j
b TEXxAs
INSTRUMENTS

TMS320C3x

User’s Guide

1991 Digital Signal Processing Products

"

“la.} o

TMS320C3x
User’s Guide

2558539-9721 revision E
June 1991

X
TeExas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue any semiconduc-
tor product or service identified in this publication without notice. Tl advises its customers to ob-
“tain the latest version of the relevant information to verify, before placing orders, that the informa-
tion being relied upon is current.

Tl warrants performance of its semiconductor products to current specifications in accordance
with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily performed.

Tl assumes no liability for T| applications assistance, customer product design, software per-
formance, or infringement of patents or services described herein. Nor does Tl warrant or repre-
sent that license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of Tl covering or relating to any combination, ma-
chine, or process in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances, devices, or sys-
tems. Use of a Tl product in such applications without the written consent of the appropriate Tl
officer is prohibited.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and
can radiate radio frequency energy and has not been tested for compliance with the limits of com-
puting devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide rea-
sonable protection against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case the user at his own
expense will be required to take whatever measures may be required to correct this interference.

Copyright © 1991, Texas Instruments Incorporated

| Electrical Cha

Preface

Read This Firsi

The purpose of this user’'s guide is to serve as a reference book for the
TMS320C3x generation of digital signal processors that includes -
TMS320C30, TMS320C30-27, TMS320C30-40, TMS320C31, and
TMS320C31-27. Throughout the book, all references to the TMS320C30 ap-
ply to the TMS320C30-27 and TMS320C30-40 as well, and TMS320C31 re-
fers to TMS320C31 and TMS320C31-27, unless an exception is noted. This
document provides information to assist managers and hardware/software en-
gineers in application development.

How to Use This Manual

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

This document contains the following chapters:

Introduction
A general description of the TMS320C30 and TMS320C31, their key features
(features differ), and typical applications.

)

Architectural Overview _ .
Functional block diagram. TMS320C3x design description, hardware compo-
nents, and device operation. Instruction set summary.

CPU Registers, Memory, and Cache
Description of the registers in the CPU register file. Memory maps provided
and instruction cache architecture, algorithm, and control bits explained.

Data Formats and Floating-Point Operation

Description of signed and unsigned integer and floating-point formats. Discus-
sion of floating-point multiplication, addition, subtraction, normalization,
rounding, and conversions.

Addressing
Operation, encoding, and implementation of addressing modes. Format de-
scriptions. System stack management.)

Program Flow Control
Software control of program flow with repeat modes and branching. Inter-
locked operations. Reset and interrupts.

Read This First

Chapter 7

Chapter 8
Chapter 9

Chapter 10
Chapter 1
Chapter 12
Chapter 13

Appendix A

Appendix B
Appendix C
Appendix D

Appendix E

Appendix F

External Bus Operation
Description of primary and expansion interfaces. Externalinterface timing dia-
grams. Programmable wait-states and bank switching.

Peripherals
Description of the DMA controller, timers, and serial ports.

Pipeline Operation ,
Discussion of the pipeline of operations on the TMS320C3x.

Assembly Language Instructions
Functional listing of instructions. Condition codes defined. Alphabetized indi-
vidual instruction descriptions with examples.

Software Applications
Software application examptes for the use of various TMS320C3x instruction
set features. '

Hardware Applications
Hardware design techniques and application examples for interfacing to me-
mories, peripherals, or other microcomputers/microprocessors.

TMS320C3x Signal Description and Electrical Characteristics
Pin locations, pin descriptions, dimensions, electrical characteristics, signal
timing diagrams and characteristics.

Instruction Opcodes
List of the opcode fields for all the TMS320C3x instructions.

Development Support/Part Order Information
Listings of the hardware and software available to support the TMS320C3x de-
vice.

Quality and Reliability
Discussion of Texas Instruments quality and reliability criteria for evaluating
performance.

Calculation of TMS320C30 Power Dissipétion
Information used to determine the power dissipation and the thermal manage-
ment requirements for the TMS320C30.

SMJ320C30 Digital Signal Processor Data Sheet
Data sheet for the SMJ320C30 digital signal processor.

Quick Reference Guide
Over 30 pages of the most referenced tables and figures.

Read This First

References

The publications in the following reference list contain useful information re-
garding functions, operations, and applications of digital signal processing.

" These books also provide other references to many useful technical papers.

The reference list is organized into categories of general DSP, speech, image
processing, and digital control theory, and is alphabetized by author.

[d General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Bateman, A., and Yates, W., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974. ‘

Burrus, C.S., and Parks, TW., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. I. Tex-
as Instruments, 1986; Prentice-Hall, Inc., 1987.

Digital Signal Processing Applications with the TMS320 Family, Vol. Il.
Texas Instruments; Prentice-Hall, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. Il
Texas Instruments; Prentice-Hall, Inc., 1990.

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New York,
NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-
cessing. New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory Us-
ing the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, inc., 1987.

Hutchins, B., and Parks, T., A Digital Signal Processing Laboratory Using
the TMS320C25. Englewoaod Cliffs, NJ: Prentice-Hall, Inc., 1990.

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliifs, NJ: Prentice-Hall, Inc., 1988.

Read This First

vi

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978. ‘

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V., and Willsky, A.N., with Young, 1.T., Signals and Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of Digi-
tal Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and Design
of Adaptive Filters. New York, NY: John Wiley and Sqns, Inc., 1987.

Speech:

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York, NY:
Springer-Verlag, 1976.

-Jayant, N.S., and Noll, Peter, Digital Coding of Waveforms. Englewood

Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing:

Andrews, H.C., and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley and
Sons, 1978.

Digital Control Theory:

Dote, Y., Servo Motor and Motion Control Using Digital Signal Processors.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dek-
ker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Read This First

Read This First

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensa-
tors. Cambridge, MA: The MIT Press, 1983.

Phillips, C., and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Style and Symbol Conventions
This document uses the following conventions:

[d Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special font. Examples use a bold version
of the special font for emphasis. Here is a sample program listing:

0011 0005 0001 .field i, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

[In syntax descriptions, the instruction, command, or directive is in a bold
face font and parameters are in italics. Portions of a syntax that are in bold
face should be entered as shown; portions of a syntax that are in italics
describe the type of information that should be entered. Here is an exam-
ple of a directive syntax:

.asect “section name”, address

.asectisthedirective. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

LA Squarebrackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you don’t
enter the brackets themselves. Here’s an example of an instruction that
has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. Thefirst parameter, 16-bitcon-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

vii

Read This First

[Braces({and})indicate alist. The symbol! | (read as or) separates items
within the list. Here’s an example of a list:

{ﬂ,:|>{:+l>!:_}
This provides three choices: *, *+, or *—.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Ld Somedirectives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is :

.byte valueq [, ..., value,]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters separated by
commas.

Information About Cautions and Warnings

This book may contain cautions and warnings.

(4 A caution describes a situation that could potentially cause your system
to behave unexpectedly.

t'a caution looks like.

The information in a caution is provided for your information. Please read each
caution carefully.

vii ' Read This First

; Read This First

Trademarks

CodeView, MS-Windows, MS, MS-DOS and Presentation Manager are trademarks of Microsoft
Corp.

DEC, Digital DX, VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.

HPGL is a registered trademark of Hewlett-Packard Co.

Macintosh and MPW are trademarks of Apple Computer Corp.

08/2, PC-DOS, PGA, and Micro Channel are trademarks of IBM Corp.

Sun 3, Sun 4, Sun Workstation, SunView, SunWindows, and SPARC are trademarks of Sun
Microsystems, Inc.

UNIX s a registered trademark of AT&T Bell Laboratories.

