
.. TEXAS 
INSTRUMENlS 

TAfS320C3x 

1991 

• t •• . 

Digital Signal Processing Products 



" L.,) ", 



TAfS320C3x 
UserJs Guide 

2558539-9721 revision E 
June 1991 

~ 
TEXAS 

INSTRUMENTS 



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes to or to discontinue any semiconduc­
tor product or service identified in this publication without notice. TI advises its customers to ob­

. tain the latest version of the relevant information to verify, before placing orders, that the informa­
tion being relied upon is current. 

TI warrants performance of its semiconductor products to current specifications in accordance 
with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent 
TI deems necessary to support this warranty. Unless mandated by government requirements, 
specific testing of all parameters of each device is not necessarily performed. 

TI assumes no liability for TI applications assistance, customer product design, software per­
formance, or infringement of patents or services described herein. Nor does TI warrant or repre­
sent that license, either express or implied, is granted under any patent right, copyright, mask 
work right, or other intellectual property right of TI covering or relating to any combination, ma­
chine, or process in which such semiconductor products or services might be or are used. 

Texas Instruments products are not intended·for use in life-support appliances, devices, or sys­
tems. Use of a TI product in such applications without the written consent of the appropriate TI 
officer is prohibited. 

WARNING 

This equipment is intended for use in a laboratory test environment only. It generates, uses, and 
can radiate (adiofrequency energy and has not been tested for compliance with the limits of com­
puting devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide rea­
sonable protection against radio frequency interference. Operation of this equipment in other en­
vironments may cause interference with radio communications, in which case the user at his own 
expense will be required to take whatever measures may be required to correct this interference. 

Copyright © 1991, Texas Instruments Incorporated 







Preface 

Read This First 

The purpose of this user's guide is to serve as a reference book for the 
TMS320C3x generation of digital signal processors that includes· 
TMS320C30, TMS320C30-27, TMS320C30-40, TMS320C31, and 
TMS320C31-27. Throughout the book, all references to the TMS320C30 ap­
ply to the TMS320C30-27 and TMS320C30-40 as well, and TMS320C31 re­
fers to TMS320C31 and TMS320C31-27, unless an exception is noted. This 
document provides information to assist managers and hardware/software en­
gineers in application development. 

How to Use This Manual 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

This document contains the following chapters: 

Introduction 
A general description of the TMS320C30 and TMS320C31, their key features 
(features differ), and typical applications. 

Architectural Overview 
Functional block diagram. TMS320C3x design description, hardware compo­
nents, and device operation. Instruction set summary. 

CPU Registers, Memory, and Cache 
Description of the registers in the CPU register file. Memory maps provided 
and instruction cache architecture, algorithm, and control bits explained. 

Data Formats and Floating-Point Operation 
Description of signed and unsigned integer and floating-point formats. Discus­
sion of floating-point multiplication, addition, subtraction, normalization, 
rounding, and conversions. 

Addressing 
Operation, encoding, and implementation of addressing modes. Format de-
scriptions. System stack management. -

Program Flow Control 
Software control of program flow with repeat modes and branching. Inter­
locked operations. Reset and interrupts. 
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Chapter 1 External Bus Operation 
Description of primary and expansion interfaces. Externalinterface timing dia­
grams. Programmable wait-states and bank switching. 

Chapter 8 Peripherals 
Description of the DMA controller, timers, and serial ports. 

Chapter 9 Pipeline Operation 
Discussion of the pipeline of operations on the TMS320C3x. 

Chapter 10 Assembly Language Instructions 
Functional listing of instructions. Condition codes defined. Alphabetized indi­
vidual instruction descriptions with examples. 

Chapter 11 Software Applications 
Software application examples for the use of various TMS320C3x instruction 
set features. 

Chapter 12 Hardware Applications 
Hardware design techniques and application examples for interfacing to me­
mories, peripherals, or other microcomputers/microprocessors. 

Chapter 13 TMS320C3x Signal Description and Electrical Characteristics 
Pin locations, pin descriptions, dimensions, electrical characteristics, signal 
timing diagrams and characteristics. 

Appendix A Instruction Opcodes 
List of the opcode fields for all the TMS320C3x instructions. 

Appendix B Development Support/Part Order Information 
Listings of the hardware and software available to support the TMS320C3x de­
vice. 

Appendix C Quality and Reliability 
Discussion of Texas Instruments quality and reliability criteria for evaluating 
performance. 

Appendix D Calculation of TMS320C30 Power Dissipation 
Information used to determine the. power dissipation and the thermal manage­
ment requirements for the TMS320C30. 

Appendix E SMJ320C30 Digital Signal Processor Data Sheet 
Data sheet for the SMJ320C30 digital signal processor. 

Appendix F Quick Reference Guide 
Over 30 pages of the most referenced tables and figures. 
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Style and Symbol Conventions 

This document uses the following conventions: 

Q Program listings, program examples, interactive displays, filenames, and 
symbol names are shown in a special font. Examples use a bold version 
of the special font for emphasis. Here is a sample program listing: 

0011 0005 0001 
0012 0005 0003 
0013 0005 0006 
0014 0006 

.field 

.field 

.field 

. even 

1, "'" 
3, 4 
6, 3 

Q In syntax descriptions, the instruction, command, or directive is in a bold. 
face font and parameters are in italics. Portions of a syntax that are in bold 
face should be entered as shown; portions of a syntax that are in italics 
describe the type of information that should be entered. Here is an exam­
ple of a directive syntax: 

.asect "section name" ~ address 

.asect is the directive. This directive has two parameters, indicated by sec­
tion name and address. When you use .asect, the first parameter must be 
an actual section name, enclosed in double quotes; the second parameter 
must be an address. 

Q Square brackets ( [ and] ) identify an optional parameter. If you use an op­
tional parameter, you specify the information within the brackets; you don't 
enter the brackets themselves. Here's an example of an instruction that 
has an optional parameter: 

LALK 16-bit constant [, shift] 

The LALK instruction has two parameters. The first parameter, 16-bitcon­
stant, is required. The second parameter, shift, is optional. As this syntax 
shows, if you use the optional second parameter, you must precede it with 
a comma. 

Square brackets are also used as part of the pathname specification for 
VMS pathnames; in this case, the brackets are actually part of the path­
name (they are not optional). 
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Q Braces ( {and} ) indicate a list. The symbol I (read as or) separates items 
within the list. Here's an example of a list: 

{ * I *+ 1*- } 

This provides three choices: '\ ':'+, or *-. 
Unless the list is enclosed in square brackets, you must choose one item 
from the list. 

Q Some directives can have a varying number of parameters. For example, 
the .byte directive can have up to 100 parameters. The syntax for this di­
rective is 

.byte valuB1 [, '" , valUBnJ 

This syntax shows that .byte must have at least one value parameter, but 
you have the option of supplying additional value parameters separated by 
commas. 

Information About Cautions and Warnings 

viii 

This book may contain cautions and warnings. 

Q A caution describes a situation that could potentially cause your system 
to behave unexpectedly. 

This is what a caution looks like. 

The information in a caution is provided for your information. Please read each 
caution carefully. 
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Trademarks 

Code View, MS-Windows, MS, MS-DOS and Presentation Manager are trademarks of Microsoft 
Corp. 
DEC, Digital OX, VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp. 
HPGL is a registered trademark of Hewlett-Packard Co. 
Macintosh and MPWare trademarks of Apple Computer Corp. 
OS/2, PC-DOS, PGA, and Micro Channel are trademarks of IBM Corp. 
Sun 3, Sun 4, Sun Workstation, SunView, SunWindows, and SPARC are trademarks of Sun 
Microsystems, Inc. 
UNIX is a registered trademark of AT&T Bell Laboratories. 
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Chapter 1 

Introduction 

The TMS320C3x generation of digital signal processors (DSPs) are high-per­
formance CMOS 32-bit floating-point devices in the TMS320 family of 
single-chip digital signal processors. Since 1982, when the TMS3201 0 was in­
troduced, the TMS320 family, with its powerful instruction sets, high-speed 
number-crunching capabilities, and innovative architectures, established itself 
as the industry standard and is ideal for DSP applications. 

The TMS320 family consists of five generations: TMS320C1 x, TMS320C2x, 
TMS320C3x, TMS320C4x, and TMS320C5x (see Figu re 1-1). The expansion 
includes enhancements of earlier generations and more powerful new genera­
tions of digital signal processors. 
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Figure 1-1. TMS320 Device Evolution 
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The 50-ns cycle time of the TMS320C30-40 allows it to execute operations at 
a performance rate (up to 40 MFLOPS and 20 MIPS) previously available only 
on a supercomputer. The generation's performance is further enhanced 

, through its large on-chip memories, concurrent DMA controller, two external 
interface ports, and instruction cache. 

This chapter presents the following major topics: 

Q Processor General Description (Section 1.1 on page 1-3) 

[J Key Features (TMS320C30-Section 1.2 on page 1-5, TMS320C31-
Section 1.3 on page 1-6) 

[J Typical Applications (Section 1.4 on page 1-7) 
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1.1 General Description 

The TMS320's internal busing and special digital signal processing (DSP) in­
struction set have the speed and flexibility to execute up to 50 MFLOPS (million 
floating-point operations per second). The TMS320 family optimizes speed by 
implementing functions in hardware that other processors implement through 
software or microcode. This hardware-intensive approach provides power pre­
viously unavailable on a single chip. 

The emphasis on total system cost has resulted in a less expensive processor 
that can be designed into systems currently using costly bit-slice processors. 
Also, cost/performance selection is provided by the different processors in the 
TMS320C3x line: . 

Q TMS320C30: 
Q TMS320C30-27: 
Q TMS320C30-40: 
Q TMS320C31: 
Q TMS320C31-27: 

60-ns single-cycle execution-time 
Lower-cost, 74-ns single-cycle execution time 
Higher speed, 50-ns single-cycle execution time 
Low cost, 60-ns single-cycle execution time 
Lower cost, 74-ns single-cycle execution time 

All of these processors are described in this user's guide. Essentially, their 
functionality is the same. However, electrical and timing characteristics vary 
(described in Chapter 13); part numbering information is found in Section 8.4 
on page 8-15. Throughout this book, TMS320C3x is used to refer to the 
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and 
TMS320C31 are used to refer to all speed variants of those processors where 
that is appropriate. Special references, such as TMS320C30-40, are used to 
note any specific exceptions. 

The TMS320C30 and TMS320C31 can perform parallel multiply and ALU op­
erations on integer or floating-point data in a single cycle. The processor also 
possesses a general-purpose register file, program cache, dedicated auxiliary 
register arithmetic units (ARAU), internal dual-access memories, one DMA 
channel supporting concurrent 110, and a short machine-cycle time. High per­
formance and ease of use are products of those features. 

General-purpose applications are greatly enhanced by the large address 
space, multiprocessor interface, internally and externally generated wait 
states, two external interface ports (one on the TMS320C31), two timers, two 
serial ports (one on the TMS320C31), and multiple interrupt structure. The 
TMS320C3x supports a wide variety of system applications from host proces­
sor to dedicated coprocessor. 

High-level language is more easily implemented through a register-based ar­
chitecture, large address space, powerful addressing modes, flexible instruc­
tion set, and well-supported floating-point arithmetic. 

Figure 1-2 is a functional block diagram that shows the interrelationships be­
tween the various TMS320C3x key components. 
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TMS320C31 Features 

Figure 1-2. TMS320C3x Block Diagram 
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TMS320C30 Features 

1.2 TMS320C30 Key Features 

Some key features of the TMS320C30 are listed below. 

El Performance 

1 ) TMS320C30 

iii 60-ns single cycle instruction execution time 
11 33.3 MFLOPS (million floating-point operations per second) 
• 16.7 MIPS (million instructions per second) 

2) TMS320C30-27 

II 74-ns single cycle instruction execution time 
II 27 MFLOPS 
II 13.5 MIPS 

3) TMS320C30-40 

• 50-ns single cycle instruction execution time 
II 40 MFLOPS 
II 20 MIPS 

[J One 4K x 32-bit single-cycle dual-access on-chip ROM block 
Q Two 1 K x 32-bit single-cycle dual-access on-chip RAM blocks 

Q 64 x 32-bit instruction cache 
Q 32-bit instruction and data words, 24-bit addresses 
Q 40/32-bit floating-point/integer multiplier and ALU 

Q 32-bit barrel shifter 
Q Eight extended-precision registers (accumulators) 
Q Two address generators with eight auxiliary registers and two auxiliary 

register arithmetic units 

Q On-chip direct memory access (OMA) controller for concurrent I/O and 
CPU operation 

Q Integer, floating-point, and logical operations 

Q Two- and three-operand instructions 

Q Parallel ALU and multiplier instructions in a single cycle 

Q Block repeat capability 
Q Zero-overhead loops with single-cycle branches 
Q Conditional calls and returns 

Q Interlocked instructions for multiprocessing support 

Q Two 32-bit data buses (24- and 13-bit address) 

Q Two serial ports to support 8/16/24/32-bit transfers 

Q Two 32-bit timers 

Q Two·general-purpose external flags, four external interrupts 

Q 181-pin grid array (PGA) package; 1-Jlm CMOS' 
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1.3 TMS320C31 Key Features 

1-6 

The TMS320C31 and TMS320C31-27 devices are low-cost 32-bit DSPs that 
offer the advantages of a floating-point processor and ease of use. These de­
vices are object-code compatible with the TMS320C30. The devices are func­
tionally equivalent and differ only in their respective electrical and timing char­
acteristics. Chapter 13 describes these differences in detail. 

TMS320C31 features are identical to those of the TMS320C30 device, except 
that the TMS320C31 uses a subset of the TMS320C30's standard peripheral 
and memory interfaces-thus maintaining the TMS320C30 core CPU 
33-MFLOP performance while providing the cost advantages associated with 
132-pin plastic quad flat pack (PQFP) packaging. 

The TMS320C31-27 is a slower speed, pin and object-code compatible ver­
sion of the TMS320C31. It delivers 27 MFLOPS (million floating-point opera­
tions per second) and runs at 27 MHz. The reduced speed allows you to realize 
an immediate system cost reduction by using slower off-chip memories and a 
lower cost processor. 

Some key features of the TMS320C31, including those which differentiate it 
from the TMS320C30, are summarized as follows: 

Q Performance 

• TMS320C31 

• 60-ns single-cycle instruction execution time 

• 33.3 MFLOPS 
• 16.7 MIPS (million instructions per second) 

• TMS320C31-27 

• 74-ns single-cycle instruction execution time 

• 27 MFLOPS 
• 13.5 MIPS 

Q Flexible boot program loader 

Q One serial port to support 8/16/24/32-bit transfers 

Q . One 32-bit data bus (24-bit address) 

Q 132-pin plastic quad flat pack (PQFP) package, .8 J.lm CMOS 
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1.4 Typical Applications 

The TMS320 family's versatility, realtime performance, and multiple functions 
offer flexible design approaches in a variety of applications, which are shown 
in Table 1-1. 

Table 1-1. Typical Applications of the TMS320 Family 

General-Purpose DSP Graphics/Imaging I nstrumentati on 

Digital Filtering 3-D Transformations Rendering Spectrum Analysis 
Convolution Robot Vision Function Generation 
Correlation Image Transmission/Compression Pattern Matching 
Hilbert Transforms Pattern Recognition Seismic Processing 
Fast Fourier Transforms Image Enhancement Transient Analysis 
Adaptive Filtering Homomorphic Processing Digital Filtering 
Windowing Workstations Phase-Locked Loops 
Waveform Generation Animation/Digital Map 

Voice/Speech Control Military 

Voice Mail Disk Control Secure Communications 
Speech Vocoding Servo Control Radar Processing 
Speech Recognition Robot Control Sonar Processing 
Speaker Verification Laser Printer Control Image Processing 
Speech Enhancement Engine Control Navigation 
Speech Synthesis Motor Control Missile Guidance 
Text-to-Speech Kalman Filtering Radio Frequency Modems 
Neural Networks Sensor Fusion 

Telecommunications Automotive 

Echo Cancellation FAX Engine Control 
ADPCM Transcoders Cellular Telephones Vibration Analysis 
Digital PBXs Speaker Phones Antiskid Brakes 
Line Repeaters Digital Speech Adaptive Ride Control 
Channel Multiplexing Interpolation (DSI) Global Positioning 
1200- to 1 9200-bps Modems X.2S Packet Switching Navigation 
Adaptive Equalizers Video Conferencing Voice Commands 
DTMF Encoding/Decoding Spread Spectrum Digital Radio 
Data Encryption Com mu nications Cellular Telephones 

Consumer Industrial Medical 

Radar Detectors Robotics Hearing Aids 
Power Tools Numeric Control Patient Monitoring 
Digital Audio/TV Security Access Ultrasound Equipment 
Music Synthesizer Power Line Monitors Diagnostic Tools 
Toys and Games Visual Inspection Prosthetics 
Solid-State Answering Lathe Control Fetal Monitors 

Machines CAM MR Imaging 
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Chapter 2 

Architectural Overview 

The TMS320C3x architecture (shown in Figure 2-1) responds to system 
demands that are based on sophisticated arithmetic algorithms and which em­
phasize both hardware and software solutions. High performance is achieved 
through the precision and wide dynamic range of the floating-point units, large 
on-chip memory, a high degree of parallelism, and the DMA controller. 

Major areas of discussion are listed below. 

Q Central Processing Unit (CPU) (Section 2.1 on page 2-3) 

• Floating-point/integer multiplier 

• ALU for floating-point, integer, and logical operations 

• 32-bit barrel shifter 

• Internal buses (CPU1/CPU2 and REG1/REG2) 

• Auxiliary register arithmetic units (ARAUs) 

• CPU register file 

Q Memory Organization (Section 2.2 on page 2-9) 

• RAM, ROM, and cache 

• Memory maps 

• Memory addressing modes 

• Instruction set summary 

Q Internal Bus Operation (Section 2.3 on page 2-22) 

a External Bus Operation (Section 2.4 on page 2-23) 

Q Peripherals (Section 2.5 on page 2-24) 

• Timers 

• Serial ports 

Q Direct Memory Access (DMA) (Section 2.6 on page 2-26) 

Q System Integration (Section 2.7 on page 2-27) 
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Figure 2-; 1. TMS320C3x Block Diagram 
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Figure 2-2. Central Processing Unit (CPU) 
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2.1.1 Multiplier 

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit 
floating-point values. The TMS320C3x implementation of floating-point arith­
metic allows for floating-point operations at fixed-point speeds via a 50-ns in­
struction cycle and a high degree of parallelism. To gain even higher through­
put, you can use parallel instructions to perform a multiply and ALU operation 
in a single cycle. 

When the multiplier performs floating-point multiplication, the inputs are 32-bit 
floating-point numbers, and the result is a 40-bit floating-point number. When 
the multiplier performs integer multiplication, the input data is 24 bits and yields 
a 32-bit result. Refer to Chapter 4 for detailed information on data formats and 
floating-point operation .. 

2.1.2 Arithmetic Logic Unit (ALU) 

The ALUperforms single-cycle operations on 32-bit integer, 32-bit logical, and 
40-bit floating-point data, including single-cycle integer and floating-point con­
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit 
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right 
in a single cycle. Refer to Chapter 4 for detailed information on data formats 
and floating-point operation. 

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from 
memory and two operands from the register file, thus allowing parallel multi­
plies and adds/subtracts on four integer or floating-point operands in a single 
cycle. 

2.1.3 Auxiliary Register Arithmetic Units (ARAUs) 

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two 
addresses in a single cycle. The ARAUs operate in parallel with the multiplier 
and ALU. They support addressing with displacements, index registers (IRO 
and IR1), and circular and bit-reversed addressing. Refer to Chapter 5 for a 
description of addressing modes. 

2.1.4 CPU Register File 

The TMS320C3x provides 28 registers in a multiport register file that is tightly 
90upled to the CPU. All of these registers can be operated upon by the multipli­
er and ALU, and can be used as general-purpose registers. However, the reg­
isters also have some special functions. For example, the eight extended-pre­
cision registers are especially suited for maintaining extended-precision float­
ing-point results. The eight auxiliary registers support a variety of indirect ad­
dressing modes and can be used as general-purpose 32-bit integer and logical 

2-5 







Central Processing Unit (CPU) 
<;:;:::;:::;:;:::;:::;:;:>:::::::::::::;:::;:::::::::;:::::.~:;:::;O:::o:::;:::;:;::::::::::::~ .. :::::::;:::::;:;:::;:;:::::;:::::::::;:::::::::::::::::::;:::;:::::;:;:,::::::::::::;:::;:::;::::::,,,').,;::::% .. :::::::::::;:; .. :::::: .. ::::.::::;::.;.::: .. :;::::::.: .... ~:::::~~:::.;.:.:.:.~ .. ::.:.:.:~:.::;:;.:.::;.;.~:::::::.:.:.:.;::.: .. :::::;.;, ... :::.;.:.:.:~::.~:.,;.;.:::::::::::.;.::;::.;.;.;.:.;.; .. ·;·:·:·:·;·~:: .. :::::::::;:::;:~;::.,;·:·:·:·;v:::.;::::::.;.-:·:·; .. :;·: .. ·:.; .... ::.;:: .. :: .. :::;. .. :~;·:::.;:: ...... :::;~s::::::~::::::::~::;:::;:;>"!;..;:::;::::~~::;::s 

2-8 

The repeat counter (RC) is a 32-bit register used to specify the number of 
times a block of code is to be repeated when performing a block repeat. When 
the processor is operating in the repeat mode, the 32-bit repeat start address 
register (RS) contains the starting address of the block of program memory 
to be repeated, and the 32-bit repeat end address register (RE) contains the 
ending address of the block to be repeated. 

The program counter (PC) is a 32-bit register containing the address of the 
next instruction to be fetched. Although the PC is not part of the CPU register 
file, it is a register that can be modified by instructions that modify the program 
flow. 
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2.2 Memory Organization 

The total memory space of the TMS320C3x is 16M (million) 32-bit words. Pro­
gram, data, and I/O space are contained within this 16M-word address space, 
thus allowing tables, coefficients, program code, or data to be stored in either 
RAM or ROM. In this way, memory usage is maximized and memory space al­
located as desired. 

2.2.1 RAM, ROM, and Cache 

Figure 2-3 shows how the memory is organized on the TMS320C3x. RAM 
blocks 0 and 1 are each 1 K x 32 bits. The ROM block, available only on the 
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support­
ing two CPU accesses in a single cycle. The separate program buses, data 
buses, and DMA buses allow for parallel program fetches, data reads and 
writes, and DMA operations. For example: the CPU can access two data val­
ues in one RAM block and perform an external program fetch in parallel with 
the DMA loading another RAM block, all within a single cycle. 

A 64 x 32-bit instruction cache is provided to store often repeated sections of 
code, thus greatly reducing the number of off-chip accesses necessary. This 
allows for code to be stored off-chip in slower, lower-cost memories. The exter­
nal buses are also freed for use by the DMA, external memory fetches, or other 
devices in the system. 

Refer to Chapter 3 for detailed information about the memory and instruction 
cache. 
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2.2.2 Memory Maps 

The memory map is dependent upon whether the processor is running in the 
microprocessor mode (MC/MP or MCBUMP = 0) or the microcomputer mode 
(MC/MP or MCBUMP = 1). The memory maps for these modes are similar (see 
Figure 2-4). Locations 800000h through 801 FFFh are mapped to the expan­
sion bus. When this region, available only on the TMS320C30, is accessed, 
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca­
tions 804000h through 805FFFh are mapped to the expansion bus. When this 
region, available only on the TMS320C30, is accessed, IOSTRB is active. Lo­
cations 806000h through 807FFFh are reserved. All of the memory-mapped 
peripheral registers are in locations 808000h through 8097FFh. In both modes, 
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM 
block 1 is located at addresses 809COOh through 809FFFh. Locations 
80AOOOh through OFFFFFFh are accessed over the external memory port 
(STRB active). 

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or bootloader 
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations Oh 
through OBFh consist of interrupt vector, trap vector, and reserved locations, 
all of which are accessed over the external memory port (STRB active). Loca­
tions OCOh through 7FFFFFh are also accessed over the external memory 
port. 

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or bootloader 
(TMS320C31) is mapped into locations Oh through OFFFh. There are 19210ca­
tions (Oh through OBFh) within this block for interrupt vectors, trap vectors, and 
a reservj3d space. Locations 1 OOOh through 7FFFFFh are accessed over the 
external memory port (STRB active). 

Section 3.2 describes the memory maps in greater detail. The peripheral bus 
map and the vector locations for reset, interrupts, and traps are also given. 

l3ecareful !Access to· a reserved area produces unpredictablere~ 
suits. 
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Figure 2-4. TMS320C30 Memory Maps 
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Figure 2-5. TMS320C31 Memory Maps 
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2.2.3 Memory Addressing Modes 

The TMS320C3x supports a base set of general-purpose instructions as well 
as arithmetic-intensive instructions that are particularly suited for digital signal 
. processing and other numeric-intensive applications. Refer to Chapter 5 for 
detailed information on addressing. 

Five groups of addressing modes are provided on the TMS320C3x. Six types 
of addressing may be used within the groups, as shown in the following list: 

l;i General addressing modes: 

• Register. The operand is a CPU register. 

• Short immediate. The operand is a 16-bit immediate value. 

• Direct. The operand is the contents of a 24-bit address. 

• Indirect. An auxiliary register indicates the address of the operand. 

Q Three-operand addressing modes: 

• Register. Same as for general addressing mode. 

• Indirect. Same as for general addressing mode. 

Q Parallel addressing modes: 

• Register. The operand is an extended-precision register. 

• Indirect. Same as for general addressing mode. 

l;i Long-immediate addressing mode. 

• Long-immediate. The operand is a 24-bit immediate value. 

Q Conditional branch addressing modes: 

• Register. Same as for general addressing mode 

• PC-relative. A signed 16-bit displacement is added to the PC. 

2.2.4 Instruction Set Summary 
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Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each table 
entry shows the instruction mnemonic, description, and operation. Refer to 
Chapter 10 for a functional listing of the instructions and individual instruction 
descriptions. 
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Table 2-2. Instruction Set Summary 

Mnemonic Description 

ABSF 

ABSI 

ADDC 

ADDC3 

ADDF 

ADDF3 

ADDI 

ADDI3 

AND 

AND3 

ANDN 

ANDN3 

ASH 

ASH3 

Bcond 

BcondD 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 

Absolute value of a floating-point number 

Absolute value of an integer 

Add integers with carry 

Add integers with carry (3-operand) 

Add floating-point values 

Add floating-point values (3-operand) 

Add integers 

Add integers (3-operand) 

. Bitwise logical-AND 

Bitwise logical-AND (3-operand) 

Bitwise logical-AND with complement 

Bitwise logical-ANON (3-operand) 

Arithmetic shift 

Arithmetic shift (3-operand) 

Branch conditionally (standard) 

Branch conditionally (delayed) 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Memory Organization 

Operation 

Isrcl ~ Rn 

Isrcl ~ Dreg 

src + Dreg + C ~ Dreg 

src1 + src2 + C ~ Dreg 

src + Rn ~ Rn 

src1 + src2 ~ Rn 

src + Dreg ~ Dreg 

src1 + src2 + ~ Dreg 

Dreg AND src ~ Dreg 

src1 AND src2 ~ Dreg 

Dreg AND src ~ Dreg 

src1 AND src2 ~ Dreg 

If count ~ 0: 
(Shifted Dreg left by count) ~ Dreg 

Else: 
(Shifted Dreg right by Icount!) ~ Dreg 

If count ~ 0: 
(Shifted src left by count) ~ Dreg 

Else: 
(Shifted src right by Icount!) ~ Dreg 

If cond = true: 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC ~ PC 

Else, PC + 1 ~ PC 

If cond = true: 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 3 ~ PC 

Else,PC + 1 ~ PC 

Dreg 
Rn 
Daddr 
ARn 
addr 
cond 
ST 
RE 
RS 
PC 
C 

register address (any register) 
register address (R7 - RO) 
destination memory address 
auxiliary register n (AR7 - ARO) 
24-bit immediate address (label) 
condition code (see Chapter 11) 
status register 
repeat interrupt register 
repeat start register 
program counter 
carry bit 
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Table 2-2. Instruction Set Summary (Continued) 

Mnemonic Description Operation 

BR Branch unconditionally (standard) Value~ PC 
BRO, Branch unconditionally (delayed) Value~ PC 

CALL Call subroutine PC+1 ~TOS 
Value~ PC 

CALLcond Call subroutine conditionally If cond = true: 
PC+1 ~ TOS 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC ~ PC 

Else, PC + 1 ~ PC 

CMPF Compare floating-point values Set flags on Rn - src 

CMPF3 Compare floating-point values Set flags on src1 - src2 
(3-operand) 

CMPI Compare integers Set flags on Dreg - src 

CMPI3 Compare integers (3-operand) Set flags on src1 - src2 

DBcond Decrement and branch conditionally ARn-1 ~ ARn 
(standard) 

If cond = true and ARn ~ 0: 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 1 ~ PC 

Else, PC + 1 ~ PC 

DBcondD Decrement and branch conditionally ARn-1 ~ARn 
(delayed) 

If cond = true and ARn ;::: 0: 
If Csrc is a register, Csrc ~ PC 
If Csrc is a value, Csrc + PC + 3 ~ PC 

Else, PC + 1 ~ PC 

FIX Convert floating-point value to integer Fix (src) ~ Dreg 

FLOAT Convert integer to floating-point value Float(src) ~ Rn 

lACK Interrupt acknowledge Dummy read of src 
lACK toggled low, then high 

IDLE Idle until interrupt PC+ 1 ~ PC 
Idle until next interrupt 

LDE Load floating-point exponent src(exponent) ~ Rn(exponent) 

LDF Load floating-point value src~ Rn 

LDFcond Load floating-point value conditionally If cond = true, src ~ Rn 
Else, Rn is not changed 

LDFI Load floating-point value, interlocked Signal interlocked operation src ~ Rn 

LDI Load integer src~ Dreg 

LDlcond Load integer conditionally If cond = true, src ~ Dreg 
Else, Dreg is not changed 
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Table 2-2. Il?struction Set Summary (Continued) 

Mnemonic Description Operation 

PUSHF Push floating-point value on stack Rn -7 *++ SP 

RETlcond Return from interrupt conditionally If cond = true or missing: 
*SP---7 PC 

1 -7 ST (GIE) 
Else, continue 

RETScond Return from subroutine conditionally If cond = true or missing: 
*SP---7 PC 

Else, continue 

RND Round floating-point value Round (src) -7 Rn 

ROL Rotate left Dreg rotated left 1 bit -7 Dreg 

ROLC Rotate left through carry Dreg rotated left 1 bit through carry -7 Dreg 

ROR Rotate right Dreg rotated right 1 bit -7 Dreg 

RORC Rotate right through carry Dreg rotated right 1 bit through carry -7 

Dreg 

RPTB Repeat block of instructions src -7 RE 

1 -7 ST (RM) 

Next PC -7 RS 

RPTS Repeat single instruction src -7 RC 

1 -7 ST (RM) 

Next PC -7 RS 

Next PC -7 RE 

SIGI Signal, interlocked Signal interlocked operation 
Wait for interlock acknowledge 
Clear interlock 

STF Store floating-point value Rn -7 Daddr 

STFI Store floating-point value, interlocked Rn -7 Daddr 
Signal end of interlocked operation 

STI Store integer Sreg -7 Daddr 

STII Store integer, interlocked Sreg -7 Daddr 
Signal end of interlocked operation 

SUBB Subtract integers with borrow Dreg - src - C -7 Dreg 

SUBB3 Subtract integers with borrow (3-operand) src1 - src2 - C -7 Dreg 

SUBC Subtract integers conditionally If Dreg - src ;:: 0: 

[(Dreg - src) « 1) OR 1 -7 Dreg 

Else, Dreg « 1 -7 Dreg 
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Table 2-3. Parallel Instruction Set Summary 
Mnemonic j Description 1 Operation 

Parallel Arithmetic With Store Instructions 

ABSF Absolute value of a floating-point Isrc21 ~ dst1 
IISTF 

II src3 ~ dst2 

ABSI Absolute value of an integer Isrc21 ~ dst1 
IISTI 

II src3 ~ dst2 

ADDF3 Add floating-point src1 + src2 ~ dst1 
II STF 

II src3 ~ dst2 

ADDI3 Add integer src1 + src2 ~ dst1 
II STI 

II src3 ~ dst2 

AND3 Bitwise logical-AND src1 AND src2 ~ dst1 
IISTI 

II src3 ~ dst2 

ASH3 Arithmetic shift If count;;::: 0: 
IISTI src2 « count ~ dst1 

II src3 ~ dst2 
Else: 

src2 » Icountl ~ dst1 
II src3 ~ dst2 

FIX Convert floating-point to integer Fix(src2) ~ dst1 
IISTI II src3 ~ dst2 

FLOAT Convert integer to floating-point Float(src2) ~ dst1 
IISTF 

II src3 ~ dst2 

LDF Load floating-point src2 ~ dst1 
IISTF II src3 ~ dst2 

LDI Load integer src2 ~ dst1 
IISTI II src3 ~ dst2 

LSH3 Logical shift If count;;::: 0: 
IISTI 

src2 « count ~ dst1 
II src3 ~ dst2 

Else: 
src2 » Icountl ~ dst1 

II src3 ~ dst2 

MPYF3 Multiply floating-paint src1 x src2 ~ dst1 
IISTF II src3 ~ dst2 

MPYI3 Multiply integer src1 x src2 ~ dst1 
IISTI II src3 ~ dst2 

NEGF Negate floating-point 0- src2 ~ dst1 
II STF 

II src3 ~ dst2 
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2.3 Internal Bus Operation 

2-22 

A large portion of the TMS320C3x's high performance is due to internal busing 
and parallelism. The separate program buses (PADDR and PDATA) , data 
buses (DADDR1, DADDR2, and DDATA), and DMA buses (DMAADDR and 
DMADATA) allow for parallel program fetches, data accesse~, and DMA ac­
cesses. These buses connect all of the physical spaces (on-chip memory, 
off-chip memory, and on-chip peripherals) supported by the TMS320C30. 
Figure 2-3 shows these internal buses and their connection to on-chip and off­
chip memory blocks. 

The program counter (PC) is connected to the 24-bit program address bus 
(PADDR). The instruction register (IR) is connected to the 32-bit program data 
bus (PDATA). These buses can fetch a single instruction word every machine 
cycle. 

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data 
data bus (DDATA) support two data memory accesses every machine cycle. 
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The 
CPU1 and CPU2 buses can carry two data memory operands to the multiplier, 
ALU, and register file every machine cycle. Also internal to the CPU are regis­
ter buses REG1 and REG2 that can carry two data values from the register file 
to the multiplier and ALU every machine cycle. Figure 2-2 shows the buses 
internal to the CPU section of the processor. 

The DMA controller is supported with a 24-bit address bus (DMAADDR) and 
a 32-bit data bus (DMADATA). These buses allow the DMA to perform memory 
accesses in parallel with the memory accesses occurring from the data and 
program buses. 

Architectural Overview 



External Bus []DI~r,qlfi{)n 

2.4 External Bus Operation 

The TMS320C30 provides two external interfaces: the primary bus and the ex­
pansion bus. The TMS320C31 provides one external interface: the primary 
bus. Both primary and expansion buses consist of. a 32-bit data bus and a set 
of control signals. The primary bus has a 24-bit address bus, whereas the ex­
pansion bus has a 13-bit address bus. Both buses can be used to address ex­
ternal program/data memory or I/O space. The buses also have an external 
ROY signal for wait-state generation. Additional wait states may be inserted 
under software control. Refer to Chapter 7 for detailed information on external 
bus operation. 

2.4.1 External Interrupts 

The TMS320C3x supports four external interrupts (iNf3-INTO), a number of 
internal interrupts, and a nonmaskable external RESET signal. These can be 
used to interrupt either the DMA or the CPU. When the CPU responds to the 
interrupt, the lACK pin can be used to signal an external interrupt acknowl­
edge. Section 6.5 (beginning on page 6-16) cover RESET and interrupt pro­
cessing. 

2.4.2 Interlocked-Instruction Signaling 

Two external I/O flags, XFO and XF1 , can be configured as input or output pins 
under software control. These pins are also used by the interlocked operations 
of the TMS320C3x. The interlocked-operations instruction group supports 
multiprocessor communication (see Section 6.4 on page 6-10 for examples of 
the use of interlocked instructions). 
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2.5 Peripherals 

All TMS320C3x peripherals are controlled through memory-mapped registers 
on a dedicated peripheral bus. This peripheral bus is composed of a 32-bit data 
bus and a 24-bit address bus. This peripheral bus permits straightforward com­
munication to the peripherals. The TMS320C3x peripherals include two timers 
and two serial ports (only one serial port is available on the TMS320C31). 
Figure 2-6 shows the peripherals with associated buses and signals. Refer to 
Chapter 8 for detailed information on the peripherals. 

Figure 2-6. Peripheral Modules 
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2.6 Direct Memory Access (DMA) 

The on-chip Direct Memory Access (DMA) controller can read from or write to 
any location in the memory map without interfering with the operation of the 
CPU. Therefore, the TMS320C3x can interface to slow external memories and 
peripherals without reducing throughput to the CPU~ The DMA controller con­
tains its own address generators, source and destination registers, and trans­
fer counter. Dedicated DMA address and data buses allow for minimization of 
conflicts between the CPU and the DMA controller. A DMA operation consists 
of a block or single-word transfer to or from memory. Refer to Chapter 8 for de­
tailed information on the DMA. Figure 2-7 shows the DMA controller with asso­
ciated buses. 

Figure 2-7. DMA Controller 
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3.1 CPU Register File 

Table 3-1. CPU Registers 

The TMS320C3x provides 28 registers in a multiport register file that is tightly 
coupled to the CPU. The PC is not included in the 28 registers. All of these reg­
isters can be operated upon by the multiplier and ALU, and can be used as gen­
eral-purpose 32-bit registers. However, the registers also have some special 
functions for which they are particularly appropriate. For example, the eight ex­
tended-precision registers are especially suited for maintaining extended-pre­
cision floating-point results. The eight auxiliary registers support a variety of 
indirect addressing modes and can be used as general-purpose 32-bit integer 
and logical registers. The remaining registers provide system functions such 
as addressing, stack management, processor status, interrupts, and block re­
peat. Refer to Chapter 5 for detailed information and examples of the use of 
CPU registers in addressing. 

The registers names and assigned function are listed in Table 3-1. 

Register Assigned Function Name 

RO Extended-precision register 0 
R1 Extended-precision register 1 
R2 Extended-precision register 2 
R3 Extended-precision register 3 
R4 Extended-precision register 4 
R5 Extended-precision register 5 
R6 Extended-precision register 6 
R7 Extended-precision register 7 

ARO Auxiliary register a 
AR1 Auxiliary register 1 
AR2 Auxiliary register 2 
AR3 Auxiliary register 3 
AR4 Auxiliary register 4 
AR5 Auxiliary register 5 
AR6 Auxiliary register 6 
AR7 Auxiliary register 7 

DP Data-page pointer 
IRO Index register 0 
IR1 Index register 1 
BK Block-size register 
SP System stack pointer 

ST Status register 
IE CPU/DMA interrupt enable 
IF CPU interrupt flags 

10F I/O flags 

RS Repeat start address 
RE Repeat end address 
RC Repeat counter 

PC Program counter 
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3.1.1 Extended-Precision Registers (R7 - RO) 

The eight extended-precision registers (R7 - RO) are capable of storing and 
supporting operations on 32-bit integer and 40-bit floating-point numbers. 
These registers consist of two separate and distinct regions: 

a bits 39 - 32: dedicated to storage of the exponent (e) of the floating-point 
number. 

a bits 31 - 0: store the mantissa of the floating-point number: 

• bit 31: sign bit (s), 

• bits 30 - 0: the fraction (f). 

Any instruction that assumes the operands are floating-point numbers uses 
bits 39 - O. Figure 3-1 illustrates the storage of 40-bitfloating-point numbers 
in the extended-precision registers. 

Figure 3-1. Extended-Precision Register Floating-Point Format 

39 32 31 30 0 

I e I s I fraction (f) I 
~ mantissa .1 

For integer operations, bits 31 ~ 0 of the extended-precision registers contain 
the integer (signed or unsigned). Any instruction that assumes the operands 
are either signed or unsigned integers uses only bits 31 - O. Bits 39 - 32 re­
main unchanged. This is true for all shift operations. The storage of 32-bit inte­
gers in the extended-precision registers is shown in Figure 3-2. 

Figure 3-2. Extended-Precision Register Integer Format 

39 32 31 o 

I unchanged I signed or unsigned integer 

3.1.2 Auxiliary Registers (AR7 - ARO) 
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The eight 32-bit auxiliary registers (AR7 - ARO) can be accessed by the CPU 
and modified by the two Auxiliary Register Arithmetic Units (ARAUs). The pri­
mary function of the auxiliary registers is the generation of 24-bit addresses. 
However, they can also be used as loop counters in indirect addressing or as 
32-bit general-purpose registers that can be modified by the multiplier and 
ALU. Refer to Chapter 5 for detailed information and examples of the use of 
auxiliary registers in addressing. 
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3.1.3 Data~Page Pointer (DP) 

The data-page pointer (DP) is a 32-bit register, which is loaded using the LOP 
instruction. The eight LSBs of the data-page pointer are used by the direct ad­
dressing mode as a pointer to the page of data being addressed. Data pages 
are 64 K words long with a total of 256 pages. Bits 31 - 8 are reserved; you 
should always keep these zero. 

3.1.4 Index Registers (IRO, IR1) 

The 32-bit index registers (IRO and IR1) are used by the Auxiliary Register 
Arithmetic Unit (ARAU) for indexing the address. Refer to Chapter 5 for de­
tailed information and examples of the use of index registers in addressing. 

3.1.5 Block-Size Register (BK) 

The 32-bit block-size register (BK) is used by the ARAU in circular addressing 
to specify the data block size (see Section 5.3 on page 5-24). 

3.1.6 System Stack Pointer (SP) 

The system stack pointer (SP) is a 32-bit register that contains the address of 
the top of the system stack. The SP always points to the last element pushed 
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and 
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the stack 
perform preincrement and postdecrement, respectively, on all 32 bits of the 
stack pointer. However, only the 24 LSBs are used as an address. Referto Sec­
tion 5.5 on page 5-30 for information about system stack management. 

3.1.7 Status Register (ST) 

The status register (ST) contains global information relating to the state of the 
CPU. Typically, operations set the condition flags of the status register accord­
ing to whether the result is zero, negative, etc. This includes register load and 
store operations as well as arithmetic and logical functions. When the status 
register is loaded, however, the contents of the source operand replace the 
current contents bit-for-bit, regardless of the state of any bits in the source op­
erand. Therefore, following a load, the contents of the status register are identi­
cally equal to the contents of the source operand. This allows the status regis­
ter to be saved easily and restored. At system reset, 0 is written to this register. 

, . 
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The format of the status register is shown in Figure 3-3. Table 3-2 defines the 
status register bits, their names, and functions. 

Figure 3-3. Status Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

xx I xx I GIE I CC I CE I CF I xx I RM I OVM I LUF I LV I UF I N I z I V I C 

RNJ RNJ RNJ RNJ RNJ RNJ RNJ RNJ RNJ RIW RIW RIW RIW 

NOTE: xx = reserved bit. 
R = read. W = write. 
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Table 3-2. Status Register Bits Summary 

Bit Name Reset Value Function 

ot C 0 Carry flag. 

1t V 0 Overflow flag. 

2t Z 0 Zero flag. 

3t N 0 Negative flag. 

4t UF 0 Floating-point underflow flag. 

st LV 0 Latched overflow flag. 

6t LUF 0 Latched floating-point underflow flag. 

7 OVM 0 Overflow mode flag. This flag affects only the integer operations. If OVM 
= 0, the overflow mode is turned off; integer results that overflow are 
treated in no special way. If OVM = 1, 

a) integer results overflowing in the positive direction are set to the 
most positive 32-bit twos-complement number (7FFFFFFFh) 

b) integer results overflowing in the negative direction are set to the 
most negative 32-bit twos-complement number (80000000h). 

Note that the function of V and LV is independent of the setting of OVM. 

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modified in either the 
repeat-block or repeat-single mode. 

9 Reserved 0 Read as O. 

10 CF 0 Cache freeze. When CF = 1 , the cache is frozen. If the cache is enabled 
(CE = 1), fetches from the cache are allowed, but no modification of the 
state of the cache is performed. This function can be used to save fre-
quently used code resident in the cache. At reset, a is written to this bit. 
Cache clearing (CC=1) is allowed when CF=O. 

11 CE 0 Cache enable. CE = 1 enables the cache, allowing the cache to be used 
according to the least recently used (LRU) cache algorithm. CE = a dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for 
system debug. At system reset, 0 is written to this bit. Cache clearing 
(CC = 1) is allowed when CE=O. 

12 CC 0 Cache clear. CC = 1 invalidates all entries in the cache. This bit is always 
cleared after it is written to and thus always read as O. At reset, 0 is written 
to this bit. 

13 GIE 0 Global interrupt enable. If GIE = 1 ,the CPU responds to an enabled inter-
rupt. If GIE = 0, the CPU does not respond to an enabled interrupt. 

15-14 Reserved 0 Read as O. 

31-16 Reserved 0-0 Value undefined. 

t The seven condition flags (ST bits 6 -0) are defined in Section 10.2 on page 10-9. 
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3.1.8 CPU/DMA Interrupt Enable Register (IE) 

The CPU/DMA interrupt enable register (IE) is a 32.,bit register (see 
Figure 3-4). The CPU interrupt enable bits are in locations 10- o. The DMA 
interrupt enable bits are in locations 26 - 16. A 1 in a CPU/DMA interrupt en­
able register bit enables the corresponding interrupt. A 0 disables the corre­
sponding interrupt. At reset, 0 is written to this register. Table 3-3 defines the 
register bits, the bit names, and the bit functions. 

Figure 3-4. CPUIDMA Interrupt Enable Register (IE) 

NOTE: xx .. reserved bit. read as O. 
R = read. W = write. 
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Table 3-3. IE Register Bits Summary 

Bit Name Reset Value Function 

0 EINTO 0 Enable external interrupt 0 (CPU) 

1 EINT1 0 Enable external interrupt 1 (CPU) 

2 EINT2 0 Enable external interrupt 2 (CPU) 

3 EINT3 0 Enable external interrupt 3 (CPU) 

4 EXINTO 0 Enable serial-port 0 transmit interrupt (CPU) 

5 ERINTO 0 Enable serial-port 0 receive interrupt (CPU) 

6 EXINT1 0 Enable serial-port 1 transmit interrupt (CPU) 

7 ERINT1 0 Enable serial-port 1 receive interrupt (CPU) 

8 ETINTO 0 Enable timer 0 interrupt (CPU) 

9 ETINT1 0 Enable timer 1 interrupt (CPU) 

10 EOINT 0 Enable OMA controller interrupt (CPU) 

15-11 Reserved 0 Value undefined 

16 EINTO 0 Enable external interrupt 0 (DMA) 

17 EINT1 0 Enable external interrupt 1 (OMA) 

18 EINT2 0 Enable external interrupt 2 (OMA) 

19 EINT3 0 Enable external interrupt 3 (OMA) 

20 EXINTO 0 Enable serial-port 0 transmit interrupt (OMA) 

21 ERINTO 0 Enable serial-port 0 receive interrupt (OMA) 

22 EXINT1 0 Enable serial-port 1 transmit interrupt (OMA) 

23 ERINT1 0 Enable serial-port 1 receive interrupt (OMA) 

24 ETINTO 0 Enable timer 0 interrupt (OMA) 

25 ETINT1 0 Enable timer 1 interrupt (OMA) 

26 EOINT 0 Enable OMA controller interrupt (OMA) 

31-27 Reserved 0-0 Value undefined 

3.1.9 CPU ·Interrupt Flag Register (IF) 

The 32-bit CPU interrupt flag register (IF) is shown in Figure 3-5. A 1 in a CPU 
interrupt flag register bit indicates that the corresponding interrupt is set. The 
IF bits are set to 1 when an-interrupt occurs. They may also be set to 1 through 
software to cause an interrupt. A 0 indicates that the corresponding interrupt 
is not set. If a 0 is written to an interruptflag register bit, the corresponding inter­
rupt is cleared. At reset, O. is written to this register. Table 3-4 lists the bit fields, 
bit field names, and bit field functions of the CPU interrupt flag register. 
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Figure 3-5. CPU Interrupt Flag Register (IF) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I xx I xx I xx I xx xx xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I xx I DINT I TINT1 I TINTO I RINT1 I XINT1 I RINTO I XINTO I INT31 INT21 INT1 I INTO I 
RIW RIW RIW RIW RIW RIW RIW RIW RIW RIW RIW 

NOTE: xx = reserved bit, read as 0, 
R = read, W = write. 

Table 3-4. IF Register Bits Summary 

Bit Name Reset Value Function 

0 INTO 0 External interrupt 0 flag 

1 INT1 0 External interrupt 1 flag 

2 INT2 0 External interrupt 2 flag 

3 INT3 0 External interrupt 3 flag 

4 XINTO 0 Serial-port 0 transmit interrupt flag 

5 RINTO 0 Serial-port 0 receive interrupt flag 

6 XINT1t 0 Serial-port 1 transmit interrupt flag 

7 RINT1t 0 Serial-port 1 receive interrupt flag 

8 TINTO 0 Timer 0 interrupt flag 

9 TINT1 0 Timer 1 interrupt flag 

10 DINT 0 DMA channel interrupt flag 

31-11 Reserved 0-0 Value undefined 

t Reserved on TMS320C31. 

3.1.10 I/O Flags Register (IOF) 

The I/O flags register (IOF) is shown in Figure 3-6 and controls the function 
of the dedicated external pins, XFO and XF1. These pins may be configured 
for input or output. They may also be read from and written to. At reset, 0 is writ­
ten to this register. The bit fields, bit field names, and bit field functions are 
shown in Table 3-5. 

Figure 3-6. 110 Flag Register (IOF) 
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31 30 29 28 27 26 25 24 23 

15 14 13 12 11 10 9 8 7 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

22 

xx 

6 

21 20 19 18 17 16 

xx I xx I xx xx xx I xx I-

5 4 3 2 o 
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Table 3-5. IOF Register Bits Summary 

Bit Name Reset Value Function 

0 Reserved 0 Read as O. 

1 I/OXFO 0 If l'0XFO = 0, XFO is configured as a general-purpose input pin. 
If I/OXFO = 1 , XFO is configured as a general-purpose output pin. 

2 OUTXFO 0 Data output on XFO. 

3 INXFO 0 Data input on XFO. A write has no effect. 

4 Reserved 0 Read as O. 

5 I/OXF1 0 If I/OXF1 = 0, XF1 is configured as a general-purpose input pin. 
If I/OXF1 = 1 , XFt is configured as a general-purpose output pin. 

6 OUTXF1 0 Data output on XF1. 

7 INXF1 0 Data input on XF1. A write has no effect. 

31-8 Reserved 0-0 Read as O. 

3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE) 

The repeat-count register (RC) is a 32-bit register used to specify the number 
of times a block of code is to be repeated when performing a block repeat. 

The repeat start address register (RS) is a 32-bit register containing the start­
ing address of the block of program memory to be repeated when operating 
in the repeat mode. 

The 32-bit repeat end address register (RE) contains the ending address of the 
block of program memory to be repeated when .operating in the repeat mode. 

3.1.12 Program Counter (PC) 

The program counter (PC) is a 32-bit register containing the address of the next 
instruction to be fetched. While the program counter is not part of the CPU reg­
ister file, it is a register that can be modified by instructions that modify the pro­
gram flow. 

3.1.13 Reserved Bits and Compatibility 

In order to retain compatibility with future members of the TMS320C3x family 
of microprocessors, reserved bits that are read as zero must be written as zero. 
Reserved bits that have an undefined value must not have their current value 
modified. In other cases, the user should maintain the reserved bits as speci­
fied. 
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3.2 Memory 

The TMS320C3x's total memory space of 16M (million) 32-bit words contains 
program, data, and I/O space, allowing tables, coefficients, program code, or 
data to be stored in either RAM or ROM. In this way, memory usage can be 
maximized and memory space allocated as desired. 

RAM blocks 0 and 1 are each 1 K x 32 bits. The ROM block is 4K x 32 bits. Each 
on-chip RAM and ROM block is capable of supporting CPU two accesses in 
a single cycle. The separate program buses, data buses, and DMA buses allow 
for parallel program fetches, data reads/writes, and DMA operations. Chapter 
9 covers this in detail. 

3.2.1 TMS320C3x Memory Maps 

3-12 

The memory map is dependent upon whether the processor is running in the 
microprocessor mode (MC/MP or MCBUMP = 0) or the microcomputer mode 
(MC/MP or MCBUMP = 1). The memory maps for these modes are similar (see 
Figure 3-7). Locations 800000h through 801 FFFh are mapped to the expan­
sion bus. When this region, available only on the TMS320C30, is accessed, 
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca­
tions 804000h through 805FFFh are mapped to the expansion bus. When this 
region, available only on the TMS320C30, is accessed, 10STRB is active. Lo­
cations 806000h through 807FFFh are reserved. All of the memory-mapped 
peripheral registers are in locations 808000h through 8097FFh. In both modes, 
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM 
block 1 is located at addresses 809COOh through 809FFFh. Memory locations 
80AOOOh through OFFFFFFh are accessed over the primary external memory 
port (STRB active). 

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or bootloader 
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown in 
Figure 3-7, locations Oh through BFh consist of interrupt vector, trap vector, 
and reserved locations, all of which are accessed over the primary external 
memory port (STRB active). Interrupt and trap vector locations are shown in 
Figure 3-9. Locations COh through 7FFFFFh are also accessed over the pri­
mary external memory port. 

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or bootloader 
(TMS320C31) is mapped into locations Oh through OFFFh. There are 19210ca­
tions (Oh through BFh) within this block for interrupt vectors, trap vectors, and 
a reserved space. Locations 1 OOOh through 7FFFFFh are accessed over the 
primary external memory port (STRB active)'. 

Do not read and write reserved portions ofthe TMS320C3x memory space and 
reserved peripheral bus addresses. Doing so may cause the TMS320C3x to 
halt operation and require a system reset to restart. 
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Figure 3-7. TMS320C30 Memory Maps 
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OBFh 
OCOh 

7FFFFFh 
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B01FFFh 
B02000h 

803FFFh 
804000h 

805FFFh 
B06000h 

B07FFFh 
BOBOOOh 
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B09COOh 

809FFFh 
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(a) Microprocessor Mode 
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3.2.2 TMS320C31 Memory Maps 
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Setting the state of the TMS320C31 MCBUMP pin determines the mode in 
which the TMS320C31 can function: 

Q Microprocessor mode (MCBUMP = 0) 

Q Microcomputer/boot loader mode (MCBUMP = 1) 

The major difference between these two modes is their memory maps (see 
Figure 3-8). The program boot load feature is enabled when the MCBUMP pin 
is driven high during reset. 

Notice that special memory locations are used by the loader (internal and ex­
ternal). They are identified in the microcomputer/boot loader memory map 
shown in Figure 3-8. 
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Figure 3-9. Reset, Interrupt, and Trap Vector Locations 

OOh 

01h 

02h 

03h 

04h 

05h 

06h 

07h 

08h 

09h 

OAh 

OBh 

OCh 

1 Fh 

20h 

3Bh 

3Ch 

3Dh 
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3Fh 

RESET 
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INT2 

INT3 

XINTO 

RINTO 
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RINT1t 

TINTO 

TINT1 

DINT 

RESERVED 

TRAP 0 

· 
· 
· 

TRAP 27 

TRAP 28 (Reserved) 

TRAP 29 (Reserved) 

TRAP 30 (Reserved) 

TRAP 31 (Reserved) 

t Reserved on TMS320C31 
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3.2.4 Peripheral Bus Map 

The memory-mapped peripheral registers are located starting at address 
808000h. The·peripheral bus memory map is shown in Figure 3-10. Each pe­
ripheral occupies a 16-word region of the memory map. Locations 80801 Oh 
through 80801 Fh and locations 808070h through 8097FFh are reserved. 

Figure 3-10. Peripheral-Bus Memory Map 
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808000h 

80800Fh 
808010h 

80801Fh 
808020h 

80802Fh 
808030h 

80803Fh 
808040h 

80804Fh 
808050h 

80805Fh 
808060h 

80806Fh 
808070h 

8097FFh 

DMA Controller Registers 

(16) 

Reserved 

(16) 

Timer 0 Registers 

(16) 

Timer 1 Registers 

(16) 

Serial-Port 0 Registers 

(16) 

Serial-Port 1 Registerst 

(16) 

Primary and Expansion Port 
Registers (16) 

Reserved 

t Reserved on TMS320C31 
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3.3 Instruction Cache 

A 64 x 32-bit instruction cache facilitates maximum system performance with 
minimal system cost by storing sections of code that can be fetched when re­
peatedly accessing time-critical code. This reduces the number of off-chip ac­
cesses necessary and allows for code to be stored off-chip in slower, lower­
cost memories. The cache also frees external buses from program fetches so 
they can be used by the DMA or other system elements. 

The cache can operate in a completely automatic fashion without the need for 
user intervention. Section 3.3.2 describes a form of the LRU (least recently 
used) cache update algorithm. 

3.3.1 Cache Architecture 

The instruction cache (see Figure 3-11) contains 64 32-bit words of RAM and 
is divided into two 32-word segments. Associated with each segment is a 19-bit 
segment start address (SSA) register. for each word in the cache, there is a 
corresponding single bit: Present (P) flag. 

Figure 3-11. Instruction Cache Architecture 

Segment Start 
Address Registers 

A 
I 

I SSA Register 0 I 
~ 19 ~ 

SSA Register 1 

P 
Flags Segment Words LRU 

A Stack 
I Most Recently Used 

ffi Segment Word 0 EC Segment Number 

Segment Word 1 Least Recently Used 
Segment Number 

Segment 0 

HE 
Segment Word 30 

31 Segment Word 31 

~ 32 ~ 

tB Segment Word 0 

Segment Word 1 

Segment 1 

HE 
Segment Word 30 

31 Segment Word 31 

When the CPU requests an instruction word from external memory, a check 
is made to determine if the word is already contained in the instruction cache. 
Figure 3-11 shows the partitioning of an instruction address as used by the 
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cache control algorithm. The19 most significant bits of the instruction address 
are used to select the segment, and the 5 least significant bits define the ad­
dress of the instruction word within the pertinent segment. The 19 MSBs of the 
instruction address are compared with the two segment start address (SSA) 
registers. If a match is found, a check is made of the relevant P flag. The P 
flag indicates whether or not the word within a particular segment is already 
present in cache memory. 

Figure 3-12. Address Partitioning for Cache Control Algorithm 

23 

segment start address 
(SSA) 

54 

instruction word 
address within segment 

o 

If there is no match, one of the segments must be replaced by the new data. 
The segment replaced in this circumstance is determined by the LRU (Ieast-re­
cently-used) algorithm. The LRU stack (see Figure 3-11) is maintained for this 
purpose. 

The LRU stack determines which of the two segments qualifies as the least-re­
cently-used after each access to the cache; therefore, the stack contains either 
0,1 or 1,0. Each time a segment is accessed, its segment number is removed 
from the LRU stack and pushed onto the top of the LRU stack. Therefore, the 
number at the top of the stack is the most recently used segment number, and 
the number at the bottom of the stack is the least recently used segment num­
ber. 

At system reset, the LRU stack is initialized with 0 at the top and 1 at the bottom. 
All P flags in the instruction cache are cleared. . 

When a replacement is necessary, the least recently used segment is selected 
for replacement. Also, the 32 P flags for the segment to be replaced are set 
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in­
struction address. 

3.3.2 Cache Algorithm 
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When the TMS320C3x requests an instruction word from external memory, 
one of two possible actions occurs: a cache hit or a cache miss. These are de­
scribed in the following list: 

Q Cache Hit. The cache contains the requested instruction, and the follow­
ing actions occur: 

• The instruction word is read from the cache. 

• The number of the segment containing the word is removed from the 
LRU stack and pushed to the top of the LRU stack, thus moving the 
other segment number to the bottom of the stack. 
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Q Cache Miss. The cache does not contain the instruction. Types of cache 
miss are 

m Word miss. The segment address register matches the instruction ad­
dress, but the relevant P flag is not set. The following actions occur in 
parallel: 

a The instruction word is read from memory and copied into the 
cache. 

1:1 The number of the segment containing the word is removed from 
the LRU stack and pushed to the top of the LRU stack, thus moving 
the other segment number to the bottom of the stack. 

1:1 The relevant P flag is set. , 

EJ Segment miss. Neither of the segment addresses matches the in­
struction address. The following actions occur in parallel: 

a The least recently used segment is selected for replacement. The 
P flags for all 32 words are cleared. 

a The SSA register for the selected segment is loaded with the 19 
MSBs of the address of the requested instruction word. 

a The instruction word is fetched and copied into the cache. It goes 
into the appropriate word of the least recently used segment. The 
P flag for that word is set to 1. 

1:1 The number of the segment containing the instruction word is re­
moved from the LRU stack and pushed to the top of the LRU stack, 
thus moving the other segment number to the bottom of the stack. 

Only instructions may be fetched from the program cache. All reads and writes 
of data in memory bypass the cache. Program fetches from internal memory 
do not modify the cache and do not generate cache hits or misses. The pro­
gram cache is a single-access memory block. Dummy program fetches (i.e., 
following a branch) are treated by the cache as valid program fetches and can 
generate cache misses and cache updates. 

Take care when using self-modifying code. If an instruction resides in'cache 
and the corresponding location in primary memory is modified, the copy of the 
instruction in cache is not modified. 

You can make more efficient use of the cache by aligning program code on 
32-word address boundaries. Do this by using the ALIGN directive when cod­
ing assembly language. 
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3.3.3 Cache Control Bits 

Three cache control bits are located in the CPU status register: the cache clear 
bit (CC), the cache enable bit (CE), and the cache freeze bit (CF). 

Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates all 
entries in the cache. All P flags in the cache are cleared. The CC bit is 
always cleared after the cache is cleared. It is therefore always read as 
a o. At reset, the cache is cleared and 0 is written to this bit. 

Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When en­
abled, the cache is used according to the previously described cache 
algorithm. Writing a 0 to the cache enable bit disables the cache; no 
updates or modification of the cache can be performed. Specifically, 
no SSA register updates are performed, no P flags are modified (un­
less CC = 1), and the LRU stack is not modified. Writing a 1 to CC when 
the cache is disabled clears the cache, and, thus, the P flags. No 
fetches are made from the cache when the cache is disabled. At reset, 
o is written to this bit. 

Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition, the 
cache is enabled, fetches from the cache are allowed, but no modifica­
tion ofthe state of the cache is performed. Specifically, no SSA register 
updates are performed, no P flags are modified (unless CC = 1), and 
the LRU stack is not modified. This function can be used to keep fre­
quently used code resident in the cache. Writing a 1 to CC when the 
cache is frozen clears the cache, and, thus, the P flags. At reset, 0 is 
written to this bit. 

Table 3-6 defines the effect of the CE and CF bits used in combination. 

Table 3-6. Combined Effect of the CE and CF Bits 

CE CF Effect 

0 0 Cache not enabled 

0 1 Cache not enabled 

1 0 Cache enabled and not frozen 

1 1 Cache enabled and frozen 
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3.4 Using the TMS320C31 Boot Loader 

This section describes howto use the TMS320C31 microcomputer/boot loader 
(MCBUMP)function. This feature is unique to the TMS320C31 and is not avail­
able on the TMS320C30 device. 

3.4.1 Boot Loader Operations 

The boot loader lets you load and execute programs that are received from a 
host processor, inexpensive EPROMs, or other standard memory devices. 
The programs to be loaded reside in one of three memory mapped areas identi­
fied as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 3-8 ), or 
the programs are received by means of the serial port. 

User-definable byte, half-word, and word data formats are supported. 32-bit 
fixed burst loads from the TMS320C31 serial port are also supported. See Sec­
tion 8.2 for a detailed description of the serial port operation. 

3.4.2 Invoking the Boot Loader 

The boot loader function is selected by resetting the processor while driving 
the MCBUMP pin high. Figure 3-13 shows the flow of this operation, which is 
dependent upon the mode selected (external' memory or serial boot). 
Figure 3-14 shows memory load operations; Figure 3-15 shows serial port 
load operations. 

Figure 3-13. Boot Loader Mode Selection Flowchart 
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Figure 3-15. Boot Loader Serial Port Load Mode Flowchart 

3.4.3 Mode Selection 

the TMS320C31 Boot Loader 

Branch to Destination 
Address of First 
Block Loaded 

Begin Program Execution 

After reset, the loader mode is determined by polling the status of the INT3-
INTO pins. Table 3-7 lists the options that you can select. The options are 
based upon the active low state of the INT3-INTO signals. The TMS320C31 
device begins reading data from the boot memory location selected by the ac­
tive interrupt signal. Interrupts can be driven any time after the RESET pin has 
been deasserted. 
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Table 3-7. Loader Mode Selection 

Active Interrupt Loader Mode Memory Addresses 

INTO External memory Boot 1 address Ox001 000 

INT1 External memory Boot 2 address Ox400000 

INT2 External memory Boot 3 address OxFFFOOO 

INT3 32-bit serial Serial port 0 

3.4.4 External Memory Loading 

Table 3-8 shows and describes the information that you must specify to define 
boot memory organization (8, 16, or 32 bits), the code block size, the load desti-
. nation address, and memory access timing control for the boot memory. This 
must be done before a source program can be externally loaded. 

This information must be specified in the first four locations of the Boot 1 , Boot 
2, or Boot 3 areas. The header is followed by the data or program code that 
is the BLK size in length. 

Table 3-8. External Memory Loader Header 

Location 

0 

1 

2 

3 

4 

Description Valid Data Entries 

Boot memory type (8, 16, or 32) Ox8, Ox1 0, or Ox20 specified as a 32-bit number. 

Boot memory configuration See Chapter 7 of the TMS320C3x User's Guide 
(defined # of wait states, etc.) for valid bus control register entries. 

Program block size (BLK) Any value 0 < BLK < 224. 

Destination address Any valid TMS320C31 24-bit address. 

Program code starts here Any 32-bit data value or valid TMS320C3x in-
struction. 

The loader fetches 32 bits of data for each specified location, regardless of 
what memory configuration width is specified. The data values must reside 
within or be written to memory, beginning with the value of least significance 
for each 32 bits of information. 

3.4.5 Examples of External Memory Loads 
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Example 3-1, Example 3-2, and Example 3-3 show memory images for 
byte-wide, 16-bit wide, and 32-bit wide configured memory. 

These examples assume that 

1) an INTO signal was detected after reset is deasserted (external memory 
load from Boot 1). 

2) the loader header resides at memory location Ox1 000 and defines the fol­
lowing: 
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a) boot memory type EPROMs that require two wait states and SWW = 
11, 

b) a loader destination ·address at the beginning of the TMS320C31's in­
ternal RAM Block 0, and 

c) a single block of memory that is Ox1 FF in length. 

Example 3-1. Byte-Wide Configured Memory 

Address Value Comments 

ox1000 Ox08 Memory width = 8 bits 

ox1001 OxOO 
Ox1002 OxOO 
ox1003 OxOO 
Ox1004 Ox58 Memory type = sww = 11, WCNT c 2 
Ox1005 Ox10 

Ox1006 OxOO 

Ox1007 OxOO 
Ox1008 OxFF Program code size = Ox1 FF 

Ox1009 Ox01 

Ox100A OxOO 
Ox100B OxOO 

Ox100C OxOO Program load starting address = Ox8098PO 

Ox100D Ox98 

Ox100E Ox80 
Ox100F OxOO 

Example 3-2. 16-Bit Wide Configured Memory 

Address Value Comments 

ox1000 Ox10 Memory width = 16 

Ox1001 OxOOOO 
Ox1002 Ox1058 Memory type = SWW = 11, WCNT = 2 
Ox1003 OxOOOO 
Ox1004 Ox1FF Program code size = Ox1 FF 
Ox1005 OxOOOO 

Ox1006 Ox9800 Program load starting address = Ox809800 

Ox1007 OxOO80 
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Example 3-3. 32-Bit Wide Configured Memory 

Address Value Comments 

Ox1000 OxOOOOOO20 Memory width = 32 

Ox1001 OxOOOO1058 Memory type = sww = 11, WeNT = 2 

Ox1002 Ox000001 FF Program code size = Ox1 FF 

Ox1003 OxOO809800 Program load starting address = Ox809800 

After the header is read, the loader transfers BLK, 32-bit words beginning at 
a specified destination address. Code blocks require the same byte and half­
word ordering conventions. Additionally, the loader can be used to load multi­
ple code blocks at different address destinations. 

If multiple code blocks are loaded, execution begins at the first block of code 
loaded. Consequently, the first code block loaded should be a startup routine 
to access the other loaded programs. 

If another code block is to be loaded, the following header and its correspond­
ing code must be appended to the preceding code block: 

BLK size 
Destination address 

1st location 
2nd location 

Repeat this procedure for additional code blocks. End the loader function and 
begin execution of the first code block by appending the value of OxOOOOOOOO 
to the last block . 

• ·I! ••• i·~···~·~.~ti·fu~ .. th·at··at ••• I.~ast.·()~.e···bl~·~·~ •• Of··cod.e··W~.I.I .• ·be··lo~de~ •• VJh~h •• ~.~.~····· ............ . 
I.~acl~r!§ihyok~d. ··.Ir'li~iaIJ9ad~r.illvocationwitha . block sizepf 
PxOQ9Q9.Q90»pr9cilJc¢~unpredict~~,e r~sults.· 

3.4.6 Serial Port Loading 
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Boot loads, by way of the TMS320C31 serial port, are selected by driving the 
INT3 pin active low following reset. The loader automatically configures the se­
rial port for 32-bit fixed burst reads. It is interrupt-driven by the FSR signal. You 
cannot change this mode for boot loads. The serial port clock and FSR are ex­
ternally generated by your hardware. 

As in parallel loading, a header must precede the actual program to be loaded. 
However, only the block size and destination address must be provided be­
cause serial port speed and data format are predefined by the loader and your 
hardware (Le., skip data words 0 and 1 from Table 3-8). 
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The transferred data-bit order must begin with the most significant bit (MSB) 
and end with the least significant bit (LSB). 

3.4.7 Interrupt and Trap Vector Mapping 

Unlike the microprocessor mode, the microcomputer/boot loader (MCBL) 
mode uses a dual-vectoring scheme to service interrupt and trap requests. 
Dual vectoring was implemented to ensure code compatibility with future ver­
sions of TMS320C3x devices. 

In a dual-vectoring scheme, branch instructions to an address, rather than di­
rect interrupt vectoring, are used. The normal interrupt and trap vectors are de­
fined to vector to the last 63 locations in the on-chip RAM. When the loader is 
invoked, the TMS320C31's last 63 locations of RAM Block 1 are assumed to 
contain interrupt and trap branch instructions. 

Table 3-9 shows the MCBUMP mode interrupt and trap instruction memory 
maps. 
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Table 3-9. TMS320C31 Interrupt and Trap Memory Maps 

Address Description 

809FC1 INTO 

809FC2 INT1 

809FC3 INT2 

809FC4 INT3 

809FC5 XINTO 

809FC6 RINTO 

809FC7 Reserved 

809FC8 Reserved 

809FC9 TINTO 

809FCA TINT1 

809FCB DINTO 

809FCC-809FDF Reserved 

809FEO TRAPO 

809FE1 TRAP1 

• • 
• • 
• • 

809FFB TRAP27 

809FFC-809FFF Reserved 
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Integer Formats 

4.1 Integer Formats 

The TMS320C3x supports two integer formats: a 16-bit short integer format 
and a 32-bit single-precision integer format. When extended-precision regis­
ters are used as integer operands, only bits 31- 0 are used; bits 39 - 32 re­
main unchanged and unused. 

4.1.1 Short Integer Format 

The short integer format is a 16-bit twos-complement integer format used for 
immediate integer operands. For those instructions that assume integer oper­
ands, this format is sign-extended to 32 bits (see Figure 4-1). The range of an 
integer si, represented in the short integer format, is -215 ~ si ~ 215 -1. In 
Figure 4-1, s = signed bit. 

Figure 4-1. Short Integer Format and Sign Extension of Short Integer 

15 o 

(a) Short Integer Format 

31 16 15 o 

15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 51 5 

(b) Sign Extension of a Short Integer 

4.1.2 Single-Precision Integer Format 

In the single-precision integer format, the integer is represented in twos-com­
plement notation. The range of an integer sp, represented in the single-preci­
sion integer format, is- 231 ~ sp~ 231 -1. Figure 4-2 shows the single-preci­
sion integer format. 

Figure 4-2. Single-Precision Integer Format 

31 o 
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4.3 Floating-Point Formats 

All TMS320C3x floating-point formats consist of three fields: an exponent field 
(e), a single-bit sign field (s), and a fraction field (t). These are stored as shown 
in Figure 4-5. The exponent field is a twos-complement number. The sign field 
and fraction field may be considered as one unit and referred to as the mantissa 
field (man). The twos-complement fraction is combined with the sign bit and 
the implied most significant bit to create the mantissa. The mantissa is used 
to represent a normalized twos-complement number. In a normalized repre­
sentation, a most significant nonsign bit is implied, thus providing an additional 
bit of precision. The value of a floating-point number xas a function of the fields 
e, s, and f is given as 

x=01.fx2e 

1 O.fx 2e 

o 

if S = 0, or where the leading zero is the sign bit and the 
one is the implied most significant nonsign bit. 
if S = 1 , or where the leading one is the sign bit and the 
zero is the implied most significant nonsign bit. 
if e = most negative twos complement 
value of the specified exponent field width. 

Figure 4-5. Generic Floating-Point Format 

te-~--- man (mantissa) ----Dl~ 

Note: e = exponent field 
s = single-bit sign field 
f = fraction field 

Three floating-point formats are supported on the TMS320C3x. The first is a 
short floating-point format for immediate floating-point operands, consisting of 
a 4-bit exponent, 1 sign bit, and an 11-bit fraction. The second is a single-preci­
sion format consisting of an 8-bit exponent, 1 sign bit, and a 23-bit fraction. The 
third is an extended-precision format consisting of an 8-bit exponent, 1 sign bit, 
and a 31-bit fraction. 

4.3.1 Short Floating-Point Format 
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In the short floating-point format, floating-point numbers are represented by a 
twos-complement 4-bit exponent field (e) and a twos-complement 12-bit man­
tissa field (man) with an implied most significant nonsign bit. 

Data Formats and Floating-Point Operation 



I-I"''',;)tln,n_/-J,nint Formats 

Figure 4-6. Short Floating-Point Format 

15 12111 110 o 

I e I s I 
/1+411---- man ----I)f~ 

Operations are performed with an implied binary point between bits 11 and 10. 
When the implied most significant nonsjgn bit is made explicit, it is located to 
the immediate left of the binary point. The floating-point twos-complement 
number x in the short floating-point format is given by 

x=01.fx29 

10.fx29 

o 

if 5= 0 
if 5 = 1 
if e=- 8 

You must use the following reserved values to represent zero in the short float­
ing-point format: 

e=-8 

5=0 

f= 0 

The following examples illustrate the range and precision of the short float­
ing-point format: 

Most Positive: 

Least Positive: 

Least Negative: 

Most Negative: 

X= (2-2 -11) x 27 = 2.5594 x 102 

X= 1 x2 -7 = 7.8125 x10- 3 

x=(-1- 2 -11) x2 -7 = -7.8163 x1 0-3 

x = -2 x 27 = - 2.5600 x 10 2 
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4.3.2 Single-Precision Floating-Point Format 

In the single-precision format, the floating-point number is represented by an 
8-bit exponentfield (e) and a twos-complement 24-bit mantissa field (man) with 
an implied most significant nonsign bit. 

Operations are performed with an implied binary point between bits 23 and 22. 
When the implied most significant nonsign bit is made explicit, it is located to 
the immediate left of the binary point. The floating-point number x is given by 

x = 01.f x 2e if s = 0 
10.fx2e 

o 
if s = 1 
ife=-128 

Figure 4-7. Single-Precision Floating-Point Format 

31 24/23/22 o 

./4---- man ----D-I~I 

You must use the following reserved values to represent zero in the single-pre­
cision floating-point format: 

e = -128 

5=0 

f= 0 

The following examples illustrate the range and precision of the single-preci­
sion floating-point format. 

Most Positive: x= (2 - 2 -23) x 2127 = 3.4028234 x1 038 

Least Positive: 

Least Negative: 

Most Negative: 

x= 1 x2 -127 = 5.8774717 x10 -39 

x= (-1-2 -23) x2 -127 =- 5.8774724x10- 39 

x=- 2 x 2127 =- 3.4028236x10 38 

4.3.3 Extended-Precision Floating-Paint Format 
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In the extended-precision format, the floating-point number is represented by 
an 8-bit exponent field (e) and a32-bit mantissa field (man) with an implied 
most significant nonsign bit. 
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Operations are performed with an implied binary point between bits 31 and 30. 
When the implied most significant nonsign bit is made explicit, it is located to 
the immediate left of the binary point. The floating-point number x is given by: 

x = 01.f x 29 if s = 0 
1 O.fx 29 if s = 1 
o if e = -128 

Figure 4-8. Extended-Precision Floating-Point Format 

39 32131 130 o 

e 

~ ~------- man 

You must use the following reserved values to represent zero in the exten­
ded-precision floating-point format: 

e = -128 

s=O 

f= 0 

The following examples illustrate the range and precision of the extended-pre­
cision floating-point format: 

Most Positive: x= (2 - 2-31 )x 2127 = 3.4028236683 x1038 

Least Positive: X= 1 x 2 -127 = 5.8774717541 x10 -39 

Least Negative: x= ( ...... 1-2 -31) x2 -127 =- 5.8774717569 x1 0 -39 

Most Negative: X= - 2 x 2127 = - 3.4028236691 x 1038 
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4.3.4 Conversion Between Floating-Point Formats 
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Floating-point operations assume several different formats for inputs and out­
puts. These formats often require conversion from one floating-point format to 
another (e.g., short floating-point format to extended-precision floating-point 
format). Format conversions occur automatically in hardware, with no over­
head, as a part of the floating-point operations. Examples of the four conver­
sions are shown. below. When a floating-point format zero is converted to a 
greater-precision format, it is always converted to a valid representation of zero 
in that format. In the below figures, S = sign bit of the exponent. 

Q Short floating-point format conversion to single-precision floating­
point format. 

15 12 11 10 o. 

(a) Short Floating-Point Format 

31 27 24 23 22 12 11 o 

ISSSSXXXX I YI Y 

(b) Single-Precision Floating-Point Format 

In this format, the exponent field is sign-extended and the fraction field filled 
with zeros. 

Q Short floating-point format conversion to extended-precision float­
ing-point format. 

15 12 11 10 o 

(a) Short Floating-Point Format 

39 35 32 31 30 20 19 o 

Iss ssxxxxi y Iy 
(b) Extended-Precision Floating-Point Format 

The exponent field in this format is sign-extended and the fraction field filled 
with zeros. 
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Q Single-precision floating-point format conversion to extended-pre­
cision floating-point format. 

31 24 23 22 o 

(a) Single-Precision Floating-Point Format 

39 32 31 30 8 7 o 

(b) Extended-Precision Floating-Point Format 

The fraction field is filled with zeros. 

I:l Extended-precision floating-point format conversion to single-pre­
cision floating-point format. 

39 32 31 30 8 7 o 

(a) Extended-Precision Floating-Point Format 

31 24 23 22 o 

x I y I y 

(b) Single-Precision Floating-Point Format 

The fraction field is truncated. 
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4.4 Floating-Point Multiplication 
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A floating-point number a can be written in floating-point format as in the follow­
ing formula, where a(man) is the mantissa and a(exp) is the exponent. 

a = a( man} x 2a ( exp) 

The product of a and b is c, defined as 

c = a x b = a(man) x b(man) x 2(a(exp)+b (exp)) 

c(man) = a(man) x b(man) 
c( exp) = a( exp) + b( exp) 

During floating-point multiplication, source operands are always assumed to 
be in the single-precision floating-point format. If the source of the operands 
is in short floating-point format, it is extended to the single-precision float­
ing-point format. If the source of the operands is in extended-precision float­
ing-point format, it is truncated to single-precision format. These conversions 
occur automatically in hardware with no overhead. All results of floating-point 
multiplications are in the extended-precision format. These multiplications oc­
cur in a single cycle. 

A flowchart for floating-point multiplication is shown in Figure 4-9. In step 1, 
the 24-bit source operand mantissas are multiplied, producing a 50-bit result 
c(man). (Note that input and output data are always represented as normalized 
numbers.) In step 2, the exponents are added, yielding c(exp). Steps 3 through 
6 check for special cases. Step 3 checks for whether c(man) in extended-preci­
sion format is equal to zero. If c(man} is zero, step 7 sets c(exp} to -128, thus 
yielding the representation for zero. 

Steps 4 and 5 normalize the result. If a right shift of one is necessary, then in 
step 8,c(man) is right-shifted one bit, and one is added to c(exp}. If a right shift 
of two is necessary, then in step 9, c(man} is right-shifted two bits, and two is 
added to c(exp). Step 6 occurs when the result is normalized. 

In step 10, c(man) is set in the extended-precision floating-point format. Steps 
11 through 16 check for special cases of c(exp). In step 14, if c(exp) has over­
flowed (step 11) in the positive direction, then c(exp) is set to the most-positive 
extended-precision format value. If c(exp) has overflowed in the negative di­
rection, then c( exp) is set to the most-negative extended-precision format val­
ue. If c(exp) has underflowed (step 12), then c is set to zero (step 15); i.e., 
c(man) = a and c(exp) = -128. 
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Floating-Point Multiplication 

Figure 4-9. Flowchart for Floating-Point Multiplication 

a(man) b(man) a(exp) b(exp) 

~ ~ (1 ) 'J J (2 

Multiply mantissas Add exponents 

c(man) = a(man) x b(man) c(exp) = a(exp) + b(exp) 
(50-bit result) 

J_ ~ 
Test for special cases of c(roan) 

(3) (4) (5) (6) 
c(man) = 0 Right- shift 1 Right- shift2 No shift 

to normalize to normalize to normalize 

~ (7) ~ (8) ~ (9) 

c(exp) = c(roan) > > 1 c(roan) > > 2 
-128 and c(exp) = and c(exp) = 

c(exp) + 1 c(exp) + 2 

I • ~ 
Dispose of extra bits (10) 

Put c(roan) in extended 
precision floating-point 
format 

' .. ~ 
Test for special cases of c( exp) 

(11 ) (12) (13) 
c( exp) overflow c( exp) underflow c( exp) rn range 

~ (14\ ~ 
If c(man) > 0, c(exp) = -128 (15) 
set c to most c(roan) = 0 
positive value. 

If c(man) < 0, 
set c to most 
negative value. 

I 

J, ~, ~!r 

I Set c to final result 1(16) 

~ 
c=axb 
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The following examples illustrate how floating-point multiplication is performed 
on the TMS320C3x. For these examples, the implied most significant nonsign 
bit is made explicit. 

Example 4-1. Floating-Point Multiply (Both Mantissas = -2. D) 

Let 

(J. = -2.0 x 2a(exp) = 10.00000000000000000000000 x 2a(exp) 

b = -2.0 x 2b( exp) = 10.00000000000000000000000 x 2b( exp) 

where a and b are both represented in binary form according to the normalized 
single-precision floating-point format. Then 

10.00000000000000000000000 x 2a(ex~ 
x 10.00000000000000000000000 x 2b(ex~ 

0100.0000000000000000000000000000000000000000000000 x 2(a(ex~ +b(ex~) 
To place this number in the proper normalized format, it is necessary to shift 
the mantissa two places to the right and add two to the exponent. This yields 

10.00000000000000000000000 x 2a(ex~ 
x 10.00000000000000000000000 x 2b(exp) 

01.0000000000000000000000000000000000000000000000 x 2 (a( exp) +b( exp) +2) 

In floating-point multiplication, the exponent of the result may overflow. This 
can occur when the exponents are initially added or when the exponent is mo­
dified during normalization. 

Example 4-2. Floating-Point Multiply (Both Mantissas = 1.5) 

Let 

4-12 

a = 1.5 x 2a(exp) = 01.10000000000000000000000 x 2a(exp) 

b = 1 .5 x 2b( exp) = 01.1 0000000000000000000000 x 2b( exp) 

where a and b are both represented in binary form according to the single-pre­
cision floating-point format. Then 

01.10000000000000000000000 x 2a(exp) 

x 01.10000000000000000000000 x 2b( exp) 

0010.0100000000000000000000000000000000000000000000 x 2 (a(ex~ +b(ex~) 
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To place this number in the proper normalized format, it is necessary to shift 
the mantissa one place to the right and add one to the exponent. This yields 

01.100000000000000000000.00 x 2«( exp) 

x 01 .10000000000000000000000 x 2b( exp) 

01.00100000000000000000000000000000000000000000000 x 2 (0:( exp) +b(exp) + 1) 

Example 4-3. Floating-Point Multiply (Both Mantissas = 1.0) 

Let 

ex. = 1.0 x 2a(exp) = 01.00000000000000000000000 x 2 a(exp) 

b = 1.0 x 2b(exp) = 01.00000000000000000000000 x 2b(exp) 

where a and b are both represented in binary form according to the single-pre­
cision floating-point format. Then 

01.0000000000000000000000.0 x 2a.(ex~ 
x 01.00000000000000000000000 x 2b(ex~ 

0001.0000000000000000000000000000000000000000000000 x 2 (a(exp) +b(exp)) 

This number is in the proper normalized format. Therefore, no shift of the man­
tissa or modification of the exponent is necessary. 

These examples have shown cases where the product of two normalized num­
bers can be normalized with a shift of zero, one, or two. For all normalized in­
puts with the floating-point format used by the TMS320C3x, a normalized re­
sult can be produced by a shift of zero, one, or two. 

Example 4-4. Floating-Point Multiply Between Positive and Negative Numbers 

Let 

ex. =1.0 x 2a.(exp) = 01.00000000000000000000000 x 2a(exp) 
b = -2.0 x 2b( exp) = 10.00000000000000000000000 x 2b( exp) 

Then 

01.00000000000000000000000 x 2a (exp) 

x 10.00000000000000000000000 x 2b( exp) 

1110.0000000000000000000000000000000000000000000000 x 2 (ex( exp) +b( exp)) 

The result is c = - 2.0 x 2(et(exp) + b(exp)) 

Example 4-5. Floating-Point Multiply by Zero 

All multiplications by a floating-point zero yield a result of zero (f= 0, s = 0, and 
exp = -128). 
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4.5 Floating-Point Addition and Subtraction 

4-14 

In floating-point addition and subtraction, two floating-point numbers a and b 
can be defined as 

a = a(man) x 2 a(exp) 

b = b(man) x 2 b(exp) 

The sum (or difference) of a and b can be defined as 

c=a±b 

= (a(man) ± (b(man) x 2 -(a(exp)-b(exp)))) x 2 a(exp), 

if a( exp) ~ b( exp) 

= ((a(man) x 2 -(b(exp)-a(exp))) ± b(man)) x 2 b(exp), 

if a( exp) < b( exp) 

The flowchart for floating-point addition is shown in Figure 4-10. Since this 
flowchart assumes signed data, it is also appropriate for floating-point subtrac­
tion.ln this figure, it is assumed that a(exp) :::; b(exp).ln step 1, the source exp·o­
nents are compared, and c(exp) is set equal to the largest of the two source 
exponents. In step 2, d is set to the difference of the two exponents. In step 3, 
the mantissa with the smallest exponent, in this case a(man), is right-shifted 
d bits in order to align the mantissas. After the mantissas have been aligned, 
they are added (step 4). 

Steps 5 through 7 check for a special case of c(man). If c(man) is zero (step 
5), then c(exp) is set to its most negative value (step 8) to yield the correct re­
presentation of zero. If c(man) has overflowed c (step 6), then in step 9, c(man) 
is right-shifted one bit, and one is added to c(exp). In step.1 0, the result is nor­
malized. In steps 11 and 12, special cases of c(exp) are tested. If c(exp) has 
overflowed, then c is set to the most positive extended-precision value if it is 
positive; otherwise, it is set to the most negative extended-precision value. 
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Figure 4-10. Flowchart for Floating-Point Addition 

a(man) b(man) a (exp) b(exp) 

~ J, (1 ) 

Compare exponents 

If a( exp) < = b( exp) 

~, ~, (3) 
c( exp) = b( exp) 

else 
Align mantissas c( exp) = ex( exp) 

a(man) = a(man) > > d [Assume for simplicity 
that a(exp) < < = b(exp)] 

Discard LSBs to keep 
~ + a(man) in 

extended-precision (2) Subtract exponents 
floating-point format ~ d = b( exp) - ex( exp) 

I 
W 

(4)1 Add mantissas I 
I c (man) = a(man) + b(man) J 

-b 
Test for special cases of c(man) 

(5) (6) (7) 
k =# leading 

c(man) = 0 Overflow of c(man) non-significant 
sign bits 

,I, 
c(man) = c(man) > > 1 
c( exp) = c( exp) + 1 
Discard LSBs to keep in 
extended-precision 
floating-point format ,,. (9) 

~,. (8) I c(man) < < k 
I c(exp) = -128 I c( exp) = c( exp) - k 

J, u ~ 
Test for special cases of c( exp) 

(11 ) (12) (13) 
c( exp) overflow ' c( exp) underflow c( exp) in range 

~ Jr ~, 

(14 ) If c(man) > 0, set c to zero (15) 
set c to most c(exp) = -128 
positive value. c(man) = 0 

If c(man) < 0, 
set c to most 
negative value. 

1 (16) • u 

I Set c to final result I • c=a+b 
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The following examples describe the floating-point addition and subtraction 
operations. It is assumed that the data is in the extended-precision 
floating-point format. 

Example 4-6. Floating-Point Addition 

In the case of two normalized numbers to be summed, let 

ex = 1 .5 = 01 .1 000000000000000000000000000000 x 20 
b = 0.5 = 01.0000000000000000000000000000000 x 2-1 

It is necessary to shift b to the right by one so that ex and b have the same expo­
nent. This yields 

b = 0.5 = 00.1000000000000000000000000000000 x 20 

Then 

01.10000000000000000000000000000000 x 20 
+ 00.10000000000000000000000000000000 x 20 

010.00000000000000000000000000000000 x 20 

As in the case of multiplication, it is necessary to shift the binary point one place 
to the left and to add one to the exponent. This yields 

01.1000000000000000000000000000000 x 20 
± 00.1000000000000000000000000000000 x 20 

01.0000000000000000000000000000000 x 21 

Example 4-7. Floating-Point Subtraction 
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~ subtraction is performed in this example. Let 

ex = 01.0000000000000000000000000000001. x 20 
b = 01.0000000000000000000000000000000 x 20 

The operation to be performed is ex - b. The mantissas are already aligned be­
cause the two numbers have the same exponent. The result is a large cancella­
tion of the upper bits, as shown below. 

01.0000000000000000000000000000001 x 20 
- 01.0000000000000000000000000000000 x 20 

00.0000000000000000000000000000001 x 20 

Data Formats and Floating-Point Operation 





Normalization Using the NORM Instruction 
::.m!";e;.~;~~::-~».««~~:::;~~m~:<~sw.;:-Q."'.~::,:m~;!;W':::-.. ~~;::::-~,:y .. ~"",,,,,·": . ..,.""," .. ~~:".( .... "!X~ili9.>S~~9.>Y-"!'~:~:~Y>';~".x~';~:«YW:;';~~::;!:~~;"';';·»';·:!:!:~J:»:!:!;"!:::o;~9.>S::-::;o::;!».~y<y';o;o;,-.. :::~~;o,:::·;.;,;y'::Xy.;·:!;o:!;~;·;,,:·X!;.;!::;~!;!:·;o;o;::~!»':!~S~S:<:::::S5':~S~~%:".s~ms~ 

4.6 Normalization Using the NORM Instruction 

F~gure 4-11. 
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The NORM instruction normalizes an extended-precision floating-point num­
ber that is assumed to be unnormalized. Since the number is assumed to be 
unnormalized, no implied most significant nonsign bit is assumed. The NORM 
instruction executes the following three steps: 

1) Locates the most significant nonsign bit of the floating-point number. 

2) Left-shifts to normalize the number. 

3) Adjusts the exponent. 

Given the extended-precision floating-point value a to be normalized, the nor­
malization, norm (), is performed as shown in Figure 4-11. 

Flowchart for NORM Instruction Operation 

CJ. 

+ 
Test for special cases of c (man) 

(2) 
(1 ) Leading non-significant 

CJ. (man) =0 sign bits 

k = # leading 
nonsignificant 

~F ~, sign bits 
(3) c(exp) = -128 I Sign-extended a(man) 1 bit 

(4) 

c (man) = a(man) < < k 
c (exp) = a( exp) - k 

.. ~ 
Remove most significant nonsign bit (5) 

-~ 
Test for special cases of c (exp) 

(6) (7) 
c(exp) c(exp) in 

underflow range 

~ ~, 

(8) 
c (exp) = -128 
No change to c (man) 

•• ~ 
(9) I Set c to final result I 

~ 
c.= norm(a) 
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Example 4-10. NORM Instruction 

Assume that an extended-precision register contains the value 

man = 00000000000000000001000000000001, exp = 0 

When the normalization is performed on a number assumed to be unnormal­
ized, the binary point is assumed to be 

man = 0.0000000000000000001000000000001, exp = 0 

This number is then sign-extended one bit so that the mantissa contains 33 
bits. 

man = 00.0000000000000000001000000000001, exp = 0 

The intermediate result after the most significant nonsign bit is located and the 
shift performed is: 

man = 01.0000000000010000000000000000000, exp = -19 

The final 32-bit value output after removing the redundant bit is: 

man = 00000000000010000000000000000000, exp = -19 

The NORM instruction is useful for counting the number of leading zeros or 
leading ones in a 32-bit field. If the exponent is initially zero, the absolute value 
of the final value of the exponent is the number of leading ones or zeros. This 
instruction is also useful for manipulating un normalized floating-point num­
bers. 
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4.7 Rounding: The RND Instruction 
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The RND instruction rounds a number from the extended-precision float­
ing-point format to the single-precision floating-point format. Rounding is simi­
lar to floating-point addition. Given the number a to be rounded, the following 
operation is performed first. 

c = a(man) x 2n(exp) + (1 x 2n(exp)-24) 

Next, a conversion from extended-precision floating-point to single-precision 
floating-point format is performed. Given the extended-precision floating-point 
value, the rounding, rnd( ), is performed as shown in Figure 4-12. 
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Figure 4-13. Flowchart for Floating-Point to Integer Conversion by FIX Instructions 

a 

1 
Test for special cases of a(exp) 

a(exp) > 30 
a(exp) in range 
rs = 31 - a(exp) 

1 
Overflow Shift 

If a(man) > 0, C = a(man) > > rs 
c = most positive integer. 

If a(man) < 0, 
C = most negative integer. 

I 
~ I 

I Set c to final result I 
~Ir 

c = fix(a) 
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4.9 Integer to Floating-Point Conversion Using the FLOAT Instruction 

Integer to floating-point conversion, using the FLOAT instruction, allows sing­
le-precision integers to be converted to extended-precision floating-point num­
bers. The flowchart for this conversion is shown in Figure 4-14. 

Figure 4-14. Flowchart for Integer to Floating-Point Conversion by FLOAT Instructions 

ex 

~ 
c (man) = ex 
c (exp) = 30 

J, 
Test for special cases of c (man) 

Leading nonsignificant 
c (man) = 0 sign bits. 

k = # leading 
nonsignificant 

u ,,, sign bits 

c (exp) = -128 I c (man) =c (man) < < k 
c (exp) = 30 - k 

~ 
I Remove most significant nonsign bit 

~, ~ 
I Set c to final result I 

~ 
c = float (ex) 
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·5.1 Types of Addressing 

5-2 

Six types of addressing allow access of data from memory, registers, and the 
instruction word: 

• Register 

• Direct 

• Indirect 

• Short-immediate 

• Long-immediate 

• PC-relative 

Some types of addressing are appropriate for some instructions and not oth­
ers. For this reason, the types of addressing are used in the five different 
groups of addressing modes as follows: 

Q General addressing modes (G): 

• Register 

• Direct 

• Indirect 

• 'Short-immediate 

Q Three-operand addressing modes (T): 

II Register 

• Indirect 

Q Parallel addressing modes (P): .. Register 

• Indirect 

Q Long-immediate addressing mode 

• Long-immediate 

Q Conditional-branch addressing modes (8): 

• Register 

II PC-relative 

The six types of addressing are discussed first, followed by the five groups of 
addressing modes. 

Addressing 
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5.1.1 Register Addressing 

In register addressing, a CPU register contains the operand, as shown in this 
example: 

ABSF Rl i Rl = I Rli 

The syntax for the CPU registers, the assembler syntax, and the assigned 
function for those registers are listed in Table 5-1. 

Table 5-1. CPU Register/Assembler Syntax and Function 

CPU Register Assembler Assigned 
Address Syntax Function 

OOh RO Extended-precision register 
01h R1 Extended-precision register 
02h R2 Extended-precision register 
03h R3 Extended-precision register 
04h R4 Extended-precision register 
OSh RS Extended-precision register 
06h R6 Extended-precision register 
07h R7 Extended-precision register 

08h ARO Auxiliary register 
09h AR1 Auxiliary register 
OAh AR2 Auxiliary register 
OBh AR3 Auxiliary register 
OCh AR4 Auxiliary register 
ODh ARS Auxiliary register 
OEh AR6 Auxiliary register 
OFH AR7 Auxiliary register 

10h DP Data-page pointer 
11h IRO Index register 0 
12h IR1 Index register 1 
13h BK Block-size register 
14h SP Active stack pointer 

1Sh ST Status register 
16h IE CPU/DMA interrupt enable 
17h IF CPU interrupt flags 
18h 10F liD flags 

19h RS Repeat start address 
1Ah RE Repeat end address 
1Bh RC Repeat counter 

5-3 
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Table 5-2. Indirect Addressing (Concluded) 

Mod Field 

10000 

10001 

10010 

10011 

10100 

10101 

10110 

10111 

11000 

11001 

LEGEND: 
addr 
ARn 
IRn 
disp 
++ 

circ( ) 
% 
8 

Syntax Operation Description 

Indirect Addressing with Index Register IR1 

*+ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add 

* - ARn(IR1) addr = ARn -IR1 With preindex (IR1) subtract 

* ++ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add 
ARn = ARn + IR1 and modify 

* - - ARn(IR1) addr = ARn -IR1 With preindex (IR1) subtract 
ARn = ARn -IR1 and modify 

* ARn ++ (IR1) addr = ARn With postindex (IR1 ) add 
ARn = ARn + IR1 and modify 

*ARn -- (IR1) addr = ARn With postindex (IR1) subtract 
ARn = ARn - IR1 and modify 

* ARn ++ (IR1)% addr = ARn With postindex (IR1) add 
ARn = circ(ARn + IR1) and circular modify 

* ARn -- (IR1)% addr = ARn With postindex (IR1) subtract 
ARn = circ(ARn - IR1) and circular modify 

Indirect Addressing (Special Cases) 

*ARn addr = ARn 

* ARn ++ (IRO)8 addr = ARn 
ARn = 8(ARn + IRO) 

memory address 
auxiliary register ARO - AR7 
index register IRO or IR1 
displacement 
add and modify 
subtract and modify 
address in circular addressing 
where circular addressing is performed 
where bit-reversed addressing is performed 

Indirect 

With postindex (IRO) add 
and bit-reversed modify 
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Example 5-2. Auxiliary Register Indirect 

An auxiliary register (ARn) contains the address of the operand to be fetched. 

Operation: 

Assembler Syntax: 

Modification Field: 

31 

ARn x 

31 

x 

operand address = ARn 

*ARn 

11000 

address 

operand 

Example 5-3. Indirect With Predisplacement Add 

5-8 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and the displacement (disp). The displacement is either an eight-bit un­
signed integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn+ disp 

Assembler Syntax: *+ARn(disp) 

Modification Field: 00000 

31 24 23 0 

ARn ---I x x I address I 
31 8 7 0 

diSPI 0 0 ... 0 01 integer ~ (+) , 

~ 31 0 

I operand I 

Addressing 
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Example 5-4. Indirect With Predisplacement Subtract 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn) minus the displacement (disp). The displacement is either an eight-bit 
unsigned integer contained in the instruction word or an implied value of 1. 

Operation: operand address = ARn- disp 

Assembler Syntax: *- ARn(disp) 

Modification Field: 00001 

31 24 23 0 

ARn~~x _________ x~I __________ ad_d_re_s_s ______ ~ ___ 1 

31 8 7 o 

disp I 0 0 ... 0 o I integer~ (-) 

J, o 31 

operand 

Example 5-5. Indirect With Predisplacement Add and Modify 

The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and the displacement (disp). The displacement is either an eight-bit un­
signed integer contained in the instruction word or an implied value of 1. After 
the data is fetched, the auxiliary register is updated with the address gener-
~ed. . 

Operation: 

Assembler Syntax: 

Modification Field: 

31 

ARn x 

31 

disp I 0 0 ... 0 

31 

operand address = ARn + disp 

ARn = ARn + disp 

*++ARn(disp) 

00010 

2423 

x address 

8 7 o 

o I integer ~ ( .. + )_----' 

operand 

o 
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Example 5-6. Indirect With Predisplacement Subtract and Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn) minus the displacement (disp). The displacement is either an eight-bit 
unsigned integer contained in the instruction word or an implied value of 1. Af­
ter the data is fetched, the auxiliary register is updated with the address gener­
ated. 

Operation: 

Assembler Syntax: 
Modification Field: 

31 

ARn x 

31 

disp I 0 0 ... 0 

31 

operand address = ARn- disp 
ARn= ARn+ disp 

*- - ARn(disp) 
00011 

2423 

x address 

8 7 o 

o I integer J-. (.-)_---' 
operand 

o 

Example 5-7. Indirect With Postdisplacement Add and Modify 

5-10 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the displacement (disp) is added to the 
auxiliary register. The displacement is either an eight-bit unsigned integer con­
tained in the instruction word or an implied value of 1. 

Operation: operand address = ARn 
ARn = ARn+disp 

Assembler Syntax: *ARn++ (disp) 

Modification Field: 00100 

31 24 23 

ARn x x address 

31 8 7 0 

disp I 0 0 ... 0 o I integer j-. 
31 

operand 

0 

(+) 

Addressing 
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Example 5-10. Indirect With Postdisplacement Subtract and Circular Modify 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the displacement (disp) is subtracted from 
the contents of the auxiliary register using circular addressing. This result is 
used to update the auxiliary register. The displacement is either an eight-bit un­
signed integer contained in the instruction word or an implied value of 1. 

Operation: 

Assembler Syntax: 

Modification Field: 

31 

disp I 0 

ARn 

0 ... 0 

31 

x 

31 

operand address = ARn 
ARn= circ(ARn- disp) 

* ARn- - (disp)% 

00111 

24 23 

x address 

8 7 0 (%) 

o I integer ~ (~) 

operand 

Example 5-11. Indirect With Preindex Add 
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The address of the operand to be fetched is the sum of an auxiliary register 
(ARn) and an index register (IRO or IR1). 

Operation: 
Assembler Syntax: 

Modification Field: 

operand address = ARn+ IR m 
*+ ARn(lRm) 

01000 
10000 

31 24 23 

ifm = 0 
ifm = 1 

o 

ARn --.f .... x _____ x .... I""-____ a_d_d_re_ss ___ ~-.... 

31 24 23 o 

IRm~ .... x ____ x-""I ______ in_d_ex _______ I----. 
31 

(+) 

1 o 

operand 

Addressing 
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Example 5-14. Indirect With Preindex Subtract and Modify 

The address ofthe operand to be fetched is the difference of an auxiliary regis­
ter (ARn) and an index register (IRO or IR1). The resulting address becomes 
the new contents of the auxiliary register. 

Operation: operand address = ARn-IRm 
ARn= ARn-IRm 

Assembler Syntax: *- - ARn(IRm) 

Modification Field: 

31 

ARn x 

31 2423 

IRm ---I x x I 
31 

01011 
10011 

2423 

x 

index 

ifm = 0 
if m =1 

address 

0 

~ 
operand 

(-) 

0 

Example 5-15. Indirect With Postindex Add and Modify 

5-14 

The address of the operand to be fetched is the contents of an auxiliary register 
(ARn). After the operand is fetched, the index register (IRO or IR1) is added to 
the auxiliary r~gister. 

Operation: 

Assembler Syntax: 

Modification Field: 

31 

ARn x 

31 24 23 

IRm --'1 X xl 
31 

operand address = ARn 
ARn=ARn+ IRm 

*ARn++ (IRm) 

01100 
10100 

24 23 

x 

index 

ifm = 0 
ifm = 1 

address 

0 

J-. 
operand 

(+) 

Addressing 
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5.1.6 PC-Relative Addressing 

PC-relative addressing is used for branching. The assembler takes the src (a 
label or address) specified by the user and generates a displacement. If the 
branch is a standard branch, this displacement is equal to the label - (PC +1). 
If the branch is a delayed branch, this displacement is equal to the· la­
bel- (PC + 3). 

The displacement is stored as a 16-bit signed integer in the least significant 
bits of the instruction word. This displacement is added to the PC if the condi­
tion is true. 

Syntax: expr 

Example 5-22 gives an instruction example with before- and after-instruction 
data. 

Example 5-22. PC-Relative Addressing 

BU NEWPC pc=1001h,NEWPC= l005h,displacement= 3 

Before Instruction: After Instruction: 

PC = 1001h PC = 1005h 
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5.2 Groups of Addressing Modes 

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form 
these five groups of addressing modes: 

Q General addressing modes (G) 

Q Three-operand addressing modes (T) 

Q Parallel addressing modes (P) 

Q Long-immediate addressing mode 

Q Conditional-branch addressing modes (B) 

5.2.1 General Addressing Modes 

Instructions that use the general addressing modes are general-purpose in­
structions, such asADDI, MPVF, and LSH. Such instructions usually have this 
form: 

dst operation src -7 dst 

where the destination operand is signified by dst and the source operand by 
src; operation defines an operation to be performed using the general ad­
dressing modes to specify certain operands. Bits 31 - 29 are zero, indicating 
general addressing mode instructions. Bits 22 and 21 specify the general ad­
dressing mode (G) field, which defines how b!ts 15 through 0 are to be inter­
preted for addressing the src operand. 

Options for bits 22 and 21 (G field) are as follows: 

o 0 register (all CPU registers unless specified otherwise) 
o 1 dir.ect 
1 0 indirect 
1 1 immediate 

If the src and dstfields contain register specifications, ,the value in these fields 
contains the CPU register addresses as defined by Table 5-1. For the general 
addressing modes, the following values of ARn are valid: 

ARn,O :::; n:::; 7 

Figure 5-2 shows the encoding for the general addressing modes. The nota­
tion mbdn indicates the modification field that goes with the ARn field. Refer 
to Table 5-2 for further information. 
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In indirect addressing of the three-operand addressing mode, displacements 
(if used) are allowed to be 0 or 1, and the index registers (IRO and IR1) can be 
used. The displacement of 1 is implied and is not explicitly coded in the instruc­
tion word. 

Figure 5-3. Encoding for Three-Operand Addressing Modes 

31 2928 23 22 21 20 16 15 13 12 11 10 8 7 5 4 3 2 

0 0 1 . operation 0 0 dst o 0 0 I src1 000 src2 

0 0 1 operation 0 1 dst modn I ARn 000 src2 

0 0 1 operation 1 0 dst o 0 0 I src1 modn ARn 

0 0 1 operation 1 1 dst modn I ARn modm ARm 

T SRC1 SRC2 

5.2.3 Parallel Addressing Modes 

Instructions that use parallel addressing, indicated by II (two vertical bars), al­
low for the greatest amount of parallelism possible. The destination operands 
are indicated as d1 and d2, signifying dst1 and dst2, respectively (see Figure 
6-4). The source operands, signified by src1 and src2, use the extended-pre­
cision registers. The parallel operation to be performed is called operation. 

Figure 5-4. Encoding for Parallel Addressing Modes 

31 3029 26 25 2423 2221 1918 1615 10 11 8 7 3 2 

srC3 src4 

The parallel addressing mode (P) field specifies how the operands are to be 
used, i.e., whether they are source or destination. The specific relationship be­
tween the P field and the operands is detailed in the description of the individual 
parallel instructions (see Chapter 10). However, the operands are always en­
coded in the same way. Bits 31 and 30 are set to the value of 10, indicating par­
allel addressing mode instructions. Bits 25 and 24 specify the parallel address­
ing mode (P) field, which defines how bits 21 - 0 are to be interpreted for ad­
dressing the src operands. Bits 21 - 19 are used to define the src1 address, 
bits 18 - 16 to define the src2address, bits 15 - 8 the src3 address, and bits 
7 - Ohe src 4 address. The notations modn and modm indicate which modifi­
cation field goes with which ARn or ARm (auxiliary register) field, respectively. 
The parallel addressing operands are listed below. 
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5.3 Circular Addressing 
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Many algorithms, such as convolution and correlation, require the implementa­
tion of a circular buffer in memory. In convolution and correlation, the circular 
buffer is used to implement a sliding window that contains the most recent data 
to be processed. As new data is brought in, the new data overwrites the oldest 
data. Key to the implementation of a circular buffer is the implementation of a 
circular addressing mode. This section describes the circular addressing mode 
of the TMS320C3x. ' 

The blocksize register (BK) specifies the size of the circular buffer. The bottom 
of the circular buffer is specified by the first bit (counting from the most signifi­
cant bit to the least significant bit) in the lower 16 bits of the BK register, plus 
a user-selected auxiliary register (ARn). With the location of the first 1 bit speci­
fied as bit N, the address at the top of the buffer is referred to as the effective 
base (EB) and is equal to bits 31 through (N+ 1) of ARn with bits N-1 through 
o of EB being zero and bit N being one. 

Figure 5-7 illustrates the relationships between the blocksize register (BK), 
the auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir­
cular buffer, and the index into the circular buffer. 

A circular buffer of size R must start on an N-bit boundary (Le., N LSBs of ad­
dress are 0) where N is the smallest integer that satisfies 2N > R. Also, the value 
R must be loaded into the BK register. For example, a 31-word circular buffer 
must start at an address whose 5 LSBs are 0 (Le., 
XXXXXXXX~XXXXXXXXXOOOOOOb) and 31 must be loaded into BK. 
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In circular addressing, index refers to the N LSBs of the auxiliary register se­
lected, and step is the quantity being added to or subtracted from the auxiliary 
register. Follow these two rules when you use circular addressing: 

~ The step used must be less than or equal to the blocksize. 

Q The first time the circular queue is addressed, the auxiliary register must 
be pointing to an element in the circular queue. 

The algorithm for circular addressing is as follows: 

If 0 ~ index + step < BK: 

index = index + step. 

Else if index + step ~ BK: 

index = index + step - BK. 

Else if index + step < 0: 

index = index + step + BK. 

Figure 5-8 shows how the circular buffer is implemented. It illustrates the rela­
tionship of the quantities generated and the elements in the circular buffer. 

Figure 5-8. Circular Buffer Implementation 

Address Data 

31 N + 1 N o Top of Circular Buffer 

Effective Base (EB> I .... _H_._. _. H ___ I __ o_. _ .. _0_--, Element 0 

Element 1 

31 N + 1 N o 

Auxiliary Register (ARn>II-_H_._. _" H _____ L_. _. "_L_--, Element (N LSBs of ARn) 

31 N + 1 N 0 Last Element 

H ... H LSBs BK -7 Last Element + 1 
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Figure 5-9 gives an example of the operation of circular addressing. Assum­
ing that all ARs are four bits, let ARO = 0000, and BK = 0110 (blocksize of 6). 
This example shows a sequence of modifications and the resulting value of 
ARO. It also shows how the pointer steps through the circular queue with a vari­
ety of step sizes (both incrementing and decrementing). 

Figure 5-9. Circular Addressing Example 

* ARO '++ (5)% ARO 
*ARO ++ (2)% ARO 
*ARO - - (3)% ARO 
*ARO++(6)% ARO 
*ARO - -% ARO 
*ARO ARO 

Value Data 

Oth ~ Element 0 

2nd ~ Element 1 

Element 2 

5th ~ Element 3 

4th,3rd ~ Element 4 

1 st ~ Element 5 (Last Element) 

Last Element + 1 

0 (Oth value) 
5 (1 st value) 
1 (2nd value) 
4 (3rd value) 
4 (4th value) 
3 (5th value) 

Address 

o 

2 

3 

4 

5 

6 
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5.4 Bit-Reversed Addressing 

Figure 5-12. 

Bit-reversed addressing on the TMS320C3x enhances execution speed and 
program memory for FFT algorithms that use a variety of radices. The base 
address of bit-reversed addressing must be located on a boundary of the size 
of the table. For example, if IRO = 2n- 1, the n LSBs of the bas"e address must 
be zero. The base address of the data in memory must be on a 2n boundary. 
One auxiliary register points to the physical location of a data value. IRO speci­
fies one-half the size of the FFT; e.g., the value contained in IRO must be equal 
to 2n-1 where n is an integer and the FFT size is 2n. When you add IRO to 
the auxiliary register by using'bit-reversed addressing, addresses are gener­
ated in a bit-reversed fashion. 

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let 
AR2 contain the value 01100000 (96). This is the base address of the data in 
memory. Let IRO contain the value 0000 1000 (8). Figure 5-12 shows a se­
quence of modifications of AR2 and the resulting values of AR2. 

