Q TeExAs
INSTRUMENTS

SN74ACT8800 Family

32-Bit CMOS Processor
Building Blocks

Data Manual

1988

Overview

SN74ACT8818

16-Bit Microsequencer

SN74ACT8832

32-Bit Registered ALU

SN74ACT8836

32- x 32-Bit Parallel Multiplier

SN74ACT8837

64-Bit Flbating Point Processor

SN74ACT8841

Digital Crossbar Switch

SN74ACT8847

64-Bit Floating Point/Integer Processor

Support

Mechanical Data

SN74ACT8800 Family
32-Bit CMOS Processor
Building Blocks

Data Manual

*

Texas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to or
to discontinue any semiconductor product or service identified
in this publication without notice. Tl advises its customers to
obtain the latest version of the relevant information to verify,
before placing orders, that the information being relied upon is
current.

Tl warrants performance of its semiconductor products to current
specifications in accordance with Tl’s standard warranty. Testing
and other quality control techniques are utilized to the extent Tl
deems necessary to support this warranty. Unless mandated by
government requirements, specific testing of all parameters of
each device is not necessarily performed.

Tl assumes no liability for TI applications assistance, customer
product design, software performance, or infringement of patents
or services described herein. Nor does T| warrant or represent that
any license, either express or implied, is granted under any patent
right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or
process in which such semiconductor products or services might
be or are used.

Copyright © 1988, Texas Instruments Incorporated
First edition: March 1988
First revision: June 1988

INTRODUCTION

In this manual, Texas Instruments presents technical information on the TI
SN74ACT8800 family of 32-bit processor ‘‘building block’’ circuits. The
SN74ACT8800 family is composed of single-chip VLSI processor functions, all of which
are designed for high-complexity processing applications.

This manual includes specifications and operational information on the following high-
performance advanced-CMOS devices:

SN74ACT8818 16-bit microsequencer
SN74ACT8832 32-bit registered ALU

SN74ACT8836 32- x 32-bit parallel multiplier
SN74ACT8837 64-bit floating point processor
SN74ACT8841 Digital crossbar switch
SN74ACT8847 64-bit floating point/integer processor

These high-speed devices operate at or above 20 MHz, while providing the low power
consumption of Tl's advanced one-micron EPIC™ CMOS technology. The EPIC™ CMOS
process combines twin-well structures for increased density with one-micron gate
lengths for increased speed.

The SN74ACT8800 Family Data Manual contains design and specification data for
all five devices previously listed and includes additional programming and operational
information for the ‘8818, ‘8832, and '8837/'8847.

Introductory sections of the manual include an overview of the ‘8800 family and a
summary of the software tools and design support Tl offers for the chip-set. The general
information section includes an explanation of the function tables, parameter
measurement information, and typical characteristics related to the products listed
in this volume.

Package dimensions are given in the Mechanical Data section of the book in metric
measurement (and parenthetically in inches).

Complete technical data for any Texas Instruments semicondutor product is available
from your nearest Tl field sales office, local authorized Tl distributor, or by calling Texas
Instruments at 1-800-232-3200. :

EPIC is a trademark of Texas Instruments Incorporated.

vi

Award Winners/1987

Electronic Products

12th Annual
Product of the Year

Awards

very vear, the editors of Electronic Products
E select what we judge to be the best electron-
ics products announced during the preceding
12 months. Our goal: to honor those products that
have contributed most to help our engineer-readers
do their jobs better.

We weigh several criteria as we sift through the
thousands of products brought to our attention.
Alone or in combination, each product must repre-
sent a significant advance in technology or its appli-
cation, a decided innovation in design, or a sub-
stantial gain in price-performance ratio.

st

e 74ACT8836 Multiplier-Accumulator
* 74ACT8837 Floating Point Unit
e 74AS8840 Crosshar Switch

vii

viii

Overview

1-1

- Overview

1-2

Overview

Overview H

1-3

n Overview

1-4

Introduction

Texas Instruments SN74ACT8800 family of 32-bit processor building blocks has been
developed to allow the easy, custom design of functionally sophisticated, high-
performance processor systems. The ‘8800 family is composed of single-chip, VLSI
devices, each of which represents an element of a CPU.

Geared for computationally intensive applications, SN74ACT8800 devices include high-
performance ALUs, multipliers, microsequencers, and floating point processors.

The "8800 chip set provides the performance, functionality, and flexibility to fill the

most demanding processing needs and is structured to reduce system design cost

and effort. Most of these high-speed processor functions operate at 20 MHz and above,
and, at the same time, provide the power savings of Tl’s advanced, 1 um EPIC™ CMOS
technology. '

The family’s building block approach allows the easy, ‘’pick-and-choose’’ creation of
customized processor systems, while the devices’ high level of integration provides
cost-effectiveness.

Designed especially for high-complexity processing, the devices in the ‘8800 family
offer a range of functional options. Device features include three-port architecture,
double-precision accuracy, optional pipelined operation, and built-in fault tolerance.

Array, digital signal, image, and graphics processing can be optimized with ‘8800
devices. Other applications are found in supermini and fault-tolerant computers, and
I1/0 and network controllers.

In addition to the high-performance, CMOS processor functions featured in this data
manual, the family includes several high-speed, low-power bipolar support chips. To
reduce power dissipation and ensure reliabilty, these bipolar devices use Tl's proprietary
Schottky Transistor Logic (STL) internal circuitry.

EPIC is a trademark of Texas Instruments Incorporated.

1-5

Overview i

MB3INIBAQ !

At present, Tl's ‘8800 32-bit processor building block family comprises the following
functions: .

SN74ACT8818 16-bit microsequencer
SN74ACT8832 32-bit registered ALU
SN74ACT8836 32- x 32-bit parallel multiplier
SN74ACT8837 64-bit floating point processor
SN74ACT8841 digital crossbar switch .
SN74ACT8847 64-bit floating point and integer processor
Bipolar Support Chips

® SN74AS8833 64-bit funnel shifter

® SN74AS8834 64 x 40 register file

® SN74AS8838 32-bit barrel shifter

® SN74AS8839 32-bit shuffle/exchange network
® SN74AS8840 16 x 4 crossbar switch

20 MIPS and Low CMOS Power Consumption

With instruction cycle times of 50 ns or less and the low power consumption of EPIC™
CMOS, the ‘8800 chip set offers an unrivaled speed/power combination. Unlike
traditional micreprocessors, which require multiple cycles to perform an operation,
the 'ACT8800 processors typically can complete instructions in a single cycle.

The 'ACT8832 registered ALU and 'ACT8818 microsequencer together create a
powerful 20-MHz CPU. Because instructions can be performed in a single cycle, the
8832/8818 combination is capable of executing over 20 million instructions per second
(MIPS).

For math-intensive applications, the ‘ACT8836 fixed-point multiplier/accumulator
(MAC), 'ACT8837 64-bit floating point processor, and ‘ACT8847 64-bit floating point
and integer processor offer unprecedented computational power.

The exceptional performance of the ‘ACT8800 family is made possible by Tl’s EPIC™
CMOS technology. The EPIC™ CMOS process combines twin-well structures for
increased density with one-micron gate lengths for increased speed.

Customized Solution

The ‘8800 family is designed with a variety of architectural and functional options
to provide maximum design flexibility. These device features allow the creation of
‘‘customized’’ solutions with the ‘8800 chipset.

A building block approach to processing allows designers to match specialized hardware
to their specific design needs. The 8818/8832 combination forms the basis of the
system, a high-speed CPU. For applications requiring high-speed integer multiplication,
the 'ACT8836 can be added. To provide the high precision and large dynamic range
of floating point numbers, the 'ACT8837 or 'ACT8847 can be employed.

To ensure speed and flexibility, each component of the ‘8800 family has three data
ports. Each data port accomimodates 32 bits of data, plus four parity bits. This
architecture eliminates many of the I/0 bottlenecks associated with traditional single-
1/O microprocessors.

The three-port architecture and functional partitioning of the ‘8800 chip-set opens
the door to a variety of parallel processing applications. Placing the math and shifting
functions in parallel with the ALU permits concurrent processing of data. Additional
processors can be added when performance needs dictate. -

The 'ACT8800 building block processors are microprogrammable, so that their
instruction sets can be tailored to a specific application. This high degree of
programmability offers greater speed and flexibility than a typical microprocessor and
ensures the most efficient use of hardware.

A separate control bus eliminates the need for multiplexing instructions and data, further
reducing processing bottlenecks. The microcode bus width is determined by the
designer and the application.

Another source of design flexibility is prov»ded by the pipelined/flowthrough operatlon
option. Pipelining can dramatically reduce the time required to perform iterative, or
sequential, calculations. On the other hand, random or nonsequential algorithms require
fast flowthrough operations. The ‘8800 chip set allows the designer to select the mode
(fully pipelined, partially pipelined, or nonpipelined) most suited to each design.

Scientific Accuracy

The ‘8800 family is designed to support applications which require double-precision
accuracy. Many scientific applications, such as those in the areas of high-end graphics,
digital signal processing, and array processing, require such accuracy to maintain data
integrity. In general-purpose computing applications, floating point processors must
often support double-precision data formats to maintain compatibility with existing
software.

To ensure data integrity, ‘8800 devices (excluding the barrel shifter and
microsequencer) support parity checking and generation, as well as master/slave error
detection. Byte parity checking is performed on the input ports, and a parity generator
and a master/slave comparator are provided at the output. Fault tolerance is built into
the processors, ensuring correct device operation without extra logic or costly software.

1-7

Overview H

The SN74ACT8800 Building Block Processor System
- Some of the high-performance ‘8800 devices are described in the following paragraphs.
SN74ACT8818 16-Bit Microsequencer

In a high-performance microcoded system, a fast microcode controller is required to
control the flow of instructions. The SN74ACT8818 is a high-speed, versatile 16-bit
microsequencer capable of addressing 64K words of microcode memory. The
'ACT8818 can address the next instruction fast enough to support a 50-ns system
cycle time.

o)

MD3IIAIBA

The 'ACT8818 65-word-deep by 16-bit-wide stack is useful for storing subroutine
return addresses, top of loop addresses, and loop counts. Addresses can be sourced
from eight different sources: the three 1/0O ports, the two register counters, the
microprogram counter, the stack, and the 16-way branch.

SN74ACT8832 Registered ALU

The SN74ACT8832 is a 32-bit registered ALU that operates at approximately 20 Mhz.
Because instructions can be.performed in a single cycle, the ‘ACT8832 is capable of
executing 20 million microinstructions per second. An on-board 64-word register file
is 36-bits-wide to permit the storage of parity bits. The 3-operand register file increases
performance by enabling the creation of an instruction and the storage of the previous
result in a single cycle. To facilitate data transfer, operands stored in the register file
can be accessed externally, while the ALU is executing. To support the parallel
processing of data, the "ACT8832 can be configured to operate as four 8-bit ALUs,
two 16-bit ALUs, or a single 32-bit ALU. The ‘ACT8832 incorporates 32-bit shifters
for double-precision shift operations.

SN74ACT8836 32- x 32-Bit Integer MAC

The SN74ACT8836 is a 32-bit integer multiplier/accumulator (MAC) that accepts two
32-bit inputs and computes a 64-bit product. The device can also operate as a 64-bit
by 64-bit multiplier. An onboard adder is provided to add or subtract the product or
the complement of the product from the accumulator.

When pipelined internally, the 1 um CMOS parallel MAC performs a full 32- x 32-bit
multiply/accumulate in a single 36-ns clock cycle. In flowthrough mode (without any
pipelining), the "ACT8836 takes 60 ns to multiply two 32-bit numbers. The 'ACT8836
performs a 64- x 64-bit multiply/accumulate, outputting a 64-bit result, in 225 ns.

The ‘ACT8836 can handle a wide variety of data types, including two’s complement,
signed, and mixed. Division is supported via the Newton-Raphson algorithm.

SN74ACT8837 64-Bit Floating Point Unit

The SN74ACT8837 is a high-speed floating point processor. This single-chip device
performs 32- or 64-bit floating point operations. :

1-8

More than just a coprocessor, the ’ACT8837 integrates on one chip a double-precision
floating point ALU and muiltiplier. Integrating these functions on a single chip reduces
data routing problems and processing overhead. In addition, three data ports and a
64-bit internal bus architecture allow for single-cycle operations.

The 'ACT8837 can be pipelined for iterative calculations or can operate with input
registers disabled for low latency.

SN74ACT8841 Digital Crossbar Switch

The SN74ACT8841 is a single-chip digital crossbar switch. The high-perfarmance
device, cost-effectively eliminates bottlenecks to speed data through complex bps
architecture.

The 'ACT8841 is ideal for multiprocessor applications, where memory bottlenecks
tend to occur. The device has 64 bidirectional I/O ports that can be configured as 16
4-bit ports, 8 8-bit ports, or 4 16-bit ports. Each bidirectional port can be connected
in any conceivable combination. Any single input port can be broadcast to any
combination of output ports. The total time for data transfer is 20 ns.

The control sources for ten separate switching configurations are on-chip, including
eight banks of programmable control flip-flops and two hard-wired control circuits.

The EPIC™ CMOS SN74ACT8841 and ‘its predecessor, SN74AS8840, are based on
the same architecture, differing in power consumption, number of control registers,
and pin-out. Microcode written for the "AS8840 can be run on the 'ACT8841.

SN74ACT8847 64-Bit Floating Point Unit

The SN74ACT8847 is a high-speed 64-bit floating point processor. The device is fully
- compatible with IEEE standard 754-1985 for addition, subtraction, multiplication,
division, square root, and comparison. Division and square root operations are
implemented via hardwired control.

The SN74ACT8847 FPU also performs integer arithmetic, logical operations, and logical
shifts. Registers are provided at the inputs, outputs, and inside the ALU and multiplier
to support multilevel pipelining. These registers can be bypassed for nonpipelined
operations.

When fully pipelined, the ‘ACT8847 can perform a double-precision floating point or
32-bit integer operation in under 40 ns. When in flowthrough mode, the 'ACT8847
. takes less than 100 ns to perform an operation.

Bipolar Support Chips

The SN74AS8833 64-bit-to-32-bit funnel shifter can increase overall speed in systems
where multi-bit shift operations and field masking are frequently used. The device can
perform logical, circular, and arithmetic shifts on 32-bit and 64-bit words, IEEE or IBM
normalization, and field pack or extract operations. The 'AS8833 provides
shift/mask/merge capability for graphics and data compression applications.

1-9

Overview i

MBINIBAQ

The SN74AS8834 is a high-speed, three-operand, 64-word by 40-bit register file.
Designed to expand the 'ACT8832 register file, the ‘AS8834 is an ideal temporary
storage device for high-speed applications. Four address ports, two write and two
read, operate independently to support MSH/LSH swap operations.

The SN74AS8838 high-speed, 32-bit barrel shifter can shift up to 32 bits in a single
instruction cycle of under 25 ns. Five basic shifts can be programmed: circular left,
circular right, logical left, logical right, and arithmetic right. The ‘AS8838 offloads the
responsibility for shifting operations from the ALU, which increases shifter functionality
and system throughput.

The SN74AS8839 is a 32-bit shuffle/exchange network. The high-speed device can
perform data permutations on one 32-bit, two 16-bit, four 8-bit, or eight 4-bit data
words in a single instruction cycle of under 25 ns. The shuffle/exchange network is
~designed primarily for use in digital signal processing applications.

SN74ACT8818 16-Bit Microsequencer 2

2-1

n SN74ACT8818

2-2

SN74ACT8818
16-Bit Microsequencer

® Addresses Up to 64K Locations of Microprogram Memory
® CLK-to-Y = 30 ns (tpg)
® Low-Power EPIC® CMOS g
® Addresses Selected from Eight Different Sources E
® Performs Multiway Branching, Conditional Subroutine Calls, and Nested o
Loops <
<
® Large 64-Word by 16-bit Stack S
n

® Cascadable

Because they’re microprogrammable, the ACT8800 building block processors provide
greater speed and flexibility than does a typical microprocessor. In such a high-
performance microcoded system, a fast microsequencer is required to control the flow
of microinstructions.

The SN74ACT8818 is a high-speed, versatile 16-bit microsequencer capable of
addressing 64K words of microcode memory. The 'ACT8818 can address the next
instruction fast enough to support a 50-ns system cycle time.

The 'ACT8818 65-word-deep by 16-bit-wide stack is useful for storing subroutine
return addresses, top-of-loop addresses, and loop counts. For added flexibility,
addresses can be selected from eight different sources: the three 1/O ports, the two
register/counters, the microprogram counter, the stack, and the 16-way branch input.

EPIC is a trademark of Texas Instruments Incorporated.

2-3

n SN74ACT8818

2:4

Contents

Cdntroduction

Understanding the 'ACT8818 Microsequencer
Microprogramming the ‘ACT8818
Design Support e e e
Design Expertise e
'ACT8818 Pin Grid Allocation
'ACT8818 Specification Tables

Architecture e e e

Y Output Multiplexer. e
Microprogram Counterttt
Register/Countersttt
Stack e e
Stack Pointer e e e e ae e e e a e e Ve e e
Read Pointer e
Stack Warning/Read Error Pin
Interrupt Return Register,

Microprogramming the ‘ACT8818

Address Selection
Stack Controls e
Register Controls,
Continue/Repeat Instructionsc. e,
Branch Instructions i e
Conditional Branch Instructions
LOOP INSTIUCHIONS . . . o o oo o e e e e et e e e _
Subroutine Calls
Subroutine Returns e
Reset e e e
Clear Pointers ittt e e e e et
Read Stack i e e e
Interrupts e

2-5

| Contents (Continued)

Page
Sample Microinstructions for the ‘ACT8818 2-44
2 ContinUE e e e 2-44
~ ContinueandPop e 2-44
t Continueand Push 2-44
') Branch (Example 1) i i, 2-46
o Branch (Example 2).................... 2-46
2‘0 Sixteen-Way Branch 2-46
o ConditionalBranch 2-48
Three-Way Branch 2-48
Thirty-Two-Way Branch 2-48
Repeat e e e 2-50
Repeaton Stack i 2-50
Repeat Until CC =H 2-52
Loop Until Zero. i 2-52
Conditional Loop Until Zero 2-54
Jump to Subroutine 2-56
Conditional Jump to Subroutine. 2-56
Two-Way Jump to Subroutine 2-56
Return from Subroutine oo 2-58
Conditional Return from Subroutine e 2-58
Clear Pointers B e e e 2-568
ReSet e e 2-58

2-6

Figure

——
QUOWUONIOTPLWN=

11

12
13
14
15
16
17
18
19
20
21

22
23
24

List of lllustrations

'ACT8818 GC Packagecciviiuuunn..
'ACT8818 FNPackage
'ACT8818 Logic Symbol
'ACT8818 Functional Block Diagram
Continue i e e
Continueand Pop
Continueand Push
Branch Example 1
Branch Example 2
Sixteen-Way Branch
Conditional Branch
Three-Way Branch
Thirty-Two Way Branch.

Repeat e .

Repeaton Stack
Repeat Until CC = H. i ..
Loop Until Zero
Conditional Loop Until Zero (Example 2)..............
Jump to Subroutine
Conditional Jump to Subroutine
Two-Way Jump to Subroutine
Return from Subroutine
Conditional Return from Subroutine
Clear Pointers i,

2-7

SN74ACT8818 ﬁ

n SN74ACT8818

2-8

Table

—
QWO NOODOPLWN=

11
12
13
14

List of Tables

Title Page
'‘ACT8818 Pin Grid Allocation 2-15
'ACT8818 Pin Functional Description. 2-18
Response to Control Inputs 2-26
Y Output Controls (MUX2-MUXO) 2-32
Stack Controls (S2-S0) 2-33
Register Controls (RC2-RCO) 2-33
Continue/Repeat Encodings 2-34
Branch Encodings 2-35
Conditional Branch Encodings 2-37
Decrement and Branch on Nonzero Encodings 2-40
Call Encodings without Register Decrements 2-41
Call Encodings with Register Decrements 2-42
Return Encodings without Register Decrements 2-42
Return Encodings with Register Decrements. 2-43

2-9

SN74ACT8818 H

n SN74ACT8818

2-10

Introduction

The SN74ACT8818 microsequencer is a low-power, high-performance microsequencer
implemented in Tl’s EPIC™ Advanced CMOS technology. The 16-bit device addresses
up to 64K locations of microprogram memory and is compatible with the SN74AS890
microsequencer.

The 'ACT8818 performs a range of sequencing operations in support of Tl’s family
of building block devices and special-purpose processors such as the SN74ACT8847
Floating Point Unit (FPU).

Understanding the ‘ACT8818 Microsequencer

The 'ACT8818 microsequencer is designed to control execution of microcode in a
microprogrammed system. Basic architecture of such a system usually incorporates
at least the microsequencer, one or more processing elements such as the 'ACT8847
FPU or the SN74ACT8832 Registered ALU, microprogram memory, microinstruction
register, and status logic to monitor system states and provide status inputs to the
microsequencer.

The 'ACT8818 combines flexibility and high speed in a microsequencer that performs
multiway branching, conditional subroutine calls, nested loops, and a variety of other
microprogrammable operations. The ‘ACT8818 can also be cascaded for providing
additional register/counters or addressing capability for more complex microcoded
control functions.

In this microsequencer, several sources are available for microprogram address
selection. The primary source is the 16-bit microprogram counter (MPC), although
branch addresses may be input on the two 16-bit address buses, DRA and DRB. An
address input on the DRA bus can be pushed on the stack for later selection.
Register/counters RCA and RCB can store either branch addresses or loop counts as
needed, either for branch operations or for looping on the stack.

The selection of address source can be based on external status from the device being
controlled, so that three-way or multiway branching is supported. Once selected, the
address which is output on the Y bus passes to the microprogram memory, and the
microinstruction from the selected location is clocked into the pipeline register at the
beginning of the next cycle.

It is also possible to interrupt the ‘ACT8818 by placing the Y output bus in a high-
impedance state and forcing an interrupt vector on the Y bus. External logic is required
to place the bus in high impedance and load the interrupt vector. The first

EPIC is a trademark of Texas Instruments Incorporated.

SN74ACT8818 H

81L88LOVYLNS !

microinstruction of the interrupt handler subroutine can push the address from the
Interrupt Return register on the stack so that proper linkage is preserved for the return
from subroutine.

Microprogramming the ‘ACT8818

Microinstructions for the 'ACT8818 select the specific operations performed by the
Y output multiplexer, the register/counters RCA and RCB, the stack, and the
bidirectional DRA and DRB buses. Each set of-inputs is represented as a separate field
in the microinstructions, which control not only the microsequencer but also the ALU
or other devices in the system.

The 3-port architecture of the 'ACT8818 facilitates both branch addressing and
register/counter operations. Both register/counters can be used to hold either loop
counts or branch addresses loaded from the DRA and DRB buses. Register/counter
operations are selected by control inputs RC2-RCO.

Similarly, the 65-word by 16-bit stack can save addresses from the DRA bus, the
microprogram counter (MPC), or the Interrupt Return register, depending on the settings
of stack controls S2-S0 and related control inputs. Flexible instructions such as Branch
DRA else Branch to Stack else Continue can be coded to take advantage of the
conditional branching capability of the 'ACT8818.

Multiway branching (16- or 32-way) uses the B3-BO inputs to set up a 16-way branch
address on DRA or DRB by concatenating B3-BO with the upper 12 bits of the DRA
or DRB bus. The resulting branch addresses DRA’ (DRA15-DRA4::B3-B0) and DRB’
(DRB15-DRB4::B3-B0) are selected by the Y output multiplexer controls MUX2-MUXO.
A Branch DRB’ else Branch DRA’ instruction can select up to 32 branch addresses,
as determined by the settings of B3-BO.

Design Support

Texas Instruments Regional Technology Centers, staffed with systems-oriented
engineers, offer a training course to assist users of Ti's LSI products and their
application to digital processor systems. Specific attention is given to the understanding
and generation of design techniques which implement efficient algorithms designed
to match high-performance hardware capabilities with desired performance levels.

Information on LS| devices and product support can be obtained from the following
Regional Technology Centers:

Atlanta Chicago

Texas Instruments Incorporated Texas Instruments Incorporated

3300 N.E. Expressway, Building 8 515 Algonquin

Atlanta, GA 30341 Arlington Heights, IL 60005
404/662-7945 312/640-2909

Boston Dallas
Texas Instruments Incorporated Texas Instruments Incorporated

950 Winter Street, Suite 2800 10001 E. Campbell Road 2
Waltham, MA 02154 Richardson, TX 75081 00
617/895-9100 214/680-5066 &
Northern California Southern California (&]
Texas Instruments Incorporated Texas Instruments Incorporated g
5353 Betsy Ross Drive 17891 Cartwright Drive ~
Santa Clara, CA 95054 Irvine, CA 92714 =4
408/748-2220 714/660-8140 @

Design Expertise

Texas Instruments can provide in-depth technical design assistance through
consultations with contract design services. Contact the local Field Sales Engineer
for current information or contact VLS| Systems Engineering at 214/997-3970.

2-13

81L881IVVLNS !

'ACT8818 Pin Grid Allocation

(TOP VIEW)
1 2 3 4'5 6 7 8 9 10 11
A . ® 6 o o o o o o o
B L] b e o o6 o o o o @ []
C o o o e o o e o o
D e o e o o
E e o o e o o
F e o o e o o
G e o o e o o
H o o o o
J ® o e [J e o o
K [] @ e o o o o [] @ []
L e o o o o o o o
Figure 1. ‘ACT8818 GC Package

Table 1. 'ACT8818 Pin Grid Allocation

PIN PIN PIN PIN
NO. NAME | NO. NAME | NO. NAME NO. NAME
A2 RC2 (o) RCO F3 RBOE J1o S1
A3 Y1 c3 GND F9 BO J11 STKWRN/RER
A4 Y3 cs GND F10 B1 K1 DRBO
A5 Y5 cé Y7 F11 MUX2 K2 SELDR
A6 Y6 c7 Y10 G1 DRB6 K3 DRA14
A7 VY8 co GND G2 DRB5 K4 DRA12
A8 Y11 C10 Vce G3 GND K5 DRA10
A9 Y13 c11 RE G9 CLK K6 DRA7
A10 NC D1 DRB12 | G10 MUXO K7 DRA5
B1 DRB15 D2 DRB13 [G11 MUX1 K8 DRA3
B2 RC1 D9 GND H1 DRB4 K9 DRAO
B3 YO D10 COuT H2 DRB3 K10 SO
B4 Y2 D11 INC H10 CC K11 S2
B5 Y4 E1 DRBY H11 ZEROUT L2 DRA15
B6 YOE E2 DRB10 | J1 DRB2 L3 DRA13
B7 Y9 E3 DRB11 | J2 DRB1 L4 DRA11
B8 Y12 E9 INT J3 vVee L5 DRA9
B9 Y14 E10 - B3 J5 GND L6 DRAS
B10 Y15 E11 B2 J6 RAOE L7 DRA6
B11 ZEROIN | F1 DRB7 J8 DRA1 L8 DRA4
C1 DRB14 F2 DRBS J9 GND L9 DRA2

L10 OSEL

SN74ACT8818 H

SO

s1

s2

cc
STKWRN/RER
ZEROUT
CLK
MUXO0
MUX1
MUX2
BO

B1

B2

B3
INT
INC
couT
RE
GND
Vce
ZEROIN

8L88LIOVVLNS !

2-16

(TOP VIEW)

o FN(")#LDm
- Orr AN MTOON|WOWO v« Ce e - A
wog O A (o R O = R . . O
NZocrocorococecojdocrcaxcZ2CccecCecn
(e NLalaNalalalalalal i 4ala e RO N laNal a7

11109 8 7 6 5 4 3 2 184838281807978777675
12 740

13 73(
)14 720
15 710
16 700
117 69
)18 68 (]
19 670
0 20 66
[21 65]
[22 64 (]
[23 630
124 62 (]
[25 610
26 60 [
) 27 59 (]
28 58 [
129 57
[30 56
731 55 []
[32 54
3334353637 38394041424344454647 484950515253
MmMmMCEmahaaaaOoaaaaa eI onr
OOV TON—~OODOIWNOUOUAOTON—OAON
% bl > T Tz > > g > > > % >>>> > 5 g

Figure 2. ‘ACT8818 . . . FN Package

Vce
DRBO
DRB1
DRB2
DRB3
DRB4
GND
DRB5
DRB6
DRB7
RBOE
DRB8
DRB9
DRB10
DRB11
DRB12
DRB13
DRB14
DRB15
RCO
RC1

¢
16-BIT MICROSEQUENCER

"ACT8818
CLK > MASTER CLOCK
TACK
so o WARNINGS FLI(\:G STKWRN/RER
+ | o | sTACK conTROL
s2 2 ZERO DETECT ZEROUT
SELDR DRA/DRB INPUT Y-BUS OUTPUT j&l——— YOE
"Dﬂ:: :5;"5’31 DRA OUTPUT }1— - RAOGE
OSEL EN | DRB OUTPUT RBOE
MUX SELECT INT RT REG b RE
RCo v 12 | recisTericounTers INCREMENTER couT
aca * |3 |AAnD B conTROLS CARRY-OUT
B
€C ——I conDITION CODE
INT RT |_,
B0 0 MUX CONTROL INT
+ |+ [BRANCH ADDRESS
83 3
M
uxo « 19| v-outpur
® ®
MUX2 $ | Mux conTroLs
DRAO —¢»—— 0
L] []
[] L] []
DRA15 —¢>—— 15 o
[]
CURRENT
ADDRESS V15
DRBO)
[} L]
[} L]
|
DRB15 —€¢»——15

Figure 3. 'ACT8818 . . . Logic Symbol

SN74ACT8818 H

8L88LIOVVLNS !

Table 2. ‘ACT8818 Pin'Functional Description

PIN GC FN
NAME no. | wo. 1/0 DESCRIPTION
BO F9 22
B1 F10 23 | Input bits for branch addressing (see Table 3)
B2 E11 24
B3 E10 25
CLK G9 18 System clock

Incrementer carry-out. Goes high when an attempt is
CouT D10 28 (o] made to increment microprogram counter beyond
addressable micromemory.

CcC H10 | 15 | Condition code
DRAO K9 9
DRA1 J8 8
DRA2 L9 7
DRA3 K8 6
DRA4 L8 5
DRAS K7 4
DRA6 L7 3
DRA7 K6 2 1/0 Bidirectional DRA data port. Outputs data from
DRAS8 L6 84 stack or register/counter A (RAOE =0) or inputs
DRA9 | L5 83 external data (RAOE=1).
DRA10 | K5 82
DRA11 | L4 80
DRA12 | K4 79
DRA13 | L3 78
DRA14 | K3 77
DRA15 L2 76
DRBO K1 73
DRB1 J2 72
DRB2 J1 71
DRB3 H2 70 Bidirectional DRB data port. Outputs data from
DRB4 H1 69) rﬁt_er/counter B
DRB5 G2 67 (RBOE =0) or inputs external data
DRB6 G1 66
DRB7 F1 65
DRB8 F2 63
DRB10 | E2 | 61

Table 2. 'ACT8818 Pin Functional Description (Continued)
PIN GC | FN
NAME no. | no. /0 DESCRIPTION

DRB11 E3 60

DRB12 D1 59 Bidirectional DRB data port. Outputs data from

DRB13 D2 58 | 1/0 | register/counter B (RBOE =0) or inputs external data

DRB14 c1 57 (RBOE=1).

DRB15 B1 56

GND C3 10

GND C5 30

GND C9 33

GND D9 46 Ground pins. All pins must be used.

GND G3 52 '

GND J5 68

GND J9 81

INC D11 | 27 | Incrementer control pin

N E9 26 | Selects INT RT register to stack, active low (see
Table 3)

MUXO G10 | 19 .

MUX1 G11 | 20 | MUX control for Y output bus (see Table 4)

MuUXx2 F11 | 21

OSEL L10 11 | DRA output MUX select. Low selects RCA, high
selects stack.

RAOE J6 1 | | DRA output enable, active low

RBOE F3 64 | DRB output enable, active low

RCO Cc2 55

RC1 B2 54 | Controls for register/counters A and B

RC2 A2 53)
INT RT register enable, active low. A high input holds

RE c1 29 | INT RT register while a low input passes Y to INT RT
register (see Table 3).

SO K10 | 12

S1 J10 | 13 | Stack controls

S2 K11 | 14

SELDR K2 75 | Selects data source to DRA bus and DRB bus (See
Table 3)

i J11 16 (0] Stack warning signal flag

RER

zgg j:;O 3; Supply voltage (5 V)

SN74ACT8818 H

8L881IJVVLNS !