Read This First

Contienis

1.2 TMS320C30 Key Featuresvuuu e e 1-5
1.3 TMS320C31KeyFeatures...................... e 1-6
1.4 Typical Applications i 1-7
Architectural Overviewo i e 2-1
2.1 Central Processing Unit (CPU) ..ot e 2-3
211 Multiplier ... 2-5
2.1.2 Arithmetic Logic Unit (ALU) ..o ... e 2-5
2.1.3 Auxiliary Register Arithmetic Units (ARAUS) ..o, 2-5
21.4 CPURegisterFile ... 2-5
2.2 Memory Organizationouiuuunn 2-9
221 RAM,ROM,and Cache 2-9
222 MemOry Mapso.uuiniiii i 2-11
2.2.3 Memory Addressing Modesoeininee 2-14
2.2.4 Instruction Set Summaryo 2-14
2.3 Internal Bus Operationcooeieen 2-22
2.4 External Bus Operationuuiuiuinieo e 2-23
241 Externallnterrupts, e 2-23
2.4.2 Interlocked-Instruction Signaling i 2-23
2.5 Peripherals 2-24
231 TIMEIS Lo 2-25
2.5.2 Seral POrs ..o 2-25
2.6 Direct Memory Access (DMA) ... 2-26
2.7 SystemIntegration 2-27
CPU Registers, Memory,and Cachec. oo 3-1
3.1 CPURegIster File e e e e 3-3
3.1.1 Extended-Precision Registers (R7 — RO)oovmmrriaa . 3-4
3.1.2 Auxiliary Registers (AR7 — ARD)outi e 3-4
3.1.3 Data-Page Pointer (DP) e 3-5
3.1.4 Index Registers (IR0, IRT)ot 3-5
3.1.5 Block-Size Register (BK)oviiii 3-5
3.1.6 System Stack Pointer (SP)oiii 3-5
3.1.7 - Status Register (ST)ovuiii i 3-5

Xi

Contents

Xii

3.1.8 CPU/DMA Interrupt Enable Register (IE)ooooi it 3-8

3.1.9 CPUInterrupt Flag Register (IF)o e 3-9
3.1.10 /O Flags Register (IOF) it 3-10

3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE) 3-11
8.1.12 Program Counter (PC) ... 3-11

3.1.13 Reserved Bits and Compatibility ... 3-11

2 | 1= 1o T 3-12
3.21 TMS320C3x Memory Mapsoviiiiiii it 3-12

3.22 TMS320C31 Memory Maps e e e 3-14

3.2.3 Reset/Interrupt/Trap VectorMap 3-16

3.24 Peripheral BusMapo e 3-18

3.3 Instruction Cachet i e e e 3-19
3.3.1 Cache ArchiteCture ittt i i e e e iiaannns 3-19

3.3.2 Cache Algorithmo e et 3-20

3.33 Cache Control Bitsvriii ittt e 3-22

3.4 Usingthe TMS320C31 Bootloader ...ttt 3-23
3.4.1 BootLoader Operationscceeiiiiiiiiit i, ... 323

3.42 Invokingthe BootLoadercciiiiiiiiiiiiin e iiie i 3-23

3.483 Mode SeleCtioncoviiii i e e e e e 3-25

3.4.4 External Memory Loading e e e 3-26

3.45 Examples of External Memory Loadscccoiiiiiiiiiin i, 3-26

3.46 SerialPortloadingccoiiiiiiii e e 3-28

3.4.7 Interrupt and Trap VectorMappingcoiiiiiiiiii i 3-29

Data Formats and Floating-Point Operation it 4-1
41 IntegerFormats ... e e 4-2
4.1.1 ‘ShortInteger FOrmatttt e 4-2

4.1.2 Single-Precision Integer Format e 4-2

4.2 Unsigned-Integer Formats ...ttt i e e 4-3
421 Short Unsigned-integerFormatt J 4-3

4.2.2 Single-Precision Unsigned-integer Formatot 4-3

4.3 Floating-Point Formats ...ttt i i it et et 4-4
4.3.1 Short Floating-Point Formatc i et 4-4

4.3.2 Single-Precision Floating-PointFormatcociiiiii, 4-6

4.3.3 Extended-Precision Floating-Point Format, 4-6

4.3.4 Conversion Between Floating-Point Formats 4-8

4.4 Floating-Point Multiplication i e 4-10
4.5 Floating-Point Addition and Subtraction i i i 4-14
4.6 Normalization Using the NORM Instruction i iiiiiiiii.... 4-18
4.7 Rounding: The RND Instruction e e e 4-20
"4.8 Floating-Point to Integer CONVErsSioNoovrtt it e e e ieaeeeas 4-22
4.9 Integer to Floating-Point Conversion Using the FLOAT Instruction 4-24
AdAresSiNg e e 5-1
5.1 Types of AdAressiNg .. .vvr i e 5-2

Table of Contents

Contents

51,1 Register Addressingt e 5-3
5.1.2 Direct Addressingc.oovviiiiiiiiiiiiean, P 5-4
5.1.3 IndireCt AddressiNg . ..o it e 5-5
5.1.4 Short-Immediate Addressingc.ovvini i i 5-17
5.1.5 Long-Immediate Addressingi it 5-17
5.1.6 PC-Relative Addressing ivi i e e 5-18
52 Groups of Addressing Modesooiii i e 5-19
52,1 General AddressingModes ..ot e 5-19
5.2.2 Three-Operand AddressingModes, 5-20
5.2.3 Parallel AddressingModescoiiiiniii i e 5-21
5.2.4 Long-Immediate AddressingMode i 5-22
5.2.5 Conditional-Branch AddressingModescoiiiiiiiiiinaa... 5-23
53 Circular AdOresSing « oo v v etn et e e e 5-24
5.4 Bit-Reversed Addressingot e e 5-29
5.5 System and User Stack Management e 5-30
5.5 S ACKS .o 5-31
5.5.2 QUEBUES ottt ittt e 5-32
Program Flow Control et e e e e e 6-1
6.1 RepeatModes e 6-2
6.1.1 Repeat-Mode Initialization i 6-2
6.1.2 RPTB Initialization i 6-3
6.1.3 RPTS Initialization i i i e 6-3
6.1.4 Repeat-Mode Operationt 6-4
6.2 Delayed BranChesttt e 6-7
6.3 Calls, Traps, @and REIUINS . .. o\ ottt et et ettt et e e e iaeeeaeas 6-8
6.4 Interlocked Operationsuuiiieiiiii e 6-10
6.5 ResetOperation i 6-16
LSS T [0 (=] (U] o] (= 6-20
6.6.1 Interrupt Control Bitsot 6-20
6.6.2 TMS320C3x Interrupt Considerationsot 6-21
6.6.3 TMS320C30 Interrupt Considerationsc.coiiiiiiiiiiinin., 6-22
6.6.4 Prioritizationand Control 6-25
External Bus Operation i 7-1
7.1 External Interface Control Registers i e 7-2
7.1.1 Primary-Bus Control Register ..ottt 7-3
7.1.2 Expansion-Bus Control Registeroo i 7-4
7.2 ExternalInterface TIMINGttt e e e 7-5
7.21 Primary-Bus CyCles . ..o 7-5
7.2.2 Expansion-Bus VO Cycles 7-10
7.3 Programmable Wait States ...t i 7-27
7.4 Programmable Bank Switchingo e 7-29
Peripherals et 8-1
S 200 I 11 =Y £ P 8-2

Contents

8.1.1 Timer Global-Control Register ... 8-3

8.1.2 Timer Period and Counter Registers ..., 8-6

8.1.3 TimerPulse Generationottt 8-6

8.1.4 TimerOperation Modes ittt e e 8-9

8.1.5 Timer Intermupts e e i 8-10

8.1.6 Timer Initialization/Reconfiguration i it 8-11

B.2 Serial POMS ottt e e 8-12
8.2.1 Serial-Port Global-Control Register ...t 8-14

8.2.2 FSX/DX/CLKX Port Control Registercoooviin... .l 817

8.2.3 FSR/DR/CLKR Port Control Register ..., 8-18

8.2.4 Receive/Transmit Timer Control Register e 8-19

8.2.5 Receive/Transmit Timer Counter Register e 8-21

8.2.6 Receive/Transmit Timer Period Register oot 8-21

8.2.7 Data-Transmit Registert i i et e 8-21

8.2.8 Data-Receive Register 8-22

8.2.9 Serial-Port Operation Configurations oottt 8-23
8.2.10 Serial-Port Timing ... oo et e e 8-24

8.2.11 Serial-Port Interrupt Sources ...t i i 8-27
8.2.12 Serial-Port Functional Operation ..o 8-28
8.2.13 TMS320C3x Serial Port Interface Examplescoiiiiiiiiiit. 8-33
8.2.14 Serial Port Initialization/Reconfiguration il 8-37

