is set high, denormal inputs and wrapped results are forced 
to zero immediately. 

When the multiplier is in IEEE mode and produces a wrapped number as its result. 
the result may be passed to the ALU and unwrapped~ If the wrapped number can be 
unwrapped to an exact denormal, it can be output without causing the underflow status 
flag (UNDER) to be set. UNDER goes high when a result is an inexact denormal,and 
a zero is output from the FPU if the wrapped result is too small to represent as a 
denormal (smaller than the minimum denorm). Table 25 describes the handling of 
wrapped multiplier results and the status flags that are set when wrapped numbers 
are output from the multiplier. 

Table 25. Handling Wrapped Multiplier Outputs 

TYPE STATUS FLAGS SET 

OF RESULT DENORM INEX RNOCO UNDER 
NOTES 

Wrapped, 
1 0 0 0 

Unwrap with 'Wrapped 
exact exact' ALU instruction 

Wrapped, 
1 1 0 1 

Unwrap with 'Wrapped 
inexact inexact' ALU instruction· 

Wrapped, 
Unwrap with 'Wrapped 

increased in 1 1 1 1 
rounded' ALU instruction 

magnitude 



When operating in chained mode, the multiplier may output a wrapped result to the 
ALU during the same clock cycle that the multiplier status is output. In such a case 
the ALU cannot unwrap the operand prior to using it, for example, when accumulating 
the results of previous multiplications. To avoid this situation, the FPU can be operated 
in FAST mode to simplify exception handling during chained operations. Otherwise, 
wrapped outputs from the multiplier may adv.ersely affect the accuracy of the chained 
operation, because a wrapped number may appear to be a large normalized number 
instead of a very small denormalized number. 

Because of the latency associated with interpreting the FPU status outputs and 
determining how to process the wrapped output, it is necessary that a wrapped operand 
be stored external to the FPU (for example, in an external register file) and reloaded 
to the A port of the ALU for unwrapping and further processing. 

Exception Disable Mask Register 

The exception disable mask register can be loaded with a mask to enable or disable 
selected status exceptions. Status bits for enabled exceptions are logically ORed, and 
when the result is true, the ED pin goes high. During chained operations both multiplier 
and ALU results are ORed. During independent operation the nonselected status results 
are forced to zero. 

If the FPU is reset (RESET = 0), the exception disable mask register is cleared. Table 26 
describes the settings for the mask register load instruction and the status exceptions 
which can be enabled or disabled with the mask. 

Table 26. loading the Exception Disable Mask Register 

INSTRUCTION 
RESULTS 

INPUTS 

110-17=0111 Exception mask load instruction 

16 
o = Load ALU exception disable register 
1 = Load multiplier exception disable register 

15 t a = IV AL exception enabled 
1 = IV AL exception disabled 

14 
o = OVER exception enabled 
1 = OVER exception dis'abled 

13 
o = UNDER exception enabled 
1 = UNDER exception disabled 

12 
o = INEX exception enabled 
1 = INEXexception disabled 

11 
o = DIVBYO exception enabled 
1 = DIVBYO exception disabled t 

10 
a = DENORM exception enabled 
1 = DENORM exception disabled 

t Disabling IV AL in multiplier exception mask register also disables DENIN exception 
+Only significant when 16 = 1 
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Data Output Controls (SELMS/LS, OEY) 

Selection and duration of results from the Y output multiplexer may be affected by 
several factors, including the operation selected, precision of the operands, registers 
enabled, and the next operation to be performed. The data output controls are not 
registered with the data and instruction inputs. When the device is microprogrammed, 
the. effects of pipelining and sequencing of operations should be taken into account. 

Two particular conditions need to be considered. Depending on which registers are 
enabled, an offset of one or more cycles must be allowed before a valid result is available 
at the Y output multiplexer. Also, certain sequences of operations may require both 
halves of a double-precision result to be read out within a single clock cycle. This is 
done by toggling the SELMS/LS signal in the middle of the clock period. 

When a single-precision result is output, the SELMS/LS signal has no effect. The 
SELMS/LS signal is set low only to read out the LSH of a double-precision result. 
Whenever this signal is selecting a valid result for output on the Y bus, the OEY enable 
must be pull.ed low at the beginning of that clock cycle. 

Status Output Controls (SELST1-SELSTO,OES, OEC) 

Ordinarily, SELST1-SELSTO are set high so that status selection defaults to the output 
source selected by instruction input 16. The ALU is selected as the output source when 
16 is low, and the multiplier when 16 is high. 

When the device operates in chained mode, it may be necessary to read the status 
results not associated with the output source. As shown in Table 19, SELST1-SELSTO 
can be used to read the status of either the ALU or the multiplier regardless of the 
16 setting. 

Status results are registered only when the output (P and S) registers are enabled 
(PIPES2 = L). Otherwise, the status register is transparent. In either case, to read 
the status outputs, the output enables (OES, OEC, or both) must be pulled low. 

Stalling the Device (HALT) 

Operation of the' ACT884 7 can be stalled nondestructively by means of the HALT 
signal. Pulling the HALT input low causes the device to stall on the next low level 

en of the clock. Register contents are unaltered when the device is stalled, and normal 
Z operation resumes at the next low clock period after the HALT signal is set high. Using 
~ HALT in microprograms can save power, especially using high clock frequencies and 
» pipelined stages. 
n 
-4 
ex) 
ex) 
~ ..... 
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For some operations, such as a double-precision multiply with CLKMODE = 1, setting 
the HALT input low may interrupt loading of the RA, RB, and instruction registers, 
as well as stalling operation. In clock mode 1, the temporary register loads on the falling 
edge of the clock, but the HALT signal going low would prevent the RA, RB, and 
instruction registers from loading on the next rising clock edge. It is therefore necessary 
to have the instruction and data inputs on the pins when the HALT signal is set high 
again and normal operation resumes. 

Instruction Inputs (110-10) 

Three modes of operation can be selected with inputs 110-10, including independent 
ALU operation, independent multiplier operation, or simultaneous (chained) operation 
of ALU and multiplier. Each operating mode is treated separately in the following 
sections. 

In addition to the ALU and multiplier instructions described below, a NOP (no operation) 
instruction is provided, for example, to retain a double-precision result on the Youtput 
bus for an additional cycle: 

NOP 110-10 = 011 0000 0000 

Independent ALU Operations 

The ALU executas single- and double-precision operations which can be divided 
according to the number of operands involved, one or two. Tables 27 and 29show 
independent ALU operations with one operand, along with the inputs 110-10 which 
select each operation. Conversions from one formatto another are handled in this mode, 
with the exception of adjustments to precision during two-operand ALU operations. 
Wrapping and unwrapping of operands is also done in this mode. 

Logical shifts can be performed on integer operands using the instructions shown in 
Table 68. The data operand to be shifted is input on the DA bus, and the number of 
bit positions the operand is to be shifted is input on the DB bus. The shift number 
on the DB bus should be in positive 3.2-bit integer format, although only the lowest 
eight bits are used. Neither the data operand nor the shift amount can be selected 
from sources other than the RA and RB registers, respectively. 

Tables 28 and 29 present independent ALU operations with two operands. When the 
operands are different in precision,one single and the other double, the settings of ~ 
the precision-selects 18-17 will identify the single-precision operand so that it can 00 
automatically be reformatted to double precision before the selected operation is ~ 
executed, and the result of the operation will be double precision. U 
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Table 27. Independent ALU Operations with One Floating Point Operand 

ALU OPERATION INSTRUCTION 
NOTES 

ON A OPERAND INPUTS 11 0-10 

Pass A operand OOx 001 x 0000 

Pass - A operand OOx 001 x 0001 

Convert from 2's OOx 00100010 
complement integer 
to floating point t 

Convert from floating OOx 001x 0011 
point to 2's complement 
integer x = Don't care 

Move A operand (pass OOx 001 x 0100 18 selects precision of A 

without NaN detect or operand 

status flags active) o = A (SP) 

Pass B operand OOx 001x 0101 1 = A (DP) 

Convert from floating OOx 001 x 011 0 14 selects absolute value of 
point to floating point OOx 001x 0111 a operand: 
(adjusts precision of 0= A 
input: SP ..... DP, DP ..... SP) 1 = jAj 
Floating point to During integer to floating 
unsigned integer point conversion, j A j is not 
conversion allowed as a result. 
Wrap denormal operand OOx 001 x 1000 
Unsigned integer to OOx 001 x 1010 
floating point 
conversion 

Unwrap exact number OOx 001 x 1100 

Unwrap inexact number OOx 001x 1101 

Unwrap rounded input OOx 001 x 1110 

t During this operation, 18 selects the precision of the result. 
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Table 28. Independent ALU Operations with Two Floating Point Operands 

ALU OPERATIONS INSTRUCTION 

AND OPERANDS 
NOTES 

INPUTS 11 0-10 

Add A + 6 OOx xOOO OxOO 

Add IAI + 6 OOx x001 OxOO 

Add A + 161 OOx xOOO 1 xOO x = Don't Care 

Add IAI + 161 OOx xOO 1 1 xOO 18 selects precision of A 

Subtract A - 6 OOx xOOO Ox01 
operand: 

Subtract I A I - 6 OOx xOO 1 OxO 1 
0= A (SP) 

Subtract A - I B I OOx xOOO 1 xO 1 
1 = A (DP) 

Subtract IAI - 161 OOx x001 1 x01 
17 selects precision of 6 
operand: 

Compare A, 6 OOx xOOO Ox 1 0 o = 6 (SP) 
Compare IAI ,6 00xx0010x10 

1 = 6 (DP) 
Compare A, 161 OOx xOOO 1x10 

12 selects either V or its 
Compare IAI, IBI OOx xOO 1 1 x 1 0 absolute value: 
Subtract 6 - A OOx xOOO Ox 11 O=V 
Subtract 6 - I A I OOx x001 Ox11 1 = IVI 
Subtract 161 - A OOx xOOO 1 x 11 

Subtract 161 - IAI OOx x001 1x11 

Table 29. Independent ALU Operations with One Integer Operand 

ALU OPERATION INSTRUCTION 

INPUTS 110-10 
NOTES 

ON A OPERAND 

Pass A operand 010 x01 00000 x = Don't Care 
Pass -A operand (2's complement) 010 x01 00001 18 selects format of A integer 
Negate A operand (1's complement) 010 x010 0010 operand: 

Pass B operand 010 x010 0101 o = Single-precision 2's 

Shift left logical 010 x01 0 1000 complement 

Shift right logical 010 x010 1001 1 = Single-precision unsigned 

Shift right arithmetic 010 x010 1101 
integer 
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Table 30. Independent ALU Operath;ms with Two Integer Operands 

ALU OPERATIONS INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 11 0-10 

Add A + B 010 xOOO 0000 

Subtract A - B 010 xOOQ 0001 x = Don't Care 
Compare A, B 010 xOOO 0010 17 selects format of A and B 
Subtract B - A 010 xOOO 0011 operands: 
Logical AND A, B 010 xOOO 1000 o = Single-precision 2's 
Logical AND A, NOT B 010 xOOO 1001 complement 

Logical AND NOTA, B 010 xOOO 1010 1 = Single-precision unsigned 

Logical OR A, B 010 xOOO 1100 integer 

Logical XOR A, B 010 xOOO 1101 

Independent Multiplier Operations 

In this mode the multiplier operates on the RA and RB inputs which can be either single 
precision, double precision, or mixed. Separate instruction tables are provided for 
floating point operations and integer operations. 

Floating point operands may be normalized or wrapped numbers, as indicated by the 
settings for instruction inputs 11-10. As shown in Table 31. the multiplier can be set 
to operate on the absolute value of either or both floating point operands. and the 
result of any operation can be negated when it is output from the multiplier. Converting 
a single-precision denormal number to double precision does not normalize or wrap 
the denormal. so it is still an invalid input to the multiplier. 

Table 31. Independent Floating Point Multiply Operations 

MULTIPliER OPERATION INSTRUCTION 
NOTES 

AND OPERANDS INPUTS 11 0-10 

Multiply A * B OOx x 100 OOxx x = Don't Care 

Multiply - (A * B) OOx x1 00 01 xX 18 selects A operand 

Multiply A * I B I OOx x100 10xx 
precision (0 = SP, 1 = DP) 

Multiply -(A * IBI) OOx x 1 00 11 xx 
17 selects B operand 
precision (0 = SP, 1 = DP) 

Multiply I A I * B 00xx10100xx 
11 selects A operand format 

Multiply - ( I A I * B) OOx x101 01xx (0 ;;= Normal, 1 = Wrapped) 
Multiply I A I * IBI OOx x101 10xx 10 selects B operand format 
Multiply - ( I A I * IBI) OOx x101 11xx (0 = Normal. 1 = Wrapped) 
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Table 32. Independent Floating-Point Divide/Square Root Operations 

MULTIPLIER OPERATION INSTRUCTION 

AND OPERANDS t 
NOTES 

INPUTS 110-10 

x = Don't Care 

18 selects A operand precision 
Divide A I B OOx x110 Oxxx and 17 selects B operand 

SQRT A OOx x 11 0 1 xxx precision (0 = SP, 1 = DP) 

Divide IAII 8 OOx x110 Oxxx 
12 negates multiplier result 
(0 = Normal, 1 = Negated) 

SQRT IAI OOx x 111 1 xxx 11 selects A operand format and 
10 selects 8 operand format 
(0 = Normal, 1 = Wrapped) 

tl7 shou,ld be low or equal to 18 for square root operations 

Table 33. Independent Integer Multiply/Divide/Square Root Operations 

MULTIPLIER OPERATION INSTRUCTION 
NOTES 

AND OPERANDS * INPUTS 110-10 

x = Don't care 
Multiply A * 8 010 x100 0000 17 selects operand format: 
Divide A 18 010 x110 0000 o = SP 2's complement 
SQRT A 010 x110 1000 1 = SP unsigned integer 

tOperatiol1s involving absolute values. wrapped operands. or negated results are valid only when floating­
point format is selected (19 = 0). 

Chained Multiplier/ALU Operations 

In chained mode the' ACT8847 performs simultaneous operations in the multiplier 
and the ALU. Operations include not only addition, subtraction, arid multiplication, 
but also several optional operations which increase the flexibility of the device. Division 
and square root operations are not available in chained mode. 

The B operand to the AlU can be set to zero so that the ALU passes the A operand 
unaltered. The B operand to, the multiplier can be forced to the value 1 so that the 
A operand to the multiplier is passed unaltered. 
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Table 34. Chained Multiplier/ALU Floating Point Operationst 

CHAINED OPERATIONS OUTPUT INSTRUCTION 
NOTES 

MULTIPLIER ALU SOURCE INPUTS 110·10 

A*B A+B ALU 1 Ox xOOO xxOO 

A*B A + B Multiplier lOx xl00 xxOO 

A*B A - B ALU lOx xOOO xxO 1 

A*B A - B Multiplier lOx xl00 xxOl 

A * B 2 - A ALU lOx xOOO xxl0 x = Don't Care 

A*B 2 - A Multiplier lOx x100 xxl0 18 selects precision of 

A * B B-A ALU 10x xOOO xx11 RA inputs: 

A * B B-A Multiplier lOx xl00 xx11 0= RA (SP) 

A*B A+O ALU 10xxOl0 xxOO 1 = RA (DP) 

A*B A+O Multiplier lOx x110 xxOO 17 selects precision of 

A*B 0- A ALU lOx xOl0 xxl1 RB inputs: 

A * B O-A Multiplier lOx xll0 xxll o = RB (SP) 

A * 1 A + B ALU 1 Ox xOO 1 xxOO 1 = RB (DP) 

A * 1 A + B Multiplier lOx xl 01 xxOO 13 negates ALU result: 

A * 1 A-B ALU lOx xOOl xxOl o = Normal 

A * 1 A-B Multiplier lOx xl01 xxOl 1 = Negated 

A * 1 2-A ALU 1 Ox xOO 1 xx 1 0 12 negates multiplier 
result: 

A * 1 2 - A Multiplier lOx xl0l xx10 o = Normal 
A * 1 B-A ALU 1 Ox xOO 1 xx 11 

A * 1 B-A Multiplier 1 Ox xl 01 xx 11 
1 = Negated 

A * 1 A+O ALU lOx xOl1 xxOO 

A* 1 A+O Multiplier lOx xl11 xxOO 

A * 1 O-A ALU 1 Ox xO 11 xx 11 

A * 1 O-A Multiplier lOx xlll xxl1 

tThe 110-10 setting lxx xxlx xxl0 is invalid, since it attempts to force the B operand of the ALU to both 
o and 2 simultaneously. 
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Table 35. Chained Multiplier/ALU Integer Operations 

CHAINED OPERATIONS OUTPUT INSTRUCTION 
NOTES 

MULTIPLIER ALU SOURCE INPUTS 110-10 

A*B A + B ALU 11 0 xOOOOOOO 

A*B A + B Multiplier 110 xl00 0000 

A * B A - B ALU 110 xOOO 0001 

A*B A - B Multiplier 110 xl00 0001 

A*B 2 - A ALU 110 xOOO 0010 

A*B 2 - A Multiplier 110xl000010 

A*B B-A ALU 110 xOOO 0011 

A*B B - A Multiplier 110 xl00 0011 
x = Don't Care 

A*B A+O ALU 110 xOl0 0000 
17 selects format of A 

A * B A+O Multiplier 110 xl10 0000 and B operands: 
A * B O-A ALU 11 0 xO 1 0 0011 o = SP 2's 
A*B 0- A Multiplier 110 xl1 0 0011 complement 
A* 1 A + B ALU 110 xOOl 0000 1 = SP unsigned 
A * 1 A+B Multiplier 110 xl01 0000 integer 

A* 1 A - B ALU 110 xOOl 0001 

A* 1 A-B Multiplier 110 xl01 0001 

A * 1 2 - A ALU 110 xOOl 0010 

A* 1 2 - A Multiplier 110 xl0l 0010 

A * 1 B-A ALU 110 xOOl 0011 

A* 1 B. - A Multiplier 110 xl0l 0011 

A * 1 A+O ALU 110 xOll 0000 

A * 1 A+O Multiplier 110xlll 0000 

A * 1 a-A ALU 110 xOl1 0011 

A * 1 0- A Multiplier 110 x 111 xx 11 

7-63 



MICROPROGRAMMING THE ' ACT884 7 
Because the' ACTSS4 7 is microprogrammable, it can be configured to operate on either 
single- or double-precision data operands, and the operations of the registers, ALU, 
and multiplier can be programmed to support a variety of applications. The following 
examples present not only control settings but the timings of the specific operations 
required to execute the sample instructions. 

Timing of the sample operations varies with the precision of the data operands and 
the settings of CLKMODE and PIPES. Microinstructions and timing waveforms are given 
for all combinations of data precision, clock mode, and register settings. 

Division and square root operations are presented after the discussion of ALU and 
multiplier operations. Following the presentation of ALU and multiplier operations is 
a brief sum-of-products operation using instructions for chained operating mode. 

Single-Precision Operations 

Two single-precision operands canbe loaded on the 32-bit input buses without use 
of the temporary register so CLKMODE has no effect on single-precision operation. 
Both the ALU and the multiplier execute all single-precision instructions in one clock 
cycle, assuming that the device is not operating in flowthrough mode (all registers 
disabled). Settings of the register controls PIPES2-PIPESO determine minimum cycle 
time and the rate of data throughput, as evident from the examples below. 

Single-Precision ALU Operations 

Precision of each data operand is indicated by the setting of instruction input IS for 
single-operand ALU instructions, or the settings of IS-17 for two-operand instructions. 
When the ALU receives mixed-precision operands (one operand in single precision and 
the other in double precision). the single-precision data input is converted to double 
and the operation is executed in double precision. 

If both operands are single precision, a single-precision result is output by the ALU. 
Operations on mixed-precision data inputs produce double-precision results. 

It is unnecessary to use the 'convert float-to-float' instruction to convert the single­
precision operand prior to performing the desired operation on the mixed-precision 

en operands. Setting .IS and 17 properly achieves the same effect without wasting an 
2 
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instruction cycle. 

Single-Precision Multiplier Operations 

Operand precision is selected by IS and 17, as for ALU operations. The multiplier can 
multiply the A and B operands, either operand with theabsolute value of the other, 
or the absolute values of both operands. The result can also be negated when it is 
output. If both operands are single precision, a single-precision result is output. 
Operations on mixed-precision data inputs produce double-precision results. 
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Sample Single-Precision Microinstructions 

The following four single-precision microinstruction coding examples show the four 
register settings, ranging from flowthrough to fully pipelined. Timing diagrams 
accompany the sample microinstructions. 