Bit-Reversed Addressing Example 

*AR2++(IRO)B AR2 0110 0000 (Oth value) 
*AR2++(IRO)B AR2 0110 1000 (1st value) 
*AR2++(IRO)B AR2 0110 0100 (2nd value) 
*AR2++(IRO)B AR2 0110 1100 (3rd value) 
*AR2++(IRO)B AR2 0110 0010 (4th value) 
*AR2++(IRO)B AR2 0110 1010 (5th value) 
*AR2++(IRO)B AR2 0110 0110 (6th value) 
*AR2 AR2 0110 1110 (7th value) 

Table 5-3 shows the relationship of the index steps and the four LSBs of AR2. 
As you can see, you can find the four LSBs by reversing the bit pattern of the 
steps. 

Table 5-3. Index Steps and Bit-Reversed Addressing 

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step 

0 0000 0000 0 
1 0001 1000 8 
2 0010 0100 4 

'3 0011 1100 12 

4 0100 0010 2 
5 0101 1010 10 
6 0110 0110 6 
7 0111 1110 14 

8 1000 0001 1 
9 1001 1001 9 
10 1010 0101 5 
11 1011 1101 13 

12 1100 0011 3 
13 1101 1011 11 
14 1110 0111 7 
15 1111 1111 15 
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5.5 System and User Stack Management 

The TMS320C3x provides a dedicated system stack pointer (SP) for building 
stacks in memory. The auxiliary registers can also be used to build a variety 
of more general linear lists. This section discusses the implementation of the 
following types of linear lists: 

Stack A linear list for which all insertions and deletions are made at one 
end of the list. 

Queue A linear Iistfor which all insertions are made at one end of the list, 
and all deletions are made at the other end. 

Oeque A double-ended queue linear list for which insertions and deletions 
are made at either end of the list. 

The system stack pointer (SP) is a 32-bit register that contains the address of 
the top of the system stack. The system stack fills from low-memory address 
to high-memory address (see Figure 5-13). The SP always points to the last 
element pushed onto the stack. A push performs a preincrement, and a pop 
performs a postdecrement of the system stack pointer. 

The program counter is pushed onto the system stack on subroutine calls, 
traps, and interrupts. It is popped from the system stack on returns. The system 
stack can be pushed and popped using the PUSH, POP, PUSHF, and POPF 
instructions. 

Figure 5-13. System Stack Configuration 

Low Memory 

Bottom of Stack 

SP -7 Top of Stack 

(Free) 

High Memory 
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Figure 5-15. Implementations of Low-to-High Memory Stacks 

5.5.2 Queues 
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ARn -7 

Case 3 

Low Memory 

Bottom of Stack 

Top of Stack 

(Free) 

High Memory 

ARn -7 

Case 4 

l,.ow Memory 

Bottom of Stack 

Top of Stack 

(Free) 

High Memory 

A queue is like a FIFO. The implementation of queues is based upon the ma­
nipulation of auxiliary registers. Two auxiliary registers are used, one to mark 
the front of the queue from which data is popped (or dequeued) and the other 
to mark the rear of the queue where data is pushed. By properly managing the 
auxiliary registers, the queue may also be circular. (A queue is circular when 
the rear pointer is allowed to point to the beginning of the queue memory after 
it has pointed to the end of the queue memory.) . 
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6.1 Repeat Modes 

The repeat modes of the TMS320C3x can implement zero-overhead looping. 
For many algorithms, most execution time is spent in an inner kernel of code. 
Using the repeat modes allows these time-critical sections of code to be ex­
ecuted in the shortest possible time. 

The TMS320C3x provides two instructions to support zero-overhead looping: 
RPTB (repeat a block of code) and RPTS (repeat a single instruction). RPTB 
causes a block of code to be repeated a specified number of times. RPTS 
causes a single instruction to be repeated a number of times and reduces the 
bus traffic by fetching the instruction only once. 

Three registers (RS, RE, and RC) are associated with the updating of the pro­
gram counter when it is updated in a repeat mode. Table 6-1 describes these 
registers. 

Table 6-1. Repeat-Mode Registers 

Register Function 

RS Repeat Start Address Register. Holds the address of the·first instruction 
of the block of code to be repeated. 

RE Repeat End Address Register. Holds the address of the last instruction 
of the block of code to be repeated. 

RC Repeat-Count Register. Contains one less than the number of times 
the block remains to be repeated. For exampJe. to execute a block N 
times. load N-1 into RC. 

6.1.1 Repeat-Mode Initialization 

6-2 

Two bits are important to the operation of RPTB and RPTS: the RM and S bits. 

The RM (repeat-mode flag) bit in the status register specifies whether the pro­
cessor is running in the repeat mode. If RM = 0, fetches are not made in repeat 
mode. If RM = 1, fetches are made in repeat mode. 

The S bit is hidden from the user but is necessary to fully describe the operation 
of RPTB and RPTS. If S = 0, the CPU is not performing fetches in the repeat­
single mode. If S = 1 and RM = 1, the CPU is performing fetches in the repeat­
single mode. 

The correct operation of the repeat modes requires that all of the above regis­
ters and status register fields be initialized correctly. The RPTB and RPTS in­
structions perform this initialization in slightly different ways (see Sections 
6.1.2 and 6.1.3). 
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6.1.2 RPTB Initialization 

When RPTS src is executed, the following operations take place: 

1) PC + 1 -t RS 

2) src -t RE 

3) 1 -t RM status register bit 

4) 0 -t S bit. 

Step 1 loads the start address of the block into RS. Step 2 loads the src into 
the RE (end address of the block). The srcoperand is a 24-bit value contained 
in the instruction word. Step 3 sets the status register to indicate the repeat 
mode of operation. Step 4 indicates that this is the repeat block mode of opera­
tion. 

The last bit of information required is the number of times to repeat the block. 
The value is determined by properly initializing the RC (repeat count) register. 
Since the execution of RPTS does not load the RC; you must load this register 
yourself. The typical setup of the block repeat operation is shown below. 

LDI 15,RC 15 -t RC, LOOP will be executed 16 times 

RPTB LOOP LOOP -t RE, PC + 1 RS, 1 -t RM, 0 -t S 

The repeat modes repeat a block of code at least once in a typical operation. 
The repeat counter should be loaded with one less than the number of times 
to repeat the block; i.e., a value of 0 in RC repeats the block of code one time. 
All block repeats initiated by RPTS can be interrupted. 

6.1.3 RPTS Initialization 

When RPTS src is executed, the following sequence of operations occurs: 

1 ) PC + 1 -t RS 

2) PC + 1 -t RE 

3) 1 -t RM status register bit 

4) 1 -t S bit 

5) src-t RC 

The RPTS instruction loads all registers and mode bits necessaryforthe oper­
ation of the single instruction repeat mode. Step 1 loads the start address of 
the block into RS. Step 2 loads the end address into the RE (end address of 
the block). Since this is a repeat of a single instruction, the start address and 
the end address are the same. Step 3 sets the status register to indicate the 
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repeat mode of operation. Step 4 indicates that this is the repeat single-instruc­
tion mode of operation. The operand src is loaded into RC, as in Step 5 and 
the following instruction is executed src+ 1 times. 

Repeats of a single instruction initiated by RPTS are not interruptible, because 
the RPTS fetches the instruction word only once and then keeps it in the in­
struction register for reuse. An interrupt would cause the instruction word to be 
lost. The refetching of the instruction word from the instruction register reduces 
memory accesses and, in effect, acts as a one-word program cache. If it is nec­
essary to have a single instruction that is repeatable and interruptible, you can 
use the RPTS instruction. 

6.1.4 Repeat-Mode Operation 

The information in the repeat-mode registers and associated control bits is 
used to control the modification of the PC when the fetches are being made 
in repeat mode. The repeat modes compare the contents of the RE register 
with the program counter (PC). If they match and the repeat counter is nonneg­
ative, the repeat coulter is decremented, the PC is loaded with the repeat start 
address, and the processing continues. The fetches and appropriate status 
bits are modified as necessary. Note that the repeat counter (RC) is never mo­
dified when RM is O. The maximum number of repeats occurs.when RC = 

080000000h. This will result in 080000001 h repetitions. The detailed algorithm 
for the update of the PC is described in Figure 6-1. 

Figure 6-1. Repeat-Mode Control Algorithm 

6-4 

if RM == 1 
if S == 1 

if first time through 
fetch instruction from memory 

else 
fetch instruction from IR 

RC - 1 -7 RC 
if RC < 0 

o -7 ST (RM) 
o -7 S 

PC + 1 -7 PC 
else if S == 0 

fetch instruction from memory 
if PC == RE 

RC - 1 -7 RC 
if RC ~ 0 

RS -7 PC 
else if RC < 0 

o -7 ST (RM) 

o -7 S 
PC + 1 -7 PC 

If in repeat mode (RPTB or RPTS) 
If RPTS 
If this is the first fetch 
Fetch instruction from memory 
If not the first fetch 
Fetch instruction from IR 
Decrement RC 
If RC is negative 
Repeat single mode completed 
Turn off repeat mode bit 
Clear S 
Increment PC 
If RPTB 
Fetch instruction from memory 
If this is the end of the block 
De-:;rement RC 
If RC is not negative 
Set PC to start of block 
If RC is negative 
Turn off repeat·mode bits 
Clear S 

Increment PC 
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The RPTB and RPTS are four-cycle instructions. These four cycles of 
overhead are incurred only on the first pass through the loop. All subsequent 
passes through the loop are accomplished with zero cycles of overhead. In 
Example 6-1, the block of code from STLOOP to ENDLOP is repeated sixteen 
times. 

Example 6-1. RPTB Operation 

STLOOP 

END LOP 

LDI 15, RC 
RPTB END LOP 

Load repeat counter with 15 
E~ecute the block of code 

from STLOOP to END LOP 16 times 

Using the repeat block mode of modifying the PC. facilitates analysis of what 
would happen in the case of branches within the block. Assume that the next 
value of the PC will be either PC + 1 or the contents of the RS register. It is thus 
apparent that this method of block repeat allows many amount of branching 
within the repeated block. Execution can go anywhere within the user's code 
via interrupts, subroutine calls, etc. For proper modification of the loop counter, 
the last instruction of the loop must be fetched. You can stop the repeating of 
the loop prior to completion by writing a 0 into the repeatcounter orwriting 0 
into the RM bit of the status register. 

Since the block repeat modes modify the program counter, other instructions 
cannot modify the program counter at the same time. Two rules apply here: 

1) The last instruction in the block (or the only instruction in a block of 
size one) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAP­
cond, RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 6-2 
shows an incorrectly placed standard branch. 

2) None of the last four instructions from the bottom of the block (or the 
only instruction in a block of size one) can be a BcondD, BRD, or 
DBcondD. Example 6-3 shows an incorrectly placed delayed branch. 

If either of these rules is violated, the PC will be undefined. 
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Example 6-2. Incorrectly Placed Standard Branch 

LDI lS,RC 
RPTB END LOP 

STLOOP 

END LOP BR OOPS 

Load repeat counter with 15 
Exec~te block of code 
from STLOOP to ENDLOP 16 times 

This branch violates rule 1 

Example 6-3. Incorrectly Placed Delayed Branch 
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LDI 15,RC 
RPTB END LOP 

STLOOP 

BRD OOPS 
ADDF 
MPYF 

END LOP SUBF 

Load repeat counter with 15 
Execute block of code 
from STLOOP to END LOP 16 times 

This branch violates rule 2 

Block repeats (RPTB) are nestable. Since all of the control is defined by the 
RS, RE, Re, and ST registers, these registers must be saved and stored in or­
derto nest block repeats. The RM bit in the status register can be used to deter­
mine if the block repeat mode is active. For example, if you write an interrupt 
seNice routine that requires the use of RPTB, it is possible that the interrupt 
associated with the routine may occur during another block repeat. The inter­
rupt seNice routine can check the RM bit. If this bit is set, the interrupt routine 
saves RS, RE, Re, and ST. The interrupt routine can then perform a block re­
peat. Before returning to the interrupted routine, the interrupt routine restores 
RS, RE, Re, and ST. If the RM bit is not set, you don't need to save and restore 
these registers. 
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6.2 Delayed Branches 

The TMS320C3x offers two main types of branching: standard and delayed. 
Standard branches empty the pipeline before performing the branch; this guar­
antees correct management of the program counter and results in a 
TMS320C3x branch taking four cycles. Included in this class are repeats, calls, 
returns, and traps. 

Delayed branches on the TMS320C3x do not empty the pipeline, but rather 
guarantee that the next three instructions will execute before the program 
counter is modified by the branch. The result is a branch that requires only a 
single cycle, thus making the speed of the delayed branch very close to the op­
timal block repeat modes of the TMS320C3x. However, unlike block repeat 
modes, delayed branches may be used in situations other than looping. Every 
delayed branch has a standard branch counterpart that is used when a 
delayed branch cannot be used. The delayed branches of the TMS320C3x are 
BcondD, BRD, and DBconaD. 

Conditional delayed branches use the conditions that exist at the end of the 
instruction immediately preceding the delayed branch. They do not depend 
upon the instructions following the delayed branch. The condition flags are set 
by a previous instruction only when the destination register is one of the exten­
ded-precision registers (RO-R7) or when one of the compare instructions 
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed 
branches guarantee that the next three instructio·ns will execute, regardless 
of other pipeline conflicts. 

When a delayed branch is fetched, it remains pending until the three following 
instructions are executed. None of the three instruction~ that follow a delayed 
branch can be Bcond, BconaD, BR, BRD, DBcond, DBcondD, CALL, CALL­
cond, TRAPcond, RETlcond, RETScond, RPTB, RPTS, or IDLE. (see 
Example 6-4). 

Delayed branches disable interrupts until the three instructions following the 
delayed branch are completed. This is independent of whether or not the 
branch is taken. 

If delayed branches are used incorrectly, the PC will be undefined. 

Example 6-4. Incorrectly Placed Delayed Branches 

Bl: BD Ll 
NOP 
NOP 

B2: B L2 This branch is incorrectly placed 
NOP 
NOP 
NOP 
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6.3 Calls, Traps, and Returns 
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Calls and traps provide a means of executing a subroutine or function while 
providing a return to the calling routine. 

The CALL, CALLcond, and TRAPcond instructions store the value of the PC 
on the stack before changing the PC's contents. The stack thus provides a 
return using either the RETScond or RETlcond instruction. 

Q The CALL instruction places the next PC value on the stack and places 
the src (source) operand into the PC. The src is a 24-bit immediate value. 
Figure 6-2 shows CALL response timing. 

Q The CALLcondinstruction is similar to the CALL instruction (above) except 
that (1) it executes only if a specific condition is true (the 20 condi­
tions - including unconditional- are listed in Section 10.2) and (2) the 
src is either a PC-relative displacement or in register addressing mode. 
The condition flags are set by a previous instruction only when the destina­
tion register is one of the extended-precision registers (RO-R7) or when 
one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or 
TSTB3) is executed. 

Q The TRAPcondinstruction also executes only if a specific condition is true 
(same conditions as for the CALLcond instruction). When executing, (1) 
interrupts are disabled with 0 written to bit GIE of the ST, (2) the next PC 
value is stored on the stack, and (3) a vector is retrieved from one of the 
addresses 20h to 3Fh and loaded into the PC. The particular address is 
identified 9Y a trap number in the instruction. Using the RETlcondto return 
re-enables interrupts. 

Q RETScond returns execution from any of the above three instructions by 
popping the top of the stack to the PC. To execute, the specified condition 
must be true. Conditions are the same as for the CALLcond instruction. 

Q RETlcond retu rns from traps or calls sim ilar to the RETScond ( above) with 
the addition that RETlcond also sets the GIE bit of the Status Register 
which thus enables all interrupts whose enabling bit is set to 1. Conditions 
are the same as for the CALLcond instruction. 

Functionally, calls and traps accomplish the same task (i.e., a subfunction is 
called, executed, and control then returned to the calling function. Traps offer 
several advantages: 

1) Interrupts are automatically disabled when a trap is executed. This allows 
critical code to execute without risk of being interrupted. Thus, traps are 
generally terminated with a RETlcond instruction to re-enable interrupts. 

2) You can use traps to indirectly call functions. This is particularly beneficial 
when a kernel of code contains the basic subfunctions to be used by appli­
cations. In this case, the functions in the kernel can be modified and relo­
cated without recompiling each application. 
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6.4 Interlocked Operations 

One of the most common multiprocessing configurations is the sharing of glob­
al memory by multiple processors. In order for multiple processors to access 
this global memory and share data in a coherent manner, some sort of arbitra­
tion or handshaking is necessary. This requirement for arbitration is the pur­
pose of the TMS320C3x interlocked operations. 

The TMS320C3x provides a flexible means of multiprocessor support with five 
instructions, referred to as interlocked operations. Through the use of external 
signals, these instructions provide powerful synchronization mechanisms. 
They also guarantee the integrity of the communication and result in a high­
speed operation. The interlocked-operation instruction group is listed in 
Table 6-2. 

Table 6-2. Interlocked Operations 
Mnemonic Description Operation 

LOFI Load floating-point value into a register, Signal interlocked 
interlocked src ----7 dst 

LOll Load integer into a register, interlocked Signal interlocked 
src ----7 dst 

SIGI Signal, interlocked Signal interlocked 
Clear interlock 

STFI Store floating-point value to memory, src ----7 dst 
interlocked Clear interlock 

STII Store integer to memory, interlocked src ----7 dst 
Clear interlock 

The interlocked operations use the two external flag pins, XFO and XF1. XFO 
must be configured as an output pin, and XF1 as an input pin. When configured 
in this manner, XFO signals an interlock operation request, and XF1 acts as an 
acknowledge signal forthe requested interlocked operation. In this mode, XFO 
and XF1 are treated as active-low signals. 

The external timing for the interlocked loads and stores is the same as for stan­
dard load and stores. The interlocked loads and stores may be extended like 
standard accesses by using the appropriate ready signal (RDYint or XRDYint). 
(RDYint and XRDYint are a combination of external ready input and software 
wait states. Refer to Chapter 7, External Bus Operation, for more information 
on ready generation.) 

The LDFI and LDII instructions perform the following actions: 

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO 
is similar to that of the address bus during a read cycle. 
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2) Execute an LOF or LOI instruction and extend the read cycle until XF1 
is set to 0 and a ready (ROYint or XROYint) is signalled. 

3) Leave XFO set to 0 and end the read cycle. 

The read/write operation is identical to any other read/write cycle except for the 
special use of XFO and XF1. The srcoperand for LOFI and LOll is always a di­
rect or indirect memory address. XFO is setto 0 only if the srcis located off-chip; 
i.e., STRB, MSTRB, or IOSTRB is active, orthe srcis one of the on-chip periph­
erals. If on-chip memory is accessed, then XFO is not asserted, and the opera­
tion is as an LOF or LOI from internal memory. 

The STFI and STII instructions perform .the following operations: 

1) Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO 
is similar to that of the address bus during a write cycle. 

2) Execute an STF or STI instruction and extend the write cycle until a ready 
(ROYint or XROYint) is signaled. 

As in the case for LOFI and LOll, the dst of STFI and STII affects XFO. If dst 
is located off-chip (STRB, MSTRB, or IOSTRB is active) or the dst is one of 
the on-chip peripherals, XFO is set to a 1 . If on-chip memory is accessed, then 
XFO is not asserted and the operations are as an STF or STI to internal 
memory. 

The SIGI instruction functions as follows: 

1) Sets XFO to O. 

2) Idles until XF1 is set to O. 

3) Sets XFO to 1 and ends the operation. 

While the LOFI, LOll, and SIGI instructions are waiting for XF1 to be set to 0, 
you can interrupt them. LOFI and LOll require a ready signal (ROYint or 
XROYint) in order to be interrupted. Because interrupts are taken on bus cycle 
boundaries (see Section 6.6), an interrupt may be taken any time after a valid 
ready. This allows you to implement protection mechanisms against deadlock 
conditions by interrupting an interlocked load that has taken too long. Upon re­
turn from the interrupt, the next instruction is executed. The STFI and STII in­
structions are not interruptible. Since the STFI and STII instructions complete 
when ready is signaled, the delay until an interrupt can occur is the same as 
for any other instruction. 

Interlocked operations can be used to implement a busy-waiting loop, to ma­
nipulate a multiprocessor counter, to implement a simple semaphore mecha­
nism, orto perform synchronization between two TMS320C3xs. The following 
examples illustrate the usefulness of the interlocked operations instructions. 
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Example 6-5 shows the implementation of a busy-waiting loop. If location 
LOCK is the interlock for a critical section of code, and a nonzero means the 
lock is busy, the algorithm for a busy-waiting loop can be used as shown. 

Example 6-5. Busy-Waiting Loop 

LDI 1,RO 
L1: LDII @LOCK,R1 

STII RO,@LOCK 

BNZ Ll 

Put 1 in RO 
'Interlocked operation begun 
Contents of LOCK ~ R1 
Put RO (= 1) into LOCK, XFO 1 
Interlocked operation ended 
Keep trying until LOCK = 0 

Example 6~6 shows how a location COU NT may contain a cou nt of the nu mber 
of times a particular operation needs to be performed. This operation may be 
performed by any processor in the system. If the count is zero, the processor 
waits until it is nonzero before beginning processing. The example also shows 
the algorithm for modifying COUNT correctly. 

Example 6-6. Multiprocessor Counter Manipulation 

6-.12 

CT: OR 4,IOF 

LDII @COUNT,Rl 

BZ CT 
SUBI 1,Rl 
STII Rl,@COUNT 

XFO = 1 
Interlocked operation ended 
Interlocked operation begun 
Contents of COUNT ~ Rl 
If COUNT = 0, keep trying 
Decrement Rl(= COUNT) 
Update COUNT, XFO = 1 
Interlocked operation ended 

Figure 6-3 illustrates multiple TMS320C3xs sharing global memory and using 
the interlocked instructions as in Example 6-7, Example 6-8, and 
Example 6-9. 
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Figure 6-3. Multiple TMS320C3x5 Sharing Global Memory 
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Sometimes it may be necessary for several processors to access some shared 
data or other common resources. The portion of code that must access the 
shared data is called a critical section. 

To ease the programming of critical sections, semaphores may be used. 
Semaphores are variables that can take only non-negative integer values. 
Two primitive, indivisible operations are defined on semaphores (with S being 
a semaphore): 

V(s) : s + 1 ~ S 

P(S): P: if (S 0), go to P 

else S - 1 ~ S 

Indivisibility of V(S) and P(S) means that when these processes access and 
modify the semaphore S, they are the only processes accessing and modify­
ing S. 

To enter a critical section, a P operation is performed on a common sema­
phore, say S (S is initialized to 1). The first processor performing P(S) will be 
able to enter its critical section. All other processors are blocked because S 
has become O. After leaving its critical section, the processor performs a V(S), 
thus allowing another processor to execute P(S) successfully. 
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The TMS320C3x code for V(S) is shown in Example 6-7, and code for P(S) 
is shown in Example 6-8. Compare the code in Example 6-8 to the code in 
Example 6-6. 

Example 6-7. Implementation of V(S) 

V: LDII @S,RO 

ADDI 1,RO 
STII RO,@S 

; Interlocked read of S begins (XFO 0) 
; Contents of S ~ RO 
; Increment RO (= S) 
; Update S, end interlock (XFO 0) 

Example 6-8. Implementation of P(S) 

P: OR 4,IOF 
LDII @S,RO 

BZ 
SUBI 
STII 

P 
1,RO 
RO,@S 

; End interlock (XFO = 1) 
; Inter~ocked read of S begins 
; Contents of S ~ RO 
; If S = 0, go to P and try again 
; Decrement RO (= S) 
; Update S, end interlock (XFO = 1) 

The SIGI operation may be used to synchronize, at an instruction level, multi­
ple TMS320C3xs. Consider two processors connected as shown in 
Figure 6-4. The code for the two processors is shown in Example 6-9. 

Figure 6-4. Zero-Logic Interconnect of TMS320C3xs 
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TMS320C3x #1 TMS320C3x #2 

~ ______ ~_:_~~~. ___ ~1~~:~:0~1 ______ ~ 
Processor #1 runs until it executes the SIGI. It then waits until processor #2 
executes a SIGI. At this point, the two processors have synchronized and con­
tinue execution. 
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6.5 Reset Operation 

The TMS320C3x supports a nonmaskable external reset signal (RESET), 
which is used to perform system reset. This section discusses the reset opera­
tion. 

At powerup, the state of the TMS320C3x processor is undefined. You can use 
the RESET signal to place the processor in a known state. This signal must 
be asserted low for 10 or more H1 clock cycles to guarantee a system reset. 
H1 is an output clock signal generated by the TMS320C3x (see Chapter 13 for 
more information). 

Reset affects the other pins on the device in either a synchronous or asynchro­
nous manner. The synchronous reset is gated by the TMS320C3x's internal 
clocks. The async~ronous reset directly affects the pins, and is faster than the 
synchronous reset.Table 6-3 shows the state of the TMS320C3x's pins after 
RESET = O. Each pin is described according to whether the pin is reset syn­
chronously or asynchronously. 

Table 6-3. Pin Operation at Reset 

Signal # Pins Operation at Reset 

Primary Interface (61 Pins) 

031-00 32 Synchronous reset. Placed in high-impedance state. 

A23-AO 24 Synchronous reset. Placed in high-impedance state. 

R/W 1 Synchronous reset. Placed in high-impedance state. 

STRB 1 Synchronous reset. Deasserted by going to a high level. 

ROY 1 Reset has no effect. 

HOLD 1 Reset has no effect. 

HOLDA 1 Reset has no effect. 

Expansion Interface (49 Pins)t 

XD31-XDO 32 Synchronous reset. Placed in high-impedance state. 

XA12-XAO 13 Synchronous reset. Placed in high-impedance state. 

XRIW 1 Synchronous reset. Placed in high-impedance state. 

MSTRB 1 Synchronous reset. Deasserted by going to a high level. 

IOSTRB 1 Synchronous reset. Deasserted by going to a high level. 

XROY 1 Reset has no effect. 

Control Signals (9 Pins) 

RESET 1 Reset input pin 

INT3-INTO 4 Reset has no effect. 

lACK 1 Synchronous reset. Deasserted by going to a high level. 

MC/MP or 1 Reset has no effect. 
MCBUMP 

XF1-XFO 2 Asynchronous reset. Placed in high-impedance state. 

t Present only on TMS320C30 
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Table 6-3. Pin Operation at Reset (Continued) 

Signal # Pins Operation at Reset 

Serial Port 0 Signals (6 Pins) 

ClKXO 1 Asynchronous reset. Placed in high-impedance state. 

OXO 1 Asynchronous reset. Placed in high-impedance state. 

FSXO 1 Asynchronous reset. Placed in high-impedance state. 

CLKRO 1 Asynchronous reset. Placed in high-impedance state. 

ORO 1 Asynchronous reset. Placed in high-impedance state. 

FSRO 1 Asynchronous reset. Placed in high-impedance state. 

Serial Port 1 Signals (6 Pins) t 

ClKX1 1 Asynchronous reset. Placed in high-impedance state. 

OX1 1 Asynchronous reset. Placed in high-impedance state. 

FSX1 1 Asynchronous reset. Placed in high-impedance state. 

ClKR1 1 Asynchronous reset. Placed in high-impedance state. 

OR1 1 Asynchronous reset. Placed in high-impedance state. 

FSR1 1 Asynchronous reset. Placed in high-impedance state. 

Timer 0 Signal (1 Pin) 

TClKO 1 Asynchronous reset. Placed in high-impedance state. 

Timer 1 Signal (1 Pin) 

TClK1 1 Asynchronous reset. Placed in high-impedance state. 

Supply and Oscillator Signals (29 Pins) 

VOO(3-0) 4 Reset has no effect. 

IOOVOO (1,0) 2 Reset has no effect. 

AOVOO (1,0) 2 Reset has no effect. 

POVOO 1 Reset has no effect. 

OOVOO (1,0) 2 Reset has no effect. 

MOVOO 1 Reset has no effect. 

VSS(3-0) 4 Reset has no effect. 

OVSS(3-0) 2 Reset has no effect. 

CVSS (1,0) 2 Reset has no effect. 

IVSS 1 Reset has no effect. 

VBBP 1 Reset has no effect. 

SUBS 1 Reset has no effect. 

Xi 1 Reset has no effect. 

X2/ClKIN 1 Reset has no effect. 

Hi 1 Synchronous reset. Will go to its initial state when RESET 
makes a 1 to ° transition. See Appendix A. 

H3 1 Synchronous reset. Will go to its initial state when RESET 
makes a 1 to ° transition. See Appendix A. 

t Present only on TMS320C30 
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Table 6-3. Pin Operation at Reset (Continued) 

Signal #Plns Operation at Reset 

Emulation, Test, and Reserved (18 Pins) 

EMUO 1 Undefined. 

EMU1 1 Undefined. 

EMU2 1 Undefined. 

EMU3 1 Undefined. 

EMU4/SHZ 1 Undefined. 

EMust 1 Undefined. 

EMust 1 Undefined. 

RSVot 1 Undefined. 

RSV1t 1 Undefined. 

RSV2t 1 Undefined. 

RSV3t 1 Undefined. 

RSV4t 1 Undefined. 

RSVSt 1 Undefined. 

Rsvst 1 Undefined. 

RSV7t 1 Undefined. 

Rsvat 1 Undefined. 

RSV9t 1 Undefined. 

RSV10t 1 Undefined. 

t Present only on TMS320C30 
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At system reset, the following additional operations are performed: 

Q The peripherals are reset. This is a synchronous operation. The peripheral 
reset is described in Chapter 8. 

Q The following CPU registers are loaded with zero: 

11 ST (CPU status register) 

• IE (CPU/DMA interrupt enable flags) 

II IF (CPU interrupt flags) 

I! 10F (I/O flags) 

Q The reset vector is read from memory location Oh and loaded into the PC. 
This vector contains the start address of the system reset routine. 

Ci Execution begins. Refer to Section 11.1 for an example of a processor 
initialization routine. 

Multiple TMS320C3xs driven by the same system clock may be reset and syn­
chronized. When the 1 to 0 transition of RESET occurs, the processor is placed 
on a well-defined internal phase, and all of the TMS320C3xs will come up on 
the same internal phase. 
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6.6 Interrupts 

The TMS320C3x supports multiple internal and external interrupts, which can 
be used for a variety of applications. This section discusses the operation of 
these interrupts. 

A functional diagram of the logic used to implement the external interrupt inputs 
is shown in Figure 6-5; the logic for internal interrupts is similar. Additional in­
formation regarding internal interrupts can be found in Chapter 8. 

Figure 6-5. Interrupt Logic Functional Diagram 
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External interrupts are synchronized internally, as illustrated by the three flip­
flops clocked by H 1 and H3. Once synchronized, the interrupt input will set the 

, corresponding interrupt flag register (IF) bit if the interrupt is active. 

External interrupts are latched internally on the falling edge of H1 (see the data 
sheet for timing information). An external interrupt must be held low for at least 
one H1/H3 cycle to be recognized by the TMS320C3x. Interrupts should be 
held low for only one or two H 1 falling edges. If the interrupt is held low for three 
or more H1 falling edges, multiple interrupts may be recognized. 

6.6.1 Interrupt Control Bits 
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When a particular interrupt is processed by the CPU or DMAcontroller, the cor­
responding interrupt flag bit is cleared by the internal interrupt acknowledge 
signal. It should be noted, however, that if INTn is still low when the interrupt 
acknowledge signal ,occurs, the interrupt flag bit will be cleared only for one 
cycle and then set again because INTn is still low. Accordingly, it is theoretically 
possible that, depending on when the IF register is read, this bit may be zero 
even though INTn is zero. When the TMS320C3x is reset, zero is written to the 
interrupt fla'g register, thereby clearing all pending interrupts. 
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The interrupt flag register bits may be read and written under software control. 
Writing a 1 to an IF register bit sets the associated interrupt flag to 1. Similarly, 
writing a 0 resets the corresponding interrupt flag to O. In this way, all interrupts 
may be triggered and/or cleared through software. Since the interrupts flags 
may be read, the interrupt pins may be polled in software when an interrupt-dri­
ven interface is not required. 

Internal interrupts operate in a similar manner. In the IF register, the bit corre­
sponding to an internal interrupt may be read and written through software. 
Writing a 1 sets the interrupt latch, and writing a 0 clears it. All internal interrupts 
are one H1/H3 cycle in length. 

The CPU global interrupt enable bit (GIE), located in the CPU status register 
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the DMA 
global interrupt enable bit, which is not dependent upon ST(GIE) and is local 
to the DMA. The DMA global interrupt enable bit is dependent, in part, upon 
the state of the DMA SYNCH bits. It is not directly accessible through software 
(see Chapter 8). The AND of the interrupt flag bit and the interrupt enables is 
then connected to the interrupt processor. 

To provide for maximum performance in servicing interrupts, the interrupt ac­
knowledge (lACK) instruction is provided. lACK drives the lACK pin and per­
forms a dummy read. The read is performed from the address specified by the 
lACK instruction operand. When lACK is used, it typically is placed in the early 
portion of an interrupt service routine. For certain applications, it may be better 
suited at the end of the interrupt service routine or be totally unnecessary. 

6.6.2 TMS320C3x Interrupt Considerations 

Give careful consideration to TMS320C3x interrupts, especially if user modifi­
cations are made to the status register when the global interrupt enable (GIE) 
bit is set. This can result in the GIE bit being erroneously set or reset as de­
scribed in the following paragraphs. 

The GIE bit is setto 0 (zero) by an interrupt. This may cause a processing error 
if any code following within two cycles of the interrupt recognition attempts to 
read or modify the status register. For example, if the status register is being 
pushed onto the stack, it will be stored incorrectly if an interrupt was acknowl­
edged two cycles before the store instruction. 

When an interrupt signal is recognized, the TMS320C3x continues executing 
the instructions already in the read and decode phases in the pipeline. Howev­
er, because the interrupt is acknowledged, theGIE bit is reset to 0, and the 
store instruction already in the pipeline will store the wrong status register val­
ue. For example, if the program is something like: 
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PUSH 
LDI-
NOP 
NOP 
AND 
POP 

NOP 
interrupt recognized --> LDI 

MPYI 
PUSH 

@V ADDR, ARl 
*AR1, RO 
ST 

POP ST 

the PUSH ST instruction will save the ST contents in memory, which includes 
GIE = O. Since the programmer expects GIE = 1, the POP ST instruction will 
put the wrong status register value into the ST. 

A similar situation may occur if the GIE bit=1 and an instruction executes that 
intends to modify the other status bits and leave the GIE bit set. In the above 
example, this erroneous setting would occur if the interrupt is recognized two 
cycles before the POP ST instruction. In that case, the interrupt would clear 
the GIE bit, butthe execution ofthe POP instruction would setthe GIE bit. Since 
the interrupt has been recognized, the interrupt service routine will be entered 
with interrupts enabled, rather than disabled as expected. 

One solution is to make use of traps. For example, you can use TRAP 0 to reset 
GIE and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and 
TRAP 1 be the instructions RETS and RETI, respectively. 

Another alternative incorporates the following code fragment, which protects 
from modifying or saving of the status register by disabling interrupts through 
the interrupt enable register: 

IE Save IE register 
Clear IE register 

• Added instructions to 
avoid pipeline problems. 0, IE 

ODFFFh, ST 
IE 

Set GIE 0 

• 2 NOPs or useful instructions 

• Instruction that reads or 
writes to ST register. 
Added instruction 
to avoid pipeline 
problems. 

6.6.3 TMS320C30 Interrupt Considerations 
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The TMS320C30 has two additional exceptions to the interrupt operation. 

1) The status register global interrupt enable (GIE) bit may be erroneously 
reset to 0 (disabled setting) if all of the following conditions are true: 

Q a conditional trap instruction (TRAPcond) has been fetched, 

Q' the condition for the trap is false, and 

Q a pipeline conflict has occurred, resulting in a delay in the decode or 
read phases of the instruction. 

During the decode phase of a conditional trap, interrupts are temporarily 
disabled to guarantee that the trap will execute prior to a subsequent inter-
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rupt. If a pipeline conflict occurs, causing a delay in execution of the condi­
tional trap, the interrupt disabled condition may become the last known 
condition of the GIE biLln the case that the trap condition is false, inter­
rupts will be permanently disabled until the GIE bit is intentionally set. The 
condition does not present itself when the trap condition is true, because 
normal operation of the instruction causes the GIE to be reset, and stan­
dard coding practice will set the GIE to a one before the trap routine is ex­
ited. Several instruction sequences that may cause pipeline conflicts have 
been found: 

a) 

b) 

c) 

LDI mem, SP 
TRAPcond n 

LDI mem,SP 
NOP 
TRAPcond n 

STI SP,mem 
TRAPcond n 

d) STI 

LDI 

Rz,*ARy 
*ARz,Ry 
*ARz,Rw I I LDI 

TRAPcond n 

Other similar conditions may also cause a delay in the execution. There­
fore, the following solution is recommended to avoid or rectify the problem. 

Insert two NOP instructions immediately prior to the TRAPcond instruc­
tion. One NOP is insufficient in some cases, as illustrated in case 2 above. 
This eliminates opportunity for any pipeline conflicts in the immediately 
preceding instructions and enables the conditional trap instruction to ex- , 
ecute without delays. 

2) Asynchronous accesses to the interrupt flag register (IF) may cause the 
TMS320C3x to fail to recognize and service an interrupt. This may occur 
when an interrupt is generated and is ready to be latched into the IF regis­
ter on the same cycle that the IF is being written to by the CPU. 

The logic currently gives the CPU write priority; consequently, the asserted 
interrupt may be lost. This is particularly true if the asserted interrupt has 
been generated internally, such as a DMA interrupt. This situation may 
arise as a result of a decision to poll certain interrupts or a desire to clear 
pending interrupts due to a long pulse width. Forthe case of the long pulse 
width, the interrupt may be generated after the CPU responds to the inter­
rupt and attempts to automatically clear it by the interrupt vector process. 

The recommended solution is not to use the int'errupt polling technique but 
to design the external interrupt inputs to have pulse widths between 1 and 
2 instruction cycles in length. The alternative to strict polling is to periodi­
cally enable and disable' the interrupts that would be polled, thereby allow-
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ing the normal interrupt vectoring to take place; that automatically clears 
the interrupt flag without affecting other interrupts. In the event there is a 
need to clear a pending interrupt, it is recommended that a memory loca­
tion be used to indicate that the interrupt is invalid. Then the interrupt ser­
vice routine can read that location, clear it (if the pending interrupt is inval­
id), and return immediately. The following code fragments show how a 
dummy interrupt due to a long interrupt pulse might be handled: 

ISR_n: PUSH ST 
PUSH DP 
PUSH RO 
LDI 0, DP 

Save registers 

Clear Data Page Pointer 
LDI @DUMMY INT, RO 
BNN ISR n START 
STI DP, -@DUMMY_INT 
POP RO 
POP DP 
POP ST 
RETI 

ISR n START: . 

ISR n END: 

LDI INT Fn, RO 
AND IF, -RO 
BZ ISR n END 
LDI 0, DP­
LDI OFFFFh, RO 
STI RO, @DUMMY_INT 

POP RO 
POP DP 
POP ST 
RETI 

If DUMMY INT is 0 or positive, 
go to ISR n START 
Set DUMMY-INT = 0 

Housekeeping, return from interrupt 

normal interrupt service routine 
code goes here 

If ones in IF reg match 
INT Fn, exit ISR 
Otherwise clear 
DP and set 

, DUMMY_I NT negative & e:·:it 

Exit ISR 
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6.6.4 Prioritization and Control 

The CPU controls all prioritization of interrupts (see Table 6-4 for reset and in­
terru pt vector locations and priorities). If the DMA is not using interrupts for syn­
chronization of transfers, it will not be affected by the processing of the CPU 
interrupts. If the CPU is involved in a pipeline conflict (branch, register, or 
memory), it will not respond to the interrupts until that conflict is resolved. It is 
therefore possible to interrupt the CPU and DMA simultaneously with the same 
or different interrupts and, in effect, synchronize their activities. For example, 
it may be necessary to cause a high-priority DMA transfer that avoids bus con­
flicts with the CPU, i.e., make the DMA higher priority than the CPU. This may 
be accomplished by using an interrupt that causes the CPU to trap to an inter­
rupt routine that contains an I DLE instruction. Then if the same interrupt is used 
to synchronize DMA transfers, the DMA transfercountercan be used to gener­
ate an interrupt and, thus to return control to the CPU following the DMA trans­
fer. 

Since the DMA and CPU share the same set of interrupt flags, the DMA may 
clearan interruptflag before the CPU can respond to it. Forexample, if the CPU 
interrupts are disabled, the DMA can respond to interrupts and thus clear the 
associated interrupt flags. 

Table 6-4. Reset and Interrupt Vector Locations 

Reset or Vector Priority Function 

Interrupt Location 

RESET Oh a External reset signal input on the RESET 
pin. 

INTO 1h 1 External interrupt input on the INTO pin. 

INT1 2h 2 External interrupt input on the INT1 pin. 

INT2 3h 3 External interrupt input on the INT2 pin. 

INT3 4h 4 External interrupt input on the INT3 pin. 

XINTO 5h 5 Internal interrupt generated when serial-port 
a transmit buffer is empty. 

RINTO 6h 6 Internal interrupt generated when serial-port 
a receive buffer is full. 

XINT1 t 7h 7 Internal interrupt generated when serial-port 
1 transmit buffer is empty. 

RINT1 t 8h 8 Internal interrupt generated when serial-port 
1 receive buffer is full. 

TINTO 9h 9 Internal interrupt generated by timer O. 

TINT1 OAh 10 Internal interrupt generated by timer 1. 

DINT aSh 11 Internal interrupt generated by DMA control-
ler O. 

t Reserved on TMS320C31 
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If there is a delayed branch in the pipeline, interrupts are held pending until after 
the branch. If the interrupt occurs in the first cycle of the fetch of an instruction, 
the fetched instruction is discarded (not executed), and the address of that in­
struction is pushed to the top of the system stack. If the interrupt occurs after 
the first cycle of the fetch, in the case of a multicycle fetch due to wait states, 
that instruction is executed and the address of the next instruction to be fetched 
is pushed to the top of the system stack. If no program fetch is occurring, then 
no new fetch is performed. After the address of the appropriate instruction has 
been pushed, the interrupt vector is fetched and loaded into the PC, and ex­
ecution continues. 

The TMS320C3x allows the CPU and DMA to respond to and process inter­
rupts in parallel. Figure 6-6 shows interrupt processing flow. The interrupts are 
polled and the CPU and DMA begin processing them. In the interrupt flow per­
taining to the CPU, the interrupt flag corresponding to the highest-priority en­
abled interrupt is cleared, and GIE is set to o. The CPU completes all fetched 
instructions. The interrupt vector is fetched and loaded into the PC, and the 
CPU continues execution. The DMA cycle is similar to that for the CPU. After 
the pertinent interrupt flag is cleared, the DMA proceeds according to the sta­
tus of the SYNCH bits in the DMA global control register. 
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Figure 6-6. Interrupt Processing 
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7 .1.1 Primary-Bus Control Register 

The primary bus control register is a 32-bit register that contains the control bits 
for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with the 
bit names and functions. 

Figure 7-2. Primary-Bus Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ,0,0,0,0,0,0,0,0,0,0,010,0,0, 01 ° 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I BNKCMP I WTCNT I sww IHlzlNOHOLDIHOLDSTI 

RIW R/W RIW RIW RIW R/W RIW R/W R/W RIW RIW RIW R 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Table 7-1. Primary-Bus Control Register Bits Summary 

Bit Name Reset Function 
Value 

0 HOLDST xt Hold status bit. This bit signals whether the port is being held 
(HOLDST = 1) or is not being held (HOLDST = 0). This status bit is 
valid whether the port has been held via hardware or software. 

1 NOHOLD 0 Port hold signal. NOHOLD allows or disallows the port to be held by 
an external HOLD signal. When NOHOLD = 1 , the TMS320C3x takes 
overthe external bus and controls it, regardless of serviced or pending 
requests by external devices. No hold acknowledge (HOLDA) is as-
serted when a HOLD is received. However, it is asserted if an internal 
hold is generated (HIZ = 1). NOH OLD is set to 0 at reset. 

2 HIZ 0 Internal hold. When set (HIZ = 1), the port is put in hold mode. This 
is equivalent to the external HOLD signal. By forcing a high-impe-
dance condition, the TMS320C3x can relinquish the external memory 
port through software. HOLDA goes low when the port is placed in the 
high-impedance state. HIZ is set to 0 at reset. 

4-3 SWW 11 Software wait mode. In conjunction with WTCNT, this 2-bit field de-
fines the mode of wait-state generation. It is set to 1 1 at reset. 

7-5 WTCNT 111 Software wait mode. This 3-bit field specifies the number of cycles to 
use when in software wait mode for the generation of internal wait 
states. The range is zero (WTCNT = 0 0 0) to seven (WTCNT = 11 1) 
H1/H3 cycles. It is set to 1 1 1 at reset. 

12-8 BNKCMP 10000 Bank compare. This 5-bit field specifies the number of MSBs of the 
address to be used to define the bank size. It is set to 1 0000 at reset. 

31-13 Reserved 0-0 Read as O. 

t x = 0 or 1 
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7.1.2 Expansion-Bus Control Register 

The expansion bus control register is a 32-bit register that contains control bits 
for the expansion bus (see Figure 7-3 and Table 7-2). 

Figure 7-3. Expansion-Bus Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

RIW RIW R/W RIW RIW 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Table 7-2. Expansion-Bus Control Register Bits Summary 

Bit Name Reset Function 
Value 

2- 0 Reserved 000 Read as O. 

4-3 SWW 11 Software wait-state generation. In conjunction with the WTQNT, 
this 2-bit field defines the mode of wait-state generation. It is set 
to 1 1 at reset. 

7-5 WTCNT 111 Software wait mode. This 3-bit field specifies the number of cycles 
to use when in software wait mode for the generation of internal 
wait states. The range is zero (WTCNT. = 0 0 0) to seven 
( WTCNT = 1 1 1) H 1/H3 clock cycles. It is set to 1 1 1 at reset. 

31-8 Reserved 0--0 Read as O. 
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7.2 Externallnteiiace Timing 

This section discusses functional timing of operations on the primary bus and 
the expansion bus, the TMS320C3x's two independent parallel buses. De­
tailed timing specifications for all TMS320C3x signals are contained in Chap­
ter 13, TMS320C3x Signal Descriptions and Electrical Characteristics. 

The parallel buses implement three mutually exclusive address spaces distin- -
guished through the use of three separate control signals: STRB, MSTRB, and 
IOSTRB. The SfRi3 signal controls accesses on the primary bus, and the 
MSTRB and IOSTRB control accesses on the expansion bus. Since the two 
buses are independent, two accesses may be made in parallel. 

With the exception of bank switching and the external HOLD function (dis­
cussed later in this section), timing of primary bus cycles and MSTRB expan­
sion bus cycles are identical and are discussed collectively. The acronym 
(M)STRB is used in references that pertain equally to STRB and MSTRB. Sim­
ilarly, (X)RIW, (X)A, (X)D, and (X)RDY are used to symbolize the equivalent 
primary and expansion bus signals. The IOSTRB expansion bus cycles are 
timed differently and are discussed independently. 

7.2.1 Primary-Bus Cycles 

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is 
defined to be from one falling edge of H1 to the next falling edge of H1. Forfull­
speed (zero wait-state) accesses, writes take two H1 cycles and reads take 
one cycle; however, if the read follows a write, the read takes two cycles.This 
applies to both the primary bus and the MSTRB expansion bus access. Recall 
that, internally (from the perspective of the CPU and DMA), writes require only 
one cycle if no accesses to that interface are in progress. The following discus­
sions pertain to zero wait-state accesses unless otherwise specified. 

The (M)STRB signal is lowforthe active portion of both reads and writes, which 
lasts one H1 cycle. Additionally, before and after the active por­
tion-(M)STRB low-of writes only, there is a transition cycle of H1. During 
this transition cycle, the following occur: 

1) (M)STRB is high. 

2) If required, (X}RIW changes state on H1 rising. 

3) If required, address changes on H1 rising if the previous H1 cycle was the 
active portion of a write. If the previous H1 cycle was a read, address 
changes on H1 falling. 
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Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no 
wait states. The address and data written are held valid approximately one-half 
cycle after (M)STRB changes. 

Figure 7-5. Write-Write-Read for (M)STRB = 0 

H3 

H1 

(M)STRB 
, /. " /. , 

(X)R/W~ A I /. 
I I 

(X)A : X X 
I 

,-----....----->c 
(X)D Write Data Write Data 

(X)RDY \:1 \;1 
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Figure 7-6 illustrates a read cycle with one wait state. Since (X)RDY = 1, the 
read cycle is extended. (M)STRB, (X)R/W, and (X)A are also extended one 
cycle. The next time (X)RDY is sampled, it is o. 

Figure 7-6. Use of Wait States for Read for (M)STRB = 0 

7-8 

H3 

XR/W :\--~----~--~z==~:--
I I 

XA =x ~_--a.:--:""'--"'----'--->C 
I I 

XD ~~------~(~--_W_, r-ite-D-a~ta--~>---
I I I~ __ ~: __ ~:~-JI 

XRDY 7 ~ \ : ~: L : : ~: L : : 
I I I 

~ Extra -J 
Cycle 
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7.2.2 Expansion-Bus 1/0 Cycles 

In contrast to primary bus and MSTRB cycles, laSTRB reads and writes are 
both two cycles in duration (with no wait states) and exhibit the same timing. 
During these cycles, address always changes on the falling edge of H1, and 
laSTRB is low from the rising edge of the first H1 cycle to the rising edge of 
the second H1 cycle. The laSTRB signal always goes inactive (high) between 
cycles, and XRIW is high for reads and low for writes. 

Figure 7-8 illustrates read and write cycles when laSTRB is active and there 
are no wait states. For laSTRB accesses, reads and writes require a minimum 
of two cycles. Some off-chip peripherals may change their status bits when 
read or written. Therefore, it is important that valid addresses be maintained 
when communicating with these peripherals. For reads and writes when 
laSTRB is active, laSTRB is completely framed by the address. 

Figure 7-8. Read and Write for IOSTRB = 0 

H3 

H1 

" 1 IOSTRB 
I I " 1 I '---....----' I 

I 
I I 

XR/WJ, \ ~ 
XA==>K 

I X 
I 

I < Re~d > XD ~--.......... ~K~ ..... __ ~-r-ite-D-a-ta~: ..... --').~: ..... --
I 

XRDY ~ / 
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Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and 
Figure 7-10 illustrates a write with one wait state when IOSTRB is active. For 

. each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle. 
Writes hold the data on the bus one additional cycle. The sampling of XRDY 
is repeated each cycle. 

Figure 7-9. Read With One Wait State for !OSTRB = 0 

H3 

H1 

\'-------, 

XR/W ~ \'--_ ...... : _____ -
I I I 

XA ==x-----.--:.------.-.:.-----:-X--:----
I 

XD----~--------------------~: ~~--------------........ ---

XRDY __ ~ __ ~~~7 \~.~:-~~;~/-__ --------
I I I 

b-- Extra -J 
Cycle 
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Figure 7-11 through Figure 7-21 illustrate the various transitions between 
memory reads and writes, and I/O writes over the expansion bus. 

Figure 7-11. Memory Read and liD Write for Expansion Bus 

H3J 
1 \ 1 
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1 I '\ 
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Figure 7-13. Memory Write and 110 Write for Expansion Bus 

H3 

H1 

MSTRB~ I 
, '-------~-------' , 

\,--_~l 
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XA ______ ~---M-e-m-o~~-A-d-d-r-es-s~:------~~----~---I/O--A~~_d-re-s-s--~------~ 
, 

XD----< Memory Write 

~ / 
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Figure 7-14. Memory Write and liD Read for Expansion Bus 

H3 

H1 

MSTRB~ I 
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XRAN ____ ~ ______ ~ ______ ~ __ __J~ 

I 
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I 

XD----< Memory Write 

7-16 External Bus Operation 



External Interface Timing 
::';:;:'"S:" .. -;S:;9.;:O::!'i:>::~;:::::;:::;!-:;::;;:;:::.~:;::~:::::::" .. ~::::;:::;:::~:::::i:;:::;:'::;:;:::-~~:::!'-:::::-~:::-Y-:;:"":;:;::"~~::"'"?~':~::--..:::;!'.::-.::::::::::~:::::;:::i:;:::;:::::::::;:."!::;::;:::::;:~::!'«;:.~:;:::;:;O:?;::::::::::::O .. "!::~:~::::::::!,'('(':i:;:;::('Z:;:;:::;"~:!'k"";-':::::!''';';:':~::::!'.(.'::::::'~!'~;·;S::':O;·:''::::·;:;:;-;,::y;:::;:::,::::~~:;,;::~~*;:;:;:;:;:o~::;:o:·~::;:;:::;%s::::.."O!:::::!,6*-;:~:::::;:;O;:~:;:;'::::::s.:~~o$S~:':~ 

Figure 7-15. 110 Write and Memory Write for Expansion Bus 

H3 

H1 
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Figure 7-16. 110 Write and Memory Read for Expansion Bus 
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Figure 7-17. liD Read and Memory Write for Expansion Bus 
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Figure 7-18. I/O Read and Memory Read for Expansion Bus 
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Figure 7-21. liD Read and I/O Read for Expansion Bus 

H3 

H1 

MSTRB J 'C 
1 1 

1-

IOSTRB '\ I '\ I 
XRiW 

1 1 

XA 229< X ~ 1 1 

XD I. 

XRDY ~!L ~!L 

7-23 



External Interface 

Figure 7-22 and Figure 7-23 illustrate the signal states when a bus is inactive 
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB, 
MSTRB, IOSTRB) and (X)RIW) go to 1. The address is undefined, and the 
ready signal (XROY or ROY) is ignored. 

Figure 7-22. Inactive Bus States for IOSTRB 
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Figure 7-23. Inactive Bus States for STRB and MSTRB 
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Figure 7-24 illustrates the timing for HOLD .and HOLDA. HOLD is an external 
asynchronous input. There is a minimum of one cycle delay from the time when 
the processor recognizes HOLD = ° until HOLDA = 0. When HOLDA = 0, the 
address, data buses, and associated strobes are placed in a high-impedance 
state. All accesses occurring over an interface are complete before a hold is 
acknowledged. 

Figure 7-24. HOLD and HOLDA Timing 
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When SWW = 00, ROYint is dependent only upon ROY. ROY wtcnt is ignored. 
The truth table for this mode is Table 7-3. 

Table 7-3. Wait-State Generation When SWW = 0 0 

RDY RDYwtcnt RDYint 

0 o . 0 
0 1 0 
1 0 1 
1 1 1 

When SWW = 0 1, ROYint is dependent only upon RDY wtcnt. ROY is ignored. 
Table 7-4 is the truth table for this mode. 

Table 7-4. Wait-State Generation When SWW = a 1 

ROY RDYwtcnt ROYint 

0 0 0 
0 1 1 
1 0 0 
1 1 1 

When SWW = 1 0, RDYint is the logical-OR (electrical-AND, since these 
signals are low true) of RDY and RDY wtcnt (see Table 7-5). 

Table 7-5. Wait-State Generation When SWW = 1 a 
RDY RDYwtcnt ROYint 

0 0 0 
0 1 0 
1 0 0 
1 . 1 1 

When SWW = 1 1, ROYint is the logical-AND (electrical-OR, since these 
signals are low true) of RDY and ROYwtcnt. The truth·table for this mode is 
Table 7-6. 

Table 7-6. Wait-State Generation When SWW = 1 J 

ROY RDYwtcnt ROYint 

0 0 0 
0 1 1 
1 0 1 
1 1 1 
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7.4 Programmable Bank Switching 

Programmable bank switching allows you to switch between external memory 
banks without externally inserting wait states due to memories that require sev­
eral cycles to turn off. Bank switching is implemented on the primary bus and 
not on the expansion bus. 

The size of a bank is determined by the number of bits specified to be ex­
amined. For example (see Figure 7-25), if BNKCMP =16, the 16 MSBs of the 
address are used to define a bank. Since addresses are 24 bits, the bank size 
is specified by the 8 LSBs, yielding a bank size of 256 words. If BNKCMP ~ 16, 
only the 16 MSBs are compared. Bank sizes from 28 = 256 to 224 = 16M are 
allowed. Table 7-7 summarizes the relationship between BNKCMP, the ad­
dress bits used to define a bank, and the resulting bank size. 

Figure 7-25. BNKCMP Example 

~I--------- 24-bit address ----------'~ 

23 o 

~r------ Number of bits to compare ---+- Defines bank size --ti 

Table 7-7. BNKCMP and Bank Size 

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words) 

00000 None 224= 16M 
00001 23 223= 8M 
00010 23-22 . 222= 4M 
00011 23-21 221= 2M 
00100 23-20 220= 1 M 
00101 23-19 219= 512K 
00110 23-18 218= 256K 
00111 23-17 217= 128K 
01000 23-16 216= 64K 
01001 23-15 215= 32K 
01010 23-14 214= 16K 
01011 23-13 213= 8K 
01100 23-22 212= 4K 
01101 23-11 211 = 2K 
01110 23-12 210= 1 K 
01111 23-9 29 = 512 
10000 23-8 28 = 256 

10000 -11111 Reserved Undefined 
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Chapter 8 

Peri herals 

The TMS320C3x features two timers, two serial ports (one on the 
TMS320C31), and an on-chip Direct Memory Access (DMA) controller. These 
peripheral modules are controlled through memory-mapped registers located 
on the dedicated peripheral bus. 

The DMA controller is used to perform input/output operations without interfer­
ing with the operation of the CPU. Therefore, it is possible to interface the 
TMS320C3x to slow external memories and peripherals (AIDs, serial ports, 
etc.) without reducing the computational throughput of the CPU. The result is 
improved system performance and decreased system cost. 

Major topics discussed in this chapter on peripherals are listed below. 

Q Timers (Section 8.1 on page 8-2) 

• Registers 

I!I Pulse generation 

EI Operation modes 

[J Serial Ports (Section 8.2 on page 8-12) .. Registers .. Operation configurations 

II Timing 

• Examples 

[J DMA Controller (Section 8.3 on page 8-38) 

• Registers 

• DMA memory transfer operation 

• Synchronization of DMA channels 
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8.1 Timers 

The TMS320C3x timer modules are general-purpose, 32-bit, timer/event 
counters, with two signaling modes and internal or external clocking (see 
Figure 8-1). The timer modules can be used to signal to the TMS320C3x or 
the external world at specified intervals, or to count external events. With an 
internal clock, the timer can be used to signal an external A/D converter to start 
a conversion, or it can interrupt the TMS320C3x DMA controller to begin a data 
transfer. The timer interrupt is one of the internal interrupts. With an external 
clock, the timer can cou~t external events and interrupt the CPU after a speci­
fied number of events. Available to each timer is an 110 pin that can be used 
as an input clock to the timer, an output clock signal, or a general-purpose I/O 
pin. 

Figure 8-1. Timer Block Diagram 

8-2 

Period Register (31-0) 

INV 

32 

Comparator 
? 

Period = Counter 

Pulse Generator 

Timer Out 

Counter (32-bit) 

Counter Register 
(31-0) 

TSTAT 

'f- External Clock 

\-INV 

Three memory-mapped registers are used by each timer: 

[J Global-control register 

[J Period register 

[J Counter register 

The global-control register determines the operating mode of the timer, 
monitors the timer status, and controls the function of the I/O pin of the timer. 
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The period register specifies the timer's signaling frequency. The counter 
register contains the current value of the incrementing counter. The timer can 
be incremented on the rising edge or the falling edge of the input clock. The 
counter is zeroed and can cause an internal interrupt whenever its value equals 
that in the period register. The pulse generator generates two types of external 
clock signals: pulse or clock. The memory map for the timer modules is shown 
in Figure 8-2. 

Figure 8-2. Memory-Mapped Timer Locations 

Register Peripheral Address 

Timer 0 Timer 1 

Timer Global Control (See Table 8-1) 808020h 808030h 

Reserved 808021h 808031h 

Reserved 808022h 808032h 

Reserved 808023h 808033h 

Timer Counter (See subsection 8.1.2) 808024h 808034h 

Reserved 808025h 808035h 

Reserved 808026h 808036h 

Reserved 808027h 808037h 

Timer Period (See subsection 8.1.2) 808028h 808038h 

Reserved 808029h 808039h 

Reserved 80802Ah 80803Ah 

Reserved 80802Bh 80803Bh 

Reserved 80802Ch 80803Ch 

Reserved 80802Dh 80803Dh 

Reserved 80802Eh 80803Eh 

Reserved 80802Fh 80803Fh 

8.1.1 Timer Global-Control Register 

The timer global control register is a 32-bit register that contains the global and 
port control bits for the timer module. Table 8-1 defines the register bits, 
names, and functions. Bits 3 - 0 are the port control bits; bits 11 - 6 are the 
timer global control bits. Figure 8-3 shows the 32-bit register. Note that at re­
set, all bits are set to 0 except for DATIN (set to the value read on TCLK). 
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Figure 8-3. Timer Global-Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I xx I xx I xx xx xx xx xx xx I xx I xx I xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I xx I xx I xx I xx I TSTAT I INV I CLKSRC I C/P HLD GO I xx I xx I DATIN DATOUT jlo FUNC 

R/W RIW RIW R/W R/W RIW R R/W R/W RIW 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Table 8-1. Timer Global-Control Register Bits Summary 

Bits Name Reset Value Function 

0 FUNC 0 FUNC controls the function of TCLK. If FUNC = 0, TCLK is configured 
as a general-purpose digital 1/0 port. If FUNC = 1, TCLK is configured 
as a timer pin (see Figure 8-7 for a description of the relationship 
between FUNC and CLKSRC). 

1 jlo 0 If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general-pur-
pose 110 pin. In this sase, if jlo = 0, TCLK is configured as a general-
purpose input pin. If 1/0 = 1 , TCLK is configured as a general-purpose 
output pin. 

2 DATOUT 0 DATOUT drives TCLK when the TMS320C3x is in 1/0 port mode. 
DATOUT can also be used as an input to the timer. 

3 DATIN xt Data input on TCLK or DATOUT. A write has no effect. 

5-4 Reserved 0-0 Read as O. 

6 GO 0 The GO bit resets and starts the timer counter. When GO = 1 and the 
timer is not held, the counter is zeroed and begins incrementing on the 
next rising edge of the timer input clock. The GO bit is cleared on the 
same rising edge. GO = 0 has no effect on the timer. 

7 HLD 0 Counter hold signal. When this bit is zero, the counter is disabled and 
held in its current state. If the timer is driving TCLK, the state of TCLK 
is also held. The internal divide-by-two counter is also held so that the 
counter can continue where it left off when HLD is set to 1. The timer 
registers can be read and modified while the timer·ig being held. 
RESET has priority over HLD. Table 8-2 shows the effect of writing 
to GO and HLD. 

8 C/P 0 Clock/Pulse mode control. When C/P = 1, clock mode is chosen, and 
the signaling of the status f!?g and external output will have a 50 
percent duty cycle. When C/P = 0, the status flag and external output 
will be active for one H1 cycle during each timer period (see 
Figure 8-4). 

9 CLKSRC 0 Specifies the source of the timer clock. When CLKSRC = 1, an internal 
clock with frequency equal to one-half the H1 frequency is used to in-
crement the counter. The INV bit has no effect on the internal clock 
source. When CLKSRC = 0, an external signal from the TCLK pin can 
be used to increment the counter. The external clock is synchronized 
internally, thus allowing external asynchronous clock sources that do 
not exceed the specified maximum allowable external clock frequen-
cy. This will be less than f(H1 )/2. (See Figure 8-7 for a description of 
the relationship between FUNC and CLKSRC). 

t x = 0 or 1 
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Table 8-1. Timer Global-Control Register Bits Summary (Continued) 

Bits 

10 

11 

31'-12 

Name Reset Value Function 

INV 0 Inverter control bit. If an external clock source is used and INV = 1, the 
external clock is inverted as it goes into the counter. If the output of the 
pulse generator is routed to TCLK and INV = 1, the output is inverted 
before it goes to TCLK (see Figure 8-1). If INV = 0, no inversion is 
performed on the input or output of the timer. The INV bit has no effect, 
regardless of its value, when TCLK is used in I/O port mode. 

TSTAT 0 This bit indicates the status of the timer. It tracks the output of the 
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from 
o to 1 . A write has no effect. 

Reserved 0-0 Read as O. 

Table 8-2 shows the result of a write using specified values of the GO and HLD 
bits in the global control register. 

Table 8-2. Result of a Write of Specified Values of GO and HLD 

GO HLD Result 

0 0 All timer operations are held. No reset is performed. (Reset value) 

0 1 Timer proceeds from state before write. 

1 0 All timer operations are held, including zeroing of the counter. The GO bit 
is not cleared until the timer is taken out of hold. 

1 1 Timer resets and starts. 
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8.1.2 Timer Period and Counter Registers 

The 32-bit timer period register is used to specify the frequency of the timer sig­
naling. The timer counter register is a 32-bit register. which is reset to zero 
vvhenever it increments to the value of the period register. Both registers are 
set to 0 at reset. 

Certain boundary conditions affect timer operation, such as a zero in tHe period 
register and an overflow of the counter. These conditions are listed as follows: 

Q When the period and counter registers are zero, the operation of the timer 
is dependent upon the cif5 mode selected. In pulse mode (Cif5 = 0), 
TSTAT is set and remains set. In clock mode (Cif5 = 1), the width of the 
cycle is 2/f(H1), and the external clocks are ignored. 

Q When the counter register is not 0 and the period register = 0, the counter 
will count, roll over to 0, and then behave as described above. 

Q When the counter register is set to a value greater than the period register, 
the counter may overflow when being incremented. Once the counter 
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks over to 
o and continues. 

Writes from the peripheral bus override register updates from the counter 
and new status updates to the control register. 

8.1.3 Timer Pulse Generation 

8-6 

The timer pulse generator (see Figure 8-1) can generate several different ex­
ternal signals. These signals may be inverted with the INV bit. The two basic 
modes are pulse mode and clock mode, as shown in Figure 8-4. In both 
modes, an internal clock source has a frequency of f(H1 )/2, and an external 
clock source has a maximum frequency of f(H1 )/2.6. Refer to timer timing in 
Appendix A. In pulse mode (Cip = 0), the width of the pulse is 1/f(H1). 
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Figure 8-4. Timer Timing 

Timers 

14 ~ 2/f(H1) 
---.j 14 11/f(H1) 

I I I 
I I 1 

Jl n r 
1 1 1 1 I 

r .: 1/f(CLKSRC) I 
14 III period register/f(CLKSRC) 

i i i 
TINT TINT TINT 

(a) TSTAT and Timer Output (INV = 0) When cip = 0 (Pulse Mode) 

14 ~ 1/f(CLKSRC) 
14 ~ I 2/f(H1 ) 
I I I 
1 1 .1 

J r 
1 1 1 

~ ~ period register/f(CLKSRC) I 
I I 
14 2 x period register/f(CLKSRC) III 

i i i 
TINT TINT TINT 

(b) TSTAT and Timer Output (INV = 0) When cip = 1 (Clock Mode) 

The rate of timer signaling is determined by the frequency of the timer input 
clock and the period register. The following equations are valid with either an 
internal or an external timer clock: 

f(pulse mode) = f(timer clock) / period register 

f(clock mode) = f(timer clock) / (2 x period register) 

Figure 8-5 provides some examples of the TCLKx output when the period reg­
ister is set to various values and clock or pulse mode is selected. 

8-7 



Timers 

Figure 8-5. Timer Output Generation Examples 

(a) INV = 0, cif.i = 0 (Pulse Mode) 
Timer Period = 1 

IO-~ --D*-~- 3Hi 
Hi -.! I 

I I 

(b) INV = 0, C/P = 0 (Pulse Mode) 
Timer Period = 2 

14- 4Hi -Ji 

H14 ~ I Jl n ___ ~n ___ ~n __ ~r 
(c) INV = 0, C/P = 0 (Pulse Mode) 

Timer Period ::= 3 

I4l- 4Hi ~ 

4 2Hira- I 

(d) INV = 0, C/P = 1 (Clock Mode) 
Timer Period = 0 

14-8f;1i---~ r.-- 4Hi ~ I 
J I ~I----~ ____ ~ 

~ 12Hi--~~1 

j.-6Hi~ I 
J _I __ ~I 
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(e) INV = 0, C/P = 1 (Clock Mode) 
Timer Period = 1 

(f) INV = 0, cif.i = 1 (Clock Mode) 
Timer Period = 2 
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8.1.4 Timer Operation Modes 

The timer can receive its input and send its output in several different modes, 
depending upon the setting of CLKSRC, FUNC, and 110. The four timer modes 
of operation are defined as follows: 

Q If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal 
clock. The internal clock is not affected by the INV bit. In this mode, TCLK 
is connected to the I/O port control and can be used as a general-purpose 
I/O pin (see Figure 8-6). If 110= 0, TCLK is configured as a general-pur­
pose input pin whose state can be read in DATIN. DATOUT has no effect 
on TCLK or DATIN. If 110 = 1, TCLK is configured as a general-purpose 
output pin. DATOUT is placed on TCLK and can be read in DATIN. 

Figure 8-6. Timer 110 Port Configurations 

I 
Internal I External 

I 

DATOUT (NC) ----0 rt-TCLK 

DATIN 
Tlo = a 

(a) 

Internal 
I 
I External 
I 

JATOUT --tII.~ ___ -I."--r-1 - TCLK 

! 
DATIN 
Tlo = 1 

(b) 

Q If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal 
clock, and the timer output goes to TCLK. This value may be inverted using 
INV, and the value output on TCLK can be read in DATIN. 

Q If CLKSRC = ° and FUNC = 0, the timer is driven according to the status 
of the Tlo bit. If Tlo = 0, the timer input comes from TCLK. This value can 
be inverted using INV, and the value of TCLK can be read in DATIN. If I/O 
= 1, TCLK is an output pin. Then, TCLK and the timer are both driven by 
DATOUT. All O-to-1 transitions of DATOUT increment the counter. INV has 
no effect on DATOUT. The value of DATOUT can be read in DATIN. 

Q If CLKSRC = ° and FUNC = 1, TCLK drives the timer. If INV = 0, all O-to-1 
transitions of TCLK increment the counter. If INV = 1, aIl1-to-0 transitions 
of TCLK increment the counter. The value of TCLK can be read in DATIN. 
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Figure 8-7 shows the four timer modes of operation. 

Figure 8-7. Timer Modes as Defined by CLKSRC and FUNC 

Internal I External 
Timer I 

I 
I 
I 
I 

ClKSRC = 1 (Internal) 
FUNC = 0 (I/O Pin) 

(a) 

TClK 

Timer Internal I External 

TSTAT 

_-o---cl---;.: ____ TClK 

I 

ClKSRO = 0 (External) 
FUNC = 0 (I/O Pin) 

(c) 

Internal I External 
Timer I 

I 
f--ilI"--"4Ir-__ ,-1 -I> TClK ...... ~--= ..... 

TSTAT DATIN 

ClKSRC = 1 (Internal) 
FUNC = 1 (Timer Pin) 

(b) 

Timer Internal I External 

~---o-----+-: ~ TClK 

TSTAT 

I 

DATIN 

ClKSRC = 0 (External) 
FUNC = 1 (Timer Pin) 

(d) 

8.1.5 Timer Interrupts 
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A timer interrupt is generated whenever the timer automatically resets the tim­
er counter register to zero. The timer counter register is automatically reset to 
zero whenever it is equal to or greaterthan the value in the timer period register. 
The timer interrupt can be used to interrupt either the CPU or the DMA. Inter­
rupt enable control for each timer, for either the CPU or the DMA, is found in 
the CPU/DMA interrupt enable register. Refer to subsection 3.1.8 for more in­
formation on the CPU/DMA interrupt enable register. 

When a timer interrupt occurs, a change in state of the corresponding TCLK 
pin will be observed if the FUNC = 1 and CLKSRC = 1 inthetimerglobal-control 
register. The exact change of state depends on the state of the ciP" bit. 
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8.1.6 Timer Initialization/Reconfiguration 

The timers are controlled through memory-mapped registers located on the 
dedicated peripheral bus. A general procedure for initializing and/or reconfi­
guring the timers follows: 

1) Halt the timer by clearing the GO/HLD bits ofthe timer global-control regis­
ter. This can be accomplished by writing a 0 to the timer global-control reg­
ister. Note that the timers are halted on RESET. 

2) Configure the timer via the timer global-control register (with GO = HLD 
= 0 ), as well as the timer counter register and timer period register, if nec­

·essary. 

3) Start the timer by setting the GO/HLD bits of the timer global-control regis­
ter. 
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8.2 Serial Ports 
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The TMS320C30 has two totally independent bidirectional serial ports. Both 
serial ports are identical with a complementary set of control registers in each 
one. Only one serial port is available on the TMS320C31. Each serial port can 
be configured to transfer 8, 16, 24, or 32 bits of data per word simultaneously 
in both directions. The clock for each serial port can originate either internally, 
via the serial port timer and period registers, or externally, via a supplied clock. 
An internally generated clock is a divide-down of the clockout frequency, f(H1). 
A continuous transfer mode is available, which allows the serial port to transmit 
and receive any number of words without new synchronization pulses. 

Eight memory-mapped registers are provided for each serial port: 

Q Global-control register 

Q Two control registers for the six serial 110 pins 

Q Three receive/transmit timer registers 

Q Data-transmit register 

Q Data-receive register 

The global-control register controls the global functions of the serial port and 
determines the serial-port operating mode. Two port control registers control 
the functions of the six serial port pins. The transmit buffer contains the next 
complete word to be transmitted. The receive buffer contains the last complete 
word received. Three additional registers are associated with the transmit/re­
ceive sections of the serial-port timer. A serial-port block diagram is shown in 
Figure 8-8, and the memory map of a serial port is shown in Figure 8-9. 
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Figure 8-8. Serial-Port Block Diagram 

r Receive Section -, r- Transmit Section ---, 

~--------~ CLKR CLKX 
Receive 

Timer (16) 

RINT 

R 
OR OR 

RSR 
(32) 

ORR 
(32) 

TSTAT CLKR TSTAT 

Load 

Transmit 
Timer (16) 

XSR 
. (32) 

XINT 

OX OX 

~DX 
OXR 
(32) 
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Figure 8-9. Memory-Mapped Locations for the Serial Port 

Register Peripheral Address 

Serial Serial 
Port 0 Port 1t 

Serial-Port Global Control (See Table 8-3) 808040h 808050h 

Reserved 808041h 808051h 

FSX/OX/CLKX Port Control (See Table 8-4) 808042h 808052h 

FSR/OR/CLKR Port Control (See Table 8-5) 808043h 808053h 

R/X Timer Control (See Table 8-6) 808044h 808054h 

R/X Timer Counter (See Figure 8-13) 808045h 808055h 

R/X Timer Period (See Figure 8-14) 808046h 808056h 

Reserved 808047h 808057h 

Data Transmit (See Figure 8-15) 808048h 808058h 

Reserved 808049h 808059h 

Reserved 80804Ah 80805Ah 

Reserved 80804Bh 80805Bh 

Data Receive (See Figure 8-16) 80804Ch 80805Ch 

Reserved 808040h 80805Dh 

Reserved 80804Eh 80805Eh 

Reserved 80804Fh 80805Fh 

t Reserved locations on the TMS320C31 

8.2.1 Serial-Port Global-Control Register 
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The serial-port global-control register is a 32-bit register that contains the glob­
al control bits for the serial port. Table 8-3 defines the register bits, bit names, 
and bit functions. The register is shown in Figure 8-10. 

Peripherals 



Serial Ports 

Figure 8-10. Serial-Port Global-Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 

XLEN 

RIW R!W R!W RlW R/W RlW R!W RlW RlW 

R!W R!W R!W R!W RNI R!W R!W R!W RIW RNI RlW R R R!W R R 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

Table 8-3. Serial-Port Global-Control Register Bits Summary 

Bit Name Reset Value Function 

0 RROY 0 If RROY = 1, the receive buffer has new data and is ready to be read. A three H1/H3 
cycle delay occurs from the reading of ORR to RROY = 1. The rising edge of this sig-
nal sets RINT. If RROY= 0 at reset, the receive buffer does not have new data since 
the last read. RROY = 0 at reset and after the receive buffer is read. 

1 XROY 1 If XROY = 1, the transmit buffer has written the last bit of data to the shifter and is 
ready for a new word. A three H 1 IH3 cycle delay occurs from the loading of the trans-
mit shifter until XROY is setto 1. The rising edge ofthis signal sets XINT. If XROY = 0, 
the transmit buffer has not written the last bit of data to the transmit shifter and is not 
ready for a new word. XROY = 1 at reset. 

2 FSXOUT 0 This bit configures the FSX pin as an input (FSXOUT = 0) or an output (FSXOUT = 1). 

3 XSREMPTY 0 If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY = 1 , the transmit 
shift register is not empty. Reset or XRESET causes this bit to = O. 

4 RSRFULL 0 If RSRFULL = 1, an overrun of the receiver has occurred. In continuous mode, 
RSRFULL is set to 1 when both RSR and ORR are full. In noncontinuous mode, 
RSRFULL is set to 1 when RSR and ORR are full and a new FSR is received. A read 
causes this bit to be set to O. This bit can be set to 0 only by a system reset, a serial 
port receive reset (RRESET = 1), or a read. When the receiver tries to set RSRFULL 
to a 1 at the same time that the global register is read, the receiver will dominate and 
RSRFULL is set to 1. If RSRFULL = 0, no overrun of the receiver has occurred. 

5 HS 0 If HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode is disabled. 

6 XCLKSRCE 0 If XCLKSRCE = 1 , the internal transmit clock is used. If XCLKSRCE = 0, the external 
transmit clock is used. 

7 RCLKSRCE 0 If RCLKSRCE = 1 , the internal receive clock is used. If RCLKSRCE = 0, the external 
receive clock is used. 

8 XVAREN 0 This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate signaling 
when transmitting. With a fixed data rate, FSX is active for at least one XCLK cycle 
and then goes inactive before transmission begins. With variable data rate, FSX is 
active while all bits are being transmitted. When you use an external FSX and vari-
able data rate signaling, the OX pin is driven by the transmitter when FSX is held ac-
tive or when a word is being shifted out. 

9 RVAREN 0 This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate signaling 
when receiving. With a fixed data rate, FSR is active for at least one RCLK cycle and 
then goes inactive before the reception begins. With variable data rate, FSR is active 
while all bits are being received. 
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued) 

Bit Name Reset Value Function 

10 XFSM 0 Transmit frame sync mode. Configures the port for continuous mode opera-
tion(XFSM = 1) or standard mode (XFSM = 0). In continuous mode, only the first word 
of a block generates a sync pulse, and the rest are simply transmitted continuously 
to the end of the block. In standard mode, each word has an associated sync pulse. 

11 RFSM 0 Receive frame sync mode. Configures the port for continuous mode (RFSM =1) or 
standard mode (RFSM = 0) operation. In continuous mode, only the first word of a 
block generates a sync pulse, and the rest are simply received continuously without 
expectation of another sync pulse. In standard mode, each word received has an 
associated sync pulse. 

12 CLKXP 0 CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is active low. 

13 CLKRP 0 CLKR polarity. If CLKRP = 0, CLKR is active high. If CLKRP =1, CLKR is active low. 

14 DXP 0 DX polarity. If OXP = 0, OX is active high. If OXP = 1, OX is active low. 

15 DRP 0 DR polarity. If DRP = 0, DR is active high. If DRP = 1, DR is active low. 

16 FSXP 0 FSX polarity. If FSXP = 0, FSX is active high. If FSXP = 1, FSX is active low. 

17 FSRP 0 FSR polarity. If FSRP = 0, FSR is active high. If FSRP = 1, FSR is active low. 

19 -18 XLEN 00 These two bits define the word length of serial data transmitted. All data is assumed 
to be right-justified in the transmit buffer when fewer than 32 bits are specified. 

o 0 --- 8 bits 1 0 --- 24 bits 

o 1 --- 16 bits 1 1 --- 32 bits 

21-20 RLEN 00 These two bits define the word length of serial data received. All data is right-justified 
in the receive buffer. 

o 0 --- 8 bits 1 0 --- 24 bits 

o 1 --- 16 bits 1 1 --- 32 bits 

22 XTINT 0 Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt is disabled. 
If XTINT = 1, the transmit timer interrupt is enabled. 

23 XINT 0 Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If XINT = 1, 
the transmit interrupt is enabled. Note that the CPU transmit interrupt flag XINT is 
the logical OR of the enabled transmit timer interrupt and the enabled transmit inter-
rupt. 

24 RTINT 0 Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is disabled. 
If RTINT = 1, the receive timer interrupt is enabled. 

25 RINT 0 Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If RINT = 1, 
the receive interrupt is enabled. Note that the CPU receive interrupt flag RINT is the 
OR of the enabled receive timer interrupt and the enabled receive interrupt. 

26 XRESET 0 Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. To take 
the transmit side of the serial port out of reset, set XRESET to 1. However, do not 
set XRESET to 1 until at least three cycles after XRESET goes inactive. This applies 
only to system reset. Setting XRESET to 0 does not change the contents of any of 
the serial-port control registers. It places the transmitter in a state corresponding to 
the beginning of a frame of data. Resetting the transmitter generates a transmit inter-
rupt. Reset this bit during the time the mode of the transmitter is set. XFSM can be 
toggled without resetting the global-control register. 

8-16 Peripherals 



Serial Ports 

Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded) 

Bit Name Reset Value Function 

27 RRESET 0 Receive reset. If RRESET = 0, the receive side of the serial port is reset. To take 
the receive side of the serial port out of reset, set RRESET to 1. Setting RRESET 
to 0 does not change the contents of any of the serial-port control registers. It places 
the receiver in a state corresponding to the beginning of a frame of data. Reset this 
bit at the same time the mode of the receiver is set. RFSM can be toggled without 
resetting the global-control register. 

31-28 Reserved 0-0 Read as O. 

8.2.2 FSX/OX/CLKX Port Control Register 

This 32-bit port control register controls the function of the serial port FSX, OX, 
and CLKX pins. At reset, all bits are set to O. Table 8-4 defines the register bits, 
bit names, and functions. Figure 8-11 shows this port control register. 

Figure 8-11. FSXIOXlCLKX Port Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx xx I xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 5 3 2 

R RIW RlW RIW R R/W RIW R/W R RIW RIW RIW 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Table 8-4. FSXIOXlCLKX Port Control Register Bits Summary 

Bit Name Reset Value Function 

0 CLKXFUNC 0 CLKXFUNC controls the function of CLKX. If CLKXFUNC = 0, CLKX is confi-
gured as a general-purpose digital 110 port. If CLKXFUNC = 1, CLKX is a serial 
port pin. 

1 CLKXIIO 0 If CLKX I/O = 0, CLKX is configured as a general-purpose input pin. If CLKX 
1/0 = 1, CLKX is configured as a general-purpose output pin. 

2 CLKXDATOUT 0 Data output on CLKX. 

3 CLKXDATIN x Data input on CLKX. A write has no effect. 

4 DXFUNC 0 DXFUNC controls the function of DX. If DXFUNC = 0, DX is configured as a 
general-purpose digital I/O port. If DXFUNC = 1, DX is a serial port pin. 

5 DX T/o 0 If DX I/O = 0, DX is configured as a general-purpose input pin. If DX T/o = 1, 
DX is configured as a general-purpose output pin. 

6 DXDATOUT 0 Data output on DX. 

7 DXDATIN xt Data input on DX. A write has no effect. 

8 FSXFUNC 0 FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is configured 
as a general-purpose digital 1/0 port. If FSXFUNC = 1, FSX is a serial port pin. 

t x = 0 or 1 
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Table 8-4. FSXJOXlCLKX Port Control Register Bits Summary (Continued) 

Reset Value. Bit Name Function 

0 9 FSX ilo If FSX]/O = 0, FSX is configured as a general-purpose input pin. 
If FSX 1/0 = 1, FSX is configured as a general-purpose output pin. 

0 10 FSXDATOUT Data output on FSX. 

xt 11 FSXDATIN Data input on FSX. A write has no effect. 

0-0 31-12 Reserved Read as O. 

t x = 0 or 1 

8.2.3 FSR/DR/CLKR Port Control Register 

This 32-bit port control register is controlled by the function of the serial port 
FSR, DR, and CLKR pins. At reset, all bits are set to O. Table 8-5 defines the 
register bits, the bit names, and functions. Figure 8-12 illustrates this port con­
trol register. 

Figure 8-12. FSRIORlCLKR Port Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 

15 14 12 11 7 6 5 4 3 2 0 

R R/W R/W R/W R R/W RNY R/W R R/W R/W RNI 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Table 8-5. FSRIORICLKR Port Control Register Bits Summary 

Bit Name Reset Value Function 

0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC = 0, CLKR is 
configured as a general-purpose digital 1/0 port. If CLKRFUNC = 1, 
CLKR is a serial port pin. 

1 CLKRilo 0 If CLKRYO = 0, CLKR is configured as a general-purpose input pin. 
If CLKRI/O = 1, CLKR is configured as a general-purpose output pin. 

2 CLKRDATOUT 0 Data output on CLKR. 

3 CLKRDATIN x Data input on CLKR. A write has no effect. 

4 DRFUNC 0 DRFUNC controls the function of DR. If DRFUNC = 0, DR is configured 
as a general-purpose digital 1/0 port. If DRFUNC = 1 , DR is a serial port 
pin. 

S DR.l/O 0 If DRI/O = 0, DR is configured as a general-purpose input pin. 
If DRIIO = 1, DR is configured as a general-purpose output pin. 

6 DRDATOUT 0 Data output on DR. 

7 DRDATIN xt Data input on DR. A write has no effect. 

S FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is confi-
gured as a general-purpose digital 1/0 port. If FSRFUNC = 1, FSR is a 
serial port pin. 

t x = 0 or 1 
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Table 8-5. FSRIDRICLKR Port Control Register Bits Summary (Continued) 

Bit Name Reset Value Function 

9 FSR Tlo 0 If FSR ]10 = 0, FSR is configured as a general-purpose input pin. 
If FSR 1/0 = 1, FSR is configured as a general-purpose output pin. 

10 FSRDATOUT 0 Data output on FSR. 

11 FSRDATIN x Data input on FSR. A write has no effect. 

31-12 ReseNed 0-0 Read as O. 

8.2.4 Receive/Transmit Timer Control Register 

A 32-bit receive/transmit timer control register contains the control bits for the 
timer module. At reset, all bits are set to O. Table 8-6 lists the register bits, bit 
names,andfunctions. Bits5 - Ocontrol the transmitter timer. Bits 11 - 6con­
trol the receiver timer. Figure 8-13 shows the register. The serial port receive/ 
transmit timer function is similar to timer module operation. It can be consid­
ered as a 16-bit-wide timer. Referto Section 8.1 for more information on timers. 

Figure 8-13. ReceivelTransmit Timer Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I I xx I xx xx xx xx xx xx xx I xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

R AMI AMI R AMI RlW R RlW RtN AMI 

NOTE: xx = reseNed bit, read as O. 
, R = read, W = write. 

Table 8-6. ReceivelTransmit Timer Control Register 

Bit Name Reset Value Function 

0 XGO 0 The XGO bit resets and starts the transmit timer counter. When XGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The XGO 
bit is cleared on the same rising edge. Writing 0 to XGO has no effect 
on the transmit timer. 

1 XHLD 0 Transmit counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter 
is also held so that the counter will continue where it left off when XHLD 
is set to 1. The timer registers may be read and modified while the timer 
is being held. RESET has priority over XHLD. 

, 2 XC/P 0 XClocklPulse mode control. When XC/P = 1, theclockmodeis chosen. 
The signaling of the ~atus flag and external output has a 50-percent 
duty cycle. When XC/P = 0, the status flag and external output are active 
for one CLKOUT'Cycle during each timer period. 
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Table 8-6. Receive/Transmit Timer Control Register (Concluded) 

Bit Name Reset Value Function 

3 XCLKSRC 0 This bit specifies the source of the transmit timer clock. When 
XCLKSRC = 1, an internal clock with frequency equal to one-half the 
CLKOUTfrequency is used to increment the counter. When XCLKSRC 
= 0, an external signal from the CLKX pin can be used to increment the 
counter. The external clock source is SYNChronized internally, thus al-
lowing for external aSYNChronous clock sources that do not exceed 
the specified maximum allowable external clock frequency, i.e., less 
than f(H1 )/2.6. 

4 Reserved 0 Read as zero. 

5 XTSTAT 0 This bit indicates the status of the transmit timer. It tracks what would 
be the output ofthe uninverted CLKX pin. This flag sets a CPU interrupt 
on a transition from 0 to 1. A write has no effect. 

6 RGO 0 The RGO bit resets and starts the receive timer counter. When RGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The RGO 
bit is cleared on the same rising edge. Writing 0 to RGO has no effect 
on the receive timer. 

7 RHLD 0 Receive counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter 
is also held so that the counter will continue where it left off when RHLD 
is set to 1. The timer registers may be read and modified while the timer 
is being held. RESET has priority over RHLD. 

8 RC/P 0 RClocklPulse mode control. When RC/P = 1 , the clock mode is chosen. 
The signaling of the slatus flag and external output has a 50-percent 
duty cycle. When RC/P = 0, the status flag and external output are ac-
tivetor one CLKOUT cycle during each timer period. 

9 RCLKSRC 0 This bit specifies the source of the receive timer clock. When RCLKSRC 
= 1 , an internal clock with frequency equal to one-half the CLKOUT fre-
quency is used to increment the counter. When RCLKSRC = 0, an ex-
ternal signal from the CLKR pin can be used to increment the counter. 
The external clock source is SYNChronized internally, thus allowing for 
external aSYNChronous clock sources that do not exceed the specified 
maximum allowable external clock frequency, i.e., less than f(H1 )/2.6. 

10 Reserved 0 Read as.zero. 

11 RTSTAT 0 This bit indicates the status of the receive timer. It tracks what would be 
the output of the uninverted CLKR pin. This flag sets a CPU interrupt 
on a transition from 0 to 1. A write has no effect. 

31-12 Reserved 0-0 Read as O. 
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8.2.5 Receive/Transmit Timer Counter Register 

The receive/transmit timer counter register. is a 32-bit register (see 
Figure 8-14). Bits 15 - a are the transmittimercounter, and bits31 - 16are 
the receive timer counter. Each counter is set to a whenever it increments to 
the value of the period register (Section 8.2.6). It is also set to a at reset. 

Figure 8-14. ReceivelTransmit Timer Counter Register 
16 

Receive Counter 

15 o 
Transmit Counter 

NOTE: All bits are read/write. 

8.2.6 Receive/Transmit Timer Period Register 

The receive/transmit timer period register is a 32-bit register (see 
Figure 8-15). Bits 15 - a are the timer transmit period, and bits 31 - 16 are 
the receive period. Each register is used to specify the period of the timer. It 
is also set to a at reset. 

Figure 8-15. ReceivelTransmit Timer Period Register 
31 

15 

Receive Period 

Transmit Period 

NOTE: All bits are read/write. 

8.2. 7 Data-Transmit Register 

16 

o 

When the data-transmit register (DXR) is loaded, the transmitter loads the 
word into the transmit shift register (XSR), and the bits are shifted out. The 
delay from a write to DXR until an FSX occurs (orcan be accepted) is two CLKX 
cycles. The word is not loaded into the shift register until the shifter is empty. 
When DXR is loaded into XSR, the XRDY bit is set, specifying that the buffer 
is available to receive the next word. Four tap points within the transmit shift 
register are used to transmit the word. These tap points correspond to the four 
data word sizes and are illustrated in Figure 8-16 . The shift is a left-shift (LSB 
to MSB) with the data shifted out of the MSB corresponding to the appropriate 
tap point. 
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Figure 8-16. Transmit Buffer Shift Operation 

31 

32-bit 
word tap 

24 23 

II 
24-bit 
word tap 

f- Shift Direction f-

16 15 

16-bit 
word tap 

a 7 

a-bit 
word tap 

o 

8.2.8 Data-Receive Register 

Figure 8-17. 

8-22 

When serial data is input, the receiver shifts the bits into the receive shift regis­
ter (RSR). When the specified number of bits are shifted in, the data-receive 
register (ORR) is loaded from RSR, and the RROY status bit is set. The receiv­
er is double-buffered. If the ORR has not been read and the RSR is full, the re­
ceiver is frozen. New data coming into the OR pin is ignored. The receive shifter 
will not write over the ORR. The ORR must be read to allow new data in the 
RSR to be transferred to the ORR. When a write to ORR occurs at the same 
time that a RSR to ORR transfer takes place, the RSR to ORR transfer has 
priority. 

Data is shifted to the left (LSB to MSB). Figure 8-17 illustrates what happens 
when words less than 32 bits are shifted into the serial port. In this figure, it is 
assumed that an 8-bit word is being received and that the upper three bytes 
of the receive buffer are originally undefined. In the first portion of the figure, 
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left. 
When the data receive register is read, both bytes a and b are read. 

Receive Buffer Shift Operation 

f- Shift Direction f-

31 24 23 16 15 a 7 0 

After Byte a 
I X I X I X I a I 

After Byte b I X I X I a I b I 
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8.2.9 Serial-Port Operation Configurations 

Several configurations are provided for the operation of the serial port clocks 
and timer. The clocks for each serial port can originate either internally or exter­
nally. Figure 8-18 shows serial port clocking in the I/O mode (FUNC = 0) when 
CLKX is either an input or an output. Figure 8-19 shows clocking in the serial­
port mode (FUNC = 1). Both figures use a transmit section for an example. The 
same relationship holds for a receive section. 

Figure 8-18. Serial-Port Clocking in liD Mode 

Internal I External 

TSTAT Internal I 
inmer in \-.- Clock :. 

DATOU;SR : ~ I I 

DATIN 

FUNC = 0 (1/0 Mode) 
ClKXI/O = 1 (ClKX, an Output) 

XClKSRC = 1 (Internal ClK for Timer) 

(a) 

Internal I External 

TS~ . L._lnternal I 
---: Timer In r---- Clock I 

I XSR I.. T : .. ClKX 

DATOUT (NC) --0 + 
DATIN --.4----'-

FUNC = 0 (1/0 Mode) 
ClKXI/O = 0 (ClKX, an Input) 

XClKSRC = 1 (Internal ClK for Timer) 

(c) 

Internal I External 

DATAOUT--I~---' 

DATIN -.a-----' 

FUNC = 0 (110 Mode) 

I 
I 

ClKXI/O = 1 (ClKX, an Output) 
XClKSRC = 0 (External ClK for Timer) 

(b) 

Internal I External 

I 
I 

..... ...--r4- ClKX 

DATOUT (NC)--o 

DATIN --4-----' 

FUNC = 0 (1/0 Mode) 
ClKXI/O = 0 (ClKX, an Input) 

XClKSRC = 0 (External ClK for Timer) 

(d) 
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Figure 8-19. Serial-Port Clocking in Serial-Port Mode 

Internal I External Interna\ External 
Internal I ~ Internal I 
Clock I ~ Clock I 

~ I 
XSR I 'L-./P'" ClKX ~tjt ClKX 

DATOUT (NC) -0 INV DATOUT (NC) -0 

DATIN --4-----1 DATIN INV 

FUNC = 1 (Serial-Port Mode) 
XClKSRCE= 1 (Output Serial-Port ClK) 
XClKSRC = 0 or 1 

(a) 

FUNC = 1 (Serial-Port Mode) 
XClKSRCE= 0 (Input Serial-Port ClK) 
XClKSRC = 1 (Internal ClK for Timer) 

(b) 

Internal I External 
I 
I 
I 

tjtClKX 

INV 

FUNC = 1 (Serial-Port Mode) 
XClKSRCE= 0 (Input Serial-Port ClK) 
XClKSRC = 0 (External ClK for Timer) 

(c) 

8.2.10 Serial-PortTiming 
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The formula for calculating the frequency of the serial-port clock with an inter­
. nally generated clock is dependent upon the operation mode of the serial-port 
timers, defined as 

f (pulse mode) = f (timer c1ock)/period register 

f (clock mode) = f (timer clock)/(2 x period register) 

An externally generated serial-port clock (CLKX or CLKR) has a maximum fre­
quency of less than f(H1 )/2.6. See serial port timing in Chapter 13. Also, see 
subsection 8.1.3 for information on timer pulse/clock generation. 

Transmit data is clocked out on the rising edge of the selected serial-port clock. 
Receive data is latched into the receive shift register on the falling edge of the 
serial-port clock. All data is transmitted and loaded MSB first and right-justified. 
If fewer than 32 bits are transferred, the data are right-justified in the 32-bit 
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are 
the bits that are transmitted. 
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The transmit ready (XRDY) signal specifies that the data-transmit register 
(DXR) is available to be loaded with new data. XRDY goes active as soon as 
the data is loaded into the transmit shift register (XSR). The last word may still 
be shifting out when XRDY goes active. If DXR is loaded before the last word 
has completed transmission, the data bits transmitted will be consecutive; i.e., 
the LSB of the first word immediately precedes the MSB of the second, with 
all signaling valid as in two separate transmits. XRDY goes inactive when DXR 
is loaded and remains inactive until the data is loaded into the shifter. 

The receive ready (RRDY) signal is active as long as a new word.of data is 
loaded into the data receive register and has not been read. As soon as the 
data is read, the RRDY bit is turned off. 

When FSX is specified as an output, the activity of the signal is determined 
solely by the internal state of the serial port. If a fixed data rate is specified, FSX 
goes active when DXR is loaded into XSR to be transmitted out. One serial­
clock cycle later, FSX turns inactive, and data transmission begins. If a variable 
data rate is specified, the FSX pin is activated when the data transmission be­
gins, and remains active during the entire transmission of the word. Again, the 
data is transmitted one clock cycle after it is loaded into the data transmit regis­
ter. 

An input FSX in the fixed data rate mode should go active for at least one serial 
clock cycle and then inactive to initiate the data transfer. The transmitter then 
sends the number of bits specified by the LEN bits. In the variable data-rate 
mode, the transmitter begins sending from the time FSX goes active until the 
number of specified bits has been shifted out. In the variable data-rate mode, 
when the FSX status changes prior to all the data bits being shifted out, the 
transmission completes, and the DX pin is placed in a high-impedance state. 
An FSR input is exactly complementary to the FSX. 

When using an external FSX, if DXR and XSR are empty, a write to DXR results 
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs. 
When the external FSX is received, the XSR begins shifting the data. If XSR 
is waiting for the externarFSX, a write to DXR will change DXR, but a DXR-to­
XSR transfer will not occur. XSR begins shifting when the external FSX is re­
ceived, or when it is reset using XRESET. 

Continuous Transmit and Receive Modes 

When continuous mode is chosen, consecutive writes do not generate or ex­
pect new sync pulse signaling. Only the first word of a block begins with an ac­
tive synchronization. Thereafter, data continues to be transmitted as long as 
new data is loaded into DXR before the last word has been transmitted. As 
soon as TXRDY is active and all of the data has been transmitted out of the 
shift register, the DX pin is placed in a high-impedance state, and a subsequent 
write to DXR initiates a new block and a new FSX. 

Similarly with FSR, the receiver continues shifting in new data and loading 
ORR. If the data-receive buffer is not read before the next word is shifted in, 
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subsequent incoming data will be lost. The RFSM bit can be used to terminate 
the receive-continuous mode. 

Handshake Mode 

The handshake mode (HS = 1) allows for direct connection between proces­
sors. In this mode, all data words are transmitted with a leading 1 (see 
Figure 8-20). For example, if an 8-bit word is to be transmitted, the first bit sent 
is a 1, folloWed by the 8-bit data word. 

In this mode, once the serial port transmits a word, it will not transmit another 
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that 
precedes every data word is, in effect, a request bit. 

Figure 8-20. Data Word Format in Handshake Mode 

1<1------- Data Word (8 Bits) -------Il4"! 
I 

DX ad-

After a serial port receives a word (with the leading 1) and that word has been 
read from the ORR, the receiving serial port sends a single 0 to the transmitting 
serial port. Thus, the single 0 bit acts as an acknowledge bit (see Figure 8-21). 
This single acknowledge bit is sent every time the ORR is read, even if the ORR 
does not contain new data. 

Figure 8-21. Single Zero Sent as an Acknowledge 
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DX---Q= 
single zero 

When the serial port is placed in the handshake mode, the insertion and dele­
tion of a leading 1 for transmitted data, the sending of a 0 for acknowledgement 
of received data, and the waiting for: this acknowledge bit are all performed au­
tomatically. Using this scheme, it is simple to connect processors with no exter­
nal hardware and to guarantee secure communication. A typical configuration 
is shown in Figure 8-22. 

In the handshake mode, FSX is automatically configured as an output. Contin­
uous mode is automatically disabled. After a system reset or XRESET, the 
transmitter is always permitted to transmit. The transmitter and receiver must 
be reset when entering the ~andshake modEL 
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Figure 8-22. Direct Connection Using Handshake Mode 

TMS320C3x #1 

CLKX 
FSX 

OX 

CLKR ~ 

FSR 
DR 

8.2.11 Serial-Port Interrupt Sources 

. A serial port has four interrupt sources: 

Serial Ports 

TMS320C3x #2 
.. CLKR ... FSR .. 
.. DR 

CLKX 
FSX 
DX 

1) The transmit timer interrupt: The rising edge of XTSTAT causes a single­
cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is dis­
abled. 

2) The receive timer interrupt: The rising edge of RTSTAT causes a single­
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is dis­
abled. 

3) The transmitter interrupt: Occurs immediately following a DXR-to-XSR 
transfer. The transmitter interrupt is a single-cycle pulse. When the 
serial-port global-control register bit XINT is 0, this interrupt pulse is dis­
abled. 

4) The receiver interrupt: Occurs immediately following a RSR to DRR trans­
fer. The receiver interrupt is a single-cycle pulse. When the serial-port glo­
bal-control register bit RINT is 0, this interrupt pulse is disabled. 

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create 
the CPU transmit interrupt flag XINT. The receive timer interrupt pulse is ORed with the 
receiver interrupt pulse to create the CPU receive interrupt flag RINT. 
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8.2.12 Serial-Port Functional Operation 
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The following paragraphs and figures illustrate the functional timing of the vari­
ous serial-port modes of operation. The timing descriptions are presented with 
the assumption that all signal polarities are configured to be positive, i.e., 
CLKXP = CLKRP = OXP = ORP = FSXP = FSRP = O. Logical timing, in situa­
tions where one or more of these polarities are inverted, is the same except 
with respect to the opposite polarity reference points, i.e. rising vs. falling 
edges, etc. 

These discussions pertain to the numerous operating modes and configura­
tions of the serial-port logic. When it is necessary to switch operating modes 
or change configurations of the serial port, do this only when XRESET or 
RRESET are asserted (low), as appropriate. Therefore, when transmit config­
urations are modified, XRESET should be low, and when receive configura­
tions are modified, RRESET should be low. When you use handshake mode, 
however, since the transmitter and receiver are interrelated, you should make 
any configuration changes with XRESET and RRESET both low. 

All of the serial-port operating configurations can be broadly classified in two 
categories: fixed data-rate timing and variable data-rate timing. The following 
paragraphs discuss fixed and variable data-rate operation and all of their varia­
tions. 

Fixed Data-Rate Timing Operation 

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and 
continuous mode. In burst mode operation, transfers of single words are sepa­
rated by periods of inactivity on the serial port. In continuous mode, there are 
no gaps between successive word transfers; the first bit of a new word is trans­
ferred on the next CLKX/R pulse following the last bit of the previous word. This 
occurs continuously until the process is terminated. . 

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers, 
and each transfer involves a single word. With an internally generated FSX 
(see Figure 8-23), transmission is initiated by loading OXR. In this mode, there 
is a delay of approximately 2.5 CLKX cycles (depending on CLKX and H1 fre­
quencies) from the time OXR is loaded until FSX occurs. With an external FSX, 
the FSX pulse initiates the transfer, and the 2.5-cycle delay effectively be­
comes a setup requirement for loading OXR with respect to FSX. Therefore, 
in this case, OXR must be loaded no later than 3 CLKX cycles before FSX oc­
curs. Once the XSR is loaded from the OXR, an XINT is generated. 
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Figure 8-23. Fixed Burst Mode 

CLKX/R 

FSR/FSX (External) _________ _ 

FSX (Internal) ----------------
DX/DR ----------------< A1 >C "--!.A~NU--------

DXR Loaded XINT RINT 

In receive operations, once a transfer is initiated, FSR is ignored until the last 
bit. For burst mode transfers, FSR must be low during the last bit, or another 
transfer will be initiated. After a full word has been received and transferred to 
the ORR, an RINT is generated. 

In fixed data rate mode, continuous transfers may be performed even if 
R/XFSM = 0, as long as properly timed frame synchronization is provided, or 
if DXR is reloaded each cycle with an internally generated FSX (see 
Figure 8-24). 

Figure 8-24. Fixed Continuous Mode With Frame Sync 

CLKX/R 

FSX (Internal) _______ _ 

FSR/FSX (External) r,r----J r,r--J 
DR/DX ____________ ~~~ 

r i ~:~i 1 ~1i 
DXR Loaded XINT 

DXR Loaded Load D-XR 
Read DRR 

Load DXR 
Read DRR 

For receive operations and with externally generated FSX, once transfers have 
begun, frame sync pulses are required only during the last bit transferred to 
initiate another contiguous transfer. Otherwise, frame sync inputs are ignored. 
Therefore, continuous transfers will occur if frame sync is held high. With an 
internally generated FSX, there is a delay of approximately 2.5 CLKX cycles 
from the time DXR is loaded until FSX occurs. This delay occurs each time 
DXR is loaded; therefore, during continuous transmission, the instruction that 
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loads OXR must be executed by the N-3 bit for an N-bit transmission. Since 
delays due to pipelining may vary, a conservative margin of safety should be 
incorporated in allowing for this delay. 

Once the process begins, an XINT and an RINTare generated atthe beginning 
of each transfer. The XINT indicates that the XSR has been loaded from OXR 
and can be used to cause OXR to be reloaded. To maintain continuous trans­
mission in this mode, especially with an internally generated FSX, OXR must 
be reloaded early in the ongoing transfer. 

TheRINT indicates that a full word has been received and transferred into the 
ORR. RINT is therefore commonly used to indicate an appropriate time to read 
ORR. 

Continuous transfers are terminated by discontinuing frame sync pulses or, 
in the case of internally generated FSX, not reloading OXR. 

Continuous serial-port trans,fers can be accomplished without the use of frame 
sync pulses if R/XFSM are set to one. In this mode, operation of the serial port 
is similar to continuous operation with frame sync except that a frame sync 
pulse is involved only in the first word transferred, and no further frame sync 
pulses are used. Followingthe first word transferred (see Figure 8-25), no in­
ternal frame sync pulses are generated, and frame sync inputs are ignored. 
Additionally, R/XFSM should be set prior to or during the first word transferred 
and must be set no later than the transfer of the N-1 bit of the first word, except 
for transmit operations. For transmit operations in the fixed data-rate mode, 
XFSM must be set no later than the N-2 bit. Clearing R/XFSM must be per­
formed no later than the N-1 bit to be recognized in the current cycle. 

Figure 8-25. Fixed Continuous Mode Without Frame Sync 
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II 
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OR/OX -------------GDC~~ 
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1 
I i I i 

XINT Set XINT XINT 
R/XFSM RINT RINT 

OXR Loaded 

OXR Loaded Load OXR Load OXR 
Read ORR Read ORR 

Timing of RINT and XINT and data transfers to and from OXR and ORR, re­
spectively, are the same as in fixed data-rate continuous mode with frame 
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sync. This mode of operation also exhibits the same delay of 2.5 CLKX cycles 
after DXR is loaded before an internal FSX is generated. As in the case of con­
tinuous operation in fixed data-rate mode with frame sync, DXR must be re­
loaded no later than transmission of the N-3 bit. 

When you use continuous operation in fixed data-rate mode, R/XFSM may be 
set and cleared as desired, even during active transfers, to enable or disable 
the use of frame sync pulses as dictated by system requirements. Under most 
conditions, the effect of changing the state of R/XFSM occurs during the trans­
fer in which the R/XFSM change was made, provided the change was made 
early enough in the transfer. For transmit operations with internal FSX in fixed 
data-rate mode, however, a one-word delay occurs before frame sync pulse 
generation resumes when clearing XFSM to zero (see Figure 8-26). There­
fore, one additional word is transferred in this case before the next FSX pulse 
is generated. Also note that, as discussed previously, clearing XFSM will be 
recognized during the transmission of the current word being transmitted as 
long as XFSM is cleared no laterthan the N-1 bit. Setting XFSM is recognized 
as long as XFSM is set no later than the N-2 bit. 

Figure 8-26. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal 

I I I I I 
I 15t Word I 2nd Word I 3rd Word 14th Word 5th Word I 
I I I I I I 
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FSX I I I I I I 

(Internal) n I In· n n r 
I I I I I I 

DX--------~~~~~~O<EE 

r r r 
LOAD DXR SET XFSM RESET XFSM 

Variable Data-Rate Timing Operation 

Variable data-rate timing also supports operation in either burst or continuous 
mode. Burst mode operation with variable data-rate timing is similar to burst 
mode operation with fixed data rate timing. With variable data-rate timing (see 
Figure 8-27), however, FSX/R and data timing differ slightly at the beginning 
and end of transfers. Specifically, there are three major differences between 
fixed and variable data-rate timing: 

1) FSX/R pulses typically last for the entire transfer interval, although FSR 
and external FSX are ignored after the first bit transferred. FSX/R pulses 
in fixed data-rate mode typically last only one CLKX/R cycle but can last 
longer. 
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2) Data transfer begins during the CLKX/R cycle in which FSX/R occurs, rath­
er than the CLKXlR cycle following FSX/R, as is the case with fixed data­
rate timing. 

3) With variable data-rate timing, frame sync inputs are ignored until the end 
of the last bit transferred, rather than the beginning of the last bit trans­
ferred as is the case with fixed data-rate timing. 

Figure 8-27. Variable Burst Mode 

CLKX/R 
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When you transmit continuously in variable data-rate mode with frame sync, 
timing is the same as for fixed data-rate mode, except for the differences be­
tween these two modes as described under burst mode operation with variable 
data-rate timing. The only other exception to this is that DXR must be reloaded 
no later than the N-4 bit to maintain continuous operation of the variable data­
rate mode (see Figure 8-28); no later than the N-3 bit for fixed data-rate 
mode. 

Figure 8-28. Variable Continuous Mode With Frame Sync 

CLKX/R 

FSR/FSX (External) ________ ---' 

FSX (Internal) ________ ---' ';\' 

DX/DR --------------<3DC~'--""-=:.:.:.....I,......,;:;~,'\...,;;;.;;;...,,'---
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DXR laded xINt1 xlT 1 
RINT 

Load 
DXR Load DXR 

Read DRR 
Load DXR 
Read DRR 

Peripherals 



Serial Ports 

Continuous operation in variable data rate mode without frame sync is also 
similarto continuous operation without frame sync in fixed data-rate mode. As 
with variable data-rate mode continuous operation with frame sync (see 
Figure 8-29), DXR must be reloaded no later than the N-4 bit to maintain con­
tinuous operation. Additionally, when R/XFSM is set or cleared in the variable 
data-rate mode, the modification must be made no later than the N-1 bit for 
the result to be affected in the current transfer. 

Figure 8-29. Variable Continuous Mode Without Frame Sync 

CLKX/R 

FSR/FSX (External) 

FSX (Internal) 
----------------~ 

----------------~ 
OX/DR ----________ ~~ 

r X!T It xIT 
DXR Loaded R/XFSM RINT 

DXR Loaded 

8.2.13 TMS320C3x Serial Port Interface Examples 

8.2.13.1 Handshake Mode Example 

Load DXR 
Read ORR 

XINT 
RINT 

Load DXR 
Read ORR 

When handshake mode is used, both the transmit (FSX/DS/CLKX) and re­
ceive (FSR/DR/CLKR) signals are used to transmit and receive data, respec­
tively. In other words, even if the TMS320C3x serial port is receiving data only 
with handshake mode, the transmit signals are still needed to transmit the ac­
knowledge signal. The serial port registers, setup for the TMS320C3x serial 
port handshake communication, as shown in Figure 8-22 are shown below: 

Global control 011 xOxOxxxxOOOOOOOOxx011 001 OOb 
Transmit port control 0111 h 
Receive port control 0111 h 
S_port timer control ·OFh 
S_port timer count Oh 
S_port timer period ~ 01 h (if two C3xs have the same 

system clock) 
Note: x = user configurable. 

Since the FSX is set as an output and continuous mode is disabled when hand­
shake mode is selected, the SFSM and RFSM bits should be set to 0 and the 
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8-34 

Setup 1: 

FSXOUT bit should be set to 1 in the global control register. The XRESET, 
RRESET, and HS bits should also be set to 1 in order to start the handshake. 
communication. It is recommended that the polarity of the serial port pins be 
set to active high for simplification. Although the CLKX/CLKR can be set as ei­
ther input or output, it is recommended to set the CLKX as output and the CLKR 
as input. The rest of the bits are user configurable as long as both serial ports 
have the consistent setup. 

The serial port timer Is needed only if the CLKX or CLKR is configured as an 
output. In the above case, since only the CLKX is configured as an output, the 
timer control register should be set to OFh. When the serial port timer is used, 
the serial timer period register must also be set to the proper value for the clock 
speed. The serial porttimerclockspeed setup is similarto the TMS320C3xtim­
er. Refer to Section B.1 for detailed information on timer clock generation. 

The maximum clock frequency for serial transfers is F(CLKIN)/4 if the internal 
clock is used and F(CLKIN)/5.2 if an external clock is used. Therefore, if two 
TMS320C3xs have the same system clock, as in the the case above., the timer 
period register should be set to be equal to or greater than 1 which make the 
clock frequency equal to F(CLKIN)/B. . . 

Examples of serial port register setups for the above case are shown below. 
(Assume two TMS320C3xs have the same system clock.) 