8.3 DMA Controller ..ot e 8-38
8.3.1 DMA Global-Control Register.cciiiiiin i 8-39

8.3.2 Destination and Source Address Registers ...t 8-42

8.3.3 TransferCounter Registerottt it 8-42

8.3.4 CPU/DMA Interrupt Enable Registercoovieiiiieiiennennan.. 8-42

8.3.5 DMA Memory Transfer Operationc.cooiiiiiiiiiniiiinnnn. 8-44

8.3.6 Synchronizationof DMA Channels 8-49

8.3.7 DMAINMEIUPES ..o s 8-51

8.3.8 DMASetupand Use EXamplesoouriiiiiiiiii it i 8-52

8.3.9 DMA Initialization/Reconfigurationoiiiia 8-53

9 Pipeline Operation i e e e e 9-1
9.1 Pipeline Structure PP 9-2
9.2 Pipeline Conflicts ...t e e e 9-4
9.21 BranchConflicts i e 9-4

9.2.2 Register Conflictso e 9-6

9.2.3 Memory Conflicts e 99

9.3 Resolving Register Conflicts e e 9-17
9.4 ResolvingMemory Conflicts i e 9-19
9.5 Clocking of Memory Accessesc.covvvennnn. e e 9-21
9.5.1 Program FetChes ..ottt i i i i i e e e 9-21

952 Dalaloadsand Sloresoviiiniiiiiiii i it it e 9-22

10 Assembly Language Instructions i 10-1
10.1 Assembly Language Instructions — Instruction Set 10-3
xiv Table of Contents

Contents

10.1.1 Load-and-Store Instructionsottt 10-3
10.1.2 Two-Operand Instructionsttt 10-4
10.1.3 Three-Operand Instructions ...t 10-5
10.1.4 Program Control Instructions i i 10-5
10.1.5 Interlocked Operations Instructionsiiieeiiniinnnnn ... 10-6
10.1.6 Parallel Operations Instructions, 10-6
10.2 Condition Codes and Flags e e 10-9
10.3 Individual INStruCtioNS . . .o i e e 10-12
10.3.1 Symbols and Abbreviations i il 10-12
10.3.2 Optional Assembler Syntaxescouiinin i 10-13
10.3.3 Individual Instruction Descriptionscoiiiiii i 10-15
11 Software Applications i i e 11-1
11,1 Processor Initialization et 11-3
11.2 Program Controlo 11-7
11.2.1 Subroutines e 11-7
11.2.2 SOMWATE SEACK + . o v e vttt et et e e et 11-9
11.2.3 Interrupt Service RoUtingso i 11-10
11.2.4 Delayed BranChes oot i e e et 11-15
11.25 RepeatModes ... e e e 11-16
11.2.6 Computed GOTO'S ..ot e e et 11-20
11.3 Logical and Arithmetic Operationso ittt 11-21
11.3.1 Bit Manipulation e 11-21
11.3.2 Block MOVES 11-23
11.3.3 Bit-Reversed Addressingc.ui e 11-23
11.3.4 Integer and Floating-Point Division 11-24
11.3.5 Square ROOt ..o oov i e 11-30
11.3.6 Extended-Precision Arithmetic e 11-34
11.3.7 Floating-Point Format Conversion: IEEE to/from TMS320C3x 11-38
11.4" Application-Oriented Operationsttt ieeieiianans 11-48
11.4.7 CompPanding e et 11-48
11.4.2 FIR, IR, and Adaptive Filters [11-52
11.4.3 Matrix-Vector Multiplication il 11-64
11.4.4 Fast Fourier Transforms (FFT) 11-66
11.4.5 Lattice Filters ... o i i e el PP 11-82
11.5 Programming TIPS ... ovii it e e et e e 11-88
11.5.1 C-Callable Routinescoiiiiiiiii i e 11-88
11.5.2 Hints for Assembly Codingcoiiiii i et i i e 11-88
12 Hardware Applications i 12-1
12.1 System Configuration Options Overview ...ttt 12-2
12.1.1 Categories of Interfaces on the TMS320C3Xccviiiiiiiiiinnnn. 12-2
12.1.2 Typical System Block Diagram ...t 12-3
12.2 Primary Bus Interfaceo e 12-4

XV

Contentsn -

12.2.1 Zero Wait-State Interface to Static RAMSoovviiiininanenn... 12-4
12.2.2 Ready Generationccuuiiiiiiii i e 12-8
12.2.3 Bank Switching Techniquesot 12-12
12.3 ExpansionBusInterface e 12-18
12.4 System Control FUNCHONS ...ttt i et et aas 12-25
12.4.1 .Clock Oscillator Circuitrycoii i e 12-25
12.4.2 ResetSignal Generation ...ttt it 12-27
12.5 Serial PortInterface ... e 12-30
12.6 XDS1000 Target Design Considerationsciiiiiieiiinnnennnn. 12-34
12.7 Hewlett-Packard 64776 Analysis Subsystem Target Design Considerations 12-37
12.7.1 System OVeIVIEW . ..t e e e e e e e e 12-37
12.7.2 Electrical Infformation e 12-38
12.7.3 Timing Information 12-38
12.7.4 Mechanical DImensionsot iieea s, 12-40
12.8 TMS320C30 and TMS320C31 Differencescooviiiiiiiiiiiiinnannn. 12-41
12.8.1 Data/Program Bus Differencescoi i, -12-41
12.8.2 Serial Port Differences ...t i e 12-41
12.8.3 Reserved Memory Locationsc.ciiiiiiiiii it 12-41
12.8.4 Effects onthe IF and IE Interrupt Registers oo 12-42
12.8.5 User Program/Data ROM i i 12-42
12.8.6 Development Considerationsoiiiiieriiiiiieriiineernnns 12-42
13 TMS320C3x Signal Descriptions and Electrical Characteristics 13-1
13.1 Pinout and Pin Assignments i e 13-2
13.1.1 TMS320C30 Pinouts and Pin Assignments e 13-2
13.1.2 TMS320C31 Pinouts and Pin Assignments e 13-6
13.2 Signal DesCHPliONS ..ottt e 13-9
13.2.1 TMS320C30 Signal Descriptions cvvuii et i eiae s 13-9
- 13.2.2 TMS320C31 Signal Descriptions ... vv ettt i 13-12
18.3 TMS320C3xMechanicalData ...ttt 13-15
13.4 Electrical Specificationsot e 13-17
13.5 Signal Transition Levelso i i 13-19
13.5.1 TTL-Level OutpuLs oo e et 13-19
13.5.2 TTL-Levellnputscvvviiiiin... e 13-19
13,6 TIMING .ot e e e e 13-20
13.6.1 X2/CLKIN, H1, and H3 Timingoviiiiiiiiit i iie e ieiaaens 13-20
13.6.2 Memory Read/Write Timing ...t 13-22
13.6.3 XF0 and XF1 Timing When Executing LDFlor LDIl 13-27
13.6.4 XFO Timing When Executing STFland STIl R 13-28
13.6.5 XFO0 and XF1 Timing When Executing SIGI 13-29
13.6.6 Loading When the XF Pin Is Configuredas anOutput 13-30
13.6.7 Changing the XF Pin From an Outputtoaninput 13-31
13.6.8 Changing the XF Pin From an InputtoanOutput 13-32
13.6.9 Reset TIMiNg . ..ot e e 13-33

Xvi Table of Contents

Contents

13.6.10 SHZ Pin TIMING .« v vttt ettt et e e et e ettt 13-36
13.6.11 Interrupt Response Timing e 13-37
13.6.12 Interrupt Acknowledge Timingt 13-39
13.6.13 Data Rate Timing Modes ...ttt i iieannns 13-40
13.6. 14 HOLD TimMiNg ..o ettt e 13-45
13.6.15 General-Purpose /O TiMiNgoviiiiiiii e 13-47
13.6.16 Timer Pin Timing e e 13-50
A Instruction OpCodes e e A-1
B Development Support/Part Order Information B-1
B.1 TMS320C3x Development SUPPOM ..ottt it i e e iiaaa e B-2
B.1.1 Macro Assembler/Linkero e B-3
B.1.2 Optimizing ANSIC Compiler ...ttt B-3
B.1.3 SIMUlatOr . .o o e B-5
B.1.4 The TMS320C3x Operating System (SPOX)ot B-6
B.1.5 TMS320C3x EvaluationModule i, B-8