In the first example PIPES2-PIPESO are all set" high so the internal registers are all 
disabled. This microinstruction sets up a wrapped result from the multiplier to be 
unwrapped by the ALU as an exact denormalized number. In flowthrough mode the 
'unwrap exact' operation is performed without a clock as soon as the instruction is 
input. Single-precision timing in flowthrough mode is shown in Figure 2. 

CLKMODE = 0 PIPES = 111 Operation: Unwrap A operand exact 

S 
E 

C C C L 
L 00 P P SS M S S 
KNN I I E E S BEE R 
M F F PP L L RR FEE S / YLLEH 
0 II EE 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DO SRRcIEEEETTELPP 
0-0 E 1-02-0 7--0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

000 0010 11 00 0 01 111 xxxx 11 xx 00 0 1 1 0 1 0 0 0 x 11 1 1 11 

FIRST INSTRUCTION SECOND INSTRUCTION 

INSTRUCTION: FUNC(10.01. RND(1.01. FAST 

===><~ ____ FI_RS_T_O_P_ER_A_N_DS ____ ~)(~ ____ SE_C_ON_D_O_P_E_RA_N_D_S __ -J)(~ ______________ __ 
DATA(31.0) A AND B INPUTS 

14---tpdl----t-1 

OUTPUT(31.01. STATUS(18.0) 

Figure 2. Single-Precision Operation, All Registers Disabled 
(PIPES = 111, CLKMODE .. 0) 



The second example shows a microinstruction causing the ALU to compare absolute 
values of A and B. Only the input registers are enabled (PIPES2-PIPESO = 110) so 
the result is output in one clock cyde. 

CLKMODE = 0 PIPES = 110 Operation: Compare I A I ' I B I 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DO SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

0000001 1010 o 01 

ClK 

load First Operands 
Begin First Operation 

~ 

11 0 xxxx 1111 00 o 1 101 000 x 

load Second Operands 
Begin Second Operation 

~ 

I4-tSU1-':"th1~ I4-- tsul':" ~I thl 
INSTRUCTION: FUNC(10.0), RND(l,O). FAST : 

I 
I 

11 1 1 11 

< Op~I~;~DS ~ o~i~~~~s ~ 
I 

I4-tsu2...-th1~ I4-- tsu2 M4 ~ thl 
DATA(31,O) A AND B INPUTS 

14 tpdl ------.. 14-14----tpd2---~~ 

OUT(31,O) STATUS(18,O) 
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Input and output registers are enabled in the third example, which shows the subtraction 
B - A. Two clock cycles are required to load the operands, execute the subtraction, 
and output the result (see Figure 4). 

CLKMODE = 0 PIPES = 010 Operation: Subtract B - A 

S 
E 

C C C L 
L 00 P P SS M S S 
KNN I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S y C S P 1 -0 T T 1-0 

00000000011 0 01 010 xxxx 1111 00 00001000x111111 

Load First Operands 
Begin First Operation 

Load Second Operands 
Begin Second Operation 

! ~ 

CLK 
I 

It-------td1----------.t 

I 

14-- tsu1 *th1 +I 
INSTRUCTION: FUNC(10.0). RND(1.0), FAST 

I 
I 

I 
I4-- tsu1 .. ~ 

I 

( OP~:;~DS ~ O~~~~~~S ~ 
I 

l4- t su2-.th1+i I4-tsu2 .. 14 "I th1 

DATA(31,O) A AND B INPUTS 

__________________ >@<FIRSTRESULT 

OUT(31.0) STATUS(18,O) 

Figure 4. Single-Precision Operation, Input and· Output Registers Enabled 
(PIPES ... 010, CLKMODE = 0) 



The fourth example shows a multiplication A * B with all registers enabled. Three 
clock cycles are required to generate and output the product. Once the internal registers 
are all loaded with data or results, a result is available from the output register on every 
rising edge of the clock. The floating point unit produces its highest throughput when 
operated fully pipelined with single-precision operands. 

CLKMOOE = 0 PIPES = 000 Operation: Multiply A * B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I o G G S8 PP DO SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S y C S P 1-0 T T 1-0 

000 0100 0000 a 01 000 1111 xxxx 00 a 1 1 1 1 000 x 11 1 1 11 
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m 
<0 

Load Third Load Fourth Load Fifth 
Operands Operands Operands 

Load Second 
Operands Begin Third Begin Fourth Begin Fifth 

Load First Operation Operation Operation 
Operands Begin Second 

Operation Load Pipeline Load Pipeline Load Pipeline 
Begin First 
Operation Load Pip.eline Load Output Load Output Load Output 

• • • • • 
~ I f 1 "--1 --, L 
CLK 

I I 
14-- td2 ~14 td2 ~ 
I I 
I I 

FIRST 
INSTRUCTION 

SECOND 
INSTRUCTION 

THIRD FOURTH 
INSTRUCTION INSTRUCTION 

FIFT.H 
INSTRUCTION 

I thl i thl 
\4- t su1 ~ ~i ___ tsu1 .... ~~tsu1 

thl thl 
~ i+- tsul ... ~ ~t$ul ~ 

I 
INSTRUCTION, FUNC/10.0). RND/l.0t FAST 

FIRST SECOND THIRD 
OPERANDS· OPERANDS OPERANDS 

th 1 I tlU thl thl 
fof- tsu2 .... ~ fof-tsu2 ... ~---tsu2 1014 "I i+- t su2tIM .. i+-t su2 1014 ~ 

DATAI31.0JAAND B INPUTS 

OUT/3l.0) STATUSI18.0) 

SN74ACT8847 

I+tpd4-+1 Ifotpd4+1 I+tpd4-+1 

Figure 5 .. Single-Precision Operation, All Registers 'Enabled 
(PIPES ..OOO,C1.KMODE -01 

lot-tpd4 -+I I+tpd4 -+! 



Double-Precision Operations 

Double-precision operations may be executed separately in the ALU or the multiplier, 
or simultaneously in both. Rates of execution and data throughput are affected by 
the settings of the register controls (PIPES2-PIPESO) and the clock mode (CLKMODE). 

The temporary register can be loaded on either the rising edge (CLKMODE = L) or 
the falling edge of the clock (CLKMODE = H). Double-precision operands are always 
loaded by using the 64-bit temporary register to store half of the operands prior to 
inputting the other half of the operands on the DA and DB buses. 

Input configuration is selected by CONFIG1-CONFIGO, allowing several options for 
the sequence in which data operands are set up in the temporary register and the RA 
and RB registers. Operands are then sent to either the ALU or multiplier, or both, 
depending on the settings for SELOP 7-0. 

The ALU executes all double-precision operations in a single clock cycle. The multiplier 
requires two clock cycles to execute a double-precision operation. When the device 
operates in chained mode (simultaneous ALU and multiplier operations), the chained 
double-precision operation is executed in two clock cycles. The settings of 
PIPES2-PIPESO determine whether the result is output without a clock (flowthrough) 
or after up to five clocks for a double-precision multiplication (all registers enabled 
and CLKMODE = L). 

Double-Precision ALU Operations 

Eight examples are provided to illustrate microinstructions and timing for double­
precision ALU operations. The settings of CLKMODE and PIPES2-PIPESO determine 
how the temporary register loads and which registers are enabled. Four examples are 
provided in each clock mode. 

Double-Precision ALU Operations with CLKMODE = 0 

The first example shows that, even in flowthrough mode, a clock signal is needed 
to load the temporary register with half the data operands (see Figure 6). The selected 
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operation is executed without a clock after the remaining half of .the data operands 
are input on the RA .and RB buses: 

CLKMODE = 0 PIPES = 111 Operation: Add A + 181 

s 
E 

CCC L 
L 00 P P 88 M 88 
KNN I I E E 8 8 E E R 
M F F P P L L RR FEE 8 I Y.LL.EH 
0 II EE 00 NN ANNR 000T888ATT 

I I D G G 88 PP DD 8.RRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1-0 T A 8 C 8 Y C 8 P 1 -0 T T 1-0 

001 1000 1000 0 11 111 xxxx 1111 00 o 1 1 0 x 00 0 x 11 1 1 11 

eLK 

Load Half of Data 

* 
I 
I _-...... 1---------------'--___ ..;,.. ____ -'-_..;..;.;.-'-______ .\'1 

(FIRST INS!RUCTION 

I 
If-- tsu 1 -+I 

I 

INSTRUCTION: FUNC{10.0l. RND{1.01. FAST 

( H~~~F )(L __ R~~S~A;~~~F ___________________ ___ 

I 
If-- tsu2 ___ th1 ---.! 

DATA{31.01 A AND B INPUTS 

SELMS/LS 

-----------_~~:~I~~~~~_-------------------~ 
~tpd1-+1 

OUT{31.01 STATUS{18.01 

Figure 6. Double-Precision ALU Operation. All Registers Disabled 
(PIPES ... 111. CLKMODE - 0) 
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In the second example the input register is enabled (PIPES2-PIPESO = 110). Operands 
A and B for the instruction, I B I - I A I, are loaded using CON FIG = 00 so that B is 
loaded first into the temporary register with MSH through the DA port and LSH through 
the DB port. On the second clock rising edge, the A operand is loaded in the same 
order directly to RA register while B is loaded from the temporary register to the RB 
register (see Figure 7). 

CLKMODE = 0 PIPES = 110 Operation: I B I - I A I 

S 
E 

C C C L 
LOO PP SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I DGGSS PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 1001 1011 0 00 110 xxxx 1111 00 0 1 1 0 x 0 0 0 x 11 1 1 11 
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'-J 
W 

load Half 

load Rest 
of First 
Operands 

load Half 

load Rest 
of Second 
Operands 

of First Begin First of Second Begin Second 
Operands Operation Operands Operation 

~ . ~ ~ 

I I I I ..--, --, L 
ClK 

FIRST INSTRUCTION 

I. 
I 
I 

I 

SECOND INSTRUCTION THIRD INSTRUCTION 

I 
14-- tsu 1---" th1 ~ 14-tsu1-+! I+th1~~tsu1~ 

I 

INSTRUCTION: FUNC(10.0). RND(1.0). FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

I 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

~tsu2 .14 ~ I4--tsu2 ___ th1~ I4-tsu2 ___ th1~ I4-tsu2-+14-th1~ I4-tsu2---+14- th1~ ~tsu2-+1 
th1 " 

DATA(31,O} A AND B INPUTS 

SElMS/lS 

OUTf3l.01 STATUS(18,O) 14- tpd2~ \4-*I- t pd5 /4-tpd2~ I4---+1-tpd5 I4-tpd2~ 

Figure 7. Double-Precision ALU Operation. Input Registers Enabled 
(PIPES = 110. CLKMODE .. 0) 
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Both the input and output registers are enabled (PIPES2-PIPESO = 010) in the third 
example. The instruction sets up the ALU to wrap a denormalized number on the DA 
input bus. The wrapped output can be fed back from the S register to the multiplier 
input multiplexer by a later microinstruction. Timing for this operation is shown in 
Figure 8. 

CLKMODE = 0 PIPES = 010 Operaion: Wrap Denormal Input 

S 
E 

C C C L 
L 00 P P 88 M 88 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOT8S8ATT 

I I o G G S 8 PP DD 8RRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C 8 yeS P 1 -0 T T 1-0 

001 1010 1000 o 01 010 xxxx 11xx 00 o 11 0 x 0 0 0 x 11 1 1 11 



-.J 

~ 
(J1 

Load Half 

Load Rest 
of First 
Operands 

Load Half 
of Second 
Operands 

Load Rest 
of Second 
Operands 

of First Begin First Begin Second 

Load Half 
of Third 
Operands 

Operands Operation Load Output Operation Load Output 

+ * + + + 
l I I I I '-1 ---, LJ L 

, I 
CLK: 14-- tdl -----+t 

I I 
I I 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

I I 
I4-tsul---+1 .thl~ I4-tsul ~ , 
INSTRUCTION: FUNCll0.01. RNDll.01. FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

HALF 
2ND OPS 

I4thl~ I+- tsul---*f 

REST 
2NDOPS 

HALF 
3RD OPS 

j4-thl~ 

I4- tsu2 
thl I 
~ I4---tsu2~thl-tt I4-tsu2~thl~ I4-tsu2~thl~ I4---tsu2~thl-tt I+-tsu2~thl~ 

DATAI3l.0) A AND B INPUTS 

SElMS/LS 

OUTl3l.0) STATUSlla.O) j4-tpd4-+1 j4-tpdS+l )4-tpd4+1 )4-tpdS-+I 

Figure 8. Double-Precision ALU Operation. Input and Output Registers Enabled 
(PIPES = 010. CLKMODE = 0) 
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In the fourth example with CLKMOOE = L, all three levels of internal registers are 
enabled. The instruction converts a double-precision integer operand to a double­
precision floating-point operand. Figure 9 shows the timing for this operating mode. 

CLKMOOE = 0 PIPES = 000 Operation: Convert Integer to Floating Point 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / YLLEH 
0 II EE 00 NN ANNR OOOTSSSATT 

I I OGGSS PP DO SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

001 10100010 o 11 000 xxx x 1100 00 0110xOOOx11 1 1 11 
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~ 
-..J 

load Half 
of First 
Operands 

load Rest 
of First 
Operands 

Begin First 
Operation 

load Half 
of Second 
Operands 

load Pipeline 

load Rest 
of Second 
Operands 

Begin Second 
Operation 

load Output 

l l ~ ~ 
I I I I "'---1 ---. L 

I I 
I If-- td2 .",td2 ---toI 
I I 

elK 

I I 

FIRST INSTRUCTION SECOND 1NSTRUCTION TH1RD INSTRUCTION 

I I 
t+- tsu1 -101 th 1 ~ 14- tsu 1--.t th1·~l4-tsu1--.! th1~ 

J 

INSTRUCTION: FUNC110.01. RNDI1.01.FAST 

HALF 
1ST OPS 

J 

I 

REST 
lSTOPS 

J 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

J4-- tsu2 ~ I+-- tsu2 
.th1 

~l+-tsu2.14 .ll+-tsu.2 .14 .ll+-tsu2 
th1 th1 th1 

~ I+-- tsu2-*--t+-th1 
th1 

DATA(31.01 A AND B INPUTS 

SElMS/lS 

OUT(31.01 STATUS(18.01 14-+1 
tpd4 

!4-+1 
tpd5 

!4-+1 
tpd4 

Figure 9. Double-Precision ALU Operation. All Registers Enabled 
(PIPES = 000. CLKMODE ... 0) 
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Double-Precision ALU Operations with CLKMODE = 1 

The next four examples are similar to the first four except that CLKMODE = H so that 
the temporary register loads on the falling edge of the clock. When the ALU is operating 
independently, setting CLKMODE high enables loading of both double-precision 
operands on successive falling and rising clock edges. 

In this clock mode a double-precision ALU operation requires one clock cycle to load 
data inputs and execute, and both halves of the 64-bit result must be read out on 
the 32-bit Y bus within one clock cycle. The settings of PIPES2-PIPESO determine 
the number of clock cycles which elapse between data input and result output. 

In the first example all registers are disabled (PIPES2-PIPESO = 111). and the addition 
is performed in flowthrough mode. As shown in Figure 10, a falling clock edge is needed 
to load half of the operands into the temporary register prior to loading the RA and 
RB registers on the next rising clock. 

CLKMODE = 1 PIPES = 111 

C C C 
L 00 P P 
K N N I I 
M F F P P 
o II E E 

II DGGSS 
0-0 E 1-02-0 

Operation: Add A + I B I 

SS 
EE 
L L RR 
00 NN 
PP DD 
7-0 1-0 

S 
E 
L 
M 
S 

FEE S / 
ANNR 

S S 
BEE R 
Y L L E H 

OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P 1 -0 T T 1-0 

001 1 000 1 000 1 11 111 xxxx 1111 00 0 1 1 0 x 0 0 0 x xx 1 1 11 
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";"I 
-.J 
(0 

___________ -1['0'0 HAlF OF O",RAND' 

ClK ~~--------------------------------------------------------------------

C FIRST INSTRUCTION 

I I 

14---tsu1 ~ 
I 

INSTRUCTION: FUNC(10.0). RNDI1.0). FAST 
I 

~ HALF1STOPS I ~~.-----------------------------------------
~ tsu2 .14 th,--+I 

REST 1ST OPS 

DATA(31.0IA AND B INPUTS 

SElMS/lS 

HALF REST --
-~------~ 

_____________________ .J ~ FIRST ~ FIRST 

OUT(31.0) STATUS(18.0) ~ tpd1 ~ j.-- tpdS---tl>/ 

Figure 10. Double-Precision ALU Operation. All Registers Disabled 
(PIPES - 111. CLKMODE - 1) 
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The second example executes subtraction of absolute values for both operands. Only 
the RA and RB registers are enabled (PIPES2-PIPESO '" 110). Timing is shown in 
Figure 11. 

CLKMODE PIPES 110 Operation: Subtract IBI - IAI 

S 
E 

C C C L 
LOO PP SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 ;0011011 11 110 xxxx 1111 00 o 1 1 0 x 000 x xx 1 1 11 

load half load Rest load Half Load Rest load Half load Rest 
of First of First of Second of Second of Third of Third 
Operands Operands Operands Operands Operands Operands 

+ + + + + + 

I I I I I 
I 

CLK I 
I 
I 

FIRST INSTRUCTION SECOND INSTRUCTION THIRD INSTRUCTION 

I I 
~tsu1~ I4-th1~~tsu1 

I 

INSTRUCTION: FUNC(10.01. RND(1.01. FAST 

I 
I4--tsu2~ I4--tsu2~ I4-- t su2 ~ ~ I4-tsu2 ___ th1~ I4---*-th1~ (4.tsu2~th1 

th1 th1 th1 tsu2 

OATA(31.0) A AND B INPUTS 

SElMSILS 

QUT(31.0) STATUS(18.0) 

7-80 

Figure 11. Double-Precision ALU Operation, Input Registers Enabled 
(PIPES - 110, CLKMODE = 1) 



The third example shows a single denormalized operand being wrapped so that it can 
be input to the multiplier. Both input and output registers are enabled 
(PIPES2-PIPESO = 010). Timing is shown in Figure 12. 

CLKMODE = 1 PIPES = 010 Operation: Wrap Denormal Input 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 TT1-0 

001 10101000 1 11 010 xxxx 11 xx 00 o 1 0 0 x 0 0 0 x xx 1 1 11 
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L 17BB.l~:nf17LNS 

load Half 
of First 
Operands 

load Rest 
of First 
Operands 

. Begin First 
Operation 

load Half 
of Second 
Operands 

load Rest 
of Second 
Operands 

Begin Second 
Operation 

load Output 

~ ~ ~ ~ 
-.J..-------., I I "'--1 ----. I 

I • 

elK I 
I 
I 

14 I td3--- ., 
FIRST INSTRUCTION SECOND INSTRUCTION 

I I 

THIRD INSTRUCTION 

I4-- tsu1--+1 th1~ I4- tsu1-+1 14- th1 +t 14-tsu1~ I+-th1~ 
I 

INSTRUCTION: FUNC(10,Ol. RND(1,Ol. FAST 

HALF 
1ST OPS 

I 

HALF 
2ND OPS 

REST 
2ND OPS 

HALF 
3RD OPS 

REST 
3RD OPS 

tsu2 "- ~ ~ I4-tsu2~ I4- tsu2-*th1-+t ~ th1~~ 
tsu2 

th1 --+t ~ th1 ~ 
tsu2 th1 th1 tsu2 

DATA(31,O) A AND B INPUTS 

SElMS/lS 

DUT(31,O) STATUS(18,O) ~ 
tpd4 

~ 
tpd5 

~ 
tpd4 

Figure 12. Double-Precision ALU Operation, Input and Output Registers Enabled 
(PIPES = 010, CLKMODE = 1) 

~ 
tpd5 
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The fourth example shows a conversion from integer to floating point format. All three 
levels of data registers are enabled (PIPES2-PIPESO) so that the FPU is fully pipelined 
in this mode (see Figure 13). 

