

< A/D O(IN ;A/D (1-14) ;A/D 15 (OUT)

ALATCH

TMS99000 WE /IOCLK
RD

/0
SYSTEM

${v{,/$v

READY

BST(1-3)

FIGURE 22 — TMS99000 I/O INTERFACE

4) (7) (4) @ (4)

aorr NS NANANNS ANAS
| | | |

A/D BUS :)l(I)(z-)@IOC :)I(_D(z- | 2-530C)@(2___)@1(:{:
ALATCH /\ N\ /L ~\ \

| i | | | | |
BsT1-BsT3 X X___ X Wl(X X X
| i | | | |
- 7 7 - T —
" P L e
WE/IOCLK
] | [| l | |
Ty Toe T T
[| | BITn | BITn+1 : |]
SINGLE BIT MULTIPLE BITS, SINGLE BIT
NO WAITS NO WAITS ONE WAIT

NOTES: —_—
(1) Valid address, PSEL high (internal ST8 =0)
(2) Bus in input mode (drivers are tristated)
(3) If MSB of address is O, I/O bit must be valid on DO/VIN. If MSB of address is 1, I/O word must be valid on A/D(0-15), and I/O byte on A/D(0-7).
(4) READY is sampled at this time.

FIGURE 23 — TMS99000 I/O TIMING — INPUT OPERATION

32

(3) (3) (3) (3) (3)

ot AN AN ANRNAS
apsus XOXTOOC DXDEOMXIOOC XOXE—0C
- A A
S el
4 — A4
| |

|
MEM _{ \I__

RD

|
\l__
I l |
WE /IOCLK N/ A4 \/ n___/
|
—

I
I
RIW AN

| | | |
|

\ /. AN /[

| 1 1] |]]

| | | BITn | BiTn+1l | |

SINGLE BIT MULTIPLE BITS SINGLE BIT

NO WAITS NO WAITS ONE WAIT

NOTES:
(1) Address is valid, and PSEL is high (internal ST8 =0).
(2) If MSB of address is 0, then valid /O bit is on D15/OUT. if MSB of address is 1, then valid 1/O word is on A/D(0-15), and /O byte is on A/D(0-7).
(3) READY is sampled at this time.

FIGURE 24 - TMS99000 I/0 TIMING — OUTPUT OPERATION

Each 1/O cycle begins with an ALATCH pulse, the falling edge of which latches externally the 15 address bits AO
to A14 and the PSEL page select signal. If AO, the MSB of the address, is O, a bit-serial I/O operation is performed;
if AO is 1 during an LDCR or STCR instruction, a bit-parallel (byte or word) I/O operation is performed. The PSEL
output signal is forced high during all 1/O cycles regardless of the actual state of ST8 of the processor’s status
register (Section 2.3.2). Following the ALATCH pulse, data is input or output on the address-data lines and R/W is
taken high or low to indicate whether an input or output operation is to be performed. Serial I/O accesses utilize the
AO/DO/IN line for reads, and the PSEL/D15/0OUT line for writes. Parallel /O operations utilize all 16 data lines
(DO-D15) for word transfers, and the first eight (DO-D7) for byte transfers. |/O write operations are accompanied
by a low puise on the WE/IOCLK output; 1/0 read operations are accompanied by a low puilse on RD.

The minimum-length 1/O cycle is two machine states (two CLKOUT periods) in duration. If, during the second
machine state of a I/0 cycle, READY is low, the cycle is extended by one wait-state. Holding READY low
generates additional wait-states until READY is taken high prior to the high-to-low transition of CLKOUT. Figure
25 illustrates the relationship between 1/0 wait states and the READY line.

33

NOTES:

(1I) (1I) (f)
CLKoUT ./-W ./-\N_/-
ALATCH / \ / \ / \
|

ReaDy XXXXXXXY XXX YOXKXXRXN AXY NXXRX

(3) | | |

NO WAIT STATE ONE WAIT STATE
GENERATED BY READY

(1) First sample time of READY in /O cycle.
(2) Second sample time of READY in I/O cycle. Additional wait states are generated by keeping READY low at this and subsequent sample times.
(3) XXXXXX denotes don’t care.

5.2

FIGURE 25 — WAIT-STATE GENERATION FOR 1/0 CYCLES

The TMS99000 instruction set contains five I/0-oriented instructions. Three of the I/O instructions are used to
perform single-bit operations in the first 16384 bits of the I/O address space. (See Figure 22) These are the TB
(test bit), SBO (set bit to one) and SBZ (set bit to zero) instructions. The remaining two 1/O instructions perform
multiple-bit operations in either bit-serial or bit-parallel fashion, depending on which half of the 1/0 space is being
addressed.

SINGLE-BIT I/0 OPERATIONS

The single-bit instructions facilitate the testing and/ormodification of a particular bit in a device. The three single-
bit I/O instructions, TB, SBO and SBZ, are executed as follows. The TB instruction reads the bit from the address-
ed I/0 location onto the AQO/DO/IN line, and this bit is placed in status register bit 2 (EQ). The SBO instruction out-
puts a one on the I3§E—L/D1 5/0UT line, and the SBZ outputs a zero on this line.

The processor develops the address for a single-bit /0 operation from the base address contained in bits O to 14
of WR12 and from the signed displacement field contained in bits 8 to 15 of the instruction. As indicated in
Figure 26, the signed displacement * 2 is added to the base address to generate the effective 1/0 address output
onto the bus. The displacement allows two’s complement addressing from base — 128 through base + 127. Note
that for single-bit I/O instructions, SBO, SBZ, and TB, the most-significant bit of WR12 does not affect the opera-
tion (i.e., no parallel operations).

WR12

5.3

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X

BASE ADDRESS

\ \ \ \ \ \ \ / SIGNED DISPLACEMENT

BIT 8 SIGN EXTENDED

ADDRESS BUS
4

EFFECTIVE 1/O BIT ADDRESS

FIGURE 26 — SINGLE-BIT I/O ADDRESS DEVELOPMENT

MULTIPLE-BIT SERIAL 1/O OPERATIONS

The STCR and LDCR instructions specify multiple-bit /O operations. The starting address in /O address space is
loaded into WR12 prior to executing STCR or LDCR. When the MSB (bit 0) of the address in WR12 is O, the
transfer is performed in bit-serial fashion rather than in parallel. During a multiple-bit, bit-serial I/O transfer, the first
bit is read from or written to the address pointed to by bits O through 14 of WR12. Consecutive bits are read from
or written to I/O locations separated by an address increment of + 1. The contents of WR12 are not altered by ex-
ecution of the serial STCR or LDCR instructions.

A multiple-bit serial /O transfer is represented in Figure 27. Although a full 16-bit transfer is indicated in the
figure, any number of bits from one to 16 can be specified. The transfer mechanism results in an order reversal of
the bits; that is, bit 15 of the memory word (or bit 7 of the byte) corresponds to the bit stored at the lowest |/O ad-
dress, and bit O corresponds to the bit stored at the highest I/0 address.

1/O INPUT BITS

N+1

N+14

N+15

5.4

5.5

1/0 OUTPUT BITS

| N
o I INPUT (STCR) N1
* [)
. o 1 MEMORY WORD 14 | 15 .
o
OUTPUT (LDCR) N+14
N+15

N = BIT SPECIFIED BY I/O BASE REGISTER

FIGURE 27 — LDCR/STCR DATA TRANSFERS

The first word of an STCR or LDCR instruction contains a 4-bit CNT (count) field, which specifies the number of
bits to be transferred. If CNT is O, then 16 bits are transferred. If CNT is in the range 1 to 8, the effective source
operand address from the STCR or LDCR instruction is treated as a byte address; otherwise, it is treated as a word
address.

The LDCR instruction reads a word (or byte) from the memory and writes all or part of it to the I/O in bit serial
fashion. Beginning with the rightmost bit in the word (or byte) and moving from right to left, each tonsecutive bit
is output through the |/O interface until the specified number of bits has been transferred.

The STCR instruction reads data from the I/O and transfers it to memory. If the specified number of bits to be
transferred from the 1/O is less than 9, they are stored right-justified in the addressed memory byte, and the
leading bits are cleared to O. If the operation involves from 9 to 16 bits, the data is stored right-justified in the ad-
dressed memory word, and the leading bits cleared to 0. When the instruction is completed, the bit from the
lowest I/O address occupies the LSB position in the memory word or byte.

PARALLEL I/O OPERATIONS

When the MSB (bit O) of the I/O base address in WR12 is 1, the muitipie-bit I/0 transfer specified by an STCR or
LDCR instruction takes place in a single 1/O transfer, i.e., in parallel. Either a word or byte is transferred as deter-
mined by the 4-bit CNT field in the first word of the LDCR or STCR instruction. If the CNT field is within the range
of 9 to 15, then a word is transferred. |f the CNT field is within the range 1 to 8, then a byte is transferred. For
parallel I/0, CNT is restricted to (binary) 0010, 0011, 1010, and 1011. The CNT field selects the mode of
transfer as shown below:

if CNT = 0010, then byte transfer

if CNT = 0011, then byte transfer with WR12 auto increment
if CNT = 1010, then word transfer

if CNT = 1011, then word transfer with WR12 auto increment.

The automatic increment of WR12 is provided to facilitate block transfers of data to and from devices in the
parallel 1/O address space.

APPLICABLE BUS STATUS CODES
1/0 cycles are identified by the 1/O bus status code (Table 2).

36

EXTERNAL INSTRUCTIONS

The TMS99000 has five external instructions that allow user-defined off-chip functions to be initiated under pro-
gram control. These instructions are CKON, CKOF, RSET, IDLE and LREX. These names are arbitrary. The user
may define the external function performed by these instructions.

Execution of CKON, CKOF, RSET or LREX causes a bit value of O to be written to one of the I/0O addresses
specified in Table 5. Following the single I/O write cycle, execution proceeds to the next instruction. RSET is the
only external instruction that can affect the ST (status) register or the error interrupt status bits. In privileged mode
(ST7 =0), RSET causes ST9-ST15 and the AF, ILLOP, and PRIVOP bits of the error status bits to be cleared. This
is followed by a status update cycle (ST bus status code) to notify external devices of the change in status. In user
mode (ST7 =1), the ST and error status bits are unaffected, and RSET is similar in effect to CKON, CKOF and
LREX.

TABLE 56 — EXTERNAL INSTRUCTION CODES

INSTRUCTION 1/0 BASE ADDRESS
IDLE 1EC4
RSET 1EC6
CKOF 1ECC
CKON 1ECA
LREX 1ECE

IDLE differs from the other external instructions in that its function is predefined. Execution of IDLE causes the
processor to enter and remain in the idle state until a RESET, NMI or unmasked external interrupt occurs. While in
the idle state, a bit value of O is written repeatedly to I/O address >1EC4 (i.e., the WE/IOCLK output is pulsed con-
tinually). Upon leaving the idle state, a context switch takes place to service the interrupt. The PC value saved dur-
ing the context switch points to the address of instruction following the IDLE instruction.

The timing for the I/O write operation, or operations in the case of IDLE, follows that given in Figure 24. Each I/O
write cycle is accompanied by the |/O bus status code (Table 2).

When the processor receives a hold request (HOLD low) while in the idle state, the processor enters the hold state
directly from the idle state. It reenters the idle state as soon as the hold request is deactivated.

PRIVILEGED MODE

For hardwired system protection in a user/supervisor programming environment, certain instructions performing
1/0 and control functions are designated as ‘‘privileged’’. When the system is placed in the user or ‘‘non-
privileged’' mode, any attempt to execute one of these instructions will result in abortion of the instruction and an
interrupt request through the level 2 trap vector. (See Section 4)

The system can be placed in the user mode by setting status bit 7 to 1 by means of an LST or RTWP instruction.
The system is placed in the privileged mode by the occurrence of any interrupt, execution of the XOP instruction,
by the assertion of the NM! or RESET input signals, or during Macrostore operations.

When a privileged opcode violation is detected, error status bit PRIVOP is set, and this, in turn, generates a request
for a level 2 interrupt as described in Section 4.4.3. The following instructions are privileged: CKON, CKOF, IDLE,
LIMI, LREX and RSET. The use of the following instructions is qualified in user mode: LDCR (I/O), RTWP, SBO
(1/0), SBZ (1/0), and LST. In processors with LDD and LDS instructions implemented in Macrostore such as the
TMS99110, these instructions are privileged. Section 10.5 should be consulted to determine the restrictions
placed on each of these instructions in user mode.

The LDCR instruction is a privileged instruction for byte and word transfers to output addresses falling within the

range specified by Figure 21. Similarly, the SBO, SBZ /0 instructions are privileged for bit /O operations falling
within the same range.

37

7.2

7.2.1

7.2.2

7.2.3

The LST operation is dependent upon whether the processor is in the privileged or non-privileged mode when the
instruction is executed. While in the privileged mode (ST7 =0), the LST instruction modifies all 16 bits of the
status register. While in user mode (ST7 = 1), only bits O through 5 and bit 10 of the workspace register specified
in the W field are placed in the status register, and loading these bits has the side effect of clearing ST6. Similarly,
return workspace pointer (RTWP) instruction will cause all bits of the status register to be replaced when in
privileged mode and only the seven bits discussed when in a non-privileged mode.

Section 10.5 discusses the operation of these instructions in more detail.

MACROSTORE INTERFACE AND OPERATION
DESCRIPTION

Macrostore is a special feature of the TMS99000 that permits new instructions to be defined and emulated in a
manner completely transparent to programs residing in main memory. It provides the capability for adding new
functions and enhancing the performance of specific kernels of software, thereby increasing the total system per-
formance. Macrostore permits software kernels to be encapsulated within the TMS99000 system in a manner
that makes them virtually indistinguishable in operation from functions implemented in hardware. This is ac-
complished by providing a 64K byte address space that is logically distinct from the main memory and I/O address
spaces. Macrostore functions as a control store for the TMS99000 but is programmed in assembly language
rather than microcode. Internal to the TMS99000 are 1024 bytes of Macrostore ROM (MROM) and 32 bytes of
Macrostore RAM (MRAM). The access time of the on-chip Macrostore is one machine state. Emulation routines in
the internal Macrostore execute at the full speed of the processor since no wait states are required to access the
on-chip MROM and MRAM. While executing in the Macrostore, certain control capabilities are provided that are
not available to programs executing in the main memory.

THE MACROSTORE INTERFACE

Timing

The timing signals generated during accesses of external Macrostore are identical to the memory timing described
in Sections 3.2.1 and 3.2.2, with the following exceptions. The only bus status codes (Table 2) output are the

AUMS and AUMSL codes. (AUMSL is output if an ABS, TSMB or TCMB instruction is executed in Macrostore.
Otherwise, AUMS is output.)

Another difference between Macrostore accesses versus main memory accesses is the operation of the PSEL out-
put. In main memory accesses, the PSEL output represents the inverted state of the ST8 bit of the status register
unless a long distance source/long distance destination instruction (LDS, LDD) is in effect (see Section B.3). (The
LDS and LDD instructions apply to the TMS99110 only; see Appendix B.) If a LDS or LDD instruction is in effect
per the description in Appendix B, the PSEL output will represent the logic state of the ST8 bit without inversion. A
complete description of the LDS and LDD instructions is given in Appendix B, Section B.3. For Macrostore ac-
cesses, the PSEL output is not guaranteed; thus it should not be used for paging Macrostore memory.

The AUMS and AUMSL bus status codes differentiate between external Macrostore accesses and memory and I/O
accesses.

Wait States

Accesses of on-chip Macrostore require only a single machine state to complete. If the Macrostore is extended us-
ing an external RAM or ROM that is too slow to respond in a single machine state, external control logic must
cause wait-states to be generated by pulling the 99000°’s READY input low until the access is ready to complete.
The generation of wait-states is identical to main memory wait state generation described in Section 3.2.5.

Organization
The internal Macrostore consists of 1024 bytes of MROM and 32 bytes of MRAM. The MROM resides at addresses > 0800
to >0BFE. The MRAM resides at addresses >0000 to >001E and serves as workspace storage during Macrostore

execution. External Macrostore may be added in the form of off-chip ROM or RAM residing at addresses in the range
>1000 to >FFFE. A map of the Macrostore address space appears in Figure 28.

38

internal <

\/

7.24 Modes of Operation

The TMS89000 operates in one of three modes which determine the operation of Macrostore. These modes are

OBDE
OBEO

OBFE
0A00

1000
1002

FFFE

MRAM

/

i

entry-point table

MROM

reserved

entry point

(off-chip ROM or RAM)

FIGURE 28— ADDRESS MAP OF MACROSTORE

summarized in Table 6 and in the following paragraphs.

1024
bytes

>

—

if system
contains
external
Macrostore

TABLE 6 — MACROSTORE OPERATING MODES

MODE EFFECT ENTRY PROCEDURE
On-chip ROM (1K bytes) and APP pin is a high
RAM (32 bytes) is assumed. level at reset.
Standard External Macrostore memory
expansion from >1000 through
>FFFE.
On-chip ROM address range APP pin is taken
(>0800 - >OFFE) is mapped low when RESET is
Prototyping off-chip for use of external pulled low and
Macrostore memory. On-chip is released when
RAM is available. RESET is released.
All Macrostore memory space APP pin is tied
Baseline is disabled and the attached to ground.*
processor interface is
disabled.

*If APP is brought high anytime after RESET, the processor will enter the prototyping mode.

39

7.24.1

7.24.2

7.24.3

7.3

7.3.1

Standard Mode

In standard mode, the on-chip MROM and MRAM are both enabled, permitting the firmware contained in the
MROM to be utilized. During accesses of on-chip MROM and MRAM, the AUMS and AUMSL status codes are out-
put, and the WE/IOCLK and RD outputs both remain inactive high.

While executing in Macrostore, a read or write to a Macrostore address in the range >1000to >FFFE resultsin an access
of external Macrostore. During this access, either the RD or WE/IOCLK output goes active: low, depending on whether
the Macrostore location is being read from or written to. The timing for the access is the same as that described for an
access performed by a program residing in main memory, as described in Section 3.2, with the exception that the only bus
status codes output are AUMS and AUMSL. This is consistent with the treatment of Macrostore execution as a special
type of internal operation. The AUMS and AUMSL bus status codes are used by external decode logic to distinguish
accesses of external Macrostore from accesses of main memory and 1/0 locations. Accesses of external Macrostore are, in
turn, distinguished from other kinds of internal operations by observing the RD and WE/IOCLK outputs, which are active
during Macrostore accesses, but not during other types of internal operations.

The TMS99000 is placed in standard mode by keeping the APP input high while RESET is pulled low at system initializa-
tion.

Prototyping Mode

In prototyping mode, the TMS99000's internal MROM is disabled, but the MRAM remains enabled. A read or write to a
Macrostore address in the range > 0000 to >001E results in an access of the on-chip MRAM, but a read from or write to
any Macrostore address in the range >0800 to > FFFE results in an external Macrostore access. As in the standard mode,
the WE/IOCLK and RD outputs are active only when the Macrostore read or write is off-chip. The AUMS and AUMSL bus
status codes are output during accesses of both internal and external Macrostore.

The processor is placed in prototyping mode by pulling the RESET and APP inputs low together during system initializa-
tion and releasing them at the same time. in systems without attached processors, the RESET and APP pins can simply be
tied together.

One use of prototyping mode is to permit external RAM or ROM occupying Macrostore addresses > 0800 to >0BFE to
emulate on-chip MROM during development and testing of Macrostore software.

Baseline Mode

In baseline mode all Macrostore memory space is disabled. In the event a MID opcode is encountered, the
TMS99000 will cause a level 2 interrupt to occur and the ILLOP bit of the error status register (Section 4.4) will be
set. The level 2 interrupt routine then may emulate the opcode or the opcode may be handled as an illegal opcode
violation. In baseline mode the attached processor interface is also disabled. Thus the APP input pin will not be
tested on the occurrence of a MID opcode. The level 2 interrupt will be implemented immediately.

The TMS99000 is placed in baseline mode by pulling the APP input low at reset. It remains in baselme mode as
long as AAP remains low. Typically, this is accomplished simply by tying APP to ground. (Note that if APP goes
high after RESET, the processor will enter the prototyping mode.)

MACROSTORE CAPABILITIES

Entry Procedure

When the TMS99000 is executing a program residing in main memory and a MID opcode is encountered, the APP
pin is tested to determine whether an attached processor is prepared to respond to the MID opcode. If not, pro-
gram control is transferred to the Macrostore. A MID opcode is an undefined opcode in the basic TMS99000 in-
struction set, or an XOP executed while ST11=1.

The Macrostore is entered via an entry point table occupying the first ten words of the MROM, shown in Table 7. Each
entry in the table contains the start address in MROM of an emulation routine for a particular group of MID opcodes. When
a MID opcode is encountered in the program in main memory, instruction execution transfers to the MROM address in the
entry-point table corresponding to that opcode. Undefined single-word opcodes are divided into eight groups with the
entry addresses for each group as indicated in Table 7. Undefined two-word opcodes are treated as a th group, and XOPs,
when ST11 = 1, asa 10th.