B.1.6 TMS320C3x Emulator — Extended Development System
(XDS500 and XDST000) .. .vnmeett ettt e e B-8
B.1.7 Hewlett-Packard 64700 Analysis Subsystem PP B-11
B.1.8 TMS320 Third Parties e B-12
B.2 TMS320 Literature/DSP Hotline/Bulletin Board Services B-13
B.3 Technical Training Organization (TTO) TMS320 Workshops B-14
B.3.1 TMS320C3x Design Workshop ... ovuvin i et e B-14
B.4 TMS320C3x Part Order Information et B-15
B.4.1 Device and Development Support Tool Prefix Designators R-16
B.4.2 Device SUHIXESt e B-18
C Quality and Reliability0...uieeiiiiie it C-1
C.1 Reliability Stress Teststtt e C-2
D Calculation of TMS320C30 Power Dissipationiiiiian.. D-1
D.1 Fundamental Power Dissipation Characteristics ...ttt D-3
D.1.1 Components of Power Supply Current Requirements D-3
D.1.2 Dependenciescoiiiiiiiiii i i e D-3
D.1.3 Determining Algorithm Parntionmg D-5
D.1.4 Test Setup Descriptiont e D-5
D.2 Current Requirement of Internal Circuitry i D-6
D.2.1 QUIESCENT . .o D-6
D.2.2 INternal OPErationSvrre ettt e e e et D-6
D.2.3 Internal Bus Operationsouiniiiiiiii i eiiiianaeaans D-7
D.83 Current Requirement of Qutput Driver Circuitry B . D-10
D.3.1 Primary BUS ... e e ~. D-11
D.3.2 EXpansionBuS ...t e D-14
D.3.3 DataDependenCy e e D-15

Xvii

Contents

D.3.4 Capacitive Load Dependenceuuiiiiiaiiiiiiianennnnn. D-17
D.4 Calculation of Total Supply Current ... et D-19
D.4.1 Combining Supply Current Due to All Components e ‘D-19
D.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies D-20
D.4.3 Design Equation e D-22
D.4.4 Peak Versus Average CUITeNtttt iiiiiiiaaa e, D-23
D.4.5 Thermal Management Considerationscciiiiieeiiiinna.n. D-24
D.5 Example Supply Current Calculationsooiiiiriii i i i D-27
D 5.1 PrOCESSINMG vttt ettt ettt e e e e e D-27
D52 Data Output ..ot e D-27
D 5.3 AVEIAGE . ittt e D-28
D.5.4 Experimental ResURSt e it e D-28
DB UMM A Y ittt ittt ittt s e e D-29
D.7 Photo of IDD for FRT ..ottt et e ettt et i D-30
D.8 FFT Assembly Code ... e ettt D-31
E SMJ320C30 Digital Signal ProcessorDataSheet et E-1
F Quick Reference i e e F-1
F.1 TMS320C30 and TMS320C31 Differencest iiiieeiiiaeia e eennann F-2
F1.1 Data/Program Bus Differencesccoiiiiiiiiiiii i, F-2
F1.2 Serial Port Differencesc.cooiiiia... e F-2
F.1.3 Reserved Memory Locations e F-2
F.1.4 Effects onthe IF and |E Interrupt Registerscoooii i nn, F-3
"F1.5 UserProgram/Data ROMuuiniiii it e F-3
F.1.6 Development Considerationsc.uoueiriiiininiiiiaaneeeenrennnnns F-3
F.2 TMS320C3X ArchiteCtUret et e e e F-4
F.3 CPURegIister File . ..ot e e e ettt F-6
F.3.1 Register Addressingccccoooa... e e e F-6
Fid Memory Maps ..o e F-12
R | 410= ¢ (U] o O F-14
F4.2 Peripheral BUS F-16
Fi4.3 Serial Port ..o e F-23
F.4.4 FSX/DX/CLKX Port Control Register ..., F-27
F.4.5 FSR/DR/CLKR Port Control Register e F-28
F.4.6 Receive/Transmit Timer Control Register ..., F-29
F.4.7 Primary-Bus and Expansion-Bus Control F-31
F.4.8 Primary-Bus Control Register i F-32
F.4.9 Expansion-Bus Control Registerc.iiviiiii i iiiiiiiiiiennnns F-33
. F.4.10 Programmable Bank Switching L F-34
F5 INsStruction Set ..o i e e F-35
F.5.1 INStUCON FOrMaS .. .vutt ettt et e ettt e F-35
F5.2 SUMMAIY ..ot e F-37

xviii

Table of Contents

Figures

3-10
3-11

3-12
3-13
3-14
3-15
41
4-2
4-3
4-4
4-5
4-6

TMS320 Device EVOIUtioNt et e e i e e 1-2
TMS320C3x Block Diagram ...t ittt i ettt et e, el 144
TMS320C3x Block Diagram vvvii ittt e 2-2
Central Processing Unit (CPU)ttt ittt e i et ieiene i 2-4
Memory Organizationooiiiii i i et e e 2-10
TMS320C30 MemMOry Maps . oove ittt it i iee e iae s eiae i eiaenaaaannns 2-12
TMS320C31 Memory Maps .. covnni i ettt ettt ittt 2-13
Peripheral ModUIES i iii it e e e s 2-24
DMA Controller oottt e e et s 2-26
Extended-Precision Register Floating-Point Format............ ..., 3-4
Extended-Precision Register Integer Format ... 3-4
Status Registerocovvieiinann... JR 3-6
CPU/DMA Interrupt Enable Register (IE) ..., 3-8
CPU Interrupt Flag Register (IF) ..o e e e 3-10
VO Flag Register (IOF) .ot ittt e et tenaianaaa s eeaaarannns 3-10
TMS320C30 Memory Maps .. vvviiii ittt i e e e 3-13
TMSB20C31 MeMOrY Maps ... vcve ettt ittt et et et et 3-15
Reset, Interrupt, and Trap Vector Locations e 3-17
Peripheral-Bus Memory Mapot e i 3-18
Instruction Cache Architecture i e 3-19
Address Partitioning for Cache Control Algorithmo i, 3-20
Boot Loader Mode Selection Flowchart o i i 3-23
Boot Loader Memory Load Flowchartt 3-24
Boot Loader Serial Port Load Mode Flowchartt 3-25
Short Integer Format and Sign Extension of ShortIntegert 4-2
Single-Precision Integer Format PRRR et e ittt e 4-2
Short Unsigned-Integer Formatand Zero Fill it 4-3
Single-Precision Unsigned-Integer Format ciiiiiiiiiiiiiieenneann. 4-3
Generic Floating-Point Format ...t ittt i i i e it ieienneeenans 4-4
Short Floating-Point Format o i i i i i e e eianns 4-5
Single-Precision Floating-Point Format e 4-6