Global control 
Transmit port control 
Receive port control 
S_port timer control 
S_port timer count 
S_port timer period 

OEBC0064h 
0111 h 
0111 h 
OFh 
Oh 

;;:: 01h 

; 32 bits, fixed data rate, burst mode, 
; FSX (output), CLKX (output) = F(CLKIN)/8 
; CLKR (input), handshake mode, transmit 
; and receive interrupt is enabled. 

Setup 2: 
Global control 
Transmit port control 
Receive port control 
S_port timer control 
S_port timer count 
S_port timer period 

OC000364h 
= 0111 h 

0111 h 
= OFh 

Oh 
;;:: 01h 

; B bits, variable data rete, burst mode, 
; FSX (output), CLKX (output) = f(CLKIN)/24 
; CLKR (input), handshake mode, transmit 
; and receive interrupt is disabled. 

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand­
shake mode, the TMS320C3x serial port can distinguish the signals between 
the data and the acknowledge signal. Therefore, even if the TMS320C3x serial 
port receives the data before the acknowledge signal, the data will not be misin­
terpreted as the acknowledge signal and be lost. In addition, the acknowledge 
signal is not generated until the data is read from the data receive register, 
ORR. Therefore, the TMS320C3x will not transmit the data and the acknowl­
edge signal simultaneously. 
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8.2.13.2 Serial Ale Interface Example 

The TlC320C4x analog interface chips (AIC) from Texas Instruments offer a 
zero glue-logic interface to the TMS320C3x family of DSPs. The interface is 
shown in Figure 8-30. This interface is used as an example of the TMS320C3x 
serial port configuration and operation. . 

Figure 8-30. TMS320C3x Zero Glue-Logic Interface to TLC3204x Example 

TMS320C3x TMS320C4x 

XFO RESET WORD -ClKRO f-J SClK 
ClKXO OUT+ 

FSRO FSR OUT-
ORO t.. DR 

FSXO ~ FSX IN+ 
DXO 

.. 
OX IN-

TClKO 
.. 

MClK -

f-

r-. 

f-

~ 
GND 

VCC 

Analog 
Out 

Analog 
In 

The TMS320C3x resets the AIC through the external pin XFO. It also generates 
the master clock for the AIC through the timer 0 output pin, TClKO. (Precise 
selection of a sample rate may require the use of an external oscillator rather 
than the TClKO outputto drive the AIC MClK input.) In turn, the AIC generates 
the ClKRO and ClKXO shift clocks as well as the FSRO and FSXO frame syn­
chronization signals. 

A typical use of the AIC requires an 8 kHz sample rate of the analog signal. If 
the clock input frequency to the TMS320C3x device is 30 MHz, the following 
values should be loaded into the serial port and timer registers. 

Serial Port: 
Port global control register: 
FSX/DXlClKX port control register 
FSR/DR/ClKR port control register 
Timer: 
Timer global control register 
Timer period register 

8.2.13.3 Serial AID and DIA Interface Example 

OE970300h 
00000111h 
00000111h 

000002C1h 
00000001h 

The DSP201/2 and DSP1 01/2 family of D/As and AIDs from Burr Brown also 
offer a zero glue-logic interface to the TMS320C3x family of DSPs. The inter­
face is shown in Figure 8-31. This interface is used as an example of the 
TMS320C3x serial port configuration and operation. 
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Figure 8-31. TMS320C3x Zero Glue-Logic Interface to Burr Brown AID and DIA Example 
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Burr Brown OSP102 NO Burr Brown OSP202 Of A 

CASC r--- +5V +5V- CASC 

TMS320C3x 

XCLK ~ CLKRO CLKXO XCLK 

SOUTA ORO OXO SINA 
±2.75 V-t VINA L VOUTA r-. 

SYNC SINB 
FSRO 

±3V 

±2.75 V-t VINB FSXO ~ SYNCVOUTB ~ ±3V 

OSCO 
SSF f- +5V 

OSC1 +5V- SSF 
r-

+5V- SWL 

1 MOhm CONV TCLKO CONV 

Jy"y"y T 1 T 
12.29 MHz ~ 

u-1D~· 

-'--
22pF T 

V 

- -T 22pF 

The DSP1 02 AID is interfaced to the TMS320C3x serial port receive side; the 
DSP202 D/A is interfaced to the transmit side. The AIDs and D/As are hard 
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a 
convert command to the AID, via the TCLKO pin, both analog inputs are con­
verted into two 16-bit words which are concatenated to form one 32-bit word. 
The AID signals the TMS320C3x, via the AID's SYNC signal (connected to the 
TMS320C3x FSRO pin), that serial data is to be transmitted. The 32-bit word 
is then serially transmitted, MSS first, out the SOUTA serial pin of the DSP1 02 
to the ORO pin of the TMS320C3x serial port. The TMS320C3x is programmed 
to drive the analog interface bit clock from CLKXO pin of the TMS320C3x. The 
bit clock drives both the AID's and 01 A's XC LK input. The TMS320C3x transmit 
clock also acts as the input clock on the receive side of the TMS320C3x serial 
port. Since the receive clock is synchronous to the internal clock of the 
TMS320C3x, the receive clock can run at full speed (that is, f(H1 )/2). 

Similarly, upon receiving a convert command, the pipe lined D/A converts the 
last word received from the TMS320C3x and signals the TMS320C3x, via the 
SYNC signal (connected to the TMS320C3x FSXO pin), to begin transmitting 
a 32-bit word representing the two channels of data to be converted. The data, 
transmitted from the TMS320C3x DXO pin is input to both the SINA and SINS 
inputs of the D/A as shown in the figure. 
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The TMS320C3x is set up to transfer bits at the maximum rate of about 8 Mbps 
with a dual channel sample tate of about 44.1 kHz. This standard mode, fixed 
data rate signaling interface is configured by setting the following registers as 
described below: 

Serial Port: 
Port global control register: 
FSX/DX/CLKX port control register 
FSR/DR/CLKR port control register 
Receive/transmit timer control register 
Timer: 
Timer global control register 
Timer period register 

8.2.14 Serial Port Initialization/Reconfiguration 

OEBC0040h 
00000111h 
00000111h 
OOOOOOOFh 

000002C1 h 
0000005Ah 

The serial ports are controlled through memory-mapped registers located on 
the dedicated peripheral bus. A general procedure for initializing and/or recon­
figuring the serial ports follows: 

1 ) Halt the serial po rt by cleari ng the X RESET and/or R R ES ET bits of the se r­
ia�-port global-control register. This can be accomplished by writing a 0 to 
the serial-port global-control register. Note that the serial ports are halted 
on RESET. 

2) Configure the serial port via the serial-port global-control register (with 
XRESET = RRESET = 0), FSX/DX/CLKX and FSR/DR/CLKR port control 
registers, as well as the receive/transmit timer control register (with XHLD 
= RHLD = 0, receive/transmit timer counter register and the receive/trans­
mit timer period register, if necessary. Refer to subsection 8.2.13, 
"TMS320C3x Serial Port Interface Examples." 

3) Start the serial port by setting the XRESET and RRESET bits of the serial­
port global-control register and the XHLD and RHLD bits of the serial port 
receive/transmit timer control register, if necessary. 
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8.3 DMA Controller 

8-38 

The TMS320C3x has an on-chip Direct Memory Access (DMA) controller that 
reduces the need forthe CPU to perform inpuVoutputfunctions. The DMA con­
troller can perform inpuVoutput operations without interfering with the opera­
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow 
external memories and peripherals (AIDs, serial ports, etc.) without reducing 
the computational throughput of the CPU. The result is improved system per­
formance and decreased system cost. 

A DMA transfer consists of two operations: a read from a memory location and 
a write to a memory location. The DMA controller can read from and write to 
any location in the TMS320C3x memory map. This includes all 
memory-mapped peripherals. The operation of the DMA is controlled with the 
following set of memory-mapped registers: 

Q DMA global-control register 

Q DMA source address register 

Q DMA destination address register 

Q DMA transfer counter register 

These registers, their memory-mapped addresses, and their functions are 
shown in Figure 8-32. Each of these DMA registers is discussed in the 
succeeding subsections. 
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Figure 8-32. Memory-Mapped Locations for a DMA Channel 

Register 

DMA Global Control (See Table B-7) 

Reserved 

Reserved 

Reserved 

DMA Source Address (subsection B.3.2) 

Reserved 

DMA Destination Address (subsection B.3.2) 

Reserved 

DMA Transfer Counter (subsection B.3.3) 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

8.3.1 DMA Global-Control Register 

Peripheral 
Address 

BOBOOOh 

BOB001h 

BOB002h 

BOB003h 

BOB004h 

BOB005h 

B08006h 

808007h 

808008h 

808009h 

B0800Ah 

B0800Bh 

80800Ch 

B0800Dh 

80800Eh 

80800Fh 

The global-control register controls the state in which the DMA controller oper­
ates. This register also indicates the status of the DMA, which changes every 
cycle. Source and destination addresses can be incremented, decremented, 
or SYNChronized using specified global-control register bits. At system reset, 
all bits in the DMA control register are set to O. Table 8-7 lists the register bits, 
names, and functions. Figure 8-33 shows the bit configuration of the global­
control register. 
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Figure 8-33. DMA Global-Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I xx I xx I xx xx xx I xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

xx xx xx xx I TCINT I TC SYNC I DECDSTI INCDST I DECSRC I INCSRC I STAT START 

RIW RIW RIW R/W R/W R/W R/W R/W R R R/W RIW 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

Table 8-7. DMA Global-Control Register Bits 

Bit Name Reset Value Function 

0-1 START 0-0 These bits control the state in which the DMA starts and stops. The 
DMA may be stopped without any loss of data (see Table 8-8). 

2-3 STAT 0-0 These bits indicate the status of the DMA and change every cycle 
(see Table 8-9). 

4 INCSRC 0 If INCSRC = 1, the source address is incremented after every read. 

5 DECSRC 0 If DECSRC = 1, the source address is decremented after every 
read. If INCSRC = DECSRC, the source address is not modified af-
ter a read. 

6 INCDST 0 If INCDST = 1, the destination address is incremented after every 
write. 

7 DECDST 0 If DECDST = 1, the destination address is decremented after every 
write. If INCDST = DECDST, the destination address is not modified 
after a write. 

9-8 SYNC 0-0 The SYNC bits determine the timing synchronization between the 
events initiating the source and the destination transfers. The inter-
pretation of the SYNC bits is shown in Table 8-10. 

10 TC 0 The TC bit affects the operation of the transfer counter. If TC = 0, 
transfers are not terminated when the transfer counter becomes 
zero. If TC = 1, transfers are terminated when the transfer counter 
becomes zero. 

11 TCINT 0 If TCINT = 1, the DMA interrupt is set when the transfer counter 
makes a transition to zero. If TCINT = 0, the DMA interrupt is not set 
when the transfer counter makes a transition to zero. 

31-12 Reserved 0-0 Read as zero. 
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Table 8-8. START Bits and Operation of the DMA (Bits 0-1) 

START Function 

00 DMA read or write cycles in progress will be completed; any data read will be ig-
nored. Any pending read or write will be cancelled. The DMA is reset so that when 
it starts, a new transaction begins; i.e., a read is performed. (Reset value) 

01 If a read or write has begun, it is completed before it stops: for example, in the 
middle or at the end of a DMA transfer. If a read or write has not begun, no read 
or write is started. 

1 0 If a DMA transfer has begun, the entire transfer is completed (including both read 
and write operations) before stopping. If a transfer has not begun, none is started. 

1 1 DMA starts from reset or restarts from the previous state. 

Table 8-9. STAT Bits and Status of the DMA (Bits 2-3) 

STAT Function 

00 DMA is being held between DMA transfer (between a write and read). This is the 
value at reset. (Reset value) 

01 DMA is being held in the middle of a DMA transfer, i.e., between a read and a write. 

1 0 Reserved. 

1 1 DMA busy; i.e., DMA is performing a read or write. 

Table 8-10. SYNC Bits and Synchronization of the DMA (Bits 8-9) 

SYNC Function 

00 No synchronization. Enabled interrupts are ignored. (Reset value) 

01 Source synchronization. A read is performed when an enabled interrupt occurs. 

1 0 Destination synchronization. A write is performed when an enabled interrupt oc-
curs. 

1 1 Source and destination synchronization. A read is performed when an enabled in-
terrupt occurs. A write is then performed when the next enabled interrupt occurs. 
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8.3.2 Destination and Source Address Registers 

The DMA destination and source address registers are 24-bit registers whose 
contents specify destination and source addresses. As specified by control bits 
DECSRC, INCSRC, DECDST, and INCDST olthe DMA global control register, 
these registers are incremented and decremented at the end of the corre­
sponding memory access, that is, the source register for a read, the destination 
register for a write. On system reset, 0 is written to these registers. 

8.3.3 Transfer Counter Register 

The transfer counter register is a 24-bit register, controlled by a 24-bit counter 
that counts down. The counter decrements at the beginning of a DMA memory 
write. In this way, it can be used to control the size of a block of data transferred. 
The transfer counter register is set to 0 at system reset. When TCINT bit of 
DMA global control register is set, the transfer counter register will cause a 
DMA interrupt flag to be set upon count down to zero. 

8.3.4 CPU/DMA Interrupt Enable Register 

8-42 

The CPU/DMA interrupt enable register (IE) is a 32-bit register located in the 
CPU register file. The CPU interrupt enable bits are in locations 10- 1. The 
DMA interrupt enable bits are in locations 26 - 16. A 1 in a CPU/DMA interrupt 
enable register bit enables the corresponding interrupt. A 0 disables the corre­
sponding interrupt. At reset, 0 is written to this register. 

Table 8-11 lists the bits, names, and functions of the CPU/DMA interrupt en­
able register. Figure 8-34 shows the IE register. The priority and decoding 
schemes of CPU and DMA interrupts are identical. Note that when the DMA 
receives an interrupt, this interrupt is acted upon according to the SYNC field 
of the DMA control register. Also note that an interrupt may affect the DMA but 
not the CPU and may affect the CPU but not the DMA. Refer to Chapter 6 and 
to subsection 3.1.8. 
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Figure 8-34. CPUIDMA Interrupt Enable Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

RJW RJW RJW RfW RJW RJW ANI RJW RJW RJW RJW 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

RJW RJW RJW RJW RJW RJW ANI RJW RJW RJW RJW 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

Table 8-11. CPUIDMA Interrupt Enable Register Bits 

Bit Name Function 

0 EINTO Enable external interrupt 0 (CPU) 

1 EINT1 Enable external interrupt 1 (CPU) 

2 EINT2 Enable external interrupt 2 (CPU) 

3 EINT3 Enable external interrupt 3 (CPU) 

4 EXINTO Enable serial-port 0 transmit interrupt (CPU) 

5 ERINTO Enable serial-port 0 receive interrupt (CPU) 

6 EXINT1 Enable serial-port 1 transmit interrupt (CPU) 

7 ERINT1 Enable serial-port 1 receive interrupt (CPU) 

8 ETINTO Enable timer 0 interrupt (CPU) 

9 ETINT1 Enable timer 1 interrupt (CPU) 

10 EOINT Enable OMA controller interrupt (CPU) 

15-11 Reserved Read as 0 

16 EINTO Enable external interrupt 0 (OMA) 

17 EINT1 Enable external interrupt 1 (OMA) 

18 EINT2 Enable external interrupt 2 (OMA) 

19 EINT3 Enable external interrupt 3 (OMA) 

20 EXINTO Enable serial-port 0 transmit interrupt (OMA) 

21 ERINTO Enable serial-port 0 receive interrupt (OMA) 

22 EXINT1 Enable serial-port 1 transmit interrupt (OMA) 

23 ERINT1 Enable serial-port 1 receive interrupt (OMA) 

24 ETINTO Enable timer 0 interrupt (OMA) 

25 ETINT1 Enable timer 1 interrupt (OMA) 

26 EOINT Enable OMA controller interrupt (OMA) 

31-27 Reserved Read as 0 
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8.3.5 DMA Memory Transfer Operation 
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Each DMA memory transfer consists of two parts: 

1) Read data from the address specified by the DMA source register. 
2) Write data that has been read to the address specified by the DMA destina-

tion register. 

A transfer is complete only when the read and write are complete. A transfer 
may be stopped by setting the START bits to the desired value. When the DMA 
is restarted (START = 1 1), it completes any pending transfer. 

At the end of a DMA read, the source address is modified as specified by the . 
SRCINC and SRCDEC bits of the DMA global control register. At the end of 
a DMA write, the destination address is modified as specified by the DSTINC 
and DSTDEC bits of the DMA global control register. At the end of every DMA 
write, the DMA transfer counter is decremented. 

DMA on-chip reads and writes (reads and writes from on-chip memory and pe­
ripherals) are single cycle. DMA off-chip reads are two cycles. The first cycle 
is the external read, and the second cycle loads the DMA register. The external 
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical 
to CPU off-chip writes. If the DMA has been started and is transferring data 
over either external bus, the bus control register associated with that bus 
should not be modified. If the bus control register (see Chapter 7) needs to be 
modified, the DMA should be stopped, modification made, and then the DMA 
restarted. Failure to do so may produce an unexpected zero-wait-state bus ac­
cess. 

Through the 24-bit source and destination registers, the DMA is capable of ac­
cessing any memory-mapped location in the TMS320C3x memory map. 
Figure 8-35 through 8-34 show the number of cycles a DMA transfer requires, 
depending upon whether the source and destination are on-chip memory and 
peripherals, the external port, or the I/O port. Trepresents the number of trans­
fers to be performed, Cr represents the number of wait-states for the source 
read, and Cw represents the number of wait-states for the destination write. 
Each entry in the table represents the total cycles required to do the T trans­
fers, assuming that there are no pipeline conflicts. 

Accompanying each table is a figure illustrating the timing of the DMA transfer. 
IRI and IWI represent single-cycle reads and writes, respectively. IR.RI and 
IW.WI represent multicycle reads and writes. ICrl and ICwl show the number 
of wait cycles for a read and write. 
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Figure 8-35. Timing and Number of Cycles for DMA Transfers When Destination Is On-Chip 

Cycles (H1) 1 1213141516171819110111112113114115116117118119 
Source On-Chip RI IR I IR I : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : 
Destination On-Chip Iwl Iwl Iwl : : : : : : : : : : : : 

Source Primary Bus R.R.R: I I I R.R. R: I I I R.R. R :11 : : : : 

I Cr I : : I Cr I : : I Cr I : : : : : 

: : : : : : : : : : : : : : : : : : 

Destination On-Chip : : : Iwl : : : Iwl : : : Iwl : : : 

Source Expansion Bus R .R .R: II I R .R. R: II I R.R. R: II : : : : 
: I Cr I : : I Cr I : : I Cr I : : : : : 

: : : : : : : : : : : : : : : : : : 

Destination On Chip : : : Iwl : : : Iwl : : : Iwl : : : 

Source Destination On-Chip 

On-Chip (1+1) T 

Primary Bus (2+Cr+1)T 

Expansion Bus (2+Cr+1)T 

Legend: 

T Number of transfers 

Cr Source-read wait states 

Cw Destination-write wait states 

IRI Single-cycle reads 

IWI Single-cycle writes 

IR.RI Multicycle reads 

IW.WI Multicycle writes 
I II Internal register cycle 

8-45 



DMA Controller 

Figure 8-36. DMA Timing When Destination Is a Primary Bus 

Cycles (H1) 1 1213141516171819110111112113114115116117118119 

8-46 

Source On-Chip RI IR I : : IR I : : : : : : : : : : : 
: : : : : : : : : : : : : : : : : : 

Iw.w.w.wlw.w.W.WIW.W.w.wl : : : : : 
Destination Primary Bus : : I Cw I : I Cw I : I Cw I : : : : : 

Source Primary Bus R.R.R: I I : : : .R .R .R : II : : : : : : 

I Cr I : : : : I Cr I : : : : : : 
: : : : : : : : : : : : : : : : : 

: : : Iw.w.W.W : : : Iw.w.w.wl : : 
Destination Primary Bus : : : : : I Cw : : : : : I Cw I : : 

Source Expansion Bus R .R.R : II I R. R. R II IR.R .R : II : : : : 

I Cr I : : I Cr : : I Cr I : : : : : 
: : : : : : : : : : : : : : : : : 

: : : Iw.w.w,.W Iw.w.w.wl Iw.w.w.wl 
Destination Primary Bus 

Legend: 

T 
Cr 
CW 

IRI 
IWI 
IR.RI 
IW.WI 
III 

Source 

On-Chip 

Primary Bus 

Expansion Bus 

Number of transfers 

Source-read wait states 

Destination-write wait states 

Single-cycle reads 

Single-cycle writes 

Multicycle reads 

Multicycle writes 

Internal register cycle 

: : : : : I Cw : : I Cw I : : I Cw I 

Destination Primary Bus 

1+(2+Cw)T 

(2+Cr+2+Cw) T 

(2+ Cr+2+ Cw) 
+(2+Cw+max(O, Cr Cw+1))(T-1) 
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Figure 8-37. DMA Timing When Destination Is an Expansion Bus 

Cycles (H1) 1 1213141516171819110111112113114115116117118119 
Source On-Chip RI IR I IR I : : : : : : : : : 

: : : : : : : .' : : : : : : : : : : 
Iw.w.w.wlw.w.w.wlw.w.w.wl : : : : : 

Destination Expansion Bus : : I Cw I : I Cw I : I Cw : : : : : 

Source Primary Bus R.R.RI II IR.R .R I I IR.R.R " : : : : 

I Cr I : : I Cr : : I Cr : : : : : 
: : : : : : : : : : : : : : : : 

: : : Iw.w.W.W Iw.w.w.W Iw.w.w.wl 
Destination Expansion Bus : : : : : I Cw : : I Cw : : I Cw I 
Source Expansion Bus R .R.R: I I : : : R.R .R: II : : : : : 

I Cr I : : : : I Cr I : : : : : : 

: : : : : : : : : : : : : : : : 

: : : Iw.w.w.W : : : Iw.w.w.wl : : 

Destination Expansion Bus : : : : : I Cw : : : : : I Cw I : : 

Source Destination Expansion Bus 

On-Chip 1+(2+Cw)T 

Primary Bus (2+ Cr+2+ Cw) 

+(2+Cw+max(O,Cr Cw+1))(T-1) 

Expansion Bus (2+Cr+2+Cw) T 

Legend: 

T Number of transfers 

Cr Source-read wait states 

Cw Destination-write wait states 

IRI Single-cycle reads 

IWI Single-cycle writes 

IR.RI Multicycle reads 

IW.WI Multicycle writes 

I I I Internal register cycle 
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Table 8-12 shows the maximum DMA transfer rates, assuming that there are 
no wait states (Cr = Cw = 0). Table 8-13 shows the maximum DMA transfer 
rates, assuming there is one wait state for the read (Cr = 1) and no wait states 
for the write (Cw = 0). Table 8-14 shows the maximum DMA transfer rates, 
assuming there is one wait state for the read (Cr = 1) and one wait state for the 
write (Cw = 1). 

In each table, the time for the complete transfer (the read and the write) is con­
sidered. Since one bus access is required forthe read and anotherforthe write, 
internal bus transfer rates will be twice the DMA transfer rate. It is also as­
sumed that no conflicts with the CPU exist. 

Table 8-12. Maximum DMA Transfer Rates When Cr = Cw = 0 

Destination 

Source 

Internal Primary Expansion 

Internal 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec 

Primary 22.2 Mbytes/sec 16.7 Mbytes/sec 22.2 Mbytes/sec 

Expansion 22.2 Mbytes/sec 22.2 Mbytes/sec 16.7 Mbytes/sec 

Table 8-13. Maximum DMA Transfer Rates When Cr = 1, Cw = 0 

Destination 

Source 

Internal Primary Expansion 

Internal 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec 

Primary 16.7 Mbytes/sec 13.3 Mbytes/sec 16.7 Mbytes/sec 

Expansion 16.7 Mbytes/sec 16.7 Mbytes/sec 13.3 Mbytes/sec 

Table 8-14. Maximum DMA Transfer Rates When Cr = 1, Cw = 1 

Destination 

Source 

Internal Primary Expansion 

Internal 33.3 Mbytes/sec 22.2 Mbytes/sec 22.2 Mbytes/sec 

Primary 16.7 Mbytes/sec 11.1 Mbytes/sec 16.7 Mbytes/sec 

Expansion 16.7 Mbytes/sec 16.7 Mbytes/sec 11.1 Mbytes/sec 
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8.3.6 Synchronization of DMA Channels 

A DMA channel may be synchronized through the use of interrupts. Refer to 
Table 8-10 forthe relationship between the SYNC bits of the DMA global con­
trol register and the synchronization performed. This section describes the fol­
lowing four synchronization mechanisms: 

[:'I No synchronization (SYNC = 0 0) 

Q Source synchronization (SYNC = 0 1) 

Q Destination synchronization (SYNC = 1 0) 

Q Source and destination synchronization (SYNC = 1 1) 

No Synchronization 

When SYNC = 0 0, no synchronization is performed. The DMA performs reads 
and writes whenever there are no conflicts. All interrupts are ignored and, 
therefore, are considered to be globally disabled. However, no bits in the DMA 
interrupt enable register are changed. Figure 8-38 shows the synchronization 
mechanism when SYNC = 0 O. 

Figure 8-38. No DMA Synchronization 

Disable DMA Interrupts Globally 

DMA Channel Performs a Read 

DMA Channel Performs a Write 

Source Synchronization 

When SYNC = 0 1, the DMA is synchronized to the source (see Figure 8-39). 
A read will not be performed until an interrupt is received by the DMA. Then, 
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt 
enable register are changed. 
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Figure 8-39. DMA Source Synchronization 

Destination Synchronization 

When SYNC = 1 0, the DMA is synchronized to the destination. First, all inter­
rupts are ignored until the read is complete. Though the DMA interrupts are be 
considered to be globally disabled, no bits in the DMA interrupt enable register 
are changed. A write will not be performed until an interrupt is received by the 
DMA. Figure 8-40 shows the synchronization mechanism when SYNC = 1 O. 

Figure 8-40. DMA Destination Synchronization 
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DMA Interrupts Are Enabled Globally 

Idle Until Enabled Interrupt Is Received 

Disable DMA Interrupts Globally 

Source and Destination Synchronization 

When SYNC = 1 1, the DMA is synchronized to both the source and destina­
tion. A read is performed when an interrupt is received. A write is performed 
on the following interrupt. Source and destination synchronization when SYNC 
= 1 1 is shown in Figure 8-41. 

Peripherals 



DMA Controller 

Figure 8-41. DMA Source and Destination Synchronization 

Idle Until Enabled Interrupt is Received 

Disable DMA Interrupts Globally 

DMA Channel Performs a Read 

Enable DMA Interrupts Globally 

Idle Until Enabled Interrupt Is Received 

Disable DMA Interrupts Globally 

DMA Channel Performs a Write 

Enable DMA Interrupts Globally 

8.3.7 DMA Interrupts 

A DMA interrupt to the CPU may be generated whenever the transfer count 
reaches zero, indicating that the last transfer has taken place. The TCINT bit 
in the DMA global control register determines whether the interrupt will be gen­
erated. If TCINT = 1, the DMA interrupt is generated. If TCINT = 0, the DMA 
interrupt is not generated. If the DMA interrupt is generated, the EDINT bit, bit 
10 in the interrupt enable register, must also be set to enable the CPU to be 
interrupted by the DMA. 

A second bit in the DMA global control register, the TC bit, is also generally as­
sociated with the state of the TCINT bit and the interrupt operation. The TC bit 
determines if transfers are terminated when the transfer counter becomes zero 
or if they are allowed to continue. If TC = 1, transfers are terminated when the 
transfer count becomes zero. If TC = 0, transfers are not terminated when the 
transfer count becomes zero. 

In general, if TCINT is ° then TC should also be set to 0. Otherwise, the DMA 
transfer will terminate and the CPU will not be notified. If TCINT is 1 then in 
most cases TC should also be 1. In this case, the CPU will be notified when 
the transfer completes and the DMA will be halted and ready to start a new 
transfer. 
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8.3.8 DMA Setup and Use Examples 
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Transfer a 256-word block of data from off-chip memory to on-chip memory 
and generate an interrupt on completion. the order of memory is to be main­
tained. 

DMA source address: 800000h 
DMA destination address: 809800h 
DMA transfer counter: 00000100h 
DMA global control: 00000C53h 
CPU/DMA interrupt enable (IE): 00000400h 

Transfer a 128-word block of data from on-chip memory to off-chip memory 
and generate an interrupt on completion. The order of memory is to be in­
verted, i.e., the highest addressed member of the block is to become the lowest 
addressed member. 

DMA source address: 809800h 
DMA destination address: 800000h 
DMA transfer counter: 00000080h 
DMA global control: 00000C93h 
CPU/DMA interrupt enable (IE): 00000400h 

Transfer a 200-word block of data from the serial port 0 receive register to on­
chip memory and generate an interrupt on completion. The transfer is to be 
synchronized with the serial port 0 receive interrupt. 

DMA source address: 80804Ch 
DMA destination address: 809COOh 
DMA transfer counter: 000000C8h 
DMA global control: OOOOOD43h 
CPU/DMA interrupt enable (IE): 00200400h 

Transfer a 200-word block of data from off-chip memory to the serial port 0 
transmit register and generate an interrupt on completion. The transfer is to be 
synchronized with the serial port 0 transmit interrupt. 

DMA source address: 809COOh 
DMA destination address: 808048h 
DMA transfer counter: OOOOOOC8h 
DMA global control: OOOOOE13h 
CPU/DMA interrupt enable (IE): 00400400h 
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Transfer data continuously between the serial port 0 receive register and the 
serial port 0 transmit register to create a digital loop back. The transfer is to be 
synchronized with the serial port 0 receive and transmit interrupts. 

DMA source address: BOB04Ch 
DMA destination address: BOB04Bh 
DMA transfer counter: OOOOOOOOh 
DMA global control: 00000303h 
CPU/DMA interrupt enable (IE): 00600000h 

8.3.9 DMA Initialization/Reconfiguration 

The DMA is controlled through memory-mapped registers located on the dedi­
cated peripheral bus. A general procedure for initializing and/or reconfiguring 
the DMA follows: 

1) Halt the DMA by clearing the START bits of the DMA global-control regis­
ter. This can be accomplished by writing a 0 to the DMA global-control reg­
ister. Note that the DMA is halted on RESET. 

2) Configure the DMA via the DMA global-control register (with START = 00), 
as well as the DMA source, destination, and transfer-counter registers, if 
necessary. Refer to subsection B.3.B, "DMA Setup and Use Examples." 

3) Start the DMA by setting the START bits of the DMA global-control register 
as necessary. 

8-53 



8-54 Peripherals 



~ ______ p_iP_e_li_n_e_o_p_e_r_a_ti_o_n __________________________________ ~'f __ -I11III 



1IIIEIII~ ______________________________ p_i_pe_l_in_e_o_p_e_r_at_io_n ______ ~ 





Pipeline Structure 
;:;';:;:;:;:;:;-;:;';:;s::::::::';':';-;';:::;~:::::';::'::;';:::;::::'::-::::::::::m:::;::::~;::::::~::;o;::::::,~;:;:::;:::::;:;::::::,;,;:::;,;y;.:.;.;.;-;:;::.;.::: ... .-:-;.;«:".-x-:.;o;.;-;-:::::-:o;.;-; .... ;:;.,;«-;-;.;o;o;.~:';-;0;';';0;0;,,';-;0;':0;-:';0;';';';';0;';';';';':';';';';-:';-;';';':';':";-;-;-;':':';:;';',';';';';';';0;';';';';';':';0;';';';';':"';';';':0;';';';';';';';':0;';' .. :0;';';';';';';.;.;.:.;.;.,;.:.;0; .... ;0:.;.;0;.;.; ... ; ••• :.:.;.;.;.;.;.; ••• ;.;';';';';';';';0;';';-;';:;';';0;0;';',';';0;':';':';::::-;';::.;:::::::;:;::::::.:::.;.::::::;.::::::::::;::::::% 

9.1 Pipeline Structure 

9-2 

The five major units of the TMS320C3x pipeline structure and their functions 
are as follows: 

Fetch Unit (F) 

Decode Unit (D) 

Read Unit (R) 

Execute Unit (E) 

DMA Channel (DMA) 

Fetches the instruction words from memory and 
updates the program counter (PC). 

Decodes the instruction word and performs ad­
dress generation. Also controls any modification of 
the auxiliary registers and the stack pointer. 

If required, reads the operands from memory. 

If required, reads the operands from the register 
file, performs the necessary operation, and writes 
results to the registerfile. If required, results of pre­
vious operations are written to memory. 

Reads and writes memory. 

A basic instruction has four levels: fetch, decode, read, and execute. 
Figure 9-1 illustrates these four levels of the pipeline structure. The levels are 
indexed according to instruction and execution cycle. The perfect overlap in 
the pipeline, where all four units operate in parallel, occurs at cycle (m). Those 
levels about to be executed are at m + 1 , and those just executed are at m-1 . 
The TMS320C3x pipeline control allows a high-speed execution rate of one ex­
ecution per cycle. It also manages pipeline conflicts so that they are transpar­
ent to the user. You do not need to take any special precautions to guarantee 
correct operation. 

Pipeline Operation ' 



I-JtnClIt,-"Cl Structure 

Figure 9-1. TMS320C3x Pipeline Structure 

CYCLE F D R E 

m-3 w 

m-2 x w 

m-1 y x w 

m z y x W 4-4 --- Perfect overlap 

m+1 z y x 

m+2 z y 

m+3 z 

Notes: 1) W, X, Y, and Z represent instructions. 

2) F, 0, R, E = fetch, decode, read, and execute, respectively. 

Priorities from highest to lowest have been assigned to each of the functional 
units as follows: 

a Execute (highest) 

a Read 

a Decode 

a Fetch 

a DMA (lowest). 

When the processing of an instruction is ready to pass to the next higher pipe­
line level, but that level is not ready to accept a new input, a pipeline conflict 
occurs. In this case, the lower priority unit waits until the higher priority unit 
completes its currently executing function. 

Despite the DMA controllers low priority, conflicts with the CPU can be mini­
mized or even eliminated by suitable data structuring because the DMA con­
troller has its own data and address buses. 
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9.2 Pipeline Conflicts 

The pipeline conflicts of the TMS320C3x can be grouped into the following 
main categories: 

Branch Conflicts Involve most of those instructions or operations 
that read and/or modify the PC. 

Register Conflicts 

Memory Conflicts 

Involve delays that can occur when reading from or 
writing to registers that are used for address gen-
eration. 

Occur when the internal units of the TMS320C3x 
compete for memory resources. 

Each of these three types is discussed in the following sections. Examples are 
included. Note in these examples, when data is refetched or an operation is 
repeated, the symbol representing the stage of the pipeline is appended with 
a number. For example, if a fetch is performed again, the instruction mnemonic 
is repeated. When an access is detained multiple cycles because of not ready, 
the symbols RDY and RDY are used to indicate not ready and ready, respec­
tively. 

9.2.1 Branch Conflicts 

9-4 

The first class of pipeline conflicts occurs with standard (non-delayed) 
branches, i.e., BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETlcond, 
RETScond, interrupts, and reset. Conflicts arise with these instructions and 
operations because during their execution, the pipeline is used only for the 
completion of the operation; other information fetched into the pipeline is dis­
carded or refetched, or the pipeline is inactive. This is referred to as flushing 
the pipeline. Flushing the pipeline is necessary in these cases to guarantee 
that portions of succeeding instructions do not inadvertently get partially ex­
ecuted. TRAPcond and CALLcond are classified differently from the other 
types of branches and are considered later. 

Example 9-1 shows the code and pipeline operation for a standard branch. 
Note that one dummy fetch is performed (MPYF instruction), and then after the 
branch address is available, a new fetch (OR instruction) is performed. This 
dummy fetch affects the cache. 
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Delayed branches are implemented to guarantee the fetching of the next three 
instructions. The delayed branches include BRD, BconaO, and DBconaO. 
Example 9-2 shows the code and pipeline operation for a delayed branch. 

Example 9-2. Delayed Branch 

9.2.2 

9-6 

BRD THREE 
MPYF 
ADD 
SUBF 
AND 

THREE MPYF 

PC 

n 

n+1 

n+2 

n+3 

)HREE 

THREE~PC 

Register Conflicts 

; Unconditional delayed branch 
; Executed 
; Executed 
; Executed 
; Not executed 

; Fetched after SUBF is fetched 

PIPELINE OPERATION 

F D R E 

BRD 

MPYF BRD No execute delay 

ADDF MPYF BRD 

SUBF ADDF MPYF BRD 

MPYF SUBF ADDF MPYF 

Registerconflicts involve the reading orwriting of registers used for addressing 
purposes. These conflicts occur when the pertinent register is not ready to be 
used. Some conditions under which register conflicts can be avoided are dis­
cussed in Section 9.3. 

The registers compose the following three functional groups: 
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Group 1 

Group 2 

Group 3 

J.J/na/ir:la Conflicts 

Auxiliary registers (ARO - AR7), index registers (IRO, IR1), and 
block size register (SK) 

Data-page pointer (DP) 

System stack pointer (SP) 

If an instruction writes to one of these three groups, the decode unit cannot use 
any register within that particular group until the write is complete, i.e., instruc­
tion execution is completed. In Example 9':"'3, an auxiliary register is loaded, 
and a different auxiliary register is used on the next instruction. Since the de­
code stage needs the result of the write to the auxiliary register, the decode of 
this second instruction is delayed two cycles. Every time the decode is delayed, 
a refetch of the program word is performed; i.e., the ADDF is fetched three 
times. Since these are actual refetches, they can cause not only conflicts with 
the DMA controller but also cache hits and misses. 

Example 9-3. Write to an AR Followed by an AR for Address Generation 

PC 

n 

n+1 

n+2 

n+2 

n+2 

n+3 

LDI 7,ARl i 7 -7 ARl 
NEXT MPYF *AR2,RO i Decode delayed 2 cycles 

ADDF 
FLOAT 

PIPELINE OPERATION 

F I D 

LOI 

MPYF LOI 

ADDF MPYF 

ADDF MPYF 

ADDF MPYF 

FLOAT ADDF 

R E 

LDr 

(nap) LDr 7, ARl 

(nap) (nap) 

MPYF (nap) 

Decode/address 
generation held 
for a new AR value 

AR110aded 

The case for reads of these groups is similar to the case for writes. If an 
instruction must read a member of one of these groups, the use of that particu­
lar group by the decode for the following instruction is delayed until the read 
is complete. The registers are read at the start of the execute cycle and there­
fore require only a one-cycle delay of the following decode. For four registers 
(IRQ, IR1, SK, or DP) no delay is incurred. In all other cases, including the SP 
the delay occurs. 
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In Example 9-4, two auxiliary registers are added together with the result go­
ing to an extended-precision register. The next instruction uses a different aux­
iliary register as an address register. 

Example 9-4. A Read of ARs Followed by ARs for Address Generation 

PC 

n 

n+1 

n+2 

n+2 

n+3 

9-8 

ADDI ARO,AR1,Rl ; ARO + ARl ~ Rl 
NEXT MPYF *++AR2,RO ; Decode delayed 1 cycle 

ADDF 
FLOAT 

PIPELINE OPERATION 

F D R E 
Decode/address 

ADD! generation held 
until AR is read 

MPYF ADDI 

ARs read 
ADDF ~~ ADDI .. 

ADDF MPYF (nop) ADD! ARO,AR1,RO 

FLOAT ADDF MPYF (nop) 

The DBR (decrement and branch) instruction's use of auxiliary registers for 
loop counters is treated the same as if the use were for addressing. Therefore, 
the operation shown in the two previous examples can also occur for this in­
struction. 
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9.2.3 Memory Conflicts 

Memory conflicts can occurwhen the memory bandwidth of a physical memory 
space is exceeded. For example, RAM blocks 0 and 1 and the ROM block can 
support only two accesses every cycle. The external interface can support only 
one access per cycle. Some conditions under which memory conflicts can be 
avoided are discussed in Section 9.4. 

Memory pipeline conflicts consist of the following four types: 

Program Wait A program fetch is prevented from begin­
ning. 

Program Fetch Incomplete A program fetch has begun but is not yet 
complete. 

Execute Only An instruction sequence requires three CPU 
data accesses in a single cycle. 

Hold Everything A primary or expansion bus operation must 
complete before another one can proceed. 

These fourtypes of memory conflicts are illustrated in examples and discussed 
in the paragraphs that follow. 

Program Wait 

Two conditions can prevent the program fetch from beginning: 

I:l The start of a CPU data access when 

• Two CPU data accesses are made to an internal RAM or ROM block, 
and a program fetch from the same block is necessary. 

• One of the external ports is starting a CPU data access, and a program 
fetch from the same port is necessary. 

I:l A multicycle CPU data access or DMA data access over the external bus 
is needed. 
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Example 9-6. Program Wait Due to Multicycle Access 

PIPELINE OPERATION 

PC F 0 R E 

n ADDF 

n+1 MPYF ADDF 

I" 
n+2 SUBF MPYF ADDF 

2-cycle OMA access 
n+3 (WAIT) SUBF MPYF ADDF .l... 
n+3 CALL (nop) SUBF MPYF 

n+4 CALL (nop) SUBF 

Program Fetch Incomplete 

A program fetch incomplete occurs when a program fetch takes more than one 
cycle to complete due to wait states. In Example 9-7, the MPYF and ADDF are 
fetched from memory that supports single-cycle accesses. The SUBF is 
fetched from memory requiring one wait state. One example that demonstrates 
this confliCt is a fetch across a bank boundary on the primary port. See Sec­
tion 7.4. 

Example 9-7. Multicycle Program Memory Fetches 

PIPELINE OPERATION 

PC F o R E 

n MPYF 

n+1 ADDF MPYF 

I" 
n+2 ROY SUBF ADDF MPYF 

1 wait state required 

n+2 ROY SUBF (nop) ADDF MPYF -±.. 
n+3 ADDI SUBF (nop) ADDF 
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Execute Only 

The Execute Only type of memory pipeline conflict occurs when a sequence 
of instructions requires three CPU data accesses in a single cycle or when per': 
forming an interlocked load. There are three cases in which this occurs: 

Q An instruction performs a store and is followed by an instruction that does 
two memory reads. 

Q An instruction performs two stores and is followed by an instruction that 
performs at least one memory read. 

Q An interlocked load (LOll or LOFI) instruction is performed, and XF1 = 1. 

The first case is shown in Example 9-8. Since this sequence requires three 
data memory accesses and only two are available, only the execute phase of 
the pipeline is allowed to proceed. The dual reads required by the LDF II LDF 
is delayed one cycle. Note that a refetch of the next instruction can occur. 

Example 9-8. Single Store Followed by Two Reads 

II 

PC F 

n STF 

n+1 LDFII LDF 

n+2 w 

n+3 x 

n+4 x 

n+4 y 

9-12 

STF 
LDF 
LDF 

RO,*ARl 
*AR2,Rl 

*AR3,R2 

PIPELINE OPERATION 

0 R 

STF 

LDFII LDF STF 

w LDFII LDF 

,/ 
w LDFII LDF 

x ~"1 

i RO ~ *ARl 
i *AR2 ~ Rl in parallel with 

i *AR3 ~ R2 

E 

Write must complete 
,/ before the two 

STF RO,*ARl reads can complete. 

(nap) 

LDFII LDF *AR2,Rl and *AR3,R2 
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Example 9-9 shows a parallel store followed by a single load or read. Since 
the two parallel stores are required, the next CPU data memory read must wait 
a cycle before beginning. One program memory refetch may occur. 

Example 9-9. Parallel Store Followed by Single Read 

STF RO, *ARO' 

/I STF R2, *ARI 
ADDF @SUM,Rl 
lACK 
ASH 

PIPELINE OPERATION 

PC F 0 R 

n STF// STF 

n+1 ADDF STFII STF 

n+2 lACK ADDF STF// STF 

n+3 ASH lACK ADDF 

n+4 ASH lACK ADDF 

n+4 ASH lACK 

i RO ~ *ARO in parallel with 

i R2 ~ *ARl 
i Rl + @SUM ~ Rl 

E r are complete 

STFII STF RO, *ARO and R2,*ARl 

(nap) 

ADDF 
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The final case involves an interlocked load (LOll or LOFI) instruction and XF1 
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the 
read can complete, they may need to extend the read cycle, as shown in 
Example 9-10. Note that a program refetch may occur. 

Example 9-10. Interlocked Load 

NOT Rl,RO 
LDII 300h,AR2 
ADDI *AR2, R2 
CMPI RO, R2 

PIPELINE OPERATION 

PC F. D R E 

n NOT 

n+1 LDII NOT 

n+2 ADDI 

n+3 eMF I 

n+3 ~ 
XF1 = 1 

LDII NOT 

ADDI LDII XF1 =0 

eMF I ADDI LDII 

n+4 eMF I ADDI LDII 
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Hold Everything 

There are three types of Hold Everything memory pipeline conflicts: 

El A CPU data load or store cannot be performed because an external port 
is busy. 

El An external load takes more than one cycle. 

El Conditional calls and traps. 

The first type of Hold Everything conflict occurs when one of the external ports 
is busy due to an access that has started but is not complete. In Example 9-11, 
the first store is a two-cycle store. The CPU writes the data to an external port. 
The port control then takes two cycles to complete the data-data write. The 
LDF is a read over the same external port. Since the store is not complete, the 
CPU continues to attempt LDF until the port is available. 

Example 9-11. Busy External Port 

PC 

n 

n+1 

n+2 

n+2 

n+2 

n+3 

n+4 

STF RO,@DMAl 
LDF @DMA2,RO 

PIPELINE OPERATION 

F o R E 

STF 

LDF STF 

w LDF STF 

w LDF (nap) STF I" 
2-cycle external bus 

w LDF (nap) (nop) J, write access 

x w LDF (nop) 

y x W LDF 

The second type of Hold Everything conflict involves multicycle data reads. 
The read has begun and continues until completed. In Example 9-12, the LDF 
is performed from an external memory that requires several cycles to com­
plete. 
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Example 9-12. Multicycle Data Reads 

Example 9-13. 

9-16 

PC 

n 

LDF @DMA,RO 

PIPELINE OPERATION 

F D R 

LOF 

I LDF 

J I LOF 

K I (dummy) I LOF 

I 

E 

LDF 

2-cycle external bus 
.l.. read access 

The final type of Hold Everything conflict deals with conditional calls and traps, 
which are different from the other branch instructions. Whereas the other 
branch instructions are conditional loads, the conditional calls and traps are 
conditional stores, which take one cycle more than a conditional branch (see 
Example 9-13). The added cycle is used to push the return address after the 
call condition is evaluated. 

Conditional Calls and Traps 

PIPELINE OPERATION 

PC F D R E 

n CALLcond 

n+1 I CALLcond 

n+1 (nop) (nop) CALLcond 

n+1 (nap) (nap) (nap) CALLcond 

PC store 
n+1 (nap) (nap) (nap) CALLcond T cycle 

+ 
n+2/CALLaddr I (nap) (nap) (nap) 
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Table 9-2. 

9-20 

Table 9-2 shows how many accesses can be performed from the different 
memory spaces when it is necessary to do a program fetch and two data ac­
cesses, still achieving maximum performance (one cycle). Six cases achieve 
this maximization. 

One Program Fetch and Two Data Accesses for Maximum Performance 

Case # Primary Bus Accesses From Expanslont Or 
Accesses Dual-Access Peripheral Bus 

Internal Memory Accesses 

2 from any 
1 1 combination -

of internal memory 

2t 1 Program 1 Data 1 Data 

3t 1 Data 1 Data 1 Program 

2 from same internal 
memory block and 

4 - 1 from a different -
internal memory 

block 

3 from different 
5 - internal memory -

blocks 

2 from any 
6 - combination 1 

of internal memory 

t Expansion bus available only on TMS320C30. 
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9.5 Clocking of Memory Accesses 

Internal clock phases (H1 and H3) and their relationship to memory accesses 
are discussed in this section to show how the TMS320C3x handles multiple 
memory accesses. Whereas the previous section discussed the interaction 
between sequences of instructions, this section discusses the flow of data on 
an individual instruction basis. 

Each major clock period of 60 ns is composed of two minor clock periods of 
30 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time 
when that signal is high. 

r 1 Major Clock Period 

H1 I L 
H3 I I 

The precise operation of memory reads and writes can be defined according 
to these minor clock periods. The types of memory operations that can occur 
are program fetches, data loads and stores, and DMA accesses. 

9.5.1 Program Fetches 

Internal program fetches are always performed during H3 unless a single data 
store must occur at the same time due to another instruction in the pipeline. 
In this case, the program fetch occurs during H1 and the data store during H3. 

External program fetches always start at the beginning of H3 with the address 
being presented on the external bus. At the end of H 1, they are completed with 
the latching of the instruction word. 
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9.5.2 Data Loads and Stores 

Fourtypes of instructions perform loads, memory reads, and stores: two-oper­
and instructions, three-operand instructions, multiplier/ALU operation with 
store instructions, and parallel multiply and add instructions. See Chapter 5 for 
detailed information on addressing modes. 

As discussed in Chapter 7, the number of bus cycles for external memory 
accesses differs in some cases from the number of CPU execution cycles. For 
external reads, the number of bus cycles and CPU execution cycles is identi­
cal. For external writes, there are always at least two bus cycles, but unless 
there is a port access conflict, there is only one CPU execution cycle. In the 
following examples, any difference in the number of bus cycles a'nd CPU cycles 
is noted. 

Two-Operand Instruction Memory Accesses 

Two-operand instructions include all those instructions with bits 31 - 29 being 
000 or 010 (see Figure 9-2). In the case of a data read, bits 15 - 0 represent 
the srcoperand. Internal data reads are always performed during H1. External 
data reads always start at the beginning of H3 with the address being pres­
ented on the external bus, and they complete with the latching of the data word 
at the end of H1. 

In the case of a data store, bits 15 - 0 represent,the dstoperand. Internal data 
stores are performed during H3. External data stores always start at the begin­
ning of H3 with the address and data being presented on the external bus. 

Figure 9-2. Two-Operand Instruction Word 

9-22 

2423 1615 87 

dst(src) I i ,I 1 1 1 1 1 1 I 
Operation _ G 

1 1 1 

src(dst) 

Three-Operand Instruction Memory Reads 

Three-operand instructions include all instructions with bits 31 - 29 being 001 
(see Figure 9-3). The source operands, src1 and src2, come from either regis­
ters or memory. When one or more of the source operands are from memory 
these instructions are always memory reads. 

If only one of the source operands is from memory (either src1 or src2) and is 
located in internal memory, the data is read during H1. If the single memory 
source operand is in external memory, the read starts at the beginning of H3, 
with the address being presented on the external bus, and completes with the 
latching of the data word at the end of H1. 
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Assembly Language Instructions 

r:i Individual Instructions (Section 10.3 on page 10-12) 

• Symbols and abbreviations used in instructions 

• Optional assembler syntaxes 

• Individual instruction descriptions alphabetized and including 

Syntax 
Operation 
Operands 
Encoding 
Description 
Cycles 
Status bits 
Mode bit 
Example(s) 
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10.1 Assembly Language Instructions - Instruction Set 

The TMS320C3x instruction set is exceptionally well-suited to digital signal processing 
and other numeric-intensive applications. All instructions are a single machine word long, 
and most instructions take a single cycle to execute. In addition to multiply and accumulate 
instructions, the TMS320C3x possesses a full complement of general-purpose instruc­
tions. 

The instruction set contains 113 instructions organized into the following functional 
groups: 

Q Load-and-store 

Q Two-operand arithmetic/logical 

Q Three-operand arithmetic/logical 

Q Program control 

Q Interlocked operations 

a Parallel operations 

Each of these groups is discussed in the succeeding subsections. 

10.1.1 Load-and-Store Instructions 

The TMS320C3x supports 12 load-and-store instructions (see Table 10-1). These in­
structions can 

Q Load a word from memory into a register, 

a Store a word from a register into memory, or 

a Manipulate data on the system stack. 

Two of these instructions can load data conditionally. This is useful for locating the maxi­
mum or minimum value in a data set. See Section 10.2 for detailed information on condi­
tion codes. 

Table 10-1. Load-and-Store Instructions 

Instruction Description Instruction Description 

LDE Load floating-paint exponent POP Pop integer from stack 

LDF Load floating-point value POPF Pop floating-point value from stack 

LDFcond Load floating-point value PUSH Push integer on stack 
conditionally 

LDI Load integer PUSHF Push floating-point value on stack 

LDlcond Load integer conditionally STF Store floating-point value 

LDM Load floating-point mantissa STI Store integer 
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10.1.2 Two-Operand Instructions 

The TMS320C3x supports a complete set of 35 two-operand arithmetic and logical in­
structions. The two operands are the source and destination. The source operand may 
be a memory word, a register, or a part of the instruction word. The destination operand is 
always a register. 

These instructions provide integer, floating-point, or logical operations, and multiprecision 
arithmetic. Table 10-2 lists these instructions. 

Table 10-2. Two-Operand Instructions 

Instruction Description Instruction Description 

ABSF Absolute value of a floating- NORM Normalize floating-point value 
point number 

ABSI Absolute value of an integer NOT Bitwise logical-complement 

ADDCt Add integers with carry ORt Bitwise logical-OR 

ADDFt Add floating-point values RND Round floating-point value 

ADDlt Add integers ROL Rotate left 

ANDt Bitwise logical-AND ROLC Rotate left through carry 

ANDNt Bitwise logical-AND with ROR Rotate right 
complement 

ASHt Arithmetic shift RORC Rotate right through carry 

CMPFt Compare floating-point values SUBBt Subtract integers with borrow 

CMPlt Compare integers SUBC Subtract integers conditionally 

FIX Convert floating-point value to SUBF Subtract floating-point values 
integer 

FLOAT Convert integer to floating-point SUBI Subtract integer 
value 

LSHt Logical shift SUBRB Subtract reverse integer with 
borrow 

MPVFt Multiply floating-point values SUBRF Subtract reverse floating-point 
value 

MPVlt Multiply integers SUBRI Subtract reverse integer 

NEGB Negate integer with borrow TSTBt Test bit fields 

NEGF Negate floating-point value XORt Bitwise exclusive-OR 

NEGI Negate integer 

t Two- and three-operand versions 
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10.1.3 Three-Operand Instructions 

Most instructions have only two operands; however, some arithmetic and logical instruc­
tions have three-operand versions. The 17 three-operand instructions allow the 
TMS320C3x to read two operands from memory or the CPU register file in a single cycle 
and store the results in a register. The following differentiates the two- and three-operand 
instructions: 

Q Two-operand instructions have a single source operand (or shift count) and a destina­
tion operand. 

Q Three-operand instructions may have two source operands (or one source operand 
and a count operand) and a destination operand. A source operand may be a memory 
word or a register. The destination of a three-operand instruction is always a register. 

Table 10-3 lists the instructions that have three-operand versions. Note that the 3 in the 
mnemonic can be omitted from three-operand instructions (see Section 10.3.2). 

Table 10-3. Three-Operand Instructions 

Instruction Description Instruction . Description 

ADDC3 Add with carry MPYF3 Multiply floating-point values 

ADDF3 Add floating-point values MPYI3 Multiply integers 

ADDI3 Add integers OR3 Bitwise logical-OR 

AND3 Bitwise logical-AND SUBB3 Subtract integers with borrow 

ANDN3 Bitwise logical-AND with complement SUBF3 Subtract floating-point values 

ASH3 Arithmetic shift SUBI3 Subtract integers 

CMPF3 Compare floating-point values TSTB3 Test bit fields 

CMPI3 Compare integers XOR3 Bitwise exclusive-OR 

LSH3 Logical shift 

10.1.4 Program Control Instructions 

The program-control instruction group consists of all of those instructions (16) that affect 
program flow. The repeat mode allows repetition of a block of code (RPTB) or of a single 
line of code (RPTS). Both standard and delayed (single-cycle) branching are supported. 
Several of the program control instructions are capable of conditional operations (see 
Section 11.2 for detailed information on condition codes). Table 10-4 lists the program 
control instructions. 
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Table 10-4. Program Control Instructions 

Instruction Description Instruction Description 

Bcond Branch conditionally (standard) IDLE Idle until interrupt 

BconaD Branch conditionally (delayed) NOP No operation 

BR Branch unconditionally (standard) RETlcond Return from interrupt conditionally 

BRD Branch unconditionally (delayed) RETScond Return from subroutine 
conditionally 

CALL Call subroutine RPTB Repeat block of instructions 

CALLcond Call subroutine conditionally RPTS Repeat single instruction 

DBcond Decrement and branch SWI Software interrupt 
conditionally (standard) 

DBconaD Decrement and branch TRAPcond Trap conditionally 
conditionally (delayed) 

lACK Interrupt acknowledge 

10.1.5 Interlocked Operations Instructions 

The interlocked operations instructions support multiprocessor communication and the 
use of external signals to allow for powerful synchronization mechanisms. They also guar­
antee the integrity of the communication and result in a high-speed operation. Refer to 
Chapter 7 for examples of the use of interlocked instructions. 

Table 10-5. Interlocked Operations Instructions 

Instruction Description Instruction Description 

LDFI Load floating-point value, interlocked STFI Store floating-point value, interlocked 

LDII Load integer, interlocked STII Store integer, interlocked 

SIGI Signal, interlocked 

10.1.6 Parallel Operations Instructions 

10-6 

The parallel-operations instructions group makes a high degree of parallelism possible. 
Some of the TMS320C3x instructions can occur in pairs that will be executed in parallel. 
These instructions offer the following features: 

El Parallel loading of registers, 

Q Parallel arithmetic operations, or 

Q Arithmetic/logical instructions used in parallel with a store instruction. 

Each instruction in a pair is entered as a separate source statement. the second instruc­
tion in the pair must be preceded by two vertical bars (II). Table 1 0-6 lists the valid instruc­
tion pairs. 
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Table 10-6. Parallel Instructions 

Mnemonic Description 

Parallel Arithmetic with Store Instructions 

ABSF Absolute value of a floating-point number and store floating-point value 
II STF 

ABSI Absolute value of an integer and store integer 
II STI 

ADDF3 Add floating-point values and store floating-point value 
II STF 

ADDI3 Add integers and store integer 
IISTI 

AND3 
IISTI 

Bitwise logical-AND and store integer 

ASH3 
IISTI 

Arithmetic shift and store integer 

FIX 
IISTI 

Convert floating-point to integer and store integer 

FLOAT 
II STF 

Convert integer to floating-point value and store floating-point value 

LDF Load floating-point value and store floating-point value 
II STF 

LDI Load integer and store integer 
IISTI 

LSH3 Logical shift and store integer 
IISTI 

MPYF3 Multiply floating-point values and store floating-point value 
II STF 

MPYI3 
IISTI 

Multiply integer and store integer 

NEGF Negate floating-point value and store floating-point value 
II STF 

NEGI 
II STI 

Negate integer and store integer 

NOT Complement value and store integer 
II STI 

OR3 Bitwise logical-OR value and store integer 
II STI 

STF Store floating-point values 
II STF 

STI 
II STI 

Store integers 

SUBF3 Subtract floating-point value and store floating-point value 
II STF 
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Table 10-6. Parallel Instructions (Concluded) 

Mnemonic Description 
Parallel Arithmetic with Store Instructions (Concluded) 

SUBI3 Subtract integer and store integer 
II STI 

XOR3 Bitwise exclusive-OR values and store integer 
II STI 

Parallel Load Instructions 

LDF Load floating-point 
II LDF 

LDI 
II LDI 

Load integer 

Parallel Multiply and Add/Subtract Instructions 

MPYF3 Multiply and add floating-point 
II ADDF3 

MPYF3 Multiply and subtract floating-point 
II SUBF3 

MPYI3 
II ADDI3 

Multiply and add integer 

MPYI3 Multiply and subtract integer 
II SUBI3 
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10.2 Condition Codes and Flags 

The TMS320C3x provides 20 condition codes (00000 - 10100 excluding 01 011) that can 
be used with any of the conditional instructions, such as RETScondor LDFcond. The con­
ditions include signed and unsigned comparisons, comparisons to zero, and comparisons 
based on the status of individual condition flags. Note that all conditional instructions can 
accept the suffix U to indicate unconditional operation. 

Seven condition flags provide information about properties of the result of arithmetic and 
logical instructions. The condition flags are stored in the status register (ST) and are af­
fected by an instruction only when either of the following two cases occurs: 

Q The destination register is one of the extended-precision registers (R7 - RO). This 
allows for modification of the. registers used for addressing but does not affect the con­
dition flags during computation. 

Q The instruction is one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, 
TSTB, or TSTB3). This makesit possible to set the condition flags according to the 
contents of any of the CPU registers. 

The condition flags may be modified by most instructions when either of the preceding 
conditions is established and either of the following two cases occurs: 

Q A result is generated when the specified operation is performed to infinite precision. 
This is appropriate for compare and test instructions that do not store results in a regis­
ter. It is also appropriate for arithmetic instructions that produce underflow or overflow. 

Q The output is written to the destination register as shown in Table 10-7. This is appro­
priate for other instructions that modify the condition flags. 

Table 10-7. Output Value Formats 

Type Of Operation Output Format 

, Floating-point 8-bit exponent, 1 sign bit, 31-bit fraction 

Integer 32-bit integer 

Logical 32-bit unsigned integer 

Figure 10-1 shows the condition flags in the low-order bits of the status register. Following 
the figure is a list of status register condition flags and descriptions on how the flags are 
set by most instructions. For specific details of the effect of a particular instruction on the 
condition flags, see the despription of that instruction in subsection 10.3.3. 
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Table 10-8 lists the condition mnemonic, code, description, and flag for each of the 19 
condition codes. 

Table 10-8. Condition Codes and Flags 

Condition Code Description Flagt 

Unconditional Compares 

U 00000 Unconditional Don't care 

Unsigned Compares 

LO 00001 Lower than C 
LS 00010 Lower than or same as CORZ 

HI 00011 Higher than -CAND-Z 
HS 00100 Higher than or same as -C 
EQ 00101 Equal to Z 
NE 00110 Not Equal to -Z 

Signed Compares 

LT 00111 Less than N 
LE 01000 Less than or equal to NORZ 

GT 01001 Greater than -NAND-Z 
GE 01010 Greater than or equal to -N 
EQ 00101 Equal to Z 
NE 00110 Not equal to -Z 

Compare to Zero 

Z 00.101 Zero Z 
NZ 00110 Not zero -Z 
P 01001 Positive -NAND-Z 
N 00111 Negative N 
NN 01010 Nonnegative -N 

Compare to Condition Flags 

NN 01010 Nonnegative -N 
N 00111 Negative N 
NZ 00110 Nonzero -Z 
Z 00101 Zero Z 
NV 01100 No overflow -V 
V 01101 Overflow V 
NUF 01110 No underflow -UF 
UF 01111 Underflow UF 
NC 00100 No carry -C 
C 00001 Carry C 
NLV 10000 No latched overflow -LV 
LV 10001 Latched overflow LV 
NLUF 10010 No latched floating-point underflow -LUF 
LUF 10011 Latched floating-point underflow LUF 
ZUF 10100 Zero or floating-point underflow ZORUF 

t The - means logical complement (Unot true" condition). 
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10.3 Individual Instructions 

This section contains the individual assembly language instructions for the TMS320C3x. 
The instructions are listed in alphabetical order. Information for each instruction includes 
assembler syntax, operation, operands, encoding, description, cycles, status bits, mode 
bit, and examples. 

Definitions of the symbols and abbreviations, as well as optional syntax forms allowed by 
the assembler, precede the individual instruction description section. Also, an example in­
struction shows the special format used and explains its content. 

A functional grouping of the instructions as well as a complete instruction set summary 
can be found in Section 10.1. Appendix B lists the opcodes for all the instructions. Refer 
to Chapter 6 for information on memory addressing. Code examples using many of the 
instructions are given in Chapter 11, Software Applications. 

10.3.1 Symbols and Abbreviations 

Table 10-9 lists the symbols and abbreviations used in the individual instruction descrip­
tions. 

Table 10-9. Instruction Symbols 

Symbol Meaning 

src Source operand 
src1 Source operand 1 
src2 Source operand 2 
src3 Source operand 3 
src4 Source operand 4 

dst Destination operand 
dst1 Destination operand 1 
dst2 Destination operand 2 
disp Displacement 
cond Condition 
count Shift count 

G General addressing modes 
T Three-operand addressing modes 
P Parallel addressing modes 
B Conditional-branch addressing modes 

ARn Auxiliary register n 
IRn Index register n 
Rn Register address n 
RC Repeat count register 
RE Repeat end address register 
RS Repeat start address register 
ST Status register 
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Table 10-9. Instruction Symbols (Concluded) 

Symbol Meaning 

C Carry bit 
GIE Global interrupt enable bit 
N Trap vector 
PC Program counter 
RM Repeat mode flag 
SP System stack pointer 

Ixl Absolute value of x 

x....:; y Assign the value of x to destinat'ion y 
x(man) Mantissa field (sign + fraction) of x 
x(exp) Exponent field of x 

op1 
IIop2 Operation 1 performed in parallel with operation 2 

xANDy Bitwise logical-AND of x and y 
xORy Bitwise logical-OR of x and y 
xXORy Bitwise logical-XOR of x and y 
-x Bitwise logical-complement of x 

x «y Shift x to the left y bits 
x» y Shift x to the right y bits 
*++SP Increment SP and use incremented SP as address 
*SP-- Use SP as address and decrement SP 

10.3.2 Optional Assembler Syntaxes 

The assembler allows a relaxed syntax form for some instructions. These optional forms 
simplify the assembly language so that special-case syntax can be ignored. The following 
is a list of these optional syntax forms. 

Q The destination register can be omitted on unary arithmetic and logical operations 
when the same register is used as a source. For example, 

ABSI RO,RO can be written as ABSI RO 

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI, NORM, NOT, 
RND. 

Q All 3-operand instructions can be written without the 3. For example, 

ADDI3 RO,Rl,R2 can be written as ADDI RO,Rl,R2 

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3, LSH3, 
MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3. 

This also applies to all the pertinent parallel instructions. 

Q All 3-operand comparison instructions can be written without the 3. For example, 

CMPI3 RO,*ARO can be written as CMPI RO,*ARO 

Instructions affected: CMPI3, CMPF3, TSTB3. 

Q Indirect operands with an explicit 0 displacement are allowed. In 3-operand or parallel 
instructions, operands with 0 displacement are automatically converted to no-dis­
placement mode. For example: 
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LDI *+ARO (0) , Rl is legal 

Also 

ADDI3*+ARO (0) , Rl, R2 is equivalent to ADDI3 *ARO, Rl, R2 

Q Indirect operands can be written with no displacement, in which case a displacement 
of one is assumed. For example, 

LDI *ARO++ (1) , RO can be written LDI *ARO++, RO 

Q All conditional instructions accept the suffix U to indicate unconditional operation. 
Also, the U can be omitted from unconditional short branch instructions. For example: 

BU label can be written B label 

Q Labels can be written with or without a trailing colon. For example: 

NOP 
NOP 

labelO: 
labell 
labe12: (label assembles to next source line) 

Q Empty expressions are not allowed for the displacement in indirect mode: 

LDI *+ARO () ,RO is not legal 

Q Long immediate mode operands (destination of SR and CALL) can be written with an 
at sign: 

BR label can be written BR @label 

Q The LOP pseudo-op can be used to load a register (usually OP) with the 8 MSSs of 
a relocatable address as follows: 

LDP addr, REG or LDP @addr,REG 

The at sign is optional. 

Ifthe destination REG is the OP, the OP can be omitted in the operand. LOP generates 
an LOI instruction with an immediate operand, and a special relocation type. 

Q Parallel instructions can be written in either order. For example: 

ADDI 
II STI 

can be written as STI 
II ADDI 

Q The parallel bars indicating part 2 of a parallel instruction can be written anywhere on 
the line from column 0 to the mnemonic. For example: 

ADDI 

II STI 
can be written as ADDI 

I I STI 

El If the second operand of a parallel instruction is the same as the third (destination reg­
ister) operand, the third operand can be omitted. This allows the writing of 3-operand 
parallel instructions that look like normal 2-operand instructions. For example, 

ADDI *ARO, R2, R2 can be written as ADD *ARO,R2 
I I MPYI *ARl,RO,RO I I MPYI *ARl, RO 
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Instructions (applies to all parallel instructions that have a register second operand) 
affected: ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, SUBF, XOR. 

a All commutative operations in parallel instructions can be written in either order. For 
example, the ADD I part of a parallel instruction can be written in either of two ways: 

ADDI *ARO,Rl,R2 or ADDI Rl,*ARO,R2 

The instructions affected are parallel instructions containing any of the following: 
ADDI, ADDF, MPYI, MPYF, AND, OR, XOR. 

a Use the syntax in Table 10-10 to designate CPU registers in operands. Note the alter­
nate form using designators RO - R27. 

10.3.3 Individual Instruction Descriptions 

Each assembly language instruction for the TMS320C3x is described in this section in al­
phabetical order. The description includes the assembler syntax, operation, operands, en­
coding, description, cycles, status bits, mode bit, and examples. 

Table 10-10. CPU Register Syntax 

Assemblers Alternate Register Assigned 
Syntax Syntax Function 

RO RO Extended·precision register 
R1 R1 Extended-precision register 
R2 R2 Extended-precision register 
R3 R3 Extended-precision register 
R4 R4 Extended-precision register 
R5 R5 Extended-precision register 
R6 R6 Extended-precision register 
R7 R7 Extended-precision register 

ARO R8 Auxiliary register 
AR1 R9 Auxiliary register 
AR2 R10 Auxiliary register 
AR3 R11 Auxiliary register 
AR4 R12 Auxiliary register 
AR5 R13 auxiliary register 
AR6 R14 Auxiliary register 
AR7 R15 Auxiliary register 

DP R16 Data-page pointer 
IRO R17 Index register 0 
IR1 R18 Index register 1 
BK R19 Block-size register 
SP R20 Active stack pointer 

ST R21 Status register 
IE R22 CPU/DMA interrupt enable 
IF R23 CPU interrupt flags 
10F R24 110 flags 

RS R25 Repeat start address 
RE R26 Repeat end address 
RC R27 Repeat counter 
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Syntax 

Operation 

Operands 

10-16 

INST src, dst 

or 

INST1 src2, dst1 
II INST2 src3, dst2 

Each instruction begins with an assembler syntax expression. Labels may be 
placed either before the command (instruction mnemonic) on the same line or 
on the preceding line in the first column. The optional comment field that con­
cludes the syntax is not included in the syntax expression. Space(s) are re­
quired between each field (label, command, operand, and comment fields). 

The syntax examples illustrate the common one-line syntax and the two-line 
syntax used in parallel addressing. Note that the two vertical bars II that indi­
cate a parallel addressing pair can be placed anywhere before the mnemonic 
on the second line. The first instruction in the pair can have a label, but the sec­
ond instruction cannot have a label. 

Isrc I -? dst 

or 

Isrc21 -? dst1 
II src3 -? dst2 

The instruction operation sequence describes the processing that takes place 
when the instruction is executed. For parallel instructions, the operation se­
quence is performed in parallel. Conditional effects of status register specified 
modes are listed for conditional instructions such as Bcond. 

srcgeneral addressing modes (G): 
o 0 register (Rn, 0 s; n s; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s; n s; 27) 

or 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 s; n1 s; 7) 
src3 register (Rn2, 0 s; n2 s; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

Operands are defined according to the addressing mode and/or the type of ad­
dressing used. Note that indirect addressing uses displacements and the index 
registers. Refer to Chapter 5 for detailed information on addressing. 
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EXAMPLE 

Mode Bit 

Example 

10-18 

~x;:'mnlp Instruction 

OVM Overflow Mode Flag. In general, integer operations are affected by the 
OVM bit value (described in Table 3-2 on page 3-7). 

INST @98AEh,R5 

Before Instruction: 

DP = 80h 
R5 = 0766900000h = 2.30562500e+02 
Memory at 8098AEh = 5CDFh = 1.000011 07e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = 0066900000h = 1.80126953e + 00 
Memory at 8098AEh = 5CDFh = 1.000011 07e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

The sample code presented in the above format shows the effect of the code 
on system pointers (e.g., DP or SP), registers (e.g., R1 or R5), memory at spe­
cific locations, and the seven status bits. The values given for the registers in­
clude the leading zeros to showthe exponent in floating-point operations. Deci­
mal conversions are provided for all register and memory locations. The seven 
status bits are listed in the order in which they appear in the assembler and sim­
ulator (see Table 10-8 and Section 10.2 on page1 0-9 for further information 
on these seven status bits). 
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Absolute Value of Floating-Point ABSF 
;:;:;:::::::::;:::::::::::::::::::;:;:::::::::;:::::::;:;:::;:::::;:::::;:::;:;:;:::;:;:;:;:::::;:;:::::;:::::::;:::::::::;:;:;:::;:;:::;:;:;.;:;:;.;:::;.;.;:!:::;:;:::::;.;:.:;:;:::;:;:::;:::::;:;:;:::;.;:;.;:::;.;.;:;: •• ;: •• ;:;:;:;:;:;:;:;:;:;.;:;:;: .... ~ •• ;:;:;:;:;: •• ;:; ... ; ••• ;.; •• :;.;:; •• : ••• :;.;: ••• :; ... ;.;.;.;:=:.:; ••• ; •••••• :.: •• ;0.:; •• :;:; •• :.:; ••••• ; •• :.: ..... :.-................................................................... ' ............... : ............ 0' ............... : ••• :.: ••• : ••••••• : ••• : ••• : ••••• :.: ••• :.:.:.:.:.:; •• :.:.:.:.:.:.:.:.:.:.:::;:;:;:;:.:;:,::;:;:.~;:;:;:;:::;:;:;:;:;:;:;=~;=:: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

ABSF src, dst 

Isrcl ~ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ::; n ::; 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, ::; 0 n::; 7) 

1

3\ 1 1 1 1 1 1241231 
00000 0000 G 

116115, 
dst . 

i i 
87 
I I 

src 

The absolute value of the src operand is loaded into the dst register. The src 
and dst operands are assumed to be floating-point numbers. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

These condition flags are modified only ifthe destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF o. 
N o. 
Z 1 if a zero result is generated, 0 otherwise. 
V ,1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

ABSF R4,R7 

Before Instruction: 

R4 = 05C8000F971 h = -9.90337307e + 27 
R7 = 0702511 OOAEh = 5.48527255e + 37 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 05C8000F971 h = -9.90337307e + 27 
R7 = 05C7FFF068Fh = 9.90337307e + 27 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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j:\BSFIJSTF . Parallel ABSF and STF 
::.:.:.'.~.~.:.:.:.:.:.:.:.::.: •• :.:.y.:;:.:.:.:.:;:.::::::!::::::::::::::::.:::::::::.:::::::.:::.:::::.:.:.:::::::.:::.:::::::::.:::::.:.:.:.:.:.:::.:::.:.:.:.:.:::::::::.:.:::.·~.:.:.:.:.:.:.:.:.:.·.:u.:.:.:.:::::::::::;:;:::::::::::::::::::::;:::::::::;:::::::::::::::::.:;0::;-;:::::::::::::;'::::::::::::;:::;-;::::y;,::.;::.:.:::.::::::;o;:~:::::o;:;::.;o;: •• ;:;:::::;:::;o;::::.:.::::;:;:::~:.: ... : •• ::.;-;o.;.;:::::;::::::.:::::.::;:;:::.:;.; •• ~ ••••• ;::.~;.;::.;o;..;::.;O:::::';9' •• :"y';y'::::~.;:::::::::.:::::.!,f.::::::::::::::::::::::::::::::::::::::::::::;:.::;:::::-,o,::::::".:::::::::: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-20 

ABSF src2, dst1 
II STF src3, dst2 

Isrc21 --7 dst1 
II src3 --7 dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 :::; n1 :::; 7) 
src3 register (Rn2, 0 :::; n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRO,. IR1) 

31 2423 16 15 

1 · 1 · · · i 1 · · '10' O' 01 iii · 1 1 0 0 1 0 0 dst1 _ _ src3 
• • • ••• 

dst2 src2 

A floating-point absolute value and a floating-point store are performed in par­
allel. All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a reg­
ister and the operation being performed in parallel (ABSF) writes to the same 
register, then STF accepts as input the contents of the register before it is modi­
fied by the ABSF. 

If src2and dst2pointto the same location, src2is read before the write to dst2. 
If src3 and dst1 point to the same register, src3 is read before the write to dst1. 

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result 
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
1 if a floating-point overflow occurs, unchanged otherwise. 
O. 
O. 
1 if a zero result is generated, 0 otherwise. 
1 if a floating-point overflow occurs, 0 otherwise. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

ABSF *++AR3 (IR1) ,R4 

II STF R4, *- AR7 (1) 
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ABSI Absolute Value of Integer 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

10-22 

ABSI src, dst 

Isrcl-7 dst 

src general addressing modes (G): 
o 0 register tRn, 0 $ n $ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 $ n $ 27) 

(1, , I 1 , , , 24,23
1 

i 16

1

15, 

dst _ 

87 
i i i i 

000000001 G src 

The absolute value of the src operand is loaded into the dst register. The src 
and dst operands are assumed to be signed integers. 

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is 
dst = 7FFFFFFFh. If ST(OVM) = 0, the result is dst = 80000000h. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. ' 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 

ABSI RO,RO 
or 
ABSI RO 

Before Instruction: 

RO = OFFFFFFCBh = - 53 

After Instruction: 

RO = 035h = 53 
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Absolute Value of Integer ASSI 
~;:;:;:;:::;:;:;:::::;:::::::::;:;:;:;:;:;:::::;:::::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::;:::::.:.:::.:.:::::::::;.;.;:::.:::;::: •• ;:::.:::; •• :.:::::.:.:;.;: ••• :; •• : •• ; •• :.: ••••• :;.;.;:;.;.;.;:.: ••• :.: ••••• : ••• : •• ;: ••••••• : ••• : •••••••••••••••• ;.;.;. •••••• ;.; •• : •••••• : •• : •• ~;: ••••• : ••• : •••••••••• ;: •• ;.; •• : ..... :.:.:; •• ~ ••••.•••••• :.: •• ;:.: •••• .; ••• ; ............................................................. " ..................................................................................••• :.: ....... : ••••••••••••• : ....... : ••• :.:.:.:::::::::::;0:::.0;0;:::::::;'::::::::.:;':.:::::;': 

Example 2 ABSI *AR1,R3 

Before Instruction: 

AR1 = 20h 
R3 = Oh 
Data at 20h = OFFFFFFCBh = - 53 

After Instruction: 

AR1 = 20h 
R3 = 35h = 53 
Data at 20h = OFFFFFFCBh = - 53 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-24 

ASSI src2, dst1 

II STI src3, dst2 

Isrc21 ~ dst1 
II src3 ~ dst2 

src2 
dst1 
src3 
dst2 

indirect (disp = 0, 1, IRO, IR1) 
register (Rn1, 0 ::; 1 ::; 7) 
register (Rn2, 0 ::; n2 ::; 7) 
indirect (disp = 0, 1, IRO, IR1) 

iii iii 

dst2 src2 

An integer absolute value and an integer store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STI) reads from a register and 
the operation being performed in parallel (ABSI) writes to the same register, 
then STI accepts as input the contents of the register before it is modified by 
the ABS!. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is dst = 
7FFFFFFFh. If ST(OVM) = 0, the result is dst = 80000000h. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1, if an integer overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 
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Parallel ABSI and STI ABSIIISTI 
;:~;:;:.:;:;:::;:;:;!;:;:;:;:;:;:;:;:::;::::::::::::~:::;::!;:;:;:;:::::::::::;:::;:;:::;:;:::;::=-:;:;:::.:.·;:.:;:;:;:.s:.:.=-·~!o:::':::6»:::;S!o:::h:.';:;:':.:':;::Y..~"~:':;O.:;:;:,:.:.·.:,:,:,:,:.·.y.·.·;:, .............. :. ••• ..:.:.:.:, •• :. .. :.:.: ... :.::: ••• :::.:.:.:.:.:.:. •••••••• :. ...... : ..... ~:. .............................................................................. ~ .............. ·N ....... • ... • ... • ... • ... ••• ... ••••••• ..... ••• ... ••• ..... ••• ... ••• ... ·.: ......... • ... ••••• ... :.: ..... :.:.).:;:.:::;:.:.:,y .. :.:.v~::::!;::::w.:.:.:;::x::;,;:::::::::::;~ 

Example ABSI *-AR5(1),R5 
I I STI Rl, *AR2--(IR1) 

Before Instruction: 

AR5 = 8099E2h 
R5 =Oh 
R1 = 42h = 66 
AR2 = 8098FFh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = - 53 
Data at 8098FFh = 2h = 2 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 8099E2h 
R5 = 35h = 53 
R1 = 42h = 66 

AR2 = 8098FOh 
IR1 = OFh 
Data at 8099E1 h = OFFFFFFCBh = - 53 
Data at 8098FFh = 42h = 66 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDC Add 

Syntax 

Operation 

Operands 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

ADDC src, dst 

dst+ src+ C ~ dst 

src general addressing modes (G): 

o 0 register (Rn, 0 ::::; n ::::; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ::::; n ::::; 27) 

31 2423 87 
i I i i 

dst src 

The sum of the dst and src operands and the C (carry) flag is loaded into the 
dst register. The dst and src operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 

ADDC Rl,R5 

Before Instruction: 

R1 = 00FFFF5C25h = - 41 ,947 
R5 = 00FFFF019Eh = - 65,122 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 00FFFF5C25h = - 41 ,947 
R5 = 00FFFE5DC4h = - 107,068 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

ADDC3 sre2, sret, dst 

sre t + sre2 + C --7 dst 

sret three-operand addressing modes (T): 
o 0 register (Rn1, 0 ~ n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° ~ n ~ 27) 

31 2423 16 15 87 0 I' , I ' , , , , I i i i 

I 
i i i 

I 
i i i i 

I T dst src1 src2 ,001,000000, 

The sum of the sret and sre20perands and the C (carry) flag is loaded into the 
dst register. The sret, sre2, and dst operands are assumed to be signed inte­
gers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer. overflow occurs, unchanged otherwise. 
U 0. 
N 1 if a negative result is generated, ° otherwise. 
Z 1 if a zero result is generated, ° otherwise. 
V 1 if an integer overflow occurs, ° otherwise. 
C 1 if a carry occurs, ° otherwise. 

DVM Operation is affected by OVM bit value. 
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Example 1 

Example 2 

10-28 

ADDe3 *ARS++(IRO),RS,R2 
or 

ADDe3 RS,*ARS++(IRO),R2 

Before Instruction: 

AR5 = 809908h 
IRO = 10h 
R5 = 066h = 102 
R2 = Oh 
Data at 809908h = OFFFFFFCBh = - 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809918h 
IRO = 10h 
R5 = 066h = 1 02 
R2 = 032h = 50 
Data at 809908h = OFFFFFFCBh = - 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

ADDe3 R2, R7, RO 

Before Instruction: 

R2 = 02BCh = 700 
R7 = OF82h = 3970 
RO= Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 

After Instruction: 

R2 = 02BCh = 700 
H7 = OF82h = 3970 
RO = 0123Fh = 4671 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

ADDF src, dst 

dst + src ~ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

(\ 1 I 1 1 1 1241231 
src 

87 
i' i i 

000000011G 

The sum of the dstand srcoperands is loaded into the dstregister. The dstand 
src operands are assumed to be floating-point numbers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

ADDF *AR4++(IR1) ,RS 

Before Instruction: 

AR4 = 809800h 
IR1 = 12Bh 
R5 = 0579800000h = 6.23750e+01 
Data at 809800h = 86B2800h = 4.7031250e + 02 
LUF LV UF N Z V C =0 0 0 00 0 0 

After Instruction: 

AR4 = 80992Bh 
IR1 = 12Bh 
R5 = 09052COOOOh = 5.3268750e+02 
Data at 809800h = 86B2800h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDF3 Add Floating-Point, 3-0perand 
~!;~s:;s~;:;:;:;~::.;:;:;s:;:;:;s::~~;o;:::;:>:::a:;::»:;:;:;:::::::::::::;::::::~:::;:>:::::;:::;,::::::;:;:.:.:;:;:;:~;:;:;:;:::;:::::,=;:;:::;::::9>:;')!;y';:«;:,:~«::::;. ... ..:.w~:::;s~;:>!;s~~::Y.O:;s:~:;.m~:::;:;S:::;9~~::::;:;S:;:;:::;O;:;:::::~:;S~~·;,;o,;y';:;';O;:::;~·:y';O:y":~~v.:::s.Y.~~~;S::y';OX:;~~~~~~~~:~:;:'~ 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

10-30 

ADDF3 src2, src1, dst 

src1 + src2 ~ dst 

src1 three-operand addressing modes (T): 
o 0 register (Rn1, 0 ::;; n1 ::;; 7) 
o 1 indirect (disp = 0, 1, IRO, IRi) 
1 0 register (Rn1, 0 ::;; n1 ::;; 7) 
1 1 indirect (disp = 0,1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ::;; n2 ::;; 7) 
o 1 register (Rn2, 0 ::;; n2 ::;; 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ::;; n ::;; 7) 

31 2423 16 15 87 0 

Iii Iii iii I 
i i i I i i i i I i 

i i i I >0<00000< T dst src1 src2 

The sum ofthe src1 and src20perands is loaded into the dstregister. The src1, 
src2, and dst operands are assumed to be floating-point numbers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

ADDF3 R6,R5,Rl 
or 
ADDF3 R5,R6,Rl 

Before Instruction: 

R6 = 086B280000h = 4.7031250e + 02 
R5 = 0579800000h = 6.23750e+01 
R1 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Add Floating-Point, 3-0perand ADDF3 
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Exampie2 

After Instruction: 

R6 = 0868280000h = 4.7031250e + 02 
R5 = 0579800000h = 6.23750e + 01 
R1 = 09052COOOOh = 5.3268750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDF3 *+ARl(l),*AR7++(IRO),R4 

Before Instruction: 

AR1 = 809820h 
AR7 = 8099FOh 
IRO = 8h 
R4= Oh 
Data at 809821 h = 700FOOOh = 1.28940e + 02 
Data at 8099FOh = 34C2000h = 1.27590e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR 1 = 809820h 
AR7 = 8099F8h 
IRO = 8h 
R4 = 070D820000h = 1.41695313e + 02 
Data at 809821 h = 700FOOOh = 1.28940e + 02 
Data at 8099FOh = 34C2000h = 1.27590e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 o. 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-32 

ADDF3 
II STF 

src2, src1, dst1 
src3, dst2 

src1 + src2 -7 dst1 
II src3 -7 dst2 

src1 
src2 
dst1 
src3 
dst2 

register (Rn1, 0 :s; n1 :s; 7) 
indirect (disp = 0, 1, IRO, IR1) 
register (Rn2, 0 :s; n2 ::; 7) 
register (Rn3, 0::; n3 ::; 7) 
indirect (disp = 0, 1, IRO, IR1) 

i i 
src1 

1615 
i I I I 
src3 

I I I I 

dst2 src2 

A floating-point addition and a floating-point store are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (STF) reads from a register 
and the operation being performed in parallel (ADDF3) writes to the same reg­
ister, then STF accepts as input the contents of the register before it is modified 
by the ADDF3. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

ADDF3 *+AR3(IR1),R2,R5 
I I STF R4,*AR2 
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Before Instruction: 

AR3 = 809800h 
IR1 = OASh 
R2 = 070C800000h = 1 AOSOe + 02 
RS = Oh 
R4 = OS78400000h = 6.2812S0e + 01 
AR2 = 8098F3h 
Data at 8098ASh = 733COOOh = 1.797S0e + 02 
Data at 8098F3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809800h 
IR1 = OASh 
R2 = 070C800000h = 1 AOSOe+02 
RS = 0820200000h = 3.202S0e + 02 
R4 = OS7B400000h = 6.2812S0e + 01 
AR2 = 8098F3h 
Data at 8098ASh = 733COOOh = 1.797S0e + 02 
Data at 8098F3h = S7B4000h = 6.2812Se + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDI Add 

Syntax 

Operation 

Operands 

Encoding 

Description 

Status Bits 

Mode Bit 

Example 

ADDI src, dst 

dst + src --7 dst 

srcgeneral addressing modes (G): 
o 0 register (Rn, 0 :::; n :::; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0:::; n :::; 27) 

31 2423 87 

src I ii Iii iii I 000000100 G 
i i 

The sum of the dst and src operands is loaded into the the dst register. The dst 
and src operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 

ADDI R3,R7 

Before Instruction: 

R3 = OFFFFFFCBh = - 53 
R7 = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = OFFFFFFCBh = - 53 
R7 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

ADDI3 <sre2 >,<sret >,<dst > 

src t + sre2 ~ dst 

sret three-operand addressing modes (T): 
o 0 register (Rn1, 0::; n1 ::; 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ::; n1 ::; 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ::; n2 ::; 27) 
o 1 register (Rn2, 0 ::; n2 ::; 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ::; n ::; 27) 

31 2423 

src1 I ii Iii iii I o 0 1 0 0 0 0 10 T 
iii i i 

src2 

The sum of the sret and sre20perands is loaded into the dstregister.The sret, 
sre2, and dst operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 

ADDI3 R4,R7,R5 

Before Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
RS = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ADDI3 Add Integer, 3-0perand 
~;:;!;!;:;:;!>:;:;:;:"O!;:::;:;:;:~;:;:::::::;:::~:;:;:::::;:;::-:::::~:::;::::::~;:;:::;::::::~:::.:.:;:::::;:::::::::::6~.::·::;·::::.·;·.·;::::y.s·.:.:.·;·;:: ...... ·N:O::::;::s:::::::::::::;:;:::;::::::::~::·::::::::::;::::::::::::~.:;::.;·:::ss~::::::::::;':::::::-:'::';'::-,,:';::0:.::.;:::;.;.::::::::::::::::.,;.;.:::.::;-:-:.::::-:.:.;.;::.::::::-~:::.: ••• ::;.;.:.:e;.:.:.;.,-.. :.;o;.:.:.;..:;.: ..... ; ••• ; •••• ..;.;.;.;.;.;.»:.;.;.;.;.;.;.;.;: .. ;.;.;.;.;: •• ;·h·;·;·;y;·:·.·.:::;·.·~;·.·.· .. :::·::;·:·:::·;o:·:·;:::;.::::::::;sss:::;~~:s::::~"!:s:;::::::s:;::s:;:;:;s 

Example 2 

After Instruction: 

R4 = ODCh = 220 
R7 = OAOh = 160 
R5 = 017Ch = 380 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ADDI3 *-AR3(1),*AR6--(IRO),R2 

Before Instruction: 

AR3 = 809802h 
AR6 = 809930h 
IRO = 18h 
R2 = 10h = 16 
Data at 809801 h = 2AF8h = 11,000 
Data at 809930h = 3A98h = 15,000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809802h 
AR6 = 809918h 
IRO = 18h 
R2 = 06598h = 26,000 
Data at 809801 h = 2AF8h = 11,000 
Data at 809930h = 3A98h = 15,000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

II 
ADDI3 
STI 

src2, src1, dst1 
src3, dst2 

src1 + src2 --) dst1 
II src3 --) dst2 

src1 register (Rn1, 0 ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, 0 ~ n2 ~ 7) 
src3 register (Rn3, 0 ~ n3 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

i i iii 

o 1 0 0 1 1 1 dstl src1 dst2 

iii 

src2 

An integer addition and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register. and the 
operation being performed in parallel (ADDI3) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
ADDI3. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero resuit is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a carry occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 
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ADDI311STI Parallel ADDI3 and STI 
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Example ADDI3 *ARO--(IRO),R5,RO 
II ' STI R3,*AR7 

Before Instruction: 

ARO = 80992Ch 
IRO = OCh 
R5 = ODCh = 220 
RO = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0, 0 0 

After Instruction: 

ARO = 809920h 
IRO = OCh 
R5 = ODCh = 220 
RO = 208h = 520 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80992Ch = 12Ch = 300 
Data at 80983Bh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operands 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Bitwise AND 

AND src, dst 

dst AND src ~ dst 

src general addressing modes (G): 
00 register (Rn, 0 $ n $ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (Rn, 0 $ n $ 27) 

31 2423 1615 87 0 I I I i I I I I I i i i i 

I 
i i i i 

I >0<00010< G dst src 

The bitwise logical-AND between the dst and src operands is loaded into the 
dst register. The dst and src operands are assumed to be unsigned integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

AND Rl,R2 

Before Instruction: 

R1 = BOh 
R2 = OAFFh 
LUF LV UF N Z V C ~ 0 0 0 0 0 0 1 

After Instruction: 

R1 = BOh 
. R2 = BOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-42 

AND 
II STI 

sre2, sre1, dst1 
sre3, dst2 

sret AND sre2 ~ dst1 
II sre3 ~ dst2 

sret 
sre2 
dst1 
sre3 
dst2 

register (Rn1, 0 ~ n1 ~ 7) 
indirect (disp = 0, 1, IRO, IR1) 
register (Rn2, 0 ~ n2 ~ 7) 
register (Rn3, 0 ~ n3 ~ 7) 
indirect (disp = 0, 1, IRO, IR1) 

I I 
src1 

I I 
dst2 

I I I 
src2 

A bitwise logical-AND and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (AND3) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
AND3. 

If sre2and dst2point to the same location, sre2is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example AND3 *+ARl (IRQ) , R4, R7 

I I STI R3,*AR2 

Before Instruction: 

AR1 = 8099F1 h 
IRO = 8h 
R4 = OA323h 
R7 =Oh 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 8099F1 h 
RO =8h 
R4 = OA323h 
R7 = 03h 
R3 = 35h = 53 
AR2 = 80983Fh 
Data at 8099F9h = 5C53h 
Data at 80983Fh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-44 

ANDN src, dst 

dst AND -src -7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0 :::; n :::; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (Rn, 0 :::; n :::; 27) 

13\ , 1 ' , , , 24,23
1 

87 
i . i i i 

dst src 

The bitwise logical-AND between the dstoperand and the bitwise logical com­
plement (-) of the src operand is loaded into the dst register. The dst and src 
operands are assumed to be unsigned integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

DVM Operation is not affected by OVM bit value. 

ANDN @980Ch,R2 

Before Instruction: 

DP = 80h 
R2 = OC2Fh 
Data at 80980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 042Dh 
Data at 80980Ch = OA02h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

ANDN3 src2, src1, dst 

src 1 AN D -src2 --7 dst 

src1 three-operand addressing modes (T): 
o 0 register (Rn1 , O·~ n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1 , 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1,100, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

i i 

dst 

iii 

src1 

iii 

src2 

The bitwise logical-AND between the src1 operand and the bitwise logical 
complement (-) of the src2 operand is loaded into the dst register. The src1, 
src2, and dst operands are assumed to be unsigned integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. . 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

ANDN3 R5,R3,R7 

Before Instruction: 

R5 = OA02h 
R3 = OC2Fh 
R7 = Oh 
LUF LV UF N Z V C = 0 . 0 0 0 0 0 0 
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ANON3 Bitwise Logical-ANDN, 3-0perand 
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Example~ 

After Instruction: 

R5 = OA02h 
R3 = OC2Fh 
R7 = 042Dh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

ANDN3 Rl,*AR5++(IRO),RO 

Before Instruction: 

R1 = OCFh 
AR5 = 809825h 
IRO = 5h 
RO = Oh 
Data at 809825h = OFFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OCFh 
AR5 = 80982Ah 
IRO = 5h 
RO = OF30h 
Data at 809825h = OFFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ASH Arithmetic Shift 

Status Bits 

Mode Bit 

Example 1 

Example 2 

10-48 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of o. 
OVM Operation is not affected by OVM bit value. 

ASH Rl,R3 

Before Instruction: 

R1 = 10h = 16 
R3 = OAEOOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 10h 
R3 = OEOOOOOOOh 
LUF LV UF N Z V C = 0 o 1 010 

ASH @98C3h,R5 

Before Instruction: 

DP = 80h 
R5 = OAEC00001 h 
Data at 8098C3h = OFFE8 = - 24 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R5 = OFFFFFFAEh 
Data at 8098C3h = OFFE8 = - 24 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 
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Syntax 

Operation 

Operands 

Encoding 

Description 

31 

ASH3 count, src, dst 

If (count ~ 0): 
src « count ~ dst 

Else: 
src» I count I ~ dst 

Arithmetic 

count three-operand addressing modes (T): 
o 0 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRa, IR1) 
1 1 indirect (disp = 0, 1, IRa, IR1) 

src three-operand addressing modes (T): 
o 0 register (Rn1, 0 ~ n1 :5 27) 
a 1 indirect (disp = 0, 1, IRa, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

2423 16 15 

ASH3 

87 0 

Iii, Iii iii I i i i 

I 
i i i 

I 
i i i i i 

I T dst src count ,001,000101, 

The seven least significant bits of the count operand are used to generate the 
twos-complement shift count of up to 32 bits. 

If the count operand is greater than zero, the src operand is left-shifted by the 
value of the count operand. Low-order bits shifted in are zero-filled, and high-
order bits are shifted out through the status register's C (carry) bit. ' 

Arithmetic left-shift: 

C ~ src~ 0 

If the count operand is less than zero, the src operand is right-shifted by the -
absolute value of the countoperand. The high-order bits of the srcoperand are 
sign-extended as they are right-shifted. Low-order bits are shifted out through 
the C (carry) bit. 

Arithmetic right-shift: 

sign of src ~ src ~ C 

If the count operand is zero, no shift is performed, and the C (carry) bit is set 
to O. The count, src, and dst operands are assumed to be signed integers. 
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Cycles 

Status Bits 

Mode Bit 

Example 

10-50 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is not affected by OVM bit value. 

ASH3 *AR3--(1),R5,RO 

Before Instruction: 

AR3 = 809921 h 
R5 = 02BOh 
RO = Oh 
Data at 809921h = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809920h 
R5 = 000002BOh 
RO = 02BOOOOOh 
Data at 809921h = 10h = 16 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Example ASH3 R1,R3,R5 

Before Instruction: 

R 1 = OFFFFFFF8h = - 8 
R3 = OFFFFCBOOh 
R5 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R 1 = OFFFFFFF8h = - 8 
R3 = OFFFFCBOOh 
R5 = OFFFFFFCBh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

ASH3 count, src2, dst1 
II STI src3, dst2 

If (count;;:: 0): 
src2 « count ---7 dst1 

Else: 
src2» Icoun~ ---7 dst1 

II src3 ---7 dst2 

count register (Rn1, ° ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, ° ~ n2 ~ 7) 
src3 register (Rn3, ° ~ n3 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

i i 
count 

i i 
dst2 

iii 
src2 

The seven least significant bits of the countoperand register are used to gener­
ate the twos-complement shift count of up to 32 bits. 

If the count operand is greater than zero, the dstoperand is left-shifted by the 
value of the count operand. Low-order bits shifted in are zero-filled, and high­
order bits are shifted out through the C (carry) bit. 

Arithmetic left-shift: 

C~src2~0 

If the count operand is less than zero, the dst operand is right-shifted by the 
absolute value of the countoperand. The high-order bits of the dstoperand are 
sign-extended as it is right-shifted. Low-order bits are shifted out through the 
C (carry) bit. 

Arithmetic right-shift: 

sign of src2 ---7 src2 ---7 C 

If the count operand is zero, no shift is performed, and the C (carry) bit is set 
to 0. The count and dst operands are assumed to be signed integers. 

All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STI) reads from a regis­
ter and the operation being performed in parallel (ASH3) writes to the same 
register, then STI accepts as input the contents of the register before it is modi­
fied by the ASH3. 
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Cycles 

Status Bits 

Mode Bit 

Example 

If src2 and dst2point to the same location, src2is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is not affected by OVM bit value. 

ASH3 Rl,*AR6++(IR1),RO 
I I STI R5,*AR2 

Before Instruction: 

AR6 = 809900h 
IR1 = 8Ch 
R1 = OFFE8h = - 24 
RO = Oh . 
R5 = 35h = 53 
AR2 = 8098A2h 
Data at 809900h = OAEOOOOOOh 
Data at 8098A2h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR6 = 80998Ch 
IR1 = 8Ch 
R1 = OFFE8h = - 24 
RO = OFFFFFFAEh 
R5 = 35h = 53 
AR2 = 809'8A2h 
Data at 809900h =OAEOOOOOOh 
Data at 8098A2h = 35h = 53 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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Branch Conditionally (Standard) Bcond 
::::::;:::::::::::::::;;;:::::;:::::::;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;::::::::::::::S:::::::;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%:::::::::::::::::::::::::.:::::::::::::::::::::::;:::::::::::::.:::::.:.:.: ••• :;:.' ••• : ••••••• :;:::.:.:::.:.:::::.:.:.::::::'.:.:.:.:.:.:.'::.:;:::::;'.:.:.:.,.:.:.:::::::.:.:.:::::::::::.:::::::;:::::::;:::::::::;:::::::::::.:;:;:~::;:::;:;:;:::::::;:;:::::::::::::;:;:;:::::::::::::::;'0;::::: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Bcond src 

If cond is true: 
If src is in register addressing mode (Rn, 0 ~ n ~ 27), 

src --7 PC. 
If src is in PC-relative mode (label or address), 

displacement + PC + 1 --7 PC. 
Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

Bcondsignifies a standard branch that executes in four cycles. A branch is per­
formed if the condition is true (since a pipeline flush also occurs on a true condi­
tion; see Section 9.2 on page 9-4). If the src operand is expressed in register 
addressing mode, the contents of the specified register are loaded into the PC. 
If the src operand is expressed in PC-relative mode, the assembler generates 
a displacement: displacement = label- (PC of branch instruction + 1). This dis­
placement is stored as a 16-bit signed integer in the 16 least significant bits of 
the branch instruction word. This displacement is added to the PC of the branch 
instruction plus 1 to generate the new PC. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Section 10.2 on page1 0-9 for a list of condition mnemonics, en­
coding, and flags). Condition flags are set on a previous instruction only when 
the destination register is one of the extended-precision registers (R7-RO) or 
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, 
or TSTB3) is executed. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Bcond Branch Conditionally (Standard) 
~s.:~~·".I.~/';'.I';:'~;O».l. ... '.lo'.~y.l.i/.i;:;:~~~$'''''h~:':-I.~::'~,i.::-,:$'':::%:;::~.:::::;::::.:,;!.:;:;:;:;:-»:.~.:;:.y,.:.::y.-=;:.:I..:.:.:.:.:.:.:.~'::.:.:.:.:.!-:.:.:~: ... :.:.:.:.:.:;:.::!>!.:.:U.·.:I..:.!.·',::::~.:::::::;:::::;:&:::::::::::y.::::::ih:::::::::;·:::::·::::::::;::::::::: •• :::~:::::;:;:;.::;::::.:::.:::.:::.::;:; ••• ;:;:::;:;:;';';';';':::::::'::::;';';';';'; •• :.'.:";' .. ;:;.;.;.,.:: •• ; •••• : • .;.;.;.; •• :;.;.; ••••• ;:;..:::.;.;::.;-:.;0;.;:;.; ••• ;.::;::.:::.:::.:.~:.;~.:.;.;.;.;.;.;.;.::~;:;:::::::;:::::;:;:::::::;:::;::::.::::::::~:::;:::::::::;:::: 

Example BZ RO 

Before Instruction: 

pc= 2BOOh 
RO = 0003FFOOh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 3FFOOh 
RO = 0003FFOOh 
LUF LV UF N Z V C = 0 0 O' 0 0 0 0 
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Branch Conditionally (Delayed) BcondD 
';:;:':;:::;:::::::::::::::;:::;:::;:::::;:.:::;:::;:::::::;:;:;:::::;:::;:;:::;:::;:.:;:::::::::;:::::::::::;:::;:::::0:;:.:::::::;:;'::;';:;'::::::::::::::::::::;:;:::;:.:::::;:;:;';';'::::;'.:;:::;'.:.:;:::::.',:.:;';::';''';'''::'';','; •• :;.;.;:; ...... :.:;:.: ........ ;.;::::.;.;.;.;:;. •• ;.;:;: ......... :;.; ••• ;: •• ;..: •• ;:.:; ••• ; •••• :::; •• :;...: .... ::;.;.;:.: •••••••••• ;. ........................... : .................... ..: ............................................................................................... ~ .... ~ ..... ~y.:.~~:.:; ... :4:.:.:.:O:;:.,;,;:;:.:O,;:;:,6:.:;=-:.,;:~:>s,;s:.,;:<>::: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

BcondD src 

If cond is true: 
If src is in register addressing mode (Rn, 0 ~ n ~ 27), 
src~ PC. 

If src is in PC-relative mode (label or address), 
displacement + PC + 3 ~ PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
o register 
1 PC-relative 

Bcond 0 signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a single­
cycle branch, and the three instructions following Bcond 0 will not affect the 
condo 

A branch is performed if the condition is true. If the src operand is expressed 
in register addressing mode, the contents of the specified register are loaded 
into the PC. If the srcoperand is expressed in PC-relative mode, the assembler 
generates a displacement: displacement = label- (PC of branch instruction + 
3). This displacement is stored as a 16-bit signed integer in the 16 least signifi­
cant bits of the branch instruction. This displacement is added to the PC of the 
branch instruction plus 3 to generate the new PC. The TMS320C3x provides 
20 condition codes that can be used with this instruction (see Section 10.2 on 
page 10-9 for a list of condition mnemonics, encoding, and flags). Condition 
flags are set on a previous instruction only when the destination register is one 
of the extended-precision registers (R7-RO) or when one of the compare in­
structions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. 

LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

_OVM Operation is not affected by OVM bit value. 
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Example BNZD 36 (36 = 24h) 

Before Instruction: 

PC = 50h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 77h 
LUF LV UF N Z V C = 0 0 0 0 a 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

BR src 

src~ PC 

src long-immediate addressing mode 

16 15 87 o 
iii i i i i 

I I src 

SR signifies a standard branch that executes in four cycles, since a pipeline 
flush also occurs upon execution of the branch; see Section 9.2. An uncondi­
tional branch is performed. The srcoperand is assumed to be a 24-bit unsigned 
integer. Note that bit 24 = 0 for a standard branch. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

BR 80SCh 

Before Instruction: 

PC = 80h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 805Ch 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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BRD Branch Unconditionally (Delayed) 
;O;:'~;~;!;:;';!;';';!;!;'::;":"':;:;:;:;:;:;:~;:;:::;:;:::;:~;:;:;:;:;:;:::::::::::::::;:::;:;:;.;.;.;.;.;:;:::;:;:::;';';:::::;:;:;:,';';:;:;';';:.';';:.';';:;:.'.:.:;.;:;:; ••• ;:;.; •••• :; ••••• ;.; ... ; •• : ••••••• :;.:::.;:.: ••• :;.;.;.;.;.;:;.;.;::.;.::::::::.,;.;.;.;".;.;.;.;';::'::;';::'::;:;';';';';';-;';';';0;';';';';';';';';';';';';';';';';';';';';';';';';';';';';';';';',.;-;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;.;:;:;.;.;.;.;.;.,.;.;".;.;.;.;.,.;.,.;.;.;.;.;.;.; ••• ; ••••• ;.;.;.;.;.;.;.;.;.;.; •• :;.::::;.;.;.:::.;.;.;0.;.;.;.;:;:;.::;:;:;:::;::::::~::::;:::;:;:;:;:;:::;:;:;:;:: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 
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BRD src 

srC--7 PC 

src long-immediate addressing mode 

16 15 87 

o 1 1 0 0 0 0: 1 
iii i i i i 

src 

BRD signifies a delayed branch that allows the three instructions after the 
delayed branch to be fetched before the PC is modified. The effect is a 
single-cycle branch. 

An unconditional branch is performed. The src operand is assumed to be a 
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch. 

LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

BRD 2Ch 

Before Instruction: 

PC = 1 Bh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 2Ch 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode~it 

Example 

CALL src 

Next PC ~ * ++SP 
src~ PC 

src long-immediate addressing mode 

1615 
j j j 

01100010 

Call Subroutine CALL 

87 
j j j j. 

src 

A call is performed. The next PC value is pushed onto the system stack. The 
src operand is loaded into the PC. The src operand is assumed to be a 24-bit 
unsigned immediate operand. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

CALL 123456h 

Before Instruction: 

PC=5h 
SP = 809801 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 123456h 
SP = 809802h 
Data at 809802h = 6h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Call Subroutine Conditionally CALLcond 
;:::;:::::;:::,;:::::;:;:;:;:::;:;:;:::::::::::;:;:::::::::::::::::::::::::::::::;:::;:::::::::.::::::::::::::::::;;%:::::::::::::::::::::::::::::::;:::::::::::::;:;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;;%::::::::::::::::::::::::::::::::::::::::::;;:::::::::::;:::::::::::::.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;.;:; •• :; •••••• :::;.;.;:; •••• : ••• :::.:::;.;.;y •••• ;:::.:.:.::' ••••• ::::: •. ;.;: •• ; •• :.::.;: ••• : •• ; •• :::.: •. ;: ..... :;.;:;.;:.:;.;.;:::::;:.:.:;:;:;:: •• :.:;:;:::;:::;:~:;:::;:::;:;:;::::::-.:::::::::::::%::;;:;::::::;::::::::::::::.::::::::::::;:;: 

Example CALLNZ R5 

Before Instruction: 

PC = 123h 
SP = 809835h 
R5 = 789h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

. After Instruction: 

PC = 789h 
SP = 809836h 
R5 = 789h 
Data at 809836h = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

CMPF3 sre2, sre1 

sre1-sre2 

sre1 three-operand addressing modes (T): 
o 0 register (Rn1, 0 :::; n1 :::; 7) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 :::; n1 :::; 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2three-operand addressing modes (T): 
o 0 register (Rn2, 0 :::; n2 :::; 7) 
o 1 register (Rn2, 0:::; n2 :::; 7) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

31 2423 16 15 

I 1 1 I 1 1 1 1 1 I T I 01 
0 1 0 1 0 1 0 I I 

001000110. . 

1 1 1 1 1 1 

src2 src1 

The sre20perand is subtracted from the sre1 operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The sre1 and sre2 
operands are assumed to be floating-point numbers. Although this instruction 
has only two operands, it is designated as a three-operand instruction because 
operands are specified in the three-operand format. 

These condition flags are modified for all destination registers (R27 - RO). 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise .. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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CMPF3 Compare Floating-Point, 3-0perand 
;:;:;o;:;:;:;:>:;:;:.:;:~;:;:;:;:;:;:;:;::~:::::?;:;:;:::;.:::::::::::::::::::;:;:::::::;:.:;::::::::::::~:;:;:;:;:;:.:::;:::::::::':;:~;:;:':;'''':;';'::':':'';:~''''::;:'';O':'':'':':;:::;:;·;:;·::.: .. ;·;:6:::,0:::.·.:.:.:.·::::;0;0.·.· ..... • ....... ·;0;·;.;:;';:::::;';::':';:;0;';';';'::;';';';';';';'.:;';:;-;';:;0;:::::;';::';';';';';0;-:,,:::;';0::::;';';';';0;'::;';':'::;0;';0;';';0;';0;';0;';';';';';0;0;0;';0;';0;';';';';0;0;';';';0;0;-;0;';';';,;,;::,:,,';';';0;:::;';';';';0;0;0;';';';::::::';0::;';0;0; .. ';':';';';0;';';'::::;';-::;:;:::::::::::::::;0;<:::::;:::::;:::::::::::::::::::;:::;:::::; 

Example 
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CMPF3 *AR2, *AR3--(1) 

Before Instruction: 

AR2 = 809831 h 
AR3 = 809852h 
Data at 809831 h = 77 A 7000h = 2.5044e + 02 
Data at 809852h = 57 A2000h = 6.253125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

. AR2 = 809831 h 
AR3 = 809851 h 
Data at 809831 h = 77 A7000h = 2.5044e + 02 
Data at 809852h = 57 A2000h = 6.253125e + 01 
LUF LV UF N Z V C = 0 0 0 1 0 0 0, 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

CMPI src, dst 

dst-src 

src general addressing modes (G): 
o 0 register (Rn, 0 ::; n ::; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ::; n ::; 27) 

,
311 1 , 1 1 1 1

24
1
23

, 

000001001 G 

87 
1 1 1 1 

dst src 

The src operand is subtracted from the dst operand. The result is not loaded 
into any register, thus allowing for nondestructive compares. The dst and src 
operands are assumed to be signed integers. 

These condition flags are modified for all destination registers (R27 - RO). 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

OVM Operation is not affected by OVM bit value. 