40

TABLE 7 — MACROSTORE ENTRY VECTORS

TABLE mipt
LOCATION OPCODES
0800* 0000-001B, 001E-0028, 002B-007F, 00A0-00AF, 00CO-OOFF
0802* 0100-013F
0804* 0210-021F, 0230-023F, 0250-025F, 0270-027F, 0290-029F, 02B0-02BF, 02D0-02DF, 02E1-02FF
0806* 0301-031F, 0320-033F, 0341-035F, 0361-037F, 0381-039F, 03A1-03BF, OEC1-03DF, 03E1-03FF
080A* 0C00-0C08, 0COC-OCFF
080A* 0DO0O-ODFF
08oc* OEOO-OEFF
080E* OF00-OFFF, 0780-07FF
0810 AM, SM, SRAM, SLAM, TMB, TCMB, TSMB
(if the second word is illegal)
0812 XOP (if ST11=1)

*Bits 5, 6 and 7 of the MID Opcode select one of eight entry-table locations.
tThe opcodes reserved for the LDD and LDS instructions should not be used as MID opcodes.

A context switch occurs after the entry-point address has been read from the table. The workspace pointer is set to 0000
and the program counter is set to the address from the entry-point table. The old WP, PC, and status are saved in the
MRAM locations corresponding to WR13, WR14 and WR15, respectively. The PC value saved in WR14 always points to
the word immediately following the MID opcode. If a two-word MID opcode was encountered, the PC value always points
to the word immediately following the first word of the two-word opcode.

Prior to transferring program control to the Macrostore emulation software, the MID opcode responsible for causing the
MID trap is automatically placed in registers 3 and 5 of the Macrostore workspace. If the first word of an instruction causes
the MID trap, the (entire) first word is placed in WRS. If the second word of an instruction causes the MID trap, the (entire)
second word of the instruction is placed in WR5, and bits 10, 11, 14, and 15 of the first word of the instruction
are placed into bits 10, 11, 14, and 15 of WR3. In the latter case, bits 10, 11, 14, and 15 are sufficient to uni-
quely identify the possible first word of an opcode in which the second word is illegal. The identification is per-
formed as follows: Table 8 enumerates all the 2-word opcodes in the TMS99000 instruction set. These instruc-
tions are divided into 3 groups. Bits 10 and 11 identify the group. Each group contains 2 or 3 opcodes. Bits 14
and 15 serve to identify the individual opcodes within each group.

WR3 IN MACROSTORE:

8 9 10 112 13 14 15
0 o0 | Grow [0o o | opt |

o
(-]
~

0 1 2 3 4

[worrAGs [o o o o 0
LONG-DISTANCE BITS 10, 11, 12 & 15
FLAGS ENCODE FIRST WORD

OF TWO-WORD OPCODE

Bits 0, 1 and 2 of WR3 are initialized to the value of the 99110’s long-distance flags upon entry to Macrostore. These flags
indicate whether an LDS or LDD instruction is currently in effect, as explained in Section 10.

4

TABLE 8—INSTRUCTIONS WITH TWO-WORD OPCODES

MNEMONIC FIRST INSTRUCTION WORD

Group 1: T™MB 0 0 0 0 1 1 0 0 0 0 0 0 1 1] 0 1
TCMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0
TSMB 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1

Group 2: AM 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
SM 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

Group 3: SLAM 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
SRAM 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

Bits 10 and 11 identify group l

Bits 14 and 15 identify opcode within group

7.3.2

733

7.3.3.1

Exit Procedure

Macrostore is generally exited by executing a RTWP instruction (opcode >0380). Interrupts are sampled prior to
executing the next instruction. In those instances where interrupts (maskable or non-maskable) should not be
sampled before executing the next instruction, the exit from Macrostore is invoked using the opcode >0384, a
special form of the RTWP instruction. In either case, the WP, PC, and ST registers are updated with WR13, WR14,
and WR15 from the MRAM. The > 0384 exit ties the Macrostore operation to the execution of the instruction
that follows the MID instruction. For example, it is used in emulating the LDD and LDS instructions, described in
Section 10.

If the Macrostore is entered upon detection of a MID opcode, and the emulation software in Macrostore deter-
mines that it does not recognize the MID opcode as valid, the software must transfer control to the level-2 inter-
rupt service routine, which has the responsibility for dealing with illegal opcodes. The emulation software in
Macrostore uses the opcode >0382, another special form of the RTWP instruction, to exit the Macrostore under
these conditions. When this opcode is executed in Macrostore, the processor sets the ILLOP flag of the error
status bits (Section 4.4) before executing the RTWP operation. Consequently, following the context switch back
to the program in main memory that contains the undefined opcode, the ILLOP flag forces a trap to the level-2 in-
terrupt service routine. The ILLOP interrupt is non-maskable and cannot be disabled by the interrupt mask in ST12-
ST15.

The opcodes >0380, >0382 and >0384 provide the only means for performing an exit from Macrostore. To
perform an RTWP in Macrostore (i.e., inverse of a BLWP) the opcode >0381 should be used. This opcode will
allow for return branching in the Macrostore address space without exiting Macrostore.

Macrostore Execution

During Macrostore execution, several processor functions are modified to provide increased control. These are described
below.

Status Register

The contents of the status register are not affected by the context switch to Macrostore that follows detection of a MID
opcode. Macrostore routines are ‘‘super-privileged,” meaning that they can alter the contents of the status register and
perform other privileged operations regardless of the value of the privileged mode flag, ST7. An ST bus status code (Table
2) is output from the processor when a Macrostore routine alters the ST register by means of the LST instruction. When
the status register of the original main memory program environment must be modified, the appropriate bits of WR15 must
be modified prior to Macrostore exit.

During emulation of an MID opcode in Macrostore, the emulation routine can modify the ST register value saved in WR15
in accordance with the results. During the context switch that follows the exit from Macrostore, the new status is loaded
into the ST register. If the status value saved in WR15 has not been changed since the entry to Macrostore, it will be
restored in its original form.

While in Macrostore, the setting of both ST4and ST10to 1 does not cause the AF flag of the error status register to be
setto 1. If an arithmetic fault interrupt is to be generated, then bit 4 and 10 of WR15 should be set so that an arithmetic
fault trap will occur when the context switch out of Macrostore is made.

42

If it is required to modify the status bits of the main memory routine’s status register prior to context switching out
of Macrostore, the appropriate bits of WR15 should be modified. (Note if ST7 = 1, then status bits 6 to 15 will be
set according to Section 6.)

7.3.3.2 Interrupts
All interrupts except RESET are inhibited while executing from Macrostore. However, pending interrupts can be
detected using the conditional jumps described in Section 7.2.7.5.
7.3.3.3 Macrostore Workspace Registers
When Macrostore is initially entered, the Workspace Pointer is set to zero so that the internal Macrostore RAM is utilized as
the workspace. The Workspace Pointer may be set to another value by the LWP, LWPI, or BLWP instruction when it is
desired that the workspace be located in external Macrostore RAM.
The workspace registers located in internal RAM have special uses associated with the evaluate address (EVAD)
instruction described in Section 7.3.3.5. For this reason care must be exercised in assuring that the EVAD instruc-
tion is used only with the Workspace Pointer equal to zero.
Table 9 lists the dedicated functions of the workspace registers when the workspace pointer bits 11 to 15 are
equal to zero as is the case when Macrostore is first entered. Table 10 lists the bus status codes of the workspace
registers when the workspace pointer bits 11 to 15 are not equal to zero (i.e., external RAM is used).
TABLE 9 — DEDICATED MRAM REGISTER FUNCTIONS
[WP bits 11 to 15 are all zero]
MAIN BUS MOD MOD
MEMORY STATUS BY BY
REGISTER ACCESS CODE EVAD MACRO USAGE
0 NO AUMS shift counts
1 NO AUMS
2 YES 1AQ
first word of 2-word opcode; *
YES GM YES LDD and LDS internal flags
NO AUMS scratch register for EVAD *
one-word opcode or second *
NO AUMS YES word of two-word opcode
YES soP
DOP Td not 0 EVAD *
7 YES WS YES Td=0 destination
address
SOP Tsnot0 EVAD *
8 YES WS YES Ts=0 source
address
EVAD address of external *
9 YES ws YES dest. register if *R +
EVAD address of external *
A YES WS YES source register if *R +
B NO AUMS BL and XOP
Cc YES DOP CRU base address
D YES WS YES old WP
E YES 0P YES old PC
F NO AUMS YES old ST

*EVAD should only be used if the WP =0000.

43

7.3.3.4

TABLE 10 — BUS STATUS CODE ASSOCIATED WITH WP VALUE
[WP bits 11 to 15 not equal to zero]

REGISTER MAIN BUS
ADDRESS MEMORY STATUS
BITS 11 TO 15 ACCESS CODE
0 NO AUMS
2 NO AUMS
4 YES IAQ
6 YES GM
8 NO AUMS
A NO AUMS
C YES SOP
E YES DOP
wSs
10 YES SOP
wSs
12 YES ws
14 YES WS
16 NO AUMS
18 YES DOP
1A YES WS
1C YES [[0] 4
1E NO AUMS
Accessing Main Memory

During Macrostore execution, data in the main memory is accessed using the indirect autoincrement and indexed
addressing modes (*R, *R + and @TABLE(R)). MRAM workspace registers 2, 3, 6, 7, 8,9, 10, 12, 13 and 14 are used as
base registers during these accesses. This is only true when the Workspace Pointer resides on a 32-byte boundary, i.e., five
LSB’s = 0. When a routine residing in Macrostore accesses the main memory through one of these registers, the access is
accompanied by a bus status code indicating a particular type of memory cycle, and MEM is held active-low. The bus
status code corresponding to the use of each register is indicated in Table 9 for the case when WP = > 0000. When the WP
does not equal zero, the type of bus cycle and corresponding bus status code is determined by the least-significant
addresses of the workspace register as shown in Table 10. For simplicity, it is recommended that the Workspace Pointer
point to a 32-byte boundary to avoid confusion as to the type of bus cycle that will occur when the register is used as base
register for memory transfers. Each main memory access should utilize a base register whose use is accompanied by the
bus status code appropriate to the type of access being performed.

As shownin Table 9, WRs 7 and 8 are a special case in regard to the bus status code output during a main memory access.
The default bus status code output by the processor is DOP (Table 2) when WR7 is used to access main memory; the
default for WR8is SOP. If an EVAD operation (to be described) is performed on an opcode whose Td field is 0 (workspace
register direct addressing), the bus status code associated with WR7 is changed from its default of DOP to WS. Similarly, if
an EVAD operation is performed on an opcode whose Ts field is 0, the bus status code for WR8 is changed from SOP to
WS. If an EVAD subsequently is performed on an instruction with non-zero Td, the default of DOP is restored to WR7,
and a non-zero Ts restores SOP to WR8. Everytime Macrostore is entered, the default status codes are restored.

Two examples illustrate the main memory access capability. The convention is to refer to the program in main memory that
contains the MID opcode as the “‘user’s’’ program. Assume that WR13 in MRAM contains the user’s Workspace Pointer.
To read the contents of WR4 in the user’s workspace into WR1 in MRAM, the instruction MOV @8(R13), R1 is
executed from Macrostore. A WS bus status code is output during this operation (MEM = O, BST = 110).
Second, assume that WR14 in MRAM contains the user’s PC value. To read immediate data or a symbolic address
(following a MID opcode in the user’s program) into WR14 in MRAM, the instruction MOV *R14 +,R1 is ex-
ecuted. This also causes the user’s PC value in WR14 to be incremented by two, and an IOP bus status code is
output (MEM = O, BST = 010).

4

7.3.3.5

Using register O, 1, 4, 5, 11 or 15 as base register for indirect autoincrement or indexed addressing results, in an
access of Macrostore. During Macrostore accesses, the AUMS and AUMSL bus status codes are output to
distinguish them from accesses of the main memory.

While executing in Macrostore, all symbolic addresses refer to locations within Macrostore. A 1/0 access using the base
address in Macrostore register WR12 is accompanied by the I/0 bus status code.

Evaluate Address Instruction— EVAD

An EVAD instruction during Macrostore execution permits convenient calculation of effective source and destination
addresses for MID opcodes. EVAD assumes that the MID opcode contains a six-bit source operand field, and a six-bit
destination operand field, i.e., the dual-operand format described in Section 10.5.1. The address calculations are based
upon the original WP of the user, saved in WR13in MRAM. Note that the EVAD instruction assumes that the WP is equal
to zero as initialized upon entry into Macrostore. If the WP is modified to point to external MRAM, the WP must be
restored to zero prior to EVAD execution. If the contents of a register in the user’s workspace are fetched as part of the
address calculation, a WS bus status code is output by the processor while the external access takes place. The saved PC
(in WR14) is incremented appropriately if symbolic or indexed addressing is used. The contents of any workspace register
in MRAM except WRO can be evaluated using EVAD. When EVAD is executed, the calculated effective source address is
placed in WR8 in MRAM, and the calculated destination address in WR7. If the source or destination field specifies
autoincrement mode, the address of the user’s register is placed in WR9 or WR10, respectively. Execution of EVAD alters
the contents of WR4, which EVAD uses as a scratch register. A summary of the EVAD instruction, including its effect on
status bits 0 and 2, is presented in Table 11.

Instruction 0 9 0 11 12 15
Format 0000 0001 00 | Ts 1 S]
For EVAD: opcode mode register

The Ts and S fields above are used to determine the effective source address of the target word of the EVAD in-
struction. Once the target word is fetched as the source operand, the Ts, S, Td and D fields from that word are ex-
tracted and utilized as indicated below.

TABLE 11 — EVALUATE ADDRESS INSTRUCTION

STATUS
BITS DESCRIPTION
AFFECTED
DA - WR7
SA - WR8
If target Ts = (symbolic or indexed)
WR14 +2 - WR14
If target Td = 2 (symbolic or indexed)
WR14 +2 - WR14
0 -+ ST2 If target Ts not 3
1-+STO If target Td not 3
1-+ST2 If target Ts = 3 (autoincrement):
address of external register = WR10
0 -+ STO If target Td = 3 (autoincrement):
address of external register = WR9

The processor’s WP register must be set to > 0000 before executing the EVAD instruction. Otherwise, the results are
unpredictable.

If only the source field of an MID opcode is to be evaluated, the Td field (bits 4 and 5) should be cleared to prevent
unnecessary external accesses or unintentional modification of WR13 (generally the user’s PC). For example, if
the MID opcode resides in WR5 and bits 4 and 5 are not zero in MRAM, the instruction sequence

a5

7.3.3.6

ANDI R5, >F3FF
EVAD R5
is executed while in Macrostore to calculate the effective source address. The destination field, which is all zeros, is
interpreted as register direct addressing mode (and STO is set to one). In order to deal with the case where the source field
specifies autoincrement mode (ST2 = 1), the instructions above are followed by
JEQ $ +4
INCT *R10
The second instruction increments the user’s base register by two, assuming the source operand is one word in length. If
the operand occupies a byte or double-word instead, the base register should be incremented by one or four, respec-
tively.*

When developing an effective address based upon one of the user’s workspace registers (in main memory), the EVAD
instruction uses the contents of Macrostore register WR13. When developing an operand address based upon the user’s
program counter, the EVAD instruction uses the contents of Macrostore WR14. Note that WR 14 is incremented by two for
each symbolic or indexed addressing mode utilized.

Jump on Interrupt Status

The TB (testbit), SBO (set bit to one) and SBZ (set bit to zero) instructions are not available during Macrostore execution.
In place of these operations and using the same opcodes are conditional jump instructions that detect pending interrupts.
A “pending” interrupt is defined as an interrupt that has been requested by activating the processor’'s NMI, or by asserting
a request for an external interrupt that is not disabled by the interrupt mask in ST12-ST15. The instructions described in
Table 12 allow interrupts to be tested at interruptible points in Macrostore routines. With this capability, instructions
requiring long execution times can be emulated in a way that permits them to be interrupted and resumed after interrupt
servicing.

The “jump if interrupt present’’ can be used to test for the occurrence of an interrupt.

The “‘jump not equal and no interrupt present’’ is useful in testing for interrupts while in loops. This single instruc-
tion may be used to exit a loop either on the condition that the loop count is zero or the interrupt is present.

EXAMPLE: LOOP "MOV *R1+,*R2+
DEC R3 R3HAS LOOP COUNT
SBZ LOOP DONE?
JNE OUT JUMP TO OUT IF NO INTERRUPT
[]
[]
ouT ¢

These jump instructions have a displacement range of — 128to + 127 words from the memory-word address following the
jump instruction. The displacement is specified in the odd byte of each instruction. No status bits are affected by execution
of a jump instruction.

The SBO and SBZ opcodes are executed in Macrostore as conditional jump instructions. SBO is equivalent to “‘jump if an
interrupt is pending,” and SBZ is equivalent to “jump if an interrupt is pending and ST2 is zero.” The TB opcode is
undefined in Macrostore. These instructions are summarized in Table 12.

TABLE 12—JUMP ON PENDING INTERRUPT

MNEMONIC OPCODE MEANING
SBO 1DXX Jump if unmasked interrupt is present
SBZ 1EXX Jump if equal bit is not set and unmasked interrupt is not
present
T8 TFXX Undefined

* The incrementing of workspace registers in the main memory is not performed by the EVAD Instruction but is the responsibility of the Macrostore software.
Care may therefore be required to deal with the instance where the target word of an EVAD operation contains source and destination fields that specify in-
direct autoincrement using the same workspace register n (i.e., *Rn+, *Rn+). Otherwise, both the source and destination operands (pointed to by register
n) will be read from the same address rather than from successive addresses.

tWhen using SBZ to check for exiting a loop, a JNE or JEQ instruction should follow (outside the loop) to determine the reason the loop was exited; SBO should not be
used for this purpose when an interrupt is applied and then removed.

45

734

735

7.3.6

Subroutine Branch and Return

While executing in Macrostore, the BLWP instruction can be used to transfer program control to a subroutine located
within Macrostore. For this purpose the opcode >0381 should be used. This version of the RTWP opcode should be
distinguished from the RTWP variants >0380, >0382and >0384, discussed in Section 7.2.6, all three of which cause an
exit from Macrostore.

MID Opcodes in Interrupt Routines

One restriction exists regarding the use of MID opcodes within interrupt service routines. An MID opcode encountered in
the interrupt routine for an NMl or level-1 interrupt, or for a Reset routine that does not cause complete system reinitializa-
tion, must not result in an exit from Macrostore by means of opcode >0382, the special form of RTWP that causes a level-2
trap. The reason is that the level-2 routine can be interrupted by an NMI, level-1 interrupt or Reset, possibly destroying the
return linkage established previously. In general, this restriction can be interpreted to mean that a MID opcode in the
service routine of an interrupt of higher priority than level 2 must either be recognized by an attached processor or defined
by an emulation routine in Macrostore.

Testing for External Macrostore

The on-chip Macrostore software can use the following technique to allow the user to optionally expand the Macrostore
functions by adding new routines residing in off-chip RAM or ROM. The TMS39110 uses this technique to check for
populated off-chip Macrostore memory.

When the emulation software in the 99110’s on-chip MROM determines that it cannot execute a particular MID opcode, it
then checks to determine whether the system contains external Macrostore (off-chip RAM or ROM). if so, the Macrostore
program branches to location >1002, the entry point of the emulation software in the external Macrostore. Otherwise, a
level-2 interrupt is requested, as described in Section 7.2.4.1.

The check to determine whether the system contains external Macrostore works as follows. In a system having external
Macrostore, the code >AAAA (alternative ones and zeros) must be stored at Macrostore address >1000, which is the first
location in the off-chip region of Macrostore. The internal Macrostore emulation software upon deciding to test for
external Macrostore, reads the contents of address >1000. If this location contains the code >AAAA, this confirms that
the external Macrostore is present.

ATTACHED PROCESSOR (AP) INTERFACE

The TMS99000's basic instruction set can be extended by defining new instructions. The extended instruction set is
supported either by emulation software contained in external Macrostore, or by external hardware utilizing the
TMS99000’s attached processor (AP) interface. The TMS39000's AP interface provides complete software transparency
between these two methods. System support for extended instructions can be conveniently upgraded from Macrostore
emulation routines to attached processors without affecting the user’s software base.

An AP in a TMS99000 system attaches to the local bus of the microprocessor. While the processor is actively executing
instructions, the AP passively monitors the bus to detect opcode fetches. The TMS99000 outputs an 1AQ (instruction
acquisition) bus status code to notify the AP each time an opcode fetch cycle occurs, and the AP latches the opcode from
the bus to examine it. When the TMS99000 fetches an opcode which it does not recognize, but which the AP is prepared to
execute, the TMS99000 transfers control of the local bus to the AP. After the AP completes execution of the instruction, it
returns control to the processor.