Xix

Figures

4-8
4-9
4-10
4-11
4-12
4-13
4-14
5-1
5-2
5-3

5-5
5-6
5-7-

5-9
5-10
5-11
5-12
5-13
5-14
5-15
6—1

6-3
64
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-6

7-8
7-9
7-10

XX

Extended-Precision Floating-Point Format i i, 4-7
Flowchart for Floating-Point Multiplication e e 4-11
Flowchart for Floating-Point Addition ...t i i e i i it e it 4-15
Flowchart for NORM Instruction Operation ...ttt 4-18
Flowchart for Floating-Point Rounding by the RND Instruction 4-21
Flowchart for Floating-Point to Integer Conversion by FIX Instructions 4-23
Flowchart for Integer to Floating-Point Conversion by FLOAT Instructions 4-24
DireCt AdAresSiNg . oo vttt e e e 5-4
Encoding for General AddressingModes ... 5-20
Encoding for Three-Operand AddressingModesccoiiiiiiiinnennenn... 5-21
Encoding for Parallel Addressing Modes e 5-21
Encoding for Long-Immediate AddressingMode ..., 5-23
Encoding for Conditional-Branch AddressingModesot 5-23
Flowchart for Circular Addressingoeiiiir i i it et 5-25
Circular Buffer Implementation i e 5-26
Circular Addressing Example ...l e i e 5-27
Data Structure for FIR Filters S e 5-28
FIR Filter Code Using Circular Addressingovvvei i it 5-28
Bit-Reversed Addressing Examplet e 5-29
System Stack ConfigUration ... oo i e e e 5-30
Implementations of High-to-Low Memory Stacksccvviienireeerinnnn. 5-31
Implementations of Low-to-High Memory Stackscooiiiiiii... 5-32
Repeat-Mode Control Algorithm e e eeees 6-4
CALLResponse Timing ..ot e 6-9
Multiple TMS320C3xs Sharing Global Memory S 6-13
Zero-Logic Interconnect of TMS320C3XS ..ottt ittt i i it enns 6-14
Interrupt Logic Functional Diagramoiiiiiiiiiiiii it iiiie e iieeeeinanns 6-20
IMterTUPE PrOCESSING vttt e e 6-27
Memory-Mapped External Interface Control Registers oo, 7-2
Primary-Bus Control Registert 7-3
Expansion-Bus Control Registert i i s e e e 7-4
Read-Read-Write for (M)STRB =0 ... vvrittt et eee et 7-6
Write-Write-Read for (M)STRB=0 F e 7-7
Use of Wait States for Read for (M)STRB =0coueinerieeieieananannanns. 7-8
Use of Wait States for Write for (M)STRB =0c.iuiinine ettt e, 7-9
Read and Write for TOSTRB = 0ttt et e ettt e et e e ee e e een e 7-10
Read With One Wait State for IOSTRB =0 it e 7-11
Write With One Wait-State for IOSTRB =0evvuiitiiieeeeiiieeiieeeannnnn. 7-12

Table of Contents

Figures

7-11
7-12
7-13
7-14
7-15
7-16
717
7-18
7-19
7-20
7-21
722
7-23
724
7-25
7-26
8-1
82
8-3

8-5
8-6
87
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22

Memory Read and I/0 Write for Expansion Bus oo 7-13
Memory Read and I/O Read for Expansion Busccoiiiiiiiiiiin .. 7-14
Memory Write and I/0O Write for Expansion Bus it 7-15
Memory Write and I/0 Read for Expansion Bus it .. 7-16
I/0 Write and Memory Write for ExpansionBusot 7-17
1/0 Write and Memory Read for ExpansionBuso i, 7-18
I/0 Read and Memory Write for Expansion Bus i it 7-19
I/0 Read and Memory Read for EXpansion BUSevneerrerrninerneennnns. 7-20
1/0 Write and I/0 Read for Expansion Bus L. 7-21
1/0 Write and I/O Write for ExpansionBus i 7-22
/0 Read and I/O Read for Expansion Bus i 7-23
Inactive Bus States for TOSTRBvvvtiiieiiii e, e e 7-24
Inactive Bus States for STRBand MSTRB i 7-25
HOLD and HOLDA Timingoovnviiiinn . e 7-26
BNKCMP EXample ...ttt e 7-29
Bank Switching Example e e 7-30
Timer Block Diagramo e e 8-2
Memory-Mapped Timer LoCationst i i i 8-3
Timer Global-Control Register ... i 8-4
B L= A 3T 11 T 8-7
Timer Output Generation Exampleso i 8-8
Timer I/O Port Configurations e e 8-9
Timer Modes as Defined by CLKSRC and FUNCot 8-10
Serial-Port Block Diagram e e e ... 813
Memory-Mapped Locations forthe Serial Port i 8-14
Serial-Port Global-Control Register e 8-15
FSX/DX/CLKX Port Control Registerottt 8-17
FSR/DR/CLKR Port Control REgiSterouiiitiie i e 8-18
Receive/Transmit Timer Control Register 8-19
Receive/Transmit Timer Counter Registerc.vverienierennennnn. e 8-21
Receive/Transmit Timer Period Register S 8-21
Transmit Buffer Shift Operation .. i e 8-22
Receive Buffer Shift Operation i 8-22
Serial-Port ClockinginI/OMode e 8-23
Serial-Port Clocking in Serial-Port Mode ... 8-24
Data Word Format in HandshakeMode i .. 8-26
Single Zero Sentas an ACKnowledge 8-26
Direct Connection Using HandshakeMode 8-27

xXi

Figures

8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
831
8-32
8-33
8-34
8-35
8-36
8-37
8-38
8-39
8-40
8-41
9-1
9-2
9-3
9-4
9-5
9-6
10—1
11-1
1-2
11-3
11-4
11-5
11-6
1-7
12—1
12-2
12-3
12-4
12-5

XXii

FixedBurstMode b e e et 8-29
Fixed Continuous Mode With Frame Sync e 8-29
Fixed Continuous Mode Without Frame Sync ...t e, 8-30
Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal 8-31
Variable BUrst MOdecoit i e e e 8-32
Variable Continuous Mode With Frame Syncot 8-32
Variable Continuous Mode Without Frame Sync i i, 8-33
TMS320C3x Zero Glue-Logic Interface to TLC3204x Example e 8-35
- TMS320C3x Zero Glue-Logic Interface to Burr Brown A/D and D/A Example 8-36
Memory-Mapped Locations fora DMA Channelo i, 8-39
DMA Global-Control Register ...t i et 8-40
CPU/DMA Interrupt Enable Register ...t it ii e 8-43
Timing and Number of Cycles for DMA Transfers When Destination Is On-Chip 8-45
DMA Timing When Destination Isa Primary Bus o iiiiiiiiinnn.. 8-46
DMA Timing When Destination Is an ExpansionBuso, 8-47
No DMA Synchronizationo e e et ie e et 8-49
DMA Source Synchronization i 8-50
DMA Destination Synchronization s 8-50
DMA Source and Destination Synchronization iiiiiiant. 8-51
TMS320C3x Pipeline Structureoooieie i, e e e e 9-3
Two-Operand Instruction Word o i i e 9-22
Three-Operand InstructionWord F 9-23

Multiply or CPU Operation With a Parallel Store, 9247
Two Parallel Stores ..o e 9-25
Parallel Multiplies and Adds e 9-25
Status Registercoeuveineininaa.. e 10-10
Data Memory Organizationforan FIRFilter i i it 11-53
Data Memory Organizationfora Single Biquad ...ttt 11-55
Data Memory Organizationfor NBiquadscoiiiiiiiiiiiiiiiiiiinnn. 11-58
Data Memory Organization for Matrix-Vector Multiplication 11-64
Structure of the Inverse Lattice Filter i e 11-83
Data Memory Organization for Lattice Filters 11-83
Structure of the (Forward) Lattice Filter i i 11-86
External Interfaces onthe TMS320C3Xottt e et e e 12-2
Possible System Configurationsttt e e e 12-3
TMS320C3x Interface to Cypress Semiconductor CY7C186 CMOS SRAM 12-5
Read Operations TIMING e et e, 12-6
Write Operations Timing i e 12-7
Table of Contents

Figures

12-6
127
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12—-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
13~1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13—-12
© 1313
13-14
13-15
13-16
13-17
13-18
13-19

Circuit for Generation of 0, 1, or 2 Wait States for Multiple Devices 12-11
Bank Switching for Cypress Semiconductor's CY7C185 ... 12-13
~Bank Memory Control LOGICottt e 12-15
Timing for Read Operations Using Bank Switchingol 12-17
Interface to AD1678 A/D Convertero i 12-19
Read Operations Timing Between the TMS320C30 and AD1678 12-21
Interface Between the TMS320C30 and the AD565A it 12-23
Write Operation to the D/A Converter Timing Diagramt 12-24
Crystal Oscillator CirCUItt et et e e 12-25
Magnitude of the Impédance of the Oscillator LC Networko, 12-26
Reset CilCUIt - . et e e e s 12-27
Voltage on the TMS320C30 Reset Pinot e e 12-28
AIC 10 TMS320C30 INterface ..o v ittt e e e eeaes 12-31
Synchronous Timing of TLC32044 t0 TMS320C3X . ..t v i i i 12-33
Asynchronous Timing of TLC32044 to TMS320C30 ..., 12-33
12-PinHeader Signals vt e e e e 12-34
Typical Setup for Using the Emulation Connection of the XDS1000 12-35
Installation Overview e e e e e 12-37
Analysis Subsystem Pod/Connector Dimensionsot 12-40
TMS320C30 Pinout (Top VIeW) e P 13-2
TMS320C30 Pinout (Bottom View) 13-3
- TMS320C31 Pinout (TOP VIBW) . vttt et e e e et et e e e e e 13-6
TMS320C30 181-Pin PGADIMENSIONS .. oottt i e 13-15
TMS320C31 132-Pin PlasticQuad FlatPack ittt 13-16
Test Load CirCUItot e e et 13-18
TTL-Level OUIPULS ..ot e e e e ettt e 13-19
TTL-Level Inputs U 13-19
Timing for X2/CLKIN et 13-20
Timing for HI/H3 ..o, e 13-20
Timing for Memory ((M)STRB =0) Readcuvuirreeiaeaeeieaaaennn. 13-22
Timing for Memory ((M)STRB = 0) WIHteot e et e eeieiaean 13-23
Timing for Memory (IOSTRB=0) Readcoiiiiiiiiiiiniiiinn.n. 13-25
Timing for Memory (10STRB = 0) Writeiuire it eeaaean 13-26
Timing for XFO and XF1 When Exécuting LDFlorLDH ... 13-27
Timing for XFO When Executinga STFlor STH it -13-28
Timing for XFO and XF1 When Executing SIGH i it 13-29
Timing for Loading XF Register When Configured as an Output Pin 13-30
Timing for Change of XF from Outputto InputModeot 13-31