CLKMODE = 1 PIPES = 000 Operation: Convert Integer to Floating Point 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 10100010 1 11 000 xxxx 1100 00 o 1 1 x x 0 0 0 x xx 1 1 11 
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Load Rest 
of Third 

Load Rest Operands 

of First Load Rest Load Half Begin Third 

Load. Half Operands Load Half of Second of Third Oparation 

of First Begin First of Second Operands Operands Load Plpallne !PBr8ndS rperation 1perands tadPiPBline 1 toad .Output 

j"------" I II I r 
I I 

CLK I 141d2 -\4 td2 "I 
I I 

FIRST 
INSTRUCTION 

I 

SECOND 
INSTRUCTION 

THIRD 
INSTRUCTION 

FOURTH 
INSTRUCTION 

t!!U1~ th1-!4-+1~tsu1th1~ I4---+t-tsu1 th1-1+---+1·l4---+t-tsu1 th1~ 

INSTRUCTION: FUNC(10,01. RND(1,01. FAST 

I 
~ ~ ~~ ~ ~~ ~ ~14 ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~ 
tsu2 tM t5u2 th1 tsu2 th1 tsu2th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th1 

DATA(31 ,0) A AND BINPUTS 

SELMS/LS 

OUT(31,0) STATUS(18,0.) tpd4~ tpd5-!4--t>1 tpd4-t+-+1 tpd5~ tpd4-!4--t>1 tpd5~ 

Figure 13. Double-Precision ALU Operation, All Registers Enabled 
(PIPES - 000, CLKMODE - 1) 

L 



Double-Precision Multiplier Operations 

Independent multiplier operations may also be performed in either clock mode and with 
various registers enabled. As before, examples for the two clock modes are treated 
separately. A double-precision multiply operation requires two clock cycles to execute 
(except in flowthrough mode) and from one to three other clock cycles to load the 
temporary register and to output the results, depending on the setting of 
PIPES2-PIPESO. 

Even in flowthrough mode (PIPES2-PIPESO = 111) two clock edges are required, the 
first to load half of the operands in the temporary register and the second to load the 
intermediate product in the multiplier pipeline register. Depending on the setting of 
CLKMODE, loading the temporary register may be done on either a rising or a falling 
edge. 

Double-Precision Multiplication with CLKMODE = 0 

In this first example, the A operand is multiplied by the absolute value of B operand. 
Timing for the operation is shown in Figure 14: 

CLKMODE = 0 

I I 
0-0 

PIPES = 111 

C C C 
L 00 P P 
K N N I I 
M F F P P 

o " EE 
o G G S S 
E 1-02-0 

Operation: Multiply A * I B I 

SS 
EE 
L L 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RR FEES/ YLLEH 
NNANNR OOOTSSSATT 
DO SRRCLEEEETT ELPP 
1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 1100 1000 0 11 111 1111 xxxx 00 0 x x x x 0 0 0 x xx 1 1 11 
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-..J 

eX> 
(l) 

Lv88.l:>"vLNS 

load Half of 

_______ -!r-· r -. 
ClK 

( FIRST INSTRUCTION 

I I 

\4---t SU1---+t 
INSTRUCTION: FUNC(10.01. RND(1.01. FAST 

(I - l:t~S X l::~~S 
I~----~~~----~I ---------------------------------------------------

~tsu2 ..j. th1 ~ tsu3 ~ 
DATA(31.01 A AND B INPUTS 

SElMS/lS 

~ HALF ~ REST 
_____________________ ~ FIRST ~ FIRST 

OUT(31.0) STATUS(1B.OI ~ tpd2 ~ ~tpd5----+1 

Figure 14. Double-Precision Multiplier Operation. All Registers Disabled 
(PIPES ... 111. CLKMODE .. 0) 



The second example assumes that the RA and RB input registers are enabled. With 
CLKMODE = 0 one clock cycle is required to input both the double-precision operands. 
The multiplier is set up to calculate the negative product of I A I and B operands: 

CLKMODE = 0 PIPES = 110 Operation: Multiply -(IAI * B) 

S 
E 

CCC L 
LOO PP SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

001 11 0 1 01 00 0 11 1101111 xxxx 00 o 1 1 x x 000 x xx 1 

Load Rest Load Rest 
of First Load Half of Second 
Operands of Second Operands 

Load half Operands 
of First Begin First Begin Second 
Operands Operation load Pipeline Operation 

• • + • l I I I I 
I I 

ClK I ~ td2 ------+I I 
I I 
I I 

FIRST INSTRUCTION SECOND INSTRUCTION 

i+- th1 ........... tsu1-+i 14-- th 1 ---+i , 
INSTRUCTION: FUNC(10,01. RND(1,0). FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

HALF 
2ND OPS 

REST 
2ND OPS 

I+--t su2-+t+-- th1-+1 I+- tsu2--':'- th1 .......... t su2-+i4- th1 -.J 14 ~4 th1-+1 

DATA(31 ,01 A AND B INPUTS tsu2 

SELMSILS 

1 11 

r 

~HALF REST HALF REST 
1ST 1ST 2ND 2ND 

------------------------------~ 
OUT(31.0) STATUS(18,0) I4--+i I4--+i 14-+1 14-+1 

tpd2 tpd5 tpd2 tpd5 

Figure 15. Double-Precision Multiplier Operation, Input Registers Enabled 
(PIPES == 110, CLKMODE == 0) 
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Enabling both input and output registers in the third example adds an additional delay 
of one clock cycle, as can be seen from Figure 16. The sample instruction sets up 
calculation of the product of I A I and I B I : 

CLKMODE = a 

I I 
0-0 

PIPES = 010 

CCC 
L 00 P P 
K N N I I 
M F F P P 
o II E E 
D G G S S 
E 1-0 2-0 

Operation: Multiply I A I * I B I 

SS 
EE 
L L 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RRFEES/ YLLEH 
NNANNR OOOTSSSATT 
DD SRRCLEEEETT ELPP 
1 -0 TAB C S Y C S P 1 -0 TT1-0 

00111011000 a 10 0101111 xxxx 00 a 11 x x a a a x xx 11 11 
Load Rest 

Load Half 
of First 
Operands 

+ 

Load Rest 
of First 
Operands 

Begin First 
Operation 

+ 
I 

Load Half 
of Second 
Operands 

of Second 
Operands 

Begin Second 
Operation 

eLK I+--- td2 --,...,.....--tdl~ 
I 
I 

FIRST INSTRUCTION SECOND INSTRUCTION 

~tsu1 ~ th1-tJi ... tsu1-t1Jt 
I 

FUNC(10.01. RND(1.01. FAST 
I 

I 

I 

1+ tsu2 +14- th 1 -.I 1+ tsu2" th 1 -.t 14- tsu2 +14- th 1 +I 14- tsu2 +1+ th 1 +I 

DATA(31.0) A AND B INPUTS 

SELMS/LS 

THIRD INSTRUCTION 

REST 
3RD OPS 

L 
~ 

---------------------~ 
OUT(31.01 STATUS(18.01 

Figure 16. Double-Precision Multiplier Operation, Input and Output Registers Enabled 
(PIPES -= 010, CLKMODE .. 0) 
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With all registers enabled, the fourth example shows a microinstruction to calculate 
the negated product of operands A and B: 

CLKMOOE = 0 PIPES = 000 Operation: Multiply -(A * B) 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I o G G S S PP DO SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 TT1-0 

001 11000100 o 01 000 1111 xxxx 00 o 1 1 x x 0 0 0 x xx 1 1 11 
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of First Load Half Operands 
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Operands Operation Load Pipeline Load Pipeline Load Output 
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eLK 14--- td2 .'4 td2 ~ td2 ~ 

I 
I 
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FIRST 
INSTRUCTION 

SECOND 
INSTRUCTION 

THIRD 
INSTRUCTION 

, 
~tsu1~ th1~ ~tsu1 th1~ ___ t su1 

INSTRUCTION: 
I 

FUNC110,01. RNDI1,0)' FAST , 
....... th1~ 

I4-tsu2~ 14 .14 ., '4 ~ th1--.J 
th1 tsu2 th1 tsu2 th1 tsu2 th1 tsu2 th 1 tsu2 

DATAI31 ,0) A AND B INPUTS 

SElMS/LS 

----------------------------------------------------------------~ 
OUTI31,0) STATUSI18,0) ~ 

tpd4 
~ 

tpd5 
~ 

tpd4 

Figure 17, Double-Precision Multiplier Operation. All Registers Enabled 
(PIPES = 000, CLKMODE = 0) 

~ 
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Double-Precision Multiplication with CLKMODE = 1 

Setting the CLKMODE control high causes the temporary register to load on the falling 
edge of the clock. This permits loading both double-precision operands within the same 
clock cycle. The time available to output the result is also affected by the settings 
of CLKMODE and PIPES2-PIPESO, as shown in the individual timing waveforms. 

The first multiplication example with CLKMODE set high shows a multiplication in 
flowthrough mode (PIPES2-PIPESO = 111). Figure 18 shows the timing for this 
operating mode: 

CLKMODE = 1 PIPES = 111 Operation: Multiply A * 181 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I EE S 8 E E R 
M F F P P L L RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DDS R R C [ E E E E TT E L P P 
0-0 E 1-02-0 7-0 1-0 T A 8 C S Y C S P 1 -0 T T 1-0 

001 1100 1000 1 11 111 1111 xxxx 00 o x x x x 0 0 0 x xx 1 1 11 
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• • L 
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ClK : 

< FIRST I~STRUCTION 
I+- tsu1": 

INSTRUCTION: FUNC(10,O}', RND(1,OL FAST 

< l~:~~S )(~_l_:_i_~~_s ________________ ~: ______________________________ _ 
tf-tsu2~ '4 t su3-------+t.: 

th1 

DATA(31,O} A AND B INPUTS 

SElMS/lS 

~ 
--------------------------~ 
OUT(31,O} STATUS(18,O} 

Figure 18. Double-Precision Multiplier Operation. All Registers Disabled 
(PIPES - 111. CLKMODE == 1) 

In the second example, the input registers are enabled and the instruction is otherwise 
similar to the corresponding example for CLKMODE = O. Timing is shown in Figure 19. 

CLKMODE = 1 PIPES = 110 Operation: Multiply -(IAI * B) 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

001 1101 0100 11 110 1111 xxxx 00 o 1 1 x x 0 0 0 x xx 1 1 11 
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Load Rest Load Rest 
of First of Second 
Operands Load Pipeline Operands 

Load Half 

1 
Load Half 

of Fitst Begin First of Second Begin Second 
Operands Operation Operands Operation 

~ ~ ~ ~ 
l I I I I 
eLK I i 

I ~td2 ----.t 
I I 
I I 
I I 

FIRST INSTRUCTION 

I I 
~ tsu1 ~I ~th1 

I 
INSTRUCTION: FUNC(10,OI. RND(1,OI. FAST 

HALF 
1ST OPS 

REST 
1ST OPS 

14- tsu2..-.t I. ~. th1_ 
th1 tsu2 

DATA(31,O) A AND B INPUTS 

SELMS/LS 

SECOND INSTRUCTION 

HALF 
2ND OPS 

REST 
2ND OPS 

tsu2 14 ..-1>11. ~I. th1-----.1 
th1 tsu2 

~ 

---------------------~'-----.....;.---
OUT(31,O) STATUS(18,O) 

Figure 19. Double-Precision Multiplier Operation, Input Registers Enabled 
(PIPES == 110, CLKMODE = 1) 

7-93 



With both input and output registers pipelined, the third example calculates the product 
of I A I and 18 I. Enabling the output register introduces a one-cycle delay in outputting 
the result (see Figure 20): 

CLKMODE = 1 PIPES = 010 Operation: Multiply I A I * 181 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S 8 E E R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR 555TSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 T A 8 C S Y C S P 1 -0 TT1-0 

001 1101 1000 1 11 010 1111 xxxx 00 o 1 1 x x 0 a 0 x xx 1 1 11 
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Load Rest 
of Second 

Load Rest Operands 
of First 
Operands Load Half Begin Second 

Load Half of Second Operation 
of First Begin First Operands 

Operands Operation load Pipeline I load Output 

~ + ~ ~ ~ 

FIRST INSTRUCTION SECOND INSTRUCTION 

~th1 
I 

INSTRUCTION: FUNC(10.01. RND(1.01. FAST 

HALF 
1ST OPS 

~ tsu2-----+t++114 ~14 ~ 
th1 tsu2 th1 

DATA(31,OI A AND B INPUTS 

SELMS/lS 

HALF 
2ND OPS 

~tsu2--.1144""~~I'" ~14 ~I th1 
th1 tsu2 

~ 

-------------------------'~ 
OUT(31,OI STATUSI18,OI 1414--•• +-1 tpd4 1414--.~+-1 tpd5 

Figure 20. Double-Precision Multiplier Operation, Input and Output Registers Enabled 
(PIPES - 010, CLKMODE = 11 
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-..J 
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o 
-t 
CO 
CO 
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The fourth example shows the instruction and timing (Figure 21) to generate the 
negated product of the A and B operands. This operating mode with CLKMODE set 
high and all registers enabled permits use of the shortest clock period and produces 
the most data throughput, assuming that this is. the primary operating mode in which 
the device is to function. 

Additional considerations affecting timing and throughput are discussed in the section 
on mi?<ed operations and operands. 

CLKMODE = 1 

I I 
0-0 

PIPES = 000 Operation: Multiply - (A * B) 

C C C 
LOOPP SS 
KNNII EE 
MFFPP LL 
o liE E 00 
D G G S S PP 
E 1-02-0 7-0 

S 
E 
L 
M S5 
S BEE R 

RR FEESI YLLEH 
NNANNR OOOTSSSATT 
DD SRRCLEEEETTELPP 
1 -0 TAB C S y C S P 1 -0 T T 1-0 

00111000100 1110001111 xxxx 00 011 xxOOOx xx 1111 



-oJ 

<b 
-oJ 

Load Half 
of First 
Operands 

+ 

CLK 

FIRST INSTRUCTION 

1 
14---- tsu1 ~ 

Load Rest 
of Second 

Load Pipeline 
Load Rest Operands 
of First Load· Pipeline Load Output 
Operands 

1 
Begin Second 

1 
Load Half Operation Load Half 

Begin First of Second of Third 
Operation Operands Load Pipeline Operands 

+ + • + 

1 

14-- td2 .'4 td2 .'4 td2 ---+I 
I 
I 
I 

SECOND INSTRUCTION THIRD INSTRUCTION 

1 
1+--+1 14-- tsu 1--+1 
, th1 

~ I+---tsu1~ 
th1 

INSTRUCTION: FUNC(10.OI. RND(1.OI. FAST 

HALF 
1ST OPS 

I 

HALF 
2ND OPS 

HALF 
3RD OPS 

Load Rest 
of Third 
Operands 

Begin Third 
Operation 

Load Pipeline 

• 

~ 
th1 

14--tsu2--+1 
I 

1104 .'4 .1 
I tsu2 th1 

14--tsu2 .' •• 1 I •• 14 .1 
th1 th1 

I+--tsu2 ~I~ 
th 1 , I th1 

~ t..-th1 ~ I.t- t us2 
OATA(31.0) A AND B INPUTS 

SELMS/LS 

. 
. HALF REST HALF REST 

1ST 1ST 2ND 2ND 

------------------------------------~--
OUTt31.0) STATUS(18;O) ~ ~ ~ ~ 

Figure 21. Double-Precision Multiplier Operation, All Registers Enabled 
(PIPES - 000, CLKMODE = 1) 
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Division and Square Root Operations 
The examples presented below contain sample microinstructions and timing diagrams 
for all modes of division and square root. The permissible settings of internal registers 
(PIPES2-PIPESO) are presented separately. To perform a valid divide or square root 
calculation, at least the RA and RB input registers must be enabled (PIPESO = 0). 

Sample timing waveforms are provided both for division and square root, along with 
sample microinstructions for permissible register control settings. Results for these 
operations are valid for one cycle and may be written over by results of the next 
instruction. This may happen when a double-precision operation is followed by a single­
precision operation, notably when only the input registers are enabled 
(PIPES2-PIPESO = 110). 

To retain a double-precision result on the Y output bus for an extra cycle, a NOP (no 
operation) may be coded using the following instruction: 

NOP 110-10 = 011 00000000 

Input enables ENRA and ENRB may also be set low for NOP this instruction to prevent 
loading of new data. The OEY signal is set low and SELMS/LS is set to get out the 
second half of the double-precision result. 

Division Microinstructions 

Division calculations are executed as independent multiplier operations selected by 
instruction bits 110,15 and 13. Independent multiplier operation is selected when 110 
is set low. A divide operation requires that 15 is high and 13 is low. 

In all division operations the A operand is the dividend and the B operand is the divisor. 
Operands may be single-precision integers, single-precision floating point numbers, 
or double-precision floating point numbers. The operands must be either both integer 
or both floating point. 

Mixed-precision floating point operations are executed as double-precision operations, 
with the single-precision operand converted to double-precision format automatically. 
However, a single-precision wrapped input cannot be converted to double precision, 
so mixed-precision division involving a single-precision wrapped operand is not 

CJ) permitted. 
:2 
-..J 
~ » 
(') 
-l 
00 
00 
~ 
-..J 

Single-Precision Floating Point Division 

The following four sample microinstructions select division operations on single­
precision floating point operands. Each example includes a timing diagram for a different 
setting of the internal register controls (PIPES2-PIPESO). Operands and data inputs 
are presented at the same time in these instructions. 

The first example shows an instruction to perform I A I I B with only the RA and RB 
input registers enabled (PIPES2-PIPESO = 110). The output is available after the 
seventh rising clock edge and may remain stable for that cycle only (see Figure 22). 
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CLKMODE = 0 PIPES = 110 Operation: IAI / B 

S 
E 

C CC L 
L 00 P P SS M S S 
KNN I I EE S BEE R 
M FF P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

000 0111 0000 0 01 11 0 111 1 1 11 1 00 0 1 1 x x 0 0 0 x 1 1 1 1 11 

234567 8 

elK 

1 
I I 

INST ~ __ .::U:..::ND:;:E:.:.T.:;:ER:.::;M::::IN:.:.:E::D:"'-~le)..I _________ _ 

tsu1 ~ 1 tsu1-k--+1 I 
~th1 ~th1 

1 I 
I ! 
~ UNDETERMINED IO.UOmN:\ 

y ---.I I\:::J)..-----------
tpd3~ i+-= 

Figure 22. Single-Precision Floating Point Division 
(PIPES2-PIPESO = 110) 
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In the second example, a wrapped number is divided by a normalized number. The 
result of this operation may be an inexact zero, setting the DENORM, INEX, and UNDER 
status ftags. The multiplier pipeline is enabled, allowing the next instruction to load 
one cycle earlier, on the seventh rising clock. 

CLKMODE = 0 PIPES = 100 Operation: A(wr) / B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 

I 0 II EE 00 NN ANNR OOOTSSSATT 
1 I DGGSS PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

000 011 0 0010 0 01 1 00 1111 1111 00 0 1 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 

elK 

I I A I 

INST !\:.J, UNDETERMINED le~i ------------
tsu1~ I tsu1H I 

7-100 

~th1 I+-*th1 

I I 
Y =:J UNDETERMINED I 8. 

)-. ----------(- QUOTIENT .... ---------
I I 

tpd3-+1 ~ 

Figure 23. Single-Precision Floating Point Division 
(PIPES2-PIPESO = 100) 



Input and out'put registers are enabled (PIPES2 - PIPESO = 010) in the next example, 
which shows division of two wrapped numbers. The result, which will probably be 
a normalized number, is negated by setting 12 high. Enabling the output register adds 
a one cycle delay to the output. 

CLKMODE = 0 PIPES = 010 Operation: - A(wr) I B(wr) 

S 
E 

ecc L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S I Y L L E H 

I 0 II E E 00 NN ANNR OOOTSSSATT 
1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

000 011 0 0111 0 01 01 0 1111 1111 00 0 1 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 

elK 

I I 
I I 

-~ UNDETERMINED e 
INST ~""'I ----------~I NEXT )-, -----.,....---

tsulH 1 tsu1~ 1 

~th1 ~thl 

I I 

~ UNDETERMINED l ~ 
Y ---.I I 1\::1)------

tpd4-+1 I+-
Figure 24. Single-Precision Floating Point Division 

(PIPES2-PIPESO ... 010) 
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en 
2: 

The fourth microinstruction is AlB with all registers enabled. The output is available 
after the eighth rising clock edge, and the next instruction may be loaded on the seventh. 
rising clock. . 

