SOFTWARE
DEVELOPMENT

HANDBOOK

Geoff Vincent

Jim Gill

Texas Instruments October 1981



IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any
time to improve design and to supply the best possible
product for the spectrum of users.

The Software Development Handbook is copyrighted by Texas
Instruments. All rights reserved. No part of this
publication may be reproduced in any manner including storage
in a retrieval system or transmittal via electronic means, or
other reproduction in any form or any method (electronic,
mechanical, photocopying, recording or otherwise) without
prior written permission of Texas Instruments.

Information contained in this publication is believed to be
accurate and reliable. However, responsibility is assumed
neither for its use nor for any infringement of patents or
rights of others that may result from its use. No license is
granted by implication or otherwise wunder any patent or
patent right of Texas Instruments or others.

Copyright Texas Instruments 1981

Note "Texas Instruments"” includes where the context permits

Texas Instruments Incorporated, and any of its affiliated
companies, including Texas Instruments Limited.



SOFTWARE DEVELOPMENT HANDBOOK PREFACE

PREFACE

This Second Edition of the Software Development Handbook has
been extensively revised and updated to incorporate new
developments, and to improve and clarify the presentation.

As before, it is hoped that the book will appeal on several
levels. The first three chapters are an introduction to the
technology, and assume little or no techmical knowledge.
Chapter 1, which is introductory, describes the nature of
software and the particular contribution of microsystems
technology. Chapter 2 describes, step by step, the process
of software development for microcomputers. Chapter 3
describes the tools of the software engineer. It is hoped
that these chapters will appeal to those who have a
peripheral interest 1in the technology, as well as to those
who are or will become directly involved in software
engineering.

Chapter 4 addresses the subject of software/aesign, which we
feel can and should be tackled separately - from the
discipline of programming in a particular language. The
goal of appealing to a wide level of readership means that
experienced software engineers will find some of the
material familiar; however the approach may well be new, and
some at least of the ideas will be novel. This chapter
introduces suggested algorithmic and graphical notations for
language independent software design. Those new to the
technology are advised to read Chapter 4 in conjunction with
some practical experience of programming in one of the
languages available.

Chapter 5, Component Software, is the major new addition to
the book. It describes a method of developing and packaging
complex real time software functions. Such packages are
available off the shelf from Texas Instruments for direct
incorporation in application systems. Component Software is
a significant step towards complete packaged functions,
incorporating both hardware and software. These are 1likely
to play an important part in microsystems technology in the
future. Chapter 5 also includes a description of
concurrency and the requirements of real time software.

Chapters 6, 7 and 8 describe in turn Microprocessor Pascal,
Power BASIC, and 9900/99000 Assembly Language. These
chapters are not intended to be complete 1language
tutorials. Tutorials are available elsewhere; and it is
felt that programming is best taught by a combination of
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personal tuition and practical experience. Courses on
programming are available from various sources, including
Texas Instruments. Rather, these chapters are designed to
give a feel for each language, its important features, and
its areas of application. Microprocessor Pascal is a
professional programmer”s tool which permits the
construction of reliable, real time software systems of any
level of complexity. Power BASIC is a much simpler language
that can be learned in a few hours, and can be used even by
non software professionals to provide quick solutions to
simple problems. Assembly language provides direct access
to all the resources of the microcomputer, and can be used
in critical areas of a system to "fine tune” for maximum
performance. Naturally, effective use of assembly language
requires a certain 1level of skill. Chapter 8 contains an
extensive "Algorithms and Techniques"” section, describing
some commonly wused solutions to specific problems. Each
chapter 1includes, besides the language description, a
Reference Section that tabulates the vital elements of each
language.

This handbook is not intended as a complete course in
software development for microcomputers. However, with
appropriate additional material and combined with practical
experience of one or more of the languages described, it
could form the basis for such a course. The aim is to
provide a Handbook for the emerging discipline of software
engineering for microcomputers, and to begin the process of
identifying and communicating those elements of the
technology that will prove to be of 1lasting value. This
book 1is a distillation of the practical experience of
software engineers, and it is hoped that it will make some
contribution to those entering on or already immersed in the
technology.

The authors wish to thank all those who have contributed

approaches, ideas, descriptions or actual software examples,
and without whom this book could not have been written.

Geoff Vincent
Jim Gill

October 1981
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We would appreciate your comments on the usefulness of this
handbook. Please complete and return this form to the
address overleaf.

Name: (last) (first):
Company: Position:
Address:
Country:
1. Is the handbook well organised? Yes No

Comments:

2. Is the text correctly presented and adequately
illustrated? Yes No
Comments:

3. What subject matter could be expanded or clarified?

4. Are you directly involved in software development?
Please indicate your main area(s) of interest.

5. Have you found this handbook useful
(a) As an introduction to the field
(b) As a source of ideas/information
(c) As a reference book
(d) In any other way (please specify)

6. Do you use any Texas Instruments software products?
Is the information on these products useful to you?

7. Any other comments
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Please mail this sheet to:

Texas Instruments

M/S 35

Microprocessor Group
TEXAS INSTRUMENTS Ltd
Manton Lane

Bedford

MK41 7PA

ENGLAND
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CHAPTER 1

INTRODUCTION

1.1 WHAT IS SOFTWARE?

Software is what makes microprocessor technology different
from conventional engineering techniques. Fundamentally,
software is a set of instructions that tells the hardware
(the microprocessor, and any electrical or mechanical
devices connected to it) what to do.

In a conventional machine, the physical layout of the parts
determines what the machine will do:

@,
Figure 1-1 Conventional Machine

In a microprocessor machine, it is not always bossible to
tell from the physical arrangement exactly what the machine
does:

MOTOR
MICROPROCESSOR

?

Figure 1-2 Microprocessor Machine

The function of the machine is determined by software.
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The general 1layout of a microprocessor machine is shown in
Figure 1-3.

INPUTS OUTPUTS
PROCESSOR
SENSORS
(TEMPERATURE,
POSITION, MOTORS,
LIGHT, ETC) \ ACTUATORS,
SWITCHES, N v DISPLAYS,
KEYBOARDS > S PRINTERS
~v ~A
; a ¢ 3

&y, A==

Figure 1-3 Layout of a Microprocessor Machine

In the centre is the microprocessor. To the processor are

brought a series of dinputs - which might come from
temperature sensors, limit switches, operator keyboards and
SO on. All inputs must be converted to electrical signals

before they reach the processor.

From the processor come a collection of outputs - again
electrical signals, which can be used to operate motors,
actuators, displays and so on. The processor itself has an
extensive repertoire of operations it can perform, involving
inputs, outputs and internal manipulations. However, by
itself the processor is useless. It needs a program - a set
of software instructions that specify exactly what
operations to perform, and in what order. The program will
determine when to take notice of (to read) the input
signals, what to do with them, and what output signals to
produce. It is the program that controls the machine.
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INPUTS OUTPUTS
PROCESSOR
SENSORS
(TEMPERATURE,
POSITION, MOTORS,
LIGHT, ETC) ACTUATORS,
X f: DISPLAYS,

SWITCHES, ~A
KEYBOARDS > > PRINTERS
= 4 ~A
Y Ay

Lz

L]
L

PROGRAM

Figure 1-4 Program Control

One characteristic of microprocessor systems is that a
different program placed in the same set of hardware will
cause the machine to do different things. 0f course, the
scope of what can be done is determined by the hardware: if
there is not a motor control circuit connected to a
microprocessor, there is no way that the software will be
able to turn a motor on and off. It is the hardware that
determines what is possible; it 1is the software that
determines what the machine actually does.

Software must have some ultimate physical reality in order
to have any effect on the real world. However, it has two
fundamental characteristics which distinguish it from
hardware. First, it is at least an order of magnitude
easier to manipulate than hardware: changing a piece of
software usually involves no more than typing a few keys at
a keyboard, while changing a hardware layout (say a printed
circuit board) requires a lot of work and a lot of time.
Second, software has a chameleon-like quality of being able
to change its physical form without altering its essential
nature. The same piece of software may exist on a magnetic
disk, in semiconductor memory, as printed output or
displayed on a screen.
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HUMAN READABLE MACHINE READABLE

Figure 1-5 Software Has No Unique Physical Form

The problems which characterise software engineering are
problems of management and organization rather than the
problems of dealing with the physical world.

The way the traditional computer evolved was determined by
the size and cost of available technology. These factors
influenced how the different parts of the computer
developed, how they were put together, and the kinds of
applications where computers could be used. For reasons of
cost and physical size it made no sense at all to consider
placing a computer in a consumer product, or even in the
average factory. Microprocessors are small and cheap enough
to be placed in any piece of equipment. This, in turn, has
revolutionised some aspects of computer technology:
microcomputers are not just smaller copies of large
computers, but have some significant new characteristics.

The major effort of design for a microcomputer application
goes into software. Software is in a number of ways easier
to deal with than hardware. However, it must be treated
with respect. Designing the software for a complex
application is not trivial, especially as the potential of
the microprocessor leads to more ambitious projects. With a
new technology, new methods must be used: those developed
for hardware design are not appropriate. Even techniques
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used in the design of software for ’‘mainframe’ or ’‘mini’
computers need adapting, because of the special features and
the different areas of application of microcomputers. This
book describes the techniques of system and software design
that are applicable to the new technology of microsystems
(= microprocessor systems).

1.2 BLACK BOXES AND DIGITAL ELECTRONICS

Any mechanical or electrical device can be considered, very
simply, as a black box with inputs and outputs:

Figure 1-6 '"Black Box"

"Inputs" might be switches, temperature sensors, flow. rate
detectors, or keys pressed by a human operator. '"Outputs"
might control a motor, print text or figures, switch on a
heater, and so on.

The "black box" processes these inputs and produces outputs
in a well-defined fashion. For example, a typewriter takes
key presses as input and produces printed characters
corresponding to the key inputs as outputse. All problems
that are solvable by machinery can be analyzed in this
manner. The black box, with its inputs and outputs, may be
called a system.

How can such black boxes be built? The traditional,
non-computer method would be to design a dedicated piece of
hardware: a mechanical device. Methods of implementation
have varied. Early workers used wires, pulleys, cogs and a
great deal of mechanical ingenuity. In general, mechanical
systems are restricted to the kind of simple and direct
response characterised by the typewriter. Electrical
systems provide additional power, but in general do not
permit much greater complexity.
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Electronics introduced a whole new range of possibilities.
Perhaps the most significant advance in black-box
implementation was the invention of digital electronics,
based on the binary digit, or bit.

A bit can be considered as a switch. It has two possible
states: on or off, 1 or 0, high or low. Bits can easily be
represented in electronic circuits, and they can be used to
store information. Circuit elements can be designed that
combine bits in various useful ways. One such element is
the AND gate, conventionally depicted as follows:

A

INPUTS € outPUT

Figure 1-7 AND Gate

The ©basic AND gate has two inputs, here called A and B, and
one output C. These are digital signals, each of which can
take one of two possible values (conventionally represented
as "0" and "1"). Each input and output line represents one
bit of information. For given conditions of the inputs A
and B, the output C is completely determined. For an AND
gate, C 1is 1 only when both A and B are 1. This can be
summarised in a truth table, which maps the value of the
output C for all possible values of the inputs A and B:

- B
1 O 1
—tm e
010 0
A I
110 1

Figure 1-8 AND Gate Truth Table

By combining logic elements such as the AND gate, electronic
circuits can be constructed to take decisions and signal
appropriate outputs depending on the state of any number of

inputs. It is only necessary to arrange that the inputs
represent the state of switches, sensors etc, and to connect
the outputs to motor control circuits, actuators and

displays, to construct very complex pieces of machinery.

Electronic systems can provide a limited kind of memory,
counting operations, and simple arithmetic. Integrated
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circuit technology allows many thousands of logic elements
such as the AND gate to be implemented on a single chig of
silicon 4 or 5 mm square. Electronics works very fast, too:
many millions of decisions of the AND gate variety

(determining the value of C given the values of A and B) can
be made per second, and many decisions can be made in

parallel. However, the technology becomes very expensive
for complex applications, and systems take a 1long time to
develop.

Digital electronics 1is powerful because it permits any
operation that can be conceived using bits; and any real
world action that can be translated into electrical signals
can be represented as bits. The techniques of digital
electronics can be wused for a vast range of different
applications, where any kind of logical decision making or
arithmetic processing is required.

Solving a real world problem, of course, depends on
translating real inputs (such as mechanical movements,
temperature readings, etc) into bits, and translating bits
back into the real world. - - ) .

This process of translation can be répresented (adding to
the black box diagram) as:

MOTORS,

PHYSICAL | | , .;\D%gé\TTORs,
MEASUREMENTS / PHYSICAL
(TEMPERATURES, . _

PRESSURES, ETC) Abstraction J DATA 2 A oy DATA \jMANIPULATION)
& PRINTERS
INFORMATION Dlspﬁss’
(INFORMATION)
REAL WORLD ‘BLACK BOX' SYSTEM REAL WORLD

Figure 1-9 Data Translation

‘Data’ is a term used for coded information - that is,
information translated into a pattern of bits for processing
by a digital circuit. Data can be considered as an
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abstracted representation of the real world.

In extracting data from the real world for processing by a
digital circuit, jthe designer 'selects only the aspects of
the information§5available that he wants, enumerates all
possible values,iand designs his system to cope with and
respond predictably to every possible combination. The
digital circuit does not know or care what the data
represents; it simply processes bits according to the logic
designed into it.

This can cause problems, because bits (data) are entirely
abstract entities. The designer must be very sure that he
knows exactly what his data represents. Translating
information into data in a well thought-out manner is
probably the most important step in .designing any digital
system.

In the 1last 20 years, advances in technoldgy have vastly

decreased #the price and increased the cap bility of digital
electron@ks. However, with  the technogzgical advance has
come the problem of organization. Organizing all these

logic $lements to perform the desired action is a very
diffigult, time consuming, and expensive task, requiring -.a
highl skilled / designer | (or team of designers). In
addition, because an AND gate is a piece of hardware - a
fsical device ~ it is quite awkward to manipulate. Once a
dgsign has been put together, it is extremely difficult to
ohange in any significant way without starting again from
scratch. :

This is where the computéF comes in.

1.3 COMPUTERS

The idea for the computer existed long before the
implementation techniques that made it practically
realisable. In the 19th Century, Charles Babbage conceived
a ‘difference engine’ that would operate according to the
instructions of a stored program. However, the techniques
available to him (mechanical cogs and levers) were unequal
to the task. Babbage never completed his project.

Practical realisation of the computer had to wait for
electronics - first using valves (which were .notoriously
unreliable, 1large, and power hungry), then transistors, and
finally integrated circuits. What the computer does is to
separate the device which carries out the work of decision
making, calculation etc - the processor - from the . set of
instructions =~ the program - which tell the processor what
to do. This separation allows specialist manufacturers to
design and implement powerful and efficient processors for
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the range of possible applications, while application
engineers can take a standard processor and write a software
program to tailor its operation to their specific need.

Like other digital devices, computers work with bits. In
fact, they usually work with groups of bits. The Texas
Instruments TMS 9900/99000 family of microprocessors uses a
basic unit of 16 bits, called a word. The possible
operations that can be performed on words are strictly
limited and well defined, which is what makes the computer
possible.