Figures

13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30
13-31
13-32
B-1
B-2
B-3
B—4
B-5
D—1
D-2
D-3
D—4
D-5
D-6

D-7
D-8
D-9
D-10
D-11
D12
D-13
F—1
F-2
F-3
F—4
F-5
F-6
F-7

XXiv

Timing for Change of XF From Input to QuiputMode e 13-32
TIMING fOr RESET ..\ttt ettt e e e e 13-34
CLKIN to H1/H3 as a Function of Temperaturettt ininann.. 13-35
Timing for SHZ Pinvni e e 13-36
Timing for INT3—INTO RESPONSEeuvreitee i eeeet e eeaeaennn, e, 13-37
TIMING fOr TACK . ettt et et et e e e e e e e e 13-39
Timing for Fixed DataRate Mode e e et 13-40
Timing for Variable Data Rate Mode ... it e e 13—4}1
Timing for HOLD/HOLDAcovvvn.... P 13-45
Timing for Peripheral Pin General-Purpose /O e 13-47

Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode ... 13-48
Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode ... 13-49

Timing for Timer Pin ... e 13-50
TMS320C3x Development Environmentoiiii i it ie e B-1
TMS320C3x Simulator User Interface ... i B-6
Internal SPOX Architecture e B-7
Multiprocessing EMUIationttt i e B-9
TMS320 Device Nomenclature e e e e eens B-18
Current Measurement Test SetUP - oo ie i D-5
Internal Bus Current Versus Transfer Rate D-8 -
Internal Bus Current Versus Data Complexity Derating Curve D-9
Primary Bus Current Versus Transfer Rate and WaitStatesc..... D-12
Primary Bus Current Versus Transfer Rate at Zero Wait States D-13
Expansion Bus Current Versus Transfer Rate and Wait States P D-13
Expansion Bus Current Versus Transfer Rate at Zero Wait States D-15
Primary Bus Current Versus Data Complexity Derating Curve S D-16
Expansion Bus Current Versus Data Complexity Derating Curve D-17
Current Versus Output Load CapacitanCeccueerenrorerenineaneananenn. D-18
Current Versus Frequency and Supply Voltage ...t D-21
Current Versus Operating Temperature Change oot D-21
o= To K O8] €Y 1 - D-24
TMS320C3X BIoCK Diagram . ..ottt i et e e i e e F-4
TMS320C3X BIOCK DIaQram ...ttt et e e et F-5
Extended-Precision Register Floating-Point Formatccooiiiiiiiinann.. F-7
Extended-Precision Register IntegerFormat i F-7
Data-Page Pointer (DP) Register Formato s F-7
Index Register (IRX) FOrmatt e F-7

Block-Size (BK) Register Format e F-7

Table of Contents

Figures

F-8
F-9
F-10
F-11
F-12
F-13
F-14
F-15
F-16
F=17
F-18
F-19
F-20
F-21
F—22
F—23
F—24
F-25
F-26
F-27
F-28

Statls Register .. o e F-8
CPU/DMA Interrupt Enable Register (IE}o F-9
CPU Interrupt Flag Register (IF) i F-10
/0 Flag Redister (IOF)t et e e e e e F-11
TMS320C30 MeMOIY MapsS ..o i vt ittt et et e et et et F-12
TMS320C31 MemOry Maps ..ot et et e e e F-13
Reset, Interrupt, and Trap Vector Locations ..., F-14
Reset, Interrupt, and Trap Vector Format e F-15
Peripheral-Bus Memory-Map Registers e e e F-16
Memory-Mapped Locations fora DMA Channel oo, F-17
DMA Giobal-Control Register Format e e F-18
Memory-Mapped Timer Locations ...t e F-20
Timer Global-Control Registert e et F-21
Memory-Mapped Serial-Port Locations ..., F-23
Serial-Port Global-Control Register Formatot F-24
FSX/DX/CLKX Port Control Registerooiiiii i F-27
FSR/DR/CLKR Port Control Register iieeen F-28
Receive/Transmit Timer Control Register. ... i F-29
Memory-Mapped External Interface Control Registers e F-31
Primary-Bus Control Register i e F-32
Expansion-Bus Control Register i e F-38

XXV

Tables

1-1
21
2-2
2-3
31
3-2

34
3-5
3-6
3-7
3-8
3-9
51
5-2
5-3

6-2
6-3
6-4
7-1
7-2
7-3
7-4

7-6
7-7
8—1
8-2
8-3

XXVi

Typical Applications of the TMS320 Family, 1-7
CPU RegiS Ol o .ottt e it i et e e 2-6
Instruction SetSummaryo i [2-15
Parallel Instruction Set SUMMaryottt i e e 2-20
CPU REgIStOrS . oottt e e e e e e e 3-3
Status Register Bits SUMMAry ... e 3-7
IE Register Bits SUMmMary ... e e 3-9
IF Register Bits SUMMAryt e e et aas 3-10
IOF Register Bits SUMMaAIY . ..ot i it et et e aae e eee e 3-11
Combined Effect of the CEand CF Bits ...ttt 3-22
Loader Mode Selection e 3-26
External Memory Loader Header i 3-26
TMS320C31 Interrupt and Trap Memory Mapsoovviiii i 3-30
CPU Register/Assembler Syntax and Function o i 5-3
INAIreCt AdArESSINg . .ot iv et e e 5-6
Index Steps and Bit-Reversed Addressing B 5-29
Repeat-Mode Registers ... e 6-2
INterlocked OPErationSvr ettt e et e e e e 6-10
Pin Operation at Resett e 6-16
Reset and interrupt Vector Locations i e 6-25
Primary-Bus Control Register Bits Sum‘mary 7-3
Expansion-Bus Control Register Bits Summary ...t 7-4
Wait-State Generation When SWW = 00 ...t 7-28
Wait-State Generation When SWW =01 i, 7-28
Wait-State Generation When SWW =10 7-28 .
Wait-State Generation When SWW =11 i . 7-28
BNKCMP and Bank Sizet e 7-29
Timer Global-Control Register Bits Summary ..., 8-4
Result of a Write of Specified Values of GOand HLDoivireininnennnn., 8-5
Serial-Port Global-Control Register Bits Summary o i, 8-15

- Table of Contents

Tables

84
8-5
8-6
8-7
8-8
8-9-
8-10
8-11
8-12
8-13
8-14
9-1
9-2
10-1
102
10-3
104
10-5
10-6
10-7
10-8
10-9
10-10

11-1 .