The signals utilized by the AP interface of the TMS99000 are shown in Figure 29. The transfer of control from the
TMS93000 to an AP and the eventual return of control to the TMS99000 takes place chiefly through the following three
signals:

« APP (attached processor present) input

« MID (macro-instruction detected) bus status code

o HOLDA (hold acknowledge) bus status code

a1

:

ADDRESS/DATA (0-15)

ALATCH

WE/CRUCLK

TMS99000 ‘D MEMORY
\ d "l svstEm

y

READY

APP

BST (1-3)

L vv;VJ‘

ATTACHED
PROCESSOR

FIGURE 29—ATTACHED PROCESSOR INTERFACE

System memory, shared by the TMS99000 and the AP, is used to transfer context information from one to the other. The
TMS939000's workspace registers, which reside in memory, are readily available to the AP while the AP remains in control
of the local bus.

The timing for the AP interface is shown in Figures 30A and 30B. When the TMS99000 fetches an opcode it does not
recognize, it outputs an MID bus status code to notify APs, should they be present, that it is prepared to relinquish system
control. An opcode that causes this to occur will be referred to as an MID opcode. A list of MID opcodes is presented in
Section 10.5.17. If bit 11 of the status register is set to 1, an XOP will also be treated as an MID opcode.

48

cwout _/N_/M\ /MM TN
® |) | (6)

~ hi-z
ALATCH/\/\/\/\ |/\ /\/——(5)\/\

~

BsT1-3) “Y1Aa_X_(1__XAUMSY MIiD X @ _~ /—_J‘(.E,E-———)CDC::
[[I

MM N\ /7 — XX

| | @ |
READY : T\ /7
2 \ \\\WNW W
RW "\ ® N\ \—

| INSTR | LAST |

DETERMINE | FETCHNEW HOLD STATE | AP CYCLES:

| |
| FETCH | STATE | | IFATTACHED | WP;STORE | I ALL CONTROL
| o | OF | | PROCESSOR | oLbpc,wp | | LINES ARE
| MID | PRIOR | | ISPRESENT | ANDST | | DRIVEN BY
loP- |INSTR I 1 | 1 | ATTACHED
| CODE | | i ! | | PROCESSOR
| | I | | | !

NOTES:

(1) This bus status is determined by the prior instruction.

(2) Processor will remain in this state until READY goes high.

(3) BST = ST when the new status is output
= INTA when the new WP is fetched
= WP when the new WP is output
= WS while the old WP, PC, and ST are stored

(For simplicity, AUMS bus status codes are not shown.)

(4) The processors tristates all signals except ALATCH as follows:
o BST1-BST3 are first driven high to indicate hold acknowledge and then are tristated.
« MEM, RD and WE are first driven high and then tristated,
o The address-data bus is tristated ‘‘as is’’.

(5) The processor first drives its ALATCH output high and then tristates it.

(6) The CLKOUT remains the system clock throughout.

FIGURE 30— AP INTERFACE TIMING
(A) Transferring Control to Attached Processor

49

cwour /MMM
|
aaten N\~ A\ M\

2|

BST1-8) X7 —L__hiz y—5—~ W X_sT_X_AQ X_Wp

e G T D W e,

APP /

HOLD J (4)

NOTES:

| Last | APP | PROCESSOR | ouT- | FETCH ! OuT- | RESUME

| sTATE | RELEASED; | LeavesHoLD ! put ! NexT ! putr | NORMAL

| oFap | APANDMAIN | ANDFETCHES | New | INsTR | NEW | EXECUTION
| con- | cPuBOTH | UPDATED | st I wp

| TROL | INHOLD | wp,Pc,sT | I | I

| | | I | | |

| | | | | | |

(1) The AP tristates all signals except ALATCH as follows:

. BST-1-E§T-3 alﬁrst driven active high and then are tristated.
o MEM, RD and WE are first driven high and then are tristated.
o The address-data lines are tristated.

(2) The AP drives its ALATCH high and then tristates it.
(3) BST = WS during WP, PC, and ST fetches.
(4) An AP that fetches instructions for chained operations will assert HOLD and release APP during the instruction fetch to allow APP to be used for a breakpoint

request.

FIGURE 30 — AP INTERFACE TIMING
(B) Regaining Control From Attached Processor

Assuming thatan AP is (1) present and is (2) prepared to execute the MID opcode, it responds to the MID bus status code
by pulling the APP line low to signify its readiness. Upon detecting the APP signal, the processor prepares to transfer
control to the AP. This involves clearing status bit 8 and performing a context change. With the PSEL output signal high,
the processor fetches the new WP value from the trap vector for the level 2 interrupt. (The PC value from the vector is not
fetched.) The old WP, PC and ST values are saved in WRs 13, 14 and 15 of the new workspace. The saved PC points to the
word following the MID opcode. After completing these actions, the processor begins a hold cycle, forces its outputs to
the high-impedance state, and asserts HOLDA. This is the processor’s signal that itis ready for the AP to assume control of
the local bus.

Since the 99000 uses the same HOLDA bus status code to e to respond to both DMA devices and APs, each AP must monitor
the HOLD line to distinguish a HOLDA in response to APP from a HOLDA in response to HOLD.

After taking control of the local bus, the AP begins executing the operation specified by the MID opcode. If a multiple-
word instruction format is specified, the PC value saved in WR14 is used by the AP to access immediate data and operand
address information. The contents of the original workspace are accessed through the WP value saved in WR13. The ST
value in WR15 is altered to reflect the results of the operation performed.

The 99000 continually samples its APP and HOLD inputs during the hold cycle. When the AP completes its operation and
releases APP, the processor responds by terminating the hold cycle. The processor loads PC, WP and ST registers with the
values in WRs 13, 14 and 15, and resumes execution.

If an MID opcode is detected and APP remains high, indicating that no AP is prepared to execute the instruction, the
processor performs a context switch that transfers control to the instruction emulation software contained in its Macros-
tore (Section 7).

The mﬂ)_ut performs a second function apart from its use in transferring control to an AP. An external device
can use APP to force the processor to enter a hold cycle by asserting APP during the instruction acquisition (1AQ)
cycle. The mechanism works as follows. The processor samples APP at the end of every opcode fetch, at the
same point that it latches the opcode. The processor fetches the WP value from the level 2 trap vector and saves
the old WP, PC, and ST values in WRs 13, 14, and 15 of the new workspace. The PC value saved in WR14 points
to the memory word containing the opcode that was just fetched (and discarded). Following the context switch,
the processor outputs the HOLDA bus status code, enters the hold state, and waits for APP to be released, as
before.

The APP signal can be used by a maintenance panel to force the processor to enter hold. Using the mechanism described
above, the maintenance panel can trigger APP on either a selected address or a selected opcode to cause a breakpoint. To
avoid possible interference with APs, the maintenance panel should not assert APP during an MID bus statis_code ifitwas
not active at IAQ. If the ‘panel option” is used with APP, an attached processor should not assert APP until it has
recognized a MID bus status code.

The processor acknowledges an unmasked interrupt upon completing execution of the instruction during which the
interrupt becomes active. If the processor must respond to an interrupt before it can begin execution of a prefetched
opcode,* the opcode is discarded prior to trapping to the interrupt service routine. Upon return from the interrupt, the
opcode previously discarded is again fetched from memory. A special case of this procedure occurs when the discarded
opcode is an MID opcode that an AP is preparing to execute. The AP must discard the opcode also. The AP knows to
discard the opcode if the processor, following its fetch of the MID opcode, outputs the INTA bus status code.
Alternatively to checking for the INTA bus status code, the AP can check for a subsequent IAQ bus status code in-
dicating that the instruction has been discarded. This means that the processor has discarded the opcode in order
to service the pending interrupt.

APs must monitor HOLD to detect DMA requests as discussed above. In a processor system containing one or more APs,
the TMS99000 HOLDA signal is not distributed directly to DMA devices but is gated with the hold acknowledge signals
from the APs to form a composite hold acknowledge signal that is passed on to the DMA devices. This composite hold
acknowledge signal, which signifies transfer of control to the DMA device, is generated only after the processor and all
APs have entered the hold state.

When an X (execute) instruction is executed, an IAQ bus status code is NOT output during the fetch of the target opcode
located at the effective source address of the X instruction. Instead, an SOP or WS bus status code is output, depending
on the addressing mode used. This means that APs cannot rely upon the IAQ bus status code to notify them when the
processor fetches a MID opcode that is the target opcode of an X instruction.

The AP interface can be disabled by tying APP to ground. When operating in this mode, the processor automatically
generates an ILLOP interrupt request upon encountering an MID opcode, bypassing the AP interface and Macrostore.

*The processor routinely prefetches the next opcode one state prior to completion of the current instruction (Section 10.6.2).

51

PIN DESCRIPTION

Table 13 defines the TMS99105A/TMS99110A pin assignments and describes the functions of each pin.
Figure 31 illustrates the TMS99105A/TMS991 10A pin assignment information.

-

WE/IOCLK a0 [] MEmM

3g|] BsT
38 :| BST2

37 D BST3

36 [_] XTAL1/CLKIN
35 [] xTAL2
34 [] cikourt

33 : Vss
TMS99105A

TMS99110A 32 :I ALATCH
31[] PsEL/D15/0UT

30 [] A14/D14
29 _"_] A13/D13
28 [] A12/D12
27 (] arvom
26 |_] A10/D10

3l

E)
m
(7]
m
-

>
o
o

|

<
mininininininininin

I
o]
4
O

_Z|
8 =
30@\]@0‘ H W N

-—
-

R &
N
-—h
N

2 _
s 8
r

-
o

Veo []

A0/DO/IN I: 16 25 |] A9/D9
o1 17 24 [7] as/ps
A2/p2 []18 23 [] a7/p7
A3/03 [19 22 [] Ae/D6
A4/D4 l: 20 21 [] As/D5

FIGURE 31 — PIN ASSIGNMENTS

52

TABLE 13—PIN DESCRIPTION

SIGNATURE | PIN | 10 | DESCRIPTION
POWER SUPPLIES
Vee 15 Supply voltage: + 5V nominal.
| Vss [6, 33 Ground reference.
CLOCKS

XTAL1/CLKIN 36 IN | Crystal input pin for internal oscillator; also input pin for external oscillator.

XTAL2 36 IN | Crystalinput pin for internal oscillator.

CLKOUT 34 OUT | Clock output signal. The frequency of CLKOUT is % the frequency of the crystal oscillator.

ADDRESS/DATA BUS
A0/DO/IN 16 1/0 | While ALATCH = 1, these lines function as an address bus consisting of output signals A0-A14 and PSEL.
(addr/data MSB) During memory, |/0 and Macrostore accesses, an address is output on A0-A14. During memory cycles,

A1/D1 17 1/0 | statusbit8is outputin complemented form on PSEL; PSEL is forced high during I/0 accesses. During WP

A2/D2 18 1/0 | and ST bus cycles (Table 2), status information is output on the address bus.

A3/D3 19 1/0 | While ALATCH =0, these lines function as a bidirectional data bus for memory, 1/0 and Macrostore

A4/D4 20 1/0 | accesses. During a bit-parallel byte or word read operation, (ﬁ active low), data is input on DO-D15.

A5/D5 21 1/0 | During a bit-parallel write operation (WE/IOCLK active low), data is output on D0-D15. For bit-serial 1/0

A6/D6 22 1/0 | operations, read data is input on IN, and write data is output on OUT.

A7/07 p<} 1/0 | These lines are forced to the high-impedance state during a hold cycle.

A8/D8 24 1/0

A9/D9 25 1/0

A10/D10 26 1/0

A11/D11 27 1/0

A12/D12 28 /0

A13/D13 2 1/0

A14/D14 (addr LSB) | 30 110

PSEL/D16/OUT | 31 | 10

LOCAL EUS CONTROL SIGNALS

ALATCH 32 | ouT| Addresslatch. While ALATCH is high, the multiplexed address-data lines function as an address bus; while
ALATCH is low, they function as a data bus. Each bus cycle (memory, /0 or internal) begins with a
positive ALATCH pulse, the falling edge of which is used by external logic to latch the contents of the
address bus. The MEM and BST1-BST3 outputs are stable while ALATCH is low.

Prior to entering hold, the HOLDA bus status code is output and the ALATCH signal undergoes one final
high-to-low transition before being driven to the high-impedance state. This permits an external device to
latch the HOLDA code.

MEM 40 | OUT | Memory cycle. When low, MEM indicates thata memory cycle is in progress. When high, MEM indicates
thata 170 orinternal cycle is in progress. MEM is forced to the high-impedance state during a hold cycle; an
internal resistive pull-up maintains a high level.

WE/IOCLK 1 | ouT | Write enable and inverted I/O clock. When low, WE/IOCLK indicates that write data is present on
the data bus. WE/IOCLK is active during memory writes (MEM =0), serial /O writes (MEM =1,
BST2=1, AO=0), parallel /O writes (MEM=1, BST2=1, AO=1), and writes to external
Macrostore (MEM = 1, BST2 =0). WE/IOCLK is a tri-state output signal, and is forced to the high-
impedance state during a hold state; an internal resistive pull-up maintains.a high level.

AD 2 OUT | Read Enable. When active low, RD indicates that a read (memory, parallel /0, serial |/0 or external
Macrostore) is taking place on the bus, and that external devices may enable their tristate drivers to gate
data onto the address-data lines. RD is a tristate signal and is forced to the high-impedance state during a
hold state; an internal resistive pull-up maintains a high level.

RIW 14 | oUT | READ/WRITE. The R/W is valid at the beginning of each new cycle. This signal is high during read
operation and low during write operations and internal ALU cycles. When R /Wis low, itindicates that the
99000 will be driving the data bus. When R/Wis high, it indicates that the 99000 will tristate the data bus

| (AD bus during the data time).

TABLE 13— PIN DESCRIPTION ((CONTINUED)

. SIGNATURE

EN

DESCRIPTION

LOCAL BUS CONTROL SIGNALS (CONCLUDED)

READY

IN

Ready. When high, READY indicates that the current bus cycle (memory, 1/0 or internal) is ready to be
completed. As long as READY remains low to indicate a not ready condition, the bus cycle continues to be
extended with wait states. Near the end of each wait state, READY is sampled to determine whether the
bus cycle can complete or another wait state is to be generated. Note that this READY function differs
from some READY functions in that bus cycles of non-memory cycles are affected by its operation.

INTERRUPTS

INTREQ

ICO (MSB)
IC1

IC2
IC3(LSB)
NMI

RESET

10
"
12
13

Interrupt request. When active low, INTREQ indicates that an external interrupt is requested. If INTREQis
active, the processor latches the contents of the interrupt code inputs IC0-IC3 into its internal interrupt
code register. The code is compared with the interrupt mask in status register bits 12-15. If the code is less
than or equal to the mask value, the interrupt is granted; otherwise, the request is ignored. 1C0O-IC3
continue to be sampled as long as INTREQ remains low. If the request is initially disabled by the mask,
mﬁamay be held low until the mask changes to a value that enables the request.

Interrupt code. ICOis the MSB of the 4-bit interrupt code. 1C0-IC3 are sampled when INTREQis active low.
The highest-priority interrupt level is signified by IC0-IC3 = LLLL; the lowest level is HHHH.

Non-maskable interrupt. When active low, NMi causes the processor to perform a non-maskable interrupt
using the trap vector located at memory address FFFC. The W_Isequence begins following the execution
of the instruction in progress at the time the NMI request is initiated. The NMI will also terminate an idle
state. If NMI is active during the time RESET is released, the NMI sequence will occur following completion
of the reset sequence, but prior to execution of the firstinstruction in the reset service routine. NMI must be
active for at least one CLKOUT cycle to be recognized and will only be recognized once for each high-to-
low transition.

RESET. When active low, RESET causes the processor to set all status bits to zero and inhibits WE/
m, ﬁ—D and MEM internally. When RESET is released, the processor initiates a level 0 interrupt
sequence using the trap vector at memory address 0000, clears the entire status register, and begins
executing the reset service routine. RESET also will terminate an idle state. RESET must be held active for
atleast three CLKOUT periods to guarantee that a Reset will take place. RESET is a Schmitt-trigger input.

DMA REQUEST

HOLD

HOLD. An external controller generates a hold request by pulling the processor’s HOLD input low. This
indicates the controller’s wish to obtain control of the local bus to perform one or more DMA transfers. The
processor responds to the hold request by outputting a HOLDA bus status code (Table 12) and
then forcing MEM, WE/IOCLK, ﬁB, BST1-BST3, R/W, ALATCH and the address data lines to the
high-impedance state. When HOLD is released, the processor terminates the hold cycle and
resumes processing.

BUS STATUS

BST1 (MSB)
BST2
BST3 (LSB)

488

ouT
out
ouT

Bus status lines. These lines are used with the MEM output to provide external circuitry with information
concerning the nature of the bus cycle currently in progress. The bus status codes are presented in Table 2.
MPILCK is indicated by BST1-BST3 = 000. BST1-BST3 are forced to the high-impedance state during a
hold cycle.

54

TABLE 13—PIN DESCRIPTION (CONCLUDED)

SIGNATURE [PIN I l/OI DESCRIPTION
ATTACHED PROCESSOR
APP 4 IN | Attached processor present. When the TMS99000 fetches an MID opcode (Section 2.4), it outputs an MID

bus status code and samples the APP input. If APP has been pulled low by an external device, the CPU
performs a context switch and relinquishes control of the local bus. The CPU fetches the new WP from the
level 2 trap vector, and the old WP, PC, and ST are saved in the new workspace. The CPU signals
its release of the local bus by outputting a HOLDA bus status code and then enters hold. After the
attached processor has completed its operation, it releases APP; the CPU responds by terminating,
restoring its context, and resuming processing.

If no external device asserts APP. , the CPU attempts to emulate the MID opcode in Macrostore and traps to
the level 2 interrupt service routine if the opcode is undefined in Macrostate.

10.
10.1

10.2

10.2.1

10.2.2

10.2.3

INSTRUCTION SET
DEFINITION

Each TMS99000 instruction performs one of the following:

« Arithmetic or logical operation on data, or comparison or manipulation of data,

« Loading or storing of internal registers (program counter, workspace pointer, or status register),
» Data transfer between memory and external devices via the 1/0, or

« Control functions.

ADDRESSING MODES

The TMS99000 instruction set provides a variety of modes for addressing random memory data, e.g., program parameters
and flags, or formatted memory data (character strings, data lists, etc.). These addressing modes are:

« Workspace register addressing

« Workspace register indirect addressing

« Workspace register indirect autoincrement addressing

« Symbolic (direct) addressing

« Indexed addressing

o Immediate addressing

« Program counter relative addressing

o |/Orelative addressing

The derivation of the effective address for each addressing mode is described graphically below. The applicability of each
addressing mode to particular instructions is described in Section 10.5, along with the operation performed by each
instruction. The symbols following the names of the addressing modes, R, *R, *R+, @LABEL and @TABLE(R), are the
general forms used by processor assemblers to specify the addressing mode for workspace register R.

Workspace Register Addressing, R

Workspace register R contains the operand.
REGISTERR

(PC) —s{ INSTRUCTION (WP) + 2R~ OPERAND

The workspace register addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to 0.
Workspace Register Indirect Addressing, *R

Workspace register R contains the address of the operand.
REGISTER R

(PC) INSTRUCTION |(WP)+2R-»y ADDRESS —4 OPERAND

The workspace register indirect addressing mode is specified by setting the two bits in the T-field (Ts or Td of the
instruction word to 01.

Workspace Register Indirect Autoincrement Addressing, *R +

Workspace register R contains the address of the operand. After acquiring the address of the operand, the contents of the
workspace register are incremented.

REGISTERR
INSTRUCTION —(WP) + 2R-§ ADDRESS OPERAND
1(byte)
or
2 (word)

The workspace register indirect autoincrement addressing mode is specified by setting the two-bit T-field (Ts or Td) of the
instruction word to 3.

56

10.2.4 Symbolic (Direct) Addressing, @LABEL

The word following the instruction contains the address of the operand.

(PC)A INSTRUCTION

(PC) +2 9 LABEL }————————»1 OPERAND

The symbolic addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to 2 and setting
the corresponding S or D field equal to 0.

10.2.5 Indexed Addressing, @TABLE(R)

The word following the instruction contains the base address. Workspace register R contains the index value. The sum of
the base address and the index value results in the effective address of the operand.

REGISTER R
(PC)-» INSTRUCTION - (WP) + 2R—%] INDEX VALUE|

EFFECTIVE
ADDRESS

OPERAND

(PC) + 20~ TABLE

The indexed addressing mode is specified by setting the two-bit T-field (Ts or Td) of the instruction word to 2 and setting
the corresponding S or D field to a value other than 0. The value in the S or D field is the number of the workspace register
which contains the index value.