0f the total range of operations, the most useful are
selected to form the computer’s instruction set. Each
instruction performs one operation. For example, there is
an operation to perform a logical AND on two words of data:

first word 0101101110010110
second word 01 01010110101101
result 010100011 000O01O00

Corresponding bits in each word are ANDed together to
produce the corresponding bit in the resultant word. Here,
a word is treated as containing 16 wunconnected bits. - The
instructions which operate on words in this way are called
logical instructions.

Using the binary number system *, a 16-bit word can also

represent a number. There - 1is a group of
arithmetic instructions which treat words as numbers, and
perform the wusual arithmetic operations on them. For

example, ADD:

BINARY DECIMAL
first word 01 01101110010110 23446
second word 0 1 01 010110101101 + 21933
result 1011000101000011 = 45379

The instruction set for the TMS9900 and 99000 also includes
operations on bytes (1 byte = 8 bits) of data.

In addition there are instructions to read input signals
from the outside world and to write outputs, and to move
data around within the computer.

* The binary number system is described in Chapter 8,
section 8.13.2.1
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A program is a list of these instructions stored in the

computer’s memory. A computer, then, 1looks like Figure
1 - 1 0 .
PROGRAM
Y
INPUTS »| PROCESSOR »  OUTPUTS

Figure 1-10 Computer

The stored program controls the operation of the computer.
The processor fetches the program instructions one at a
time. Instructions are normally executed in sequence, one
after another. However, the computer has the capability to
change this. It can make simple decisions about whether to
execute one set of instructions or another. The decisions
might depend on the value of some data word stored in
memory, or the state of some input, or on a more complex
condition.

For example,

"IF temperature LESS THAN set value AND heater is off THEN
switch heater on"

The primitive control instructions, which can change program
flow and make pre-programmed decisions, are the final group
of operations that make up the computer’s instruction set.
With these five ©basic groups of instructions - logical,
arithmetic, input/output (I/0), data transfer, and control -
a computer can perform any task that can be precisely and
unambiguously specified. The task of software design is to
carry out this specification and, ultimately, to produce the
program in a form that the computer can implement it.

The program completely determines the operation of the
system. If the initial conditions and all of the inputs are
known, the action of the computer will be entirely
predictable. Thus a computer is a black box, but one whose
operation is determined not by the physical arrangement of
its parts, but by a software program. Computer hardware can
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be regarded as a pool of resources, which are organized by
the software. By placing the burden of organization on
software, many of the problems of designing a digital system
are solved.

Figure 1-11 shows the structure of a computer in more
detail.

I MEMORY l

INPUTS —}—>{ conmroL ——T > oureuts
| )
| \ :
| ARITHMETIC
‘ AND |
I LOGIC UNIT |
| (ALU)
| I
| PROCESSOR (CPU) :

Figure 1-11 Structure of a Computer

The Arithmetic and Logic Unit (ALU) performs the operations
requested by the program (addition, subtraction, 1logical
ANDing, etc). The Control section supervises the reading
and writing of program, data, and I/0 (Input/Output), and
ensures that everything happens in the proper sequence.
These two elements are traditionally grouped together to
form the Central Processing Unit (CPU), or Processor. When-
this is implemented on a single silicon chip it is called a
Microprocessor, or MPU. The complete system is a
Microprocessor System, or Microcomputer. A microcomputer
may be implemented as a single chip (eg the Texas
Instruments TMS9940) or as several chips.

Besides inputs and outputs, a computer will need a place in
which to store intermediate data (a scratchpad or filing
system). Therefore a computer will generally have data
memory as well as program memory.
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The 1inputs and outputs, more than anything else, determine
what a computer system "looks like" to the user. When the
usual peripherals (card reader, visual display unit (VDU),
line printer, magnetic tapes, etc) are connected, the system
looks like the traditional idea of a computer. But connect
motors, actuators, lights, switches, displays and it could
be a part of anything from a washing machine to a car. A
microcomputer is small and inexpensive enough to be hidden
in almost any piece of electrical equipment, and the wuser
need not even know that it is there.

1.4 SOFTWARE DEVELOPMENT

Because there is typically a large gap between the task to
be performed by the system (eg "control a factory production
line") and the instruction set of the computer ("ADD two
numbers"), various techniques have been evolved to bridge
the gap and make the task of software design and development
simpler and faster. Most of these make use of development
tools and wutilities that are themselves implemented in
software. In fact, one of the major advantages gained in
moving from a digital electronic to a software
implementation is that the design information itself can be
manipulated by computer, allowing much of the design and
development process to be automated.

The tools of the software engineer are rather more abstract
than the screwdriver and the soldering iron. A software
engineer will spend much of his time typing information at a
keyboard, and looking at results displayed on a screen.
However, the keyboard and screen will take on different
roles depending on which utility program (which '"software
tool") is being used at the time. Chapters 2 and 3 of this
book describe what is involved in the process of designing
and developing software for a microprocessor system, and the
tools and procedures used. Chapter 4 describes some of the
principles of software design, and the modern techniques of
software engineering which have been developed to make
complex software systems manageable.

A high level language (see Sections 2.6 and 3.5) allows the
software designer to make strategic decisions about what the
system will do, while the compiler determines the tactics to
be employed by the computer (memory addresses, storage
allocation and other "housekeeping" functions that have to
be performed thousands of times a second). The compiler is
a software wutility that translates high 1level language
programs into the detailed machine instructions required by
the computer.

In effect, a high level language provides a more powerful
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computer that can deal with most of its internal functions
automatically, allowing the software designer to concentrate
on the application problem to be solved.

Component Software supplies further assistance by permitting
complete pre-written software packages, designed to
implement whole areas of an application. Chapter 5
describes Component Software in detail. This chapter also
describes concurrency, which 1is a powerful technique for
designing software systems which have to perform a number of
different tasks simultaneously (as is often required in real
systems).

Early programming languages performed their task
imperfectly, and were often designed simply as extended
versions of the instruction set of a particular computer.
Modern languages, with the benefit of two decades of
research on the requirements for specifying and solving
application problems, come much closer to the ideal of
requiring nothing more than a complete and unambiguous
specification of what is to be done (an algorithm) in order
to produce an executable program. One of the best and most
successful of the modern languages is Pascal. Chapter 6
describes the Microprocessor Pascal language.

Pascal is a professional programmer’s tool, designed to
produce reliable systems and yet to give full flexibility
for implementing complex applications. For users who do not
wish to become professional programmers, but who need to
write occasional programs in the course of their work, BASIC
may be an acceptable alternative. BASIC 1is a simple
language that can be 1learned in a few hours and is
exceptionally easy to use. Chapter 7 describes Texas
Instruments’ implementation of Power BASIC.

For those who wish to understand the machine architecture of
the TMS 9900/99000 family, or to program directly in the
instruction set of the microprocessor, Chapter 8 describes
9900/99000 assembly language. Assembly language programming
requires more detailed knowledge and there is more risk of
error than when wusing a high 1level language. However,
assembly language programming allows the designer to squeeze
the last ounce of performance out of the machine, and may be
especially useful in critical areas of a software design.
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1.5 GENERAL PURPOSE COMPUTERS

Until a few years ago, the only computers in common use were

general purpose machines. A general purpose digital
computer consists of a central processing unit (CPU), main
memory and a set of standard peripherals - devices which

enable data to be input to and output from the computer. A
typical configuration might look something like this:

MAIN ]
MEMORY

= - —7

CARD I MAGNETIC
READER . TAPE

/ BACKING
(- —
cPU = STORE
LINE MAGNETIC
PRINTER DISC

VISUAL | SYSTEM
DISPLAY CONSOLE
UNITS (VDU's)

Figure 1-12 A General Purpose Computer

The input and output to a computer of this type is likely to
be entirely textual or numeric information (customer files,
order details, scientific results etc), and the work that it
does is entirely information processing or data processing
(DP for short). Human beings always act as buffers to this
kind of system - preparing textual or numeric input data in
the form of punched cards or keyboard input, and
interpreting or acting on printed results or reports.
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One of the most important peripherals is the backing store.
This is a memory device that is slower acting than the main
memory, but has a large capacity. Its principal function is
to load programs and data into the computer’s main memory.
A general purpose computer has a large repertoire of
programs in 1its backing store, any one of which can be

loaded and executed. Some of these programs are
systems programs, which control the operation of the
computer and provide commonly required tasks. These will

normally be provided by the computer manufacturer. Others
are application programs developed by the wuser for his
particular needs.

The most important systems program is that which runs the
entire computer, and controls the loading and executing of
other programs under commands from the operator. This
program is called the Operating System (0S) and is loaded
into main memory when the computer is switched on, remaining
in control the whole time the system is running. Other
systems programs provide software tools for developing
application programs. They can be called in as required by
the Operating System.

A general purpose computer is, therefore, a chameleon-like
device which can perform any processing function depending
on the application program which 1s 1loaded into it.
However, the range of things it can do is limited by its
input and output devices. Standard peripheral devices
include keyboard -‘and visual display unit (VDU), teletype,
line printer, punched card or paper tape readers and
punches, and magnetic disc or magnetic tape devices. These
last two are forms of backing store; the others are means of
communicating with the user.
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1.6 DEDICATED COMPUTERS

A microcomputer can be constructed as a general purpose
computer, But the microcomputer has brought a new
possibility: the dedicated system. A dedicated
microcomputer might look like this:

PROGRAM DATA
MEMORY MEMORY

PRESSURE g> 256
SENSOR
\ DISPLAY
MPU

KEYPAD

MINIATURE PRINTER

INPUTS OUTPUTS

Figure 1-13 A Dedicated Microcomputer

This system could serve as a weighing scale. A program
would be written to read the pressure sensor and the price
(entered on the keypad), multiply the weight by the price,
display the result, and print a ticket. With extra
software, the system could become a complete cash register.
The complete microcomputer and associated circuitry could be
fitted into one corner of the case.

A term that 1is often applied to dedicated computer

applications is real time. "Real time" means that the
computer is responding to and controlling events as they are
happening. Unlike a DP system, which provides huge
processing power but at a considerable remove from real
physical events, a real time system must respond
immediately. It will often need to respond within

milliseconds or less.

Dedicated microcomputers often have an executive rather than
an Operating System. While an Operating System is likely to
be a large, all-inclusive piece of software, an executive is
more likely to be a set of service functions selected for
the particular application, and occupying very little memory
space. The program for a dedicated system may well be
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permanently and ineradicably stored in read only memory (see
below), and the microcomputer may only execute one small set
of programs all its life. A dedicated microcomputer may
well have no Dbacking store from which to load alternative
DPrOgrams.

In the example pictured above, the program would repeatedly
check whether or not there was any input from the pressure
sensor or the keypad. If there was, the portion of the
program written to deal with that input would execute.

1.7 ROM AND RAM - SEMICONDUCTOR MEMORY

Computer memory can be thought of as a collection of pigeon
holes or locations in which values (ie, numbers or patterns
of bits) can be stored. These locations can be referred to
by their consecutively numbered adresses.

Semiconductor memory systems are typically organized in
bytes (1 byte = 8 bits). The TMS 9900/99000 family can
operate on both bytes and words (16 bits) of data. A word
is stored in two consecutive memory locations, starting at
an even address.

A general purpose computer requires a program memory that
can be written to as well as read, since different programs
must be loaded into it from the ©backing store. However,
once the program is loaded, the portion of program memory in
which the program is stored will not normally be changed
until the operating system loads in the next program. (The
program can change data memory, but not the program code.)

A special type of program memory, called Read Only Memory
(ROM) is commonly used for dedicated microcomputer systems.
A ROM memory chip is programmed (ie, loaded with a program)
once, during production of the system in which it will be
used, and retains its contents permanently, even when the
power is switched off., This 1last feature 1is important
because there will often be no backing store from which to
load the program when the device is switched on.

1.7.1 ROM Types
There are several different types of ROM, each with its own
characteristics.
Mask ROM has the program inserted as part of the
manufacturing process. A mask must be made to etch the

pattern of ©binary digits which form the program on the
surface of the silicon chip. Generating this mask 1is an
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expensive process, because it must be done with great
precision. However, once the mask has been made, programmed
ROMs can be manufactured very cheaply. Where large
quantities (hundreds of thousands) of identical ROMs are
required, this method is by far the least expensive.

Programmable ROM (PROM) is manufactured with fusible metal
links in each memory cell. These links can be selectively
fused by applying high voltage pulses to the PROM chip after
manufacture using a device known as a PROM Programmer.
Blank ©PROMs are supplied by Texas Instruments and can be
programmed by the user, with appropriate development tools,
to put in his system. Once the pattern of 0’s and 1’s has
been ‘burned in’ in this way the PROM cannot be erased.
PROMs are more expensive per chip than mask ROMs, but work
out cheaper overall for small to medium quantities
(thousands), because of the cost of manufacturing a mask.

Erasable Programmable ROM (EPROM) is supplied blank and
programmed in the same way as PROM. But the high voltage
pulses do not break fusible links: instead they selectively
establish static charges in the memory cells, which turn on
or off switching devices (transistors) that represent the
0°s and 1°s. An EPROM is a very useful device. It can be
programmed permanently, like a fusible link PROM; the static
charge will be retained for a period of 20 years or more.
But by exposing it to ultraviolet 1light for a period of
about 20 minutes, the EPROM becomes erased and can be
programmed with something different. EPROMs are now
commonly wused in all medium volume applications, except for
very high performance applications where the superior speed
of bipolar PROMs is required.

1.7.2 RAM Types

Most microcomputer systems require some memory that can be
written to as well as read, for storage of intermediate
results. This 1is achieved by wusing RAM (Random Access
Memory) instead of ROM. RAM is a slightly misleading term,
since ROM can also be accessed randomly. (Read/Write Memory
would be more descriptive, but ‘RAM’ is at least easier to
say.) In a general purpose computer, the main memory is
implemented entirely with RAM. A microcomputer system is
more likely to have a partitioned memory - some ROM and some
RAM.

Semiconductor RAM is wvolatile; that is, the contents
disappear when the power is switched off. There are, in
fact, two types of RAM:

o Static RAM retains its contents for as long as
the power is switched on.
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o Dynamic RAM must be refreshed, that is, read or
written to every few milliseconds, or its
contents decay. Dynamic RAM requires some
external circuitry to implement this refresh,
and is therefore more difficult to design into
a microcomputer. However, it is less expensive
and smaller than static RAM. Static RAM is
normally wused for systems that require a
relatively small amount of RAM; dynamic RAM for
larger systems where the cost of refresh
circuitry can be justified by the savings on
memory chips.

1.7.3 ROM/RAM Summary

The characteristics of semiconductor memory are summarised
in Table 1-1 below.