CMPI R3,R7 

Before Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 898h = 2200 
R7 = 3E8h = 1000 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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Compare Integer, 3-0perand CMPI3 
::;:;:;:;:;:;:::;:::;:::;:;::;::;:::::;:;:::;:;:;:::;.::::::;:::;:;.; :.;.;.;:;.;:::;.::;:::;:;.::.:;:.: •• ; •• :;.,.;.;.,.;.;.;:;:::::;';';';';';';';';';0;';';:;',';'0';';';-;';';';:;:::::::::;:;,;",;:;,;,.:.,;,;.;.;.;.;.,.;.,.;.;.,.;.;.;.; ••••••• ;.;0;.;.;.;.;.;.; ••••••• ;.; ••••••• ;.;.;.;.;.;.;.;.; ••••• ;.;.;.;.; ••• ;.;.;.;.;.;.;.;:;.;.;.;.; ••• ;.;.;.;.;.;.; ••• ; ••••• ; ••• ;.; ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , •••••••••••••••••••••••••••••••••••• ' ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• :;:.:;.;:;:::.:::::::;:::::::::.:;';:.:,';:.:.:;:.:.:;:.:;:.:;::: 

Example CMPI3 R7,R4 

Before Instruction: 

R7 = 03E8h = 1000 
R4 = 0898h = 2200 
LUF LV UF N Z V C = a a 0 a 0 a a 
After Instruction: 

R7 = 03E8h = 1000 
R4 = 0898h = 2200 
LUF LV UF N Z V C = a a a 0 a a 0 
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Decrement and Branch Conditionally (Standard) DBcond 
~;~;.::;:;:;~;:;:;:;:::;:;:;:;:;:;:;:;:::;:::;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:;:;:;:;:':;:;:;':::::::';';'~::;';';.;.;.:.,.;:;:;.;:;.;::.;.;.;.;::.;:;.;:;.;:;.;.;.;.;.;';';::';0;:::::::;:::::::::;':';';':':';';';';';'::;';';.;.;:;::.;.; ••• ;::.;.;.;: •• ;.;::: •••• ; ...................................................................................................................................................................................................................................................................... .; ....... ;:..;.,;.;.;o;.; •• -;:.: •• ; •• :.:::~::::::;: •• ::;:;:;:;:::::.: •• ;:";:::;'::;:0: 

Cycles 

Status Bits 

Mode Bit 

Example 

4 

LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

CMPI 200,R3 
DBLT AR3,R2 

Before Instruction: 

PC = 5Fh 
AR3 = 12h 
R2 = 9Fh 
R3 = BOh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

PC = 9Fh 
AR3 = 11h 
R2 = 9Fh 
R3 = BOh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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DBcondD Decrement and Branch Conditionally (Delayed) 
~~:;:;:;:;:;!;!;!~;!;!~s:;!;-;:;!;%!:!:::::::::::::::::::::.-;:::::::::::::::::;:::::::::::::~:::;:;:.::;::::::.=::::::.:::::::::.:::::::.:.:::.:.:.:.:.:.:.:::::::::.:::.:.:.:.:.:.:::.:::::::.:::::::::.:.:.:;:::::::::::::.:;:::.:::.:.:;:;:;:.:.:::b:.:.:.:.:.~.:.:.:.:.:.:.:.::,:.:.'::.:.:.:.:.:.:::.:.'.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::.:;';:;'.::::'::::::::::::::::::::::::::::::::::::::::::::':::: •• ;.;:;.:.;:::;::.::::.:.;::::.::.:::::.;.:::::::.:::.;.;.;::.;-;:;.;.;.;:::;. ... :::.;:;.: •• :~.:: ••• ::;::::.:.;.::: .. "·;·;:::;:::;::::::.:;:::::;..;.::::~:;::%::::::::::::::::::::::::.o;::sx::~%~ 

Syntax 

Operation 

Operands 

Encoding 

Description 
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DBcondD ARn, src 

ARn -1 -7 ARn 
If cond is true and ARN ~ 0: 

If src is in register addressing mode (Rn, 0 ~ n ~ 27) 
srC-7 PC 

If src is in PC-relative mode (label or address) 
displacement + PC + 3 -7 PC. 

Else, continue. 

src conditional-branch addressing modes (B): 
O' register 
1 PC-relative 

ARn register (0 ::; n ::; 7) 

DBcond 0 signifies a delayed branch that allows the three instructions afterthe 
delayed branch to be fetched before the PC is modified, The effect is a single­
cycle branch. The specified auxiliary register is decremented and a branch is 
peiiormed if the condition is true and the specified auxiliary register is greater 
than or equal to zero. The condition flags are those set by the last previous in­
struction that affects the status bits. The three instructions following the 
DBcondD do not affect the condo 

The auxiliary register is treated as a 24-bit signed integer. The most significant 
eight bits are unmodified by the decrement operation. The comparison of the 
auxiliary register uses only the 24 least significant bits of the auxiliary register. 
Note that the branch condition does not depend on the auxiliary register decre­
ment. 

If the src operand is expressed in register addressing mode, the contents of 
the specified register are loaded into the PC. If the src is expressed in PC-rela­
tive addressing, the assembler generates a displacement: displacement = la­
bel- (PC of branch instruction + 3). This displacement is added to the PC of 
the branch instruction plus 3 to generate the new PC. Note that bit 21 = 1 for 
a delayed branch. . 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Section 10.2 for a list of condition mnemonics, encoding, and 
flags). Condition flags are set on a previous instruction only when the destina­
tion register is one of the extended-precision registers,(R7-RO) or when one 
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FIX Floating-Point to Integer Conversion 
;:;:~;:;:;:;:.:;:;.:;:::;:::;:;:;:;:;:::;:;:-:;:>:::.:;::~:;:::;:;:;:;.:;:;:.:.:;:;:;:.:;:::::;:;:;:::::::;:;:;:::;:::;:;:;:.:;:;:;:;:;:;:;:-:;:.: ••••••• : ••• :.:.:.:.:;:~;:;:.:.:.:.:.:.:.:;:-:.~:;y ••• :~;:.:;:-:.:::;:>:.=-:;:; •• :.:;:-:;.;.t.;:;:;:;:;:;:;:;.:;::.::;:;~:;:;:;::.;:;:;:;:;:;:;:;:;:;:;:::::::::;:;';:;:::;';';:;0;:;';:;:;::,;::::::,;,;,;,;::.;:::::;:;:;.;.;:;:::;.;:;.;:::;:;.;:;.:.;:::;:;::::::';0;0.::::.;.;.;:;.;.;.;.;:;.;.;.;.;:;.;:;::::.;::::: •• ::;:;0;::.::;:::;.;.;:::::;0;:;:;::0: •••• ;:::;.;.:.;.::::;.;.;:;:;.;:;.;.;::.;.;.;:.:;:;.;:::;.;:;:;:::;:::;:::~;:;:;:;:;:;:;:::;:::::::::;0:;0:;:;:; 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-72 

FIX src, dst 

fix(src) ~ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

1

311 
1 1 1 1 1 1241231 

000001010 G 
1 1 

dst 

87 
1 1 

src 

The floating-point operand src is converted to the nearest integer less than or 
equal to it in value, and the result is loaded into the dstregister. The srcoperand 
is assumed to be a floating-point number and the dstoperand a signed integer. 

The exponent field of the result register (if it has one) is not modified. 

Integer overflow occurs when the floating-point number is too large to be repre­
sented as a 32-bit twos-complement integer. In the case of integer overflow, 
the result will be saturated in the direction of overflow. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Floating-Point to Integer Conversion FIX 
::::;:;:;::::':;:::::::;::%:;:::"«;:::::::::::'::~;:::¢:::::::'::::::;:;:::;:::;:::::'::::<~:::::::::::::;:;:::<;:;:;:;:::;:::::::::::::::::;:;:::;:;:::;:;:::;:::::::::::::::::;::::::::~~ .. v.;::.:;:::::;:::;:::::::::::::::::::;o..;:::::::::;:::;:;:;:;:;:::;::::::::::::::::::::::.:;:::::;:::;:;~::::~;:::;:::;:::::;:::::::::::::;:::;::-.:::::::::::::::::::::::: .. ::::;.;:; •• :.:.:.: ••••• :.: ............. : ..... :.:.:.: •.•••• ;y::.:.:-"-•••• :.:.: ••• : .... :.:.~;: ••• :.:~.:;:.~:::; ... :.:.:.:.:;:.:;:.:;:;:;:;:;:;:::;:::::;:::::::>:.:::::::;.::::::o!:o,:::::::::::::y;:::::::::::::::::::::::::::::::;:::::::). 

Example FIX Rl,R2 

Before Instruction: 

R1 = OA28200000h = 1.3454e + 3 
R2 =Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OA28200000h = 13454e + 3 
R2 = 541 h = 1345 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Example FIX 
II STI 

* + + AR 4 (1) , P,l 
RO,*AR2 

Before Instruction: 

AR4 = 8098A2h 
R1 = Oh 
RO = ODCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733COOOh = 1 .7950e + 02 
Data at 80983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8098A3h 
R1 =OB3h=179 
RO = OOCh = 220 
AR2 = 80983Ch 
Data at 8098A3h = 733COOOh = 1.79750e + 02 
Data at 80983Ch = OOCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-76 

FLOAT src, dst 

float (src) --7 dst 

srcgeneral addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

\

311 1 \ 1 1 1 1
24

1
23

\ 
000001011 G 

87 
1 1 

src 

The integer operand src is converted to the floating-point value equal to it, and 
the result loaded into the dst register. The src operand is assumed to be a 
signed integer, and the dst operand a floating-point number. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V o. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

FLOAT *++AR2(2),R5 

Before Instruction: 

AR2 = 809800h 
R5 = 034C2000h = 1.27578125e + 01 
Data at 809802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809802h 
R5 = 072EOOOOOh = 1.74e + 02 
Data at 809802h = OAEh = 174 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

FLOAT src2, dst1 
II STF src3, dst2 

float(src2 ) ~ dst1 
II src3 ~ dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0::; n1 ::; 7) 
src3 register (Rn2, 0 ::; n2 3 7) 
dst2 register (disp = 0, 1, IRO, IR1) 

1

3 

\ I • • • • 1

24

• 23. I o· o· 0 I I I 16

1

1 5. 
1 1 0 1 0 1 1 dst1. . src3 

• • • • •• 
dst2 src2 

An integer to floating-point conversion is performed. All registers are read at 
the beginning and loaded at the end of the execute cycle. This means that if 
one of the parallel operations (STF) reads from a register and the operation 
being performed in parallel (FLOAT) writes to the same register, then STF ac­
cepts as input the contents of the register before it is modified by FLOAT. 

If src2 and dst2 point to the same location, src2is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated,·O otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 
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Example 

10-78 

FLOAT *+AR2(IRO),R6 
I I STF R7,*ARl 

Before Instruction: 

AR2 = 8098C5h 
IRO = 8h 
R6 = Oh 
R7 = 034C200000h = 1.27578125e + 01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: . 

AR2 = 8098C5h 
IRO = 8h 
R6 = 072EOOOOOOh = 1 .7 40e + 02 
R7 = 034C200000h = 1.27578125e + 01 
AR1 = 809933h 
Data at 8098CDh = OAEh = 174 
Data at 809933h = 034C2000h = 1.27578125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Interrupt Acknowledge lACK 
0:;:::;:;:::;:0:::;:::::-":;:;:;:;:::0:;:;:::;":"':::::::::::::::::::::;:::;:::"o!'::::::::::;:;':::::;:::;:;:::::;:;';';';':::-:::::';':·;·:·::;-::::::;.:o:·:·;·;·;-;:;·;·;:;:;"·;·:~":;:::;:;·;5::.;:::: ... ;.;.:.,;.;.,;.:.: ....... ;.;.::;.:.;.;.; •• .,;.;.; ....... ; ..... ; ... ..;:;.;.::::;.;.;:;.;.;.; ... ; ... ;.;.;0;.; ••• ;0;.;.;.;«.;-: ........ 0;-•• ..;.;.:::..,;.;.;.;.;.;.; ••• ,.;.:« ..... ;.; ....... ; ... ; .•••.•. ; ... ; ...................................................................................... v. ..................... : ........... :. •••. : ......... ""'-'=>'.:;:::;:>:;:::::::;:;:;=>:::05:;:0:::::::::;:::;:.:::::·:0: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

lACK src 

Perform a dummy read operation with lACK = o. 
At end of dummy read, set lACK to 1. 

srcgeneral addressing modes (G): 
o 1 direct 
1 0 indirect 

87 
i i 

src 

A dummy read operation is performed with lACK = O. At the end of the dummy 
read, lACK is set to 1. This instruction can be used to generate an external in­
terrupt acknowledge. If the address specified is off-chip, a read operation from 
that address is performed. The lACK signal and the address can then be used 
to signal interrupt acknowledge to external devices. The data read by the pro­
cessor is unused. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

lACK *AR5 

Before Instruction: 

lACK = 1 
PC =300h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

lACK = 1 
PC = 301h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

10-79 



IDLE Idle Until'''''''c.·,.,.",,.,.,. 

Syntax IDLE 

Operation 1 --7 ST(GIE) 
Next PC --7 PC 
Idle until interrupt. 

Operands None 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-80 

31 24 23 16 15 8 7 0 I 0' 0' 0 I 0' 0' l' l' 0 ' 0 I 0' 0' 0' 0 ' 0' 0' 0 " 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0 ' 0 I 
The global interrupt enable bit is set, the next PC value is loaded into the PC, 
and the CPU idles until an interrupt is received. When the interrupt is received, 
the contents of the PC are pushed onto the active system stack. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Syntax 

Operation 

Operation 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

LDE src, dst 

src{exp) ~ dst(exp) 

srcgeneral addressing modes (G): 
o 0 register (Rn, 0 $ n $ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 $ n $ 7) 

31 2423 16 15 87 o 
I· 

I I 1 1 

src 

The exponent field of the src operand is loaded into the exponent field of the 
dst register. No modification of the dst register mantissa field is made unless 
the value of the exponent loaded is the reserved value of the exponent for zero 
as determined by the precision of the src operand. Then the mantissa field of 
the dstregister is set to zero. The srcand dstoperands are assumed to be floa­
ting-point numbers. Immediate values are evaluated in the short floating point 
format. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

LDE RO,R5 

Before Instruction: 

RO = 0200056F30h = 4.00066337e + 00 
R5 = OA056FE332h = 1 .06749648e + 03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 0200056F30h = 4.00066337e + 00 
R5 = 02056FE332h = 4.16990814e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LDF Load Floating-Point " 
~;!~;.;. .. ;:~;:~;::: .. ;:;:;./.:o:::::;~:::;';-;:::::;';O>,::;:O-;:;:O~;:::::::;';~~«;';:~t:::::;:~">'t:::~"";:;:;:;,;:::o!,:,,;~,:,:,,,:,,::::;:;';Y;:;:;'/.;';:;:~;:;:;'''';'»';'~;:;y';:;O>';'/.;';';:::;:;:::;:;:;:;:~::;:;:;~t:;::.::;:;.>.;:;:;.>.::;:;:~»;.;:::;.>.;:;./'::~:;';:;y'"«'-;.;:;./.;:::;:;:;:;..::;:;Y/.XY;.».:o»/.::;';O/.::;''';O;'/.;:;:;::y';';';:::;:;:;y';')';:;'::;:;''»;';'~;'/'::;Y::~;'::::;'::::::iS">::;';'':-»::;:::::~~::~;';:;::Y.~;'».'6'';';:;:i'»'::~».;. ... » ... ~ 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 
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LDF src, dst 

src~ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

131, , 1 ' , , , 24,23

1 

1 1 116115, I "r 87 1 1 

000001110 G dst . src 

The src operand is loaded into the dst register. The dst and src operands are 
assumed to be floating-point numbers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

LDF @9800h,R2 

Before Instruction: 

DP = 80h 
R2 = Oh 
Data at 809800h = 1 OC52AOOh = 2.19254303e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 01 OC52AOOOh = 2.19254303e + 00 
Data at 809800h = 1 OC52AOOh = 2.19254303e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

31 

I I I I I 
. 0 1 0 o. 

Description 

Cycles 

Status Bits 

Mode Bit 

LDFcond sre, dst 

If eond is true: 
sre -7 dst. 

Else: 
dst is unchanged. 

sre general addressing modes (G): 
o 0 register (Rn, 0 ~ n ::; 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ::; 7) 

2423 16 15 
I I I 

I 
I I I 

I 
I 

cond G dst 

87 0 
I I I 

I src 

If the condition is true, the sre operand is loaded into the dst register. Other­
wise, the dst register is unchanged. The dst and sre operands are assumed 
to be floating-point numbers. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Section 10.2 for a list of condition mnemonics, encoding, and 
flags). Note that an LDFU (load floating-point unconditionally) instruction is 
useful for loading R7 - RO without affecting condition flags. Condition flags 
are set on a previous instruction only when the destination register is one of 
the extended-precision registers (R7-RO) or when one of the compare instruc­
tions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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LDFcond Load Floating-Point Conditionally 
; .................. ·.·.·;·;o.·.·.· ........... ·;·;·; .. ~·;~~;:;~:.~s:;:;:;sss:;s:;:;:~;·;:;·;·.· ... · .. ;.,;~·;·;:.·.·;·.·; .. • ... · ... ••·•• ................................................................................ ; ....................................................... ; ... ; ...... ~.;.; ... ;o..;oo.; ..... ;o; ... ; ......... ;·;·; .... ·;·;·; ............ .;·;·;y.·; ............ ·; ...... «Y;·; ..... ;·; .. v;o; .... .;y.;· .. ;% .... ·; .. ·; .... ·:·;~ .. ·; .... y;, ..... ;..; ........ ·.·;.;·;·;~ .. v: .. • ....... ·;· ..... ~·; .. ·; .. "'·.,. .. s ... ;Y.> ...... s~ .. ~;:;·;sssss:;s:;ssss:~:,.~ 

Example 

10-84 

LDFZ R3,R5 

Before Instruction: 

R3 = 2CFF2CD500h = 1.77055560e + 13 
R5 = 5F0000003Eh = 3.96140824e + 28 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

After Instruction: 

R3 = 2CFF2CD500h = 1.77055560e + 13 
R5 = 2CFF2CD500h = 1.77055560e + 13 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Load Interlocked LDFI 

LDFI src, dst 

Signal interlocked operation. 
src~ dst 

src general addressing modes (G): 
o 1 direct 
1 0 indirect 

dst register (Rn, 0 ::;; n ::;; 7) 

31 2423 1615 87 a 

I' , I" " , I I 
I I I 

I 
I I I I 

I G dst src ,000,00 1111, 

The srcoperand is loaded into the dstregister. An interlocked operation is sig­
naled over XFO and XF1. The src and dstoperands are assumed to be floating­
point numbers. Note that only direct and indirect modes are allowed. Refer to 
Section 6.4 for detailed description. 

1 if XF1 = 0 (see Section 6.4) 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

LDFI *+AR2,R7 

Before Instruction: 

AR2 = 8098F1 h 
R7 = Oh 
Data at 8098F2h = 584COOOh = - 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098F1 h 
R7 = 0584COOOOOh = - 6.28125e + 01 
Data at 8098F2h = 584COOOh = - 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-86 

LDF sre2, dst2 
II LDF sret, dst1 

sre2~ dst2 
II sre1 ~ dst1 

sre1 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, ° :::; n1 :::; 7) 
sre2 indirect (disp = 0,1, IRO, IR1) 
dst2 register (Rn2, 0:::; n2 :::; 7) 

16 15 
i i 

1 1 0 0 0 1 0 dst2 dst1 

87 o , I iii 

I' 
iii 

src2 src1 

Two floating-point loads are performed in parallel. If the LDFs load the same 
register, the assembler issues a warning. The result is that of LDF sre2, dst2. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
UnaffeCted. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example LDF *--, AR1 (IRO) ,R7 
I I LDF *AR7++ (1), R3 

Before Instruction: 

AR 1 = 80985Fh 
IRO = 8h 
R7 = Oh 
AR7 = 80988Ah 
R3 = Oh 
Data at 809857h = 70C8000h = 1.4050e + 02 
Data at 80988Ah = 57B4000h = 6.281250e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR 1 = 809857h 
RO =8h 
R7 = 070C800000h = 1.4050e + 02 
AR7 = 80988Bh 
R3 = 057B400000h = 6.281250e + 01 
Data at 809857h = 70C8000h = 1.4050e + 02 
Data at 80988Ah = 57B4000h = 6.281250e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LDFIISTF Parallel LDF and STF 
.... ;.;.; ••••• ; ••• ; ....... ; ••••••••••••••• :-:.;.; ••• ;,;.;,;';';:;:::;:::::::::;0::::::::::::';:::::.'::.:::.'.:: •• :::;.;.;.;.;.; ••••••• ;.;.;.;0; ••• ; ••• ; ••••••••••• ; ••• ;.; ..................... ; ....................... ;.;:::::;::.;:::;:;-::;::':':::';':';O;';o;o;.;.;.;o;.;.;o; ••• ;.:.;.,,:.;:;:;~ .. ;O;".;.:.;.;.;.;.;.;.;.;.;~;o;.;o;.:.:.;.:.; ........ ;o;.; ••• ,,;o;• ........ n ...... ;·;·;· ..... ;o;o .. ;q.· ....... ;o-.. ; .... ;~ ... ·;o;·.· ...... ·;·;.o;·;~.~ •• ; ••• ;< ............... ; ... 0;.;.;.;.;.;.;.; ••••• ;.;.; ••• ;0 •• ;.: ••• ;.;~ •• ; ..... ;.;.; ... :o;o;::.:::.;.;o;.;.;:;: .. ;::.;:;.;:::::::::::;:;';:''';::';:::;';:;:::"~::::::::::~~;:::;:: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-88 

LDF s{(;2, dst1 
II STF src3, dst2 

src2~ dst1 
II src3 ~ dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 ~ n1 ~ 7) 
src3 register (Rn2, 0 ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 1615 I I I I I I I I I I 

1 0' 0' 01 
I I 

1 
I 

dst1 src3 ,11,01100, 

87 
I I I 

1 
I I I I 

dst2 src2 

A floating-point load and a floating-point store are performed in parallel. 

0 

1 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected, 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example LDF *AR2--(1) ,Rl 
I I STF R3, *AR4++ (IR1) 

Before Instruction: 

AR2 = 8098E7h 
R1 = Oh 
R3 = 0578400000h = 6.28125e + 01 
AR4 = 809900h 
IR1 = 10h 
Data at 8098E7h = 70C8000h = 1 .4050e + 02 
Data at 809900h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8098E6h 
R1 = 070C800000h = 1.4050e + 02 
R3 = 057B400000h = 6.28125e + 01 
AR4 = 80991 Oh 
IR1 = 10h 
Data at 8098E7h = 70C8000h = 1.4050e + 02 
Data at 809900h = 57B4000h = 6.28125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LOI Load 

Syntax lOt src, dst 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-90 

srC-7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 87 
I I 

src 

The src operand is loaded into the dst register. The dst and src operands are 
assumed to be signed integers. An alternate form of LOI, LOP, is used to load 
the data page pointer register (OP), or any other register with the eight MSBs 
of a relocatable address. See the LOP instruction and subsection 10.3.2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
lV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Load Integer LOI 
;:;'''%:;!;:::::;:::;:::::::::;:::;~o:;:::;:;:".:::::::;';:;:::::~:;:;:::;:;:::::;:::;:;:::;:::::::::;:;:;:::::;:::;:"':;::';';:;o;~.::::::.;:::~::;:;:;:;:;::.;:;~:::::.;::.:-;.::~::o;:;:;:;:;:;';-;::::';«';"::N::::::::v.;'::::;:::.::'::::;';';';';-;';';';';::';';';';';0;';';',';';0;';';';';''';';';-;';';';::';'.:.';';';';';';':';';';-;'»;-;';0;';0;9;0;';';';';';0;';';":0;',';o;o;o;·;..:·;·;y;·;·;v;·;·;·;.,.;·;-;o;,»;,;,;,:·;,,:::·;·:v.;·;·;·;..:o;·;Y.;~:'''·'''''·'·'''''''·'' ......... !o"N.;·''''''''''·M .. ''·'·':'!>·;'':;:':;(.:O:;::%:;::::::Y';:;';::::::'::::Y;:;:::o: 

Example LDI *-AR1(IRO),R5 

Before Instruction: 

AR1 = 2Ch 
IRQ = 5h 
R5 = 3C5h = 965 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = 0 0 0 0 0 0 Q 

After Instruction: 

AR1 = 2Ch 
IRQ = 5h 
R5 = 26h = 38 
Data at 27h = 26h = 38 
LUF LV UF N Z V C = Q 0 0 0 0 Q 0 
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LDlcond Load Integer Conditionally 
;:.:.:.:;:M.: ... • ... ·.:.·.:.:.·.!O·.·.:.:.:;:;:.:.:.:.·;:;~:;:;:;:'::;:::::;:;:;:;:;:;:;:;:::;:':'~:':':""::;:.:;:.:.:.:.:;·.:.:::&.·.·.·.·.:.·.·.:.:.v ... ·.:.·.:.:.:.u ..... ·.·.·.·.:.·.:.·.·.· ... ·.:.:o':.:.:.!o: ... ••••• ..... ·.:.·6~:;..·.:;:;·;·:·;.;.;.;.;.; ••• ~;.; •• :::;.;:;:;:;:; ••• ;:.:;:;.;:;.; •••••• :;::.;:;.;:: ... ;.;.;::::::.;.; •• :;.;.;.;.;:;.;.,.;.;.;.;.,:;:;.;.;:; ••• ;: ...... ;.; •••••• :;. ••• ..::; .... :. ••• ;.;.;:; ••• )!;.;.;O;.;.;O;::.;.;.; ••••• ; ••••• ;. •• ;..!. ••• ; •• ::::y::;:;.;:::; ••• ;:.:. ..... ; ..... :;.; •• ..:.;::.;::::::.;.;.;.;.;.;.;.:::.;.;.;:;:::;:;~;..::;:;O:~;::!::::::::;:;:::;Y.::;:::: 

Syntax 

Operation 

Operands 

Encoding 

31 

I' " I . 0 1 0 1. 

Description 

Cycles 

Status Bits 

Mode Bit 
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LDlcond src, dst 

If cond is true: 
srC-7 dst, 

Else: 
dst is unchanged. 

src general addressing modes (G): 

o 0 register (Rn, 0 ::;; n ::;; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ::;; 27) 

2423 1615 
I I I 

I 
I i i 

I 
I 

cond G dst 

87 0 
i i I 

I src 

If the condition is true, the src operand is loaded into the dst register. Other­
wise, the dst register is unchanged. The dst and src operands are assumed 
to be signed integers. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Section 10.2 for a list of condition mnemonics, encoding, ~nd 
flags). Note that an LDIU (load integer unconditionally) instruction is useful for 
loading R7 - RO without affecting the condition flags. Condition flags are set 
on a previous instruction only when the destination register is one of the exten­
ded-precision registers (R7-RO) or when one of the compare instructions 
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Load Integer Conditionally L[)I~()nd 
::::::-:::::;:::::::::::::::::.:::::."':::::::;:::::::::::::::;.:::::::::::::::::::::::::::::::::::.:::::;::;:;.;:;';:;:;';:::::::::;0:::::::::':::::'::::::;';';:;';';';':.;.;.;:;.;::,;.:::::::::.;:::::;.;:;.:::.;,;,;.;:;.::;.;.;.;.;:.::.;:;.,.;.;.;.;.;.;.;.::;.;.;.;.;.;:;.;.;.;:.: •• ;: •• ~; •• :;:;:::: •• :;.;.;:;.;:.:;: •• :.: ••• ;.;::.:.;.;.;:;.;.::::::::::::;.;.;.;.;.;.;.;::.;.,.;.;.,.;.;." •••••••• , ••• ;: ....... : .................... 10'.:.: ............. : ••........................ ,.: .............. ,:.: ••• :.: •••.• : ••• :.':.: ...... ;.;:;.;:::.:;:;:;:::::::;:;:;:;:::;:;:::.:.~:::.:.y..:.:.::~:.:.:.:::.:::.:;:::.::::::: 

Example LDIZ R4,R6 

Before Instruction: 

R4 = 027Ch = 636 
R6 = OFE2h = 4,066 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 027Ch = 636 
R6 = OFE2h = 4,066 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LOll Load Integer, Interlocked 
~7.=:=;:~:;:;~:;:O-:~;:::;:::;:;~<"-=:::::-:~«-:;:::;:::;:O:::--=~:::'::-o!::;:;:::;:;:::~~<:~-:;:;::~:~:~-:;:;o:·.·;:::::;·;:::::;:;:;:;ow-=;:;:;:;:~:::~$.;:;:;:;:::;:::;''':;:::~ .. .:::m::::::::::;(.!~;:~::o::.7.::?::::::;07.$.;:;:".(.:::;:::::::;:;:;:::::;:::::".:::::::;:".:;:::::::;:~%::o;o;-::,~:::::::-.:::-.::::·x:::;.:;:::::;:~:::::::::::;OW .. ::;:::;O;:;'-.:;:::'6::·;::::'l;·;o~«·;·:t .. ~;:;~:*~x.->.;m~:w-::::::;o~~,,~:;O;:::);:>'~~::'":"-?::~.(tt.:;r«-?'lX:'-!o!".:::::w.q.~~.::::r&..sm 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

LOll src, dst 

Signal interlocked operation. 
src~ dst 

src general addressing modes (G): 
o 1 direct 
1 0 indirect 

dst register (Rn, 0 ~ n ~ 27) 

131, , 1 ' , , , 24,23
1 

16 15 

o 0·0 0 1 0 0 0 1 G 

87 
, i 

src 

The srcoperand is loaded into the dstregister. An interlocked operation is sig­
naled over XFO and XF1. The src and dstoperands are assumed to be signed 
integers. Note that only the direct and indirect modes are allowed. Refer to 
Section 6.4 for detailed description. 

1 if XF = 0 (see Section 6.4 on page 6-10) 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

LDII @985Fh,R3 

Before Instruction: 

DP =80 
R3 = Oh 
Data at 80985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP =80 
R3 = ODCH 
Data at 80985Fh = ODCh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

1 0-94 Assembly Language Instructions 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

LDI src2, dst2 
\I LDI src1, dst1 

src2 --7 dst2 
\I src1 --7 dst1 

src1 indirect (disp = 0, 1, IRa, IR1) 
dst1 register (Rn1, a :5 n1 :5 7) 
src2 indirect (disp = 0, 1, IRa, IR1) 
dst2 register (Rn2, a :5 n2 :5 7) 

I I 

dst1 

I I I 

src1 

87 

I' I I I 

src2 

Two integer loads are performed in parallel. A warning is issued by the assem­
bler if the LDls load the same register. The result is that of LDI src2, dst2. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected.· 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example LDI *-ARl(1),R7 
I I LDI *AR7++ (IRO) ,Rl 

Before Instruction: 

AR 1 = 809826h 
R7 = Oh 
AR7 = 8098C8h 
IRO = 10h 
R1 = Oh 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809826h 
R7 = OFAh = 250 
AR7 = 8098D8h 
IRO = 10h 
R1 = 02EEh = 750 
Data at 809825h = OFAh = 250 
Data at 8098C8h = 2EEh = 750 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

LOI src2, dst1 
II STI src3, dst2 

src2-t dst1 
II src3 -t dst2 

src2 indirect (disp = A, 1, IRa, IR1) 
dst1 register (Rn1, a :;; n1 :;; 7) 
src3 register (Rn2, a :;; n2 :;; 7) 
dst2 indirect (disp = a, 1, IRa, IR1) 

iii 

dst2 

87 o 

src2 
iii I i iii 

An integer load and an integer store are performed in parallel. If src2 and dst2 
point to the same location, src2 is read before the write to dst2. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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LDIIISTI Parallel LOI and sri 
;:;:;:o:;:;:::;o:.~:O~~;:.:.:;:.:;:':;Y;:::;:.~::::::::::::::::".::-.::::::;:;:::;,,::;:.:::':::::::~;:;:;:::;:;:;:;:::;!o!O·;:.:::':O:h~::":;:.:;:,, ... :.:.: ....... ,. .... y, ... ·;:;·::::::;:::;::s::::::::::::::.::::::.::::::;:::::;::s:::::::;:::::;r.:::::;:::;:;:;::::::::::::::::y.;:::::;:::;~.::::;y.::,;:;:;::::::y.::;::::::::::::::::::::s::·::: .... .:::::::::::::::::·:·;·::::::::: ... :.~:.;:;.;:;-;.;.:O;.:O; .. ::::.:::::::.:.; .... :: ... ;O;.:~Y.:.; ..... ;:;.:.::::::::.~::::;:::::::;:~~:::::~;r.:;::.::::;:;:;:::::::::::::::::;::r.~;:;::-:;::r.::::=,*;::s.":::::;:::::.~:;:'::: 

Example LDI *-ARl(1),R2 
II STI R7,*AR5++(IRO) 

Before Instruction: 

AR 1 = 8098E7h 
R2 = Oh 
R7 = 35h = 53 
AR5 = 80982Ch 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 8098E7h 
R2 = ODCh = 220 
R7 = 35h = 53 
AR5 = 809834h 
IRO = 8h 
Data at 8098E6h = ODCh = 220 
Data at 80982Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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LOP Load Data Page Pointer 
~»~.x~~~~;:;:;:::::;::~:~~»"!o"!:9.:-:~~~~~;:>::::-:::~:;:~~~~::;:>:;:::;:::::::.:::oY.;:bX .... oY.;: ... se.!>:.:~'tI!Mt~*~~.:;.:~~~'!~'!~~~::~~:::::::;:;:;s:;:::::::::::;:::;::::::~:::~.,;:::;.~:.;:;.;*;::.::;.;.::;:>.:.::;.;.;.:.:::-;.;::y:::: .. ::;:;.;.;.:.::::::::.,;.:::.;.;o;::::·;'::~;·:·:·;:;';:;·:~9;o.;:>:X~:;Y:·X'~;"·;·";·::N;:::~:;·::::;:;·;.;.x.;:;s·:!>·.:;::::..:~!o~;.;·x~:;:::;s*:*;:;»~::."!~::~~;»"!::~~).,:::::i?' 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

LOP sre,DP 

sre ~ Data page pointer 

sre is the 8 MSBs of the absolute 24-bit source address (sre). 
The ",DP" in the operand is optional. 

dst register (Rn, 0 ::; n ::; 7) 

1 I, 

src 

This pseudo-op is an alternate form of the LDI instruction, except that LOP is 
always in the immediate addressing mode. The sreoperand field contains the 
eight MSBs of the absolute 24-bit sreaddress (essentially, only bits 23 -16 of 
sreare used). These eight bits are loaded into the eight LSBs of the data page 
pointer. 

The eight LSBs of the pointer are used in direct addressing as a pointer to the 
page of data being addressed. There is a total of 256 pages, each page 6.4K 
words long. Bits 31 - 8 of the pointer are reserved and should be kept to zero. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

LDP @809900h, DP 
or 
LDP @809900h 

Before Instruction: 

DP = 65h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

1 0-1 00 Assembly Language Instructions 



Syntax 

Operation 

Operands 

Encoding 

Description 

LSH count, dst 

If count~ 0: 
dst« count -7 dst 

Else: 
dst» I count I -7 dst 

. count general addressing modes (G): 
o 0 register (Rn, 0 :::; n :::; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 :::; n :::; 27) 

1

31. • 1 • • • • 24.23

1 
000010011G 

87 
i i 

count 

The seven least significant bits of the countoperand are used to generate the 
twos-complement shift count. If the countoperand is greater than zero, the dst 
operand is left-shifted by the value of the countoperand. Low-order bits shifted 
in are zero-filled, and high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

C ~ dst~ 0 

If the count operand is less than zero, the dst is right-shifted by the absolute 
value of the count operand. The high-order bits of the dst operand are zero­
filled as shifted to the right. Low-order bits are shifted out through the C (carry) 
bit. 

Logical right-shift: 

0-7 dst-7 C 

If the count operand is 0, no shift is performed and the C (carry) bit is set to O. 
The count operand is assumed to be a signed integer and the dst operand is 
assumed to be an unsigned integer. 
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Syntax 

Operation 

Operands 

Encoding 

Description 

31 

LSH3 count, src, dst 

If count ~ 0: 
src « count ~ dst 

Else: 
src» /count / ~ dst 

srcthree-operand addressing modes (T): ° ° register (Rn1, 0::::;; n ::::;; 27) ° 1 indirect (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, 0::::;; n1 ::::;; 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

count three-operand addressing modes (T): 
° ° register (Rn2, ° ::::;; n2 ::::;; 27) ° 1 register (Rn2, ° ::::;; n2 ::::;; 27) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° ::::;; n ::::;; 27) 

2423 16 15 87 0 

I 1 ' I " " 1 I I I I 

I 
I I I 

I 
I I I I 

I T dst src count ,001,001000, 

The seven least significant bits of the countoperand are used to generate the 
twos-complement shift count. 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled, and 
high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

C f-- src f-- ° 
If the count operand is less than zero, the src operand is right-shifted by the 
absolute value of the countoperand. The high-order bits of the dstoperand are 
zero-filled as shifted to the right. Low-order bits are shifted out through the C 
(carry) bit. 

Logical right-shift: 

° ~ src~ C 

If the countoperand is 0, no shift is performed and the C (carry) bit is set to 0. 
The count operand is assumed to be a signed integer. The src and dst oper­
ands are assumed to be unsigned integers. 
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LSH3 Logical Shift, 3-0perand 
~~y.~~.~,,-~~;o~~;:,"';~;:;:~«;:;:;:;:;:;:o:~;:.:.:.:;:::~:;:;:;:;:;:~.:.:;:;:.:.:~:.:.::y.::::;:;:;:;:.:.:;:.';:;'~v..:.'«-»:~:~.:':N..: ... :.:.~~;SO:~.:;~;:::;:;:;:;~~~:~~:::;:;:;:::;O:y';o;:;::::.~::;:;:::~~:;%:::~:;:;:;:"':;"~'~S"';·;O*~~~;';S%~;:>y'~~·::~~:~~.;~:·:::~;:;o: .... ~;:.::·:·;·:~':::~~:;:;:::;~~:;';:;:~~~:;::Y,::;~.~~::::~~y.:Y,:::Y,:Y,;S:OS:;S:~S:"~:~::;::Y,::::::::::;::~ 

Cycles 

Status Bits 

Mode Bit 

Example 1 

Example 2 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

Unaffected if dst is not R7 - RO. 

OVM Operation is not affected by OVM bit value. 

LSH3 R4,R7,R2 

Before Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
R2 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 018h = 24 
R7 = 02ACh 
R2 = OACOOOOOOh 
LUF LV UF N Z V C = 0 0 0 1 0 l' 0 

LSH3 *-AR4(IR1),R5,R3 

Before Instruction: 

AR4 = 809908h 
IR1 = 4h 
R5 = 012COOOOOh 
R3 = Oh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 809908h 
IR1 = 4h 
R5 = 012COOOOOh 
R3 = 0000012COOh 
Data at 809904h = OFFFFFFF4h = -12 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

LSH3 count, src2, dst1 
II STI src3, dst2 

If count~ 0: 
src2« count,-7 dst1 

Else: 
src2» I count I -7 dst1 

II src3 -7 dst2 

count register (Rn1, ° ~ n1 ~ 7) 
src1 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn3, ° ~ n3 ~ 7) 
src2 register (Rn4, ° ~ n4 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

I I 

count 

I I I I I I 

dst2 src2 

The seven least significant bits of the count operand are used to generate the 
twos-complement shift count. 

If the count operand is greater than zero, the dst operand is left-shifted by 
the value of the count operand. Low-order bits shifted in are zero-filled and 
high-order bits are shifted out through the C (carry) bit. 

Logical left-shift: 

C ~ dst2~ ° 
If the count operand is less than zero, the dst operand is right-shifted by the 
absolute value of the count operand. The high-order bits of the dst operand 
are zero-filled as shifted to the right. Low-order bits are shifted out through the 
C (carry bit). 

Logical right-shift: 

0-7 dst2-7 C 

If the count operand is 0, no shift is performed and the carry bit is set to 0. 

The count operand is assumed to be a 7 -bit signed integer, and the src2 and 
dst1 operands are assumed to be unsigned integers. All registers are read at 
the beginning and loaded at the end of the execute cycle. This means that 
if one of the parallel operations (STI) reads from a register and the operation 
being performed in parallel (LSH3) writes to the same register, then STI ac­
cepts as input the contents of the register before it is modified by the LSH3. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 
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Cycles 

Status Bits 

Mode Bit 

Example 

10-106 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF . O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the last bit shifted out. 0 for a shift count of O. 

OVM Operation is affected by OVM bit value. 

LSH3 R2,*++AR3(1),RO 
I I STI R4, *-AR5 

Before Instruction: 

R2 = 18h = 24 
AR3 = 8098C2h 
RO = Oh 
R4 = ODCh = 220 
AR5 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = Oh 
LU F LV UF N Z V C = '0 0 0 0 0 0 0 

After Instruction: 

R2 = 18h = 24 
AR3 = 8098C3h 
RO = OACOOOOOOh 
R4 = ODCh = 220 
AR5 = 8098A3h 
Data at 8098C3h = OACh 
Data at 8098A2h = OOCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 0 
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MPYF Multiply Floating-Point 
;:;~:;:::;:;:;:::;:;:;:;:;:;:;:;~:;:::;:;:::;:::;:::;:;~:;:::;:;:;:;~:;:::;:;:::::;~:;:::;:;:':;:;:;"":::;~:::;: •• ;:;~ •••• :::.::.;:.: •• ~~::.:.:.: ••• :; ••• ; •• ::~.; •• :.'o' ........ ;.;.;:::;:::;:::::;.;::~~:"~::;:::;:;~:;:;::::::::::::::::::::::.::::::::::::::::::::::::::;.::::::::::::::::;:::::;.;:::::;:::::::;:::::;::-;:::;~.:.-:.:~:;::.;:::::;.;::::::::.;:;.;:::;.;::::::.;-;:;-:.;.;.;::::.:::: •• ;.;:::; ••• ;:::;.;.:.;.;.;.; ••• ;.;:: ••••••• ; ..... ;:::;::.::;::.;.;.;.:.:::.:.:.:::.::;:;:;:;~;:;:: .. ::::.:::.::;:;:;:::;:;.;:::;:;:;~:;:;:;:::::::::;:.::.:~::::~:::;:::;:;:::;~:;~::~~:::;:;:;:; 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-108 

MPYF src, dst 

dst x src -7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0 S; n s; 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 s; n s; 7) 

1

311 I' 1 1 1 1 1 24123

1 
000010100 G 

87 16 15 
1 1 

src 

The product of the dst and src operands is loaded into the dst register. The src 
operand is assumed to be a single-precision floating-point number, and the dst 
operand is an extended-precision floating-point number. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point is overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

MPYF RO,R2 

Before Instruction: 

RO = 070C800000h = 1 .4050e + 02 
R2 = 034C200000h = 1.27578125e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 070C800000h = 1 .4050e + 02 
R2 = OA600F2000h = 1.79247266e + 03 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles -

Status Bits 

Mode Bit 

M PYF3 src2, src 1, dst 

src1 x src2 ~ dst 

src1 three-operand addressing modes (T): ° ° register (Rn1, ° :s; n1 :s; 7) ° 1 indirect (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, ° :s; n1 :s; 7) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): ° ° register (Rn2, ° :s; n2 :s; 7) ° 1 register (Rn2, ° :s; n2 :s; 7) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp =- 0, 1, IRO, IR1) 

dst register (Rn, ° :s; n :s; 7) 

31 2423 16 15 
iii 

src1 

87 o 
I I I , I I' src2 

The product of the dst1 and src2 operands is loaded into the dst register. The 
src1 and src20perands are assumed to be single-precision floating-point num­
bers, and the dst operand is an extended-precision floating-point number. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, ° otherwise. 
N 1 if a negative result is generated, ° otherwise. 
Z 1 if a zero result is generated, ° otherwise. 
V 1 if a floating-point is overflow occurs, ° otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM qit value. 

10-109 



Example 1 

'Example 2 

10-110 

MPYF3 RO,R7;Rl 

Before Instruction: 

RO = 0578400000h = 6.281250e + 01 
R7 = 0733COOOOOh = 1.79750e + 02 
R1 = Oh , 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = 0578400000h = 6.281250e + 01 
R7 = 0733COOOOOh = 1 .79750e + 02 
R1 = OD306A3000h = 1.1290546ge + 04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYF3 *+AR2(IRO),R7,R2 
or 
MPYF3 R7,*+AR2(IRO),R2 

Before Instruction: 

AR2 = 809800h 
IRO=12Ah 
R7 = 0578400000h = 6.281250e + 01 
R2 =Oh 
Data at 80992Ah = 70C8000h = 1 .4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809800h 
IRO = 12Ah 
R7 = 0578400000h = 6.281250e + 01 
R2 = OD09E4AOOOh = 8.82515625e + 03 
Data at 80992Ah = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

MPYF3 srcA, srcB, dst1 
II ADDF3 srcC, srcD, dst2 

srcA x srcB ~ dst1 
II srcC + srcD ~ dst2 

srcA

U 
srcB 
srcC 
srcD 

dst1 

dst2 

src1 
src2 
src3 
src4 

Any two indirect (disp = O,1,IRO,IR1) 
Any two register (0 ~ Rn ~ 7) 

register (d1): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn, 0 ~ n ~ 7) 
(Rn, 0 ~ n ~ 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 ~ P ~ 3) 

Operation (P Field) 

00 src3 x src4, src 1 + src2 
01 src3 x src1, src4 + src2 
1 0 src 1 x src2, src3 + src4 
11 src3 x src 1, src2 + src4 

31 2423 
iii 

src3 

iii 

src4 

A floating-point multiplication and a floating-point addition are performed in 
parallel. All registers are read at the beginning and loaded at the end of the ex­
ecute cycle. This means that if one of the parallel operations (MPYF3) reads 
from a register and the operation being performed in parallel (ADDF3) writes 
to the same register, then MPYF3 accepts as input the contents of the register 
before it is modified by the ADDF3. 
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Cycles 

Status Bits 

Mode Bit 

Example 

10-112 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and two are register. The 
assignment of the source operands srcA - srcDto the src1 - src4fields varies, 
depending on the combination of addressing modes used, and the P field is 
encoded accordingly. The assembler may, when not significant, change the or­
der of operands in commutative operations in order to simplify processing. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs. 0 otherwise. 
N O. 
Z O. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. \ 

OVM Operation is not affected by OVM bit value. 

MPYF3 *AR5++(1),*--ARl(IRO),RO 
II ADDF3 R5,R7,R3 

Before Instruction: 

AR5 = 8098C5h 
AR 1 = 8098A8h 
IRO = 4h 
RO = Oh 
R5 = 0733COOOOOh = 1 .79750e + 02 
R7 = 070C800000h = 1 .4050e + 02 
R3 = Oh 
Data at 8098C5h = 34COOOOh = 1.2750e + 01 
Data at 8098A4h = 111 OOOOh = 2.2500e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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After Instruction: 

AR5 = 8098C6h 
AR1 = 8098A4h . 
IRO = 4h 
RO = 0467180000h = 2.88867188e + 01 
R5 = 0733COOOOOh = 1.79750e + 02 
R7 = 070C800000h = 1.4050e + 02 
R3 = 0820200000h = 3.20250e + 02 
Data at 8098C5h = 34COOOOh = 1.2750e + 01 
Data at 8098A4h = 111 OOOOh = 2.2500e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-114 

MPYF3 src2, src1, dst 
II STF src3, dst2 

src1 x src2 --+ dst1 
II src3 --+ dst2 

src1 register (Rn1, 0 ::; n1 ::; 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn3, 0 ::; n3 ::; 7) 
src3 register (Rn4, 0 ::; n4 ::; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

i i 

src1 
I 11rSI 
src3 

87 
iii Iii II dst2 src2 

A floating-point multiplication and a floating-point store are performed in paral­
lel. All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPVF3) writes to a reg­
ister and the operation being performed in parallel (STF) reads from the same 
register, then the STF accepts as input the contents of the register before it is 
modified by the MPVF3. 

If src2 and dst2 point to the same location, then src2 is read before the write 
to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example MPYF3 *-AR2(1),R7,RO 
I I STF R3, *ARO--(IRO) 

Before Instruction: 

AR2 = 809828h 
R7 = 0578400000h = 6.281250e + 01 
RO = Oh 
R3 = 0868280000h = 4.7031250e + 02 
ARO = 809860h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1 .4050e + 02 
Data at 809860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809828h 
R7 = 0578400000h = 6.281250e + 01 
RO = OD09E4AOOOh = 8.82515625e + 03 
R3 = 0868280000h = 4.7031250e + 02 . 
ARO = 809858h 
IRO = 8h 
Data at 80982Ah = 70C8000h = 1.4050e + 02 
Data at 809860h = 868280000h = 4.7031250e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

10-116 

MPYF3 sreA, sreB, dst1 
II SUBF3 sreC, sreD, dst2 

. sreA x sreB -7 dst1 
II sreD - sreC -7 dst2 

sreA

U 
sreB 
sreC 
sreD 

dst1 

dst2 

sre1 
sre2 
sre3 
sre4 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 ~ Rn ~ 7) 

register (dl): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn, ° ~ n ~ 7) 
(Rn, ° ~ n ~ 7) 
(disp= 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 ~ P ~ 3) 

Operation (P Field) 

00 sre3 x sre4, sre 1 - sre2 
01 sre3 x sre 1, sre4 - sre2 
1 ° sre 1 x sre2, sre3 - sre4 
11 sre3 x sre1, sre2 - sre4 

31 2423 
i i 

src1 

16 15 
iii i 
src2 

iii 

src3 

87 
iii 

I' src4 

A floating-point multiplication and a floating-point subtraction are performed in 
parallel. All registers are read at the beginning and loaded at the end of the ex­
ecute cycle. This means that if one of the parallel operations (MPYF3) reads 
from a register, and the operation being performed in parallel (SUBF3) writes 
to the same rregister, then MPYF3 accepts as input the contents of the register 
before it is modified by the SUBF3. 
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10-118 

After Instruction: 

R5 = 034COOOOOOh = 1.2750e +01 
AR7 = 80990Ch . 
IR1 = 8h 
RO = 0467180000h = 2.88867188e + 01 
R7 = 0733COOOOOh = 1 .79750e + 02 
AR3 = 809881 h 
R2 = 05E3000000h = - 3.9250e + 01 
Data at 80990Ch = 111 OOOOh = 2.250e + 00 
Data at 8098B2h = 70C8000h = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

MPYI sre, dst 

dst x sre -7 dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

,3\ , , ' , , ,24,23, o 87 
I I , I 000010101 G src 

The product of the dst and sre operands is loaded into the dst register. The sre 
and dst operands, when read, are assumed to be 24-bit signed integers. The 
result is assumed to be a 48-bit signed integer. The output to the dst register 
is the 32 least significant bits of the result. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 

MPYI Rl,R5 

Before Instruction: 

R1 = 000033C251 h = 3,392,081 
R5 = 0000788600h = 7,910,912 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 000033C251 h = 3,392,081 
R5 = 00E21 D9600h =- 501 ,377,536 
LUF LV UF N Z V C = 0 1 0 1 0 1 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-120 

31 

MPYI3 src2, src1, dst 

src 1 x src2 ~ dst 

src1 three-operand addressing modes (T): 
o 0 register (Rn1, n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, $ n1 ~ 27) 
1 1 indirect (disp = 0,1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 register (Rn2, ~ n2 ~ 27) 
o 1 register (Rn2, ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

2423 16 15 87 0 

1"1""'1 I I I 

I 
I I I 

I 
I I I I 

I T dst src1 src2 .001.001010. 

The product of the src1 and src2 operands is loaded into the dst register. The 
src1 and src2 operands are assumed to be 24-bit signed integers. The result 
is assumed to be a signed 48-bit integer. The output to the dst register is the 
32 least significant bits of the result. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit output value. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 
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Example 1 

Example 2 

MPYI3 *AR4,*-AR1(1),R2 

Before Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2= Oh 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 809850h 
AR1 = 8098F3h 
R2 = 094ACh = 38,060 ' 
Data at 809850h = OADh = 173 
Data at 8098F2h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

MPYI3 *--AR4(IRO),R2,R7 

Before Instruction: 

AR4 = 8099F8h 
IRO = 8h 
R2 = OC8h = 200 
R7 = Oh 
Data at 8099FOh = 32h = 50 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8099FOh 
IRO = 8h' 
R2 = OC8h = 200 
R7 = 0271 Oh = 10,000 
Data at 8099FOh = 32h = 50 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax MPYI3 sreA, sreB, dstt 
II ADDI3 sreC, sreD, dst2 

Operation sreA x sreB -7 dstt 

Operands 

Encoding 

Description 

10-122 

II sreD + sreC -7 dst2 

sreAU sreB 
sreC 
sreD 

dstt 

dst2 

sret 
sre2 
sre3 
sre4 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 :s; Rn :s; 7) 

register (dt): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn, o:s; n:s; 7) 

(Rn, ° :s; n :s; 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 :s; P :s; 3) . 

Operation (P Field) 

00 sre3 x sre4, sre t + sre2 
01 src3 x sret, src4 + sre2 
10 sret x sre2, sre3 + sre4 
11 sre3 x sret, sre2 + sre4 

31 2423 
i i 

src1 
i i 

src3 
iii 

src4 

o 

I I 
An integer multiplication and an integer addition are performed in parallel. All 
registers are read at the beginning and loaded at the end of the execute cycle. 
This means that if one of the parallel operations (MPVI3) reads from a register 
and the operation being performed in parallel (ADDI3) writes to the same regis­
ter, then MPVI3 accepts as input the contents of the register before it is modi­
fied by the ADDI3. 
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Cycles 

Status Bits 

Mode Bit 

Example 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and two are register. The 
assignment of the source operands srcA - srcDto the src1 - src4fields varies, 
depending on the combination of addressing modes used, and the P field is 
encoded accordingly. The assembler may, when not significant, change the or­
der of operands in commutative operations in order to simplify processing. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N O. 
Z O. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected. by OVM bit value. 

MPYI3 R7,R4,RO 
I I ADDI3 *-AR3, *ARS--(l), R3 

Before Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = Oh 
AR3 = 80981 Fh 
AR5 = 80996Eh 
R3 = Oh 

, Data at 80981 Eh = OFFFFFFCBh = - 53 
Data at 80996Eh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14h = 20 
R4 = 64h = 100 
RO = 07DOh = 2000 
AR3 = 80981 Fh 
AR5 = 80996Dh 
R3 = Oh 
Data at 80981 Eh = OFFFFFFCBh = - 53 
Data at ,80996Eh = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

10-123 





Example MPYI3 *++ARO(l) ,R5,R7 
I I STI R2, *-AR3 (1) 

Before Instruction: 

ARO = 80995Ah 
R5 = 32h = 50 
R7 = Oh 
R2 = ODCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 80995Bh 
R5 = 32h = 50 
R7 = 2710h = 10000 
R2 = OOCh = 220 
AR3 = 80982Fh 
Data at 80995Bh = OC8h = 200 
Data at 80982Eh = OOCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

10-126 

MPYI3 sreA, sreB, dst1 
II SUBI3 sreG, sreD, dst2 

sreA x sreB ~ dst1 
II sreD - sreG ~ dst2 

sreAU sreB 
sreG 
sreD 

dst1 

dst2 

sre1 
sre2 
sre3 
sre4 

Any two indirect (disp = 0,1 ,IRO,IR1) 
Any two register (0 ~ Rn ~ 7) 

register (d1): 
0= RO 
1 = R1 

register (d2): 
0= R2 
1 = R3 

register 
register 
indirect 
indirect 

(Rn, 0 ~ n ~ 7) 
(Rn, 0 ~ n ~ 7) 
(disp = 0, 1, IRO, IR1) 
(disp = 0, 1, IRO, IR1) 

P parallel addressing modes (0 ~ P ~ 3) 

Operation (P Field) 

00 sre3 x sre4, src 1 - sre2 
01 sre3 x sre1, sre4 - sre2 
1 ° sre 1 x sre2, src3 - src4 
11 sre3 x sre 1, sre2 - sre4 

31 2423 

I I I I I I I I I I I 1 0 0 0 1 1 P d1 d~ 

I I I I 

src1 src3 
I I I 

src4 

An integer multiplication and an integer subtraction are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (MPVI3) reads from a 
register and the operation being performed in parallel (SUBI3) writes to the 
same register, then MPVI3 accepts as input the contents of the register before 
it is modified by the SUBJ3. 
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Cycles 

Status Bits 

Mode Bit 

Example 

Any combination of addressing modes may be coded for the four possible 
source operands as long as two are coded as indirect and two are register. The 
assignment ofthe source operands srcA - srcDto the src1 - src4fields varies, 
depending on the combination of addressing modes used, and the P field is 
encoded accordingly. The assembler may, when not significant, change the or­
der of operands in commutative operations in order to simplify processing. 

Integer overflow occurs when any of the most significant 16 bits of the 48-bit 
result differs from the most significant bit of the 32-bit,output value. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unchanged. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF 1 if an integer underflow occurs, 0 otherwise. 
N o. 
Z O. 
V 1 if an integer overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 

MPYI3 R2,*++ARO(1),RO 
I I SUBI3 *ARS--(IR1), R4, R2 
or 

MPYI3 *++ARO(1),R2,RO 
I I SUBI3 *ARS--( IR1) , R~, R2 

Before Instruction: 

R2 = 32h = 50 
ARO = 8098E3h 
RO = Oh 
AR5 = 8099FCh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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After Instruction: 

R2 = 320h = 800 
ARO = 8098E4h 
RO = 0 1324h = 4900 
AR5 = 8099FOh 
IR1 = OCh 
R4 = 07DOh = 2000 
Data at 8098E4h = 62h = 98 
Data at 8099FCh = 4BOh = 1200 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

With Borrow NEGB 

NEGB src, dst 

a - src - C ~ dst 

src general addressing modes (G): 
00 register (Rn, a :::;; n :::;; 27) 
a 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, a :::;; n :::;; 27) 

31 2423 16 15 87 ° I I I I I I I I I I I I I 

I 
I I I I 

I G dst src ,000,010110, 

The difference of the 0, src, and C operands is loaded into the dstregister. The 
dst and src are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, a otherwise. 
Z 1 if a zero result is generated, a otherwise. 
V 1 if an integer overflow occurs, a otherwise. 
C 1 if a borrow occurs, a otherwise. 

OVM Operation is affected by OVM bit value. 

NEGB RS,R7 

Before Instruction: 

R5 = OFFFFFFCBh = - 53 
R7 = Oh 
LU F LV U F N Z V C = a a a a a 0' 1 

After Instruction: 

R5 = OFFFFFFCBh = - 53 
R7 = 34h = 52 
LUF LV UF N Z V C = a a a a a a 1 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-130 

NEGF src, dst 

o - src --7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1. 1 immediate 

dst register (Rn, 0 :::; n :::; 7) 

1

3 
\ • 1 • i • • 24. 23

1 
000010111 G src 

87 
I • 

The difference of the 0 and src operands is loaded into the dst register. The 
dst and src operands are assumed to be floating-point numbers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

NEGF *++AR3(2),Rl 

Before Instruction: 

AR3 = B09BOOh 
R1 = 0578400025h = 6.2B125006e + 01 
Data at B09B02h = 70CBOOOh = 1.4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = B09B02h 
R 1 = 07F3BOOOOOh = -1.4050e + 02 
Data at B09B02h = 70CBOOOh = 1 .4050e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax NEGF src2, dst1 
II STF src3, dst2 

Operation 0 - src2 ~ dst1 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

II src3 ~ dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 ~ n1 ~ 7) 
src3 register (Rn2, ° ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 16 15 
I I I 

dst2 

87 

src2 I' 
I I I 

A floating-point negation and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a reg­
ister and the operation being performed in parallel (NEGF) writes to the same 
register, then STF accepts as input the contents of the register before it is modi­
fied by the NEGF. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, ° unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example 

10-132 

NEGF *AR4--(1),R7 
I I STF R2, *++AR5 (1) 

Before Instruction: 

AR4 = 8098E 1 h 
R7 = Oh 
R2 = 0733COOOOOh = 1.797S0e + 02 
ARS = 809803h 
Data at 8098E1 h = S78400000h = 6.281250e + 01 
Data at 809804h = Oh 
LUF LV UF N Z V C = 0 0 0' 0 0 0 0 

A fter Instruction: 

AR4 = 8098EOh 
R7 = 0584COOOOOh = - 6.2812S0e + 01 
R2 = 0733COOOOOh = 1.797S0e + 02 
ARS = 809804h 
Data at 8098E1 h = 5784000h = 6.281250e + 01 
Data at 809804h = 733COOOh = 1.797S0e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

NEGI sre, dst 

o - sre --j dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 ::; n ::; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0::; n ::; 27) 

31 2423 16 15 87 o 

I 
I I I I I I I I I 

000011000 G src 

I I 
I I 

The difference of the 0 and sreoperands is loaded into the dstregister. The dst 
and sre operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 

NEGI 174,RS (174 = OAEh) 

Before Instruction: 

R5 = OOCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFFFFF52 = -174 
LU~ LV UF N Z V C = 0 0 0 1 0 0 1 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-134 

NEGI 
STI 

src2, dst1 
src3, dst2 

o - src2 -7 dst1 
II src3 -7 dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 ::;; n1 ::;; 7) 
src3 register (Rn2, 0 ::;; n2 ::;; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

I I I 

dst2 

87 o 

I' I I I , I src2 

An integer negation and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation, being performed in parallel (NEGI) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
NEG!. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected: 
LV· 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, ° otherwise. 

OVM Operation is affected by OVM bit value. 
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Example NEGI *-AR3,R2' 
II STI R2,*AR1++ 

Before Instruction: 

AR3 = 80982Fh 
R2 = 19h = 25 
AR 1 = 8098A5h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 80982Fh 
R2 = OFFFFFF24h = - 220 
AR 1 = 8098A6h 
Data at 80982Eh = ODCh = 220 
Data at 8098A5h = 19h = 25 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 

/ 
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NOP No 

Syntax 

Operation 

Op~rands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

Example 2 

10-136 

NOP src 

No ALU or multiplier operations. 
ARn is modified if src is specified in indirect mode . 

. src general addressing modes (G): 
o 0 registe~ (no operation) 
1 0 indirect (modify ARn, 0 ::; n ::; 7) 

31 2423 16 15 87 o 
i i 

I I src 

If the src operand is specified in the indirect mode, the specified addressing 
operation is performed and a dummy memory read occurs. If the src operand 
is omitted, no operation is performed. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM·bit value. 

NOP 

Before Instruction: 

PC = 3Ah 

After Instruction: 

PC = 3Bh 

NOP *AR3--(1) 

Before Instruction: 

PC = 5h 
AR3 = 809900h 

After Instruction: 

PC = 6h 
AR3 = 8098FFh 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Normalize NORM 

NORM sre, dst 

norm (sre) -7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

13\ , 1 ' , , ,24,23
1 

j 16,15, 
dst _ 

87 
j j j j 

000011010G src 

The srcoperand is assumed to be an unnormalized floating-point number; i.e., 
the implied bit is set equal to the sign bit. The dst is set equal to the normalized 
src operand with the implied bit removed. The dst operand exponent is set to 
the srcoperand exponent minus the size of the left-shift necessary to normal­
ize the src. The dstoperand is assumed to be a normalized floating-point num­
ber. 

If src (exp) =-128 and sre (man) = 0, then dst=O, Z= 1, and UF = O.lf sre (exp) 
= -128 and src (man):;t: 0, then dst= 0, Z = 0, and UF = 1. Foral! other cases 
of the src, if a floating-point underflow occurs, then dst (man) is forced to 0 and 
dst (exp) =-128. If src (man) = 0, then dst (man) = 0 and dst (exp) =-128. Re­
fer to Section 4.6. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV Unaffected. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V o. 
C Unaffected .. 

OVM Operation is not affected by OVM bit value. 
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NORM Normalize 
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Example 
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NORM Rl,R2 

Before Instruction: 

R 1 = 0400003AF5h 
R2 = 070C800000h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R 1 = 0400003AF5h 
R2 = F26BD40000h = 1.12451613e - 04 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

NOT sre, dst 

-sre --7 dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

,
31\ \ , ' \ \ \ 24\23, 

o 0 0 0,1 1 0 1 1 G 

I I \ 16,15, 

dst . 

87 
, I 

src 

The bitwise logical-complement of the sreoperand is loaded into the dstregis­
ter. The complement is formed by a logical-NOT of each bit of the sre operand. 
The dst and sre operands are assumed to be unsigned integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 

NOT @982Ch,R4 

Before Instruction: 

DP = BOh 
R4= Oh 
Data at 80982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = OFFFFA 1 DOh 
Data at 80982Ch = 5E2Fh 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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NOTIISTI Parallel NOT and STI 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 
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NOT 
II STI 

src2, dst1 
src3, dst2 

-src2 -7 dst1 
II src3 -7 dst2 

src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn1, 0 ~ n1 ~ 7) 
src3 register (Rn2, 0 ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRO. IR1) 

31 2423 1615 
i I I 

dst2 

87 o I I I I I 
I I src2 

A bitwise logical-NOT and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (NOT) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
NOT. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example NOT *+AR2,R3 
I 1ST I R 7 , * - - AR 4 (I R 1 ) 

Before Instruction: 

AR2 = 8099CBh 
R3 =Oh 
R7 = ODCh = 220 
AR4 = 809850h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 8099CBh 
R3 = OFFFFF3DOh 
R7 = ODCh = 220 
AR4 = 809840h 
IR1 = 10h 
Data at 8099CCh = OC2Fh 
Data at 809840h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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OR Bitwise LULllua'-LJ' 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

OR src, dst 

dst OR src -7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0, ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate (not sign-extended) 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 87 o 

I I I I I I I I I I 
00010 0000 G 

I I 
I I src 

The bitwise logical OR between the src and dst operands is loaded into the dst 
register. The dst and src operands are assumed to be unsigned integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z ,1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

OR *++AR1(IR1) ,R2 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 012560000h 
Data at 809804h = 2BCDh 

LUF LV UF N Z V C = 0 0 O' 0 0 0 0 

After Instruction: 

AR1 = 809804h 
IR1 = 4h 
R2 = 012562BCDh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

OR3 sre2, sret, dst 

sret OR sre2 --7 dst 

sret three-operand addressing modes (T): 
o 0 register (Rn1, 0 n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

sre2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR 1) 

dst register (Rn, 0 ~ n ~ 27) 

(\ , 1 ' , , ,24,23

1 

1615 
I I I 

001001011 T src1 

I I I 

src2 

The bitwise logical-OR between the sret and sre20perands is loaded into the 
dstregister. The sret, sre2, and dstoperands are assumed to be unsigned inte­
gers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example OR3 *++AR1(IR1),R2,R7 

Before Instruction: 

AR1 = 809800h 
IR1 = 4h 
R2 = 012560000h 
R7 = Oh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR1 = 809804h 
IR1 = 4h 
R2 = 012560000h 
R7 = 012562BCDh 
Data at 809804h = 2BCDh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Cycles 

Status Bits 

Mode Bit 

OR3 src2, src1, dst1 
II STI src3, dst2 

src1 OR src2 ---:; dst1 
src3 ---:; dst2 

src1 register (Rn1, a ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRa, IR1) 
dst1 register (Rn2, a ~ n2 ~ 7) 
src3 register (Rn3, a ~ n3 ~ 7) 
dst2 indirect (disp = 0, 1, IRa, IR1) 

I I 

1 1 1 0 1 0 0 dst1 src1 

16 15 
I I I I 
src3 

I I I I I I 

dst2 src2 

A bitwise logical-OR and an integer store are performed in parallel. All registers 
are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (OR3) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
OR3. 

If src2and dst2pointto the same location, src2is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero result is generated, a otherwise. 
V o. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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OR311STI Parallel OR3 and STI 
.~.·.· ••• ~".y.:.:.·.·.·.·.:.·.·.:.'.:.·.:.:.:.:.:::.:;:;:::::;';:::::::::::::::::::::::::::::::::::::::::::.:.:.:.:.: ••••. : .••.••••••• : ••• : ............. :.: ••••••• :.:.0 ••• :.: ••• : ••••••• :.y.:.:.: ••••• :.:.:.:.:.:.:.:.: ••• ~ •• : •••••• ;:;.;:.:.:;: •• ;:.:.: •••••• ;.;.;.;.;:;.~;.;:.: •• ;:; ••• ; ......... ;.; ••• ; ••• ; ••••••• ;.;.; •• : •••• ;:.:; ... ;::.; ••• ; ••••••• ;.; ••••••••••••• ;.;. .... ;.;.;.;.; ••••• ; ••• ; ••••••••••••••••••• ;.;.;.; ••• ; ........................................................... ; ....................... ; ••• ;.;. •••••••• ;:.: ••• : •••• ;:; •• :: •• :.: •. ::;:;:;:::;~:.:.:::;!;:;:;:;:;:;:;:;.;:;::::::-:;:;::::::::~~ 

Example OR3 *++AR2,R5,R2 
I I STI R6, *AR1--

Before Instruction: 

AR2 = 809830h 
R5 = 800000h 
R2 = Oh 
R6 = ODCh = 220 
AR1 = 809883h 
Data at 809831 h = 9800h 
Data at 809883h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR2 = 809831 h 
R5 = 800000h 
R2 = 809800h 
R6 = ODCh = 220 
AR1 = 809882h 
Data at 809831 h = 9800h 
Data at 809883h = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

1 0-146 Assembly Language Instructions 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

POP dst 

*SP- - --7 dst 

dst register (Rn, 0::; n ::; 27) 

1615 87 0 

The top of the current system stack is popped and loaded into the dst register 
(32 LSBs). The top of the stack is assumed to be a signed integer. The POP 
is performed with a postdecrement of the stack pointer. The exponent bits of 
an extended precision register (R7-RO) are left unmodified. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. . 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

POP R3 

Before Instruction: 

SP = 809856h 
R3 = 0 12DAh = 4,826 
Data at 809856h = OFFFFODA4h = - 62,044 
LUF LV UF N Z V C = 0 0 0 0 0 a 0 

After Instruction: 

SP = 809855h 
R3 = OFFFFODA4h = -62,044 
Data at 809856h = OFFFFODA4h = - 62,044 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 
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Syntax 

, Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-148 

'POPF dst 

*SP- --7 dst1 

dst register (Rn, 0 ~ n ~ 7) 

1615 87 0 

00001110101 

The top of the current system stack is popped and loaded into the dst register 
(32 MSBs). The top of the stack is assumed to be a floating-point number. The 
POP is performed with a postdecrement of the stack pointer. The 8 LSBs of 
an extended precision register (R7-RO) are zero filled: 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
UF O. 
LV Unaffected. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

POPF R4 

Before Instruction: 

SP = 80984Ah 
R4 = 025D2E0123h = 6.91186578e + 00 
Data at 80984Ah = 5F2C1302h = 5.32544007e + 28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809849h 
R4 = 5F2C130200h = 5.32544007e + 28 
Data at 80984Ah = 5F2C1302h == 5.32544007e + 28 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

PUSH src 

src --7 *++SP 

src register (Rn, 0 :::; n :::; 27) 

1615 87 0 

00001111001 

The contents of the src register (32 LSBs) arepushed on the current system 
stack. The src is assumed to be a signed integer. The PUSH is performed with 
a preincrement of the stack pointer. The integer or mantissa portion of an ex­
tended precision register (R7-RO) is saved with this instruction. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected; 

OVM Operation is not a,ffected by OVM bit value. 

PUSH R6 

Before Instruction: 

SP = 8098AEh 
R6 = 815Bh = 33,115 
Data at 8098AFh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 8098AFh 
R6 = 815Bh = 33,115 
Data at 8098AFh = 815Bh = 33,115 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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PUSHF PUSH Floating-Point 
.: ... ~ .. ~.~~ ..... ~~ .............. :.:.:.: ... :.:;:;:.:;:;:~.::::;:.;:::;:::::.:.;; . .:.:;:;:;:.:;.'.:;:;:::,:;:::;:.:: .•..•. :~ . .; ....... : .•...•.•........ .: ... ; ... .' ....... : ..... ; ....... : ... :.:;:;.';:;.'.; . .' . .';.;:;.;.'~ ... ,.~.;.:.: ............ : .... ;: •......• ; ..... ;:;::.;.;.; ..• :: .•.•...•. ::.;.; ... ::;.;.;.::;.;.;.;.;.; .. : ...... ;.; •.... ;.;:; ... ;.;.;:; ... ; .... .'.: .. ; •............ ;.; .... : .. ; .... ::.;.; ..... ; .....•.... :;' .... ;.; •.. ; ... ;.;.;.; ..... ;.; ....... ; ..... :: .. :: ... .'.: ... :; ..... ;: .•.............•..... :;.; ... ; ... ; ...... .' ... :; .. ::: .... ;: .......... ;.;.;.;:; .. :;.;: .. ;.;:::::::::::::::::::::;.::::.:::::::::::::::;:.::.;:; 

Syntax 

Operation 

Operands 

Encoding· 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 
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PUSHF src 

src~ *++SP 

src register (Rn, 0 ::; n ::; 7) 

1615 87 0 

00001111101 

The contents of the src register (32 MSBs) are pushed on the current system 
stack. The src is assumed to be a floating-point number. The PUSH is per­
formed with a preincrement of the stack pointer. The 8 LSBs of the mantissa 
are not saved. (Note the difference in R2 and the value on the stack in the ex­
ample below.) 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

PUSHF R2 

Before Instruction: 

SP = 809801 h 
R2 = 025C128081 h = 6.87725854e + 00 
Data at 809802h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

SP = 809802h 
R2 = 025C128081 h = 6.87725854e + 00 
Data at 809802h = 025C1280h = 6.87725830e + 00 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

RETlcond 

If cond is true: 
*SP --~ PC 
1 --7 ST (GIE). 

Else, continue. 

None 

31 2423 I I I I I I I I I I I I 
011110000 00 

I I 

cond 

RETlcond 
',';',';',';',' " 

1615 87 a 

A conditional return is performed. If the condition is true, the top of the stack 
is popped to the PC, and 1 is written to the global interrupt enable (GIE) bit of 
the status register. This has the effect of enabling all interrupts for which the 
corresponding interrupt enable bit is a 1. 

The TMS320C3x provides 20 condition codes that can be used with this' in­
struction (see Section 10.2 for a list of condition mnemonics, encoding, and 
flags). Condition flags are set on a previous instruction only when the destina­
tion register is one of the extended-precision registers (R7-RO) or when one 
of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) 
is executed. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example RETINZ 

Before Instruction: 

PC = 456h 
SP = 809830h 
ST= Oh 
Data at 809830h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 123h 
SP = 80982Fh 
ST = 2000h 
Data at 809830h = 123h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

RETScond 

If cond is true: 
*SP---7 PC. 
Else, continue. 

None 

Return From Subroutine RETScond 

31 2423 16 15 87 0 
j j 

cond 

A conditional return is performed. If the condition is true, the top of the stack 
is popped to the PC. 

The TMS320C3x provides 20 condition codes that can be used with this in­
struction (see Section 10.2 for a list of condition mnemonics, encoding, and 
flags). Condition flags are set on a previous instruction only when the destina­
tion register is one of the extended-precision registers (R7-RO) or when one 
of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, orTSTB3) 
is executed. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

RETSGE 

Before Instruction: 

PC = 123h 
SP = 80983Ch 
Data at 80983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 '0 

After Instruction: 

PC = 456h 
SP = 80983Bh 
Data at 80983Ch = 456h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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RND Round F/n,r=1tinn-P'nint 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles. 

Status Bits 

Mode Bit 

Example 

10-154 

RND sret dst 

rnd (sre) -7 dst 

sre general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

87 
I I 

src 

The result of rounding the sre operand is loaded into the dst register.The sre 
operand is rounded to the nearest single-precision floating-point value. If the 
sre operand is exactly half-way bet'ween two single-precision values, it is 
rounded to the most positive of those values. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is affected by OVM bit value. 

RND R5,R2 

Before Instruction: 

R5 = 0733C16EEFh = 1.7975559ge + 02 
R2 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = 0733C16EEFh = 1.7975559ge + 02 
R2 = 0733C16FOOh = 1.79755600e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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ROLe 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 1 

10-156 

ROLC dst 

dst left-rotated 1 bit through carry bit --7 dst 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 1615 87 0 

The contents of the dst operand are left-rotated one bit through the carry bit 
and loaded into the dstregister. The MSB is rotated to the carry bit, at the same 
time the carry bit is transferred to the LSB. 

Rotate left through carry bit: . 

<) dst:=J 

These condition flag's are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

R7 - RO, then C is shifted into the dst but not changed. 

OVM Operation is not affected by OVM bit value. 

ROLe R3 

Before Instruction: 

R3 = 00000420h 
LUF LV UF N Z V C=O 0 0 0 0 0 1 

After Instruction: 

R3 = 000000841 h 
LUF LV UF N Z V C=O 0 0 0 0 0 0 
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Exampie2 ROLe R3 

Before Instruction: 

R3 = 80004281 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 00008502h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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ROR Rotate 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 
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ROR dst 

dst right-rotated 1 bit through carry bit ~ dst 

dst register (Rn, 0:::; n :::; 27) 

1615 87 0 

The contents of the dst operand are right-rotated one bit and loaded into the 
dst register. The LSB is rotated into the carry bit and also transferred into the 
MSB. 

Rotate right: 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. Unaffected 

if dst is not R7 - RO. 

OVM Operation is not affected by OVM bit value. 

ROR R7 

Before Instruction: 

R7 = 00000421 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 8000021 Oh 
LUF LV UF N Z V C = 0 0 0 1 0 0 1 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

RORC dst 

dst right-rotated 1 bit through carry bit ~ dst 

dst register (Rn, 0 ::; n ::; 27) 

1615 87 0 

The contents of the dstoperand are right-rotated one bit through the status reg­
ister's carry bit. This could be viewed as a 33-bit shift. The carry bit value is ro­
tated into the MSB of the dst, while at the same time, the dst LSB is rotated into 
the carry bit. 

Rotate right through carry bit: 

r=:----c () dstj 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF O. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Set to the value of the bit rotated out of the high-order bit. If dst is not 

R7 - RO, then C is shifted in but not changed. 

OVM Operation is not affected by OVM bit value. 

RORe R4 

Before Instruction: 

R4 = 80000081 h 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

After Instruction: 

R4 = 40000040h 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 
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RPTB 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

RPTB src 

src~ RE 
1 ~ ST (RM) 
Next PC ~ R8 

src long-immediate addressing mode 

31 2423 16 15 
I I I 

87 
I I I I 

src 

RPTB allows a block of instructions to be repeated a number of times without 
any penalty for looping. This instruction activates the block repeat mode of up­
dating-the PC. The src operand is a 24-bit unsigned immediate value that is 
loaded into the repeat end address (RE) register. A 1 is written into the repeat 
mode bit of status register 8t (RM) to indicate that the PC is being updated in 
the repeat mode. The address of the next instruction is loaded into the repeat 
start address (RS) register. 

4 

LUF Unaffected. 
LV Unaff€cted. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

RPTB 127h 

Before Instruction: 

PC = 123h 
ST= Oh 
RE = Oh 
R8 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 124h 
8T = 100h 
RE = 127h 
RS = 124h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

RPTS src 

src~ RC 
1 ~ ST (RM) 
1~S 

Next PC ~ RS 
Next PC ~ RE 

src general addressing modes (G): 
o 0 register 
o 1 direct 
1 0 indirect 
1 1 immediate 

1

311 
1 1 1 1 1 1 24123

1 

111 1 1 0 1 1 1116115, 
000100111 G. . 

87 o 
1 1 , I src 

The RPTS instruction allows a single instruction to be repeated a number of 
times without any penalty for looping. Fetches can ,also be made from the in­
struction register (IR), thus avoiding repeated memory access. 

The src operand is loaded into the repeat counter (RC). A 1 is written into the 
repeat mode bit of the status register 8T (RM). A 1 is also written into the repeat 
single bit (8). This indicates that the program fetches are to be performed only 
from the instruction register. The next PC is loaded into the repeat end address 
(RE) register and the repeat start address (RS) register. 

Forthe immediate mode, the srcoperand is assumed to be an u'nsigned integer 
and is not sign-extended. 

4 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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RPTS Repeat Single 
;:;:~~:;:;::::!;:::;=;!<::;:;:;~;:::;:~:;!;:::;:;:;:::;:::::::;:::::;:;.;:::::::;:;:;.;:;:;::o.::;:::::::;:;:.:-:~;:::;:;:::::;:;:::;:;:;:::;:;:::;:::;:;.;::::-:::;:::::::;:::::::;o;:;::::~:;:;::::::%:::::;::%y;:::::::::::;O»::::::"o:;:;::::::.::;.::: ... ;.~o!;~;:~;::: .. ;:;:.::.::::;:;':';::'::::::;::::';';';:~:;:;:":::y';::::::::~;:;:,/o.;:::::::;::::~::::;.::;::::.::::::;:;:;:;:::;:.:::;:::::::::::::::::;:::;:::::::~;:::;:;:::;:::;y.;:;:;:;:::;:::::::::::::::::::::::;::::::::::::::::::::::::::::::::-;:;:::::::::::::::::::::::::::::::::::;.;;::::::::::::::::::'0:;0;::'0:: 

Example RPTS AR5 

Before Instruction: 

PC = 123h 
ST=Oh 
RS=Oh 
RE = Oh 
RC = Oh 
AR5 = OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 124h 
ST = 100h 
RS = 124h 
RE = 124h 
RC = OFFh ' 
AR5 = OFFh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Signal, Interlocked SIGI 
~;~.=;:;:::;:;::':::::::;:;:~:;:;:;:;:::::;:;:::::::;:;:;:;:~::;:::::::;:::::;:::;:~:;:::;:::::::::;:;::::.::;:;:;:;.;:;:;:::::::::::::::::::::;'::::::::;:::::::;';:::;0;:::::::::::::::::::;:::::.::::::::::.::;.::::: .;.;::.::;.::::::::;:::::::;.;::::::::.:::::::::.::: .;.:.;.:.;.:.;.;::::::::::::-.::.;:::;.;:::::;0.:::::;.;.;::::::::::::.::.:;.;.:::.;:.:::;.;.:::.;: •••. ;: •• ;:::::;·.:.:.·;:;· ... :;·.:.:.·.·.:::::::.:;·.w::.·.:.:.:: •••• : ••••• :.: ••• ' ••• :.: ................. :.:.: ........... : ... : ••••••• !O:.: ••• :;:::::.: ••••• :.:.::: ••••• :.:.:.:.:;.;:.:.:::::::::::::::::::::;::::::::::::::::::::::::: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

SIGI 

Signal interlocked operation. 
Wait for interlock acknowledge. 
Clear interlock. 

None 

31 24 23 16 15 8 7 0 

1 0' 0 ' 0 11 ' 0' l' l' 0' 01 0' 0 I 0' 0' 0' 0 ' 0' 0' 0 ' 0 ' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0 I 
An interlocked operation is signaled over XFO and XF1 . After the interlocked 
operation is acknowledged, the interlocked operation ends. SIGI ignores the 
external ready signals. Refer to Section 6.4 on page 6-10 for detailed informa­
tion. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

10-163 



STF Store Floating-Point 
;o.:-:.;.»;S";.;.;o; .... ~;:;:;o: ...... :;.;:;~;:.:;::.;:;:;:;:;:;:~~;:::::;:;:::;::y.;:;:~;:;:;~:.:;:;.;:;:;:.:;.;.; ••• ;:;.;o •• " •.... ·;·;:::=:;:;:-~:s:;:;:;:;:;:;:::;-;:;:~o;" .. ·~;·;·;:~v;v:-:~:;-:-:;·;y:-;o~ .. :.:-:»:-::.;.;..;o;o;o;.:.;.;.:.;.::;::.;.;:;.:.;.;.;:; ••• ;.;.;.;.;.;o; ... ;.;.;.;o; .. o;o;.;.;o •• ;.;.; •• ~; ... ;.;.;..;.;.;.;o .... ~;.;o;o;.; •• ~;.; •• ~;.;.;.;.;.;.;.;.;o;.;.:.;.;.;.; •• ~ •• ;.; •• ~;.; ... ; .. ';.: ... ;.; ••• ;.; ... ;.;0; .. 0;0;'1' ............. ; ....... ..: ... ;0; ............. : ....... ; ... ;.; .. ,;.; ... ; ..... ; .. ;: ... ;0;,;,::::::::;.;:;;: .. :=:;.;:;.;:;.;.;:~O;:O;:;::., .. :;:;:::::::::; 

Syntax 

Operation 

Operands. 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-164 

STF src, dst 

src~ dst 

src register (Rn, 0 ~ n ~ 7) 

dstgeneral addressing modes (G): 
o 1 direct 
1 0 indirect 

(\ 1 1 1 1 1 /4123

1 

1615 
i i 

iIi 
src . 000101000G 

87 o 
i i 

1 I dst 

The src register is loaded into the dst memory location. The src and dst oper­
ands are assumed to be floating-point numbers. 

LUF Unaffected. 
LV Unaffected. 
UF Unaffected. 
N Unaffected. 
Z Unaffected. 
V Unaffected. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

STF R2,@98Alh 

Before Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e + 01 
Data at 8098A 1 h = Oh 
LUF LV UF N Z V C=;O 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R2 = 052C501900h = 4.30782204e + 01 
Data at 8098A 1 h = 52C5019h = 4.30782204e + 01 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

STFI src, dst 

src --7 dst 
Signal end of interlocked operation. 

src register (Rn, 0 ~ n ~ 7) 

dstgeneral addressing modes (G): 
o 1 direct 
1 0 indirect 

r ' , I ' , , , 24,23

1 
000101001 G 

87 
I I 

dst 

The src register is loaded into the dst memory location. An interlocked opera­
tion is signaled over pins XFO and XF1. The srcand dstoperands are assumed 
to be floating-point numbers. Refer to Section 6.4 on page 6-10 for detailed in­
formation. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

DVM Operation is not affected by OVM bit value. 

STFI R3,*-AR4 

Before Instruction: 

R3 = 0733COOOOOh = 1.79750e + 02 
AR4 = 80993Ch 
Data at 80993Bh = Oh' 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R3 = 0733COOOOOh = 1.79750e + 02 
AR4 = 80993Ch 
Data at 80993Bh = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-166 

STF sre2, dst2 
II STF sre1, dst1 

sre2~ dst2 
II sre1 ~ dst1 

sre1 register (Rn1, 0 :::; n1 :::; 7) 
dst1 indirect (disp = 0, 1, IRO, IR1) 
sre2 register (Rn2, 0 :::; n2 :::; 7) 
dst2 indirect (disp = 0,1, IRO, IR1) 

31 2423 1615 
I I I 

dst1 

87 o 
I I I , I I' dst2 

Two STF instructions are executed in parallel. Both sre1 and sre2are assumed 
to be floating-point numbers. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected·. 

OVM Operation is not affected by OVM bit value. 

STF R4, *AR3-­
I I STF R3, *++ARS 

Before Instruction: 

R4 = 070C800000h = '1.4050e + 02 
AR3 = 809835h 
R3 = 0733COOOOOh = 1.79750e + 02 
AR5 = 8099D2h 
Data at 809835h = Oh 
Data at 8099D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = 070C800000h = 1.4050e + 02 
AR3 = 809834h 
R3 = 0733COOOOOh = 1.79750e + 02 
AR5 = 8099D3h 
Data at 809835h = 070C8000h = 1.4050e + 02 
Data at 8099D3h = 0733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

Assembly Language Instructions 



Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

STI src, dst 

src --7 dst 

src register (Rn, 0 :::; n :::; 27) 

dstgeneral addressing modes (G): 
o 1 direct 
1 0 indirect 

(\ , 1 ' , , ,24,23

1 
000101010 G 

87 o 
I I , I dst 

The src register is loaded into the dst memory location. The src and dst oper­
ands are assumed to be signed integers. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation· is not affected by OVM bit value. 

STI R4,@982Bh 

Before Instruction: 

DP = 80h 
R4 = 42BD7h = 273.367 
Data at 80982Bh = OE5FCh = 58,876 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
R4 = 42BD7h = 273,367 
Data at 80982Bh = 428D7h = 273,367 
LUF LV UF N Z V C = 0 0 0 0 0 00 
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STII Store Integer, Interlocked 
;~".~.~.: ••• ' ••••• '.:.~.~.:.:.~;:::.:;:::::;:;:;:;:;:.:;:;:.:;';:;~.:::::::;::=-:::::::.:::::::;:::.'::;:::;:':':.:.:.:.:.:.!.:..;:::.: ••• :.:.:.: ••••••••••••• : ••• : ••••••••••••• =-...... : .....•........ ;:.:;.;:::::;.;.;.;::::::::.:~ •.. ;~.:.::: •• ~.;:. ... ;:;.:.;.;.; .. :;:;:;.;:::;.:.~::;·;·::;:::::b:.·::.:.·::;·::::;·.·;·.:.:.·;·.·.·;·.·.: ............ ;.;.; ••• :: •• ; ••• ; ••• ;.;:..; ••••• ; ••••••••••••••••••••••• ; ••••••••••• ; ••••••••••••••••••••••••••••••••• ; ......... ; ....................... ; ••• ;:;.; ....... ; ••• ;.; ..... : ...... : •• ;: •••••••• ;.;.: •• :::;.;:::::;.;::.;.;.;::y •• ;.;:::::::;.;.;:::::::;:::::::::::::::: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 
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STII src, dst 

src~ dst 
Signal end of interlocked operation. 

src register (Rn, 0 :::;; n :::;; 27) 

dstgeneral addressing modes (G): 
o 1 direct 
1 0 indirect 

87 o 

dst 
I I 

I I 
The src register is loaded into the dst memory location. An interlocked opera­
tion is signaled over pins XFO and XF1. The srcand dstoperands are assumed 
to be signed integers. Refer to Section 6.4 for detailed information. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

STII Rl,@98AEh 

Before Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 8098AEh = 25Ch 

After Instruction: 

DP = 80h 
R1 = 78Dh 
Data at 8098AEh = 78Dh 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

STI src2, dst2 
II STI src1, dst1 

src2-7 dst2 
II src1 -7 dst1 

src1 register (Rn1, a ~ n1 ~ 7) 
dst1 indirect (disp = 0,1, IRa, IR1) 
src2 register (Rn2, 0 ~ n2 ~ 7) 
dst2 indirect (disp = 0, 1, IRa, IR1) 

I I I 

dst1 r' I I I 

dst2 

Two integer stores are performed in parallel. If both stores are executed to the 
same address, the value written is that of STI src2, dst2. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 

STI RO,*++AR2(IRO) 
I I STI R5, *ARO 

Before Instruction: 

RO = ODCh = 220 
AR2 = 809830h 
IRa = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = Oh 
Data at 8098D3h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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STIIISTI Parallel STI and STI 
....... :.: ......... :; ••••• .: ................. :.:; •• :;~ ••• ;:«;:::::::;:;:;:::::::::::::::.:::::::::::::::::::.:-:::;0.0. .. :.-.: •• .:.:0" .............. O,: ... y.o. ................................... "" ........ Y. .... ;.N.;:~; ................... : ... ;.; ..... ;O" ....... • ..... ·.y.·.·.· .... ;·.·;· ..... · ........ ;y:·;·,.,; ..... : .... ·.w.· ....... · ......... y •••• ; ..... ; .. ~ ....... ; ••• ;.;.; ••• : ••• ; ......... ;.; ............. ; ............. ; ••••••• ,v •. ; .•• ;.o.; ......... ; ....... ;.;.; ...... ~ ............. ;.; ..... ; ... ;.;.;.;..:.;.,;.; ......... ; ... ;.; ... :.: ..... ;-;~:;.,;.~.;!>:;:;:;:;~:;.:;:~~::;:;:;:~:;~ 

After Instruction: 

RO= ODCh = 220 
AR2 == 809838h 
IRO = 8h 
R5 = 35h = 53 
ARO = 8098D3h 
Data at 809838h = ODCh = 220 
Data at 8098D3h = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

SUBB src, dst 

dst- src- C ~ dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

r' , I ' , , ,24,23

1 
src 

87 
i i 

000101101 G 

The difference of the dst, src, and C operands is loaded into the dst register. 
The dst and src operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 

SUBB *ARS++(4),RS 

Before Instruction: 

AR5 = 809800h 
R5 = OFAh = 250 
Data at 809800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809804h 
R5 = 032h = 50 
Data at 809800h = OC7h = 199 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-172 

SUBB3 sre2, sret, dst 

sre1 - sre2- C ~ dst ' 

sre1 three-operand addressing modes (T): 
o 0 register (Rn1, 0 ~ n1 ~ 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ~ n1 ~ 27) 
1 1 indirect (disp'= 0,1, IRO, IR1) 

sre2three-operand addressing modes (T): 
00 register(Rn2, 0 ~ n2 ~ 27) 
o 1 register (Rn2, 0 ~ n2 ~ 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 1615 87 0 l"IIiIl" I I I 

I 
I I I 

I 
I I I I 

I T dst src1 src2 ,001,001100, 

The difference of the sret and sre2 operands and the C (carry) flag is loaded 
into the dst register. The sre1, sre2, and dst operands are assumed to be 
signed integers. 

1 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 
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Subtract Integer With Borrow, 3-0perand SUBB3 
;:.:::::::;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::;:;:;::!;:::::::;:;:::;:;:::;:;:;:::::;:::;O):;O):~;:::;~;:;:;:;~;.;:; ... ;, .. ~;~.o!::;:::.:.:: •.• .y""~";:::;:;:::::;:;:':'": .... ; ••••• ;:;.;:;~ •• :::::::::;. .... ; ........ :; .. ~.~ ......................... :.~ ......................................................... ~ ••... • ....... ••••• ..... ·N.·.· ............. · ... · ..... • ... · ........... ·.·•• ... ·.y ... ~·6 .... • ..... ~ .. ·.·.:.:.:.·.:.:.:.:;:.:.:.:.:.:.:.:::::.:::::.:;:;::::::::::::::::::::::::::::::::::::::::::,;: 

Example SUBB3 RS,*ARS++(IRO),RO 

Before Instruction: 

AR5 = 809800h 
IRO = 4h 
R5 = OC7h = 199 
RO = Oh 
Data at 809800h = OFAh = 250 
LUF LV UF N Z V C = 0 0 0 0 0 0 1 

After Instruction: 

AR5 = 809804h 
IRO = 4h 
R5 = OC7h = 199 
RO = 32h = 50 
Data at 809800h = OFAh = 250 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-174 

SUBC src, dst 

If (dst- src;;::'O): 
(dst- src« 1) OR 1 -? dst 
Else: 
dst« 1 -? dst 

src general addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, a ~ n ~ 27) 

31 2423 

I ii Iii iii I 
000101110G 

16 15 87 
i i 

src 

The srcoperand is subtracted from the dstoperand. The dstoperand is loaded 
with a value dependent upon the resultofthe subtraction. If (dst-src) is greater 
than or equal to zero, then (dst- src) is left-shifted one bit, the least significant 
bit is set to 1 , and the result is loaded into the dst register. If (dst - src) is less 
than zero, dstis left-shifte-d one bit and loaded into the dstregister. The dstand 
src operands are assumed to be unsigned integers. 

SUBC may be used to perform a single step of a multibit integer division. See 
subsection 11.3.4 for a detailed description. 

LUF 
LV 
UF 
N 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
I 
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Subtract Integer Conditionally SUBC 
•..• :.: ............. :.:.:.:.: ... :.:.:; .. : ... :::.:;:::::;:.:;:::::::::::::;:::;: 

Example 1 

Example 2 

SUBC @98C5h,Rl 

Before Instruction: 

DP = BOh 
R1 = 04F6h = 1270 
Data at B098C5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = BOh 
R1 = OC9h = 201 
Data at B09BC5h = 492h = 1170 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBC 3000,RO (3000 = OBB8h) 

Before Instruction: 

RO = 07DOh = 2000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

RO = OFAOh = 4000 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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SUBF3 Subtract Floating-Point, 3-0perand 
~; ... ;.:.:.:-:~.;~~~y,;.;".",:.::;~.: .. ~~::-.:::::;:-.. /.-:::::-.:;:,=::::::::::;:::::::::::;:;::::y.;:::;:;:~;:;:::::~::;.::;o •••• ; •• :;o ... :;:;.;.;.;v;: ............ ;o .. ;o;.;~ •••• ;.;.; ••••• ;o;o;o;o;.;.;o;o.:: ••• ; ............. ;o;o::-:; ..... ;.;o •••• ; ............. ; ..... ;.:.;::~ ... -:;0;.: ..... ;.;.;.;0 •• ;.;0;0;.;.:.:.:.;.;0;0;.;.;.;.;.;.;.;.;0;.;0;0;.; ...... »:-;0;0;.;0;.;.;.;.;0;.:0;.:.;.;.;0;.;0;.;.;0;.;.;.;.;.; ••• ; •• 0;.;.;0;.;.; ... ;.;0;.'; ••• ;0;.: ... ;-; .. -.;000:-;.; ... ;0; ..... :0;.;:;:;0;.: ... :.;.;.::;.;o; ... ;o;.:.;:;o;.:.:.:o;.;.;:~~o;:::;::::or.:~O;': ... ;:::;y.:;y.;:,,:::::;:~/,.(o:> 

Example 1 

Example 2 

10-178 

SUBF3 *ARO--(IRO),*AR1,R4 

Before Instruction: 

ARO = 809888h 
IRO = 80h 
AR1 = 809851 h 
R4 = Oh 
Data at 809888h = 70C8000h = 1.4050e + 02 
Data at 809851 h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

ARO = 809808h 
IRO = 80h 
AR1 = 809851 h 
R4 = 51 DOOOOOOh = 3.9250e + 01 
Data at 809888h = 70C8000h = 1.4050e + 02 
Data at 809851 h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

SUBF3 R7,RO,R6 

Before Instruction: 

R7 = 57B400000h = 6.281250e + 01 
RO = 34C200000h = 1.27578125e + 01 
R6 = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 57B400000h = 6.281250e + 01 
RO = 34C200000h = 1.27578125e + 01 
R6=587C80000h= - 5.00546875e + 01 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

31 

SUBF3 src1, src2, dst1 
II STF src3, dst2 

src2- src1 -4 dst1 
II src3 -4 dst2 

src1 register (Rn1, 0 ::; n1 ::; 7) 
src2 indirect (disp = 0,1, IRO, IR1) 
dst1 register (Rn2, 0 ::; n2 ::; 7) 
src3 register (Rn3, 0 ::; n3 ::; 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

2423 1615 87 0 

I i I Iii i 

I 
i i 

I 
i i i i 

I 
i i i 

I 
i i i i 

I dst1 src1 src3 dst2 src2 ,11,1,0101 

A floating-point subtraction and a floating-point store are performed in parallel. 
All registers are read at the beginning and loaded at the end of the execute 
cycle. This means that if one of the parallel operations (STF) reads from a reg­
ister and the operation being performed in parallel (SUBF3) writes to the same 
register, then STF accepts as input the contents of the register before it is modi­
fied by the SUBF3. 

If src3 and dst1 point to the same location, src3 is read before the write to dst1. 

These condition flags are modified only if the destination register is R7 - RO, 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if an floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise, 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example 

10-180 

SUBF3 Rl,*-AR4(IR1),RO 
II STF R7,*+AR5(IRO) 

Before Instruction: 

R1 = 057B400000h = 6.28125e + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO = Oh 
R7 = 0733COOOOOh = 1.79750e + 02 
AR5 = 809850h 
IRO = 10h 
Data at 8098BOh = 70C8000h = 1.4050e + 02 
Data at 809860h = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = 057B400000h = 6.28125e + 01 
AR4 = 8098B8h 
IR1 = 8h 
RO = 061 B600000h = 7.768750e + 01 
R7 = 0733COOOOOh = 1.79750e + 02 
AR5 = 809850h 
IRO = 10h 
Data at 8098BOh = 70C8000h = 1.4050e + 02 
Data at 809860h = 733COOOh = 1.79750e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bfts 

Mode Bit 

10-182 

SUBI3 src2, src1, dst 

src 1 - src2 ~ dst 

src1 three-operand addressing modes (T): 
o 0 register (Rn1, O·~ n1 ~ 27) 
o 1 indirect (disp = 0,1, IRO, IR1) 
1 0 register (Rn1, 0 :::;; n1 ~ 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
o 0 register (Rn2, 0 ~ n2 ~ 27) ° 1 register (Rn2, 0 ~ n2 ~ 27) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 16 15 87 0 I " I II I I I I I I I 

I 
I I I 

I 
I I I I 

I T dst src1 src2 .001,001110, 

The difference of the src1 operand minus the src2 operand is loaded into the 
dstregister. The src1, src2, and dstoperands are assumed to be signed inte­
gers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF O. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, ° otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 
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Example 1 

Example 2 

SUBI3 R7,R2,RO 

Before Instruction: 

R2 = 0866h = 2150 
R7 = 0834h = 2100 
RO = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R2 = 0866h = 2150 
R7 = 0834h = 2100 
RO = 032h = 50 
LUF LV UF N Z V C = 0 0 0 1 0 0 0 

SUBI3 *-AR2(1),R4,R3 

Before Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = Oh 
Data at 80985Dh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0' 

After Instruction: 

AR2 = 80985Eh 
R4 = 0226h = 550 
R3 = 014Ah = 330 
Data at 80985Dh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

10-184 

SUBI3 src1, src2, dst1 
II STI src3, dst2 

src2 - src1 ~ dst1 
II src3 ~ dst2 

src1 register (Rn1, ° ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, ° ~ n2 ~ 7) 
src3 register (Rn3, ° ~ n3 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

i i 

src1 

16 15 

iii i 
src3 

o 
i i 

I I i i 

dst2 src2 

An integer subtraction and an integer store are performed in parallel. All regis­
ters are read at the beginning and loaded at the end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (SUBI3) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
SUBI3. 

If src3 and dst1 point to the same location, src3 is read before the write to dst1. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF 0. 
N 1 if a negative result is generated, ° otherwise. 
Z 1 if a zero result is generated, ° otherwise. 
V 1 if an integer overflow occurs, ° otherwise .. 
C 1 if a borrow occurs, ° otherwise. 

OVM Operation is affected by OVM bit value. 
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Example SUBI3 R7,*+AR2(IRO),Rl 
I I STI R3,*++AR7 

Before Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = Oh 
R3 = 35h = 53 
AR7 = 80983Bh 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R7 = 14h = 20 
AR2 = 80982Fh 
IRO = 10h 
R1 = OC8h = 200 
R3 = 35h = 53 
AR7 = 80983Ch 
Data at 80983Fh = ODCh = 220 
Data at 80983Ch = 35h = 53 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Subtract Reverse Floating-Point SUBRF 
~;:'::;:::;:;:;:;:;:;:;:;:::;:;:;:;:;:::;:;:;:;:::::;:;:;:;:;:;:::::::::::::;:::;:::;:::;:::;:;:::::::::::::.:;:.:.:.:;.;:;:;.;:;:;:::;:::::::::;:;:;:::;.::;:;:: .. :::::; •• :::::;.;:::::::::::::::::::;:::::::.:;:;.::::.:;.;:::::.::;:;.;:; ••• ::::.:;:~;.;.;.::;:;.;.;::.; ••••• ;:;:;.; ••••••• ;.;.;.; •• :; ••••• ;.; ... ;.;::.; ..... ;:;.; ••• ; ••• ; •••• 0;0; ••• ; ... ;:;.; ......... ;.; ...............................• • ... ·.·.·.·.·.·.·.·.:.·.·.·.· ........ N.·.·.·.·.· ..... · ..... ·.· ......... · ............................................................. : ..... !>.;: ..... : ••• :;:.:.:.:;:;:;~::.::::;:;:;:;:;:;:.:::;:;:::;:::;:;:;:;:;::: 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

SUBRF sre, dst 

sre - dst ~ dst 

sregeneral addressing modes (G): 
o 0 register (Rn, 0 ~ n ~ 7) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 7) 

1

3 \ 1 1 1 1 1 1 24123

1 
000110010 G src 

87 
1 1 

The difference of the sreoperand minus the dstoperand is loaded into the dst 
register.The dstand sreoperands are assumed to be floating-point numbers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF 1 if a floating-point underflow occurs, unchanged otherwise. 
LV 1 if a floating-point overflow occurs, unchanged otherwise. 
UF 1 if a floating-point underflow occurs, 0 otherwise. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if a floating-point overflow occurs, 0 otherwise. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

SUBRF @9905h,R5 

Before Instruction: 

DP = 80h 
RS = OS7B400000h = 6.2812S0e + 01 
Data at 80990Sh = 733COOOh = 1 .797S0e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

DP = 80h 
RS = 0669EOOOOOh = 1.16937S00e + 02 
Data at 80990Sh = 733COOOh = 1.797S0e + 02 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

SUBRI src, dst 

src - dst ~ dst 

srcgeneral addressing modes (G): 
o 0 register (Rn, 0 =s; n =s; 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 =s; n =s; 27) 

(1, , 1 ' , I ,24,23

1 

87 16 15 
I I 

000110011G src 

The difference of the src operand minus the dst operand is loaded into the dst 
register. The dst and src operands are assumed to be signed integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV 1 if an integer overflow occurs, unchanged otherwise. 
UF o. 
N 1 if a negative result is generated, 0 otherwise. 
Z 1 if a zero result is generated, 0 otherwise. 
V 1 if an integer overflow occurs, 0 otherwise. 
C 1 if a borrow occurs, 0 otherwise. 

OVM Operation is affected by OVM bit value. 

SUBRI *AR5++(IRO),R3 

Before Instruction: 

AR5 = 809900h 
IRO = 8h 
R3 = ODCh = 220 
Data at 809900h = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809908h 
IRO = 8h 
R3= 014Ah = 330 
Data at 809900h = 226h = 550 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

SWI 

Performs an emulation interrupt 

None 

31 24 23 16 15 8 7 0 I 0' 1 ' l' 0 ' 0' 1 '11 0' 0' 0' 0 I 0' 0' 0' 0 ' 0' 0' 0' 0' 0' 0' 0' ri' 0' 0' 0' 0' 0' 0' 0' 0 ' 01 

The SWI instruction performs an emulator interrupt. This is a reseNed instruc­
tion and should not be used in normal programming. 

4 

LUF 
LV 
UF 
N. 
Z 
V 
C 

Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 
Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example TRAPZ 16 

Before Instruction: 

PC = 123h 
SP = 809870h 
ST=Oh 
Trap Vector 16 = 1 Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

PC = 10h 
SP = 809871 h 
Data at 809871 h = 124h 
ST= Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

10-191 



TSTB Test Bit Fields 

Syntax TSTB src, dst 

Operation dst AN D src 

Operands src general addressing modes (G): 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

10-192 

o 0 register (Rn, 0 ~ n ~ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 ~ n ~ 27) 

31 2423 1615 87 o 
i i 

I I src 

The bitwise logical-AND of the dst and src operands is formed, but the result 
is not loaded in any register. This allows for nondestructive compares. The dst 
and src operands are assumed to be unsigned integers. 

These condition flags are modified for all destination registers (R27 - RO). 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

TSTB *-AR4(1),R5 

Before Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR4 = 8099C5h 
R5 = 898h = 2200 
Data at 8099C4h = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 
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Syntax 

Operation 

Operation 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

TSTB3 src2, src 1 

src1 AND src2 

src1 three-operand addressing modes (T): ° ° register (Rn1, 0::; n1 ::; 27) ° 1 indirect (disp = 0, 1, IRO, IR1) 
1 ° register (Rn1, ° ::; n1 ::; 27) 
1 1 indirect (disp = 0,1, IRO, IR1) 

src2 three-operand addressing modes (T): ° ° register (Rn2, ° ::; n2 ::; 27) 
o 1 register (Rn2, ° ::; n2 ::; 127) 
1 ° indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

i i 

src1 

87 

I' 
i i 

src2 

a , I 
The bitwise logical-AND between the src1 and src2 operands is formed, but 
is not loaded into any register. This allows for nondestructive compares. The 
src1 and src2 operands are assumed to be unsigned integers. Although this 
instruction has only two operands, it is designated as a three operand instruc­
tion because operands are specified in the three-operand format. 

These condition flags are modified for all destination registers (R27 - RO). 
LUF Unaffected. 
LV Unaffected. 
UF 0. 
N MSB of the output. 
Z 1 if a zero output is generated, ° otherwise. 
V 0. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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TSTB3 Test Bit Fields, 3-0perands 
;::~;=;:;::=;:.:;~:~;:;:::;\:;:.:;.~::;:;:::;:;:;:::::::::::::::::;:::::::::::;:::::::~::::::::::::::::::::::::;:::::;:::::;:::::::::.:.:.:.:.:;:.:.:::~.:~.:.:.:.:.:.:.' ••• :.:.:.~~.:.:.: •••• ~.:::;:::::;:;:::;:::;:::;:::::~::~::::::::::::':::'.:;'.::::::::::::'::::::::::.:::;';';0;::::,,:;\.;:::;.;:;.::;.;:::::::::::.,;.;:.::::.;: •• ;.;:;';~'::::::::::::;~%':';';';';';':::::':'::;O;';';';O;':':';'.';.'O';.;O •••• ; ••• ; ••• ; •••• \.;.:::::.;.»:.: ... ;.;.;:;. .• ;O;.;.;.;.;.;.;.,:.o!::;.;·;·;·:::~:·:~::·:·;·;~·;y;·;:.·:·::;::::::~;:::;9;:::;~:~:::;:;:;:;9::~::::"~"!;:::::;:; 

Example 1 

Example 2 

TSTB3 *AR5--(IRO),*+ARO(1) 

Before Instruction: 

AR5 = 809885h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR5 = 809805h 
IRO = 80h 
ARO = 80992Ch 
Data at 809885h = 898h = 2200 
Data at 80992Dh = 767h = 1895 
LUF LV UF N Z V C = 0 0 0 0 1 0 0 

TSTB3 R4, *AR6--(IRO) 

Before Instruction: 

R4 = OFBC4h 
AR6 = 8099F8h 
IRO = 8h 
Data at 8099F8h = 1568h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R4 = OFBC4h 
AR6 = 8099FOh 
IRO = 8h 
Data at 8099F8h = 1568h 
LUF . LV UF N Z V C = 0 0 0 0 0 0 0 
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Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 

Example 

Bitwise Exclusive-OR XOR 

XOR src, dst 

dst XOR src -7 dst 

src general addressing modes (G): 
o 0 register (Rn, 0 $ n $ 27) 
o 1 direct 
1 0 indirect 
1 1 immediate 

dst register (Rn, 0 $ n $ 27) 

,
31 • • , • • • • 24.23, 

000110101 G src 

87 
•• 

The bitwise exclusive-OR of the srcand dstoperands is loaded into the dstreg­
ister. The dst and src operands are assumed to be unsigned integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 

XOR Rl,R2 

Before Instruction: 

R1 = OFFA32h 
R2 = OFF5C1h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R1 = OFF412h 
R2 = OOOFF3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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XOR3 Bitwise Exclusive-OR. 3-0perand 
;:·;-;:;:,;~~Y,.:v.;:.;:;!.:;=~~Q.;:::t~;::~~::::r.::~:~::-:;:~~:~::~:;m:;:::.Y~~06~M~""~:M:>·;·;::Y>%~":.·;:;:::»';y;"""~""'N. ........................... ;-;«:"o:;:::; .. ::~o:: .. v.:X«""l:;·;"::O~:;::?:o:;O:::::X"-,:·;::·;~~x·:""":;,;"",,o; ........ -:-; .. o:; .. ·;«-:::*> .. ·.·;«<;·;o;.;·; ... :·; .. ·:·x .. ·;·; .... ·;« .. ·,..;y;·; .. " .. o»x ... ~·;·;.o· • .;y;·; .. «·:::·;.;:; .... :; .. :;·;.»; .... ;:;:~ .. :::."!: .. ::~ ... :;:::::;~.::t::m.::::::t:::~:::::~ 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 
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XOR3 src2, src1, dst 

src1 XOR src2 -7 dst 

src1 three-operand addressing modes (T): 
00 register (Rn1, 0::; n1 ::; 27) 
o 1 indirect (disp = 0, 1, IRO, IR1) 
1 0 register (Rn1, 0 ::; n1 ::; 27) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

src2 three-operand addressing modes (T): 
00 register (Rn2, 0::; n2 ::; 27) 
o 1 register (Rn2, 0::; n2 ::; 27) 
1 0 indirect (disp = 0, 1, IRO, IR1) 
1 1 indirect (disp = 0, 1, IRO, IR1) 

dst register (Rn, ° ::; n :S; 27) 

(1, , 1 ' , , , 24,23
1 

1615 
1 ,I 1 

src1 001010000 T 

87 a 
iii , I I' src2 

The bitwise exclusive-OR between the src1 and src2 operands is loaded into 
the dstregister. The src1, src2, and dstoperands are assumed to be unsigned 
integers. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C, Unaffected. 

OVM Operation is not affected by OVM bit value. 
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· . Bitwise Exclusive-OR, 3-0perand XOR3 
::;::::y.".:;:;:;:;:~y.;:;:;:%;:;:;:;:::;:;:;::::,:;:::;:;:::".:;:~.;:;:::".:;:;~;:;~.$:;:;::f.~.:;.~.:;$:;:;:;:;':;:;f.%:;:;:;'~l.~.:;:;:;~:;:;':;:;.~:::;:;:;:::;.:;:::::::;:::::::::;:;:;:::;:;:::::::::::;:::::::;~;.;:::;:;::~::::;:;:;:::::::~:~:::::::;.::::;:::;:;::~.::::::::;.:::::::9';:::;:::::::;:;:::;:;:::;:;:::::::;:::::;:::;::::::.::::::%:;:::::::;.;.: .. : ................................. : ••• ~~· ... -:.:~o! ... »!ow.!o·.·.·.!'o~.: ... ·6. .. !>'.:~·;:.-... :~ ... :;: .. ~::~ .. ~:~:;~:;,.;:<;:;:::;:;:::>:>:::::;:O::.:;:::::::;:;:;z:;:::;:;:;:i::.:;:;:::::;,.;:;: 

Example 1 

Example 2 

XOR3 *AR3++(IRO),R7,R4 

Before Instruction: 

AR3 = 809800h 
IRO = 10h 
R7 = OFFFFh 
R4 =Oh 
Data at 809800h = 5AC3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR3 = 809810h 
IRO = 10h 
R7 = OFFFFh 
R4 = OA53Ch 
Data at 809800h = 5AC3h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

XOR3 R5,*-AR1(1),Rl 

Before Instruction: 

R5 = OFFA32h 
AR1 = 809826h 
R1 = Oh 
Data at 809825h = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

R5 = OFFA32h 
AR1 = 809826h 
R1 = OOOF33h 
Data at 809825h = OFF5C1 h 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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XOR311STI Parallel XOR3 and STI 
; ••• ; •• ~.: •• ", •••••••• : •• " •••••• " •• -: ••••• :.' ••• "' ••• ":::::;::::0;::::::::::::::::::::::::::::;';:::::.:::.:.: •• ;:.:.: .......... :.-; ......................................................................... : •••• ~ ...... o! ........ : ... ;.; ••• ;.:.;.;.;.;.;.;.;.; ••• ;.;.;.;.;.; ••• ; ••••• ; ... ; ••• ;.;.; ••• ; ••• ; ••••• ;.;.;.;.;.;.; •• ~.;.;.;-; ••• ;.;.; ....... ;.;.;\~.;-;.;.;.;.;.; ••• ,.;.; •• ..;.;.; ••• ;.;.;.; •••••• .; ••• ; ••••• ;.;.; ••••• ;.; ••••••••••••••• ;.; ••••• ;.; ••••••••• ;.;.;.; ... ; ••• ;.; ••••• ;.;.; ••••• ; ••••• ; ••• ;.; ••• ;.;.;.;.;.; ••• ;.;:;.;",;,;,;,;,;,;,;,;,;,;,;,;,;:::;,;,;:;",;:::;,;".;.;.;.;:;::.::;:::;:::::;~:;:o 

Syntax 

Operation 

Operands 

Encoding 

Description 

Cycles 

Status Bits 

Mode Bit 
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XOR3 
II STI 

src2, src1, dst1 
src3, dst2 

src1 XOR src2 --7 dst1 
II src3 --7 dst2 

src1 register (Rn1, 0 ~ n1 ~ 7) 
src2 indirect (disp = 0, 1, IRO, IR1) 
dst1 register (Rn2, ~ n2 ~ 7) 
src3 register (Rn3, ~ n3 ~ 7) 
dst2 indirect (disp = 0, 1, IRO, IR1) 

31 2423 I I I I I I I I I I 
1 1 1 0 1 1 1 dst 

I I 

src1 

16 15 
I I I I 
src3 

87 
I I I 

I' 
I I I 

dst2 src2 

A bitwise exclusive-XOR and an integer store are performed in parallel. All reg­
isters are read atthe beginning and loaded atthe end of the execute cycle. This 
means that if one of the parallel operations (STI) reads from a register and the 
operation being performed in parallel (XOR3) writes to the same register, then 
STI accepts as input the contents of the register before it is modified by the 
XOR3. 