10.2.6 Immediate Addressing

The word following the instruction contains the operand.

(PC)—» INSTRUCTION

(PC) +2 - OPERAND

10.2.7 Program Counter Relative Addressing

The 8-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and added to the
updated contents of the program counter. The result is placed in the PC.

JUMP INSTRUCTION
PROGRAM COUNTER OP CODE DISP - 2*DISP
ADDRESS 1 NEXT MEMORY WORD

T

57

10.2.8 /O Relative Addressing

The 8-bit signed displacement in the right byte of the instruction is added to the I/O base address (bits O through

14 of workspace register 12). The result is the address of the selected bit in I/O space.

(PC)——»1 OPCODE | DISP

BASE
(WP) +2*12 ————» ADD

10.3 TERMS AND DEFINITIONS

INSTRUCTION

0 7 8 15
REGISTER 12

CRUBIT
ADDRESS

0 56 14 15

The terms used in describing the instructions of the processor are defined in Table 14.

TABLE 14—-SYMBOL CONVENTIONS

SYMBOL DEFINITION

B Byte indicator (1 = byte; 0 = word)

c Bit count

D Destination address register

DA Destination address

(o] Immediate operand

LSB(n) Least-significant (rightmost) bit of n

MSBI(n) Most-significant (leftmost) bit of n

N Don’t care

PC Program counter

result Result of operation performed by instruction

S Source address register

SA Source address

ST Status register

STn Bit n of status register

Td Destination address modifier

Ts Source address modifier

w Workspace register

WRn Workspace register n

(n) Contents of n

((n)) Indirect contents of n

a—*b Ais transferred to b

|n| Absolute value of n

+ Arithmetic addition

- Arithmetic subtraction

AND Logical AND

OR Logical OR
® Logical exclusive OR
n Logical complement of n

° Arithmetic multiplication

1/0 base address The address which is stored in WR12

effective I/0 base address The address which is formed by adding the displacement to the base address in WR12 for single

bit 1/0, or the incremented value of WR12 for multibit /0.

1/0 bit address The effective address of a bit located in the lower half of the I/0 space.

58

10.4 STATUS REGISTER MANIPULATION

Various TMS99000 machine instructions affect the status register. Figure 5 shows the status register bit assignments.
Table 15 lists the instructions and their effect on the status register.

TABLE 16 — STATUS REGISTER BIT DEFINITIONS*

CONDITIONS TOSETBITTO 1
BIT NAME INSTRUCTION (OTHERWISE SET TO0)
STO LOGICALLY C,CB If MSB(SA)=1and MSB(DA) =0, or if
GREATER MSB(SA)=MSB(DA) and MSBI((DA) - (SA)) =1
THAN cl If MSB(W) = 1 and MSB of IOP =0, or if
MSB(W)=MSB of IOP and MSB(IOP — (W)) =1
ABS, LDCR If (SA) is not zero
RTWP If bit 0 of WR15is 1
LST If bit 0 of selected WR is 1
A, AB, Al If result is not 0
AM, ANDI, (see Note 2)
DEC, DECT,
LI, MOV,
MOVB, NEG,
ORI, S, SB,
DIVS, MPYS,
INC, INCT,
INV, SLA,
SLAM, SM,
SOC, SOCB,
SRA, SRAM,
SRC, SRL,
STCR, SZC,
SZCB, XOR
Reset STO is cleared unconditionally
All other STOis not affected
instructions (see Note 1)
and
interrupts

*See Table 13 for definition of terminology used.

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

59

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TO SETBITTO 1
(OTHERWISE SET TO 0)
ST ARITHMETIC C,CB If MSB(SA)=0and MSB(DA) =1, orif
GREATER MSB(SA) = MSB(DA) and MSB((DA) - (SA)) =1
THAN cl If MSB(W) =0and MSB of IOP =1, or if
MSB(W)=MSB of IOP and MSB(IOP — (W))=1
ABS, LDCR If MSB(SA)=0and (SA)is not 0
RTWP If bit 1 of WR15is 1
LST If bit 1 of selected WR is 1
A, AB, Al, If MSB of result = 0,
AM, ANDI, and resultis not 0
DEC, DECT, (see Note 2)
LI, MOV,
MOVB, NEG,
ORI, S, SB,
DIVS, MPYS,
INC, INCT,
INV, SLA,
SLAM, SM,
SOC, SOCB,
SRA, SRAM,
SRC, SRL,
STCR, SzC,
SZCB, XOR
Reset ST1is cleared unconditionally
All other ST1is not affected
instructions (see Note 1)
and
interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TO SETBITTO 1
(OTHERWISE SET TO 0)
ST2 EQUAL/TB C,CB If (SA)=(DA)
INDICATOR c If (W) =10P

CcoC If ((SA)and not (DA)) = 0
CzC If ((SA) and (DA)) = 0
T8 If CRUIN = 1 for addressed CRU bit
TSMB, TCMB, If addressed memory bit = 1
T™MB
ABS, LDCR If(SA)=0
RTWP If bit 2 of WR15is 1
LST If bit 2 of selected WR is 1
A, AB, Al, AM, If result = 0
ANDI, DEC, (see Note 2)
DECT, LI,
MOV, MOVB,
NEG, ORI, S,
SB, DIVS,
MPYS, INC,
INCT, INV,
SLA, SLAM,
SM, SOC,
SOCB, SRA,
SRAM, SRC,
SRL, STCR,
SZC, SZCB,
XOR
Reset ST2is cleared unconditionally
All other ST2is not affected
instructions (see Note 1)
and
interrupts

ST3 CARRY OUT A, AB, ABS,
Al, AM, DEC,
DECT, INC,
INCT If carry out = 1
NEG, S, SM,
SB
SLA, SRA,
SRL, SRC, If last bit shifted out = 1
SRAM, SLAM
RTWP I bit 3 of WR15is 1
LST If bit 3 of selected WR is 1
Reset ST3 s cleared unconditionally
Ali other ST3is not affected
instructions (see Note 1)
and
interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

61

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TO SETBITTO 1
(OTHERWISE SETTO0)
ST4 ARITHMETIC A, AB, AM f MSB(SA)=MSB(DA) and
FAULT MSB of result # MSB(DA)
Al If MSB(W) # MSB of IOP and
MSB of result # MSB(W)
S, SB, SM if MSB(SA) = MSB(DA) and
MSB of result = MSB(DA)
DEC, DECT If MSB(SA) = 1 and MSB of result = 0
INC, INCT If MSB(SA) =0and MSB of result = 1
SLA, SLAM If MSB changes during shift
DIV If MSB(SA)=0and MSB(DA) =1, orif
MSB(SA) = MSB(DA) and MSB((DA) - (SA)) =0
DIVS If the quotient cannot be expressed
as signed 16-bit quantity (*>8000
is a valid negative number)
ABS, NEG If (SA) =>>8000
RTWP If bit 4 of WR15is 1
LST If bit 4 of selected WR is 1
Reset ST4 s cleared unconditionally
All other ST4is not affected*
instructions
and interrupts
ST5 PARITY CB, MOVB If (SA) has odd number of ones
(0DD NO. LDCR IfC = 1toB8and (SA) has odd
OF ™1 number of ones (if C = 9to 15
BITS) or C=0, then ST5 is not affected)
AB, SB,
SOCB, SzCB, If result has odd number of ones
STCR If C = 1to8and theresult has
an odd number of ones (if C=0or
C = 9to 15, then ST5 not affected)
RTWP If bit 5 of WR15is 1
LST If bit 5 of selected WR is 1
Reset ST5is cleared unconditionally
All other ST5is not affected
instructions (See Note 1)
and
interrupts

NOTES: 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.

2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

62

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONTINUED)

BIT NAME INSTRUCTION CONDITIONS TOSETBITTO1
(OTHERWISE SET TO 0)
ST6 XOP IN XOP If XOP instruction is executed
PROGRESS (ST6 set after the context switch)
RTWP* If executed when ST7 =1
{non-privileged mode),
then ST6 is cleared
LST* If executed when ST7 =1
(non-privileged mode),
then ST6 is cleared.
Reset ST6 is cleared unconditionally
All other ST6is not affected
instructions (see Note 1)
and
interrupts
ST7 PRIVILEGED RTWP* If bit 7 of WR15is 1
MODE LST* If bit 7 of selected WR is 1
XOP, any ST7is cleared unconditionally
interrupt
All other ST7 is not affected
instructions (see Note 1)
ST8 MAP RTWP* If bit 8 of WR15is 1
SELECT LST* If bit 8 of selected WR is 1
XOP, any ST8is cleared unconditionally
interrupt prior to read of trap vector.
Previous value is saved in WR15.
LDCR, STCR, ST8 temporarily driven to 0 while
SBO, SBZ, CRU address is on the address bus
7B
All other ST8is not affected
instructions (see Note 1)
ST9 UNDEFINED RTWP* If bit 9 of WR15is 1
LST* If bit 9 of selected WR is 1
XOP, any ST9is cleared unconditionally
interrupt
All other Do not affect status bit
interrupts (see Note 1)
ST10 ARITHMETIC RTWP* If bit 10 of WR15is 1
FAULT LST* If bit 10 of selected WR is 1
INTERRUPT
XOP, any ST10 s cleared unconditionally
ENABLE interrupt
All other ST10is not affected
instructions (see Note 1)

*Status bits 7, 8,9, 11, 12, 13 and 14 are not affected by LST or RTWP if ST7 = 1 before these instructions are executed.

Note 1. The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.
2. If on a DIVS instruction an overflow occurs, ST4 is set and STO, ST1, and ST2 are undefined.

63

TABLE 15 — STATUS REGISTER BIT DEFINITIONS (CONCLUDED)

CONDITIONS TO SETBITTO 1
BIT NAME INSTRUCTION
] (OTHERWISE SET TO 0)
ST XOP RTWP* If bit 11 of WR15is 1
EMULATION LST* If bit 11 of selected WR is 1
MODE . -
XOP, any ST11 s cleared unconditionally
interrupt
All other ST8is not affected
instructions
ST12 INTERRUPT LIMIt Set mask = bits 12-15 of IOP
to MASK
ST15 RTWP* Set mask = bits 12-15 of WR15
LST* Set mask = bits 12-15 of WR
RSETt Mask is unconditionally cleared
RESET, NMI (set to all zeros)
All other If mask = 0, no change;
interrupts otherwise, set mask to interrupt
level minus one.
All other Mask is not affected
instructions (see Note 1)

* Status bits 7.8,9, 11,12, 13, and 14 are not affected by LST or RTWP if ST7 = 1 before these instructions are executed.
1ST12 to ST15 are not affected by LIMI and RSET if ST7 = 1.
NOTE 1: The X instruction itself does not set any status bits, but the target instruction may set status bits accordingly.

10.5

INSTRUCTIONS

A list of the instructions described in each of the following subsections is presented below for convenient reference.

Instruction Mnemonic

A, AB, C,CB, S, SB, SOC, SOCB, SzC, szCB, MOV, MOVB
COC, CZC, XOR, MPY, DIV

MPYS, DIVS
XOP

B, BL, BLWP, CLR, SETO, INV, NEG, ABS, SWPB, INC, INCT, DEC, DECT, X

BIND
LDCR, STCR
SBO, SBZ, TB

JEQ, JGT, JH, JHE, JL, JLE, JLT, JMP, JNC, JNE, JNO, JOC, JOP

SLA, SRA, SRC, SRL

Al, ANDI, CI, LI, ORI, BLSK

LWPI, LIMI

STST, LST, STWP, LWP

RTWP

IDLE, RSET, CKOF, CKON, LREX

TMB, TCMB, TSMB

AM, SM, SLAM, SRAM

MID opcodes
LDD, LDS

LR, STR, NR, CER, CIR, CRE, CRI, AR, DR, SR, MR

Section
10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.8
10.5.9
10.5.10
10.56.11
10.5.12
10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18

Appendix B
Appendix B

10.5.1 Dual-Operand Instructions with Multiple Addressing for Source and Destination Operand
General 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: | opcODE | B | Td | D | 15 | S |
If B = 1, the operands are bytes and the effective operand addresses are byte addresses. If B = 0, the operands are words
and the LSB of each effective operand address is ignored. :
The addressing mode for each operand is determined by the two bits of the T-field corresponding to that operand.
TsorTd SorD ADDRESSING MODE NOTES
0 0,1,...,15 Workspace register 1
1 0,1,...,15 Workspace register indirect
2 0 Symbolic 4
2 1,2,...,15 Indexed 2,4
3 01,...,15 Workspace register indirect autoincrement 3
NOTES: . When aworkspace register is the operand of a byte instruction (bit 3 = 1), the left byte (bits 0 through 7) is the operand and the right byte (bits 8 through 15)
is not altered.
. Workspace register 0 may not be used for indexing.
. The workspace register is incremented by 1 for byte instructions (bit 3 = 1) and is incremented by 2 for word instructions (bit 3 = 0).
. WhenTs = Td = 2, two words are required in addition to the instruction word. The first word is the source operand and the d word is the destination
operand base address.
RESULT
OPCODE COMPARED BITS STATUS
MNEMONIC 0123 MEANING J00 AFFECTED DESCRIPTION
1010 Add Yes 04 (SA)+ (DA) = (DA)
AB 101 Add bytes Yes 0-5 (SA)+ (DA) —(DA)
1000 Compare No 0-2 Compare (SA) to (DA) and set ap-
propriate status bits
CB 1001 Compare bytes No 0-2,5 Compare (SA) to (DA) and set ap-
propriate status bits
0110 Subtract Yes 04 (DA} —(SA) = (DA)
0111 Subtract bytes Yes 0-5 (DA)-(SA) —=(DA)
soC 1110 Set ones corresponding Yes 0-2 (DA) OR (SA) —=(DA)
SOCB 1mm Set ones corresponding bytes Yes 0-2,5 (DA) OR (SA) - (DA)
szC 0100 Set zeros corresponding Yes 0-2 (DA) AND (SA) —(DA)
SzCB 0101 Set zeros corresponding Yes 0-2,5 (DA) AND (SA) —»(DA)
Mov 1100 Move Yes 0-2 (SA) —(DA)
MOVB 1101 Move bytes Yes 0-25 —(DA)
10.5.2 Dual-Operand Instructions with Multiple Addressing Modes for the Source Operand and Workspace Register

Addressing for the Destination

Genead 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
Format: [OPCODE | D [15 | S |

The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES
0 01,...,15 Workspace register

1 01,...,15 Workspace register indirect

2 0 Symbolic

2 12,...,15 Indexed 1

3 12,...,156 Workspace register indirect autoincrement 2

NOTES: 1. Workspace register 0 may not be used for indexing.

2. The workspace register is incremented by 2.

OPCODE
MNEMONIC 012346
coc 001000
czc 001001
XOR 001010
MPY 001110
DIV 001111

DESCRIPTION

RESULT STATUS
COMPARED BITS
MEANING T00 AFFECTED

Compare ones corresponding No 2
Compare zeros corresponding No 2
Exclusive OR Yes 0-2
Multiply No -
Divide No 4

Test (D) to determine if 1s are in
each bit position where 1s are in
(SA). If so, set ST2.

Test (D) to determine if Os are in
each bit position where 1s are in
(SA). If so, set ST2.

(D) +(SA) = (D)

Multiply unsigned (D) by unsigned
(SA) and place unsigned 32-bit
product in D (most significant) and
D +1 (least significant). If WR15 is
D, the next word in memory after
WR15 is used for the least signifi-
cant half of the product.

If unsigned (SA) is less than or equal
to unsigned (D), perform no opera-
tion and set ST4. Otherwise, divide
unsigned (D) and (D+1) by un-
signed (SA). Quotient - (D), re-
mainder —(D + 1) If D = 15, the next
word in memory after WR15 will be
used for the remainder.

10.5.3 Signed Multiply and Divide Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: | OPCODE] Ts] S
The addressing mode for the source operand is determined by the Ts field.

Ts S ADDRESSING MODE NOTES

00 0,1,...,15 Workspace register 1

01 01,...,15 Workspace register indirect 1

10 0 Symbolic 1

10 1,2,...,15 Indexed 1,2

11 12,...,15 Workspace register indirect autoincrement 1.3

NOTES: 1. Workspace registers 0 and 1 contain operands used in the signed multiply and divide operations.
2. Workspace register 0 may not be used for indexing.
3. The workspace register is incremented by 2.

MNEMONIC

OPCODE
0123456789

MEANING

RESULT
COMPARED
TOO

STATUS
BITS
AFFECTED

DESCRIPTION

MPYS

0000000111

Signed Multiply

Yes

0-2

Muitiply signed 2's complement in-

DIvVS

teger in WRO by signed 2's comple-
ment integer in (SA) and place
signed 32-bit product in WRO (most
significant) and WR1 (least signifi-
cant).

If the quotient cannot be expressed
as a signed 16-bit quantity (hex 8000
is a valid negative number), set ST4.
Otherwise, divide the signed, 2's
complement integer in WRO and
WR1 by the signed 2's complement
integer at SA and place the signed
quotient in WR0 and the signed re-
mainder in WR1. The sign of the
quotient is determined by algebraic
rules. The sign of the remainder is
the same as the sign of the dividend,
and |REMAINDER| < |DIV|.

0000000110 | Signed Divide Yes 0-2,4

105.4

Extended Operation (XOP) Instruction

General 0 1 2 3 4 5 6 7 8 9 10 1 122 13 14 15
Fomat: |0 o0 1 0 1 1] D Ts | s |

The Ts and S fields provide multiple-mode addressing capability for the source operand.

Depending on the value of status bit 11 (ST11), the XOP instruction transfers control to a user routine located either at the
main memory address in the specified XOP trap vector, or at Macrostore.

IfST11 = 0, the D field specifies the trap vector in memory that contains the addresses of the entry point and workspace of
the user routine to be executed. The address of the trap vector is calculated as
>0040 + >4 x >D

Following the fetch of the new WP and PC values, the effective source address (SA) is calculated and placed in WR11 of
the new workspace. The old WP, PC and ST are stored in WRs 13, 14 and 15, respectively. Status bit6issetto 1,and STs7
through 11 are cleared after the old status has been saved.

When ST11 = 1, the XOP causes a trap to Macrostore if the 99000 is not in the baseline mode. The contents of the WP are
forced to 0, and the PC is updated with the value contained at Macrostore address >0812. The new WP and PC point to
locations within the Macrostore, where address space is logically distinct from the main memory address space. The old
WP, PC and ST are stored in registers 13, 14 and 15, respectively, of the Macrostore workspace. Status bits 7 through 11
are cleared after the old status has been saved.

The execution of the XOP instruction is summarized below. If ST11is 0, the addresses are memory addresses; if ST11is 1
and the 99000 is not in baseline mode, the addresses are in Macrostore.

#ST11is O: if ST11 is 1 Macrostore is entered and:
(0040 + 4 xD) -~ WP 0 -+ WP
(0042 +4 xD) = PC (0812) - PC

(old WP) = (new WR13)
(old PC) = (new WR14)
(old ST) = (new WR15)

SA - new WR11

(old WP) - (new WR13)
(old PC) - (new WR14)
(old ST) = (new WR15)
1-+ST6 O0—ST9
0—+ST7 0—+ST10
0—-ST8 00—+ ST11

The TMS99000 does not test interrupt requests (i.e., does not look at INTREQ) upon completion of the XOP instruction.

67

10.5.5

General
Format:

0

Single Operand Instructions

2 3 4

5 6

8 9

10 1 12 13 14 15

OPCODE

|

Ts | S |

The Ts and S fields provide multiple-mode addressing capability for the source operand.

RESULT BITS
MNEMONIC 0123456789 MEANING TO0? AFFECTED DESCRIPTION
B 0000010001 Branch No - SA —(PC)
BL 0000011010 Branch and link No - (PC) = (WR11),
SA —(PC)
BLWP 0000010000 Branch and load
workspace pointer No - (SA) = (WP), (SA+2) = (PC), (old WP)
— (new WR13), (old PC) = (new WR14),
{old ST) = (new WR15). The INTREQ
input is not tested upon completion of the{
BLWP instruction.
CLR 0000010011 Clear operand No —_— 0 —(SA)
SETO 0000011100 Set to ones No —_— FFFF —=(SA)
INV 0000010101 Invert Yes 0-2 (SA) =(SA)
NEG 0000010100 Negate Yes 04 —(SA) =(SA)
ABS 0000011101 Absolute value* No 0-4 |(SA)| —(SA)
SWPB 0000011011 Swap bytes No - Bits 0-7 of (SA) ~»bits 8-15 of (SA); bits 8-
15 of (SA) —>bits 0-7 of (SA).
INC 0000010110 Increment Yes 0-4 (SA)+1-—+(SA)
INCT 0000010111 Increment by two Yes 0-4 (SA)+2 —=(SA)
DEC 0000011000 Decrement Yes 0-4 (SA)—-1 —+(SA)
DECT 0000011001 Decrement by two Yes 04 (SA)- 2 —=(SA)
Xt 0000010010 Execute No - Execute instruction located at SA.