Mask PROM EPROM Static Dynamie

ROM RAM RAM
Readable? Y Y Y Y Y
Writeable? N N N Y Y
User programmable? N Y Y - -
(outside system)
Eraseable? N N Y - -

(outside system)

Retain contents

without power? Y Y Y N N
(non-volatile)

Require refresh? N N N N Y

Table 1-1. Semiconductor Memory Characteristics
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1.8 APPLICATIONS

The microcomputer has accomplished three things:

1) It has revolutionized the design of both
small and large-scale electrical devices,
from toys to cars

2) It has changed the nature of conventional
computer systems

3) It has made possible a completely new range
of applications, for which the new technology
of microsystems is uniquely suited.

There is virtually nc electrical device within which a
microcomputer cannot be incorporated, providing cheap but
sophisticated control, and powerful processing capability.

Many applications previously performed by large general
purpose computers (‘mainframes’) can now be carried out more
effectively by microprocessor systems, located at the point
where they are needed rather than isolated in a remote data
processing department.

With the arrival of the minicomputer several years ago, the
death of the mainframe was predicted. That death sentence
was premature. But a ‘mainframe’ is no longer likely to be
a solitary monolith, isolated within a data processing
department. It is more likely to fulfil a specialised need
for central data storage or massive processing power, within
a network incoporating microcomputers, minicomputers and
possibly other mainframes too.

Computer power now comes in sufficient shapes and sizes (and
prices) that it can be distributed anywhere that there is a
need for it. Large computer systems look less and less like
traditional computers and more like communications networks,
with processors judiciously placed at appropriate points in
the network. The microcomputer allows the distribution of
computing power to the place where it 1s needed - the
office, the factory £floor, or the home. Local processors
can be linked to larger computers, using the telephone
network 1if permanent connection is not required. Special
purpose microcomputers can be constructed to collect
information where it 1is generated and in the form that it
already exists. Such devices can do away with the tedious
manual process of data preparation.

Microcomputers have been used to build ‘intelligent’
peripherals for mainframes (disc controllers, for example)
which can handle some of the local ‘housekeeping’ functions
required by the peripheral and take the load off the central
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processor. One significant development in this regard has
been the intelligent terminal, a visual display wunit
containing a microcomputer. The intelligent terminal
provides 1local processing power for small tasks, and can be
linked to a network for reference to central files, and for
handling large processing tasks.

The development of “personal” computers and small business
systems allows a further stage of development. A
storekeeper, for example, might wuse a microcomputer to
handle his daily transactions, and then transmit his
accounts over a dial-up link to the central office network.

In future, there are likely to be a number of imaginative
applications linking the power of the microprocessor with
rapidly developing communications technology. Viewdata is
an example that makes use of television, telecommunications
and processor technology. This is a public computer network
which can be accessed by anyone with the right equipment (an
adapted TV set) via the telephone network. It provides
information and services, and can even be used to transmit

software to a subscriber”s computer.

The development of local area networks will allow separate
computing devices to be connected together simply and
straightforwardly, to build distributed systems for office,
factory and even home environments. Fibre optics technology
promises a -cheap, reliable and interference—=free
communication medium. '

The automation of dindustrial processes was first made
possible by minicomputers, which were general purpose
computers small and cheap enough that they could be placed
in a factory or chemical plant and wused to provide some
degree of automatic control. However, such computers still
typically required a room to themselves.

Microcomputers are small and cheap enough to be incorporated
in individual machines, and to be distributed across the
factory floor wherever control functions or processing power
are required. Cheap, fast microprocessors make robots of
all kinds technically and economically feasible. Robots can
be used to construct flexible manufacturing systems, which
can provide the advantages of mass production in the
manufacture of small quantities of diverse products.

Microcomputer applications range from simple real time
control functions (such as a weighing scale) to production
control systems and sophisticated computer mnetworks. In
“real-time” applications the computer is in direct control
of a process, event, or phenomenon such as engine control -
monitoring electronic ignition timing and fuel mixing, for
example, and modifying the physical parameters while the
process is taking place. Real time applications can be on a
small scale, or could involve control of (say) a complete
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chemical plant. The TMS 9900/99000 family 1is particularly
suited for real time and control applications. It has a
fast context switch to implement multiprocessing and modular
programs, and a flexible bit-oriented method of input and
output (the architecture of the 9900/99000 family is
described in Chapter 8).

The microcomputer has a dual personality: it is both
electronic component and computer. This is why it provides
such a rich field for applications. The technology and the
opportunity exist for a wide range of products; the only
real limit is the imagination of the designer.

1.9 FUTURE DEVELOPMENTS

With microcomputers cheap and readily available, there is no
need for systems to be restricted to a single processor.
Groups of cooperating processors, each with its own software
and possibly local input and output, can implement powerful
and reliable systems.

A significant development in this regard is the Electronic
Function Package (EFP).

LOCALI/O

DATA
MEMORY

PROGRAM
MEMORY

PROCESSOR

MESSAGE
INTERFACE

FUNCTION BUS

Figure 1-14 Electronic Function Package

Each package encapsulates a local processor with program and
data memory, I/0, and a standard functional interface to
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other packages. The first implementation of such a package
will be as a complete circuit board; but miniaturisation
will quickly reduce the size and cost of such packages.

Developments in hardware and software will make such
packages easy to construct, and easy to connect together
into application systems. Such packages are likely to be

common components in tomorrow’s systems.

Speeds of microcomputer devices are likely to 1increase
significantly over the next decade, so that many new
applications, including real time signal processing, will
become possible. Among other things, real time processing
and storage of speech, audio and even video signals 1is
likely to become a reality, all at reasonable cost. The
scope for new products and applications is considerable.
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CHAPTER 2

SOFTWARE DEVELOPMENT

This chapter gives an overview of the steps required to
design and implement software for a microprocessor system.

The end result of software development is a program - a
pattern of bits residing in memory that instructs the
processor what to do. To achieve this requires several
stages of development:

(1) Functional Specification

(2) System Design

(3) Software Design (and, in parallel, hardware
design)

(4) Programming (ie entering the software design
in precisely coded source program statements
on a development computer system)

(5) Translation of the source program (in a
human-readable programming language) into
binary machine code

(6) Configuration and linking of the software

(7) Debugging the software

(8) Integration and testing of hardware and
software

(9) Evaluation of the final system
Each of these is an iterative process. Problems encountered

at any stage may alter decisions taken at a previous stage,
so that the true picture is more 1like Figure 2-1:

Texas Instruments 2-1 October 1981



SOFTWARE DEVELOPMENT HANDBOOK

FUNCTIONAL
SPECIFICATION

.

N

SYSTEM

DESIGN

N

SOFTWARE
DESIGN

.

PROGRAMMING

Figure 2-1

Texas Instruments

N

PROGRAM
TRANSLATION

\

CONFIGURATION
& LINKING

SOFTWARE DEVELOPMENT

N

\o

DEBUGGING

N

-

INTEGRATION

\

N

EVALUATION

The Software Development Process

October 1981




SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.2 FUNCTIONAL SPECIFICATION

Functional specification is where product requirements and
implementation technology meet. It is the first, and most
important, stage in developing any system.

A good functional specification will take account of the
spectrum of possible market requirements, and the range of
possible implementation techniques, and derive a "best fit"
solution. Characteristic of a good functional specification

is that it can accomodate a degree of change both in product
requirements and in implementation technology.

As both types of change are 1likely to happen during the
development phase of a product, it is worth spending a good
deal of time (perhaps 30 per cent of the total project
effort) to derive the best possible functional
specification. Microprocessor technology, software and
hardware, means that implementation from a well defined
functional specification 1is fast and straightforward.
Surprisingly, the major cause of delays, problems, and
ultimately project failure is inadequate specification.

The task of specification is to isolate and identify; from a

general appreciation of what is required, precise
definitions of the functions to be performed. Fast
developing technology, and rapidly changing markets and user
requirements, dictates collaboration between experts in the
area of application and engineers with knowledge of the
technology (software and hardware).

Microprocessors can replace more conventional technology -
for example digital 1logic - in existing applications, but
there are other possibilities. Software is a medium that
can be engineered in the same way as hardware. If it is
managed correctly, software development can be done much
more cheaply, more quickly and more flexibly than developing
custom hardware. Software functions can provide
"intelligent" control, information processing, and flexible
operator interaction. With software it 1is possible to
construct "working models" that can be tried out, adapted,
tested and finally "frozen" in silicon memory chips for use
in a production system.

A microprocessor is both a programmable logic device and a
computer. Where it is being used to replace conventional
logic, its abilities as a computer may also be wused to
advantage, and vice versa. For example, a microprocessor
might replace digital 1logic in controlling a scientific
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instrument., In this application, it can also be used to
perform calculations on the results obtained by the
instrument, something not easily achieved by digital logic.
New forms of operator interface might also be considered; a
keyboard and visual display screen, for example, rather than
the traditional knobs and switches. The instrument can be
given some degree of programmability, to allow the wuser to
set up a series of operations to be performed unattended.
New ©possibilities are introduced simply by using a
microprocessor.

A full functional specification for a microcomputer based
product involves:

(1) Defining the environment -~ that is the devices
and signals with which the product must
operate, the operator controls and displays,
and any special interfaces

(2) Defining how the product reacts to this
environment - that 1is the actions it is
required to take, the inputs it is required to
respond to and the outputs it is required to
produce. Usually, this can be done by
defining a number of distinct functions that
the product is required to perform - operator
interface, data storage, machine control,
report generation etc. The major functions
must be identified, their operation specified
and their interaction detailed. If the
different functions are clearly isolated and
well defined, they can be implemented

straightforwardly as separate "packages".
Some functions may be implemented directly
using standard hardware and software

components.

Writing the functional specification requires some
understanding of what is possible with microprocessor
systems, as well as what is required by users. Functional
specification cannot be completely isolated from system
design, which considers some of the "how" of
implementation. Several ©passes through the functional
specification/system design cycle may be needed before an
acceptable solution is produced.

Nevertheless, the functional specification should be
maintained as a separate document, which does not describe
any of the '"how". The functional specification 1is the
interface between market (or user) requirements and
implementation technology; changes 1in either can be
incorporated in the functional specification and their
implications worked through. Functional specifications can
be written 1in a language that both engineers and marketing
executives (or users) can understand. Other types of
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spégification may be incomprehensible to one or the other.
With'sboth market requirements and technology changing month
to monmith, this channel of communication is essential.

1

2.3 SYSTEM DESIGN
A
\

The purpose of system desigr is to derive from the what of
specification, a how that éﬁscribes an  implementation
strategy.  The system designer \pust decide how to integrate
hardware and software, whether any-. gpecial interfaces are
required, if any special hardware is needed (for analog to
digital conversion, for instance), and* 5o on. System design
must specify how each function .is to \be performed - in
software, hardware or a combination of both, and with what
mix of standard and custom-developed compd\pnents.

The first step is to identify whether standay d hardware or
software packages can be used for any o he functions
identified. An existing custom IC designed for particular
function (eg control of a floppy disc) brings increased
performance and, usually, cheapness. A standard Compwsgnent
Software package gives tremendous savings in developiMygent
cost  and time, plus reliability. Unlike hardwaﬂt%
components, Component Software can also be tailored to meet
very precise application needs (see CHapter 5). w

7
Having eliminated those parts of the system tJi be
implemented with standard components, attention can be
turned to the other functions required. System design
requires an appreciation of the characteristics of hardware
and software, and how they fit together. Often a function
(say, signal averaging) can he performed in either hardware
or software. Strictly, the comparison ‘is between idedicated
hardware, and general purpose hardware/(eg a microprocessor)

plus custom software. The advantages of a software
implementation are flexibility, fast development time and
low development cost. The general equation governing

microsystems production is:

development cost

unit cost = material, labour, overheads +
no of items

For products which will be produced in large quantities,
development cost is of no importance: where a product is to
be mass produced in tens or hundreds of thousands,
development of a custom integrated circuit is justified. As
the number of products to be produced falls, development
cost becomes more and more important. For systems to be

produced in small quantities (say 1 - 100 per year) the cost
of development dominates all consideration of material
costs., Microsystems technology (in particular software
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technology) allows the tremendous advances in 1integrated
circuit technology to be applied to areas where a gﬁstom
chip design could not be justified. It does ‘sso by
dramatically lowering the cost of development fre 2 product.

Other considerations may apply: 4t a microprocessor is
already present in a product and has spare capacity, it
makes sense to use it to "mop up" as much as possible of the
1ogic. Some functions may req ire custom hardware for Speed
reasons. Again, there are/ functlons, such as complex
calculations, that simply ca hot be performed economically
in hardware. ;

However, software is Iyét just directed to solving problems
of cost. Software alsfo gives flexibility that, in some
applications, can léi crucial. Whereas changing a hardware
design requires, pr, bbably, manufacture of a mnew printed
circuit Dboard, r,7((software program can be changed by typing
the modificatio at a keyboard, executing one OT two
automatic softy¥are utilities (a matter of minutes), and
programming a,j;ew EPROM. Engineering changes can be made in
days ratheg than weeks or months (assuming the use of PROMs
or EPROMs rather than mask ROMs ).

Modgern techniques are integrating software and hardware in
n#ew ways, and giving the system designer an expanding range
of choices. TI’s Function to Function Architecture (FFA) is
directed to defining a common set of rules for the
interaction of complex functions, whether implemented in
hardware, software or a combination. In future systems, it
will be possible to choose the appropriate mix of Thardware
and software (and a wide range of corresponding standard
components) for every function in a system.

A well thought out system design, with adequate appreciation
of functional divisions, will make possible relatively
painless - evolution of today’s  systems to make use of
advanced functional components. Functions can be replaced
incrementally, to incorporate new components and new
application requirements, without requiring major redesign
of the whole system. Chapter 5, Component Software, gives
more details of the functional approach to system design.

The end result of system design should be a specification of
how each function is to be implemented, and a precise
definition of the interface between functions. System
design should specify all hardware/software interaction (eg
the configuration of all I/0 devices), so that hardware and
software design can proceed independently.
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2.3.1 Documentation

It is important to keep a record of the design process.
Notes, and formal documents such as specifications, can be
collected together to form a project notebook. Some part of
this can usefully be an '"electronic notebook". Documents
stored in files on a development system computer (see
Section 3.3) can easily be kept up to date;, and printed
copies can be obtained when required. This is an ideal
medium for specifications.

The project notebook should record design decisions taken.
For example, an analog input (a voltage, for example) may be
required. Decisions to be taken include:

(1) How much precision (ie, how many bits) is
required

(2) How often a reading must be taken

(3) What type of analog/digital converter can be
used

(4) Whether the input should be binary or coded
decimal

Hardware/software trade-offs can also be recorded in the
notebook. When writing a number to a seven segment display,
should the conversion from binary to decimal digits, and
then from digits to the signals used to drive the display
segments, be handled by microprocessor software or by
external hardware? '

If processor resources are available, it makes sense to
perform the conversion in software and save the cost of
extra hardware. However, this depends on the processor
having enough spare time to handle it.

1f the situation changes (eg new technology Dbecomes
available), a comprehensive project notebook makes it much
easier to backtrack and discover for what reasons the
original decisions were made, and whether they are still
valid.
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2.4 HARDWARE DESIGN

This section describes some aspects of hardware design which
affect and are affected by software.

In many applications, it makes sense to regard the hardware
of a system as resources, to be controlled by the software.
This implies an approach that is different from designing a
purely hardware system.