CLKMODE = 0 PIPES = 000 Operation: A I B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S I Y L L E H 

I 0 II EE 00 NN ANNR OOOTSSSATT 
1 I o G G S S PP DO SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

000 011 0 0000 0 01 000 1111 1111 00 0 1 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 

eLK 

I I 
I I 

... ~ UNDETERMINED ~ 
INST ~"'I --------<U)-j ---:-----------
tsu1~ I tsu1~ I 

~th1 ~th1 
I I 

\ UNDETERMINED ~ 
V --.I..-----------------<~)------

tpd4~ 

Figure 25. Single-Precision Floating Point Division 
(PIPES2-PIPESO = 000) 

~ Double-Precision Floating Point Division 
l> 
(') 
-f 
00 
00 
.Jlo 
-..J 

The next four examples show double-precision floating point division. The operands 
may be single or double precision, or a combination of both. However, wrapped single 
precision numbers may not be used. A single-precision number should be loaded in 
the most significant half of the double precision operand . 

Each example includes a timing diagram for a different setting of the internal register 
controls (PIPES2-PIPESO). The examples use both clock modes 0 and 1. 
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The first example shows a mixed-precision, mixed-mode operation with input registers 
RA and RB enabled. A single precision number is divided by a double precision wrapped 
number. The output, in double-precision format is available after thirteen rising clock 
edges, and may be valid for that cycle only. If the next operation is double precision, 
the first half of the operands may be loaded on the rising edge of clock 13 (using clock 
mode 0). The second half operands and the instruction are loaded on the fourteenth 
clock. A single-precision operation may only be loaded on the fourteenth rising edge. 

CLKMODE = 0 PIPES = 110 Operation: A / B(wr) 

I 
1 I 
0-0 

C C C 
L 00 P P 
K.NN I I 
M F F P P 
o II E E 
o G G S S 
E 1-02-0 

SS 
E E 
L L 
00 
PP 
7-0 

S 
E 
L 
M SS 
S BEE R 

RRFEES/ YLLEH 
NNANNR 555TSSSATT 
DDS RR C [ E E E E T TEL P P 
1 -0 TAB C S Y C S P 1 -0 T T 1-0 

000 111 0 0001 0 0 1 1 1 0 1 1 11 11 11 00 0 1 1 x x 0 0 0 x 1 1 1 1 11 

2 3 4 5 6 7 8 9 10 1 i 12 13 14 

elK 

J 1 \ UNDETERMINED ( I \ 

INST l\ DIV I:~i --------------<: ,-_N_EX_T_(O_P_1 --JJ4)-: ---

I I I++/- t h1 tsu1~ +I J+.th1 

~ Isu1 I tsu1-l++1 

---\ UNDETERMINED : ~ 
Y J : :L:!)-----

tpd3-+1 I+-

Figure 26. Double-Precision Floating Point Division 
(PIPES2-PIPESO = 110) 
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In the next example, the divisor is a wrapped number. Since both numbers are double 
precision, the result may overflow, setting the OVR flag. With the multiplier pipeline 
and input registers enabled, the next double-precision operands and instruction may 
be loaded on the twelfth and thirteenth rising clock edges (clock mode 0), as shown 
in Figure 27. 

CLKMODE = a PIPES = 100 Operation: A / B(wr) 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR OOOTSSSATT 

1 I DGGSS PP DD SRRCLEEEETT ELPP 
0-0 E 1-0 2-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

00 1 11 1 a 000 1 a 01 1 00 1111 11 11 00 a 1 xxOOOx111111 

2 3 4 5 6 7 8 9 10 11 12 13 14 

elK 

J \ UNDETERMINED ( I ) 
INST:\ DIV /i~I--";;';";;';;;';;;';';;';';;"------<1 NEXT IDP~ >.-: -------

I I ~th1 ~tsu1 I+*-th1 
*-* tsu1 I++t-tsu1 

y ~~ _____ ~ ____ ~U~ND~E~T~E~RM~IN~E~D _____________ !~:~~ __ __ 
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tpd3-+1 I+-

Figure 27. Double-Precision Floating Point Division 
(PIPES2-PIPESO = 100) 



A double-precision number is divided by a single-precision number in the third example. 
Clock mode 1 is used, with input and output registers enabled (PIPES2-PIPESO = 010). 
The output is available after the fourteenth rising clock edge and may only be valid 
for that cycle. If the next operation is double precision, half the operands can be loaded 
on the falling edge of the thirteenth clock, and the second half operands and instruction 
load on rising edge of the fourteenth clock. If the next operation is single precision, 
the instruction must be loaded on the fourteenth rising edge. 

CLKMODE = 1 PIPES = 010 Operation: A / 8 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S 8 E E R 
M F F P P LL RR FEE S I Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

1 I D G G S S PP DD SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 TT1-0 

001 0110 0000 1 01 010 1111 1111 00 0 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 89 10 11 12 13 14 

elK 

I I 
~ __ ~I I 

J \ UNDETERMINED ( \ 
INST 1\ DIV ji\.i...;....---;,;.;:;::..;;.;.=.:.;:;:.;;.;:::;..------4j '-__ N_EX_T_(D_PI....,...J/I).,----

tsu1-J.,..:;j I4-M-th1 tsu1~ ~th1 
I I 
I I 

\ UNDETERMINED I ~ 
v ~\.-------.:..:..;.;;;.::.:..;:::.;;;.::;.;.:.:....-------.:..-.-,v:::::r 

tpd4-.1 j4-

Figure 28. Double-Precision Floating Point Division 
(PIPES2-PIPESO = 010) 
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The last example is a microinstruction for A / B with all registers enabled 
(PIPES2-PIPESO == 000). Both operands are double precision. The output is availabie 
after the fourteenth rising edge. The next double-precision operation may be loaded 
on the. falling edge of clock 12 and the rising edge of clock 13 using clock mode 1. 
If the next operation is single precision, the instruction must be loaded on the thirteenth 
rising clock edge. 

CLKMODE == 1 PIPES == 000 Operation: A / B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 

I 0 II E E 00 NN ANNR OOOTSSSATT 
1 I D G G S S PP DD SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

001 111 0 0000 1 00 000 1111 11 11 00 0 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 9 10 11 12 13 14 

elK 

UNDETERMINED 

I 

---\ UNDETERMINED ~ 
Y ---I)--------...;;.;.=.;..;;;.;.;==---------~ 
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tpd4~ 

Figure 29. Double-Precision Floating Point Division 
(PIPES2-PIPESO == 000) 
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Integer Division 

The following sample microinstructions perform division operations on single-precision 
integer operands. Both operands must be in the same format (unsigned or two's 
complement), and absolute value, wrapped numbers, and negated outputs are not 
allowed. Each example includes a timing diagram for a different setting of the internal 
register controls (PIPES2-PIPESO). 

The first example shows A / B with only the input registers RA and RB enabled. Both 
operands are in two's complement format. The result is available after the rising edge 
of the fifteenth clock and may be valid for only that cycle. The next instruction and 
data may be loaded on the sixteenth clock. 

CLKMODE = 0 PIPES = 110 Operation: A / B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 

I 0 II E E 00 NN ANNR OOOTSSSATT 
1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P1 -0 T T 1 -0 

01001100000 0 01 1101111 1111 00 0 1 1 x x 0 0 0 x11 11 11 

2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 

eLK 

I I 

-0' UNDETERMINED A. 
INST I DIV i-----..;.....;..-.........; .............. -----~---<I\.:::)-I--~-
tsu1~ I tsu1-jf--+1 I 

~th1 ~th1 

I I 
I I 

~ UNDETERMINED A 
Y --.-I I = )---...... -

t pd3-tj j4-

Figure 30. Integer Division 
(PIPES2-PIPESO = 110) 
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Enabling the multiplier pipeline register in the second example allows the next instruction 
to be loaded one cycle earlier. The quotient is still not available until after the fifteenth 
rising clock (see Figure 31). 

CLKMODE = 0 PIPES =100 Operation: A / B 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 \I EE 00 NN ANNR OOOTSSSATT 

1 I D G G S S PP DD SRRcIEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

01001100000001 1001111111100 011 x x 000 x 11 1111 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

elK 

I I 
I I 

~ UNDETERMINED e 
INST ~"'I ----..:~:.:.:.:~;;;,;;:::;..----~I NEXT ~i ---.;...-----
tsu1~ I tsu1~ I 

~th1 ~th1 
I I 
I I 

y =>~ _____ U;..;N..;.;;D;.;;E;.;..TE;;;.R;.;.;M;.;.;IN..;.;;E;;;.D _____ ""';:---4( QUOTIENT )>-____ _ 
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Figure 31. Integer Division 

(PIPES2-PIPESO = 100) 



In the third example, unsigned integer numbers are divided. The pipeline settings 
(PIPES2-PIPESO = 010) enable the input and output registers. Timing for this 
microinstruction is shown in Figure 32. 

CLKMODE = 0 PIPES = 010 Operation: A / B 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 

I 0 II EE 00 NN ANNR 555TSSSATT 
1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02'-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

010 111 0 0000 0 01 010 1111 1111 00 0 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 9 10 111213 14 15 16 17 

elK 

I I 
I I 

~ UNDETERMINED e 
INST -V------....... ---....... ----------!C1 NEXT ~i --"---

tsu1*-+/ I tsu1~ I 
I4-tf- th 1 j+-I"\- th 1 

I I 

---\ UNDETERMINED I ~ 
y ~~-----------;...;...------;...;...;.....;,~ 

Figure 32. Integer Division 
(PIPES2-PIPESO = 010) 

\.-
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en 

The final example has all internal registers enabled. The output is valid after the 
sixteenth clock edge, but the next instruction can be loaded one cycle earlier. 

CLKMODE = 0 PIPES = 000 Operation: A I B 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S I Y L L E H 

I 0 II EE 00 NN ANNR OOOTSSSATT 
1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

01 0 111 0 0000 0 01 000 111 1 1111 00 0 1 xxOOOx 111111 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

elK 

I I 
I I 

~ UNDETERMINED e 
INST ID----------------<, NEXT )-, --,-------

tsu1~ I tsu1~ I 
I4-*th1 I+-*- th1 
I , , , 
~ UNDETERMINED ~ 

Y ~~---------------------'~f\::/ 

Figure 33. Integer Division 
(PIPES2-PIPESO = 000) 

j4... 

~ Square Root Microinstructions 

i: Square root calculations are performed as independent multiplier operations, as 
(") determined by the settings of instruction bits 110, 15, and 13. Independent multiplier 
~ operation is selected by setting 110 low, while both 15 and 13 must be set high to select 
(Xl a square root operation. 
~ 
'-I Taking the square root of a nonzero negative number sets the IVAL flag and produces 

an NaN result. Square root of negative zero does not set IVAL and produces a negative 
zero result. Only the A operand is used in a square root calculation. The operand may 
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be a single-precision integer, single-precision floating point number, or double-precision 
floating point number. Since the B operand is unused, the 17 input should be set low 
or set to match the 18 input, and the 10 input is a "Don't Care" 

Single-Precision Floating Point Square Root 

The following four sample microinstructions select square root operations on single­
precision floating point operands. Each example includes a timing diagram for a different 
setting of the internal register controls (PIPES2-PIPESO). 

The first example shows an instruction to perform SQRT I A I on a wrapped number 
with only the RA and RB input registers enabled (PIPES2-PIPESO = 110). The result 
is available after the tenth rising clock edge and may be valid only for that cycle. The 
next instructions and data operand may be loaded on the following rising clock. 

CLKMODE = 0 PIPES = 110 Operation: SQRT IAI 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 

I 0 II EE 00 NN ANNR OOOTSSSATT 
1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

000 011 1 1 01 x 0 01 11 0 111 1 1 11 1 00 0 1 1 x x 0 0 0 x 11 1 1 11 

23456789 10 11 

eLK 

I I 
I I -9 UNDETERMINED e INST S. QUARE _______________ -:-__ -:<, NEXT )-, _____ _ 

I ROOT, 

tsu1-1+-+1 I tsu1 ~ , 
I'Ht"th1 ~th1 

Y ~. I UNDETERMINED r:::::::'\. QUARE )-______ _ 

--I '\.:::::J 
If,-

Figure 34. Single-Precision Floating Point Square Root 
IPIPES2-PIPESO = 110) 
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The square root of a wrapped number is calculated in the second example. Both the 
input registers and multiplier pipeline are enabled, allowing the next instruction to be 
loaded on the tenth rising clock (see Figure 35). 

CLKMODE = a PIPES = 100 Operation: SQRT A(wr) 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

1 I D G G S S PP DDS R R C [ E EE E T TEL P P 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1-0 T T 1-0 

000 a 11 a 00 1 x a 01 1 00 1111 1111 00 a 1 1 x x a a a x 1 1 1 1 11 

23456789 10 11 

eLK 

I 
I I 

-@ UNDETERMINED e 
INST SQUARE ----------~I NEXT .... 1 -----------

I ROOT 1 

tsu1 ~ 1 t su1-1.--.! I 
~th1 j+-+t-th1 

Y ~ UNDETERMINED I ~...-______ _ 

---.I I I\:::::J 

7-112 

tpd3-tj 14-
PIPES (1101 

Figure 35. Single-Precision Floating Point Square Root 
(PIPES2-PIPESO =:' 100) 



Enabling both the input and output registers (PIPES2-PIPESO = 010) in the next 
example delays the output by one cycle. This instruction calculates - SQRT I A I 
CLKMODE = 0 PIPES = 010 Operation: - SQRT I A I 

1 I 
0-0 

C C C 
L 00 P P 
K N N I I 
M F F P P 

o " EE 
D G G S S 
E 1-02-0 

SS 
EE 
L L 
00 
PP 
7-0 

RR 
NN 
DD 
1-0 

S 
E 
L 
M SS 
S BEE R 

FEE S / Y L L E H 
ANNR OOOTSSSATT 
SRRCLEEEETTELPP 
TAB C S Y C S P 1-0 T T 1-0 

000 011 0 01 Ox 0 0.1 01 0 1111 111 1 00 0 1 1 x x 0 0 0 x 11 1 1 11 

23456789 10 11 

elK 

-§ UNDETERMINED 8' INST SQUARE ~ ____________ -~I . NEXT )..,-------

I ROOT I 
tsu1~ I tsu1-1+---i I 

14-+1- th 1 j4-tf- th 1 

V ---\ UNDETERMINED ~ ;-;;;;:;:;'\).. ___ _ 

--..I "~ 
t pd4-+j j4-

Figure 36. Single-Precision Floating Point Square Root 
(PIPES2-PIPESO = 010) 
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The fourth instruction performs SQRT A with all registers enabled. The output is valid 
after the .eleventh rising clock edge, and the next instruction may be loaded on the 
tenth rising clock. 

CLKMODE = 0 PIPES = 000 Operation: SQRT A 

C C C 
LOO PP SS 
KNN I I EE 
M F F PP L L 
0 II EE 00 

1 I D G G S S PP 
0-0 E 1-02-0 7-0 

RR 
NN 
DD 
1-0 

S 
E 
L 
M 
S 

FEE S I 
ANNR 

S S 
BEE R 
Y L L E H 

OOOTSSSATT 
SRRCLEEEETT EtPP 
TAB C S Y C S P 1-0 T T 1-0 

000 011 0 1 OOx 0 01 000 1111 1 111 00 0 1 1 x x 0 0 0 x 1 1 1 1 1 1 

23456789 10 11 

eLK 

I I 
I I 

INST ~ ____ U_N_D_ET_E_R_M_IN_E_D __ -<leNEXT ·>-1--...:...---------
~ 

tsu 1--f4-+/ I tsu 1 ~ 1 
~th1 ~th1 

y >--_______ ~ SQUARE ~_ =:J UNDETERMINED @ 
I ROOT 

7-114 

t pd4-11i j4-

Figure 37. Single-Precision Floating Point Square Root 
(PIPES2-PIPESO = 000) 



Double-Precision Floating Point Square Root 

The next four examples show square root operations on double-precision floating point 
operands. Each example includes a timing diagram for a different setting of the internal 
register controls (PIPES2-PIPESO). Both clock modes 0 and 1 are used in the examples. 

The first sample instruction calculates - SORT A. Clock mode 1 is shown. With only 
the input registers RA and RB enabled, the output is valid after the sixteenth rising 
clock edge and may be stable for that cycle only. If the next instruction is a double­
precision operation, the first half of the data operands may be loaded on the falling 
edge of clock 16 (assuming clock mode 1). The second half of the data and the 
instruction are loaded on the seventeenth rising clock edge. A single-precision operation 
must be loaded on the seventeenth rising edge. 

CLKMODE = 1 PIPES = 110 Operation: - SORT A 

S 
E 

C C C L 
L 00 P P SS M S S 
KNN I I EE S BEE R 
M F F P P L L RR FEE S / Y L L E H 

I 0 II E E 00 NN ANNR OOOTSSSATT 
1 I D G G S S PP DDS R R C LE E E E T TEL P P 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

001 0110 11 Ox 1 11 110 1111 1111 00 01 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 9 1011 12 1314 15 16 17 

eLK 

UNDETERMINED 
INST I I 

-_-:-' I _""-__ '"""'1',"" ,I 
I I **-th1 I 
~tsu1 I ~th1 

I I 

=>~ _____________ U_N_DE_T_E_R_M_IN_E_D ___________ ~I~@SQUARE ~ ___ 
Y II ROOT 

I I 
-.I I4-tpd3 

Figure 3S. Double-Precision Floating Point Square Root 
(PIPES2-PIPESO = 110) 
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The second example shows an instruction to perform SQRT 1 A I. Because the multiplier 
pipeline is enabled (PIPES2-PIPESO = 100), the next double-precision operand and 
instruction may be loaded on the falling edge of clock 1 5 (using clock mode 1) and 
the rising edge of clock 16. If the next operation is single precision, it must be loaded 
on the sixteenth rising clock. 

CLKMODE = 0 PIPES = 100 Operation: SQRT IAI 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P LL RR FEE S I Y L L E H 

I 011 EE 00 NN ANNR OOOTSS SATT 
1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 0111 100x 0 01 100 1111 1111 00 0 1 1 x x 0 0 0 x 11 1 1 11 

eLK 

INST 

7-116 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

UNDETERMINED 
NEXT lOP) 

I I I ___ ~_I 

1+--* t$u1 I I 
I4-+1-th1 

~ ________________ U_N_D~ET_E~R_M_IN~E~D ____________ ~:~@SQUAAE ~ ____ _ 
I I ROOT 

I I 
-+I J+-tpd3 

Figure 39. Double-Precision Floating Point Square Root 
(PIPES2-PIPESO = 100) 



In the third example, the operand is a Wrapped number. With both input and output 
registers enabled (PIPES2-PIPESO = 010), the output is valid after the seventeenth 
clock cycle. If the next operation is double precision, the first.halfoperands may be 
loaded on the sixteenth rising clock edge, using clock mode O. The remaining operands 
and instruction are then loaded on the seventeenth rising edge. If the next operation 
is single precision, the instruction and operands are loaded on the rising edge of 
clock 17. 

CLKMODE = 1 PIPES = 010 Operation: SQRT A(wr) 

S 
E 

C C C L 
LOa PP SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S / Y L L E H 
a I I EE 00 NN ANNR OOOTSSSATT 

1 I D G G S S PP DD SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 011 0 1 01 x 1 1 0 01 0 111 1 1 1 1 1 00 0 1 1 x x 0 0 0 x 11 1 1 11 

elK 

INST 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

UNDETERMINED 
I 

~----.-'I 

I I 
r+*"th1 

>-__________________ U_N~D~E_T~ER~M_I~NE~D ________________ ~: @SQUARE 
I I ROOT 

I I 

Figure 40. Double-Precision Floating Point Square Root 
IPIPES2-PIPESO = 010) 

--+I I+- tpd4 
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All registers are enabled in the fourth example, which calculates SORT A. Using clock 
mode 0, the next double precision operation may be loaded on the fifteenth and 
sixteenth rising clock edges. A single precision operat\on would load on the sixteenth 
clock. The output is available after the sixteenth rising clock edge and may only be 
valid for that cycle (see Figure 41). 

CLKMODE = a PIPES = 000 Operation: SORT A 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S / Y L L EH 
0 II E E 00 NN ANNR OOOTSSSATT 

1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-0 2-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

001 0110 100x a 01 000 1111 1111 00 a 1 1 x x a a a x 11 1 1 11 

2 3 4 5 6 7 8 9 1011 121314 15 16 17 

elK 

I 
I 

INST 
UNDETERMINED 

NEXT lOP) I 
I ,I 
I '-----....,.JI I 
1+-+1- tsu 1 I I I 

V t h1 I 

y~~ ______________ ~U_N_D_ET_E~R_M_IN~E~D ________________ -+l_®sauARE 
I I ROOT 

I I 

7-118 

-+I \4-tpd4 

Figure 41. Double-Precision Floating Point Square Root 
(PIPES2-PIPESO = 000) 



Integer Square Root 

The following example microinstructions perform square root operations on single 
precision integer operands. Absolute values and negated results are not valid options 
for integer calculations. Each example includes a timing diagram for a different setting 
of the internal register controls (PIPES2-PIPESO). 