*Operand is compared to zero for status bit.

1if additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words will be accessed from PC and the
PC will be updated accordingly. The IAQ (instruction acquisition) bus status code will not be ouput at the time the process reads the instruction at SA; instead, an SOP

(source operand) or WS bus status code will be output. Status bits are affected in the usual manner for the operation performed.

10.5.6 BIND Instruction
General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: OPCODE | 1] S
The Ts and S fields provide multiple-mode addressing capability for the source operand.
The BIND instruction serves as the inverse of a BLSK instruction if the register indirect autoincrement addressing
mode is used. Indexed addressing used with BIND implements a powerful CASE or multi-way branch instruction
where the immediate operand points to a table of branch addresses and the register contents selects which way to
branch.

RESULT BITS
MNEMONIC 0123456789 MEANING TOO0? AFFECTED DESCRIPTION
BIND 0000000101 Branch indirect No - (SA)~(PC)

10.5.7 Muitiple-Bit I/O Instructions
General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: | OPCODE | CNT [1] S]

The 1/0 base address is contained in bits 0 through 14 of WR12. If bit 0 (the MBS) of the base address is 0, a serial /0
transfer will occur; otherwise (MSB = 1), a parallel I/0 transfer will occur.

In the case of a serial 1/0 transfer, the CNT field specifies the number of bits to be transferred (from 1to 16). f CNT=0, 16
bits are transferred. The base address in WR12 defines the starting |/0 bit address. The bits are transferred in bit-serial
fashion, and the I/O base address is incremented by 2 with each bit transfer; the contents of WR12 are not affected. The
effective source address in memory, specified by the Ts and S fields, is interpreted as a byte address if 8 or fewer bits are .

transferred (CNT = 1 through 8), or as a word address if 9 or more bits are transferred (CNT =0, 9 through 15). If the source
is addressed in the workspace indirect autoincrement mode (Ts = 3), the specified workspace register is incremented by 1 if
CNTisin the range 1 to 8, and is incremented by 2 otherwise. If the source is addressed in the register mode (Ts =0), bits 8
through 15 of the specified workspace register are unchanged if the transfer is of 8 bits or less.

In the case of a parallel |/ O transfer, the CNT field determines whether a byte or word is to be transferred, and also whether
the contents of WR12 are to be incremented by 2 following the transfer. A word transfer occurs if CNT is (binary) 1010 or
1011; a byte transfer occurs if CNT is 0010 or 0011. WR12is post-incremented by 2if CNT is 0011 or 1010. All values of CNT
besides 0010, 0011, 1010 and 1011 are reserved for future expansion of the parallel /0 capability and should not be used.
The following table summarizes the use of the CNT field for a parallel |/O operation.

TRANSFER CNT* DESCRIPTION
(BINARY)
byte 0010 WR12 not altered
transfer 0011 WR1 2 post-incremented by 1
word 1010 WR12 not altered
transfer 1011 WR12 post-incremented by 2

*These restrictions on the value of CNT apply only in the case of paraliel I/O operations.

When in user mode (ST7 = 1), an attempt to execute an LDCR instruction having a I/0 address in the range 1C00 to 7FFE
or9C00to FFFE is flagged as a privileged opcode violation. This condition generates a level 2 interrupt and inhibits writes to
thel/0in the privileged space for the duration of the instruction. When in privileged mode (ST7 = 0), the |/O address of an
LDCR instruction is unrestricted. When in user mode (ST7 = 1), an attempt to execute an STCR with an I/0 address 1C00

to 7FFE or 9C00 to FFFE causes a privileged violation to occur after execution of the instruction.

RESULT STATUS
OPCODE COMPARED BITS
MNEMONIC 012345 MEANING TO00 AFFECTED DESCRIPTION
LDCR 001100 Load communication register Yes 0-2,5* Beginning with LSB of (SA), transfer|
the specified number of bits from
(SA) to the 1/0.
STCR 001101 Store communication register Yes 0-2,5* Beginning with LSB of (SA), transfer
the specified number of bits from the
1/0 to (SA). Load unfilled bit posi-
tions with 0.
*ST5is affected only if CNT is in the range 1 to 8.
10.6.8 Single-Bit 1/0 Instructions
General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: I OPCODE l SIGNED DISPLACEMENT I

The signed displacement is added to the contents of WR12 (bits 0-14) to form the address of the |/0 bit to be selected, as
described in Section 8.2.8.

Whenin user mode (ST7 = 1), if the effective |/ O address of an SBO or SBZ instruction isin therange >1C00to >7FFE or
>9C00 to > FFFE, a privileged violation occurs {Section 4.4.3) and the 1/0 write is inhibited. When in privileged mode
(ST7 = 0), no restrictions are placed on the range of the effective |/0 address.

The user is cautioned that while the SBO and SBZ instructions can be used to access the parallel |/O address space (> 8000
to >FFFF), and they will set or clear data bit D15 as expected, the other 15 bits (DO to D14) written to the parallel I/0
location will be undefined. When the TB instruction is executed with an address in parallel I/O space, the bit value input on
data line DO is read.

When in Macrostore, the SBO, SBZ and TB instructions are not available. The SBO and SBZ opcodes perform different
functions when in Macrostore (see Section 7.3.3.6).

STATUS
OPCODE BITS
MNEMONIC 0123 4567 MEANING AFFECTED DESCRIPTION
SBO 0001 1101 Set bit to one - - Set the selected output bit to 1.
SBZ 0001 1110 Set bit to zero - - Set the selected output bit to O.
TB 0001 1111 Test bit 2 If the selected 1/0 input bit is 1, set ST2; if
the selected 1/O input bit is O, clear ST2.
10.5.9 Jump Instructions }
General (1] 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: OPCODE | SIGNED DISPLACEMENT |

Jump instructions cause the PC to be loaded with the PC-relative jump address if the selected status bits are set as
specified; otherwise, no jump occurs and the next instruction is fetched from the word following the jump instruction. The
jump address is computed by adding twice the signed displacement to the current value of the PC (which points to the
word following the jump instruction). The 8-bit displacement permits the computed jump address to be specified any-
where in the range — 128 to + 127 words from the address of the word that follows the jump instruction. Status register
bits are not affected by jump instructions.

OPCODE STATUS CONDITION
MNEMONIC 01234567 MEANING TO LOAD PC

JEQ 00010011 Jump equal ST2 =1

JGT 00010101 Jump greater than ST1 =1

JH 00011011 Jump high STO = 1 and ST2 = 0

JHE 00010100 Jump high or equal STO = 10orST2 = 1

JL 00011010 Jump low STO = 0and ST2 = 0

JLE 00010010 Jump low or equal STO = 0orST2 = 1

JLT ’ 00010001 Jump less than ST1 =0and ST2 =0
JMP 00010000 Jump unconditional Unconditional

JNC 00010111 Jump no carry ST3 =0

JNE 00010110 Jump not equal ST2 =0
JNO 00011001 Jump no overflow ST4 =0
Joc 00011000 Jump on carry ST3 =1

JOP 00011100 Jump odd parity ST6 =1

10.5.10 Shift Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: OPCODE | sc | w

Field SC contains the shift count. W is the number of the workspace register whose contents are to be shifted. If SC = 0,
however, bits 12 through 15 of WRO are used as the shift count. If SC = 0 and bits 12 through 15 of WRO are 0, the
effective shift count is 16.

/RESULT STATUS
OPCODE COMPARED BITS
MNEMONIC | 01234567 MEANING TO O AFFECTED DESCRIPTION

SLA 00001010 Shift left arithmetic Yes 0-4 Shift (W) left. Fill vacated bit positions
with O.

SRA 00001000 Shift right arithmetic Yes 0-3 Shift (W) right. Fill vacated bit positions
with original MSB of (W).

SRC 00001011 Shift right circular Shift (W) right. Shift previous LSB into
MSB.

SRL 00001001 Shift right logical Yes 0-3 Shift (W) right. Fill vacated bit positions
with zeros. '

70

10.5.11 Immediate Register Instructions
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
General OPCODE | W
Format: 0P
OPCODE RESULT BITS
MNEMONIC 0123 45678 91011 MEANING TOO0? AFFECTED DESCRIPTION
Al 0000 00100 010 Add immediate Yes 0-4 (W) +10P = (W)
ANDI 0000 00100 100 AND immediate Yes 0-2 (W) AND IOP — (W)
Cl 0000 00101 000 Compare immediate Yes 0-2 Compare (W) to IOP and set ap-
propriate status bits.
L 0000 00100 000 Load immediate Yes 0-2 I0P = (W)
ORI 0000 00100 110 OR immediate Yes 0-2 (W)ORIOP —
BLSK 0000 00001 011 Branch immediate and push link
to stack No - (W)=2 = (W), (PC)+4 = ((W
I0P — (PC)
10.5.12 Internal Register Load Immediate Iinstructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
General OPCODE 0 0 0 0 0
Format: 10P
Whenin user mode (ST7 = 1), execution of the LIMI instruction is flagged as a privileged opcode violation (Section 4.4.3).
OPCODE
MNEMONIC 0123 4567 8910 MEANING DESCRIPTION
LWPI 0000 0010 111 Load workspace pointer immediate [IOP — (W) not status bits affected.
Limi 0000 0011 000 Load interrupt mask immediate IOP — ST bits 12 thru 15, ST12 thru ST15.
10.5.13 Internal Register Load and Store Instructions
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: | OPCODE | w |
STATUS
OPCODE BITS
MNEMONIC 0123 4567 891011 MEANING AFFECTED DESCRIPTION
STST 0000 0010 1100 Store status Register - - (ST) = (W)
LST 0000 0000 1000 Load status Register 0-15 (W) = (ST)
STWP 0000 0010 1010 Store workspace pointer - - (WP) = (W)
LWP 0000 0000 1001 Load workspace pointer - - (W) —~ (WP)

Whilein privileged mode (ST7 = 0), the LST instruction modifies all 16 bits of the status register. While in user mode (ST7
= 1), only bits 0 through 5 and bit 10 of the workspace register specified in the W field are placed in the status register; ST6
is cleared and the other status register bits are unaffected.

n

10.5.14

Return Workspace Pointer (RTWP) Instruction

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Forma: [0 0 o0 o0 O 0 1 1 1 0 0 0 0 o0 o0 0]

The RTWP instruction causes the following transfers to occur:
(WR15) - (ST)
(WR14) = (PC)
(WR13) = (WP)

When iin privileged mode (ST7 = 0), the RTWP instruction causes the entire contents of WR15to be loaded into the status
register. In user mode (ST7 = 1), only bits 0 through 5 and 10 of WR15 are loaded into the status register; ST6 is cleared
and the other status register bits remain unaffected.

When in Macrostore, several variations of the RTWP instruction opcode are available. These are opcodes > 0381, > 0382,
and >0384. These opcodes are summarized below. More detail in the operation of these special opcodes is given in
Section 7.3.2

RTWP Opcode Function
> 0380 RTWP when in main memory or exit from Macrostore with interrupts sampled
> 0381 RTWP when in Macrostore memory (does not cause exit from Macrostore)
> 0382 Exit from Macrostore with level 2 trap
>0384 Exit from Macrostore and suppress interrupt sample.
10.5.15 External Instructions
General 0 1 2 3 4 5 6 7 8 9 10 1 12 183 14 15
Format: | OPCODE | Jo o o o o]
External instructions cause a bit value of 0 to be written to a I/O address 1ECX, where the hexadecimal digit represented as
X" depends upon the particular external instruction being executed. During execution of the RSET, CKOF, CKON and
LREX instructions, the WE/IOCLK output is puised low once. With the completion of the single |/O write cycle, execution
of the external instruction is finished, and the processor proceeds to the next instruction. While in privileged mode (ST7 =
0), execution of RSET causes the interrupt mask (ST12-ST15) to be cleared. None of the other external instructions affect
the status register.
When the IDLE instruction is executed, the processor enters the idle state, where it remains until a Reset, NMI, m, or
unmasked external interrupt occurs. While in the idle state, the processor pulses the WE/IOCLK output repeatedly, with
each I/0 write cycle accompanied by a |/ O bus status code (Table 2). The PC value saved during the context switch to the
Reset, NMI or interrupt service routine points to the instruction following the IDLE.
When in user mode (ST7 = 1), execution of an external instruction is flagged as a privileged opcode violation (Section
4.4.3).
STATUS 1o
OPCODE BITS ADDRESS
MNEMONIC 0123 4567 8910 MEANING AFFECTED DESCRIPTION IN HEX
IDLE 0000 0011 010 Idle - - Suspend processor instruction
execution until an interrupt,
NMI or Reset occurs. 1EC4
RSET 0000 0011 011 Reset 12-15 Clear interrupt mask (ST12-
ST15) 1EC6
CKOF 0000 0011 110 User-defined - - - - 1ECC
CKON 0000 0011 101 User-defined - - - - 1ECA
LREX 0000 0011 111 User-defined - - - - 1ECE

12

10.5.16 Bit-Manipulation Instructions
General 0 1 2 3 4 5 6 7 8 9 07 N 12 13 14 15
Format: OPCODE
0 0 0 0 0 0 | BIT DISP | Ts | S
The Ts and S fields provide multiple-mode addressing capability for the source operand. The indirect autoincrement
addressing mode (Ts = 3), however, is undefined for the TMB, TCMB and TSMB instructions. If the two bits of the Ts
field are 3, an MID trap occurs.
Bit-manipulation instructions copy the specified memory bit into status bit 2, and set or clear the specified memory bit. In
order to provide an indivisible test-and-set operation, the MPILCK (multiprocessor interlock) bus status code is active
during the critical portions of the TSMB and TCMB instructions, exceptin the case Ts = 0 (register addressing mode).
STATUS
OPCODE BITS
MNEMONIC IN HEX MEANING AFFECTED DESCRIPTION*

T™B 0CO09 Test memory bit 2 (SA+BD) = ST2

TCMB 0COA Test and clear memory bit 2 (SA+BD) = ST2, 0 = (SA +BD)

TSMB ocos Test and set memory bit 2 (SA+BD) = ST2, 1 = (SA+BD)

*BD is used above to refer to the contents of the bit-displacement field.

If the leading 6 bits in the predefined field of the second word of the instruction are not as specified, an MID trap occurs.

10.5.177 Double-Precision Arithmetic Instructions
General Format:
0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15
ADD/SUB OPCODE
0 1 0 0 [Td l D | Ts [S
SHIFT OPCODE
0 1 0 0 0 0 l SC] Ts J S
STATUS
OPCODE BITS
MNEMONIC (HEX MEANING AFFECTED DESCRIPTION
AM 002A Add double 0-4 (SA,SA+2)+(DA,DA +2) ~ (DA, DA+2)
SM 0029 Subtract double 0-4 (DA,DA+2) - (SA,SA+2) -+ (DA,DA+2)
SLAM 001D Shift left arithmetic double 0-4 Shift (SA,SA + 2) left. Fill vacated bit posi-
tions with O. If SC=0, count is in bits 4
through 7 of WRO.
SRAM 001C Shift right arithmetic double 0-3 Shift (SA,SA + 2) right. Fill vacated bit posi-
tions with MSB. If SC =0, count is in bits 4
through 7 of WRO.

If the two bits in the Ts or Td field are 3 (workspace register indirect autoincrement addressing mode) the contents of the
corresponding workspace register are incremented by 4.

If SC = 0 in the shift instructions, the shift count is taken from bits 4 through 7 of WRO, which are interpreted as an
unsigned 4-bit integer. If bits 4 through 7 of WRO0 are 0, then the effective shift count is 0. Bits shifted out are shifted into
ST3. If the shift countis 0, ST3is set to 0.

During a SRAM the sign bit fills the vacated positions. During a SLAM, zeros fill the vacated positions.

If the bits in the predefined field of the second word of the instruction are not as specified, an MID trap occurs.

13

10.5.18 MID Opcodes

10.6
10.6.1

10.6.2

The single-word instruction opcodes that cause an MID trap (see Section 4.4.2) are:

0000-001B 02D0-02DF
001E-0028 02E1-02FF
002B-007F \ 0301-033F
00A0-00AF 0341-035F
00C0-013F 0361-037F
0210-021F 0381-039F
0230-023F 03A1-03BF
0250-025F 03C1-03DF
0270-027F 03E1-03FF
0780-07FF
0290-029F 0C00-0C08
02B0-02BF 0COC-OFFF
INSTRUCTION EXECUTION

Microinstruction Cycle

The TMS99000 microprocessor is a microcoded machine. Each instruction in the 99000 instruction set is executed
internally as a sequence of microinstructions, the length of the sequence varying according to the particular instruction.
Each microinstruction cycle is minimally one machine state in duration but can be extended with wait states by activating
the READY input. The term ‘‘wait-state’’ is used to describe the condition where the processor is ‘‘frozen’’ in its
present state and consequently cannot advance to the next state. In the 99000, all types of bus cycle —memory,
1/0 or internal —can be extended with wait-states. The ALATCH output toggles exactly once at the beginning of
each microinstruction cycle.

Opcode Prefetching

The TMS99000 increases its effective processing speed by prefetching opcodes where possible. By allowing successive
bus cycles to be overlapped, as shown in Figure 27, the time required to fetch the opcode from memory and. decode it
becomes transparent when no wait states are required. In processing a typical instruction, e.g., register-to-register add,
the TMS99000 performs the following sequence of steps:

. Fetchinstruction

. Decode instruction

. Fetch source operand, if needed

. Fetch destination operand, if needed

. Process the operands

. Store the results, if required

O hA WN =

The prefetch mechanism of the 99000 makes use of the fact that the processor’s memory interface can operate in parallel
with operations involving the processor’s internal buses and registers. For example, during step 5 above, the memory bus
is not needed by the current instruction, which is busy processing the operands internally. Hence, this time can be used to
prefetch the opcode for the next instruction. This overlapping is seen in Figure 32, where ““MI" indicates an operation
performed by the memory interface, and “OP’’ denotes an internal operation. Deterministic: a prefetched opcode is
discarded only in the event that an interrupt occurs. Steps 1 and 2 above should really be considered part of the preceding
instruction. In other words, each instruction is responsible for prefetching the opcode for the next instruction. This
reduces the effective overhead of the typical instruction sequence given above to the four steps, 3-6. Without
overlap, the overhead would be six rather than four steps.

The instruction prefetch scheme employed by the 99000 can cause self-modifying software to execute incorrectly.
Incorrect execution results when one instruction attempts to generate the opcode of the very next instruction to be
executed. The TMS99000 fetches the opcode of the next instruction before storing the result of the current instruction.

74

10.6.3

LR bus bus bus bus I bus I bus | ece
cycle 1 cycle 2 cycle3 cycle 4 cycle 5 cycle 6
process write
LX) operands result instruction
n—-1
oP Ml
fetch decode fetch fetch process write
instruction n instruc instruc source dest'n operands result
operand operand
Mi oP Mi Ml oP M
fetch decode
instruction n+ 1 instruc instruc oo o
Mi OP
>
increasing Ml = memory interface
time

OP = internal operation

FIGURE 32 — OVERLAPPED INSTRUCTION EXECUTION

TMS99000 Instruction Execution Times

Instruction execution times for the TMS99000 are a function of the:

® Machine state time ts (four times the external input clock period),

® Particular addressing mode used in the event that the instruction provides multiple-mode addressing capability, and
¢ Number of wait states required per memory access.

Table 16* lists the number of machine states and memory accesses required to execute each 99000 instruction. For

instructions providing mulitiple addressing modes for one or both operands, the table lists the number of states and

memory accesses with all operands addressed in the workspace register mode. To determine the additional number of

states and memory accesses required for the other addressing modes, add the appropriate values from the table. The total

execution time for an instruction, assuming all memory requires the same number of wait states, is calculated as:
T=ts(C+WM)

where:

T = total instruction execution time

ts = machine state time (four times the external input clock period)

C = number of states for instruction execution plus address modification

W = number of required wait states per memory access for instruction execution plus address modification

M = number of memory accesses

For example, consider a MOV instruction executed in a system for which ts = 0.167 usec. Assume that no wait states are
required to access memory, and that both operands are accessed in workspace register mode:
T=1ts(C+ WM) = 0.167 (3 + 0x3) usec = 0.50 usec
If two wait states per memory access are required, the execution time becomes
T =0.167(3 + 2x3) usec = 1.50 usec
If the source operand was addressed in the symbolic mode and two wait states are required, then
T=tc(C+WM),
C=3+1=4,
M=3+1=4,
T =0.167(4 + 2x4) psec = 2.0 usec

*Instruction prefetching is accounted for in Table 16. The table gives exact cycle counts required for instruction execution.