Much of the design effort consists simply of interfacing the
outside world (the inputs and outputs) to the microprocessor
system bus.

PROGRAM DATA
MEMORY MEMORY
B o
INPUTS.——’____*__4 MPU \\\\\\QUTPUTS

T~

Figure 2-~2 Hardware Design for a Microprocessor System

What must be presented to the bus is a control interface.
The software will only have access to those signals which
are connected to the bus.

The design decision which must be taken when constructing
each TI/0 interface is "how much control and information is
to be given to the software?". The answer will be based on

(a) the decisions taken at the system design stage on
what is to be implemented in software and what in
hardware

(b) how much flexibility is required in the design.

Where software access is provided, design changes can be
made simply by reprogramming rather than redesigning the
hardware. Extra software control signals may be provided
for this reason, particularly at an early stage of the
design.

Use of a ready-built microcomputer board (or boards)
simplifies the process of hardware design. Texas
Instruments supplies a range of microcomputer modules (the
TM990 and TM990/Euroboard series) which are ready built
microcomputers with a range of inputs and outputs, and

Texas Instruments 2-8 October 1981



SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

memory configurations, to suit many requirements. Expansion
boards are available to extend both memory and I/0, and to
provide additional functiomns.

A single microprocessor can do only one thing at a time. If
it is required to perform several functions in parallel (as
a real time system wusually is) it must do so by tackling
each one in turn, sufficiently fast that every one Iis
performed within the required time. An important part of
specification is defining how fast and how often the
microprocessor needs to perform each function. (For
example: an analog input might need to be sampled every 5
ms, this being the minimum period in which it could change
significantly in a particular application). An important
part of hardware design is to determine that the processor
can meet these specifications.

A useful measure of this is system load, which can be
defined as:

Processor Time

Real-Time

Tor a given task, the load on the system is the processor
time needed to perform the task, divided by how often the
task must be performed. If the processor spends 2 ms
carrying out a particular task, and the task must be
performed every 10 ms, this represents a .2 or 20 per cent
system load.

An estimate of the total system load can be obtained by
calculating the system load for each task that must be
performed, and adding them together. System load is not a
foolproof test of a design’s practicality; but it does give
the designer an indication of the magnitude of the task, and
quickly shows up impossible specifications. Estimating the
load for a given task involves a consideration of the
software algorithm that will be used to perform it. This
need not be very detailed at this stage. A rough
calculation often shows that use of system resources 1is
dominated by a very small number of tasks.

An estimation of 0.1 per cent could be out by a factor of 5
without making too much difference; a task calculated at 25
percent, however, needs careful evaluation. Usually, it is
only necessary to look at a very small portion of program,
which can be coded experimentally if necessary.

If the total system load comes out at more than 50 percent,

ot
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o0
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the design should be reconsidered. There are two reasons
for leaving a wide margin:

(1) To allow for errors in the estimation, and for
modifications to the software

(2) Most systems have a degree of randomness: the
average rate at which things happen may be
predictable, but it may sometimes be exceeded
by quite a large amount. It is wise to leave
some power 1in reserve to deal with bursts of
activity. ¢

Besides the raw estimates of system load, timing constraints
need to be considered. The straightforward estimate assumes
(naively) that processor time is spread evenly over
real-time. If the system needs to do a great deal within a
period of 1 ms, and then nothing for 50 ms, this cbviously
must be taken into account. 1In this case, the load during
the 1 ms period should be evaluated separately.

If the system load does come to more than 50 per cent, there
are several alternatives:

(1) Unload some of the work from software to
external hardware

(2) Reduce the specification of the system
(3) Use a more powerful processor
(4) Add another processor

If the system load comes out very low (less than 1 per cent,
for example) this need not be a bad thing, if design and
cost criteria are met. However, if there are tasks being
performed by external hardware that could equally be done in
software, this is worth considering.

Microprocessors have become inexpensive enough to make it
economically feasible in many applications to have them
lying idle for much of the time. On the other hand, having
to redesign because design parameters have been pushed too
far can be expensive.

Once the load has been calculated and the design fixed, the
design engineer needs to beware of ‘creeping enhancements’.
Microprocessor systems follow a revised form of Parkinson’s
Law: unless carefully controlled, designs expand to fill 150
percent of the resources available. To avoid this, the
designer needs to evaluate carefully the effect of proposed
enhancements, and consider them in relation to his loading
estimates - which can be checked experimentally once the
design is built.
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2.4.2 Memory Size

Naturally one
A ne

.;
urally, i
hardware for a system is how much memory space to allow.
The only way to estimate memory size is to break a system
down into software packages and estimate the size for each,
based on existing packages. If the software designer making
the estimate lacks confidence in his figures, then the
packages should be broken down still further and, perhaps,
parts of them trial coded.

mportant consideration when designing the

i i oL G i vl 11T 12

Whatever the figure arrived at, the hardware designer should
allow a sizeable margin for expansion; first, because no-one
has yet found a completely reliable method for estimating
the final size of a software package, and second because of
the previously mentioned tendency for ‘creeping
enhancements”’. It is usually much easier to cut down an
over—-designed prototype version when producing a production
model, than to add significant memory space not foreseen in
the original design. The size of each software package
can be monitored as it is produced and compared with the
original estimate, to give a progressively better picture of
the final memory size.

2.5 SOFTWARE DESIGN

Software design consists of turning the specification of
each function the processor 1is to perform into precise
software algorithms (ie step by step procedures for
performing the desired function) and data structures. This
is not yet programming, which occurs at a more detailed
level, Starting to program too early, before a software
design strategy has been worked out, will lead to a design
that 1is incoherent and badly structured. At least a third
of the software development effort should be spent on
design, to establish the overall structure of the software
before starting on the details.

Software design should identify:
(1) The data structures to be used
(2) The routines and algorithms to be written

(3) How the different parts of the software will
work together.

The basis of software 1is data, since this represents the
information that will be manipulated by the algorithms. A
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system wuses two types of data: input or output data, which
is the system’s means of communication with the outside
world, and stored data, which is held in memory and
represents those concepts internal to the system of which a
record must be kept.

The first task of the software designer should be to
determine:

o What data is required
o How it should be organized (structured).

The data should be structured to reflect as closely as
possible the information it represents. This involves:

o identifying those aspects of the information
which are fundamental and not superficial

o using these as the basis for structuring

o wherever possible using structures instead of
single wunrelated data items. This makes the
software more coherent and more manageable.

Older ‘high level’ languages such as FORTRAN, and low level
assembly language, provide no means of grouping and
structuring basic items of data to form more complex
entities., Any such grouping that is done must be done
inside the programmer’s head. Newer languages such as
Pascal provide, within the language itself, powerful means
of building complex data entities out of simple ones. This
means that complex software systems can be built up that
model the outside world, and real operations, with
surprising accuracy. A single data structure, for example,
referred to by a single name, may contain all the
information that needs to be known about a chemical process,
or the operation of a machine. This data structure may be
passed as a single item to a routine that performs a complex
operation - say, shutting down the chemical reaction or
using the machine to manufacture a part for a motor. The
data structures establish a basis - an abstract model of the
"real world" - from which program algorithms can be
developed to perform various useful tasks. The real time
structure of Microprocessor Pascal and Component Software
also makes it possible to define and group complex
operations, '"packaging" a group of concurrent, closely
interacting operations, together with the data they operate
on as a single, higher level function.

The process of software design is considered in detail in
Chapter 4.
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2.6 PROGRAMMING

Programming involves turning a software design into source
program code, following the syntax rules of a particular
programming language. The amount of work involved depends
on the programming language selected for implementation.

Pascal was designed as a problem-oriented language
incorporating modern design techniques. Turning a software
design into a Pascal program should involve little more than
formalizing it and writing it to conform to the syntax
rules. The constructs used in design can be implemented
directly in Pascal. The routine work of translating the
design into machine instructions is handled automatically
by a software utility - the compiler.

BASIC, like Pascal, is a high-level 1language that handles
much of the routine work (data allocation, for example) of
translating the design into machine terms automatically.
However, BASIC was designed for simplicity and is not as
powerful as Pascal. It does not provide all the constructs
required for reliable software design in a directly usable
form.

BASIC does have other advantages. Being simple, it is easy
to learn. As an interpreted 1language, it has special
characteristics which are explained in Chapter 7. Because
it is designed to run on the TM990 range of microcomputer
modules, a design can be developed very quickly and cheaply
using standard hardware and a very low cost development
system. BASIC is ideal for experimental and low volume
designs.

Assembly Language 1is the most powerful, the most time
consuming and the most difficult alternative. It gives the
programmer complete control over all the resources of the
microcomputer, but to exploit this control requires skill
and discipline. Program development also takes much longer
than in a high level language. Assembly language should be
used where code size and efficiency is crucial (for example,
in small, high volume applications). It can also be used to
code critical areas of a program written in a high level
language (I/0 routines, for example). In general, assembly
language can be used very effectively in small areas; large
programs quickly become unwieldy.

Selecting which language to use depends very much on the
application, the development facilities available, the
development timescale, and the skills of the programmers.
Later chapters of this book describe each language in more
detail.
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Programming, or coding, is a relatively mechanical process
which 1involves expressing a software design in a precise,
unambiguous form that conforms to strict syntax rules. The
real creative work of development is done at the system
design and software design stages. When choosing which
implementation language and what type of development system
to use, the designer is choosing how much of the programming
process will be handled automatically by software
development tools (compilers, 1linkers, etc) and how much
will be done by a human programmer.

Programs may be written on paper and then entered into the
development system, or they may be written directly at the
computer. The second method offers many advantages =~ no
duplication of effort, easy modification of the program, and
an immediate printed record if required. The development
system acts, in effect, as an electronic notebook -
faithfully 'recording the program as it develops, and also
checking periodically that the programmer has followed the
rules of the programming language.

The programmer uses a software tool called an editor (see
Section 3.4) to enter and modify his program on the
development system. A structured high level language like
Pascal makes it easy to build up a program as it develops in
the mind of the programmer. The Microprocessor Pascal
System (Chapter 6) includes a syntax-checking editor, which
will point out language errors for immediate correction on
the screen, during an edit session.

2.7 PROGRAM TRANSLATION

The source program, which is in a programming language, must
be translated into mwachine executable form - that is, a
pattern of binary O0°s and 1’s corresponding to the
microprocessor’s instruction set.

This 1is done by software tools called compilers and linkers

(see Sections 3.5.5, 3.6). The process of translation from
human-readable to machine-executable form is almost entirely
automatic, and takes only a few minutes. It will  wusually

need to be done several times, as the programmer corrects
errors in his program by changing the source program code
and re-translating.

Two types of error can arise:

(1) Language errors. If what the programmer
writes does not conform to the rules of the
programming language, the compiler or

assembler will give an appropriate error
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message, and the error can be corrected
immediately.

(2) Logical errors. If there is an error in the
logic of the program, this may not be found
until the software is tested.

To minimise frustration and development bottlenecks, it is
important that compilers and assemblers can be called up
simply and directly from the development system keyboard,
and that they execute quickly.

2.8 CONFIGURATION AND LINKING

Most software systems are written not as one large piece of
software, but as several smaller packages. Smaller programs
are much easier to manage, and take less time to translate.

This means that the pieces must be welded together into one
complete system before they can be used. Configuration is
the process of selecting the pieces of software required for
an application (perhaps from a "library" of software parts),
taking care of any system~wide considerations (such as how
to allocate memory, and what will be the hardware addresses
of I/O0 devices), and linking the pieces together.
Configuration is particularly relevant to Component Software
systems — see Chapter 5.

The actual forging of the links between software packages is
carried out automatically by a software tool <called a
link editor or a linker (see Section 3.6).

2.9 DEBUGGING

Once a program has been written, it must be tested.
However, a microcomputer program is often designed to run on
a system other than the one on which it is developed. (The
development system is often referred as the host system; the
final application system is called the target system). The
program 1is often ready for testing some time before the
target system is built; and in any case the target system
may not provide the facilities needed to test a program.

2.9.1 Simulation

To overcome this problem, some means of simulating the
target system environment on the development system is
required. The Texas Instruments Microprocessor Pascal
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System provides a host debugger that permits target system
programs to be executed and monitored interactively on the
host development system. The debugger builds a '"software
model" of the target system on the development system.
Inputs and outputs can be simulated via operator commands.
Program flow can be traced, and data items examined. Using
the debugger, the user can examine exactly what goes on when
the program is running. A 9900 Simulator is also available
to test assembly language programs.

Testing should exercise every possible path through the
software, and every possible condition. A good test
strategy is to test each software module separately,
simulating its interaction with the rest of the system
(perhaps writing a test program to provide., suitable inputs
and outputs). Modules can then be placed together with
confidence that they work in themselves, and the interaction
between modules <can then be tested. Without a test plan
like this, it is almost impossible to carry out a thorough
test.

2.10 HARDWARE INTEGRATION AND EVALUATION

While a simulator provides powerful debugging facilities,
and can be used to check out completely the 1logic of a
program, it does not ©prove that the software will work
correctly with the target system hardware. The critical
stage of hardware/software integration is best handled by
emulation.

2.10.1 Emulation

Using emulation, the software can be tried out in the target
system hardware, while retaining the facilities of the
development system to monitor program execution and change
the program if necessary.

This is achieved by connecting the development system to the
target by a special cable. The microprocessor 1is removed
from the target system and the cable plugged in in its
place.

Part way along the cable is a "buffer module" containing a
microprocessor and interface circuitry. This microprocessor
can execute a program contained in "emulation memory" on the
development system. Emulation memory can be loaded from the
development system with the program under test. The program
executes in the ©buffer module exactly as it would in the
target system (in real-time) and is connected to the target
system hardware for input and output. The development
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system can monitor program execution, trace the program flow
and stop execution if specified conditions (breakpoints)
occur.

DEVELOPMENT

SYSTEM

& NN/

BACKING /75 lejﬂ/

sToRe |€°
TARGET
SYSTEM
(MICROCOMPUTER

BOARD)

STATUS INFORMATION
DISPLAYED
ON SCREEN

USER ENTERS COMMANDS
TO CONTROL EMULATION

Figure 2-3 Emulation

For Texas Instruments microprocessors, emulation is provided
by the AMPL (Advanced Microprocessor Prototyping Laboratory)
module. Emulation is controlled by a structured high-level
language, in which sophisticated test procedures can be
written.

2.10.2 Evaluation

Once the system is working in emulation, the software can be
programmed into PROMs and the "umbilical cord" to the
development system can be severed. At this stage the device
should undergo a thorough evaluation and audit by someone
not involved in 1its development. The designer will have
tested the device to the best of his ability, knowing its
internal structure and what might be likely to go wrong.
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The independent auditor will test without knowledge of the
internal workings, according to how the device is likely to
be wused. This audit should be performed against the
original statement of requirements; and it should use (and
criticize) the documentation (User’s Guide, etc) that is to
be provided to the end user.

2.11 PRODUCTION

When a working system has been obtained that satisfies the
design criteria, the hardware can be frozen and production
of the device can begin. (If the device is 1-off, of
course, this is the end of the road.) Hardware typically
requires a much longer production lead time than software
(for printed circuit board layout, tooling, etc) and
therefore needs to be frozen much earlier. Minor software
changes and enhancements can still be made, provided they do
not affect the hardware.