Table 2. ‘ACT8818 PhnFuncﬁonaIDéscﬁpﬁon(Conduded)

PIN GC FN
NAME no. | wno. 110 DESCRIPTION

YO B3 51
Y1 A3 50
Y2 B4 49
Y3 Ad 48
Y4 B5 47
Y5 A5 45
Y6 A6 44
Y7 cé 43 1/0 | Bidirectional Y data port
Y8 A7 41
Y9 B7 40
Y10 Cc7 39
Y11 A8 38
Y12 B8 37
Y13 A9 36
Y14 B9 35
Y15 B10 34
YOE B6 42 | Y output enable, active low
ZEROIN B11 32 1 Forces internal zero detect high
ZEROUT H11 17 o} Outputs register/counter zero detect signal

2-20

"ACT8818 Specification Tables

absolute maximum ratings over operating free air temperature range (unless
otherwise noted)t

Supply voltage, VCC - -« v v oe e -05Vtob6V
Input clamp current, |k (V<O orVi>Vgee) - .o +20 mA
Output clamp current, oK (VO<OorVo>VEC - v v v v ve e v +50 mA
Continuous output current, Ig (Vo = 0toVeg) - oo oo oot +50 mA
Continuous current through Vcc or GNDpins +100 mA
Operating free-air temperaturerange 0°C to 70°C

Storage temperature range 65°C to 150°C

TStresses beyond those listed under *‘absolute maximum ratings’’ may cause permanent damage to the device.
These are stress ratings only and functional operation of the device at these or any other conditions beyond

those
rated

indicated under ‘‘recommended operating.conditions’’ is not implied. Exposure to absolute maximum
conditions for extended periods may affect device reliability.

recommended operating conditions

PARAMETER MIN NOM MAX| UNIT
Vce Supply voltage . 4.5 5 5.5 \%
VIH High-level input voltage -2 Vee \
ViL Low-level input voltage v bt (o] 0.8 A%
loH High-level output current -8| mA
loL Low-level output current 8| mA
V) Input voltage ' o] Vee \
Vo Output voltage 0 Vee \
dt/dv Input transition rise or fall rate 0 15| ns/V
TA Operating free-air temperature 0 70 °C

2-21

SN74ACT8818 H

8L881IOVVLNS !

electrical characteristics over recommended operating free-air temperature
range (unless otherwise noted)

- 0,
PARAMETER TEST CONDITIONS | Vee M.lr: Tii cM —] MIN TYP MAX | UNIT
45V| 4.48
lon = ~204A 55V| 5.46
VoH a5Vv]| 415 3.76 v
lon = -8 mA 55V| 4.97 4.76
45V 0.014
, loL = 2044 5.5V 0.014
Vou 45V 0.15 oas | Vv
loL = 8mA 5.5V 0.13 0.45
Iy Vi = Vggor0 55V +1 rA
Icc V| = Vg or 0 5.5 V 98 200 | uA
Ci V) = Vggor 0 5V 3 pF
e et Ere 1E

TThis is the increase in supply current for each input that is at one of the specified TTL voltage levels rather
than O V or V.

2-22

maximum switching characteristics

FROM To
PARAMETER (NPT - (OUTPUT) ; uNIT
Y ZEROUT DRA DRB STKWRN COUT
cC 23
27 24 16 25
cLK 30t 23t
DRA15-DRAO| 23
DRB15-DRBO | 22
MUX2-MUXO0 | 22
tod RC2-RCO | 26 18
$2-S0 25 19
B3-BO 19 ns
OSEL 25 20
ZEROIN 25
SELDR 23
INC 20
Y 16
YOE 16
ten RAOE 18 ns
RBOE 17
YOE 14
tdis RAOE 13 ns
RBOE 14

TDecrementing register/counter A or B and sensing a zero.

2-23

SN74ACT8818 H

8188LOVYLNS !

setup and hold times

PARAMETER FROM (INPUT) TO (OUTPUT) MIN MAX | UNIT
cC Stack 15
Stack 9
DRA15-DRAO RCA 6
INT RT 9
RCB 7
DRB15-DRBO
INT RT 11
INC MPC 7
INT Stack 7
Stack 15
RC2-RCO RCA, RCB 6
INT RT . 16
Stack 13
t S2-S0
su INT RT 13 ns
Stack 12
OSEL i
INT RT 13
Stack 8
B3-80 s
INT RT 14
Stack 10
E
SELDR INT RT 10
tack 14
ZEROIN Stac
INT RT 13
Y MPC 6
RE INT RT (CLK) 7
MUX2-MUXO INT RT 12
A A
th i 'ny . 0 ns
Input Destination
clock requirements
PARAMETER MIN MAX | UNIT
tw1 Pulse duration, clock low 7 ns
tw2 Pulse duration, clock high 9 ns
tc Clock cycle time 33 ns

2-24

Architecture

The "ACT8818 microsequencer is designed with a 3-port architecture similar to the
bipolar SN74AS890 microsequencer. Figure 4 shows the architecture of the
'ACT8818. The device consists of the following principal functional groups:

1. A 16-bit microprogram counter (MPC) consisting of a register and
incrementer which generates the next sequential microprogram address

2. Two register/counters (RCA and RCB) for counting loops and iterations,
storing branch addresses, or driving external devices

3. A 65-word by 16-bit LIFO stack which allows subroutine calls and interrupts
at the microprogram level and is expandable and readable by external
hardware

4. Aninterrupt return register and Y output enable for interrupt processing at
the microinstruction level

5. AYY output multiplexer by which the next address can be selected from MPC,
RCA, RCB, external buses DRA and DRB, or the stack.

'ACT8818 control signals are summarized in Table 3. Those signals, which typically
originate from the instruction register, are Y output multiplexer controls, MUX2-MUXO.
These select the source of the next address; stack operation controls, S2-SO;
register/counter operation controls, RC2-RCO; OSEL, which allows the stack to be
read for diagnostics; input MUX select, SELDR; DRA and DRB output enables, RACE
and RBOE; and INT, used during the first cycle of interrupt service routines to push
the address in the interrupt return register address onto the stack.

Control and data signals that commonly originate from the microinstruction and from
other hardware sources include INC, which determines whether to increment the MPC;
DRA and DRB, used to load or read loop counters and/or next addresses; and CC,
the condition code input. The address being loaded into the MPC is not incremented
if INC is low, allowing wait states and repeat until flag instructions to be implemented.
If INC originates from status, repeat until flag instructions are possible.

The condition code input CC typically originates from ALU status to permit test and
branch instructions. However, it must also be asserted under microprogram control
to implement other instructions such as continue or loop. Therefore, CC will generally
be controlled by the output of a status multiplexer. In this case, whether CC is to
be forced high, forced low or taken from ALU status will be determined by a status
MUX select field in the microinstruction.

2-25

SN74ACT8818 H

8L88LOVYLNS !

Table 3. Response to Control Inputs

SIGNAL LOGIC LEVEL
NAME HIGH Low
Bot Load stack pointer from 7 least No effect
significant bits of DRA
B1t Selects DRA contents as stack No effect
input (takes priority over INT)
cc Condition code input. May be Condition code input. For branch
) microcoded or selected from operations, low active.
external status results.
INC Increment address from Y bus and Pass address from Y bus to MPC
load into MPC unincremented.
INT? Selects MPC as input to stack Selects interrupt return register as
input to stack
OSEL Selects stack as output from DRA Selects RCA as output from DRA
output MUX output MUX
MUX2-MUXO | See Table 4 See Table 4
RAOE DRA output disabled (high-Z) DRA output enabled
RBOE DRB output disabled (high-2Z) DRB output enabled
RC2-RCO See Table 6 See Table 6
RE Hold interrupt return register Load address on Y bus to inte}rupt
contents return register
S$2-S0 See Table 5 See Table 5
SELDR Selects DRA/DRB external data as Selects RCA (OSEL low) or stack
inputs to DRA/DRB buses (OSEL high) to DRA bus, RCB to
DRA bus
YOE Y output disabled (high-Z) Y output enabled
ZEROIN Seté ZERO to a high externally to ' No effect
set up conditional branch

TNo control effect when DRA’ or DRB’ selected (MUX2-MUXO0) = HLH) because B3 BO are address inputs.
*When B1 is low or B1 is not in control mode.

Control signals which may also originate from hardware are B3-BO, which can be used
as a 4-bit status input to support 16- and 32-way branches, and YOE, which allows
interrupt hardware to force an interrupt vector on the microaddress bus.

2-26

DRA15-DRA0 SELDR DRB15-DRBO

RAGE RBOE
DRA INPUT DRB INPUT
: MUX Mux — &K
osEL 'DRA OUTPUT Y Y
MUX
N . -
>
REGISTER/ REGISTER/
COUNTER A : COUNTER B
<
<24~ RC2-RCO
REGISTER i
CONTRoL |4~ ZEROIN
STACK POINTER <+
—»— ZEROUT
STKWRN/RER ~€—] READ POINTER
ZERO <
s STACK [. . <
$2-50 —p-—~1 SPLOAD
f_l—\ 4+ mux %e- 5380
iNT > INT MUX < BUFFER :
iNT y4 .]\ < j

[] ’ _J
Xourvur mux £ <
YMUX L 3g pux2.muxo
b INT RT CONTROL
REGISTER DA

RE —p—r]
INC mcnemsursnl <+
$1s
cout Y15.Y0 YOE

Figure 4. 'ACT8818 Functional Block Diagram

Status from the ‘ACT8818 is provided by ZEROUT, which is set at the beginning of

‘a cycle in which either of the register/counters will decrement to zero, and

STKWRN/RER, set at the beginning of the cycle in which the bottom of stack is read
or in which the next to last location is written. In the latter case, STKWRN/RER remains
high until the stack pointer is decremented from 64 to 63.

2-27

SN74ACT8818 H

818810VYLNS !

Y Output Multiplexer

Address selection is controlled by the Y output multiplexer and the RAOE and RBOE
enables. Addresses can be selected from eight sources:

1. The microprogram counter register, used for repeat (INC off) and continue
(INC on) instructions

2. The stack, which supports subroutine calls and returns as well as iterative
loops and returns from interrupts

3. The DRA and DRB ports, which provide two additional paths from external
. hardware by which microprogram addresses can be generated

4. Register counters RCA and RCB, which can be used for additional address
storage

5. B3-BO, whose contents can replace the four least significant bits of the
DRA and DRB buses to support 16-way and 32-way branches

6. An external input onto the bidirectional Y port to support external
interrupts.

Use of controls MUX2-MUXO is explained further in the later section on
microprogramming the ‘ACT8818.

Microprogram Counter

Based on system status and the current instruction, the microsequencer outputs the
next execution address in the microprogram. Usually the incrementer adds one to the
address on the Y bus to compute next address plus one. Next address plus one is
stored in the microprogram register at the beginning of the subsequent instruction cycle.
During the next instruction, this ‘continue’ address will be ready at the Y output MUX
for possible selection as the source of the subsequent instruction. The incrementer
thus looks two addresses ahead of the address in the instruction register to set up
a continue (increment by one) or repeat (no increment) address.

Selecting INC from status is a convenient means of implementing instructions that
must repeat until some condition is satisfied; for example, Shift ALU Until MSB = 1,
or Decrement ALU Until Zero. The MPC is also the standard path to the stack. The
next address is pushed onto the stack during a subroutine call, so that the subroutine
will return to the instruction following that from which it was called.

Register/Counters

Addresses or loop counts may be loaded directly into register/counters RCA and RCB
through the direct data ports DRA15-DRA0 and DRB15-DRBO. The values stored in
these registers may either be held, decremented, or read. Independent control of both
the registers during a single cycle is supported with the exception of a simultaneous
decrement of both registers.

2-28

Stack

The positive edge clocked 16-bit address stack allows multiple levels of nested calls
or interrupts and can be used to support branching and looping. Seven stack operations
are possible:

1. Reset, which pulls all Y outputs low and clears the stack pointer and read
pointer

2. Clear, which sets the stack pointer and read pointer to zero
3. Pop, which causes the stack pointer to be decremented

4 . Push, which puts the contents of the MPC, interrupt return register, or
DRA bus onto the stack and increments the stack pointer

5. Read, which makes the address indicated by the read pointer available
at the DRA port

6. Hold, which causes the address of the stack and read pointers to remain
unchanged

7 . Load stack pointer, which inputs the seven least significant bits of DRA
to the stack pointer.

Stack Pointer

The stack pointer (SP) operates as an up/down counter; it increments whenever a push
occurs and decrements whenever a pop occurs. Although push and pop are two event
operations (store then increment SP, or decrement SP then read), the 'ACT8818
performs both events within a single cycle.

Read Pointer

The read pointer (RP) is provided as a tool for debugging microcoded systems. It permits
a nondestructive, sequential read of the stack contents from the DRA port. This
capability provides the user with a method of backtracking through the address
sequence to determine the cause of overflow without affecting program flow, the status
of the stack pointer, or the internal data of the stack.

Stack Warning/Read Error Pin

A high signal on the STKWRN/RER pin indicates a potential stack overflow or underflow
condition. STKWRN/RER becomes active under two conditions. If 62 of the 65 stack
locations (0-67) are full (the stack pointer is at 62) and a push occurs, the STKWRN/RER
pin outputs a high signal to warn that the stack is approaching its capacity and will
be full after two more pushes.

The STKWRN/RER signal will remain high if hold, push or pop instructions occur, until
the stack pointer is decremented to 63. If a push instruction is attempted when the
stack is full, the new address will be ignored and the old address in stack location
64 will be retained.

2-29

SN74ACTS8818 ﬂ

8L881IVVLNS

The second condition in which the STKWRN/RER signal goes high is to indicate that
the last location has been popped from the stack and the stack is empty. The user
may be protected from attempting to pop an empty stack by monitoring STKWRN/RER
before pop operations. A high level at this pin signifies that the last address has been
removed from the stack (SP = 0). This condition remains until an address is pushed
onto the stack and the stack pointer is incremented to one.

Interrupt Return Register

Unlike the MPC register, which normally gets next address plus one, the interrupt return
register simply gets next address. This permits interrupts to be serviced with zero
latency, since the interrupt vector replaces the pending address.

The interrupting hardware disables the Y output and forces the vector onto the
microaddress bus. This event must be synchronized with the system clock. The first
address of the service routine must program INT low and perform a push to put the
contents of the interrupt return register on the stack.

2-30

Microprogramming the ‘ACT8818

Microprogramming is unlike programming monolithic processors for several reasons.
First, the width of the microinstuction word is only partially constrained by the basic
signals required to control the sequencer. Since the main advantage of a
microprogrammed processor is speed, many operations are often supported by or
carried out in special purpose hardware. Lookup tables, extra registers, address

generators, elastic memories, and data acquisition circuits may also be controlled by

the microinstruction.

The number of slices in a bit-slice ALU is user-defined, which makes the microinstruction
width even more application dependent. Types of instructions resulting from
manipulation of the sequencer controls are discussed below. Examples of some
commonly used instructions can be found in the later section of microinstructions and
flow diagrams. The following abbreviations are used in the tables in this section:

BR A
BR A’
BR B
BR B’
BR S
CALL A
CALL B
CALL A’
CALL B’
CALL S
CLR SP, RP
CONT/RPT’
DRA
DRA’
‘DRB
DRB’
MPC
POP
PUSH
RCA
RCB
READ
RESET
RP

SP

STK

Y — DRA
Y — DRA’
Y — DRB
Y — DRB’"

Y — STK

Y — DRA; STK — MPC; SP — SP + 1

Y — DRB; STK — MPC; SP — SP + 1

Y — DRA’; STK — MPC; SP — SP + 1

Y — DRB’; STK — MPC; SP — SP + 1

Y — STK; STK — MPC; SP — SP + 1

SP — O;RP - 0

Y~ MPC + 1ifINC =H; Y~ MPCIifINC =L
Bidirectional data port (can be loaded externally or from RCA)
DRA15-DRA4::B3-BO

Bidirectional data port (can be loaded externally or from RCB)
DRB15-DRB4::B3-BO

Microprogram counter

SP —~ SP - 1

STK — MPC; SP — SP + 1

Register/counter A

Register/counter B

Y — STK; RP — RP - 1

Y~—~0;,SP~-0;,RP -~ 0

Read pointer

Stack pointer

Stack

SN74ACT8818 H

2-31

8L88LOVYLNS H

Address Selection

Y-output multiplexer controls MUX2-MUXO select one of eight 3-source branches as
shown in Table 4. The states of CC and ZERO determine which of the three sources
is selected as the next address. ZERO is set at the beginning of any cycle in which
a register/counter will decrement to zero.

Table 4. Output Controls (MUX2-MUXO)

MUX2- | ceseT Yg%,TfULT sounci
Muxo ZERO = L|zero = 1| °° ~ M
XXX | Yes | AllLow | AllLow | All Low
LLL No STK MPC DRA
LLH No STK MPC DRB
LHL No STK DRA MPC
LHH No STK DRB MPC
HLL No DRA MPC DRB
HLH No DRA'T MPC DRB' ¥
HHL No DRA STK MPC
HHH | No DRB STK MPC

TDRA15-DRA4::B3-BO
*DRB15-DRB4::B3-BO

By programming CC._high or low without decrementing registers, only one outcome
is possible; thus, unconditional branches or continues can be implemented by forcing
the condition code. Alternatively, CC can be selected from status, in which case Branch
A on Condition Code Else Branch B instructions are possible, where A and B are the
address sources determined by MUX2-MUXO.

Decrement and Branch on Nonzero instructions, creating loops that repeat until a
terminal count is reached, can be implemented by programming CC low and
decrementing a register/counter. If CC is selected from status and registers are
decremented, more complex instructions such as Exit on Condition Code or End or
Loop are possible.

When MUX2-MUXO0 = HLH, the B3-BO inputs can replace the four least significant
bits of DRA or DRB to create 16-Way branches or, when CC is based on status, to
create 32-way branches.

Stack Controls

As in the case of the MUX controls, each stack-control coding is a three-way choice
based on CC and ZERO (see Table 5). This allows push, pop, or hold stack operations
to occur in parallel with the aforementioned branches. A subroutine call is accomplished
by combining a branch and push, while returns result from coding a branch to stack
with a pop.)

2-32

Table 5. Stack Controls (S2-S0)

STACK OPERATION
$2-S0 OSEL CC =1L T =H
ZERO = L ZERO = H
LLL X Reset/Clear | Reset/Clear | Reset/Clear
LLH X Clear SP/RP Hold Hold
LHL X Hold Pop Pop
LHH X Pop Hold Hold
HLL X Hold Push Push
HLH X Push Hold Hold
HHL X Push Hold Push
HHH H Read Read Read
HHH L Hold Hold Hold

Combining stack and MUX controls with status results and register decrements permits
even greater complexity. For example: Return on Condition Code or End of Loop; Call A
on Condition Code Else Branch to B; Decrement and Return on Nonzero; Call 16-Way.

Diagnostic stack dumps are possible using Read (S2-SO = HHH) when OSEL is set high.

Register Controls

Unlike stack and MUX controls, register control is not dependent upon CC and ZERO.
Registers can be independently loaded, decremented, or held using register control
inputs RC2-RCO (see Table 6). All combinations are supported with the exception of
simultaneous register decrements. The register control inputs can be set to store branch
addresses and loop counts or to decrement loop counts, facilitating the complex
branching instructions described above. ‘

Table 6. Register Controls (RC2-RCO)

REGISTER OPERATIONS

RC2-RCO REG A REG B
LLL Hold Hold
LLH Decrement Hold
LHL Load Hold
LHH Decrement Load
HLL Load Load
HLH Hold Decrement
HHL Hold Load

HHH Load Decrement

The contents of RCA are accessible to the DRA port when OSEL is low and the output
bus is enabled by RAOE being low. Data from RCB is available when DRB is enabled

by RBOE being low.

2-33

SN74ACT8818 H |

Continue/Repeat Instructions

The most commonly used instruction is a continue, irhplemehted by selecting MPC
at the Y output MUX and setting INC high. If MPC is selected and INC is off, the current
instruction will simply be repeated.

A repeat instruction can be implemented in two ways. A programmed repeat (INC
forced low) may be useful in generating wait states, for example, wait for interrupt.
-A conditional repeat (INC originates from status) may be useful in implementing Do
While operations. Several bit patterns in the MUX control field of the microinstruction

v will place MPC on the microaddress bus. Continue/repeat instructions are summarized

2 in Table 7 below.

~

H

g Table 7. Continue/Repeat Encodings

g MUX2-MUXO0 | $2-S0 | OSEL TC=H

00 LHL LLH X CONT/RPT

g‘o LHL LHL X CONT/RPT: POP

! LHL HLL X CONT/RPT: PUSH

LHL HHH 0 CONT/RPT
LHL HHH 1 CONT/RPT: READ
LHH LLH X CONT/RPT
LHH LHL X CONT/RPT: POP
LHH HLL X CONT/RPT: PUSH
LHH HHH (0] CONT/RPT
LHH HHH 1 CONT/RPT: READ
HHL LLH X CONT/RPT
HHL LHL. X CONT/RPT: POP
HHL LHH X CONT/RPT
HHL HLL X CONT/RPT: PUSH
HHL HHH [0] CONT/RPT
HHL HHH 1 CONT/RPT: READ
HHH LLH X CONT/RPT
HHH LHL X CONT/RPT: POP
HHH LHH X CONT/RPT
HHH HLL X CONT/RPT: PUSH
HHH HHH 0 CONT/RPT
HHH HHH 1 CONT/RPT: READ

‘Branch Instructions

A branch or jump to a given microaddress can also be coded several ways. RCA, DRA,
RCB, DRB, and STK are possible sources for branch addresses (see Table 4). Branches
to register or stack are useful whenever the branch address could be stored to reduce
_ overhead.

2-34

The simplest branches are to DRA and DRB,; since they require only one cycle and
the branch address is supplied in the microinstruction. Use of registers or stack requires
an initial load cycle (which may be combined with a preceding instruction), but may
be more practical when an entry point is referenced over and over throughout the
microprogram, for example, in error-handling routines. Branches to stack or register
also enhance sequencing techniques in which a branch address is dynamically
computed or multiple branches to a common entry point are used, but the entry point
varies according to the system state. In this case, the state change might require
reloading the stack or register.

In order to force a branch to DRA or DRB, CC must be programmed high or low. A
branch to stack is only possible when CC is forced low (see Table 4).

When CC is low, the ZERO flag is tested, and if a register decrements to zero the
branch will be transformed into a Decrement and Branch on Nonzero instruction.
Therefore, registers should not be decremented during branch instructions using
CC = Ounless it is certain the register will not reach terminal count. Branch instructions
are summarized in Table 8, below. Call (Branch and Push MPC) instructions and Return
(Branch to Stack and Pop) instructions are discussed in later sections.

Table 8. Branch Encodings

MUX2-MUXO | S2-S0| OSEL CC=H

©LLL LLtH] X | BRA
LLL LHL | X | BR A: POP
LLL HHH| O |BRA
LLL HHH| 1 | BR A: READ
LLH LLH| X |BRB
LLH LHL | Xx | BRB: POP
LLH HHH| O |BRB
LLH HHH| 1 | BRB: READ
HLL LLH| X |BRB
HLL LHL | X | BRB: POP
HLL LHH| X |BRB:
HLL HHH| O |BRB
HLL HHH| 1 | BRB: READ
HLH LLH | X | BR B’ (16-way)
HLH LHL | X | BR B’ (16-way) : POP
HLH LHH | X | BR B’ (16-way)
HLH HHH| O | BR B’ (16-way)
HLH HHH | 1 | BR B’ (16-way): READ
LLL LLtH | X | BR'S: CLR SP/RP
LLL LHL| X |BRS

2-35

SN74ACTS818 ﬂ

8188LOVVLNS !

2-36

Table 8. Branch Encodings (Continued)

MUX2-MUXO | S2-SO| OSEL CC=H
LLL HLL| X |BRS
LLL HHH| 0 |BRS
LLL HHH| 1 | BRS: READ
LLH LLH | X | BR'S: CLR SP/RP
LLH LHL| X |BRS
LLH HLL| X |BRS
LLH HHH| 0 |BRS
LLH HHH| 1 | BRS: READ
LHL LLH| X | BRS: CLR SP/RP
LHL LHL|{ X [BRS
LHL HLL| X |BRS
LHL HHH| o0 |[BRS
LHL HHH| 1 | BRS: READ
LHH LLH | X | BRS: CLR SP/RP
LHH LHL| X |BRS
LHH HLL| X |BRS
LHH HHH| O |[BRS
LHH HHH| 1 | BR'S: READ
HLL LLH | X | BR A: CLR SP/RP
HLL LHL| X |BRA
HLL LHH| X | BR A: POP
HLL HLL | X | BRA
HLL HHH| O |[BRA
HLL HHH| 1 | BR A: READ
HLH LLH | X | BR A’ (16-way): CLR SP/RP
HLH LHL | X | BR A’ (16-way)
HLH LHH| X | BR A’ (16-way): POP
HLH HLL | X | BR A’ (16-way)
HLH HHH 0 BR A’ (16-way)
HLH HHH| 1 | BR A’ (16-way): READ
HHL LLH | 'X | BR A: CLR SP/RP
HHL LHL| X | BRA
HHL LHH | X | BR A: POP
HHL HLL| X | BRA
HHL HHH|{ O |BRA
HHL HHH| 1 | BR A: READ

Table 8. Branch Encodings (Concluded)

MUX2-MUXO | $2-S0| OSEL CC=H
HHH LLH X BR B: CLR SP/RP
HHH LHL X BR B
HHH LHH X BR B: POP
HHH HLL X BR B
HHH HHH 0 BR B
HHH HHH 1 BR B: READ

Conditional Branch Instructions

Perhaps the most useful of all branches is the conditional branch. The 'ACT8818
permits three modes of conditional branching: Branch on Condition Code; Branch
16-Way from DRA or DRB; and Branch on Condition Code 16-Way from DRA Else
Branch 16-Way from DRB. This increases the versatility of the system and the speed
of processing status tests because both single-bit and 4-bit status are allowed.

Testing single bit status is preferred when the status can be set up and selected through
a status MUX prior to the conditional branch. Four-bit status allows the 'ACT8818
to process instructions based on Boolean status expressions, such as Branch if Overflow
and Not Carry if Zero or if Negative. It also permits true n-way branches, such as If
Negative then Branch to X, Else if Overflow, and Not Carry then Branch to Y. The
tradeoff is speed versus program size. Since multiway branching occurs relatively
infrequently in most programs, users will enjoy increased speed at a negligible cost.
Conditional branching codes are listed in Table 9. Call (Branch and Push MPC)
instructions and Return (Branch to Stack and Pop) instructions are discussed in later
sections.

Table 9. Conditional Branch Encodings

SN74ACT8818 H

MUX2- o —
MUXO sz-so OSEL CC=1L C=H
LLL LLH X BR S: CLR SP/RP BR A
LLL LHL X BR S BR A: POP
LLL HLL X BR S CALL A
LLL HHH 0 BR'S ' BR A
LLL HHH 1 BR S: READ BR A: READ
LLH LLH X BR S: CLR SP/RP BR B
LLH HHH 0 BR S : BR B
LLH LHL X BR S i BR B: POP
LLH HLL X BR S CALL B
LLH HHH 1 BR S: READ BR B: READ
LHL LLH X BR S: CLR SP/RP CONT/RPT

2-37

8188LOVVLNS !

Table 9. Conditional Branch Encodings (Concluded)

MUX2- —

MUXO $2-S0 OSEL CC=1L CC=H
LHL LHL X BR S CONT/RPT: POP
LHL HLL X BR S CONT/RPT: PUSH
LHL HHH 0 BR S CONT/RPT
LHL HHH 1 BR S: READ CONT/RPT: READ
LHH LLH X BR S: CLR SP/RP CONT/RPT
LHH LHL X BR S CONT/RPT: POP
LHH HLL X BRS CONT/RPT: PUSH
LHH HHH 0 BRS CONT/RPT
LHH HHH 1 BR S: READ CONT/RPT: READ
HLL LLH X BR A: CLR SP/RP BR B
HLL LHL X BR A BR B: POP
HLL LHH X BR A: POP BR B
HLL HLL X BR A CALL B
HLL HHH 0 BR A BR B
HLL HHH 1 BR A: READ BR B: READ
HLH LLH X BR A’ (16-way): CLR SP/RP BR B’ (16-way)
HLH LHL X BR A’ (16-way) BR B’ (16-way): POP
HLH LHH X BR A’ (16-way): POP BR B’ (16-way)
HLH HLL X BR A’ (16-way) CALL B’ (16-way)
HLH HHH 0 BR A’ (16-way) BR B’ (16-way)
HLH HHH 1 BR A’ (16-way): READ BR B’ (16-way): READ
HHL LLH X BR A: CLR SP/RP CONT/RPT
HHL LHL X BR A CONT/RPT: POP
HHL LHH X BR A: POP CONT/RPT
HHL HLL X BR A CONT/RPT: PUSH
HHL HHH 0 BR A CONT/RPT
HHL HHH 1 BR A: READ CONT/RPT: READ
HHH LLH X BR B: CLR SP/RP CONT/RPT
HHH LHL X BR B CONT/RPT: POP
HHH LHH X BR B: POP CONT/RPT
HHH HLL X BR B CONT/RPT: PUSH
HHH HHH 0 BR B CONT/RPT
HHH HHH - 1 BR B: READ CONT/RPT: READ

2-38

Loop Instructions

Up to two levels of nested loops are possible when both counters are used
simultaneously. Loop count and levels of nesting can be increased by adding external
counters if desired. The simplest and most widely used of the loop instructions is
Decrement and Branch on Nonzero, in which CC is forced low while a register is
decremented. As before, many forms are possible, since the top-of-loop address can
originate from RCA, DRA, RCB, DRB, or the stack (see Table 4). Upon terminal count,
instruction flow can either drop out of the bottom of the loop or branch elsewhere.

When loops are used in conjunction with CC as status, B3-BO as status and/or stack
manipulation, many useful instructions are possible, including Decrement and Branch
on Nonzero else Return, Decrement and Call on Nonzero, and Decrement and Branch
16-Way on Nonzero. Possible variations are summarized in Table 10. Call (Branch and
Push MPC) instructions and Return (Branch to Stack and Pop) instructions are discussed
in later sections.

Another level of complexity is possible if CC is selected from status while looping.
This type of loop will exit either because CC is true or because a terminal count has
been reached. This makes it possible, for example, to search the ALU for a bit string.
If the string is found, the match forces CC high. However, if no match is found, it
is necessary to terminate the process when the entire word has been scanned. This
complex process can then be implemented in a simple compact loop using Conditional
Decrement and Branch on Nonzero.

2-39

SN74ACT8818 H

8188LOVYLNS !

Table 10. Decrement and Branch on Nonzero Encodings

MUX2- CC=1L —

muxo o050 OSEL ZERO = L ZERO = H cc=H
LLL LLH X | BRS:CLRSPRP CONT/RPT BR A
LLL LHL X | BRS CONT/RPT: POP BR A: POP
LLL HWL X | BRS CONT/RPT: PUSH | CALL A
LLL HHH O | BRS CONT/RPT BR A
LLL HHH 1 | BRS:READ CONT/RPT: READ | BRA
LLH LH X | BRS:CLRSPRP CONT/RPT BR B
LLH LHL X | BRS CONT/RPT: POP BR B: POP
LLH HLL X | BRS CONT/RPT: PUSH | CALL B
LLH HHH O | BRS CONT/RPT BR B
LLH HHH 1 | BRS: READ CONT/RPT: READ | BR B
LHL LLH X | BRS:CLR SP/RP BR A CONT/RPT
LHL LHL X | BRS BR A: POP CONT/RPT: POP
LHL HL X | BRS CALL A CONT/RPT: PUSH
LHL HHH o0 | BRS BR A CONT/RPT
LHL HHH 1 | BRS:READ BR A: READ CONT/RPT: READ
LHH LLH X | BRS:CLR SP/RP BR B CONT/RPT
LHH LHL X | BRS BR B: POP CONT/RPT: POP
LHH HWL X | BRS CALL B CONT/RPT: PUSH
LHH HHH O | BRS BR B CONT/RPT
LHH HHH 1 | BRS:READ BR B: READ CONT/RPT: READ
HLL LLH X | BRA:CLRSPRRP CONT/RPT BR B
HLL LHL X | BRA CONT/RPT: POP BR B: POP
HLL LHH X | BRA:POP CONT/RPT BR B
HIL HLL X | BRA CONT: PUSH CALL B
HIL HHH oO0 | BRA CONT/RPT BR B
HIL HHH 1 | BRA:READ CONT/RPT: READ | BR B: READ
HLH LLH X | BRA’ (16-way): CLR SP/RP| CONT/RPT BR B’ (16-way)
HLH LHL X | BRA’ (16-way) CONT/RPT: POP BR B’ (16-way): POP
HLH LHH X | BRA’ (16-way): POP CONT/RPT BR B’ (16-way)
HLH HLL X | BRA’ (16-way) CONT/RPT: PUSH | CALL B'(16-way)
HLH HHH O | BRA’(16-way) CONT/RPT BR B’ (16-way)
HLH HHH 1 | BRA’(16-way): READ CONT/RPT: READ | BR B’ (16-way): READ
HHL LLH X | BRA:CLR SP/RP BR S CONT/RPT
HHL LHL X | BRA RET CONT/RPT: POP
HHL LHH X | BRA:POP BR S CONT/RPT
HHL HLL X | BRA CALL S CONT/RPT: PUSH
HHL HHH O | BRA BRS CONT/RPT
HHL HHH 1 | BRA:READ BR S: READ CONT/RPT: READ

2-40

Table 10. Decrement and Branch on Nonzero Encodings (Concluded)

MUX2- cc=1 —

muxo SES0 OSEL ZERO = L ZERO = H cc=H
HHH LLH X | BRB:CLRSPRP BR S CONT/RPT
HHH LHL X | BRB RET CONT/RPT: POP
HHH LHH X | BRB:POP BRS CONT/RPT
HHH HLL X | BRB CALL S CONT/RPT: PUSH
HHH HHH O | BRB BR S CONT/RPT
HHH HHH 1 | BRB: READ BR S: READ CONT/RPT: READ

Subroutine Calls

The various branch instructions described above can be merged with a push instruction
to implement subroutine calls in a single cycle. Calls, conditional calls, and Decrement
and Call on Nonzero are the most obvious.