75

TABLE 16— INSTRUCTION EXECUTION TIMES

- MACHINE MEMORY ADDRESS
INSTRUCTIONS STATES ACCESS MODIFICATION
C M SOURCE DEST

A 4 4 A* A
AB 4 4 A A
ABS 5 3 A -
Al 4 4 - -
AM 12 8 A A
ANDI 4 4 - -
B 3 1 A -
BIND 4 2 A ~
BL 5 2 A -
BLSK 7 5 - -
BLWP 10 6 A —
Cc 4 3 A A
cB 4 3 A A
Cl 4 3 - -
CKON 9 1 — -
CKOF 9 1 — -
CLR 3 2 A -
coc 4 3 A -
czc 4 3 A —
DEC 3 3 A -
DECT 3 3 A -
DIV (ST4 s set) 60r10 4 A -
DIV (ST4 s reset)t 30 6 A -
DIVS (ST4is set) 10,13 0r 33 4 A -
DIVS (ST4is reset)t 34 6 A -
IDLE 9+2xN 1 - -
INC 3 3 A -
INCT 3 3 A -
INV 3 3 A -
JUMP (PC is changed) 3 1 - -

(PC is not changed) 3 1 - -
LDCR (CNT =0, serial) 40 3 A -

(CNT %0, serial) 8+2xCNT 3 A -

(MSB R12=1, autoincrement R12) 8 4 A -

(MSB R12=1, R12 not autoincremented) 8 3 A -
LDD and LDS#
Ll 3 3 - -
LIMI 5 2 - -
LMF$
LREX 9 1 - -
LST 7 2 — -

* Replace the letter ‘'A: with appropriate value from Table A. The C and M values from Table A for the addressing mode used must be added to the C and M
values from this table.

t Execution time is dependent upon the partial quotient after each clock cycle during execution.
% Execution time is added to the execution time of the source address.

76

TABLE 16 — INSTRUCTION EXECUTION TIMES (CONCLUDED)

MACHINE MEMORY ADDRESS
INSTRUCTIONS STATES ACCESS . MODIFICATION
C M SOURCE DEST

LWP 3 2 — —
LWPI 3 2 - -
MOV 3 3 A* A
MOVB 4 4 A A
MPY 23 5 A -
MPYS 25 5 A -
NEG 3 3 A -
ORI 4 4 - -
RSET 9 1 - -
RTWPY 9/7 4 - -
S 4 4 A A
SB 4 4 A A
SBO 7 2 - -
SBZ 7 2 - -
SETO 3 2 - -
SHIFT (SC+0) 5+ SC 3 - -

(SC=0and bits 12-150f WR=0) 23 4 - -

(SC =0 and bits 12-15 of WR#0) 7+SC 4 - -
SM 12 7 A A
SoC 4 4 A A
SOCB 4 4 A A
SHIFT MULTIPLE (SC=0) 11+SC 5 A -

(SC+0) 13+SC 6 A -
STCR (CNT =0, serial) 43 3 A -

(CNT=1t07) 20+CNT 4 A -

(CNT=38) 27 4 A -

(CNT=9t10 15) 20+CNT 3 A -

(MSB R12=1, autoincrement R12) 10 5 A -

(MSB R12= 1, R12 not autoincremented) 10 4 A -
STST 3 2 - -
STWP 3 2 - -
SWPB 3 3 A -
SszC 4 4 A A
SzCB 4 4 A A
B 7 2 - -
TEST MEM BIT 26 3 A -
X8 2 1 A -
XOP (ST11=0) 14 7 A -
XOR 4 4 A -
Reset function 13 6 - -
Interrupt context switch 13 6 - -
MID opcode (Macrostore) 148 0 -

(attached processor) 218 8 = =

* Replace the letter ‘’A’’ with appropriate value from Table A. The C and M values from Table A for the addressing mode used must be added to the C and M
values from this table.

§Execution time does not include the time required by software or an attached processor to emulate the instruction.

{RTWP, when staying in Macrostore, takes seven machine states. When notin M or exiting M RTWP takes nine machine states.
TABLEA
MACHINE MEMORY
STATES ACCESS
ADDRESSING MODE c M
WR (Tsor Td = 0) 0 0
WRindirect (Tsor Td = 1) 1 1
WR indirect autoincrement (Ts or Td = 3) 3 2
Symbolic (TsorTd = 2, SorD = 0) 1 1
Indexed (TsorTd = 2, SorD = 0) 3 2

n

10.6.4

Bus Status Code Sequences

This section presents the sequence of bus status codes output by the microprocessor during each (1) instruction execu-
tion, (2) interrupt trap, (3) MID trap and (4) transfer of control between the TMS99000 and an attached processor.

The TMS99000 microprocessors are microcoded machines. Each instruction in the instruction set is executed internally as
a sequence of microinstructions, the length of the sequence varying according to the particular instruction. Each microin-
struction cycle is minimally one machine state in duration but can be extended with wait states by activating the READY
input. The sequence of machine states generated during the execution of a particular instruction depends upon the
opcode and the addressing modes used.

A typical instruction contains an opcode and addressing modes for up to two operands (source and destination). The
execution of an instruction can similarly be divided into two parts: (1) the derivation of the operands from the specified
addressing modes, and (2) the execution of the operation specified by the opcode. Since the same addressing modes are
common to many instructions, the portion of the execution sequence corresponding to each addressing mode can be
listed separately from the basic execution sequences for the various instructions. The listing of these sequences in separate
tables is done in this section for the sake of brevity.

Using this information, the user can reconstruct the entire sequence for a particular instruction by inserting the sequences
corresponding to the addressing modes into the basic sequence given for the instruction. The basic execution sequences
for the various TMS99000 instructions are presented in Table 14. In this table, the sequences corresponding to the source
and destination addressing modes are represented by the symbols <SRC > and <DST >, respectively. These symbols
must be replaced by the appropriate sequences from Tables 15and 16 to reconstruct the entire execution sequence for the
instruction with its particular addressing modes.

An example will help to illustrate this procedure. Consider the following add instruction:
A*R1+,R2

The addressing mode used to locate the source operand is register indirect autoincrement with R1. The addressing mode
used to locate the destination operand is register direct with R2. Table 14 presents a complete list of the machine states
generated during the execution of this instruction. Each state is identified by the bus status code output during that state.
Refer to Table 2 of Section 3 for a list of all bus status codes and their mnemonics. The fetching of the A (add) opcode is not
shown in Table 14; instead, the next to the last state shown is the prefetch of the opcode for the instruction that follows the
add. This convention will be followed throughout Table 17. The prefetch of the opcode for the next instruction is
considered to be part of the execution sequence of the current instruction.

Using the data presented in Tables 18, 19 and 20, the information presented in the example of Table 17 is constructed as
follows. The basic execution sequence for the A (add) instruction is presented at the beginning of Table 18. Here the
execution sequences for the source and destination addressing modes are represented by the symbols <SRC > and
<DST>. These symbols are replaced by the appropriate addressing mode sequences from Table 18 to generate the
sequence seen in Table 17. The symbols Ns and Nd in Table 17 represent the number of machine cycles required to derive
the source and destination operands, respectively, and are replaced by the appropriate numbers from Table 18.

The execution sequences for all other TMS39000 instructions and operations shown in Table 17 are generated in similar
fashion.

TABLE 17— EXAMPLE INSTRUCTION SEQUENCE FOR AN A *R1+,R2

NUMBER
OF
CYCLES

BUS
STATUS
CODE

NAME

READ
OR
WRITE

COMMENT

0110
1001
0110
0001

wWs
AUMS

ws

SOP

R

Fetch source operand from WR1
Internal operation

Increment WR1

Read source operand

0110

WS

Read dest'n operand from WR2

0011
0110

IAQ
WS

S o(n|mm S|

Prefetch next instruction
Write sum to WR2

18

TABLE 18— SOURCE ADDRESSING MODE SEQUENCES

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT

Workspace Register Source Addressing, R

1 I 0110] WS] R I Get source operand from WR Ns =1
Workspace Register Indirect Source Addressing, *R

1 0110 WS R Get source address from WR

1 0001 SOoP R Fetch source operand Ns =2
Workspace Register Indiract Autoincrement Source Address, *R +

1 0110 ws R Get source address from WR

1 1001 AUMS

1 0110 WS w Increment WR contents Ns = 4

1 0001 sSoP R Fetch source operand
Symboalic (Direct) Source Address, @LABEL

1 0010 0P R Get source operand address

1 0001 SoP R Fetch source operand Ns = 2
Indexed Source Address, @TABLE(R)

1 0110 ws R Fetch base address from WR

1 0010 fOP R Fetch index

1 1001 AUMS Ns = 4

1 0001 SOP R Fetch source operand
Workspace Register Destination Address, R

1 I 0110 I WS I R T Get dest'n operand from WR Nd =1
Workspace Register Indirect Destination Address, *R

1 0110 WS R Get dest'n address from WR

1 0100 DOP Fetch dest'n operand Nd =2
Workspace Register Indirect Autoincrement Destination Address, *R +

1 0110 Ws R Get dest’n address from WR

1 1001 AUMS

1 0110 ws w Increment contents of WR Nd =4

1 0100 DOP R Fetch dest'n operand
Symbolic (Direct) Destination Address, @LABEL

1 0010 [lo]4 R Fetch dest'n address

1 0100 DOP R Fetch dest’'n operand Nd =2
Indexed Destination Address, @ TABLE(R)

1 0110 ws R Fetch base address from WR

1 0010 1oP R Fetch index

1 1001 AUMS Nd = 4

1 0100 DOP R Fetch dest’'n operand

79

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES

NUMBER
OF
CYCLES

BUS
STATUS
CODE

NAME

READ
OR
WRITE

COMMENT

A, AB, MOVB, S, SB, SOC, SOCB, SZC, SZCB (See MOV sequence below)

Ns <SRC> Fetch source operand
Nd <DST> Fetch dest’n operand
1 0011 1AQ R Prefetch next instruction
1 0100* DOP* R Save result at dest’'n address
MOV (move word)
Ns <SRC> Fetch source operand
Nd-1 <DST > Get dest’n address, but block fetcht
1 0011 IAQ R Prefetch next instructiont
1 0100* DOP* R Write operand to dest'n address
SLA, SRA, SRC, SRL (if shift countis NOT zero)
1 0110 Ws R Fetch source operand from WR
2 1001 AUMS Series of 2 consecutive AUMS cycles
CNT# 1001 AUMS Repeat shift operation
1 0011 IAQ R Fetch next instruction
1 0110 ws w Save result in source WR
SLA, SRA, SRC, SRL (if shift count is zero)
1 0110 WS R Fetch source operand from WR
1 1001 AUMS
1 0110 WS R Fetch shift count from WR0
2 1001 AUMS Series of 2 consecutive AUMS cycles
CNT# 1001 AUMS Repeat shift operation
1 0011 IAQ R Prefetch next instruction
1 0110 WS w Save result in source WR
ABS (source operand in workspace register)
1 0110 ws R Fetch source operand from WR
1 1001 AUMS
1 0110 Wws R Save result in source address
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
ABS (non-workspace source operand)
Ns-1 <SRC> Develop address of source operand
1 0000 SOPL R Fetch source operand (MPILCK active)
1 1000 AUMSL
1 0001 SOP R Save result in source address
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
Al, ANDI, ORI
1 0110 WS R Fetch source operand from WR
1 0010 IoP R Fetch immediate operand
1 0011 1AQ R Prefetch nextinstruction
1 0110 wWs w Save result in source WR

*Substitute WS bus status code if operand is in workspace register.

1The last state of the di

ion operand derivati

#Number of cycles is equal to shift count.

d by an instruction fetch.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
C.CB
Ns <SRC> Fetch source operand
Nd <DST > Fetch dest'n operand
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
Cl
1 0110 WS R Fetch source operand from WR
1 0010 IOP R Fetch immediate operand
1 0011 I1AQ R Fetch next instruction
1 1001 AUMS
AM, SM (double-word add and subtract)
1 0010 IoP R Fetch second word of instruction
1 1001 AUMS
Ns <SRC> Fetch MSW of source operand
Nd-1 <DST> Develop destination addresst
1 1001 AUMS Operand fetch is blocked
1 1001 AUMS
1 0001* SOoP* R Fetch LSW of source operand
1 0100* DOP* R Fetch MSW of dest'n operand
1 1001 AUMS
1 0100* DoP* w Write LSW of result to dest’'n address
1 0100* DoP* R Fetch MSW of dest’n operand
1 0011 1AQ R Prefetch next instruction
1 0100* poP* w Write MSW of result to dest’'n address
B
Ns—1 <SRC> Get source addresst
1 1001 AUMS No fetch of source operand
1 0011 IAQ R Prefetch next instruction from effective source address
1 1001 AUMS
BIND
Ns <SRC> Fetch source operand
1 1001 AUMS
1 0011 1AQ R Prefetch next instruction from effective source address
1 1001 AUMS
BL
Ns <SRC> Fetch source operand
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0011 1AQ R Prefetch next instruction
1 0110 ws w Save old PC in WR11

*Replace with WS bus status code if operand is in workspace registers.
1Block the read cycle in the last cycle of the source fetch sequence.

81

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
BLSK
1 0110 WS Fetch stack pointer from WR
1 1001 AUMS
1 0110 WS w Decrement stack pointer in WR
1 0010 (o] 4 R Fetch branch address
1 0001 SOP w Push return PC onto stack
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
BLWP
Ns <SRC> Fetch source operand (the new WP)
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0001* SOP* R Fetch new PC
1 1100 WP New WP is output on address lines
1 0110 ws w Save old WP in WR13
1 0110 ws w Save old PCin WR14
1 0110 ws w Save old ST in WR15
1 0011 IAQ R Prefetch next instruction
1 1001 AUMS
CLR, SETO
Ns—-1 SRC> Get source addresst
1 1001 AUMS No fetch of source operand
1 0011 1AQ R Prefetch next instruction
1 0001* SOP* W Save result in source address
COC, czC
Ns <SRC> Fetch source operand
1 0110 ws R Fetch dest'n from designated WR
1 0011 IAQ R Prefetch next instruction
1 1001 AUMS
DIV
Ns <SRC> Fetch source operand
1 1001 AUMS
1 0110 WS R Fetch MSW of dest’'n operand from WR
IFOVERFLOW, GO TO LABEL 1 Check for divide by zero
1 0110 WS R Fetch LSW of dest’'n operand from WR + 1
4 1001 AUMS Series of 4 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Is divisor <MSW of dividend?
18 1001 AUMS Series of 18 consecutive AUMS cycles
1 0110 WS w Save quotient in dest'n WR
1 0011 1AQ R Prefetch next instruction
1 0110 WS W Save remainder in dest'n WR + 1
LABEL 1: (GO HERE IF OVERFLOW)
1 0011 I1AQ R Prefetch next instruction
1 1001 AUMS

*Substitute WS bus status code if operand is in workspace register.

tBlock the read in the last cycle of the source fetch sequence.

82

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
DIVS
Ns <SRC> Fetch source operand
1 1001 AUMS
1 0110 WS R Fetch LSW of dest'n operand from WR1
1 1001 AUMS
1 0110 ws R Fetch MSW of dest’n operand from WR0
3 1001 AUMS Series of 3 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Check for divide by zero
3 1001 AUMS Series of 3 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Is |divisor| < |dividend|?
20 1001 AUMS Series of 20 consecutive AUMS cycles
IF OVERFLOW, GO TO LABEL 1 Does unsigned quotient overflow its 15-bit boundary? If so,
set ST4.
1 0110 ws w Save quotient in WR0
1 0011 1AQ R Prefetch next instruction
1 0110 WS W Save remainder in WR1
LABEL 1: (GO HERE IF OVERFLOW)
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
DEC, DECT, INC, INCT, INV, NEG, SWAPB
Ns <SRC> Fetch source operand
1 0011 1AQ R Prefetch next instruction
1 0001* soP* R Save result in source address
LREX, CKOF, CKON, RSET (external instructions)
4 1001 AUMS Series of 4 consecutive AUMS cycles
2 1011 /0 w 1/0 cycle is minimum 2 states long
1 1101 ST Output new status on address bus
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS
IDLE (external instruction)
3 1001 AUMS Series of 3 consecutive AUMS cycles
2 1011 i/0 w 1/0 cycle is minimum 2 clocks long
1 0011 IAQ R Fetch next instruction
1 1001 AUMS
LDCR (parallel load CRU)
Ns <SRC> Fetch source operand
1 0110 ws R Get CRU base address from WR12
2 1001 AUMS Series of 2 consecutive AUMS cycles
2 1001 1/0 w 1/0 cycle is minimum 2 states long
1 0011 IAQ R Fetch next instruction
1 1001% AUMS$ Increment WR12 if necessary

*Substitute WS bus status code if operand is in workspace register.
$Substitute WS bus status code and a write cycle if WR12 is post-incremented by 2.

83

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
LDCR (serial load CRU)
Ns <SRC> Fetch source operand
1 0110 ws R Fetch CRU base address from WR12
4 1001 AUMS Series of 4 consecutive AUMS cycles
2* CNTt 1011 1/0 w 1/0 cycle is minimum 2 states long
1 0011 IAQ R Fetch next instruction
1 1001 AUMS
LDD AND LDS
1 1001 AUMS
1 1001 AUMS Update internal LDD and LDS flags
1 1001 AUMS
MID trap follows
LI
1 0010 [[0] 4 R Fetch immediate operand
1 0011 I1AQ R Fetch next instruction
1 0110 ws w Save operand in specified WR
LIM!
1 0010 0P R Fetch immediate operand
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0011 IAQ R Prefetch next instruction*
1 1001 - AUMS
LST
1 0110 wWs R Fetch operand from WR
3 1001 AUMS Series of 3 consecutive AUMS cycles
1 1101 ST Output new status on address bus
1 0011 IAQ R Fetch next instruction
1 1001 AUMS
LWP
1 0110 ws R Fetch operand from WR
1 0011 IAQ R Fetch next instruction
1 1100 WP Output new WP on address bus
LWPI
1 0010 0P R Fetch immediate operand
1 0011 IAQ R Fetch next instruction
1 1100 WP Output new WP on address bus
MPY
Ns <SRC> Fetch source operand
1 0110 WS R Fetch dest’n operand from WR
18 1001 AUMS Series of 18 consecutive AUMS cycles
1 0110 WS w Save MSW of resultin WR
1 0011 1AQ R Fetch next instruction
1 0110 ws w Save LSW of resultin WR + 1

tThe number of cycles is specified in the count field of the opcode.
*The new mask controls interrupts.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
MPYS
Ns <SRC> Fetch source operand
1 1001 AUMS
1 0110 WS R Fetch dest'n operand from WR
19 1001 AUMS Series of 19 consecutive AUMS cycles
1 0110 ws w Save MSW of resultin WR
1 0011 1AQ R Fetch next instruction
1 0110 WS w Save LSW of resultin WR + 1
RTWP (return from subroutine in main memory)
1 1001 AUMS
1 0110 ws R Fetch new PC from WR14
1 0110 WS R Fetch new ST from WR15
1 0110 ws R Fetch new WP from WR13
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1101 ST Output new ST on address bus
1 0011 I1AQ R Prefetch next instruction
1 1100 wp Output new WP on address bus
RTWP (return from using opcodes > 380, >382, or >384
5 1001 AUMS Series of 5 consecutive AUMS cycles
1 0011 I1AQ R Prefetch next instruction
1 1001 AUMS
Jump Instructions
1 1001 AUMS
1 0011 1AQ R Prefetch next instruction
1 1001 AUMS

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
SLAM, SRAM
1 0010 10P R Fetch second word of opcode
1 1001 AUMS
Ns <SRC> Fetch MSW of source operand
IF SHIFT COUNT IS ZERO, GO TO LABEL 1
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0001* sop* R Fetch LSW of source operand
2 1001 AUMS Series of 2 consecutive AUMS cycles
CNTt 1001 AUMS Repeat shift operation
1 0001* SOP* w Save LSW of source operand
1 0011 1AQ R Fetch next instruction
1 0001* SOP* w Save MSW of source operand
LABEL 1: (GO HERE IF SHIFT COUNT IS ZERO)
1 1001 AUMS
1 0110 ws R Fetch shift countin WR0O
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0001* SOP* R Read LSW of source operand
1 1001 AUMS
IF SHIFT COUNT IN RO IS ZERO, GO TO LABEL 2
1 1001 AUMS
CNTt 10011 AUMS1t Repeat shift operation until done
1 0001* SoP* w Write LSW of result to source address
1 0011 1AQ R Fetch next instruction
1 0001* SOP* w Write MSW of result to source address
LABEL 2: (GO HERE IF SHIFT COUNT IN WRO0 IS ZERO)
1 1001 AUMS
1 0001* SOP* w Write LSW of result to source address
1 0011 1AQ R Prefetch next instruction
1 0001* SOP* w Write MSW of result to source address

*Substitute WS bus status code if op disin
tNumber of cycles is equal to shift count.