The software should not be frozen until it has been tested
with production hardware. It may be possible to fix minor
problems introduced by the move from prototype to production
by modifying the software. This will usually be much easier
than changing the hardware at this stage.
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CHAPTER 3

DEVELOPMENT TOOLS

w

This chapter describes the hardware and software tools used
in software development for microprocessors, and some of the

. Anwran T mm s
nics of software aeveiopmente.

3.2 DEVELOPMENT SYSTEMS

In traditional forms of computing, software is usually
developed on the machine on which it is to run. Such
computers are general purpose machines capable of running
many different programs, including the ‘software tools’ used
in program development.

With microcomputers, this is not usually possible.
Normally, a dedicated system cannot be used to develop the
software that is to run on it. Many dedicated systems will
not provide the peripheral devices (keyboard, printer,
etc.), much less the software tools, required for program
development.

For this reason, a general purpose computer system called a
development system (or host system) is used to develop
software for a microcomputer. The dedicated microcomputer
in which the software will finally run is called the
target system. The development system is often a
minicomputer, such as the Texas Instruments 990 family. 990
minicomputers have the same basic instruction set as the TMS
9900 family of microprocessors, which makes software
development much easier. However, it is possible to develop
software for a microcomputer on a large mainframe computer,
such as an IBM 370.

A microcomputer development system is likely to have one or
two special purpose peripherals, such as a PROM Programmer.
The AMPL package (Advanced Microprocessor Prototyping
Laboratory) provided by Texas Instruments also allows target

system emulation. The target hardware is connected by a
cable to the development system. The emulator runs a

program contained in the development system’s memory, on the
actual hardware of the target system. All the resources of

1 October 1981

w
1
[

Texas Instruments



SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

the development system are available to monitor and to
change the program if necessary. AMPL provides
sophisticated testing aids for both hardware and software.

Using the peripheral devices and the software tools provided
with the development system, it is possible to write a
microcomputer program, translate it into machine
understandable form (ie binary digits), test it wunder
simulation on the development system, try it out in the
target system hardware, and finally write it permanently
into the memory of the target microcomputer system.

3.3 FILES

Much of the mechanics of program development consists of
creating and manipulating files on a development system. A
file is a sequential list of information held on a backing
storage device (disc, magnetic tape, etc). This information
may be text, numbers or binary digits. Files are wused to
store the source program code that a programmer writes, and
to store the machine code that can be executed by the
microcomputer. Files can also be used to store
documentation, user’s guides etc - in fact anything that can
be reduced to words, numbers or bits.

Once a design has passed the paper stage, it will consist
entirely of files stored on the development system. This
medium may be unfamiliar to those wused to working with
circuit diagrams, printed circuit boards and soldering
irons. However, once the basic techniques have been
mastered, it is an easy and natural medium to work in.
Software tools can manipulate the '"stuff" of the design
directly, and hence a large part of the design and
development process 1is automated, eliminating repetitive
work and enhancing productivity.

A file can be read as input data by a program running on the
development system; the program can write back a file of
output data.

Utility programs are provided with a development system to
perform many of the tasks associated with program
development - for example, translating source code written
in a high-level language into object code that can be
understood by the microprocessor. The source code 1is read
from a file held on backing storage; the object code is
written to another file.
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Figure 3-1 Software Tools

These wutility programs are the tools of the software
engineer; they are what he or she wuses to create and
manipulate software. A utility program (a ’‘software tool’)
may have several input and several output files, depending
on the function it performs. An output file need not go to
backing storage: if it contains textual information it might
be sent directly to a printer. Similarly, an input file
might be typed in at a keyboard.

Files which contain readable text - that is, information
that can be understood and manipulated by a programmer - are
known as text files. Bindry codes are used to represent the
individual text characters (see section 3.8).

3-3.1 Backup

Once programming has begun, the work of the software
designer will be held entirely on files in backing storage.
While storage media are inherently very reliable, errors do
occasionally occur (due, for example, to dust accidentally
getting into a disc drive) which can wipe out days or even
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weeks of work. It is therefore necessary to have some form
of backup for important files - an extra copy, stored away
from the computer. There are many ways of doing this: for
example, copying files at regular intervals to magnetic tape
or paper tape.

One method which works particularly well for floppy
disc-based systems, and can also be used for hard discs, is
to duplicate the complete disc (or discs) containing the
files for a project. The suggested way of doing this is to
have 2 backup discs for each disc in use. The 3 discs
(labelled A, B, C for convenience) can be wused in a
backup cycle:

O™ CURRENTDISC
|

B
(I) FIRST BACKUP DISC

C
(l) SECOND BACKUP DISC

Figure 3-2 Backup Cycle -1

At regular intervals - say once a week, but depending on how
much work has been done - the current disc is backed up.
This is done by copying the complete disc to the second
backup (C). The copy should be verified after it has been
made.

O®| CURRENTDISC
|

COPY (I)B FIRST BACKUP DISC

Ci)c SECOND BACKUP DISC

Figure 3-3 Backup Cycle - 2
Once this has been done, the second backup (C) becomes the

current disc, the previous current disc (A) is relegated to
backup, and the first backup to second backup:
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C
CI) CURRENT DISC

A
Cl) FIRST BACKUP DISC

(I)B SECOND BACKUP DISC

Figure 3-4 Backup Cycle - 3

There are two reasons for using C as the new current disc
instead of continuing with A:

1) If the cycle is carried out regularly each disc
will get the same amount of use

2) If for any reason the copy did not work, this
will quickly become apparent when trying to use
C.

If the current disc becomes corrupted at any time, the first
backup can be used to restore the situation at the time of
the last backup cycle.

The second backup provides an extra insurance policy against
catastrophes - for example if a disc drive fault corrupts
both the current disc and the first ©backup, or a power
failure occurs during the backup process.

The extra expense of triplicating discs (not much for
floppies) and the time spent backing up is more than paid
for by the savings if a fault does occur.

3.4 Text Editing

The text editor is a program which allows the user to create
and manipulate text files. The editor is perhaps the most
important tool on the development system. It is the tool
which a programmer will spend more time using than any
other. So it is important that an editor is well designed,
easy to use and has a good set of facilities.

New text 1is entered at a keyboard, and saved in a file on
backup storage (cassette, floppy or hard disc). The text
will wusually consist of source program code in assembly or
high level language; however most editors will allow any

[
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kind of textual information to be entered. The text
(whether newly entered or recalled from backing storage) can
be modified by entering commands at the keyboard (Figure
3-5)0

Generally the editors which are easiest to use are those
which are screen based: that is, the text is displayed on a
visual display screen and can be modified by moving a cursor
and using simple key strokes to change, insert or delete
characters at appropriate positions (Figure 3-6).

(1) Creating a new file

TEXT |_—
47| EDITOR

USER EDITOR
ENTERS CREATES TEXT FILE
TEXT ON BACKING STORAGE

(2) Modifying an existing file

TEXT
/ EDITOR \
TEXT FILE I MODIFIED TEXT

FILE WRITTEN TO
BACKING STORAGE

READ FROM
BACKING STORAGE

USER ENTERS COMMANDS
TO MODIFY TEXT

Figure 3-5 Editor Function
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AT CURRENT CURSOR AT CURRENT CURSOR
POSITION POSITION

Figure 3-6 Use of a Screen Based Editor
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Most editors also provide a repertoire of commands that
allow such functions as searching for and replacing
specified strings of characters.

Commands H*-k—k—k-k-kokok_k-%_k_%_% Commands F—k-k—kok_kod-k_dok_kok_k_k_k_k_%

ABORT Exit the editor BOTTOM Position cursor at end-of-file
INPUT Edit another file TOP Position cursor at top-of-file
QUIT Save file & ABORT +/- int Position cursor up or down "int"
SAVE Save file & INPUT

INSERT Insert a file
CHECK Check syntax of file SHOW Display a file
COPY Copy the specified block after the curreat line
DELETE Delete the specified block
MOVE Move the specified block after the current line
PUT Put the specified block into the specified file
FIND(tok,n) Find the Nth occurrence of tok
REPLACE(tokl,tok2,n) Replace tokl with tok2 for n occurrences
TAB(increment) Set tab increment

Kok ok kok Rk kK —k—kmkokok=% Function Keys *—k—kokok_k_dk-k kok_kokodk_k-k-k-%
Fl F2 F&4 F5 Fé F7 F8
Roll Up Roll Down Duplicate Start Block End Block Edit/Compose Split

File = INPUT.FILE Tab = 2
<>

Figure 3-7 Microprocessor Pascal Editor ‘Menu’ of Commands

3.5 PROGRAMMING LANGUAGES

As far as a programmer is concerned, software development
consists mainly of manipulating text files stored on a
development systiem. These text files will probably be
written in some programming language. A programming
language is a precise form of notation that a programmer
uses to specify what he requires the microprocessor to do.
Software tools are used to translate the program in this
form (in which it can be created and worked on by a software
engineer) into a form that can be understood and executed by
the microprocessor. Together, the language and the software
tools form a design system for programming electronic
parts.
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3.5.1 Assembly Language

The earliest computers were programmed directly in machine
code: that is, binary digits. Each instruction in a
computer is represented by a unique pattern of bits within a
word of program code. For example, in the TMS 9900,
101 0XXXXXXXXXXXX means fadd"”

The X’s carry other information (where the elements to be
added can be found, and where to store the result) and may
be 0’s or 1’s. Some instructions require two or three
words, because they contain data, addresses of memory
locations, etce.

Programming in machine code is extremely tedious and very
prone to errors. Therefore assembly language was invented.
Using assembly language, a program can be writtem with
meaningful mnemonics (e.g., MPY for multiply) instead of
binary code for instructions, and symbols instead of numeric
addresses for memory locations:

c @WORD1,@WORD2 COMPARE WORD1 WITH WORD2

JEQ SAME JUMP IF RESULT = O TO LABEL "SAME"
SAME ™8 7 TEST INPUT BIT 7
WORD1 BSS 2 RESERVE STORAGE (BLOCK STARTING
WORD2 BSS 2 WITH SYMBOL) FOR WORD1 AND WORD2

2 BYTES = 1 WORD EACH

3.5.2 Assemblers

Translation from assembly language to machine code, which
must be done before the program can be executed, is a
tedious but fairly straightforward process; the sort of
thing computers do well. The translation is carried out
automatically by a software tool (a computer program) called
an assembler.

An assembler converts assembly language source code, which
is produced by a programmer, into object code, which can be
understood by the microprocessor. The input to the
assembler will normally be a text file created by the
editor. The output will be a file of object code. The
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assembler also generates a 1listing file, which is a text
file containing details of the assembly, and any error
messages.

- OBJECT
EXT FILE CODE
OFSOURCE\A Y HiE
CODE ASSEMBLER
LISTING
CONTROL STATUS FILE
COMMANDS MESSAGES

Figure 3-8 Assembler

One of the advantages of using an assembler (instead of
programming directly in machine code) is that programs can
easily be changed. For example, an extra instruction can be
inserted in an assembly language program and the program
simply reassembled. Inserting an extra instruction in a
machine code program would involve going through the whole
program changing (eg) jump addresses, because the position
of all the code after the insertion would have changed.

3.5.3 High-Level Languages

Assembly language, though a great improvement on machine
code, still requires a problem to be translated into machine
terms before it can be programmed. Each assembly 1language
instruction corresponds to one machine instruction.
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The programmer must write a statement like

IF temperature less than 70 degrees AND
pressure sensor is off THEN
notify operator

in terms of the low-level tests and conditional jumps that
are the only things the computer understands:

CI @TEMP, 70
JNE NEXT

CI  @PRESS,OFF

JNE NEXT
BLWP @NTFYOP
NEXT .

In addition, the programmer must manage all the resources of
the computer, such as which memory locations are to be wused
to store each item of data, himself.

High level 1languages were introduced to allow the computer
to handle all these ‘housekeeping’ functions automatically,
and to free the programmer to concentrate on the problem.

One of the first high-level languages was FORTRAN, which
stands for FORmula TRANslation. It allows programs to be
written in a stylized language that combines elements of
mathematics and English:

10 J = 4
I = 5% 4+ 7
IF (I.EQ.27) THEN GOTO 100

The programmer can set up storage locations with names 1like
"i" and "J". I and J are called variables because they can
be assigned any value. The first 1line of the program
(labelled 10) sets J to the value of 4. The second line
takes the value stored in J (which we know to be 4),
multiplies it by 5, adds 7 and assigns the resulting value
to I. Line 30 then tests I to see if it has the value 27;
if so, the next line to be executed will be the one labelled
100. Otherwise the program continues with the next line in
the sequence.

I and J represent memory locations. But the programmer does
not have to worry about where in memory they are.

It is much easier to write programs in FORTRAN than in
assembly language. However, in some respects FORTRAN is
still closer to the way machines operate than to the way
human beings think. The GOTO statement, for example, is
obviously derived from the assembly language JMP; it is a
machine construct and not a human, or logical, omne.
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Implementation of conditional statements, for example,
requires GOTO statements and labels. To program "If I is
equal to 5 then do X else do Y", it is necessary to write:

IF (I.EQ.5) THEN GOTO 50

« (do Y)

éOTO 100
50 .

: (do X)
100 :

Not only are the statement numbers an additional confusion
and a source of error, but the order is inverted: the then
action comes second. FORTRAN was designed simply as an
easier and quicker way of writing assembly language
programs.

More recently, high-level languages have been designed with
the intention of getting as close to the problem as

possible. The ideal 1is that writing a program should
require no more than a precise and unambiguous statement of
what to do. Everything else (translating this precise

statement into code to be wunderstood by a machine, and
allocating machine resources) should be done automatically
by software tools.

A precise and unambiguous statement of what to do 1is known
as an algorithm. One advantage of this approach is that the
algorithms derived are independent of a particular machine
architecture, and can survive changes in hardware
technology. Many of the newer languages are based on ALGOL
(ALGOrithmic Language), which was designed in the 1960s as a
natural language for writing algorithms.

3.5.4 Pascal

Pascal is acknowledged as one of the best modern high-level
languages. Developed principally by one man, PASCAL has a
coherence which some committee—designed languages lack. It
implements most of the generally accepted good programming
practices. Besides providing the fundamental constructs
needed to write algorithms, in a much more natural way than
in FORTRAN (say), Pascal also has powerful methods of
organizing and structuring data.

Algorithms can be turned directly into Pascal programs with
very little effort.
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A Pascal program 1is easy to read, and is almost
self-documenting:

IF input value = 5 THEN
BEGIN
perform_test_procedure;
print_results
END

ELSE
record value;

perform test_procedure, print_results and record value will
be precisely defined elsewhere in the program.

3.5.5 Compilers

A compiler performs the same function as an assembler (see
section 3.5.2 above), but its input will be a progranm
written in a particular high level language. Some compilers
produce object code (machine code) directly; others generate
assembly language source, which must be run through an
assembler to generate object code. This is an extra step,
but it does give the user the option of hand optimizing the
compiler output before it 1is assembled. The input to a
compiler or assembler is called source code; the output is
object code.