If src2 and dst2 point to the same location, src2 is read before the write to dst2. 

These condition flags are modified only if the destination register is R7 - RO. 
LUF Unaffected. 
LV Unaffected. 
UF o. 
N MSB of the output. 
Z 1 if a zero output is generated, 0 otherwise. 
V O. 
C Unaffected. 

OVM Operation is not affected by OVM bit value. 
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Example XOR3 *AR1++,R3,R3 
II STI R6,*-AR2(IRO) 

Before Instruction: 

AR1'= 80987Eh 
R3 = 8Sh 
R6 = ODCh = 220 
AR2 = 809884h 
IRO = 8h 
Data at 80987Eh = 8Sh 
Data at 8098ACh = Oh 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 

After Instruction: 

AR 1 = 80987Fh 
R3 = Oh . 
R6 = ODCh = 220 
AR2 = 8098B4h 
IRO = 8h 
Data at 80987Eh = 8Sh 
Data at 8098ACh = ODCh = 220 
LUF LV UF N Z V C = 0 0 0 0 0 0 0 
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Software Applications . 

11-2 

• Extended-precision arithmetic 
• IEEE <==> C3x floating-point conversions 

Q Application-Oriented Operations (Section 11.4 on page 11-48) 

• Companding (A-law, Il-Iaw) 
• FIRIIIR filters (fixed and adaptive) 

• Matrix math 

• FFT 
• Lattice filters 

Q Programming Tips (Section 11.5 on page 11-88) 

• C-callable routines 
• Code optimization check list 

For convenience, the code in this section is located on the TI DSP Bulletin 
Board System (BBS) at 713-274-2323. 
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Processor Initialization 

11.1 Processor Initialization 

Before you execute a digital signal processing algorithm, it is necessary to ini­
tialize the processor. Generally, initialization takes place any time the proces­
sor is reset. 

When reset is activated by applying a low level to the RESET input for several 
cycles, the TMS320C3x terminates execution and puts the reset vector (Le., 
the contents of memory location 0) in the program counter. The reset vector 
normally contains the address of the system initialization routine. The hard­
ware reset also initializes various registers and status bits. 

After reset, initialize the processor further by executing instructions that set 
up operational modes, memory pointers, interrupts, and the remaining func­
tions needed to meet system requirements. 

To configure the processor at reset, the following internal functions should be 
initialized: 

Q Memory-mapped registers 

Q Interrupt structure 

Example 11-1 shows coding for initializing the TMS320C3x to the following 
machine state, in addition to the initialization performed during the hardware 
reset (for conditions after hardware reset, see Chapter 12): 

Q All interrupts are enabled. 

Q The overflow mode is disabled. 

Q The data memory page pointer is set to zero. 

Q The internal memory is filled with zeros. 

Note that all constants larger than 16 bits should be placed in memory and ac­
cessed through direct or indirect addressing. 
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Processor Initialization 

Example 1 '1-1. . TMS320C3x Processor Initialization 

* 
* TITL 'PROCESSOR INITIALIZATION EXAMPLE' 
* 

* 

.global 

.global 

.global 

.global 

.global 

.global 

.global 

RESET,INIT,BEGIN 
INTO,INT1,INT2,INT3 
ISRO,ISR1,ISR2,ISR3 
DINT,DMA 
TINTO,TINT1,XINTO,RINTO,XINT1,RINTl 
TIMEO,TIME1,XMTO,RCVO,XMT1,RCVl 
TRAPO,TRAP1,TRAP2,TRPO,TRP1,TRP2 

* PROCESSOR INITIALIZATION FOR THE TMS320C3x. 
* 
* RESET AND INTERRUPT VECTOR SPECIFICATION. THIS 
* ARRANGEMENT ASSUMES THAT DURING LINKING, THE FOLLOWING 
* TEXT SEGMENT WILL BE PLACED TO START AT MEMORY 
* LOCATION O. 

* 

RESET 
* 
INTO 
INTl 
INT2 
INT3 
* 

.sect "init" 

.word INIT 

.word ISRO 

.word ISRl 

.word ISR2 

.word ISR3 

Named section 
RS- load address INIT to PC 

INTO­
INT1-
INT2-
INT3-

loads address ISRO to PC 
loads address ISRl to PC 
loads address ISR2 to PC 
loads address ISR3 to PC 

XINTO 
RINTO 
XINTl 
RINTl 
TINTO 
TINTl 
DINT 

.word XMTO 

.word RCVO 

.word XMTl 

.word RCVl 
· word TIMEO 
.word TIMEl 
.word DMA 

Serial port 0 transmit interrupt processing 
Serial port 0 receive interrupt processing 
Serial port 1 transmit interrupt processing 
Serial port 1 receive interrupt processing 
Timer 0 interrupt processing 

TRAP 0 
TRAP 1 
TRAP2 

* 

· space 20 
.word TRPO 
.word TRPl 
.word TRP2 
· space 29 

Timer 1 interrupt processing 
DMA interrupt processing 
Reserved space 
Trap 0 vector processing begins 
Trap 1 vector processing begins 
Trap 2 vector processing begins 
Leave space for the other 29 traps 

*IN THIS SECTION, CONSTANTS THAT CANNOT BE REPRESENTED 
*IN THE SHORT FORMAT ARE INITIALIZED. THE NUMBERS IN PARENTHESIS 
*AT THE END OF THE COMMENTS REPRESENT THE OFFSET OF A 
*PARTICULAR CONTROL REGISTER FROM 
*CTRL (808000H) 

.data 
MASK .word 
BLKO .word 
BLKl .word 
STCK .word 
CTRL .word 
DMACTL .word 
TIMOCTL .word 
TIM1CTL .word 
SERGLOBO .word 
SERPRTXO .word 
SERPRTRO .word 
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OFFFFFFFFH 
0809800H 
0809COOH 
0809FOOH 
0808000H 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 

Beginning address of RAM block 0 
Beginning address of RAM block 1 
Beginning of stack 
Pointer for peripheral-bus memory map 
Initialization for DMA control (0) 
Initialization of timer 0 control (32) 
Initialization of timer 1 control (48) 
Init of serial 0 glbl control (64) 
Init of serial 0 :·:mt port control (66) 
Init of serial 0 rcv port control (67) 

Software Applications 



Processor Initialization 

SERTIMO 
SERGLOB1 
SERPRTX1 
SERPRTR1 
SERTIM1 
PARINT 
IOINT 
* 

* 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.text 

OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 
OOOOOOOH 

Init of serial 0 timer control (68) 
Init of serial 1 glbl control (80) 
Init of serial 1 xmt port control (82) 
Init of serial 1 rcv port control (83) 
Init of serial 1 timer contro~ (84) 
Init parallel interface control (100) 
Init I/O interface control (96) 

* THE ADDRESS AT MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE 
* FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET 
* IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED TO ZERO: 
* 
* ST CPU STATUS REGISTER 
* IE CPU/DMA INTERRUPT ENABLE FLAGS 
* IF CPU INTERRUPT FLAGS 
* IOF-- I/O FLAGS 
* 
* THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT: 
* BITS: 31-14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
* FUNCTION: RESRV GIE CC CE CF RESRV RM OVM LUF LV UF N Z V C 
* 
INIT Point the DP register to page 0 LDP 

LDI 
LDI 

O,DP 
1800H,ST 
@MASK,IE 

Clear and enable cache, and disable OVM 
Unmask all interrupts 

* 
INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT ZERO 

* 
LDI @BLKO,ARO ARO points to block 0 
LDI @BLK1,AR1 AR1 points to block 1 
LDF O.O,RO Zero register RO 
RPTS 1023 Repeat 1024 times 
STF RO, *ARO++ (1) Zero out location in RAM block 

II STF RO,*AR1++(1) zero out location in RAM block 
* 
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-
* DEPENDENT PART OF THE SYSTEM (BOTH ON- AND OFF-CHIP SHOULD 
* NOW BE INITIALIZED. 
* 
* FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE, 

o and 
1. 

* EVERYTHING IS INITIALIZED TO ZERO SINCE THE ACTUAL INITIALIZATION IS 
* APPLICATION DEPENDENT." 
* 

* 
LDI 

LDI 
STI 

@CTRL,ARO 

@DMACTL,RO 
RO, *+ARO (0) 

LOAD in ARO the pointer to control 
registers 

Init DMA control 
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LDI @TIMOCTL,RO 
STI RO,*+ARO(32) Init timer ° control 
LDI @TIMlCTL,RO 
STI RO, *+ARO (48) Init timer 1 control 
LDI @SERGLOBO,RO 
STI RO, *+ARO (64) Init serial ° global control 
LDI @SERPRTXO,RO 
STI RO, *+ARO (66) Init serial ° :·:mt control 
LDI @SERPRTRO,RO 
STI RO,*+ARO(67) Init serial ° rcv control 
LDI @SERTIMO,RO 
STI RO, *+ARO (68) Init serial 0 timer control 
LDI @SERGLOBl,RO 
STI RO,*+ARO(80) Init serial 1 global control 
LDI @SERPRTXl,RO 
STI RO, *+ARO (82) Init serial 1 :·:mt control 
LDI @SERPRTRl,RO 
STI RO,*+ARO(83) Init serial 1 rcv control 
LDI @SERTIM1,RO 
STI RO,*+ARO(84) Init serial 1 timer control 
LDI @PARINT,RO 
STI RO, *+ARO (100) Init parallel interface control (C30 only) 
LDI @IOINT,RO 
STI RO,*+ARO(96) Init I/O interface control 

* 
LDI @STCK,SP Initialize the stacy. pointer 
OR 2000H,ST Global interrupt enable 

* 
BR BEGIN Branch to the beginning of application. 

.end 
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Program Control 
:-;:::;:::;:::::;:;::::::::::::::-;::-;o;:;:'t.::;:::".(,%:::::::::::::o::==:;:::;...:=;::~:::~::!:-.;:::;:::::::::::::::::::::::::::::::::::::::::::;:;:;:::::::;::::::::%'::'':::::::::::(::;*::::~:'::(::(:::-'::::::"'':::::::y.(::::;:(;::::::::::::~.::::.::;:::::::;:;:;:(::::;:::::::~:::;::.;.::: .. ::.:.:.:.:.:.:::::.;.;.(::;.:.:.;:;.;::::y/.:.;:;.;.;.::;~...::;,~:::-:::;::·::::::::;.(;:;.;o:;o:;:;.;:::x:.~::;:::;o:;: .... :;·::;:::;.:::·::;';:::::"t.;.~.:::;:;.:.:.;. .. ~:;.-.. ;.~;:::;. .. ~>.,;:::~;::::::::,::::::;:;:;:::::::;:::::&;:;:>.;~:::-.. ~:==-//. ... ;~;*)!;:~~:;-; 

Example 11-2. Subroutine Call (Dot Product) 
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* * TITLE SUBROUTINE CALL (DOT PRODUCT) 
* 
* * MAIN ROUTINE THAT CALLS THE SUBROUTINE 'DOT'TO'COMPUTE THE 
* DOT PRODUCT OF TWO VECTORS. 
* 
* 
* 
* AROpoints to vector a 

ARl points to vector b * 
* 

LDI 
LDI 
LDI 

@blkO,ARO 
@blkl,ARl 
N,RC RC contains the number of elements 

* CALL DOT 
* 
* 
* 
* * SUBROUTINE DOT 
* 
* 
* EQUATION: d = a(O) * b(O) + a(l) * b(l) + ... + a(N-l) * b(N-l) 
* * THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER RO. N MUST 
* BE GREATER THAN OR EQUAL TO 2. 
* 
* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* ARO I ADDRESS OF a (0) 
* ARl I ADDRESS OF b (0) 

, * RC I LENGTH OF VECTORS (N) 

* 
* 
* 
* 
* 
* 
* 

* 
DOT 

REGISTERS USED AS INPUT: ARO, AR1, RC 
REGISTER MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

.global DOT 

PUSH ST 
PUSH R2 
PUSHF R2 
PUSH ARO 
PUSH ARl 
PUSH RC 

Save status register 
Use the stack to save R2's 
lower 32 and upper 32 bits 
Save ARO 
Save ARl 
Save RC 
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* 
MPYF3 *ARO,*AR1,RO 
LDF O.O,R2 
SUBI 2, RC 

* 

Initialize RO: 
a(O) * b(O) -> RO 
Initialize R2. 
Set RC = N-2 

Prl"lt'1rt:J.rTI Control 

* DOT PRODUCT (1 <= i < N) 
* 

RPTS RC ; Setup the repeat single. 
MPYF3 *++ARO(1),*++AR1(1),RO; a(i) * b(i) -> RO 

I I ADDF3 RO, R2, R2 a (i-l) *b (i-l) + R2 -> R2 
* 

ADDF3 RO, R2, RO 
* 
* RETURN SEQUENCE 
* 

POP RC 
POP AR1 
POP ARO 
POPF R2 
POP R2 
POP ST 
RETS 

* 
* end 
* 

.end 

a(N-l)*b(N-l) + R2 -> RO 

Restore RC 
Restore AR1 
Restore ARO 
Restore top 32 bits of R2 
Restore bottom 32 bits of R2 
Restore ST 
Return 

Software Stack 

The TMS320C3x has a software stack whose location is determined by the 
contents of the stack pointer register SP. The stack pointer increments from 
low to high values, and provisions should be made to accommodate the antici­
pated storage requirements. The stack can be used not only during the subrou­
tine CALL and RETS, but also inside the subroutine as a place of temporary 
storage of the registers as shown in Example 11-2. SP always points to the 
last value pushed on the stack. 

The CALL and CALLcond instructions push the value of the program counter 
onto the stack, as do the interrupt routines. Then, RETScond and RETlcond 
pop the stack and place the value in the program counter. The integer value 
of any register can also be pushed onto and popped off the stack using the 
PUSH and POP instructions. There are two additional instructions, PUSHF 
and POPF, for floating point numbers. These instructions can be used to pop 
and push floating point numbers to registers R7 - RO. This feature is very 
useful for saving all 40 bits of the extended precision registers (see 
Example 11-2). Using PUSH and PUSHF onthe same register saves the low­
er 32 and upper 32 bits. PUSH saves the lower 32; PUSHF, the upper 32. To 
recover this extended precision number, a POPF can be done, followed by 
POP. It is important to do the integer and floating-point PUSH and POP in the 
above order. POPF forces the least significant eight bits of the extended-preci­
sion registers to zero, and therefore must be performed first. 
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The stack pointer (SP) can be read as well as written to. Multiple stacks for 
different program segments may be easily created. SP is not initialized by the 
hardware during reset. It is therefore important to remember to initialize its val­
ue so that SP points to a predetermined memory location. This avoids the prob­
lem of SP attempting to write into ROM or over other useful data. 

11.2.3 Interrupt Service Routines 

Interrupts on the TMS320C3x are prioritized and vectored. When an interrupt 
occurs, the corresponding flag is set in the Interrupt Flag Register IF. If the cor­
responding bit in the Interrupt Enable Register IE is set, and interrupts are en­
abled by having the GIE bit in the status register set to 1, interrupt processing 
begins. You can also write to the Interrupt flag register, allowing you to force 
an interrupt by software, or to clear interrupts without processing them. 

The Interrupt Flag Register IF can be read, and action can be taken, depending 
on whether the interrupt has occurred. This is true even when the interrupt is 
disabled. This can be useful when an interrupt-driven interface is not implem­
ented. Example 11-3 shows the case where a subroutine is called when inter­
rupt 1 has not occurred. 

Example 11-3. Use of Interrupts for Software Polling 

11-10 

* TITLE INTERRUPT POLLING 

TSTB 2,IF 
CALLZ SUBROUTINE 

Test if interrupt 1 has occurred 
If not, call subroutine 

When interrupt processing begins, the program counter is pushed on the stack, 
and the interrupt vector is loaded in the program counter. Interrupts are then 
disabled by setting the GIE=O, and the program continues.from the address 
loaded in the program counter. Since all interrupts are disabled, interrupt pro­
cessing may proceed without further interruption, unless the interrupt seNice 
routine re-enables interrupts. 

Except for very simple interrupt seNice routines, it is important to assure that 
the processor context is saved during execution of this routine. The context 
must be saved before you execute the routine itself, and restored after the rou­
tine is finished. The procedure is called context switching. Context switching 
is also useful for subroutine calls, especially when extensive use is made of 
the auxiliary and the extended precision registers. Code examples of context 
switching and an interrupt seNice routine are provided in this section. 
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11.2.3.1 Context Switching 

Context switching is commonly required when processing a subroutine call or 
an interrupt. It may be quite extensive or simple, depending on system require­
ments. On the TMS320C3x, the program counter is automatically pushed onto 
the stack. Important information in other TMS320C3x registers, such as the 
status, auxiliary, or extended-precision registers, must be saved by special 
commands. In order to preserve the state of the status register, it should be 
pushed first and popped last. This avoids the effects on the status register that 
result when the extended precision registers are restored. 

Example 11-4 and Example 11-5 show saving and restoring of the 
TMS320C3x state. In both examples, the stack is used for saving the registers, 
and it expands towards higher addresses. If you don't want to use the stack 
pointed at by SP, you can create a separate stack by using an auxiliary register 
as the stack pointer. Registers saved in these examples: 

Q Extended-precision registers R7 through RO, 

Q Auxiliary registers AR7 through ARO, 

Q Data-page pointer DP, 

Q Index registers IRO and IR1, 

Q Block-size register BK, 

Q Status register ST, 

Q Interrupt-related registers IE and IF, 

Q 1/0 flag 10F, 

Q Repeat-related registers RS, RE, and RC. 
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Example 11-4. Context-Save for the TMS320C3x 
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* TITLE CONTEXT-SAVE FOR THE TMS320C3:-: 
* 
* 

.global SAVE 
* * CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT. 
* 
SAVE: 

PUSH ST ; Save status register 
* * SAVE THE EXTENDED PRECISION REGISTERS 
* 

* 

PUSH RO 
PUSHF RO 
PUSH Rl 
PUSHF Rl 
PUSH R2 
PUSHF R2 
PUSH R3 
PUSHF R3 
PUSH R4 
PUSHF R4 
PUSH R5 
PUSHF R5 
PUSH R6 
PUSHF R6 
PUSH R7 
PUSHF R7 

Save the lower 32 bits of RO 
and the upper 32 bits 

Save the lower 32 bits of Rl 
and the upper 32 bits 

Save the lower 32 bits of R2 
and the upper 32 bits 

Save the lower 32 bits of R3 
and the upper 32 bits 

Save the lower 32 bits of R4 
and the upper 32 bits 

Save the lower 32 bits of R5 
and the upper 32 bits 

Save the lower 32 bits of R6 
and the upper 32 bits 

Save the lower 32 bits of R7 
and the upper 32 bits 

* SAVE THE AUXILIARY REGISTERS 
* 

* 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

ARO 
ARl 
AR2 
AR3 
AR4 
AR5 
AR6 
AR7 

Save ARO 
Save ARl 
Save AR2 
Save AR3 
Save AR4 
Save AR5 
Save AR6 
Save AR7 

* SAVE THE REST REGISTERS FROM THE REGISTER FILE 
* 

* 

PUSH DP 
PUSH IRO 
PUSH IRl 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

BK 
IE 
IF 
IOF 
RS 
RE 
RC 

* SAVE IS COMPLETE 
* 

Save data page pointer 
Save index reqister IRO 
Save index re~ister IRl 
Save block-size register 
Save interrupt enable register 
Save interrupt flag register 
Save I/O flag register 
Save repeat start address 
Save repeat end address 
Save repeat counter 
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Example 11-5. Context-Restore for the TMS320C3x 
* 
* TITLE CONTEXT-RESTORE FOR THE TMS320C3x 
* 

.global RESTR 
* 
* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT. 
* 
RESTR: 
* * RESTORE THE REST REGISTERS FROM THE REGISTER FILE 

* 
POP RC Restore repeat counter 
POP RE Restore repeat end address 
POP RS Restore repeat start address 
POP IOF Restore I/O flag register 
POP IF Restore interrupt flag register 
POP IE Restore interrupt enable register 
POP BK Restore block-size register 
POP IRl Restore index register IRl 
POP IRO Restore index register IRO 
POP DP Restore data page pointer 

* 
* RESTORE THE AUXILIARY REGISTERS 
* 

POP AR7 Restore AR7 
POP AR6 Restore AR6 
POP AR5 Restore AR5 
POP AR4 Restore AR4 
POP AR3 Restore AR3 
POP AR2 Restore AR2 
POP ARl Restore ARl 
POP ARO Restore ARO 

* 
* RESTORE THE·EXTENDED PRECISION REGISTERS 
* 

POPF R7 Restore the upper 32 bits and 
POP R7 the lower 32 bits of R7 
POPF R6 Restore the upper 32 bits and 
POP R6 the lower 32 bits of R6 
POPF R5 Restore the upper 32 bits and 
POP R5 the lower 32 bits of R5 
POPF R4 Restore the upper 32 bits and 
POP R4 the lower 32 bits of R4 
POPF R3 Restore the upper 32 bits and 
POP R3 the lower 32 bits ofR3 
POPF R2 Restore the upper 32 bits and 
POP R2 the lower 32 bits of R2 
POPF Rl Restore the upper 32 bits and 
POP Rl the lower 32 bits of Rl 
POPF RO Restore the upper 32 bits and 
POP RO the lower 32 bits of RO 
POP ST Restore status register 

* 
* RESTORE IS COMPLETE 

* 
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11.2.3.2 Interrupt Priority 

Interrupts on the TMS320C3x are automatically prioritized. This allows inter­
rupts that occur simultaneously to be serviced in a predefined order. Infre­
quent, but lengthy, interrupt service routines may need to be interrupted by 
more frequently occurring interrupts. In Example 11-6, the interrupt service 
routine for INT2 temporarily modifies the interrupt enable register (IE) to permit 
interrupt processing when an interrupt to INTO (but no other interrupt) occurs. 
When the routine has finished processing, the IE register is restored to its origi­
nal state. Notice that the RETlcond instruction not only pops the next program 
counter address from the stack, but also sets the GIE bit of the status register. 
This enables all interrupts that have their interrupt-enable bit set. 

Example 11-6. Interrupt Service Routine 
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* TITLE INTERRUPT SERVICE ROUTINE 
* .global ISR2 
ENABLE .set 2000h 
MASK . set '1 
* 
* 
* 

INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2-

ISR2: 

* 

PUSH 
PUSH 
PUSH 
PUSH 
PUSHF 
PUSH 
PUSHF 
LDI 
OR 

ST 
DP 
IE 
RO 
RO 
Rl 
Rl 
MASK,IE 
ENABLE,ST 

Save status reqister 
Save data page-pointer 
Save interrupt enable register 
Save lower 32 bits and 

upper 32 bits of RO 
Save lower 32 bits and 

upper 32 bits of Rl 
Unmask only INTO 
Enable all-interrupts 

* MAIN PROCESSING SECTION FOR ISR2 

* 

XOR 
POPF 
POP 
POPF 
POP 
POP 
POP 
POP 

RETI 

ENABLE,ST 
Rl 
Rl 
RO 
RO 
IE 
DP 
ST 

Disable all interrupts 
Restore upper 32 bits and 

lower 32 bits of Rl 
Restore upper 32 bits and 

lower 32 bits of RO 
Restore interrupt enable register 
Restore data page register 
Restore status register 

Return and enable interrupts 
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11.2.5 Repeat Modes 

11.2.5. 1 Block Repeat 

11-16 

The TMS320C3x supports looping without any overhead. For that purpose, 
there are two instructions: RPTB repeats a block of code, and RPTS repeats 
a single instruction. There are three control registers: RS (repeat start ad­
dress), RE (repeat end address), and RC (repeat counter). These contain the 
parameters that specify loop execution (refer to Section 7.1 for a complete de­
scription of RPTB and RPTS). RS and RE are automatically set from the code, 
while RC must be set by the user, as shown in the examples below. 

Example 11-8 shows an application ofthe block repeat construct. In this exam­
ple, an array of 64 elements is flipped over by exchanging the elements that 
are equidistant from the end of the array. In other words, if the original array 
is 

a(1), a(2), ... , a(31), a(32), ... , a(64); 

the final array after the rearrangement will be 

a(64), a(63), ... , a(32), a(31 ), ... , a(1). 

Because the exchange operation is done on two elements at the same time, 
it requires 32 operations. The repeat counter RC is initialized to 31. In general, 
if RC contains the number N, the loop will be executed N + 1 times. The loop 
is defined by the RPTB instruction and the EXCH label. 
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Example 11-10; Loop Using Single Repeat 

* TITL LOOP USING SINGLE REPEAT 
* 
* THIS CODE SEGMENT COMPUTES 
* 
* 
* 

LDI @ADDR1,ARO 
LDI @ADDR2,AR1 

* 
LDF O.O,RO 

* 

SUM[a(i)b(i)] FOR i 1 to N 

ARO points to array a (i) 
AR1 points to ar.ray b (i) 

Initialize RO 

MPYF3 *ARO++(1),*AR1++(1),R1 
* ; Compute first product 

RPTS 511 ; Repeat 512 times 
* 

MPYF3 *ARO++(1),*AR1++(1),R1,RO I Compute next product 
.II ADDF3 R1,RO,RO and accumulate the previous one 
* 

ADDF R1,RO ; One final addition 
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11.2.6 Computed GOTO's 

Occasionally, it is convenient to select during runtime, and not during assem­
bly, the subroutine to be executed. The TMS320C3x's computed GOTO sup­
ports this selection. The computed GOTO is implemented using the CALLcond 
instruction in the register addressing mode. This instruction uses the contents 
of the register as the address of the call. Example 11-11 shows the case of 
a task controller. 

Example 11-11. Computed GOTO 
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* TITL COMPUTED'GOTO 

* 
* TASK CONTROLLER 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION(6 TASKS 
IN THE PRESENT EXAMPLE). TASKO THROUGH TASK5 ARE THE NAMES OF 
SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASKO, 
TASKl, ... TASK5. WHEN AN INTERRUPT OCCURS, THE INTERRUPT 
SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTINUES 
WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS 
ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE, 
CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE 
TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK 
HAS COMPLETED EXECUTION. RO HOLDS THE OFFSET FROM THE BASE 
ADDRESS OF THE TASK TO BE EXECUTED. 

LDI 5,RO Initialize RO 
LDI @ADDR,ARl ARl holds the base address of the 

WAIT IDLE Wait for the next interrupt 
ADDI3 *ARl,RO,AR2 Add the base address to the table 

* Entry number 
SUBI l,RO Decrement RO 
LDILT 5,RO If RO<O, reinitialize it to 5 
LDI *AR2,Rl Load the task address 
CALLU Rl Execute appropriate task 
BR WAIT 

* 
TSKSEQ .word TASK5 Address of TASK5 

.word TASK4 Address of TASK4 

.word TASK3 Address of TASK3 

.word TASK2 Address of TASK2 

.word TASKl Address of TASKl 

.word TASKO Address of TASKO 
ADDR .word TSKSEQ 

table 
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11.3 Logical and Arithmetic Operations 

The TMS320C3x instruction set supports both integer and floating-point arith­
metic and logical operations. The basic functions of such instructions can be 
combined to form more complex operations. This section examines examples 
of these operations: 

Q Bit manipulation 

Q Block moves 

Q Bit-reversed addressing 

Q Integer and floating-point division 

Q Square root 

Q Extended-precision arithmetic 

Q Floating-point format conversion between IEEE and TMS320C3x formats 

11.3.1 Bit Manipulation 

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR, 
can be used together with the shift instructions for bit manipulation. A special 
instruction, TSTB, tests bits. TSTB does the same operation as AND, but the 
result of the logical AN D is used only to set the condition flags and is not written 
anywhere. Example 11-12 and 11-13 demonstrate the use of the several in­
structions for bit manipulation and testing. 

Example 11-12. Use of TSTB for Software-Controlled Interrupt 

* TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT 
* 
* 
* 
* 
* 
* 

IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY 
RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN 
INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE 
PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR 
WHEN IT DETECTS THAT INT2- HAS OCCURRED. 

TSTB OlOOb,IF 
CALLNZ INTR 

Check if bit 2 of IF is set, 
and, if so, call subroutine INTR 
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11.3.2 Block Moves 

Since the TMS320C3x directly addresses a large amount of memory, blocks 
of data or program code can be stored off-chip in slow memories and then 
loaded on-chip for faster execution. Data can also be moved from on-chip to 
off-chip for storage or for multiprocessor data transfers. 

Such data transfers can be accomplished efficiently in parallel with CPU opera­
tions, using the DMA. The DMA operation is explained in detail in subsection 
8.3 on page 8-38. An alternative to DMA is to perform data transfers under pro­
gram control using load and store instructions in a repeat mode. 
Example 11-14 shows the transfer of a block of 512 floating-point numbers 
from external memory to block 1 of the on-chip RAM. 

Example 11-14. Block Move Under Program Control 

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL 
* 
extern .word 
block1 .word 

OlOOOH 
0809COOH 

II 

LDI 
LDI 
LDF 
RPTS 
LDF 
STF 
STF 

@extern,ARO 
@block1,AR1 
*ARO++,RO 
510 
*ARO++,RO 
RO,*AR1++ 
RO,*ARl 

Source address 
Destination address 
Load the first number 
Repeat following instruction 511 times 
Load the next number, and ... 
store the previous· one 
Store the last number 

11.3.3 Bit-Reversed Addressing 

The TMS320C3x can implement Fast Fourier Transforms (FFT) with bit-rev­
ersed addressing. If the data to be transformed is in the correct order, the final 
result of the FFT is scrambled in bit-reversed order. To recover the frequency­
domain data in the correct order, certain memory locations must be swapped. 
Tt"le bit-reversed addressing mode makes swapping unnecessary. The next 
time data needs to be accessed, the access is done in a bit-reversed manner 
rather than sequentially. The base address of bit-reversed addressing must be 
located on a boundary of the size of the table. For example, if IRO = 2n- 1, the 
n LSBs of the base address must be zero (0).· 

In bit-reversed addressing, IRO holds a value equal to one-half the size of the 
FFT, if real and imaginary data are stored in separate arrays. During accessing, 
the auxiliary register is indexed by IRO, but with reverse carry propagation. 
Example 11-15 illustrates a 512-point complex FFT being moved from the 
place of computation (pointed at by ARO) to a location pointed at by AR1. In 
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this example, real and imaginary parts XR(i) and XI (i) of the data are not stored 
in separate arrays, but they are interleaved XR(O), XI(O), XR(1), XI(1), ... , 
XR(N-1), XI(N-1). Because of this arrangement, the length of the array is 2N 
instead of N, and IRO is set to 512 instead of 256. 

Example 11-15. Bit-Reversed Addressing 

* 
* TITLE BIT-REVERSED ADDRESSING 

* 
* THIS EXAMPLE MOVES THE RESULT OF THE 5l2-POINT FFT 
* COMPUTATION, POINTED AT BY ARO, TO A LOCATION POINTED AT 
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING. 

LDI 5l2,IRO 
LDI 2,J;Rl 
LDI 5ll,RC Repeat 511+1 times 
LDF *+ARO(l),Rl Load first imaginary point 
RPTB LOOP 

* 
LDF *ARO++(IRO)B,RO Load real value (and point 

II STF Rl,*+AR1(1) to next location) and store 
* the imaginary value 
LOOP LDF *+ARO(l),Rl Load next imaginary point and 
II STF RO, *AR1++ (IR1) previous real value 

store 

11.3.4 Integer and Floating-Point Division 

Although division is not implemented as a single instruction in the TMS320C3x, 
the instruction set has the capacity to perform an efficient division routine.lnte­
ger and floating-point division are examined separately because different algo­
rithms are used. 

11.3.4.1 Integer Division 
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Division is implemented on the TMS320C3x by repeated subtractions using 
SUBC, a special conditional subtract instruction. Consider the case of a 32-bit 
positive dividend with i significant bits (and 32 - i sign bits), and a 32-bit posi­
tive divisor with j significant bits (and 32 - j sign bits). The repetition of the 
SUBC command i - j + 1 times produces a 32-bit result where the lower i - j + 1 
bits are the quotient, and the upper 31 - i + j bits are the remainder of the divi­
sion. 

SUBC implements binary division in the same manner as long division. The di­
visor (assumed to be smaller than the dividend) is shifted left i - j times to be 
aligned with the dividend. Then, using SUBC, the shifted divisor is subtracted 
from the dividend. For each subtract that does not produce a negative answer, 
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the dividend is replaced by the difference. It is then shifted to the left, and a one 
is put in the LSB. If the difference is negative, the dividend is simply shifted left 
by one. This operation is repeated i - j + 1 times. 

As an example, consider the division of 33 by 5 using both long division and 
the SUBC method. In this case, i = 6, j = 3, and the SUBC operation is re­
peated 6 - 3 + 1 = 4 times. 

LONG DIVISION: 

00000000000000000000000000000101 
00000000000000000000000000000110 
00000000000000000000000000100001 

-101 

Quotient 

SUBC METHOD: 

00000000000000000000000000100001 
00000000000000000000000000101000 

Negative difference 
J. 

00000000000000000000000000100010 
00000000000000000000000000101000 

00000000000000000000000000011010 
J. 

00000000000000000000000000110101 
00000000000000000000000000101000 

00000000000000000000000000001101 . J. 
00000000000000000000000000011011 
00000000000000000000000000101000 

Negative difference 
J. 

00000000000000000000000000110110 

Remainder Quot. 

1101 
-101 

11 Remainder 

Dividend 
Divisor (aligned) 
(1 st SUBC command) 

New Dividend + Quotient 
Divisor 
Difference (>0) (2nd SUBC command) 

New Dividend + Quotient 
Divisor 
Difference (>0) (3rd SUBC command) 

New Dividend + Quotient 
Divisor 
(4th SUBC command) 

Final Result 

When the SUBC command is used, both the dividend and the divisor must be 
positive. Example 11-16shows a realization of the integer division in which the 
sign of the quotient is properly handled. The last instruction before returning 
modifies the condition flag in case subsequent operations depend on the sign 
of the result. 
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Example 11-16. Integer Division 
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* * TITLE INTEGER DIVISION 
* 
* 
* 
* 
* 
* 
* 
* 

SUBROUTINE DIVI 

INPUTS: 

OUTPUT: 

SIGNED INTEGER DIVIDEND IN RO, 
SIGNED INTEGER DIVISOR IN R1. 

RO/R1 into RO. 

* REGISTERS USED: RO-R3, IRO, IR1 
* 
* 
* 
* 
* 

OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND 
2. REPEAT SUBC 
3. QUOTIENT IS IN LSBs OF RESULT 

* 
* 

CYCLES: 31-62 (DEPENDS ON AMOUNT OF NORMALIZATION) 

.globl 
SIGN .set 
TEMPF . set 
TEMP .set 
COUNT .set 

DIVI 
R2 
R3 
IRO 
IR1 

* DIVI SIGNED DIVISION 

DIVI: 
* 
* DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS. 

* 
XOR RO,R1,SIGN ; Get the sign 
ABSI RO 
ABSI R1 

CMPI RO,R1 Divisor> dividend ? 
BGTD ZERO If so, return ° 

* * NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT 
* FOR DIVISOR, AND AS REPEAT COUNT FOR 'SUBC'. 
* 

FLOAT RO,TEMPF Normalize dividend 
PUSHF TEMPF PUSH as float 
POP COUNT POP as int 
LSH -24, COUNT Get dividend exponent 

FLOAT R1,TEMPF Normalize divisor 
PUSHF TEMPF PUSH as float 
POP TEMP POP as int 
LSH -24, TEMP Get divisor exponent 
SUBI TEMP, COUNT Get difference in exponents 
LSH COUNT,R1 Align divisor with dividend 

* * DO COUNT+1 SUBTRACT & SHIFTS. 
RPTS COUNT 
SUBC R1,RO 

* 
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and Arithmetic (Jm~mtlon.c; 

e = - 128. Then the calculation of x [0] yields an exponent equal to 
- (- 128) - 1 = 127, and the algorithm will overflow and saturate. On the other 
hand, in the case of a very large number, e = 127, the exponent of x [0] will be 
- 127 - 1 = - 128. This will cause the algorithm to yield zero, which is a rea­
sonable handling of that boundary condition. 
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To start the operation, an initial estimate x[O] is needed. If v = a*28, a good ini­
tial estimate is 

x [0] = 1.0 * 2 - e/2 

Example 11-18 shows the implementation of this algorithm on the 
TMS320C3x, where the iteration has been applied 5 times. Both accuracy and 
speed are affected by the number of iterations. If you want more accuracy, use 
more iterations. If less accuracy is acceptable, reduce the number of iterations 
to increase the execution speed of this implementation. 
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Example 11-18. Square Root of a Floating-Point Number 
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* 
* TITLE SQUARE ROOT OF A FLOATING-POINT NUMBER 
* 
* 
* SUBROUTINE SQRT 
* 
* THE FLOATING POINT NUMBER v IS STORED IN RO. AFTER THE 
* COMPUTATION S COMPLETED, SQRT(v) IS ALSO STORED IN RO. NOTE 
* THAT THE ALGORITHM ACTUALLY COMPUTES l/SQRT(v). 
* 
* 
* TYPICAL CALLING SEQUENCE: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

LDF v, RO 
CALL SQRT 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
--------+-------------------------------------
RO I v = NUMBER TO FIND THE SQUARE ROOT OF 

I (UPON THE CALL) 
RO I SQRT(v) (UPON THE RETURN) 

* REGISTER USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, Rl, R2, R3 
* REGISTER CONTAINING RESULT: RO 

* 
* CYCLES: 50 WORDS: 39 

* 
.global SQRT 

* 
* EXTRACT THE EXPONENT OF V. 

* 
SQRT: RO,R3 Save v LDF 

RETSLE 
PUSHF 
POP 

Return if number non-positive 

* 
* 

ASH 
ADDI 
ASH 

RO 
Rl 
-24,Rl 
1,Rl 
-l,Rl 

The 8 LSBs of Rl contain the exponent of v. 
Add a rounding bit in the exponent 
e/2 

* X[O] FORMATION GIVEN THE EXPONENT OF V. 
* 

NEGI Rl 
ASH 24,Rl 
PUSH Rl 
POPF Rl 

* 
* GENERATE V/2. 
* 

MPYF 0.25,RO 
* 
* NOW THE ITERATIONS BEGIN. 
* 

MPYF 
MPYF 
SUBRF 

Rl,Rl,R2 
RO,R2 
1.5,R2 

Now Rl :-: [0] 1.0 * 2** (-e/2) . 

V/2 

R2 
R2 
R2 

and take rounding bit out 

x[O] * x[O] 
(v /2 ) * :.: [ 0 ] * :.: [ 0 ] 
1.5 - (v/2) * x[O] * x[O] 
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MPYF R2,Rl Rl = x[l] = x[o] * 
* (1.5 - (v/2) *x[o] *x[o]) 

RND R1 
MPYF R1,R1,R2 R2 x[l] * x[l] 
MPYF RO,R2 R2 (v/2) * x[l] * x[l] 
SUBRF 1.5,R2 R2 1.5- (v/2) * x[l] * x[l] 
MPYF R2,Rl R1 x[2] = x[l] * 

* (1.5 - (v/2)*x[l]*x[l]) 
RND Rl 
MPYF R1,R1,R2 R2 x[2] * x[2] 
MPYF RO,R2 R2 (v/2) * x[2] * x[2] 
SUBRF 1.5,R2 R2 1.5- (v/2) * x [2] * x[2] 
MPYF R2,R1 R1 x[3] = x[2] 

* * (1.5 - (v/2) *x[2] *x[2]) 
RND R1 

* 
MPYF R1,Rl,R2 R2 x[3] * x[3] 
MPYF RO,R2 R2 (v/2) * x [3] * x[3] 
SUBRF 1.5,R2 R2 1.5- (v/2) * x [3] * x[3] 
MPYF R2,R1 R1 x [4] = x[3] 

* * (1.5 (v/2)*x[3]*x[3]) 
RND R1 

* 
MPYF , Rl, Rl, R2 R2 = x[4] * x [4] 
MPYF RO,R2 R2 (v/2) * :-:[4] * :-:[4] 
SUBRF 1.5,R2 R2 = 1.5- (v/2) * x[4l * x[4] 
MPYF R2,R1 R1 = x[5] = x[4] 

* * (1. 5 (v/2)*x[4]*x[4]) 
* 
* 

RND R1,RO Round 
* 

MPYF R3,RO Sqrt(v) from sArt(v**(-l» 
* 

RETS 
* 
* end 
* 

.end 

11-33 





Logical and Arithmetic Operations 
;:::::::::::::::::::::::::::::::::::;:;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::;:::::::::::::::::;:;:;:;:;:::;.;:;:::::;:;:;.;::::::::::::y';:::;~:;:;:;::::::::::::::::';':':::::::::::::::::::::::::::::'::::;0:::::::;0;'::;';'::::::::::::::.:::::::::::::.::';:::;';::::::::::::::::.;::::::::::::::.;.:::: •• ::::::.::::.;:::::.:::: ... ;.;.;.;.;:::.: .. ;.:::.:::.::;-::;-:::.;.; ••••• ;0:;.;.;. ........ ;.; ... ;.;.; ....... ; .................................. :: ........ : ......... : ••• :; •••••••••••••••••••• :; •• ~ •• :.:-:::::;0:;';%:.:.:.:.:.:;:;';'::::::::::::::::::::::;:::::::::::::::::;:::::;:;:::;"0;:0: 

Example 11-19. 64-Bit Addition 

* TITLE 64-BIT ADDITION 
* 
* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING 
* A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND Y (R3,R2) 
* ADDED, RESULTING IN W (Rl,RO). 
* 
* Rl RO 
* + R3 R2 
* * Rl RO 
* 

ADDI R2,RO 
ADDC R3,Rl 

Example 11-20. 64-Bit Subtraction 

* TITLE 64-BIT SUBTRACTION 
* 
* TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER 
* PRODUCING A 64-BIT RESULT. THE NUMBERS X (Rl,RO) AND 
* Y (R3,R2) ARE SUBTRACTED, RESULTING IN W (Rl,RO). 
* 
* Rl RO 
* + R3 R2 
* 
* Rl RO 
* 

SUBI R2,RO 
SUBB R3,Rl 

When two 32-bit numbers are multiplied, a 64-bit product results. The proce­
dure for multiplication is to split the 32-bit magnitude values of the multiplicand 
X and the multiplier Y into two parts (X1 ,XO) and (X3,X2), respectively, with 16 
bits each. The operation is done on unsigned numbers, and the product is ad-

'justed for the sign bit. Example 11-21 shows the implementation of a 32-bit by 
32-bit multiplication. 
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Example 11-21. 32-Bit by 32-Bit Multiplication 
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* 
* TITLE 32 X 32 BIT MULTIPLICATION 
* 
* 
* SUBROUTINE EXTMPY 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*-
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

FUNCTION: TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT 
RESULT. THE TWO NUMBERS (X and Y) ARE EACH SEPARATED INTO TWO 
PARTS (Xl XO) AND (Yl YO), WHERE XO, Xl, YO, AND Yl ARE 16 BITS. 
THE TOP BIT IN Xl AND Y1 IS THE SIGN BIT. THE PRODUCT IS 
IN TWO WORDS (WO AND W1). THE MULTIPLICATION IS PERFORMED ON 
POSITIVE NUMBERS, AND THE SIGN IS DETERMINED AT THE END. 

X 
Xl XO 
Y1 YO 

XO*YO 
XO*Yl 
X1*YO 

X1*Y1 

W1 WO 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 

BITS OF PRODUCTS 
(NOT COUNTING SIGN) 

16+16 
16+16 
16+16 

16+16 

--------+-------------------------------------
RO I MULTIPLIER AND LOW WORD OF THE PRODUCT 

PRODUCT 

P1 
P2 
P3 
P4 

R1 I MULT~PLICAND AND UPPER WORD OF THE PRODUCT 

REGISTERS USED AS INPUT: RO, R1 
REGISTERS MODIFIED: RO, R1, R2, R3, R4, ARO, AR1, 
REGISTER CONTAINING RESULT: RO,R1 

CYCLES: 28 (WORST CASE) WORDS: 25 

.global EXTMPY 

EXTMPY XOR3 
ABSI 
ABSI 

RO,R1,ARO 
RO 

Store sign 

R1 
* 

Absolute values of X 
and Y 

* SEPARATE MULTIPLIER AND MULTIPLICAND INTO TWO PARTS 
-* 

* 
* 
* 

LDI 
LSH3 
AND 
LSH3 
AND 

CARRY OUT THE 

MPYI3 
MPYI 
MPYI 

-16,AR1 
AR1,RO,R2 R2 
OFFFFH,RO RO 
AR1,R1,R3 R3 
OFFFFH,R1 R1 

MULTIPLICATION 

RO,R1,R4 
R3,RO 
R2,R1 

XO*YO 
XO*Y1 
X1*YO 

Xl 
XO 
Y1 
YO 

P1 
P2 
P3 

Upper 
Lower 
Upper 
Lower 

16 bits 
16 bits 
16 bits 
16 bits 

of X 
of X 
of Y 
of Y 
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ADDI RO,Rl P2+P3 
MPYI R2,R3 Xl*Yl P4 

* 
LDI Rl,R2 
LSH l6,R2 Lower 16 bits of P2+P3 
CMPI O,ARO Check the sign of the product 
BGED DONE If >0, mUltiplication complete (delayed) 
LSH -16,R1 Upper 16 bits of P2+P3 
ADDI3 R4,R2,RO WO RO Lower word of the 
ADDC3 R1,R3,R1 W1 = R1 = Upper word of the 

* 
* NEGATE THE PRODUCT IF THE NUMBERS ARE OF OPPOSITE SIGN 
* 

NOT RO 
ADDI 1,RO 
NOT R1 
ADDC 0,R1 

* 
DONE RETS 

.end 

product 
product 
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11.3.7.1 IEEE to TMS320C3x Floating-Point Format Conversion 

Example 11-22 shows the fast conversion from IEEE to TMS320C3x floating­
point format1. It properly handles the general case when 0 < e < 255, and also 
handles zeros (Le.,e = Oandf = 0). The other special cases (denormalized, in­
finity, and NaN) are not treated and, if present, will give erroneous results. 

Example 11~22. IEEE toTMS320C3x Conversion (Fast Version) 
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* TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION) 

* 
* * SUBROUTINE FMIEEE 
* 
* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE 
* TMS320C3x FLOATING POINT NUMBERS. THE NUMBER TO 
* BE CONVERTED is IN THE LOWER 32 BITS OF RO. 
* THE RESULT IS STORED IN THE UPPER 32 BITS OF RO. 
* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE 
* FOLLOWING TABLE: 
* 
* 
* 
* 
* 
* 
* 

(0) 
(1) 
(2) 
(3) 
(4) 

OxFF800000 <-- AR1 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox81000000 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* RO NUMBER TO BE CONVERTED 
* AR1 I POINTER TO TABLE WITH CONSTANTS 

* 
* REGISTERS USED AS INPUT: RO f AR1 
* REGISTERS MODIFIED: RO, R1 
* REGISTER CONTAINING RESULT: RO 

* * NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 
* * CYCLES: 12 (WORST CASE) WORDS: 12 
* 

.global FMIEEE 

* 
(Example continues on next page) 

1The fast version of the IEEE-to-TMS320C3x conversion routine was originally 
developed by Keith Henry of Apollo Computer, Inc. The other routines were 
based on this initial input. 
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Example 11-23 shows the complete conversion between IEEE and 
TMS320C3x formats. In addition to the general case and the zeros, it handles 
the special cases as follows: 

Q If NaN (e = 255, f< >0), the number is returned intact. 

Q If infinity (e = 255, f = 0), the output is saturated t6 the most positive or neg­
ative number, respectively. 

Q If denormalized (e = 0, f< >0), two cases are considered. If the MSB of f 
is 1, the number is converted to TMS320C3x format. Otherwise, an unde~­
flow occurs and the number is set to zero. 

Example 11-23. IEEE to TMS320C3x Conversion (Complete Version) 
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* TITLE IEEE TO TMS320C3~ CONVERSION (COMPLETE VERSION) 

* 
* * SUBROUTINE FMIEEE1 
* * FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x 
* FLOATING POINT NUMBERS. THE NUMBER TO BE CONVERTED 
* IS IN THE LOWER 32 BITS OF RO. THE RESULT IS STORED 
* IN THE UPPER 32 BITS OF RO. 
* 
* * UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(0) 
(1) 
(2) 
(3) 
(4 ) 
(5) 
(6) 
(7) 
(8) 

0:.:FF800000 <- - AR1 
O:·:FFOOOOOO 
Ox7FOOOOOO 
0:-:80000000 
0:-:81000000 
0:·:7F800000 
0:-:0040.0000 
0:·:007FFFFF 
0:·:7F7FFFFF 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* RO I NUMBER TO BE CONVERTED 
* AR1 I POINTER TO TABLE WITH CONSTANTS 

* 
* 
* 
* 
* 

REGISTERS USED AS INPUT: RO, ARl 
REGISTERS MODIFIED: RO, R1 
REGISTER CONTAINING RESULT: RO 

(Example continues on next page) 
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(Example continued from previous page) 

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO INITIALIZE 
* IT IN THE CALLING PROGRAM. 
* 
* 
* CYCLES: 23 (WORST CASE) 
* 

.global FMIEEEI 
* 
FMIEEEI LDI 

AND 
BZ 

* 
XOR 
BNZ 

RO,Rl 
*+ARl(5),Rl 
UNNORM 

*+ARl(5),Rl 
NORMAL 

* HANDLE NaN AND INFINITY 

TSTB 
RETSNZ 
LDI 
LDFGT 

LDFN 
RETS 

*+AR1(7),RO 

RO,RO 
*+ARl(8),RO 

*+ARl(5),RO 

WORDS: 34 

If e = 0, number is either 0 or 
unnormalized 

If e < 255, use regular routine 

; Return if NaN 

If positive, infinity= 
most positive number 

If negative, infinity= 
most negative number RETS 

* HANDLE ZEROS AND UNNORMALIZED NUMBERS 

UNNORM 

NEGI 

TSTB 
LDFZ 
RETSZ 
XOR 
BND 
LSH 
SUBI 
PUSH 
POPF 
RETS 
POPF 
NEGF 
RETS 

*+ARl(6),RO 
*+ARl(3),RO 

*+ARl(6),RO 
NEGI 
1,RO 
*+AR1(2),RO 
RO 
RO 

RO 
RO,RO 

* HANDLE THE REGULAR CASES 
* 
NORMAL 

NEG 

AND3 
BND 
ADDI 
SUBI 
PUSH 
POPF 
RETS 

POPF 
NEGF 
RETS 

RO,*ARl,Rl 
NEG 
RO,Rl 
*+ARl(2),Rl 
Rl 
RO 

RO 
RO,RO 

Is the msb of f equal to I? 
If not, force the number to zero 

and return 
If (msb of f) = 1, make it 0 

Eliminate sign bit and line up mantissa 
Make e = -127 

Put number in floating point format 

If negative, negate RO 

Replace fraction with 0 
Test sign 
Shift sign and exponent inserting 0 
Unbias e:.:ponent 

Load this as a fIt. pt. number 

Load this as a fIt. pt. number 
Negate if original sign negative 
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11.3.7.2 TMS320C3x to IEEE Floating·Point Format Conversion 
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The vast majority of the numbers represented by the TMS320C3x 
floating-point format are covered by the general IEEE format and the represen­
tation of zeros. The only special case to consider is when e = -127 in the 
TMS320C3x format; this corresponds to a denormalized number in IEEE for­
mat. It is ignored in the fast version, while it is treated properly in the complete 
version. Example 11-24 shows the fast, and Example 11-25, the complete 
version of the TMS320C3x-to-IEEE conversion. 
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Example 11-24. TMS320C3x to IEEE Conversion (Fast Version) 

* 
* TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION) 
* 
* 
* SUBROUTINE TO IEEE 
* 
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE 
* FLOATING POINT NUMBERS. THE NUMBER TO BE CONVERTED 
* IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE IN 
* THE LOWER 32 BITS OF RO. 

* UPON ENTERING THE ROUTINE, ARI POINTS TO THE FOLLOWING TABLE: 
* 
* 
* 
* 
* 
* 
* 

(0) 
(1) 
(2) 
(3) 
(4) 

OxFF800000 <- - ARI 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox8l000000 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* RO I NUMBER TO BE CONVERTED 
* ARI I POINTER TO TABLE WITH CONSTANTS 

* 
* REGISTERS USED AS INPUT: RO, ARI 
* REGISTERS MODIFIED: RO 
* REGISTER CONTAINING RESULT: RO 
* 
* NOTE: SINCE THE STACK POINTER 'SP' IS USED, MAKE SURE TO 
* INITIALIZE IT IN THE CALLING PROGRAM. 
* 
* 
* CYCLES: 14 (WORST CASE) WORDS: 15 
* 

.global TOIEEE 
* 
TOIEEE Determine the sign of the number LD 

LDFZ 
BND 
ABSF 
LSH 
PUSHF 
POP 
ADDI 

RO,RO 
*+ARl(4),RO 
NEG 
RO 
1,RO 

If ze'ro, load appropriate number 
Branch to NEG if negative (delayed) 
Take the absolute value of the number 
Eliminate the sign bit in RO 

NEG 

LSH 
RETS 

POP 
ADDI 
LSH 
ADDI 
RETS 

RO 
RO 
*+ARl(2),RO 
-l,RO 

RO 
*+ARl(2),RO 
-l,RO 
*+ARl(3),RO 

Place number in lower 32 bits of RO 
Add exponent bias (127) 
Add the positiv~ sign 

Place number in lower 32 bits of RO 
Add exponent bias (127) 
Make space for the sign 
Add the negative sign 
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Example 11-25. TMS320C3x to IEEE Conversion (Complete Version) 
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* 
* TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION) 
* 
* 
* SUBROUTINE TOIEEE1 
* 
* 
* FUNCTION: CONVERSION BETWEEN THE TMS320C3:-: FORMAT AND THE IEEE 
* FLOATING POINT NUMBERS. THE NUMBER TO BE CONVERTED 
* IS IN THE UPPER 32 BITS OF RO. THE RESULT WILL BE 
* IN THE LOWER 32 BITS OF RO. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE: 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

OxFF800000 <- - ARl 
OxFFOOOOOO 
Ox7FOOOOOO 
Ox80000000 
Ox8l000000 
Ox7F800000 
Ox00400000 
Ox007FFFFF 
Ox7F7FFFFF 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
--------+--------------------------------~----
RO I NUMBER TO BE CONVERTED 
AR1 I POINTER TO TABLE WITH CONSTANTS 

REGISTERS USED AS INPUT: RO, ARl 
REGISTERS MODIFIED: RO 
REGISTER CONTAINING RESULT: RO 

-NOTE: SINCE THE STACK POINTER 'SP' IS USED, MAKE SURE TO 
INITIALIZE IT IN THE CALLING PROGRAM. 

CYCLES: 31 (WORST CASE) WORDS: 25 

. global TOIEEE1 

TOIEEEl LDF 
LDFZ 
BND 
ABSF 
LSH 
PUSHF 
POP 
ADDI 

RO,RO 
*+ARl(4),RO 
NEG 
RO 
1,RO 
RO 
RO 
*+AR1(2),RO 

Determine the sign of the number 
If zero, load appropriate number 
Branch to NEG if negative (delayed) 
Take the absolute value of the number 
Eliminate the sign bit in RO 

Place number in lower 32 bits of RO 
Add exponent bias (127) 

LSH -l/RO Add. the positive sign 

(Example continues on next page) 
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CaNT 

NEG 

TSTB 
RETSNZ 
TSTB 
RETSZ 
PUSH 
POPF 
LSH 
PUSHF 
pop 
ADDI 
RETS 
pop 
BRD 
ADDI 
LSH 
ADDI 

(Example continued from previous page) 

*+AR1(5),RO 

*+AR1(7),RO 

RO 
RO 
-l,RO 
RO 
RO 
*+AR1(6),RO 

RO 
CaNT 
*+ARI(2),RO 
-l,RO 
*+AR1(3),RO 

If E>O, return 

If E=O & F=O, return 

Move F right by one bit 

Add to F a msb of 1 

Place number in lower 32 bits of RO 

Add exponent bias (127) 
Make space for the sign 
Add the negative sign 
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Example 11-27. J..l-Law Expansion 
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* 
* TITLE 'U-LAW EXPANSION' 
* 
* * SUBROUTINE MUXPND 
* 
* 
* ARGUMENT ASSIGNMENTS: 
* * ARGUMENT I FUNCTION 
* --------+-------------------------------------
* RO I NUMBER TO BE CONVERTED 
* * REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* 
* 
* 
* 

CYCLES: 20 (WORST CASE) 

.global MUXPND 
* 
MUXPND NOT RO,RO 

LDI RO,Rl 
AND OFH,R1 
LSH 1,Rl 
ADDI 33,Rl 
LDI RO,R2 
LSH -4,RO 
AND 7,RO 
LSH3 RO,Rl,RO 
SUBI 33,RO 
TSTB 80H,R2 
RETSZ 
NEGI RO 
RETS 

WORDS: 14 

Complement bits 

Isolate quantization 

Add bias to introduce 
Store for sign bit 

Isolate segment code 
Shift and put result 
Subtract bias 
Test sign bit 

Negate if a negative 

bin 

1xxxxl 

in RO 

number 
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Example 11-28. A-Law Compression 
* 
* TITLE A-LAW COMPRESSION 
* 
* 
* SUBROUTINE ACMPR 
* 
* 
* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* RO I NUMBER TO BE CONVERTED 
* 
* REGISTERS USED AS INPUT: RO 
* REGISTERS MODIFIED: RO, R1, R2, SP 
* REGISTER CONTAINING RESULT: RO 
* 
* NOTE: SINCE THE STACK POINTER 'SP' IS USED IN THE COMPRESSION 
* ROUTINE 'ACMPR', MAKE SURE TO INITIALIZE IT IN THE 
* CALLING PROGRAM. 
* 
* 
* CYCLES: 22 
* 

.global 
* 
ACMPR LDI 

ABSI 
CMPI 
BLED 
CMPI 
LDIGT 
LSH 

FLOAT 
MPYF 
LSH 
PUSHF 
POP 
LSH 

END LDI 
LDI 
LDILT 
ADDI 
XOR 
RETS 

* 

WORDS: 19 

ACMPR 

RO,R1 
RO,RO 
1FH,RO 
END 
OFFFH,RO 
OFFFH,RO 
-l,RO 

RO 
O.125,RO 
1,RO 
RO 
RO 
-20,RO 

0, R2 
R1,R1 
80H,R2 
R2,RO 
OD5H,RO 

Save sign of number 

If RO<0:-:20, 
Do linear coding 
If RO>O:-:FFF, 

saturate the result 
Eliminate rightmost bit 

Normalize: (seg+3)OWXYZx ... x 
Adjust segment number by 2**(-3) 
(seg) WXYZ:-: ... x 

Treat number as integer 
Right-justify 

If number is negative, 
set sign bit 

RO = compressed number 
Invert even bits for transmission 
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* * RETURN SEQUENCE· 

* 

* 
* end 
* 

.end 

11.4.2.2 IIR Filters 

RETS Return 

The transfer function of the IIR filters has both poles and zeros. Its output de­
pends on both the input and the past output. As a rule, the filters need less com­
putation than an FI R with similar frequency response, but the filters have the 
drawback of being sensitive to coefficient quantization. Most often, the II R fil­
ters are implemented as a cascade of second-order sections, called biquads. 
Example 11-31 and Example 11-32 show the implementation for one biquad 
and for any number of biquads, respectively. 

This is the equation for a single biquad: 

y [n] = a1 y [n - 1] + a2 y [n - 2] + bO x [n] + b1 x [n -1] + b2 x [n - 2] 

However, the following two equations are more convenient and have smaller 
storage requirements: 

d [n] = a2 d [n - 2] + a1 d [n -1] + x [n ] 
y [n] = b2 d [n - 2] + b1 d [n - 1] + bO d [n ] 

Figure 11-2 shows the memory organization for this two-equation approach, 
and Example 11-31 is an implementation of a single biquad on the 
TMS320C3x. 

Figure 11-2. Data Memory Organization for a Single Biquad 

Filter 

Low 
Coefficients 

Address a2 Newest Delay 
b2 

a1 Oldest Delay 

b1 

High bO 
Address 

Newest Delay 
Node Values 

d(n) 

d(n-1) 

d(n-2) 

Newest Delay 
Node Values 

d(n -1) 

d(n-2) 

d(n) 

--, 
Cire ularQueue 
--.J 

As in the case of FIR filters, the address for the start of the values d must be 
a multiple of 4; i.e., the last two bits of the beginning address must be zero. The 
block-size register BK must be initialized to 3. 
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Example 11-31. IIR Filter (One Biquad) 
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* 
* TITLE IIR filter 
* 
* 
* SUBROUTINE I I R 1 
* 
* IIRl == IIR FILTER (ONE BIQUAD) 
* 
* 
* a2 * d(n-2) + al * d(n-1) + x(n) 

* 
* 

EQUATIONS:d(n) 
y(n) b2 * d(n-2) + b1 * d(n-1) + bO * d(n) 

* OR 

* 
* 

y(n) a1*y(n-1) + a2*y(n-2) + bO*x(n) 
+ b1*x(n-1) + b2*x(n-2) 

* TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
load 
load 
CALL 

R2 
ARO 
AR1 
BK 
IIR1 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* R2 INPUT SAMPLE X (N) 
* ARO ADDRESS OF FILTER COEFFICIENTS (A2) 
* AR1 ADDRESS OF DELAY MODE VALUES (D (N-2) ) 
* BK BK = 3 

* 
* 
* 
* 

REGISTERS USED AS INPUT: R2, ARO, AR1, BK 
REGISTERS MODIFIED: RO, R1, R2, ARO, AR1 
REGISTER CONTAINING RESULT: RO 

* 
* CYCLES: 11 WORDS: 8 
* 
* 
* FILTER 
* 

.global IIR1 
* 
IIR1 

* 

* 
* 

MPYF3 

MPYF3 

*ARO,*AR1,RO 
; a2 * d(n-2) -> RO 

*++ARO (1) , *AR1- -(1) % , Rl 
; b2 * d(n-2) -> Rl 

*++ARO(1),*AR1,RO ; a1 * d(n-1) -> RO 
II 

MPYF3 
ADDF3 RO,R2,R2 ; a2*d(n-2)+x(n) -> R2 

* 

II 
* 

II 

MPYF3 
ADDF3 

MPYF3 
STF 

*++ARO (1) ,*AR1--(1) %, RO ; b1 * d (n-1) -> RO 
RO,R2,R2, a1*d(n-1)+a2*d(n-2)+x(n) -> R2 

*++ARO(1),R2,R2; bO * d(n) -> R2 
R2, *AR1++(1) % 
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Figure 11-3. Data Memory Organization for N Biquads 
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Filter 
Coefficients 

a2(O) Newest Delay 
Low 

Address --~-... 

b2(O) 

a1(0) Oldest Delay 
b1 (0) 

bO(O) 

• 
• 
• 

a2(N -1) 
b2(N -1) 

a1(N-1) 

b1(N-1) 

bO(N -1) High 
Address ..... ----........... 

Initial Delay 
Node Values 

d(O, n) 

d(O, n -1) 

d(O, n - 2) 

Empty 

• 
• 
• 

d(N -1, n) 
d(N-1, n-1) 

d(N-1, n-2) 

Empty 

Final Delay 
Node Values 

d(O, n -1) 

d(O, n-2) 

d(O, n) 
Empty 

• 
• 
• 

d(N -1, n -1) 

n 
Circ ular Queue 
W 

d(N -1, n - 2) Circular Queue 
d(N-1, n) 

Em ty 

The block register BK should be initialized to 3, and the beginning of each set 
of dvalues (Le., d [i,n], i = O ... N -1) should be at an address that is a multiple 
of 4 (the last two bits zero), as stated in the case of a single biquad . 

. Software Applications· 



Applications-Oriented Operations 

Example 11-32. IIR Filters (N) 1 Biquads) 

* 
* TITLE IIR FILTERS (N > BIQUADS) 
* 
* 
* SUBROUTINE IIR2 
* 
* 
* 
* 
* 

EQUATIONS: y(O,n) = x(n) 

* FOR (i = 0; i < N; i ++ ) 
* { 
* d(i,n) = a2(i) * d(i,n-2) + a1(i) * d(i,n-1) * y(i-1,n) 
* y(i,n) = b2(i) * d(i,n-2) + b1(i) * d(i,n-1) * bO(i) *,d(i,n) 
* TYPICAL CALLING SEQUENCE: 
* } 
* y (n) = y (N-l, n) 

* 
* TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
load 
load 
load 
load 
load 
CALL 

R2 
ARO 
AR1 
IRO 
IR1 
BK 
RC 
IIR2 

* ARGUMENT ASSIGNMENT: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* R2 INPUT SAMPLE x (n) 
* ARO ADDRESS OF FILTER COEFFICIENTS (a2(O» 

* 
* 
* 
* 
* 
* 

ARl 
BK 
IRO 
IRl 
RC 

ADDRESS OF DELAY NODE VALUES (d(O,n-2» 
BK = 3 
IRO = 4 
IRl = 4*N-4 
NUMBER OF BIQUADS (N) -2 

* REGISTERS USED AS INPUT; R2, ARO, AR1, IRO, IR1, BK, RC 
* REGISTERS MODIFIED; RO, Rl, R2, ARO, AR1, RC 
* REGISTERS CONTAINING RESULT: RO 
* 
* CYCLES: 17 + 6 (N-1) WORDS: 17 
* 
* 
* 
* 
* 
IIR2 

* 

.global IIR2 

MPYF3 

MPYF3 

*ARO, *AR1, RO 
: a2(O) * d(O,n-2) -> RO 

*AR1++ (1), *AR1- -( 1) , Rl 
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* 

* 

II 
* 

II 

II 
* 
* 

* 

II 
* 

II 
* 

II 
* 
II 
* 

* 
LOOP 

* 
* 
* 

MPYF3 
ADDF 

MPYF3 
ADDF3 
MPYF3 
STF 

RPTB 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

MPYF3 
ADDF3 

b2(O) * d(O,n-2) -> R1 

*++ARO(1),*AR1,RO; al(O) * D(O,n-l) -> RO 
RO, R2, R2 i First sum term of d(O,n). 

*++ARO(1),*AR1--(1)%,RO ib1(O) * d(O,n-l) -> RO 
RO, R2, R2 i Second sum term of d(O,n) . 
*++ARO(1),R2,R2 ;bO(O) * d(O,n) -> R2 
R2, *AR1--(1) % 

LOOP 
Store d(O,n) ; Point to d(O,n-2) 
Loop for 1 <= i < 'n 

*++ARO(1),*++AR1(IRO),RO ia2(i) * d(i,n-2) -> RO 
RO,R2,R2 ; First sum term of y(i-1,n) . 

*++ARO (I)', *AR1-- (1) %Rl ; b2 (i) * D (i, n-2) -> R1 
R1,R2,R2 ; Second sum term of y(i-1,n) . 

*++ARO(1),*AR1,RO ;a1(i) * d(i,n-1) -> RO 
RO,R2,R2 ; First sum of d(i,n). 

*++ARO (1) , *AR1--(1) %, RO ;b1 (i) * d (i, n-1) -> RO 
RO,R2,R2 Second sum term of d(i,n) . 

STF R2, *AR1--(1) % 

MPYF3 
; Store d(i,n) ; point to d(i,n-2) 

*++ARO(l), R2,R2 
; bO(i) * d(i,n) -> R2 

* FINAL SUMMATION 
* 

ADDF RO,R2 
ADDF3 Rl,R2,RO 

* 
NOP *AR1- -( IR1) 
NOP *AR1--(1) % 

* 
* RETURN SEQUENCE 

* 
* end 

* 

RETS 

.end 

First sum term of y(n-1,n) 
Second sum term of y(n-1,n) 

Return to first biquad 
Point to d(O,n-1) 

Return 
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11.4.2.3 Adaptive Filters (LMS Algorithm) 

In some applications in digital signal processing, a filter must be adapted over 
time to keep track of changing conditions. The book Theory and Design of 
Adaptive Filters by Treichler, Johnson, and Larimore (Wiley-Interscience, 
1987) presents the theory of adaptive filters. Although in theory, both FI Rand 
IIR structures can be used as adaptive filters, the stability problems and the 
local optimum points that the IIR filters exhibit make them less attractive for 
such an application. Hence, until further research makes IIR filters a better 
choice, only the FIR filters are used in adaptive algorithms of practical applica­
tions. 

In an adaptive FIR filter, the filtering equation takes this form: 

y[n] = h [n,O] x[n] + h [n,1]x[n-1] + ... + h[n,N -1]x[n- (N -1)] 

The filter coefficients are time-dependent. In a least-mean-squares (LMS) al­
gorithm, the coefficients are updated by an equation in this form: 

h[n+1,i]=h[n,1]+ ~x[n-i], i=O,1, ... ,N-1 

~ is a constant for the computation. The updating of the filter coefficients can 
be interleaved with the computation of the filter output so that it takes 3 cycles 
per filter tap to do both. The updated coefficients are written over the old filter 
coefficients. Example 11-33 shows the implementation of an adaptive FIR fil­
ter on the TMS320C3x. The memory organization and the positioning of the 
data in memory should follow the same rules as the above FIR filter with fixed 
coefficients. 
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Example 11-33. Adaptive FIR FHter (LMS Algorithm) 
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* TITL ADAPTIVE FIR FILTER (LMS ALGORITHM) 

* 
* 

* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
LMS 
* 

* 
* 

* 

* 

SUBROUTINE L M S 

LMS == LMS ADAPTIVE FILTER 

EQUATIONS: y(n) = h(n,O)*x(n) + h(n,l)*x(h-l) + ... 
+ h(n,N-l)*x(n-(N-l)) 

FOR (i'= Oi i < Ni i++) 
h(n+l,i) = h(n,i) + tmuerr * x(n-i) 

TYPICAL CALLING SEQUENCE: 

load R4 
load ARO 
load ARl 
load RC 
load BK 
CALL FIR 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 
--------+-------------------------------------
R4 I SCALE FACTOR (2 * mu * err) 

'ARO ADDRESS OF h(n,N-l) 
ARl ADDRESS OF x(n-(N-l)) 
RC LENGTH OF FILTER - 2 (N-2) 
BK LENGTH OF FILTER (N) 

REGISTERS USED AS INPUT: R4, ARO, AR1, RC, BK 
REGISTERS MODIFIED: RO, R1, R2, ARO, AR1, RC 
REGISTER CONTAINING RESULT: RO 

PROGRAM SIZE: 10 words 

EXECUTION CYCLES: 12 + 3(N-1) 

SETUP (i = 0) 

.global LMS 
Initialize RO: 

MPYF3 *ARO, *AR1, RO 

LDF 0.0,R2 
h(n,N-1) * x(n-(N-1)) -> RO 
Initialize R2. 

MPYF3 

ADDF3 

Initialize R1: 
*AR1++(1)%, R4, R1 

; x (n-(N-1)) * tmuerr -> R1 
*ARO++(l) , R1, R1 

; h(n,N-1) + x(n-(N-1)) * 
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11.4.3 Matrix-Vector Multiplication 

In matrix-vector multiplication, a K x N matrix of elements m(i,j) having K rows 
and N columns is multiplied by an N x 1" vector to produce a K x 1 result. The 
multiplier vector has elements v(j), and the product vector has elements p(i). 
Each one of the product-vector elements is computed by the following expres­
sion: 

p (i) = m (i, 0) v (0) + m (i,1) v (1) + ... + m (i, N -1) v (N -1) i = 0,1, ... , K -1 

This is essentially a dot product, and the matrix-vector multiplication contains, 
as a special case, the dot product presented in Example 11-2 on page 11-8. 
In pseudo-C format, the computation of the matrix multiplication is expressed 
by 

for (i = 0; i < K; i + +) { 
p(i)=O 
for ( j = 0; j < N ; j + +) 

p (i) = P (i) + m (i,j) * v (j) 

Figure 11-4 shows the data memory organization for matrix-vector multiplica­
tion, and Example 11-34shows the TMS320C3x assembly code to implement 
it. Note that in Example 11-34, K (number of rows) should be greater than 0, 
and N (number of columns) should be greater than 1. 

Figure 11-4. Data Memory Organization for Matrix-Vector Multiplication 

IniJut Result 

Low 
Matrix Storage Vector Storage Vector Storage 

Address I m(O,O) I I v(O) I I p(O) 

m(Oz1} v(1 ) p(1 ) 

• • • 
• • • 
• • • 

m(O N -1) v(N -1) p(K-1) 

m(1 0) 

High m(1,1) 
Address • 

• 
• 
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Example 11-34. Matrix Times a Vector Multiplication 

* 
* TITL MATRIX TIMES A VECTOR MULTIPLICATION 
* 
* 
* SUBROUTINE MAT 
* 
* MAT == MATRIX TIMES A VECTOR OPERATION 
* 
* 
* TYPICAL CALLING SEQUENCE: 
* 
* 
* 
* 
* 
* 
* 
* 
* 

load 
load 
load 
load 
load 
CALL 

ARO 
ARI 
AR2 
AR3 
Rl 
MAT 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 
* --------+-------------------------------------
* ARO ADDRESS OF M (0,0) 
* ARI ADDRESS OF V(O) 
* AR2 ADDRESS OF P (0) 

* 
* 
* 

AR3 
Rl 

NUMBER OF ROWS -1 (K-l) 
NUMBER OF COLUMNS - 2 (N-2) 

* REGISTERS USED AS INPUT: ARO, ARl, AR2, AR3, Rl 
* REGISTERS MODIFIED: RO, R2, ARO, ARl, AR2, AR3, IRO, 
* RC, RSA, REA 
* 
* 
* PROGRAM SIZE: 11 

* 
* EXECUTION CYCLES: 6 + 10 * K + K * (N - 1) 
* 
* 
* 

.global MAT 
* 
* SETUP 
* 
MAT 

* 

LDI 
ADDI 

Rl,IRO 
2, .IRO 

number of columns-2 -> IRO 
IRO = N 

* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS. 
* 
ROWS LDF 

* 
* 

MPYF3 
0.O,R2 i initialize R2 
*ARO++(l) ,*ARl++(l) ,RO 

; m(i,O) * v(O) -> RO 

* FOR (j = 1; j < Ni j++) DO DOT PRODUCT OVER COLUMNS 
* 

RPTS Rl ; multiply a row by a column. 

* 
MPYF3 *ARO++(l),*ARl++(l),RO i m(i,j) * v(j) -> RO 
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II 
* 

* 
* 

ADDF3 

DBD 

RO,R2,R2 m(i,j-l) * v(j-l) + R2 -> R2. 

AR3,ROWS counts the number of rows left. 

ADDF RO,R2 last accumulate. 
STF R2,*AR2++(1) result -> p(i) 
NOP *- -1\.Rl (IRO) ; set ARl to point to v (0) . 

* ! !! DELAYED BRANCH HAPPENS HERE !!! 

* 
* RETURN SEQUENCE 
* 

RETS 
* end 
* 

.end 

return 

11.4.4 Fast Fourier Transforms (FFT) 
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Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time 
domain to the frequency domain. The inverse Fourier transform converts infor­
mation back to the time domain from the frequency domain. Implementation 
of Fourier transforms that are computationally efficient are known as Fast 
Fourier Transforms (FFTs). The theory of FFTs can be found in books such as 
DFTIFFT and Convolution Algorithms by C.S. Burrus and T.W. Parks (John 
Wiley, 1985), and in the book Digital Signal Processing Applications with the 
TMS320 Family. 

Certain TMS320C3x features that increase efficient implementation of numeri­
cally intensive algorithms are particularly well-suited for FFTs. The high speed 
of the device (50-ns cycle time) makes the implementation of real-time algo­
rithms easier, while the floating-point capability eliminates the problems asso­
ciated with dynamic range. The powerful indexing scheme in indirect address­
ing facilitates the access of FFT butterfly legs that have different spans. A con­
struct that reduces the looping overhead in algorithms heavily dependent on 
loops (such as the FFTs) is the repeat block implemented by the RPTB instruc­
tion. This construct gives the efficiency of in-line coding but has the form of a 
loop. Since the output of the FFT is in scrambled (bit-reversed) order when the 
input is in regular order, it must be restored to the proper order. This rearrange­
ment does not require extra cycles. The device has a special form of indirect 
addressing (bit-reversed addressing mode) that can be used when the FFT 
output is needed. This mode permits accessing the FFT output in the proper 
order. 

Fast Fourier Transform is a label for a collection of algorithms that implement 
efficient conversion from time to frequency domain. There are several types 
of FFTs: 

I:l Radix-2 and radix-4 algorithms (depending on the size of the FFT butterfly) 

I:l Decimation in time or frequency (DIT or DIF) 
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Example 11-35. Complex, Radix-2, DIF FFT 
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* 
* 
* 

TITL COMPLEX, RADIX-2, DIF FFT 

* GENERIC PROGRAM FOR A LOOPED-CODE RADIX-2 FFT COMPUTATION IN TMS320C3x 
* 
* 
* 

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111. 
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION 

* 
* 
* 

IS DONE IN-PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY 
SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING. 

* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. 
* THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC 
* NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FFT 
* NAND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED 
* DURING LINKING. 
* 
* 

INP 

.globl 

.globl 

.globl 

.globl 

.usect 

.BSS 

.text 

* INITIALIZE 

FFTSIZ .word 
LOGFFT .word 
SINTAB .word 
INPUT .word 
OU1'PUT .word 

FFT: LDP 

LDI 
LSH 
LDI 
LDI 
LSH 
LDI 
LDI 
LDI 

* OUTER LOOP 

LOOP: NOP 
LDI 
ADDI 
LDI 
SUBI 

*' FIRST LOOP 

RPTB 
ADDF 
SUBF 

FFT 
N 
M 
SINE 

"IN", 1024 
OUTP,1024 

N 
M 
SINE 
INP 
OUTP 

FFTSIZ 

@FFTSIZ,IR1 
-2,IR1 
0,AR6 
@FFTSIZ,IRO 
l,IRO 
@FFTSIZ,R7 
l,AR7 
l,ARS 

*++AR6 (1) 
@INPUT,ARO 
R7,ARO,AR2 
AR7,RC 
l,RC 

BLK1 

Entry point for e~ecution 
FFT size 
LOG2(N) 
Address of sine table 

Memory with input data 
Memory with output data 

Command to load data page pointer 

IR1=N/4, pointer for SIN/COS table 
AR6 holds the current stage number 

IRO=2*N1 (because ofreal/imag) 
R7=N2 
Initialize repeat counter of first loop 
Initialize IE inde~ (ARS=IE) 

Current FFT stage 
ARO points to X(I) 
AR2 points to X(L) 

RC should be one less than desired # 

*ARO, *AR2, RO ; RO=X (I) +X (L) 
*AR2++,*ARO++,R1; R1=X(I)-X(L) 
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ADDF *AR2,*ARO,R2 R2=Y(I)+Y(L) 
SUBF *AR2,*ARO,R3 R3=Y (I)-Y (L) 
STF R2, *ARO-- Y(I)=R2 and ... 

II STF R3, *AR2-- Y(L)=R3 
BLKI STF RO, *ARO++ (IRO) ; X(I)=RO and ... 
II STF 

* IF THIS IS 

CMPI 
BZD 

* MAIN INNER 
LDI 
LDI 

Rl, *AR2++ (IRO) 
THE LAST STAGE, 

@LOGFFT,AR6 
END 

LOOP 
2,ARI 
@SINTAB,AR4 
ARS,AR4 
ARl,ARO' 
2,ARI 
@INPUT,ARO 
R7,ARO,AR2 
AR7,RC 

X(L)=Rl and ARO,2 ARO,2 + 2*n 
YOU ARE DONE 

Init loop counter for inner loop 
Initialize IA index (AR4=IA) 
IA=IA+IEi AR4 points to cosine 

Increment inner loop counter 
(X(I),Y(I» pointer 
(X(L),Y(L» pointer 

INLOP: ADDI 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
SUBI 
LDF 

1,RC 
*AR4,R6 

RC should be one less than desired # 
R6=SIN 

* SECOND LOOP 
RPTB 
SUBF 
SUBF 

* 

II 
* 

II 

II 

II 
* 
"* 
BLK2 
II 

MPYF 
ADDF 

MPYF 
STF 
SUBF 
MPYF 
ADDF 
MPYF 
STF 

ADDF 
STF 
STF 

CMPI 
BNE 

BLK2 
*AR2,*ARO,R2 
*+AR2,*+ARO,Rl 

R2=X(I)-X(L) 

Rl=Y(I)-Y(L) 
R2,R6,RO ; RO=R2*SIN and ... 
*+AR2,*+ARO,R3 

i R3=Y(I)+Y(L) 
Rl,*+AR4(IRl),R3 i R3 = Rl * COS and ... 
R3,*+ARO Y(I)=Y(I)+Y(L) 
RO,R3,R4 ; R4=Rl*COS-R2*SIN 
Rl, R6, RO i RO=Rl *SIN and ... 
*AR2,*ARO,R3 i R3=X(I)+X(L) 
R2,*+AR4(IRl),R3; R3 = R2 * COS and ... 
R3, *ARO++ (IRO) 

RO,R3,RS 
RS, *AR2++ (IRO) 
R4,*+AR2 

R7,ARl 
INLOP 

X(I)=X(I)+X(L) and ARO=ARO+2*Nl 
RS=R2*COS+Rl*SIN 
X (L)=R2*COS+Rl*SIN, incr AR2 and ... 
Y(L)=Rl*COS-R2*SIN 

Loop back to the inner loop 

LSH 1,AR7 
BRD LOOP 

Increment ,loop counter for next time 
Next FFT stage (delayed) 

LSH l,ARS IE=2*IE 
LDI R7, IRO Nl=N2 
LSH -l,R7 N2=N2/2 

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING 

END: LDI 
SUBI 
LDI 
LDI 
LDI 
LDI 

@FFTSIZ,RC 
1, RC 
@FFTSIZ,IRO 
2,IRl 
@INPUT,ARO 
@OUTPUT,ARl 

RC=N 
RC should be one less than desired # 
IRO=size of FFT=N 
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RPTB 
LDF 

II LDF 
BITRV STF 
II STF 

SELF BR 
.end 

BITRV 
*+ARO(l),RO 
*ARO++(IRO)B,Rl 
RO,*+AR1(1) 
Rl, *AR1++ (IR1) 

SELF Branch to itself at the end 
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Example 11-36. Table With Twiddle Factors for a 64-Point FFT 

* 
*TITL TABLE WITH TWIDDLE FACTORS FOR A 64-POINT FFT 
* 
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64-POINT, RADIX-2 FFT. 

* 

N 
M 

SINE 

COSINE 

.globl 

.globl 

.globl 

.set 

.set 

.data 

.float 

.float 

.float 

. float 

.float 

.float 

. float 

. float 

.float 

.float 

.float 

.float 

. float 

.float 

.float 

. float 

.float 

. float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

. float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

.float 

SINE 
N 
M 

64 
6 

0.000000 
0.098017 
0.195090 
0.290285 
0.382683 
0.471397 
0.555570 
0.634393 
0.707107 
0.773010 
0.831470 
0.881921 
0.923880 
0.956940 
0.980785 
0.995185 

1.000000 
0.995185 
0.980785 
0.956940 
0.923880 
0.881921 
0.831470 
0.773010 
0.707107 
0.634393 
0.555570 
0.471397 
0.382683 
0.290285 
0.195090 
0.098017 
0.000000 
-0.098017 
-0.195090 
-0.290285 
-0.382683 
-0.471397 
-0.555570 
-0.634393 
-0.707107 
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. float -0.773010 

.float -0.831470 

.float -0.881921 

. float -0.923880 

.float -0.956940 

.float -0.980785 

. float -0.995185 

. float -1.000000 

.float -0.995185 

. float -0.980785 

.float -0.956940 

.float -0.923880 

.float -0.881921 

.float -0.831470 

.float -0.773010 

.float -0.707107 

.float -0.634393 

.float -0.555570 

.float -0.471397 

.float -0.382683 

. float -0.290285 

. float -0.195090 

. float -0.098017 

. float 0.000000 

. float 0.098017 

. float 0.195090 

.float 0.290285 

.float 0.382683 

.float 0.471397 

. float 0.555570 

. float 0.634393 

. float 0.707107 

.float 0.773010 

.float 0.831470 

.float 0.881921 

.float 0.923880 

.float 0.956940 

. float 0.980785 

.float 0.995185 

The radix-2 algorithm has tutorial value because it is relatively easy to under­
stand how the FFT algorithm functions. However, radix-4 implementations can 
increase the speed ofthe execution by reducing the overall arithmetic required. 
Example 11-37 shows the generic implementation of a complex, DIF FFT in 
radix-4. A companion table, like the one in Example 11-36, should have a val­
ue of M equal to the 10gN, where the base of the logarithm is four. 
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* INITIALIZE DATA LOCATIONS 
LDP TEMP Command to load data page counter 
LDI @TEMP,ARO 
LDI @STORE,ARI 
LDI *ARO++,RO Xfer data from one ~emory to the other 
STI RO,*AR1++ 
LDI *ARO++,RO 
STI RO,*AR1++ 
LDI *ARO++,RO 
STI RO,*AR1++ 
LDI *ARO,RO 
STI RO,*ARl 

LDP 
LDI 
LDI 
LDI 
LDI 
STI 
LSH 
LSH 
LDI 
STI 
LSH 
STI 
ADDI 
STI 
SUBI 
LSH 

FFTSIZ 
@FFTSIZ,RO 
@FFTSIZ,IRO 
@FFTSIZ,IRl 
O,AR7 
AR7,@STAGE 
1,IRO 
-2,IRl 
1,AR7 
AR7,@RPTCNT 
-2,RO 
AR7,@IEINDX 
2,RO 
RO, @.JT 
2,RO 
1,RO 

* OUTER LOOP 

LOOP: 
LDI 
ADDI 
ADDI 
ADDI 
LDI 
SUBI 

* FIRST LOOP 

RPTB 
ADDF 

* 

* 

* 

II 

II 

II 

ADDF 

ADDF 
SUBF 

STF 
SUBF 
LDF 
LDF 
ADDF 
ADDF 
STF 
ADDF 
SUBF 
STF 

@INPUT,ARO 
RO,ARO,ARI 
RO,ARl,AR2 
RO,AR2,AR3 
@RPTCNT,RC 
1,RC 

BLKl 
*+ARO,*+AR2,Rl 

*+AR3,*+ARl,R3 

R3,Rl,R6 
*+AR2,*+ARO,R4 

R6,*+ARO 
R3,Rl 
*AR2,R5 
*+ARl,R7 
*AR3,*AR1,R3 
R5,*ARO,Rl 
Rl,*+ARl 
R3,Rl,R6 
R5,*ARO,R2 
R6, *ARO++ (IRO) 

Command to load data page pointer 

@STAGE holds the current stage number 
IRO=2*Nl (because of real/imag) 
IR1=N/4, pointer for SIN/COS table 

Initialize repeat counter of first loop 

Initialize IE inde~ 

JT=RO/2+2 

RO=N2 

ARO points to X(I) 
ARI points to X(Il) 
AR2 points to X(I2) 
AR3 points to X(I3) 

RC should be one less than desired # 

Rl=Y(I)+Y(I2) 

R3=Y(Il)+Y(I3) 
R6=Rl+R3 

R4=Y (I)-Y (12) 
Y (I) =Rl+R3 
Rl=Rl-R3 
R5=X (12) 
R7=Y(Il) 
R3=X (II) +X (13) 
Rl=X (I) +X (12) 
Y (Il) =Rl-R3 
R6=Rl+R3 
R2=X (I) -X (12) 
X(I)=Rl+R3 
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SUBF 
SUBF 
SUBF 

II STF 
SUBF 
ADDF 
STF 

II STF 
SUBF 
ADDF 

BLKI STF 
II STF 

R3,Rl 
*AR3,*AR1,R6 
R7,*+AR3,R3 
Rl,*AR1++(IRO) 
R6,R4,R5 
R6,R4 
R5,*+AR2 
R4,*+AR3 
R3,R2,R5 
R3,R2 
R5,*AR2++(IRO) 
R2,*AR3++(IRO) 

Rl=Rl-R3 
R6=X(Il)-X(I3) 
-R3=Y (Il)-Y (13) 
X(Il)=Rl-R3 
R5=R4-R6 
R4=R4+R6 
Y(I2)=R4-R6 
Y(I3)=R4+R6 
R5=R2-R3 
R2=R2+R3 
X(I2)=R2-R3 
X(I3)=R2+R3 

* IF THIS IS THE LAST STAGE, YOU ARE DONE 

LDI 
ADDI 
CMPI 
BZD 
STI 

@STAGE,AR7 
1,AR7 
@LOGFFT,AR7 
END 
AR7,@STAGE 

* MAIN INNER LOOP 

INLOP: 

LDI 
STI 
LDI 
STI 

LDI 
ADDI 
LDI 
LDI 
ADDI 
ADDI 
STI 
ADDI 
STI 
ADDI 
ADDI 
LDI 
SUBI 
CMPI 
BZD 
LDI 
LDI 
ADDI 
ADDI 
SUBI 
ADDI 
SUBI 

1,AR7 
AR7,@IAl 
2,AR7 
AR7,@LPCNT 

2,AR6 
@LPCNT,AR6 
@LPCNT,ARO 
@IA1,AR7 
@IEINDX,AR7 
@INPUT,ARO 
AR7,@IAl 
RO,ARO,ARI 
AR6,@LPCNT 
RO,AR1,AR2 
RO,AR2,AR3 
@RPTCNT,RC 
1,RC 
@JT,AR6 
SPCL 
@IA1,AR7 
@IA1,AR4 
@SINTAB,AR4 
AR4,AR7,AR5 
1,AR5 
AR7,AR5,AR6 
1,AR6 

Current FFT stage 

Init IAl index 

Init loop counter for inner loop 

Increment inner loop counter 

IA1=IA1+IE 
(X(I),Y(I» pointer 

(X(Il),Y(Il» pointer 

(X(I2),Y(I2» pointer 
(X(I3),Y(I3» pointer 

RC should be one less than desired # 
If LPCNT=JT, go to 
special butterfly. 

Create cosine index AR4 

IA2=IA1+IA1-l 

IA3=IA2+IA1-l 
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* 
* 

* 

II 

II 

* 

II 

II 

II 

II 

II 
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; SECOND LOOP 

RPTB 
ADDF 

ADDF 

BLK2 
*+AR2,*+ARO,R3 

*+AR3,*+AR1,R5 

ADDF R5,R3,R6 
SUBF *+AR2,*+ARO,R4 

SUBF R5,R3 
ADDF *AR2,*ARO,R1 
ADDF *AR3,*AR1,R5 , 

R3=Y(I)+Y(I2) 

R5=Y(I1)+Y(I3) 
R6=R3+R5 

R4=Y(I)-Y(I2) 
R3=R3-R5 
R1=X(I)+X(I2) 
R5=X(I1)+X(I3) 

MPYF R3,*+AR5(IR1)~R6 R6=R3*C02 
STF R6,*+ARO Y(I)=R3+R5 
ADDF R5,R1,R7 R7=R1+R5 
SUBF *AR2,*ARO,R2 R2=X (I) -x (I2) 
SUBF R5,R1 R1=R1-R5 
MPYF R1,*AR5,R7 R7=R1*SI2 
STF R7, *ARO++ (IRO) X(I)=R1+R5 
SUBF R7,R6 R6=R3*C02-R1*SI2 
SUBF *+AR3,*+AR1,R5 

R5=Y(I1)-Y(I3) 
MPYF Rl,*+AR5(IR1),R7 R7=Rl*C02 
STF R6,*+ARl Y(Il)=R3*C02-R1*SI2 
MPYF R3,*AR5,R6 R6=R3*SI2 
ADDF R7,R6 R6=R1*C02+R3*SI2 
ADDF R5,R2,R1 R1=R2+R5 
SUBF R5,R2 R2=R2-f-5 
SUBF *AR3,*AR1,R5 R5=X (11) -x (13) 
SUBF R5,R4,R3 R3=R4-R5 
ADDF R5,R4 R4=R4+R5 
MPYF R3,*+AR4(IR1),R6 R6=R3*C01 
STF R6, *AR1++ (IRO) X(I1)=R1*C02+R3*SI2 
MPYF R1,*AR4,R7 R7=R1*SI1 
SUBF R7,R6 ; R6=R3*C01-R1*SI1 
MPYF Rl, *+AR4 (IR1) ,R6 ; R6=R1*C01 
STF R6,*+AR2 Y(I2)=R3*C01-R1*SI1 
MPYF R3,*AR4,R7 R7=R3*SI1 
ADDF R7,R6 ; R6=R1*C01+R3*SI1 
MPYF R4, *+AR6 (IR1) , R6 ; R6=R4*C03 
STF R6, *AR2++ (IRO) X(I2)=R1*C01+R3*SI1 
MPYF R2,*AR6,R7 R7=R2*SI3 
SUBF R7,R6 R6=R4*C03-R2*SI3 
MPYF R2,*+AR6(IR1),R6 R6=R2*C03 
STF R6,*+AR3 Y(I3)=R4*C03-R2*SI3 
MPYF R4,*AR6,R7 R7=R4*SI3 
ADDF R7,R6 R6=R2*C03+R4*SI3 
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BLK2 
* 

STF 

CMPI 
BP 
BR 

R6, *AR3++ (IRO) 

@LPCNT,RO 
INLOP 
CONT 

x(i3)=R2*C03+R4*SI3 

LOOP BACK TO THE INNER LOOP 

* SPECIAL BUTTERFLY FOR W=J 

SPCL LDI 

* 

* 

* 

LSH 
ADDI 

RPTB 
ADDF 
SUBF 
ADDF 

SUBF 

ADDF 
SUBF 
ADDF 
ADDF 

SUBF 
ADDF 
STF 

II STF 

* 

SUBF 
SUBF 

STF 
II STF 

ADDF 
SUBF 
SUBF 
ADDF 
SUBF 
MPYF 
ADDF 
MPYF 

II STF 
SUBF 
MPYF 

II STF 
ADDF 
MPYF 

BLK3 STF 
II STF 

CMPI 
BPD 

IR1,AR4 
-1,AR4 
@SINTAB,AR4 

BLK3 
*AR2,*ARO,R1 
*AR2,*ARO,R2 
*+AR2,*+ARO,R3 

*+AR2,*+ARO,R4 

Point to SIN(4S) 
Create cosine index AR4=C021 

Rl=X(I)+X(I2) 
R2=X(I)-X(I2) 

R3=Y(I)+Y(I2) 

R4=Y(I)-Y(I2) 
*AR3,*AR1,RS RS=X(Il)+X(I3) 
R1,RS,R6 R6=RS-R1 
RS,R1 Rl=R1+RS 
*+AR3,*+AR1,R5 

R5,R3,R7 
R5,R3 
R3,*+ARO 
R1, *ARO++ (IRO) 
*AR3,*AR1,R1 
*+AR3,*+ARl,R3 

R6,*+ARI 
R7,*AR1++(IRO) 
R3,R2,RS 
R2,R3,R2 
R1,R4,R3 
R1,R4 
R5,R3,Rl 
*AR4,Rl 
RS,R3 
*AR4,R3 
R1,*+AR2 
R4,R2,R1 
*AR4,Rl 
R3, *AR2++ (IRO) 
R4,R2 
*AR4,R2 
R1,*+AR3 
R2, *AR3++ (IRO) 

@LPCNT,RO 
INLOP 

R5=Y (11) +Y (I3) 
R7=R3-R5 
R3=R3+R5 
Y(I)=R3+R5 
X(I)=Rl+R5 
Rl=X (Il)-X (13) 

R3=Y(I1)-Y(I3) 
Y(Il)=R5-Rl 
X(Il)=R3-R5 
RS=R2+R3 
R2=-R2+R3 
R3=R4-Rl 
R4=R4+R1 
Rl=R3-R5 
Rl=Rl*C021 
R3=R3+RS 
R3=R3*C021 
Y(I2)=(R3-R5)*C021 
Rl=R2-R4 
Rl=Rl*C021 
X(I2)=(R3+R5)*C021 
R2=R2+R4 
R2=R2*C021 
Y(I3)=-(R4-R2)*C021 
X(I3)=(R4+R2)*C021 

Loop back to the inner loop 
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CONT LDI @RPTCNT,AR7 
LDI @IEINDX,AR6 
LSH 2,AR7 Increment repeat counter for 

?< next time 
STI AR7,@RPTCNT 
LSH 2,AR6 IE=4*IE 
STI AR6,@IEINDX 
LDI RO,IRO Nl=N2 
LSH -3,RO 
ADDI 2,RO 
STI RO,@JT JT=:=N2/2+2 
SUBI 2,RO 
LSH 1,RO N2=N2/4 
BR LOOP Next FFT stage 

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING 

END: 

II 
BITRV 
II 

SELF· 

LDI @FFTSIZ,RC RC=N 
SUBI 1,RC RC should be one less than desired # 
LDI @FFTSIZ,IRO IRO=size of FFT=N 
LDI 2,IRl 
LDI @INPUT,ARO 
LDP STORE 
LDI @STORE,ARl 

RPTB BITRV 
LDF *+ARO(l),RO 
LDF *ARO++(IRO)B,Rl 
STF RO,*+AR1(1) 
STF Rl, *AR1++ (IR1) 

BR SELF ; Branch to itself at the end. 
.end 

Most often, the data to be transformed is a sequence of real numbers. In this 
case, the FFT demonstrates certain symmetries that permit the reduction of 
the computational load even further. Example 11-38 shows the generic imple­
mentation of a real-valued, radix-2 FFT. For such an FFT, the total storage re­
quired for a length-N transform is only N locations; in a complex FFT, 2N are 
necessary. Recovery of the rest of the points is based on the symmetry condi­
tions. 
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Example 11-38. Real, Radix-2 FFT 
* * TITL REAL, RADIX-2 FFT 
* 
* GENERIC PROGRAM TO DO A RADIX-2 REAL FFT COMPUTATION IN TMS320C3x. 
* * THE PROGRAM IS TAKEN FROM THE PAPER BY SORENSEN ET AL., JUNE 1987 
* ISSUE OF THE TRANSACTIONS ON ASSP. 
* * THE REAL. DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS 
* DONE IN-PLACE. THE BIT-REVERSAL IS DONE AT THE BEGINNING OF 
* THE PROGRAM. 
* 
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA 
* SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE 
* THE GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE 
* SIZE OF THE FFT NAND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE 
* AND SPECIFIED DURING LINKING. THE LENGTH OF THE TABLE IS 
* N/4 + N/4 = N/2. 
* 
* 

.globl FFT 

.globl N 

.globl M 

.globl SINE 

.bss INP,1024 

.text 

* INITIALIZE 

FFTSIZ .word N 
LOGFFT .word M 
SINTAB .word SINE 
INPUT .word INP 

FFT: LDP FFTSIZ 

* DO THE BIT-REVERSING AT 
LDI @FFTSIZ,RC 

Entry point for execution 
FFT size 
LOG2(N) 
Address of sine table 

Memory with input data 

; Command to load data page printer 

THE BEGINNING 
RC=N 

SUBI 1,RC RC should be one less than desired # 
LDI 
LSH 
LDI 
LDI 

RPTB 
CMPI 
BGE 
LDF 

II LDF 
STF 

II STF 

@FFTSIZ,IRO 
-1, IRO 
@INPUT,ARO 
@INPUT,ARl 

BITRV 
AR1,ARO 
CONT 
*ARO,RO 
*AR1,Rl 
RO,*AR1 
R1,*ARO 

IRO=half the size of FFT=N/2 

Exchange locations only 
if ARO<ARl 
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CaNT Nap 
BITRV Nap 

*ARO++ 
*AR1++(IRO)B 

* LENGTH-TWO BUTTERFLIES 

LDI @INPUT,ARO ARO points to X(I) 
LDI IRO,RC Repeat N/2 times 
SUBI 1,RC RC should be one less than desired # 

RPTB BLK1 
ADDF *+ARO,*ARO++,RO 

* RO=X(I)+X(I+1) 
SUBF *ARO,*-ARO,R1 

* R1=X (I)-X (1+1) 
BLK1 STF RO,*-ARO X(I)=X(I)+X(I+1) 
II STF R1,*ARO++ X(I+l)=X(I)-X(I+l) 

* FIRST PASS OF THE DO-20 LOOP (STAGE K=2 IN DO-10 LOOP) 

LDI 
LDI 
LDI 
LSH 
SUBI 

RPTB 
ADDF 

* 
SUBF 

* 
NEGF 

II STF 
BLK2 STF 

* 
II STF 

@INPUT,ARO 
2,IRO 
@FFTSIZ,RC 
-2,RC 
1,RC 

ARO points to X(I) 
IRO=2=N2 

Repeat N/4 times 
RC should be one less than desired # 

BLK2 
*+ARO(IRO),*ARO++(IRO),RO 

; RO=X (I) +X (1+2) 
*ARO,*-ARO(IRO),R1 

*+ARO,RO 
RO, *-ARO (IRO) 
R1, *ARO++ (IRO) 

RO,_*+ARO 

R1=X (I) -x (1+2) 
RO=-X (1+3) 
X(I)=X(I)+X(I+2) 

X(I+2)=X(I)-X(I+2) 
X (1+3) =-X (1+3) 

* MAIN LOOP (FFT STAGES) 

LDI @FFTSIZ,IRO 
LSH 
LDI 
LDI 
LDI 

LOOP LSH 
LSH 
LSH 

-2,IRO 
3,R5 
1,R4 
2,R3 
-l,IRO 
1,R4 
1,R3 

IRO=inde:.: for E 
R5 holds the current stage number 
R4=N4 
R3=N2 
I;:=E/2 
N4=2*N4 
N2=2*N2 

* INNER LOOP (DO-20 LOOP IN THE PROGRAM) 

LDI 
INLOP LDI 

ADDI 
LDI 

LDI 
ADDI 
LDI 

@INPUT,AR5 
IRO,ARO 
@SINTAB,ARO 
R4,IR1 

AR5,ARI 
1,AR1 
ARl,AR3 

AR5 points to X(I) 

ARO points to SIN/COS table 
IR1=N4 

ARl points to X(Il)=X(I+J) 
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Example 11-38. Real, Radix-2 FFT (Concluded) 

* 

* 

* 
II 

* 
II 

* 

II 

* 

ADDI 
LDI 
SUBI 
ADDI 

LDF 

ADDF 

SUBF 

STF 
NEGF 
NEGF 

STF 
STF 

LDI 
LSH 
LDI 
SUBI 

RPTB 
MPYF 

MPYF 
MPYF 
ADDF 
MPYF 

SUBF 
SUBF 
ADDF 

II STF 
ADDF 

II STF 
SUBF 

II STF 
BLK3 STF 

SUBI 
ADDI 
CMPI 
BLTD 
ADDI 
NOP 
NOP 

R3,AR3 AR3 points to X(I3)=X(I+J+N2) 
AR3,AR2 
2,AR2 AR2 points to X (I2) =X (I-J+N2) 
R3,AR2,AR4 AR4 points to X (14) =X (I-J+Nl) 

*AR5++(IR1),RO 
; RO=X (I) 

*+AR5(IR1),RO,Rl 
, Rl=X (I) +X (1+N2)· 

RO,*++AR5(IR1),RO 

Rl, *-AR5 (IR1) 
RO 
*++AR5(IR1),Rl 

RO,*AR5 
Rl,*AR5 

*INNERMOST LOOP 

@FFTSIZ,IRl 
-2,IRl 
R4,RC 
2,RC 

RO=-X (I) +X (I+N2) 
X(I)=X(I)+X(I+N2) 
RO=X (I) -X (I+N2) 

Rl=-X (I+N4+N2) 
X(I+N2)=X(I)-X(I+N2) 
X(I+N4+N2)=-X(I+N4+N2) 

IR1=separation between SIN/COS tbls 

Repeat N4-1 times 

BLK3 
*AR3,*+ARO(IR1),RO 

; RO=X (13) *COS 
*AR4,*ARO,Rl ; Rl=X(I4)*SIN 
*AR4,*+ARO(IR1),Rl ; Rl~X(I4)*COS 
RO,Rl,R2 ; .R2=X(I3)*COS+X(I4)*SIN 
*AR3,*ARO++(IRO),RO 

RO,Rl,RO 
*AR2,RO,Rl 
*AR2,RO,Rl 
Rl,*AR3++ 
*AR1,R2,Rl 
Rl, *AR4--
R2,*AR1,Rl 
Rl,*AR1++ 
Rl, *AR2--

. @ INPUT, AR5 
R4,AR5 
@FFTSIZ,AR5 
INLOP 
@INPUT,AR5 

RO=X(I3)*SIN 
RO=-X(I3) *SIN+X(I4) *COS 
Rl=-X(I2)+RO 
Rl=X(I2)+RO 
X(I3)=-X(I2)+RO 
Rl=X(Il)+R2 
X(I4)=X(I2)+RO 
Rl=X(Il)-R2 
X(Il)=X(Il)+R2 
X (12) =X (Il)-R2 

AR5=I+Nl 

Loop back to the inner loop 

ADDI 1,R5 

END 

CMPI @LOGFFT,R5 
BLE LOOP 

BR 
.end 

END Branch to itself at the end. 
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The TMS320C3x quickly executes FFT lengths up to 1024 points (complex) 
or 2048 (real), covering most applications, because it can do so almost entirely 
in on-chip memory. Table 11-1 summarizes the execution time required for 
FFT lengths between 64 and 1024 points for the three algorithms in 
Example 11-35,11-37, and 11-38. 

Table 11-1. TMS320C3x FFT Timing Benchmarks 

11.4.5 Lattice Filters 
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Number FFTTlming 
of Points In milliseconds 

RADIX-2 RADlX-4 RADIX-2 
(Complex) (complex) (real) 

64 0.165 0.123 0.077 
128 0.370 - 0.174 
256 0.816 0.624 0.387 
512 1.784 - 0.857 
1024 3.873 3.040 1.879 

1024* 2.366 

• Code is found in Digital Signal Processing Applications With the TMS320 Family, 
Volume 3. 

The lattice form is an alternative way of implementing digital filters; it has found 
applications in speech processing, spectral estimation, and other areas. In this 
discussion, the notation and terminology from speech processing applications 
are used. . 

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 1/H(z) 
will be a filter having only zeros, and it will be called the inverse filter. The in­
verse lattice filter is shown in Figure 11-5. These equations describe the filter 
in mathematical terms: 

f(i,n) =f(i-1,n) +k(i) b(i-1,n-1) 
b(i,n) =b(i-1,n-1) +k(i) f(i-1,n) 

Initial conditions: 

f (O,n) = b (O,n) = x (n) 

Final conditions: 

y(n) = f( p,n). 

In the above equation, f (i,n) is the forward error, b (i,n) is the backward error, 
k (i) is the i-th reflection coefficient, x (n) is the input, and y (n) is the ou.tput 
signal. The order of the filter (i.e., the number of stages) is p. In the linear pre­
dictive coding (LPC) method of speech processing, the inverse lattice filter is 
used during analysis, and the (forward) lattice filter during speech synthesis. 
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Example 11-39. Inverse Lattice Filter 
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*, TITL INVERSE LATTICE FILTER 
* 
* 
* SUBROUTINE L A TIN V 
* 
* LATINV == LATTICE FILTER (LPC INVERSE FILTER - ANALYSIS) 
* 
* 
* TYPICAL CALLING SEQUENCE: 
* 

load 
load 
load 
load 
CALL 

R2 
ARO 
ARI 
RC 
LATINV 

ARGUMENT ASSIGNMENTS: 
ARGUMENT I FUNCTION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

--------+-------------------------------------

* 
* 
* 
* 
* 
* 
* 
* 

R2 I f ( ° , n) = x (n) 
ARO I ADDRESS OF FILTER COEFFICIENTS (k(l)) 
ARI I ADDRESS OF BACKWARD PROPAGATION 

VALUES (b(O,n-l)) 
RC RC = P - 2 

REGISTERS USED AS INPUT: R2, ARO, ARl, RC 
REGISTERS MODIFIED: RO, Rl, R2, R3, RS, RE, RC, ARO, ARI 
REGISTER CONTAINING RESULT: R2 (f(p,n)) 

* PROGRAM SIZE: 10 WORDS 
* 
* EXECUTION CYCLES: 13 + 3 * (p-l) 
* 
* 

.global LATINV 
* 
* i = 1 

* 
LATINV MPYF3 *ARO, *ARl, RO 

* 
* 

k(l) * b(O,n-l) -> RO 
Assume f(O,n) -> R2. 

LDF 
MPYF3 

R2,R3 ; Put b(O,n) = f(O,n) -> R3. 

* 
* 

*ARO++(1),R2,Rl 
k(l) * f(O,n) -> Rl 
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Figure 11-7. Structure of the (Forward) Lattice Filter 

x(n) 

Example 11-40. Lattice Filter 
* TITL LATTICE FILTER 
* 
* 
* SUBROUTINE L A TIC E 
* 
* 
* 
* 
* 
* 
* 

LOAD 
LOAD 
LOAD 
CALL 

ARO 
AR1 
RC 
LATICE 

* ARGUMENT ASSIGNMENTS: 
* ARGUMENT I FUNCTION 

f(p-1. n) 
~ ~ 

B b(p-~.n) 

* --------+-------------------------------------
* R2 I F(P,N) = E(N) = EXCITATION 
* ARO I ADDRESS OF FILTER COEFFICIENTS (K(P» 
* AR1 I ADDRESS OF BACKWARD PROPAGATION VALUES (B(P-1,N-1» 

IRO I 3 
* RC I RC = P - 3 

* 
* REGISTERS USED AS INPUT: R2, ARO, AR1, RC 
* REGISTERS MODIFIED: RO, R1, R2, R3, RS, RE, RC, ARO, AR1 
* REGISTER CONTAINING RESULT: R2 (f(O,n» 

* 
* STACK USAGE: NONE 
* 
* PROGRAM SIZE: 12 WORDS 
* 
* EXECUTION CYCLES: 15 + 3 * (P-2) 
* 

* 
* 

.globa1 LATICE 

LATICE MPYF3 *ARO,*AR1,RO 

* K(P) * B(P-1,N-1) -> RO 
ASSUME F(P,N) -> R2. 

y(n) 

SUBF3 
MPYF3 

RO,R2,R2 ; F(P,N)-K(P)*B(P~1,N-1) =F(P-1,N) _.> R2 
II 

II 
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SUBF3 

MPYF3 

MPYF3 
ADDF3 

*-~RO (1), *-~R1 (1) , RO 
; K(P-1) * B(P-2,N-1) -> RO 

RO,R2,R2 ; F(P-1,N)-K(P-1)*B(P-2,N-1) =F(p-2,N) -> R2 

*-~RO (1), *-~R1 (1) ,RO 
K(P-2) * B(P-3,~-1) -> RO 

R2,*+ARO(1),R1; F(P-2,N) * K(P-1) -> R1 
R1,*+AR1(1),R3; F(P-2,N) * K(P-1) + B(P-2,N-l) B(P-1,N) -> R3 
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* 
RPTB 
SUBF3 

II MPYF3 

STF 
II MPYF3 
LOOP ADDF3 

STF 
STF 

1 <= I <= P-2 

LOOP 
RO,R2,R2 i F(I,N) - K(I) * B(I-1,N-1) =F(I-1,N) ~> R2 
*- -ARO (1) , *- -.A.R1 (1) , RO 

K(I-1) * B(I-2,N-1) -> RO 
R3,*+AR1(IRO) B(I+1,N) -> B(I+1,N-1) 
R2,*+ARO(1),R1i F(I-1,N) *K(I) ->R1 
R1,*+AR1(1),R3 i F(I-1,N) * K(I) + B(I-1,N-l) =B(I,N) -> R3 
R3,*+AR1(2) 
R2, *+AR1 (1) 

B(l,N) -> B(1,N-1) 
F(O,N) -> B(O,N-l) 

* RETURN SEQUENCE 
* 

* * end 
* 

RETS 

.end 
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11.5 Programming Tips 

Programming style is highly personal and reflects each individual's prefer­
ences and experiences. The purpose of this section is not to impose any partic­
ular style. Instead, it emphasizes some of the features of the TMS320C3x that 
can help in producing faster and/or shorter programs. The tips cover both C 
compiler and assembly language programming. 