P egl

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER
OF
CYCLES

BUS
STATUS
CODE

NAME

READ
OR
WRITE

COMMENT

STCR (parallel store CRU)

Nst

NOTE: SOURCE OPERAND IS NOT FETCHED IF WORD TRANSFER

Fetch source operand if byte transfer

1 0110 ws R Read |/0 base address from WR12
2 1001 AUMS Series of 2 consecutive AUMS cycles
2 1011 110 R 1/0 cycle is minimum 2 states long
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 00011 SOPt w Save result in source address
1 0011 1AQ R Prefetch next instruction
1 1001t NOPt Increment WR12 if necessary
STCR (bit-serial store CRU)
Nst Fetch source operand if byte transfer
1 0110 ws R Fetch 1/0 base address from WR12
5 1001 AUMS Series of 5 consecutive AUMS cycles
28CNT* 1011 1/0 R 1/0 read takes min. 2 states/bit
3 1001 AUMS Series of 3 consecutive AUMS cycles
IF8OR 16 BITS TRANSFERRED, GO TO LABEL 1
? 1001 AUMS Repeat cycle 8-N for byte or 16-N for word, where N =
number of bits
LABEL 1:
1 0011 1AQ R Fetch next instruction
1 00018 SOP§ w Save result in source address
SBO, SBZ (single-bit CRU instructions)
1 1001 AUMS
1 0110 WS R Fetch 1/0 base address from WR12
1 1001 AUMS
2 101 1/0 w 1/0 cycle is minimum 2 states long
1 0011 1AQ R Fetch next instruction
1 1001 AUMS

*Number of cycles is equal to count field from STCR opcode.

tSubstitute WS bus status code if WR12 is post-incremented by 2.

$if source operand is word rather than byte, fetch of operand is replaced by AUMS cycle.

§Substitute WS bus status code if operand is in workspace register.

87

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT

TB

1 1001 AUMS

1 0110 ws R Fetch I/0 base address from WR12

1 1001 AUMS

2 1011 1/0 R 1/0 cycle is minimum 2 states long

1 0011 1AQ R Fetch next instruction

1 1001 AUMS
TMB, TCMB, TSMB (source operand in workspace register)

1 0010 0P R Fetch second word of instruction

1 0110 Wws R Fetch source operand from WR

2 1001 AUMS Series of 2 consecutive AUMS cycles

Bit displacementt 1001 AUMS Shift target bit into position

2 1001 AUMS Series of 2 consecutive AUMS cycles
16-bit displacement® 1001 AUMS Restore shifted bit to original position

1 1001 AUMS

1 0110 ws w Write result to WR

1 0011 1AQ R Fetch next instruction

1 1001 AUMS
TMB, TCMB, TSMB (non-register source operand)

1 0010 0P R Fetch second word of instruction

Ns-—1 <SRC> Get source address (see next cycle)
1 0000 SOPL R Fetch source with MPILCK active
2 1000 AUMSL Series of 2 consecutive AUMSL cycles
Bit displacementT 1000 AUMSL Shift target bit into position

2 1000 AUMSL Series of 2 consecutive AUMSL cycles
16-bit displacement ¥ 1000 AUMSL Restore shifted bit to original position

1 1000 AUMSL

1 0001 SOP w Save results and deactivate MPILCK

1 0011 1AQ R Prefetch next instruction

1 1001 AUMS

t Number of cycles is equal to the bit number plus one.
¥ Number of cycles is equal to 16 minus the bit number.

TABLE 19 — INSTRUCTION EXECUTION SEQUENCES (CONTINUED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
X
Ns <SRC> Fetch source operand (target opcode)
1 1001 AUMS
Execute target opcode
STST, STWP
1 1001 AUMS
1 0011 IAQ R Fetch next instruction
1 0110 WS W Save result in WR
XOP
Ns-1 <SRC> Get source operand address (see next)
1 1001 AUMS Block fetch of source operand
1 101 ST Output all zeros on address bus
1 1001 AUMS
1 0101 INTA R Fetch new WP from vector
1 1001 AUMS
1 1100 WP Output new WP on address bus
1 1001 AUMS
1 0110 WS w Save source address in WR11
1 0101 INTA R Fetch new PC from vector
1 0110 ws w Save old WP in WR13
1 0110 WS w Save old PC in WR14
1 0110 ws w Save old ST in WR15
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
XOR
Ns <SRC> Fetch source operand
1 0110 WS R Fetch dest'n operand from WR
1 0011 IAQ R Fetch next instruction
1 0110 WS w

TABLE 19 - INSTRUCTION EXECUTION SEQUENCES (CONCLUDED)

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
EVAD (This instruction is available only in Macrostore)
Ns <SRC>* Fetch source operand
1 1001 AUMS
1 1001 AUMS Save Macrostore PC in WR4 of Macrostore
1 1001 AUMS Fetch user’s PC from WR 14 of Macrostore
2 1001 AUMS Series of 2 consecutive AUMS cycles
IF TARGET OPCODE SOURCE ADDRESS IS *R+, GO TO LABEL 1
Ns-1 <SRC> Get source address for target word
GO TO LABEL 2
LABEL 1:
1 0110 WA R Fetch source address from user's WR
2 1001 AUMS Series of 2 consecutive AUMS cycleé
1 1001 AUMS Save address of user's WR in WR10
1 1001 AUMS
LABEL 2:
IF TARGEY OPCODE DESTINATION ADDRESS IS *R+, GO TO LABEL 3
Nd-1 <DST> Get dest'n address for target word
GO TO LABEL 4
LABEL 3:
1 0110 WS R Fetch dest’n address from user’s WR
1001 AUMS Save address of user's WR in WR9
LABEL 4:
3 1001 AUMS Series of 3 consecutive AUMS cycles
1 1001 AUMS Save updated user PC in WR14 of Macrostore
1 1001 AUMS Restore Macrostore PC
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1001 AUMS Save dest’'n address in WR7 of Macrostore
1 1001 AUMS Fetch next instruction
1 1001 AUMS Save source address in WR8 of Macrostore

*All cycles output AUMS bus status code.

TABLE 20 — INTERRUPT AND MACROSTORE TRAP SEQUENCES

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT
INTERRUPTS) _ o
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 1101 ST Output all zeros on address bus
1 0101 INTA R Fetch new WP from interrupt vector
2 1001 AUMS Series of 2 consecutive AUMS cycles
1 0101 INTA R Fetch new PC from interrupt vector
1 1100 WP Output new WP on address bus
1 0110 ws w Save old WP in WR13
1 0110 wSs w Save old PCin WR14
1 0110 ws w Save old ST in WR15
1 0011 1AQ R Fetch next instruction
1 1001 AUMS
TRAP TO MACROSTORE (MID trap)
1 1001 AUMS
1 1110 MID Check for attached processor
1 1001 AUMS
1 1001 AUMS Save contents of main IR in WRS
1 1001 AUMS
1 1001 AUMS f MID trap is due to 2nd word of instruction, save PC-2in WR14
1 1001 AUMS Save LDS and LDD flags and first word of 32-bit opcode in WR3|
1 1001 AUMS Read Macrostore PC from vector
1 1001 AUMS
1 1001 AUMS Save user's WP in WR13
1 1001 AUMS Save user’s PC in WR14
1 1001 AUMS Save user’s ST in WR15
2 1001 AUMS Series of 2 consecutive AUMS cycles

a1

TABLE 21 — ATTACHED PROCESSOR INTERFACE SEQUENCES

NUMBER BUS READ
OF STATUS OR
CYCLES CODE NAME WRITE COMMENT

99000 TRANSFERS CONTROL TO ATTACHED PROCESSOR (MID trap)

1 1001 AUMS

1 1110 MID Check for attached processor

2 1001 AUMS Series of 2 consecutive AUMS cycles

1 1101 ST Output all zeros on address bus

1 0101 INTA R Fetch WP from level-2 vector

3 1001 AUMS Series of 3 cor tive AUMS cycl

1 1100 WP Output new WP on address bus

1 0110 ws w Save old WP in WR13

1 0110 ws w Save old PC in WR14

1 0110 ws w Save old ST in WR15

1 111 HOLDA Release bus to attached processor
ATTACHED PROCESSOR RETURNS CONTROL TO 99000

1 1M HOLDA Last state of hold cycle

1 0110 ws R Fetch new PC from WR14

1 0110 Wws R Fetch new ST from WR15

1 0110 WS R Fetch new WP from WR13

1 1101 ST Output new ST on address bus

1 0011 1AQ R Fetch next instruction

1 1100 WP Output new WP on address bus

ADVANCE INFORMATION

This document contains information on 92

a new product. Specifications are subject
to change without notice.

11.
1.1

TMS99105A/TMS99110A PRELIMINARY ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE
NOTED)t

Supply voltage, Vo (seeNote 1) i it i e e -0.3t07V
AlLINPUEVOIAGES o e e e e e, -0.3to20V
OULPUL VOILAEES . . . o . ottt it ettt et et e et e e e e e e -0.3to7V
Continuous power dissipationttt e e e e e e 1000 mW
Operating free-air tomperatureot ittt ittt ettt et ettt e 0°Cto70°C

1 Stresses beyond those listed under’’Absolute Maximum Ratings'’ may cause permanent damage to the device. This is a stress rating only and func-
tional operation of the device at these or any other conditions beyond those indi d in the ‘R ded Operating Conditions’’ section of this
specification is not implied. Exposure to absol i rated ditions for extended periods may affect device reliability.

Note 1: All voitage values are with respect to Vgg

11.2 RECOMMENDED OPERATING CONDITIONS
PARAMETER MIN NOM MAX | UNITS
Supply voltage, Vce 4.75 5 5.25 v
Supply voltage, Vgg - (o] \")
High-level input voltage, Vi (all inputs except CLKIN) 2 vVee+1 \4
High-level input voltage, V|4 (CLKIN) 3.5 Vee+1 \
Low-level input voltage, Vj_ (all inputs except CLKIN) -1 0.8 v
Low-level input voltage, V)i (CLKIN) 0.2 \'
High-level output current, Ig (All outputs) 400 uA
Low-level output current, Io (all outputs) 2% mA
Operating free-air temperature, Ta (0] 70 °C

$Output current of 2 mA is sufficient to drive 5 low-power Schottky TTL loads or 10 advanced low-power Schottky TTL loads (worst case).

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED FREE-AIR TEMPERATURE (UNLESS

11.3
OTHERWISE NOTED)
PARAMETER TEST CONDITIONS ' MIN TYPF MAX |UNIT

VOH High-level output voltage Ve =MiN, loL=MAX 2.4 \
Low-level output voltage

VOL) except BST(1-3), RIW, MEM Vec=MIN. loL=MAX 08V
Low-level output voltage,

VoL (gsT(1-3), RW, MEM Vec=MIN. loL=MAX 06| Vv
Tristate (high-impedance) output Vp=2.4V 20

I =

0 current (off) Vee=MAX Vo=04V -20 HA

Iy Input current Vi=Vgs to Vcc 20 | pA

Icc Supply current Vece =MAX 120 mA
Input capacitance (all inputs '

c 15 F
! except address/data lines) P
Cpe Address/data line capacitance f=1 MHz, all other pins at 0 V 25 pF

Output capacitance (except
Co address/data lines) 10 18 | pF

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$All typical values are at Vo = 5V, Ty = 25°C.

1.4

141

CLOCK CHARACTERISTICS

The TMS99000 has an internal oscillator and 4-phase clock generator controlled by an external crystal or resistor-capacitor
combination. Alternatively, the user can directly inject a frequency source into the XTAL1 input. The period of the
frequency source must be one-fourth the desired machine state time.

internal Oscillator

The internal oscillator is enabled by connecting a crystal across XTAL1 and XTAL2. The machine state time, t,, is four
times the crystal oscillator period, 1/f,. The crystal should be a fundamental series-resonant type. Figure 33 presents the
circuit configuration for this mode of operation.
93 ADVANCE INFORMATION
This document contains information on
a new product. Specifications are subject
to change without notice.

XTAL1/CLKIN

TMS99105A
TMS99110A

XTAL2

[

c1

[N

crystal

Cc2

NOTES: 1. The crystal should be a fundamental seriesresonant type operating at four times the machine state frequency.
2. C1and C2represent the total capacitance on these pins, including strays and parasitics.

FIGURE 33 - INTERNAL OSCILLATOR

PARAMETER

TEST CONDITIONS MIN TYP MAX |UNIT
Crystal frequency, fx 0-70°C 24 MHz
C1,C2 0-70°C 5 pF
11.4.2 External Clock
An external clock of frequency f, may be connected to the XTAL1/CLKIN in place of a crystal or RC combination. The
period of the CLKOUT output signal will be 4/f,. Figure 34 shows the circuit configuration when an external clock is used.
PARAMETER MIN NOM MAX | UNIT
_@At External source frequency 12 24 | MHz
tch CLKIN cycle time 41.25 83.33 | ns
tr CLKIN rise time (see Note 1) 4 10 ns
¢ CLKIN fall time (see Note 1) 4 10 ns
twH1 CLKIN high-leve! pulse width teg/2-trg ns
twi1 CLKIN low-level pulse width tea/2-tg ns

Note 1: CLKIN rise and fall times are a function of V,,; and V;, . For the times shown the Vy and V) levels are as given under *‘Recommended Operating Conditions.” If a
maximum 5 ns rise and fall time can be achieved, then the V;,; and V)_leveis may be standard levels of 2.4 V and 0.4 V respectively.

+5V

| XTAL1
TMS99105A

TMS99110A
XTAL2

Crystal Oscillator ne

FIGURE 34 — EXTERNAL OSCILLATOR

ADVANCE INFORMATION
This document contains information on 94
a new product. Specifications are subject
to change without notice.

15 TIMING REQUIREMENTS OVER RECOMMENDED OPERATING CONDITIONS
PARAMETER MIN NOM MAX | UNIT
_t“ﬂ READY setup time prior to falling edge of CLKOUT 35 ns
thi READY hold time after falling edge of CLKOUT (o] ns
 tgu2 Data setup time prior to falling edge of CLKOUT 30 ns
th2 Data hold time after falling edge of CLKOUT 0 ns
tgu3 INTREQ, RESET, APP setup time prior to falling edge of CLKOUT 40 ns
‘ tsud HOLD setup time prior to falling edge of CLKOUT 80 ns
th3 INTREQ, RESET, APP, HOLD hold time after falling edge of CLKOUT 15 ns
| tacc Access time, address valid to data valid at data setup time 3tc2/4-40 ns
tded RD low until valid data required 1c2/2-63 ns
11.6 SWITCHING CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tc2 CLKOUT cycle time (f(x) = crystal freq) 41c1 or 4/fx ns
12 CLKOUT rise time 10 15 ns
12 CLKOUT fall time 10 15 ns
twH2 CLKOUT high-level pulse width tc2/2-tr2 ns
| twl2 CLKOUT low-level pulse width tc2/2-t2 ns
| twH3 _ ALATCH pulse width high tc2/4-tr2 ns
td1 Delay time, reference line to ALATCH low tc2/4+13 ns
| td2 Delay time, ref line to i\iTCH high 1 15 ns
t43 Delay timﬂf line to MEM, BST, R/W 13 15 ns
address, PSEL valid
taa .Dela'y time, ALATCH low to address, PSEL 10 15 20 ns
invalid
tdz1 Delay time, ALATCH to address hi-z 20 30 35 ns
tds Delay time, ref line to start of WE invalid CL = 100 pF tc2/4 ns
td6 Delay time, ALATCH low to start of RD invalid (See Figure 35) 10 24 30 ns
t47 Delay time, CLKOUT low to WE, RD high 15 30 ns
tds Delay time, ALATCH low to data valid 20 30 35 ns
| td9 Delay time, ref line to WE valid tc2/4+13 tc2/4+20 ns
td10 Delay time, WE/IOCLK high to data invalid tc2/4 —30 ns
¢ Delay _ti_m_e, CliOUT low to data, PSEL, o/t +5 ns
411 ggT, MEM, RIW invalid c2
Delay time CLKOUT low to WENOCLK, RD |
td12 L 0 ns
inactive
tdrde Delay time ref line to RD low tc2/4 +40 ns
tdz2 Delay time, ref line to R/W hi-z tc2/4+25 ns
tdz3 Delay time, ref line to ALATCH hi-z tc2/4+25 ns
td(ray) Delay time, ref line to ALATCH invalid tc2/4 ns
Delay time, ALATCH low to address, MEM,
‘413 Bst, RD, WE, RIW invalid 10 ns
ta14 Tlazlime Ef line to address, MEM, BST, 102/4+20 ns
RD, WR, R/W invalid

ADVANCE INFORMATION
95 This document contains information on
a new product. Specifications are subject
to change without notice.

+Vcc

Test point 2.4K

Diode
From output

undertest O _L ‘ ¢
T

C.
24K

FIGURE 36 — SWITCHING TIMES LOAD CIRCUIT

] ltfd,-ﬂ b-..’

Diodes

trp~od b= 1|
CLKIN '|)
| }o— tf2 | let2

! I
| :4 twlL2 >l

CLKOUT A I\
: | !
i |- twH2 >|
| |
(|
| tc2 +|

NOTES: (1) There is no time relationship implied or specified between the input clock and the output clock.

(2) Al timing reference points are 10% and 90% points.

FIGURE 36 — CLOCK TIMING PARAMETERS

COMMON SIGNALS
n clock cycles
Io—tczl4-o| I' 'l (n— 1 wait states)
| 4k
CLKOUT-\ | f 1

tdz—Jl“F—t-dr—"

|1 fo-tr2
ALATCH ﬂ |1 -‘I
WHia--l l-—tfz ‘r"’:"'sﬂ
o, XRXXXXAXXXXKXX T

1

—.; ""d3 | _i..‘ l*—th1
I |
BST(1-3), | — ' 1
MEM,R/W [} valid code |
MEMORY READ CYCLE : le- tacc -{ 11 |

! l| | b | Li-—tcn 1——-—;‘
- th2 —
s tda ! tsu2 '

32,?:/] x address g—- i~ Z s’ data x
T tH3
| L—tde-ﬂ [+ tded-+{ l td7~o4
RD] I [| l f
{

e

tnlzie ¢|’ th-lz
WE / I 1 |
|

tds-'-—-|
t
MEMORY WRITE CYCLE | —td11——=f
r—o[-tdS | (! "‘d10 J
Sg?Aﬂl | address g valid data k

3l

3
iNy N

|-
-
Qo
©

—~
Ql
r_;tds .l fo—st-ta12

INTERNAL ALU CYCLE | |

gz-?:l Ii undefined x undefined x

RD,

3
AN

|
reference
line

FIGURE 37 — MEMORY AND INTERNAL CYCLE TIMING PARAMETERS

All timing reference points are 10% and 90% points.

COMMON SIGNALS

I
CLKOUT -'K |

jo-tc2/4 -+

TR/

tdz"'{ [~ 12

n clock cycles
!‘_—'hn wait states)

|
ALATCH | ' ‘ | /
twH3 +——-l |
| ‘ 't—tsu1 —
XOOOOOOOOOOONOOOOOOOOODOOXX XXX XY DOOOOOOX
READY t A"k‘A’:’A‘A‘A’A’A’t‘t"”‘t‘t‘t :‘A’A’A’t‘A’A ”"".‘A’d‘b’d’t’d‘a‘t" - l‘A’A“’A‘A""’
:.-q- td3 : : th1—-= jo—
1
BST(1-3) -
MEM.R/'W | i { valid code | x
1
| | bo—td11—e|
1/0 INPUT CYCLE | t—‘d“ ! I th2 = le—
x o e ! te-touz— |
ADDR/ . "/
o O W %X
1
td3 —lest trde ol ' t-—o'—td7
— ' . [e———"tc2 +tded [
RD | |
t
: a6 —!-——-‘l | —l fe-tar2
WE/IOCLK | | | i
1 Jo—td11
/0 OUTPUT CYCLE { | | i1 1
[[~tda— | ot
32?:/ | address x: | valid data] i ?
Ll le—tqg —i | [
1> td3] r
RD | | I |
l ! p——.‘- td7
[o —
| |
WE/IOCLK |] Q' | f
La, te2 P} |
r CL —;._ . -4 .
d5
b reference -~ L-t‘“ 2

line

line

FIGURE 38 — I/O CYCLE TIMING PARAMETERS

All timing reference points are 10% and 90% points.