Execution of a compiler or an assembler is completely
separate from execution of the resulting program. A
compiler or assembler is a software tool wused during
development that translates a program written in a
programming language into a machine executable form. In
developing a microcomputer application, the
compiler/assembler will run on the development system and
the compiled or assembled program will be designed to
execute on the target system.

3.5.6 Interpreted Languages

Languages such as FORTRAN are compiled languages; that is,
the source program is turned into machine code in a separate
step (perhaps on a different machine) before it is
executed.

With an interpreted language, such as BASIC, there is no
separate compilation step. The program is not stored in
machine code but in intermediate code, which can be regarded
as condensed source code with all wunnecessary symbols
removed. At execution time, the interpreter, a program
which resides with the intermediate code 1in the target
system, looks at each line of intermediate code, determines
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what it means and carries out the necessary action. The
intermediate code is not executed directly; the interpreter
examines it to determine what it means, then calls an
appropriate piece of assembly language code, contained
within the interpreter, to perform the operation.

Intermediate code is much more compact than machine code;
however, the interpreter must always be there, whatever the
size of the intermediate code, so that there is a minimum
overhead in an interpretive system. Beyond a certain size,
an interpreted program will take less memory than an
equivalent compiled program. However, an interpreted
program will run a lot slower (typically 5 to 10 times) due
to the extra work that must be done at execution time in
interpreting the intermediate code.

3.5.6.1 BASIC

BASIC is a simple 1language which is very easy to learn.
BASIC systems also use a very simple set of software tools.

BASIC is especially suited to systems where development and
execution are carried out on the same hardware. BASIC
systems usually have a special editor, which converts input
programs to intermediate code, a line at a time, as they are
entered. The BASIC editor checks each 1line for syntax
errors as it 1is entered, and signals any errors for
immediate correction. There is no separate compilation or
assembly step; programs can be executed simply by typing
"RUN", Programs can be halted and changed, then run again,
which makes for very quick, interactive development.

Texas Instruments’ Power BASIC (see Chapter 7) is designed
to run on the TM990 range of microcomputer boards. A BASIC
program can be developed and executed using, at minimum, one
TM990 board and a terminal. BASIC provides an inexpensive
microcomputer system which is ideal for small applications
"and experimental work, and can be wused by people without
computer experience.

However, BASIC does have limitations. Its "line at a time"
nature means that there is no adequate program or data
structuring, and very limited checks on program
correctness. BASIC is not recommended for the development
of complex systems.

3.5.6.1 Interpreted Pascal

Microprocessor Pascal programs (see chapter 6) will normally
be executed in machine code ("native" code). This gives
maximum execution speed. However, they can optionally be
executed interpretively. This allows the user to trade-off
execution speed against memory size, and to select which is
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more important for his particular application. Interpretive
execution is slower, but takes less memory.

3.5.7 High-Level vs Low-Level

Faced with the choice of which 1language 1is best, some
general observations can be made.

Low~level (assemblj?) 1anguagé allows the programmer direct
access to all the features of the machine and thus the
opportunity to write compact and efficient programs. To
capitalize on this requires skill and time. The opportunity

equally exists to make mistakes and to write inefficient

P e ol =Lt

High-level languages can shorten development time by a
factor of 5 or more, and produce more reliable code. With a
high-level 1language it is much more difficult to make
expensive mistakes. High-level programs are more
understandable (if properly written, they can  be
self-documenting), so that a project is less 1likely to be
dependent on one programmer. Changes are easier to make in
the late stages of a project. The cost 1is some code
inefficiency because a compiler cannot optimize as well as a
good assembly language programmer. However, this becomes
less true as the size of the program increases.
Inefficiencies (and errors) may be introduced in a large
assembly language program simply because of the intellectual
difficulty of managing such a large amount of detail
(especially when it is worked on by more than one
programmer). Compilers do not suffer from this problem.

Restrictions on code size, particularly for high volume
products, may dictate the use of assembly language in order
to produce the most compact code possible. Unless this 1is
the case, it makes sense to wuse a high-level language.
Assembly language projects of more than a few K (= thousand)
bytes should be considered very carefully because complexity
increases very rapidly with size. (Studies have estimated
that complexity is proportional to the square of the size of
the program).

For many projects, a compromise solution may be attractive.
For example, the control aspects, where clarity of the
design is important, can be programmed in high-level
language, with assembly language routines for critical low-
level areas such as input and output.

An alternative (or complementary) solution is to
hand-optimize compiler-produced code, once the program has
been completely checked out; or even to rewrite it in
assembly language after proving the design in (say) Pascal.
Both approaches have been used very successfully by Texas

[y
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Instruments in intermnal projects.

3.6 Linker

A linker, or link editor, is a program which will combine
separately compiled or assembled object code modules to form
a complete system.

With a system of any size, it is much easier to break the
program down into modules which can be written separately.
Usually, these modules will be chosen so that each performs
a fairly self-contained function and can be treated as a
logical unit.

The interfaces between these modules - that is, the way that
they will fit together to form a complete system - must be
carefully considered when the system is being designed.
Modules will often need to use programs or data contained in
other modules. These can be defined as external references
to symbolic mnames: they will be indicated (tagged) as
unresolved addresses in the object code. Definitions to be
used by other modules will also be included in the object
code. The 1linker connects together, or resolves, these
loose ends by linking references with their corresponding
definitions.

3.6.1 Absolute and Relocatable Code

Before a program can be executed, it must be located at a
particular place in memory. Addresses in a program refer to
particular memory locations, and the right data or program
code must be present at those locations for the program to
work.,

Some assemblers for the 9900 (the Line-By~-Line Assembler for
example) produce only absolute code; that is, the ©position
of the code in memory is specified at the time of assembly,
and cannot subsequently be changed.

However, most assemblers produce relocatable code. Program
and data addresses are calculated relative to the program
base address - usually 0. Address fields are specified as
"relocatable" in the object code output. When the program
is loaded for execution, starting at, for example, address
100, the loader program can add this value to all the fields
tagged I'"relocatable" so that the program will execute
correctly (Figure 3-9).

Relocatable code allows the programmer to postpone deciding
where the program will be located until the time comes to
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load it. This can be very useful when a system 1is Dbeing
constructed from a number of different program modules.
Each module can be assembled separately without needing to
calculate exactly where it will fit in memory - which would
involve knowing the lengths of all the other modules. More
important still, one module can be changed (perhaps
increasing its length) without the need to reassemble all
the others in different positions to make room for it.

Program assembled at Loaded in memory
base address 0 at address >100

* Branch to

* address >4A
B QLABEL >100 added to

relocatable

addresses

4AJLABEL MOV R1,R2

100

5F

* Branch to
* address >14A
B @LABEL

_p14A |LABEL MOV RI1,R2

15F

Figure 3-9 Relocatable Code

Modules to be linked will wusually be relocatable. The
linker stacks them one after the other in memory, adjusting
all the addresses accordingly. Output from a linker can
either be a larger relocatable module, or absolute code,
designed to be executed at a particular position in memory.

Linkers and relocatable code make a great difference to
software development. It is possible to break a project
down into manageable modules. One module can be changed
without recompiling or reassembling the whole systen. The
linker automatically takes care of changes in module size
and in the addresses of external variables. This can save a
great deal of time (and money) in developing software.

A linker also allows the wuse of 1libraries of standard
routines. Libraries can provide, for example, mathematical
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capabilities or run-time support for a particular
programming language. A library consists of a number of
different modules, which can either be written by the user
or supplied by a manufacturer. These modules are stored as
relocatable object code. A user can reference any of these
modules in his program; when the time comes to link, the
linker will automatically select from the 1library the
modules required by the program, and link them into the
system. See Chapter 5, Component Software, for further
information on the use of software libraries.

With a linker, some modules can be written in high level
language and others in assembly language, according to their
characteristics. This makes possible a very flexible
approach to system design.

3.7 TARGET SYSTEM EXECUTION

Having produced an executable program using the software
tools of a development system, there are two ways of
transferring the program for execution in the intended
target system (a third method, emulation, is described in
Chapter 2, section 2.10.1).

3.7.1 Loader

A loader 1is a software wutility that loads an executahle
program from some form of backing storage into read/write
(RAM) memory, for execution by the processor. A loader will
therefore be used in a target system which has been designed
to execute more than one program, and which has a backing
store of some kind (magnetic disc, tape etc) available.
However, a loader may also be used in a target systenm
without backing storage, to load a program into RAM memory
for test execution. Here, the "backing store" is likely to
be a host development system, or a terminal with some form
of storage.

Any computer system requires some form of program stored in
read only memory that will be executed immediately when the
system powers up. In a general purpose computer, this
program may do nothing more than load in the Operating
System or Control Program from backing store, and then
relinquish control. Such a program is called a '"bootstrap
loader".

Some loaders are relocating loaders - that is, they can take
a relocatable object program from backing storage and place
it at any specified position in memory, adjusting the
addresses tagged ‘relocatable’ so that the program will
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execute correctly. Other loaders require program code in
image format - that is, absolute binary code that can be
placed directly in the computer’s RAM memory.

3.7.2 PROM Programmer

A dedicated microcomputer is likely to have its program code
already stored in read only memory when the system powers
up, so that no loader is required. A utility called a PROM
Programmer is used to permanently fix the program into a
PROM memory chip which can be plugged into the target
system. (In the case of EPROM, the program can be erased
again by exposure to ultraviolet light - see Section 1.7,
Semiconductor Memory)e A PRCOM Programmer is a peripheral
device attached to a microcomputer development system,
together with a software utility which takes program files
from disc on the development system and feeds them to the

peripheral device.

For systems produced in large quantities, mask ROM (Section
1.7) may be used. In this case the developed program will
be incorporated into the ROM device during manufacture.
However, PROM (Programmable ROM) is likely to be used to
prove the final program before it is committed to mask.

3.8 TEXT FILES

In order to store textual information in a machine which
recognizes only binary digits, some form of code must be
used -~ that 1is, some rule for transforming textual
information into binary data. The code adopted for the 990
and 9900 series is ASCII (American Standard Code for
Information Interchange). The ASCII code specifies a unique
bit pattern (number) for each member of the ASCII character
set - letters, digits, punctuation marks and control
characters. 7 bits are sufficient to uniquely identify an
ASCII character. ASCII characters are wusually stored one
per byte (8 bits), with the most significant bit often being
used for error detection (parity check).

This means that textual information can be held in memory,
saved as a text file on backing storage and manipulated by
utility programs. '
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Character ASCII code
Binary Hexadecimal#*
A 01000001 41
T 01010100 54
1 00110001 31
5 00110101 35
? 00111111 3F
line feed 00001010 0A

It is the input and output devices (Visual Display Unit,
printer, etc) that recognize ‘01000001’ as “A’, and so on.
They translate key presses into ASCII coded data, and coded
data back into displayed and printed characters.

Program manipulation of textual data is normally limited to
moving it around in memory (to 1insert or delete text),
searching for particular sequences of characters, and
similar operations. (Arithmetic operations on text do not
make much sense.)

Numbers (decimal, hexadecimal or otherwise) can be
represented in text as a string of ASCII digits. However,
the bit pattern representing these digits in the computer is
a code and bears no direct relation to the binary
representation of that number -~ which the computer would use
to perform any calculation.

* For the hexadecimal number system, see Section 8.13.2.1
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CHAPTER &

SOFTWARE DESIGN

4.1 OVERVIEW

This book cannot present a full description of the software
designer’s craft. However, the aim of this chapter is to
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investigation. The science of software - particularly real
time software - is inexhaustible.

New tools and procedures are gradually automating the "lower
levels" of software development and pushing the area where
creative engineering 1is most needed back towards system
design and requirements specification. New requirements
will always provide scope for innovative and practical
engineering solutions.

This chapter is concerned with the design and structuring of
software for microcomputer applications. What is presented
here is independent of any particular programming language -
though much of it is quite close to Pascal, which was
designed with the explicit goal of implementing the
"universal" elements of a programming language.

Producing an initial language-independent software design
has a number of advantages. It allows the overall strategy
of the design to be worked out before it becomes cluttered
with implementation detail; and it provides a common point
of reference that can be returned to when making changes to
the system, or if it is desired to implement the same
application using different techniques. For a large
project, the initial design can be kept sufficiently simple
to be manageable by one man, or a small team. This design
specification can then be used to coordinate the efforts of
a larger group.

Some languages (eg assembly language, FORTRAN, BASIC) offer
no means of developing a high level design strategy without
descending to the details of implementation. Here a
stylized design language wnust be wused in the initial
stages. Using more modern, application-oriented languages
such as Pascal, it is possible to develop a high level
design in the language itself. Some users may still prefer
to use a design language to produce a separately documented
design.
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4.2 SOFTWARE STRUCTURE

Good structure, both of program and data, makes the
difference between a well-ordered, reliable program that is
easy to maintain and upgrade, and untidy ("spaghetti") code,
with hidden bugs that may not be found until it is too
late. Establishing a good structure may mean spending some
time on system and software design before going near a
keyboard or coding pad, but the time spent is well worth

while. Errors not caught at the design stage become ten
times more expensive to correct at the programming stage, a
hundred times more expensive at final test, and,

potentially, thousands of times more expensive when the
product is in the field.

Structure is equally important for high 1level and for
assembly language programs, although a good high 1level
language gives much more assistance by supplying pre-defined
structural constructs.

This chapter describes the basic principles of modular
software design (ie structuring at the level of
software/hardware packages and modules), and also some of
the “fine detail’ of data structure and program algorithms.
An algorithmic design 1language and a structured graphical
notation that can be used for design are introduced. This
chapter owes much to the pioneers of modern software
engineering techniques, in particular Dahl, Dijkstra, Hoare
and Wirth. The graphical notation used in this book was
developed by Eric Richards * from a notation devised by
Michael Jackson. The references at the end of this chapter
provide material for further research.

No accepted standard for a design language yet exists. A
suggested notation and standard is introduced in this
chapter. Designers who wish to adopt a strict formal
notation for software design are recommended to use Pascal.
Designs can then be checked automatically for consistency by
a suitable Pascal compiler. This approach has been very
successfully adopted within the experience of the authors.

The present chapter describes in some detail the basic
structuring techniques that are fundamental to modern high
level languages. Chapter 5 describes how these have been
extended in the Component Software environment to apply to
real time microprocessor systems. Chapter 6 describes Texas
Instruments’ Microprocessor Pascal System.

* Described in an article in the British journal Computing,
May 19 1977
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4.3 SOFTWARE PACKAGES

With a project of any size, it 1is helpful to split the
overall problem wup into smaller packages which can be
tackled separately.

When adopting this approach, two things must be considered:
(1) The detailed nature of each package

(2) How the packages will fit together to form a
complete system.

To simplify the task of interfacing, packages should be
selected to be as self-contained as possible. In other
words, the package boundaries should be drawn so that
relatively little information needs to be exchanged between

packages, compared with the work done within each package.