Since a push is conditional on CC and ZERO, many hybrid instructions are also possible,
such as Call X on Condition Code Else Branch, or Decrement and Return on Nonzero
Else Branch. Codes that cause subroutine calls are summarized in Tables 11 and 12.

Table 11. Call Encodings without Register Decrements

MUX2-MUXO0 $2-S0 OSEL CC=1L C=H
LLL HLH X CALLS BR A
LLL HHL X CALL S CALL A
LLH HLH X CALL S BR B
LLH HHL X CALL S CALL B
LHL HLH X CALL S CONT/RPT
LHL HHL X CALL S CONT/RPT: PUSH
LHH HLH X CALL S CONT/RPT
LHH HHL X CALL S CONT/RPT: PUSH
HLL HLH X CALL A BR B
HLL HHL X CALL A - CALL B
HLH HLH X CALL A’ (16-way) BR B’ (16-way)
HLH HHL X CALL A’ (16-way) CALL B’ (16-way)
HHL HLH X CALL A CONT/RPT
HHL HHL X CALL A CONT/RPT: PUSH
HHH HLH X CALL B CONT/RPT
HHH HHL X CALL B CONT/RPT: PUSH

2-41

SN74ACTS8818 ﬁ

8L88LOVYLNS !

Table 12. Call Encodings with Register Decrements

MUX2- =1L _

muxo S2S0 OsEL ZERO = L ZERO = H cC=-H
LLL HLH X CALLS CONT/RPT | BRA
LLL HHL X CALL S CONT/RPT | CALL A
LLH HLH X CALL'S CONT/RPT | BRB
LLH - HHL X CALL S CONT/RPT | CALLB
LHL HLH X CALL S BR A CONT/RPT
LHL HHL X CALL S BR A CONT/RPT: PUSH.
LHH HLH X CALL S BR B CONT/RPT
LHH HHL X CALL S BR B | CONT/RPT: PUSH
HLL HLH X CALL A CONT/RPT | BRB
HLL HHL X CALL A CONT/RPT | CALL B
HLH HLH X CALL A’ (16-way) | CONT/RPT | BR B’ (16-way)
HLH HHL X CALL A’ (16-way) | CONT/RPT | CALL B’ (16-way)
HHL HLH X CALLA BR 'S CONT/RPT
HHL HHL X CALL A BRS CONT/RPT: PUSH
HHH HLH X CALL B BRS CONT/RPT
HHH HHL X CALLB BRS CONT/RPT: PUSH

Subroutine Returns

A return from subroutine can be.implemented by coding a branch to stack with a pop.
Since pop is also conditional on CC and ZERO, the complex forms discussed previously
also apply to return instructions: Decrement and Return on Nonzero; Return on
Condition Code; Branch on Condition Code Else Return. Return encodings are
summarized in Tables 13 and 14.

Table 13. Return Encodings without Register

Decrements
MUX2-MUX0 S2-SO0 OSEL | CC =L CC=H
LLL LHH X RET BR A
LLH LHH X RET BR B
LHL LHH X RET CONT/RPT
LHH LHH X RET CONT/RPT

2-42

Table 14. Return Encodings with Register Decrements

CC=1L
MUX2-MUX0 S2-SO OSEL ZERB = L ZERO = R CC=H
LLL LHH X RET CONT/RPT BR A
LLH LHH X RET CONT/RPT BR B
LHL LHH X RET BR A CONT/RPT
LHH LHH X RET BR B CONT/RPT
Reset

Pulling the S2-SO pins low clears the stack and read pointers, and zeroes the Y output
multiplexer (See Table 5).

Clear Pointers

The stack and read pointers may be cleared without affecting the Y output multiplexer
by setting S2-SO to LLH and forcing CC low (see Table 5).

Read Stack

Placing a high value on all of the stack inputs (S2-S0) and OSEL places the "ACT8818
into the read mode. At each low-to-high clock transition, the address pointed to by
the read pointer is available at the DRA port and the read pointer is decremented. The
bottom of the stack is detected by monitoring the stack warning/read error pin
(STKWRN/RER). A high appears on the STKWRN/RER output when the stack contains
one word and a read instruction is applied to the S2-SO pins. This signifies that the
last address has been read.

The stack pointer and stack contents are unaffected by the read operation. Under
normal push and pop operations, the read pointer is updated with the stack pointer
and contains identical information.

Interrupts

Real-time vectored interrupt routines are supported for those applications where polling
would impede system throughput. Any instruction, including pushes and pops, may
be interrupted. To process an interrupt, the following procedure should be followed:

1. Place the bidirectional Y bus into a high-impedance state by forcing YOE high.

2. Force the interrupt entry point vector onto the Y bus. INC should be high.

3. Push the current value in the Interrupt Return register on the stack as the
execution address to return to when interrupt handling is complete.

The first instruction of the interrupt routine must push the address stored in the interrupt
return register onto the stack so that proper return linkage is maintained. This is
accomplished by setting INT and B1 low and coding a push on the stack.

2-43

SN74ACT8818 H

81881OVVLNS !

Sample Microinstructions for the ‘ACT8818 .

Representative examples of instructions using the 'ACT8818 are given below. The
examples assume a one-level pipeline system, in which the address and contents of
the next instruction are being fetched while the current instruction is being executed,
and an ALU status register contains the status results of the previous instruction.

Since the incrementer looks two addresses ahead of the address in the instruction
register to set up some instructions such as continue or repeat, a set-up instruction
has been included with each example. This shows the required state of both INC and
CC. CC must be set up early because the status register on which Y-output selection
is typically based contains the results of the previous instruction.

Flow diagrams and suggested code for the sample microinstructions are also given
below. Numbers inside the circles are microword address locations expressed as
hexadecimal numbers. Fields in microinstructions are binary numbers except for inputs
on DRA or DRB, which are also in hexadecimal. For a discussion of sequencing
instructions, see the preceding section on microprogramming.

Continue

To Continue (Instruction 10), this example uses an instruction in Tg_tf_l_e 7 with
CONT/RPT in the instruction column and no stack operation. INC and CC must be
programmed high one cycle ahead of instruction 10 for pipelining.

Address Instruction ~MUX2-MUXO S2-SO R2-RO OSEL TC INC DRA DRB
(Set-up) XXX XXX XXX X 1 1 XXXX XXXX

10 Continue 110 111 XXX 0 X X XXXX XXXX
Continue and Pop

To Continue and decrement the stack pointer (Pop), this example uses an instruction
in Table 7 with CONT/RPT: POP in the instruction column. INC and CC are forced
high in the previous instruction.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CTC INC DRA DRB
(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue/Pop 110 010 XXX X X X XXXX XXXX
Continue and Push

To Continue and push the microprogram counter onto the stack (Push), this example
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC
and CC are forced high one cycle ahead of Instruction 10 for pipelining.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue/Push 110 100 XXX 0 X X XXXX XXXX

2-44

INC-1

IMPOSSIBLE IMPOSSIBLE -
(o)
POP -
(o8}
oo}
Y—MPC+1 Y—-MPC+1 -
(&)
g
<
~
2
»
Figure 5. Continue Figure 6. Continue and Pop

INC—-1

IMPOSSIBLE

PUSH

Y—MPC+1

Figure 7. Continue and Push

2-45

81881IVVLNS

Branch (Example 1)

To B_Igpch from address 10 to addﬁss 20, this example uses a BR A instruction from
the CC = H column of Table 8. CC must be programmed high one cycle ahead of
Instruction 10 for pipelining.
Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA v DRB
(Set-up) XXX XXX XXX X 1 X XXXX XXXX
10 BR A 000 111 XXX 0 X X 0020 XXXX
Branch (Example 2)

To Branch from address 10 to address 20, this example uses a BR A instruction from
the CC = L column of Table 8. CC is programmed low in the previous instruction;
as a result, a ZERO test follows the condition code test in instruction 10. To ensure
that a ZERO = H condition will not occur, registers should not be decremented during
this instruction.

Address Instruction MUX2-MUXO S$2-SO R2-R0O OSEL CTC INC DRA DRB
(Set-up) XXX XXX XXX X 0 X XXXX XXXX

10 BR A 110 111 000 0 X X 0020 XXXX
Sixteen-Way Branch

To Branch 16-Way, this example uses a BR B’ instruction in Table 8. CC is
programmed high in the previous instruction. The branch address is derived from the
concatenation DRB15-DRB4::B3-BO.

Address Instruction ~ MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) ' XXX XXX XXX X 1 X XXXX XXXX
10 BR B’ 101 11 XXX 0 X X XXXX 0040

2-46

DRA-—-20

DRA-—-20

Y-—DRA

Figure 8. Branch Example 1

IMPOSSIBLE

Y-—DRA

*no register decrement

CC-1

DRB-—-40

Y-—DRB’

IMPOSSIBLE

Figure 10. Sixteen-Way Branch

IMPOSSIBLE

IMPOSSIBLE*

Figure 9. Branch Example 2

2-47

SN74ACT8818 H

81881OVVLNS !

Conditional Branch

To Branch to address 20 Else Continue to address 13, this example uses the first
instruction from Table 9 with BR A in the CC = L column and CONT/RPT in the
CC = H column. INC is set high in the preceding instruction to set up the Continue.

Address Instruction ~ MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

XXX XXX XXX X X T XXXX XXXX

(Set-up) BR A else
110 111 000 0 X X 0020 XXXX

10 Continue
Three-Way Branch

To Branch 3-Way, this example uses an instruction from Table 10 with BR A in the
ZERO = L column, CONT/RPT in the ZERO = H column and BR B in the CC = H
column. To enable the ZERO = H path, register A must decrement to zero during this

instruction (see Table 6 for possible register operations). INC is programmed high in

Instruction 10 to set up the Continue.

Address Instruction MUX2-MUXO0 S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue and
Load Reg A 110 111 010 (0] T 1 XXXX XXXX
11 Decrement Reg A; k
Branch 3-Way 100 111 001 (o] X X 0020 0030

TSelected from external status
Thirty-Two-Way Branch

To Branch 32-Way, this example uses an instruction from Table 9 with BR A’ in the
CC = L column and BR B’ in the CC = H column. The four least significant bits of
the DRA’ and DRB’ addresses must be input at the B3-BO port; these are concatenated
with the 12 most significant bits of DRA and DRB to provide new addresses DRA’
(DRA15-DRA4::B3-B0) and DRB’ (DRB15-DRB4::B3-B0).

Address Instruction ~ MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 T XXXX XXXX
10 32-way Branch 101 111 000 0 X X 0040 0030

2-48

Y—~MPC +1

O

*no register decrement

Y-—DRA

IMPOSSIBLE*

Figure 11. Conditional Branch

DRB 40

Y —DRB’

Y~—DRA’

*no register decrement

Figure 13. Thirty-Two-Way Branch

3

INC-1 ‘L CC-1
10
INC-1
< RCA—Count
Y~MPC+1
‘ 11 ’
DRA-20 DRB-30
RCA-—RCA -1

Y—-MPC+1

Y~—-DRA

Y-—-DRB

®

Figure 12. Three-Way Branch

2-49

SN74ACT8818 H

Repeat

To Repeat (Instruction 10), this example uses an instruction in Table 7 with CONT/RPT
in the instruction column. INC must be programmed low and CC high one cycle ahead
of Instruction 10 for pipelining.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 0 XXXX XXXX
10 Continue 110 111 XXX 0 X 1 XXXX XXXX

Repeat on Stack

To Continue and push the microprogram counter onto the stack (Push), this example
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC
and CC must be forced high one cycle ahead for pipelining.

To Repeat (Instruction 12), an BR S instruction from the ZERO = L column of Table 8
is used. To avoid a ZERO = H condition, registers are not decremented during this
instruction (see Table 6 for possible register operations). CC and INC are
programmed high in Instruction 12 to set up the Continue in Instruction 11.

8L881OVVLNS !

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue/Push 110 100 XXX X 1 1 XXXX XXXX
11 Continue 110 111 XXX 0 0 X XXXX XXXX
12 BR Stack 010 111 000 0 1 X XXXX XXXX

INC—0 | 61

IMPOSSIBLE

Figure 14. Repeat

2-50

INC-1

INC-1

IMPOSSIBLE

PUSH

CC-1

Y—-MPC+1

(1)

H

Y—MPC+1

IMPOSSIBLE

cc-o0

IMPOSSIBLE

IMPOSSIBLE*

CcC-1

Y —Stack

]

*no register decrement

Figure 15. Repeat on Stack

2-51

SN74ACT8818 ﬁ

8188LOVYLNS !

Repeat Until CC = H

To Continue and push the microprogram counter onto the stack (Push), this example
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC
and CC must be forced high one cycle ahead for pipelining.

To Repeat Until CC = H (Instruction 12), an instruction from Table 9 with BR S
in the CC = L column and CONT/RPT: POP in the CC = H column is used. To avoid
a ZERO = H condition, registers are not decremented (See Table 6 for possible register
operations). CC and INC are programmed high in Instruction 12 to set up the
Continue in Instruction 11. A consequence of this is that the instruction following 13
cannot be conditional.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue/Push 110 100 XXX X 1 1 XXXX XXXX
11 Continue 110 111 XXX 0 1 1T XXXX XXXX
12 BR Stack else

Continue 010 111 000 0 1 1T XXXX XXXX

TSelected from external status
Loop Until Zero

To Continue and push the microprogram counter onto the stack (Push), this example
uses an instruction in Table 7 with CONT/RPT: PUSH in the instruction column. INC
and CC are forced high one cycle ahead for pipelining. Register A is loaded with
the loop counter using a Load A instruction from Table 6.

To decrement the loop count, a decrement register A and hold register B instruction
from Table 6 is used. To Repeat Else Continue and Pop (decrement the stack pointer),
an instruction from Table 9 with BR S in the ZERO = L column and CONT/RPT: POP
in the ZERO = H column is used. CC is programmed low in Instruction 11 to
force the ZERO test in Instruction 12; it is programmed high in Instruction 12 to set
up the Continue in Instruction 11.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue/Push 110 100 XXX 0 1 1 XXXX XXXX
11 Continue/Load

Reg A 110 111 010 0 0 1 XXXX XXXX
12 Decrement Reg A;
BR S else

Continue: Pop 000 010 001 1 1 1T XXXX XXXX

2-52

IMPOSSIBLE

H
INC-1 [—Pbr¢ cC-1

Y-MPC+1

H
ZERO =? IMPOSSIBLE*

IMPOSSIBLE
H -
INC-1
Y—-MPC+1
12
L — H
CC=?

cC-1 CC-1 POP

Y —Stack Y-MPC+1

|

&

*no register decrement

Figure 16. Repeat Until CC=H

INC-1 » CC-1

Y-—MPC+1

INC—1 cC-o0

RCA -
Count

Y—MPC +1

RCA —
RCA -1

IMPOSSIBLE

IMPOSSIBLE

IMPOSSIBLE

e cc-1 cc-1 ole

POP

Y —Stack Y—MPC +1

Figure 17. Loop Until Zero

2-53

SN74ACT8818 ﬁ

Conditional Loop Until Zero

Two examples of a Conditional Loop on Stack with Exit are presented below. Both
use the microcode shown below to branch to the stack on nonzero, continue and pop
on zero, and branch to DRA with a pop if CC = H. In the first example, the value
on the DRA bus is the same as the value in the microprogram counter, making the
exit destinations on the CC and ZERO tests the same. In the second, the values are

2 different, generating a two-way exit.

To Continue and push the microprogram counter onto the stack (Push), this example

Instruction 12.

8L88LOVVLNS

uses an instruc_tig_n in Table 7 with CONT/RPT: PUSH in the instruction column. INC
must be high. CC is forced high in the preceding instruction for pipelining.

To Continue (Instruction 1v1), this example uses an instruction in Table 7 with
CONT/RPT in the instruction column. INC must be high. CC must be programmed
high in the previous instruction. INC is programmed high to set up the Continue in

To Decrement and Branch else Exit (Instruction 12), an instruction from Table 10 with

BR S in the ZERO = L column, CONT/RPT: POP in the ZERO = H column and BR A: POP

in the CC = H column is used.

Example 1:
Address Instruction
(Set-up) XXX
10 Continue/Push 110
Load Reg A
11 Continue 110
12 Decrement Reg A;
BR S else
Continue: Pop
. else BR A: Pop 000
TSelected from external status
Example 2:
Address Instruction
(Set-up) XXX
10 Continue/Push 110
Load Reg A
11 Continue 110
12 Decrement Reg A;
BR S else
Continue: Pop
else BR A: Pop 000

TSelected from external status

2-54

XXX
11

XXX
111

111

010

XXX
010

XXX
010

XXX

001

X
0

X
0

o

1
1

1
1

t

1
1

MUX2-MUX0 S2-SO R2-RO OSEL CC INC

1
1

1

XXXX
XXXX

- XXXX

0013

DRA

XXXX
XXXX

XXXX

0025

MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

XXXX
XXXX

XXXX

XXXX

DRB

XXXX
XXXX

XXXX

XXXX

INC-1

RCA -~
Count

INC—1

Y—MPC +1

IMPOSSIBLE

IMPOSSIBLE
INC—1
Y—MPC +1
i
RCA—
DRA-25 A~ 1
H
" POP POP
INC—1 P INC—1 sp_sp_1| | Ne-1 e "
Y
Y —Stack Y—MPC+1 Y-DRA

d

®

Figure 18. Conditional Loop Until Zero (Example 2)

2-55

SN74ACT8818 H

818810VVLNS !

Jump to Subroutine

To Call a Subroutine at address 30, this example uses the instruction from Table 11
with CALL A in the CC = H column. CC is programmed high in the previous
instruction.

Address Instruction ~MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Call A 000 110 XXX X X X 0030 XXXX

Conditional Jump to Subroutine

To conditionally Call a Subroutine at address 20, this example uses an instruction from
Table 11 with CALL A in the CC = L column and CONT/RPT in the CC = H
column. CC is generated by external status during the preceding instruction. INC is
programmed high in the preceding instruction to set up the Continue. To avoid a
ZERO = H condition, registers should not.be decremented during Instruction 10.

Address Instruction MUX2-MUXO S2-SO R2-R0 OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X T 1 XXXX XXXX
10 Call A else
Continue 110 101 000 X X 1 0020 XXXX

TSelected from external status
Two-Way Jump to Subroutine

To perform a Two-Way Call to Subroutine at address 20 or address 30, this example
uses an instruction from Table 11 with CALL A in the CC = L column and CALL B
in the CC = H column. In this example, CC is generated by external status during
the preceding (set-up) instruction. INC is programmed high in the preceding instruction
to set up the Push. To avoid a ZERO = H condition, registers should not be decremented
during Instruction 10.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CTC INC DRA DRB

~ (Set-up) XXX XXX XXX X T 1 XXXX XXXX
23 Call A else
Call B 100 110 000 X X X 0020 0030

TSelected from external status

2-56

INC—1 -1

DRA-30 DRA-20

IMPOSSIBLE

PUSH

IMPOSSIBLE*

Y~—DRA

PUSH

Y v

Y—MPC+ 1]]Y—DRA

Figure 19. Jump to Subroutine é ‘

*no register decrement

SN74ACT8818 H

Figure 20. Conditional Jump to Subroutine

INC-1

(19

DRA-—-20 DRB-30

IMPOSSIBLE*

PUSH » PUSH

Y-—-DRA Y~—DRB

*no register decrement

Figure 21. Two-Way Jump to Subroutine

2-57

8L881IOVVLNS !

Return from Subroutine

To Return from a subroutine, this example uses an instruction from Table 13 with RET
in the CC = L column. CC is programmed low in the previous instruction. To
avoid a ZERO = H condition, registers are not decremented during Instruction 23.

Address Instruction = MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X (¢} X XXXX XXXX
23 Return 010 011 000 X 0 X XXXX XXXX

Conditional Return from Subroutine

To conditionally Return from a Subroutine, this example uses an instruction from
Table 13 with RET in the CC = L column and CONT/RPT in the CC = H column.
CC is selected from external status in the previous instruction. To avoid a ZERO = H
condition, registers are not decremented during Instruction 23.

Address Instruction MUX2-MUXO $2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
23 Return else _
Continue 010 011 000 X 1 X XXXX XXXX

TSelected from external status

Clear Pointers

To Continue (Instruction 10), this example uses an instruction in Table 7 with
CONT/RPT in the instruction column. INC must be high; CC must be programmed
high in the previous instruction. To Clear the Stack and Read Pointers and Branch to
address 40 (instruction 11), this example uses a BR A: Clear SP, RP instruction in
Table 8. CC is programmed low in instruction 10 to set up the Branch. To avoid
a ZERO = H condition, registers are not decremented during Instruction 11.

Address Instruction MUX2-MUXO S2-SO R2-RO OSEL CC INC DRA DRB

(Set-up) XXX XXX XXX X 1 1 XXXX XXXX
10 Continue i 110 111 . 000 0 0 X 0020 XXXX
11 BR A and Clear
SP/RP 110 001~ 000 X X X XXXX XXXX-
Reset

To Reset the "ACT8818, pull the S2-S0O pins low. This clears the stack and read poi‘nters
and places the Y bus into a low state. ‘

Address Instruction MUX2-MUXO S2-SO° R2-RO OSEL CC INC DRA DRB
10 Reset XXX 000 -~ XXX X X X XXXX XXXX

2-58

POP

*no register decrement

Figure 22. Return from Subroutine

Y~—~MPC+1 Y —Stack

&

*no register decrement

Figure 23. Conditional
Return from Subroutine

2-59

SN74ACT8818 H

81881IVVLNS !

2-60

INC-1

IMPOSSIBLE

Y~MPC+1

DRA-20

IMPOSSIBLE

IMPOSSIBLE*

*no register decrement

Figure 24. Clear Pointers

SN74ACT8832 32-Bit Registered ALU

H SN74ACT8832

3-2

SN74ACT8832
CMOS 32-Bit Registered ALU

50-ns Cycle Time

Low-Power EPIC™ CMOS

Three-Port 1/0 Architecture

64-Word by 36-Bit Register File
Simultaneous ALU and Register Operations

Configurable as Quad 8-Bit or Dual 16-Bit Single
Instruction, Multiple Data Machine

Parity Generation/Checking

The SN74ACT8832 is a 32-bit registered ALU that can operate at 20 MHz and
20 MIPS (million instructions per second). Most instructions can be performed
in a single cycle. The 'ACT8832 was designed for applications that require high-
speed logical, arithmetic, and shift operations and bit/byte manipulations.

The 'ACT8832 can act as host CPU or can accelerate a host microprocessor.
In high-performance graphics systems, the 'ACT8832 generates display-list
memory addresses and controls the display buffer. In /O controller applications,
the 'ACT8832 performs high-speed comparisons to initialize and end data
transfers.

A three-operand, 64-word by 36-bit register file allows the ‘ACT8836 to create
an instruction and store the previous result in a single cycle.

EPIC is a trademark of Texas Instruments Incorporated.

3-3

SN74ACT8832 ﬁ

32)

SN74ACT8832

3-4

Contents

Introduction

Understanding Microprogrammed Architecture.

'ACT8832 Registered ALU
Support Tools
Design Support
Design Expertise.
'‘ACT8832 Pin Descriptions

'ACT8832 Specification Tables. [

"ACT8832 Registered ALU
Architecture
Data Flow
Architectural Elements

Three-Port Register File
R and S Multiplexers
Data Input and Output Ports

ALU

ALU and MQ Shifters e e e
Bidirectional Serial /O Pins

MQ Register . . .
Conditional Shift

Pin

Master/Slave Comparator
Divide/BCD Flip-Flops

Status
Input Data Parity
Test Pins
Instruction Set Overview .

Check ..ot

Arithmetic/Logic Instructions with Shifts
Other Arithmetic Instructions
Data Conversion Instructions.
Bit and Byte Instructions

Other Instructions . . .
Configuration Options

Masked 32-Bit Operation.

Shift Instructions

Bit and Byte Instructions

Status Selection

3-49
3-50

3-5

SN74ACT8832 H

--2E8BLOVVLNS !

3-6

Contents (Continued)

BAND R R

BINCNS....... e
BINCS

BOR

Page
3-52

Contents (Concluded)

UMULI .

Page

3-129
3-131
3-133
3-135
3-137
3-139
3-141
3-143
3-145
3-147
3-149
3-151
3-1563
3-155
3-157
3-159
3-161
3-163
3-165
3-167
3-169
3-171
3-173
3-175
3-177
3-179
3-181
3-183
3-185
3-187
3-189
3-191
3-193

3-7

SN74ACT8832 ﬂ

n SN74ACT8832

3-8

Figure

—

QUOWOUONOOPLWN-=-

List of lllustrations

Title

Microprogrammed System Block Diagram............

SN74ACT8832 GB Package
SN74ACT8832 Logic Symbol
'ACT8832 32-Bit Registered ALU .
Datal/O
16-Bit Configuration
8-Bit Configuration
Shift Examples, 32-Bit Configuration
Shift Examples, 16-Bit Configuration
Shift Examples, 8-Bit Configuration

Page
3-14
3-16
3-17
3-30
3-31
3-34
3-35
3-44
3-51
3-52

3-9

SN74ACT8832 H

H SN74ACT8832

3-10

SN74ACT8832
SN74ACT8832

List of Tables

Title

Pin Grid Allocation
Pin Description

Recommended Operating Conditions
Electrical Characteristics
Register File Write Setup.
Maximum Switching Characteristics
'ACT8832 Response to Control Inputs

RF MUX Select

Inputs.

ALU Source Operand Selects

Destination Ope
Configuration M

rand Select/Enables
odeSelects.

Data Determining SIO Input.
Data Determining BYOF Outputs

Test Pin Inputs

‘ACT8832 Instruction Set R

Shift Definitions

Bidirectional SIO Pin Functions
Signed Multiplication Algorithm
Unsigned Multiplication Algorithm
Mixed Multiplication Algorithm

Signed Division

Algorithm

Unsigned Division Algorithm
BCD'to Binary Algorithm
Binary to Excess-3 Algorithm

CRC Algorithm

Page
3-18
3-19
3-25
3-26
3-26
3-27
3-29
3-32
3-32
3-33
3-36
3-36
3-38
3-39
3-39
3-44
3-45
3-46
3-46
3-46
3-47
3-47
3-48
3-49
3-50

3-11

SN74ACT8832 ﬁ

™

SN74ACT8832

3-12

Introduction

The SN74ACT8832 Registered Arithmetic/Logic Unit (ALU) holds a primary position
in the Texas Instruments family of innovative 32-bit LSI devices. Compatible with the
SN74AS888 architecture and instruction set, the ‘ACT8832 performs as a high-speed
microprogrammable 32-bit registered ALU which can also be configured to operate
as two 16-bit ALUs or four 8-bit ALUs in single-instruction, multiple-data (SIMD) mode.

Besides introducing the ‘ACT8832, this section discusses basic concepts of
microprogrammed architecture and the support tools available for system development.
Details of the ‘ACT8832 architecture and instruction set are presented. Pin descriptions
and assignments for the 'ACT8832 are also presented.

Understanding Microprogrammed Architecture

Figure 1 shows a simple microprogrammed system. The three basic components are
an arithmetic/logic unit, a microsequencer, and a memory. The program that resides
in this memory is commonly called the microprogram, while the memory itself is referred
to as a micromemory or control store. The ALU performs all the required operations
on data brought in from the external environment (main memory or peripherals, for
example). The sequencer is dedicated to generating the next micromemory address
from which a microinstruction is to be fetched. The sequencer and the ALU operate
in parallel so that data processing and next-address generation are carried out
concurrently.

The microprogram instruction, or microinstruction, consists of control information to
the ALU and the sequencer. The microinstruction consists of a number of fields of
code that directly access and control the ALU, registers, bus transceivers, multiplexers,
and other system components. This high degree of programmability in a parallel
architecture offers greater speed and flexibility than a typical microprocessor, although
the microinstruction serves the same purpose as a microprocessor opcode: it specifies
control information by which the user is able to implement desired data processing
operations in a specified sequence. The microinstruction cycle is synchronized to a
system clock by latching the instruction in the microinstruction, or pipeline, register
once for each clock cycle. Status results are collected in a status register which the
sequencer samples to produce conditional branches within the microprogram.

'‘ACT8832 Registered ALU

This device comprises a 32-bit ALU, a 64-word by 36-bit register file, two shifters
to support double-precision arithmetic, and three independent bidirectional data ports.

The "ACT8832 is engineered to support high-speed, high-level operations. The ALU’s
13 basic arithmetic and logic instructions can be combined with a single- or double-
precision shift -operation in one instruction cycle. Other instructions support data
conversions, bit and byte operations, and other specialized functions.

SN74ACT8832 H

ZE8BLOVYLNS !

SYSTEM STATUS

REGISTERED
ALU

PANP AN PN

MICROPROGRAM
MEMORY

~~

IMlcnomsmucnoul

MICROSEQUENCER] MICROADDRESS BUS

REGISTER

|

MICROINSTRUCTION BUS

S~

TESTED STATUS STATUS STATUS s

MUX \j - 7

ALU STATUS

SYSTEM STATUS

\

Figure 1. Microprogrammed System Block Diagram

The configuration of this processor enchances processing throughput in arithmetic
and radix conversion. Internal generation and testing of status results in fast processing
of division and multiplication algorithms. This decision logic is transparent to the user;
the reduced overhead assures shorter microprograms, reduced hardware complexity,
and shorter software development time.

Support Tools

Texas Instruments has designed a.family of low-cost, real-time evaluation modules
(EVM) to aid with initial hardware and microcode design. Each EVM is a small self-
contained system which provides a convenient means to test and debug simple
microcode, allowing software and hardware evaluation of components and their
operation.

At present, the 74AS-EVM-8 Bit-Slice Evaluation Module has been completed, and
16- and 32-bit EVMs are in advanced stages of development. EVMs and support tools
for other devices in the "AS8800 family are also planned for future development.

314

Design Support

Texas Instruments Regional Technology Centers, staffed with systems-oriented
engineers, offer a training course to assist users of Tl’s LS| products and their
application to digital processor systems. Specific attention is given to the understanding
and generation of design techniques which implement efficient algorithms designed
to match high-performance hardware capabilities with desired performance levels.

Information on LSI devices and product support can be obtained from the following
Regional Technology Centers:

Atlanta Chicago

Texas Instruments Incorporated Texas Instruments Incorporated
3300 N.E. Expressway, Building 8 515 Algonquin

Atlanta, GA 30341 Arlington Heights, IL 60005
404/662-7945 312/640-2909

Boston Dallas

Texas Instruments Incorporated Texas Instruments Incorporated
950 Winter St. Suite 2800 10001 E. Campbell Road
Waltham, MA 02154 Richardson, TX 75081
617/895-9100 214/680-5066

Northern California Southern California

Texas Instruments Incorporated Texas Instruments Incorporated
5353 Betsy Ross Drive 17891 Cartwright Drive

Santa Clara, CA 95054 Irvine, CA 92714
408/748-2220 714/660-8140

Design Expertise

Texas Instruments can provide in-depth technical design assistance through
consultations with contract design services. Contact your local Field Sales Engineer
for current information or contact VLSI Systems Engineering at 214/997-3970.

SN74ACT8832 H

ZE88LOVYLNS !

-4 o 3 v 2 8 - A & I ®© m m OO w >

"ACT8832 Pin Descriptions

Pin descriptions and grid allocations for the "ACT8832 are given on the following pages.