The first instruction performs the square root of an unsigned integer with only the 
RA and RBinput registers enabled. The output is available after the nineteenth rising 
clock edge and may only be valid for that cycle. The next instruction may be loaded 
on the twentieth rising edge. 

CLKMODE = 0 PIPES = 110 Operation: SQRT A 

S 
E 

C C C L 
L 00 P P SS M S S 
KNN I I E E S BEE R 
M F F P P L L RR FEE S / Y L L EH 
0 II EE 00 NN ANNR 555TSS SATT 

1 I o G G S S PP DO SRRCLEEEETT E L P P 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

010 1100 OOOx 0 01 110 11111111 00 0 1 1 x x 0 0 0 x 11 1 1 11 

2 3 4 5 6 7 8 9 1011 12131415161718 19 20 

elK 

I 

~ UNDETERMINED e-' INST SQUARE ~---------"';"';';'-"';=';';;';'~------I--_, NEXT , 
ROOT " 

, I I 
I ~th1 tsu1-1+-+{ , 

i+-+I- tsu 1 th 1-*+1 

Y ~I UNDETERMINED @-SQUARE''''''' 

I I ROOT o:::t 
I , 00 

Figure 42. Integer Square Root 
(PIPES2-PIPESO = 110) 
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Enabling the multiplier pipeline register (PIPES2-PIPESO = 100) in the second example 
allows the next instruction to be loaded one cycle earlier, on the nineteenth clock. 
The output will be valid after the nineteenth rising clock edge. (See Figure 43). 

CLKMOOE = 0 PIPES = 100 Operation: SQRT A 

S 
E 

CCC L 
L 00 P P SS M S S 
KNN I I E E S BEE R 
M F F P P L L RR FEE S / Y L L E H 
0 II E E 00 NN ANNR 555TSSSATT 

1 I o G G S S PP DO SRRCLEEEETT ELPP 
0-0 E 1-02-0 7-0 1 -0 TAB C S Y C S P 1 -0 T T 1-0 

010 1100000x 001 1001111111100 011 x x 000 x 11 1111 

2 3 4 5 6 7 8 9 1011 12131415161718 19 20 

elK 

I 

~ UNDETERMINED e' 
INST SQUARE .------------------~I NEXT >-,----­

, ROOT I 

I I 
I 14-+1- tsu 1 tsu 1-14--+1 I 

y ~~Y' UNDm~N'D r §-

7-120 

Figure 43. Integer Square Root 
(PIPES2-PIPESO =100) 
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The third example instruction performs SORT A on a two's complement integer 
operand. With both input and output registers enabled (PIPE2-PIPEO = 010), the output 
is valid after the twentieth rising clock edge. The next instruction may be loaded on 
the twentieth clock. 

CLKMODE = 0 PIPES = 010 Operation: SORT A 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S I Y L L E H 
0 II E E 00 NN ANNR 555TSSSATT 

1 I D G G S S PP DD SRRCLEEEETTELPP 
0-0 E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

010 0100 OOOx o 01 01011111111 00 o 1 1 x xOOOx 11 1 1 11 

2 3 4 5 6 7 8 91011 12131415161718 19 20 

elK 

I I 

~ UNDETERMINED 81 
INST SQUARE ~--------':"""';-"":"----------000004: NEXT )-1 ---

1 ROOT I 

I I I I 
I i+-+I- th1 : **-th1 

J 
'+-*-tsu 1 i+-+j- tsu1 

y .~~ ___________ ....:..U~ND~E~T~E~RM~IN~E~D ____________ ~i :~ 

Figure 44. Integer Square Root 
(PIPES2-PJPESO = 010) 
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The final example shows SORT A with all registers enabled. The next instruction may 
be loaded on the nineteenth rising clock edge, but the output will not be available until 
after the twentieth rising .clock. 

CLKMODE = 0 PIPES = 000 Operation: SORT A 

S 
E 

CCC L 
L 00 P P SS M S S 
K N N I I E E S BEE R 
M F F P P L L RR FEE S I Y L L E H 
0 II E E 00 NN ANNR 555TSSSATT 

1 I D G G S S PP DD SRRCLEEEETTELPP 
O~O E 1-02-0 7-0 1-0 TAB C S Y C S P 1 -0 T T 1-0 

0100100 OOOx 0 01 000 1111 1111 00 0 1 1 x x 0 0 0 x 11 1 1 11 

elK 

INST 

7~122 

2 3 4 5 6 7 8 9 1011 1213141516 17 18 19 20 

UNDETERMINED 

~ __________________ U~N~D~E~T~ER~M~I~N~ED~ ______________ ~@-SQUARE 
I ROOT 

I 

Figure 45. Integer Square Root 
(PIPES2-PIPESO = 000) 
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Chained Multiplier! ALU Operations 

Simultaneous multiplier and ALU functions can be selected in chained mode to support 
calculation of sums of products or products of sums. Operations selectable in chained 
mode overlap partially with those selectable in independent multiplier or ALU operating 
mode. Format conversions, absolute values, and wrapping or unwrapping of denormal 
numbers are not available in chained mode. 

To calculate sums of products, the FPU can operate on external data inputs in the 
multiplier while the ALU operates on feedback from the previous calculation. The 
operand selects SELOPS7-SELOPSO can be set to select multiplier inputs from the 
RA and RB registers and ALU inputs from the P and S registers. 

The sample microinstruction sequence shown in Tables 36 and 37 performs the 
operations for multiplying sets of data operands and accumulating the results, the basic 
operations involved in computing a sum of products. 

Table 36 represents the operations, clock cycles, and register contents for a single­
precision sum of four products. Registers used include the RA and RB input registers 
and the product (P) and sum (S) registers. 

Table 36. Single-Precision Sum of Products (PIPES2-PIPESO ... 010) 

CLOCK MUL TlPLIER/ALU 
PSEUDOCODE 

CYCLE OPERATIONS 

1 Load A, B A -+ RA, B -+ RB 

A * B 
2 Pass P(AB) to S 

C -+ RA, D -+ RB 
Load C, D 

C * D 
A * B -+ P(AB) 

3 S(AB) + P(CD) P(AB) + 0 -+ S(AB) 
Load E, F E ..... RA, F ..... RB 

E * F C * D -+ P(CD) 

4 S(AB + CD) + P(EF) S(AB) + P(CD) ..... S(AB + CD) 
Load G, H G -+ RA, H ..... RB 

G * H E * F ..... P(EF) 

5 S(AB + CD) + EF) + P(GH) S(AB + CD) + P(EF) -+ S(AB + CD + EF) 
G * H -+ P(GH) 

6 New Instruction S(AB + CD + EF) + P(GH) ..... S(AB + CD + EF + GH) 
'" o:t 
OJ 
OJ 
I-

A microcode sequence to generate this sum of product is shown in Table 37. Only ~ 
three instructions in chained mode are required, since the multiplier begins the o:t 
calculation independently and the ALU completes it independently. '" 

2 
en 
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Table 37. Sample Microinstructions for Single-Precision Sum of Products 

S 
E 

C CC L 
L 00 pp SS M S S 
K N N I I E E S B EE R 
M FF pp L L RR F E E S I Y L L E H 
0 II EE 00 NN ANN R 000 T SS SAT T 

I I D GG SS pp DD S R R C LEE E E TT E L pp 
9-0 E 1-0 2-0 7-0 1-0 T A B C S yes p 1-0 T T 1-0 

00 0100 0000 a 01 010 1111 xxxx 00 a 1 x x x x x x xx 1 1 11 
10 0110 0000 a 01 010 1111 xxxx 00 a x x x x x x xx 1 1 11 
10 0000 0000 a 01 010 11111010 00 a x x x x x x xx 11 
10 0000 0000 a 01 010 xxxx 1010 00 a x x x x x x xx 11 
00 0000 0000 a 01 010 xxxx 1010 00 a x x x x x x x x xx 11 
xx xxxx xxxx x xx xxx xxxx xxx x xx x x x x X a a a x xx 11 

Fully Pipelined Double-Precision Operations 

Performing fully pipelined double-precision operations requires a detailed understanding 
of timing constraints imposed by the multiplier. In particular, sum of products and 
product of sums operations can be executed very quickly, mostly in chained mode, 
assuming that timing relationships between the ALU and the multiplier are coded 
properly. 

Pseudocode tables for these sequences are provided, (Table 38 and Table 39) showing 
how data and instructions are input in relation to the system clock. The overall patterns 
of calculations for an extended sum of products and an extended product of sums 
are presented. These examples assume FPU operation in CLKMODE 0, with the CONFIG 
setting HL to load operands by MSH and LSH, all registers enabled 
(PIPES2 - PIPESO = LLL), and the C register clock tied to the system clock. 

In the sum of products timing table, the two initial products are generated in 
independent multiplier mode. Several timing relationships should be noted in the table. 
The first chained instruction loads and begins to execute following the sixth rising 

(J) edge of the clock, after the first product P1 has already been held in the P register 
2 for one clock. For this reason, P1 is loaded into the C register so that P1 will be stable 
~ for two clocks. 
l> 
("') 
-f 
CO 
CO 
~ 
'-J 

On the seventh clock, the ALU pipeline register loads with an unwanted sum, P1 + P1. 
However, because the ALU timing is constrained by the multiplier, the S register will 
not load until the rising edge of CLK9, when the ALU pipe contains the desired sum, 
P1 + P2. The remaining sequence of chained operations then execute in the desired 
manner. 
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Table 38. Pseudocode for Fully PipelinedDouble-Precision Sum of Products t 
(CLKM=O, CON FIG = 10, PIPES ... OOO, CLKC-SYSCLK) 

DA DB 
ClK 

BUS BUS 

I1 A1 MSH B1 MSH 

Iz A1 LSH B1 LSH 

I3 A2 MSH B2 MSH 

I4 A2 LSH B2 LSH 

I5 A3 MSH B3 MSH 

I6 A3 LSH B3 LSH 

I7 A4 MSH B4 MSH 

Is A4 LSH B4 LSH 

I9 A5 MSH B5 MSH 

Sio A5 LSH B5 LSH 

..111 A6 MSH B6 MSH 

..112 

tpR = Product Register 
SR = Sum Register 
CR = Constant (C) Register 

TEMP 
REG 

A1,B1MSH 

A 1 ,B1 MSH 

A2,B2MSH 

A2,B2MSH 

A3,B3MSH 

A3,B3MSH 

A4,B4MSH 

A4,B4MSH 

A5,B5MSH 

A5,B5MSH 

A6,B6(M) 

SN74ACT8847 

INS 
BUS 

Al *B1 

A1 *B1 

A2*B2 

A2*B2 

PR+CR 

A3*B3 

PR+CR 

A3*B3 

PR+SR 

A4*B4 

PR+SR 

A4*B4 

PR+SR 

A5*B5 

PR+SR 

A5*B5 

PR+SR 

A6*B6 

INS RA RB MUl P C 

REG REG REG PIPE REG REG 

A1 *B1 A1 B1 

A1 *B1 Al B1 A1 *B1 

A2*B2 A2 B2 A1 *B1 

A2*B2 A2 B2 A2*B2 P1 

PR+CR, 

A3*B3 
A3 B3 A2 *B2 P1 P1 

PR+SR, 
A3 B3 A3*B3 P2 P1 

A3*B3 

PI'l+SR, 
A4 B4 

A4*B4 
A3*B3 P2 P1 

PR+SR, 

A4*B4 
A4 B4 A4*B4 P3 P2 

PR+SR, 
A5 B5 A4*B4 P3 P3 

A5*B5 

PR+SR, 

A5*B5 
A5 B5 A5*B5 P4 P3 

AlU S y I 

PIPE REG BUS, 

i 

P1 +P1 

Pl +P2 

S1 +P2 S1 

S1 +P3 S1 

XXXXX S2 



-;J 
~ 

N 
en 

L1788.L3"'17LNS 
Table 39. Pseudocode tor Fully Pipelined Double-Precision Product of Sums t 

(CLKM = 0, CON FIG = 10, PIPES = 000, CLKC-SYSCLK) 

DA 
eLK 

DB. TEMP INS 
BUS BUS REG BUS 

I1 A11MI B11MI A1,B1IMI A 1 + B1 

I2 A 11LI B11LI A1,BlIMI A 1 + B1 

I3 A2.IMI B2IM) A2,B2IM) A2+B2 

I4 A21Li B21Li A2,B2IM) A2+B2 

I5 A3IM) B3IM) 
CR*5R 

A3,B3IM) 
A3+B3 

I6 A31LI B31Li 
CR*5R 

A3,B3IM) 
A3+B3 

I7 XXX XXX XXX NOP 

Is PR*5R 
A4IM) B4IM) A4,B4IM) 

A4+B4 

I9 PR*5R 
A41LI B4IL) A4,B4IM) 

A4+B4 

Sio XXX XXX XXX NOP 

Si1 
PR*5R 

A5IM) B5IM) A5,B5IM) 
A5+B5 

J12 
PR*5R 

A5IL) B5IL) A5,B5IM) 
A5+B5 

NOTE: NOP instruction is 011 0000 0000. 
t PR = Product Register 

SR = Sum Register 
CR = Constant (C) Register 

INS RA RB MUL P C ALU 
REG REG REG PIPE REG REG PIPE 

A 1 +B1 A1 B1 

A 1 +B1 A1 B1 A1 +B1 

A2+B2 A2 B2 A 1 + B1 

ENRC=L 
A2+B2 A2 B2 

51 
A2+B2 

CR*5R 
A3 B3 51 A2+B2 

A3+B3 

CR*5R 
A3 B3 51 *52 51 A3+B3 

A3+B3 

NOP 
ENRA =L ENRB = l 

51 *52 51 A3+B3 
A3 B3 

PR*5R 
A4 B4 XXX P1 51 XXX 

A4+B4 

PR*5R 
A4 B4 P1 *S3 P1 51 A4+B4 

A4+B4 

ENRA =L ENRB=L 
NOP P1 *53 XXX 51 A4+B4 

A4 B4 

PR*5R 
A5 B5 XXX P2 51 X 

A5+B5 

S Y 

REG BUS 

51 

51 

52 

52 

XXX 

53 

53 

XXX 

54 



In the product of sums timing table, the two initial sums are generated in independent 
ALU mode. The remaining operations are shown as alternating chained operations 
followed by NOPs (no operations). The NOPs are necessary to provide an extra cycle 
during which the multiplier outputs the current intermediate product. The current sum 
and the latest intermediate product are then fed back to the multiplier inputs for the 
next chained operations .. In this manner a double-precision product of sums is generated 
in three system clocks, as opposed to two clocks for a double-precision sum of 
products. 

Mixed Operations and Operands 

Using mixed-precision data operands or performing sequences of mixed operations 
may require adjustments in timing, operand precision, and control settings. To simplify 
microcoding sequences involving mixed operations, mixed-precision operands, or both, 
it is useful to understand several specific requirements for mixed-mode or mixed­
precision processing. 

Calculations involving mixed-precision operands must be performed as double-precision 
operations. The instruction settings (18-17) should be set to indicate the precision of 
each operand from the RA and RB input registers. (Feedback operands from internal 
registers are also double-precision.) Mixed-precision operations should not be performed 
in chained mode. 

Timing for operations with mixed-precision operands is the same as for a corresponding 
double-precision operation. In a mixed-precision operation, the single-precision operand 
must be loaded into the upper half of its input register. 

Most format conversions also involve double-precision timing. Conversions between 
single- and double-precision floating point format are treated as mixed-precision 
operations. During integer to floating point conversions, the integer input should be 
loaded into the upper half of the RA register. 

In applications where mixed-precision operations is not required, it is possible to tie 
the 18-17 instruction inputs together so that both controls always select the same 
precision. 

Sequences of mixed operations may require changes in multiple control settings to 
deal with changes in timing of input, execution, and output of results. Figure 46 shows ,..... 
a simplified timing waveform fora series of mixed operations: ~ 
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CLOCK CYCLE 

FUNCTION 
AND DATA 

RESULTS 
AND STATUS 

A,B 

2 3 

A,B C,D 

XXXX 

4 5 6 

C,D E,F 

A,B xxx X C,D 

7 8 9 10 11 12 13 

G,H G,H I,J I,J K,L M,N 

E,F E,F G,H G,H I.J K,L M,N 

A,B,C,D - double precIsion multiply; E,F - single precIsion operation; G,H,I,J - double 
precision add; K,L - single precision opration. A double precision number is not required to 
be held on the outputs for two cycles unless it is followed by a like double precision function. 
If a double precision multiply is followed by single precision operation, there must be one open 
clock cycle. 

Figure 46. Mixed Operations and Operands 
(PIPES2-PIPESO == 110, CLKMODE = 01 

In this sequence, the fifth cycle is left open because a single-precision multiply follows 
a double-precision mUltiply. If the SP multiply were input during the period following 
the fourth rising clock edge, the result of the preceding operation would be overwritten, 
since an SP multiply executes in one clock cycle. To avoid such a condition, the FPU 
will not load during the required open cycle. 

Because the sequence of mixed operations places constraints on output timing, only 
one cycle is available to output the double-precision (C * DI result. By contrast, the 
SP multiply (E * F) is available for two cycles because the operation which follows 
it does not output a result in the period following the seventh rising clock edge .. In 
general, the precision and timing of each operation affects the timing of adjacent 
operations. 

Control settings for CLKMODE and registers must also be considered in relation to 
precision and speed of execution. In Figure 47, a similar sequence of mixed operations 
is set up for execution in fully pipelined mode: 

CLOCK CYCLE 

2 3 4 5 6 7 8 9 10 11 12 13 

en FUNCTION 
:2 AND DATA 

" 
A,B C.D E,F G,H I,J K.L M,N Q,P Q,R 

~ 
l> 
("') 
-I 
CO 
CO 
~ 

" 

RESULTS 
AND STATUS A,B A.B C,D E,F G.H I,J K.L M,N M.N 

A,B,C,D - double precision multiply; E,F - single precision operation; G,H, - double precision 
add; I,J,K,L,M,N - single precision operation; O,P,Q.R - double precision multiply. In clock 
mode 1. a double precision result is two cycles long only when a double precision multiply is 
followed by a double precision mUltiply. 
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Figure 47. Mixed Operations and Operands 
(PIPES2"PIPESO == 000, CLKMODE = 11 



Although the data operands can be loaded in one clock cycle with CLKMODE set high, 
enabling two additional internal registers delays the (A * B) result one cycle beyond 
the previous example. Again, an open cycle is required after the (C * D) operation 
because the next operation is single precision. The result of the (C * D) multiply is 
available for one cycle instead of two, also because the following operation is single 
precision. With this setting of CLKMODE and PIPES2-PIPESO, a double-precision result 
is only available for two clock cycles when one DP multiply follows another DP mUltiply. 

Matrix Operations 

The' ACT884 7 floating point unit can also be used to perform matrix manipulations 
involved in graphics processing or digital signal processing. The FPU multiplies and 
adds data elements, executing sequences of microprogrammed calculations to form 
new matrices. 

Representation of Variables 

In state representations of control systems, an n-th order linear differential equation 
with constant coefficients can be represented as a sequence of n first-order linear 
differential equations expressed in terms of state variables: 

dx1 -cit = x 2, ... , 
dx(n -1) = xn 

dt 
For example, in vector-matrix form the equations of an nth-order system can be 
represented as follows: 

xl a 11 a12 a1n 

rn 
b11 b1n 

~ d 
x2 x2 u2 

dt 
: + 

xn an1 an2 ann xn bn1 bnn un 

or, X = ax + bu 

Expanding the matrix equation for one state variable, dx1/dt, results in the following ,.... 
expression: ~ 

(X) 
~ 

X1 = (a11 * x1 + + a1n * xn) + (b11 * u1 + ... + b1n * un) U 
« 

where X1 = dx1/dt. ~ 
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Sequences of multiplications and additions are required when such state space 
transformations are performed. and the' ACT884 7 has been designed to support such 
sum-of-products operations. An n x n matrix A multiplied by an n x n matrix X yields 
an n x n matrix C whose elements cij are given by this equation: 

n 

cij = E aik * xkj for i = 1 •...• n j = 1 •...• n 

k=1 

(1 ) 

For the cij elements to be calculated by the' ACT884 7. the corresponding elements 
aik and xkj must be stored outside the' ACT884 7 and fed to the • ACT884 7 in the 
proper order required to effect a matrix multiplication such as the state space system 
representation just discussed. 