"Mature" systems, where significant thought and experience
has been put into the design, and where the implementation
medium is flexible enough not to dictate the system
structure, tend to migrate to this condition. However, for
a new system, the designer may have to put in considerable
thought to ensure that the system structure 1is appropriate
from the start. Where the designer 1s implementing an
existing system in a new way (ie where the application is
mature), much of this thought may have been done for him.

Packages should be logically self-contained, each performing
a well-defined set of functions. The ways in which each
package interfaces with the rest of the system must be
clearly defined.

A designer implementing a factory control system, for
example, might identify the following packages:

FACTORY
CONTROL
CONTROL COMMUNICATE STORE AND DISPLAY
INDUSTRIAL WITH REMOTE RETRIEVE INFORMATION
PROCESS COMPUTER DATA TO OPERATOR

Figure 4-1 Component Packages of a Factory Control System
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Each of these packages is still a fairly complex entity, but
the problem is beginning to look more manageable.

This analysis identifies the 1logical components of the
system. At this point, it is important to determine the
physical distribution - where will each function need to be
performed, and what communication paths are necessary? The
physical analysis will determine the likely hardware
components of the system - where processing capability is
required, where physical operations have to be performed,
at what points interaction with a human operator is
required, and where the communication paths will run.

Microsystems technology allows information processing
capability (which includes the ability to control things,
and the rudiments of an "intelligent" response) to be

located wherever it is required.

Although the example described is a factory control system,
the same considerations, on an appropriate scale, apply to
systems of all types and sizes.

A software package encapsulates a particular type of
"intelligence", a control function, or a data processing
operation. Many such packages can be specified
independently from the hardware environment where they will
be used, and some may be available as standard software (see
Chapter 5, Component Software). A standard package will
usually need to be "configured" into the particular
application (analagous to providing a standard socket and
circuit elements to interface to an integrated circuit).

Some applications may require 1little more than selecting
standard software packages and configuring them into a final
system. However, most applications will require some custom
software to be developed.

Each package can in turn be split into successively smaller
packages, until the-complete problem has been broken down
into manageable blocks. At every level in the structure,
the packages can be regarded as ‘black boxes’ that perform
clearly specified functions and combine in clearly defined
ways. The programmer can focus on a particular part of the
design, knowing that he can concentrate on the other parts
of the structure at other times.

4,4 DESIGN LANGUAGE

Design language can be compared to the logic diagrams wused
by circuit designers. As yet there is no universal standard
for software design languages, but there are some generally
agreed "good practices". The notations used in this and the
following sections incorporate the features generally
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regarded as useful in software design.

A design language can be regarded as a generalised
programming language, with the following characteristics:

(1) Syntax need not be completely rigid, as 1long
as the logic is clearly defined and
unambiguous

(2) Operations can be identified by verbal

description to start with, and later described
precisely - eg "calculate mean"

(3) Only standard, "universal" constructs -
sequence, selection, iteration (see below) and
standard data structures - are used.
Language—dependent constructs are not
included.

The aim of the design language is to establish the precise
logical structure of the application before proceeding to
implementation. 1In fact the notation described here is very
close to the Pascal programming language (see Chapter 6).
Pascal was developed as a language that would implement,
more or less directly, the features required for software
design. It was not designed for any particular machine
architecture and hence has a "universal" structure.

It is possible to use Pascal itself as a design language.
The advantage of this is that a design can be checked
automatically for logical correctness, even if parts of the
design are incomplete.

The graphic notation described below provides an alternative
notation that implements the same constructs. Either or
both can be used during design; sometimes a graphic notation
provides a clearer picture, especially in the early stages.

4.5 ALGORITHMS

An algorithm is a list of instructions: a statement of "how
to do’ something. More precisely, it is the specification
of a finite number of steps required to achieve a desired
end. A function can be performed by a computer if and only
if that function can be stated as an algorithm. However,
writing an algorithm rather than a program liberates the
designer from concern with the syntax and details of a
particular programming language. An algorithm should be
understood by people who are not programming specialists;
hence it is very useful when specifying a project.
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An algorithm for making tea might be as follows:

fill kettle;

put kettle on;

put tea in teapot;

wait for kettle to boil;

fill teapot;

delay 5 minutes;

for number of cups required do
pour cup

end

Figure 4-2 Tea Making Algorithm

Two things can be identified in this (or any) algorithm.
First, there are the fundamental operations (fill kettle,

pour cup etc). Second, there are the control structures
which dictate if and when these operations are to be
performed. These control structures are identified by

underlined keywords:

begin ... end

if ... then ... else
-EEE-". gg_...
while «.. dO ..o

etc

It is the control structures that provide the power of an
algorithm, and of a computer program. Algorithms can
specify alternative or repeated operations, provided the
conditions that determine the different actions are
specified completely and precisely. The algorithm
enumerates all possible options, and specifies exactly how
to take every decision. This is what is required to write a
computer program.

The individual operations described in Figure 4-2 can
themselves be analyzed into algorithms. For example, ‘pour
cup’:

if milk is required
then
begin
pour milk;
pour tea
end
else
pour tea

Figure 4-3 "Pour cup" Algorithm
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By combining the control structures shown here, extremely
powerful algorithms can be developed to control, for
example, a complex scientific instrument or an industrial
process.

It 1is possible to define many different control structures.
However, it can be proved that any sequential algorithm (and
any computer program) can be written using only three basic
constructs -- sequence, selection and iteration -- all of
which are included in the above examples.

4.5.1 Sequence

A sequence is simply a list of operations carried out one
after the other, in order:

begin

fill kettle;

put kettle on;

put tea in teapot

end
The keywords "begin" and "end" bracket the sequence, so that
it can be treated as one logical entity. The general form
of a sequence is:

begin
{statement)>;

{statement>
end

{statement> defines a single operation. Individual
statements are separated by semicolons. In the design
language, a statement can be a verbal description that will
later be expanded into a precise definition (as in the
example above, which could be expanded into a precise
program for a tea making robot).

It 1is impossible to start the sequence anywhere other than
at the begin, or finish it anywhere other than at the end.

This property of having a single entry and a single exit
point is shared by all of the basic constructs.
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A sequence can also be represented graphically, as follows:

f fill kettle

e

o]

a

r

e put kettle on
put tea in

teapot

Figure 4-4 Sequence Structure Diagram

The long vertical box represents the sequence as a whole.
The other boxes are the elements of which it is composed.
It is often useful to give a sequence a name, because it can
then be referred to as a single operation in a
‘higher-level’ algorithm. The elements of the sequence are
carried out in order, from top to bottom.

This is a structure diagram. The connecting lines show that
the elements belong to the sequence. (The 1lines do mnot
indicate 1logic flow, as in a flowchart). The logic flow is
obtained simply by proceeding from top to bottom, performing
each operation in turn.

The elements of a sequence might be simple operations, or
they can themselves be any of the three basic constructs
(sequence, selection or iteration).

A complete program will wusually be a sequence. In the
design language, the semicolons are an important part of the
sequence construct. They are mnot part of the individual
statements; rather they separate (or delimit) the
statements, and should more properly be regarded as
belonging to the begin ... end construct. Note that there
is no semicolon following the last statement; there is no
need for one, as the end serves as a delimiter instead.
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4.5.2 Selection

The selection is a decision construct. Depending on a
condition, one of two or more alternative operations is
selected and performed. For example,

if weather is fine

else switch on heaters

Graphically, this is represented as:

open
ventilators

switch on
heaters

Figure 4-5 Selection Structure Diagram

The circle represents the selection as a whole: that is, a
single component which can be either of two things. The
boxes are the elements of the selection. For each execution
of the selection, one and only one of the elements 1is
executed. Once again, the connecting lines express that the
components are members of the selection (they are
subordinate to it). The 1logic flow through a selection
consists of testing the condition, and executing one only of
the elements.
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There is a selection in the example algorithm:

if milk is required
then begin pour
milk
pour milk;
pour tea
pour
end tea
else
pour
our tea
P tea

Figure 4-6 '"Pour cup" Structure Diagram

Here, the first alternative 1is a sequence of operations.
The begin and end indicate <clearly that, as far as the
selection 1is concerned, the sequence is a single element
that can be regarded as one statement. The single
entry/exit property of the sequence makes this possible.
Each of the three basic constructs 'packages" a complex
operation, so that from outside it can be regarded as a
single, indivisible statement.

The keywords begin ..... end can be regarded as "bracketing"
a sequence of statements in the same way that parentheses
are used to bracket numerical expressions:

5x (2 +7) =45
The general form of a selection in the design language is:

if {condition> then <statement>
else <{statement)

<condition> is any expression which evaluates to one of the
values TRUE or FALSE. Such an expression 1is called a
Boolean expression, and the most common way to arrive at it
is by the use of comparison operators such as =, <, >:

if temperature > 70 then ...

A special case of a selection occurs when there is only one
alternative, to be executed when the condition is
satisfied. If it is not satisfied, nothing is done. This
can be regarded as a selection in which one of the
components is the null action, "do nothing". This component
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is usually left out of the diagram. In the design language,
this corresponds to omitting the else clause:

if <condition> then <statement>

In the example, ‘pour cup’ can be writtem another way:

begin
/il
fomilk red is pour milk
if mi is require reqd?
then pour milk;
pour tea pour tea
end

Figure 4-7 Alternative Algorithm for "pour cup"

Here, ’‘pour cup’ is a sequence consisting of two elements:
an if construct (with only one alternative), and a simple
statement. ‘Pour tea’ is always executed; ‘pour milk’ is
executed only if milk is required. The effect is exactly
the same as before.

The semicolon (which, as indicated in section 4.5.1, is part
of the begin ... end construct) separates the two elements
of the sequence, and makes clear where the end of the if
statement occurs. ‘Pour tea’ is not a part of the if
statement, and hence is not dependent on the condition; it
is the next item in the begin ... end sequence, and is
executed in all circumstances. If ‘pour tea’ was to become
part of the if statement, begin ... end brackets would be
used as in Figure 4-6. The indentation of the text makes
the relationship clearer. The structure diagram - shows
without doubt that "pour tea" is an element of the sequence
and not of the selection. The strong visual resemblance of
the diagram to the indented text makes comparison of the two
notations easy.
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4.5.3 Algorithm Design

It 1is common in software design to start with a vague
formulation of the problem (if weather is fine ...) and
gradually home in on a precisely defined, deterministic
solution that specifies every measurement and calculation.
Although a precise solution is finally needed (or it will
never get past a compiler or assembler), a degree of
vagueness (or "controlled imprecision") is actually
beneficial in the early stages, even though it may go
against the grain. A precise formulation too early on may
exclude some vital elements, particularly if the software
designer does not have direct knowledge or experience of the
application. The design language helps here by permitting
partial solutions to be tried out on paper before they
become cast in silicon. The logic of the application can be
precisely formulated before considering in detail how the

individual operations required are to be implemented. The
design language allows the designer to identify and
precisely specify each operation required (reading a

temperature, controlling motors and heaters etc) before an
attempt is made to implement them.

The software design can be compared to the architect’s plans
for a building. Although some of the details may be changed
during implementation, plans for the foundations and overall
structure must be established before starting to build
individual rooms.

The algorithm of Figure 4-5 might be part of a system
controlling the environment in a greenhouse (say). The next
stage in design might be to consider whether it 1is the
inside or outside temperature (or both) that is significant,
whether the temperature should vary according to the time of
day, and what effect other parameters such as humidity might
have.

There are often several alternative ways of writing an
algorithm to perform a particular function. The first
solution hit upon may not always be the best.

Just as a good data structure (see section 4.6) extracts the
essential elements of the information being represented, so
a good algorithm extracts the essential elements of the
process being performed and uses these elements as the basis
of its design.

The best algorithms are usually those that clearly reflect
some underlying structure of the application itself, rather
than imposing some new structure invented by the system
designer. It’s quite easy to see why. Unless the
specification for a piece of software is perfect the first
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time, changes are likely to occur. Perfect specifications
are almost unheard of. If the software is structured along
the same lines as the application, the software will be able
to follow changes in specification quite easily. It will
have some "resilience" in the face of changing
requirements.

A software design that 1is structured in a significantly
different way to the application is likely toc be "brittle",
and to break under the strain rather than adapt gracefully
to new requirements. Changes 1in requirements may have
unpredictable consequences in different areas of the design,
which will either make adaptation impossible, or will reduce
confidence in the reliability of the final system.

The mnature of software aggravates the problem. Software
tends to be applied to complex problems, so that changes are
likely to be complex. It’s very easy to actually make a

software change - simply type in something new. It is much
more difficult to ensure that the change is correct.

At first sight it may be very hard to tell the difference
between a change that has only limited effect in an isolated
software function, and a change that can have ramifications
throughout the design.

For this reason it’s necessary to pay a lot of attention to
software design. Programming is only a part (a relatively
small part) of the story. Software needs to be designed and
engineered for resilience and reliability, rather than
stacked up like a house of cards.

In fact, there are two types of resilience. Software should
be able to cope with and recover from unexpected conditions
and, ideally, minor hardware faults. Secondly, the system
should maintain its integrity in the face of changes to
parts of the software itself - perhaps in response to new
requirements. A structured design methodology, such as is
presented here, assists greatly. The framework of Component
Software (Chapter 5) and Microprocessor Pascal (Chapter 6)
was designed to the same purpose.

However, a good set of tools is not enough. The system
designer needs to spend a good deal of time wunderstanding
the application he is designing for, and the ways in which
it is likely to change over the lifetime of the system. In
this way, likely changes can actually be anticipated and the
system can be designed to make them possible.
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4.,5.,4 The CASE Construct

There 1is a version of the selection which permits more than
two choices. This is represented in the design language by
the case construct:

case weather of

. . go for
sunny: go for walk; walk
raining: begin )
r
put coat on; ai— putcoaton
1
n
go for walk i
nl goforwalk
end; 9
snowing: stay inside
stay inside
end
Figure 4-8 The CASE Construct
The case labels "sunny", 'raining", "snowing" specify the

possible values of the case expression '"weather", and the
actions to be performed for each ("weather" will have been
declared as a variable of type (sunny, raining, snowing)).
When executing the selection, the case expression is tested
and, according to its value, only one of the operations will
be performed. (Note that the operation for "raining" 1is a
sequence, enclosed within a begin ... end bracket.)

The case labels can specify a 1list or a range of values.
There can be any number of case alternatives.
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Case constructs can have an otherwise clause that specifies
an action to be carried out if the case expression has a
value not expressed in any of the case labels:

case number of

0..3,8 add number to total;

4,6,7 subtract number from total;
5,9 ¢ divide total by 2

otherwise write ('number out of range’)

end

Graphically, this is represented as:

add number
to total

subtract
number from
total

divide
total by 2

write (‘number
out of range’)

Figure 4-9 CASE Construct with OTHERWISE Clause
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The general syntax of the case statement is:
case <expression> of

{case label> : {statement);

{case labeld> : <statement)>
‘otherwise <{statement>

end;
The otherwise clause is optional.
4.5.5 Iteration

The third and final algorithmic construct is the iteration,
or loop. The iteration allows an operation to be repeated
either a specified number of times, or while some condition
remains true. There is an example of the first kind of
iteration in the algorithm of Figure 4-2.

for number of cups required do
pour cup

Graphically, an iteration can be represented by a
lozenge-shaped box:

read
character
for .
P milk \'Y pour
number of o reqd? milk
u
r
c pour
u tea
o]

Figure 4-10 Iteration Structure Diagrams
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Once again, the left hand box represents the iteration as a
whole, which can form a single element in another
algorithm. This single element consists of a (possibly
zero) number of executions of the right hand box. The right
hand box represents an individual execution of the operation
to be performed. The distinction may appear subtle at
first, but it is important. It allows a repeated operation
to be included as a single element of, say, a selection
construct. Like the sequence and selection, the iteration
packages a complex operation as one element with a single
entry and exit point.