GB . . . PACKAGE
(TOP VIEW)

5 6 7 8 9 10 11 12 13 14 15 16 17

-
N
w
»

.~.OQ....C.......-.
e © o o
e e o o
® o o o
e o o o
e o o o
e e o o
e O o o
e o o o
e o o o

® © © 06 o o o o © o ¢ ©o o o o o o
® © 6 O o o o o o o o ¢ o o o o o
® © o & 06 0 ¢ 0 0 © 0 0 © 0 o O o
e © o o6 o 0 06 0 & 0 0 0 0 o o o 0o
@ © 6 6 © o o o o o o o o ©o o o o
® © © ©6 © o6 e o o o o o o ©o o o o
e ® © 6 © o6 e o ©o o o o o oo o o o

Figure 2. SN74ACT8832 . .. GB Package

3-16

L]

32-8IT
REGISTERED
ALY
WRITE EN l———— WE3-WED
CLK <}———<4—— RFCLK
CLK B> CLK
shipor [SELRF1-SELRFO
Cn | CARRY IN A :2,’}; ——e—1no
‘ . REGISTER | ADDRESS || o 5
. | DA31-DAC FILE| SELECT!S - A
EA RF B PORT | 0 80
OPERAND READITL .
- Sl
EBO-EB1 SELECT ALU areyed o 85
mMQ 0
5100.5103 —ep—D ALY wate[O ¢
g:ch.l!AL SHIFTER ADDRESS : co.
SSF — e
FUNCTION SELECT| g s
TEST00-1ES103 ———— L 510 EN L «»—PAO
——<>—rPa1
CcFO CONFIGURATION PoRT oAz
l————>—
CF1 MODE PAd
l——->—
CF2 SELECT
————<«»— Pl
TPO-TP1 TEST PINS 80
PARITY | DB |[——¢>—PB1
_ﬁ ALU SHIFTER | ourput VO | PORT [f ¢y PB2
SELMQ MQ REGISTER | SELECT |-——<e>—PB3
10 0 L ————<4»— PYO
" v | f—>—pv1
12— PORT | L ¢p— PY2
13 INSTRUCTIONS L <¢»—PY3
7
5 DA BUS PERRA
I6 PARITY DB BUS PERRB
o STATUS Y BUS j——————— PERRY
7
MASTER/SLAVE
COMPARATOR MSERR
OEA DAO-DA31
OEB————DN DBO-DB31 SIGN N
o B CARRY-OUT] c
OEY0-0EY3 ———N Y0-Y31
EV STATUS 2ER0 5
— N
OEs STATUS OVERFLOW OVR
BYTE OVERFLOW BYO03-8Y00
m| r
DAO 0 o |——<+>—080
b4 . m . L
L4 . ‘:I !z ’ . .
. 9 . .
DA31 31 I I | I 31 }———e>—DB31
of—>— o
. .
I
.1 .
31— v31

Figure 3. SN74ACT8832 . . . Logic Symbol

3-17

SN74ACT8832 K&

ZE8BLOVYLNS !

Table 1. SN74ACT8832 Pin Grid Allocation

PIN PIN PIN PIN PIN PIN
NO. NAME | NO. NAME | NO. NAME| NO. NAME| NO. NAME | NO. NAME
Al Y7 c2 VY5 E3 YO J15 DA28 | Pl DA5 S1 . DB10
A2 Y13 C3 OEYO |E4 VY4 J16 DA27 | P2 DB8 S2 DBI15
A3 Y15 ca Y9 E14. Y30 |[J17 DA29 | P3 DB12 | S3 DA10
A4 BYOF1 | C5 Y11 E15 TPO | K1 DB6 P4 DA9 S4 DA13
A5 SIO3 c6 Y4 E16 12 K2 DB7 P5 DA15 | S5 PERRA
A6 SI02 c7 OEvl | E17 13 K3 DAO | P6 A5 S6 A3
A7 ESIO1 | C8 GND F1 EB1 Ka GND | P7 A1 S7 WEO
A8 {ESI00 | C9 Ve F2 Cn K14 GND | P8 V¢c s8 WE3
A9 SI00 cio C F3 CLk | K15 DA24 | P9 GND S9 RFCLK
A10 N C11 PERRY | F4 CF2 | K16 DA25 | P10 C4 S10 B4
A11 OES c12 Y17 F14 OEY3 | K17 DA26 | P11 PERRB | s11 B2
A12 SSF c13 Y22 F15 11 L1 PBO P12 GND s12 €3
A13 Y18 Ci4 OEY2 | F16 14 L2 DA2 P13 DB22 | S13 CO
A4 Y20 Cc15 Y28 F17 16 L3 Vcc | P14 DA16 | s14 DB17
A15 Y23 c16 PY3 Gl DBO |L4 GND | P15 DA18 | S15 DB20
A6 Y24 C17 BYOF3 | G2 EA L14 GND | P16 DA22 | S16 DB23
A17 Y25 D1 CF1 G3 EBO |L15 Vge | P17 DB27 | S17 DA21
B1 Y6 D2 VY1 G4 GND |[L16 DB30 | R1 PAO T1 DB14
B2 BYOFO | D3 Y3 Gi4 GND | L17 PB3 R2 DB11 | T2 DAS
B3 Y10 D4 PYO G15 15 M1 DA1 R3 PB1 T3 DA12
B4 Y12 D5 Y8 G16 17 M2 DA4 | R4 DA11 | T4 DA14
B5 PY1 D6 GND G17 PA3 [M3 DA7 | RS PA1 T5 OEA
B6 IESIO3 | D7 GND H1 DB2 | M4 GND | R6 A4 T6 A2
B7 IESIO2 | D8 GND H2 DB1 M14 PA2 R7 A0 T7 WE1
B8 SIO1 | D9 Ve H3 Vcc | M15 DB26 | R8& WE2 | T8 SELRF1
B9 Z D10 GND H4 GND | M16 DB28 | R9 Vcc T9 SELRFO
B10 OVR D11 GND H14 GND | M17 DB31 [R10 B T10 B5
B11 MSERR| D12 GND H16 Vge | N1 DA3 | R11 C2 T11 B3
B12 Y16 D13 . BYOF2 | H16 DA31 | N2 DA6 | R12 OEB T12 BO
B13 Y19 D14 Y27 H17 DA30 | N3 DB9 R13 DB18 | T13 C5
B14 Y21 D15 VY31 J1 DB3 | N4 DB13 | R14 DB21 | T14 cC1
B15 PY2 D16 TP1 J2 DB4 | N14 DA19 | R15 PB2 T15 DB16
B16 Y26 D17 10 J3 DB5 | N15 DA23 | R16 DA20 | T16 DB19
B17 Y29 E1 SELMQ | J4 Vge | N16 DB25 | R17 DB24 | T17 DA17
c1 Y2 E2 CFO J14 vee [N17 DB29

Table 2. SN74ACT8832 Pin Description

PIN
NAME NO. 110 DESCRIPTION
AO R7
A1 P7
A2 T6 3 . ’
A3 S6 | Register file A port read address select
A4 R6
A5 P6
BO T12
B1 R10
B2 1 I Register file B port read address select
B3 T11
B4 S10
B5 T10
BYOFO B2
BYOF1 A4 0 Status signals indicate overflow conditions
BYOF2 D13 in certain data bytes
BYOF3 C17
C ci10 o] Status signal representing carry out condition
co S13
C1 T14
Cc2 R11 . . .
c3 S12 | Register file write address select
c4 P10
C5 T13
CFO E2 § . . .
CE1 D1 | Configuration mode select, single 32-bit, two
CF2 Fa 16-bit, or four 8-bit ALU’s
Cn F2 | ALU carry input
CLK F3 | Clocks synchronous registers on positive edge
DAO K3
DA1 M1
DA2 L2
DA3 N1
DA4 M2 /o A port data bus. Outputﬁ'gister data (OEA =0)
DAS P1 or inputs external data (OEA=1).
DA6 N2
DA7 M3
DA8 T2
DA9 P4

SN74ACT8832 ﬁ

ZE88LOVYLNS !

3-20

Table 2. SN74ACT8832 Pin Description (Continued)

PIN .
NAME NO. /0 DESCRIPTION
DA10 S3
DA11 R4
DA12 T3
DA13 S4
DA14 T4
DA15 P5
DA16 P14
DA17 T17
DA18 P15
DA19 N14 }
DA20 R16 /0 A port data bus. Outputf_re—gister data (OEA=0)
DA21- S17 or inputs external data (OEA =1).
DA22 P16
DA23 N156
DA24 K15
DA25 K16
DA26 K17
DA27 J16
DA28 J15
DA29 J17
DA30 H17
DA31 H16
DBO G1
DB1 H2
DB2 H1
DB3 J1
DB4 J2
DB5 J3
DB6 K1
DB7 K2 1o B}port data bus. Outputs registﬂ'_data (OEB=0)
DB8 P2 or used to input external data (OEB=1)
DB9 N3
DB10 S1
DB11 R2
DB12 P3
DB13 N4
DB14 T1
DB15 S2

Table 2. SN74ACT8832 Pin Description (Continued)

PIN

NAME NO. 1/0 DESCRIPTION

DB16 T15

DB17 S14

DB18 R13

DB19 T16

DB20 S156

DB21 R14

DB22 P13

DB23 sS16 o B port data bus. Outputs register data (OEB=0)

DB24 R17 i or used to input external data (OEB=1)

DB25 N16

DB26 M15

DB27 P17

DB28 M16

DB29 N17

DB30 L16

DB31 M17
ALU input operand select. High state selects

EA - G2 | external DA bus and low state selects
register file

EBO G3 ALU input operand select. Selects between

EB1 F1 : register file, external DB port and MQ register

GND Cc8

GND D6

GND D7

GND D8

GND D10

GND D11

GND D12

GND G4

g:::g 314 Ground pins. All ground pins must be used.

GND H14

GND K4

GND K14.

GND L4

GND L14

GND M4

GND P9

GND P12

3-21

SN74ACT8832 ﬁ

ZE8BLOVYLNS !

Table 2. SN74ACT8832 Pin Description (Continued)

PIN

NAME 'NO. I/? DESCRIPTION

10 D17

1 F15

12 E16

13 E17 | Instruction input

14 “F16

15 G15

16 F17

17 G16

IESIO0 A8

IESIO1 A7 | Shift pin enables, increases system speed and

IESIO2 B7 reduces bus conflict, active low

IESIO3 B6

MSERR B11 o Master Slave Error pin, indicates error between
data at Y output MUX and external Y port

N A10 (¢} Output status signal representing sign condition

OEA TS5 | DA bus enable, active low

OEB R12 I DB bus enable, active low

OES A11 I | Status enable, active low

OEYO c3

gﬂ €7 | Y bus output enable, active low

OEY2 ci14

OEY3 F14

OVR B10 (¢] Output status signal represents overflow condition

PAO R1

PAT RS 1/0 | Parity bits port for DA data

PA2 M14

PA3 G17

PBO L1

PB1 R3 . .

PB2 R15 1/0 | Parity bits port for DB data

PB3 L17

PERRA S5 0 DA data.parity error, signals error if an even parity
check fails for any byte

PERRB P11 o DB data ‘parity error, signals error if an even parity
check fails for any byte

PERRY c11 o Y data périty error, signals error if an even parity
check fails for any byte

3-22

Table 2. SN74ACT8832 Pin Description (Continued)

PIN

NAME NO. 1/0 DESCRIPTION

PYO D4

PY1 BS 1/0 | Y port parity data, input and output

PY2 B15

PY3 C16

RFCLK s9 | Register Fil.e Clock, allows multiple writes to be
performed in one master clock cycle

SELMQ E1 | MQ register select, selects oufput of ALU shifter or
MQ register to be placed on Y bus

SELRFO T9 | Register File select. Controls selection of the

SELRF1 T8 Register File(RF) inputs by the RF MUX

SIO0 A9

Sio1 B8 R it .

307 A6 1/0 | Bidirectional shift pin, active low

SI03 A5

SSF A12 i Sp.ecial Shift Function, implements conditional
shift algorithms

TPO £13 1/0 | Test pins, supports system testing

TP1 D16

Vce C9

Vce D9

Vece H3

Vce H15

vee 4 Supply voltrage (5 V)

Vce J14

Vce L3

Vce L15

Vce P8

Vce R9

WEO S7 Register File WRITE ENABLE. Data is written into RF|

WET T7 | when write enables are low and a low to high

WE2 R8 Register File Clock (RFCLK) transition occurs.

WE3 S8 Active low.

3-23

SN74ACT8832 H

ZEBBLOVYLNS !

Table 2. SN74ACT8832 Pin Description (Concluded)

PIN

NAME NO. /0 DESCRIPTION
YO E3
Y1 D2
Y2 C1
Y3 D3
Y4 E4
Y5 Cc2
Y6 B1
Y7 A1l
Y8 D5
Y9 Cc4
Y10 B3
Y11 C5
Y12 B4
Y13 A2
Yi4 C6
Y156 A3 1/0 | Y port data bus
Y16 B12
Y17 Cc12
Y18 A13
Y19 B13
Y20 Al14
Y21 B14
Y22 C13
Y23 A15
Y24 A16
Y25 A17
Y26 B16
Y27 D14
Y28 C15
Y29 B17
Y30 E14
Y31 D15
pA B9 (0] Output status signal represents zero condition

3-24

'ACT8832 Specification Tables

absolute maximum ratings over operating free-air temperature range
(unless otherwise noted)t

Supply voltage, VCC -« -« o oo i -05Vtob6V
Input clamp current, |K (V] < OorVy>Vege) oo ooie oot +20 mA
Output clamp current, IoK (Vo < OorVo >Vcg) ..ot +50 mA
Continuous output current, Io (Vo = OtoVeg) ..o oo n e +50 mA
Continuous current through Vccor GND pins +100 mA
Operating free-air temperaturerange 0°C to 70°C
Storage temperature rangec0 ... —65°C to 150°C

TStresses beyond those listed under ‘‘absolute maximum ratings’’ may cause permanent damage to the device.
These are stress ratings only and functional operation of the device at these or any other conditions beyond

those
rated

indicated under ‘’recommended operating conditions’’ is not implied. Exposure to absolute-maximum-
conditions for extended periods may affect device reliability.

Table 3. Recommended Operating Conditions

PARAMETER MIN NOM

Vce Supply voltage 4.5 5.0
ViH High-level input voltage 2
ViL Low-level input voltage 0

loH High-level output current
loL Low-level output current
V) Input voltage

Vo Output voltage

dt/dv Input transition rise or fall rate

TA

Operating free-air temperature

3-25

SN74ACT8832 l

ZESBLOVYLNS !

Table 4. Electrical Characteristics

Ta = 25°C
PARAMETER | TEST CONDITIONS | Vcc UNIT
» MIN TYP MAX | MIN MAX
loH = —20 A 45V 4.49
Von 5.5 V 5.49 < i v
loH = -8 mA 45V ,ﬁ“’ 3.76 S
5.5 V AN 4.76 L
loL = 20 pA 2oV 0.0 &
5.5 V 0.01 L
VoL A < oas| ¥
loL = 8 mA 85 v — >
ssv| & J: 0.45
I V| = Vec or 0 5.5 V| & o +1] A
Icc V| = Vecor0,lg |55V N uA
Ci V) = VccorO 5V pF
One input at 3.4 V,
Aleet other inputs at 55V 11 mA
0 or Vce
Table 5. Register File Write Setup
PARAMETER MIN MAX | uNIT
C5-CO , 4
DA/B32-DA/BO, PA/B3-PA/BO 7
17-14 13 B
OEY3-OEY0 7 AW
¥31-Y0 4 &
tsy | WE3-WEO 4 A ns
SELRF(DA,DB,PA,PB) e
SELRF(Y) 9
SI0 *10
SELMQ 9
1ESIO3-IESIO0 10
th | ALL 0

T This is the increase in supply current for each input that is at one of the specified TTL voltge levels rather
then O V to V¢

3-26

Table 6. Maximum Switching Characteristics

TO (OUTPUT)
PARAMETER | FROM (INPUT) PA/B UNIT
v | c| z|siof perraB| N | OVR| DA/B| PY | PERRY | MSERR
A5-A0,B5-B0 36| 30| 37 28 30| 37| 16 |37
DA31-DAO,PA3-PAO
36| 25| 37| 25 20 | 28] 37 37

DB31-DBO,PB3-PBO
Ch 30| 22| 31 24 28| 28 32
EA 37| 28| 37| 25 31| 37 37
EB1-EBO 37| 28] 37| 25 31 37
17-10 37| 30| 37 28 32 a7
CF2-CFO 37| 30] 37| 28 32 37 3
OEB,0EA 15

pd OEY3-0EY0 20 20 "l ™
SELMQ 15 20 8
SI03-5100 15 25 27 [+9]
CLK 21 28 5
CLKMQ 37 37 - ¢
RCLK 37| 32| 37| 24 32| 37 a7 ﬁ
IESTO3-IESI00 15 25 25 27 2
SSF 25 30| 22 30| 22 30 2]
Y 15 15

3-27

ZE£88LOVYLNS !

‘ACT8832 Registered ALU

The SN74ACT8832 is a 32-bit registered ALU that can be configured to operate as
four 8-bit ALUs, two 16-bit ALUs, or a single 32-bit ALU. The processor instruction
set is 100 percent upwardly compatible with the ‘AS888 and includes 13 arithmetic
and logical functions with 8 conditional shifts, multiplication, division, normalization,
add and subtract immediate, bit and byte operations, and data conversions such as
BCD, excess-3, and sign magnitude. New instructions permit internal flip-flops
controlling BCD and divide operations to be loaded or read.

Additional functions added to the ‘ACT8832 include byte parity and master/slave
operation. Parity is checked at the three data input ports and generated at the Y output
port. The 64-word register file is 36 bits wide to permit storage of the parity bits.
Master/slave comparator circuitry is provided at the Y port.

The DA and DB ports can simultaneously input data to the ALU and the 64-word by
36-bit register file. Data and parity from the register file can be output on the DA and
DB ports. Results of ALU and shift operations are output at the bidirectional Y port.
The Y port can also be used in an input mode to furnish external data to the register
file or during master/slave operation as an input to the master/slave comparator.

Three 6-bit address ports allow a two-operand fetch and an operand write to be
performed at the register file simultaneously. An MQ shifter and MQ register can also
be configured to function independently to implement double-precision 8-bit, 16-bit,
and 32-bit shift operations. An internal ALU bypass path increases the speeds of
multiply, divide and normalize instructions. The path is also used by ‘ACT8832
instructions that permit bits and bytes to be manipulated.

Architecture

Figure 4 is a functional block diagram of the ‘ACT8832. Control input signals are
summarized in Table 7. Data flow and details of the functional elements are presented
in the following paragraphs.

3-28

Table 7. ‘ACT8832 Response to Control Inputs

SIGNAL HIGH Low

CF2-CFO See Table 11 See Table 11

EA Selects external DA bus Selects register file

EB1-EBO See Table 9 See Table 9

IESIO3-IESIO0 Normal operation Force corresponding SIO
inputs to high impedance

17-10 See Table 15 See Table 15

MQSEL Selects MQ register Selects ALU

OEA Inhibits DA and PA output | Enables DA and PA output

OEB Inhibits DB and PB output | Enables DB and PB output

OEY3-OEYO Inhibits Y and PY outputs | Enables Y and PY outputs

RFSEL1-RFSELO See Table 8 See Table 8

SSF Selects shifted ALU output | Selects ALU (unshifted) output

TP1-TPO See Table 14 See Table 14

WE3-WEO Inhibits register file write Byte enables for register file
write (0 = LSB)

Data Flow

As shown in Figure 5, data enters the 'ACT8832 from three primary sources: the
bidirectional Y port, which is used in an input mode to pass data to the register file;
and the bidirectional DA and DB ports, used to input data to the register file or the
R and S buses serving the ALU. Three associated I/O ports (PY, PA, and PB) are provided
for associated parity data input and output.

Data is input to the ALU through two multiplexers: R MUX, which selects the R bus
operand from the DA port or the register file addressed by A5-A0; and S MUX, which
selects data from the DB port, the register file addressed by B5-B0O, or the multiplier-
quotient (MQ) register.

The result of the ALU operation is passed to the ALU shifter, where it is shifted or
passed without shift to the Y bus for possible output from the ‘ACT8832 and to the
feedback MUX for possible storage in the internal register file. The MQ shifter, which
operates in parallel with the ALU shifter, can be loaded from the ALU or the MQ register.
The MQ shift result is passed to the MQ register, where it can be routed through the
S MUX to the ALU or to the Y MUX for output from the chip.

An internal bypass path allows data from the S MUX to be loaded directly into the
ALU shifter or the divide/BCD flip-flops. Data from the divide/BCD flip-flops can be
output via the MQ register.

3-29

SN74ACT8832 H

SELRF1-
SELRFO

AS-A0

PA3-PAO
PERRA
OEA

DA31-DAO

w

EA

Cn

$103-S100
SSF

CEB8BLIVVLNS

3-30

RF ,/2 RF MUX L
7 oecooe 436 136
—&¢— WE3-WEO
3 -4— C5-C0
. REGISTER
> 3 FILE s <4— 8580
64 x 36
" < <4— RFCLK
ya v | —
74 4
732 1% L, __1* PB3-PBO
4 — 7a 4 —)
- PARITY ra2 A32 PARITY o PERAB
- CHECK CHECK A -
OEB
32 4 %—/——*—” DB31-D80
—
» R mux smux /L /2 <4 EB1-EBO
—AE e 170
3
> \ ALU #4— CF2-CFO
—AE—<— TPI-TPO
—A—e— (ESIOB-ESIO0
32 —/;4—:: GND
7
—- ,1‘ \ ALU ﬁ/_‘— cc
> o\ SHIFTER
v A — A Ma
g S
DIVIDE/
BCD 4 4— CLK
438 FLIP FLOPS
32
y) y
mMa
4 ReaisTer <
PARITY . +
GENERATE |4 _L_7 32
A T 3 ; Y Mux / <4— SELMQ
>
3
3=
a
" 0ES
) s
T A Z,COVRN
PARITY i o Ms‘\sren/ A
COMPARE 32 c o;:::e T
y -—/——— BvOFa.
; BYOFO
PERRY PY3.PY0 OEV3-0EYD Y¥31¥0 MSERR

Figure 4. ‘ACT8832 32-Bit Registered ALU

ya
SELRF1- RF RF MUX L
SEAro 751 oecooe | "2 436 T'\:_—J_‘j 136
<4— WE3-WEO
REGIST! <4— C5-CO
Eg:fsm <— B5-B0
64 X 36 <4— RFCLK
PA3-PA0 —4d- / . PB3-PBO
JSZ l l | I /32
. 3\ / /L--—vk——‘ﬁ— EB1-EBO
EA \ P Mux \ s mux .
DA31-DA0 —¢p>
€ > L ¢»— DB31-DBO
" L ALU
136
A Yy -
7a
X
PARITY e
GENERATE |r¢{23
4 2 |u
w
Ex
3=
o

PY3-PY0 OEY3-OEY0 Y31-Y0

Figure 5. Data I/O

Data can be output from the three bidirectional ports, Y, DA, and DB, and their
associated parity ports, PY, PA, and PB. DA and DB can also be used to read ALU
input data on the R and S buses for debug or other special purposes.

Architectural Elements
Three-Port Register File

The register file is 36 bits wide, permitting storage of a 32-bit data word with its
associated parity bits. The 64 registers are accessed by three address ports. C5-CO
address the destination register during write operations; A5-AO and B5-BO address
any two registers during read operations. The address buses are also used to furnish

3-31

SN74ACT8832 H

ZEBBLOVYLNS !

immediate data to the ALU: A3-AO to provide constant data for the add and subtract
immediate instructions; C3-CO and A3-AO to provide masks for set, reset, and test
bit operations. ‘

Data is written into the register file when the write enable is low and a low-to-high
register file clock (RFCLK) transition occurs. The separate register file clock allows
multiple writes to be performed in one master clock cycle, allowing processors in multi-
processor environments to update one another’s internal register files during a single
cycle.

Four write enable inputs are provided to allow separate control of data inputs in a byte-
oriented system. WE3 is the write enable for the most significant byte.

Register file inputs are selected by the RF MUX under the control of two register file
select signals, RFSEL1 and RFSELO, shown in Table 8 (see also Table 10).

Table 8. RF MUX Select Inputs

RFSEL1 RFSELO SOURCE
0 (0} External DA input
0 1 External DB input
1 0 Y-output MUX
1 1 External Y port

R and S Multiplexers

ALU inputs are selected by the R and S multiplexers. Controls which affect operand
selection for instructions other than those using constants or masks are shown in
Table 9.

Table 9. ALU Source Operand Selects

R-BUS S-BUS
OPERAND | OPERAND RESULT
RAND
SELECT | SELECT | DESTINATION +SOURCE OPERA
EA EB1-EBO
0 R bus <Register file addressed by A5-A0
1 R bus <DA port
00 S bus <Register file addressed by B5-BO
10 S bus «<DB port
X1 S bus «<MQ register

3-32

Table 10. Destination Operand Select/Enables

D
REGISTER Y BUS REGISTER DA B
FILE OUTPUT ¥ MUS FILE PORT PORT RESULT
WRITE ENABLE SELECT SELECT OUTPUT OUTPUT DESTINATION <« SOURCE
ENABLE MQSEL ENABLE ENABLE
— OEY 1-RFSE —_— —
WE (o] RFSEL1-RFSELO OFA OEB
1 0 0 X X Y/PY < ALU shifter/parity generate
1 0 X X Y/PY < MaQ register/parity generate
0 (o] 0 1 0 Y/PY, RF <« ALU shifter/parity generate
0 0 1 1 0 Y/PY, RF < MQ register/parity generate
[0} 1 X 1 1 RF < External Y/PY
(o] X X [0] 0 1 X RF < External DA/PA
(] X X (o] 1 X 1 RF < External DB/PB
(o] DA/PA - R bus register file output
1 DA/PA Hi-Z
o] DB/PB <« S bus register file output
1 DB/PB Hi-Z

€e-€

SN74ACT8832 X

Data Input and Output Ports

The DA and DB ports can be used to load the S and/or R multiplexers from an external
source or to read S or R bus outputs from the register file. The Y port can be used
to load the register file and to output the next address selected by the Y output
multiplexer. Tables 9 and 10 describe the MUX and output controls which affect DA,
DB, and Y.

ALU

‘ The ALU can perform seven arithmetic and six logical instructions on the two 32-bit

e operands selected by the R and S multiplexers. It also supports multiplication, division,

normalization, bit and byte operations and data conversion, including excess-3 BCD
arithmetic. The 'ACT8832 instruction set is summarized in Table 15.

O The'ACT8832 can be configured to operate as a single 32-bit ALU, two 16-bit ALUs,
5 or four 8-bit ALUs (see Figures 6 and 7). It can also be configured to operate on a
»H 32-bit word formed by adding leading zeros to the 12 least significant bits of R bus
g data. This is useful in certain IBM relative addressing schemes.
®
o \? Mux/
i 32
N 32
16 6 116 16
A K ﬁ
A [—/ A
T L T
u v I
| s | s
mﬂ%k /L IEX SHIFTER g ﬁ\SH“I‘é'?ERA‘ Jx\sumgsn a
S100 - *
Ma MQ
REGISTER REGISTER
Y MUX Y MUXE
CF
16 16 MUX
+—e— OES
\ 4 A 4 4 v
Y31-Y16 BYOF3 Y15-YO Z,C.OVR, N BYOF1

Figure 6. 16-Bit Configuration

3-34

GE-€

32 132
7% €0
o/ \ 2
((24
¥
18 8 8 8 18 8
ALU ALU ALU
s s] s
T T T T
A A
T ALU # ALU ? Ao/ T
U SHIFTER / SHIFTER / SHIFTER u
s g ls, TER/ s
mMa X ma V‘Ta?
SHIFTER SHIFTER SHIFTER
i r‘tj‘ \stir s
5102 —p- 1 af,
Si07T —»- L 1
5100 —- -
ma
REGISTER
Y MUX ‘v MUX
CF
MUX
y X. - X,
8
18 8 18 P
4
A 4 4 v} \ 4 A A 4 4 4
v31-v24 BYOF3 Y23-Y16 BYOF2 Y15-Y8 BYOF1 Y7-YO Z.C.OVR.N BYOFO
Figure 7. 8-Bit Configuration

ZE8BLOVYLNS !

Configuration modes are controlled by three CF inputs as shown in Table 11. These
signals also select the data from which status signals other than byte overflow will
be generated.

Table 11. Configuration Mode Selects

CONTROL INPUTS MODE SELECTED DATA FROM WHICH STATUS OTHER
CF2 CF1 CFO THAN BYOF WILL BE GENERATED

0 0 0 Four 8-bit Byte O

(] 0 1 Four 8-bit Byte 1

(o} 1 (0] Four 8-bit Byte 2

0 1 1 Four 8-bit Byte 3

1 o (] Two 16-bit Least significant 16-bit word

1 0 1 Two 16-bit Most significant 16-bit word

1 1 (o] One 32-bit 32-bit word

1 1 1 Masked 32-bit 32-bit word

ALU and MQ Shifters

The ALU and MQ shifters are used in all of the shift, multiply, divide and normalize
functions. They can be used independently for single precision or concurrently for
double precision shifts. Shifts can be made conditional, using the Special Shift Function
(SSF) pin.

Bidirectional Serial /0 Pins

Four bidirectional SIO pins are provided to supply an end fill bit for certain shift
instructions. These pins may also be used to read bits that are shifted out of the ALU
or MQ shifters during certain instructions. Use of the SIO pins as inputs or outputs
is summarized in Table 17.

The four pins allow separate control of end fill inputs in configurations other than 32-bit
mode (see Table 12 and Figure 4).

Table 12. Data Determining SIO Input

SIGNAL CORRESPONDING WORD, PARTIAL WORD OR BYTE
32-BIT MODE 16-BIT MODE 8-BIT MODE

SI03 — - Byte 3

Si02 — most significant word Byte 2

Sio1 - — Byte 1

SI00 32-bit word least significant word Byte O

3-36

To increase system speed and reduce bus conflict, four SIO input enables
(IESIO3-IESIO0) are provided. A low on these enables will override internal pull-up
resistor logic and force the corresponding SIO pins to the high impedance state
required before an input signal can appear on the signal line. If the SIO enables are not
used, this condition is generated internally in the chip. Use of the enables allow internal
decoding to be bypassed, resulting in faster speeds.

The IESIOs are defaulted to a high because of internal pull-up resistors. When an
SIO pin is used as an output, a low on its corresponding TESIO pin would force
SI0 to a high impedance state. The output would then be lost, but the internal
operation of the chip would not be affected.

MQ Register

Data from the MQ shifter is written into the MQ register when a low-to-high transition
occurs on clock CLK. The register has specific functions in double precision shifts,
multiplication, division and data conversion algorithms and can also be used as a
temporary storage register. Data from the register file and the DA and DB buses can
be passed to the MQ register through the ALU.)

The Y bus contains the output of the ALU shifter if MQSEL is low and the output of
the MQ register if MQSEL is high. If OEY is low, ALU or MQ shifter output will
be passed to the Y port; if OEY is high, the Y port becomes an input to the
feedback MUX. ; o

Conditional Shift Pin

Conditional shifting algorithms may be implemented using the SSF pin under hardware
or firmware control. If the SSF pin is high or floating, the shifted ALU output will be
sent to the output buffers. If the SSF pin is pulled low externally, the ALU result will
be passed directly to the output buffers, and MQ shifts will be inhibited. Conditional
shifting is useful for scaling inputs in data arrays or in signal processing algorithms.

Master/Slave Comparator

A master/slave comparator is provided to compare data bytes from the Y output MUX
with data bytes on the external Y port when OEY is high. If the data are
not equal, a high signal is generated on the master slave error output pin (MSERR).
A similar comparator is provided for the Y parity bits.

Divide/BCD Flip-Flops

Internal multiply/divide flip-flops are used by certain multiply and divide instructions
to maintain status between instructions. Internal excess-3 BCD flip-flops preserve the
carry from each nibble in excess-3 BCD operations. The BCD flip-flops are affected
by all instructions except NOP and are cleared when a CLR instruction is executed.
The flip-flops can be loaded and read externally using instructions LOADFF and DUMPFF

-3-37

' SN74ACT8832 H

(see Table 15). This feature permits an iterative arithmetic operation such as
multiplication or division to be interrupted immediately so that an external interrupt
can be processed.

Status

Eight status output signals are generated by the ‘ACT8832. Four signals
(BYOF3-BYOFO) indicate overflow conditions in certain data bytes (see Table 13). The
others represent sign (N), zero (ZERO), carry-out (Cout) and overflow (OVR). N, ZERO,
Cout, and OVR are generated from data selected by the mode configuration controls
(CF2-CFO) as shown in Table 11.

after ALU shift operation. Overflow (OVR) is determined by ORing the overflow result

-Carry-out is evaluated after each ALU operation. Sign and zero status are evaluated
from the ALU with the overflow result from the ALU shifter.

% Table 13. Data Determining BYOF Outputs

; SIGNAL CORRESPONDING WORD, PARTIAL WORD OR BYTE

'e) 32-BIT MODE 16-BIT MODE 8-BIT MODE

- BYOF3 32-bit word most significant word Byte 3

8 BYOF2 - - Byte 2

S BYOF1 - least significant word Byte 1
BYOFO - - Byte O

Input Data Parity Check

An even parity check is performed on each byte of input data at the DA, DB and Y
ports. The check is performed by counting the number of ones in each byte and its
corresponding parity bit. Parity bits are input on PA for DA data, PB for DB data and
PYF or Y data. PAO, PBO and PYO are the parity bits for tiie ieast significant bytes
of DA, DB and Y, respectively. If the result of the parity count is odd for any byte,
a high appears at the parity error output pin (PERRA for DA data, PERRB for DB data,
PERRY for Y data).