Sample Matrix Transformation 

The matrix manipulations commonly performed in graphics systems can be regarded 
as geometrical transformations of graphic objects. A matrix operation on another matrix 
representing a graphic object may result in scaling. rotating. transforming. distorting. 
or generating a perspective view of the image. By performing a matrix operation on 
the position vectors which define the vertices of an image surface. the shape and 
position of the surface can be manipulated. 

The generalized 4 x 4 matrix for transforming a three-dimensional object with 
homogeneous coordinates is shown below: 

a b c d 
e g h 

T k I 
• . o. 

m n 0 p 

The matrix T can be partitioned into four component matrices. each of which produces 
a specific effect on the resultant image: 

3 
3 x 3 x 

.. 
1 x 3 1 x 1 
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The 3 x 3 matrix produces linear transformation in the form of scaling, shearing and 
rotation. The 1 x 3 row matrix produces translation, while the 3 x 1 column matrix 
produces perspective transformation with multiple vanishing points. The final single 
element 1 x 1 produces overall scaling. Overall operation of the transformation matrix 
T on the position vectors of a graphic object produces a combination of shearing, 
rotation, reflection, translation, perspective, and overall scaling. 

The rotation of an object about an arbitrary axis in a three-dimensional space can be 
carried out by first translating the object such that the desired axis of rotation passes 
through the origin of the coordinate system, then rotating the object about the axis 
through the origin, and finally translating the rotated object such that the axis of rotation 
resumes its initial position. If the axis of rotation passes through the point P = [a b c1 L 
then the transformation matrix is representable in this form: 

[x y z hJ [x y z 1 J 1 
a 
a 

-a 

a a 
1 a 
a 1 

-b -c 

I 
translation 
to origin 

a 
a 
a 
1 G 

1 a a a (2) 

a 1 a a 
a a a 
a b c 

I 
rotation translation 
about back to initial 
origin position 
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where R may be expressed as: 

R 

and 

n12 + (1-n)2 cos</> n 1 n2( l-cos</» + n3sin</> n 1 n3( l-cos</» - n2sin</> 0 

n 1 n2( l-cos</» - n3sin</> n22 + (1-n2)2 cos</> n2n3(1-cos</»+nlsin</> 0 

n 1 n3( l-cos</» + n2sin</> n2n3( 1-cos</» - n 1 sin</> n3 2 + (1-n3)2 cos</> 0 

o o 

n1 = q1/(q1 2 + q22 + q32)1/2 

n2 = q2/(q1 2 + q2 2 +q32)1/2 

o 

direction cosine for x-axis of 
rotation 

direction cosine for y-axis of rotation 

n3 = q3/(q1 2 + q22 + q32) 1 /2 = direction cosine for z-axis of rotation 

n = (n1 n2 n3) = unit vector for Q 

Q = vector defining axis of rotation = Iq 1 q2 q3] 

</> == the rotation angle about Q 

A general rotation using equation (2) is effected by determining the Ix y z] coordinates 
of a point A to be rotated on the object, the direction cosines of the axis of rotation 
[n 1 ,n2, n31. and the angle </> of rotation about the axis, all of which are needed to 
define matrix [R]. Suppose, for example, that a tetrahedron ABeD, represented by 
the coordinate matrix below is to be rotated about an axis of rotation RX which passes 
through a point P = [5 - 6 3 1] and whose direction cosines are given by unit vector 
[n1 = 0.866, n2 = 0.5, n3 = 0.707]. The angle of rotation 0 is 90 degrees (see 
Figure 24). The rotation matrix [R] becomes 

2 -3 3 A 
1 -2 2 B 
2 -1 2 C 
2 -2 2 D 

0.750 1.140 0.112 0 
-0.274 0.250 1.220 0 

R 
1.112 -0.513 0.500 0 

0 0 0 
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Y 

z' 

+---- ----------, r-- DT 
I BT """'--- a 111) 

(2)1 AT 55° I 
I I 

x'+-----------~~~~~~~4~5~0----------b~----------------~)X 
I CR // 10 .. P' 

z 

L_.-. ,/ I 
BR I 

I DR I 
I I C' / 

o L-..!.3L_~'~D' 900 

~ ·----~--"___:lr::.P (5, -6, 31 
I 
I 
I 

Y' 

(1) THIS ARROW DEPICTS THE FIRST TRANSLATION 
(2) THIS MOW DEPICTS THE 90° ROTATION 
(31 THIS ARROW DEPICTS THE BACK TRANSLATION 

Figure 48. Sequence of Matrix Operations 

The point transformation equation (2) can be expanded to include all the vertices of 
the tetrahedron as follows: 

xa va za h1 
xb vb zb h2 
xc vc zc h3 
xd Vd zd h4 

1 0 00 0.750 1.140 0.112 0 1 000 
" "'" 00 
00 

2·~3 3 1 
1 -2 2 1 
2 -1 2 1 
2 -2 2 1 

01 
00 

00 
1 0 

-0.274 0.250 1.22 0 
1.112 -0.513 0.5000 

0 100 
0 010 

(3) I­
U 

-56-31 

I 
translation 
to origin 

0 0 0 

I 
rotation about origin 

1 5-6 3 1 

I 
translation 

back to 
initial 

position 
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The 'ACT884 7 floating-point unit can perform matrix manipulation involving 
multiplications and additions such as those represented by equation (1). The matrix 
equation (3) can be solved by using the' ACT884 7 to compute, as a first step, the 
product matrix of the coordinate matrix and the first translation matrix of the right­
hand side of equation (3) in that order. The second step involves postmultiplying the 
rotation matrix by the product matrix. The third step implements the back~translation 
by pre multiplying the matrix result from the second step by the second translation 
matrix of equation (3). Details of the procedure to produce a three-dimensional rotation 
about an arbitrary axis are explained in the following steps: 

Step 1 

Translate the tetrahedron so that the axis of rotation passes through the origin. This 
process can be accomplished by multiplying the coordinate matrix by the translation 
matrix as follows: 

2 -3 3 
1 -2 2 
2 -1 2 
2 -2 2 

7c 134 

1 
0 
0 

-5 

0 0 
1 0 
0 1 
6 -3 

I 
translation 
to origin 

-3 
-4 
-3 
-3 

0 (2-5) (-3+6) (3-3) 1 
0 (1 - 5) (-2+6) (2-3) 1 
0 (2-5) (-1 +6) (2-3) 1 
1 (2-5) (-2+6) (2-3) 1 

I 
vertices of translated 

tetrahedron 

+3 0 AT 
+4 -1 BT 

+5 -1 CT 
+4 -1 DT 



The' ACT8847 could compute the translated.coordinates AT, BT, CT, DT as indicated 
above. However, an alternative method resulting in a more compact solution is 
presented below. 

Step 2 

Rotate the tetrahedron about the axis of rotation which passes through the origin after 
the translation of Step 1. To implement the rotation of the tetrahedron, postmultiply 
the rotation matrix [R] by the translated coordinate matrix from Step 1. The resultant 
matrix represents the rotated coordinates of the tetrahedron about the origin as follows: 

-3 3 0 1 0.750 1.140 0.112 0 -3.072 -2.670 3.324 1 
-4 4 -1 1 -0.274 0.250 1.22 0 -5.208 -3.047 3.932 1 
-3 5 -1 1 1.112 -0.513 0.500 0 -4.732 - 1.657 5.264 1 
-3 4 -1 1 0 0 0 1 -4.458 -1.907 4.044 1 

I 
rotation about origin rotated coordinates 

Step 3 

Translate the rotated tetrahedron back to the original coordinate space. This is done 
by premultiplying the resultant matrix of Step 2 by the translation matrix. The following 
calculations produces the final coordinate matrix of the transformed object: 

-3.072 - 2.670 3.324 1 1 0 0 0 1.928 - 8.670 6.324 
-5.208 -3.047 3.932 1 0 1 0 0 -0.208 -9.047 6.932 
-4.732 -1.657 5.264 1 0 0 1 0 0.268 -7.657 8.264 
-4.458 -1.907 4.044 1 5 -6 3 0.542 -7.907 7.044 

I I 
translate back final rotated coordinates ,.... 
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A more compact solution to these transformation matrices is a product matrix that 
combines the two translation matrices and the rotation matrix in the order shown in 
equation (3). Equation (3) will then take the following form: 

xa va za h1 
xb Vb zb h2 
xc VC zc h3 
xd Vd zd h4 

2 -3 3 0.750 1.140 0.112 0 
1 -2 2 -0.274 0.250 1.220 0 
2 -1 2 1.112 -0.513 0.500 0 
2 -2 2 -3.730 - 8.661 8.260 1 

I 
transformation matrix 

7-136 



The newly transformed coordinates resulting from the postmultiplication of the 
transformation matrix by the coordinate matrix of the tetrahedron can be computed 
using equation (1) which was cited previously: 

n 

cij = E aik * xkj for i = 1, ... ,n j = 1, ... ,n 

k=l 

For example, the coordinates may be computed as follows: 

xa = cll all * xll + a12 * x21 + a13 * x31 + a14 * x41 
2 * 0.750 + (-3) * (-0.274) + 3 * 1.112 + 1 * (-3.73) 
1.5 + 0.822 + 3.336 - 3.73 
1.928 

ya = c12 all * x12 + a12* x22 + a13 * x32 + a14 * x42 
2 * 1.140 + (-3) * 0.250 + 3 * (-0.513) + lx(-8.661) 
2.28 -0.75 - 1.539 - 8.661 
-8.67 

za = c13 all * x13 + a12 * x23 + a13 * x33 + a14 *x43 
2 * 0.112 + (-3) "* 1.220 + 3 * 0.500 + 1 * 8.260 
0.224 - 3.66 + 1.5 + 8.260 
6.324 

h 1 = c 14 = a 11 * x 14 + a 1 2 * x24 + a 13 * x34 + a 14 * x44 
2 * 0 + (- 3) * 0 + 3 * 0 + 1 * 1 
0+0 +0 + 1 
1 

----+ A' = [1.928 - 8.67 6.324 1 J 

The other rotated vertices are computed in a similar manner: 

8' = [- 5.208 - 3.047 3.932 1 J 
C' = [- 4. 732 - 1.657 5.264 1) 
0' = [- 4.458 - 1. 907 4.044 1 J 

Microinstructions for Sample Matrix Manipulation 

(1 ) 

" '!:t 
00 
00 
l-
t) 

« 
'!:t 

" The 'ACT884 7 FPU can compute the coordinates for graphic objects over a broad 2 
dynamic range. Also, the homogeneous scalar factors hl, h2, h3 and h4 may be made en 
unity due to the availability of large dynamic range. In the example presented below, 
some of the calculations pertaining to vertex A' are shown but the same approach 
can be applied to any number of points and any vector space. 
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The calculations below show the sequence of operations for generating two 
coordinates, xa and ya, of the vertex A' after rotation. The same sequence could be 
continued to generate the remaining two coordinates for A' (za and h1). The other 
vertices of the tetrahedron, B', C', and D', can be calculated in a similar way. 

A microcode sequence to generate this matrix multiplication is shown in Table 40. 
Table 41 presents a pseudocode description of the operations, clock cycles, and register 
contents for a single-precision matrix multiplication using the sum-of-products sequence 
presented in an earlier section. Registers used include the RA and RB input registers 
and the product (P) and sum (S) registers. 

Table 40. Microinstructions for Sample Matrix Multiplication 

S 
E 

C C C L 
L 00 P P SS M S S 
K N N I I EE S BEE R 
M F F P P LL RR FEE S / Y L L E H 
0 II EE 00 NN ANNR OOOTSSSATT 

I I D G G S S PP DD SRRCLEEEETTELPP 
10-0 E 1-0 2-0 7-0 1-0 TAB C S Y C S P 1-0 T T 1-0 

000 0100 0000 a 01 0101111 x'Xxx 00 a 1 x x x x x x xx 11 
1 00 a 11 a 0000 a 01 0101111 xxx x 00 a x x x x x x xx 11 
1 00 0000 0000 a 01 0101111 1010 00 a 1 x x x x x x xx 11 
1 00 0000 0000 a 01 0101111 1010 00 a 1 x x x x x x xx 11 
1 00 0000 0000 a 01 0101111 1010 00 a x x x x x x xx 11 

1 00 a 11 a 0000 a 01 0101111 xxxx 00 a 1 x x x x x x xx 11 
100 0000 0000 a 01 01011111010 00 a 1 x x x x x x xx 11 
1 00 0000 0000 a 01 01011111010 00 a 1 x x x x x x xx 11 
100 0000 0000 a 01 0101111 1010 00 a 1 x x x x x x xx 11 
100 0110 0000 a 01 a 10 1111 xxx x 00 a 1 x x x x x x xx 11 

Six cycles are required to complete calculation of xa, the first coordinate, and after 
four more cycles the second coordinate ya is output. Each subsequent coordinate can 

~ be calculated in four cycles so the 4-tuple for vertex A' requires a total of 18 cycles 
.....,J to complete. 
+:> 
:t> 
n 
-I 
00 
00 
+:> 
.....,J 

Calculations for vertices B', C', and D', can be executed in 48 cycles, 16 cycles for 
each vertex. Processing time improves when the transformation matrix is reduced, 
i.e., when the last column has the form shown below: 
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Table 41. Single-Precision Matrix Multiplication (PIPES2-PIPESO = 010) 

CLOCK 
CYCLE 

2 

3 

4 

5 

6 

7 

8 

9 

10 

MUL TlPLIER/ALU 
OPERATIONS 

Load all, xll 
SP Multiply 

Load a12, x21 
SP Multiply 
Pass P to S 

Load a13, x31 
SP Multiply 
Add P to S 

Load a14, x41 
SP Multiply 
Add P to S 

Load all , xl 2 
SP Multiply 
Add P to S 

Load a12, x22 
SP Multiply 
Pass P to S 
Output S 

Load a13, x32 
SP Multiply 
Add P to S 
Load a 14, x42 
SP Multiply 
AddP to S 

Next operands 
Next instruction 
Add P to S 

Next operands 
Next instruction 
Output S 

PSEUDOCODE 

all .... RA, xll .... RB 

pl = all * xll 

a12 .... RA, x21 .... RB 
p2 = a12 * x21 
pl .... P(pl) 

a13 .... RA, x31 .... RB 
p3 = a13 * x31, p2 .... P(p2) 
P(pl) + 0 .... S(pl) 

a14 .... RA, x41 .... RB 
p4 = a14 * x41, p3 .... P(p3) 
P(p2) + S(p1) .... S(pl + p2) 

all .... RA,x12 .... RB 
p5 = all * x12, p4 .... P(p4) 
P(p3) + S(pl + p2) .... S(pl + p2 + p3) 

a12 .... RA, x22 .... RB 
p6 = a12 * x22, p5 .... P(p5) 
P(p4) + S(pl + p2 + p3) .... 

S(pl + p2 + p3 + p4) 

a 13 .... RA, x32 .... RB 
p7 = 813 * x32, p6 .... P(p6) 
P(p5) + 0 .... S(p5) 
a 14 .... RA, x42 -RB 
p8 = 814 * x42, p7 - P(p7) 
P(p6) + S(p5)- S.(p5 + p6) 

A - RA, B - RB 
pi = A * B, p8 - P(p8) 
P(p7) + S(p5 + p6) - S(p5 + p6 + p7) 

C .... RA, 0 - RB 
pj = C * D, pi - P(pi) 
P(p8) + S(p5 + p6 + p7) -

S(p5 + p6 + p7 + p8) 

The h-scalars h 1, h2, h3, and h4 are equal to 1 . The number of clock cycles to generate '" 
each 4-tuple can then be decreased from 16 t013 cycles. Total number of clock cycles .~ 
to calculate all four vertices is reduced from 66 to 54 clocks. Figure 49 summarizes ex) 

the overall matrix transformation. t; 
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Figure 49, Resultant Matrix Transformation 

This microprogram canalso be written to calculate sums of products with (III pipelinlil 
registers enabled so that the FPU can operate in its fastest mode. Because of timing 
relationships, the C register is used in some steps to hold the intermlildiate sum of 
products. Latency due to pipelining .and chained data manipulation is 11 cycllils for 
calculation of the first coordinate, and four cycles each for the other three coordinates. 

After calculation of the first vertex, 16 cycles are required to calculate the four 
coordinates of each subsequent vertex. Table 42 presents the sequence of calculations 
for the first two coordinates, xa and ya. 
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Table 42. Fully Pipelined Sum of Products (PIPES2-PIPESO == 000) 
(Bus or Register Contents Following Each Rising Clock Edge) 

CLOCK I OA DB I RA RB MUL ALU P S C 
CYCLE BUS BUS BUS REG REG REG PIPE PIPE REG REG REG 

0 Mul xll all 
1 Mul x21 a12 Mul xl1 all 
2 Chn x31 a13 Mul x21 a12 pl 
3 Mul x41 a14 Chn x31 a13 p2 pl 
4 Chn x12 all Mul x41 a14 p3 51 p2 
5 Chn x22 a12 Chn x12 all p4 t p3 51 p2 
6 Chn x32 a13 Chn x22 a12 p5 52 p4 t p2 
7 Chn x42 a14 Chn x32 a13 p6 53 p5 52 p2 
8 Chn x13 all Chn x42 a14 p7 54 p6 53 52 
9 Chn x23 a12 Chn x13 all p8 xA p7 54 p6 
10 Chn x33 a13 Chn x23 a12 p9 55 p8 xA, p6 
11 Chh x43 a14 Chn x33 a13 pl0 56 p9 55 p6 
12 Chn x14 all Chn x43 a14 pl1 57 pl0 56 s5 
13 CM x24 a12 Chn x14 all p12 yA pl1 57 pl0 
14 Chn x34 a13 Chn x24 a12 p13 58 p12 yA pl0 
15 Chn x44 a14 Chn x34 a13 p14 59 p13 58 pl0 

t Contents of this register are hot valid during this cycle, 

Y 
BUS 

xA 

yA 

Products in Table 42 are numbered according to the clock cycle in which the operands 
and instruction were loaded into the RA, RS, and I register, and execution of the 
instruction began. Sums indicated in Table 42. are listed below: 

s1 = p1 + 0 
s2 = p1 + p3 
s3 = p2 + p4 
s4 = p5 + 0 

55 = p5 + p7 
56 = p6 + p8 
57 = p9 + 0 
s8 = p9 + p11 

s9 = p10 + p12 
xA = p1 + p2 + p3 + p4 
yA = p5 + p6 + p7 + p8 
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GLOSSARY 
Biased exponent - The true exponent of a floating point number plus a constant called 
the exponent field's excess. In IEEE data format, the excess or bias is 127 for single­
precision numbers and 1023 for double-precision numbers. 

Denormalized number (denorm) - A number with an exponent equal to zero and a 
nonzero fraction field, with the implicit leading (leftmost) bit of the fraction field being O. 

NaN (not a number) - Data that has no mathematical value. The' ACT884 7 produces 
a NaN whenever an invalid operation such as 0 * 00 is executed. The output format 
for an NaN is an exponent field of all ones, a fraction field of all ones, and a zero sign 
bit. Any number with an exponent of all ones and a nonzero fraction is treated as a 
NaN on input. 

Normalized number - A number in which the exponent field is between 1 and 254 
(sin~le precision) or 1 and 2046 (double precision). The implicit leading bit is 1. 

Wrapped number - A number created by normalizing a denormalized .number' s fraction 
field and subtracting from the exponent the number of shift positions required to do 
so. The exponent is encoded as a two's complement negative number. 
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Design Support for TI's SN74ACT8800 Family 
TI's '8800 32-bit processor family is supported by a variety of tools developed to aid 
in design evaluation and verification. These tools will streamline all stages of the design 
process, from assessing the operation and performance of an individual device to 
evaluating a total system application. The tools include functional models, behavioral 
models, microcode development software, as well as the expertise of Tl's VLSI Logic 
applications group. 

Functional Evaluation Models Aid in Device Evaluation 

Many design decisions can easily be made and evaluated before hardware or board 
prototypes are needed, using functional evaluation software models. The result is 
shortened design cycles and lower design costs. 

Texas Instruments offers functional evaluation models for many of the devices in the 
'8800 family. These models are written in Microsoft C® and can be used in stand­
alone mode or as callable functions. 

These models are designed to provide insight into the operation of the devices by 
allowing the designer to write microcode and run it through the model. This allows 
the designer to select the device that best executes a specific application and provides 
a head start in evaluating programming performance. 

The models correctly represent device timing in clock cycles, measured from the input 
of control and data to the output of results and status. Hence, initial performance 
estimates for a particular design can be made by relating the number of clock cycles 
required for an operation to the typical ac timing data for the device. 