121
12-2
12-3
12-4
12-5
131
13-2
13-3
13-4
13-5
13-6
137
13-8

FSX/DX/CLKX Port Control Register Bits Summaryiiiiiiiiin.... 8-17
FSR/DR/CLKR Port Control Register Bits Summaryccoiiiiiieen.en. 8-18
Receive/Transmit Timer Control Register. ... e, 8-19
DMA Global-Control Register Bitscoiiiiiiiiiiii it it ieeaeens 8-40
START Bits and Operation of the DMA (BitS 0—1)ot 8-41
STAT Bits and Status of the DMA (Bits2-3)coiiiiiiiiiiii i 8-41
- SYNC Bits and Synchronization of the DMA (Bits 8-9) i, 8-41
CPU/DMA Interrupt Enable Register Bits . ..ot 8-43
Maximum DMA Transfer Rates WhenCr=Cw=0cciiiiiiiiinennnnn. 8-48
Maximum DMA Transfer Rates WhenCr=1,Cw=0cciiiiiiiiiniiinnn.. 8-48
Maximum DMA Transfer Rates WhenCr=1,Cw=1 i iiiiiiiiiiinnnnn. 8-48
One Program Fetch and One Data Access for Maximum Performance 9-19
One Program Fetch and Two Data Accesses for Maximum Performance 9-20
Load-and-Store INStructionscouuniein ittt ittt reeannns 10-3
Two-Operand INStrUCHiONS . ..o oot e it e i s 10-4
Three-Operand INStrUCtioNS i e 10-5
Program Control Instructions, e 10-6
Interlocked Operations Instructionsot 10-6
Parallel Instructions i e et e 10-7
Output Value Formatsttt e it it iiinans 10-9
Condition Codes and Flagst i it i e ettt e 10-11
Instruction Symbolso e e 10-12
CPU Register SyMaXx ..o ii ittt it eia e et cetaninensaeannns 10-15
TMS320C3x FFT Timing Benchmarks it 11-82
Bank Switching Interface TImMingcvvviervuneennnn.. R 12-17
Key Timing Parameter for D/A Converter Write Operation 12-24
Signal DesCriplioN . .. v i e i 12-34
Feature Set CompParisonttt ittt e 12-41
TMS320C31 Reserved Memory Locationsc.oviiinnninn e, 12-42
TMS320C30 Pin Assignments(by Function) (Figure 13—1 and Figure 13-2) 13-4 -
TMS320C30 Pin Assignments(Alphabetical) (Figure 13~1 and Figure 13-2) 13-5
TMS320C31 Pin Assignments (Alphabetical) (Figure 13-3) ...t 13-7
TMS320C31 Pin Assignments (Numerical) (Figure 13-3)vvivriieneineeneinnns 13-8
TMS320C30 Signal Descriptionst e 13-9
TMS320C31 Signal Descriptionsccvvviiiiri et 13-12
Absolute Maximum Ratings Over Specified Temperature Range 13-17
Recommended Operating Conditionscoviiiiiiiiiin it iiiirieeerennes 13-17

Tables

13-9
13-10
13-11

13-12

13-13
13-14
13-15
13-16
13-17

13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27

13-28

13-29

XXviii

Electrical Characteristics Over Specified Free-Air Temperature Range 13-18
Timing Parameters for CLKIN, H1, and H3 (Figure 13-9 and Figure 13—-10) 13-21
Timing Parameters for a Memory ((M)STRB) = 0) Read/Write
(Figure 13—11 and Figure 13—12) i 13-23
Timing Parameters for a Memory (IOSTRB = 0) Read
(Figure 13—13 and Figure 13—14) i i i 13-25
Timing Parameters for a Memory (IOSTRB = 0) Write (Figure 13-14) 13-26
Timing Parameters for XFO and XF1 When Executing LDFI or LDII (Figure 13—15) ... 13-27
Timing Parameters for XFO When Executing STFI or STII (Figure 13-16) 13-28
Timing Parameters for XF0 and XF1 When Executing SIGI (Figure 13—-17) 13-29
Timing Parameters for Loading XF Register When Configured as an Qutput Pin
(Figure 18—18) ..ot i i i e e e e 13-30
Timing Parameters of XF Changing From Output to Input Mode (Figure 13—19) 13-31
Timing Parameters of XF Changing From Input to Output Mode (Figure 13-20) 13-32
Timing Parameters for RESET (Figure 13-21)iviiiiiii i, 13-35
Timing Parameters for SHZ Pin (Figure 13-23) e 13-36
Timing Parameters for INT3—INTO (Figure 13-24)coviririiirireneannannn. 13-37
Timing Parameters for TACK (Figure 13=25)ouirniniii i iaeeianeennn. 13-39
Serial Port Timing Parameters (Figure 13-26 and Figure 13-27) 13-42
Timing Parameters for HOLD/HOLDA (Figure 13-28)iviuirininenannnns 13-46
Timing Parameters for Peripheral Pin General-Purpose 1/O (Figure 13-29) 13-47
Timing Parameters for Peripheral Pin Changing From General-Purpose Output
to Input Mode (Figure 13-80)iiiir i e e et i 13-48
Timing Parameters for Peripheral Pin Changing From Generai-Purpose Input
to Qutput Mode (Figure 13=81) e et e ... 13-49
Timing Parameters for Timer Pin (Figure 13-32)o e 13-50 .
TMS320C3x Instruction Opcodesvov et ee e A-1
TMS320C3x Digital Signal Processor Part Number ..., B-15
TMS320C3x Support Tool Part NUMDEISu et e B-15
Microprocessor and Microcontroller TestScvviin it i e C-5
TMS 3200 3X TranSiStOrS . .ot i ettt et et e i C-6
Current Equation Symbols e e e D-23
Feature Set CompaniSonttt e et e e e F-2
TMS320C31 Reserved Memory Locationso F-3
CPU Register/Assembler Syntax and Function e F-6
BNKCMP and Bank Size ...ttt e e it et eeiaaeae s F-34 -
IndireCt AdAressiNg . ..o ovit i e e e e F-35
INStruction Set SUMMAIY e e e F-37
Parallel Instruction Set Summary i e F-42
Table of Contents

Examples

3—1
3-2
3-3
4—1
4-2
4-3
4-4
4-5
4-6.

4-8
4-9
4-10
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17

Byte-Wide Configured Memoryo et i 3-27
16-Bit Wide Configured Memoryt et e 3-27
32-Bit Wide Configured MEmMOIY . ..o e 3-28
Floating-Point Multiply (Both Mantissas =—2.0)o . 4-12
Floating-Point Multiply (Both Mantissas =1.5) i it 4-12
Floating-Point Multiply (Both Mantissas =1.0) it 4-13
Floating-Point Multiply Between Positive and Negative Numbers 4-13
Floating-Point Multiply by Zero oo 4-13
Floating-Point Additiono ot e e 4-16
Floating-Point Subtraction ... i 4-16
Floating-Point Addition With a 32-Bit Shift i 4-17
Floating-Point Addition/Subtractionand Zero i, 4-17
NORM INStrUCHON . ..o o e e 4-19
Direct Addressingcooiiiiiiiiiina o e 5-4
Auxiliary Register IndireCt e 5-8
Indirect With Predisplacement Add i 5-8
Indirect With Predisplacement Subtract i i 5-9
Indirect With Predisplacement Add and Modify i, 5-9
Indirect With Predisplacement Subtract and Modify oo it 5-10
Indirect With Postdisplacement Add and Modifyot 5-10
Indirect With Postdisplacement Subtract and Modify 5-11
Indirect With Postdisplacement Add and Circular Modify oot 5-11
Indirect With Postdisplacement Subtract and Circular Modify 5-12
Indirect With Preindex Add i e 5-12
Indirect With Preindex Subtractc.. i 5-13
indirect With Preindex Add and Modify 5-13
Indirect With Preindex Subtract and Modifyo ... e 5-14
Indirect With Postindex Add and Modify i i 5-14
Indirect With Postindex Subtractand Modifyo 5-15
indirect With Postindex Add and Circular Modifyo it 5-15

Examples

5-18
5-19
5-20
5-21
5-22
6-1
62
6-3
6-4
6-5
6-6
6-7
6-8
6-9
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
111
11-2
11-3
14
11-5
11-6
1-7