Test Pins

Two pins, TP1-TPO, support system testing. These may be used, for example, to place
all outputs in a high-impedance state, isolating the chip from the rest of the system
(see Table 14). ,

3-38

Table 14. Test Pin Inputs

™1 TPO RESULT
0 0] All outputs and 1/Os forced low
0 1 All outputs and 1/Os forced high
1 0 All outputs and 1/Os placed in a high impedance state
1 1 Normal operation (default state)

Instruction Set Overview

Bits 17-10 are used as instruction inputs to the ‘ACT8832. Table 15 lists all
instructions, divided into five groups, with their opcodes and mnemonics.

Table 15. 'ACT8832 Instruction Set

GROUP 1 INSTRUCTIONS
INSTRUCTION BITS
13-10 MNEMONIC FUNCTION
(HEX)
0 ‘ Used to access Group 4 instructions
1 ADD R+ S +Cn
2 SUBR R+ S +Cn
3 SUBS R+S +Cn
4 INCS S +Cn
5 INCNS | S + Cn
6 INCR R + Cn
7 INCNR R+ Cn
8 Used to access Group 3 instructions
9 XOR R XOR S
A AND R AND S
B OR RORS
Cc NAND R NAND S
D NOR RNOR S
E ANDNR RAND S
F Used to access Group 5 instructions

3-39

SN74ACT8832 ﬂ

ZEBBLOVYLNS !

Table 15. ‘ACT8832 Instruction Set (Continued)

GROUP 2 INSTRUCTIONS

INSTRUCTION BITS

17-10 MNEMONIC FUNCTION

(HEX)
(o) SRA Arithmetic right single precision shift
1 SRAD Arithmetic right double precision shift
2 SRL Logical right single precision shift
3 SRLD Logical right double precision shift
4 SLA Arithmetic left single precision shift
5 SLAD Arithmetic left double precision shift
6 SLC Circular left single precision shift
7 SLCD Circular left double precision shift
8 SRC Circular right single precision shift
9 SRCD Circular right double precision shift
A MQSRA Arithmetic right shift MQ register
B MQSRL Logical right shift MQ register
C MQSLL Logical left shift MQ register
D MQsLC Circular left shift MQ register
E LOADMQ | Load MQ register
F Pass ALUto Y

PASS

3-40

Table 15. "ACT8832 Instruction Set (Continued)

GROUP 3 INSTRUCTIONS

INSTRUCTION BITS

17-10 MNEMONIC FUNCTION
(HEX)
08 SET1 Set bit 1
18 SETO Set bit O
28 TB1 Test bit (one)
38 TBO Test bit (zero) .
48 ABS Absolute value
58 SMTC Sign magnitude/two’s complement
68 ADDI Add immediate
78 SUBI Subtract immediate
88 BADD Byte addRto S
98 BSUBS Byte subtract S from R
A8 BSUBR Byte subtract R from S
B8 BINCS Byte increment S
Cc8 BINCNS Byte increment negative S
D8 BXOR Byte XOR R and S
E8 BAND Byte AND R and S
F8. BOR Byte OR R and S

3-41

SN74ACT8832 H

ZE8BLOVYLNS !

Table 15. ‘ACT8832 Instruction Set (Continued)

GROUP 4 INSTRUCTIONS
INSTRUCTION BITS
17-10 MNEMONIC FUNCTION
(HEX)

00 CRC Cyclic redundancy character accumulation
10 SEL Select S or R

20 SNORM Single length normalize
30 DNORM Double length normalize
40 DIVRF | Divide remainder fix

50 SDIVQF Signed divide quotient fix
60 SMuULI Signed multiply iterate
70 SMULT Signed multiply terminate
80 SDIVIN Signed divide initialize

90 SDIVIS Signed divide start

AO SDIVI Signed divide iterate

BO UDIVIS Unsigned divide start

Cco uDivi Unsigned divide iterate
DO UMULI Unsigned multiply iterate
EO SDIvIT Signed divide terminate
FO UbDIvIT Unsigned divide terminate

3-42

Table 15. "ACT8832 Instruction Set (Continued)

GROUP 5 INSTRUCTIONS
INSTRUCTION BITS) ‘ .
17-10 MNEMONIC FUNCTION
(HEX)

OF LOADFF | Load divide/BCD flip-flops

1F CLR | Clear

2F CLR | Clear

3F CLR Clear

4F CLR Clear

5F DUMPFF | Output divide/BCD flip-flops

6F CLR Clear

7F BCDBIN BCD to binary

8F EX3BC Excess-3 byte correction

9F EX3C Excess-3 word correction

AF SDIVO Signed divide overflow test

BF CLR Clear

CF CLR Clear :

DF BINEX3 | Binary to excess-3

EF CLR Clear

FF NOP No operation

Group 1, a set of ALU arithmetic and logic operations, can be combined with the user-
selected shift operations in Group 2 in one instruction cycle. The other groups contain
instructions for bit and byte operations, division and multiplication, data conversion,
and other functions such as sorting, normalization and polynomial code accumulation.

ArithmeticlLogic Instructions with Shifts

'The seven Group 1 arithmetic instructions operate on data from the R and/or S
multiplexers and the carry-in. Carry-out is evaluated after ALU operation; other status
pins are evaluated after the accompanying shift operation, when applicable. Group 1
logic instructions do not use carry-in; carry-out is forced to zero.

Possible shift instructions are listed in Group 2. Fourteen single and double precision
shifts can be specified, or the ALU result can be passed unshifted to the MQ register
or to the specified output destination by using the LOADMQ or PASS instructions.
Table 16 lists shift definitions.

When using the shift registers for double precision operations, the least significant
‘half should be placed in the MQ register and the most significant half in the ALU for
passage to the ALU shifter. An example of a double-precision shift using the ALU and
MQ shifters is given in Figure 8.

3-43

SN74ACT8832 ﬁ

ZE88LOVYLNS !

SERIAL DATA
INPUT SIGNALS

30 29 28 27 26 25 24 23 22 21 20

Si00

HHEEPQPHHEHHHHHHHHHHHHHH

3!3029182726252423222120‘9!817161514131211Io9 8 7 6 5 4 3 2 1 0

Single Precision Logical Right Single Shift, 32-Bit Configuration

SERIAL DATA
INPUT SIGNALS

31_30 29 28 27 26 25 24 23 22 21 20 19 18 17 S 15 14 13 12

SI00

HHWHHU?HHLTE@%%HHHL

3!3029282726252423222120191!!7!615"!3121!|09 8 7 6 5 4 3 2 1 0

1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

%FEEE?EEFEEELHHH {RRSARANS HHHﬁHHH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Double Precision Logical Right Single Shift, 32-Bit Configuration

Figure 8. Shift Examples, 32-Bit Configuration

All Group 2 shifts can be made conditional using the conditional shift pin (SSF). If the

SSF pin is high or floating, the shifted ALU output will be sent to the output buffers,

MQ register, or both. If the SSF pin is pulled low, the ALU result will be passed directly
~ to the output buffers and any MQ shifts will be inhibited.

Table 16. Shift Definitions

Arithmetic right
Arithmetic left
Circular right
Circular left

Logical right

“Logical left

SHIFT TYPE NOTES
Left Moves a bit one position towards the most significant bit
Right Moves a bit one position towards the least significant bit

Retains the sign unless an overflow occurs, in which case, the
sign would be inverted

May lose the sign bit if an overflow occurs. Zero is filled into
the least significant bit unless the bit is set externally

Fills the least significant bit in the most significant bit position
Fills the most significant bit in the least significant bit position
Fills a zero in the most significant bit position unless the bit
is forced to one by placing a zero on an SiO pin

Fills a zero in the least significant bit position unless the bit
is forced to one by placing a zero on an SIO pin

344

The bidirectional SIO pins can be used to supply external end fill bits for certain Group 2
shift instructions. When SIO is high or floating, a zero is filled, otherwise a 1 is filled
Table 17 lists instructions that make use of the SIO inputs and identifies input and

output functions.’

Table 17. Bidirectional SIO Pin Functions

INSTRUCTION SI0
BITS 1710 | ynemonic | 1o DATA
(HEX))
o* SRA (o} Shift out
1* SRAD o) Shift out
2* SRL | Most significant bit
3* SRLD | Most significant bit
4* SLA | Least significant bit
5* SLAD 1 Least significant bit
6* SLC (0] Shifted input to MQ shifter
7* SLCD (o} Shifted input to MQ shifter
8* SRC (0] Shifted input to ALU shifter
9* SRCD (0] Shifted input to ALU shifter
A* MQSRA (o} Shift out
B* MQSRL | Most significant bit
c* MQSLL | Least significant bit
D* MQSLC (0] Shifted input to MQ shifter
00 CRC (0} Internally generated end fill bit
20 SNORM | Least significant bit
30 DNORM | Least significant bit
60 SMuLl o] ALUO
70 SMULT (0] ALUO
80 SDIVIN (0} Internally generated end fill bit
90 SDIVIS (0] Internally generated end fill bit
AO SDivI (0] Internally generated end fill bit
BO UDIVIS (0] Internally generated end fill bit
Cco UDIVI (0] Internally generated end fill bit
DO UMULI 0 Internal input
EO SDIVT (o) Internally generated end fill bit
FO ubIvIT (o} Internally generated end fill bit
7F BCDBIN | Least significant bit
DF BINEX3 (o} Shifted input to MQ register

3-45

SN74ACT8832 n

CE88LIVVLNS

Other Arithmetic Instructions

The 'ACT8832 supports two immediate arithmetic operations. ADDI and SUBI
(Group 3) add or subtract a constant between the values of O and 15 from an operand

on the S bus. The constant value is specified in bits A3-A0.

Twelve Group 4 instructions support serial division and multiplication. Signed, unsigned
and mixed multiplication are implemented using three instructions: SMULI, which
performs a signed times unsigned iteration; SMULT, which provides negative weighting
of the sign bit of a negative multiplier in signed multiplication; and UMULI, which
performs an unsigned multiplication iteration. Algorithms using these instructions are
given in Tables 18, 19, and 20. These include: signed multiplication, which performs
a two’s complement muitiplication; unsigned multiplication, which produces an
unsigned times unsigned product; and mixed multiplication which multiplies a signed

multiplicand by an unsigned multiplier to produce a signed resuit.

Table 18. Signed Multiplication Algorithm
oP
MNEMONIC CLOCK INPUT INPUT OUTPUT

CODE CYCLES S PORT R PORT Y PORT

E4 LOADMQ 1 Multiplier — Multiplier

60 sSmMuLl N-11 Accumulator | Multiplicand | Partial product

70 SMULT 1 Accumulator | Multiplicand | Product (MSH)#

Table 19. Unsigned Muiltiplication Algorithm
P

Ol MNEMONIC CLOCK INPUT INPUT OUTPUT
CODE CYCLES S PORT R PORT Y PORT

E4 LOADMQ 1 Multiplier - Multiplier

DO UMuULI N-1t Accumulator | Multiplicand Partial product

DO UMULI 1 Accumulator | Multiplicand | Product (MSH)#

Table 20. Mixed Multiplication Algorithm
oP CLOCK INPUT INPUT OUTPUT
MNEMONIC

CODE CYCLES S PORT R PORT Y PORT

E4 LOADMQ 1 Multiplier - Multiplier

60 SMuULI N-11 Accumulator | Multiplicand | Partial product

60 SMULI 1 Accumulator | Multiplicand | Product (MSH) ¥

N =8 for quad 8-bit mode, 16 for dual 16-bit mode, 32 for 32-bit mode.
$The least significant half of the product is in the MQ register.

3-46

Instructions that support division include start, iterate and terminate instructions for
unsigned division routines (UDIVIS, UDIVI and UDIVIT); initialize, start, iterate and
terminate instructions for signed division routines (SDIVIN, SDIVIS, SDIVI and SDIVIT);
and correction instructions for these routines (DIVRF and SDIVQF). A Group 5
instruction, SDIVO, is available for optional overflow testing. Algorithms for signed
and unsigned division are given in Tables 21 and 22. These use a nonrestoring
technique to divide a 16 N-bit integer dividend by an 8 N-bit integer divisor to produce
an 8 N-bit integer quotient and remainder, where N = 1 for quad 8-bit mode, N = 2

for dual 16-bit mode, and N = 4 for 32-bit mode.

Table 21. Signed Division Algorithm

oP CLOCK INPUT INPUT OUTPUT
MNEMONIC

CODE CYCLES S PORT R PORT Y PORT
E4 LOADMQ 1 Dividend (LSH) = Dividend (LSH)
80 SDIVIN 1 Dividend (MSH) Divisor Remainder (N)
AF SDIvVO 1 Remainder (N) Divisor Overflow Test

Result

90 SDIVIS 1 Remainder (N) Divisor Remainder (N)
AO SDIVI N-2F Remainder (N) Divisor Remainder (N)
EO |.sDIVIT 1 Remainder (N) Divisor | Remainder$
40 DIVRF 1 Remainder ¥ Divisor Remainder
50 | SDIVQF 1 MQ register Divisor ‘| Quotient#

N = 8 for quad 8-bit mode, 16 for dual 16-bit mode, 32 for 32-bit mode.
The least significant half of the product is in the MQ register.

8Unfixed

Fixed (corrected)

#The quotient is stored in the MQ register. Remainder can be output at the Y port or stored in

the register file accumulator.

Table 22. Unsigned Division Algorithm

oP MNEMONIC CLOCK INPUT INPUT OUTPUT
CODE CYCLES S PORT R PORT Y PORT
E4 LOADMQ 1 Dividend (LSH) - Dividend (LSH)
BO UDIVIS 1 Dividend (MSH) Divisor | Remainder (N)
Cco uDIVI N-1T Remainder (N) Divisor Remainder (N)
FO | uDIvIT 1 Remainder (N) Divisor | Remainder?
40 DIVRF 1 Remainder $ Divisor Remainder$

N = 8in quad 8-bit mode, 16 in dual 16-bit mode, 32 in 32-bit mode
*Unfixed :
Fixed (corrected)

3-47

SN74ACT8832 H

Data Conversion Instructions

Conversion of binary data to one’s and two’s complement can be implemented using
the INCNR instruction (Group 1). SMTC (Group 3) permits conversion from two’s
complement representation to sign magnitude representation, or vice versa. Two's
-complement numbers can be converted to their positive value, using ABS (Group 3).

SNORM and DNORM (Group 4) provide for normalization of signed, single- and double-
~ precision data. The operand is placed in the MQ register and shifted toward the most
significant bit until the two most significant bits are of opposite value. Zeroes are shifted
into the least significant bit, provided SIO is high or floating. (A low on SIO will shift
a one into the least significant bit.) SNORM allows the number of shifts to be counted
and stored in one of the register files to provide the exponent.

Data stored in binary-coded decimal form can be converted to binary using BCDBIN
(Group 5). A routine for this conversion, given in Table 23, allows the user to convert
an N-digit BCD number to a 4N-bit binary number in 4N + 8 clock cycles.

Table 23. BCD to Binary Algorithm

ZE8BLOVYLNS !

oP CLOCK INPUT INPUT OUTPUT
MNEMONIC
CODE CYCLES S PORT R PORT DESTINATION
E4 LOADMQ 1 BCD operand — MQ reg.
D2 SUBR/MQSLC 1 Accumulator | Accumulator | Accumulator/MQ reg.
D2 SUBR/MQSLC 1 Mask reg. Mask reg. Mask reg/MQ reg.
D1 MaQsLC 2 Don’t care Don’t care MQ reg.
68 ADDI (15) 1 Accumulator | Decimal 15 Mask reg.
REPEAT N-1 TIMEST
DA AND/MQSLC 1 MQ reg. Mask reg. Interim reg/MQ reg.
D1 ADD/MQSLC 1 Accumulator | Interim reg. Interim reg/MQ reg.
7F BCDBIN 1 Interim reg. Interim res. Accumulator/MQ reg.
7F BCDBIN 1 Accumulator | Interim reg. Accumulator/MQ reg.
END REPEAT
FA AND 1 MQ reg. Mask reg. Interim reg.
D1 ADD MQSLC 1 Accumulator | Interim reg. Accumulator

TN = Number of BCD digits

BINEX3, EX3BC, and EX3C assist binary to excess-3 conversion. Using BINEX3, an
N-bit binary number can be converted to an N/4- digit excess-3 number. For an
algorithm, see Table 24.

3-48

Table 24. BCD to Binary Algorithm

oP CLOCK INPUT INPUT OUTPUT
CODE MNEMONIC CYCLES S PORT R PORT DESTINATION

E4 LOADMQ 1 Binary number - MQ reg.

D2 SUBR 1 Accumulator | Accumulator | Accumulator

D2 SET1 (33)16 1 Accumulator - | Mask (33)16 | Accumulator

REPEAT N TIMESt ;
DF BINEX3 1 Accumulator | Accumulator | Accumulator/MQ reg

9F EX3C 1 .| Accumulator | Internal data Accumulator
END REPEAT

TN = Number of bits in binary number

Bit and Byte Instructions

Four-Group 3 instructions allow the user to test or set selected bits within a byte.
SET1 and SETO force selected bits of a selected byte (or bytes) to one and zero,
respectively. TB1 and TBO test selected bits of a selected byte (or bytes) for ones

and zeros. The bits to be set or tested are specified by an 8-bit mask formed by the

concatentation of register file address inputs C3-CO and A3-AO. The register file

addressed by B5-BO is used as the destination operand for the set bit instructions. .

Register writes are inhibited for test bit instructions. Bytes to be operated on are

selected by forcing SIOn low, where n represents the byte position and O represents

the least significant byte. A high on the zero output pin signifies that the test data
matches the mask; a low on the zero output indicates that the test has failed.

Individual bytes of data can also be manipulated using eight Group 3 byte

arithmetic/logic instructions. Bytes can be added, subtracted, incremented, ORed,

ANDed and exclusive ORed. Like the bit instructions, bytes are selected by forcing

SIOn low, but multiple bytes can be operated on only if they are adjacent to one another;
at least-one byte must be nonselected.

Other Instructions

SEL (Group 4) selects one of the ALU’s two operands, S or R, depending on the state
of the SSF pin. This instruction could be used in sort routines to select the larger or
smaller of two operands by performing a subtraction and sending the status result
to SSF. CRC (Group 4) is designed to verify serial binary data that has been transmitted
over a channel using a cyclic redundancy check code. An algorlthm using this instruction
is given in Table 25.

3-49

SN74ACT8832 ¥}

ZEBBLOVYLNS !

Table 25. CRC Algorithm

oP . CLOCK INPUT INPUT OUTPUT
CODE MNEMONIC CYCLES S PORT R PORT DESTINATION

E4 LOADMQ 1 Vector c'(x) T - MQ reg.

F6 INCR 1 - Polynomial g(x) Poly reg.

F2 SUBR 1 Accumulator | Accumulator Accumulator

REPEAT n/8N TIMEST

00 CRC 1 Accumulator | Poly reg. Accumulator
E4 | LOADMQ 1 Vector ¢’(x) T — MQ reg.
END REPEAT

TN = Number of bits in binary number
n = Length of the code vector

CLR forces the ALU output to zero and clears the internal BCD flip-flops used in excess-3
BCD operations. NOP forces the ALU output to zero, but does not affect the flip-flops.

Configuration Options

The 'ACT8832 can be configured to operate in 8-bit, 16-bit, or 32-bit modes, depending
on the setting of the configuration mode selects (CF2-CFO). Table 11 shows the control
inputs for the four operating modes. Selecting an operating configuration other than
32-bit mode affects ALU operation and status generation in several ways, depending
on the mode selected.

Masked 32-Bit Operation

Masked 32-bit operation is selected to reset to zero the 20 most significant bits of
the R Mux input. The 12 least significant bits are unaffected by the mask. Only Group
1 and Group 2 instructions can be used in this operating configuration. Status
generation is similar to unmasked 32-bit operating mode.

Shift Instructions

Shift instructions operate similarly in 8-bit, 16-bit, and 32-bit modes. The serial I/0
(S103’-S100’) pins are used to select end-fill bits or to shift bits in or out, depending
on the operation being performed. Table 12 shows the SIO signals associated with
each byte or word in the different modes, and Table 17 indicates the specific function
performed by the SIO pins during shift, multiply, and divide operations.

Figures 9 and 10 present examples of logical right shifts in 16-bit and 8-bit
configurations. ’

3-50

SERIAL DATA
INPUT SIGNALS

SI00 —»-

31_30 29 28 27 26 25 2‘ 23 22 21 20 19 18 17 16 15_14 13 12 " W S GALu'I 6 5 4 3 1.0]
s ! L NRRAES
RppEEE! 1 1 —l L}L\ Li 17

\3‘302!2l2726252l2322212019\817'6/ 15"13'211109 8 7 6 S5 4 3 2 1 07

Single Precision Logical Right Single Shift, 16-Bit Configuration

SERIAL DATA
INPUT SIGNALS

SI00 =
ALU ALU
1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1 1 11 1 7_6 4 3 2 1 0
SIOZ—r——j —l _|
l 1117
\3‘ 30 29 28 27 26 25 24 23 22 21 20 19 18 17 15/ 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0/
NG]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 5 ‘4 3 12 11 _10 1 0
L5455 '7 ITLHL\[T [TLIL\IT |
A] 10 7 ﬁ g HLL
\3! 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Double Precision Logical Right Single Shift, 16-Bit Configuration
Figure 9. Shift Examples, 16-Bit Configuration

Bit and Byte Instructions

The 'ACT8832 performs bit operations similarly in 8-bit, 16-bit, and 32-bit modes.
Masks are loaded into the R MUX on the A3-A0 and C3-CO address inputs, and the
bytes to be masked are selected by pulling their SIO’ inputs low. Instructions which
set, reset, or test bits are explained later

Byte operations should be performed in 32-bit mode to get the necessary status
outputs. While byte overflow signals are provided for all four bytes (BYOF3-BYOFO),
the other status signals (C, N, Z) are output only for the word selected with the
configuration control signals (CF2-CFO).

Status Selection

Status results (C, N, Z, and overflow) are internally generated for all words in all modes,
but only the overflow results (BYOF3-BYOFO) are available for all four bytes in 8-bit

mode or for both words in 16-bit mode. If a specific application requires that the four

status results are read for two or four words, it is possible to toggle the configuration

3-51

SN74ACT8832 ﬂ

ZEBBLOVYLNS !
I‘

SERIAL DATA
INPUT SIGNALS

Sioo
Slo1
S102

ALU ALU ALU ALY
31_30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 _10_9 7 6 5 4 3 1.0
8103 »—) 117] 1

\113029262723252y \23222|20|9|D17|6/ \‘514‘3!211'09./ \165432‘0/

Single-Precision Logical Right Shift, 8-Bit Configuration

YY Y

SERIAL DATA
INPUT SIGNALS
SI00 —+-

SI01 -

S102+

\31 30 29 28 27 26 25 f‘/ \23 22 21 20 19 18 17 16/ \‘S 14 13 12 11 10 9 0/

Wa :
31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 wuuu{“ﬁ:onll
1 . 11 L\

\3‘302'1.272‘2524/‘ \23222‘20191!'7‘07 Fuumnuwsu/ \785!32‘ 0/ :

Double-Precision Logical Right Shift, 8-Bit Configuration

Figure 10. Shift Examples, 8-Bit Configuration

control signals (CF2-CFO) within the same clock cycle and read the additional status
results. This assumes that the necessary external hardware is provided to toggle
CF2-CFO and collect the status for the individual words before the next clock signal
is input.

Instruction Set

The 'ACT8832 instruction set is presented in alphabetical order on the following pages.
The discussion of each instruction includes a functional description, list of possible
operands, data flow diagram, and notes on status and control bits affected by the
instruction. Microcoded examples are also shown.

Mnemonics and opcodes for instructions are given at the top of each page. Opcodes
for instructions in Groups 1 and 2 are four bits long and are combined into eight-bit
instructions which select combinations of arithmetic, logical, and shift operations.
Opcodes for the other instruction groups are all eight bits long.

An asterisk in the left side of the opcode box for a Group 1 instruction indicates that
a Group 2 opcode is needed to complete the instruction. An asterisk in the right side
of a box indicates that a Group 1 opcode is required to combine with the Group 2
opcode in the left side of the box.

3-52

ABS Absolute Value [4Ts |

~ FUNCTION

Computes the absolute value of two’s complement data on the S bus.

DESCRIPTION

Two’s complement data on the S bus is converted to its absolute value. The carry
must be set to one by the user for proper conversion. ABS causes S’ + Cn to be
computed; the state of the sign bit determines whether Sor S’ + Cn will be selected
as the result. SSF is used to transmit the sign of S.

Available R Bus Source Operands

C3-Co
RF A3-A0 i
DA-Port
(A5-A0)| Immed A3-A0
Mask
No No No No

Available S Bus Source Operands

RF DB-Port Ma
(B5-BO) Register
Yes Yes Yes

Available Destination Operands Shift Operations

RF RF
Y-Port ALU MaQ
(c5-co)| (B5-B0) | ' ©
Yes No Yes None None

Control/Data Signals

X User
Signal Use
Programmable

SSF No Inactive

SI00 No Inactive

SioT No Inactive

Si02 No Inactive

Sio3 No Inactive

Cn Yes Should be programmed high for proper conversion.

3-53

SN74ACT8832 n

CEBB8LIVVLNS

Absolute Value

Status Signals

ZERO
N
OVR

C

1ifresult = 0
1 if MSB (input) = 1
1 if input of most significant byte is 80 (Hex) and inputs (if any) in all
other bytes are 00 (Hex).

1S =

0

EXAMPLES (assumes a 32-bit configuration)

ABS

Convert the two’s complement number in register 1 to its positive value and store
the result in register 4.

XX XXXX

Instr Oprd Oprd Oprd Sel Dest Destination Selects'

Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3 CF2-

17-10 A5-A0 | B5-B0 | EAEBO | C5-CO0 |SELMQ WEO SELRFO OEA OEB OEYO OES | Cn | CFO
0100 1000 000001 | X 00 [ooo100] O 0000 10 X X Xxxx o0 [1]110

Example 1: Assume register file 1 holds F6D81340 (Hex):

Source [1111 0110 1101 1000 0001 0011 0100 ooooJ S < RF(1)

Destination li°°° 1001 0010 0111 1110 1100 1100 0000 I RF(4) <« S + Cn

Example 2: Assume register file 1 holds 09D527CO (Hex):

Source l 0000 1001 1101 0101 0010 0111 1100 ooooJ S < RF(1)

Destination I 0000 1001 1101 0101 0010 0111 1100 0000 I RF(4) < S

3-54

ADD Add with Carry (R + S + Cn) [+ T1]

FUNCTION
Adds data on the R and S buses to the carry-in.

DESCRIPTION
Data on the R and S buses is added with carry. The sum appears at the ALU and MQ
shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions
are listed in Table 15.

Available R Bus Source Operands

C3-Co
RF A3-A0 :
DA-Port
(A5-A0)| Immed ot A3-A0
Mask
Yes No Yes No

Available S Bus Source Operands

AF.. DB-Port Ma
(B5-BO) Register
Yes Yes Yes

Available Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(c5-co)| (B5-80) | ' °
Yes No Yes Yes Yes

3-55

SN74ACT8832 i

KRN

Add with Carry (R + S + Cn)

ADD

Control/Data Signals

Signal

User

Programmable

Use

SSF

9
e
Ol

o 9 9
949
@ Nf =

n

No

No
No
No
No
Yes

Affect shift instructions programmed in bits 17-14 of
instruction field.

Inactive

Inactive

Inactive

Inactive
Increments sum if set to one.

Status SignalsT

ZERO
N
OVR
C

1if result = O
1if MSB = 1
1 if signed arithmetic overflow

1 if carry-out =

1

fcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

ZEBBLOVYLNS !
O

EXAMPLES (assumes a 32-bit configuration)

Add data in register 1 to data on the DB bus with carry-in and pass the result to the

MQ register.
Instr Oprd Oprd IOprd Sel Dest Destination Selects
Code Addr Addr EB1- Addr - WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 B5-BO EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES| Cn|CFO
1110 0001 | 00 0001 | XX XXXX | O 10 |XX XXXX 0 1111 10 X X XXXX 0 0 | 110

Assume register file 1 holds 0802C618 (Hex and DB bus holds 1E007530 (Hex):

Source | 0000 1000 0000 0010 1100 0110 0001 1000 l R < RF(1)

Source | 0001 1110 0000 0000 0111 0101 0011 0000 l S < DB bus

Destination | 0010 0110 0000 0011 0011 1011 0100 1000 I MQ register < R +S + Cn

356

ADDI

ADD Immediate

FUNCTION

Adds four-bit immediate data on A3-AOQ with carry to S-bus data.

DESCRIPTION

Immediate data in the range O to 15, supplied by the

carry to S.

Available R Bus Source Operands (Constant)

C3-Co
RF - i
A3-A0 DA-Port
(A5-A0)| Immed
Mask
No Yes No No

Available S Bus Source Operands

RF MaQ
DB-Port
(B5-BO) " | Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU MaQ
(cs-co)| (85-80) | ' ©
Yes No Yes None None
Control/Data Signals
User
ignal U
Signa Programmable jod
SSF No Inactive
SI00 No Inactive
SIO1 No Inactive
Sio2 No Inactive
SI03 No Inactive
Cn Yes Increments sum if set to one.

:

user at A3-A0Q, is added with

3-57

SN74ACT8832 H

!

ZEB88LIVVLNS

ADD Immediate

ADDI

Status Signals

ZERO
N
OVR
C

]

1if result = O
1if MSB = 1
1 if signed arithmetic overflow

1 if carry-out = 1

EXAMPLES (assumes a 32-bit configuration)

Add the valule 12 to data on the DB bus with carry-in and store the result in register

file 1.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3 CF2-
17-10 A5-AQ B5-80 | FAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn |CFO
0110 1000 | 00 1100 | xx Xxxx] X 10 Joooooi] o0 0000 10 X X Xxxxx 0 Jo/]110

Assume bits A5-A0 hold OC (Hex) and DB bus holds 24000100 (Hex):

Source I 0000 0000 0000 0000 0000 0000 0000 1100 | R < A5-AO

Source I 0010 0100 0000 0000 0000 0001 0000 oooﬂ S « DB bus

Destination | 0010 0100 0000 0000 0000, 0001 0000 1100 l RF(1) <« R +S + Cn

3-58

AND

Logical AND (R AND §)

FUNCTION

Evaluates the logical expression R AND S.

DESCRIPTION
Data on the R bus is ANDed with data on the S bus. The result appears at the ALU

and MQ

shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions

are listed

in Table 15.

Available R Bus Source Operands

Cc3-co
RF A3-A0 I
DA-Port
(A5-A0)| Immed ol az-A0
Mask
Yes No Yes No

Available S Bus Source Operands

RF Ma
DB-Port
(B5-BO) °™ | Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU MQ
(cs-co)| (85-B0) | ' ©
Yes No Yes Yes Yes
Control/Data Signals
Signal User Use
Programmable
SSF No Affect shift instructions programmed in bits 17-14 of
instruction field.
SI00 No Inactive
SiO1 No Inactive
5102 No Inactive
SI03 No Inactive
Cn No Inactive

3-59

SN74ACT8832 i

3

CEB88LIVVLNS

Logical AND (R AND S) AND

Status Signals’

ZERO = 1ifresult =0
N =1ifMSB =1
OVR =0
cC =0

fcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLES (assumes a 32-bit configuration)

Logically AND the contents of register 3 and register 5 and store the resuit
in register 5.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3 CF2-

17-10 A5-A0 - | B5-80 | EAEBO | C5-C0 |SELMQ WEO SELRFO OEA OEB OEYO OES | Cn |CFO
1111 1010 00 0011 000101] 0 00 [00 0101 0 0000 10 X X xxxx o0 |x /|10

Assume register file 3 holds F617D840 (Hex) and register file 5 holds 15F6D842 (Hex):

Source I 1111 0110 0001 0111 1101 1000 0100 0000 I R < RF(3)

Source I 0001 0101 1111 0110 1101 1000 0100 0010 I S < RF(5)

Destination I 0001 0100 0001 0110 1101 1000 0100 0000 I RF(5) < R AND S

3-60

ANDNR Logic AND Negative R (R’ AND S) [+ TE]

FUNCTION
Computes the logical expression S AND NOT R.

DESCRIPTION

The logical expression S AND NOT R is computed. The result appears at the ALU and
MQ shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions
are listed in Table 15.

Available R Bus Source Operands

€3-Co
RF | A3-A0 ::
DA-Port
(A5-A0)| Immed °"| A3-a0
Mask
Yes No Yes No

Available S Bus Source Operands

RF mQ
DB-Port
(B5-BO) °™ | Register
Yes Yes Yes

Available Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(cs-co)| (85-80) | \ ' °
Yes No Yes Yes Yes

Control/Data Signals

A User
Signal Use
Programmable
SSF No Affect shift instructions programmed in bits 17-14 of
instruction field.

SI00 No Inactive

SioT No Inactive

SI02 No Inactive

SIo3 No Inactive

Cn No Inactive

3-61

SN74ACT8832 H

LLE]

Logic AND Negative R (R' AND §)

ANDNR

Status Signals '

ZERO
N =
OVR =
C =

1ifresult = 0

0
0
0

TCis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Invert the contents of register 3, logically AND the result with data in register 5
and store the result in register 10.