Behavioral Simulation Models Simplify System Debugging 

System simulation with behavioral models can further shorten design time and ease 
design effort. The behavioral simulation models that support Tl's'8800 chip set have 
the timing-control and error-handling capability to perform thorough PCB and system 
simulation. These models decrease the time spent in debugging and reduce the number 
of required prototype runs. 

Users of system simulation models report a reduction by more than half in the number 
of prototype runs typically required to produce the highest-quality system. This savings 
in time reduces costs and gets the product to market as much as several months earlier 
than could be doone using traditional methods. 

Microsoft C is a registered trademark of Microsoft Corporation 
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Behavioral models for TI's '8800 family are written at the functional behavioral level 
and, therefore, are faster and easier to use and take up less disk space than some 
other types of simulation models. This higher efficiency means a simulation run can 
include more IC. models and yet require less CPU time than an equivalent simulation 
using other types of models. 

These behavioral simulation models also provide explicit error messages that can help 
in the debug!:)ing process. For example, if a design violates a device set-up time, the 
model explains, via an error message, what type of violation occurred, at what point 
it occurred in the simulation run, and specifically which part's set-up time was violated. 
Then, the model continues on with the run as if no violation occurred, saving time 
rather than crashing the run at every error. 

In other words, an expert debugger is built right into the simulation. 

The models are available with commercial and military timing and interact with a variety 
of simulators. 

Behavioral Models for ll's '8800 Family are Easily Obtained 

Texas Instruments has been working closely with both Ouadtree Software Corporation 
and Logic Automation Incorporated to produce software behavioral simulation models 
of many of its VLSI devices. Since accuracy is key to solving design problems, we've 
provided Ouadtree and Logic Automation with test patterns for most of our devices 
to ensure each model passes the same set of test vectors as does the actual silicon 
device. 

Ouadtree offers a library of Designer's Choice'" full-functional behavioral models of 
Texas Instruments '8800 32-bit processor building block devices. 

Logic Automation SmartmodelT• library contains many Texas Instruments products, 
including devices from the '8800 chip set. 

These companies may be contacted directly at the addresses below. General 
information about behavioral model support for the '8800 family may be obtained by 
calling Texas Instruments at (214) 997-5402. 

LOGIC AUTOMATION INCORPORATED OUADTREE SOFTWARE CORPORATION 
P.O. Box 310 
Beaverton, OR 97075 
(503) 690-6900 

1170 Route 22 East 
Bridgewater, NJ 08807 
(201) 725-2272 

~ Quadtree and Designer's Choice are trademarks of Quadtree Software Corporation 
Logic Automation and Smartmodel are trademarks of Logic Automation Incorporated 
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'8800 SOB Kit 
TI offers an '8800 Software Development Board. (SDB) kit as an evaluation and training 
tool. The '8800 SDB kit allows users to evaluate performance and write microprograms 
for several of the '8800 building blocks, using a range of software development tools. 

Built on a PCI A T card occupying a single slot, the' 8800 SDB includes an 'ACT8818 
microsequencer, 'ACT8832 registered ALU, and an 'ACT8847 floating point unit, along 
with 32K deep by 128 bits wide microcode memory, and 32K deep by 32 bits wide 
local data memory. Interface software is provided so that microcode and local data 
memorY may be loaded and read from the PC/AT bus. Documentation is also included 
in the kit. 

Users may write microcode source with the TI Meta Assembler, MetastepT. Assembler, 
or Hi-Level software tools. Pre-built '8800 SDB definition files are avail.able with each 
of these so that users can begin developing microcode as soon as possible. 

A software simulation of the '8800 SDB is currently being developed. The simulator 
operates in an MS-DOS environment. 

For additional technical information, please contact VLSI Systems Engineering at 
(214) !:}97-3970. For ordering information, please call your local field sales 
representative. 

MetaStep is a trademark of STEP Engineering. Inc. 
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Program Code Generation Using the TI Meta Assembler 

The TI Meta Assembler (TIM) provides the means to create object microcode files and 
to support listings for programs that execute in architectures without standard 
instruction sets. The end-product of TIM is an absolute object code module in suitable 
format for downloading to PROM programmers or to the emulator memories of 
development systems. TIM is fully compatible with some other assemblers as well. 

Systems Expertise is a Phone Call Away 

Texas Instruments VLSI Logic applications group is available to help designers analyze 
Tl's highcperformance VLSI products, such as the '8800 32-bit processor family. The 
group works directly with designers to provide ready answers to device-related 
questions and also prepares a variety of applications documentation. 

The group may be reached in Dallas, at (214) 997-3970. 
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Mechanical Data 
SN74ACT8818. . . . . . . . . . . . . . . . . . . . . . . . .. 11 x 11 GC PACKAGE 

SN74ACT8832 . . . . . . . . . . . . . . . . . . . . . . . . .. 17 x 17 GB PACKAGE 

SN74ACT8836 . . . . . . . . . . . . . . . . . . . . . . . . .. 15 x 15 GB PACKAGE 

SN74ACT8837 . . . . . . . . . . . . . . . . . . . . . . . . .. 17 x 17 GB PACKAGE 

SN74ACT8841 ......................... , 15 x 15 GB PACKAGE 

SN74ACT8847. . . . . . . . . . . . . . . . . . . . . . . . .. 17 x 17 GA PACKAGE 
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11 x 11 GB pin grid array· ceramic package 

INDEX CORNER 
r 30.0 (1.180) 

27.4 (1.080) 

1 

~ D 30.0 (1.180) 
27.4 (1.080) 

i:::::::::~ J:::::::;:: 

,.,,,,,oo]=1H='tL=t~ =--nJ----,~~,I:,W"'M 
2.54 (0.100) 0.406 (0.016) 

DIA TYP 
DIA (4 PLACES) 

2.54 (0.100) T.P. 

I J

L: .-l®-®+-a --:-®-®C--:-®--:®-'-®-c-o -=-®-®=-o--::-®----:®" 
®0®®®®®®®0® 
®®®®®®®®®®® 
®®®®®®G®®®® 

, G®®®®®GG®®®® 

J 2.54 (0.100) T.P. 
(See Note A) 

25.4 (lL'OOO) REF F ®® G®®®®®G®® 
. E~: ®®®®®®®®®®® 

®®®®®®®®®®® 
®®®®®®®®®®® 
®0®®®®®®®0® 
®®®®®®®®®®® 
1 2 3 4 5 6 7 8 9 10 11 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PROOUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0.13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0.381 (0.051) radius relative to the center of 
the ceramic. 

ALI .. LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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11 x 11 GCpin grid array ceramic package 

INDEX CORNER 
MARK OR CHAMFER 

1.27 (0.051 x 45° 

r 30.0 (1.1801_1 " 27.4 (1.0801 

I ~---------c---, 
~ ---I 
D ::::::::: 
____ :1 

5.72 (0.2251 1.78 (0.0701 
2.54 (0.10011___ i-- 1.02 (0.0401 

l,- Jill rrrffil-~ 
5 08 (0.2001 _J--
2.54 (0.1001 

0.508 (0.0201-.ll 
0.406 (0.0161 

OIA TYP 

-.I "'-1.27 (0.0501 NOM 
OIA (4 PLACESI 

2,54 (0.1001 T.P.- . t--- r- 2.54 (0.1001 T.P. 
j (See Note AI 

®®®®®®®®®®®----* 
K®0®®®®®®®0® 
J®®0®®®00®0® 
H®0®®®®®®®®® 
G®®0®000®®00 r 

25.4 (1.0001 REF F®®00®®0®0®® 
e®®0®0®0®®®® 
O®®®®®®®0®0® 

L __ ~; 
®®0®®®®0®®® 
000®®000®00 
000®®®0®0®® 
1 2 3 4 5 6 7 8 9 10 11 

ALL ~OSSIBlE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
OAT A SHEETS FOR ACTUAL PIN 
LOCA nONS USED. 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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13 x 13 GB pin grid array ceramic package 
35.1 (1.380) r 32.5 (1.286i----1, 

INDEX CORNER~"-.... ~, ____________ ...., 

~ l 

4.95 (0.195) 

35.1 (1.380) 
32.5 (1.280) 

===.r======::::::L---...:-,J 1.02 (0.040) 

2.54 (0'100)~ 1.78 (0.070) 

"., .,," I U !J.l!. u~ ~ ~ ~J~ ':.''',"0. 
2.54 (0.100) 0,406 (0.016) . DIA (4 PLACES) 

PIA TYP 
;Z.54 (0.100) T.P. 

Z.54 (0 .. 100) T.P. r (See Note A) 

ALL POSSI!!lE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0.13 (0,005) radius of true position relative to each other at 
maxirrujm material condition and withinQ,381 (0.051). radius relatille to the center of 
the ceramic. 

ALL LINEAR QIMENSIONS ARE IN MILLIMETERS ANO PARENTHETICALLY IN INCHES 

9-7 

•• 

C'O ..... 
C'O 
o 



C 
III ... 
III 

13 x 13 GC pin grid array ceramic package 

35.1 11.3801 
r-----~--32.5112801 .. -- .. - ---'1 

INDEX CORNER .~I I 
MARK OR CHAMFER r ~---',:, 

1.2710.05Ix45' • I . 
I I 

I 

: , 

35.1 11.3801 
32.511.2801 

____ . ________ ~ __ _._J __ J 

::: :::::::t-r ~" r :;: :::::: 

."",,.,i! ~ UJJ" -Jp llj ~~:"'''' ". 2.5410.1001 0040610.0161 OIA 14 PLACESI 
OIA TYP 

2.5410.1001 T.P.-- L--- 2.54 10.1001 T.P. 
[' ISee Note AI 

r~""~----'N~ GGGGGGGGGGG GG 
G0GGGGGGGGG0G 1 
GGGGGGGGGGGGG 

I 
K GGGGGGGGGGGGG 
J GGGGGGGGGGGGG 

30.5 11.2001 REF H G G G G G G G G G G G G G 
GGGGGGGGGGGGGG 
F GGGGGGGGGGGGG 
E GGGGGGGGGGGGG 

I OGGGGGGGGGGGGG 
I CGGGGGGGGGGGGG 
I 8

A
G0GGGGGGGGG0G 

L-.- GGGGGGGGGGGGG 
1 2 3 4 5 6 7 8 9 10 11 12 13 

All POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
OAT A SHEETS FOR ACTUAL PIN 
LOCATIONS USED 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at 
.. maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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15 x 15 GS pin grid array ceramic package 

r 40'1{1.5801i 
37,6 {1.4801 

INDEX CORNER~ I 

'~r-. ----:~l 

40,1 (1.5801 
37,6 {1.4801 

, I 

~_~J~j 
;:::::::12~f~ i ~ ~ ~ ~ ~ ~ ~ i 1.78 {O.0701 

11,02 (0.0401 
1-", 

~ ~ ~ r 
j ll,27 (0.0501 NOM 5,08 {O.2001---, 0,508 (0.0201-.11.-

2,54 (0.1001 0,406 (0.0161 
DIA TYP 

DIA (4 PLACESI 

2,54 (0.1001 T.P. 2,54 (0.1001 T,P'--->i r--. 
~4---------------------~ 

r~~--R 000000000000000 
(See Note AI 

I, P 000000000000000n 
I N 000000000000000 

1

M 00000000000000.0 
L 000000000000000 

I K 000000000000000 
1 J 000000000000000 

35,6 (1.4001 REF H 000000000000000 

I G .000000000000000 
F 000000000000000 

, E 000000000000000 L D 000000000000000 
C 000000000000000 
B 0@0000000000000 

-A 000000000000000 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

ca ... 
ca o 
"i 
CJ 
'c ca .c 
CJ 

1 234 567 8 9101112131415 CD 

NOTE A: Pins are located within 0,13 (0.005) radius of true position relative to each other at ~ 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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15 x 15 GC pin grid array ceramic package 

INDEX CORNER 
MARK OR CHAMfER 

1.2710.051.45° 

5.72 (0.225) 

r --- 40.1 11.580) -------l 37.611.480) 

---------

~~I~=~n I i,U .. U1l 1 

1.78 (0.0701 

I llJLlrLJ 1.02 (0.0401 

~ ~ ~ r' 
2.54 (0.100) 0.406 (0.016) 

J ~ 1.27 (0.0501 NOM 

OIA TYP 
2.5410.1001 T.P. 

r±--±--=--:-----.-----r- ----R 000000<V00000000 

I P 000000000000000 
N 000000000000000 

1
M 000000000000000 
L 000000000000000 

I K 000000000000000 
I J 000000000000000 

35.611'14001 REfGH 000000000000000 
000000000000000 

I F 000000000000000 
E 000000000000000 11 0000000000000000 
C 000000000000000 
B 000000000000000 

----A 000000000000000 
1 2 3 4 5 6 7 8 9101112131415 

OIA 14 PLACESI 

2.5410.1001 T.P. 
(See Note Al 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0.13 (0.006) radius of true position relative to each other at 
maximum material condition and within 0.381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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17 x 17 GA pin grid array ceramic package 

~ __ ~_ 45.5 (1.7901 

INDEX CORNER~ r 42.7 (1.6801 1 

~l 
45.5 (1.7901 
42.7 (1.6801 

4.9510.1951 1.7810.0701 

2.54 10.1001,5=. . . .. J 1.0210.0401 ffn mmm(ijf-, . 
5.08 10.2001 0.508 10.0201 -.II.- ~ ~_ 1 27 10 0501 NOM 
2.5410.10010.40610.0161 OIA 14 PLACESI 

2.5410.1001 T.P. 1208 PlACESI 

ALL POSSIBLE PIN LOCATIONS ARE 
SHOWN. SEE APPLICABLE PRODUCT 
DATA SHEETS FOR ACTUAL PIN 
LOCATIONS USED. 

NOTE A: Pins are located within 0.13 (0.005) radius of true position relative to each other at 
meximum material condition and within 0,381 (0.051) radius relative to the center 
of the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 
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17 x 17 GB pin grid array ceramic package 

INDEX CORNER r 
45.5 (1 .. 790) __ ~ 
42.7 (1.680) I 

45.5 (1.790) 
42.7 (1.680) 

'-----__ J __ 
4.95 (0.195) 1.78 (0.070) 

2.54 (O.100)~ J 1.02 (0.040) 

I ~-f ~ ITij ~ ~ ~ ~ ffil ~ f1t~~ 
5.08 (0.200).. 0.508 (0.020) -Jl j L1.27 (0.050) NOM 
2.54 (0.100) OA06 (0.016). DIA (4 PLACES) 

2.54 (0.100) T.P. I r (208 PLACES) 

r-T 00000000000000000~ 
S 00000000000000000h 
R 00000000000000000 L 
P 00000000000000000 2.54 (0.100) T.P. 

N 0 0 00 0 0 0 0 0 00 0 00 0 0 0 (See Note A) 

M00000000000000000 
L 00000000000000000 

40.6 (1.600) REF K 0000000000000000 0 ALL POSSIBLE PIN LOCATIONS ARE 
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SHOWN. SEE APPLICABLE PRODUCT 

H 00000000000000000 DATA SHEETS FOR ACTUAL PIN 

G 00000000000000000 LOCATIONS USED. 

F 00000000000000000 
E 00000000000000000 
000000000000000000 
c00000000000000000 
8 00000000000000000 
A 00000000000000000 

1 2 3 456 7 8 91011121314151617 

NOTE A: Pins. are located within 0,13 (0.005) radius of true position relative to each other at 
maximum material condition and within 0,381 (0.051) radius relative to the center of 
the ceramic. 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 



TI Sales Offices 
ALABAMA: Huntsville (205) 837-7530. 

ARIZONA: Phoenix (602) 995-1007: 
Tucson (602) 624-3276. 

CALIFORNIA: Irvine (714) 660-1200; 
Sacramento (916)929-0197; 
San Diego (619) 278·9600; 
Santa Clara (408) 980-9000; 
Torrance (213) 217-7000; 
Woodland Hills (818) 704-7759. 

COLORADO: Aurora (303) 368-8000. 

CONNECTICUT: Wallingford (203) 269-0074. 

FLORIDA: Altamonte Springs (30S) 260·2116; 
FI. Lauderdale (305) 973-8502; 
T;tmpa (813) 286-0420. 

GEORGIA: Norcross (404) 662-7900 

ILUNOIS: Arlington Heights (312) 640-3000. 

INDIANA: Carmel (317) 573·6400: 
Ft. Wayne (219) 424-5174 

IOWA: Cedar Rapids (319) 395·9550 

KANSAS: Overland Park (913) 451-4511. 

MARYLAND: Ballimore (301) 944-8600. 

MASSACHUseITS: Waltham (S17) 895·9100. 

MICHIGAN: Farmington Hills (313) 553·1500; 
Grand Rapids (616) 957·4200 

MINNESOTA: Eden Prairie (612) 828·9300. 

MISSOURI: St, Louis (314) 569-7600. 

NEW JERSEY: Iselin (201) 750·1050. 

NEW MEXICO: ~Ibuquerque (505) 345-2555 

NEW YORK: East Syracuse (315) 463-9291, 
Melville (516) 454-6600; Pittsford (716) 385-6770; 
Poughkeepsie (914) 473-2900. 

NORTH CAROLINA: Charlotte (704) 527·0930; 
Raleigh (919) 876-2725 

OH10: Beachwood (216) 464-6100; 
Dayton (513) 258-3877 

OREGON: Beaverton (503) 643·6758 

PENNSYLVANIA: Blue Bell (215) 825-9500. 

PUERTO RICO: Hato Rey (809) 753-8700. 

TENNESSEE: Johnson City (615) 461-2192. 

TEXAS: Austin (512) 250-6769; 
Houston (713) 778-6592; Richardson (214) 680-5082; 
San Antonio (512) 496-1779. 

UTAH: Murray (801) 266-8972. 

VIRGINIA: Fairfax (703) 849-1400 

WASHINGTON: Redmond (206) 881-3080. 

WISCONSIN: Brookfield (414) 782-2899. 

CANADA: Nepean, Ontario (613) 726-1970; 
Richmond Hill, Ontario (416) 884-9181; 
St. Laurent, Quebec (514) 336-1860_ 

TlRegional 
Technology Centers 
CALIFORNIA: IrvIne (714) 660-8140; 
Santa Clara (408) 748-2220; 
Torrance (213) 217-7019. 

COLORADO: Aurora (303) 368-8000. 

GEORGIA: Norcross (404) 662-7945 

ILLINOIS Arlington Heights (313) 640-2909. 

MASSACHUSETTS: Waltham {617} 895-9196. 

TEXAS: Richardson (214) 680-5066 

CANADA: Nepean, Ontario (613) 726-1970 

TI Distributors 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Kierulff Electronics Group 
Arrow Canada (Canada) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Hall·Mark Electronics 
Marshall Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Components 

-OBSOLETE PRODUCT ONLY­
Rochester ElectroniCS, Inc. 
Newburyport, Massachusetts 
(617) 462·9332 

ALABAMA: Arrow/Kierulff (205) 837·6955; 
Hall-Mark (205) 837-8700: Marshal! (205)·S8l·9235: 
Schweber (205) 895-0480 

ARIZONA: Arrow/Kierulff (602) 437-0750;­
Hall-Mark (602) 437-1200: Marshall (602) 496-0290: 
Schweber (602) 997.4874; Wyle (602) 866-2888. 

CALIFORNIA; Los Angeles/Orange County: 
Arrow/Kie:rulff (81B) 701-7500, (714) 838-5422; 
Hall-Mark (818) 716-7300, (714) 669-4100, 
(2l3) 217-8400; Marshall (al8) 407-0101, (818) 459-5500, 
(714) 458-5395; Schweber (818) 999-4702; 
(714) 863-0200, (213) 320-8090; Wyfe (213) 322-9953, 
(818) 880-9000, (714) 863-9953; Zeus (714) 921·9000; 
Sacramento: Hall-Mark (916) 722-8600; 
Marshall (916) 635·9700; Schwaber (916) 929-9732; 
Wyle (916) 638-5282; 
San Diego: Arrow/Kieru~ff (619) 565-4800, 
Hall-Mark (619) 268-1201; Marshall (619) 578-96'00; 
Schweber (619) 450-0454: Wyle (619) 565-9171, 
San Francisco Bay Area: Arrow/Kierulff (408) 745-6600, 
Hall-Mark (408) 432-0900; Marshall (408) 942·4600; 
Schweber (408) 432-7171; Wyle (408) 727-2500; 
Zeus (408) 998-5121. 