CLKOUT l / k
I tsui!“"_"l
INTREQ, l l th3

1c(0-3), YOOOOOOOOOOOOON0 m R
RESET, ""““‘.‘.A."A‘A’A‘A’A’A’A’A’A‘[' /‘t’?'A’

NMI,APP | |
' le—- |
1 su4—"
oo \YOROOOOOOOO0 | I
A’A’A‘A.A.A’A"’A.A.‘.A’A’-
reference

line

NOTE: The CLKOUT edge at which each of the input signals is sampled is defined in the section pertaining to that signal.

FIGURE 39 — INTERRUPT, HOLD AND APP TIMING PARAMETERS

‘[: tc2 ﬁ;
CLKOUT : / \ | /
f——tg,3——l

I [
ALATCH ﬂ / !&*‘ hi-z e
A t —.'
BST(1-3), J I-—tdz1-—.| rav
MEM, RD, T | hix
WE/CRUCLK, _ _1/ o ta1 3o} -
ADDRESS, R/W
e tg14——f l

T

;* tdZZ ﬂ
reference reference
line line

FIGURE 40 — HOLD CYCLE TIMING PARAMETERS
All timing reference points are 10% and 90% points.

CLKOUT

ALATCH hi2 |
|
l
ld— ta -DI
|
MEM, BST(1-3), . | ’
WE/IOCLK, hi-2 0 H
RD, R/W, | H valid
ADDRESS | X
1
| i
"- tas -DI
|
reference
line

FIGURE 40 — HOLD CYCLE TIMING PARAMETERS (CONCLUDED)

All timing reference points are 10% and 90% points.

100

12. TMS99000 MECHANICAL SPECIFICATIONS

12.1 TMS99105A/TMS99110A — 40-PIN CERAMIC PACKAGE
e 51,31 (2.020) MAX
® — ®
INDEX
DoT '
13 [
® -®
, 15,240,254
10.600:0.010) '| 0,508 (0.020) MIN .
W0 IO (O COEF TOC (O (O (OO IO CEY LN G OO (LR O (i (O JUf | 4.70 (0.185) mAX
SEATING 4
I X

0,254 (0.010) NOM—JL—

0,457+0,076
(0.018+0.003)

W

|—-0.813 (0.032) NOM

j— 1,27+0,508
(0.050 + 0.020)

!

PIN SPACING 2,54 (0.100) T.P.
(See Note a) 1,27+ 0,254

(0.050+0.010)

NOTES: a. Each pin centerline is located within 0,254 (0.010) of its true longitudinal position.

b. All linear di

hati

are in milli

and p lly in inches. Inch dimensions

govern.

12.2 TMS99105A/TMS99110A - 40-PIN PLASTIC PACKAGE
53.09 (2.090) MAX
40) &
Mool
EITHER)
INDEX
| SN NN S SNND B ASNNS NN) WS b SN U) SN) SN) U) AN | SN J N) N SN) SAS))
¢ 15,240,254 ¢ @ >
{0.600+0.010)
l’ ‘] 0,508 (0.020)
MINg ¥

& — SEATING PLANE—f—
90
0.4570,076
0.279 + 0,076
0011 = o.oos)_‘\r 00180003 1"

5,08 (0.200) MAX
3,17 (0.125) MIN
2y

0,838 (0.033) MIN

_‘l —
1.62 (0.060) NOM

PIN SPACING 2,54 (0.100) T.P.

2.41 (0.095)
(See Note a) 1,40(0.055)

NOTES: a. Each pin comorﬁno is located within 0,254 (0. 010) o' Ils true longkudlnﬂ pomlon

b. Al linear d

are in milli and p

govern.

y in i Inch d

101/102

APPENDIX A
TMS99105A SUPPLEMENT

103

A1

TMS99105A DESCRIPTION

The TMS99105A is the basic member of the TMS39000 microprocessor family. The TMS99105A offers the same
features as described in Sections 1 through Section 12. The only feature not implemented on the TMS99105A is on-
chip Macrostore. However, external Macrostore may be utilized for user-implemented functions and instructions.

TMS99105A MACROSTORE OPERATION

The TMS99105A may utilize external Macrostore by placing the TMS99105A in prototyping mode (see Section
7.2.4.2). If no external Macrostore is to be implemented in the system, it is recommended that the TMS99105A be
placed in baseline mode (Section 7.2.4.3). If no external Macrostore is implemented on the TMS99105A and the stan-
dard mode or prototyping mode is selected, the occurrence of a MID opcode will result in indeterminate operation.
This is due to the fact that a Macrostore vector will occur to non-existent Macrostore memory (see Section 7.3)
and potentially cause a system lockup.

104

APPENDIX B
TMS99110A SUPPLEMENT

105

B.1

B.2

TMS99110A DESCRIPTION

The TMS99110A 16-bit microprocessor is a powerful member of the TMS99000 family that implements 12 single
precision floating point instructions, 2 memory mapper control instructions and a 32 X 32 signed integer multiply in-
struction. These powerful instruction set enhancements are implemented via the on-chip Macrostore memory space.
They are additions to the instruction set described in Section 10.

TMS99110A MACROSTORE OPERATION

With the instruction set extensions of the TMS99110A implemented in Macrostore, it is required that the
TMS991 10A be generated in standard mode (see Section 7.2.4.1). If either the prototyping mode or baseline
mode of operation is selected, the instruction set extensions described in this section will not be operational.

TMS99110A INSTRUCTION SET EXTENSION SUMMARY
The TMS99110A implements the instructions listed Table B.1 in addition to those listed in Section 10. Note that these

instructions are operational only when the TMS99110A is operated in the standard mode.

TABLE B.1 — TMS99110A INSTRUCTION SET EXTENSION SUMMARY

MNEMONIC DESCRIPTION OPERATION*
LDD Long Distance Source Update internal LDD flag
LDS Long Distance Destination Update internal LDS flag
AR Add Real FPAC +(SA,SA +2) = FPAC
SR Subtract Real FPAC - (SA,SA+2)— FPAC
MR Multiply Real (SA,SA+2) * FPAC =~ FPAC
DR Divide Real FPAC / (SA,SA +2) = FPAC
LR Load Real (SA,SA +2) = FPAC
STR Store Real FPAC — (SA,SA +2)
NEGR Negate Real — FPAC = FPAC
CR Compare Real (SA,SA +2) — (DA,DA +2) set status
CIR Convert Integer to Real Convert (SA) = FPAC
CER Convert Extended Integer to Real Convert FPAC = FPAC
CRI Convert Real to Integer Convert FPAC to integer = FPAC
CRE Convert Real to Extended Integer Convert FPAC to ex. integer = FPAC
mmt Multiply Multiple (32 x 32) (SA,SA+2) * (DA,DA+2) =
(DA,DA-2,DA+4,DA+6

*Floating point accumulator (FPAC) is designated as workspace registers 0 and 1 of the current workspace.

TMM is not a floating point operation but is an addition to the TMS991 10A instruction set.

B.3 TMS99110A MEMORY MAPPER CONTROL INSTRUCTIONS
The LDD and LDS instructions are provided for use in controlling a 16-register memory map file. These instructions are
implemented on the 99110 only.
These mapper instructions are intended to support the use of the TIM39610 (SN74LS610) memory mapper (see the
SN74LS610 data sheet).
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: [OPCODE [0o 0 0 0 0 0 |
OPCODE
MNEMONIC 0123 4567 89 MEANING
LDS 00000111 10 Long Distance Source
LDD 00000111 11 Long Distance Destination

The LDD and LDS instructions permit data to be accessed through the user’s memory map while in the supervisor
mode. The PSEL pin will be inverted during the source (if LDS) or destination (if LDD) operand access cycles of the
following instruction, unless the addressing mode is register direct. When register direct addressing (T§ = O or
Tp = O) is used for the source or destination operand fetch, PSEL is not altered.

106

Listed below are the effects when an LDD or LDS instruction foliows an LDS or LDD instruction. In general, only the first
two cases, LDD followed by LDS or LDS followed by LDD, are considered useful:

LDD—LDS: Both the source and destination memory cycles of the instruction that follows are long distance.

LDS—LDD: Same as LDD—LDS.
LDS —LDS: The first LDS has no effect; the source memory cycles of the instruction that follow are long distance.

LDD -LDD: The first LDD has no effect; the destination memory cycles of the instruction that follow are long
distance.

Interrupts are inhibited until after the next instruction.

An attempt to execute a long-distance instruction while in user mode (ST7 = 1) will be flagged as a privileged opcode
violation.

The LDS or LDD instruction has no effect if the source or destination addressing mode of the target instruction is
workspace register direct.

If the instruction to be long distanced is interruptible, the long distance information can be recovered upon return from the
interrupt. An example of an interruptible instruction is a block move with multiple source and destination operands to
which long distancing is applied. Typically, a checkpoint or loop count register keeps track of the number of moves
completed. If long distancing is not applied to either operand, the normal procedure, when an interrupt occurs, is to store
the loop count and other pertinent instruction status in a checkpoint register and decrement the program counter. After
the interrupt is serviced, execution continues from where it stopped. After the instruction is completed, the check point
register is set to — 1 or some other value to indicate that the instruction will be executed for the first time when it is next
encountered.

Several features have been incorporated into the LDD and LDS instructions to facilitate recovery from an interrupted
instruction when an LDD and/or an LDD instruction is active. Both the LDD and the LDS instructions save the address
plus 2 (main memory) of the first LDD or LDS in a possible sequence of LDD s and/or LDS s. Any Macrostore imple-
mented instructions, which could be long distanced and interrupted, must not accidentally destroy this data.

The three most significant bits of Macrostore location >0006 (WR3 if WP =0) are long distance status information as
shown in the following table. The fact that a long distance instruction is active may be determined by comparing the
contents of >0006 to the value > E000. If the comparison is greater than or equal, then the long distance instruction is not

active.
LONG-DISTANCE
FLAGS
012 MEANING
111 No long distancing in effect
110 Long distance source
101 Will never occur
100 Long distance source*
011 Long distance destination
010 Sequence: 1) LDD, 2) LDS (order is significant)
001 Will never occur
000 Sequence: 1) LDS, 2) LDD, or see Note.t

* A sequence of two LDS instructions has been encountered. If emulating the 990/12 version of LDS, the source operand access of the second LDS is controll-
ed by the first LDS to be long distance.

t The sequence LDS, LDD, LDS has been encountered. If emulating the 990/12 version of LDD and LDS, then the source operand access of the LDD is controll-
ed by the first LDS to be long distance.

The procedure for handling an interruptible instruction is relatively simple due to the information stored in locations > 0004
and >0006 (WR2 and WR3 if WP =0). When an interrupt is detected by using one of the jump on interrupt instructions,
first do all necessary clean-up (such as updating the checkpoint register(s)), and compare Macrostore location >0006 to
value >EQ00 to determine if a long distance instruction was active. If no long distance is active, then load the contents of
WR14 (used to return back to main memory) with the address of the start of the instruction. It may be necessary to save the
contents of WR14 on entering Macrostore for this purpose because WR14 may be modified by executing the Macrostore
routine or by an EVAD instruction. If a long distance is active, then the contents of location >0004 must be decremented
by 2 and then loaded into WR 14 so that after returning with an RTWP (> 0380), the PC will point to the start of the string of
LDDs and/or LDSs. Since an interrupt caused the Macrostore routine to be exited, the interrupt vector will be taken
immediately upon return to main memory via the RTWP instruction. Upon returning back to Macrostore from the
interrupt(s), the PC will be initialized with the value at the time of Macrostore exit thus restarting the Macrostore routine.

107

The long-distance flags are automatically cleared if the exit from Macrostore is performed by executing the >0380
or >0382 form of RTWP but are NOT cleared if >0384 is executed. The long-distance flags are also automatical-
ly cleared after the instruction following the LDD or LDS has been completed. Note that the long-distance flags
have no effect on the PSEL output during Macrostore accesses. PSEL always represents the complemented value
of ST8 when executing out of Macrostore memory space. Note if an SOP or DOP bus status code is output while
in Macrostore, it will cause PSEL to flip if the corresponding LDD or LDS is active.

TMS99110A FLOATING POINT INSTRUCTIONS

The floating point package of the TMS99110A provides floating point operations. The general method is to load the
Floating Point Accumulator (FPAC — RO,R1 of user’s workspace) with one operand, perform the desired operation, and
then store the result found in the FPAC (see examples below). The floating point instructions are only available to the
TMS991 10A when the processor is initialized in standard mode (Section 7.2.4.1). When in prototyping mode, the ex-
ecution of these opcodes will cause a trap to external Macrostore memory space for user defined opcodes. The user
should avoid the use of these opcodes to prevent possible conflicts with future TMS991 10A floating point capability.
When in baseline mode, execution of these opcodes will cause a level 2 illegal opcode interrupt. The following is the
general format of a floating point number:

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15

[San | Exponent 1st Digit 2nd Digit
3rd Digit I 4th Digit 5th Digit 6th Digit

Where:

Sgn - Sign of the number, 0 = Pos, 1 = Neg

Exponent = Exponent (radix 16) of the number +>40 (e.g., for the mantissa to be raised to the 2nd power, expo-

nent would be 2 +>40 = >42)

Digits 1-6 — Mantissa of the number (in hex).

NOTE: The TMS99110A assumes the decimal point place to be prior to the first digit of the i it also that the ber is a floating poir

number and not zero, the first digit is non-zero. If a floating zero is to be represented, the exponent should also be cleared (set to 00). Otherwis
errors could result.

TABLE B.2 — TMS99110A FLOATING POINT FUNCTIONS

AR Add Real to FPAC
SR Subtract Real . to FPAC
MR Multiply Real to FPAC
DR Divide Real to FPAC
LR Load Real into FPAC
STR Store Real ' from FPAC
NEGR Negate Real in FPAC
CR Compare Reals general source/dest
CIR Convert Integer to Real general source to FPAC
CER Convert Extended Integer to Real in FPAC
CRI Convert Real to Integer in FPAC
CRE Convert Real to Extended Integer in FPAC
MM Muitiply Multiple (32 bit Integer x 32 bit Integer = >64 bi general
source/destination

To perform a floating point function, the package uses R0 and R1 of the user’s workspace as a floating point accumulator.
All floating point operations (except for MM and CR) use the FPAC. To load the accumulator use the LR instruction or
manually move the desired operand into R0-R1. To store a result, the STR instruction could be used or the number could
be manually moved out (see example below).

EXAMPLE 1—-ALTERNATE METHODS OF A SIMPLE OPERATION

LR *R4 Load FPAC MOV *R4,R0
MOV @2(R4),R0
AR RS Do Add Read AR RS
STR @ANS Store Answer MOV RO,@ANS

MOV R1,@ANS +2

EXAMPLE 2— A MORE INVOLVED FLOATING POINT SEQUENCE

Suppose the following equation was to be evaluated and a ‘lowest value calculated’ parameter replaced if the result was
even smaller.

V1*(—V2 — CONSTANT)

V3*(V4 +2)

Assuming the parameters were already off in memory some place, the following would be a possible solution.
(Note addressing modes)

u RO,2 LOAD INTEGER 2 INTO FRAC (hi word only)
CIR RO CONVERT IT TO REAL {register direct)
AR *R2 ADD DENOMINATOR TERM V4 (indirect)
MR *R3+ MULTIPLY DENOMINATOR TERM V3 (indirect auto-inc)
STR R8 STORE TEMP RESULT (register direct)
LR @CONST GET CONSTANT (symbolic)
CER CONVERT EXTENDED INTEGER TO REAL (FPAC content)
NEGR NEGATE FPAC CONTENTS
SR @OFFSET(R4) SUBTRACT NUMERATOR TERM V2 (indexed)
MR *R6 MULTIPLY NUMERATOR TERM V1 (indirect)
DR R8 DO THE DIVISION (indirect)
CR RO,@LOW COMPARE VS LOWEST (direct & symbolic)
JGT LOOP JUMP IF NOT LOWER (OR EQUAL)
STR @Low STORE NEW LOWEST (symbolic)
LoorP eee ose (etc.etc.etc.)
B.4.1 Dual-Operand Floating Point Instructions with Multiple Addressing Modes for the Source Operand (991 10A only)
General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: o o o o] OPCODE [15 | 3 B
The addressing mode for the source operand is determined by the Ts field.
Ts S ADDRESSING MODE NOTES
0 0,1,...,15 Workspace register
1 0,1,...,15 Workspace register indirect
2 0 Symbolic
2 12,...,15 Indexed 1
3 12,...,15 Workspace register indirect autoincrement 1,2
NOTES: 1. Workspace register 0 may not be used.
2. The 0 gister is i dby4.
RESULT STATUS
OPCODE COMPARED BITS
MNEMONIC 456789 MEANING TOO AFFECTED DESCRIPTION
AR 1 OQO1 Add Real Yes - 04 FPAC + (SA,SA +2) —-FPAC
SR 110011 Subtract Real Yes 0-4 FPAC - (SA,SA+2) = FPAC
MR 110100 Multiply Real Yes 04 (SA,SA +2) * FPAC —FPAC
DR 110101 Divide Real Yes 04 FPAC / (SA,SA+2) =-FPAC
LR 110110 Load Real Yes 0-2 (SA,SA+2) - FPAC
STR 110111 Store Real Yes 0-2 FPAC —(SA,SA+2)
CIR* 110010 Convert Int to Real Yes 0-4 Real Representation of (SA)—»
FPAC

*CIR is actually a single operand function; however, its operand is pointed to by SA, not necessarily the FPAC.

109

B.4.2 Single-Operand Floating Point Instructions

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Format: [o o o o 1 1 o o o o o o o | opco | o |
OPCODE RESULT STATUS
" COMPARED BITS
MNEMONIC 34 MEANING TOO AFFECTED DESCRIPTION
CRI 00 Convert Real to Int Yes 0-4 Int Representation of FPAC — FPAC|
NEGR 01 Negate Real Yes 0-2 - FPAC - FPAC
CRE 10 Convert Real to Ext Int Yes 04 Ext Int Representation of FPAC —
FPAC
CER 1" Convert Ext Int to Real Yes 0-4 Real Representation of FPAC —>
FPAC
B.4.3 Dual-Operand Floating Point Instructions with Multiple Addressing Modes for the Source and Destination
Operands
General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: 0 0 0 0 0 0 1 1 0 0 0 0 [OPCODE
0 0 0 0] Td | D | Ts [S

The addressing mode for the operands is determined by the Tx fields (X being either D or S).

Tx X ADDRESSING MODE NOTES
0 01,...,15 Workspace register
1 01,...,15 Workspace register indirect
2 0 Symbolic
2 12,...,15 Indexed 1
3 1.,2,...,15 Workspace register indirect autoincrement 1,2
NOTES: 1. Workspace register 0 may not be used.
2. The workspace register is incremented by 4 uniess X — D and opcode —>0010 {MM) in which case the workspace register is ir d by 8.
OPCODE RESULT STATUS
mnm COMPARED BITS
MNEMONIC 2345 MEANING TOO AFFECTED DESCRIPTION
CR 0001 Compare Reals No 04 (SA,SA +2) — (DA,DA +2) Set Sta-
) tus
MM 0010 Multiply Multiple Yes 0-4 (SA,SA+2) * (DA,DA+2) —»
(DA,DA +2,DA +4,DA+6) (Un-
signed, Integer)

110

B.4.4 Status Bit Summary for Floating Point Instructions
The following table summarizes the conditions that set the status register bits during execution of floating point instruc-
tions.
TABLE B.3 — ADDITIONS FOR THE 99110 VERSION
CONDITIONTOSETBITTO 1
BIT NAME INSTRUCTION (OTHERWISE SET TO 0)
STO Logically AR,SR,MR, If resultis not 0
greater than DR,LR,STR,
NEGR,CIR,
CER,CRI,
CRE,CR
MM Cleared unconditionally
ST1 Arithmetic AR,SR,MR If MSB of result = 0,
greater than DR,LR,STR and result is not 0
NEGR,CIR,
CER,CRI,
CRE
CR If (SA) > (DA)
MM Cleared unconditionally
ST2 Equal/TB AR,SR,MR If result = 0
Indicator DR,LR,STR,
NEGR,CIR,
CER,CRI,
CRE,MM
CR If (SA) = (DA)
ST3 Carry out LR,STR,NEGR Unaffected
AR,SR,MR,DR If exponential overflow occurs
MM,CR Cleared unconditionally
CIR,CER Set unconditionally
CRI,CRE If real source cannot be represented if the format selec-
ted
ST4 Arithmetic LR,STR,NEGR Unaffected
Fault AR,SR,MR,DR If exponential over/underflow occurs
MM,CR, Cleared unconditionally
CIR,CER
CRI,CRE If real source cannot be represented if the format selec-
ted
ST5- All Floating Unaffected
ST16 Point
Instructions

111/112

TeExas
INSTRUMENTS

November 1982 PR OMICe ok 1443 & Hotstin Taras 77001

MP0O09 : Semiconductor Groug Printed in U.S.A.