Source Loom 0101 1111 0110 1101 1000 0100 oooo] R < RF(3)

Source I 11110110 0001 0111 1101 1000 0100 oo1o] S < RF(5)

Destination | 1110 0010 0000 0001 0000 0000 0000 0010 I RF(10) < R AND S

3-62

Assume register file 3 holds 15F6D840 (Hex) and register file 5 hold F617D842 (Hex):

(72}

2

E Instr Oprd Oprd Oprd Sel Dest _ Destination Selects

> Code Addr Addr _EB1~ Addr \A£3 SELRF1- I OEﬁ . CF2-
(@) 17-10 A5-A0 B5-B0 | EA EBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn |CFO
-qd | 11111110} 000011 |00 0101 | O 00 |00 1010 0 0000 10 X X XXXX 0 | X 110
o]

[o0]

w

N

BADD

Byte Add R to S with Carry

FUNCTION
Adds S with carry-in to a selected byte or selected adjacent bytes of R.

DESCRIPTION

S103-SI00 are used to select bytes of R to be added to the corresponding bytes of
S. A byte of R with SIO programmed low is selected for the computation of
R + S + Cn. If the SIO signal for a byte of R is left high, the corresponding byte
of S is passed unaltered. Multiple bytes can be selected only if they are adjacent to
one another. At least one byte must be nonselected.

Available R Bus Source Operands

€3-Co
RF | A3-A0 i
DA-P
(A5-A0)| Immed ot | A3-A0
Mask
Yes No Yes No

Available S Bus Source Operands

RF MQ
DB-Port
(B5-BO) °™ | Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Pi ALU MQ
(c5-co)| (85-80) | ' O™
Yes No Yes None None

Control/Data Signals

Signal User Use
Programmable
SSF No Inactive
Si00 Yes Byte select
Sio1 Yes Byte select
Si02 Yes Byte select
SI03 Yes Byte select
Cn Yes Propagates through nonselected bytes; increments

selected byte(s) if programmed high.

3-63

SN74ACT8832 H

Byte Add R to S with Carry BADD

Status Signals

ZERO = 1 if result (selected bytes) = O
N =0

OVR = 1 if signed arithmetic overflow (selected bytes)
C = 1if carry-out (most significant selected byte) =1

EXAMPLE (assumes a 32-bit configuration)

Add bYtes 1 and 2 of register 3 with carry to the contents of register 1 and store the

- result in register 11.
Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr €B1- | Addr WE3- SELRF1- OEY3- cF2-| §i03-| iESI03-
17-10 A5-A0 | B85-80 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|cCn|cro |Si00 | IESIO0

0100 1000} 00 0011 | 00 0001] O 00 00 1011 0 0000 10 X X XXXX O] 1]110}1001] 0000

Assume register file 3 holds 2C018181 (Hex) and register file 1 holds 7A8FBE3E (Hex):

Source Loow 1100 0000 0001 1000 0001 1000 0001 I Rn < RF(3)n

CE8B8LIVVLNS

Source I 0111 1010 1000 1111 1011 1110 0011 111oJ Sn < RF(1)n

ALU | 1010 0110 1001 0001 0100 0000 1100 ooooJ Fn < Rn +Sn + Cn

Destination I 0111 1010 1001 0001 0100 11110011 1110 | RF(11)n < Fn or Snt

TF = ALU result
n = nth byte .
Register file 11 gets F if byte selected, S if byte not selected.

3-64

BAND _ Byte AND R AND S (Byte Logical AND R AND S)

FUNCTION
Evaluates the logical AND of selected bytes of R-bus and S-bus data.

DESCRIPTION

Bytes with their corresponding SIO signals programmed low compute R AND S. Bytes
with SIO signals programmed high, pass S unaltered. Multiple bytes can be selected
only if they are adjacent to one another. At least one byte must be nonselected.

Available R Bus Source Operands

C3-Co
RF | A3-A0 .
DA-Port
(A5-A0)| Immed o A3-A0
Mask
Yes No Yes No

Available S Bus Source Operands

RF MQ
DB-P
85-80)| 0 °" | Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU Ma
(c5-C0)| (85-80) '
Yes No Yes None None
Control/Data Signals
User
Signal Use
‘ana Programmable
SSF No Forced low
SI00 Ye§ Byte select
Sio1 Yes Byte select
Sio2 Yes Byte select
Si03 Yes Byte select
Cn No . Inactive

3-65

' SN74ACT8832 ﬁ

CEBB8LIVVLNS

Byte AND R AND S (Byte Logical AND R AND §)

BAND

Status Signals

ZERO
N
OVR
C =

1 if result (selected bytes) = O

0
0
0

EXAMPLE (assumes a 32-bit configuration)

Logically AND bytes 1 and 2 of register 3 with input on the DB bus; store the result

in register 3.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr E81-| Addr WE3- SELRF1- OEY3- CF2-| SI03-| iESI03-
17-10 As-A0 | B5-B0 | EAEBO | c5-co | SELMQ WEO SELRFO OEA OEB OEYO OES|Cnjcro |SiG0 | IESIO0
1110 1000 00 0011 | xx Xxxx] 0 10 Joooo11] o 0000 10 x x xxxx o | x| 110]1001] o000

Assume register file 3 holds 398FBEBE (Hex) and input on the DB port is 4290BFBF

(Hex):

Source | 0011 1001 1000 1111 1011 1110 1011 1110J Rn < RF(3)n

Source I_omo 0010 1001 0000 1011 1111 1011 1111] Sn < DBn

Destination [0100 0010 1000 0000 1011 1110 1011 1111J RF(3)n < Fn or Snt

Uz
n

ALU result
nth byte

Register file 3 gets F if byte selected, S if byte not selected.

3-66

BCDBIN BCD to Binary 71 F]

FUNCTION

Converts a BCD number to binary.

DESCRIPTION

This instruction allows the user to convert an N-digit BCD number to a 4N-bit binary
number in 4(N-1) plus 8 clocks. The instruction sums the R and S buses with carry.

A one-bit arithmetic left shift is performed on the ALU output. A zero is filled into bit O
of the least significant byte unless SIOO0 is set low, which would force bit O to one.
Bit 7 of the most significant byte is dropped.

Simultaneously, the contents of the MQ register are rotated one bit to the left. Bit
7 of the most significant byte is rotated to bit O of the least significant byte.

Recommended R Bus Source Operands

€3-Co
RF A3-A0 :
A-Port
(45-80)| Immed |PAT°| A3.a0
Mask
Yes No No No

Recommended S Bus Source Operands

RF MQ
DB-P
85-80)| P2 T | Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(cs-co)| (B5-80) | ¥ °
Yes No No Left Left

3-67

SN74ACT8832 ﬂ

7| F | BCD to Binary BCDBIN
Control/Data Signals
X User

.| Signal Programmable Use
SSF No Inactive
SiI00 Yes If high or floating, fills a zero in LSB of ALU shifter;

if low, fills a one in LSB of ALU shifter.

SIoT No Inactive in 32-bit configuration. Used in other
Si02 No configurations to select endfill in LSBs.
Si03 No
Cn Yes Should be programmed low for proper conversion.

Status Signals

ZE8BLOVYLNS !

ZERO = 1 if result = O
N = 1ifMSB =1
OVR = 1 if signed arithmetic overflow
C = 1 if carry-out = 1
ALGORITHM

The following code converts an N-digit BCD number to a 4N-bit binary number in 4(N-1)
plus 8 clocks. It employs the standard conversion formula for a BCD number (shown

here for 32 bits):

ABCD = [(A x 10 + B) x 10 + C}] x 10 + D.

The conversion begins with the most significant BCD digit. Addition is performed in

radix 2.

LOADMQ NUM
SUB ACC, ACC, SLCMQ

SUB MSK, MSK, SLCMQ

sLCMQ
SLCMQ
ADDI ACC, MSK, 15

3-68

Load MQ with BCD number.

Clear accumulator;
Circular left shift MQ.

Clear mask register;
Circular left shift MQ.

Circular left shift MQ.
Circular left shift MQ.

Store 15 in mask register.

BCDBIN BCD to Binary [7] F |

Repeat N-1 times:
(N = number of BCD digits)
AND MQ, MSK, R1, SLCMQ

ADD, ACC, R1, R1, SLCMQ

BCDBIN R1, R1, ACC

BCDBIN ACC, R1, ACC

(END REPEAT)
AND MQ MSK, R1
ADD ACC, R1, ACC

Extract one digit;
Circular left shift MQ.

Add extracted digit to accumulator, and
store result in R1; Circular left shift MQ.

Perform BCDBIN instruction, and store
result in accumulator

[4 x (ACC + 4 x digit)];

Circular left shift MQ.

Perform BCDBIN instruction, and store
result in accumulator

[10 x (ACC + 10 x digit)];

Circular left shift MQ.

Fetch last digit.

SN74ACT8832 H

Add in last digif and store result in
accumulator.

3-69

ZE88LOVYLNS !

Byte Increment Negative S with Carry

BINCNS

FUNCTI

ON

S’ + Cn for selected bytes of S.

DESCRI

PTION

Bytes with SIO0 programmed low compute S’ + Cn. Bytes with SIO0 programmed
high pass S unaltered. Multiple bytes can be selected only if they are adjacent to one

another. At least one byte must be nonselected.

Available R Bus Source Operands

c3-co

RF | A3-A0 s
DA-Port

(A5-A0)| Immed °™1 A3-A0

Mask

No No No No

Available S Bus Source Operands

RF MQ
DB-Port X
(B5-BO) Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU MQ
(C5-C0)| (B5-BO)
Yes No Yes None | = None
Control/Data Signals
Signal User Use
g Programmable
SSF No Inactive
SI00 Yes Byte select
SI101 Yes Byte select
Si02 Yes Byte select
SI03 Yes Byte select
Cn Yes Propagates through nonselected bytes; increments
selected byte(s) if programmed high.

3-70

BINCNS

Byte Increment Negative S with Carry

Status Signals

ZERO
N
OVR
C

1 if result (selected bytes) = O

=0

1 if signed arithmetic overflow (selected bytes)
1 if carry-out (most significant selected byte) = 1

EXAMPLE (assumes a 32-bit configuration)

Invert bytes O and 1 of register 3 and add them to the carry (bytes 2 and 3 are not
changed). Store the result in register 3.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-| §103-| iESIO3-

17-10 As-A0 | B85-80 | EAEBO | C5-Co | SELMQ WEO SELRFO OEA OEB OEYO OES|CnlcFo |Si00 | iESIO0
1100 1000] xx xxxx] 00 0001 x 00 fo00011] o 0000 10 x x xxxx o | 1]110]1100f o000

Assume register file 3 holds A3018181 (Hex):

Source [1010 0011 0000 0001 1000 0001 1000 0001 I Sn < RF(3)n

ALU I 0101 1100 1111 11100111 1110 0111 1111 I Fn < S'n + Cn

Destination I 1010 0011 0000 0001 0111 1110 0111 1111 I RF(3)n < Fn or Sn'

TF = ALY

result

n = nth byte
Register file 3 gets F if byte selected, S if byte not selected.

3-71

SN74ACT8832 H

Byte Increment S with Carry

FUNCTION

Increments selected bytes of S if the carry is set.

DESCRIPTION

Bytes with SIO’ inputs programmed low compute S + Cn. Bytes with SIO inputs
programmed high, pass S unaltered. Multiple bytes can be selected only if they are

adjacent to one another. At least one byte must be nonsselected.

Available R Bus Source Operands

Cs-co
RF A3-A0 H
DA-Port
o | (A5-A0)| Immed ot Az-a0
§ Mask
No No No No
>
O
. ; Available S Bus Source Operands
© RF ma
w -P
N | (B5-BO) DB-Port Register
Yes Yes Yes

Available Destination Operands Shift Operations

RF RF
(c5-co)| (85-80) | T ALU | Ma

Yes No Yes None None

Control/Data Signals

. User
Signal Programmable Use
SSF No Inactive
SI00 Yes Byte select
SiI01 Yes Byte select
8102 | Yes Byte select
Sio3 Yes Byte select
Cn Yes Propagates through nonselected bytes; increments

selected byte(s) if programmed high.

BINCS ' Byte Increment S with Carry

Status Signals

ZERO = 1 if result (selected bytes) = O
N =0
OVR = 1 if signed arithmetic overflow (selected bytes)
C = 1 if carry-out (most significant selected byte) = 1

EXAMPLE (assumes a 32-bit configuration)

Add bytes 1 and 2 of register 7 to the carry (bytes O and 3 are not changed). Store
the result in register 2.

Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1- | Addr WE3- SELRF1- OEY3- CF2-| 5103 iESIO3-
17-10 A5-A0 | B85-80 | EA EBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|cro |Si00 |iESIO0

1011 1000f XX XXXX]| 00 0111} X 00 |00 0010 0 0000 10 X X XXXX O | 1]110}1100{ 0000

Assume register file 7 holds 408FBEBE (Hex):

Source bnoo 0000 1000 1111 1011 1110 1011 1110] Sn < RF(7)n

ALU l 0100 0000 1000 1111 1011 1111 1011 1110 I Fn < Sn + Cn

Destination [0100 0000 1000 1111 1011 1111 1011 111o—l RF(2)n < Fn or Sn'

TF = ALU result
n = nth byte
Register file 11 gets F if byte selected, S if byte not selected.

3-73

SN74ACT8832 n

ZE8BLOVYLNS !

Binary to Excess-3 BINEX3

FUNCTION

Converts a binary number to excess-3 representation.

DESCRIPTION

This instruction converts an N-digit binary number to a N/4 digit excess-3 number
representation in 2N + 3 clocks. The data on the R and S buses are added to the carry-
in, which contains the most significant bit of the MQ register. The contents of the -
MaQ register are rotated one bit to the left. The most significant bit is shifted out and
passed to the least significant bit position. Depending on the configuration selected,
this shift may be within the same byte or from the most significant byte to the least
significant byte.

Recommended R Bus Source Operands

c3-co

RF | A3-A0 ::
4 DA-Port

(A5-A0)| Immed o1 A3-A0

Mask

Yes No No No

Recommended S Bus Source Operands

RF mMQ
DB-Port
(B5-BO) °™ | Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF
Y- A
(c5-co)| B85-80 | Y PO e
Yes No Yes None Left

Control/Data Signals

) User
Signal -1 Programmable |- Use
SSF No Inactive
Si00 No Inactive
SioT No Inactive
Si02 No Inactive
SI03 No Inactive
Cn No ' Holds MSB of MQ register.

BINEX3 Binary to Excess-3

Status Signals

ZERO = 1tifresult =0
N = 1ifMSB =1
OVR = 1 if signed arithmetic overflow
C = 1if carry-out = 1
ALGORITHM

The following code converts an N-digit binary number to a N/4 digit excess-3 number
in 2N + 3 clocks. It employs the standard conversion formula for a binary number: -

an 2N + ap.1 2n-1 + apn22M2 + ... + ag =
{([(2an + ap-1) X 2 + ap.1] X 2 + ... + ag) X 2 + ao. g
The conversion begins with the most significant bit. Addition during the BINEX3 g
instruction is performed in radix 10 (excess-3). g
LOADMQ NUM Load MQ with binary number. ﬁ
SUB ACC, ACC, ACC Clear accumulator; (%
SET1 ACC, 33 (Hex) Store 33 (Hex) in all bytes of

accumulator.

Repeat N times:
(N = number of bits in binary number)

BINEX3 ACC, ACC, ACC Double accumulator and add in most
i significant bit of MQ register. Circular left
shift MQ.
EX3C ACC Perform excess-3 correction.

(END REPEAT)

3-75

ZEBBLIOVPYLNS !

Byte OR R and S

(Byte Inclusive OR R and S)

BOR

FUNCTION
Evaluates R OR'S of selected bytes.

DESCRIPTION

Bytes with SIO inputs programmed low evaluate R OR S. Bytes with SIO inputs
programmed high, pass S unaltered. Multiple bytes can be selected only if they are

adjacent to one another. At least one byte must be nonselected.

Available R Bus Source Operands

C3-Co
RF A3-A0 o
DA-Port
(A5-AO)| Immed o A3-A0
' Mask
Yes No Yes No
Available S Busv Source Operands
RF MQ
DB-Port
(B5-BO) ° Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU MQ
(c5-co)| (85-BO) |\ O
Yes No Yes None None
Control/Data Signals
User
ignal U
Signa Programmable se
SSF No Inactive
SI00 Yes Byte select
SO Yes Byte select
Si02 Yes Byte select
303 Yes Byte select
Cn No Inactive

3-76

Byte OR R and S
(Byte Inclusive OR R and S)

Status Signals

ZERO
N =
OVR =
C =

1 if result (selected bytes) = O

0
0
0

EXAMPLE (assumes a 32-bit configuration)

Logically OR bytes 1 and 2 of register 12 with bytes 1 and 2 on the DB bus. Concatenate
with DB bytes O and 3, storing the result in register 12.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-| §103-| [ESI03-

17-10 As-A0 | B580 | EAEBO | c5-co | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|cFo |Si00 | IESIO0
1111 1000] 00 1100 [XX Xxxxx] 0 10 Joo1100f o0 0000 10 x x xxxx o0 | x| 110]1001] 0000

Assume register file 12 holds 578FBEBE (Hex) and the DB bus holds 1C90BEBE (Hex):

Source I 0101 0111 1000 1111 1011 1110 1011 1110 | Rn < RF(12)n

Source l 0001 1100 1001 0000 1011 1110 1011 1100 ' Sn < DBn

Destination [0001 1100 1001 1111 1011 1110 1011 1110] RF(12)n < Fn or Sn't

TF = ALU result
n = nth package
Register file 12 gets F if byte selected, S if byte not selected.

3-77

SN74ACT8832 H

Byte Subtract R from S with Carry

BSUBR

FUNCTION

Subtracts R from S in selected bytes.

DESCRIPTION

Bytes with SIO inputs programmed low compute R’ + S + Cn. Bytes with SIO inputs
programmed high, pass S unaltered. Multiple bytes can be selected only if they are
adjacent to one another. At least one byte must be nonselected.

Available R Bus Source Operands

ZEBBLOVYLNS !

C3-CO
RF A3- ::
3-A0 DA-Port
(A5-A0)| Immed A3-AO0
Mask
. Yes No Yes No
Available S Bus Source Operands
RF MQ
DB-Port
(B5-BO) °™ | Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU MQ
(C5-CO)| (B5-BO) '
Yes No Yes None None
Control/Data Signals
User
Signal u
'gna Programmable se
SSF No Inactive
Si00 Yes Byte select
SIo1 Yes Byte select
' 5102 Yes Byte select
Si03 Yes Byte select
Cn Yes Propagates through nonselected bytes; should be
set high for two’s complement subtraction.

Byte Subtract R from S with Carry

BSUBR

Status Signals

ZERO
N
OVR
C

I

1 if result (selected bytes) = 0

=0

1 if signed arithmetic overflow (selected bytes)

1 if carry-out (most significant selected byte) = 1

EXAMPLE (assumes a 32-bit configuration)

Subtract bytes 1 and 2 of register 1 with carry from bytes 1 and 2 of registér 3.
Concatenate with bytes O and 3 of register 3, storing the result in register 11. -

Instr Oprd Oprd | Oprd Sei|] Dest Destinaiion Selects

Code Addr | Addr EB1-] Addr WES- SELRF1- OEV3- | |cF2-|Si03-|TESIOB-

17-10 as5-A0 | B85-80 | EAEBO| C5-Co | SELMQ WEO SELRFO OEA OEB OEYO OES|cn |cro |Si00 |iEsioo
1010 1000] 00 0001 J00 0011] 0 00 Joo1011] 0 0000 10 x x xxxx o [1]110]1001] o0ooo

Assume register file 1 holds 091B5858 (Hex) and register file 3 holds 703A9898 (Hex):

Source l 0000 1001 0001 1011 0101 1000 0101 1000 | Rn < RF(1)n

Source l 0111 0000 0011 1010 1001 1000 1001 1000 I Sn < RF(3)n

ALU I 0110 0111 0001 1111 0100 0000 0100 0000 l Fn < R'n +Sn + Cn

Destination I 0111 0000 0001 1111 0100 0000 1001 1000 I RF(11)n < Fn or Snt

TF = ALU result
n = nth package
Register file 11 gets F if byte selected, S if byte not selected.

3-79

'SN74ACT8832 i

ZEBBLOVYLNS !

Byte Subtract S from R with Carry BSUBS

FUNCTION

Subtracts S from R in selected bytes.

DESCRIPTION

Bytes with SiO inputs programmed low compute R + S’ + Cn. Bytes with SIO inputs
programmed high, pass S unaltered. Multiple bytes can be selected only if they are
adjacent to one another. At least one byte must be nonselected.

Available R Bus Source Operands

C3-Co
RF | A3-A0 , ::
DA-Port
(A5-A0)| Immed °" | A3-A0
' Mask
Yes No Yes' No

Available S Bus Source Operands

RF Ma
DB-Port
(B5-BO) " | Register
Yes Yes Yes

Available Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(c5-co)| (B5-80) | ' ' ©
Yes No Yes None None

Control/Data Signals

Signal User Use
Programmable
SSF No Inactive
Si00 Yes Byte select
SiI01 Yes Byte select
Sio2 Yes Byte select
Sio3 Yes Byte select
Cn Yes Propagates through nonselected bytes; should be
set high for two's complement subtraction.

3-80

BSUBS Byte Subtract S from R with Carry

Status Signals

ZERO = 1 if result (selected bytes) = O
N =0
OVR = 1 if signed arithmetic overflow (selected bytes)
C = 1 if carry-out (most significant selected byte) = 1

EXAMPLE (assumes a 32-bit configuration)

Subtract bytes 1 and 2 of register 3 with carry from bytes 1 and 2 of register 1.

Concatenate with bytes O and 3 of register 3, storing the result in register 11.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1- | Addr WE3- SELRF1- OEY3- CF2-| $103-| [ESI03-

17-10 As5-A0 | B85-80 | EAEBO | C5-Co | SELMQ WEG SELRFO OEA OEB OEYO OES|Cn|cro |Si00 | iESIO0
1001 1000] 00 0001 J 000011] 0 00 Joo10o11] o0 0000 10 x x xxxx o | 1[110]1001] o000

Assume register file 1 holds 5288B8B8 (Hex) and register file 3 holds 143A9898 (Hex):

Source l 0101 0010 1000 1000 1011 1000 1011 1000 l Rn < RF(1)n

Source room 0100 0011 1010 1001 1000 1001 1000 l Sn < RF(3)n

ALU I 0011 1110010011100010000000100000] Fn < Rn +S'n + Cn

Destination | 0101 0010 0100 1110 0010 0000 1011 1000 I RF(11)n < Fn or Snt

TF = ALU result
n = nth byte
Register file 11 gets F if byte selected, S if byte not selected.

3-81

SN74ACT8832 ﬁ

ZEBBLOVYLNS !

Byte XORR and S ‘
~ (Byte Exclusive OR R and S) BXOR

FUNCTION

Evaluates R exclusive OR S in selected bytes.

DESCRIPTION

Bytes with SIO inputs programmed low evaluate R exclusive OR S. Bytes with SIO
inputs programmed high, pass S unaltered. Multiple bytes can be selected only if they
are adjacent to one another. At least one byte must be nonselected.

Available R Bus Source Operands

€3-Co
RF A3-A0 i
DA-Port
(A5-A0)| Immed °™1 A3-A0
Mask
Yes No Yes No

Available S Bus Source Operands

RF MQ
DB-P
85-80)| B | Register
Yes Yes Yes

Available Destination Operands Shift Operations

RF RF Y-Port ALU MQ
(C5-CO0)| (B5-BO)
" Yes No Yes None None

Control/Data Signals

User
Signal Programmable Use
SSF No Inactive
S100 Yes Byte select
SioT Yes ' Byte select
| sio2 Yes Byte select
Si03 Yes Byte select
.Cn No Inactive

BXOR

(Byte Exclusive OR R and S)

Byte XOR R and S

Status Signals

ZERO
N
OVR
C =

1 if result (selected bytes) = O

0
(]
0

EXAMPLE (assumes a 32-bit configuration)

Exclusive OR bytes 1 and 2 of register 6 with bytes 1 and 2 on the DB bus; concatenate -
the result with DB bytes O and 3, storing the ‘result in register 10.

Instr Oprd Oprd Oprd Set Dest Destination Selects

Code Addr Addr €B1- | Addr WES- SELRF1- OEV3- CF2-| 5103 | {ESIO3-

17-10 A5-A0 | B5-80 | EAEBO | C5-Co | SELMO WEO SELRFO OEA OEB OEYO OES|Cn|cCFo |Si00 | iESIO0
1101 1000] 00 0110 [xx xxxx] 0 10 Joo1010] 0 0000 10 x x xxxx o | 1]110]1001] 0000

Assume register file 6 holds 938FBEBE (Hex) and the DB bus holds 4190BEBE (Hex):

Source [1001 0011 1000 1111 1011 1110 1011 1110 | Rn < RF(6)n

Source | 01000001 1001 0000 1011 1110 1011 1110] Sn < DBn

Destination l 0100 0001 0001 1111 Q000 0000 1011 1110 I RF(10)n < Fn or Snt

F
n

ALU result
nth package

Register file 10 gets F if byte selected, S if byte not selected.

3-83

SN74ACT8832 H

ZEBBLOVYLNS !

EREEY

CLEAR

 CLR

FUNCTI

Forces ALU output to zero and clears the BCD flip-flops.

DESCRI

ALU output is forced to zero and the BCD flip-flops are cleared.

This instruction may also be coded with the following opcodes:

ON

PTION

[2] [F1, (3] [F, [4] [F), [6] [F], [B] [F], [C] [F], [E] [F]

Available R Bus Source Operands

C3-CO
RF A3-A0 i
DA-
(a5-a0)| Immed |PAT°" | Az-n0
Mask
No No No No
Available S Bus Source Operands
RF MQ
DB-Port
(B5-B0) ° | Register
No No No
Available Destination Operands Shift Operafions
RF RF
Y-P ALl MQ
(cs-co)| (85-80) | ¥ O v
Yes No Yes None None
Status Signals
ZERO =1
N =0
OVR =0
~Cn =0

3-84

CRC Cyclic Redundancy Character Accumulation

FUNCTION

Evaluates R exclusive OR S for use with cyclic redundancy check codes.

DESCRIPTION

Data on the R bus is exclusive ORed with data on the S bus. If MQO XNORed with
SO is zero (MQO is the LSB of the MQ register and SO is the LSB of S-bus data), the
result is sent to the ALU shifter. Otherwise, data on the S bus is sent to the ALU shifter.

A right shift is performed; the MSB is filled with RO (MQO XOR SO), where RO is the
LSB of R-bus data. A circular right shift is performed on MQ data.

Recommended R Bus Source Operands

C3-Co
RF A3-A0 i
DA-P.
(A5-A0)| Immed ot | A3-A0
Mask
Yes No No No

Recommended S Bus Source Operands

RF DB-Port Ma
(B5-B0O) Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF | RF
Y-Port AW | ma

(cs-coy| (85-80) | ' °
Yes No No Right Right

Control/Data Signals

Signal User Use
Programmable
SSF No Inactive
SI00 No Inactive
Sio1 No Inactive
SIO No Inactive
SI0o3 No Inactive
Cn No Inactive

3-85

SN74ACT8832 H

ZEBBLOVYLNS !

Cyclic Redundancy Character Accumulation CRC

Status Signals

ZERO = 1ifresult =0
N =0

OVR =0
Ch =0

CYCLIC REDUNDANCY CHARACTER CHECK
DESCRIPTION

Serial binary data transmitted over a channel is susceptible to error bursts. These bursts
may be detected and corrected by standard encoding methods such as cyclic
redundancy check codes, fire codes, or computer generated codes. These codes all
divide the message vector by a generator polynomial to produce a remainder that
-contains parity information about the message vector.

If a message vector of m bits, a(x), is divided by a generator polynomial, g(x), of order
k-1, a k bit remainder, r(x), is formed. The code vector, c(x), consisting of m(x) and
r(x) of length n = m+k is transmitted down the channel. The receiver divides the
received vector by g(x).

After m divide iterations, r(x) will be regenerated 4on|y if there is no error in the message
bits. After k more iterations, the result will be zero if and only if no error has occurred
in either the message or the remainder.

ALGORITHM

An algorithm for a cyclic redundancy character check, using the 'ACT8832 as a
receiver, is given below: .
LOADMQ VEC(X) Load MQ with first 32 message bits of
received vector c'(x). .

LOAD POLY Load register with polynomial g(x).
CLEAR SUM Clear register acting as accumulator.
REPEAT (n/32) TIMES:

SUM = SUM CRC POLY Perform CRC instruction where

R Bus = POLY

S Bus = SUM

Store result in SUM.

LOADMAQ VEC(X) Load MQ with next 32 message bits of

received vector c'(x).

(END REPEAT)

3-86

CRC Cyclic Redundancy Character Accumulation

SUM now contains the remainder [r'(x)] of ¢’(x). A syndrome generation routine may
be called next, if required.

Note that the most significant bit of
glx) = (g_1)xk1) + (gy_2)(xk-2) + . .(gg)(xO)

is implied and that POLY(O) is set to zero if the length of g(x) requires fewer bits than
are in the machine word width.

SN74ACT8832 ﬂ

3-87

Divide Remainder Fix DIVRF

FUNCTION

Corrects the remainder of nonrestoring division routine if correction is required.

DESCRIPTION

DIVRF tests the result of the final step in nonrestoring division iteration: SDIVIT (for
signed division) or UDIVIT (for unsigned division). An error in the remainder results
when it is nonzero and the signs of the remainder and the dividend are different.

The R bus must be loaded with the divisor and the S bus with the most significant
half of the previous result. The least significant half is in the MQ register. The Y bus

result must be stored in the register file for use during the subsequent SDIVQF
instruction.

DIVRF tests to determine whether a fix is required and evaluates:
Y «S + R’ + 1if afix is necessary
Y <« S + R + O if a fix is unnecessary

Overflow is reported to OVR at the end of the division routine (after SDIVQF).

Recommended R Bus Source Operands

CEBBLIVVLNS

C3-Co

RF A3- S
3-A0 DA-Port

(A5-A0)| Immed A3-A0

Mask

Yes No No No

Recommended S Bus Source Operands

RF DB-Port Ma
-Por
(B5-BO) : Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(C5-CO)| (85-B0) | ' °
Yes No No None None

3-88

DIVRF

Divide Remainder Fix

Control/Data Signals

User

Signal Programmable Use
SSF No Inactive

SI00 No Inactive

SIO1 No Inactive

Si02 No Inactive

SI03 No Inactive

Cn Yes Should be programmed high

Status Signals

ZERO = 1 if remainder = 0
N =0

OVR =0
Cn = 1 if carry-out = 1

3-89

SN74ACT8832 H

ZEBBLIVYLNS !

Double-Length Normalize DNORM

FUNCTION

Tests the two most significant bits of a double precision number. If they are the same,
shifts the number to the left.

DESCRIPTION

This instruction is used to normalize a two's complement, double precision number
by shifting the number one bit to the left and filling a zero into the LSB unless SI00
is low. The S bus holds the most significant half; the MQ register holds the least
significant half.

Normalization is complete when overflow occurs. The shift is inhibited whenever
normalization is attempted on a number already normalized.

Available R Bus Source Operands

C3-Co
RF A3-A0 ::
DA-Port
(A5-AO)| Immed ol A3-A0
Mask
No No No No
Recommended S Bus Source
Operands (MSH)
RF MQ
85-80)| "B PO | Register
Yes No - No
Recommended Destination Shift Operations
Operands (conditional)
RF RF
Y-Port ALU MQ
(cs-co)| 5-BO) | ' ©
Yes No No Left Left

3-90

DNORM

Double-Length Normalize

Control/Data Signals

User
Signal Programmable Use
SSF No Inactive
SI00 Yes When low, selects a one end-fill bit in LSB
SIiO1 No Passes internally generated end-fill bits
5102 No
3103 No
Cn No

Status Signals

ZERO
N
OVR
Cn =

]

]

1ifresult = 0
1if MSB = 1

1 if MSB XOR 2nd MSB = 1

(¢

EXAMPLE (assumes a 32-bit configuration)

Normalize a double-precision number.

(This example assumes that the MSH of the number to be normalized is in register 3
and the LSH is in the MQ register. The zero on the OVR pin at the end of the instruction
cycle indicates that normalization is not complete and the instruction should be

repeated).
Instr Oprd Oprd Oprd Sel Dest Destination Selects .
Code Addr Addr EB1- Addr WE3- SELRF1- OEY3- CF2-
17-10 A5-AQ B5-B0 EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES | Cn |CFO
0011 0000 | XX XXXX | 00 0011 X 00 | 000011 [*] 0000 10 X X XXXX 0 | X |110

Assume register file 3 holds FA75D84E (Hex) and MQ register holds 37F6D843 (Hex):

Source | 1111 1010 0111 0101 1101 1000 0100 11101 ALU shifter < RF(3)

Source I 00110111 1111 0110 1101 1000 0100 0011 | MaQ shifter < MQ register

Destination I 1111 0100 1110 1011 1011 0000 1001 1101 I 8RF(3) < Result (MSH)

Destination I 0110 1111 1110 1101 1011 0000 1000 0110 I MQ register < Result (LSH)

[o] ovr«ot

TNormalization not complete at the end of this instruction cycle.