11.5.1 C-Callable Routines 

The TMS320C3x was designed with a large register file, software stack, and 
large memory space in orderto implement a high-level language (HLL) compil­
er easily. The first such implementation supplied is a C compiler. Use of the C 
compiler increases the transportability of applications that have been tested 
on large, general-purpose computers, and decreases their porting time. 

For best usage of the compiler, complete the following steps: 

1) Write the application in the high-level language. 
2) Debug the program. 
3) Estimate if it runs in real-time. 
4) If it doesn't, identify places where most of the execution time is spent. 
5) Optimize these areas by writing assembly language routines that imple­

ment the functions. 
6) Call the routines from the C program as C functions. 

When writing a C program, you can increase the execution speed by maximiz­
ing the use of register variables. For more information, refer to the TMS320C3x 
C Compiler Reference Guide. 

Certain conventions must be observed in writing a C-callable routine. These 
conventions are outlined in the Runtime Environment chapter of the 
TMS320C3x C Compiler Reference Guide. Certain registers are saved by the 
calling function, and others need to be saved by the called function. The C com­
piler manual helps achieve a clean interface. The end result is the readability 
and natural flow of a high-level language combined with the efficiency and spe­
cial-feature use of assembly language. 

11.5.2 Hints for Assembly Coding 
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Each program has particular requirements. Not all possible optimizations will 
make sense in every case. The suggestions presented in this section can be 
used as a checklist of available software tools. 
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The TMS320C3x's advanced interface design can be used to implement a 
wide variety of system configurations. Its two external buses and DMA capabil­
ity provide a parallel 32-bit interface to external devices, while the interrupt in­
terface, dual serial ports, and general-purpose digital 1/0 provide communica­
tion with a muHitude of peripherals. 

This chapter describes how to use the TMS320C3x's interfaces to connect to 
various external devices. Specific discussions include implementation of par­
allel interface to devices with and without wait states, use of general-purpose 
110, and system control functions. All interfaces shown in this chapter have 
been built and tested to verify proper operation and apply to the 
TMS320C30-33. Comparable designs for the other TMS320C3x devices can 
be implemented with appropriate logic. 

Major topics discussed in this chapter are as follows: 

[J System Configuration Options Overview (Section 12.1 on page 12-2) 

Q Primary Bus Interface (Section 12.2 on page 12-4) 

• Zero Wait-State Interface to RAMs 
II Ready Generation 
• Bank Switching Techniques 

[J Expansion Bus Interface (Section 12.3 on page 12-18) 

• AID Converter Interface 
• DIA Converter Interface 

[J System Control Functions (Section 12.4 on page 12-25) 

.1'1 Clock Oscillator Circuitry 
• Reset Signal Generator 

[J Serial Port Interface (Section 12.5 on page12-30) 

[J User Target Design Considerations When Using the XDS1000 
(Section 12.6 on page 12-34) 

[J User Target Design Considerations When Using the Hewlett Package 
64776 AnalYSis Subsystem (Section 12.7 on page 12-37). 

[J TMS320C30 and TMS320C31 Differences (Section 12.8 on page 12-41). 
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12.1 System Configuration Option$ Overview 

The various TMS320C3x interfaces connect to a wide variety of different de­
vice types. Each of these interfaces is tailored to a particular family of devices. 

12.1.1 Categories of Interfaces on the T.MS320C3x 

The interface types on the TMS320C3x fall into several different categories, 
depending on the devices to which they are intended to be connected. Each 
interface comprises one or more signal lines that transfer information and con­
trol its operation. Shown in Figure 12-1 are the signal line groupings for each 
of these various interfaces. 

Figure 12-1. External Interfaces on the TMS320C3x 
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... .... IOSTRB .... ... MSTRB "'" 
TMS320C3x 

All of the interfaces are independent of one another and different operations 
may be performed simultaneously on each interface. 

The primary and expansion buses implement the memory-mapped interface 
to the device. The external DMA interface allows external devices to cause the 
processor to relinquish the primary bus and allow direct memory access. 
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12.1.2 Typical System Block Diagram 

The devices that can be interfaced to the TMS320C3x include memory, DMA 
devices, and numerous parallel and serial peripherals and 110 devices. 
Figure 12-2 illustrates a typical configuration of a TMS320C3x system with dif­
ferenttypes of external devices and the interfaces to which they are connected. 

Figure 12-2. Possible System Configurations 

Memory Memory 

TMS320C3x 
Peripherals External DMA Interface 

Peripherals 

Primary Bus Expansion Bus 

Peripherals 
Interrupt 

Timer Interface I/O Devices Interface 

External Flags 

System Serial Serial 
Control Ports Ports 

Bit 110 TCM29C13 
CODEC 

Clock and TLC3204x 
Reset AIC Generators, Analog I/O 

etc. 

This block diagram constitutes essentially a fully expanded system. In an ac­
tual design, any subset of the illustrated configuration may be used as appro­
priate. 
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12.2 Primary Bus Interface 

The TMS320C3x uses the primary bus to access the majority of its 
memory-mapped locations. Therefore, typically, when a large amount of exter­
nal memory is required in a system, it is interfaced to the primary bus. The ex­
pansion bus (discussed in Section 12.3 on page 12-18) actually comprises two 
mutually exclusive interfaces, controlled by the MSTRB and IOSTRB signals, 
respectively. Cycles on the expansion bus controlled by the MSTRB signal are 
essentially equivalent to cycles on the primary bus, with the exception that 
bank switching is not implemented on the expansion bus. Accordingly, the dis­
cussion of primary bus cycles in this section applies equally to MSTRB cycles 
on the expansion bus. 

Although both the primary bus and the expansion bus may be used to interface 
to a wide variety of devices, the devices most commonly interfaced to these 
buses are memories. Therefore, detailed examples of memory interface are 
presented in this section. 

12.2.1 Zero Wait-State Interface to Static RAMs 

12-4 

Zero wait-state read access time for the TMS320C3x is determined by the dif­
ference between the cycle time (specification 10 on page 13-21) and the sum 
of the times for H1 low to address valid (specification 11 on page 13-23) and 
data setup before next H1 low (specification 15.1 on page 13-23). For exam­
ple, for full-speed, zero wait-state interface to any device, the 60-ns 
TMS320C3x requires a read access time of 30 ns from address stable to data 
valid. Because, for most memories, access time from chip select is the same 
as access time from address, it is theoretically possible to use 30-ns memories 
at full speed with the TMS320C3x-33. This, however, dictates that there be no 
delays present between the processor and the memories. This is usually not 
the case in practice, because of interconnection delays and the fact that some 
gating is normally required for chip-select generation. Therefore, slightly faster 
memories are generally required in most systems. 

Among currently available RAMs, there are two distinct categories of devices 
with different interface characteristics: RAMs without output enable control 
lines (OE), which include the 1-bit wide organized RAMs and most of the 4-bit 
wide RAMs, and those with OE controls, which include the byte-wide and a few 
ot"the 4-bit wide RAMs. Many of the fastest RAMs do not provide OE control; 
they use chip-select (CS) controlled write cycles to insure that data outputs do 
not turn on for write operations. In CS-controlled write cycles, the write control 
line (WE) goes low before CS goes low, and internal logic holds the outputs 
disabled until the cycle is completed. Using CS-controlled write cycles is an ef­
ficient way to interface fast RAMs without OE controls to the TMS320C30 at 
full speed. 

In the case of RAMs with OE controls, the use of this signal can provide added 
flexibility in many systems. Additionally, many of these devices can be inter-
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faced using CS-controlled write cycles with OE tied low, in the same manner 
as with RAMs without OE controls. There are, however, two requirements for 
interfacing to OE RAMs in this fashion. First, the RAMs OE input must be gated 
with chip select and WE internally so that the device's outputs do not turn on 
unless a read is being performed. Second, the RAM must allow its address in­
puts to change while WE is low; some RAMs specifically prohibit this. 

Figure 12-3 shows the TMS320C3x interfaced to Cypress Semiconductor's 
CY7C186 25-ns 8K x 8-bit CMOS static RAMs with the OE control input tied 
low and using a CS-controlled write cycle. 

Figure 12-3. TMS320C3x Interface to Cypress Semiconductor CY7C186 CMOS SRAM 
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In this circuit, the two chip selects on the RAM are driven by STRB and A23, 
which are ANDed together internally. The use of A23 locates the RAM at ad­
dresses OOOOOh through 03FFFh in external memory, and STRB establishes 
the CS-controlled write cycle. The WE control input is then driven by the 
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Figure 12-5. Write.Operations Timing 
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If more complex chip-select decode is required than can be accomplished in 
time to meet zero-wait state timing, wait states or bank switching techniques 
(discussed in a later section) should be used. 

Note that the CY7C186's OE control is gated internally with CS; therefore, the 
RAM's outputs are not enabled unless the device is selected. This is critical if 
there are any other devices connected to the same bus; if there are no other 
devices connected to the bus, then OE need not be gated internally with chip 
select. 

RAMs without OE controls can also be easily interfaced to the TMS320C3x by 
using a similar approach to that used with RAMs with OE controls. If only one 
bank of memory is impl~mented, and no other devices are present on the bus, 
the memories' CS input can usually be connected to STRB directly. If several 
devices must be selected, however, a gate is generally required to AND the de­
vice select and STRB to drive the CS input to generate the chip-select con­
trolled write cycles. In either case, the WE input is driven by the TMS320C3x 
R/W signal. Provided sufficiently fast gating is used, 25-ns RAMs may still be 
used. 

As with the case of RAMs with OE control lines, this approach works well if only 
a few banks of memory are implemented where the chip-select decode can be 
accomplished with only one level of gating. If many banks are required to imple­
ment very large memory spaces, bank switching can be used to provide for 
multiple bank select generation while still maintaining full-speed accesses 
within each bank. Bank switching is discussed in detail in a later section. 
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12.2.2 Ready Generation 

12-8 

The use of wait states can greatly increase system flexibility and reduce hard­
ware requirements over systems without wait-state· capability. The 
TMS320C3x has the capability of generating wait states on either the primary 
bus orthe expansion bus, and both buses have independent sets of ready con­
trollogic.This subsection discusses ready generation from the perspective of 
the primary bus interface; however, wait-state operation on the expansion bus 
is similarto that of the primary bus. Therefore, these discussions pertain equal­
ly well to expansion bus operation. Accordingly, ready generation is not in­
cluded in the specific discussions of the expansion bus interface. 

Wait states are generated on the basis of 

Q the internal wait-state generator, 

Q the external ready input (ROY), or 

Q the logical AND or OR of the two. 

When enabled, internally generated wait states effect all external cycles, re­
gardless of the address accessed. If different numbers of wait states are re­
quired for various external devices, the external ROY input may be used to tai­
lor wait-state generation to specific system requirements. 

If the logical AND (electrical OR) of the wait count and external ready signals 
is selected, the later of the two signals will control the internal ready signal, and 
both signals must occur. Accordingly, external ready control must be implem­
ented for each wait-state device, and the wait count ready signal must be en­
abled. 

If the logical OR (or electrical AND, since the signals are low true) of the exter­
nal and internal wait-coLint ready signals is selected, the earlier of the two sig­
nals will generate a ready condition and allow the cycle to be completed. It is 
not required that both signals be present. 

ORing of the Ready Signals 

The OR of the two ready signals can be used to implement wait states for de­
vices that require a greater number of wait states than are implemented with 
external logic (up to seven). This feature is useful, for example, if a system con­
tains some fast and some slow devices. In this case, fast devices can generate 
a ready signal externally with a minimum of logic, and slow devices can use 
the internal wait counter for larger numbers of wait states. Thus, when fast de­
vices are accessed, the external hardware responds promptly with a ready sig­
nal that terminates the cycle. When slow devices are accessed, the external 
hardware does not respond, and the cycle is appropriately terminated after the 
internal wait count. 

The OR of the two ready signals may also be used if conditions occur that re­
quire termination of bus cycles prior to the number of wait states implemented 
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with external logic. In this case, a shorter wait count is specified internally than 
the number of wait states implemented with the external ready logic, and the 
bus cycle is terminated after the wait' count. This feature may also be used as 
a safeguard against inadvertent accesses to nonexistent memory that would 
never respond with ready and would therefore lock up the TMS320C3x. 

If the OR of the two ready signals is used, however, and the internal wait-state 
count is less than the number of wait states implemented externally, the exter­
nal ready generation logic must have the ability to reset its sequencing to allow 
a new cycle to begin immediately following the end of the internal wait count. 
This requires that, under these conditions, consecutive cycles must be from 
independently decoded areas of memory and that the external ready genera­
tion logic be capable of restarting its sequence as soon as a new cycle begins. 
Otherwise, the external ready generation logic may lose synchronization with 
bus cycles and therefore generate improperly timed wait states. 

ANDing of the Ready Signals 

The AND of the two ready signals can be used to implement wait states for de­
vices that are equipped to provide a ready signal but cannot respond quickly 
enough to meet the TMS320C3x's timing requirements. In particular, if these 
devices normally indicate a ready condition and, when accessed, respond with 
a wait until they become ready, the logical AND of the two ready signals can 
be used to save hardware in the system. In this case, the internal wait counter 
can provide wait states initially and becomes ready after the external device 
has had time to send a not ready indication. The internal wait counter then re­
mains ready until the external device also becomes ready, which terminates 
the cycle. 

Additionally, the AND of the two ready signals may be used for extending the 
number of wait states for devices that already have external ready logic im­
plemented but require additional wait states under certain unique circum­
stances. 

External Ready Generation 

In the implementation of external ready generation hardware, the particular 
technique employed depends heavily on the specific characteristics of the sys­
tem. The optimum approach to ready generation varies, depending on the rela­
tive number of wait-state and non-wait-state devices in the system and on the 
maximum number of wait states required for anyone device. The approaches 
discussed here are intended to be general enough for most applications and 
are easily modifiable to comprehend many different system configurations. 

In general, ready generation involves the following three functions: 

1) Segmentation of the address space in some fashion to distinguish fast and 
slow devices. 
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2) Generating properly timed ready indications. 

3) LogicallyORing all of the separate ready timing signals togetherto connect 
to the physical ready input. 

Segmentation of the address space is required to obtain a unique indication 
of each particular area within the address spacethat requires wait states. This 
segmentation is commonly implemented in a system in the form of chip-select 
generation. Chip-select signals may be used to initiate wait states in many 
cases; however, occasionally, chip-select decoding considerations may pro­
vide signals that will not allow ready input timing requirements to be met. In this 
case, coarse address space segmentation may be made on the basis of a 
small number of address lines, where simpler gating allows signals to be gen­
erated more quickly. In either case, the signal indicating that a particular area 
of memory is being addressed is normally used to initiate a ready or wait-state 
indication. 

Once the region of address space being accessed has been established, a tim­
ing circuit of some sort is normally used to provide a ready indication to the pro­
cessor at the appropriate point inthe cycle to satisfy each device's unique re­
quirements. 

Finally, since indications of ready status from multiple devices are typically 
present, the signals are logically ORed by using a single gate to drive the RDY 
input. 

Ready Control Logic 

One of two basic approaches can be taken in the implementation of ready con­
trol logic, depending upon the state of the ready input between accesses. If 
RDY is low between accesses, the processor is always ready unless a wait 
state is required; if RDY is high between accesses, the processor will always 
enter a wait state unless a ready indication is generated. 

If ROY is low between accesses, control of full-speed devices is straightfor­
,ward; no action is necessary because ready is always active unless otherwise 
required. Devices requiring wait states, however, must drive ready high fast 
enough to meet the input timing requirements. Then, after an appropriate 
delay, a ready indication must be generated. This can be quite difficult in many 
circumstances because wait-state devices are inherently slow and often re­
quire complex select decoding. 

If ROY is high between accesses, zero wait-state devices, which tend to be in­
herently fast, can usually respond immediately with a ready indication. Wait­
state devices may simply delay their select signals appropriately to generate 
a ready. Typically, this approach results in the most efficient implementation 
of ready control logic. Figure 12-6 shows a circuit of this type, which can be 
used to generate 0, 1, or 2 wait states for multiple devices in a system. 
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Figure 12-6. Circuit for Generation of 0, 1, or 2 Wait States for Multiple Devices 
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Example Circuit 

In this circuit, full-speed devices drive ready directly through the '74AS21, and 
the two flip-flops delay wait-state devices' select signals one or two H1 cycles 
to provide 1 or 2 wait states. 

Considering the TMS320C3x-33's ready delay time of 8 ns following address, 
zero wait-state devices must use ungated address lines directly to drive the in­
put of the '74AS21, since this gate contributes a maximum propagation delay 
of 6 ns to the ROY signal. Thus, zero wait-state devices should be grouped to­
gether within a coarse segmentation of address space if other devices in the 
system require wait states. 

With this circuit, devices requiring wait states may take up to 36 ns from a valid 
address on the TMS320C3x to provide inputs to the '74AS20's inputs. Typical­
ly, this allows sufficient time for any decoding required in generating select sig­
nals for slower devices in the system. For example, the 74ALS138, driven by 
address and STRB, can generate select decodes in 22 ns, which easily meets 
the TMS320C3x-33's timing requirements. 
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With this circuit, unused inputs to eitherthe 74AS20s orthe 74AS21 should be 
tied to a logic high level to prevent noise from generating spurious wait states. 

If more than 2 wait states are required by devices within a system, other ap­
proaches may be employed for ready generation. If between three and seven 
wait states are required, additional flip-flops may be included in the same man­
ner shown in Figure 12-6, or internally generated wait states may be used in 
conjunction with external hardware. If more than seven wait states are re­
quired, an external circuit using a counter may be used to supplement the ca­
pabilities of the internal wait-state generators. 

12.2.3 Bank Switching Techniques 

12-12 

The TMS320C3x's programmable bank switching feature can greatly ease 
system design when large amounts of memory are required. Because, in gen­
eral, devices take longer to release the bus than they take to drive the bus, 
bank switching is used to provide a period of time for disabling all device selects 
that would not normally bR present otherwise (refer to Section 7.4 for further 
information regarding bank switching). During this interval, slow devices are 
allowed time to turn off before other devices have the opportunity to drive the 
data bus, thus avoiding bus contention. 

When bank switching is enabled, any time a portion of the high order address 
lines changes, as defined by the contents of the BNKCMPR register, STRB 
goes high for one full H1 cycle. Provided STRB is included in chip-select de­
codes, this causes all devices to be disabled during this period. The next bank 
of devices is not enabled until STRB goes low again. 

In general, bank switching is not required during writes, because these cycles 
always exhibit an inherent one-half H 1 cycle setup of address information be­
fore STRB goes low. Thus, when you use bank switching for read/write de­
vices, a minimum of half of one H1 cycle of address setup is provided for all 
accesses. Therefore, large amounts of memory can be implemented without 
wait states or extra hardware required for isolation between banks. Also, note 
that access time for cycles during bank switching is the same as that of cycles 
without bank switching, and, accordingly, full-speed accesses may still be ac­
complished within each bank. 

When you use bank switching to implement large multiple-bank memory sys­
tems, an important consideration is address line fanout. Besides parametric 
specifications for which account must be made, AC characteristics are also 
crucial in memory system design. With large memory arrays, which co"mmonly 
require large numbers of address line inputs to be driven in parallel, capacitive 
loading of address outputs is often quite large. Because all TMS320C3x timing 
specifications are guaranteed up to a capacitive load of 80 pF, driving greater 
loads will invalidate guaranteed AC characteristics. Therefore, it is often nec­
essary to provide buffering for address lines when driving large memory ar-

Hardware Applications 



#Jr"T1~"IJ' Bus Interface 

rays. AC timings for buffer performance. may then be derated according to 
manufacturer specifications to accommodate a wide variety of memory array 
sizes. 

The circuit shown in Figure 12-7 illustrates the use of bank switching with Cy­
press Semiconductor's 'CY7C185 25-ns 8K x 8 CMOS static RAM. This circuit 
implements 32K 32-bit words of memory with one wait-state accesses within 
each bank. 

Figure 12~7. Bank Switching for Cypress Semiconductor's CY7C185 
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A wait state is required with this implementation of bank memory because of 
the added propagation delay presented by the address bus buffers used in the 
circuit. The wait state is not a function of the memory organization of multiple 
banks or the use of bank switching. When bank switching is used, memory ac­
cess speeds are the same as without bank switching, once bank boundaries 
are crossed. Therefore, no speed penalty is paid when bank switching is used, 
except for the occasional extra cycle inserted when bank boundaries are 
crossed. Note, however, that if the extra cycle inserted when bank boundaries 
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are crossed does impact software performance significantly, code can often 
be restructured to minimize bank boundary crossings, thereby reducing the ef­
fect of these boundary crossings on software performance. 

The wait state forthis bank memory is generated by using the wait-state gener­
ator circuit presented in the previous section. Because A23 is the signal which 
enables the entire bank memory system, the inverted version of this signal is 
ANDed with STRS to derive a one wait-state device select. This signal is then 
connected in the circuit along with the other one-wait-state device selects. 
Thus, any time a bank memory access is made, one wait state is generated. 

Each of the four banks in this circuit is selected by using a decode of A 15-A 13 
generated by the 74AS138 (see Figure 12-8). With the BNKCMPR register 
set to OSh, the banks will be selected on even 8K-word boundaries starting at 
location 080AOOOh in external memory space. 
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Figure 12-8. Bank Memory Control Logic 
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The 74ALS2541 buffers used on the address lines are necessary in this design 
because the total capacitive load presented to each address line is a maximum 
of 20 x 5 pF or 100 pF (bank memory plus zero wait-state static RAM), which 
exceeds the TMS320C3x rated capacitive loading of 80 pF. Using the man­
ufacturers derating curves for these devices at a load of 80 pF (the load pres­
ented by the bank memory) predicts propagation delays at the output of the 
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buffers of a maximum of 16 ns. The access time of a read cycle within a bank 
of the memory is therefore the sum of the memory access time and the maxi­
mum buffer propagation delay, or 25 + 16 = 41 ns, which, since it falls between 
30 and 90 ns, requires one wait state on the TMS320C3x-33. 

The 74ALS2541 buffers offer one additional system performance enhance­
ment in that they include 25-ohm resistors in series with each individual buffer 
output. These resistors greatly improve the transient response characteristics 
ofthe buffers, especially when driving CMOS loads such as the memories used 
here. The effect of these resistors is to reduce overshoot and ringing, which 
is common when driving predominantly capacitive loads such as CMOS. Tr..? 
result of this is reduced noise and increased immunity to latchup in the circuit, 
which in turn results in a morereliable memory system. Having these resistors 
included in the buffers eliminates the need to put discrete resistors in the sys­
tem, which is often required in high-speed memory systems. 

This circuit cannot be implemented without bank switching, because data out­
put's turn-on and turn-off delays cause bus conflicts. Here, the propagation 
delay of the 74AS 138 is involved only during bank switches, where there is suf­
ficient time between cycles to allow new chip selects to be decoded. 

The timing of this circuit for read operations using bank switching is shown in 
Figure 12-9. With the BNKCMPR register set to OBh, when a bank switch oc­
curs, the bank address on address lines A23 - A 13 is updated during the ex­
tra H1 cycle while STRB is high. Then, after chip-select decodes have stabi­
lized and the previously selected bank has disabled its outputs, STRB goes low 
forthe next read cycle. Further accesses occur at normal bus timings with one 
wait state, as long as another bank switch is not necessary. Write cycles do not 
require bank switching due to the inherent address setup provided in their tim­
ings. 
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Figure 12-9. Timing for Read Operations Using Bank Switching 
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This timing is summarized in Table 12-1. 

Table 12-1. Bank Switching Interface Timing 

Time Timet 
Interval Event Period 

t1 H1 falling to address vaiid/STRB rising 14 ns 

t2 Address valid to select delay 10 ns 

t3 Memory disable from STRB 10 ns 

t4 H1 falling to STRB 10 ns 

t5 STRB to select delay 4.5 ns 

t6 Memory output enable delay 3 ns 

t Timing for the TMS320C3x-33. 
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12.3 Expansion Bus Interface 
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The TMS320C30's expansion bus interface provides a second complete paral­
lel bus, which can be used to implement data transfers concurrently with, and 
independent of, operations on the primary bus. The expansion bus comprises 
two mutually exclusive interfaces controlled by the MSTRB and 10STRB sig­
nals, respectively. This subsection discusses interface to the expansion bus 
using 10STRB cycles; MSTRB cycles are essentially equivalent in timing to pri­
mary bus cycles and are discussed in Section 12.2. This section applies to 
TMS320C30 devices. 

Unlike the primary bus, both read and write cycles on the I/O portion of the ex­
pansion bus are two H1 cycles in duration and exhibit the same timing. The 
XR/W signal is high for reads and low for writes. Since I/O accesses take two 
cycles, many peripherals that require wait states if interfaced either to the pri­
mary bus or by using MSTRB, may be used in a system without the need for 
wait states. Specifically, in cases where there is only one device on the expan­
sion bus, devices with address access times greater than the 30 ns required 
by the primary bus, but less than 59 ns, can be interfaced to the I/O bus of the 
TMS320C30-33 without wait states. 

A/D Converter Interface 

A/D and D/A converters are components that are commonly required in DSP 
systems and interface efficiently to the I/O expansion bus. These devices are 
available in many speed ranges and with a variety offeatures. While some may 
require one or more wait states on the I/O bus, others may be used at full 
speed. 

Figure 12-10 illustrates a TMS320C30 interface to an Analog Devices 
AD1678 analog-to-digital converter. The AD1678 is a 12-bit, 5-~s converter 
that allows sample rates up to 200 kHz and has an input voltage range of 10 
volts bipolar or unipolar. The converter is connected according to manufactur­
er's specifications to provide 0- to + 1 O-volt operation .. This interface illustrates 
a common approach to connecting devices such as this to the TMS320C30. 
Note that the interface requires only a minimum amount of control logic. 
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Figure 12-10. Interface to AD 1678 AID Converter 
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The AD1678 is a very flexible converter and is configurable in a number of dif­
ferent operating modes. These operating modes include byte orword data for­
mat, continuous or noncontinuous conversions, enabled or disabled chip-se­
lect function, and programmable end of conversion indication. This interface 
utilizes 12-bit word data format, rather than byte format to be compatible with 
the TMS320C3x. Noncontinuous conversions are selected so that variable 
sample rates may be used because continuous conversions occur only at a 
rate of 200 kHz. With noncontinuous conversions, the host processor deter­
mines the conversion rate by initiating conversions through write operations 
to the converter. 
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The chip-select function is enabled, so the chip-select input is required to be 
active when accessing the device. Enabling the chip select function is neces­
sary to allow 'a mechanism for the AD1678 to be isolated from other peripheral 
devices connected to the expansion bus. To establish the desired operating 
modes, the SYNC and 12/8 inputs to the converter are pulled high and EOCEN 
is grounded, as specified in the AD1678 data sheet. 

In this application, the converter's chip select is driven by XA 12, which maps 
this device at 804000h in I/O address space. Conversions are initiated by writ­
ing any data value to the device, and the conversion 'results are obtained by 
reading from the device after the conversion is completed. To generate the de­
vice's start conversion (SC) and output enable (OE) inputs, 10STRB is ANDed 
with XR/W. Therefore, the converter is selected whenever XA 12 is low; OE is 
driven when reads are performed, while SC is driven when writes are per­
formed. 

As with many AID converters, atthe end of a read cycle the AD1678 data output 
lines enter a high-impedance state. This occurs after the output enable (OE) 
or read control line goes inactive. Also common with these types of devices is 
that the data output buffers often require a substantial amount of time to actual­
ly attain a full high-impedance state. When used with the TMS320C30-33, de­
vices must have their outputs fully disabled no later than 65 ns following the 
rising edge of 10STRB because the TMS320C30 will begin driving the data bus 
at this point if the next cycle is a write. If this timing is not met, bus conflicts be­
tween the TMS320C30 and the AD1678 may occur, potentially causing de­
graded system performance and even failure due to damaged data bus driv­
ers. The actual disable time forthe AD1678 can be as long as 80 ns; therefore, 
buffers are required to isolate the converter outputs from the TMS320C30. The 
buffers used here are 74LS244s that are enabled when the AD1678 is read and 
turned off 30.8 ns following 10STRB going high. Therefore, the 
TMS320C30-33 requirement of 65 ns is met. 

When data is read following a conversion, the AD1678 takes 100 ns after its 
OE control line is asserted to provide valid data at its outputs. Thus, including 
the propagation delay of the 74LS244 buffers, the total access time for reading 
the converter is 118 ns. This requires two wait states on the TMS320C30-33 
expansion 1/0 bus. 

The two wait states required in this case are implemented using software wait 
states; however, depending on the overall system configuration, it may be nec­
essaryto implement a separate wait-state generatorforthe expansion bus (re­
fer to section on ready generation). This would be the case if there were multi­
ple devices that required different numbers of wait states connected to the ex­
pansion bus. 

Figure 12-11 shows the timing for read operations between the 
TMS320C30-33 and the AD1678. At the beginning of the cycle, the address 
and XR/W lines become valid t1 = 10 ns following the falling edge of H1. Then, 
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after t2 = 10 ns from the next rising edge of H1, IOSTRB goes low, beginning 
the active portion of the read cycle. After t3 = 5.8 ns, the control logic propaga­
tion delay, the lOR signal goes low, asserting the OE input to the AD1678. The 
'74LS244 buffers take t4 = 30 ns to enable their outputs, and then, following 
the converters access delay and the buffer propagation delay (t5 = 100 + 18 
= 118 ns), data is provided to the TMS320C30. This provides approximately 
46 ns of data setup before the rising edge of 10STRB. Therefore, this design 
easily satisfies the TMS320C30-33's requiremenfof 15 ns of data setup time 
for reads. 

Figure 12-11. Read Operations Timing Between the TMS320C30 and AD1678 
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Unlike the primary bus, read and write cycles on the 1/0 expansion bus are 
timed the same with the exception that XRIW is high for reads and low for writes 
and that the data bus is driven by the TMS320C30 during writes. When writing 
to the AD1678, the '74LS244 buffers do not turn on and no data is transferred. 
The purpose of writing to the converter is only to generate a pulse on the con­
verter's SC input, which initiates a conversion cycle. When a conversion cycle 
is completed, the AD1678's EOC output is used to generate an interrupt on the 
TMS320C30 to indicate that the converted data may be read. 

It should be noted that for different applications, use of TLC 1225 or TLC 1550 
AID converters from Texas Instruments may be beneficial. The TLC1225 is a 
self-calibrating 12-bit-plus-sign bipolar or unipolar converter, which features 
1 0-IlS conversion times. The TLC1550 is a 10-bit, 6-lls converter with a high­
speed DSP interface. Both converters are parallel-interface devices. 

01 A Converter Interface 

In many DSP systems, the requirement for generating an analog output signal 
is a natural consequence of sampling an analog waveform with an AID conver­
ter and then processing the signal digitally internally. Interfacing D/A conver­
ters to the TMS320C30 on the expansion I/O bus is also quite straightforward. 
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As with AID converters, D/A converters are also available in a number of vari­
eties. One of the major distinctions between various types of D/A converters 
is whether or not the converter includes both latches to store the digital value 
to be converted to an analog quantity, and the interface to control those latches. 
With latches and control logic included with the converter, interface design is 
often simplified; however, internal latches are often included only in slower D/A 
converters. 

Because slower converters limit signal bandwidths, the converter used in this 
design was selected to allow a reasonably wide range of signal frequencies 
to be processed, and to illustrate the technique of interfacing to a converter that 
uses external data latches. 

Figure 12-12 shows an interface to an Analog Devices AD565A digital-to-ana­
log converter. This device is a 12-bit, 250-ns current output DAC with an on­
chip 10-volt reference. Using an offchip current-to-voltage conversion circuit 
connected according to manufacturers specifications, the converter exhibits 
output signal ranges of 0 to + 10 volts, which is compatible with the conversion 
range of the AID converter discussed in the previous section. 
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Figure 12-12. Interface Between the TMS320C30 and the AD565A 
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Because this DAC essentially performs continuous conversions based on the 
digital value provided at its inputs, periodic sampling is maintained by periodi­
cally updating the value stored in the external latches. Therefore, between 
sample updates, the digital value is stored and maintained at the latch outputs 
that provide the input to the DAC. This results in the analog output remaining 
stable until the next sample update is performed. 

The external data latches used in this interface are '74LS377 devices that have 
both clock and enable inputs. These latches serve as a convenient interface 
with the TMS320C30; the enable inputs provide a device select function, and 
the clock inputs latch the data. Therefore, with the enable input driven by in­
verted XA 12 and the clock input by lOW, which is the AND of 10STRB and 
XR/W, data will be stored in the latches when a write is performed to I/O ad­
dress 805000h. Reading this address has no effect on the circuit. 
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Figure 12-13 shows a timing diagram of a write operation to the D/A converter 
latches. 

Figure 12-13. Write Operation to the DIA Converter Timing Diagram 

Because the write is actually being performed to the latches, the key timings 
for this operation are the timing requirements for these devices. For proper op­
eration, these latches require simply a minimal setup and hold time of data and 
control signals with respect to the rising edge of the clock input. Specifically, 
the latches require a data setup time of 20 ns, enable setup of 25 ns, disable 
setup of 10 ns, and data and enable hold tim~s of 5 ns. This design provides 
approximately 60 ns of enable setup, 30 ns of data setup, and 7.2 ns of data 
hold time. Therefore, the setup and hold times provided by this design are well 
in excess of those required by the latches. The key timing parameters for this 
interface are summarized in Table 12-2. 

Table 12-2. Key Timing Parameter for DIA Converter Write Operation 

Time Timet 
Interval Event Period 

t1 H1 falling to address valid 10 ns 

t2 XA12 to XA12 delay 5 ns 

t3 H1 rising to IOSTRB falling 10 ns 

t4 IOSTRB to lOW delay 5.8 ns 

t5 Data setup to lOW 30 ns 

t6 Data hold from lOW 7.2 ns 

t Timing for the TMS320C30-33. 
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12.4 System Control Functions 
Several aspects of TMS320C3x system hardware design are critical to overall 
system operation. These include such functions as clock and reset signal gen­
eration and interrupt control. 

12.4.1 Clock Oscillator Circuitry 

You may provide an input clock to the TMS320C3x either from an external 
clock input or by using the onboard oscillator. Unless special clock require­
ments exist, the onboard oscillator is generally a convenient method for clock 
generation. This method requires few external components and can provide 
stable, reliable clock generation for the device. 

Figure 12-14 shows the external clock generator circuit designed to operate 
at 33.33 MHz and to use the internal oscillator circuitry of the TMS320C3x. 
Since crystals with fundamental oscillation frequencies of 30 MHz and above 
are not readily available, a parallel-resonant third-overtone circuit is used. 

Figure 12-14. Crystal Oscillator Circuit 

TMS320C3x-33 

X1 X2/CLKIN 

33,33 MHz 

01----0---

47pF T ::~:: T 20pF T 
In a third-overtone oscillator, the crystal fundamental frequency must be atte­
nuated so'that oscillation is at the third harmonic. This is achieved with an LC 
circuit that filters out the fundamental, thus allowing oscillation at the third har­
monic. The impedance of the LC circuit must be inductive at the crystal funda­
mental and capacitive at the third harmonic. The impedance of the LC circuit 
is represented by 

z(w) = ,[ 1 ] 
J W L- wC 

L 
'c 

Therefore, the LC circuit has a pole at 

1 
=!lE 

(3) 

(4) 
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At frequencies significantly lower than oop' the 1/(ooC) term in (3) becomes the 
dominating term, while ooL can be neglected. This is expressed as 

z(oo) = jcoL for co < cop , (5) 

In (5), the LC circuit appears inductive at frequencies lower than oop. On the 
other hand, at frequencies much higher than cop, the ooL term is the dominant 
term in (3), and 1/(ooC) can be neglected. This is expressed as 

1 
z(oo) = jooC for 00 > oop (6) 

The LC circuit in (6) appears increasingly capacitive as the frequency 
increases above oop. This is shown in Figure 12-15, which is a plot of the mag­
nitude of the impedance of the LC circuit of Figure 12-14 versus frequency. 

Figure 12-15. Magnitude of the Impedance of the Oscillator LC Network 
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Based on the discussion above, the design of the LC circuit proceeds as fol­
lows: 

1) Choose the pole frequency cop approximately halfway between the crystal 
fundamental and the third harmonic. 

2) The circuit now appears inductive at the fundamental frequency and ca­
pacitive at the third harmonic. 

In the oscillator of Figure 12-13, choose cop = 22.2 MHz, which is approxi­
mately halfway between the fundamental and the third harmonic. Choose 
C = 20 pF. Then, using equation (4), L = 2.6 jlH. 

12.4.2 Res~t Signal Generation 

The reset input controls initialization of internal TMS320C3x logic and also 
causes execution of the system initialization software. For proper system ini­
tialization, the reset signal must be applied at least ten H1 cycles, i.e., 600 ns 
for a TMS320C3x operating at 33.33 MHz. Upon powerup, however, it can take 
20 ms or more before the system oscillator reaches a stable operating state. 
Therefore, the powerup reset circuit should generate a low pulse on the reset 
line for 1 00 to 200 ms. Once a proper reset pulse has been applied, the proces­
sor fetches the reset vector from location zero, which contains the address of 
the system initialization routine. Figure 12-16 shows a circuit that will generate 
an appropriate powerup reset circuit. 

Figure 12-16. Reset Circuit 
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The voltage on the reset pin (RESET) is controlled by the R1 C1 network. After 
a reset, this voltage rises exponentially according to the time constant R1 C1, 
as shown in Figure 12-17. 

Figure 12-17. Voltage on the TMS320C30 Reset Pin 
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The duration of the low pulse on the reset pin is approximately t1, which is the 
time it takes for the capacitor C1 to be charged to 1.5 V. This is approximately 
the voltage at which the reset input switches from a logic 0 to a logic 1. The ca­
pacitor voltage is expressed as 

v = Vcc[ 1-e-;] 
(7) 

where't = R1 C1 is the reset circuit time constant. Solving equation (7) for t re­
sults in 

Setting the following: 

R1 = 100 Kn 

C1 =4.7~F 

Vee = 5. V 

V = V1 = 1.5 V 

(8) 

results in t = 167 ms. Therefore, the reset circuit of Figure 12-16 provides a 
low pulse of long enough duration to ensure the stabilization of the system os­

. cillator. 
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Note that if synchronization of multiple TMS320C3xs is required, all proces­
sors should be provided with the same input clock and the same reset signal. 
After powerup, when the clock has stabilized, all processors may then be syn­
chronized by generating a falling edge on the common reset signal. Because 
it is the falling edge of reset that establishes synchronization, reset must be 
high for at least ten H1 cycles initially. Following the falling edge, reset should 
remain low for at least ten H1 cycles and then be driven high. This sequencing 
of reset may be accomplished using additional circuitry based on either RC 
time delays or counters. 
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12.5 Serial Port Interface 

12-30 

For applications such as modems, speech, control, instrumentation, and ana­
log interface for DSPs, a complete analog-to-digital (A/D) and digital-to-analog 
(D/A) inpuVoutput system on a single chip may be desired. The TLC32044 
analog interface circuit (AIC) integrates a bandpass, switched-capacitor, anti-

. aliasing-input filter, 14-bit resolution A/D and D/A converters, and a lowpass, 
switched-capacitor, output-reconstruction filter, all on a single monolithic/ 
CMOS chip. The TLC32044 offers numerous combinations of master clock in­
put frequencies and conversion/sampling rates, which can be changed via dig­
ital signal processor control. 

Four serial port modes on the TLC32044 allow direct interface to TMS320C3x 
processors. When the transmit and receive sections of the AIC are operating 
synchronously, it can interface to two SN54299 or SN74299 serial-ta-parallel 
shift registers. These shift registers can then interface in parallel to the 
TMS320C30, to otherTMS320 digital processors, orto external FIFO circuitry. 
Output data pulses inform the processor that data transmission is complete or 
allow the DSP to differentiate between two transmitted bytes. A flexible contral 
scheme is provided so that the functions of the AIC can be selected and ad­
justed coincidentally with signal processing via software control. Refer to the 
TLC32044 data sheet for detailed information. 

When you interface the AIC to the TMS320C3x via one of the serial ports, no 
additional logic is required. This interface is shown in Figure 12-18. The serial 
data, control, and clock signals connect directly between the two devices, and 
the AIC's master clock input is driven from TClKO, one of the TMS320C3x's 
internal timer outputs. The AIC's WORD/BYTE input is pulled high, selecting 
16-bit serial port transfers to optimize serial port data transfer rate. The 
TMS320C3x's XFO pin, configured as an output, is connected to the AIC's reset 
(RST) inputto allow the AIC to be reset by the TMS320C3x under program con­
trol. This allows the TMS320C3x timer and serial port to be initialized before 
beginning conversions on the AIC. 
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To provide the master clock input for the AIC, the TCLKO timer is configured 
to generate a clock signal with a 50% duty cycle at a frequency of f(H1 )/4 or 
4.167 MHz. To accomplish this, the global control register for timer 0 is set to 
the value 3C1 h, which establishes the desired operating modes. The period 
register for timer 0 is set to 1, which sets the required division ratio for the H1 
clock. 

To properly communicate with the AIC, the TMS320C30 serial port must be 
configured appropriately. To configure the serial port, several TMS320C30 
registers and memory locations must be initialized. First, the serial port should 
be reset by setting the serial port global control register to 2170300h. (The AIC 
should also be reset at this time. See description below of resetting the AIC via 
XFO). This resets the serial port logic and configures the serial port operating 
modes, including data transfer lengths, and enables the serial port interrupts. 
This also configures another important aspect of serial port operation: polarity 
of serial port signals. Because active polarity of all serial port signals is pro­
grammable, it is critical to set appropriately the bits in the serial port global con­
trol register that control this. In this application, all polarities are set to positive 
except FSX and FSR, which are driven by the AIC and are true low. 

The serial port transmit and receive control registers must also be initialized 
for proper serial port operation. In this application, both of these registers are 
set to 111 h, which configures all of the serial port pins in the serial port mode, 
rather than the general-purpose digital 110 mode. 

When the operations described above completed, interrupts are enabled, and 
provided that the serial port interrupt vector(s) are properly loaded, serial port 
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transfers may begin after the serial port is taken out of reset. This is accom­
plished by loading E170300h into the serial port global control register. 

To begin conversion operations on the AIC and subsequent transfers of data 
on the serial port, the AIC is first reset by setting XFO to zero at the beginning 
of the TMS320C3x initialiiation routine. Setting XFO to zero is accomplished 
by setting the TMS320C3x IOF register to 2. This sets the AIC to a default con­
figuration and halts serial port transfers and conversion operations until reset 
is set high. Once the TMS320C3x serial port and timer have been initialized 
as described above, XFO is set high by setting the IOF register to 6. This allows 
the AIC to begin operating in its default configuration, which in this application 
is the desired mode. In this mode, all internal filtering is enabled, sample rate 
is set at approximately 6.4 kHz, and the transmit and receive sections of the 
device are configured to operate synchronously. Conveniently, this mode of 
operation is appropriate for a variety of applications, and if a 5.184-MHz master 
clock input is used, the default configuration results in an 8-kHz sample rate, 
which makes this device ideal for speech and telecommunications applica­
tions. 

In addition to the benefit of a convenient default operating configuration, the 
AIC can also be programmed for a wide variety of other operating configura­
tions. Sample rates and filter characteristics may be varied, in addition to 
which, numerous connections in the device may be configured to establish dif­
ferent internal architectures, by enabling or disabling various functional 
blocks. 

To configure the AIC in a fashion different from the default state, the device 
mustfirst be sent aserial data word with the two LSBs setto one. The two LSBs 
of a transmitted data word are not part of the transferred data information and 
are not set to one during normal operation. This condition indicates that the 
next serial transmission will contain secondary control information, not data. 
This information is then used to load various internal registers and specify in­
ternal configuration options. There are four different types of secondary control 
words distinguished by the state of the two LSBs of the control information 
transferred. Note that each secondary control word transferred must be pre­
ceded by a data word with the two LSBs set to one. 

The TMS320C3x can communicate with the AIC either synchronously or 
asynchronously, depending on the information in the control register. The oper­
ating sequence for synchronous communication with the TMS320C30 shown 
in Figure 12-19 is as follows: 

1) The FSX or FSR pin is brought low. 
2) One 16-bit word is transmitted, or one 16-bit word is received. 
3) The FSX or FSR pin is brought high. 
4) The EODX or OEDR pin emits a low-going pulse. 
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Figure 12-19. Synchronous Timing of TLC32044 to TMS320C3x 
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For asynchronous communication, the operating sequence is similar, but FSX 
and FSR do not occur at the same time (see Figure 12-20). After each receive 
and transmit operation, the TMS320C30 asserts an internal receive (RINT) 
and transmit (XINT) interrupt, which may be used to control program execu­
tion. 

Figure 12-20. Asynchronous Timing of TLC32044 to TMS320C30 
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12.6 XDS1000 Target Design Considerations 

The TMS320C3x Emulator is an Extended Development System (XDS500 
and XDS1 000) that uses a revolutionary technology to accomplish complete 
emulation via a serial scan path and has all the features necessary for full­
speed emulation. To perform realtime emulation, you must provide a 12-pin 
header on the target system that is using the TMS320C3x. Refer to the 
TMS320C30 Emulator User's Guide and to the TMS320C30 Hewlett-Packard 
64776 Analysis Subsystem User's Guide for a more complete description of 
the XDS500 and XDS1000. 

To use the emulation connector of the XDS500, supply the signals shown in 
Figure 12-21 to a 12-pin header (two rows of six pins) with pin 8 cut out to pro­
vide keying. Table 12-3 describes the pins and signals present on the header. 

Figure 12-21. 12-Pin Header Signals 
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Pin-to-pin spacing: 0.100 inches (X ,V) EMU1t 2 GND 
Pin width: 0.025 inches square post 
Pin length: 0.235 inches nominal EMUOt 3 4 GND 
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EMU3 9 10 GND 
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Top View 

t These signals should always be pulled up with separate 20-kQ resistors to +5 V on the 
TMS320C3x. 

Table 12-3. Signal Description 

Signal Description 
TMS320C30 TMS320C30 
Pin Number Pin Number 

EMUO Emulation pin 0 F14 124 

EMU1 Emulation pin 1 E15 125 

EMU2 Emulation pin 2 F13 126 

EMU3 Emulation pin 3 E14 123 

GND Ground 

H3 TMS320C3x H3 Ai 82 

PD Presence detect indicates that the cable is connected and the target system 
is powered up. It should be tied to +5 volts in the target system. 
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Considerations 

For unbuffered signals, the distance between the TMS320C30 emulation pins 
(EMUO, EMU1, EMU2, EMU3, and H3) and the 12-pin header should be less 
than two inches. If that distance is more than two inches but less than six in­
ches, the EMU3 and H3 signals should be buffered. The buffer should be non­
inverting with a worst case propagation delay of 6.0 ns. For emulation pins-to­
header distances greater than six inches, all emulation signals should be buff­
ered. Recall that EMUO, EMU 1, and EMU2 are inputs, and EMU3 and H3 are 
outputs. The buffer should have the same characteristics as those given 
above. 
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the rising edge of the strobe (IOSTRB, STRB, or MSTRB). Also, the strobe 
can fall and rise 0 ns after the falling and rising edges of the H 1 clock, 
respectively. Thus, if the data was not present 0 ns after the rising edge 
of the clock, the TMS320C30 would still operate correctly. The analysis 
subsystem, however, requires a 5-ns hold time afterth.e rising edge of H1. 

Q Expansion and primary read/write (XR/W, R/W). The same electrical/ 
timing specifications stated in Chapter 13 apply to these lines. 

Q H1 and H3. The same electrical/timing specifications stated in Chapter 13 
apply to these lines. 

Q RESET. While the analysis subsystem does load the reset line with some 
minor capacitance, it does not drive the line. 

Q EMUO-EMU6. The same electrical/timing specifications stated in Chapter 
13 apply to these lines. 

Q INTO-INT3. Requirements for levels and transitions are different. 

• Requirements for levels on the interrupt lines: 

a The tck_clk=all setup time to falling H1 should be 18.5 ns, instead 
of 15 ns, to see the first edge. However, because interrupts must 
be low for a minimum of one full clock cycle, you will always see 
one low cycle. 

• The tck_clk=bus_cycle setup time to falling H 1 should be 15 ns. 

• Requirements for transitions on the interrupt lines: 

a The tck_clk=bus_cycle setup time to falling H1 should be 15 ns. 

• The tck_clk=all setup time to falling H1 should be 15 ns. 

Q lACK. The same electrical/timing specifications stated in Chapter 13 apply 
to these lines. 

Q HOLDA. The same electrical/timing specifications stated in Chapter 13 
apply to these lines. 

Q XFO, XF1, TClKO, and TClK1. Requirements for levels and transitions 
are different. 

II Requirements for levels on the XF and TCLK lines: 

• The tck_clk=all setup time to falling H1 should be 18.5 ns instead 
of 12 ns. 

• The tck_clk=bus_cycle setup time to falling H1 should be 12 ns. 
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• Requirements for transitions on the XF and TCLK lines: 

• The tck_clk=bus_cycle setup time to falling H1 should be 12 ns. 

• The tck_clk=all setup time to falling H1 should be 12 ns. 

Q STRB, IOSTRB, and MSTRB. No special timing is required on the 
strobes. 

12.7.4 Mechanical Dimensions 

Figure 12-24 shows the mechanical dimensions for the analysis subsystem's 
connector to the target system. Additional sockets may be added to the pod/ 
connector to increase the height clearance, if desired. 

Figure 12-24. Analysis Subsystem Pod/Connector Dimensions 
(a) Top view 

12-pin connector 

114~-" --------- 5.90 

Notes: 1) All dimensions are in inches. 

II 
pin A1 1.60 2.65 

.....------'\. ~ 

L1.53 
2) The cable is approximately 38 inches long. The portion of the cable that attaches to the pod is not as flexible as the 

rest of the cable, and effectively adds approximately 1/2 inch to 1 inch to the total length of the pod. 

(b) Side view 

Emulator connector attached 

Et 
-r ... --_-,;.........I.-.l.....-------------...... I l..-i 0.85 ~OM 

0.45 NOM .J r ' uuuuuuuuuuuuuuu ~ ~ 
0.45 

Note: All dimensions are in inches. 
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12.8 TMS320C30 and TMS320C31 Differences 

This section addresses the major memory access differences between the 
TMS320C31 and the TMS320C30 devices. Observance of these consider­
ations is critical for achieving design goal success. 

Table 12-4 shows these differences, which are detailed in the following sub-
sections. ' 

Table 12-4. Feature Set Comparison 

Device 

Feature TMS320C31 TMS320C30 

Data/program bus Primary bus: one bus composed Two buses: 
of a 32-bit data and a 24-bit ad- 1) Primary bus: a 32-bit data and a 
dress bus 24-bit address 

2) Expansion bus: a 32-bit data and a 
13-bit address 

Serial I/O ports 1 serial port (SPa) 2 serial ports '(SPa, SP1) 

User program/data ROM Not available 4K wordsl16K bytes 

Program boot loader User selectable Not available 

12.8.1 Data/Program Bus Differences 

The TMS320C31 uses only the primary bus and reserves the memory space 
that was previously used for expansion bus operations. 

12.8.2 Serial Port Differences 

Serial port 1 references in Section 8.2 of the TMS320C3x User's Guide are not 
applicable to the TMS320C31. The memory locations identified for the asso­
ciated control registers and buffers are reserved. 

12.8.3 Reserved Memory Locations 

Table 12-5 identifies TMS320C31 reserved memory locations in addition to 
those shown in Table 3-8. 
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Table 12-5. TMS320C31 Reserved Memory Locations 

Device 

Feature TMS320C31 TMS320C30 

OxOOOOOo-OxOOOFFF Reservedt Microcomputer program/data ROM mode t 
Ox800000-ox801FFF Reserved Expansion bus MSTRB space 

Ox80400o-0x805FFF Reserved Expansion bus IOSTRB space 

Ox808050 Reserved SP1 global-control register 

Ox808052-0x808056 Reserved SP1 local-control registers , 
, Ox808058 Reserved SP1 data-transmit buffer 

Ox80805C Reserved SP1 receive-transmit buffer 

Ox808060 Reserved Expansion bus control register 

t Applies to the MCBL and MC modes only. 

12.8.4 Effects on the IF and IE Interrupt Registers 

The bits associated with serial port 1 in the IE (interrupt enable) register and 
the IF (interrupt flag) register for the TMS320C30 are not applicable to the 
TMS320C31. Write only logic 0 data to IE register bits 6, 7, 22, and 23 and to 
IF register bits 6 and 7. Writing logic 1 s to these bits produces unpredictable 
results. 

12.8.5 User Program/Data ROM 

The user program/data ROM that is available for the TMS320C30 device does 
not exist for the TMS320C31. Rather, the' memory locations that were allocated 
to support user program/data ROM operations have been reserved on the 

'TMS320C31 to support microcomputer/boot loader accessing. See Chap­
ter 3 for more information on using the microcomputer/boot loader function. 

12.8.6 Development Considerations 
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For users who are developing application code using a TMS320C3x simulator, 
XDS, or ASM/LNK, TI recommends that you modify the .efm and .emdfiles by 
removing these memory spaces from the tool's configured memory. This en­
sures that your developed application performs as expected when the 
TMS320C31 device is used., ' 
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Chapter 13 

TMS320C3x Signal Descriptions and 
Electrical Characteristics· 
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This chapter covers the TMS320C3x pinouts, signal descriptions, and 
electrical characteristics. 
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13.1 Pinout and Pin Assignments 

13.1.1 TMS320C30 Pinouts and Pin Assignments 

The TMS320C30 digital signal processor is available in a 181-pin grid array 
(PGA) package. The pinout of this package is shown in Figure 13-1 and 
Figure 13-2. The pin assignments are listed in Table 13-1 and Table 13-2. 

Figure 13-1. TMS320C30 Pinout (Top View) 
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2 3 4 5 

H3 02 03 07 010 

X2/CLKIN CVSS Hl 04 08 

EMU5 Xl OVSS DO 05 

XRm XROY VBBP OOVOO 01 

ROY HOLDA MSTRB VSUBSLOCATOR 

RESET STRB HOLD IOSTRB 

lACK XFO XFl Rm 

VSS VOO MOVOO 

INT2 INT3 RSVO RSVl 

RSV2 RSV3 RSV5 RSV7 

RSV4 RSV6 RSV9 CLKRl 

6 

013 

011 

09 

06 

7 8 9 

016 017 019 

015 018 020 

014 VSS 021 

012 VOO 023 

OOVOO 

TMS320C30 
Top View 

IOOVOO 

10 . 11 12 13 14 15 

022 025 028 XAO XAl XA5 

024 027 031 XA4 IVSS XA6 

026 030 XA3 OVSS XA7 XA10 

029 XA2 AOVoo XA9 XAll MC/MP 

XA8 XA12 EMU3 EMUl 

EMU4/SHZ EMU2 EMUO AO 

Al A2 A3 A4 

AOVOO VOO VSS A6 AS 

All A9 A8 A7 

A17 A14 A12 Al0 

A22 AlB A15 A13 

RSV8 RSV10 FSRl POVOO CLKXO EMU6 X05 VOO X016 X022 X027 IOOVOO A21 A19 A16 

ORl CLKXl OVSS CLKRO TCLKl X02 X07 VSS X014 X019 X023 X028 OVSS A23 A20 

FSXl OXl FSRO TCLKO XOl X04 X08 X010 X013 X017 X020 X024 X029 CVss X031 

ORO FSXO OXO XOO X03 X06 X09 XOll X012 X015 X018 X021 X025 X026 X030 
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Figure 13-2. TMS320C30 Pinout (Bottom View) 
15 14 13 12 11 10 9 8 7 

XA5 XAl XAO 028 

• • • • 
XA6 IVss XA4 D31 

• • • • 
XA10 XA7 DVSS XA3 

• • • • 
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• • • o 
A4 A3 A2 Al 
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020 D18 D15 
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DDVDD 

• 

TMS320C30 
Bottom View 

IODVDD 

• 

6 5 4 3 2 
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• • • • • • 
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D6 D1 DDVDD VBBP XRDY XRiw 

• G 
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• • • • 
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• • • 
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• • • • • • • • • • • • • • • 
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• • • • • • • • • • • • • • • 
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Table 13-1. TMS320C30 Pin Assignments(by Function) (Figure 13-1 and Figure 13-2) 

Function Pin Function Pin Function Pin Function Pin Function Pin 

AO F15 00 C4 FSRO P3 XAO A13 XOO R4 
Ai G12 01 05 FSXO R2 XA1 A14 X01 P5 
A2 G13 02 A2 CLKRO N4 XA2 011 X02 N6 
A3 G14 03 A3 ClKXO M5 XA3 C12 X03 R5 
A4 G15 04 B4 ORO R1 XA4 B13 X04 P6 

A5 H15 05 C5 OXO R3 XA5 A15 X05 M7 
A6 H14 06 06 FSR1 M3 XA6 B15 X06 R6 
A7 J15 07 A4 FSX1 Pi XA7 C14 X07 N7 
AS J14 OS B5 CLKR1 l4 XAS E12 XOS P7 
A9 J13 09 C6 ClKX1 N2 XA9 013 X09 R7 

A10 K15 010 A5 OR1 N1 XA10 C15 X010 PS 
A11 J12 011 B6 OX1 P2 XA11 014 X011 RS 
A12 K14 012 07 XA12 E13 X012 R9 
A13 l15 013 A6 EMUO F14 RSVO J3 X013 P9 
A14 K13 014 C7 EMU1 E15 RSV1 J4 X014 N9 

A15 l14 015 B7 EMU2 F13 RSV2 K1 X015 RiO 
A16 M15 016 A7 EMU3 E14 RSV3 K2 X016 M9 
A17 K12 017 AS EMU4/SHZ F12 RSV4 L1 X017 P10 
A18 L13 018 B8 EMU5 C1 RSV5 K3 X018 R11 
A19 M14 019 A9 EMU6 M6 RSV6 L2 X019 N10 

A20 N15 020 B9 Hi B3 RSV7 K4 X020 P11 
A21 M13 021 C9 H3 Ai RSVS M1 X021 R12 
A22 L12 022 A10 RSV9 L3 X022 M10 
A23 N14 023 09 Xi C2 RSV10 M2 X023 N11 
LOCATOR E5 024 B10 X2/ClKIN B1 AOVOO 012 X024 P12 

lACK G1 025 A11 TClKO P4 AOVOO H11 X025 R13 
INTO H2 026 C10 TClK1 N5 OOVOO 04 X026 R14 
INTi Hi 027 B11 OOVOO ES X027 M11 
INT2 J1 02S A12 XFO G2 IOOVOO LS X02S N12 
INT3 J2 029 010 XF1 G3 IOOVOO M12 X029 P13 

MC/MP 015 030 C11 VBBP 03 MOVOO H5 X030 R15 
MSTRB E3 031 B12 VSUBS E4 POVOO M4 X031 P15 
ROY E1 VOO H4 CVSS B2 OVSS C3 
RESET F1 HOlO F3 VOO 08 CVSS P14 OVSS C13 
R/W G4 HOLOA E2 VOO MS VSS CS OVSS N3 

STRB F2 XROY 02 VOO H12 VSS H3 OVSS Ni3 
IOSTRB F4 XR/W 01 VSS NS VSS H13 IVSS B14 

Notes: 1) AOVOO, OOVOO, IOOVOO, MOVOO, and POVOO pins (04, 012, E8, H5, H11, L8, M4, "and M12) 
are on a common plane internal to the device. 

2) VOO pins (OS, H4, H12, and MS) are on a common plane internal to the device. 

3) VSS, CVSS, and IVSS pins (B2, B14, CS, H3, H13, NS, and P14) are on a common plane internal 
to the device. 

4) OVSS pins (C3, C13, N3, and N13) are on a common plane internal to the device. 
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Table 13-2. TMS320C30 Pin Assignments(Alphabeticalj (Figure 13-1 and Figure 13-2) 

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin 

AO F15 08 B5 EMUS C1 TCLK1 N5 X014 N9 
A1 G12 09 C6 EMU6 M6 VBBP 03 X015 R10 
A2 G13 010 AS FSRO P3 VOO H4 X016 M9 
A3 G14 011 B6 FSR1 M3 VOO 08 X017 P10 
A4 G15 012 07 FSXO R2 VOO M8 X018 R11 

A5 H15 013 A6 FSX1 P1 VOO H12 X019 N10 
A6 H14 014 C7 H1 B3 VSS N8 X020 P11 
A7 J15 015 B7 H3 A1 VSS C8 X021 R12 
A8 J14 016 A7 HaLO F3 VSS H3 X022 M10 
A9 J13 017 A8 HOLOA E2 VSS H13 X023 N11 

A10 K15 018 B8 lACK G1 VSUBS E4 X024 P12 
A11 J12 019 A9 INTO H2 X1 C2 X025 R13 
A12 K14 020 B9 INT1 H1 X2/CLKIN B1 X026 R14 
A13 L15 021 C9 INT2 J1 XAO A13 X027 M11 
A14 K13 022 A10 INT3 J2 XA1 A14 X028 N12 

A15 L14 023 09 IOOVOO M12 XA2 011 X029 P13 
A16 M15 024 B10 IOOVOO L8 XA3 C12 X030 R15 
A17 K12 025 A11 IVSS B14 XA4 B13 X031 P15 
A18 L13 026 C10 IOSTRB F4 XA5 A15 XFO G2 
A19 M14 027 B11 LOCATOR E5 XA6 B15 XF1 G3 

A20 N15 028 A12 MC/MP 015 XA7 C14 XROY 02 
A21 M13 029 010 MOVDO H5 XA8 E12 XR/W 01 
A22 L12 030 C11 MSTRB E3 XA9 013 
A23 N14 031 B12 P~OO M4 XA10 C15 
AOVOO H11 R/W G4 XA11 014 

AOVOO 012 OOVOO E8 ROY E1 XA12 E13 
CLKRO N4 OOVOO 04 RESET F1 XOO R4 
CLKR1 L4 ORO R1 RSVO J3 X01 P5 
CLKXO M5 OR1 N1 RSV1 J4 X02 N6 
CLKX1 N2 OVss N13 RSV2 K1 X03 R5 

CVSS B2 OVSS N3 RSV3 K2 X04 P6 
CVSS P14 OVSS- C3 RSV4 L1 X05 M7 
00 C4 OVSS C13 RSV5 K3 X06 R6 
01 05 OXO R3 RSV6 L2 X07 N7 
02 A2 OX1 P2 RSV7 K4 X08 P7 

03 A3 EMUO F14 RSV8 M1 X09 R7 
04 B4 EMU1 E15 RSV9 L3 X010 P8 
05 C5 EMU2 F13 RSV10 M2 X011 R8 
06 06 EMU3 E14 STRB F2 X012 R9 
07 A4 EMU4/SHZ F12 TCLKO P4 X013 P9 

Notes: 1) AOVoo, OOVOO, IOOVoo, MOVOO, and POVOO pins (04, 012, E8, H5, H11, L8, M4, and M12) 
are on a common plane internal to the device. 

2) VOO pins (08, H4, H12, and M8) are on a common plane internal to the device. 
3) VSS, CVSS, and IVSS pins (B2, B14, C8, H3, H13, N8, and P14) are on a common plane internal 

to the device. 
4) OVSS pins (C3, C13, N3, and N13) are on a common plane internal to the device. 
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13.1.2 TMS320C31 Pinouts and Pin Assignments 

The TMS320C31 device is packaged in a 132-pin plastic quad flat pack 
(PQFP) JDEC standard package. Figure 13-3 shows the pinouts forthis pack­
age, Figure 13-5 on page 13-16 shows the mechanical layout, and Table 13-3 
shows the associated pin assignments alphabetically; Table 13-4 shows the 
associated pin assignments numerically. 

Figure 13-3. TMS320C31 Pinout (Top View) 

15 14 13 12 11 10 9 6 7 6 5 4 3 2 1 132131 130129126127126125124 123122121 120119 116 117 

A9 16 • 116 OXO 
vss 19 115 vOO 

A3 20 114 FSXO 
A7 21 113 vss 
A6 22 112 CLKXO 
A5 23 111 CLKRO 

vOO 24 110 FSRO 
A4 25 109 vss 
A3 26 106 ORO 
A2 27 107 INT3 
A1 28 106 INT2 
AO 29 105 vOO 

vss 30 104 vOO 
031 31 103 INT1 

vOO 32 102 vSS 
vOO 33 101 vSS 
030 34 100 INTO 
vss 35 99 lACK 
vSS 36 98 XF1 
vss 37 97 vOO 
029 38 96 XFO 
028 39 95 RESET 

vOO 40 94 Riw 
027 41 93 STRB 
vss 42 92 ROY 
026 43 91 vOO 
025 44 90 HOLO 

_ 024 45 89 HOLOA 
023 46 88 X1 
022 47 87 X2/CLKIN 
021 48 86 vss 

vOO 49 85 vss 
020 50 84 vss 

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 

13-6 TMS320C3x Signal Descriptions and Electrical Characteristics 



Pinout and Pin A.<;.',iarlmt;mts 

Table 13-3. TMS320C31 Pin Assignments (Alphabetical) (Figure 13-3) 

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin 
AO 29 04 76 EMUO 124 VOO 40 VSS 84 
A1 28 05 75 EMU1 125 VOO 49 VSS 85 
A2 27 06 73 EMU2 126 VOO 59 VSS 86 
A3 26 07 72 EMU3 123 VOO 65 VSS 101 
A4 25 08 68 FSRO 110 VOO 66 VSS 102 
A5 23 09 67 FSXO 114 VOO 74 VSS 109 
A6 22 010 64 HOLD 90 VOO 83 VSS 113 
A7 21 011 63 HOLDA 89 VOO 91 VSS 117 
A8 20 012 62 H1 81 VOO 97 VSS 119 
A9 18 013 60 H3 82 VOO 104 VSS 128 

A10 16 014 58 lACK 99 VOO 105 X1 88 
A11 14 015 56 INTO 100 VOO 115 X2ICLKIN 87 
A12 13 016 55 INT1 103 VOO- 121 XFO 96 
A13 12 017 54 INT2 106 VOO 131 XF1 98 
A14 11 018 53 INT3 107 VOO 132 

A15 10 019 52 MCBUMP 127 VSS 3 
A16 9 020 50 RiW 94 VSS 4 
A17 8 021 48 ROY 92 VSS 17 
A18 7 022 47 RESET 95 VSS 19 
A19 5 023 46 SHZ 118 VSS 30 

A20 2 024 45 STRB 93 VSS 35 
A21 1 025 44 TCLKO 120 VSS 36 
A22 130 026 43 TCLK1 122 VSS 37 
A23 129 027 41 VSS 42 
CLKRO 111 028 39 VSS 51 

CLKXO 112 029 38 VOO 6 VSS 57 
DO 80 030 34 VOO 15 VSS 61 
01 79 031 31 VOO 24 VSS 69 
02 78 ORO 108 VOO 32 VSS 70 
03 77 OXO 116 VOO 33 VSS 71 
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Pinout and Pin Assignments 

Table 13-4. TMS320C31 Pin Assignments (Numerical) (Figure '13-3) 

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal 

1 A21 31 031 61 Vss 91 Yon 121 VOO 
2 A20 32 Voo 62 012 92 ROY 122 TCLK1 
3 Vss 33 Voo 63 011 93 STRB 123 EMU3 
4 Vss 34 030 64 010 94 R/W 124 EMUO 
5 A19 35 Vss 65 Voo 95 RESET 125 EMU1 

6 Voo 36 Vss 66 Voo 96 XFO 126 EMU2 
7 A18 37 Vss 67 09 97 Voo 127 MCBUMP 
8 A17 38 029 68 08 98 XF1 128 Vss 
9 A16 39 028 69 Vss 99 lACK 129 A23 
10 A15 40 Voo 70 Vss 100 INTO 130 A22 

11 A14 41 027 71 Vss 101 Vss 131 Voo 
12 A13 42 Vss 72 07 102 Yss. 132 Voo 
13 A12 43 026 73 06 103 INT1 
14 A11 44 025 74 Voo 104 Voo 
15 Voo 45 024 75 05 105 Voo 
16 A10 46 023 76 04 106 INT2 
17 Vss 47 022 77 03 107 INT3 
18 A9 48 021 78 02 108 ORO 
19 Vss 49 Voo 79 01 109 Vss 
20 A8 50 020 80 00 110 FSRO 

21 A7 51 Vss 81 H1 111 CLKRO 
22 A6 52 019 82 H3 112 CLKXO 
23 A5 53 018 83 Voo 113 Vss 
24 Voo 54 017 84 YEs 114 FSXO 
25 A4 55 016 85 Vss 115 Voo 
26 A3 56 015 86 Vss 116 OXO 
27 A2 57 vss 87 X2/CLKIN 117 Y.ss 
28 A1 58 014 88 X1 118 SHZ 
29 AO 59 Voo 89 HOLOA 119 Vss 
30 Vss 60 013 90 HOLO 120 TCLKO 
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13.2 Signal Descriptions 

13.2.1 TMS320C30 Signal Descriptions 

Table 13-5 describes the signals that the TMS320C30 device uses in the mi­
croprocessor mode. They are listed according to the signal name; the number 
of pins allocated; the input (I), output (0), or high-impedance state (Z) operat­
ing modes; a brief description of the signal's function; and the condition that 
places an output pin in high impedance. A line over a signal name (for example, 
RESET) indicates that the signal is active low (true at a logic 0 level). Pins la­
beled NC are notto be connected by the user. The signals are grouped accord­
ing to function. 

Table 13-5. TMS320C30 Signal Descriptions 

Signal #Pins 1/0/Zt Description Condition When 
Signal Is in High Z* 

Primary Bus Interface (61 Pins) 

031-00 32 1I0/Z 32-bit data port of the primary bus interface. S H R 

A23-AO 24 OIZ 24-bit address port of the primary bus interface. S H R 

R/W 1 OIZ Read/write signal for primary bus interface. This pin is S H R 
high when a read is performed and low when a write is 
performed over the parallel interface. 

STRB 1 OIZ External access strobe for the primary bus interface. S H 

ROY 1 I Ready signal. This pin indicates that the external device S 
is prepared for a primary bus interface transaction to 
complete. 

HOLO 1 I Hold signal for primary bus interface. When HOLO is a 
logic low, any ongoing transactio..!!. is completed. The 
A23-AO, 031-00, STRB, and R/W signals are placed 
in a high-impedance state, and all transactions over the 
primary bus interface are held until HOLO becomes a 
logic high or the NOHOLO bit of the primary bus control 
register is set. 

HOLOA 1 OIZ Hold acknowledge signal for primary bus interface. This S 
signal is generated in response to a logic low on fiQLO. 
It signals that A23-AO, 031-00, STRB, and R/Ware 
placed in a high-impedance state and that all transac-
tions over the bus will be held. HOLDA will be high in re-
sponse to a logic high of HOLO or when the NOHOLD 
bit of the primary bus control register is set. 

Expansion Bus Interface (49 Pins) 

XD31-XDO 32 I/OIZ 32-bit data port of the expansion bus interface. S R 

XA12-XAO 13 OIZ 13-bit address port of the expansion bus interface. S R 

XR/W 1 OIZ Read/write signal for expansion bus interface. When a S R 
read is performed, this pin is held high; when a write is 
performed, this pin is low. 

MSTRB 1 OIZ External memory access strobe for the expansion S 
bus interface. 

t Input (I), output (0), high-impedance state (Z). 
:j: S = 8HZ active, H = Hold active, R = Reset active. 

13-9 



Signal Descriptions 

Table 13-5. TMS320C30 Signal Descriptions (Continued) 

Signal #Pins I/O/Zt Description Condition When 
Signal Is in High Z* 

Expansion Bus Interface (49 Pins) (Concluded) 

10STRB 1 O/Z External 110 access strobe for the expansion bus inter- S 

face. 

XRDY 1 I Ready signal. This pin indicates that the external device 
is prepared for an expansion bus interface transaction 
to complete. 

Control Signals (9 Pins) 

RESET 1 I Reset. When this pin is a logic low, the device is placed 
in the reset condition. After reset becomes a logic high, 
execution begins from the location specified by the re-
set vector. 

INT3-INTO 4 I External interrupts. 

lACK 1 O/Z Interrupt acknowledge signal. lACK is set to 0 by the S 
lACK instruction. This can be used to indicate the begin-
ning or end of an interrupt service routine. 

MC/MP 1 I Microcomputer/microprocessor mode pin. 

XF1, XFO 2 I/O/Z External flag pins. They are used as general-purpose S R 
1/0 pins or to support interlocked processor instruc-
tions. 

Serial Port a Signals (6 Pins) 

CLKXO 1 I/O/Z Serial port 0 transmit clock. This pin serves as the serial S R 
shift clock for the serial port 0 transmitter. 

DXO 1 I/O/Z Data transmit output. Serial port 0 transmits serial data S R 
on this pin. 

FSXO 1 I/O/Z Frame synchronization pulse for transmit. The FSXO S R 
pulse initiates the transmit data process over pin DXO. 

CLKRO 1 IIO/Z Serial port 0 receive clock. This pin serves as the serial S R 
shift clock for the serial port a receiver. 

DRO, 1 IIO/Z Data receive. Serial port 0 receives serial data via the S R 
ORO pin. 

FSRO 1 I/O/Z Frame synchronization pulse for receive. The FSRO S R 
pulse initiates the receive data process over DRO. 

Serial Port 1 Signals (6 Pins) 

CLKX1 1 I/O/Z Serial port 1 transmit clock. This pin serves as the serial S R 
shift clock for the serial port 1 transmitter. 

DX1 1 I/O/Z Data transmit output. Serial port 1 transmits serial data, S R 
on this pin. 

FSX1 1 IIO/Z Frame synchronization pulse for transmit. The FSX1 S R 
pulse initiates the transmit data process over pin DX1. 

CLKR1 1 I/O/Z Serial port 1 receive clock. This pin serves as the serial S R 
shift clock for the serial port 1 receiver. 

t Input (I), output (0), high-impedance state (Z). 
:t: S = SHZ active, H = Hold active, R = Reset active. 
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Table 13-5. TMS320C30 Signal Descriptions (Continued) 

Signals #Pins 1/0/Zt Description 

Serial Port 1 Signals (6 Pins) (Concluded) 

OR1 1 I/O/Z Oata receive. Serial port 1 receives serial data via the 
OR1 pin. 

FSR1 1 I/O/Z Frame synchronization pulse for receive. The FSR1 
pulse initiates the receive data process over DR1. 

Timer 0 Signals (1 Pin) 

TClKO 1 I/OIZ Timer clock. As an input, TClKO is used by timer 0 to 
count external pulses. As an output pin, TClKO outputs 
pulses generated by timer O. 

Timer 1 Signals (1 Pin) 

TClK1 1 I/O/Z Timer clock. As an input, TClK1 is used by timer 1 to 
count external pulses. As an output pin, TClK1 outputs 
pulses generated by timer 1. 

Supply and Oscillator Signals (29 Pins) 

VOD3- VDOO 4 I Four +5-V supply pins. § 

IOOVOD1, 10DVDDO 2 I Two +5-V supply pins. § 

AOVOD1, ADVDDO 2 I Two +5-V supply pins. § 

PDVOD 1 I One +5-V supply pin. § 

DOVOD1, DOVDDO 2 I Two +5-V supply pins. § 

MOVOD 1 I One +5-V supply pin. § 

VSS3- VSSO 4 I Four ground pins. 

DVSS3- DVSSO 4 I Four ground pins. 

CVSS1, CVSSO 2 I Two ground pins. 

IVSS 1 I One ground pin. 

VSSP 1 NC VSS pump oscillator output. 

VSUSS 1 I Substrate pin. Tie to ground. 

X1 1 O/Z Output pin from the internal oscillator for the crystal. If 
a crystal is not used, this pin should be left uncon-
nected. 

X2/ClKIN 1 I Input pin to the internal oscillator from the crystal or a 
clock. 

H1 1 OIZ External H1 clock. This clock has a period equal to twice 
ClKIN. 

H3 1 OIZ External H3 clock. This clock has a period equal to twice 
ClKIN. 

Reserved (18 Pins) ~ 

EMU2- EMUO 3 I Reserved. Use pull-ups to +5 volts. See Section 12.6. 

EMU3 1 OIZ Reserved. See Section 12.6. 

t Input (I). output (0). high-impedance state (Z). 
:j: S = SHZ active, H = Hold active, R = Reset active. 
§ Recommended decoupling capacitor is 0.1 !IF. 

Signal ue'SCJ~/Dt'IOfjIS 

Condition When, 
Signal Is in High ZI: 

S R 

S R 

S R 

S R 

S 

S 

S 

S 

11 Follow the connections specified for the reserved pins. 18- to 22-kQ pull-up resistors are recommended. All +5 volt supply 
pins must be connected to a common supply plane, and all ground pins must be connected to a common ground plane. 
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Table 13-5. TMS320C30 Signal Descriptions (Concluded) 

Signals #Pins I/O/Zt Description Condition When 
Signal Is in High Z* 

Reserved (18 Pins) 11 (Concluded) 

EMU4/SHZ 1 I Shutdown high impedance. An active low shuts down 
the TMS320C30 and places all pins in a high-impe-
dance state. This signal is used for board-level testing 
to ensure that no dual drive conditions occur. CAU-
TION: An active low on the SHZ pin corrupts 
TMS320C30 memory and register contents. Reset the 
device with an SHZ=1 to restore it to a known operating 
condition. 

EMU6, EMUS 2 NC Reserved. 

RSV10- RSVO 11 I Reserved. Use pull-ups on each pin to +5 volts. 

Locator (1 Pin) 

Locator 1 NC Reserved. See Figure 13-1 and Table 13-1. 

t Input (I), output (0), high-impedance state (Z). 
:j: S = SHZ active, H = Hold active, R = Reset active. 

11 Follow the connections specified for the reserved pins. 18- to 22-kQ pull-up resistors are recommended. All +5 volt supply 
pins must be connected to a common supply plane, and all ground pins must be connected to a common ground plane. 

13.2.2 TMS320C31 Signal Descriptions 

Table 13-6 describes the signals that the TMS320C31 device uses in the mi­
croprocessor mode. They are listed according to the signal name; the number 
of pins allocated; the input (I), output (O), or high-impedance state (Z) operat­
ging modes; a brief description of the signal's function; and the condition that 
places an output pin in high impedance. A line overasignal name (for example, 
RESET) indicates that the signal is active low (true at a logic 0 level). 

Table 13-6. TMS320C31 Signal Descriptions 

Signal # Pins I/O/Zt Description Condition When 
Signal Is in High Z* 

Primary Bus Interface (61 Pins) 

031-00 32 I/O/Z 32-bit data port. S H R 

A23-:-AO 24 O/Z 24-bit address port .. S H R 

RIW 1 O/Z Read/write signal. This pin is high when a read is per- S H R 
formed; low when a write is performed over the parallel 
interface. 

STRB 1 . O/Z External access strobe. S H 

ROY 1 I Ready signal. This pin indicates thatth~ external device 
is prepared for a transaction completion. 

HOLO 1 I Hold signal. When HOLO is a logic low, any ongoing 
transaction i~ completed. The A23-AO, 031-00, 
STRB, and RIW signals are'placed in a high-impedance 
state, and all transactions over the primary bus inter-
face are held until HOLO becomes a logic high, or the 
NOHOLO bit of the primary bus control register is set. 

t Input (I), output (0), high-impedance (Z)state. 
:j: S = SHZ active, H = Hold active, R = Reset active. 
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Table 13-6. TMS320C31 Signal Descriptions' (Continued) 

Signal # Pins 1I0lZt Description Condition When 
Signal Is in High Z* 

Primary Bus Interface (61 Pins) (Concluded) 

HOLDA 1 O/Z Hold acknowledge signal. This signal is generated in re- 8 
sponse to a logic low on !iOLD. It signals that A23-AO, 
D31-DO, STRB, and R/W are placed in a high-impe-
dance state and that all transactions over the bus will be 
held. HOLDA will be high in response to a logic high of 
HOLD, or the NOHOLD bit of the primary bus control 
register is set. 

Control Signals (10 Pins) 

RESET 1 I Reset. When this pin is a logic low, the device is placed 
in the reset condition. When reset becomes a logic 1, 
execution begins from the location specified by the re-
set vector . 

INT3-INTO 4 I . External interrupts. 

lACK 1 O/Z Interrupt acknowledge signal. lACK is set to 1 by the S 
lACK instruction. This can be used to indicate the begin-
ning or end of an interrupt service routine. 

MCBUMP 1 I Microcomputer boot loader/microprocessor mode pin. 

8HZ 1 I Shut down high Z. An active low shuts down the 
TMS320C31 and places all pins in a high-impedance 
state. This signal is used for board-level testing to en-
sure that no dual drive conditions occur. CAUTION: An 
active low on the SHZ pin corrupts TMS320C31 
memory and register contents. Reset the device with an 
SHZ = 1 to restore it to a known operating condition. 

XF1, XFO 2 I/O/Z External flag pins. They are used as general-purpose 8 R 
I/O pins or to support interlocked processor instruc-
tions. 

Serial Port 0 Signals (6 Pins) 

CLKRO 1 I/O/Z Serial port a receive clock. This pin serves as the serial S R 
shift clock for the serial port a receiver. 

CLKXO 1 I/O/Z Serial port a transmit clock. This pin serves as the serial S R 
shift clock for the serial port a transmitter. 

DRO 1 I/O/Z Data receive. Serial port a receives serial data via the S R 
DRO pin. 

DXO 1 I/O/Z Data transmit output. Serial port a transmits serial data S R 
on this pin. 

FSRO 1 I/O/Z Frame sychronization pulse for receive. The FSRO S R 
pulse initiates the receive data process over DRO. 

FSXO 1 I/O/Z Frame synchronization pulse for transmit. The FSXO S R 
pulse initiates the transmit data process over pin DXO. 

t Input (I), output (0), high-impedance state (Z). 
:j: S = SHZ active, H = Hold active, R = Reset active. 
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TMS320C3x Mechanical Data 

13.3 TMS320C3x Mechanical Data 

Figure 13-4. TMS320C30 181-Pin PGA Dimensions 
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TMS320C3x Mechanical Data 

Figure 13-5. TMS320C31 f 32-Pin Plastic Quad Flat Pack 
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Thermal Resistance Characteristics 
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Electrical Spt3cil'icatior7s 

13.4 Electrical Specifications 

Table 13-7. Absolute Maximum Ratings over Specified Temperature'Range 

Condition/Characteristic TMS320C30ITMS320C31 Range 

Supply voltage range, VOO - 0.3 Vto 7 V 

Input voltage range - 0.3 Vt07V 

Output voltage range - 0.3V to 7 V 

Continuous power dissipation 3.15 W for TMS320C30 
1.7 W for TMS320C31 

(See Note 3) 

Operating case temperature range OOCt085°C 

Storage temperature range - 55°C to 150°C 

Notes: 1) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This 
is a stress rating only; functional operation of the device at these or any other conditions beyond those indicated 
in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maxi­
mum-rated conditions for extended periods may affect device reliability. 

2) All voltage values are with respect to VSS. 
3) Actual operating power will be less. This value was obtained under specially produced worst-case test conditions, 

which are not sustained during normal device operation. These conditions consist of continuous parallel writes of 
a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See nominal (100) cur­
rent specification in Table 13-8 and also read Calculation of TMS320C30 Power Dissipation, Appendix E. 

Table 13-8. Recommended Operating Conditions 

Parameter Min Nom Max Unit 

VOO Supply voltages (OOVOO, etc.) 4.75 5 5.25 V 

VSS Supply voltages (CVSS, etc.) 0 V 

VIH High-level input voltage 2 VOO+ V 
0.3t 

Vil low-level input voltage -0.3t 0.8 V 

IOH High-level output current -300 IlA 

IOl low-level output current 2 mA 

T Operating case temperature 0 85 °C 

VTH ClKIN high-level input voltage for ClKIN 2.6 VOO + 0.3t V 

t Guaranteed from characterization but not tested. 

Note: Note 1 for Table 13-7 also applies to this table. All input and output voltages except for ClKIN are TTL-compatible. ClKIN 
may be driven by a CMOS clock. 
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Signal Transition Levels 

13.5 Signal Transition Levels 

13.5.1 TTL-Level Outputs 

TTL-compatible output levels are driven to a minimum logic-high level of 2.4 
volts and to a maximum logic-low level of 0.6 volt. Figure 13-7 shows the TTL­
level outputs. 

Figure 13-7. TTL-Level Outputs 

J ~------- ------------ -----

--- ---------------- ---

TTL-output transition times are specified as follows: 

2.4 V 
2.0V 

1.0 V 
0.6 V 

a For a high-to-Iow transition, the level at which the output is said to be no 
longer high is 2.0 volts, and the level at which the output is said to be low 
is 1.0 volt. 

a For a low-to-high transition, the level at which the output is said to be no 
longer low is 1.0 volt, and the level at which the output is said to be high 
is 2.0 volts. 

13.5.2 TTL-Level Inputs 

Figure 13-8. TTL -Level Inputs 

----z- ~----- 20V --~-- -----. --------- ----- 90~' 

----. ----------------- . --- 10},o 
"'--- O.sv 

TTL-compatible input transition times are specified as follows: 

a For a high-to-Iow transition on an input signal, the level at which the input 
is said to be no longer high is 2.0 volts, and the level at which the input is 
said to be low is 0.8 volt. 

a For a low-to-hightransition on an input signal, the level at which the input 
is said to be no longer low is 0.8 volt, and the level at which the input is said 
to be high is 2.0 volts. 

Figure 13-8 shows the TTL-level inputs. 
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13.6 Timing 

Timing specifications apply to the TMS320C30 and TMS320C31. 

13.6.1 X2/CLKIN, H1, and H3 Timing 

Table 13-1 Odefinesthetiming parametersforthe ClKIN, H1, and H3 interface 
signals. The numbers shown in parentheses in Figure 13-9 and Figure 13-10 
correspond with those in the No. column of Table 13-10. 

Figure 13-9. Timing for X2/CLKIN 

X2/CLKIN 

Figure 13-10. Timing for H1/H3 
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Table 13-10. Timing Parameters for eLKIN, H1, and H3 (Figure 13-9 and Figure 13-10) 

No. Name Description 

(1 ) tf(C!) ClKIN fall time 

(2) tw(Cll) ClKIN low pulse duration 
tc(CI) = min 

(3) tw(CIH) ClKIN high pulse duration 
tc(Ci) = min 

(4) tr(CI) ClKIN rise time 

(5) t~lCIl ClKIN cycle time 

(6) tf(H) H1/H3 fall time 

(7) tw(HL) Hi IH3 low pulse duration 

(8) tw(HH) H1/H3 high pulse duration 

(9) tr(H) Hi IH3 rise time 

(9.1 ) td(HL-HH) Delay from Hi (H3) low to 
H3(H1) high 

(10) tc(Hl Hi IH3 cycle time 

t Guaranteed from characterization but not tested. 
:j: Guaranteed by design but not tested. 
Note: P = tc(CI) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

Min Max Min Max Min Max 

6:j: 5:j: 5:j: 

14 10 9 

14 10 9 

6:j: 5:j: 5:j: 

37 303 30 303 25 303 

4 3 3 

P-6 P-6 P-5 

P-7 P-7 P-6 

5 4 3 

ot 6 ot 5 ot 4 

74 606 60 606 50 606 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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13.6.2 Memory Read/Write Timing 

Table 13-11 defines memory read/write timing parameters. The numbers 
shown in parentheses in Figure 13-11 and Figure 13-12 correspond with 
those in the No. column of Table 13-11. 

Figure 13-11. Timing for Memory ((M)STRB = 0) Read 

13-22 

H3 

H1 
I I 

(11)-.! ~ 

(M)STRB : :.1 
: --.j /4- (d) 

i i L---....~---

(X)RIW 

i 
i 
i 
i 
~ 

I i 
I i I 

1 1\ 
: i I ~ ______ _ 

~ (~4.1/14.2) i -.l:.- (13.1/13.2) 

(X)A __ ..J~ I ~ ~'-~5-'1-/1-5-'2-)---
(26) -.I ~ t-+I ~ (16) 

-----~il~II-~OI 1>-----­(X)D 
(17.1/17.2)~ j4-

____ ~ ~~(1.....;8)~ __________ _ 

~y 
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Table 13-11. Timing Parameters for a Memory ((M)STRB) = 0) Read/Write (Figure 13-11 and Figure 13-12) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(11 ) td(H1 L-(M)SL) H1 low to (M)STRB low delay 0+ 13 0+ 10 0+ 6 ns 

(12) id(H1 L-(M)SH) H1 low to (M)STRB high delay 0+ 13 0+ 10 0+ 6 ns 

(13.1 ) td(H1 H-RWL) H1 high to R/W low delay 0+ 13 0+ 10 0+ 9 ns 

(13.2) td(H1 H-XRWL) H1 high to XR/W low delay 0+ 19 0+ 15 0+ 13 ns 

(14.1 ) td(H1 L-A) H1 low to A valid delay 0+ 16 0+ 14 0+ 10 ns 

(14.2) td(H1 L-XA) H1 low to XA valid delay 0+ 12 0+ 10 0+ 9 ns 

(15.1 ) tsu(D)R D setup before H1 low (read) 18 16 14 ns 

(15.2) tsu(XD)R XD setup before H1 low (read) 21 18 16 ns 

(16) th«X)D)R (X)D hold time after H1 low 0 0 0 ns 
(read) 

(17.1) tsu(RDY) RDY setup before H1 high 10 8 8 ns 

(17.2) tsu(XRDY) XRDY setup before H1 high 11 9 9 ns 

(18) th((X)RDY) (X)RDY hold time after H1 high 0 0 0 ns 

+ Guaranteed by design but not tested. 

Figure 13-12. Timing for Memory ( (M)STRB = 0) Write 

H3 

H1 

1 1 
~ l4 (12) 1 (11)-.1 /+-1 

(M)STRB I l'i I I: \ 1 1 1 
1 1 1 1 

--.I 1+-1 (13.1/13.2) 1 
(X)RIW 'i~ 1 1 

I --.I !+ (14.1/14.2) I I 

=X : ~; 
~ ti4-- (22.1/22.2) 

(X)A 

(20) ~ ~ 14-(21) 

___ I: 
-.! 14- (19) 

~~----+----------)~-----
~ ____________ JX ___________ _ 

(X)D ~ ., ( 

(17.1/17.2) ~ Jf (18) 
I I 

\ I (X)RDY 'i J{ 

~ ______ -J)r-----------
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Table 13-11. Timing Parameters for a Memory ((M)STRB = 0) Read/Write (Figure 13-11 and Figure 13-12) 
(Concluded) 

No. Name Description 

(19) td(H1 H-(X)RWH) H1 high to (X)R/W high (write) 
delay 

(20) tv((X)D)W (X)D valid after H1 low (write) 

(21) th((X)D)W (X)D hold time after H1 high 
(write) 

(22.1) td(H1H-A) H1 high to A valid on back-to-
back write cycles (write) delay 

(22.2) td(H1H-XA) H1 high to XA valid on back-to-
back write cycles (write) delay 

(26) td(A-(X)RDY) (X)RDY delay from A valid delay 

t Guaranteed from characterization but not tested. 
=1= Guaranteed by design but not tested. 

TMS320C30-27 
TMS320C31-27 

Min Max 

13 

25 

0=1= 

23 

32 

10t 

TMS320C30-33 TMS320C30-40 Unit 
TMS320C30-33 

Min Max Min Max Unit 

10 9 ns 

20 17 ns 

0=1= 0=1= ns 

18 15 ns 

25 21 ns 

8t 7t ns 
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Figure 13-13. Timing for Memory ( IOSTRB = 0) Read 

H3 

H1 I I 
I , 

I (11.1)~ ~ (12.1)~ IcC-- I' 
I , , I : ~ : /-L---t:----
I ~--------~, I 

--.I 14- (13.1) ,-.J. ~ (23) 

Table 13-12. Timing Parameters for a Memory (IOSTRB = 0) Read (Figure 13-13 and Figure 13-14) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 

No. Name Description Min Max Min Max Min Max Unit 

(11.1 ) td(H1 H-IOSL) H1 high to IOSTRB low delay 0+ 13 0+ 10 0+ 9 ns 

(12.1) td(H1 H-IOSH) H1 high to IOSTRB high 0+ 13 0+ 10 0+ 9 ns 
delay 

(13.1 ) td(H1 L-XRWH) H1 low to XR/W high delay 0+ 13 0+ 10 0+ 9 ns 

(14.3) td(H1L-XA) H1 low to XA valid delay 0+ 13 0+ 10 0+ 9 ns 

(15.3) tsu(XD)R XD setup before H1 high 19 15 13 ns 

(16.1 ) th(XD)R XD hold time after H1 high 0 0 0 ns 

(17.3) tsu(XRDY) XRDY setup before H1 high 11 9 9 ns 

(18.1 ) th(XRDY) XRDY hold time after H1 0 0 0 ns 
high 

+ Guaranteed by design but not tested. 
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Figure 13-14. Timing for Memory (IOSTRB = 0) Write 
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Table 13-13. Timing Parameters for a Memory (IOSTRB = 0) Write (Figure 13-14) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 

No. Name Description Min Max Min Max Min Max 

(23) td(H1 L-XRWL) H1 low to XRIW low delay 0+ 19 0+ 15 0+ 13 

(24) tv(XD)W XD valid after H1 high 38 30 25 

(25) th(XD)W XD hold time after H1 low 0 0 0 

+ Guaranteed by design but not tested. 

Unit 

ns 

ns 

ns 
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13.6.3 XFO and XF1 Timing When Executing LOFI or LOll 

Table 13-14 defines timing parameters for XFO and XF1 when you execute 
LDFI or LDII. The numbers shown in parentheses in Figure 13-15 correspond 
with those in the No. column of Table 13-14. 

Figure 13-15. Timing for XFO and XF1 When Executing LDFI or LDII 

H3 

H1 

(M)STRB 

(X)RIW 

(X)A 

(X)D 

(X)RDY 
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Fetch 
LDFlorLDIl Decode Read 

\\ / 
I 
I 

Execute 

-----,:X X __ 
I 

(2) ~ 14-
I r.; 14- (3) 

-=\lV 

! --<==>--
I 

he 
(1) -.I 14-

\l 

Table 13-14. Timing Parameters for XFO and XF1 When Executing LDFI or LDII (Figure 13-15) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max 

(1 ) td(H3H-XFOL) H3 high to XFO low delay 19 15 13 

(2) tsu(XF1) XF1 setup before H1 low 13 10 9 

(3) th(XF1) XF1 hold time after H1 low 0 0 0 

Unit 

ns 

ns 

ns 
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13.6.4 XFO Timing When Executing STFI and STII 

Table 13-15 defines the timing parameters for the XFO and XF1 when you ex­
ecute STFI or STII. The numbers shown in parentheses in Figure 13-16 corre­
spond with those in the No. column of Table 13-15. 

Figure 13-16. Timing for XFO When Executing a STFI or STII 

H3 

Hi 

I 

/ I \ (M)STRB I 
I 

(x)RiW ~ ;-
I 

(X)A ~: >C 
I 

-{ ~ (X)D I 
I 
I 

(X)RDY ~ ~(1) ~r I 
I 

XFO Pin I 
Table 13-15. Timing Parameters for XFO When Executing STFI or STII (Figure 13-16) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) td(H3H-XFOH) H3 high to XFO high delay 19 15 13 ns 
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13.6.5 XFO and XF1 Timing When Executing SIGI 

Table 13-16 defines the timing parameters for the XFO and XF1 when you ex­
ecute SIGI. The numbers shown in parentheses in Figure 13-17 correspond 
with those in the No. column of Table 13-16. 

Figure 13-17. Timing for XFO and XF1 When Executing SIGI 
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Table 13-16. Timing Parameters for XFO and XF1 When Executing SIGI (Figure 13-17) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max 

(1 ) td(H3H-XFOL) H3 high to XFO low delay 19 15 13 

(2) td(H3H-XFOH) H3 high to XFO high delay 19 15 13 

(3) tsu(XF1) XF1 setup before H1 low 13 10 9 

(4) th(XF1 ) XF1 hold time after H1 low 0 0 0 

Unit 

ns 

ns 

ns 

ns 
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13.6.6 Loading When the XF Pin Is Configured as an Output 

Table 13-17 defines the timing parameters for loading the XF register when 
the XF pin is configured as an output. The numbers shown in parentheses in 
Figure 13-18 correspond with those in the No. column of Table 13-17. 

Figure 13-18. Timing for Loading XF Register When Configured as an Output Pin 

H3 

H1 

OUTXF 
Bit 

XF Pin 

Fetch Load 
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~10ro 
~ !4- (1) 

------------------------------------~~I __ _ 
Table 13-17. Timing Parameters for Loading XF Register When Configured as an OUlput Pin (Figure 13-18) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) tv(H3H-XF) H3 high to XF valid 19 15 13 ns 
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Timing 

13.6.7 Changing the XF Pin From an Output to an Input 

Table 13-18 defines the timing parameters for changing the XF pin from an 
output pin to an input pin. The numbers shown in parentheses in Figure 13-19 
correspond with those in the No. column of Table 13-18. 

Figure 13-19. Timing for Change of XF From Output to Input Mode 
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Table 13-18. Timing Parameters of XF Changing From Output to Input Mode (Figure 13-19), 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max 

(1 ) th(H3H-XF01) XF hold after H3 high 19 15 13 

(2) tsu(XF) XF setup before H1 low 13 10 9 

(3) th(XF) XF hold after H1 low 0 0 0 

Unit 

ns 

ns 

ns 
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13.6.8 Changing the XF Pin From an Input to an Output 

Table 13-19 defines the timing pa~ameters for changing the XF pin from an in­
put pin to an output pin. The numbers shown in parentheses in Figure 13-20 
correspond with those in the No. column of Table 13-19., 

Figure 13-20. Timing for Change of XF From Input to Output Mode 
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Table 13-19. Timing Parameters of XF Changing From Input to Output Mode (Figure 13-20) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) td(H3H-XFIO) H3 high to XF switching from input to 25 20 17 ns 
output delay 
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Timing 
<<<>!~).:;.:~~.:.:.".s:o:;~o!a!;:'~!~::';:4"~~~,:;~:a:;S'::ss:"o:'o'!;!~~~~:;~";:;:;~;';:;:;y";9."':;:-~oY.~:>:o:>s:."X:;.~ .... ;o::;:~:.:<O!iy';w.~~~~:>:';:Jo':!;::"~,:~::-«=:O:;O;:J::.:y::~:e;:;Y~~:;Y;O;»S':;OMY.M':·;~y';V,;(<<~y~::;y';y'.y;Y.;,w;O;S'N~y;o;·~;Y.;w .. w.W;o.~d.:~~·;o::~;:.sY.>':: .... "*"v.;:;»!~!;!~~<>~~;:;.:;~::.<:"~s 

Figure 13-21. Timing for RESET 

ClKIN 

RESET 
(Notes 5, 6) 

H1 

H3 

I I: 1 1 10 H1 Clock Cycles I: ~ jfI(8) I 
X(O) .....,j:===::::=>, -+1----+----II'�,---------~n:J:'A (Notes 1,7) ..... .(- 1 I ,~ 

(5.2) ..: 14- ...:~ If- (9) I 
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(Note 3) : ! II 
lACK f 
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~~I----------------------~~---------------------Reset Signals ----r-
(Note 4) 

Notes: 1) (X)O includes 031-00 and X031-XOO. 
2) (X)A includes A23-AO, XA12-XAO, and (X)RIW. 
3) Control signals include STRB, MSTRB, and IOSTRB. 
4) Asynchronously reset signals include XFO/1, ClKXO/1, OXO/1, FSXO/1, ClKRO/1, ORO/1, FSRO/1 , and TClKO/1. 
5) RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are 

met, the exact seguence shown will occur; otherwise, an additional delay of one clock cycle may occur. 
6) Note that the R/W and XRiW outputs are placed in a high-impedance state during reset and can be provided with 

a resistive pull-up, nominally 18-22 kU, if undesirable spurious writes could be caused when these outputs go low. 
7) Reset vector is fetched three times with 7 software wait states each. 
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Table 13~20. Timing Parameters for RESET (Figure 13-21) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) tsu(RESET) Setupfor RESETbeforeClKIN 28 Pt 10 Pt 10 Pt ns 
low 

(2.1 ) td(ClKINH-H1 H) ClKIN high to Hi high delay § 6 20 6 16 4 14 ns 

(2.2) td(ClKINH-H1 l) ClKIN high to Hi low delay § 6 20 6 16 4 14 ns 

(3) tsu(RESETH-H1 l) Setup for RESET high 13 10 9 ns 
before Hi low and after 10 Hi 
clock cycles 

(5.1 ) td(ClKINH-H3l) ClKIN high to H3 low delay § 6 20 6 16 4 14 ns 

(5.2) td(ClKINH-H3H) ClKIN high to H3 high delay § 6 20 6 16 4 14 ns 

(8) tdis(H1 H-(X)D) Hi high to (X)D disabled (high 19t 1St 13t ns 
impedance) 

(9) tdis(H3H-(X)A) H3 high to (X)A disabled (high 13t 10t 9t ns 
impedance) 

(10) td(H3H-CONTROlH) H3 high to control signals high 13t 10t 9t ns 
delay 

(11 ) td(H1 H-IACKH) Hi high to lACK high delay 13t 10t 9t ns 

(12) tdis(RESETl-ASYNCH) RESET low to asynchronously 31t 2St 21t ns 
reset signals disabled (high im-
pedance) 

t Characterized but not tested. 
§ See Figure 13-22 for temperature dependence for the 33 MHz TMS320C30. 
Note: P = tc(CI) 

Figure 13-22. eLKIN to H11H3 as a Function of Temperature 
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13.6.10 5HZ Pin Timing 

Table 13-21 defines the timing parameters for the 8HZ pin. The numbers 
shown in parentheses in Figure 13-23 correspond with those in the No. col­
umn of Table 13-21. 

Figure 13-23. Timing for SHZ Pin 

H3~~ 

H1~~ 

\ * I ----~~/jY----J I 

All I/O Pins 
___ 14-__ (1_) -3"""")0---'1\1.,.1; _(2_)::_I4-=--:,,~-.t{p,-_____ .: ________ _ 

Note: Enabling SHZ destroys TMS32aC3x register and memory contents. Assert SHZ = 1 and reset the TMS32aC3x to restore 
it to a known condition. 

Table 13-21. Timing Parameters for SHZ Pin (Figure 13-23) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) tdis(SHZ) SHZ low to all 0, I/O pins dis- at 2Pt at 2Pt at 2Pt ns 
abled (high impedance) 

(2) ten(SHZ) SHZ high to all 0, 110 pins en- at 2Pt at 2Pt at 2Pt ns 
abled (active) 

t Characterized but not tested. 
Note: P = tc(CI) 
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13.6.11 Interrupt Response Timing 

Table 13-22 defines the timing parameters for the INT signals. The numbers 
shown in parentheses in Figure 13-24 correspond with those in the No. col­
umn of Table 13-22. 

Figure 13-24. Timing for INT3-INTO Response 
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Table 13-22. Timing Parameters for INT3-INTO (Figure 13-24) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) tsu(INT) INT3-INTO setup before H1 19 15 13 ns 
low 

(2) tw(INT) Interrupt pulse duration to p 2Pt P 2Pt P 2Pt ns 
guarantee only one interrupt 
seen 

t Characterized but not tested. 
Note: P = tc(H) 

The interrupt (INT) pins are asynchronous 'inputs that can be asserted at any 
time during a clock cycle. The TMS320C3x interrupts are level sensitive, not 
edge sensitive. Interrupts are detected on the falling edge of H1. Therefore, 
interrupts must be set up and held to the falling edge of H 1 for proper detection. 
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For the processor to recognize only one interrupt on a given input, an interrupt 
pulse must be set up and held to: 

Q a minimum of one H1 falling edge, and 

Q no more than two H1 falling edges. 

The TMS320C3x can accept an interrupt from the same source every two H1 
clock cycles. 

If the specified timings are met, the exact sequence shown in Figure 13-24 will 
occur; otherwise, an additional delay of one clock cycle may occur. 
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13.6.12 Interrupt Acknowledge Timing 

The lACK output is active for the entire duration of the bus cycle. Its activity is 
extended if the bus cycle utilizes wait states. 

Table 13-23 defines the timing parameters for the lACK signal. The numbers 
shown in parentheses in Figure 13-25 correspond with those in the No. col­
umn of Table 13-23. 

Figure 13-25. Timing for lACK 
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Table 13-23. Timing Parameters for lACK (Figure 13-25) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max 

(1 ) td(H1 H-IACKL) Hi high to lACK low delay 13 10 9 

(2) td(H1 H-IACKH) Hi high to lACK high delay 13 10 9 
--

Unit 

ns 

ns 

Note: The lACK output is active for the entire duration of the bus cycle and is therefore extended if the bus cycle utilizes wait 
states. 
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13.6.13 Data Rate Timing Modes 

Unless otherwise indicated, the data rate timings shown in Figure 13-26 and 
Figure 13-27 are valid for all serial port modes, incll:Jding handshake. For a 
functional description of serial portoperation, refer to subsection 8.2j 2 of the 
TMS320C3x User's Guide. 

Table 13-24 defines the timing parameters forthe serial port timing. The num­
bers shown in parentheses in Figure 13-26 correspond with those in the No. 
column of Table 13-24. 

Figure 13-26. Timing for Fixed Data Rate Mode 
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Notes: 1) Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = o. 
2) Timing diagrams depend upon the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively. 
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Figure 13-27. Timing for Variable Data Rate Mode 

CLKX/R ----.it '- IF ''--_--'I ~~ 
~ I+- (9) r I II 1-

FSX(INT) I I 1 1 1 
I ~ 14-1 (14) I I 

(12) -JIll L.- I 1 I I 

FSX(EXT) &);-Ij/;:: (6) ~ II : 1;: ~ (15)~ 
DX (13) ~J Bit n-1 ~;'-----B-it -n--2---X Bit n-3 :: Bit 0 }-

~ J4- (11) 

FSR ------JX i ::~ 
(10) -.! *-

DR "m~~~~~~_1 ~ Bitn-2 ~ Bitn-3 ~~ 
(7) ~(8) 

Notes: 1) Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = O. 
2) Timing diagrams depend upon the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively. 
3) The timings that are not specified expressly for the variable data rate mode are the same as those that are specified 

for the fixed data rate mode. 
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Table 13-24. Serial Port Timing Parameters (Figure 13-26 and Figure 13-27) 

No. Name Description 

(1 ) td(H1-SCK) H1 high to internal CLKX/R delay 

(2) tc(SCK) CLKX/R cycle time CLKX/R ext 

CLKX/R int 

(3) tw(SCK) CLKX/R high/low pulse du-
ration 

CLKX/R ext 

CLKX/R int 

(4) tr(SCK) CLKX/R rise time 

(5) tf(SCK) CLKX/R fall time 

(6) td(DX) CLKX to DX valid delay CLKX ext 

CLKX int 

(7) tsu(DR) DR setup before CLKR ext 

CLKR low CLKR int 

(8) th(DR) DR hold from CLKR ext 

CLKR low CLKR int 

(9) td(FSX) CLKX to internal CLKX ext 

FSX high/low delay CLKX int 

(10) tsu(FSR) FSR setup before CLKR 
low 

CLKR ext 

CLKR int 

(11 ) th(FS) FSX/R input 
CLKX/R low 

hold from CLKX/R ext 

CLKX/R int 

(12) tsu(FSX) External FSX setup before 
CLKX 

CLKX ext 

CLKX int 

(13) td(CH-DX)V CLKX to first DX bit, FSX pre- CLKX ext 
cedes CLKX high delay 

CLKX int 

(14) td(FSX-DX)VI FSX to first DX bit, CLKX precedes FSX delay 

(15) td(DXZ) CLKX high to DX high impedance following last 
data bit delay 

t Guaranteed by design but not tested. 
+ Not tested. 

TMS320C30-27 
TMS320C31-27 

Min Max 

19 

tc(H)x2.6t 

tc(H)x2 tc(H)X232+ 

tc(H)+ 12t 

[tc(SCK)/2]-15 [tc(SCK)/2]+5 

10t 

10t 

44 

25 

13 

31 

13 

0 

40 

21 

13 

13 

13 

0 

-[tc(H)-8] [tc(SCK)/2]-10+ 

-[tc(H)-21 ] tc(SCK)/2+ 

45 

26 

45 

25t 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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Table 13-24. Serial Port Timing Parameters (Figure 13-26 and Figure 13-27) (Continued) 

No. Name Description 

(1 ) td(H1-SCK) H1 high to internal CLKX/R delay 

(2) tc(SCK) CLKX/R cycle time CLKX/R ext 

CLKX/R int 

(3) tw(SCK) CLKXlR high/low pulse du-
ration 

CLKX/R ext 

CLKX/R int 

(4) tr(SCK) CLKX/R rise time 

(5) tf(SCK) CLKX/R fall time 

(6) td(OX) CLKX to OX valid delay CLKX ext 

CLKX int 

(7) tsu(OR) DR setup before CLKR ext 

CLKR low CLKR int 

(8) th(OR) DR hold from CLKR ext 

CLKR low CLKR int 

(9) td(FSX) CLKX to internal CLKX ext 

FSX high/low delay CLKX int 

(10) tsu(FSR) FSR setup before CLKR ext 

CLKR low CLKR int 

(11 ) th(FS) FSX/R input hold from CLKX/R ext 
CLKX/R low 

CLKX/R int 

(12) tsu(FSX) External FSX setup before CLKX ext 
CLKX 

CLKX int 

(13) td(CH-OX)V CLKX to first DX bit, FSX pre-
cedes 

CLKX ext 

CLKX high delay CLKX int 

(14) td(FSX-OX)V FSX to first OX bit, CLKX precedes FSX delay 

(15) td(OXZ) CLKX high to OX high impedance following last 
data bit delay 

t Guaranteed by design but not tested. 
:j: Not tested. 

TMS320C30-33 
TMS320C31-33 

Min Max 

15 

tciHlx2.6t 

tc(H)x2 tc(H)x232:j: 

tC(H)+12t 

[tc(SCK)/2]-15 [tc(SCK)/2]+5 
8t 

8t 

35 

20 

10 

25 

10 

0 

32 

17 

10 

10 

10 

0 

-[tc(H)-8] [tc(SCK)/2]-10:j: 

[tc(H)-21] tc(SCK)/2:j: 

36 

21 

36 

20t 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

13-43 



Table 13-24. Serial Port Timing Parameters (Figure 13-26 and Figure 13-27) (Concluded) 

No. Name Description 

(1 ) td(H1-SCK) H1 high to internal CLKX/R delay 

(2) tc(SCK) CLKX/R cycle time CLKX/R ext 

CLKX/R int 

(3) tw(SCK) CLKX/R high/low pulse du- CLKX/R ext 
ration 

CLKX/R int 

(4) tr(SCK) CLKX/R rise time 

(5) tf(SCK) CLKX/R fall time 

(6) td(DX) CLKX to DX valid delay CLKX ext 

CLKX int 

(7) tsu(DR) DR setup before CLKR ext 

CLKR low CLKR int 

(8) th(DR) DR hold from CLKR ext 

CLKR low CLKR int 

(9) td(FSX) CLKX to internal CLKX ext 

FSX high/low delay CLKX int 

(10) tsu(FSR) FSR setup before CLKR ext 

CLKR low CLKR int 

(11 ) th(FS) FSX/R input hold from CLKX/R ext 
CLKX/R low 

CLKX/R int 

(12) tsu(FSX) External FSX setup before CLKX ext 
CLKX 

CLKX int 

(13) td(CH7""DX)V CLKX to first OX bit, FSX pre-
cedes CLKX high delay 

CLKX ext 

CLKX int 

(14) td(FSX-OX)V FSX to first OX bit, CLKX precedes FSX delay 

(15) td(OXZ) CLKX high to OX high impedance following last 
data bit delay . 

t Guaranteed by design but not tested. 
:f: Not tested. 

TMS320C30-40 

Min Max 

13 

tc(H)x2.6t 

tc(H)x2 tc(H)x232:f: 

tc(H)+10t 

[tc(SCK)/21-5 [tc(SCK)/2]+5 

7t 

7t 

30 

17 

9 

21 

9 

0 

27 

15 

9 

9 

9 

0 

-[tc(H)-8] [tc(SCK)/2]-10:f: 

-[tc(H)-21 ] tc(SCK)/2:f: 

30 

18 

30 

17t 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 
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13.6.14 HOLD Timing 

HOLD is an asynchronous input that can be asserted at any time during a clock 
cycle. If the specified timings are met, the exact sequence shown in 
Figure 13-28 will occur; otherwise, an additional delay of one clock cycle may 
occur. 

Table 13-25 defines the timing parameters for the HOLD and HOLDA signals. 
The numbers shown in parentheses in Figure 13-28 correspond with those in 
the No. column of Table 13-25. 

The NOHOLD bit of the primary bus control register (refer to Chapter 7, sub­
section 7.1.1) overrides the HOLD signal. When this bit is set, the device 
comes out of hold and prevents future hold cycles from occurring. 