COLORADO: Arrow/Kierulff (303) 790-4444; 
Hall-Mark (303) 790-1662; Marshall (303) 451-8383; 
Schweber (303) 799-0258: Wyle (303) 457-9953. 

CONNETtGUT: Arrow/Kierulff (203) 265-7741; 
Hall-Mark (203) 269-0100; MarshaJl (203) 265-3822; 
Schweber (203) 748-7080_ 

FLORIDA: Ft. Lauderdale: 
ArrowiKierulff (305) 429-8200; HalJ·Mark (305) 971-9280; 
Marshall (305) 977-4880; Schweber (305) 977-7511; 
Orlando: Arrow/Kierulff (305) 725-1480, (305) 682-6923; 
Hall-Mark (305) 855-4020; Marshall (305) 767-8585; 
Schweber (305) 331-7555; Zeus (305) 365-3000: 
Tampa: Hall-Mark (813) 530-4543: 
Marshall (813) 576-1399. 

GEORGIA: Arrow/Kierulff (404) 449-8252: 
Hall-Mark (404) 447-8000; Marshall (404) 923-5750; 
Schweber (404) 449-9170 

ILLINOIS: Arrow/Klerulff (312) 250-0500; 
Hall-Mark (312) 860-3800; Marshall (312) 490-0155; 
Newark (312) 784-5100; Schweber (312) 364-3750. 

INDIANA: Indianapolis: Arrow/Kierulff (317) 243-9353; 
Hall-Mark (317) 872-8875: Marshall (317) 297-0483 

IOWA: Arrow/Kierulff (319) 395-7230; 
Schweber (319) 373-1417. 

KANSAS: Kansas City: ArrowlKlerultf (913) 541·9542 
Hail-Mark (913) 888-4747; Marshall (913)-492-3121: 
Schweber (913) 492-2922. 

MARYLAND: Arrow/Kierulff (301) 995-6002; 
Hal!-Mark (301) 988-9800; Marshall (30t) 840-9450; 
Schweber (301) 840-5900; Zeus (301) 997-1118. 

-1.!1 
TEXAS 

INSTRUMENTS 

MASSACHUSETIS Arrow!Kierulff (617) 935-5134; 
Hall-Mark (61?) 667-0902; Marshall (617) 558-0810; 
Schweber (617) 275-5100, (617) 657-0760: 
Time (617) 532-6200; Zeus (617) 863-8800. 

MICHIGAN: Detroit: Arrow/Klcrulff (313) 971-8220; 
Marshall (313) 525-5850; Newark (313) 967-0600; 
Schweber (313) 525-8100; 
Grand RapidS: Arrow/Kierulff (61S) 243-0912. 

MINNESOTA: Arrow/Kierulff (612) 830-1800; 
Hall-Mark (6l2) 941-2600; Marshall (612) 559-2211; 
Schweber (612) 941·5280_ 

MISSOURI: St. Loyis: Arrow/Klerulff (314) 567-6888; 
Hall-Mark (314) 291-5350; Marshall (314) 291-4650; 
Schweber (314) 739-0526. 

NEW HAMPSHIRE: Arrow/Kierulff (603) 668-6968; 
Schweber (603) 625-2250 

NEW JERSEY: ArrowiKlerulff (201) 538-0900, 
(609) 596-8000; GRS Electronics (609) 964-8560: 
Hall-Mark (201) 575-4415, (609) 235-1900; 
Marshall (201)882-0320, (609) 234-9100; 
Schwebcr (201) 227-7880. 

NEW MEXICO: Arrow/Kierulff (505) 243-4566 

NEW YORK: Long IsIMd: 
Arrow,'Klerultf (516) 231-1000; Hall-Mark (516) 737-0600; 
Mafshall (516) 273-2424; Schwaber (516) 334-7555; 

~~~~~~~:~:9i~;~!~~ieru'ff (716) 427-0300: 
Hall-Mark (716/244-9290; Marshall (716) 235-7620; 
Schwaber (716) 424-2222; 
Syracuse: Marshall (607) ?98-1611. 

NORTH CAROLINA: Arrow/Kierulff (919) 876-3132, 
(919) 725-8711; Hall-Mark (919) 872~0712; 
Marshall (919) 878-9882: Schwaber (919) 876-0000. 

OHIO: Cleveland: ArrowtKieru!ff (216) 248-3990; 
Hall-Mark (216) 349-4632: Marshall (216) 248-1788; 
Schwaber (216) 464·2970; 
Columbus: Arrow/Kierulff (614) 436-0928: 
Hall-Mark (614) 888-3313; 
Dayton: ArrowjKierufH (513) 435·5563; 
Marshall (513) 898-4480; Schweber (513) 439-1800, 

OKLAHOMA: Arrow/Kierulff (918) 252-7537; 
Schweber (918) 622-8003_ 

OREGON: Arrow/Kierulff (503) 645-6456; 
Marshall (503) 644-5050; WyJe (503) 640-6000. 

PENNSYLVANIA: Arrow/Kierulff (412) 856-7000, 
(215) 928-1600: GRS Electronics (215) 922-7037; 
Schweber (215) 441-0600, (412) 963-6804. 

TEXAS: Austin: Arrow/Kierulff (512)-835-4180: 
Hall-Mark (512) 258-8848; Marshall (512)' 837-1991; 
Schweber (512) 339-00M; Wyle (512) 834-9957; 
Dallas: Arrow!Kierulff (214) 380:6464: 
Hart-Mark (214) 553-4300; Marshall (214) 233-5200; 
Schweber {214} 661-5010; Wyle (214) 235-9953; 
Zeus (214) 783-70~0; 
Houston: Arrow/Klerulff (713) 530-4700; 
Hall-Mark (713) 781-6100; Marshall (713) 895·9200; 
Schweber (713) 784·3600: Wyle (713) 879·9953. 

UTAH: Arrow/Kierulff (801) 973-6913; 
Hart-Mark (801) 972·1008; Marshall (801) 485-1551; 
Wyle (801) 974-9953. 

WASHINGTON: Arrow/Kierulff (206) 575-4420: 
Marshall (206) 747-9100; Wyle (206) 453-8300. 

WISCONSIN: Arrow/Kierulff (414) 792-0150; 
Hall-Mark (414) 797·7844; Marshall (414) 797-8400; 
Schweber (414) 784·9020. 

CANADA: Calgary: Future (403) 235-5325; 
Edmonton: Future (403) 438-2858; 
Montreal: Arrow Canada (514) 735-5511; 
Future {514} 694-7710: 
OHawa: Arrow Canada (613) 226-6903; 
Future (613)"820-8313; 
Quebec City: Arrow Canada (418) 687-4231; 
Toronto: Arrow Canada (416) 672·7769; 
Future (416) 638-4771; 
Vancouver: Future (604) 294-1166: 
Winnipeg: Future (204) 339-0554. 

Customer 
Response Center 
TOLL FREE: (800) 232-3200 

OUTSIDE USA: (214) 995-6611 
(8:00 a.m. ~ 5:00 p.m. CST) 

au 



TI Worldwide 
Sales Offices 
ALABAMA; Huntsville: 500 Wynn Drive, Suite 514 
Huntsville, AL 35805, (205) 837·7530 

ARIZONA: Phoenix: 8825 N, 23rd Ave .. Phoeni>t. 
AZ 85021, (602) 995·, 007 

CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvine, 
CA 92714, (714) 660·8187, Sacramento: 1900 Point 
West Way, Suite 171, Sacramento, CA 95815, 

~~i~~ 9g.~.~~~1 b~:;o~be:92~~~~ (~;~) 2~~~O~~e" 
Santa Clara: 5353 Betsy Ross Dr., Sant~ Clara. CA 
95054, (408) 980·9000; Torrance: 690 Knox St .. 
Torrance. CA 90502. (213) 217·7010; 
Woodland Hills: 21220 Erwin St.. Woodland Hills, 
CA 91367, (818) 704·7759 

COLORADO: Aurora: 1400 S. Potomac Ave., 
Suite 101, Aurora, CO B0012. (303) 368·8000 

CONNECTICUT: Wallingford: 9 Bames Industrial 
Park Ad., Barnes Industrial Park, Wallingford, 
CT 06492, (203) 269-0074 

FLORIDA: Ft. Lauderdale: 2765 N.W. 62nd St 
Ft. lauderdale, FL 33309, (305) 973-8502, 
Maitland: 2601 Maitland Center Parkway, 
Maitland, FL 32751, (305) 660-4600; 
Tampa: 5010 W. Kennedy Blvd., Suite 101. 
Tampa, FL 33609, (813) 870-6420 

GEORGIA: Norcross: 5515 Spalding Drive, Norcross. 
GA 30092, (404) 662·7900 

~r~il~g~~~: ~!:~~~~~LH:~~~~:(j~~) ~40~~~~gqUin 
m~I:8~:,: (~~'9f:!:;;~;20 Inwood Dr .. Ft, Wayne, 

Indianapolis: 2346 S. Lynhurst, Suite JAOO, 
Indianapolis, IN 46241, (317) 248·8555 

IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 200, 
Cedar Rapids, IA 52402, (319) 395-9550 

MARYLAND: Baltimore: 1 Rutherford Pl., 
7133 Rutherford Rd., Baltimore, MO 21207, 
(301) 944·8600 

MASSACHUSETTS: Waltham: 504 Totten'Pond Rd .. 
Waltham, MA 02154, (617) 895-9100, 

~~~~~~~oN~ ~~~~ii!fl'~~07gl~31'&7~63~5bt. Mite Rd., 

MINNESOTA: Eden Prairie: 11000 W. 78th St., 
Eden Prairie, MN 55344 (612) 828-9300 

MISSOURI; Kansas City: 8080'Ward Pkwy., Kansas 
City, MO 64114, (BI6) 523-2500; 
SI. Louis: 11816 Borman Drive, SI. louis, 
MO 63146, (314) 569-7600 

NEW JERSEY: Iselin: 485E U.S, Route 1 South, 
Parkway Towers, Iselin, NJ 08830 (201) 750,1050 

NEW MEXICO: Albuquerque: 2820-0 Broadbent PkWy 
NE, Albuquerque, NM 87107, (505) 345-2555 

NEW YORK: East Syracuse: 6365 Collamer Dr., East 
Syracuse, NY 13057, (315) 463-9291; 
Endicott: 112 Nanticoke Ave., P.O. Box 618, Endicott. 

~~a~~:~~'I!~~~i[;~6~g~;p~cfl~~~: i9~6~n~i~I~1~~, 
NY 11747, (516) 454-6600; Pittsford: 2851 Clover St.. 
Pittsford, NY 14534, (716) 385-6770, 
Poughkeepsie: 385 South Rd" Poughkeepsie, 
NY 12601, (914) 473·2900 

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, 
Woodlawn Ad., Charlotte, NC 28210, (704) 527-0930; 

~~e4,~~l,8~;9~ig~:f72d5s Blvd" Suite 100, Raleigh 

OHIO: Beachwood: 23408 Commerce Park Rd .. 
Beachwood, OH 44122, (216) 464-6100: 
Dayton: Kingsley Bldg., 4124 Linden Ave., Dayton, 
OH 45432, (513) 258·3877 

OREGON: Beaver1on: 6700 SW 105th SI.. Suite 110. 
Beaverton, OR 97005, (503) 643·6758 

PENNSYLVANIA; Ft. Washington: 260 New York Dr 
FL Washington, PA 19034, (215) 643-6450 
Coraopolis: 420 Rouser Rd .. 3 Airport Olfice Park. 
Coraopolis. PA 15108. (412) 771-8550 

PU.ERTO RICO; Hato Rey: Mercantil Plaza Bldg 
SUIte 505: Halo Rey. PR 00919. (809) 753-8700 

TEXAS: Austin; P.O. Box 2909, Austin, TX 78769 
(512) 250-7655; Richardson: 1001 E. Campbell Rd 
Richardson, TX 75080, 
(214) 680-5082: Houston: 9100 Southwest Frwy 
SUite 237, Houston, TX 77036, (713) 778-6592 
San Anton~o; 1000 Central Parkway South 
San AntoniO. TX 78232. (512) 496·1779 

UTAH; Murray: 5201 South Green SE. Sulle 200 
Murray, UT 84107. (801) 266·8972 

VIRGINIA: Fairfax: 2750 Prosperity. Fairfax. VA 
22031, (703) 849-1400 

WASHINGTON; Redmond: 5010 148th NE. Bldg B 
Suite 107, Redmond, WA 98052, (206) 881-3080 

WISCONSIN: Brookfield: 450 N, Sunny Slope 
SUite 150, Brookfield, WI 53005, (4J4) 785-7140 

CANADA: Nepean: 301 Moodie Drive, Maiiorn 
Center, Nepean, Ontario, Canada, K2H9C4, 
(613) 726-1970. Richmond Hill: 280 Centre St, E 
Richmond Hill L4C1Bl, Ontario, Canada 
(416) 884-9181; 51. Laurent: Ville St, Laurent Quebec 
9460 Trans Canada Hwy .. SI. Laurent, Quebec 
Canada H4S1R7, (514) 335-8392. 

ARGENTINA: Texas Instruments Argentina 
S,A.I.C.F.: Esmeralda 130, ~5th Floor, 1035 Buenos 
Aires, Argentina, 1 + 394-3008. 

AUSTRALIA (& NEW ZEALAND): Texas Instruments 
Australia ltd.: 6-10 Talavera Rd" North Ryde 
(Sydney), New South Wales, Australia 2113, 
2 + 887-1122; 5th Floor, 418 St, Kilda Road, 
Melbourne, Victoria, Au~tralia 3004, 3 + 267-4677, 
171 Philip Highway, Elizabeth, South Australia 5112, 
8 + 255-2066. 

AUSTRIA; Texas Instruments Ges,m.b,H 
~2~6~J~~2~~abe B/l6, A-2345 BrunnlGebirge, 

BelGIUM: Texas Instruments NY Belgium S.A 
Mercure Centre, Rakelstraat 100, Rue de la Fusee. 
1130 Brussels, Belgium, 21720,BO.00 

BRAZIL: Texas Instruments Electronicos do BraSil 
ltda.: Rua Paes Leme, 524-7 Andar Pinheiros, 05424 
Sao Paulo, Brazil, 0815-6166 

DENMARK: Texas Instruments A/S, Malfelundvej 
46E, DK-2730 Herlev, Denmark, 2 . 91 7400 

FINLAND: Texas Instruments Finland OY· 
j6f_l~i{~3~skatu 19D 00511 Helsinki 51, Finland, (90) 

FRANCE: Texas Instruments France: Headquarters 
and Prod, Plant, BP 05, 06270 Villeneuve· lou bet, 
(93) 20-01-01, Paris Office, BP 67 8-10 Avenue 
Morane·Saulnier, 78141 Velizy-Villacoublay, 
(3) 946·97-12; Lyon Sates Office, L'Oree O'Ecully, 
Batiment B, Chemin de la Forestiere, 69130 tcully, 
(7) 833-04.40; Strasbourg Sales Office, Le Sebastopol 
3, Quai Kleber, 67055 Strasbourg Cedex, 

h8s8i 01{~;~~6~ s~(g'g)e:i .§~:~~; ~ 6~ I~~:eu ~!I~S ag~f~~'e, 
Le Peripole-2, Chemin du Pigeonnier de la Cepiere, 
31100 Toulouse, (61) 44·18-19; Marseille Sales Olfice, 
Noilly Paradis-146 Rue Paradis, 13006 Marseille, 
(91) 37·25·30 

TEXAS 
INSTRUMENTS 

GERMANY (Fed. Republic of Germany): Texas 
Instruments Deutschland GmbH: Haggertystrasse 1-
0-8050 Freising, 8161 + 80·4591; Kurfuerstendamm 
195/196. 0-1000 Berlin 15, 30 + 882-7365: Ill, Hagen 
431Kibbelstrasse, ,19, 0-4300 Essen, 201-24250: 
Frankfurter Allee 6-8,0-6236 Eschborm I, 
06196 + 8070: Hamburgerstrasse 1" 0-2000 Hamburg 
76.040 + 220-1154, Kirchhorsterstrasse 2. 0-3000 
Hannover 51, 511 + 648021: Maybachstrabe 1" 
0-7302 Ostfildern 2·Nelingen, 711 + 547001; 
Mixikoring 19, 0-2000 Hamburg 60,40 +637 +0061: 
Postfach 1309, Roonslrasse 16, 0-5400 Koblenz, 
261 +35044 

HONG KONG (+ PEOPLES REPUBLIC OF CHINA): 
Texas Instruments Asia ltd., 8th Floor, World 
Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, 
Hong Kong. 3 + 722-1223 

IRELAND: Texa~ Instruments (ireland) limited: 
Brewery Rd" Stillorgan, County Dublin, Eire, 
1 831311. 

ITALY: Texas Instruments Semiconduttori ltalia Spa: 
Viale Delle Scienze, 1, 02015 Cittaducale (Rieti), 
Italy, 746694.1; Via Salaria KM 24 {Palazzo Cosma}, 
Monterolondo Scalo (Aome), Italy, 6+9003241; Viale 
Europa, 38-44, 20093 Cologno Monzese (Milano), 
22532541; Corso Svizzera, 185, 10100 Torino, Italy, 
11774545: Via J. Barozzi 6, 40100 BOlogna, Italy, 51 
355851. 

JAPAN: Texas Instruments Asia ltd,: 4F Aoyama 
Fuji Bldg., 6·12, Kita Aoyama 3·Chome, Minalo-ku, 
Tokyo, Japan 107, 3-498-2111; Osaka Branch, 5F, 

~:~:~~i~~u~i ~i~~a, ~~~~na~~~~i~:2~~~~:1; Nagoya 
Branch, 7F Daini Toyota West Bldg" 10·27, Meieki 
4-Chome, Nakamura-kll Nagoya, Japan 
450,52·583-8691. 

KOREA: Texas Instruments Supply Co.: 3rd Floor, 

f~f~~o~II~~O~~~2a:~~_88b~angnam'ku, 
MEXICO: Texas Instruments de Mexico SA: Me:-::ico 
City, AV Reforma No. 450 - 10th Floor, Mexico, 
D.F" 06600, 5 +514-3003 

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor 
Mannai Bldg., Diplomatic Area, P.O. Box 26335, 
Manama Bahrain, Arabian Gulf, 973 + 274681. 

NETHERLANDS: Texas Instruments Holland B.V .. 
P.O. Box 12995, (Bullewijk) 1100 CB Amsterdam, 
Zuid·Oost, Holland 20 + 5602911. 

~~:~:~~T.eo~~ol~~t~uo~~~~ (~)o~~t6~~S: PB106, 

PHILIPPINES: Texas Instruments Asia ltd.: 14th 

~~~~ti~~e~;g~~~i~l,d$hi~~~Jn~~~~~ ~~ 8~~~.S' 
PORTUGAl.: Texas Instruments Equipamento 
Electronlco (Portugal), lda.: Aua Eng. Frederico 
Ulrich, 2650 Moreira Oa Maia, 4470 Mala, Portugal, 
2-948-1003. 

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, 
THAILAND): Te,xas Instruments Asia Ltd.: 1,2 Lorong 
Bakar ~atu, Umt 01-02, Kolam Ayer Industrial Estate, 
RepubliC of Singapore, 747-2255. 

SPAIN: Texas Instruments Espana, SA: C/Jose 
Lazaro Galdiano No.6, Madrid 16, 11458.14,58. 

SWEDEN: Texas Instruments International Trade 
Corporation ($verigefilialen): Box 39103, 10054 
Stockholm, Sweden. 8·235480 

SWITZERLAND: Texas Instruments, Inc" Reldstrasse 
6, CH-8953 Oietikon (Zuerich) Switzerland, 
1·7402220 

TAIWAN: Texas Instruments Supply Co.: Room 903, 

f~;w:~~ ~~~~1~2of76h~~~,g2K~a~~'~~3a2d1.TaiPei, 
UNITED KINGDOM: Texas Instruments Limited: 
Manton Lane, Bedford, MK41 7PA, England, 0234 
67466; St, James House, Wellington Road North, 
Stockport, SK4 2AT, England, 61 +442-7162. 

8M 



Erratum to SN74ACT8837 User's Guide 

Format conversion from floating point to integer for numbers 
between 1.111 ... 111 x 231 and 232 , when rounding up, 
causes the resulting integer to go to zero without causing the 
device to signal an overflow. This condition occurs whenever 
rounding causes the integer operand to be incremented. If the 
user anticipates that this condition may occur in a system being 
designed, a software trap can be implemented to monitor correct 
operation of the format conversion. 
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