3-91

SN74ACT8832 ﬁ

ZE88LOVYLNS !

[(5LF]

Output Divide/BCD Flip-Flops

DUMPFF

FUNCT

ION

Output contents of the divide/BCD flip-flops.

DESCRIPTION

The contents of the divide/BCD flip-flops are passed through the MQ register to the
Y output Imultiplexer.

Available R Bus Source Operands

C3-Co
RF A3-A0 DA-Port ::
(A5-A0)| Immed A3-A0
Mask
No No No No

Available S Bus Source Operands

RF MQ
DB-P
(B5-BO) ort Register
No No | No
Available Destination Operands - Shift Operations
RF RF
Y-Port ALU MQ
(cs-co)| (85-80) | ' ©
No No Yes None None

Status Signals

ZERO
N
OVR

Cn =

0

0
0
0

3-92

DUMPFF

Output Divide/BCD Flip-Flops

EXAMPLES (assumes a 32-bit configuration)

Dump divide/BCD flip-flops to Y output.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr E81-| Addr ‘WE3- SELRF1- OEV3- CF2-

17-10 A5-A0 | B85-80 | EAEBO| C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|CFO
0101 1111] XX XXXX | XX XXXX| X XX | XX xxxx] 1 XXXX XX X X 0000 X | x| 110

Assume divide/BCD flip-flops contain 2A055470 (Hex):

Source I 0010 1010 0000 0101 0101 0100 0111 0000] MQ register < Divide/BCD flip-flops

Destination I 0010 1010 0000 0101 0101 0100 0111 ooﬂ Y output < MQ register

3-93

SN74ACT8832 ﬂ

ZESBLOVYLNS !

Excess-3 Byte Correction EX3BC

FUNCTION

Corrects the result of excess-3 addition or subtraction in selected bytes.

DESCRIPTION

This instruction corrects excess-3 additions or subtractions in the byte mode. For
correct excess-3 arithmetic, this instruction must follow each add or subtract. The
operand must be on the S bus.

Data on the S bus is added to a constant on the R bus determined by the state of
the BCD flip flops and previous overflow condition reported on the SSF pin. Bytes with
SI0 inputs programmed low evaluate the correct excess-3 representation. Bytes with
SIO inputs programmed high or floating, pass S unaltered.

Available R Bus Source Operands

C3-Co
RF A3-A0 DA-Port i
(A5-A0)| Immed A3-A0
Mask
No No No No

Available S Bus Source Operands

RF DB-Port M.Q
(B5-B0) Register
Yes No No

Available Destination Operands Shift Operations

RF | RF
Y-Port A | wma

(cs-co)| 85-80) | YO
Yes No No No No

Control/Data Signals

User

Signal Programmable Use
SSF No Inactive

SI00 Yes Byte select

Sio1 Yes Byte select

Si02 Yes Byte select

Si03 Yes Byte select

Cn No Inactive

EX3BC Excess-3 Byte Correction

Status Signals

ZERO =0
N =0

OVR = 1 if arithmetic signed overflow
Cn = 1if carry-out = 1

EXAMPLE (assumes a 32-bit configuration)

Add two BCD numbers and store the sum in register 3. Assume data comes in on
DB bus.

1. Clear accumulator (SUB ACC, ACC)

2. Store 33 (Hex) in all bytes of register (SET1 R2, H/33/)

3. Add 33 (Hex) to selected bytes of first BCD number (BADD DB, R2, R1)

4. Add 33 (Hex) to selected bytes of second BCD number (BADD DB, R2, R3)

5. Add selected bytes of registers 1 and 3 (BADD, R1, R3, R3)

6. Correct the result (EX3BC, R3, R3)

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1- Addr WE3- SELRF1- OEY3- CF2-] SI03-} IESIO3-

17-10 A5-A0 | B5-B0 | EAEBO | ‘'C5-C0 |SELMQ WEO SELRFO OEA OEB OEYO OES|CnlcFo | 5100 |iESIO0
1111 0010] 00 0010 | XX XXXX] O XX | 00 0010 4] 0000 10 X X XXXX O 1§ 110 IXXXX] XXXX
0000 1000} 00 0010 I XX XXXX] O XX |00 0010 o 0000 10 X X XXXX 0 | X[110IXXXX| XXXX
1000 1000] 00 0010 | XX XXXX] O 10 | 00 0001 (/] 0000 10 X X XXXX 0 |JO0j110|1100] 0000
1000 1000 00 0010 | XX XXXX} O 10 |00 0011 (o] 0000 10 X X XXXX 0 |JO0]110f1100] 0000
1000 1000} 00 0001 | 00 0011 0 00 |00O0011 (o] 0000 10 X X XXXX 0 JO0}]110f1100| 0000
1000 1111 XX XXXX] 00 0011 X 00 000011 [*] 0000 10 X X XXXX 0} 0]110]1100] 0000

Assume DB bus holds 51336912 at third instruction and 34867162 at fourth
instruction. '

1 I 0000 0000 0000 0000 0000 0000 0000 0000 | RF(2) < O

2 [0000 0000 0000 0000 0011 0011 0011 0011 I RF(2) < 00003333 (Hex)

3 [0101 0001 0011 0011 1001 1100 0100 0101] RF(1) < RF(2) +DB

4 I 0011 0100 1000 0110 1010 0100 1001 °’°Ll RF(3) < RF(2) + DB

5 [0011 0100 1000 0110 0100 0000 1101 1010] RF(3)n < RF(1)n + RF(3)n

6 I 0011 0100 1000 0110 0100 0000 0111 0100] RF(3)n < Corrected RF(3)n result

3-95

SN74ACT8832 H

ZEB8BLOVYLNS !

Excess-3 Word Correction EX3C

FUNCTION

Corrects the result of excess-3 addition or subtraction.

DESCRIPTION

This instruction corrects excess-3 additions or subtractions in the word mode. For
correct excess-3 arithmetic, this instruction must follow each add or subtract. The
operand must be on the S bus.

Data on the S bus is added to a constant on the R bus determined by the state of
the BCD flip-flops and previous overflow condition reported on the SSF pin.

Available R Bus Source Operands

C3-Co
RF A3-A0 H
DA-Port
(A5-A0)| Immed ° 1 A3-A0
Mask
No No No No

Available S Bus Source Operands

RF DB-Port Ma
(B5-BO) Register
Yes No No

Available Destination Operands Shift Operations

RF | FRF
Y-Port A | Mo

(c5-co)| (B5-80) | ' "
Yes No Yes No No

Control/Data Signals

Signal User Use
Programmable
SSF No Inactive
SI00 No Inactive
SioT No Inactive
Si02 No Inactive
103 No Inactive
Cn No Inactive

EX3C Excess-3 Word Correction

Status Signals

ZERO =0
N = 1ifMSB =1

OVR = 1 if arithmetic signed overflow
Cn = 1 if carry-out = 1

EXAMPLE (assumes a 32-bit configuration)

Add two BCD numbers and store the sum in register 3. Assume data comes in on
DA bus.

1. Clear accumulator (SUB ACC, ACC)

2. Store 33 (Hex) in all bytes of register (SET1 R2, H/33/)

3. Add 33 (Hex) to all bytes of first BCD number (ADD DB, R2, R1)

4. Add 33 (Hex) to all bytes of second BCD number (ADD DB, R2, R3)

5. Add the excess-3 data (ADD, R1, R3, R3)

6. Correct the excess-3 result (EX3C, R3, R3)

7. Subtract the excess-3 bias to go to BCD result.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-

17-10 A5-A0 B5-B0 | EAEBO | C5-cO | SELMQ WEO SELRFO OEA OEB OEYO OES]cCn| CFo
1111 0010 | 00 0010 | XX XXXX| O XX | 00 0010 0 0000 10 X X XXXX O 1 110
0000 1000 | 00 0010 | XX XxxXX| 0 xx |[00o0010] 0 0000 10 X X xxxx o |x|10
1111 0001 | 00 0010 | XX XXXX| O 10 | 00 0001 0 0000 10 X X XXXX 0 0| 110
1111 0001 | 00 0010 | XX XXXX| O 10 | 00 0011 o 0000 10 X X XXXX O o} 110
1111 0001 | 000001 | 000011 | 0 00 |000011] © 0000 10 X X xxxx o |o}f 110
1001 1111 [XX xxxx| 000011 | x 00 |o0o0011] o0 0000 10 X X xxxx o]o]10
1111 0010 | 00 0010 | 00 0011 O 00 | 000011 o] 0000 10 X X XXXX 0 0] 110

3-97

SN74ACT8832 H

ZEBBLOVYLNS !

Excess-3 Word Correction | EX3C

Assume DB bus holds 51336912 at third instruction and 34867162 at fourth
instruction.

Results of Instruction Cycles:

1 I 0000 0000 0000 0000 0000 0000 0000 0000 I RF(2) < 0

2 [0011 0011 0011 0011 0011 0011 0011 0011 J RF(2) < 33333333 (Hex)

3 I 1000 0100 0110 0110 1001 1100 0100 0101J RF(1) < RF(2) +DB

4 | 01100111 1011 1001 1010 0100 1001 0101 l RF(3) < RF(2) + DB

5 I 1110 1100 0010 0000 0100 0000 1101 1010 l RF(3) < RF(1) + RF(3)

6 [1011 1001 0101 0011 0111 0011 1010 0111] RF(3) < Corrected RF(3) result

7 I 1000 0110 0010 0000 0100 0000 0111 0100 I RF(3) < RF(3)—RF(2)

3-98

INCNR Increment Negative R using Carry (R" + Cn) C17]

FUNCTION
Evaluates R’ + Cn.

DESCRIPTION

Data on the R bus is inverted and added with carry. The result appears at the ALU
and MQ shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble {17-14) of the instruction field. The result may also be passed without shift. Possible instructions
are listed in Table 15.

Available R Bus Source Operands

C3-Co
RF A3-A0 ::
DA-Port
(A5-A0)| Immed °™ A3-A0
Mask
Yes No Yes No

Available S Bus Source Operands

L

RF ma
DB-Port
(B5-BO) °™ | Register
No No No

Available Destination Operands

RF RF Y-Port ALU Ma
(C5-CO)| (B5-BO) Shifter | Shifter
Yes No Yes Yes Yes

Control/Data Signals

User :
Signal Programmable Use
SSF No Affect shift instructions programmed in bits 17-14 of
§100 No instruction field. ‘
801 No
Si02 No
503 No
Cn Yes Increments if programmed high.

3-99

SN74ACT8832 H

CEBBLIVVLNS

IIIIJ Increment Negative R using Carry (R° + Cn) INCNR

Status Signals?

\

ZERO = 1ifresult = 0
N = 1ifMSB =1

OVR = 1 if signed arithmetic overflow
C = 1if carry-out = 1

Tcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Convert the data on the DA bus to two’s complement and store the result in register 4.

Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr 'WES3- ‘SELRF1- OEY3- CF2-
17-10 AS5-AO0 B5-B0 | EAEBO| C5-C0O |SELMQ WEO SELRFO OEA OEB OEYO OES|Cn| CFO
1111 0111] XX XXXX [XX Xxxx | 1 xx Jooo100] o 0000 10 X X XXxx 0 |1]110

Assume register file 1 holds 3791FEF6 (Hex):

Source I 0011 0111 1001 0001 1111 1110 1111 o11o] R < DA

Destination I 1100 1000 0110 1110 0000 0001 0000 1010 I RF(4) <« R" + Cn

3-100

INCNS

Increment Negative S using Carry (S' + Cn)

[-15]

FUNCTION

Evaluates S’ + Cn.

DESCRIPTION
Data on the S bus is inverted and added to the carry. The result appears at the ALU

and MQ

shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions

are listed

in Table 15.

Available R Bus Source Operands

C3-Co
RF A3- o
3-A0 DA-Port
(A5-A0)| Immed A3-A0
Mask
No No No No
Available S Bus Source Operands
RF MQ
DB-Port
(B5-BO) ° Register
Yes Yes Yes
Available Destination Operahds
RF RF ALU MQ
Y-Port . X
(C5-CO)| (B5-BO) Shifter | Shifter
Yes No Yes Yes Yes
Control/Data Signals
Signal User Use
‘ 9 Programmable
SSF No Affect shift instructions programmed in bits 17-14 of
Si00 No ~ instruction field.
SIO1 No
SI02 No
SI03 No
Cn Yes Increments if programmed high.

3-101

SN74ACT8832 ﬂ

3

CEBBLIVVLNS

(=15 1] Increment Negative S using Carry (S' + Cn)_ INCNS

Status Signalst

ZERO = 1ifresult = 0
N = 1ifMSB =1

OVR = 1 if signed arithmetic overflow
C = 1if carry-out = 1

fcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Convert the data on the MQ register to one's complement and store the result in
register 4.

Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 B5-80 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|cCn|cCro
1111 0101] XX XXXX | xx xxxx| x 11 [ooo100] o0 0000 10 X X xxxx o |o]f 10

Assume MQ register file 1 holds 3791FEF6 (Hex):

Source I 0011 0111 1001 0001 1111 1110 1111 0110 I S < MQ register

Destination I 1100 1000 0110 1110 0000 0001 0000 1001 I RF(4) < S" + Cn ~

3-102

INCR

Increment R using Carry (R + Cn)

FUNCTION

Increments R if the carry is set.

DESCRIPTION
Data on the R bus is added to the carry. The sum appears at the ALU and MQ shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions

are listed

in Table 15.

Available R Bus Source Operands

C3-Co
RF A3-A0 DA-Port o
{A5-A0)| Immed A3-A0
Mask
Yes No Yes No
Available S Bus Source
Operands (MSH)
RF MQ
DB-Port
85-80)[' |Register
No No No
Available Destination Operands
RF RF Y-Port ALU MQ
(C5-C0)| (B5-BO) Shifter | Shifter
Yes No Yes Yes Yes

Control/Data Signals

k User

Signal
Programmable

SSF No Affect shift instructions programmed in bits 17-14 of
SI00 No instruction field.
Sio1 No
Si02 No
SI03 No
Cn Yes Increments R if programmed high.

3-103

SN74ACT8832 i

w

CEBBLIVVLNS

Increment R using Carry (R + Cn)

INCR

Status Signals"

ZERO
N
OVR
Cn =

1]

1]

]

1ifresult =0
1ifMSB =1
1 if signed arithmetic overflow

1 if carry-out = 1

TC is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated after shift
operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Increment the data on the DA bus and store the result in register 4.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr 'WE3- SELRF1- OEY3- CF2-

17-10 A5-AQ B5-80 | EA EBO | C5-CO | SELMQ® WEO SELRFO OEA OEB OEYO OES|Cn|CFO
1111 0110] XX XXXX [xX xxxx] 1 xx [ooot00] o oooo 10 X X XXXX 0 | 1]110

Assume register file 1 holds 3791FEF6 (Hex).

Source ! 0001 0111 1001 0001 1111 1110 1111 0110 I R < DA

Destination l 0001 0111 1001 0001 1111 1110 1111 0111 I RF(4) <« R + Cn

3-104

INCS Increment S using Carry (S + Cn)

FUNCTION

Increments S if the carry is set.
DESCRIPTION
Data on the S bus is added to the carry. The sum appears at the ALU and MQ shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions
are listed in Table 15.

Available R Bus Source Operands

€3-Co
RF | A3-A0 .
- t
(a5-A0)| Immed |PATO | A3A0
Mask
No No No No

Available S Bus Source Operands

RF ma
DB-Port
(B5-B0) °™ | Register
Yes Yes Yes

Available Destination Operands

RF RF Y-Port ALU MQ
(C5-CO)| (B5-BO) .| Shifter | Shifter
Yes No Yes Yes Yes

Control/Data Signals

Signal User Use
Programmable
SSF No Affect shift instructions programmed in bits 17-14 of
SI100 No instruction field.
SioT No
3102 No
SI03 No
Cn Yes Increments S if programmed high.

3-105

SN74ACT8832 ﬂ

Increment S using Carry (S + Cn) INCS

Status Signalst

ZERO = 1ifresult =0
N = 1ifMSB =1

OVR = 1 if signed arithmetic overflow
C = 1 if carry-out = 1

tcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)
Increment the data in the MQ register and store the result in register 4.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr WES3- SELRF1- OEY3- CF2-

17-10 A5-A0 B5-80 | EAEBO | C5-C0 |SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|CFO
1111 0100f XX XXXX | xx xxxx | x 11 Jooo100] o 0000 10 X X XXXX 0 |1]110

Assume MQ register holds 54FFOOFF (Hex):

Source I 0101 0100 1111 1111 0000 0000 1111 1111] S « MQ register

CEB8BLIVVLNS

Destination l 0101 0100 1111 1111 0000 0001 0000 oooo] RF(4) <« S + Cn

3-106

LOADFF

Load Divide/BCD Flip-Flops

FUNCTION
Load divide/BCD flip-flops from external data input.

DESCRIPTION

Uses an internal bypass path to load data from the S MUX directly into the divide/BCD
flip-flops.

Available R Bus Source Operands

C3-Co
RF A3-A0 ::
DA-Port
(A5-A0)| Immed A3-A0
Mask
No No No No
Available S Bus Source Operands
RF MQ
DB-Port
(85-B0)| ' | Register
Yes Yes Yes
Available Destination Operands
RF RF Y-Port ALU MQ
(C5-C0)| (B5-BO) Shifter | Shifter
No No No No No
‘Control/Data Signals
User
Signal
‘gna Programmable Use
SSF No Inactive
SI00 No Inactive
SI01 No Inactive
Si02 No Inactive
SIO3 No Inactive
Cn No Inactive

3-107

SN74ACT8832 ﬂ

| Load Divide/BCD Flip-Flops LOADFF
Status Signals
ZERO =0
N =0
OVR =0
CcC =0
EXAMPLE (assumes a 32-bit configuration)
Load the divide/BCD flip-flops with data from the DB input bus.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr ‘WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 | B5-B0 |EAEBO| C5-CO |SELMQ WEO SELRFO OEA OEB OEYO OES| Cn|CFO
0000 1111] XX XXXX | XX XXXX | X 10 | XX XXXX| X XXXX XX X X XXXX X | x| 110

ZEBBLOVYLNS !

3-108

Assume DB input holds 2A08C618 (Hex):

Source [0010 1010 0000 1000 1100 0110 0001 1000 ‘ S < DB bus

Destination ﬁom 1010 0000 1000 1100 0110 0001 1000 | Divide/BCD flip-flops < S

LOADMQ

Pass (Y < F) and Load MQ with F

[ET-]

FUNCTION

Passes the result of the ALU instruction specified in the lower nibble of the instruction
field to Y and the MQ register.

DESCRIPTION
The result of the arithmetic or logical operation specified in the lower nibble of the

instruction field (I3-10) is passed unshifted to Y and the MQ register.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations

ALU Shifter

MQ Shifter

None

None

- Available Destination Operan

ds

RF RF

(C5-CO) | (B5-BO)

Y-Port

Yes No

Yes

Control/Data Signals

User

Signal Programmable Use
SSF No Outputs MQO (LSB)
Si00’ No Inactive
SIO1 No Inactive
Sio2 No Inactive
Sio3 No Inactive
Cn No Inactive
Status Signalsf
ZERO = 1ifresuit =0
N = 1if MSB of result = 1
= 0 if MSB of result = 0
OVR = 1 if signed arithmetic overflow
C = 1 if carry-out = 1

Tcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

3-109

SN74ACT8832 ﬁ

ZE8BLOVYLNS ! -

CET] " Pass (Y < F) and Load MQ with F LOADMQ

EXAMPLE (assumes a 32-bit configuration)
Load the MQ register with data from register 1, and pass the data to the Y port.

(In this example, data is passed to the ALU by and INCR instruction without carry-in.)

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr ‘WE3- SELRF1- OEY3- CF2-

17-10 As5-A0 | B5-B0 |EAEBO| C5-C0 |SELMQ WEO SELRFO OEA OEB OEYO OES| Cn| CFO
1111 0110 00 0001 [XX XXXX [0 XX [Xx Xxxxx| 0 xxxx XX X X xxxx o [of1i0

Assume register file 1 holds 2A08C618 (Hex):

Source I 0010 1010 0000 1000 1100 0110 0001 1000 I R < RF(1)

Destination I 0010 1010 0000 1000 1100 0110 0001 1000 I MQ register < R + Cn

3-110

MasLC Pass (Y < F) with Circular Left MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the upper nibble of the instruction
field to Y MUX. Performs a circular left shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified in the lower nibble of the
instruction field (I13-10) is passed unshifted to Y MUX.

The contents of the MQ register are rotated one bit to the left. The MSB is rotated
out and passed to the LSB of the same word, which may be 1, 2, or 4 bytes long.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to the MQ register. If SSF is low, the MQ register will not be altered.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations

ALU Shifter | MQ Shifter
None Circular Left

Available Destination Operands (ALU Shifter)

RF RF
Y-Port
(C5-CO) | (B5-BO) ©
Yes No Yes

Control/Data Signals

Signal User Use
Programmable

SSF Yes Passes shift result if high or floating; retains MQ
without shift if low.

SI00 No Inactive

SioT No Inactive

Si02 No : Inactive

10 No Inactive

Cn No Affects arithmetic operation programmed in bits

13-10 of instruction field.

3-111

3

SN74ACT8832 l

CE8BLIVYVLNS

Pass (Y < F) with Circular Left MQ Shift

MQSLC

Status ’Signalsf

ZERO
N

1]

OVR

1ifresuit = 0

1 if MSB of result
0 if MSB of result

1
0

1 if signed arithmetic overflow

1 if carry-out = 1

Tcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Add data in register 1 to data.on the DB bus with carry-in and store the unshifted

result in register 1. Circular shift the contents of the MQ register one bit to the left.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3 CF2-
17-10 A5-A0 B5-80 | FAEBO | C5-CO |SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|CFO
1101 0001] 00 0001 [XX XXXX] 0 10 |00 0001 0 0000 10 X X XXXX 0 [1]110

Assume register file 1 holds 2508C618 (Hex), DB bus holds 11007530 (Hex), and
MQ register holds 4DA99AOQE (Hex).

Source

Source

Destination

Source

Destination

3-112

l 0010 0101 0000 1000 1100 0110 0001 1000 I R < RF(1)

! 0001 0001 0000 0000 0111 0101 00110000 | S < DB bus

l 0011 0110 0000 1001 0011 1011 0100 1001] RF(1) <« R + S + Cn

[0100 1101 1010 1001 1001 1010 0000 1110 l MQ shifter < MQ register

l 1001 1011 0101 0011 0011 0100 0001 1100 l MQ register < MQ shifter

masLL Pass (Y < F) with Logical Left MQ_Shift [eT+]

FUNCTION

Passes the result of the ALU instruction specified in the upper nibble of the instruction
field to Y MUX. Performs a left shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified in the lower nibble of the
instruction field (13-10) is passed unshifted to Y MUX.

The contents of the MQ register are shifted one bit to the left. A zero is filled into

the least significant bit of each word unless the SIO input for that word is programmed

low; this will force the least significant bit to one. The MSB is dropped from each word,
which may be 1, 2, or 4 bytes long, depending on the configuration selected.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to the MQ register. If SSF is low, the MQ register will not be altered.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations

ALU Shifter | MQ Shifter
None Logical Left

SN74ACT8832

Available Destination Operands (ALU Shifter)

RF RF Y-Port
(C5-CO) | (B5-BO)
Yes No Yes

Control/Data Signals

Signal User Use
Programmable .

SSF Yes Passes shift result if high or floating; retains MQ
without shift if low.

Si00 Yes Fills a zero in LSB of MQ shifter if high or floating;
sets LSB to one if low.

Sio1 No Inactive in 32-bit configuration; used in

Sio2 No , configurations to select end-fill in LSBs.

SI03 No

Cn No Affects arithmetic operation programmed in bits
13-10 of instruction field.

3-113

ZEBBLOVYLNS !

[€1=1 Pass (Y < F) with Logical Left MQ Shift MasLL

Status Signals?

ZERO = 1ifresult =0
N = 1if MSB of resuit = 1
= O if MSB of result = 0
OVR = 1 if signed arithmetic overflow
C = 1if carry-out = 1

TCis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Add data in register 7 to data on the DB bus with carry-in and store the unshifted
result in register 7. Shift the contents of the MQ register one bit to the left, filling
a zero into the least significant bit.

Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-] Addr WE3- SELRF1- OEY3- " |cF2-| si03-| iESIO3-
17-10 As-A0 | B5-B0 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|cFo | 'si00 | iESIO0

1100 0001} 00 0111 | XX XXXX] O 10 j000111 0 0000 10 X X XXXX O} 1}]110}1111] 0000

Assume register file 7 holds 7308C618 (Hex), DB bus holds 54007530 (Hex), and
MQ register holds 61A99A0E (Hex).

Source l 0111 0011 0000 1000 1100 0110 0001 1000 I R < RF(7)

Source I 0101 0100 0000 0000 0111 0101 0011 0000] S < DB bus

Destination [1100 0111 0000 1001 0011 1011 0100 1001 | RF(7) «R + S + Cn

Source [0110 0001 1010 1001 1001 1010 0000 1100 l MQ shifter < MQ register

Destination [1100 0011 0101 0011 0011 0100 0001 1oooJ MQ register < MQ shifter

3-114

MQSRA

Pass (Y «

F) with Arithmetic Hight MQ Shift

FUNCTI

ON

Passes the result of the ALU instruction specified in the upper nibble of the instruction
field to Y MUX. Performs an arithmetic right shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified in the lower nibble of the
instruction field (I13-10) is passed unshifted to Y MUX.

The contents of the MQ register are rotated one bit to the right. The sign bit of the
most significant byte is retained. Bit O of the least significant byte is dropped.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to the MQ register. If SSF is low, the MQ register will not be altered.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations
ALU Shifter MQ Shifter
None Arithmetic Right
Available Destination Operands (ALU Shifter)
RF RF
Y-Port
(c5-co) | (B5-B0) | ' ©
Yes No Yes
Control/Data Signals
User
Signal U
ana Programmable se
SSF Yes Passes shift result if high or floating; retains MQ
without shift if low.
SI6G0 | No Outputs LSB of MQ shifter (inverted).
SIoT No Inactive in 32-bit configurations; used in other
Si02 No configurations to output LSBs from MQ shifter
Si03 No (inverted).
Cn No Affects arithmetic operation programmed in bits
13-10 of instruction field.

3-115

SN74ACT8832 H

Pass (Y < F) with Arithmetic Right MQ Shift

MQSRA

Status Signals?t

ZERO
N

OVR
C

1if result = O

1 if MSB of result
= 0 if MSB of result

1
0

1 if signed arithmetic overflow

1 if carry-out = 1

fcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Add data in register 1 to data in register 10 with carry-in and store the unshifted result
in register 1. Shift the contents of the MQ register one bit to the right, retaining the

sign bit.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 B5-B0 EAEBO | C5-CO |SELMQ WEO SELRFO OEA OEB OEYO OES|Cn| CFO
1010 0001} 00 0001} 00 1010 | O 00 | 00 0001 0 0000 10 X X XXXX O 11110

ZESBLOVYLNS !

and MQ register holds 98A99A0E (Hex).

Source

Source

Destination

Source

Destination

3-116

[0101 0110 0000 1000 1100 0110 0001 1000 | R < RF(1)

I 0001 0100 0000 0000 0111 0101 0011 0000] S < RF(10)

I 0110 1010 0000 1001 0011 1011 0100 1001] RF(1) « R + S + Cn

I 1001 1000 1010 1001 1001 1010 0000 1110] MQ shifter < MQ register

[1100 1100 0101 0100 1100 1101 0000 0111 | MQ register + MQ shifter

Assume register file 1 holds 5608C618 (Hex), register file 10 holds 14007530 (Hex),

MOSRL Pass (Y < F) with Logical Right MQ Shift

FUNCTION

Passes the result of the ALU instruction specified in the upper nibble of the instruction
field to Y MUX. Performs a right shift on MQ.

DESCRIPTION

The result of the arithmetic or logical operation specified in the lower nibble of the
instruction field (13-10) is passed unshifted to Y MUX.

The contents of the MQ register are shifted one bit to the right. A zero is placed in
the sign bit of the most significant byte unless the SIO input for that byte is set to
zero; this will force the sign bit to 1. Bit O of the least significant byte is dropped.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to the MQ register. If SSF is low, the MQ register will not be altered.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations

ALU Shifter | MQ Shifter
None Logical Right

Available Destination Operands (ALU Shifter)

RF RF
(C5-CO) | (B5-BO)
Yes No Yes

Y-Port

Control/Data Signals

. User

Signal Programmable Use

SSF Yes Passes shift result if high or floating; retains MQ
without shift if low.

SI00 Yes Fills a zero in LSB of MQ shifter if high or floating;
sets LSB to one if low.

SIO1 No Inactive in 32-bit configuration; used in other

Si02 No configurations to select end-fill in LSBs.

Si03 No

Cn No Affects arithmetic operation programmed in bits
13-10 of instruction field.

3-117

SN74ACT8832

ZEBBLOVYLNS !

Pass (Y < F) with Logical Right MQ Shift MOSRL

Status Signalst

ZERO = 1 ifresult = O
N = 1if MSB of result = 1
= 0 if MSB of result = O
OVR = 1 if signed arithmetic overflow
C = 1if carry-out = 1

TC is ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted
result in register 1. Shift the contents of the MQ register one bit to the left.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr ‘WE3- SELRF1- OEY3- CF2-

17-10 A5-A0 B85-80 | EAEBO | C5-CO |SELMQ WEO SELRFO OEA OEB OEYO OES|Cn| cFo
1011 0001 00 0001 | XX xxxx| 0 10 Jooooo1| o 0000 10 X X XxXxx o0 [1]110

Assume register file 1 holds 5608C618 (Hex), DB bus holds 14007530 (Hex), and
MQ register holds 98BA99A0E (Hex). :

Source l 0101 0110 0000 1000 1100 0110 0001 1000 I R « RF(1)

Source | 0001 0100 0000 0000 0111 0101 0011 0000 | S < DB bus

Destination lono 1010 0000 1001 0011 1011 0100 1001 I RF(1) «* R + S + Cn

Source [1001 1000 1010 1001 1001 1010 0000 1110 I MQ shifter < MQ register

Destination l 0100 1100 0101 0100 1100 1101 0000 0111 | MQ register < MQ shifter

3-118

NAND

Logical NAND (R NAND §) |

FUNCTION

Evaluates the logical expression R NAND S.

DESCRIPTION
Data on the R bus is NANDed with data on the S bus. The result appears at the ALU

and MQ

shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions

are listed

in Table 15.

Available R Bus Source Operands

C3-Co
RF A3-A0 :
DA-Port
(A5-A0)| Immed °"1 A3-A0
Mask
Yes No Yes No

Available S Bus Source Operands

RF MQ
DB-Port
(B5-B0) or Register
Yes Yes Yes
Available Destination Operands
RF RF Y-Port ALU MQ
(C5-C0)| (B5-BO) Shifter | Shifter
Yes No Yes Yes Yes

Control/Data Signals

: User
Signal Programmable Uss
SSF No Affect shift instructions programmed in bits 17-14 of
SI00 No instruction field.
Sio1 ‘No
Si02 No
Si03 No’
Cn Inactive

3-119

SN74ACT8832 i

3 Logically NAND the contents of register 3 and register 5, and store the result

Z2€881IVYLNS

CTe]

Logical NAND (R NAND)

NAND

Status Slgnalsf

ZERO =
N =
OVR =
C =

1 if result =0
1if MSB = 1

0
0

fcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

in register 5.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 B5-80 | FAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES]CnjCFO
1111 1100] 000011 | 000101 | 0 00 f000101] O 0000 10 X X xxxx o |x]10

Assume register file 1 holds 60F6D840 (Hex) and register file 5 holds 13F6D377 (Hex).

Source I 0110 0000 1111 0110 1101 1000 0100 0000 I R < RF(3)

Source I 0001 0011 1111 0110 1101 001101110111—| S <« RF(5)

Destination [1111 1111 0000 1001 0010 1111 1011 1111 I RF(5) <~ R NAND S

3-120

NOP No Operation [FTF]

FUNCTION

Forces ALU output to zero.

DESCRIPTION

This instruction forces the ALU output to zero. The BCD flip-flops retain their old value.
Note that the clear instruction (CLR) forces the ALU output to zero and clears the BCD
flip-flops.

Available R Bus Source Operands

€3-Co
RF A3-A0 o
DA-Port
(A5-A0)| Immed °| A3-A0
Mask
No No No No

Available S Bus Source Operands

RF Ma
DB-Port
(B5-BO) ™ | Register
No No No

Available Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(cs-co)| (B5-80) | ' °
Yes No Yes None None

Status Signals

ZERO
N =
OVR =
C =

o OO0 =

3-121

SN74ACT8832 i

ZEBBLOVYLNS !