Figure 13-28. Timing for HOLD/HOLDA 

H3 

H1 

~ l.- (1) I -t!*-(1) 

HOLD~ (4) V I 
I I 

I I ~ /4- (3) -.! *- (3) 

I I ~ (6) ~I 

HOLDA I I I~ 111 
(7) -.I ~ 1 j4-(8) ~ ~(9) 

STRB 71 I' I ~ \: -J I : ~(10) 1+-(11) 

: 

I I 
R/W ) I ~ I 

: 

~ 14- (12) -.I 14- (13) 
I I 

A ) ~ 
~ 14-(16) 

I 
D Write Data ) 

Note: HOLDA will go low in response to HOLD going low and will continue to remain low until one H1 cycle after HOLD goes back 
high as shown in Figure 13-28. 
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Table 13-25. Timing Parameters for HOLD/HOLDA (Figure 13-28) 

No. Name Description 

(1 ) tsu(HOLD) HOLD setup before H1 low 

(3) tv(HOLDA) HOLDA valid after H1 low 

(4) tw(HOLD) HOLD Iqw duration 

(6) tw(HOLDA) HOLDA low duration 

(7) td(H1 L-SH)H H1 low to STRB high for a HOLD 
delay 

(8) tdis(H1 L-S) H1 low to STRB disabled (high-im-
pedance state) 

(9) ten(H1 L-S) H1 low to STRB enabled (active) 

(10) tdis(H1 L-RW) H1 low to RIW disabled (high-im-
pedance state) 

(11 ) ten(H1 L-RW) Hi low to R/W enabled (active) 

(12) tdis(H1 L-A) H1 low to address disabled (high-
impedance state) 

(13) ten(H1L-A) H1 low to address enabled (valid) 

(16) tdis(H1 H-D) H1 high to data disabled (high-im-
pedance state) 

t Characterized but not tested. 
=1= Not tested. 

TMS320C30-27 
TMS320C31-27 

Min Max 

19 

0=1= 14 

2tc(H) 

tcH-5t 

0=1= 13 

0:1= 13t 

0:1= 13 

0=1= 13t 

0:1= 13 

0=1= 13t 

0=1= 19 

0=1= 13t 

TMS320C30-33 TMS320C30-40 
TMS320C31-33 

Min Max Min Max Unit 

15 13 ns 

0=1= 10 0=1= 9 ns 

2tc(H) 2tc(H) ns 

tcH-5t tcH-5t ns 

0=1= 10 0=1= 9 ns 

0:1= 10t 0:1= 9t ns 

0+ 10 0+ 9 ns 

0=1= 10t 0=1= 9t ns 

a; 10 a; 9 ns 

a; 10t 0=1= 9t ns 

0=1= 15 0=1= 13 ns 

0=1= 10t 0=1= 9t ns 

Note: HOLD is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the 
exact sequence shown will occur; otherwise, an additional delay of one clock cycle may occur. 
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13.6.15 General-Purpose 1/0 Timing 

Peripheral pins include CLKXO/1 , CLKRO/1, DXO/1, DRO/1, FSXO/1, FSRO/1, 
and TelKO/1. The contents of the internal control registers associated with 
each peripheral define the modes for these pins. 

13.6.15.1 Peripheral Pin 110 Timing 

Table 13-26 defines peripheral pin general-purpose I/O timing parameters. 
The numbers shown in parentheses in Figure 13-29 correspond with those in 
the No. column of Table 13-26. 

Figure 13-29. Timing for Peripheral Pin General-Purpose 110 

Table 13-26. Timing Parameters for Peripheral Pin General-Purpose 110 (Figure 13-29) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min . Max Min Max Min Max Unit 

(1 ) tsu(GPIOH1 L) General-purpose input setup before 15 12 10 ns 
H110w 

(2) th(GPIOH1 L) General-purpose input hold time 0 0 0 ns 
after H1 low 

(3) td(GPIOH1 H) General-purpose output delay after 19 15 13 ns 
H1 high 

Note: Peripheral pins include CLKXO/1 , CLKRO/1 , DXO/1 , DRO/1 , FSXO/1 , FSRO/1 , and TCLKO/1. The modes of these pins are 
defined by the contents of internal control registers associated with each peripheral. 
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13.6.15.2 Changing the Peripheral Pin 110 Modes 

Table 13-27 and Table 13-28 show the timing parameters for changing the pe­
ripheral pin from a general-purpose output pin to a general-purpose input pin 
and vice versa. The numbers shown in parentheses in Figure 13-30 and 
Figure 13-31 correspond to those shown in the No. column of Table 13-27 
and Table 13-28. ~ 

Figure 13-30. Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode 

H3 

H1 

Execute 
Store Of 

Peripheral 
Control 
Register 

10---.... 
Control Bit 

Data Bit 

Buffers Go 
from Output 

to Input 
Synchronizer Delay 

(2) ~ it-
t!! \4: (3) 

~ 
Sampled 

Value on Pin 
Seen in 

Peripheral 
Control 
Register 

Table 13-27. Timing Parameters for Peripheral Pin Changing From General-Purpose Output to Input Mode 
(Figure 13-30) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max' Min Max Min Max Unit 

(1 ) th(H3H} Hold after H1 high 19 15 13 ns 

(2) tsu(GPIOH1 L) Peripheral pin setup before H1 low 13 10 9 ns 

(3) th(GPIOH1 L) Peripheral pin hold after H1 low 0 0 0 ns 
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Figure 13-31. Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode 

H3 

H1 

10 Control 
Bit 

Execution of Store 
of Peripheral Control 

Register 

14-(1 ) 

Peripheral --------------------fV Pin , '----

Table 13-28. Timing Parameters for Peripheral Pin Changing From General-Purpose Input to Output Mode 
(Figure 13-31) 

TMS320C30-27 TMS320C30-33 TMS320C30-40 
TMS320C31-27 TMS320C31-33 

No. Name Description Min Max Min Max Min Max Unit 

(1 ) td(GPIOH1 H) H1 high to peripheral pin switching 19 15 13 ns 
from input to output delay 
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13.6.16 Timer Pin Timing 

Valid logic level periods and polarity are specified by the contents of the internal 
control registers. I 

Table 13-29 defines the timing parameters for the timer pin. The numbers 
shown in parentheses in Figure 13-32 correspond with those in the No. col­
umn of Table 13-29. 

Figure 13-32. Timing for Timer Pin 

H3 

Hi 

~~ 

~~ 
!4-- (2) ~ (3) ~ j4- L! LL-

(1)--1 j4- ~. ! ...... ~_-_(_3) ___ _ 
Peripher~1 X 't' . ~~:::x: 

Pin _--.J·T"""--~j4--(5-)-~-I ------

~ (4) ~ 

Table 13-29. Timing Parameters for Timer Pin (Figure 13-32) 

TMS320C30-27 
TMS320C31-27 

No. Name· Description* Min Max 

(1 ) tsu (TCLKH1 L) TCLK ext setup before Hi low TCLK ext 15 

(2) th{TCLKH1 L) TCLK ext hold after Hi low TCLK ext 0 

(3) td(TCLKH1 H) Hi high to TCLK int valid delay TCLK int 13 

(4) tc(TCLK) TCLK cycle time TCLK ext tc(H)x2.6t 

TCLK int tcJH)x2 tc(H1X232t 

(5) tw(TCLK) TCLK high/low pulse duration TCLK ext tc(H)+12t 

TCLK int [tC(TCLK)/2]-15 [tc (TCLK)/2]+5 

t Guaranteed by design but not tested. 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

:j: Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an 
asynchr~nous input clock. 

13-50 TMS320C3x Signal Descriptions and Electrical Characteristics 



Table 13-29. Timing Parameters for Timer Pin (Figure 13-32) (Continued) 

TMS320C30-33 
TMS320C31-33 

No. Name Description* Min Max Unit 

(1 ) tsu(TCLKH1 Lt TCLK ext setup before H1 low TCLK ext 12 ns 

(2) th(TCLKH1 L) TCLK ext hold after H 1 low TCLK ext 0 ns 

(3) td(TCLKH1 H) H1 high to TCLK int valid delay TCLK int 10 ns 

(4) tc(TCLK) TCLK cycle time TCLK ext tc(H)x2.6t ns 

TCLK int tc(H)x2 tc(Htx232t ns 

(5) tw(TCLK) TCLK high/low pulse duration TCLK ext tc(H)+12t ns 

TCLK int [tcLTCLK)/2]-15 [tcJTCLKy2]+5 ns 

t Guaranteed by design but not tested. 
:j: Timing parameters 1 and 2 are applicable for a synchronous input clock. TIming parameters 4 and 5 are applicable for an 

asynchronous input clock. 

Table 13-29. Timing Parameters for Timer Pin (Figure 13-32) (Continued) 

TMS320C30-40 

No. Name Description=l= Min Max Unit 

(1 ) tsu(TCLKH1 L) TCLK ext setup before H1 low TCLK ext 10 ns 

(2) th(TCLKH1 L) TCLK ext hold after H1 low TCLK ext 0 ns 

(3) td(TCLKH1 H) H1 high to TCLK int valid delay TCLK int 9 ns 

(4) tc(TCLK) TCLK cycle time TCLK ext tc(H)x2.6t ns 

TCLK int tc(H)x2 tc(H)x232t ns 

(5) tw(TCLK) TCLK high/low pulse duration TCLK ext tc(H)+10t ns 

TCLK int [tc(TCLK)/2]-5 [tc(TCLK)/2]+5 ns 

t Guaranteed by design but not tested. 
:j: TIming parameters 1 and 2 are applicable for a synchronous input clock. TIming parameters 4 and 5 are applicable for an 

asynchronous input clock. 

• 
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Appendix A 

Instruction Opcodes 
::;;;;::::~::::::;::::;:;;::::::::~:::;:~:;:Z:::;;:;::;;r:;:::;:;:::::;:;::;::;:;;;:::::::;:::;;::::;::~::;::!;:;:;!;!;!;:;!;!:!;:;!;:;::!;;;!;:;;::;:;:;:;:;!;!;!;:;:;:;:;:;!;:;:;:;:;:;' ::;:::::;:::::::;;;:::::::::;:::::;~:::::;:::;:::::;:;:::;!;!;:;!::;!;!:!;!::::;:;!;:;:;!;:;!;!;!;!: :;:;:;:;:;:;:::;:::;.;.;.;.;.;.;.... . ..•.•.......... ',' ...•.....•..••.. '.;.:.;!;:;:;:;:;:;:;:;:;:;:;!;:;:;:;!;:;:;!;:;:;:;:;:::: ... ...•...•.•.••....••.. .. •••.... .•..•.. ' ........ :::::~;::::;:::::::: ....• '. 

The opcode fields for all the TMS320C3x instructions are shown in Table A-1. 
Bits in the table marked with a hyphen are defined in the individual instruction 
description (see Chapter 11). Table A-1, along with the instruction descrip­
tions, fully defines the instruction words. The opcodes are listed in numerical 
order. 

Table A-1. TMS320C3x Instruction Opcodes 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