Usually, it 1is a sequence of operations that will be
repeated. As most computer programs carry out some
operation repeatedly (otherwise there would be little point
getting a computer to do it), the iteration is a very useful
construct.

In many iterated operations, it is wuseful to know which
iteration is currently being performed. Most programming
languages that implement the for construct therefore specify
a for-loop variable:

FOR I := 1 TO 10 DO
BEGIN
START MACHINE (I);
DISPLAY (START MESSAGE, I)
END -

The variable I keeps a count of the repeated execution, and
can be referred to within the code of the for-loop. This
feature is often required, and this convention will be
adopted in the design language. The general form of the
for~loop, then, is:

for <variable)> := <initial expressiond> to
{final expression> do
{statement>

{statement> is executed for all possible values of
{variable>, 1in order, starting at <initial expression> and
ending with <{final expressiond>. <statement> will usually be

a sequence, enclosed within begin ... end brackets.
<{initial expression> and <final expression> must be

compatible with the type of <variable>, which can be any
enumeration type (see section 4.6). <initial expressiond>
and <final expression> are only evaluated once, on entry to
the for loop (so it is not possible to change the value of
{final expression>, for example, within the 1loop). If
<initial expressiond> is greater than <{final expression> to
begin with, <{statement> is not executed at all. *

* Some programming languages differ slightly from these
conventions. However, some standards must be specified to
maintain consistency in the design language. These
standards represent generally agreed opinion on language
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A variant is:

for <variabled> := <initial expression> downto
<{final expression> do
{statement>

Here <variable)> is decremented from <initial expression>, which
should be the larger of the two, down to <final expression>.
This may be more useful in some applications.

The alternative form of the iteration construct is:

while buffer is not full gg
read character

The while construct is used where it is not possible, or not
convenient, to find out in advance how many times the loop
must be executed. The general form is

while <condition> do <statement>

The condition is checked before each execution of the loop;
as long as it remains TRUE, the loop is executed one more
time.

4.5.6 Structured Programming

Although many programming languages provide additional
control structures, programs written using only the three
constructs described above have been shown to be easily
understood, easily amended, and above all 1likely to be
correct. This discipline is known as
structured programming.

The three constructs sequence, selection, and iteration are
basic mental structures, representing very closely the way
the human mind analyzes a problem. Consequently they are
very easy and natural to "think in", once the notation has
become familiar. The single entry and exit properties of
each construct mean that "high level", application-oriented
algorithms can be developed without worrying (yet) about
what happens at the detailed 1level of the operations
described. It is known that the effect of each operation is

design, and most modern languages (including Pascal) behave
exactly 1like this. When translating a software design into
a particular programming language, it 1is important to
determine how the language implements the standard
programming constructs - eg does the iteration construct
allow for the special case of =zero iterations? Pascal
directly implements all the constructs of the design
language; implementation of these constructs in Power BASIC
and Assembly Language is discussed in Chapters 7 and 8.
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localised, and that the operation will complete and return
control to the high level algorithm without (say) jumping
unexpectedly to another part of the program.

Other notations, such as flowcharts, have sometimes been
used for designing computer programs. Flowcharts may be
useful at the lowest levels of implementation, when coding
in Assembly Language for instance (see Chapter 8). However,
flowcharts are designed to represent the way machines
operate rather than the structure of an application. Trying
to understand a problem using flowcharts involves bending
the mnind, and the application, to work in the way machines
do. This may be necessary at some point, but it 1is not
advisable in the earlier 'stages of a design. Flowcharts
concentrate on the details of implementation, and have no

g -f ________ At e s e
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4.6 DATA

Data elements, which are implemented in the computer simply
as a collection of bits, can be used to represent any kind
of dinformation. Often the information represented will be
numeric, but this need not be the case. A single bit may
signal the state of a digital input or output line; or a
group of bits may be coded to represent text or any other
information.

Most programming languages provide some pre-defined data
types (eg FORTRAN defines integers and real numbers) that
can be wused directly in a program. A data type definition
can be regarded as a code that translates some kind of
information into an internal representation in the
computer. Some languages allow users to define new data
types, either by combining already existing data types into
new structures, or by specifying the characteristics of a
new data type from scratch. These capabilities are very
useful when developing software designs.

Structured data types allow related data items to be grouped
together and referred to as a single entity. This 1is much
easier than remembering that the information about (say) a
piece of production machinery is contained in several
different integer and real variables, all with different
names. Programs with well thought out data structures are
likely to be more reliable and much easier to maintain.

Even where the programming language chosen for
implementation does not support flexible data structures,
such structures can be worked out by developing a paper
design using a design language. This can then be translated
into the implementation language. This method, which seems
roundabout, will often result in a faster development
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turnround than coding directly in the implementation
language. Certainly, it will produce a more reliable
system.

Effective use of data depends on identifying the essential
elements of what is to be represented, and choosing the most
appropriate representation in terms of numbers or binary
digits. For example, if a temperature is to be input from
the outside world to a microprocessor system, how should it
be represented? Does the system need to know the actual
temperature value? To what precision? Or is a single bit,
indicating that the temperature is above or below some
threshold, sufficient?

75

. 60.25
HIGH . .
Low or . or .

. 31.32

20 .

Figure 4-11 Data Representation of a Temperature

This decision will, of course, dictate the choice of sensor
used to measure the temperature.

Data items can also represent things that are much more
abstract than a temperature - for example the root mean
square of a collection of statistical figures. It is this
ability to represent and manipulate anything that can be
defined exactly that gives software its power. Data items
can represent things which only have meaning within a
particular piece of software - intermediate results in a
calculation, for example, or codes representing which of a
number of possible operations should be performed.

How the data types are chosen defines the environment within

which software algorithms can work. A program can only
manipulate things which have previously been defined as data
items. Hence, data design 1is the key to any piece of
software.

4,6.1 Data Types

The first step in building a software design is to identify
the different kinds of information that need to be dealt
with, and to define appropriate data types. A
type declaration identifies a particular type of variable
that will be dealt with in the program, and the range of
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values that variables of this type might have. For example,
a particular system might need to make decisions according
to what day of the week it is. It makes sense to define a
data type called "day":
type day = (Monday, Tuesday, Wednesday, Thursday,
Friday);

The items in brackets identify the wvalues that variables of
type "day" might have. Note that this declaration does not
actually specify any variables of type "day". It simply
introduces the notion that wvariables of this type can
exist. After this declaration, we can talk about "days" in
the software design and know exactly what is meant. (In
ordinary conversation we think we know what days are, but in
software it’s necessary to be more precise. The definition
makes clear that we’re talking about days of the week, not
days of the month, and in particular that we’re talking
about workdays: Saturday and Sunday aren’t included.)

At this stage it 1s neither necessary nor desirable to
consider how this data type will be implemented. Data items
of type '"day" must be capable of taking five different
values representing the days of the week. These items could
be stored as the values 0-4, 1-5 or as arbitrary patterns of
bits. That decision can be made later. At this point it is
necessary simply to understand what’s needed to satisfy the
application.

From the computer’s point of view, what has been said so far
is:

(1) There will be data items that can take one out
of five possible values

(2) The designer is going to refer to these as
|ldayﬂs

(3) The designer 1is going to refer to the
different values of these "day"s as Monday,
Tuesday, Wednesday, Thursday, Friday.

The general form of a type declaration is:

type <name> = <{type definition>;
The angle brackets indicate a generic name; in an actual
type statement, "<name>" will be replaced by an actual type
name. The form "(<value 1list>)", as in the "day"
declaration, is one kind of type definition. Other kinds of

type definition are presented below.

For the purpose of a software design, the following data
types can be regarded as predefined:
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integer (-32768..32767)

real (= floating point)

char (= ASCII character set)
boolean (= TRUE or FALSE)

4.6.2 Variables

Type declarations simply specify a kind of information that
is to be represented. To define actual data storage items,
or variables, of a particular type, a variable declaration
is needed:

var startday, endday : day;

This statement declares two variables, which will ultimately
be storage locations within a computer. These variables are
called "startday" and '"endday". They are of type "day",
which means that the values they can take are Monday,
Tuesday etc. Whatever implementation is later decided on
for "day", that amount of storage and that representation
will be assigned to "startday" and "endday".

The general form of a variable declaration is:

var <variable listd> = <{typed;

Separating out the type declaration from the var declaration
means that the decision on how to represent "day"s is taken
once and once only. There’s no need to take this decision.
again (perhaps differently - particularly if more than one
designer is working on the same system) every time a
variable of this type is needed. Also, if the requirements
change and it’s necessary (say) to include Saturday and
Sunday, this can be done simply and reliably throughout the
system simply by changing the one type declaration.

This is a relatively trivial example; but multiplied by the
thousands of decisions required during implementation,
clearly thought out data typing can make the difference
between manageable programs and intractable ones.

{type> in the var declaration need not be a type name, but
can be an explicit type definition:

var startday : (Monday, Tuesday, Wednesday,
Thursday, Friday);

However, if more than one var declaration wuses the same

right hand side defintion, it is preferable to define a
type, and then use the type name in the var declaration.
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Where the values of a data type follow a predefined
sequence, only the start and end need be enumerated:

type weeknumber = (1..52);
Such types are called subrange types because they are
defined as a specific subrange of an already defined type.
The above declaration works because the type "integer",
consisting of the values -32768, -327674e000e-1, 0,
1,0...32766, 32767 (for a 16-bit processor) is predefined.
"Weeknumber" is a subrange of integer.

It is also possible to define subranges of type "day":

type first half week = (Monday..Wednesday);

4.6.3 Operators

Having defined data items, it’s necessary to do something
with them. 1In a program, variables of particular types can
be combined using operators. In the statement

a=b+c

“4" is an operator. "+" means "add the values of b and ¢ to
give a third value".

In ordinary mathematical: language, the above formula 1is
simply a statement of fact: "a is equal to b plus c". - In
computer language, it’s more likely to signify an operation:
"make a equal to the value of b plus ", or, to put it
another way, "a becomes equal to b plus c¢". This is one of
the most common of algorithm statements, namely the
assignment statement. Here "=" 1is an operator too -~ the
assignment operator, whose effect is to assign the value of
whatever expression is on its right to the variable on its

left.

To avoid confusion between the assignment operator and the
mathematical "=", which mean quite different things, modern
languages such as Pascal use a special symbol, ":=", for
assignment:

a :=b +c

read, "a becomes equal to b plus c¢". This convention will
also be used in the design language. The left hand side of
an assignment statemeunt must always be a variable, because a
value will be assigned to it. However, the right hand side
can be an expression: that is, any combination of variables,
operators and constant values that can be evaluated:
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5%a + b - ¢c/2
The general from of the assignment statement is
{variable > := <expressiond;

The expression should evaluate to a type that is compatible
with the variable on the left hand side. It makes no sense
to assign a temperature value to a day of the week.

Some programming languages make no check that the type of
the expression is compatible with the type of the variable:
they simply assign the bit code representing the value of
the expression to the storage location for the wvariable.

While this can be made use of in special cases, ninety per
cent of the time an unmatched statement indicates that the
programmer has made an error. Programming languages that
check for exact compatibility of types 1in assignment and
other statements are said to implement strong data typing.

Even when an unmatched statement is written deliberately *,
it is a rather risky operation: it depends on a certain
relationship between the internal bit representations of the
two data types (some examples of internal representations
are given in Chapter 8). If the software is transported to
another machine, or even if the compiler is changed, this
relationship may no longer hold. 1In developing a software
design, it is wise not to make use of such relationships; or
if they are used, to isolate them to certain routines which
are known to be machine dependent.

In general, an operator will apply only to certain data
types. In developing a software design, all the standard
mathematical operations (+ - * /) (* = multipy, / = divide)
can be regarded as pre-existing for numeric data types. But
multiplying days of the week makes no obvious sense, either
in the real world or in a software design. Any operations
to be performed on non-numeric data types must be defined,
perhaps as separate procedures (see section 4.10 below).

Types such as "day" and "weeknumber" (and '"integer'") are
called enumeration types, because their possible values are
specified by enumerating them, in sequence. The order of
values in the sequence is significant. The operators PREC
(preceding) and SUCC (succeeding) can be regarded as
pre~defined for all sequenced data types:

eg PREC(Wednesday) is Tuesday

* Microprocessor Pascal, which is a strongly typed language,
provides a type transfer operator which <can be used to
override type checking. However, the programmer must
explicitly tell the compiler that he is doing something out
of the ordinary, and exactly what he 1is doing (Section
6.6.14).
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SUCC({Thursday) 1is Friday

The assignment operator can also be applied to all data
types. More complex operatioms can, of course, be devised,
but they must be specified precisely.

Subrange types can be wused to specify the range and
precision of numbers that will be used in calculations:

type temperature = (-50..+100);
pressure = (0..900);

(Note that the keywords type, var etc need not be repeated
for multiple declarations. The declarations are separated
by semicolons.) For Pascal designs, the compiler can
optionally perform automatic checks to ensure that variables
never exceed the bounds specified.

In addition to the type 'integer" the numeric type
"longinteger" (~2147483648..+2147483647, ie 32 bit signed)
is often useful, and is directly implemented in
Microprocessor Pascal and in some other languages.

Obviously, use of certain facilities of the design language
will be conditioned by what is expected to be available in
the final 1implementation language - for example, is a
floating point package available? Nevertheless, the freedom
of the design language is wuseful at 1least in the early
stages of working out what 1is needed to implement the
application.

Note that '"real" is not an enumeration type. With
enumeration types, it 1is always possible to identify a
unique predecessor and/or successor for any value (eg with
integers, 5 is preceded by 4 and succeeded by 6). However,
what is the successor of the real number 2.414? Is it 2.415?
2.4141? or 2.41401? Given any two real numbers, it is
possible to define a third real number that lies between
them in wvalue (up to the 1limit of precision of the

computer). The representation of real numbers follows a
completely different principle from the representation of
integers. Real numbers are stored differently within the

computer,* and cannot, for example, be used as an index to
an array (see below, section 4.7.2).

The discipline of data typing makes it much harder to make
mistakes =~ such as using variables in the wrong place - and
much easier to find mistakes if they are made. Data types,
and variables, can also be given meaningful names (in the
design language at least, and in some implementation
languages). With variables called I, J, K, or even K2BCPLZ,
and all implemented as (say) integers, it’s quite easy to
mistake a variable representing a day of the week for onme

* The representation of real and other numbers is discussed
in Section 8.13.2
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representing (say) the mean of 25 temperature values, and
hence to perform a completely inappropri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>