[(FIF] No Operation NOP
EXAMPLE (assumes a 32-bit configuration)
Clear register 12.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr ‘WE3- SELRF1- OEV3- CF2-
17-10 AS5-AQ B5-80 | EAEBO | C5-C0 | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn}CFO
1111 1111] XX XXXX] XX XXXx] X xx Joo1100] 0 0000 10 X X XXXX 0 | X| 110

Destination | 0000 0000 0000 0000 0000 0000 0000 0000

3-122

RF(12) <+ O

NOR Logical NOR (R NOR S)

FUNCTION

Evaluates the logical expression R NOR S.

DESCRIPTION

Data on the R bus is NORed with data on the S bus. The result appears at the ALU
and MQ shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble {17-14) of the instruction field. The result may also be passed without shift. Possible instructions
are listed in Table 15.

Available R Bus Source Operands

C3-CO
RF A3-A0 ::
DA-Port
(A5-A0)| Immed °™ 1 A3-A0
Mask
Yes No Yes No

- Available S Bus Source Operands

RF MQ
DB-Port
(B5-BO) ™ | Register
Yes Yes Yes

Available Destination Operands

RF RF Y-Port ALU MQ
(C5-C0)| (B5-BO) Shifter | Shifter
Yes No Yes Yes Yes

Control/Data Signals

Signal User Use
Programmable
SSF No Affect shift instructions programmed in bits 17-14 of
Si00 No instruction field.
SioT No
502 No
Sio3 No
Cn No Inactive

3-123

SN74ACT8832 H

Logical NOR (R NOR §) NOR
Status Signalst
ZERO = 1ifresult =0
N =1ifMSB =1
OVR =0
cC =0
TCcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.
EXAMPLE (assumes a 32-bit configuration)
3 Logically NOR the contents of register 3 and register 5, and store the result
in register 5. '
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WES3- SELRF1- OEY3- CF2-
17-10 A5-A0 B5-80 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn] CFO
1111 1011] 000011 | 000101 | 0 00 fooo101f o 0000 10 X X Xxxxx 0 | x]110

CEBBLIVVLNS

Assume register file 3 holds 60F6D840 (Hex) and register file 5 holds 13F6D377 (Hex).

Source I 0110 0000 1111 0110 1101 1000 0100 0000 l R < RF(3)

Source | 0001 0011 1111 0110 1101 0011 0111 0111] S <« RF(5)

Destination | 1000 1100 0000 1001 0010 0100 1000 1000 | RF(5) <« RNOR S

3124

Logical OR (R OR S)

FUNCTI

ON

Evaluates the logical expression R OR S.

DESCRIPTION

Data on the R bus is ORed with data on the S bus. The result appears at the ALU
and MQ shifters.

*The result of this instruction can be shifted in the same microcycle by specifying a shift instruction in the
upper nibble (17-14) of the instruction field. The result may also be passed without shift. Possible instructions
are listed in Table 15.

Available R Bus Source Operands

C3-Co

RF A3-A0 DA-Port u
(A5-A0}] Immed A3-A0
Mask

Yes | No Yes No

Available S Bus Source Operands

RF MQ
DB-Port
®5-80)[" |Register
Yes Yes Yes
Available Destination Operands
RF RF Y-Port ALU MQ
(C5-CO)| (B5-BO) Shifter | Shifter
Yes No Yes Yes Yes
Control/Data Signals
Signal User Use
9 Programmable
SSF No Affect shift instructions programmed in bits 17-14 of
SI00 No instruction field.
Sio1 No
Si02 No
SI03 No
Cn No Inactive

3-125

SN74ACT8832 H

Logical OR (R OR S) OR
Status Signalst
ZERO = 1ifresult =0
N = 1ifMSB =1
OVR =0
cC =0
tcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.
EXAMPLE (assumes a 32-bit configuration)
3 Logically OR the contents of register 5 and register 3, and store the result in
register 3.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-
17-10 AS5-AO0 B5-80 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|CnjCFO
1111 1011| 00 0101 | 00 0011 0 00 | 000011 0 0000 10 X X XXXX O X1110

ZEBBLOVYLNS

Assume register file 5 holds 60F6D840 (Hex) and register file 3 holds 13F6D377 (Hex).

Source l 0110 0000 1111 0110 1101 1000 0100 0000 | R < RF(5)

Source I 0001 0011 11110110 1101 0011 0111 0111 I S < RF(3)

Destination [01110011 1111 0110 1101 1011 0111 0111] RF(3) “ ROR S

3-126

PASS Pass (Y < F) [F1T1]

FUNCTION

Passes the result of the ALU instruction specified in the upper nibble of the instruction
field to Y MUX.

DESCRIPTION

The result of the arithmetic or logical operation specified in the lower nibble of the
instruction field (13-10) is passed unshifted to Y MUX.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Available Destination Operands

RF RF ALU MQ
' Y-Port
(C5-C0) | (B5-BO) Shifter Shifter
Yes No Yes None None

Control/Data Signals

Signal User Use
Programmable

SSF No Inactive

5100 No Inactive

sio1 No Inactive

S102 No Inactive

Si03 No Inactive

Cn No Affects arithmetic operation specified in bits 13-10 of

instruction field.

Status Signalst

ZERO = 1ifresult =0
N = 1 if MSB of result = 1
= 0 if MSB of result = 0
OVR = 1 if signed arithmetic overflow
C = 1 if carry-out condition

fcis ALU carry out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

3-127

SN74ACT8832 H

Z€E88LOVYLNS !

[EL=]

Pass (Y < F)

PASS

EXAMPLE (assumes a 32-bit configuration)

Add data in register 1 to data on the DB bus with carry-in and store the unshifted
result in register 10.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr EB1-| Addr ‘WE3- SELRF1- OEY3- CF2-

17-10 A5-A0 B5-80 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|CFO
1111 0001] 00 0001 | XX XXXX|] 0 10 [001010] o0 0000 . 10 X X XXXX 0 | 1] 110

Assume register file 3 holds 9308C618 (Hex) and DB bus holds 24007530 (Hex).

Source [1001 0011 0000 1000 1100 0110 0001 1000 I R < RF(1)

Source I 0010 0100 0000 0000 0111 0101 0011 0000 I S < DB bus

Destination I 1011 0111 0000 1001 0011 1011 0100 1001 l RF(10) <« R + S + Cn

3-128

SDIVI Signed Divide Iterate

FUNCTION

Performs one of N-2 iterations of nonrestoring signed division by a test subtraction
of the N-bit divisor from the 2N-bit dividend. An algorithm using this instruction is
given in the ‘‘Other Arithmetic Instructions’’ section.

DESCRIPTION

SDIVI performs a test subtraction of the divisor from the dividend to generate a quotient
bit. The test subtraction passes if the remainder is positive and fails if negative. If
it fails, the remainder will be corrected during the next instruction.

SDIVI checks the pass/fail result of the test subtraction from the previous instruction,
and evaluates

F<«R+ S if the test fails
F<R +S + Cn if the test passes

A double precision left shift is performed; bit 7 of the most significant byte of the MQ
shifter is transferred to bit O of the least significant byte of the ALU shifter. Bit 7 of
the most significant byte of the ALU shifter is lost. The unfixed quotient bit is circulated
into the least significant bit of the MQ shifter.

The R bus must be loaded with the divisor, the S bus with the most significant half
of the result of the previous instruction (SDIVI during iteration or SDIVIS at the beginning
of iteration). The least significant half of the previous result is in the MQ register. Carry-
in should be programmed high. Overflow occurring during SDIVI is reported to OVR
at the end of the signed divide routine (after SDIVQF).

Available R Bus Source Operands

€3-Cco

RF A3-A0 ::
(A5-A0)| Immed |PAPOt| A3.a0
Mask

Yes No Yes No

Recommended S Bus Source Operands

RF | pB-port | M@
(B5-BO) Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF
Y-Port A | ma

(c5-co)| (85-80) | ' "
Yes No Yes Left Left

3-129

SN74ACT8832 H

ZE8BLOVYLNS !

A0

Signed Divide Iterate

SDIvI

Control/Data Signals

. User
Signal Programmable Use
SSF No Inactive
SI00 No Pass internally generated end-fill bits.
SI0T No
Si02 No
Si03 No
Cn Yes Should be programmed high

Status Signals

ZERO
N
OVR
c

1 if intermediate result = 0
=0
=0

1 if carry-out

3-130

SDIVIN Signed Divide Initialize

FUNCTION

Initializes 'ACT8832 for nonrestoring signed division by shifting the dividend left and
internally preserving the sign bit. An algorithm using this instruction is given in the
“Other Arithmetic Instructions section.

DESCRIPTION

This instruction prepares for signed divide iteration operations by shifting the dividend
and storing the sign for future use.

The preceding instruction should load the MQ reqgister with the least significant half
of the dividend. During SDIVIN, the S bus should be loaded with the most significant
half-of the dividend, and the R bus with the divisor. Y-output should be written back
to the register file for use in the next instruction.

A double precision logical left shift is performed; bit 7 of the most significant byte
of the MQ shifter is transferred to bit O of the least significant byte of the ALU shifter.
Bit 7 of the most significant byte of the ALU shifter is lost. The unfixed quotient sign
bit is shifted into the least significant bit of the MQ shifter.

Available R Bus Source Operands

C3-Co

RF | A3-A0 o
(A5-A0)| Immed |PAPO| A3-A0
Mask
Yes No Yes No

Recommended S Bus Source Operands

RF MQ
DB-Port
(B5-BO) or Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(cs-co)| (85-B0) | ' o
Yes No Yes Left Left

3-131

SN74ACT8832

ZE88LOVYLNS !

Signed Divide Initialize SDIVIN

Control/Data Signals

. User
Signal Programmable Use
SSF No Inactive
S100 No Pass internally generated end-fill bits.
SioT No
Si02 No
SI03 No
Cn No Inactive
Status Signals
ZERO = 1 if divisor = 0
N =0
OVR =0
Ch =0

3-132

SDIVIS Signed Divide Start

FUNCTION

Computes the first quotient bit of nonrestoring signed division. An algorithm using
this instruction is given in the ‘’Other Arithmetic Instructions’’ section..

DESCRIPTION

SDIVIS computes the first quotient bit during nonrestoring signed division by subtracting
the divisor from the dividend, which was left-shifted during the prior SDIVIN instruction.
The resulting remainder due to subtraction may be negative. If so, the subsequent
SDIVI instruction will restore the remainder during the next subtraction.

The R bus must be loaded with the divisor and the S bus with the most significant
half of the remainder. The result on the Y bus should be loaded back into the register
file for use in the next instruction. The least significant half of the remainder is in the
MQ register. Carry-in should be programmed high.

A double precision left shift is performed; bit 7 of the most significant byte of the
MQ shifter is transferred to bit O of the least significant byte of the ALU shifter. Bit 7
of the most significant byte of the ALU shifter is lost. The unfixed quotient bit is
circulated into the least significant bit of the MQ shifter.

Overflow occurring during SDIVIS is reported to OVR at the end of the signed division
routine (after SDIVQF).

Available R Bus Source Operands

C3-COo
RF -AO il
A3 DA-Port
(A5-A0)| Immed A3-A0
Mask
Yes No Yes No

Recommended S Bus Source Operands

RF DB-Port Ma
-Por
(B5-BO) Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF Y-Port ALU MQ
(C5-CO0)| (B5-BO)
Yes No Yes Left Left

3-133

SN74ACT8832 H

ZE88LOVYLNS !

Signed Divide Start

SDIVIS

Control/Data Signals

. User
Signal Programmable Use
SSF No Inactive
SI00 No Pass internally generated end-fill bits.
SIoT No
Si02 No
SI03 No
Cn Yes

Should be programmed high.

Status Signals

ZERO
N
OVR
C

1 if intermediate result = O

(o]
0
1 if carry-out

3-134

SDIVIT Signed Divide Terminate

FUNCTION

Solves the final quotient bit during nonrestoring signed division. An
algorithm using this instruction is given in the ‘’Other Arithmetic Instructions’’ section.

DESCRIPTION

SDIVIT performs the final subtraction of the divisor from the remainder during
nonrestoring signed division. SDIVIT is preceded by N-2 iterations of SDIVI, where
N is the number of bits in the dividend.

The R bus must be loaded with the divisor, and the S bus must be loaded with the
most significant half of the result of the last SDIVI instruction. The least significant
half lies in the MQ register. The Y bus result must be loaded back into the register
file for use in the subsequent DIVRF instruction. Carry-in should be programmed high.

SDIVIT checks the pass/fail result of the previous instruction’s test subtraction and
evaluates;

Y<R+S if the test fails
Y<R +S + Cn if the test passes

The contents of the MQ register are shifted one bit to the left; the unfixed quotient
bit is circulated into the least significant bit.

Overflow during this instruction is reported to OVR at the end of the signed division
routine (after SDIVQF).

Available R Bus Source Operands

C3-Co
RF A3-A0 DA-Port i
(A5-A0)| Immed A3-A0
Mask
Yes No Yes No

Recommended S Bus Source Operands

RF mMQ
DB-Port
(BS-BO) ™ | Register
Yes Yes No

Recommended Destination Operands Shift Operations

RE RF Y-Port ALU MQ
-For .
(C5-C0)| (B5-BO)
Yes No Yes Left Left

3-135

SN74ACT8832 ﬁ

ZE8BLOVYLNS !

Sigged Divide Terminate

SDIVIT

Control/Data Signals

. User
Signal .| Programmable Use
SSF No Inactive
Si00 No Pass internally generated end-fill bits.
Sio1 No
Si02 No
Si03 No
Cn Yes Should be programmed high

Status Signals

ZERO
N
OVR
C

]

1 if intermediate result = O

0
0
1 if carry-out

3-136

SDIVO

Sign’ed Divide Overflow Test

FUNCTION

Tests for overflow during nonrestoring signed division. An algorithm using this

instruction is given in the ‘’Other Arithmetic Instructions section.

DESCRIPTION

This instruction performs an initial test subtraction of the divisor from the dividend.
If overflow is detected, it is preserved internally and reported at the end of the divide
routine (after SDIVQF). If overflow status is ignored, the SDIVO instruction may be

omitted.

The divisor must be loaded onto the R bus; the most significant half of the previous
SDIVIN result must be loaded onto the S bus. The least significant half is in the MQ

register.

The result on the Y bus should not be stored back into the register file; WE’ should
be programmed high.

Carry-in should also be programmed high.

Available R Bus Source Operands

RF RF Y-Port
(C5-CO)| (B5-BO)
Yes No Yes

C3-Co
RF A3-A0 o
DA-Port
(A5-A0)| Immed | Az-a0
Mask
Yes No Yes No
Recommended S Bus Source Operands
RF MQ
DB-Port
(B5-BO) ° | Register
Yes Yes No

Recommended Destination Operands

Shift Operations

ALU

MaQ

None

None

3:137

SN74ACT8832 ﬁ

ZE8BLOVYLNS !

Signed Divide Overflow Test

SDIVO

Control/Data Signals

Signal User Use
Programmable

SSF No Inactive

SI00 No Inactive

SIo1 No Inactive

Sio2 No Inactive

Si03 No Inactive

Cn Yes Should be programmed high

Status Signals

ZERO
N
OVR
C

1 if divisor

=0
=0
1 if carry-out

=0

3-138

SDIVQF Signed Divide Quotient Fix

FUNCTION

Tests the quotient result after nonrestoring signed division and corrects it if necessary.
An algorithm using this instruction is given in the ‘’Other Arithmetic Instructions’’

section.

DESCRIPTION

SDIVQF is the final instruction required to compute the quotient of a 2N-bit dividend
by an N-bit divisor. It corrects the quotient if the signs of the divisor and dividend are

different and the remainder is nonzero.
The fix is implemented by incrementing S:

Y<S +1 if a fix is required
Y<S+0 if no fix is required

The R bus must be loaded with the divisor, and the S bus with the most significant -

half of the result of the preceding DIVRF instruction. The least significant half is in

the MQ register.

Available R Bus Source Operands

C3-Co
R A3- o
£ 3-A0 DA-Port
(A5-A0)| Immed A3-A0
Mask
Yes No Yes No

Recommended S Bus Source Operands

RF MQ
DB-Port X
(B5-BO) Register
Yes Yes No

Recommended Destination Operands Shift Operations

RF RF
Y-Port ALU MQ
(c5-co)| (85-80) | \ O
Yes No Yes None None

3-139

SN74ACT8832 n

ZEBBLOVYLNS !

Signed Divide Quotient Fix

SDIVQF

Control/Data Signals

. User

Signal Programmable Uss
SSF No Inactive

SI00 No Inactive

Sio1 No Inactive

Sio2 No Inactive

Sio3 No Inactive

Cn Yes Should be programmed high

Status Signals

ZERO 1 if quotient = O

N = 1 if sign of quotient + 1
= 0 if sign of quotient + O
OVR = 1 if divide overflow
C = 1 if carry-out

3-140

SEL Select SIR
FUNCTION

Selects S if SSF is high; otherwise selects R.

DESCRIPTION

Data on the S bus is passed to Y if SSF is programmed high or floating; data on the

R bus is passed without,carry to Y if SSF is programmed low.

Available R Bus Source Operands

€3-Co
RF | A3-A0 ‘ ::
DA-Port
(A5-AO)| Immed | O | A3-AO
Mask
Yes No Yes " No

Available S Bus Source

Operands (MSH)
RF MQ
(86-80) | P2 7O | Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-P ALU MQ
(cs-co)| 85-80) | 'O
Yes No Yes None None.
Control/Data Signals
User
ignal
Signa Programmable Usa
SSF Yes Selects S if high, R if low.
Si00 No Inactive
SioT No Inactive
Si02 No Inactive -
SI03 No Inactive
Cn No Inactive

3-141

SN74ACT8832 H

Select SIR SEL

Status Signals

ZERO = 1ifresult = O
N = 1ifMSB =1
OVR =0
C =0

EXAMPLE (assumes a 32-bit configuration)

Compare the two’s complement numbers in registers 1 and 3 and store the larger in
register 5. ‘

1. Subtract (SUBS) data in register 3 from data in register 1 and pass the result
to the Y bus.
2. Perform Select S/R instruction and pass result to register 5.

[This example assumes the SSF is set by the negative status (N) from the previous
instruction].

Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1- Addr WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 B5-B0 | EAEBO | C5-C0 | SELMQ WEO SELRFO OEA OEB OEYO OES| Cn| CFO

11110011 | 00 0001 | 000011} O 00 | XX XXXX (o} XXXX XX X X 0000 O] 1]110
0001 0000 | 00 0001 | 00 0011 | O 00 | 000101 (o} 0000 10 X X XXXX 0] o0} 110

ZEBBLOVYLNS !

Assume register file 1 holds 008497DO0 (Hex) and register file 3 holds 01C35250 (Hex).

Instruction Cycle 1

Source I 0000 0000 1000 0100 1001 0111 1101 00001 R < RF(1)

Source [0000 0001 1100 0011 0101 0010 0101 0000 I S « RF(3)

Destination I 1111 1110 1100 0001 0100 0101 1000 0000 | Ybus<~ R+ S + Cn

[1] N

Instruction Cycle 2

Source I 0000 0000 1000 0100 1001 0111 1101 00001 R < RF(1)

[1] ssF1

Source I 0000 0001 1100 0011 0101 0010 0101 0000 ! S < RF(3)

Destination I 0000 0001 1100 0011 0101 0010 0101 0000 | RF(5) < S

3-142

SET0

Reset Bit

(18]

FUNCTI

Resets bits in selected bytes of S-bus data using mask in C3-C0::A3-A0.

DESCRI

ON

PTION

The register addressed by B5-BO is both the source and destination for this instruction.
The source word is passed on the S bus to the ALU, where it is compared to an 8-bit
mask, consisting of a concatenation of the C3-CO and A3-AO address ports
(C3-CO::A3-A0). The mask is input via the R bus. All bits in the source word that are
in the same bit position as ones in the mask are reset. Bytes with their SIO inputs
programmed low perform the Reset Bit instruction. Bytes with their SiO inputs
programmed high or floating pass S unaltered.

Available R Bus Source Operands

C3-Co
RF A3-A0 38
DA-Port
(A5-A0)| Immed A3-A0
Mask
No No No Yes

Available S Bus Source

O_perands (MSH)
RF ma
DB-P
85-80) | P& | Register
Yes Yes Yes

Available Destination Operands

Shift Operations

RF RF
(c5-co)| 85-B0) | YO AL Ma
No Yes Yes None None
Control/Data Signals
User
Signal Programmable Ysé
SSF No Inactive
SI00 No Byte-select
Sio1 No Byte-select
Si02 No Byte-select
Sio3 No Byte-select
Cn No Inactive

3-143

SN74ACT8832 i

CE88LIVYLNS W)

Reset Bit

SET0

Status Signals

ZERO
N =
OVR =
C =

1 if result (selected bytes) = 0

0
o
0

EXAMPLE (assumes a 32-bit conﬁguration)

Set bits 3-0 of bytes 1 and 2 of register file 8 to zero and store the result back in
register 8.

Instr Mask Oprd Oprd Sel Mask Destination Selects

Code (LSH) | Addr EB1- | (MSH) WE3- SELRF1- OEY3- CF2| SI03-| IESIO3-

170 | A3-a0| B5-80 | EAEB0 | c3-co | SELMQ 'WEO SELRFO OEA OEB OEYO OES|Cn|CFo| Si00 |iESIOO
0001 1000] 1111 [00 1000] x 00 | o000 0 0000 10 x X xxxx o |x]110]1001] oooo

Assume register file 8 holds AO83BEBE (Hex).

Source [0000 1111 0000 1111 0000 1111 0000 1111—|
Source [1010 0000 1000 0011 1011 1110 1011 1110 I
ALU I 1010 0000 1000 0000 1011 0000 1011 1110 I

Destination | 1010 0000 1000 0000 1011 0000 1011 1110 I

TF = ALU result
n = nth byte
Register file 8 gets F if byte selected, S if byte not selected.

3-144

Sn < RF(3)n

Fn < Sn AND Rn

Rn < C3-C0O::A3-A0

RF(8)n < Fn or Snt

SET1 | Set Bit

FUNCTION
Sets bits in selected bytes of S-bus data using mask in C3-C0::A3-A0.

DESCRIPTION

The register addressed by B5-BO is both the source and destination for this instruction.
The source word is passed on the S bus to the ALU, where it is compared to an 8-bit
mask, consisting of a concatenation of the C3-CO and A3-AO address ports
(C3-C0::A3-A0). The mask is input via the R bus. All bits in the source word that are

in the same bit position as ones in the mask are forced to a logical one. Bytes with -

their SIO inputs programmed low perform the Set Bit instruction. Bytes with their

SIO inputs programmed high or floating pass S unaltered.

Available R Bus Source Operands

C3-Co
RF A3-A0 o
DA-Port
(A5-A0)| Immed | A3-A0
Mask
No No No Yes
Available S Bus Source
Operands (MSH)
RF MQ
DB-Port
(B5-B0)| ~ " O |Register
Yes Yes Yes
Available Destination Operands Shift Operations
RF RF
Y-Port ALU MQ
(C5-CO)| (B5-BO) | ' ©
No Yes Yes None None
Control/Data Signals
User
Signal U
ana Programmable ¢
SSF No Inactive
SI00 Yes Byte-select
SIo1 No Byte-select
Si02 No Byte-select
SI03 No Byte-select
Cn No Inactive

3-145

SN74ACT8832 i

ZEBBLOVYLNS ! :

Set Bit

SET1

Status Signals

1 if result (selected bytes) = O

ZERO =
N =0

OVR =0
C =0

EXAMPLE (assumes a 32-bit configuration)

Set bits 3-0 of byte 1 of register file 1 to zero and store the result back in register 1.

Instr Mask Oprd Oprd Sel Mask Destination Selects

Code | (LSH) | Addr EB1- | (MSH) WE3- SELRF1- OEV3- CF2-| SI03-| iESI03-

170 | A3-A0] 8580 | EA€BO | C3-co | SELMa WEO SELRFO OEA OEB OEYO OES|Cn|cro| $100 | IESIOO
0000 1000} 1111 | 000001] X 00 | 0000 0 0000 10 X X xxxx o0 | x]|110]1101] oooo

Assume register file 8 holds AO83BEBE (Hex).

Source I 0000 1111 0000 1111 0000 1111 0000 1111]
Source I 1010 0000 1000 0011 1011 1110 1011 1110]
ALU [10100000 1000 0011 1011 1111 1011 1110 I

Destination | 1010 0000 1000 0011 1011 1111 1011 1110 |

TF = ALU result
n = nth byte
Register file 1 gets F if byte selected, S if byte not selected.

3-146

Sn « RF(1)n

Fn < Sn OR Rn

Rn < C3-CO::A3-A0

RF{1)n < Fn or SnT

‘SLA Arithmetic Left Single Precision Shift

FUNCTION

Performs arithmetic left shift on result of ALU operation specified in lower nibble of
instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction bits 13-10 is shifted one bit
to the left. A zero is filled into bit O of the least significant byte of each word unless
the SIO input is programmed low; this will force bit O to one. Bit 7 is dropped from
the most significant byte in each word, which may be 1, 2, or 4 bytes long, depending
on the configuration selected.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to the MQ register. If SSF is low, the MQ register will not be altered.

*A list of ALU dperations that can be used with this instruction is given in Table 15.

Shift Operations

ALU Shifter MQ Shifter]
Arithmetic Left None

Available Destination Operands (ALU Shifter)

RF RF Y-Port
(C5-CO) | (B5-BO)
Yes No Yes

Control/Data Signals

Signal Hear Use
Programmable
SSF Yes Passes shift result if high; passes ALU result if low.
SI00 Yes Fills a zero in LSB of each word if high; fills a
301 Yes | onein LSB if low.
Si02 Yes
Sio3 Yes
Cn No Affects arithmetic operation programmed in bits
13-10 of instruction field.

3-147

SN74ACT8832 n

Arithmetic Left Single Precision Shift

SLA

Status Signalst

ZERO
N

OVR
C

1ifresult = 0
1 if MSB of result = 1
0 if MSB of result = 0
1 if signed arithmetic overflow or if MSB XOR MSB-1 = 1 before shift
1 if carry-out condition :

tcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

Perform the computation A = 2(A+B), where A and B are single-precision, two's
complement numbers. Let A be stored in register 1 and B be input via the DB bus.

Instr Oprd Oprd Oprd Sel Dest Destination Selects .

Code Addr Addr e81- | Addr WE3- SELRF1- OEY3- cr2-| 5i03- | iEsios-

17-10 A5-a0 | B85-80 |EAEBO | c5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES | Cn] cFo | SI00 |iESIOO | ssk
0100 0001 | 000001 [xx xxxx| 0 10 J0oo0001| o 0000 10 x x xxxx o |o]110[1110] oooo | 1

ZESBLOVYLNS !

Source | 0001 0011 0000 1000 1100 0110 0001 1000 I R < RF(1)

Source

Intermediate
Result

Destination

3-148

[0100 0100 0000 0000 0111 0101 0011 ooocﬂ S < DB bus

[0101 0111 0000 1001 0011 1011 0100 1oocd ALU Shifter <« R + S + Cn

I 1010 1110 0001 0010 0111 0110 1001 0001 I RF(1) < ALU shift result

Assume register file 1 holds 1308C618 (Hex), DB bus holds 44007530 (Hex).

SLAD Arithmetic Left Double Precision Shift [51+]

FUNCTION

Performs arithmetic left shift on MQ register (LSH) and result of ALU operation (MSH)
specified in lower nibble of instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction bits 13-10 is used as the upper
half of a double-precision word, the contents of the MQ register as the lower half.

The contents of the MQ register are shifted one bit to the left. A zero is filled into
bit O of the least significant byte of each word unless the SIO input for the word is
set to zero; this will force bit O to one. Bit 7 of the most significant byte in the MQ
shifter is passed to bit O of the least significant byte of the ALU shifter. Bit 7 of the
most significant byte in the ALU shifter is dropped.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to the Y MUX and MQ register. If SSF is low, the ALU output and MQ"
register will not be altered.

. *A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations

- ALU Shifter MQ Shifter
Arithmetic Left | Arithmetic Left
Available Destination Operands (ALU Shifter)
RF RF)
Y-Port
(C5-CO) | (B5-BO)
Yes No Yes
Control/Data Signals
User
Sighal Use
'e Programmable
SSF Yes Passes shift result if high; passes ALU result if low.
SI00 Yes Fills a zero in LSB of each word if high; fills a
SIo1 Yes one in LSB if low.
8102 Yes
SI03 Yes
Cn No Affects arithmetic operation specified in bits 13-10 of
instruction field.

3-149

SN74ACT8832 i

CEBBLIOVPVLNS

(5]

Status SigmﬂsT

Arithmetic Left Double Precision Shift

ZERO
N

OVR
C

Il

]

It

1Tifresult =0
1 if MSB of result
0 if MSB of resuit

1 if signed arithmetic overflow or if MSB XOR MSB-1 = 1 before shift

1
0

]

1 if carry-out condition

fcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.

EXAMPLE (assumes a 32-bit configuration)

SLAD

Perform the computation A = 2(A +B), where A and B are two’s complement numbers.
Let A be a double precision number residing in register 1 (MSH) and the MQ register
(LSH). Let B be a single precision number which is input through the DB bus.

Instr Oprd Oprd Oprd Sel Dest Destination Selects

Code Addr Addr 81-| Addr WE3- SELRF1- OEY3- cr2-| 5i03-| iEsioa-

17-10 A5-A0 | B85-80 | EAEBO | C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES | Cn| cFo | SI00 | iESIO0 | SsF
0101 0001 | 000001 | xx xxxx| 0 10 Jooooo1] o 0000 10 x x xxxx o [o]110f1110] oooo | 1

Assume register file 1 holds 2408C618 (Hex), DB bus holds

MQ register holds 50A99A0E (Hex).

MSH

Source

Source

Intermediate
Result

Destination

LSH

Source

Destination

3-150

l 0010 0100 0000 1000 1100 0110 0001 1000 I R < RF(1)

Loow 0110 0000 0000 0111 0101 0011 0000 I S < DB bus

I 0100 1010 0000 1001 0011 1011 0100 1000. | ALU Shifter « R + S + Cn

L1oo1 0100 0001 0010 0111 0110 1001 0000 J RF(1) < ALU shift register

me 0000 1010 1001 1001 1010 0000 1noJ MQ shifter < MQ register

[1010 0001 0101 0011 0011 0100 0001 1101 l MQ register < MQ shift result

26007530 (Hex), and

SLC Circular Left Single Precision Shift

FUNCTION

Performs circular left shift on result of ALU operation specified in lower nibble of
instruction field.

DESCRIPTION

The result of the ALU operation specified in instruction bits 13-10 is rotated one bit
to the left. Bit 7 of the most significant byte in each word is passed to bit O of the
least significant byte in the word, which may be 1, 2, or 4 bytes long.

The shift may be made conditional on SSF. If SSF is high or floating, the shift result
will be sent to Y MUX. If SSF is low, F is passed unaltered.

*A list of ALU operations that can be used with this instruction is given in Table 15.

Shift Operations

ALU Shifter MQ Shifter
Circular Left None

Available Destination Operands (ALU Shifter)

RF RF Y-Port
(C5-CO) | (B5-B0)
Yes No Yes

Control/Data Signals

Signal User Use
Programmable
SSF Yes Passes shift result if high; passes ALU result if low.
Si00 | No Bit 7 of ALU result
SioT No - Bit 15 of ALU result
Sio2 No Bit 23 of ALU result
Si03 No Bit 31 of ALU result
Cn -No Affects arithmetic operation specified in bits 13-10 of
instruction field.

3-151

SN74ACT8832 H ‘

ZE8BLOVYLNS !

Circular Left Single Precision Shift SLC
Status Signalst
ZERO = 1ifresult =0
N = 1if MSB of result = 1
= 0 if MSB of result = 0
OVR = 1 if signed arithmetic overflow
C = 1 if carry-out condition
fcis ALU carry-out and is evaluated before shift operation. ZERO and N (negative) are evaluated
after shift operation. OVR (overflow) is evaluated after ALU operation and after shift operation.
EXAMPLE (assumes a 32-bit configuration)
Perform a circular left shift of register 6 and store the result in register 1.
Instr Oprd Oprd Oprd Sel Dest Destination Selects
Code Addr Addr EB1-| Addr WE3- SELRF1- OEY3- CF2-
17-10 A5-A0 | B5-80 | EAEBO| C5-CO | SELMQ WEO SELRFO OEA OEB OEYO OES|Cn|CFO | SSH
0110 0110 00 0110| Xxx xxxx| 0 00 | 00 0001 0 0000 10 X X XxXxxx o] o]10] 1

Assume register file 6 holds 3788C618 (Hex).

Source ! 0011 0111 1000 1000 1100 0110 0001 1000 | R < RF(6)

Intermediate
Result

| 0011 0111 1000 1000 1100 0110 0001 1oooJ ALU Shi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>