ABSF 0 0 0 0 0 0 0 0 0 

ABSI 0 0 0 0 0 0 0 0 1 

ADDC 0 0 0 0 0 0 0 1 0 

ADDF 0 0 0 0 0 0 0 1 1 

ADDI 0 0 0 0 0 0 1 0 0 

AND 0 0 0 0 0 0 1 0 1 

ANON 0 0 0 0 0 0 1 1 0 

ASH 0 0 0 0 0 0 1 1 1 

CMPF 0 0 0 0 0 1 0 0 0 

CMPI 0 0 0 0 0 1 0 0 1 

FIX 0 0 0 0 0 1 0 1 0 

FLOAT 0 0 0 0 0 1 0 1 1 

IDLE 0 0 0 0 0 1 1 0 0 

LDE 0 0 0 0 0 1 1 0 1 

LDF 0 0 0 0 0 1 1 1 0 

LDFI 0 0 0 0 0 1 1 1 1 

LDI 0 0 0 0 1 0 0 0 0 

LOll 0 0 0 0 1 0 0 0 1 

LDM 0 0 0 0 1 0 0 1 0 

LSH 0 0 0 0 1 0 0 1 1 

MPYF 0 0 0 0 1 0 1 0 0 

MPYI 0 0 0 0 1 0 1 0 1 

NEGB 0 0 0 0 1 0 1 1 0 

NEGF 0 0 0 0 1 0 1 1 1 

NEGI 0 0 0 0 1 1 0 0 0 
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Instruction Opcodes 
~~~~:;:;~:-!>:;:;:;s~:;:;:~:;:;~.:;:;:;:;:;::::::>::::::::::::~:::::::::".:::::::::;:::;:::::::::::::::::::::;:;:;:;:;:;:::::;~.:::::::::::::;:::::::;:"(.:::::::;:"':;:::"':::::::::".(,:::;:::;~:;:;:::::::;:;';:"N. ••• :;o;~.~.;~::.~;.;:::;::'::::::::::::::Io:::::::::;:;:::::.:".:::::::;·;·:·;·;.;:~::h .. ::.:: •• .: .• .::: •• ;.:::.M!:::. ..... : ....... :;O;.;:::::::: .. ::.:::' ...... ;.:: ••• ::.;.;:; .. ::.;.;:;o; ....... ; ••• : •• ~ ..... :.: .......... o;o .......... ::;o: .... : •• ;.;.~:;.;:;:.:; •• !>'«.,;: ...... ;::.::;:;:;:;:::;:" ..... ::::::;.;:::::::"..;:;.:::.;:::::::;::~::"~(.:::::::::::;:::::::::".:0 

TableA-1. TMS320C3x Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

NOP 0 0 0 0 1 1 0 0 1 

NORM 0 0 0 0 1 1 0 1 0 

NOT 0 0 0 0 1 1 0 1 1 

POP 0 0 0 0 1 1 1 0 0 

POPF 0 0 0 0 1 1 1 0 1 

PUSH 0 0 0 0 1 1 1 1 0 

PUSHF 0 0 0 0 1 1 1 1 1 

OR 0 0 0 1 0 0 o· 0 0 

RND 0 0 0 1 0 0 0 1 0 

ROL 0 0 0 1 0 0 0 1 1 

ROLC 0 0 0 1 0 0 1 0 0 

ROR 0 0 0 1 0 0 1 0 1 

RORC 0 0 0 1 0 0 1 1 0 

RPTS 0 0 0 1 0 0 1 1 1 

STF 0 0 0 1 0 1 0 0 0 

STFI 0 0 0 1 0 1 0 0 1 

STI 0 0 0 1 0 1 0 1 0 

STI! 0 0 0 1 0 1 0 1 1 

SIGI 0 0 0 1 0 1 1 0 0 

SUBS 0 0 0 1 0 1 1 0 1 

SUBC 0 0 0 1 0 1 1 1 0 

SUBF 0 0 0 1 0 1 1 1 1 

SUBI 0 0 0 1 1 0 0 0 0 

SUBRB 0 0 0 1 1 0 0 0 1 

SUBRF 0 0 0 1 1 0 0 1 0 

SUBRI 0 0 0 1 1 0 0 1 1 

TSTB 0 0 0 1 1 0 1 0 0 

XOR 0 0 0 1 1 0 1 0 1 

lACK 0 0 0 1 1 0 1 1 0 

ADDC3 0 0 1 0 0 0 0 0 0 

ADDF3 0 0 1 0 0 0 0 0 1 

ADDI3 0 0 1 0 0 0 0 1 0 

AND3 0 0 1 0 0 0 0 1 1 

ANDN3 0 0 1 0 0 0 1 0 0 

ASH3 0 0 1 0 0 0 1 0 1 

CMPF3 0 0 1 0 0 0 1 1 0 

CMPI3 0 0 1 0 0 0 1 1 1 
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Instruction UpCOC'1es 

TableA-1. TMS320C3x Instruction Opcodes (Continued) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

LSH3 0 0 1 0 0 1 0 0 0 

MPYF3 0 0 1 0 0 1 0 0 1 

MPYI3 0 0 1 0 0 1 0 1 0 

OR3 0 0 1 0 0 1 0 1 1 

SUBB3 0 0 1 0 0 1 1 0 0 

SUBF3 0 0 1 0 0 1 1 0 1 

SUB13 0 0 1 0, 0 1 1 1 0 

TSTB3 0 0 1 0 0 1 1 1 1 

XOR3 0 0 1 0 1 0 0 0 0 

LDFcond 0 1 0 0 - - - - -
LDlcond 0 1 0 1 - - - - -

BR(D)t 0 1 1 0 0 0 0 - -

CALL 0 1 1 0 0 0 1 - -
RPTB 0 1 1 0 0 1 0 - -

SWI 0 1 1 0 0 1 1 - -

. Bcond(D)t 0 1 1 0 1 0 - - -

DBcond(D) t 0 1 1 0 1 1 - - -
CALLcond 0 1 1 1 0 0 - - -

TRAPcond 0 1 1 1 0 1 0 - -
RETlcond 0 1 1 1 1 0 0 0 0 

RETScond 0 1 1 1 1 0 0 0 1 

MPYF311ADDF3 1 0 0 0 0 0 0 0 -

1 0 0 0 0 0 0 1 -
1 0 0 0 0 0 1 0 -

1 0 0 0 0 0 1 1 -

MPYF311SUBF3 1 0 0 0 0 1 0 0 -
1 0 0 0 0 1 0 1 -
1 0 0 0 0 1 1 0 -

1 0 0 0 0 1 1 1 -
MPYI311ADDI3 1 0 0 0 1 0 0 0 -

1 0 0 0 1 0 0 1 -

1 0 0 0 1 0 1 0 -
1 0 0 0 1 0 1 1 -

t Opcode same for standard and delayed instructions. 
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TableA-1. TMS320C3x Instruction Opcodes (Concluded) 

INSTRUCTION 31 30 29 28 27 26 25 24 23 

MPYI311SUBI3 1 0 0 0 1 1 0 0 -
1 0 0 0 1 1 0 1 -
1 0 0 0 1 1 1 0 -
1 0 0 0 1 1 1 1 -

STFIISTF 1 1 0 0 0 0 0 - -
STIIISTI 1 1 0 0 0 0 1 - -

LDFIILDF 1 1 0 0 0 1 0 - -
LDIlILDI 1 1 0 0 0 1 1 - -

ABSFIISTF 1 1 0 0 1 0 0 - -
ABSIIiSTI 1 1 0 0 1 0 1 - -

ADDF311STF 1 1 0 0 1 1 0 - -
ADDI311STI 1 1 0 0 1 1 1 - -
AND311STI 1 1 0 1 0 0 0 - -
ASH311STI 1 1 0 1 0 0 1 - -

FIXIISTI 1 1 0 1 0 1 0 - -
FLOATIISTF 1 1 0 1 0 1 1 - -

LDFIISTF 1 1 0 1 1 0 0 - -
LDIIISTI 1 1 0 1 1 0 1 - -

LSH311STI 1 1 0 1 1 1 0 - -
MPYF311STF 1 1 0 1 1 1 1 - -
MPYI311STI 1 1 1 0 0 0 0 - -
NEGFIISTF 1 1 1 0 0 0 1 - -
NEGIlISTI 1 1 1 0 0 1 0 - -
NOTIISTI 1 1 1 0 0 1 1 - -
OR311STI 1 1 1 0 1 0 0 - -

SUBF311STF 1 1 1 0 1 0 1 - -
SUBI311STI 1 1 1 0 1 1 0 - -

XOR311STI 1 1 1 0 1 1 1 - -
Reserved for reset, 

traps, and interrupts 0 1 1 1 1 1 1 1 1 
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This appendix provides development support information, device part num­
bers, and support tool ordering information for the TMS320C3x generation. 
Figure 8-1 shows the software and hardware development tools available and 
the development environment for the TMS320C3x. 

Figure 8-1. TMS320C3x Development Environment 

Assembler 
Source 

SourceC 
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B.1 TMS320C3x Development Support 

8-2 

Texas Instruments supplies extensive development support and complete 
documentation for the TMS320C3x generation of digital signal processors. TI 
also offers a complete line of software and hardware tools (shown in Table B-2 
on page B-15) to support in application development, evaluation of the proces­
sor performance, algorithm implementations, and full integration of design 
modules. 

Software development tools include 

Q TMS320C3x Macro Assembler/Linker 
Q TMS320C3x Optimizing ANSI C Compiler 
[:I TMS320C3x Simulator 
Q SPOX (the TMS320C3x Operating System). 

Hardware development tools consist of 

Q TMS320C30 Evaluation Module (EVM) 
Q TMS320C3x XDS500 Emulator 
Q TMS320C30 XDS 1 000 Development System 
Q TMS320C30 Hewlett-Packard 64776 Analysis Subsystem 

The macro assembler/linker converts assembly language into executable ob­
ject code. The TMS320C3x optimizing C compiler supports high-level lan­
guage programming and is a full implementation of the standard ANSI C lan­
guage. The simulator is a software program that simulates nonreal-time opera­
tion of the TMS320C3x, allowing verification and monitoring of the state of the 
processor. 

Both the TMS320C3x ~DSSOO Emulator and the TMS320C30 XDS 1000 De­
velopment Environment provide full-speed, in-circuit emulation for 
TMS320C3x system design and debug on the IBM PC/AT and compatible de­
vices. The TMS320C3x XDS500 supports hardware and software debug of 
your target system. The TMS320C30 XDS1 000 provides system needs from 
concept to prototype. It includes the XDSSOO Emulator Board and the 
TMS320C30 Application Board (a predefined sample target system that con­
tains a TMS320C30). 

These hardware and software products are easy to use and offer the designer 
the tools needed to significantly reduce TMS320C3x system development time 
and cost. 

A description of key features for each TMS320C3x development support tool 
is provided in the following subsections. For ordering information, see Section 
B.4. For detailed information on these tools, refer to TMS320 Family Develop­
ment Support Reference Guide (literature number SPRU011 B). Call the Cus­
tomer Response Center at 800-336-S236 to request a copy. 

Development Support/Part Order Information 
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8.1.1 Macro Assembler/Linker 

The TMS320C3x Macro Assembler/Linker is a software tool that converts 
source mnemonics to executable object code. It is distinguished by these key 
features: 

a Macro capabilities and library functions 

a Conditional assembly 

a Relocatable modules 

a Complete error diagnostics 

a Symbol table and cross-reference 

To address specific needs, the TMS320C3x Macro Assembler/Linker is 
shipped with four programs: 

1) The assembler translates assembly language source files into machine 
language object files. 

2) The archiver collects a group of files-object, source, or macros-into a 
single archive file. 

3) The linker combines object files into a single executable object module. 

4) The object format converter changes the object file into Intel, Tektronix, 
or TI-tagged object format. The converted file can be downloaded to an 
EPROM programmer; the EPROM code can then be executed on the 
TMS320C3x device. 

The main purpose of this development process, shown in Figure 8-1, is to pro­
duce a module that can be executed in a system that contains a TMS320C3x 
device or the software or hardware development tools. 

The macro assembler/linker is currently available for PC/MS-DOS (versions 
3.0 and up) and OS/2, Macintosh MPW, VAX VMS, SUN-3, and SUN-4 UNIX 
operating systems. 

8.1.2 Optimizing ANSI C Compiler 

The TI C compiler translates the widely used ANSI C language directly into 
highly optimized assembly code. This code is then assembled and linked using 
TI's assembler/linker, which is shipped with the compileL 

The C compiler provides for enhanced productivity by enabling the application 
designer to program in C, thus making code easier to prototype, debug, and 
benchmark. Furthermore, already existing code can be directly compiled and 
executed on a TMS320C3x. 
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The TMS320C3x Optimizing ANSI C Compiler is a full-featured C compiler. 
Compiler features include 

Q Complete and exact conformity to the ANSI C specification. 

Q Highly efficient code. The compiler incorporates state-of-the-art generic 
and target-specific optimizations. 

Q C programs that can be linked with assembly language routines, allowing 
hand coding of time-critical functions in TMS320C3x assembly language. 

Q ANSI-standard run-time library. 

Q A C shell program to facilitate one-step translation from C source to ex­
ecutable code. 

Q A variety of listing files. 

Q Fast compilation to increase productivity. 

Q Complete and useful diagnostics (error messages). 

Q Validation with the de facto industry standard Plum Hall and Perennial vali-
dation suites. -

Below are key optimizations performed by the compiler. 

Q TMS320C3x-specific optimations 
• Register variables 
• Register tracking/targeting 
• Cost-based register allocation 
• Autoincrement addressing modes 

• Repeat blocks 
• TMS320C3x parallel instructions 
• Conditional instructions 
• TMS320C3x delayed branches 

Q General-purpose C optimizations 
• Algebraic reordering/symbolic simplification/constant folding 
• Data flow optimizations 
• Copy propagation 
• Common subexpression elimination 
• Redundant assignment elimination 
• Alias disambiguation 
• Branch optimizations/controlled-flow simplification 
• Loop induction variable optimizations/strength reduction 

• Loop unrolling 
• Loop rotation 

Development Support/Part Order Information 
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II Loop-invariant code motion 
• In-line expansion of run-time support library functions 

The compiler supports DEC VAX/VMS, IBM-PC with PC-DOS (versions 3.0 
and up) or OS/2 compatibles, Macintosh MPW, and SUN-3 and SUN-4 UNIX 
systems. 

The assembler/linker is included with the shipment of the C compiler. 

The TMS320C3x Simulator is a software program that simulates operation of 
the TMS320C3x. These key features make the simulator effective and flexible 
in TMS320C3x software development: 

Q Simulation of the entire TMS320C3x digital signal processor instruction 
set 

Q Simulation of the key TMS320C3x peripheral features (DMA, timers, and 
serial port) 

Q Command entry either from menu-driven keystrokes (menu mode) orfrom 
a batch file (line mode) 

Q Help menus for all screen modes 

Q Standard interface that can be user customized 

Q Quick storage and retrieval of simulation parameters from fjles to facilitate 
preparation for individual sessions . 

Q Reverse assembly that allows editing and reassembly of source state­
ments 

a Memory contents that c'an be displayed in hexadecimal 32-bit values and 
assembled source at the same time. 

a Execution modes including single-step, until, while, for, and run to break-
point or user halt. 

Q Breakpoints 

a Simulation of cache utilization 

a Cycle counting 

The simulator allows verification and monitoring of the state of the processor. 
Simulation occurs at thousands of instructions per second (VAX/VMS and 
SUN-3/SUN-4 UNIX) or hundreds of instructions per second (PC/MS-DOS). 

The user interface in the simulator is identical to that in the XDS. See 
Figure B-2 for an example. 
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Figure 8-2. TMS320C3x Simulator User Interface 
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The simulator currently supports PC/MS-DOS, VAX VMS, and VAX Ultrix oper­
.ating systems, and SUN-3 and SUN-4 UNIX systems. 

8.1.4 The TMS320C3x Operating System (SPOX) 

SPOX, developed by Spectron Microsystems Inc., is the industry's first hard­
ware-independent software base for a real-time DSP operating system. SPOX 
features a set of high-level C-callable software functions, which are indepen­
dent of the underlying hardware platform, thus insulating real-time DSP appli­
cations from many low-level system details. 

SPOX differs from other operating systems or real-time kernels (such as UNIX) 
just as the TMS320C3x differs from a general-purpose microprocessor: both 
SPOX and the TMS320C3x are application-specific. SPOX affords its users 
two important benefits: software productivity and application portability. 

Functional Components 

The SPOX software interface augments high-level programming languages 
like C by accessing a virtual DSP machine that consists of four functional com­
ponents: 

1) DSP MATH furnishes application software with a rich set of operations 
used to manipulate vectors, matrices, and filters. 
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2) Hierarchical Memory Managementgives the application explicit control in 
allocating data storage from different segments of system memory. 

3) Stream liD presents a device-independent application interface used to 
input and outputs blocks of data from a variety of peripherals. 

4) Realtime Kerne/provides primitives for scheduling and synchronizing mul­
tiple, prioritized tasks. 

Figure B-3 illustrates the functional components of SPOX. 

Figure 8-3. Internal SPOX Architecture 

DSP Memory Device 
Math Management Drivers 
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SPOX Product Offering 

The SPOX software interface is supported in different execution environments, 
Including Sun workstations, IBM personal computers, and VAX minicomput­
ers. On these host systems, DSP application programs written in high-level 
languages such as C can be developed and debugged in familiar software en­
gineering environments equipped with powerful tools and utilities. Afterward, 
these same programs can be recompiled with the TMS320C3x C compiler 
available for these same hosts, then benchmarked on the TMS320C3x soft­
ware simulator for time and space using a version of SPOX designed specifi­
cally for use with the TMS320C3x simulator or a hardware development sys­
tem such as the XDS1 000. 

Spectron also offers a SPOX Porting Kit. This product includes an unbundled 
version of SPOX, whose generic components can be configured forthe specif­
ic TMS320C3x application and integrated with system-dependent software 
(drivers, math functions, etc.) supplied by the developer. 

SPOX is currently packaged with the TMS320C3x XDS1 000 Development En­
vironment. For more information regarding SPOX, contact Spectron Microsys­
terns at (805) 967-0503. 
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8.1.S TMS320C3x Evaluation Module 

With the introduction of the TMS320C30 Evaluation Module (EVM), Texas In­
struments has removed the cost barrier to evaluating and developing floating­
point DSP applications. The TMS320C30 EVM is the first floating-point DSP 
tool that bridges the price-performance gap between software simulators and 
full-featured development platforms. 

Each EVM comes complete with a PC halfcard and software package. The 
EVM board contains 

a One TMS320C30, a 33-MFLOP, 32-bit floating-point DSP 

a 16K-word zero-wait-state SRAM, allowing coding of most algorithms di­
rectly on the board 

a A speaker/microphone-ready analog interface for multimedia, speech, 
and audio applications development 

a A multiprocessor serial port interface for connecting to multiple EVMs 

a A host port for PC communications 

The system also comes with all the software required to begin applications de­
velopment on a PC host. Equipped with a C and assembly language source 
level debugger for DSP, the EVM has a window-oriented, mouse-driven inter­
face that enables the downloading, executing, and debugging of assembly 
code or C code. See subsection 8.1.6, Emulator User Interface, for more infor­
mation. 

The TMS320C3x Assembler/Linker is also included with the EVM. For users 
who prefer programming in a high-level language, an optimizing ANSI C com­
piler and Ada compiler are offered separately. 

8.1.6 TMS320C3x Emulator - Extended Development System (XDSSOO and 
XDS1000) 

8-8 

The TMS320C3x XDS500 and XDS1000 Emulators are user-friendly, PC­
based development systems, which provide all the features necessary to per­
form full-speed in-circuit emulation with the TMS320C3x. These emulators al­
low you to develop software and hardware and to integrate the software and 
hardware with the target system. A revolutionary scan path interface gives con­
trol and access to every memory location and register of the TMS320C3x. Key 
features of the TMS320C3x emulators include 

a no cable length/transmission problems, 

a a nonintrusive system, 

a no loading problems on signals, 
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Q no artificial memory limitations, 

Q a common screen interface for ease of use, 

Q easy installation, 

Q in-system emulation, 

Q no variance from data sheet. 

Full-speed execution and monitoring of the target system is performed by the 
4-wire interface or scan path via a 12-pin target connector. This scan path con­
trols the TMS320C3x in the target application and provides access to all the 
registers as well as to internal and external memory of the device. Since pro­
gram execution takes place on the TMS320C3x in the target system, there are 
no timing differences during emulation. This new design offers significant ad­
vantages over traditional emulators: 

Q no cable length/transmission problems, 

Q a nonintrusive system, 

Q no loading problems on signals, 

Q no artificial memory limitations, 

Q a common screen interface for ease of use, 

Q easy installation, 

Q in-system emulation, 

Q no variance from data sheet. 

The 12-pin target connector allows for emulation of multiprocessing applica­
tions. For example, if five TMS320C3xs exist on one board, as shown in 
Figure 8-4, each device is emulated by simply moving the 12-pin target con­
nector from one TMS320C3x connector to the next. Real-time emulation is still 
maintained, and the information of each processor is preserved. 

Figure 8-4. Multiprocessing Emulation 

I TMS320C3x I I TMS320C3x I I TMS320C3x I I TMS320C3x I I TMS320C3x I 
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The TMS320C3x XDS 1000 is a full-speed emulator that comes with a prebuilt 
target system for early design development. The TMS320C3x XDS1 000 can 
help debug hardware in real time, debug software in real time, and integrate 
the hardware and software together. 

The XDS500 and XDS1 000 are available on an IBM PC/AT or compatible ma­
chine with 640K of memory running PC/MS-DOS. The XDS500 is shipped with 
the macro assembler/linker. The XDS1000 is shipped with the optimizing C 
compiler, macro assembler/linker, and SPOX. 

Emulator User Interface 

Included with the XDS500 and XDS1 000 systems is the C/assembly source 
debugger and a new menu-, mouse-, and window-oriented environment that 
is the standard for all TMS320 DSP interfaces. The user-friendly, state-of-the­
art interface is flexible and easily customized for color display or monochrome 
monitors. Its features include 

Q Fields that can be edited through the point-and-click capability of the 
mouse. 

Q Menus that provide a quick and easy alternative to the keyboard. 

Q Resize and drag capabilities that allow you to define window size and loca­
tion and to view as much information as you need. 

Q Smart displays that reconfigure the format of displayed data to fit window 
size and shape. 

Q Highlighted fields whenever program execution changes the field values. 

Q A command that allows you to save the screen configurations. 

Q Eight types of windows for debugging and configuring an environment. 
The windows can be in one of the modes described above or can be in any 
user-defined combination of up to 120 windows. The windows provided 
are the same as the simulator, shown in Figure B-2, and include 

a) Command Window for entering commands and displaying output 
and error messages. 

b) Memory Window for displaying, viewing, and editing contents of 
memory. 

c) Disassembly Window for displaying disassembled code. 

d) File Window for displaying the contents of any text file. 

e) CPU Window for displaying, viewing, and editing the CPU registers. 

f) Calls Window for displaying the current function call that a C program 
has made. 
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g) Watch Window for displaying values of selected variables, registers, 
or other C expressions. 

h) Display Windows for displaying all field elements of a selected struc­
ture or array. 

8.1.7 Hewlett-Packard 64700 Analysis Subsystem 

The HP 64700 TMS320C30 Analysis Subsystem is an analysis tool that can 
be used with the TMS320C30 XDS500/1000 emulators to capture 
TMS320C30 bus cycle information in real time. The subsystem collects trace 
samples during a bus cycle and stores them into a trace buffer, which can be 
viewed for analysis and debugging. 

An enhanced version of the TI user-friendly, windowed C/Assembly Source 
Level Debugger (the current emulator interface) is included with the subsys­
tem. The debugger's basic feature set has been extended with additional win­
dows and commands to provide access to the logic analysis capabilities of the 
subsystem. 

The analysis subsystem features are integrated into the window-driven C/as­
sembly source debugger. This means the currentTMS320C30 developer does 
not need to learn a new interface or new software to take advantage of the sub­
system's enhanced feature set. The interface utilizes the debugger's symbol 
table information so that trace information can be displayed in either assembly, 
C, or both simultaneously, further reducing debug time. 

The key features of the HP 64700 Subsystem include 

[J Hardware breakpoints 

[J Selectable tracing on the primary or expansion bus 

[J Up to 1 024-deep trace buffer 

[J Two-deep prestore buffer 

[J Flexible triggering 

a Complete timing analysis 

[J Comprehensive display 

[J Action on external signals 
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The TMS320 family is supported by product and service offerings from more 
than 100 independent vendors and consultants, known as third parties. These 
support products take various forms (both software and hardware) from cross­
assemblers, simulators, and DSP utility packages to logic analyzers and emu­
lators. The expertise of those involved in support services ranges from speech 
encoding and vector quantization to software/hardware design and system 
analysis. 

For a more detailed description of services and products offered by third par­
ties, referto the TMS320 Third Party Support Reference Guide (literature num­
ber SPRU052). Call the Customer Response Center at 800-336-5236 to re­
quest a copy. 
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B.2 TMS320 Literature/DSP Hotline/Bulletin Board Services 

Extensive DSP documentation is available; this includes data sheets, user's 
guides, and application reports. In addition, D8P textbooks that aid research 
and education have been published by Prentice-Hall, John Wiley and Sons, 
and Computer Science Press. To order literature or to subscribe to the DSP 
newsletter "Details on Signal Processing" (for up-to-date information on new 
products and services), call the TI Customer Response Center (CRC) at (800) 
336-5236. 

For answers to TMS320 technical questions on device problems, development 
tools, documentation, upgrades, and new products, call the TI DSP Hotline at 
(713) 274-2320 Monday-Friday from 8:00 a.m. to 6:00 p.m. central time. To 
ask about third-party applications and algorithm development packages, con­
tact the third party directly. Refer to the TMS320 Third-Party Support Refer­
ence Guide (SPRU052) for addresses and phone numbers. 

For information on 

Q TMS320 devices, 

Q Specification updates for current or new devices and development tools, 

Q Development tool and silicon revisions and enhancements, 

a New DSP application software as it becomes available, and 

Q Source code from the TMS320C3x User's Guide, 

call the TMS320 DSP Bulletin Board Service (BB8). You can access this tele­
phone-line computer service by dialing (713) 274-2323 on a 300-, 1200-, or 
2400-bps modem. To find out more about the BBS, look in the TMS320 Family 
Development Support Reference Guide (literature number SPRU011 8). 

Contact the nearest TI Field Sales Office for prices and availability of TMS320 
devices and support tools. See the list of sales offices and distributors at the 
end of this book. 
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8.4 TMS320C3x Part Order Information 

This section provides the device and support tool part numbers. Table B-1 lists 
the part numbers for the TMS320C30 and TMS320C31, and Table B-2 gives 
ordering information forTMS320C3x hardware and software support tools. An 
explanation of the TMS320 family device and development support tool prefix 
and suffix designators follows the two tables to assist in understanding the 
TMS320 product numbering system. 

Table 8-1. TMS320C3x Digital Signal Processor Part Numbers 

Operating Package Typical Power 
Device Technology Frequency Type Dissipation 

TMS320C30GBl 1.0-llm CMOS 33 MHz Ceramic 181-pin PGA 1.00W 

TMS320C30GBl27 1.0-llm CMOS 27 MHz Ceramic 181-pin PGA 0.88W 

TMS320C30GBL40 1.0-llm CMOS 40 MHz Ceramic 188-pin PGA 1.25W 

TMS320C31 PQl O.8-llm CMOS 33 MHz Plastic 132-pin QFP 0.75W 

TMS320C31 PQl27 O.8-llm CMOS 27 MHz Plastic 132-pin QFP O.63W 

SMJ320C30GBM28 1.0-llm CMOS Ceramic 181-pin PGA 1.00W 
SMJ320C30HUM28 28 MHz 
SMJ320C30HTM28 

or Ceramic 196-pin QFP 1.00W 

SMJ320C30GBM25 1.0-llm CMOS Ceramic 181-pin PGA 1.00W 
SMJ320C30HUM25 25 MHz 
SMJ320C30HTM25 

or Ceramic 196-pin QFP 1.00W 

Table 8-2. TMS320C3x Support Tool Part Numbers 

Tool Description Operating System Part Number 

Software 

C Compiler & Macro Assembler/ Linker VAXVMS TMDS3243255-08 
PC-DOS/MS-DOS TMDS3243855-02 
SUNUNIXt TMDS3243555-08 
VAX Ultrix TMDS3243265-08 
MAC-MPW TMDS3243565-01 

Evaluation Module (EVM) PC-DOS/MS-DOS TMDX3260030 

HP Trace Analyzer PC-DOS/MS-DOS TMDX326HP30 

t Note that SUN UNIX supports TMS320C3x software tools on the 68000 family-based SUN-3 series 
workstations and on the SUN-4 series machines that use the SPARC processor, but not on the 
SUN-386i series of workstations. 

:t: SPOX is currently packaged with XDS1000 Development Environment. 
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Table 8-2. TMS320C3x Support Tool Part Numbers (Concluded) 

Tool Description Operating System . Part Number 

Software (Concluded) 

Macro Assembler/Linker VAX VMS TMDS3243250-08 
PC-DOS/MS-DOS; OS/2 TMDS3243850-02 
SUNUNIXt TMDS3243550-08 
MAC-MPW TMDS3243560-01 

Operating System (SPOX) PC-DOS/MS-DOS :j: Offered by Spectron 
Inc. (805) 967-0503 

Simulator VAX VMS TMDS3243261·08 
PC-DOS/MS-DOS TMDS3243851-02 
SUN UNIXt TMDS3243551-09 

Hardware 

XDS500 Emulator PC/MS-DOS TMDS3260131 

XDS1000 Development Environment PC/MS-DOS TMDS3261 030 

t Note that SUN UNIX supports TMS320C3x software tools on the 68000 family-based SUN-3 se­
ries workstations and on the SUN-4 series machines that use the SPARC processor, but not on 
the SUN-386i series of workstations. 

:j: SPOX is currently packaged with XDS1000 Development Environment. 

8.4.1 Device and Development Support Tool Prefix Designators 
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Prefixes to Texas Instruments' part numbers designate phases in the product's 
development stage.for both devices and support tools, as shown in the follow-
ing definitions: . 

Device Development Evolutionary Flow: 

TMX Experimental device that is not necessarily representative of the final 
device's electrical specifications. 

TMP Final silicon die that conforms to the device's electrical specifications 
but has not completed quality and reliability verification. 

TMS Fully qualified production device. 

Support Tool Development Evolutionary Flow: 

TMDX Development su pport product that has not yet completed Texas Instru-
ments' internal qualification testing for development systems. 

TMDS Fully qualified development support product. 

TMX and TMP devices and TMDX development support tools are shipped with 
the following disclaimer: 

"Developmental product is intended for internal evaluation purposes." 

Development Support/Part Order Information 



TMS320C3x Part Order Information 

Note: Prototype Devices 

Texas Instruments recommends that prototype devices (TMX orTMP) not be 
used in production systems because their expected end-use failure rate is 
undefined but predicted to be greater than standard qualified production de­
vices. 

TMS devices and TMDS development support tools have been fully character­
ized, and their quality and reliability have been fully demonstrated. Texas In­
struments' standard warranty applies to TMS devices and TMDS development 
support tools. 

TMDX development support products are intended for internal evaluation pur­
poses only. They are covered by Texas Instruments' Warranty and Update 
Policy for Microprocessor Development Systems products; however, they 
should be used by customers only with the understanding that they are devel­
opmental in nature. 
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TMS320C3x Part Order Information 

8.4.2 Device Suffixes 

The suffix indicates the package type (e.g., N, FN, or G8) and temperature 
range (e.g., L). 

Figure 8-5 presents a legend for reading the complete device name for any 
TMS320 family member. 

Figure 8-5. TMS320 Device Nomenclature 
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TMS 320 C 30 GB L 

Prefix ____ --'1 

TMX::: Experimental Device 
TMP = Prototype Device 
TMS = Qualified Device 
SMJ = MIL-STD-883C 

Device Family------' 

320 = TMS320 Family 

Technology---------' 

C = CMOS 
E = CMOS EPROM 
No Letter = NMOS 

Device -------------' 
1 st-generation DSP: 

10 
14 
15 
16 
17 

2nd-generation DSP: 
20 
25 
26 

3rd-generation DSP: 
30 
31 

4th-generation DSP: 
40 

5th-generation DSP: 
50 
51 

l Temperature Range 

H = 0 to 50°C 
L = 0 to 70°C 
S = -55 to 100°C 
M = -55 to 125°C 
A = -40 to 85°C 

'---- Package Type 

N = Plastic DIP 
JD = Ceramic DIP Side-Brazed 
FN = Plastic Leaded CC 
GB = Ceramic PGA 
FJ = Ceramic Leaded CC 
FD ::: Leadless Ceramic CC 
FZ = Ceramic Leaded CC 
GE = Ceramic PGA, Glass Seal 
HU = Ceramic quad f1atpack 
HT ::: Ceramic quad flatpack 

(gull wing) 
PQ ::: Plastic quad flatpack 
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Chapter C 

Quality and Reliability 
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The quality and reliability of Texas Instruments microprocessor and 
microcontroller products, which include TMS320 digital signal processors, re­
lies on feedback from 

a Our customers, 

a Our total manufacturing operation from front-end wafer fabrication to final 
shipping inspection, and 

a , Product quality and reliability monitoring. 

Our customer's perception of quality is the governing criterion for judging per­
formance. This concept is the basis for Texas Instruments Corporate Quality 
Policy, which is as follows: 

"For every product or service we offer, we shall define the requirements that 
solve the customer's problems, and we shall conform to those requirements 
without exception." 

Texas Instruments has developed a leadership reliability qualification system, 
based on years of experience with leading-edge memory technology and on 
years of research into customer requirements. In orderto achieve constant im­
provement, programs that support that system respond to customer input and 
internal information. 
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Reliability Stress Tests 

C.1 Reliability Stress Tests 

C-2 

Accelerated stress tests are performed on new semiconductor products and 
process changes in order to qualify them and to ensure excellence in product 
reliability. These test environments are typical: 

Q High-temperature operating life 

Q Storage life 

Q Temperature cycling 

Q Biased humidity 

a Autoclave 

Q Electrostatic discharge 

Q Package integrity 

a Electromigration 

a Channel-hot electrons (performed on geometries less than 2.0 11m). 

Typical events or changes that require internal requalification of a product in­
clude 

a New die design, shrink, or layout 

Q Wafer process (baseline/control systems, flow, mask, chemicals, gases, 
dopants, passivation, or metal systems) 

a Packaging assembly (baseline control systems or critical assembly equip­
ment) 

Q Piece parts (such as lead frame, mold compound, mount material, bond 
wire, or lead finish) 

Q Manufacturing site 

TI reliability control systems extend beyond qualification. Total reliability con­
trols and management include product reliability monitoring as well as final 
product release controls. MaS memories, utilizing high-density active ele­
ments, serve as the leading indicator in wafer-process integrity at TI MaS fabri­
cation sites, enhancing all MaS logic device yields and reliability. TI places 
more than several thousand MaS devices per month on reliability tests to en­
sure and sustain built-in product excellence. 

Table C-1 lists the microprocessor and microcontroller reliability tests, the du­
ration of the test, and sample size. Definitions and descriptions of those tests 
precede the table. 
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AOQ (Average Outgoing Quality) 

FIT (Failure In Time) 

Operating Ufetest 

High-Temperature Storage 

Biased Humidity 

Autoclave (Pressure Cooker) 

Temperature Cycle 

Electrostatic Discharge 

Thermal Shock 

PIND(Particle Impact Noise 
Detection) 

Mechanical Sequence: 
Fine and gross leak 
Mechanical shock 

PIND (optional) 

Reliability Stress Tests 

Amount of defective product in a population, usually 
expressed in terms of parts per million (PPM). 
Estimated field failure rate in number of failures per 
billion power-on device hours; 1000 FITS equal 0.1 
percent failure per 1000 device hours. 
Device dynamically exercised at a high ambient 
temperature (usually 125°C) to simulate field 
usage that would expose the device to a much lower 
ambient temperature (such as 55°C). Using a 
derived high temperature, a 55°C ambient failure 
rate can be calculated. 

Device exposed to 150°C unbiased condition. 
Bond integrity is stressed in this environment. 
Moisture and bias used to accelerate corrosion­
type failures in plastic packages. Conditions include 
85°C ambient temperature with 85 percent relative 
humidity (RH). Typical bias voltage is +5 V and is 
grounded on alternating pins. 

Plastic-packaged devices exposed to moisture at 
121°C using a pressure of one atmosphere above 
normal pressure. The pressure forces moisture 
permeation of the package and accelerates corro­
sion mechanisms (if present) on the device. Exter­
nal package contaminants can also be activated 
and caused to generate inter-pin current leakage 
paths. 
Device exposed to severe temperature extremes in 
an alternating fashion (-65°C for 15 minutes and 
150°C for 15 minutes per cycle) for at least 1000 
cycles. Package strength, bond quality, and consis­
tency of assembly process are tested in this envi­
ronment. 
Device exposed to electrostatic discharge pulses. 
Calibration is according to MIL STD 883C, method 
3015.6. Devices are stressed to determine failure 
threshold of the design. 

Test similarto the temperature cycle test, but involv­
ing a liquid-to-liquid transfer, per MIL-STD-883C, 
Method 1011. 

A nondestructive test to detect loose particles 
inside a device cavity. 

Per MIL-STD-883C, Method 1014 
Per MIL-STD-883C, Method 2002, 
1500 g, 0.5 ms, Condition B 
Per MIL-STD-883C, Method 2020 ' 
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Reliability Stress Tests 
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Vibration, variable frequency 

Constant acceleration 

Fine and gross leak 
Electrical test 

Thermal Sequence: 
Fine and gross leak 
Solder heat (optional) 
Temperature cycle 

(10 cycles minimum 
Thermal shock 
(10 cycles minimum) 
Moisture resistance 
Fine and gross leak 
Electrical test 

Thermal/Mechanical Sequence: 
Fine and gross leak 
Temperature cycle 

(10 cycles minimum) 
Constant acceleration 

Fine and gross leak 
Electrical test 
Electrostatic discharge 
Solderability 
Solder heat 

Salt atmosphere 

Lead pull 

Lead integrity 

Electromigration 

Resistance to solvents 

Per MIL-STD-883C, Method 2007, 
20 g, Condition A 
Per MIL-STD-883C, Method 2001, 
20 kg, Condition 0, Y1 Plane min 
Per MIL-STD-883C, Method 1014 
To data sheet limits 

Per MIL-STD-883C, Method 1014 
Per MIL-STD-750C, Method 1014 
Per MIL-STD-883C, Method 1010, 
- 65 to + 150 ec, Condition C 
Per MIL-STD-883C, Method 1011, 
- 55to + 125 ec, Condition 8 
Per MIL-STD-883C, Method 1004 
Per MIL-STD-883C, Method 1014 
To data sheet limits 

Per MIL-STD-883C, Method 1014 
Per MIL-STD-883C, Method 1010, 
- 65 to + 150 ec, Condition C 
Per MIL-STD-883C, Method 2001, 
30 kg, Y1 Plane 
Per MIL-STD-883C, Method 1014 
To data sheet limits 
Per MIL-STD-883C, Method 3015 
Per MIL-STD-883C, Method 2033 
Per MIL-STD-750C, Method 2031, 
10 sec 
Per MIL-STD~883C, Method 1009, 
Condition A, 24 hrs min 
Per MIL-STD-883C, Method 2004, 
Condition A 
Per MIL-STD-883C, Method 2004, 
Condition B 1 
Accelerated stress testing of conductor 
patterns to ensure acceptable lifetime of 
power-on operation 
Per MIL-STD-883C, Method 2015 
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Reliability Stress Tests 
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Table C-t. Microprocessor and Microcontroller Tests 

Test Duration Sample Size 
Plastic Ceramic 

Operating life, 125 °e, 5.0 V 1000 hrs 129 129 

Storage life, 150 °e 1000 hrs 45t 45 

Biased 5 °e/85 percent RH, 5.0 V 1000 hrs 77 -
Autoclave, 121 °e, 1 ATM 240 hrs 45 -
Temperature cycle, - 65 to 150°C 1000 cyc* 77 77 
Temperature cycle, 0 to 125 °e 3000 cyc 77 77 
Thermal shock,- 65 to 150 °e 200 cyc 77 77 

Electrostatic discharge, ±2 kV 15 15 

Latch-up (CMOS devices only) 5 5 

Mechanical sequence - 22 

Thermal sequence - 22 

Thermal/mechanical sequence - 22 

PIND - 45 

Internal water vapor - 3 

Solderability 22 22 

Solder heat 22 22 

Resistance to solvents 15 15 

Lead integrity 15 15 

Lead pull 22 -
Lead finish adhesion 15 15 

Salt atmosphere 15 15 

Flammability (UL94-VO) 3 -
Thermal impedance 5 5 

t If junction temperature does not exceed plasticity of package. 
:t: For severe environments; reduced cycles for office environments. 
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Reliability Stress Tests 

Table C-2 lists the TMS320C3x devices, the approximate number of transis­
tors, and the equivalent gates. The numbers have been determined from de­
sign v~rification runs. 

Table C-2. TMS320C3x Transistors 
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Device # Transistors # Gates 

CMOS: TMS320C30 600K-700K 200K 

CMOS: TMS320C31 SOOK-600K 100K 

Note: 

Texas Instruments reserves the right to make changes in MOS Semiconduc­
tor test limits, procedures, or processing without notice. Unless prior ar­
rangements for notification have been made, TI advises all customers to re­
verify current test and manufacturing conditions prior to relying on published 
data. 
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Appendix D 

Calculation of TMS320C30 Power Dissipation 
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The TMS320C30 is a state-of-the-art, high-performance, 32-bit floating-point 
DSP microprocessor fabricated in CMOS technology. This device is the first 
member of the third generation of TMS320 family single-chip DSP micropro­
cessors. Since 1982 when the first-generation TMS3201 0 was introduced, the 
TMS320 family has established itself as the industry standard for digital signal 
processing. The TMS320C30's innovative architecture and specialized in­
struction set provide high speed and increased flexibility for DSP applications. 
This combination makes it possible to execute upto 40 MFLOPS (million float­
ing point operations per second). 

As device sophistication and levels of integration increase with evolving semi­
conductor technologies, actual levels of power dissipation vary widely and de­
pend heavily on the particular application in which the device is used and the 
nature of the program being executed. In addition, due to the inherent charac­
teristics of CMOS technology, power requirements vary according to clock 
rates and data values being processed. 

This application report presents the information necessary to determine 
TMS320C30 power supply current requirements under different operating 
conditions. With this information, you can determine the power dissipation for 
the device, which, in turn, you can use to calculate thermal management re­
quirements. 

The major topics discussed in this application report are as follows: 

Q Fundamental Power Dissipation Characteristics 

• Components of Power Supply Current Requirements 

• Dependencies 

• Test Setup Description 

Q Current Requirement of Internal Circuitry 

• Quiescent 

• Internal Operations 

• Internal Bus Operations 

Q Current Requirement of Output Driver Circuitry 
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• Primary Bus 

• Expansion Bus 

• Data Dependency 

• Capacitive Load Dependence 

Q Calculation of Total Supply Current 

• Combining Supply Current Due to All Components 

IS Supply Voltage, Operating Frequency, and Temperature Dependen­
cies 

• Design Equation 

• Peak Versus Average Current 

• Thermal Management Considerations 

Q Example Supply Current Calculations 
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Fundamental Power Dissipation Characteristics 

D.1 Fundamental Power Dissipation Characteristics 

Typically, an IC's (integrated circuit) power specification is expressed as a 
function of operating frequency, supply voltage, operating temperature, and 
output load. As devices become more complex, the specification must also be 
based on device functionality. CMOS devices inherently draw current only dur­
ing switching through the linear region. Therefore, the power supply current is 
related to the rate of switching. Furthermore, since the output drivers of the 
TMS320C30 are specified to drive DC loads, the power supply current result­
ing from external writes depends not only on switching rate but also on the val­
ue of data written. 

D.1.1 Components of Power Supply Current Requirements 

There are four basic components of the power supply current: 

Q Quiescent 

Q Internal Operations 

Q Internal Bus Operations 

Q External Bus Operations 

0.1.2 Dependencies 

The power supply current consumption depends on many factors. Four are 
system related: 

Q Operating frequency 

Q Supply voltage 

Q Operating temperature 

Q Output load 

and several others are related to TMS320C30 operation: 

Q Duty cycle of operations 

Q Number of buses used 

Q Wait states 

Q Cache usage 

Q Data value 

The total power supply current for the device is described in an equation apply­
ing the four basic power supply current components and the dependencies de­
scribed above. This equation is as follows: 
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Characteristics 

I = (Iq + liOPS + libUS + Ixbus) x FV x T 

where 

Iq is the quiescent current component, 

liops is the current component due to internal operations, 

libus is the current component due to internal bus usage including data value 
and cycle time dependencies, 

Ixbus is the current component due to external bus usage including data 
value, wait state, cycle time, and capacitive load dependencies, 

FV is a scale factor for frequency and supply voltage, and 

T is a scale factor for operating temperature. 

Application of this equation and determination of all the dependencies are de-
'scribed in detail in this application report. 

While this document explains, in detail, howtodeterminethe powersupplycur­
rent requirement for the TMS320C30, if a less detailed analysis is sufficient, 
the minimum, typical, and maximum values can be used to determine a rough 
estimate of the power supply current requirements. The minimum power sup­
ply current requirement is 110 mAo The typical and average current consump­
tion is 250 mA as described in the TMS320C30 data sheet and will be asso­
ciated with most algorithms running on the device unless excessive data out­
put is being performed. 

:-rh~.l-J~iirrt~I11C~rr~l1t·reql1ireme~t··is 600 mA·and·occ~r~~l1lyU.i2< 
der.\IV()Fl~"f .• CASE conditions: .. \Vriting alternating. data 
(AAAAf!.fi.AAh t()555$5555h) out of both external buses simulta­
l}eo~~ly,e\lerycyCle,\Nith ~O pfloads and running ar33 MHz~> 

.. .... . ...... . 

If an extremely conservative approach is desired, the maximum value can be 
used. 
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Figure D-1. Current Measurement Test Setup 

CY7C186-25PC 

SRAM 

Tektronix 
Current Probe 

(P6042) 

2.15 V VDD 2.15 V 

R = 825 Q 
TMS320C30 

32 D 
-----+---'2O'=4~A-r---I Primary Expansion 

R = 825 Q 

32 D 
13 A Cr r C 

0.1.3 Determining Algorithm Partitioning 

Each part of an algorithm behaves differently, depending on its internal and ex­
ternal bus usage. To analyze the power supply current requirement, you must 
partition an algorithm into segments with distinct concentrations of internal or 
external bus usage. The analysis that follows is applied to each distinct pro­
gram segment to determine the power supply current requirement for that sec­
tion. The average power supply current requirement can then be calculated 
from the requirements of each segment of the algorithm. 

0.1.4 Test Setup Description 

All TMS320C30 supply current measurements were performed on the test set­
up shown in Figure 0-1. The test setup consists of a TMS320C30, 8K of zero 
wait-state Cypress Semiconductor SRAMs (CY7C186-25PC), and RC loads 
on all data and address lines. A Tektronix Current Probe (P6042) measures the 
power supply current in all Voo lines of the device. The supply voltage on the 
output load is 2.15 V. Unless otherwise specified, all measurements are made 
at a supply voltage of 5.0 V, an input clock frequency of 33 MHz, a capacitive 
load of 80 pF, and an operating temperature of 25°C. 
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Current 

0.2 Current Requirement of Internal Circuitry 

D.2.1 Quiescent 

The power supply current requirement for internal circuitry consists of three 
components: quiescent, internal operations, and internal bus operations. 
Quiescent and internal operations are constants, but the internal bus opera­
tions component varies with the rate of internal bus usage and the data values 
being transferred. 

Quiescent refers to the baseline supply current drawn by the TMS320C30 dur­
ing minimal internal activity, such as executing the IDLE instruction or branch­
ing to self. It includes the current required to fetch an instruction from on- or 
off-chip memory. The quiescent requirement for the TMS320C30 is 110 rnA. 
Examples of quiescent current include: 

a Maintaining timers and serial ports 

a Executing the IDLE instruction 

Q TMS320C30 in HOLD mode pending external bus access 

Q TMS320C30 in reset 

Q Branching to self 

D.2.2 Internal Operations 

0-6 

Internal operations are those that require more current than quiescent activity 
but do not include external bus usage or significant internal bus usage. Internal 
operations include register-to-register multiplication, ALU operations, and 
branches. They add a constant 55 rnA above the quiescent so that the total 
contribution of quiescent and internal operations is 165 rnA. Note, however, 
that internal and/or external bus operations executed via an RPTS instruction 
do not contribute an internal operations power supply current component and 
hence do not add 55 rnA to quiescent current. During an instruction in RPTS, 
activity other than the instruction being repeated is suspended; therefore, pow­
er supply current is related only to the operation performed by the instruction 
being executed. The next contributing factor to the power supply current re­
quirement is internal bus operations. 
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Current Requirement of Internal 

0.2.3 Internal Bus Operations 

The internal bus operations include all operations that utilize the internal buses 
extensively, such as accessing internal RAM every cycle. No distinction is 
made between internal reads (such as instruction or operand fetches from in­
ternal ROM or internal RAM banks) and internal writes (such as operand stores 
to internal RAM banks), because internally they are equal. Significant use of 
internal buses adds a term to the power supply current requirement that is data 
dependent. Recall that switching requires more current. Hence, moving 
changing data at high rates requires higher power supply current. 

Pipeline conflicts, use of cache, fetches from external wait-state memory, and 
writes to external wait-state memory all effect the internal and external bus 
cycles of an algorithm executing on the TMS320C30. Therefore, the internal 
bus usage of the algorithm must be determined in order to accurately calculate 
power supply current requirements. The TMS320C30 software simulator and 
XOS emulator both provide benchmarking and timing capabilities that allow 
bus usage to be determined. 

The current resulting from internal bus usage varies roughly exponentially with 
transfer rates. Figure 0-2 shows internal bus current requirements for trans­
ferring alternating data (AAAAAAAAh to 55555555h) at several transfer rates 
(expressed as the transfer cycle time). A transfer rate less than one implies 
multiple accesses per single H1 cycle (that is, using OMA, etc.). Transfer cycle 
times greater than one refer to single-cycle transfers with one or more cycles 
between them. The minimum transfer cycle time is one third, which corre­
sponds to three accesses in a single H1 cycle. 

The data set AAAAAAAAh to 55555555h exhibits the maximum current for 
these types of operations. Less current is required for transferring other data 
patterns, and current values may be derated accordingly as described later in 
this subsection. 

As the transfer rate decreases (that is, transfer cycle time increases) the incre­
mentalloo approaches 0 mAo Transfer rates corresponding to more than 7 H1 
cycles do not add any current and are considered insignificant. This figure rep­
resents the incremental 100 due to internal bus operations and is added to 
quiescent and internal operations current values. 

For example, the maximum transfer rate corresponds to three accesses every 
cycle or one-third H1 transfer cycle time. At this rate, 85 mA is added to the 
quiescent (110 mA) and internal operation (55 mA) current values for a total 
of 250 mAo 
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Figure D-2. Internal Bus Current Versus Transfer Rate 
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Figure 0-2 shows the internal bus current requirement when transferring As 
followed by 5s for various transfer rates. Figure 0-3 shows the data depen­
dence of the internal bus current requirement when the data is other than As 
followed by 5s. The trapezoidal region bounds all possible data values trans­
ferred. The lower line represents the scale factor for transferring the same 
data. The upper line represents the scale factorfortransferring alternating data 
(all as to all Fs or all As to all 5s, etc.). 

Since the possible permutations of data values is quite large, the extent to 
which data varies is referred to as relative data complexity'. This term repre­
sents a relative measure of the extent to which data values are changing and 
the extent to which the number of bits are changing state. Therefore, relative 
data complexity ranges from 0, signifying minimal variation of data, to a nor­
malized value of 1, signifying greatest data variation. 

If a statistical knowledge of the data exists, Figure 0-3 can be used to deter­
mine the exact power supply requirement based on internal bus usage. For ex­
ample, Figure 0-3 indicates a 63% scale factor when all Fs are moved inter­
nally every cycle with two accesses per cycle. This scale factor is multiplied by 
55 mA (from Figure 0-2, at one-half H1 cycle transfer time), yielding 34.65 mA 
because of internal bus usage. Therefore, an algorithm running under these 
conditions requires about 200 mA of power supply current (110 + 55 + 34.65). 

Since a statistical knowledge of the data may not be readily available, a nomi­
nal scale factor may be used. The median between the minimum and maxi­
mum values at 50% relative data complexity yields a value of 0.80 and can be 
used as an estimate of a nominal scale factor. Therefore, this nominal data 
scale factor of 80% can be used for internal bus data dependency, adding 44 
mA to 110 mA (quiescent) and 55 mA (internal operations) to yield 21 a mAo As 
an upper bound, assume worst case conditions of three accesses of alternat­
ing data every cycle, adding 85 mA to 110 mA (quiescent) and 55 mA (internal 
operations) to yield 250 mAo 
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Figure 0-3. Internal Bus Current Versus Data Complexity Derating Curve 
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The output driver circuits on the TMS320C30 are required to drive significantly 
higher DC and capacitive loads than internal device logic. Therefore, they are 
designed to drive larger currents than internal devices. Because of this, output 
drivers impose higher supply current requirements than other sections of cir­
cuitry on the device. 

Accordingly, the highest values of supply current are exhibited when external 
writes are being performed at high speed. During reads, or when the external 
buses are not being used, the TMS320C30 is not driving the data bus; this elim­
inates the most significant component of output buffer current. Furthermore, 
in typical cases, only a few address lines are changing, or the whole address 
bus is static. Under these conditions, an insignificant amount of supply current 
is consumed. Therefore, when no external writes are being performed or when 
writes are performed infrequently, current due to output buffer circuitry can be 
ignored. 

When external writes are being performed, the current required to supply the 
. output buffers depends on several different considerations. As with internal 

bus operations, current required for output drivers depends on the data being 
transferred and the rate at which transfers are being made. Additionally, output 
driver current requirements depend on the number of wait states implemented, 
because wait states affect rates at which bus signals switch. Finally, current 
values are also dependent upon external bus DC and capacitive loading. 

External operations involve writes external to the device ·and constitute the ma­
jor power supply current component. The power supply current for the external 
buses is made up of three components and is summarized in the following 
equation: 

Ibase + Iprim + lexp 

where 

Ibase = 60-mA baseline current component, 

prim is the primary bus current component, 

lexp is the expansion bus current component. 

The remainder of this section describes in detail the calculation of external bus 
current components. 
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Current Requirement of Output Driver Circuitry 

The current due to primary bus writes varies roughly exponentially with both 
wait states and write cycle time. Also, current components due to output driver 
circuitry are represented as offsets from the baseline value. Since the baseline 
value is related to internal current components, negative values for current off­
set are obtained under some circumstances. Note, however, that actual nega­
tive current does not occur. 

As mentioned in the previous section, to obtain accurate current values, timing 
of write cycles on the buses must first be established. This is accomplished by 
analyzing program activity, including any pipeline conflicts that may exist, to 
determine the rate and timings at which write cycles to the external buses oc­
cur. Information from the TMS320C30 emulator or simulator as well as the 
TMS320C3x User's Guide is used to make these determinations. Note that ef­
fects from the use of cache must also be accounted for in these analyses, be­
cause use of cache can effect whether or not instructions are fetched from ex­
ternal memory. 

When evaluating external write activity in a given pr9gram segment, a consid­
eration that must be made is whether or not a particular level of external write 
activity constitutes significant activity. If writes are being performed at a slow 
enough rate, they do not significantly impact supply current requirements; 
therefore, current due to external writes can be ignored. This is the case, how­
ever, only if writes are being performed at very slow rates on both the primary 
and the expansion buses. If writes are being performed at high speed on only 
one of the two external buses, the approach described in this section should 
still be used for calculation of current requirements. 

Note that although negative incremental current values are obtained under 
some circumstances, the total contribution for external buses, including base­
line current, must always be positive. This is because, when external buses are 
used minimally, total current requirements always approach the current contri­
bution due to internal components, which is solely a function of internal activity. 
This places a lower limit on current contributions resulting from the primary and 
expansion buses, because the total current due to external buses is the sum 
of the 60-mA baseline value and the primary and expansion bus components. 
This effect is discussed in further detail in the rest of this subsection. 

When bus-write cycle timing has been established, Figure 0-4 can be used 
to determine the contribution to supply current due to this bus activity. 
Figure Q-4 shows values of current contribution from the primary bus for vari­
ous numbers of wait states and H1 cycles between writes. These characteris­
tics are exhibited when writes of alternating 55555555h and AAAAAAAAh are 
being performed at a capacitive load of 80 pF per output signal line. The condi­
tions exhibit the highest current values on the device. The values presented 
in the figure represent incremental or additional current contributed by the pri­
mary bus output driver circuitry under the given conditions. Current values ob-
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Figure D-5. Primary Bus Current Versus Transfer Rate at Zero Wait States 
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Figure D-6. Expansion Bus Current Versus Transfer Rate and Wait States 
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Note that although these graphs contain negative current values, this does not 
indicate that negative current actually occurs. The negative values exist be­
cause the graphs represent a current offset from a common baseline current 
value, which is not necessarily the lowest current exhibited. Using this ap­
proach to depict current contributions due to different components simplifies 
current calculations because it allows calculations to be made independently. 
Independent calculations can be made because information about relation-

. ships between different sections of the device are included implicitly in the in­
formation for each section. 
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Figure 0-4 and Figure 0-5 showthatthecontribution of writes for external bus 
activities becomes insignificant if writes are being performed with more than 
18 cycles between each write. Under these conditions, the incremental value 
of -30-mA current contribution due to the primary bus should be used. Note, 
however, that a value of -30 mA should be used only if the expansion bus is 
being used extensively, because the total contribution for external buses in­
cluding baseline current must always be positive. If the expansion bus is not 
being used and the primary bus is being used minimally, the current contribu­
tion due to the primary bus must always be greater than or equal to 20 mAo This 
ensures that the correct total current value is obtained when summing external 
bus components. Once a current value has been obtained from Figure 0-4 or 
Figure 0-5, this value may be scaled by a data dependency factor if neces­
sary, as described at the end of this section. This scaled value is then summed 
along with several other current terms to determine the total supply current. 
Calculation of total supply current is described in detail in the next section. 

0.3.2 Expansion Bus 

0-14 

Currents due to the primary and expansion buses are similar in characteristics 
but differ slightly because of several factors, including the fact that the expan­
sion bus has 11 fewer address outputs than the primary bus (13 ratherthan 24). 
This difference is exhibited in a slightly lower overall current contribution from 
the expansion bus than from the primary bus. 

Accordingly, determining expansion bus current follows the same basic prem­
ises as determining the the primary bus current. Figure 0-6 and Figure 0-7 
show the same current relationships for the expansion bus as Figure 0-4 and 
Figure 0-5 show for the primary bus. Also, since the total external buses' cur­
rent contribution must be positive, if the primary bus is not being used and the 
expansion bus is being used minimally, then the minimum current contribution 
due to the expansion bus is -30 mAo Finally, as with the primary bus, current 
values obtained from these figures may require scaling by a data dependency 
factor as described in the next subsection. 
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Figure D-9. Expansion Bus Current Versus Data Complexity Derating Curve 
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0.3.4 Capacitive Load Dependence 

Once cycle timing and data dependencies have been accounted for, capacitive 
loading effects should be included in a similar mannerto that of data dependen­
cy. Figure 0-10 shows the scale factor to be applied to the current values ob­
tained above as a function of actual load capacitance if the load capacitance 
presented to the buses is less than 80 pF. 

In the previous example, if the load capacitance is 20 pF instead of 80 pF, a 
scale factor of 0.84 is used, yielding: 

Primary: 0.84 x 68 mA = 57.12 mA 
Expansion: 0.84 x 34 mA = 28.56 mA 

The slope of the load capacitance line in Figure 0-10 is 0.26% normalized 100 
per pF. While this slope may be used to interpolate scale factors for loads great­
er than 80 pF, the TMS320C30 is specified to drive output loads less than 80 
pF, and interface timings cannot be guaranteed at higher loads. With data de­
pendency and capacitive load scale factors applied to the current values for 
primary and expansion buses, the total supply current required for the device 
for a particu.lar application can be calculated, as described in the next section. 
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Figure 0-10. Current Versus Output Load Capacitance 
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0.4 Calculation of Total Supply Current 

The previous sections have discussed currents contributed by several different 
sources on the TMS320C30. Because determinations of actual current values 
are unique and independent for each source, each current source was dis­
cussed separately. In an actual application, however, the sum of the indepen­
dent contributions from each current determines the total current requirement 
for the device. This total current value is exhibited as the total current supplied 
to the device through all of the Voo inputs and returned through the Vss con­
nections. 

Note that numerous Voo and VSS pins on the device are routed to a variety 
of internal connections, not all of which are common. Externally, however, all 
of these pins should be connected in parallel to 5 V and ground planes, respec­
tively, with as low impedance as possible. 

As mentioned previously, because different program segments inherently per­
form different operations that are often quite distinct from each other, it is typi­
cally appropriate to consider current for each of the different segments inde­
pendently. Once this is done, then peak current requirements are readily ob­
tained. Further, average current calculations can also be made that can be 
used to determine heating effects of power dissipation. These effects, in turn, 
can be used to determine thermal management considerations. 

0.4.1 Combining Supply Current Due to All Components 

To determine the total supply current requirements for any given program activ­
ity, calculate each of the appropriate components and combine them in the fol­
lowing sequence: 

1) Start with 11 O-mA quiescent current requirement. 

2) Add 55 mA for internal operations unless the device is dormant, such as 
when executing IDLE, NOPs, or branches-to-self, or performing internal 
and/or external bus operations using an RPTS instruction (see Internal 
Operations section). Internal or external bus operations executed via 
RPTS do not contribute an internal operations power supply current com­
ponent and hence do not add 55 mA to quiescent current. Therefore, cur­
rent components in the next two steps may still be required even though 
the 55 mA is omitted. 

3) If significant internal bus operations are being performed (see Internal Bus 
Operations section), add the calculated current value. 

4) If external writes are being performed at high speed (see Current Require­
ments Due to Output Driver Circuitry section), add 60 mA and then add the 
values 'calculated for primary and expansion bus current components. If 
only one external bus is being used, the appropriate incremental current 
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for the unused bus should still be included because the current offsets in­
clude components required for operating both buses. Note, however, that, 
as discussed previously, the total current contribution for external buses, 
including baseline, must always be positive. 

The current value resulting from summing these components is the total device 
current requirement for a given program activity. ' 

0.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies. 

0-20 

Besides current dependencies that are specific to each of the components of 
supply current discussed earlier, supply voltage level, operating temperature 
and operating frequency also affect current requirements. However, these 
considerations affect the total supply current, not just specific components 
(that is, internal or external bus operations).,Note that supply voltages, operat­
ing temperature, and operating frequency must be maintained within required 
device specifications. 

In the same manner as data dependencies discussed in other sections, consid­
erations for these dependencies are applied as a scale factor. This factor is 
applied, once the total current for a particular program segment has been de­
termined. Figure D-11 shows the relative scale factors to be applied to the sup­
ply current values as a function of both Voo and operating frequency. 

Power supply current consumption does not vary significantly with operating 
temperature. However, ifdesired, ascalefactorof2% normalized 100 per 50°C 
change in operating temperature may be used to derate current within the spe­
cified range noted in the TMS320C30 data sheet. This temperature depen­
dence is shown graphically in Figure D-12. Note that a temperature scale fac­
tor of 1.0 corresponds to current values at 25°C, which is the temperature at 
which all other references in the document are made. 
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Figure D-11. Current Versus Frequency and Supply Voltage 
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Figure D-12. Current Versus Operating Temperature Change 
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0.4.3 Design Equation 

D-22 

The procedure for determining th~ power supply current requirement can be 
summarized in the following equation: 

I = (Iq + 'iOPS + 'ibus + 'xbus) x FV' x T 

where 

Iq = 110 mA, 

'iops = 55 mA, 

libus = 01 x f1 (see Table 0-1), 

Ixbus = Ibase + prim + 'exp, 

with 

Ibase = 60 mA, 

prim = 02 x C2 x f2 (see Table 0-1), 

'exp = 03 x C3 x f3 (see Table 0-1). 

FVis the scale factor for frequency and supply voltage, and 

Tis the scale factor for operating temperature. 

Table 0-1 describes the symbols used in the power supply current equation. 
Furthermore, the table displays the figure number from which the value can be 
obtained. 
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Table D-1. Current Equation Symbols 

Symbol Description GraphlValue 

... ,' .. ".,,' 1"'.-,,": .. ,. ,.:.' .. ~ .:, ... >:.', .. '.":":'. '.. . ... >:' ' .. ' .. .',~/':-: 

.•• ,'.'.. :.>:lnt~rl1;;tl8~~()per~ti()l1sGurrenL : '.'.' ': ., ..... :., : .. : •. ,'." ,.'.,., 
D1 Internal Bus Oata Scale Factor Figure 0-3 

'1 Internal Bus Current Requirement Figure 0-2 

"',', ..•• :. :·'·'· ••.• ~#erl1aJBus()p~r~tiorl~.Gurre.nt .• : :':'. 

!base External Bus Base Current 60 rnA 

prim Primary Bus Operations Current 

D2 Primary Bus Oata Scale Factor Figure 0-8 

C2 Primary Bus Cap Load Scale Factor Figure 0-10 

Primary Bus Current Requirement Figure 0-4 or 0-5 

lexp Expansion Bus Operations Current 

Expansion Bus Oata Scale Factor Figure 0-9 

Expansion Bus Cap Load Scale Factor Figure 0-10 

Expansion Bus Current Requirement Figure 0-6 or 0-7 
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0.4.4 Peak Versus Average Current 

If current is observed overthe course of an entire program, typically some seg­
ments will exhibit significantly different levels of current required for different 
durations of time. For example, a program may spend 80% of its time perform­
ing internal operations, drawing a current of 250 rnA, and spend the remaining 
20% of its time performing writes at full speed to the expansion bus, drawing 
300 mAo 

While knowledge of peak current levels is important in orderto establish power' 
supply requirements, some applications require information about average 
current. This is particularly significant if periods of high peak current are short 
in duration. Average current can be obtained by performing a weighted sum 
of the currents due to the various independent program segments over time. 
In the example above, the average current can be calculated as follows: 

I = 0.8 x 250 mA + 0.2 x 300 mA = 260 mA 

Using this approach, average current for any number of program segments 
can be calculated. 
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0.4.5 Thermal Management Considerations 

Heating characteristics of the TMS320C30 are dependent upon powerdissipa­
tion, which is, in turn, dependent upon power supply current. When making 
thermal management calculations, several considerations must be made that 
relate to the manner in which power supply current contributes to power dissi­
pation and to the TMS320C30 package thermal characteristics' time constant. 

De'pending on sources and destinations of current on the device, some current 
contributions to 100 do not constitute a component of power dissipation at 5 
volts. Accordingly, if the total current flowing into Voo is used to calculate pow­
er dissipation at 5 volts, erroneously large values for power dissipation will be 
obtained. Power dissipation is defined as: 

P = I x V 

(where P is power, I is current, and V is voltage). If device outputs are driving 
any DC load to a logic high level, only a minor contribution is made to power 
dissipation because CMOS outputs typically drive to a level within a few tenths 
of a volt of the power supply rails. If this is the case, subtract these current com­
ponents out of the total supply current value; then calculate their contribution 
to power dissipation separately, and add it to the total power dissipation (see 
Figure 0-13). If this is not done, these currents resulting from driving a logic 
high level into a DC load will cause unrealistically high power dissipation val­
ues. The error occurs because the currents resulting from driving a logic high 
level into a DC load will appear as a portion of the current used to calculate 

. power dissipation due to Voo at 5 volts. 

Figure 0-13. Load Currents 
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Furthermore, external loads draw supply only current when outputs are being 
driven high, because when outputs are in the logic zero state, the device is 
sinking current, which is supplied from an external source. Therefore, the pow­
er dissipation due to this current component will not have a contribution 
through I DO but will contribute to power dissipation with a magnitude of: 

P = VOL X IOL 

where VOL is the low level output voltage and IOL is the current being sunk by 
the output as shown in Figure 0-13. The power dissipation component due to 
outputs being driven low should be calculated and added to the total power dis­
sipation. 

When outputs with DC loads are being switched, the power dissipation compo­
nents from outputs being driven high and outputs being driven low are aver­
aged and added to the total device power dissipation. Calculation of power 
components due to DC loading of the outputs should be made separately for 
each program segment before average power is calculated. 

Note that any unused inputs that are left disconnected may float to a voltage 
level that will cause input buffer circuits to remain in the linear region and there­
fore contribute a significant component to power supply current. Accordingly, 
any unused inputs should be made inactive by being either grounded or pulled 
high if absolute minimum power dissipation is desired. If several unused inputs 
must be pulled high, they may be pulled high together through one resistor to 
minimize component count and board space. 

When you use power dissipation values to determine thermal management 
considerations, you should use the average power unless the time duration of 
individual program segments is long. The thermal characteristics of the 
TMS320C30 in the 181-pin PGA package are exponential in nature with a time 
constant t = 4.5 minutes. Therefore, when subjected to a change in power, the 
temperature of the device package will reach approximately 63% of the total 
temperature change due to this power after 4.5 minutes. Accordingly, if the 
time duration of program segments exhibiting high power dissipation values 
is short (on the order of a few seconds), average power, calculated in the same 
manner as average current as described in the previous subsection, can be 
used. 

Otherwise, maximum device temperature should be calculated on the basis of 
the actual time duration of the program segments involved. For example, if a 
particular program segment Ip.sts for 7 minutes, then using the exponential 
function, it can be calculated that a device will reach approximately 80% of the 
temperature due to the total power dissipation during the program segment. 

Note that the average power should be determined by calculating the power 
for each program segment (including considerations described above) and 
performing a time average of these values, rather than simply multiplying the 
average current as determined in the previous subsection, by VOO. 
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Current 

Specific device temperature calculations are made using the TMS320C30 
thermal impedance characteristics included in the TMS320C30 data sheet in 
Chapter 13 of the TMS320C3x User's Guide. 
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Current Calculations 

0.5.3 Average 

or, 

I = 110 + (55 rnA)(0.8) + 60 rnA - 80 rnA + (170 rnA)(0.85) 

= 278.5 rnA 

The average current is derived from the two portions of the algorithm. The pro­
cessing portion took 95% of the time and required about 21 0 mA, and the data 
dump portion took the other 5% and required about 280 mAo The average is 
calculated as: 

lavg = (0.95)(21 rnA) + (0.05)(280 rnA) = 213.5 rnA 

From the thermal characteristics specified in the TMS320C3x User's Guide, 
it can be shown that this current level corresponds to a case temperature of 
43°C. This temperature meets the maximum device specification of 85°C and 
hence requires no forced air cooling. 

0.5.4 Experimental Results 

0-28 

A photograph of the power supply current for the FFT is shown in the photo­
graph in Appendix A. During the FFT processing, the current measured varied 
between 180 and 220 mAo The peak of the current during external writes was 
270 mA, and the average current requirement, as measured on a digital multi­
meter was 200 mAo The calculations yielded results that were extremely close 
to the actual measured power supply current. 
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0.6 Summary 

The power supply current requirement for the TMS320C30 cannot be ex­
pressed simply in terms of operating frequency, supply voltage, and output 
load capacitance. A more complete specification, one based on device func­
tionality, must be used to determine a more accurate power supply current re­
quirement. This application note presents the necessary information you will 
require to determine power supply specifications. The specification is based 
on a knowledge of the algorithm and its operation on the TMS320C30 in terms 
of internal and external bus usage. As devices become more complex, the 
application of the approach presented in this document becomes vital. 

The power supply current requirement for the TMS320C30 depends on device 
functionality and system parameters.'The components of current related to de­
vice functionality are those due to quiescent current, internal operations, inter­
nal bus operations, and external bus operations. The dependencies related to 
system parameters are those due to operating frequency, supply voltage, out­
put load capacitance, and operating temperature. The typical power supply 
current requirement is 250 mA, and the minimum, or quiescent, is 110 mAo 

Tflern~ximumcurrent requirement is 600mAandoccur~riril~pij::) 
derYVORSrCASE conditions: writing' alternating data 
(AAAAAAAAh to 55555555h) out of both external busessilllLJIta.­
l1eously, e"erycycle, with 80 pF loads and running at 331\i1HzJ> '.' 
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Photo of 100 for FFT 

0.7 Photo of 100 for FFT 
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FFT Assembly Code 

SINTAB: 

RAMO: 

OUTBUF: 

FFT: 

.GLOBL 

.GLOBL 

.GLOBL 

.GLOBL 

. WORD 

. WORD 

. WORD 

.TEXT 

LOP 

FFT 
N 
M 
SINE 

SINE 

809800h 

800h 

SINTAB 

LOI N,IRO 
LSH -l,IRO 

setup 

processing portion: 
quiescent, internal and 
bus operations 

LENGTH-TWO BUTTERFLIES 

LOI @RAMO,ARO 
LOI IRO,RC 
SUBI 1,RC 

RPTB BLKI 
AODF *+ARO,*ARO++,RO 
SUBF *ARO,*-ARO,Rl 

BLKI STF RO,*-ARO 
II STF Rl,*ARO++ 

FIRST PASS OF THE DO-20 LOOP (STAGE K=2 IN DO-IO LOOP) 

LOI @RAMO,ARO 
LOI 2,IRO 
LOI N,RC 
LSH -2,RC 
SUBI 1,RC 

RPTB BLK2 
AODF *+ARO(IRO),*ARO++(IRO),RO 
SUBF *ARO,*-ARO(IRO),Rl 
NEGF *+ARO,RO 

II STF RO, *-ARO (IRO) 
BLK2 STF Rl,*ARO++(IRO) 
II STF RO,*+ARO 

MAIN LOOP (FFT STAGES) 

LDI N,IRO 
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LSH 
LDI 
LDI 
LDI 

LOOP LSH 
LSH 
LSH 

INNER LOOP 

LDI 
INLOP: 

LDI 
ADDI 
LDI 
LDI 
ADDI 
LDI 
ADDI 
LDI 
SUBI 
ADDI 
LDF 
ADDF 
SUBF 

II STF 
NEGF 
NEGF 

II STF 
STF 

INNERMOST 

II 

II 

II 

II 
BLK3 

LDI 
LSH 
LDI 
SUBI 

RPTB 
MPYF 
MPYF 
MPYF 
ADDF 
MPYF 
SUBF 
SUBF 
ADDF 
STF 
ADDF 
STF 
SUBF 
STF 
STF 

SUBI 

-2,IRO 
3,R5 
1, R4 
2,R3 
-l,IRO 
1,R4 
1,R3 

(DO-20 LOOP IN THE PROGRAM) 

LOOP 

@RAMO,AR5 

IRO,ARO 
@SINTAB,ARO 
R4,IRI 
AR5,ARI 
1,ARl 
ARl,AR3 
R3,AR3 
AR3,AR2 
2,AR2 
R3,AR2,AR4 
*AR5++(IRl) ,RO 
*+AR5(IRl) ,RO,Rl 
RO,*++ARS(IRl),RO 
Rl, *-ARS (IRl) 
RO 
*++ARS(IRl),Rl 
RO, *ARS 
Rl, *ARS 

N, IRI 
-2,IRI 
R4,RC 
2,RC 

BLK3 
*AR3,*+ARO(IRl),RO 
*AR4,*ARO,Rl 
*AR4,*+ARO(IRl),Rl 
RO,Rl,R2 
*AR3,*ARO++(IRO),RO 
RO,Rl,RO 
*AR2,RO,Rl 
*AR2,RO,Rl 
Rl,*AR3++ 
*ARl,R2,Rl 
Rl,*AR4- -
R2,*ARl,Rl 
Rl,*ARl++ 
Rl,*AR2- -

@RAMO,ARS 
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Code 

ADDI R4,AR5 
CMPI N,AR5 
BLTD INLOP 
ADDI @RAMO,AR5 
NOP 
NOP 

ADDI 1,R5 
CMPI M,R5 
BLE LOOP 

DUMP LDI @RAMO,ARO data dump portion 
LDI @OUTBUF,ARl quiescent, internal bus 

LDF *ARO++,RO ops and primary bus ops 
RPTS N-2 
LDF *ARO++,RO 

I I STF RO,*ARl++ 
STF RO,*AR1++ 

LDI RAMO,ARl 

LDI @RAMO,ARO swap RAM banks 
XOR 400h,ARO 
STI ARO,*ARl 

B FFT 
.END 
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Chapter E 

. SMJ320C30 Digital Signal Processor 
Data Sheet 

This appendix contains the standalone data sheet for the SMJ320C30 Digital 
Signal Processor. 
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• 

• 
• 

• 

• 

Performance 
SMJ320C30-28 (70-ns Single Cycle 
Instruction Execution Time) 

28.6 MFLOPS (Million 
Floating-Point Operations per 
Second) 
14.3 MIPS (Million Instructions per 
Second) 

SMJ320C30-25 (80-ns Single Cycle 
Instruction Execution Time) 
- 25 MFLOPS 
- 12.5 MIPS 

Class 8 High-Reliability Processing 

One 4K x 32-81t Single-Cycle Dual-Access 
On-Chip ROM 810ck 

Two 1 K x 32-8it Single-Cycle Dual-Access 
On-Chip RAM 810cks 

64-Word x 32-81t Instruction Cache 

• 32-81t Instruction and Data Words, 24-81t 
Addresses 

• 

• 
• 

• 

• 

• 

• 
• 

• 
• 

• 
• 

40/32-8It Floating Point/Integer Multiplier 
and ALU 

32-Bit 8arrel Shifter 

Eight Extended-Precision Registers 
(Accumulators) 

Two Address Generators With Eight 
Auxiliary Registers and Two Auxiliary 
Register Arithmetic Units 

On-Chip Direct Memory Access (DMA) 
Controller for Concurrent I/O and CPU 
Operation 

Integer, Floating Point, and Logical 
Operations 

Two- and Three-Operand Instructions 

Parallel ALU and Multiplier Executions In a 
Single Cycle 

810ck Repeat Capability 

Zero-Overhead Loops with Single-Cycle 
Branches 

Conditional Calls and Returns 

Interlocked Instructions for 
Multiprocessing Support 

• Two External Interface Ports 
EPIC is a trademark of Texas Instruments Incorporated. 

• 

• 
• 
• 

• 

• 

SMJ320C30 
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A 
B 
C 
D 
E 
F 
G 
H' 
J 
K 
L 
M 
N 
P 
R 

<0 
m 

o 
\I') 

GB Packaget 
(Top View) 

1234 5 678 9101112131415 

• • • • • • •• •• • • • • • • •• •• • • • • • • •• •• • • • • • • •• •• 
• • • •• • •• • •• 
• •• •• • •• • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • 

HU/HT Packaget 
(Top View) 

• • • • • • 
• • • • • • 

(0 

m 

147 

99 

t Pin assignments/function information are provided 
by the page 2 and 3 table, pin assignments, 

Two Serial Ports with Support for 
8/16/32-8It Transfers 

Two 32-81t Timers 

1.0 Micron EPIC™ CMOS Technology 

181-Pin Grid Array Ceramic Package 
(G8 Suffix) 

Two 196-Pin Leaded Ceramic Chip Carriers 
- Quad flat pack (HT Suffix) 
- Gull wing carrier (HU Suffix) 

- 55°C to 125°C Operating Temperature 
Range 

PRODUCTION DATA documents contain Information 
current .. 01 publication dati. Products conform to 
specifications p.r thl t.rms of Tun fnstrum.nts 
standard warranty. Production processing dOli not 
nec ... arily Includ.ttSling 01 all parameters. 

TEXAS l!1 
INSTRUMENTS 

Copyright © 1991, Texas Instruments Incorporated 
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description 

E-4 

The SMJ320C30's internal bus and special digital processing (DSP) instruction set have the speed and flexibility 
to execute up to 28.6 MFLOPS (million floating-point operations per second). The SMJ320C30 optimizes speed 
by implementing functions in hardware that other processors implement through software or microcode. This 
hardware-intensive approach provides the design engineer with power previously unavailable on a single chip. 

The SMJ320C30 can perform parallel multiply and ALU operations on integer or floating-point data in a single 
cycle. The processor also possesses a general-purpose register file, program cache, dedicated auxiliary register 
arithmetic units (ARAU), internal dual-access memories, one DMA channel supporting concurrent I/O, and a 
short machine-cycle time. High performance and ease of use are achieved through greater parallelism, greater 
accuracy, and general-purpose features. 

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, 
internally and externally generated wait states, two external interface ports, two timers, two serial ports, and 
multiple interrupt structure. The SMJ320C30 supports a wide variety of system applications from host processor 
to dedicated coprocessor. 

High-level language is more easily implemented through a register-based architecture, large address space, 
powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic. 

TEXAS ~ 
INSTRUMENTS 
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pin functional description. 

GB package pin function assignments 

PIN FUNCTION PIN FUNCTION PIN 

F15 AO C4 DO P3 
G12 A1 05 01 R2 
G13 A2 A2 02 N4 
G14 A3 A3 03 M5 
G15 A4 84 04 R1 

H15 A5 C5 05 R3 
H14 A6 06 06 M3 
J15 A7 A4 Of Pl 
J14 A8 85 08 L4 
J13 A9 C6 09 N2 

K15 Al0 AS 010 Nl 
J12 All 86 011 P2 
K14 A12 07 012 , 
L15 A13 A6 013 F14 
K13 A14 C7 014 E15 

L14 A15 87 015 F13 
M15 A16 A7 016 E14 
K12 A17 A8 017 F12 
L13 A18 88 018 Cl 
M14 A19 A9 019 M6 

N15 A20 89 020 83 
M13 A21 C9 021 Al 
L12 A22 Al0 022 
N14 A23 09 023 C2 
E5 LOCATOR 810 024 81 

Gl lACK All 025 P4 
H2 INTO Cl0 026 N5 
Hl INTl 811 027 
Jl INT2 A12 028 G2 
J2 INT3 010 029 G3 

015 MC/MP Cl1 030 03 
E3 MSTRB 812 031 E4 
El ROY H4 
Fl RESET F3 HOLO 08 
G4 RfijJ E2 HOLDA M8 

F2 STR8 02 XROY H12 
F4 IOSTR8 01 XR1W N8 

FUNCTION PIN 

FSRO A13 
FSXO A14 
CLKRO 011 
CLKXO C12 
ORO 813 

OXO A15 
FSRl 815 
FSXl C14 
CLKRl E12 
CLKXl 013 

ORl C15 
OXl 014 

E13 
EMUO J3 
EMUl J4 

EMU2 Kl 
EMU3 K2 
EMU4 L1 
EMU5 K3 
EMU6 L2 

Hl K4 
H3 Ml 

L3 
Xl M2 
X2/CLKIN 012 

TCLKO Hll 
TCLKl 04 

E8 
XFO L8 
XFl M12 

V88P H5 
VSU8S M4 
VOO B2 
VOO P14 
VOO C8 

VOO H3 
Vss H13 

SMJ320C30 
DIGITAL SIGNAL PROCESSOR 

SGUS014 - FEBRUARY 1991 

FUNCTION PIN FUNCTION 

XAO R4 XOO 
XA1 P5 X01 
XA2 N6 X02 
XA3 R5 X03 
XA4 P6 X04 

XA5 M7 X05 
XA6 R6 X06 
XA7 N7 X07 
XA8 P7 X08 
XA9 R7 X09 

XA10 P8 X010 
XAll R8 XOll 
XA12 R9 X012 
RSVO P9 X013 
RSVl N9 X014 

RSV2 Rl0 X015 
RSV3 M9 X016 
RSV4 Pl0 X017 
RSV5 Rll X018 
RSV6 Nl0 X019 

RSV7 P,ll X020 
RSV8 R12 X021 
RSV9 Ml0 X022 
RSV10 Nll X023 
AOVOO P12 X024 

AOVOO R13 X025 
OOVOO R14 X026 
OOVOO Ml1 X027 
IOOVOO N12 X028 
IOOVOO P13 X029 

MOVOO R15 X030 
POVOO P15 X031 
CVSS C3 OVSS 
CVss C13 OVSS 
Vss N3 OVss 

Vss N13 OVSS 
VSS 814 IVSS 

NOTES: 1. AOVOO, OOVOO, IOOVOO, MOVOO, and POVOO pins are on a common plane internal to the device. 
2. VOO pins are on a common plane internal to the device. 
3. VSS, CVSS, and IVSS pins are on a common plane internal to the device. 
4. OVSS pins are on a common plane internal to the device. 

TEXAS -1!1 
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HU/HT package pin function assignments 

PIN FUNCTION PIN' FUNCTION PIN FUNCTION PIN FUNCTION 

1 POVOO 41 X023 81 A1 121 019 
2 POVOO 42 X024 82 AO 122 018 
3 ORO 43 X025 83 EMUO 123 VOO 
4 FSRO 44 X026 84 EMU1 124 VOO 
5 CLKRO 45 X027 85 EMU2 125 VSS 
6 CLKXO 46 X028 86 EMU3 126 VSS 
7 FSXO 47 X02'9 87 EMU4 127 017 
8 OXO 48 X030 88 MC/MP 128 016 
9 TCLKO 49 IOOVOO 89 XA12 129 015 
10 TCLK1 50 OVSS 90 XA11 130 014 
11 EMU6 51 CVSS 91 XA10 131 013 
12 XOO 52 CVSS 92 XA9 132 012 
13 X01 53 X031 93 XA8 133 011 
14 X02 54 A23 94 XA7 134 010 
15 IODVOO 55 A22 95 XA6 135 09 
16 IOOVOO 56 A21 96 IVSS 136 08 
17 X03 57 A20 97 IVSS 137 07 
18 X04 58 A19 98 OVss 138 D6 
19 X05 59 A18 99 VSUBS 139 05 
20 X06 60 A17 100 ADVoD 140 D4 
21 X07 61 A16 101 ADVOD ·141 03 
22 X08 62 A15 102 XA5 142 02 
23 X09 63 A14 103 XA4 143 01 
24 X010 64 AOVOO 104 XA3 144 DO 
25 VOO 65 A13 105 XA2 145 H1 
26 VOO 66 A12 106 XA1 146 H3 
27 Vss 67 A11 107 XAO 147 oOVOO 
28 Vss 68 A10 108 031 148 OVSS 
29 X011 69 A9 109 030 149 CVss 
30 X012 70 A8 110 029 150 CVSS 
31 X013 71 A7 111 028 151 X2/CLKIN 
32 XD14 72 A6 112 027 152 X1 
33 X015 73 VOO 113 026 153 VSUBS 
34 X016 74 VOO 114 oOVOO 154 V88P 
35 X017 75 Vss 115 025 155 EMUS 
36 X018 76 VSS 116 024 156 XRi5Y, 
37 X019 77 A5 117 D23 157 MSTRB 
38 X020 78 A4 118 022 158 IOSTRB 
39 X021 79 A3 119 021 159 XRrW 
40 X022 80 A2 120 020 160 HOLDA 

NOTES: 1. AOVOO, OOVOO, IOOVOD, MOVOO, and POVOO pins are on a common plane internal to the device. 

E-G 

2. VOO pins are on a common plane internal to the device. 
3. VSS, CVSS, and IVSS pins are on a common plane internal to the device. 
4. OVSS pins are on a common plane internal to the device. 

TEXAS "!1 
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PIN FUNCTION 
161 HOLD 
162 MOVoO 
163 MOVOO 
164 ROY 
165 STRB 
166 Rm 
167 RESET 
168 XF1 
169 XFO 
170 lACK 
171 INTO 
172 VOO 
173 VOO 
174 VSS 
175 VSS 
176 INT1 
177 INT2 
178 INT3 
179 RSVO 
180 RSV1 
181 RSV2 
182 RSV3 
183 RSV4 
184 RSV5 
185 RSV6 
186 RSV7 
187 RSV8 
188 RSV9 
189 RSV10 
190 OR1 
191 FSR1 
192 CLKR1 
193 CLKX1 
194 FSX1 
195 OX1 
196 oVSS 



signal descriptions. 

SMJ320C30 
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This section gives signal descriptions for the SMJ320C30 device in the microprocessor mode. The following 
tables list each signal, the number of pins, function, and operating mode(s}, i.e., input, output, or high-impedance 
state as indicated by I, 0, or Z. All pins labelled NC are not to be connected by the user. A line over a signal name 
(e.g., RESET) indicates that the signal is active low (true at a logic 0 level). The signals are grouped according 
to function. 

signal descriptions 

PIN 
I/o/Zt 

NAME NOs. 

031-00 32 I/O/Z 

A23-AO 24 O/Z 

Rm 1 O/Z 

STRB 1 O/Z 

ROY 1 I 

HOLD 1 I 

HOLDA 1 0 

X031-XOO 32 !lO/Z 

XAI2-XAO 13 O/Z 

XRm 1 O/Z 

MSTRB 1 a 
tOSTRB 1 0 

XROY 1 I 

RESET 1 I 

INT3-INTO 4 I 

lACK 1 0 

MC/MP 1 I 

XF1, XFO 2 I/O 

t Input, output, high-impedance state. 

DESCRIPTION 

PRIMARY BUS INTERFACE 

32-bit data port of the primary bus interface. 

24-bit address port of the primary bus interface. 

Read/write signal for primary bus interface. This pin is high when a read is performed and low 
when a write is performed over the parallel interface. 

External access strobe for the primary bus interface. 

Ready signal. This pin indicates that the external device is prepared for a primary bus inter-
face transaction to complete. As long as ROY is a logic high, the data and address buses of 
the primary bus interface remain valid. 

Hold signal for primary bus interface. When HOLD is a logic low, any ongoing transaction is 
completed. The A23-AO, 031-00, STRB, and Rm signals are placed in a high-impedance 
state, and all transactions over the primary bus interface are held until HOLD becomes a logic 
high. 

Hold acknowledge signal for primary bus interface. This signal is generated in response to a 
logic low on HOLD. It Signals that A23-AO, 031-00, STRB, and Rm are placed in a high-im-
pedance state and that all transactions over the bus will be held. HOLDA will be high in re-
sponse to a logic high of HOLD. 

EXPANSION BUS INTERFACE 

32-bit data port of the expansion bus interface. 

13-bit address port of the expansion bus interface. 

Read/write signal for expansion bus interface. When a read is performed, this pin is held high; 
when a write is performed, this pin is low. 

External memory access strobe for the expansion bus interface. 

External I/O access strobe for the expansion bus interface. 

Ready signal. This pin indicates that the external device is prepared for an expansion bus 
interface transaction to complete. As long as XROY is high, the data and address buses of 
the expansion bus interface remain valid. 

CONTROL SIGNALS 

Reset. When this pin is a logic low, the device is placed in the reset condition. When RESET 
becomes a logic high, execution begins from the location specified by the reset vector. 

External interrupts. 

Interrupt acknowledge signal. lACK is set to 1 by the lACK instruction. This can be used to indicate 
the beginning or end of an interrupt service routine. 

Microcomputer/microprocessor mode pin. 

External flag pins. They are used as general-purpose I/O pins or to support interlocked processor 
instructions. 

TEXAS -I!} 
INSlRUMENlS 
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signal descriptions (continued) 

PIN 
I/O/Zt 

NAME NOs. 

CLKXO 1 I/O 

DXO 1 OIl 

FSXO 1 I/O 

CLKRO 1 I/O 

ORO 1 I 

FSRO 1 I 

CLKXl 1 I/O 

DXl 1 OIl 

FSXl 1 I/O 

CLKRI 1 I/O 

DRl 1 I 

FSR1 1 I 

TCLKO 1 I/O 

TCLKl 1 I/O 

VOO 4/8 I 

10DVOO 2/3 I 

AOVDD 2/3 I 

POVOO 1/2 I 

OOVDO 2/2 I 

MDVOD 1/2 I 

VSS 4/8 I 

OVSS 4/4 I 

CVSS 2/4 I 

IVSS 1/2 I 

VBBP 1/1 NC 

VSUBS 1/2 I 

XI 1 a 

X2/CLKIN 1 I 

HI 1 a 
H3 1 a 

t Input, output, high-impedance state. 
NOTE 5: GB/HU power pins. 

E-8 

DESCRIPTION 

SERIAL PORT 0 SIGNALS 

Serial port 0 transmit clock. This pin serves as the serial shift clock for the serial port 0 transmitter. 

Data transmit output. Serial port 0 transmits serial data on this pin. 

Frame synchronization pulse for transmit. The FSXO pulse initiates the transmit data process 
over pin DXO. 

Serial port 0 receive clock. This pin serves as the serial shift clock for the serial port 0 receiver. 

Data receive. Serial port 0 receives serial data via the ORO pin. 

Frame synchronization pulse for receive. The FSRO pulse initiates the receive data process over 
ORO. 

SERIAL PORT 1 SIGNALS 

Serial port 1 transmit clock. This pin serves as the serial shift clock for the serial port 1 transmitter. 

Data transmit output. Serial port 1 transmits serial data on this pin. 

Frame synchronization pulse for transmit. The FSXl pulse initiates the transmit data process 
over pin DX1. 

Serial port 1 receive clock. This pin serves as the serial shift clock for the serial port 1 receiver. 

Data receive. Serial port 1 receives serial data via the DRl pin. 

Frame synchronization pulse for receive. The FSRl pulse initiates the receive data process 
over OR1. 

TIMER 0 SIGNALS 

Timer clock. As an input, TCLKO is used by timer 0 to count external pulses. As an output pin, 
TCLKO outputs pulses generated by timer O. 

TIMER 1 SIGNALS 

Timer clock. As an input, TCLKl is used by timer 1 to count external pulses. As an output pin, 
TCLKl outputs pulses generated by timer 1. 

SUPPLY AND OSCILLATOR SIGNALS (see Note 5) 

+5 V supply pin. 

+5 V supply pin. 

+5 V supply pin. 

+5 V supply pin. 

+5 V supply pin. 

+5 V supply pin. 

Ground pin. 

Ground pin. 

Ground pin. 

Ground pin. 

VBB pump oscillator output. 

Substrate pin. Tie to ground. 

Output pin from the internal oscillator for the crystal. If a crystal is not used, this pin should be 
left unconnected. 

Input pin to the internal oscillator from the crystal or a clock. 

External HI clock. This clock has a period equal to twice ClKIN. 

Externai"H3 clock. This clock has a period equal to twice ClKIN. 

TEXAS l!I 
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signal descriptions (concluded) 

PIN I/O/Zt 

NAME NOs. 

EMUO-EMU2 3 I 

EMU3 1 0 

EMU4 1 I 

EMU5. EMU6 2 NC 

RSVO·RSV10 11 I 

t Input. output. high-impedance state. 

Reserved. Use pullups to +5 volts. 

Reserved. 

Reserved. Use pullups to +5 volts. 

Reserved. 

Reserved. Use pull ups to +5 volts. 

CAUTION 

SMJ320C30 
DIGITAL SIGNAL PROCESSOR 

SGUS014 - FEBRUARY 1991 

DESCRIPTION 

RESERVED 

Follow the connections specified for the reserved pins. All pullup resistors must be 20 kQ. All +5 volt supply pins 
must be connected to a common supply plane, and all ground pins must be connected to a common ground plane. 

ELECTRICAL SPECIFICATIONS 

absolute maximum ratings over specified temperature range (unless otherwise noted) :J: 

Supply voltage range, Vee .......................................................... - 0.3 V to 7 V 
Input voltage range ...... , ............ , ... , ........................................ - 0.3 V to 7 V 
Output voltage range ............................ , .............. ,................... - 0.3 V to 7 V 
Continuous power dissipation (see Note 11) ....... ,........................................ 3.15 W 
Minimum free air operating temperature .......................... , ........ , ............. , .. - 55°C 
Maximum operating case temperature , ...... " ......................... ,................... 125°C 
Storage temperature range ................... , .............. ,................... - 65°C to 150°C 

:j: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; 
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section 
of this specification is not implied. Exposure to absolute-maximum·rated conditions for extended periods may affect device reliability. 

NOTES: 6. All voltage values are with respect to VSS. 
7. Actual operating power will be less. This value was obtained under specially produced worst·caso tost conditions, which nro not 

sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both 
primary and extension buses at the maximum rate possible. See normal (ICc) current specification in the "electrical characteristics" 
table and also read Calculation of TMS320C30 Power DiSSipation Application Report. 

TEXAS ~ 
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recommended operating conditions (see Note 8) 

VDD Supply voltages 

VSS Supply voltages (CVSS, etc.) 

VIH High-level input voltage 

VTH ClKIN high-level input voltage for ClKIN 

VIL Low-level input voltage 

IOH High-level output current 

IOL Low-level output current 

TC Operating case temperature 

TA Operating free-air temperature 

§ These values derived from characterization but not tested. 
NOTE 8: All input and output voltages are TTL compatible. 

I 
I 

SMJ320C30-28 

SMJ320C30-25 

electrical characteristics over specified temperature range 

PARAMETER 

VOH High-level output voltage (VOO = Min, IOH = Max) 

VOL Low-level output voltage ( VDD = Min, IOL = Max) 

VOLX low-level output voltage (VDD = Min, IOL = Max), (XA 12-XAO) 

IZ Three-state current ( VDD = Max) 

II Input current ( VI = VSS to VDD) 

liP Input current (Inputs with internal pullups) (see Note 12) 

IIC Input current ( X2/CLKIN), (VI = VSS to VCC) 

ICC Supply current (VDO = Max, fx = Max) (see Note 13) 

CI Input capacitance 

Co Output capacitance 

Cx X2/CLKIN capacitance 

t Derived from characterization and not tested. 
:\: Derived by design but not tested. 
NOTES: 9. All nominal values are at VDD = 5 V, T A = 25°C. 

10. fx is the input clock frequency. 
11. All input and output voltage levels are TTL compatible. 
12. Pins with internal pullup devices: INTO-INT3, MC/MP, RSVO-RSV10. 

MIN NOM MAX UNIT 

4.75 5 5.25 
V 

4.5 5 5.5 

0 V 

2.1 VDD + 0.3§ V 

3 VDD+0.3§ V 

- 0.3§ 0.8 V 

-300 ~lA 

2 mA 

125 °C 

-55 °c 

MIN NOM MAX UNIT 

2.4 3 V 

0.3 0.6 V 

O.6 t V 

± 20 IlA 

±10 ~lA 

-400 20 IlA 

± 50 ~lA 

200 600 mA 

15* pF 

20* pF 
------

25* pF 

13. Actual operating current will be less than this maximum value. This value was obtained under speCially produced 
worst·case test conditions, which are not sustained during normal device operation. These conditions consist of 
continuous parallel writes of a checkerboard pattern to both primary and expansion buses at the maximum rate 
possible. See Calculation of TMS320C30 Power Dissipation Application Report. . 

E·10 
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SMJ320C30 
DIGITAL SIGNAL PROCESSOR 

PARAMETER MEASUREMENT INFORMATION 

-, 
I 
I 
I 
I 
I Output 

Tester Pin VLoad 
Electronics 

>-_.--+0 Under 

Where: IOL = 2 rnA (all outputs) 
IOH = 300 IlA (all outputs) 
VLoad = 2.15 V 
CT = 80 pF typical load circuit capacitance. 

Figure 1. Test Load Circuit 

signal transition levels 

I Test 
CT I 

I 
I 
I 

_J 

SGUS014 - FEBRUARY 1991 

TTL-level outputs are driven to a minimum logic-high level of 2.4 volts and to a maximum logic-low level of 0.6 
volts. Output transition times are specified as follows. 

For a high-to-Iow transition on a TTL-compatible output signal, the level at which the output is said to be no longer 
high is 2 volts, and the level at which the output is said to be low is 1 volt. For a low-to-high transition, the level 
at which the output is said to be no longer low is 1 volt, and the level at which the output is said to be high is 2 
volts. 

Figure 2. TTL-Level Outputs 

2.4V 
2V 

1 V 
O.6V 

Transition times for TTL-compatible inputs are specified as follows. For a high-to-Iow transition on an input 
signal, the level at which the input is said to be no longer high is 2.1 volts, and the level at which the input is said 
to be low is 0.8 volt. For a low-to-high transition on an input signal, the level at which the input is said to be no 
longer low is 0.8 volt, and the level at which the input is said to be high is 2.1 volts. 

====;!----. -----------~ 
---- ------------------ ---

Figure 3. TTL-Level Inputs 

TEXAS -Ill 
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timing parameters for elKIN, H1, and H3 (see Note 11) 

SMJ320C30·28 SMJ320C30·2S 
NO. PARAMETER 

MIN MAX MIN MAX 

1 tf(CI) ClKIN fall time 5t st 

2 tw(Cll) ClKIN low pulse duration tc(CI) = min (see Note 15) 12.5 14 

3 tw(CIH) ClKIN high pulse duration tc(CI) = min (see Note 15) 12.5 14 

4 tr(CI) ClKIN rise time 5t 5t 

5 tc(CI) CLKIN cycle time 35 40 

6 tf(H) H1/H3 fall time 3 4 

7 tw(Hl) H1/H31ow pulse duration (see Note 14) P-6 P-6 

8 tw(HH) H 1 /H3 high pulse duration (see Note 14) P-7 P-7 

9 tr(H) H1/H3 rise time 4 4 

9.1 td(HL·HH) Delay from H1 (H3) low to H3(H1) high ot 5 ot 5 

10 tclH) H1/H3 cycle time 70 606 80 606 

t Derived by design but not tested. 
NOTES~ 11. All input and output voltages are TIL compatible. 

14. P = tc(CI) 
15. Rise and fall times, assuming a 35-65% duty cycle, are incorporated within this specification. See X2/CLKIN timing below. 

X2/CLKIN timing 

X2/CLKIN 

H1/H3 timing 

E·12 

H1 

1--.1 
I 

~ 
1 
I 
14- 9 

--.I 
I 
1 

*-4 
1 

1 

~ 
I 

10 

r.- 6 
I 
I 
I 

~s----"'·l 
.f.--3 ~ : 
I I I 

I 
I 1 
~2~ 

~ 
I 
I 
1 

~7~ 
I 

---.l ~ 9.1 

H3~ /~B~\ 
1 
1 
14 
1 
14 

I I 1 1 
~ ~9 --'1 ~6 

7 ~ 1 

10 
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1 ., 

(1.5V) 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



memory read/write cycle timing (MSTRB = 0) 

NO. PARAMETER 

11 td(H1 L-(M)SL) H1 low to (M)STRB low 

12 td(H1 L-(M)SH) H1 low to (M)STRB high 

13.1 td(H1H-RWL) H1 high to RNJ low 

13.2 td(H1 H-XRWL) H1 high to (X)RNJ low 

14.1 td(H1L-A) H1 low to A valid 

14.2 tdlH1L-XA) H 1 low to (X)A valid 

15.1 tsu(D)R D valid before H1 low (read) 

15.2 tsujXD)R (X)D setup before H1 low (read) 

16 th((X)D)R (X)D hold time after H1 low (read) 

17.1 tsu--'-RD'r'J RDY setup before H1 high 

17.2 tsu(XRDY) XRDY setup before H1 high 

18 th((X)RDY) XRDY hold time after H1 high 

19 td(H1 H-(X)RWH) H1 high to (X)RNJ high (write) 

20 tv((X)D)W (X)D valid after H1 low (write) 

21 th((X)D)W (X)D hold time after H1 high (write) 

22.1 td(H1H-A) H1 high to A valid on back-to-back write cycles (write) 

22.2 td(H1H-XA) H1 high to XA valid on back-to-back write cycles (write) 

26 td(A-XRDY) (X)RDY delay from A valid 

t These values derived from characterization but not tested. 
* These values derived by design but not tested. 

TEXAS .. 
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SMJ320C30-28 SMJ320C30-25 

MIN MAX MIN MAX 
UNIT 

ot 10 of 10 ns 

0* 10 0* 10 ns 

ot 10 0* 10 ns 

0* 17 0* 1a ns 

ot 16 0* 1a ns 

0* 12 0* 14 ns 

19 19 ns 

20 20 ns 

ot ot ns 

10 10 ns 

10 12 ns 

0 0 ns 

12 12 ns 

20 20 ns 

0 0 ns 

22 22 ns 

32 32 ns 

at at ns 

E-13 



SMJ320C30 
DIGITAL SIGNAL PROCESSOR 

SGUS014 - FEBRUARY 1991 

memory read cycle timing (MSTRB ::: 0) 

H3 

H1 
1 I 

1 1 I 

~ ~ 11 -.j ~ 1~ 

~
I 1 II/_~-----

MSTRB~: _ 
1 

1 I I 

(X)RiW : : : 1\ 
1 1 I 1

1
----

~ 14- 14.1/14.2 I ~;.- 13 

I 1 ~ 
(X) A X )( 

__ -J 15.1/15.2 ~ '------

26 ~:t- 1-.1 ~ 16 

(X)D I 1 0 1 
)------

17.1/17.2 ~ ~ 

___ """\ tl *-18 \l yr-------
memory write cycle timing (MSTRB = 0) 

E-14 

H3 

H1 1 1 
1 1 1 I I 
111 -.I ~ ~ ~ 12 

MSTRB : I : \l: ; : 
1 I 1 1 I 
I ~ ~ 13 1 1 

(X)R/w: 'x:: : 
\'-_---J/ : 

-.I 14- 19 
1 

! 
~ I'f- 14.1/~4.2 I 1 

(X)A =X = ~ ~: X'ttt-22.1/22.2 x'-___ _ 
20::;l ~ 1 

(X)D --__ --<0 ~ ~~ ____ »------
~t.F 18 :.-- 26 -+I 

17.1/17.~ r-:- I 
(X)RDY ________ 'x~I __ ~y~1 __________ ~~./ _____________ ___ 
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memory read cycle timing (IOSTRB = 0) 

NO. PARAMETER 

27 td(H1 H-IOSL) H1 high to IOSTRB low 

28 td(H1 H-IOSH) H1 high to IOSTRB high 

29 td(H1 L-XRWH) H1 low to XRN/ high 

30 td(H1L-XA) H1 low to XA valid 

31 tsu(XD)R XD setup before H1 high 

32 th{XD)R XD hold time after H1 high 

33 tsuiXRDY) XRDY setup before H1 high 

34 th(XRDY) XRDY hold time after H1 high 

t These values derived from characterization but not tested. 
1: These values derived by design but not tested. 

H3 

Hl 
I 
I 1 27 --.! 

I 
I 

IOSTRB I 
I 

--.I 14- 29 

XRm=/ 

~ 

~ 

--.! tct- 30 

XA==>( 

XD 

XRDY 

SMJ320C30·28 

MIN MAX 

01: 11 

01: 10 

01: 10 

01: 11 

15 

at 
10 

a 

I 
I 

I 28~ ~ I I 

1/ I 
I 
I I --1 1..- 35 I 

I t I 
I 
I 

~ >C 
31 --.! 

I~ ~ 32 

33 ~Q 
I --.! ~ 34 

\l Y 
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SMJ320C30·25 
UNIT 

MIN MAX 

01: 11 ns 

01: 10 ns 

01: 12 ns 

01: 13 ns 

15 ns 

at ns 

12 ns 

a ns 

E·15 
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memory write cycle timing (IOSTRB = 0) 

SMJ320C30-28 
NO. PARAMETER 

MIN MAX 

35 Id(H1L-XRWL) H1 low 10 (X)RIVV low ot 15 

36 Iv(XD)W XD valid after H 1 high 30 

37 Ih(XmW XD hold lime after H1 low 0 

t These values derived by design bul nollesled. 

E-16 

H3 

H1 
I I 
I I. I 

27~ ~ 28 --.I ~ 
--~------hl \: I: I~---:~------

IOSTRB : \ ,I 
I I ~I ------+--1 ~ ~ 29 

-.1 ~ 35 I I I I 

~ II I I:L XRiW ~ I I I 
-II 
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UNIT 

MIN MAX 
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timing for XFO and XF1 when executing LOFI or LOll 

NO. 

38 

39 

40 

SMJ320C30·28 SMJ320C30·25 
PARAMETER 

td(H3H·XFOL) H3 high to XFO low 

tsu{XF1) 

th(XF11 

XF1 valid before H1 low 

XF1 hold time after H1 low 

H3 

H1 

MSTRB 

(X)RIW 

(X) A 

Fetch 
LDFI or LOll 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

MIN MAX 

15 

15 

0 

Decode Read Execute 

I 

:\ / 
I 
I 
I 
I 
I 

X x= 
I 

I I 

---<==>--(X) 0 I I 
I I 

(X)RDY 

XFO Pin 

XF1 Pin 

I I 
I be I 
I 
I 38 -.! I'f-
I \l 39 -JlI r4-

I I 
4! ~ 40 

\l V-

TEXAS -I!} 
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15 

15 

0 

UNIT 

ns 

ns 

ns 
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timing for XFO when executing a STFI or STII 

SMJ320C30·28 SMJ320C30·25 
NO. PARAMETER 

MIN MAX MIN MAX 

41 td(H3H·XFOH) H3 high to XFO high 20 20 

Fetch 
I STFI or STII Decode I Read Execute I 

H3 

H1 

I 
\ r-I 

I 
I 

(X)R/W i\ ;-
I 

(X) A ~i >C 
I 

)-I -< I 
(X) 0 

I 
--.I ~41 \/ I 

I 

XFO Pin I 
timing for XFO and XF1 when executing a SIGI 

SMJ320C30·28 SMJ320C30·25 
NO. PARAMETER 

MIN MAX MIN MAX 

41 td(H3H·XFOL) H3 high to XFO low 15 15 

42 td(H3H·XFOH) H3 high to XFO high 20 20 

43 tsu(XF1) XF1 valid before H1 low 12 12 

44 th(XF1) XF1 hold time after H1 low 0 0 

Fetch 
SIGI Decode Read Execute 

H3 

H1 

XFO 

XF1 

E·18 

43 ~ ~ -..J ~ 42 

11 ________ ~ ________ -J;' 
~~44 

~y-
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ns 
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ns 
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timing for loading XF register when configured as an output pin 

NO. 

45 tvIH3H-XF) 

H3 

H1 

OUTXF Bit 

XF Pin 

PARAMETER 

H3 high 10 XF valid 

Fetch Load 
Instruction Decode Read 

SMJ320C30·28 SMJ320C30·25 

MIN MAX MIN MAX 

20 20 

Execute 

~lO<O 
-., r--- 45 

--------------~~ 

change of XF from output to input mode 

SMJ320C30·28 SMJ320C30·25 
NO. PARAMETER 

MIN MAX MIN MAX 

46 th(H3H-XFOI) XF hold after H3 high 20 t 20 t 

47 tsu(XF} XF setup before H1 low 12 12 

48 Ih(XF) XF hold lime after H1 low 0 0 

t These values derived from characterization bul not lested. 

H3 

H1 

fOXF Bit 

XF Pin 

INXFBlt 

Execute 
Load of IOF 

Output 

Buffers Go 
From Output 

To Input 

I 
-.! ~47 

II 
~:'-48 

--.I 14- 46 I I 

C 
Sampled 

TEXAS ~ 
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Seen In IOF : 

UNIT 

ns 

UNIT 

ns 

ns 

ns 
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change of XF from input to output mode 

NO. 

49 td(H3H-XFIO} 

PARAMETER 

H3 high to XF switching from 
input to output 

H3 

H1 

Execution of 
Load of IOF 

iOXF Bit 

SMJ320C30-28 

MIN 

, 
, 
, 

MAX 

20 

--., 14- 49 

SMJ320C30-25 

MIN MAX 

20 

XF Pin ------------------------------------~<i~ ____ __ 

E-20 
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reset timing 

NO. PARAMETER 

50 tsu(RESEn Setup for RESET before CLKIN low 

51 td(CLKINH-H 1 H) CLKIN high to H1 high 

52 td(CLKINH-H1 L) CLKIN high to H1 low 

53 tsu(RESETH-H 1 L) 
Setup for RESET high before H1 low and after 
10 H 1 clock cycles 

54 td(CLKINH-H3L) ClKIN high to H3 low 

55 td(CLKINH-H3H) ClKIN high to H3 high 

56 tdis(H1 H-XO) H1 high to (X)O three state 

57 tdis(H3H-XA) H3 high to (X)A three state 

S8 td(H3H-CONTROLHl H3 high to control signals high 

59 td(H1 H-IACKH) H 1 high to lACK high 

60 tdis(RESETL-ASYNCH) 
RESET low to asynchronously reset signals 
three state 

t These values derived from characterization but not tested. 

~ 
I 
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SMJ320C30·28 SMJ320C30·25 
UNIT 

MIN MAX MIN MAX 

10 10 ns 

5 18 5 18 ns 

5 18 5 18 ns 

1St 1St ns 

5 18 5 18 ns 

5 18 S 18 ns 

20t 20t ns 

12t 12t ns 

10t 10t ns 

12t 12t ns 

2St 2St ns 

RESET 
(see Notes 20, 21) ~~I ----r.-~------------~!~ 

,- I ~14- 53 

H1 

H3 

(X) 0 
(see Note 16) 

(X) A 
(see Note 17) 

Control Signals 
(see Note 18) 

I 

I I 
I 

54 ~ 14- I I I I, 
...:...-----"\1 ~ 

\ :iF>O!Hl CI;kCYCleS F- .: 
II --.I h 56 I 

:~::::::~:::i}~1 ~~--~--~\~--------------------~ II -~ tf-57 ~ 
55~ t4- I 1 

~========~)~----+-~~---------~ ::;l r4- 58 
J 

~ ______________ ~7 I 
~ ~59 I 

~ ______________________ ~7 

NOTES: 16. (X)O includes 031-00 and X031·XOO. 
17. X(A) includes A23-AO, XA 12-XAO, and R/W. 
18. Control signals include STRB, MSTRB, and IOSTRB. 
19. Asynchronously reset signals include XF1, XFO, CLKXO, OXO, FSXO, CLKRO, ORO, FSRO, CLKX1, OX1, FSX1, CLKR1, OR1, FSR1, 

TCLKO, and TCLK1. 
20. RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact 

sequence shown will occur; otherwise, an additional delay of one clock cycle may occur. 
21. Note that the R/W and XR/W outputs are placed in a high impedance state during reset and can be provided with a resistive pull-up, 

nominally 20 kQ, if undesirable spurious writes could be caused when these outputs go low. 
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INT3-INTO response timing 

SMJ320C30·28 SMJ320C30·25 
NO. PARAMETER UNIT 

MIN NOM MAX MIN NOM MAX 

61 tsu(lNn INT3-INTO setup before H1 low 15 15 ns 

62 tw(INT) Interrupt pulse width to guarantee one 
P 1.5P < 2Pt P 1.5P < 2Pt ns 

(see Note 22) interrupt seen 

t These values derived from characterization but not tested. P = One H1 period. 
NOTES: 22. Interrupt pulse width must be at least 1 P wide to guarantee it will be seen. It must be less than 2 P wide to guarantee it will be responded 

to only once. The recommended pulse width is 1.5 P. 

E·22 

23. INT is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met. the exact sequence 
shown will occur; otherwise. an additional delay of one clock cycle may occur. 

H3 

H1 

I 
-.,..- 61 

INTJ·INTO Pin '\l. I 
~62--': 

INTJ·INTO Flag 

ADDR ____________________________ ~ 

Reset or 
Interrupt 

Vector Read 

Fetch First 
Instruction of 

I Service Routine I 
I I 

First 
Instruction 
Address 

I 
I 
I 
I 

Data----------__________________________ ~~~------------~<===>_____ 
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lACK timing 

NO. PARAMETER 

63 td(H1 H-IACKL) H1 high to lACK low 

64 td(H1 H-IACKH) 
H1 high to lACK high during first cycle of lACK instruction 
data read 

SMJ320C30 
DIGITAL SIGNAL PROCESSOR 

SGUS014 - FEBRUARY 1991 

SMJ320C30-28 SMJ320C30-25 
UNIT 

MIN MAX MIN MAX 

12 12 ns 

12 12 ns 

NOTE 24: The lACK output is active for the entire duration of the bus cycle and is therefore extended if the bus cycle utilizes wait states. 

H3 

H1 

ADDR 

DATA 

Fetch lACK 
Instruction 

63 

lACK 
Data Read 

,.-
I ~64 

__ ---..;l\{"----JI 

__ ---Jx'-----Jx~ __ 
--------------------------~<==>~-------
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serial port timing 

NO. PARAMETER 

65 td(H1-SCK) H1 high to internal CLKXJR 

CLKXJR ext 
66 tc(SCK) CLKXJR cycle time 

CLKXJR int 

67 CLKX/R high/low CLKXJR ext 
tw(SCK) pulse width CLKXJR int 

68 tr(SCK). CLKXJR rise time 

69 tf(SCK) CLKXJR fall time 

CLKX ext 
70 td(OX) CLKX to OX valid 

CLKX int 

DR setup before CLKR ext 
71 tsu(OR) CLKX low CLKR int 

DR hold from CLKR ext 
72 th(OR) CLKR low CLKR int 

CLKX to internal CLKX ext 
73 td(FSX) FSX high/low CLKX int 

FSR setup before CLKR ext 
74 tsu(FSR) CLKR low CLKR int 

CLKXJR ext 
75 th(FS) FSXJR input hold 

CLKXJR int 

External FSX setup CLKX ext 
76 tsu(FSX) before CLKX CLKX int 

CLKX to first OX bit, CLKX ext 
77 td(CH-OX)V FSX precedes 

CLKX high CLKX int 

78 td(FSX-OX)V 
FSX to first OX bit, CLKX precedes 
FSX 

79 tdOXZ 
CLKX high to OX high Z following 
last data bit 

t These values derived from characterization but not tested. 
t These values derived by design but not tested. 

SMJ320C30-2S 

MIN MAX 

17 

tc(H)x2.5 

tc(H)x2 2 tC(H)x232t 

tc(H)+15t 

[tc (SCK)/21-15 [tc(SCK)/2J+5 

st 

st 

35 

20 

10 

25 

10 

ot 

32 

17 

10 

10 

10 

ot 

-[tc(H)-SJ [tc(CLK)/21-10t 

-[tc(H)-21J tc(CLKX)/2 t 

36 

21 

36 

20t 

TEXAS l!1 
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SMJ320C30·25 
UNIT 

MIN MAX 

17 ns 

tc(H)x2.5 
ns 

tc(H)x2 2 tC(H)X232t 

tc(H)+15 t 
ns 

[tc(SCK)/2J-15 [tc(SCK)/2J+5 

st ns 

st ns 

35 
ns 

20 

10 
ns 

25 

10 

ot 
ns 

32 
ns 

17 

10 
ns 

10 

10 

ot 
ns 

-[tc(H)-8} [tc(CLK)/21-10 t 
ns 

-[tc(H)-21J tc(CLKX)/2t 

36 
ns 

21 

36 ns 

20t ns 
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serial port timing, fixed data rate mode 

65~ 
-------66------~ 

H1 

1 ~I I ~67~1 
,--__ ~I I I II 

CLKXJR ---../I \l Ii ~ 67 ~0 ~r-I! 
I I I 1 I I -.I :.- 69 I 
I I I 1 68 --.l ~ 1 
! I . I ~ I -.! 14- 79 

\'-_-oJ1 

I I 70~ I ~ ~ 72 I 

OX I I I ( IIDt 0 X Bit 1 :: Bit N 2>------
. I I I --., ~ 71 

OR_~ 

FSRlli: ~ 
__ I~~...J ~74 I ~ 
~ ;+-- 73 1 I --.l 

! I I 

FSX(INT) I! ~ 104- 75 
--""1...1 1 

~ 73 

~~------------------~;~\~--------------
I I 

FSX(EXT) --'" I 1 

II ~ 
~ 14- 76 

NOTES: 25. Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = O. 
26. These timings are valid for all serial port modes, including handshake, except where otherwise indicated. 

serial port timing, variable data rate mode 

CLKXJR ----A \ Ii \ I ~~ 
~ ~73 I 1 1 

FSX(INT) __ --+-': ! ~ ~ 78 : 1\ : 

~ ~7~ I 1 I 
FSX(EXT) 111////// JI I 70 -.l ~ Ii 1 

~ 77 --., 1 ~ ~ 79 

OX ------« Bit 0 X Bit 1 X Bit 2 :: Bit N )>------
=.J ~75 

NOTES: 27. Timings are valid for all serial port modes, including handshake, except where otherwise indicated. 
25. Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = O. 
28. Timings not expressly specified for variable data rate mode are the same as those for fixed data rate mode. 
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HOLD/HOLDA timing 

NO. PARAMETER 

80 tsu(HOLD) HOLD valid before H1 low 

81 tv(HOLDA) HOLDA valid af1er H 1 low 

82 tw(HOLD) HOLD low width 

83 tw(HOLDA) HOLDA low width 

84 td(H1 L·SH)H H1 low to STRB high for a HOLD 

85 tdis(H1 L-S) H1 low to STRB high impedance state 

86 ten (H1L-S) H1 low to STRB active 

87 tdis(H1 L-RW) H 1 low to RNI high impedance state 

88 ten (H1 L-RW) H1 low to RNI active 

89 tdis(H 1 L-A) H1 low to address high impedance state 

90 ten (H1 L-A) H1 low to address valid 

91 tdislH 1 H-D) H1 high to data impedance state 

t These values derived from characterization but not tested. 
l These values derived by design but not tested. 

SMJ320C30·28 SMJ320C30·25 
UNIT 

MIN MAX MIN MAX 

1S 1S ns 

0* 10 0* 10 ns 

2 2 
H1 

cycles 

tcH-St tcH-st ns 

0* lO t ot lO t ns 

0* lOt 0* lOt ns 

ot lO t ot lO t ns 

0* lOt ot lOt ns 

0* lOt 0* lOt ns 

0* 1St ot 1St ns 

0* 1St ot 1St ns 

Ot 1St 0* 1St ns 

NOTE 29: HOLD is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact 
sequence shown will occur; otherwise. an additional delay of one clock cycle may occur. 

H3 

H1 
I 

~~.-
HOLD ~ 

HOLDA 

STRB 

Rfil 

A 

0 

E·26 

80 

I 
84 -~ 

Write Data 

I :+!~ 
82 I ~ I I 

I -.I ~ 81 
I ~ 83 

I I~ 
~ ~ t4- 85 

7 I ' 

~ 
.- 87 

) 
I 
~ *-89 

: 
) 

~ i4- 91 

~ 
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peripheral pin general-purpose I/O timing 

SMJ320C30-2B SMJ320C30-25 
NO. PARAMETER UNIT 

MIN MAX MIN MAX 

92 tsu(GPIOH1l) Gel'!eral-purpose input setup time before H1 low 15 15 ns 

93 th(GPIOH1 l) General-purpose input hold time after H1 low 0 0 ns 

94 td(GPIOH1 H) General-purpose output delay after H1 low 15 15 ns 

NOTE 30: Peripheral pins include ClKXO/1, ClKRO/1, DXO/1, DRO/1, FSXO/1, FSRO/1, and TClKO/1. The modes of these pins are defined by 
the contents of internal control registers associated with each peripheral. 

H3~ 
H1~1 

93 ~ 14-. I 

perlphe;~~ __ ...;;9.;;;.2_--.! ..... >tS \~ .... l~ __ 9_4 ____________ _ 

timer pin timing 

SMJ320C30·2B SMJ320C30·25 
NO. PARAMETER 

MIN MAX MIN MAX 

78 tsu(TCLKH1 Ll TCLK setup before H 1 low 15 15 

79 th(TClKH1 L) TCLK hold after H1 low 0 0 

80 tdITClKHl H} TCLK valid after H1 high 15 15 

NOTE 31: Period and polarity of valid logic level are specified by contents of internal control registers. 

H3 

H1 

\..J~ 

~~ 
~ rt- 96 97 --.l ~ -.: 14-
~ r+-. 95 I I I - 97 

perIPhe;~~ x::::: ___ :~ '. X~ __ .--J}--;~~:::::::::::: 

TEXAS ~ 
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UNIT 

ns 

ns 

ns 
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change of peripheral pin from general purpose output to input mode 

SMJ320C30·28 
NO. PARAMETER 

MIN MAX 

98 th(H3H) Hold after H 1 high 1St 

99 tsu (GPIOH1L) Peripheral pin setup before H 1 low 1S 

100 thiGPIOH1U Peripheral pin hold after H1 low 0 

t These values derived from characterization but not tested. 

Execute Store 
Of Perlphal 

Control 
RegIster 

Buffers Go 
from Output to 

Input 
SynchronIzer Delay 

H3 

H1 I 
I I 

10 ___ -....1 9~ t4-
Control I I ~I - 100 

. ~ ro-
BIt I 

SMJ320C30·25 

MIN 

1S 

0 

UNIT 
MAX 

1St ns 

ns 

ns 

Value on PIn 
Seen In 

PerIpheral 
Control RegIster 

--.I !4- 98 I I 
PerIpheral -------m~:7\7'I:7\7'I'V\7''V\7'o::7'V'''V'V''V'V~'''V'\:rvo:::ro'\'T';F'-~:7\7'I'V\7'o::7'V'o::7'V'''V'V~~'''V'\:rvo:::ro'\7\7''":7\7'I~o::7'V'''V'V''VT~'f\7 

Pln ____ O_u_tP_u_t ____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Data Bit 

E·28 
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change of peripheral pin from general-purpose input to output mode 

NO. 

101 td(GPIOH 1 H) 

H3 

H1 

10 Control 
Bit 

PARAMETER 

HI high to peripherial pin switching from input to output 

Execution of Store of 
Peripheral Control 

Register 

SMJ320C30 
DIGITAL SIGNAL PROCESSOR 

SMJ320C30-28 

MIN 

I 
I 
I 

--.! 

MAX 

15 

SGUS014 - FEBRUARY 1991 

SMJ320C30-25 

MIN 

1..-- 101 
1 

MAX 

15 

UNIT 

ns 

perIPhe;~ ------......... --------------------t\ ...... ___ _ 
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SMJ320C30 part order information 

DEVICE TECHNOLOGY 

SMJ320C30GBM25 1.0-f!m CMOS 

SM320C30GBM25 1.0-,lm CMOS 

SMJ320C30GBM28 1.0-flm CMOS 

SM320C30GBM28 1.0-flm CMOS 

SMJ320C30HUM25 1.0-,lm CMOS 

SM320C30HUM25 1.0-f!m CMOS 

SMJ320C30HUM28 1.0-~lm CMOS 

SM320C30HUM28 1.0-!lm CMOS 

SMJ320C30HTM25 1.0-f!m CMOS 

SM320C30HTM25 1.0-!lm CMOS 

SMJ320C30HTM28 1.0-,lm CMOS 

SM320C30HTM28 1.0-!lm CMOS 

device nomenclature 

Prefix 
SMJ = Class B 
SM = STD 

Device Family 
320 = SMJ320 family 

Technology 
C = CMOS 
E =- CMOS EPROM 
No lerter = NMOS 

Device 

SMJ 

POWER 
SUPPLY 

5V:t 10% 

5V:t 10% 

5V:t5% 

5V:t5% 

5V:t 10% 

5V:t 10% 

5V:t5% 

5V:t5% 

5V:t 10% 

5V:t 10% 

5V:t5% 

5V:t5% 

320 

OPERATING PACKAGE PROCESSING 
FREQUENCY TYPE LEVEL 

25 MHz Ceramic 181-pin PGA Class B 

25 MHz Ceramic 181-pin PGA SId 

28 Ml:'z Ceramic 181-pin PGA Class B 

28 MHz Ceramic 181-pin PGA Std 

25 MHz Ceramic 196-pin gullwing leaded carrier Class B 

25 MHz Ceramic 196-pin gullwing leaded carrier SId 

28 MHz Ceramic 196-pin gullwing leaded carrier Class B 

28 MHz Ceramic 196-pin gullwing leaded carrier Std 

25 MHz Ceramic 196-pin quad flat pack Class B 

25 MHz Ceramic 196-pin quad flatpack SId 

28 MHz Ceramic 196-pin quad flatpack Class B 

28 MHz Ceramic 196-pin quad flatpack Std 

C 30 GB M 28 

L Speed Range 
25 = 25 MHz 
28 = 28 MHz 

'----- Temperature Range 
M = - 55°C to 125°C 
L O°Cta 70°C 

'-------- Package Type 
GB = pin grid array (PGA) 
HT = 196 pin quad flalpack - flat lead 
HU = 196 pin quad flatpack - gull wing 

TEXAS -I!I 
INSTRUMENTS 
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HT 196·lead ceramic quad flatpack 

"'" ~ 

~ 

6,35 (0.250) Min Typ -. f4-

Pin 1 Indlcato r-~ 

K" 

\... 

486 (1 915) , 
Typ .. 

47,8 (1.880) 

34,7 (1.365) T 
33,9 (1.335) yp 

.. 
~ 30,5 (1.200) Ref. Typ ~ 

~ 15,2 (0.600) 
Typ 

r--'\ 

lovoollovssl I 
I []] 
1 [] 
I 

-- - -- -1-- ---

[[] I 
1 

[!] I 
lovssllovool 

u 

0,25 (0.010) -.li.-
0,15 (0.006) J L 0,64 (0.025) Typ 

ctct 

SGUS014 - FEBRUARY 1991 

Detail "A" 

~ 0,25 (0.010) Max 

1I==-=t'i= 
Thermal Resistance Characteristics 

0,20 (0.008) 

0,10 (0.004) 
0,36 (0.014) 
0,05 (0.002) 

Detail "A" 

2,67 (0.105) Max 

3,30 (0.130) Max 

Parameter o C/W 

R8JC 1.0 

R8JA 28.5 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS -I!} 
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HU 196-lead ceramic leaded chip carrier (gul/wing) 

2,55 (0.100) Typ 

Pin 1 Indicator 

I 

I 
-----+-----

0,25 (0.010) -JI.-
0,15 (0.006) 

1,02 (0.040) 

0,50 (0.020) 

I 

I 

J L 0,64 (0.025) Typ 

££ 

0,25 (0.010) Max 

Detail "A" 

0,64 (0.025) Min Thermal Resistance Characteristics 

E-32 

Detail "A" 

0,76 (0.030) 

---''--_-'['- 0,51 (0.020) 

3,30 (0.130) Max 

Parameter 

R0JC 

R0JA 

o CfW 

1.0 

28.5 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

T~ -I!} 
INSTRUMENlS 
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GB 181-pin ceramic pin grid array 

Top View 

VDD DVD~ 

~ vss DVS.,/"\.' Thermal Resistance Characteristics 
Pin Al _____ -u 

Corner Indicator I--. '~-------, 

40,4 (1.590) 

37,6 (1.480) 

" 

4,70 (0.185) 

SJ DVSS 

L>DVDD 
VS~ 

VDD 

~14---- 40,4 (1.590) ___ ~~ 
37,6 (1.480) 

Parameter 

R8JC 
f-----

R8JA 
R8JA 

R8JA 

R8JA 

R8JA 
R8JA 

3,55 (0.140) ~ Side View 
- 1,40 (0.055) 

r- ~~ ~ ~ I ~ H ~ ~ ~ ~' ~ ~ ~;t,f 1,14(0.045) 

J 0,506 (0.020) --II.- ~ ~ 1,27 (0.050) Nom 
3,56 (0.140) 0,406 (0.016) Diameter 
305 (0.120) (180 Places) (4 Places) 
, T~ 

2,54 (0.100) Typ Bottom View 

r 
R @ • @@@@@@@@@@@@ @ 

P @ @@@@@@@@@@@@@ @ 
N @ @@@@@@@@@@@@@ @ 
M @@@@@@@@@@@@@@@ 

L @@@@ @ @@@@ 

K @@@@ @@@@ 

35,6 (1.400) J @@@@ @@@@ 
Ref H @@@@@ @@@@@ 

G @ @@@ Extra Pin @@@@ 

F @@@@ r @@@@ 

E @@@@@ @ @@@@ 
D @@@@@@@@@@@@@@@ 

C @@@@@@@@@@@@@@@ 2,54 (0.100) Typ 

B • @@@@@@@@@@@@@ • 

A @ @@@@@@@@@@@@@ @ 

1 2 3 4 5 6 7 8'9 10 11121314 15 
Index Corner 

°CN! 

3.8 -----
21.6 

13.3 

9.7 

8.3 

7.4 

7.1 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS "!I 
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Air Flow 
LFPM 

N/A r----
0 

200 

400 

600 

800 

1000 
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Chapter F 

Quick Reference 

This appendix is a collection of the most-referenced material in this user's 
guide. 

Figure F-1 
Figure F-2 
Figure F-3 
Figure F-4 
Figure F-5 
Figure F-6 
Figure F-7 
Figure F-8 
Figure F-9 
Figure F-10 
Figure F-11 
Figure F-12 
Figure F-13 
Figure F-14 
Figure F-15 
Figure F-16 
Figure F-17 
Figure F-18 
Figure F-19 
Figure F-20 
Figure F-21 
Figure F-22 
Figure F-23 
Figure F-24 
Figure F-25 
Figure F-26 
Figure F-27 
Figure F-28 
Table F-1 
Table F-2 
Table F-3 
Table F-4 
Table F-5 
Table F-6 
Table F-7 

TMS320C3x Block Diagram ............................... F-4 
TMS320C3x Block Diagram ............................... F-5 
Extended-Precision Register Floating-Point Format. . . . . . . . . .. F-7 
Extended-Precision Register Integer Format. . . . . . . . . . . . . . . .. F-7 
Data-Page Pointer (DP) Register Format. . . . . . . . . . . . . . . . . . .. F-7 
Index Register (IRx) Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. F-7 
Block-Size (BK) Register Format . . . . . . . . . . . . . . . . . . . . . . . . . .. F-7 
Status Register.......................................... F-8 
CPU/DMA Interrupt Enable Register (IE) .................... F-9 
CPU Interrupt Flag (IF) Register Format. . . . . . . . . . . . . . . . . . . .. F-10 
IOF Register Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. F-11 
TMS320C30 Memory Map ................................ F-12 
TMS320C31 Memory Map ................................ F-; 3 
Reset, Interrupt, and Trap Vector Locations. . . . . . . . . . . . . . . . .. F-14 
Reset, Interrupt, and Trap Vector Format . . . . . . . . . . . . . . . . . . .. F-15 
Peripheral-Bus Memory-Map Registers ..................... F-16 
Memory-Mapped Locations for a DMA Channel .............. F-17 
DMA Global-Control Register Format. . . . . . . . . . . . . . . . . . . . . .. F-18 
Memory-Mapped Timer Locations ...... . . . . . . . . . . . . . . . . . . .. F-20 
Timer Global-Control Register ............................. F-21 
Memory-Mapped Serial-Port Locations ..................... F-23 
Serial-Port Global-Control Register Format . . . . . . . . . . . . . . . . .. F-24 
FSXlDX/CLKX Port Control Register Format. . . . . . . . . . . . . . . .. F-27 
FSR/DR/CLKR Port Control Register Format ................ F-28 
ReceiveiTransmit Timer Control Register Format. . . . . . . . . . . .. F-29 
Memory-Mapped External Interface Control Registers ........ F-31 
Primary-Bus Control Register Format .. . . . . . . . . . . . . . . . . . . . .. F-32 
Expansion-Bus Control Register Format .................... F-33 
Feature Set Comparison .................................. F-2 
TMS320C31 Reserved Memory Locations .................. F-3 
CPU Register/Assembler Syntax and Function. . . . . . . . . . . . . .. F-6 
BNKCMP and Bank Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. F-34 
Indirect Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. F-35 
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. F-37 
Parallel Instruction Set Summary. . . . . . . . . . . . . . . . . . . . . . . . . .. F-42 
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TMS320C30 and TMS320C31 Differences 

F.1 TMS320C30 and TMS320C31 Differences 

This section addresses the major memory access differences between the 
TMS320C31 and the TMS320C30 devices. Observance of these consider­
ations is critical for achieving design goal success. Table F-1 shows these dif· 
ferences. 

Table F-1. Feature Set Comparison 

Device 

Feature TMS320C31 TMS320C30 

Data/program bus Primary bus: one bus composed Two buses: 
of a 32-bit data and a 24-bit ad- 1} Primary bus: a 32-bit data and a 
dress bus 24-bit address 

2) Expansion bus: a 32-bit data and a 
13-bit address 

Serial I/O ports 1 serial port (SPO) 2 serial ports (SPO, SP1) 

User program/data ROM Not available 4K words/16K bytes 

Program boot loader User selectable Not available 

F.1.1 Data/Program Bus Differences 

The TMS320C31 uses only the primary bus and reserves the memory space 
that was previously used for expansion bus operations. 

F.1.2 Serial Port Differences 

Serial port 1 references in Section 8.2 of the TMS320C3x User's Guide are not 
applicable to the TMS320C31. The memory locations identified for the asso­
ciated control registers and buffers are reserved. 

F.1.3 Reserved Memory Locations 

F-2 

Table F-2 identifies TMS320C31 reserved memory locations in addition to 
those shown in Table 3-8. 
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TMS320C30 and TMS320C31 Differences 

Table F-2. TMS320C31 Reserved Memory Locations 

Device 

Feature TMS320C31 TMS320C30 

OxOOOOOO-OxOOOFFF Reservedt Microcomputer program/data ROM modet 

Ox800000-0x801FFF Reserved Expansion bus MSTRB space 

Ox804000-0x80SFFF Reserved Expansion bus IOSTRB space 

Ox808050 Reserved SP1 global-control register 

Ox8080S2-0x8080S6 Reserved SP1 local-control registers 

Ox808058 Reserved SP1 data-transmit buffer 

Ox8080SC Reserved SP1 receive-transmit buffer 

Ox808060 Reserved Expansion bus control register 

t Applies to the MCBL and Me modes only. 

F.1.4 Effects on the IF and IE Interrupt Registers 

The bits associated with serial port 1 in the IE (interrupt enable) register and 
the IF (interrupt flag) register for the TMS320C30 are not applicable to the 
TMS320C31. Write only logic 0 data to IE register bits 6, 7, 22, and 23 and to 
IF register bits 6 and 7. Writing logic 1 s to these bits produces unpredictable 
results. 

F.1.S User Program/Data ROM 

The user program/data ROM that is available for the TMS320C30 device does 
not exist for the TMS320C31 . Rather, the memo ry locations that were allocated 
to support user program/data ROM operations have been reserved on the 
TMS320C31 to support microcomputer/boot loader accessing. See Chap­
~er 3 for more information on tJsing the microcomputer/boot loader function. 

F.1.6 Development Considerations 

For users who are developing application code using a TMS320C3x simulator, 
XDS, or ASM/LNK, TI recommends that you modify the .efm and .emdfiles by 
removing these memory spaces from the tool's configured memory. This en­
sures that your developed application performs as expected when the 
TMS320C31 device is used. 
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TMS320C3x Architecture 

F.2 TMS320C3x Architecture 

Figure F-1 and Figure F-2 showthe TMS320C3x's register-based CPU archi­
tecture with internal and external buses, peripherals, DMA, and memory orga­
nization. 

Figure F-1. TMS320C3x Block Diagram 

ROY 
HOLD 

HOLDA 
STRB 

RIW 
031-0 
A23-0 

RESET 
INT3-0 ----. 

lACK 
XF1-0 ~ 

MCBUMP ~ 
E 

X1 4----1 C 
X2/CLKIN ----. 8 

VOO ----. 
Vss ----. 
SHZ ----. 

F-4 

Program 
Cache 

(64 x 32) 

RAM Block 0 
(1K x 32) 

CPU 

Integer/ Integer/ 

RAM Block 1 
(1K x 32) 

: ROMBlockO . 
(4Kx32) 

Floating-Point Floating-Point 
Address Generators 

Control Registers Multiplier ALU 

8 Extended-Precision 
Registers 

Address Address 
Generator 0 Generator 1 

8 Auxiliary Registers 

12 Control Registers 

Available on 
TMS320C30, 
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Figure F-2. TMS320C3x Block Diagram 
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F.3 CPU Register File 

The TMS320C30 provides 28 registers in a multiport register file that is tightly 
coupled to the CPU. The PC is not included in the 28 registers. All of these reg­
isters can be operated upon by the multiplier and ALU and can be used as gen­
eral-purpose 32-bit registers. 

F.3.1 Register Addressing 

The TMS320C30 provides 28 registers in a multiport register file that is tightly 
coupled to the CPU. The PC is not included in the 28 registers. All of these reg­
isters can be operated upon by the multiplier and ALU and can be used as gen­
eral-purpose 32-bit registers. 

Table F-3. CPU Register/Assembler Syntax and Function 

CPU Register Assembler Assigned 
Address Syntax Function 

OOh RO Extended-precision register 
01h R1 Extended-precision register 
02h R2 Extended-precision register 
03h R3 Extended-precision register 
04h R4 Extended-precision register 
OSh RS Extended-precision register 
06h R6 Extended-precision register 
07h R7 Extended-precision register 

08h ARO Auxiliary register 
09h AR1 Auxiliary register 
OAh AR2 Auxiliary register 
OBh AR3 Auxiliary register 
OCh AR4 Auxiliary register 
ODh AR5 Auxiliary register 
OEh AR6 Auxiliary register 
OFH AR7 Auxiliary register 

10h DP Data-page pointer 
11 h IRO Index register 0 
12h IR1 Index register 1 
13h BK Block-size register 
14h SP Active stack pointer 

1Sh ST Status register 
16h IE CPU/DMA interrupt enable 
17h IF CPU interrupt flags 
18h 10F I/O flags 

19h RS Repeat start address 
1Ah RE Repeat end address 
1Bh RC Repeat counter 

F-6 Quick Reference 



CPU Register File 

Figure F-3. Extended-Precision Register Floating-Point Format 

39 32 31 30 0 

e I s I fraction (ij I 
.. ~-------- mantissa -------~J 

Figure F-4. Extended-Precision Register Integer Format 

39 32 31 o 

I unchanged I signed or unsigned integer 

The eight 32-bit auxiliary registers (ARD-AR7) can be modified by the two 
Auxiliary Register Arithmetic Units (ARAUs). The primary function of the auxil­
iary registers is the generation of 24-bit addresses, especially for use in indirect 
addressing. 

Figure F-S. Data-Page Pointer (DP) Register Format 

31 

Figure F-6. Index Register (IRx) Format 

31 

Figure F-7. Block-Size (BK) Register Format 

31 

x ... x 

24 23 

First 1 at Location N 

N +1 +N 
0 ... 0 11 

8 7 o 
page 

o 

index 

o 

(N LSBs of BK) 
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CPU ~ClrllctClr File 

Figure F-B. Status Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

xx xx I GIE I CC I CE CF xx I RM I OVM I LUF I LV UF I N I z I V I C 

RIW RIW RIW RIW RIW RlW R/W RIW R/W RIW RIW RIW RIW 

NOTE: xx = reserved bit. 
R = read. W = write. 

Status Register Bits Summary 

Bit Name Reset Value Function 

ot C 0 Carry flag. 

1t V 0 Overflow flag. 

2t Z 0 Zero flag. 

3t N 0 Negative flag. 

4t UF 0 Floating-point underflow flag. 

5t LV 0 Latched overflow flag. 

6t LUF 0 Latched floating-paint underflow flag. 

7 OVM 0 Overflow mode flag. This flag affects only the integer operations. If OVM 
= 0, the overflow mode is turned off; integer results that overflow are 
treated in no special way. If OVM = 1, 

a) integer results overflowing in the positive direction are set to the 
most positive 32-bit twos-complement number (7FFFFFFFh) 

b) integer results overflowing in the negative direction are set to the 
most negative 32-bit twos-complement number (80000000h). 

Note that the function of V and LV is independent of the setting of OVM. 

8 RM 0 Repeat mode flag. If RM = 1 , the PC is being modified in either the 
repeat-block or repeat-single mode. 

9 Reserved 0 Read as O. 

10 CF 0 Cache freeze. When CF = 1, the cache is frozen. If the cache is enabled 
(CE = 1), fetches from the cache are allowed, but no modification of the 
state of the cache is performed. This function can be used to save fre-
quently used code resident in the cache. At reset, 0 is written to this bit. 
Cache clearing (CC=1) is allowed when CF=O. 

11 CE 0 Cache enable. CE = 1 enables the cache, allowing the cache to be used 
according to the least recently used (LRU) cache algorithm. CE = 0 dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for 
system debug. At system reset, 0 is written to this bit. Cache clearing 
(CC = 1) is allowed when CE=O. 

12 CC 0 Cache clear. CC = 1 invalidates all entries in the cache. This bit is always 
cleared after it is written to and thus always read as O. At reset, 0 is written 
to this bit. 

13 GIE 0 Global interrupt enable. If GIE = 1, the CPU responds to an enabled inter-
rupt. If GIE = 0, the CPU does not respond to an enabled interrupt. 

15-14 Reserved 0 Read as O. 

31-16 Reserved 0-0 Value undefined. 

t The seven condition flags (ST bits 6 -0) are defined in Section 10.2 on page 10-9. 
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CPU File 

Figure F-9. CPUIDMA Interrupt Enable Register (IE) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

RJW RJW RJW RJW RJW RJW RJW ANI ANI RNI ANI 

RJW ANI RJW RJW RNI RNI RNI RJW RNI RNI 

NOTE: xx = reserved bit. read as o. 
R = read. W = write. 

IE Register Bits Summary 

Bit Name Reset Value Function 

a EINTO a Enable external interrupt a (CPU) 

1 . EINT1 a Enable external interrupt 1 (CPU) 

2 EINT2 a Enable external interrupt 2 (CPU) 

3 EINT3 a Enable external interrupt 3 (CPU) 

4 EXINTO a Enable serial-port 0 transmit interrupt (CPU) 

5 ERINTO a Enable serial-port 0 receive interrupt (CPU) 

6 EXINT1 0 Enable serial-port 1 transmit interrupt (CPU) 

7 ERINT1 a Enable serial-port 1 receive interrupt(CPU) 

8 ETINTO a Enable timer a interrupt (CPU) 

9 ETINT1 a Enable timer 1 interrupt (CPU) 

10 EOINT a Enable OMA controller interrupt (CPU) 

15-11 Reserved a Value undefined 

16 EINTO a Enable external interrupt a (OMA) 

17 EINT1 a Enable external interrupt 1 (OMA) 

18 EINT2 a Enable external interrupt 2 (OMA) 

19 EINT3 0 Enable external interrupt 3 (OMA) 

20 EXINTO a Enable serial-port 0 transmit interrupt (OMA) 

21 ERINTO a Enable serial-port a receive interrupt (OMA) 

22 EXINT1 a Enable serial-port 1 transmit interrupt (OMA) 

23 ERINT1 a Enable serial-port 1 receive interrupt (OMA) 

24 ETINTO a Enable timer 0 interrupt (OMA) 

25 ETINT1 a Enable timer 1 interrupt (OMA) 

26 EOINT a Enable OMA controller interrupt (OMA) 

31-27 Reserved 0-0 Value undefined 
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CPU f-{or"f/ct.::lr File 

Figure F-1 O. CPU Interrupt Flag Register (IF) . 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx 

NOTE: xx = reserved bit, read as o. 
R = read, W = write. 

IF Register Bits Summary 

Bit Name Reset Value Function 

0 INTO 0 External interrupt 0 flag 

1 INT1 0 External interrupt 1 flag 

2 INT2 0 External interrupt 2 flag 

3 .INT3 0 External interrupt 3 flag 

4 XINTO 0 Serial-port 0 transmit interrupt flag 

5 RINTO 0 Serial-port 0 receive interrupt flag 

6 XINT1t 0 Serial-port 1 transmit interrupt flag 

7 RINT1t 0 Serial-port 1 receive interrupt flag 

8 TINTO 0 Timer 0 interrupt flag 

9 TINT1 0 Timer 1 interrupt flag 

10 DINT 0 DMA channel interrupt flag 

31-11 Reserved 0-0 Value undefined 

t Reserved on TMS320C31. 
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CPU R~tlic::t.Qr File 

Figure F-11. liD Flag Register (IOF) 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

lulululululululul xx xx xx I xx I xx. xx xx I xx I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

R RJW RJW R RNJ RJW 

NOTE: xx = reserved bit. read as O. 
R = read, W = write. 

IOF Register Bits Summary 

Bit Name Reset Value Function 

0 Reserved 0 Read as O. 

1 I/OXFO 0 If YOXFO = 0, XFO is configured as a general-purpose input pin. 
If I/OXFO = 1, XFO is configured as a general-purpose output pin. 

2 OUTXFO 0 Data output on XFO. 

3 INXFO 0 Data input on XFO. A write has no effect. 

4 Reserved 0 Read as O. 

5 I/OXF1 0 If YOXF1 = 0, XF1 is configured as a general-purpose input pin. 
If I/OXF1 = 1, XF1 is configured as a general-purpose output pin. 

6 OUTXF1 0 Data output on XF1. 

7 INXF1 0 Data input on XF1. A write has no effect. 

31-8 Reserved 0-0 Read as O. 
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Memory Maps 

F.4 Memory Maps 

The TMS320C3x memory map is divided into the following sections: program 
interrupt address, internal ROM, RAM,· the peripheral bus, and memory­
mapped peripheral registers. 

Figure F-12. TMS320C30 Memory Maps 

F-12 

Oh 
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Reserved 
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(b) Microcomputer Mode 
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Figure F-13. TMS320C31 Memory Maps 
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FFFh 
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(1 K-64 Internal) 

User Program Interrupt 
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(b) Microcomputer/Boot Loader Mode 
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F.4.1 Interrupts 

Figure F-14. Reset, Interrupt, and Trap Vector Locations 
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OOh 

01h 

02h 

03h 

04h 

OSh 

06h 

07h 

08h 

09h 

OAh 

OSh 

OCh 

1Fh 

20h 

3Sh 

3Ch 

3Dh 

3Eh 

3Fh 

RESET 

INTO 

INT1 

INT2 

INT3 

XINTO 

RINTO 

XINT1t 

RINT1t 

TINTO 

TINT1 

DINT 

RESERVED 

TRAP 0 

• 
• 
• 

TRAP 27 

TRAP 28 (Reserved) 

TRAP 29 (Reserved) 

TRAP 30 (Reserved) 

TRAP 31 (Reserved) 

t Reserved on TMS320C31 

Quick Reference 



Figure F-15. Reset, Interrupt, and Trap Vector Format 

31 24 23 a 
address 

Reset and Interrupt Vector Locations 

Reset or Vector Priority Function 
Interrupt Location 

RESET Oh a External reset signal input on the RESET 
pin. 

INTO 1h 1 External interrupt input on the INTO pin. 

INT1 2h 2 External interrupt input on the INT1 pin. 

INT2 3h 3 External interrupt input on the INT2 pin. 

INT3 4h 4 External interrupt input on the INT3 pin. 

XINTO 5h 5 Internal interrupt generated when serial port 
a transmit buffer is empty. 

RINTO 6h 6 Internal interrupt generated when serial port 
a receive buffer is full. 

XINT1t 7h 7 Internal interrupt generated when serial port 
1 transmit buffer is empty. 

RINT1t 8h 8 Internal interrupt generated when serial port 
1 receive buffer is full. 

TINTO 9h 9 Internal interrupt generated by timer O. 

TINT1 OAh 10 Internal interrupt generated by timer 1. 

DINT aSh 11 Internal interrupt generated by DMA control-
ler O. 

t Reserved on TMS320C31. 
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F.4.2 Peripheral Bus 

Figure F-16. Peripheral-Bus Memory-Map Registers 

808000h 

80800Fh 
808010h 

80801Fh 
808020h 

80802Fh 
808030h 

80803Fh 
808040h 

80804Fh 
808050h 

80805Fh 
808060h 

80806Fh 
808070h 

8097FFh 

DMA Controller Registers 

(16) 

Reserved 

(16) 

Timer 0 Registers 

(16) 

Timer 1 Registers 

(16) 

Serial-Port 0 Registers 

(16) 

Serial-Port 1 Registerst 

(16) 

Primary and Expansion Port 
Registers (16) 

Reserved 

t Reserved on TMS320C31 
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F.4.2.1 DMA Registers 

Figure F-17. Memory-Mapped Locations for a DMA Channel 

Register 

DMA Global Control (See Table 8-7) 

Reserved 

Reserved 

Reserved 

DMA Source Address (subsection 8.3.2) 

Reserved 

DMA Destination Address (subsection 8.3.2) 

Reserved 

DMA Transfer Counter (subsection 8.3.3) 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Peripheral 
Address 

808000h 

808001h 

808002h 

808003h 

808004h 

808005h 

808006h 

808007h 

808008h 

808009h 

80800Ah 

80800Bh 

80800Ch 

80800Dh 

80800Eh 

80800Fh 
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Figure F-18. DMA Global-Control Register Format 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I xx I xx I xx xx xx I xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

xx xx xx xx I TCINTI TC SYNC I DECDSTI INCDST I DECSRC I INCSRC I STAT START 

RIW RIW RIW RIW RIW RIW RIW RIW R R RIW RIW 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

DMA Global-Control Register Bits Summary 

Bit Name Reset Value Function 

1-0 START 0-0 These bits control the state in which the DMA starts and stops. The 
DMA may be stopped without any loss of data. 

3-2 STAT 0-0 These bits indicate the status of the DMA and change every cycle. 

4 INCSRC 0 If INCSRC = 1 , the source address is incremented after every read. 

5 DECSRC 0 If DECSRC = 1, the source address is decremented after every 
read. If INCSRC = DECSRC, the source address is not modified af-
ter a read. 

6 INCDST 0 If INCDST = 1, the destination address is incremented after every 
write. 

7 DECDST 0 If DECDST = 1, the destination address is decremented after every 
write. If INCDST = DECDST, the destination address is not modified 
after a write. 

9-8 SYNC 0-0 The SYNC bits determine the timing synchronization between the 
events initiating the source and the destination transfers. The inter-
pretation of the SYNC bits is shown on next page. 

10 TC 0 The TC bit affects the operation of the transfer counter. If TC = 0, 
transfers are not terminated when the transfer counter becomes 
zero. If TC = 1, transfers are terminated when the transf~r counter 
becomes zero. 

11 TCINT 0 If TCINT = 1, the DMA interrupt is set when the transfer counter 
makes a transition to zero.lfTCINT = 0, the DMA interrupt is not set 
when the transfer counter makes a transition to zero. 

31-12 Reserved 0-0 Read as zero. 
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DMA Global-Control Register Bits Summary (Concluded) 

START Bits and Operation of the DMA (Bits 0-1) 

START Function 

00 DMA read or write cycles in progress will be completed; any data read will be ig-
nored. Any pending read or write will be canceled. The DMA is reset so that when 
it starts, a new transaction begins; i.e., a read is performed. (Reset value) 

01 If a read or write has begun, it is completed before it stops: for example, in the 
middle or at the end of a DMA transfer. If a read or write has not begun, no read 
or write is started. 

1 0 If a DMA transfer has begun, the entire transfer is completed (including both read 
and write operations) before stopping. If a transfer has not begun, none is started. 

1 1 DMA starts from reset or restarts from the previous state. 

STAT Bits and Status of the DMA (Bits 2-3) 

STAT Function 

00 DMA is being held between DMA transfer (between a write and read). This is the 
value at reset. (Reset value) 

01 DMA is being held in the middle of a DMA transfer, i.e., between a read and a write. 

1 0 Reserved. 

1 1 DMA busy; i.e., DMA is performing a read or write. 

SYNC Bits and Synchronization of the DMA (Bits 8-9) 

SYNC Function 

00 No synchronization. Enabled interrupts are ignored. (Reset value) 

01 Source synchronization. A read is performed when an enabled interrupt occurs. 

1 0 Destination synchronization. A write is performed when an enabled interrupt oc-
curs. 

1 1 Source and destination synchronization. A read is performed when an enabled in-
terrupt occurs. A write is then performed when the next enabled interrupt occurs. 
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F.4.2.2 Peripheral Timers 

Figure F-19. Memory-Mapped Timer Locations 

Register Peripheral Address 

Timer 0 Timer 1 

Timer Global Control (See Table 8-1) 808020h 808030h 

Reserved 808021h 808031h 

Reserved 808022h 808032h 

Reserved 808023h 808033h 

Timer Counter (See subsection 8.1.2) 808024h 808034h 

Reserved 808025h 808035h 

Reserved 808026h 808036h 

Reserved 808027h 808037h 

Timer Period (See subsection 8.1.2) 808028h 808038h 

Reserved 808029h 808039h 

Reserved 80802Ah 80803Ah 

Reserved 80802Bh 80803Bh 

Reserved 80802Ch 80803Ch 

Reserved 80802Dh 80803Dh 

Reserved 80802Eh 80803Eh 

Reserved 80802Fh 80803Fh 
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Figure F-20. Timer Global-Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I xx I xx I xx xx xx xx xx xx I xx I xx I xx xx xx xx 

15 14 13 12 ·11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I TSTAT I INV I CLKSRC I C/P HLD GO I xx I xx I DATIN DATOUT T/o FUNC 

NOTE: 

R/W R/W R/W R/W R/W RIW R R/W R/W RIW 

xx = reserved bit, read as O. 
R = read, W = write. 

Timer Global-Control Register Bits Summary 

Bits Name Reset Value Function 

0 FUNC 0 FUNC controls the function ofTCLK.lf FUNC = 0, TCLK is configured 
as a general-purpose digital I/O port. If FUNC = 1, TCLK is configured 
as a timer pin (see Figure 8-7 for a description of the relationship 
between FUNC and CLKSRC). 

1 T/o 0 If FUNC = 0 and CLKSRC =: 0, TCLK is configured as a general-pur-
pose I/O pin. In this fase, if 110 = 0, TCLK is configured as a general-
purpose input pin. If I/O = 1 , TCLK is configured as a general-purpose 
output pin. 

2 DATOUT 0 DATOUT drives TCLK when the TMS320C3x is in I/O port mode. 
DATOUT can also be used as an input to the timer. 

3 DATIN x Data input on TCLK or DATOUT. A write has no effect. 

5-4 Reserved 0-0 Read as O. 

6 GO a The GO bit resets and starts the timer counter. When GO = 1 and the 
timer is not held, the counter is zeroed and begins incrementing on the 
next rising edge of the timer input clock. The GO bit is cleared on the 
same riSing edge. GO = a has no effect on the timer. 

7 HLD a Counter hold signal. When this bit is zero, the counter is disabled and 
held in its current state. If the timer is driving TCLK, the state of TCLK 
is also held. The internal divide-by-two counter is also held so that the 
counter can continue where it left off when HLD is set to 1. The timer 
registers can be read and modified while the timer is being held. 
RESET has priority over HLD. Table 8-2 shows the effect of writing 
to GO and HLD. 

8 C/P 0 Clock/Pulse mode control. When C/P = 1, clock mode is chosen, and 
the signaling of the status fLag and external output will have a 50 
percent duty cycle. When C/P = 0, the status flag and external output 
will be active for one H1 cycle during each timer period (see 
Figure 8-4). 

9 CLKSRC a Specifies the source of the timer clock. When CLKSRC = 1, an internal 
clock with frequency equal to one-half the H 1 frequency is used to in-
crement the counter. The INV bit has no effect on the internal clock 
source. When CLKSRC = 0, an external signal from the TCLK pin can 
be used to increment the counter. The external clock is synchronized 
internally, thus allowing external asynchronous clock sources that do 
not exceed the specified maximum allowable external clock frequen-
cy. This will be less than f(H1 )/2. (See Figure 8-7 for a description of 
the relationship between FUNC and CLKSRC). 
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Bits 

10 

11 

31-12 

F-22 

Timer Global-Control Register Bits Summary (Continued) 

Name Reset Vallie Function 

INV 0 Inverter control bit. If an external clock source is used and INV = 1, the 
external clock is inverted as it goes into the counter. If the output of the 
pulse generator is routed to TCLK and INV= 1, the output is inverted 
before it goes to TCLK (see Figure 8-1). If INV = 0, no inversion is 
performed on the input or output of the timer. The INV bit has no effect, 
regardless of its value, when TCLK is used in 110 port mode. 

TSTAT 0 This bit indicates the status of the timer. It tracks the output of the 
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from 
o to 1 . A write has no effect. 

Reserved 0-0 Read as O. 

The result of a write using specified values of the GO and HLD bits in the global 
control register is shown below. 

Result of a Write of Specified Values of GO and HLD 

GO HLD Result 

0 0 All timer operations are held. No reset is performed. (Reset value) 

0 1 Timer proceeds from state before write. 

1 0 All timer operations are held, including zeroing of the counter. The GO bit 
is not cleared until the timer is taken out of hold. 

1 1 Timer resets and starts. 
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F.4.3 Serial Port 

Figure F-21. Memory-Mapped Serial-Port Locations 

Register Peripheral Address 

Serial Serial 
Port 0 Port 1t 

Serial-Port Global Control 808040h 808050h 

Reserved 808041h 808051h 

FSX/DX/CLKX Port Control 808042h 808052h 

FSR/DR/CLKR Port Control 808043h 808053h 

R/X Timer Control 808044h 808054h 

R/X Timer Counter 808045h 808055h 

R/X Timer Period 808046h 808056h 

Reserved 808047h 808057h 

Data Transmit 808048h 808058h 

Reserved 808049h 808059h 

Reserved 80804Ah 80805Ah 

Reserved 80804Bh 80805Bh 

Data Receive 80804Ch 80805Ch 

Reserved 80804Dh 80805Dh 

Reserved 80804Eh 80805Eh 

Reserved 80804Fh 80805Fh 

t Reserved locations on the TMS320C31 
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Figure F-22. Serial-Port Global-Control Register Format 
31 30 29 28 27 26 24 23 22 21 20 19 18 17 16 

XLEN 

R/W RIW RIW RIW RIW RIW RIW R/W RIW R/W R/W RIW 

R/W RNI RIW R/W RIW R/W RIW R/W RIW R/W RIW R R R/W R R 

NOTE: xx = Reserved bit, read as O. 
R = read, W = write. 

Serial-Port Global-Control Register Bits Summary 

Bit Name Reset Value Function 

0 RRDY 0 If RRDY = 1 , the receive buffer has new data and is ready to be read. A three H1 IH3 
cycle delay occurs from the reading of ORR to RRDY = 1. The rising edge of this signal 
sets RINT. If RRDY= 0 at reset, the receive buffer does not have new data since the 
last read. RRDY = 0 at reset and after the receive buffer is read. 

1 XRDY 1 If XRDY = 1 , the transmit buffer has written the last bit of data to the shifter and is ready 
for a new word. A three H1 IH3 cycle delay occurs from the loading of the transmit shift-
er until XROY is set to 1. The riSing edge of this signal sets XINT. If XROY = O,the 
transmit buffer has not written the last bit of data to the transmit shifter and is not ready 
for a new word. XRDY = 1 at reset. 

2 FSXOUT 0 This bit configures the FSX pin as an input (FSXOUT = 0) or an outpuXFSXOUT = 1). 

3 XSREMPTY 0 If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY = 1 , the transmit 
shift register is not empty. Reset or XRESET causes this bit to = O. 

4 RSRFULL 0 If RSRFULL = 1, an overrun of the receiver has occurred. In continuous mode, 
RSRFULL is set to 1 when both RSR and ORR are full. In noncontinuous mode, 
RSRFULL is set to 1 when RSR and ORR are full and a new FSR is received. A read 
causes this bit to be set to O. This bit can be set to 0 only by a system reset, a serial 
port receive reset (RRESET =1), or a read. When the receiver tries to set RSRFULL 
to a 1 at the same time that the global register is read, the receiver will dominate and 
RSRFULL is set to 1. If RSRFULL = 0, no overrun of the receiver has occurred. 

5 HS 0 If HS = 1 , the handshake mode is enabled. If HS = 0, the handshake mode is disabled. 

6 XCLKSRCE 0 If XCLKSRCE = 1 , the internal transmit clock is used. If XCLKSRCE = 0, the external 
transmit clock is used. 

7 RCLKSRCE 0 If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0, the external 
receive clock is used. 

8 XVAREN 0 This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate signaling 
when transmitting. With a fixed data rate, FSX is active for at least one XCLK cycle 
and then goes inactive before transmission begins. With variable data rate, FSX is 
active while all bits are being transmitted. When you use an external FSX and variabl e 
data rate signaling, the OX pin is driven by the transmitter when FSX is held active 
or when a word is being shifted out. 

9 RVAREN 0 This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate signaling 
when receiving. With a fixed data rate, FSR is active for at least one RCLK cycle and 
then goes inactive before the reception begins. With variable data rate, FSR is active 
while all bits are being received. 
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Serial-Port Global-Control Register Bits Summary (Continued) 

Bit Name Reset Value Function 

10 XFSM ° Transmitframe sync mode. Configures the portfor continuous mode operation(XFSM 
= 1) or standard mode (XFSM = 0). In continuous mode, only the first word of a block 
generates a sync pulse, and the rest are simply transmitted continuously to the end 
of the block. In standard mode, each word has an associated sync pulse. 

11 RFSM 0 Receive frame sync mode. Configures the port for continuous mode (RFSM =1) or 
standard mode (RFSM = 0) operation. In continuous mode, only the first word of a 
block generates a sync pulse, and the rest are simply received continuously without 
expectation of another sync pulse. In standard mode, each word received has an 
associated sync pulse. 

12 CLKXP 0 CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP = 1, CLKX is active low. 

13 CLKRP 0 CLKR polarity. If CLKRP = 0, CLKR is active high. If CLKRP =1 , CLKR is active low. 

14 DXP 0 DX polarity. If DXP = 0, DX is active high. If DXP = 1, DX is active low. 

15 DRP ° DR polarity. If DRP = 0, DR is aCtive high. If DRP = 1, DR is active low. 

16 FSXP 0 FSX polarity. If FSXP = 0, FSX is active high. If FSXP = 1, FSX is active low. 

17 FSRP 0 FSR polarity. If FSRP = 0, FSR is active high. If FSRP = 1, FSR is active low. 

19-18 XLEN 00 These two bits define the word length of serial data transmitted. All data is assumed 
to be right-justified in the transmit buffer when fewer than 32 bits are specified. 

o 0 --- 8 bits 1 0--- 24 bits 

o 1 --- 16 bits 1 1 --- 32 bits 

21-20 RLEN 00 These two bits define the word length of serial data received. All data is right-justified 
in the receive buffer. 

o 0 --- 8 bits 1 0--- 24 bits 

o 1 --- 16 bits 1 1 --- 32 bits 

22 XTINT 0 Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt is disabled. 
If XTINT = 1 , the transmit timer interrupt is enabled. 

23 XINT ° Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If XINT = 1, 
the transmit interrupt is enabled. Note that the CPU transmit interrupt flag XINT is the 
logical OR of the enabled transmit timer interrupt and the enabled transmit interrupt. 

24 RTINT 0 Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is disabled. 
If RTINT = 1 , the receive timer interrupt is enabled. 

25 RINT ° Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If RINT = 1 , the 
receive interrupt is enabled. Note that the CPU receive interrupt flag RINT is the OR 
of the enabled receive timer interrupt and the enabled receive interrupt. 

26 XRESET ° Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. To take the 
transmit side of the serial port out of reset, set XRESETto 1. However, do not set XRE-
SET to 1 until at least three cycles after XRESET goes inactive. This applies only to 
system reset. Setting XRESET to 0 does not change the contents of any of the serial-
port control registers. It places the transmitter in a state corresponding to the begin-
ning of a frame of data. Resetting the transmitter generates a transmit interrupt. Reset 
this bit during the time the mode of the transmitter is set. XFSM can be toggled without 
resetting the global-control register. 
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Serial-Port Global-Control Register Bits Summary (Concluded) 

Bit Name Reset Value Function 

27 RRESET ° Receive reset. If RRESET = 0, the receive side of the serial port is reset. To take the 
receive side of the serial port out of reset, set RRESET to 1. Setting RRESET to ° 
does not change the contents of any of the serial-port control registers. It places the 
receiver in a state corresponding to the beginning of a frame of data. Reset this bit 
at the same time the mode of the receiver is set. RFSM can be toggled without reset-
ting the global-control register. 

31-28 Reserved 0-0 Read as O. 
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F.4.4 FSX/OX/CLKX Port Control Register 

Figure F-23. FSXlDXlCLKX Port Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

R RIW RIW RIW R R/W RIW R/W R R/W RIW R/W 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

FSX/OX/CLKX Port Control Register Bits Summary 

Bit Name Reset Value Function 

0 CLKXFUNC 0 CLKXFUNC controls the function of CLKX. 'It CLKXFUNC = 0, CLKX is confi-
gured as a general-purpose digital I/O port. If CLKXFUNC = 1, CLKX is a 
serial port pin. 

1 CLKXI/O a if CLKX 110 = 0, CLKX is configured as a general-purpose input pin. If CLKX 
I/O = 1, CLKX is configured as a general-purpose output pin. 

2 CLKXDATOUT a Data output on CLKX. 

3 CLKXDATIN x Data input on CLKX. A write has no effect. 

4 DXFUNC 0 DXFUNC controls the function of OX. If DXFUNC = 0, OX is configured as 
a general-purpose digital I/O port. If DXFUNC = 1, OX is a serial port pin. 

S OX I/O 0 If OX 110 = 0, OX is configured as a general-purpose input pin. 
If OX I/O = 1, OX is configured as a general-purpose output pin. 

6 DXDATOUT 0 Data output on DX. 

7 DXDATIN x Data input on DX. A write has no effect. 

8 FSXFUNC 0 FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is configured 
as a general-purpose digital I/O port. If FSXFUNC = 1, FSX is a serial port 
pin. 

g FSX 110 0 If FSX Tlo = 0, FSX is configured as a general-purpose input pin. 
If FSX 110 = 1, FSX is configured as a general-purpose output pin. 

10 FSXDATOUT 0 Data output on FSX. 

11 FSXDATIN x Data input on FSX. A write has no effect. 

31- 12 Reserved 0-0 Read as O. 
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F.4.S FSR/DR/CLKR Port Control Register 

Figure F-24. FSRIDRICLKR Port Control Register 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 

15 14 13 12 11 10 8 7 6 5 4 3 2 0 

R RIW RNI RIW R RfW RNI R/W R RNI RNI RNI 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

FSR/OR/CLKR Port Control Register Bits Summary 

Bit Name Reset Value Function 

0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC = 0, CLKR is 
configured as a general-purpose digital 1/0 port. If CLKRFUNC = 1, 
CLKR is a serial port pin. 

1 CLKR1/0 0 If CLKR!/O = 0, CLKR is configured as a general-purpose input pin. 
If CLKRI/O = 1, CLKR is configured as a general-purpose output pin. 

2 CLKRDATOUT 0 Data output on CLKR. 

3 CLKRDATIN x Data input on CLKR. A write has no effect. 

4 DRFUNC 0 DRFUNC controls the function of DR. If DRFUNC = 0, DR is configured 
as a general-purpose digital 1/0 port. If DRFUNC = 1, DR is a serial port 
pin. ' 

5 DR 1/0 0 If DRI/O = 0, DR is configured as a general-purpose input pin. 
If DRIIO = 1, DR is configured as a general-purpose output pin. 

6 DRDATOUT 0 Data output on DR. 

7 DRDATIN x Data input on DR. Awrite has no effect. 

8 FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is confi-
gured asa general-purpose digital 1/0 port. If FSRFUNC = 1, FSR is a 
serial port pin. 

g FSR 1/0 0 If FSR TIO = 0, FSR is configured as a general-purpose input pin. If FSR 
110 = 1,FSR is configured as a general-purpose output pin. 

10 FSRDATOUT 0 Data output on FSR. 

11 FSRDATIN x Data input on FSR. A write has no effect. 

31-12 Reserved 0-0 Read as O. 
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F.4.6 Receive/Transmit Timer Control Register 

Figure F-25. ReceivelTransmit Timer Control Register 
31 30 29 

I xx I xx I 

15 14 13 

I xx I xx I xx 

NOTE: 

28 27 26 25 

I xx xx xx xx 

12 11 10 9 

I xx I RTSTAT xx I RCLKRC 

R RIW 

XX,= reserved bit, read as O. 
R = read, W = write. 

24 23 22 

xx xx xx 

7 6 

RC/P RHLD RGO 

RIW R RIW 

21 20 19 18 17 16 

xx xx xx xx xx xx 

5 3 2 1 0 

XTSTAT xx I XCLKSRC I XC/P I XHLD XGO 

R/W R RIW RIW RIW 

Receive/Transmit Timer Control Register 

Bit Name Reset Value Function 

0 XGO 0 The XGO bit resets and starts the transmit timer counter. When XGO 
is set to 1 and the timer is not held, the counter is z6iOed and begins 
incrementing on the next rising edge of the timer input clock. The XGO 
bit is cleared on the same rising edge. Writing 0 to XGO has no effect 
on the transmit timer. 

1 XHLD 0 Transmit counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter 
is also held so that the counter will continue where it left off when XHLD 
is set to 1. The timer registers may be read and modified while the timer 
is being held. RESET has priority over XHLD. 

2 XC/P ° XClockiPulse mode control. When XC/P = 1, theclockmodeis chosen. 
The signaling of the ~atus flag and external output has a 50-percent 
duty cycle. When XC/P = 0, the status flag and external output are active 
for one CLKOUT cycle during each timer period. 

3 XCLKSRC 0 This bit specifies the source of the transmit timer clock. When 
XCLKSRC = 1, an internal clock with frequency equal to one-half the 
CLKOUTfrequency is used to increment the counter. When XCLKSRC 
= 0, an external signal from the CLKX pin can be used to increment the 
counter. The external clock source is SYNChronized internally, thus al-
lowing for external aSYNChronous clock sources that do not exceed 
the specified maximum allowable external clock frequency, i.e., less 
than f(H1 )/2.6. 

4 Reserved 0 Read as zero. 

5 XTSTAT 0 This bit indicates the status of the transmit timer. It tracks what would 
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt 
on a transition from ° to 1 . A write has no effect. 
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ReceivelTransmit Timer Control Register (Concluded) 

Bit Name Reset Value Function. 

6 RGO 0 The RGO bit resets and starts the receive timer counter. When RGO 
is set to 1 and the timer is not held, the counter is zeroed and begins 
incrementing on the next rising edge of the timer input clock. The RGO 
bit is cleared on the same rising edge. Writing 0 to RGO has no effect 
on the receive timer. 

7 RHLD 0 Receive counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter 
is also held so that the counter will continue where it left off when RHLD 
is set to 1. The timer registers may be read and modified while the timer 
is being held. RESET has priority over RHLD. 

8 RC/P 0 RClockiPulse mode control. When RC/P = 1, the clock mode is chosen. 
The signaling of the slatus flag and external output has a 50-percent 
duty cycle. When RC/P = 0, the status flag and external output are ac-
tive for one CLKOUT cycle during each timer period. 

9 RCLKSRC 0 This bit specifies the source of the receive timer clock. When RCLKSRC 
= 1, an internal clock with frequency equal to one-half the CLKOUT fre-
quency is used to increment the counter. When RCLKSRC = 0, an ex-
ternal signal from the CLKR pin can be used to increment the counter. 
The external clock source is SYNChronized internally, thus allowing for 
external aSYNChronous clock sources that do not exceed the specified 
maximum allowable external clock frequency, i.e., less than f(Hi )/2.6. 

10 Reserved 0 Read as zero. 

11 RTSTAT 0 This bit indicates the status of the receive timer. It tracks what would be 
the output of the uninverted CLKR pin. This flag sets a CPU interrupt 
on a transition from 0 to 1. A write has no effect. 

31-12 Reserved 0-0 Read as O. 
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F.4.7 Primary-Bus and Expansion-Bus Control 

Figure F-26. Memory-Mapped External Interface Control Registers 

Register 

Expansion Bus Control (See sUbsection 7.1.2)t 

Reserved 

Reserved 

Reserved 

Primary Bus Control (See subsection 7.1.1) 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

t Reserved on the TMS320C31 

Peripheral 
Address 

808060h 

808061h 

808062h 

808063h 

808064h 

808065h 

808066h 

808067h 

808068h 

808069h 

80806Ah 

80806Bh 

80806Ch 

80806Dh 

80806Eh 

80806Fh 
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F.4.8 Primary-Bus Control Register 

Figure F-27. Primary-Bus Control Register 

12 11 10 9 8 
BNKCMP 

R/W RlW R/W R/W R/W R/W R/W R/W R/W R/W R/W 

NOTE: xx = reserved bit, read as O. 
R = read, W = write .. 

Primary-Bus Control Register Bits Summary 

Bit Name Reset Function 
Value 

0 HOLDST x Hold status bit. This bit signals whether the port is being held 
(HOLDST = 1) or is not being held (HOLDST = 0). This status bit is 
valid whether the port has been held via hardware or software. 

1 NOHOLD 0 Port hold signal. NOHOLD allows or disallows the port to be held by 
an external HOLD signal. When NOHOLD = 1 , the TMS320C3x takes 
over the external bus and controls it, regardless of serviced or pending 
requests by external devices. No hold acknowledge (HOLDA) is as-
serted when a HOLD is received. However, it is asserted if an internal 
hold is generated (HIZ = 1). NOHOLD is set to 0 at reset. 

2 HIZ 0 Internal hold. When set (HIZ = 1), the port is put in hold mode. This 
is equivalent to the external HOLD signal. By forcing a high-impe-
dance condition, the TMS320C3x can relinquish the external memory 
port through software. HOLDA goes low when the port is placed in the 
high-impedance state. HIZ is set to 0 at reset. 

4-3 SWW 11 Software wait mode. In conjunction with WTCNT, this 2-bit field de-
fines the mode of wait-state generation. It is set to 1 1 at reset. 

7-5 WTCNT 111 Software wait mode. This 3-bit field specifies the number of cycles to 
use when in software wait mode for the generation of internal wait 
states. The range is zero (WTCNT = 0 0 0) to seven (WTCNT = 1 11) 
H1/H3 cycles. It is set to 1 1 1 at reset. 

12-8 BNKCMP 10000 Bank compare. This 5-bit field specifies the number of MSBs of the 
address to be used to define the bank size. It is set to 1 0000 at reset. 

31 -13 Reserved 0-0 Read as O. 
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F.4.9 Expansion-Bus Control Register 

Figure F-28. Expansion-Bus Control Register 

Bit 

2-0 

4-3 

7-5 

31-8 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I xx I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I xx I xx I xx I xx I xx I xx I xx I xx I WTCNT SWW I xx I xx I xx I 
R/W R/W R/W R/lvV R/W 

NOTE: xx = reserved bit, read as O. 
R = read, W = write. 

Expansion-Bus Control Register Bits Summary 

Name Reset Function 
Value 

Reserved 000 Read as O. 

SWW 11 Software wait-state generation. In conjunction with the WTCNT, 
this 2-bit field defines the mode of wait-state generation. It is set 
to 1 1 at reset. 

WTCNT 111 Software wait mode. This 3-bit field specifies the number of cycles 
to use when in software wait mode for the generation of internal 
wait states. The range is zero (WTCNT = 0 0 0) to seven 
( WTCNT = 1 1 1) H 1 /H3 clock cycles. It is set to 1 1 1 at reset. 

Reserved 0-0 Read as O. 
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F.4.10 Programmable Bank Switching 

Table F-4. BNKCMP and Bank Size 

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words) 

00000 None 224= 16M 
00001 23 223= 8M 
00010 23-22 222= 4M 
00011 23-21 221 = 2M 
00100 23-20 220= 1M 
00101 23-19 219= 512K 
00110 23-18 218= 256K 
00111 23-17 217 = 128K 
01000 23-16 216= 64K 
01001 23-15 215= 32K 
01010 23-14 214= 16K 
01011 23-13 213= 8K 
01100 23-22 212= 4K 
01101 23-11 211 = 2K 
01110 23-12 21O=1K 
01111 23-9 29 = 512 
10000 23-8 28 = 256 

10000 -11111 Reserved Undefined 
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Instruction Set 

F.5 Instruction Set 

F.S.1 Instruction Formats 

Table F-S. Indirect Addressing 

Mod Field Syntax Operation Description 

Indirect Addressing with Displacement 

00000 *+ARn(disp) addr = ARn + disp With predisplacement add 

00001 *- ARn(disp) addr = ARn - disp With predisplacement subtract 

00010 *++ARn(disp) addr = ARn + disp With predisplacement add and modify 
ARn = ARn + disp 

00011 *- - ARn(disp) addr = ARn - disp With predisplacement subtract and modify 
ARn = ARn - disp 

00100 * ARn++( disp) addr = ARn With postdisplacement add and modify 
ARn = ARn + disp 

00101 *ARn - - (disp) addr = ARn With postdisplacement subtract and modify 
ARn = ARn - disp 

00110 * ARn++(disp)% addr = ARn With postdisplacement add and circular 
ARn = circ(ARn + disp) modify 

00111 * ARn - - (disp)% add = ARn With postdisplacement subtract and 
ARn = circ(ARn - disp) circular modify 

Indirect Addressing with Index Register IRO 

01000 *+ARn(IRO) addr = ARn + IRO 

01001 *- ARn(IRO) addr = ARn -IRO 

01010 *++ARn(IRO) addr = ARn + IRO 
ARn = ARn + IRO 

01011 * - - ARn(IRO) addr = ARn -IRO 
ARn = ARn -IRO 

01100 *ARn++(IRO) addr = ARn 
ARn = ARn + IRO 

01101 *ARn -- (IRO) addr= ARn 
ARn = ARn - IRO 

01110 *ARn++(IRO)% addr = ARn 
ARn = circ(ARn + IRO) 

01111 * ARn - - (lRQ)% addr = ARn 
ARn = circ(ARn) - IRO 

LEGEND: 

addr memory address 
ARn auxiliary register ARQ - AR7 
IRn index register IRO or IR1 
disp displacement 
++ add and modify 

subtract and modify 
circ( ) address in circular addressing 
% where circular addressing is performed 

With preindex (IRO) add 

With preindex (IRO) subtract 

With preindex (IRO) add and modify 

With preindex (IRO) subtract and modify 

With postindex (IRO) add and modify 

With postindex (IRO) subtract and modify 

With postindex (lRO) add and circular 
modify 

With postindex (IRQ) subtract and circular 
modify 
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Instruction Set 

Table F-S. Indirect Addressing (Concluded) 

F-36 

Mod Field 

10000 

10001 

10010 

10011 

10100 

10101 

10110 

10111 

11000 

11001 

LEGEND: 
addr 
ARn 
IRn 
disp 
++ 

circ( ) 

B 

Syntax Operation Description 

Indirect Addressing with Index Register IR1 

*+ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add 

* - ARn(IR1) addr = ARn - IR1 With preindex (IR1) subtract 

* ++ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add 
ARn = ARn + IR1 and modify 

* --ARn(IR1) addr = ARn - IR1 With preindex (IR1) subtract 
ARn = ARn - IR1 and modify 

* ARn ++ (IR1) addr = ARn With postindex (IR1) add 
ARn = ARn + IR1 and modify 

*ARn--(IR1) addr = ARn With postindex (IR1) subtract 
ARn = ARn - IR1 and modify 

* ARn ++ (IR1)% addr = ARn With postindex (IR1) add 
ARn = circ(ARn + IR1) and circular modify 

* ARn -- (IR1)% addr = ARn With postindex (IR1) subtract 
ARn = circ(ARn -IR1) and circular modify 

Indirect Addressing (Special Cases) 

*ARn addr = ARn 

*ARn ++ (IRO)B addr = ARn 
ARn = B(ARn + IRO) 

memory address 
auxiliary register ARO - AR7 
index register IRO or IR1 
displacement 
add and modify 
subtract and modify 
address in circular addressing 
where circular addressing is performed 
where bit-reversed addressing is performed 

Indirect 

With postindex (IRO) add 
and bit-reversed modify 
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F.S.2 Summary 

Table F-6. Instruction Set Summary 

Mnemonic Description 

ABSF 

ABSI 

ADDC 

ADDC3 

ADDF 

ADDF3 

ADDI 

ADDI3 

AND 

AND3 

ANDN 

ANDN3 

ASH 

ASH3 

Bcond 

BcondD 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 

Absolute value of a floating-point number 

Absolute value of an integer 

Add integers with carry 

Add integers with carry (3-operand) 

Add floating-point values 

Add floating-point values (3-operand) 

Add integers 

Add integers (3-operand) 

Bitwise logical-AN D 

Bitwise logical-AND (3-operand) 

Bitwise logical-AND with complement 

Bitwise logical-ANDN (3-operand) 

Arithmetic shift 

Arithmetic shift (3-operand) 

Branch conditionally (standard) 

Branch conditionally (delayed) 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Instruction Set 

Operation 

Isrcl ----1 Rn 

Isrcl ----1 Dreg 

src + Dreg + C ----1 Dreg 

src1 + src2 + C ----1 Dreg 

src + Rn ----1 Rn 

src1 + src2 -7 Rn 

src + Dreg -7 Dreg 

src1 + src2 + ----1 Dreg 

Dreg AND src ----1 Dreg 

src1 AND src2 ----1 Dreg 

Dreg AND src ----1 Dreg 

src1 AND src2 ----1 Dreg 

If count 2: 0: 
(Shifted Dreg left by count) ----1 Dreg 

Else: 
(Shifted Dreg right by Icount!) ----1 Dreg 

If count 2: 0: 
(Shifted src left by count) ----1 Dreg 

Else: 
(Shifted src right by Icount!) ----1 Dreg 

If cond = true: 
If Csrc is a register, Csrc ----1 PC 
If Csrc is a value, Csrc + PC ----1 PC 

Else, PC + 1 ----1 PC 

If cond = true: 
If Csrc is a register, Csrc ----1 PC 
If Csrc is a value, Csrc + PC + 3 ----1 PC 

Else, PC + 1 ----1 PC 

Dreg 
Rn 
Daddr 
ARn 
addr 
cond 
ST 
RE 
RS 
PC 
C 

register address (any register) 
register address (R7 - RO) 
destination memory address 
auxiliary register n (AR7 - ARO) 
24-bit immediate address (label) 
condition code (see Chapter 11) 
status register 
repeat interrupt register 
repeat start register 
program counter 
carry bit 
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Instruction Set 

Table F-6. Instruction Set Summary (Continued) 

Mnemonic Description Operation 

BR Branch unconditionally (standard) Value -7 PC 

BRD Branch unconditionally (delayed) Value -7 PC 

CALL Call subroutine PC + 1 -7 TOS 
Value -7 PC 

CALLcond Call subroutine conditionally If cond = true: 
PC + 1 -7 TOS 
If Csrc is a register, Csrc -7 PC 
If Csrc is a value, Csrc + PC -7 PC 

Else, PC + 1 -7 PC 

CMPF Compare floating-point values Set flags on Rn - src 
\ 

CMPF3 Compare floating-point values 
(3-operand) 

Set flags on src1 - src2 

CMPI Compare integers Set flags on Dreg - src 

CMPI3 Compare integers (3-operand) Set flags on src1 - src2 

DBcond Decrement and branch conditionally ARn -1 -7 ARn 
(standard) 

If cond = true and ARn 2:: 0: 
If Csrc is a register, Csrc -7 PC 
If Csrc is a value, Csrc+ PC + 1 -7 PC 

Else, PC + 1 -7 PC 

DBcondD Decrement and branch conditionally ARn -1 -7 ARn 
(delayed) 

If cond = true and ARn 2:: 0: 
If Csrc is a register, Csrc -7 PC 
If Csrc is a value, Csrc + PC + 3 -7 PC 

Else, PC + 1 -7 PC 

FIX Convert floating-point value to integer Fix (src) -7 Dreg 

FLOAT Convert integer to floating-point value Float(src) -7 Rn 

lACK Interrupt acknowledge Dummy read of src 
lACK toggled low, then high 

IDLE Idle until interrupt PC + 1 -7 PC 
Idle until next interrupt 

LDE Load floating-point exponent src(exponent) -7 Rn(exponent) 

LDF Load floating-point value src -7 Rn 

LDFcond Load floating-point value conditionally If cond = true, src -7 Rn 
Else, Rn is not changed 

LDFI Load floating-point value, interlocked Signal interlocked operation src -7 Rn 

LDI Load integer src -7 Dreg 

LDlcond Load integer conditionally If cond = true, src -7 Dreg 
Else, Dreg is not changed 
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Table F-6. Instruction Set Summary (Continued) 

Mnemonic Description 

LDII 

LDM 

LSH 

LSH3 

MPYF 

MPYF3 

MPYI 

MPYI3 

NEGB 

NEGF 

NEGI 

NOP 

NORM 

NOT 

OR 

OR3 

POP 

POPF 

PUSH 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 

Load integer, interlocked 

Load floating-point mantissa 

Logical shift 

Logical shift (3-operand) 

Multiply floating-point values 

Multiply floating-point value (3-operand) 

Multiply integers 

Multiply integers (3-operand) 

Negate integer with borrow 

Negate floating-point value 

Negate integer 

No operation 

Normalize floating-point value 

Bitwise logical-complement 

Bitwise logical-OR 

Bitwise logical-OR (3-operand) 

Pop integer from stack 

Pop floating-point value from stack 

Push integer on stack 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Instruction Set 

Operation 

Signal interlocked operation src -7 Dreg 

src (mantissa) -7 Rn (mantissa) 

If count ~ 0: 
(Dreg left-shifted by count) -7 Dreg 

Else: 
(Dreg right-shifted by Icount!) -7 Dreg 

If count ~ 0: 
(src left-shifted by count) -7 Dreg 

Else: 
(src right-shifted by Icount!) -7 Dreg 

src x Rn -7 Rn 

src1 X src2 ~ Rn 

src X Dreg ~ Dreg 

src1 X src2 -7 Dreg 

O-src-C ~ Dreg 

O-src ~ Rn 

0- src ~ Dreg 

Modify ARn if specified 

Normalize (src) ~ Rn 

src ~ Dreg 

Dreg OR src -7 Dreg 

src1 OR src2 ~ Dreg 

*SP--~ Dreg 

·SP---7 Rn 

Sreg ~ *++ SP 

Dreg 
Rn 
Daddr 
ARn 
addr 
cond 
ST 

register address (any register) 
register address (R7 - RO) 
destination memory address 
auxiliary register n (AR7 - ARO) 
24-bit immediate address (label) 
condition code (see Chapter 11) 
status register 

RE 
RS 
PC 
C 

repeat interrupt register 
repeat start register 
program counter 
carry bit 
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Instruction Set 

TableF-6. Instruction Set Summary (Continued) 

Mnemonic Description Operation 

PUSHF Push floating-point value on stack Rn -7 *++ SP 

RETlcond Return from interrupt conditionalfy If cond = true or missing: 

*SP---7 PC 

1 -7 ST (GIE) 
Else, continue 

RETScond Return from subroutine conditionalfy If cond = true or missing: 

*SP---7 PC 
Else, continue 

RND Round floating-point value Round (src) -7 Rn 

ROL Rotate left Dreg rotated left 1 bit -7 Dreg 

ROLC Rotate left through carry Dreg rotated left 1 bit through carry -7 Dreg 

ROR Rotate right Dreg rotated right 1 bit -7 Dreg 

RORC Rotate right through carry Dreg rotated right 1 bit through carry -7 

Dreg 

RPTB Repeat block of instructions src -7 RE 

1 -7 ST (RM) 

Next PC -7 RS 

RPTS Repeat single instruction src -7 RC 

1 -7 ST (RM) 

Next PC -7 RS 

Next PC -7 RE 

SIGI Signal, interlocked Signal interlocked operation 
Wait for interlock acknowledge 
Clear interlock 

STF Store floating-point value Rn -7 Daddr 

STFI Store floating-point value,interlocked Rn -7 Daddr 
Signal end of interlocked operation 

STI Store integer Sreg -7 Daddr 

STI! Store integer, interlocked Sreg -7 Daddr 
Signal end of interlocked operation 

SUBB Subtract integers with borrow Dreg - src - C -7 Dreg 

SUBB3 Subtract integers with borrow (3-operand) src1 - src2 - C -7 Dreg 

SUBC' Subtract integers conditionalfy If Dreg - src ~ 0: 

[(Dreg - src) « 1] OR 1 -7 Dreg 

Else, Dreg « 1 -7 Dreg 
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Table F-6. Instruction Set Summary (Concluded) 

Mnemonic 

SUBF 

SUBF3 

SUB I 

SUBI3 

SUBRB 

SUBRF 

SUBRI 

SWI 

TRAPcond 

TSTB 

TSTB3 

XOR 

XOR3 

LEGEND: 
src 
src1 
src2 
Csrc 
Sreg 
count 
SP 
GIE 
RM 
TOS 

Description 

Subtract floating-point values 

Subtract floating-point values (3-operand) 

Subtract integers 

Subtract integers (3-operand) 

Subtract reverse integer with borrow 

Subtract reverse floating-point value 

Subtract reverse integer 

Software interrupt 

Trap conditionally 

Test bit fields 

Test bit fields (3-operand) 

Bitwise exclusive-OR 

Bitwise exclusive-OR (3-operand) 

general addressing modes 
three-operand addressing modes 
three-operand addressing modes 
conditional-branch addressing modes 
register address (any register) 
shift value (general addressing modes) 
stack pointer 
global interrupt enable register 
repeat mode bit 
top of stack 

Instruction Set 

Operation 

Rn - src -:7 Rn 

src1 - src2 -:7 Rn 

Dreg - src -:7 Dreg 

src1 - src2 -:7 Dreg 

src - Dreg - C -:7 Dreg 

src - Rn -:7 Rn 

src - Dreg -:7 Dreg 

Perform emulator interrupt sequence 

If cond = true or missing: 

Next PC -:7 * ++ SP 

Trap vector N -:7 PC 

0-:7 ST (GIE) 
Else, continue 

Dreg AND src 

src1 AND src2 

Dreg XOR src -:7 Dreg 

src1 XOR src2 -:7 Dreg 

Dreg 
Rn 
Daddr 
ARn 
addr 
cond 
ST 

register address (any register) 
register address (R7 - RO) 
destination memory address 
auxiliary register n (AR7 - ARO) 
24-bit immediate address (label) 
condition code (see Chapter 11) 
status register 

RE 
RS 
PC 
C 

repeat interrupt register 
repeat start register 
program counter 
carry bit 
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Instruction Set 

Table F-7. Parallel Instruction Set Summary 

Mnemonic l Description I Operation 

Parallel Arithmetic With Store Instructions 

ABSF Absolute value of a floating-point Isrc21 ~ dst1 
II STF 

II src3 ~ dst2 

ABSI Absolute value of an integer Isrc21 ~ dst1 
IISTI 

II src3 ~ dst2 

ADDF3 Add floating-point src1 + src2 ~ dst1 
II STF 

II src3 ~ dst2 

ADDI3 Add integer src1 + src2 ~ dst1 
IISTI 

II src3 ~ dst2 

AND3 Bitwise logical-AND src1 AND src2 ~ dst1 
IISTI 

II src3 ~ dst2 

ASH3 Arithmetic shift If count ~ 0: 
II STI 

src2 « count ~ dst1 
II src3 ~ dst2 

Else: 
src2 » Icountl ~ dst1 

II src3 ~ dst2 

FIX Convert floating-point to integer Fix(src2) ~ dst1 
II STI 

II src3 ~ dst2 

FLOAT Convert integer to floating-point Float(src2) ~ dst1 
II STF 

II src3 ~ dst2 

LDF Load floating-point src2 ~ dst1 
II STF 

II src3 ~ dst2 

LDI Load integer src2 ~ dst1 II STI 
II src3 ~ dst2 

LSH3 Logical shift If count ~ 0: 
II STI 

src2 « count ~ dst1 
II src3 ~ dst2 

Else: 
src2 » Icountl ~ dst1 

II src3 ~ dst2 

MPYF3 Multiply floating-point src1 x src2 ~ dst1 
II STF 

II src3 ~ dst2 

MPYI3 Multiply integer src1 x src2 ~ dst1 
IISTI 

II src3 ~ dst2 

NEGF Negate floating-point 0- src2 ~ dst1 
II STF 

II src3 ~ dst2 
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Table F-7. 

Instruction Set 

Parallel Instruction Set Summary (Concluded) 

Mnemonic Description Operation 

NEGI 
IISTI 

NOT 
II STI 

OR3 
II STI 

STF 
.11 STF 

STI 
IISTI 

SUBF3 
II STF 

SUBI3 
II STI 

XOR3 
II STI 

LDF 
II LDF 

LDI 
II LDI 

MPYF3 
II ADDF3 

MPYF3 
II SUBF3 

MPYI3 
II ADDI3 

MPy'13 
II SUBI3 

LEGEND: 
src1 
src3 
dst1 
op3 

Parallel Arithmetic With Store Instructions (Concluded) 

Negate integer a - src2 --7 dst1 
II src3 --7 dst2 

Complement src1 -7 dst1 
II src3 -7 dst2 

Bitwise logical-OR src1 OR src2 -7 dst1 
II src3 -7 dst2 

Store floating-point src1 -7 dst1 
II src3 -7 dst2 

Store integer src1 -7 dst1 
II src3 -7 dst2 

Subtract floating-point src1 - src2 -7 dst1 
II src3 -7 dst2 

Subtract integer src1 - src2 -7 dst1 
II src3 -7 dst2 

Bitwise exclusive-OR src1 XOR src2 -7 dst1 
II src3 -7 dst2 

Parallel Load Instructions 

Load floating-point src2 -7 dst1 
II src4 -7 dst2 

Load integer src2 -7 dst1 
II src4 -7 dst2 

Parallel Multiply And Add/Subtract Instructions 

Multiply and add floating-point 

Multiply and subtract floating-point 

Multiply and add integer 

Multiply and subtract integer 

register addr (R7 - RO) 
register addr (R7 - RO) 
register addr (R7 - RO) 
register addr (RO or R1) 

op1 x op2 -7 op3 
II op4 + op5 -7 op6 

op1 x op2 -7 op3 
II op4 - op5 -7 op6 

op1 x op2 -7 op3 
II op4 + op5 -7 op6 

op1 x op2 -7 op3 
II op4 - op5 -7 op6 

src2 
src4 
dst2 
op6 

indirect addr (disp = 0, 1, IRO, IR1) 
indirect addr (disp = 0, 1, IRa, IR1) 
indirect addr (disp = 0, 1, IRa, IR1) 
register addr (R2 or R3) 

op1 ,op2,op4,opS - Two of these operands must be specified using register addr, and two must be specified 
using mdirect. 
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A-law compression, 11-51 

A-law expansion, 11-52 

adaptive filters, 11-61 

addition example, 11-35 

addresses 
A23-AO signals 

additional capacitance, 12-38 
timing requirements, 12-38 

XA 12-XAO signals 
additional capacitance, 12-38 
timing requirements, 12-38 

addressing modes 
conditional branch, 2-14, 5-23 
general, 5-19 
long-immediate, 2-14, 5-22 
parallel, 2-14, 5-21 
three operand, 2-14, 5-20 

addressing types, 5-2 
direct addressing, 5-4 
immediate, 5-17 
indirect addressing, 5-5-5-16 
PC relative, 5-18 
register, 5-3, F-6 

analysis subsystem 
pod dimensions, 12-40 
use with debugging tools, 12-37 

applications 
general listing, 1-7 
hardware, 12-1 
software, 11-1 

architecture, 2-1 

archiver, B-3 

arithmetic logic unit (ALU), 2-5 

arithmetic operations, 11-21 

assembler, B-3 

assembly language instructions, 10-1 
categories, 10-3-10-8 

interlocked operation, 10-6 
load and store, 10-3 
parallel operation, 10-6 
program control, 10-5 
three-operand, 10-5 
two-operand, 10-4 

coding hints, 11-88 
condition codes, flags, 10-9 
condition for execution, 10-9 
example instruction, 10-16 
opcodes, A-1 
register syntax, 10-15 
symbols used to defi ne, 1 0-12-1 0-15 
syntax options, 10-13-10-15 

auxiliary (ARO-AR7) registers, 3-4 
auxiliary register ALUs, 2-5 

II 
bank switching, external bus, 7-29, 12-12 
bit manipulation, 11-21 

bit-reversed addressing, 5-29, 11-23 
block move, 11-23 

block repeat register (RS,RE), 3-11 
block size (BK) register, 3-5 

branches, 6-7 
delayed, 6-7,11-15 

bulletin board, B-13 

bus operation 
external, 2-23 
internal, 2-22 

busy-waiting example, 6-12 

C (HLL) routines, 11-88 
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Index 

C compiler 
features, 8-3 
hosts supported, 8-5 
optimization, 8-4 

cache 
hit, 3-20 
miss, 3-21 

cache memory, 2-9, 3-19 
See also memory 
algorithm, 3-20 
architecture, 3-19 
control bits, 3-22 
instruction cache, 3-19 

calls, 6-8 

capacitance of electrical probe, 12-38 

cautions, viii 

central processing unit, 2-3 

circular addressing, 5-24 

CLKR pins, 8-18, F-28 

CLKX pins, 8-17, F-27 

clock oscillator circuitry, 12-25 
clocks 

additional capacitance, 12-38 
Hi, 12-38, 12-39 
H3, 12-38, 12-39 
timing requirements, 12-39 

companding, 11-48 

compression 
A-law, 11-51 

/l-Iaw, 11-49 

condition codes, flags, 10-11 

conditional delayed branches, 6-7 

conditional-branch addressing modes, 2-14, 5-23 

context switching, 11-11 

conversion 
floating point to integer, 4-22 
integer to floating point, 4-24 

counter example, 6-12 

counter register (timer), 8-2, 8-6 

CPU, 2-3 

CPU interrupt flag register (IF), interrupt flag (IF), 
3-9 

CPU registers, 2-6 
auxiliary (ARO-AR7), 2-7, 3-4 
block repeat (RS, RE), 3-11 
block size (BK), 2-7, 3-5 

Index-2 

CPU/OMA interrupt enable (IE), 3-8 
data page pointer, 2-7 
data page pointer (OP), 3-5 
extended precision (RO-R7), 2-6, 3-4 
I/O flags (IOF), 2-7, 3-10 
index (IR1, IRO), 2-7, 3-5 
interrupt enable (IE), 2-7, 3-8 
interrupt flag (IF), 2-7, 3-9 
list of, 3-3 
program counter (PC), 2-8, 2-22, 3-11 
repeat count (RC), 2-8, 6-2 
repeat count (RP), 3-11 
repeat end address (RE), 2-8,3-11,6-2 
repeat start address (RS), 2-8, 3-11, 6-2 
reserved bits, 3-11, ' 
status register (ST), 2-7, 3-5, 10-10 
system stack pointer (SP), 2-7, 3-5 

CPU1/2 buses, 2-22 

data 
031-00 signals 

additional capacitance, 12-38 
timing requirements, 12-38 

X031-XOO signals 
additional capacitance, 12-38 
timing requirements, 12-38 

data page pointer (OP) register, 3-5 
data receive register (serial port), 8-22 
data transmit register (serial port), 8-21 

delayed branches, 6-7,11-15 
advantages, 11-89 
incorrectly placed, 6-6, 6-7 

design considerations, 12-37-12-42 
electrical information 

capacitance of electrical probe, 12-38 
power supply loading of active probe, 12-38 

mechanical dimensions, 12-40 
timing information, Pages, 12-38 

dimensions (chip), 13-15 
direct addressing, 5-4 
disabled interrupts by branch,"6-7 

displacements, 5-5-5-16 
division, 11-24 

OMA 
architecture, 2-26 
buses, 2-22 
channel synchronization, 8-49-8-51 



controller, 8-38 
destination/source address register, 8-42 
general, 2-26 
global control register, 8-39 
interrupt enable register, 8-42 
memory transfer, 8-44-8-48 
synchronization of channels, 8-49-8-51 
transfer counter register, 8-42 

OMA global-control register format, F-18 

OMA interrupt enable register (IE), 3-2 

documentation, v, 8-13 

DR pins, 8-18, F-28 

OX pins, 8-17, F-27 

edge-triggered interrupts, 6-20 

electrical characteristics, 13-18 

electrical information 
capacitance of electrical probe, 12-38 
power supply loading of active probe, 12-38 

electrical specifications, 13-17 

EMUO-EMU6 signals 
additional capacitance, 12-38 
timing requirements, 12-39 

emulator, in system overvie'w, 12-37 

event counters, 8-2 

expansion 
A-law, 11-52 

Il-Iaw, 11-50 

expansion bus 
See also external buses 
addresses, 12-38 
data, 12-38 
reads/writes, 12-39 
signal timing, 12-38 

extended precision 
addition example, 11-35 
floating-point format, 4-6 
multiplication example, 11-36 
subtract example, 11-35 

external buses (expansion, primary), 2-23, 7-1 
bank switching, 7-29,12-12 
expansion bus control register, 7-4 
expansion bus I/O cycles, 7-10-7-26 
expansion bus interface, 12-18 

external interrupts, 2-23 
interlocked instructions, 2-23 
primary bus control register, 7-3 
primary bus interface, 12-4 
ready generation, 12-8 
timing 

expansion bus, 7-10-7-26 
primary bus, 7-5-7-9 

wait states, 7-27,12-4,12-8 

external devices, 12-3 

external interfaces, 12-2 

fast Fourier transforms, 11-66 

FFT,11-66 

filters 
adaptive, 11-61 
FIR,11-53 
IIR,11-55 
lattice, 11-82 
LMS algorithm, 11-61 

FIR filters, 11-53 

floating point 
addition, 4-14 
conversion to integer, 4-22 
division, 11-24 
format conversion, 4-8 
formats, 4-4 
IEEE to TMS320, 11-38 
inverse, 11-27 
multiplication, 4-10 
normalization, 4-18 
normalized,4-14 
rounding value, 4-20 
short format, 4-4 
single-precision format, 4-6 
square root example, 11-30 
subtraction, 4-14 
TMS320 to IEEE, 11-38 
underflow, 4-15 

formats 
conversion, 4-8 
floating point, 4-4 
signed integer, 4-2 
unsigned integer, 4-3 

FSR pins, 8-18, F-28 

FSX pins, 8-17, F-27 

Index 

" 
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general addressing modes, 2-14, 5-19 
global control register (serial port), 8-14 
global control register (timer), 8-3 

global memory, 6-10, 6-13 

m 
H1 signal 

additional capacitance, 12-38 
timing require.ments, 12-39 

H3 signal 
additional capacitance, 12-38 
timing requirements, 12-39 

hardware applications, 12-1 
hardware control, 6-1 
header (XDS1 000), 12-34 

HOLDA, signal 
additional capacitance, 12-38 
timing requirements, 12-39 

hotline, 8-13 

D 
1/0 flags register (IOF), 3-10 

lACK, signal 
additional capacitance, 12-38 
timing requirements, 12-39 

IIR filters, 11-55 

immediate addressing, 5-17 

index (IRO,IR1) register, 3-5 

indirect addressing, 5-5 
initialization (processsor), 11-3 
instruction cache, 3-19 

instruction register (IR), 2-22 
instruction set summary 

alphabetical, 2-14 
function listing, 10-3 

instructions. See assembly language 

INTO-,NT3, 3-17, F-14 

INTO-INT3, signals 
additional capacitance, 12-38 
timing requirements, 12-39 

integer division, 11-24 

integer formats 

Index-4 

short integer, 4-2 
signed,4-2 
single-:precision integer, 4-2 
unsigned, 4-3 

interfaces 
expansion bus, 2-23, 12-18 
primary bus, 2-23, 12-4 
system control, 12-25 
types, 12-2 

interlocked operations, 6-10 
internal bus, 2-22 
interrupt enable register (IE), 3-8 
interrupt service routines, 11-10 
interrupts, 2-23, 6-20 

context switching, 11-11 
control bits, 6-20 
interrupt service routines, 11-10 
prioritization, 6-25 
prioritizing, 11-14 
processing, 6-27 
serial ports, 8-27 
vectors, 3-16, 6-25 

inverse, 11-27 
inverse lattice filter, 11-83 

IOSTR8, signal, 7-2, 7-5 
additional capacitance, 12-38 
timing requirements, 12-40 .. 

lattice filters, 11-82 
level-triggered interrupts, 6-20 
linker, 8-3 
literature, v, 8-13 
logical operations, 11-21 
long-immediate addressing modes, 2-14, 5-22 
looping, 11-16 

LRU cache update, 3-19 

matrix-vector multiplication, 11-64 

mechanical data, 13-15 
mechanical dimensions, 12-40 
memory, 2-9, 3-19 

accesses (pipeline), 9-21 
cache, 2-9, 3-19,11-89 
general organization, 2-9 



global, 6-10, 6-13 
memory maps, 2-11 , 3-12 
microcomputer mode, 3-12 
microprocessor mode, 3-12 
pipeline conflicts, 9-9, 9-19 
quick access, 11-89 

microcomputer mode, 2-11,3-12 

ll-Iaw compression, 11-49 

~-Iaw expansion, 11-50 

microprocessor mode, 2-11, 3-12 
MSTR8, signal, 7-2, 7-5 

additional capacitance, 12-38 
timing requirements, 12-40 

multiple processors, 6-10 
multiplication, 11-64 
multiplier, 2-5 

m 
nested block repeats, 6-6 

normalization, floating-point value, 4-14, 4-18 

object program converter, 8-3 

opcodes, A-1 

optimizer (C compiler), 8-4 
ordering information, 8-15 

overflow, 4-15,4-22 

overview; emulation system with analysis subsys-
tem,12-37 . 

parallel addressing modes, 2-14, 5-21 

part numbers, 8-15 
breakdown of numbers, 8-18 
prefix deSignators, 8-16 

period register (timer), 8-2, 8-6 

peripheral bus, 2-24, 8-1 
general architecture, 2-24 
map, 3-18 
peripherals on, 8-1 

DMA controller, 8-38 
serial port, 2-25, 8-12 
timers, 2-25, 8-2 

register diagram, 2-24 

pin assignments, 13-4, 13-5 
pin states at reset, 6-16 

pipeline, 9-1 
conflicts 

avoiding, 11-89 
branching, 9-4 
memory, 9-9 
memory (resolving), 9-19 
registers, 9-6 

memory accesses, 9-21 
structure, 9-2 

power, supply loading of active 'probe, 12-38 

primary bus 
See also external buses 
addresses, 12-38 
data, 12-38 
reads/writes, 12-39 
signal timing, 12-38 

primary bus control register, 7-3 

probes 
active probe power-supply loading, 12-38 
electrical probe capacitance, 12-38 

program buses, 2-22 
program counter (PC), 2-22,3-11 
program flow, 6-1 

quality, C-1 
queues (stack), 5-32 

m 
R/W, signal 

additional capacitance, 12-38 
timing requirements, 12-39 

RAM,2-9 
See also mem'ory 

ready generation, 12-8 

Index 

receive/transmit timer counter register (serial port), 
8-21 

receive/transmit timer period register (serial port), 
8-21 

regional technology centers, 8-14 
register buses, 2-22 

registers, 2-6 
auxiliary (ARO-AR7), 2-7, 3-4 
block repeat (RS. RE), 3-11 

Index-5 



Index 

block size (8K), 2-7, 3-5 
counter (timer), 8-6 
CPU/DMA interrupt enable (IE), 3-8, 8-42 
data page pointer, 2-7 
data page· pointer (DP), 3-5 
DMA destination and source address, 8-42 
DMA global control register, 8-39 
DMA transfer counter register, 8-42 
DMAlCPU interrupt enable (IE), 8-42 
extended precision (RO-R7), 2-6, 3-4 
global control (timer), 8-3 
I/O flag (IOF), 3-10 
I/O flags (IOF), 2-7 
index (IR1, IRO), 3-5 
interrupt enable (IE), 2-7,3-8 
interrupt flag (IF), 2-7, 3-9 
maximum use, 11-89 
period (timer), 8-6 
peripheral port, 8-1 
pipeline conflicts, 9-6 
program counter (PC), 2-8, 2-22, 3-11 
repeat count (RC), 2-8, 6-2 
repeat count (RP), 3-11 
repeat end address (RE), 2-8, 3-11,6-2 
repeat start address (RS), 2-8, 3-11, 6-2 
reserved bits, 3-11 
serial port global control, 8-14 
serial port registers, 8-12-8-37 
status register (ST), 2-7, 3:.5,10-10 
system stac;k pointer (SP), 2-7, 3-5 

registers, general, see also CPU registers, 2-5 

reliability, C-1 
stress testing, C-2 

repeat count register (RC), 3-11,6-2 

repeat en? address register (RE), 3-11,6-2 
repeat mode 

initialization, 6-2 
RPTS initialization, 6-3 

repeat modes, 11-16 

repeat start address register (RS), 3-11, 6-2 

requirements, signal timing, Pages, 12-38 

reset, 3-16, 6-16 
initialization (processor), 11-3 
operations performed, 6-19 
pin states, 6-16 
vectors, 3-16, 6-25 

. RESET signal 
additional capacitance, 12-38 
timing requirements, 12-39 

Index-6 

return from subroutine, 6-8 

RINTO,1, 3-17, F-14 
ROM,2-9 

See also memory 
rounding of floating-point value, 4-20 

RTCs, 8-14 

scan path interface, 8-10 

segment start address (SSA) reg., 3-19 

semaphores, 6-13 

seminars, 8-14 
serial port, 8-12-8-37 

data receive register, 8-22 
data transmit register, 8-21 
global control register, 8-14 
interrupt sources, 8-27 
port control register (FSR/DR/CLKR), 8-18, F-28 
port control register (FSX/DXlCLKX), 8-17, F-27 
receive/transmit timer control register, 8-19, F-29 
receive/transmit timer counter register, 8-21 
receive/transmit timer period register, 8-21 
timing, 8-24, 8-28-8-37 

serial port global control register, 8-14 

short floating-point format, 4-4 

signal descriptions, 13-9-13-14 

signal transition levels, 13-19 
signals, timing information, Pages, 12-38 

simulator, 8-5 
software applications, 11-1 

software control, 6-1 
software development, 8-2 

archiver, 8-3 
assembler, 8-3 
emulator (XDS500 & 1000), 8-8 
linker, 8-3 
macro assembler, 8-3 
object format converter, 8-3 
scan path interface, 8-1 ° 
simulator, 8-5 

SPOX, 8-6 
square root example, 11-30 
stack, 5-30, 5-32, 11-9 

queues, 5-32 

stack pointer (SP) register, 3-5 

status register (ST), 3-5, 10-10 



STRB, signal, 7-2, 7-5 
additional capacitance, 12-38 
timing requirements, 12-40 

style (manual), vii 

subroutines, 11-7-11-20 
computed GOTO, 11-20 
context switching, 11-11 
runtime select, 11-18 

subtract example, 11-35 

symbols (used in manual), vii 

synchronize 2 processors example, 6-15 
system overview, 12-37 

D 
target cable, 12-37 
target system, design considerations, 12-37-12-42 

electrical information, 12-38 
mechanical dimensions, 12-40 
timing information, Pages, 12-38 

target system connection, 12-34 

TClKO, TClK1 , signals 
additional capacitance, 12-38 
timing requirements, 12-39 

test load circuit, 13-18 

third party support, B-12 

three-operand addressing modes, 2-14, 5-20 

timer global control register, 8-3 
timers, 2-25, 8-2-8-11 

counter, 8-2 
counter register, 8-6 
operation nodes, 8-7 
period register, 8-2, 8-6 

timing parameters, 13-20-13-51 

timing/counting, TMS320C30 signal timing, 
Pages, 12-38 

TINTO,1, 3-17, F-14 

trap, 3-16, 6-8 
vectors, 3-16 

TTL levels, 13-19 

underflow, 4-14 

vectors (reset, interrupts), 6-25 

vectors (reset, trap, interrupt), 3-16 

wait states, 7-27 
external bus, 12-4, 12-8 
zero, 12-4 

workshops, B-14 

XDS1000, 12-34, 8-8 
XDS500,8-8 

XFO, XF1, signals 
addition;:il capacitance, 12-38 
timing requirements, 12-39 

XFO,XF1, 2-23 
XINTO,1, 3-17, F-14 

XRIW signal 
additional capacitance, 12-38 
timing requirements, 12-39 

zero wait states, 12-4 

Index-7 



Index 

Index-8 



BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 6189 HOUSTON, TX 

POSTAGE WILL BE PAID BY ADDRESSEE 

.JfTEXAS 
INSTRUMENTS 
MAIL STATION 640 
POBOX 1443 
HOUSTON TX 77251-9879 

11 ••• 11.111 •• 1.1.1.1 •• 11111.111 1 •• 1.1 ••• 11.1 ••• 1.1.1 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



Texas Instruments wants to provide you with the best documentation possible-please 
help us by answering these questions and returning this card. 

How have you used this manual? 

D To look up specific information or procedures when needed (as a reference). 

D To read chapters about subjects of specific interest. 

D To read from front to back before using the product. 

If you found any inaccuracies, please describe them along with their location. 

Do you have any specific suggestions that would improve the content of this document? 

Is specific material easy to find because of the book's general organization, index, etc.? 

Did you have difficulty in understanding a feature or operation? 

Do you feel a subject is not clear or that it requires additional information? 

Would you prefer this book to lie flat when open (like a 3-ring or spiral binder)? 

Thank you for taking the time to fill out this card. 

Name Title ---------------------------- -------------------------
Company ____________________________________________________ ___ 

Address ______________________________________________________ __ 

City ____________________________ State _______ Zip/Country ___ _ 





Printed in U.S.A., June 1991 
2558539-9761 revision E 

~ 
TEXAS 

INSTRUMENTS 

SPRU031B 