XXX

Indirect With Postindex Subtract and Circular Modify oo, 5-16
Indirect With Postindex Add and Bit-Reversed Modify oot 5-16
Short-lmmediate Addressing i 5-17
Long-Immediate Addressingcooiiiiii i e 5-17
PC-Relative Addressingoo i e e 5-18
RPTB Operation ... e et e e 6-5
Incorrectly Placed Standard BranChvn et e 6-6
Incorrectly Placed Delayed Branch i 6-6
Incorrectly Placed Delayed Branches ... vt 6-7
BUSY-Waiting LoOp .. vvt it it i e e e e 6-12
Multiprocessor Counter Manipulation ...t ittt 6-12
Implementation of V(S)couuniri e e 6-14
Implementation of P(S) i i e e 6-14
Code to Synchronize Two TMS320C3xs at the Software Level e 6-15
Standard BranCh e 9-5
Delayed BranCh e e e 9-6
Write to an AR Followed by an AR for Address Generation 9-7
A Read of ARs Followed by ARs for Address Generationc.cveveinn. 9-8
Program Wait Until CPU Data Access Completescoviiiiiiiiiiinennnn. .. 9-10
Program Wait Due to Multicycle ACCESS . ..o vv it e e 9-11
Multicycle Program Memory Fetches e 9-11
Single Store Followed by Two Reads e 9-12
Parallel Store Followed by Single Read o i, 9-13
interlocked Load e 9-14
Busy External Port e e e e 9-15
Multicycle Data Readsvviiiii i it e et et et 9-16
Conditional Calls @nd TraPs - v« vt et e e e et e et eeraaae e 9-16

Address Generation Update of an AR Followed by an AR for Address Generation 9-17
Write to an AR Followed by an AR for Address Generation Without a Pipeline Conflict . 9-18

Write to DP Followed by a Direct Memory Road Without a Pipeline Conflict 9-18
TMS320C3x Processor Initializationcccoiiiiiiiine it 11-4
Subroutine Call (Dot Product) e e 11-8
Use of Interrupts for Software Polling it 11-10
Context-Save for the TMS320C3X ..o\ iiii ittt i e e 11-12
Context-Restore for the TMSB320C 38X . . o it it e ieieenns 11-13
Interrupt Service Routine ... i e 11-14
~Delayed Branch Execution i e 11-15
Table of Contents

Examples

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36

11-37 .

11-38
11-39
11-40

Loop Using Block Repeat 11-17
Use of Block Repeatto Finda Maximum i, 11-18
Loop Using Single Repeatttt e 11-19
Computed GOTO ..ot i i e et e e e 11-20
Use of TSTB for Software-Controlled Interrupt i, 11-21
Copy a Bit From One Locationto Anothert 11-22
Block Move Under Program Control, e 11-23
Bit-Reversed Addressingo ottt i e e 11-24
L E =T [T gl 1 1771 o 11-26
Inverse of a Floating-Point Number it 11-29
Square Root of a Floating-Point Numbero i i 11-32
B4-Bit Addition i e e 11-35
B4-Bit SUDIraCtioNot e 11-35
32-Bit by 32-Bit Multiplication 11-36
IEEE toTMS320C3x Conversion (Fast Version)oiiiiiiiineiennnnn. 11-40
IEEE to TMS320C3x Conversion (Complete Version) e 11-42
TMS320C3x to IEEE Conversion (Fast VErsion)o.virvriereneinennenn... 11-45
TMS320C3x to IEEE Conversion (Complete Version)oioe.... 11-46
U-Law ComPressioNn et e e 11-49
H-Law EXPansion ... e 11-50
A-Law ComPresSSION . ..o ottt e e e e 11-51
A-Law EXpansion ...t e e 11252
1 1= PP 11-54
HR Filter (ON€ BIGUA) - . . .« v v e ettt e e e e e e e e 11-56
IIRFilters (N> 1 BIiguads) vvtt ittt ittt e eaens 11-59
Adaptive FIR Filter (LMS Algorithm) 11-62
Matrix Times a Vector Multiplicationo i, 11-65
Complex, Radix-2, DIF FFTt 11-68
Table With Twiddle Factors for a 64-Point FFTcoiiein.... P 11-71
Complex, Radix-4, DIFFFTcc...... T 11-73
Real, Radix-2 FFT ..o i i et 11-79
Inverse Lattice Filter oou e e 11-84
Lattice Filter ... e 11-86

XXXi

XXXii Table of Contents

Introduction

Introduction

Chapter 1

introduction

The TMS320C3x generation of digital signal processors (DSPs) are high-per-
formance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip digital signal processors. Since 1982, when the TMS32010 was in-
troduced, the TMS320 family, with its powerful instruction sets, high-speed
number-crunching capabilities, and innovative architectures, established itself
as the industry standard and is ideal for DSP applications.

The TMS320 family consists of five generations: TMS320C1x, TMS320C2x,
TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1—1). The expansion
includes enhancements of earlier generations and more powerful new genera-
tions of digital signal processors.

1-1

Introduction

Figure 1-1. TMS320 Device Evolution

TMS320C40 .
TMS320C40-40 .

Wt
n,

L,
i,

TMS320C5x

moZp=23V0TIMT

TMS320C50
TMS320C51

",
,

TMS320C25
TMS320E25
TMS320C25-33
TMS320C25-50
e TMS320C26
Cisszon)
TMS320C10
TMS320C10-14/-25
TMS320C14
TMS320E14/P14
TMS320C15/L.C15
TMS320E15/P15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C17/LC17
TMS320E17/P17

woormETwnwoT=2

GENERATION

e
ﬁ Fixed-Point Generations Floating-Point Generations

The 50-ns cycle time of the TMS320C30-40 allows it to execute operations at
aperformance rate (up to 40 MFLOPS and 20 MIPS) previously available only
on a supercomputer. The generation’s performance is further enhanced

“ through its large on-chip memories, concurrent DMA controller, two external
interface ports, and instruction cache.

This chapter presents the following major topics:
L Processor General Description (Section 1.1 on page 1-3)

[Key Features (TMS320C30—Section 1.2 on page 1-5, TMS320C31 —
Section 1.3 on page 1-6)

(X Typical Applications (Section 1.4 on page 1-7)

Introduction

General Description

1.1 General Description

The TMS320's internal busing and special digital signal processing (DSP) in-
struction set have the speed and flexibility to execute up to 50 MFLOPS (million
floating-point operations per second). The TMS320 family optimizes speed by
implementing functions in hardware that other processors implement through
software or microcode. This hardware-intensive approach provides power pre-
viously unavailable on a single chip.

The emphasis on total system cost has resulted in a less expensive processor
that can be designed into systems currently using costly bit-slice processors.
Also, cost/performance selection is provided by the different processors in the
TMS320C3x line: '

TMS320C30: 60-ns single-cycle execution-time
TMS320C30-27: Lower-cost, 74-ns single-cycle execution time
TMS320C30-40: Higher speed, 50-ns single-cycle execution time
TMS320C31: Low cost, 60-ns single-cycle execution time
TMS320C31-27: Lower cost, 74-ns single-cycle execution time

Qo000

All of these processors are described in this user’s guide. Essentially, their
functionality is the same. However, electrical and timing characteristics vary
(described in Chapter 13); part numbering information is found in Section B.4
on page B-15. Throughout this book, TMS320C3x is used to refer to the
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and
TMS320C31 are used to refer to all speed variants of those processors where
that is appropriate. Special references, such as TMS320C30-40, are used to
note any specific exceptions.

The TMS320C30 and TMS320C31 can perform parallel multiply and ALU op-
erations on integer or floating-point data in a single cycle. The processor also
possesses a general-purpose register file, program cache, dedicated auxiliary
register arithmetic units (ARAU), internal dual-access memories, one DMA
channel supporting concurrent 1/0, and a short machine-cycle time. High per-
formance and ease of use are products of those features.

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait
states, two external interface ports (one on the TMS320C31), two timers, two
serial ports (one on the TMS320C31), and multiple interrupt structure. The
TMS320C3x supports a wide variety of system applications from host proces-
sor to dedicated coprocessor.

High-level language is more easily implemented through a register-based ar-
chitecture, large address space, powerful addressing modes, flexible mstruc-
tion set, and well-supported floatmg point arithmetic.

Figure 1-2 is a functional block diagram that shows the interrelationships be-
tween the various TMS320C3x key components.

1-3

TMS320C31 Key Features

Figure 1-2. TMS320C3x Block Diagram

14

Program
Cache

(64 x 32)

RAM Block 0
(1K x 32)

RAM Block 1
(1K x 32)

U

g U U g

T 0

8 Auxiliary Registers

12 Control Registers

Available on
TMS320C30,

TMS320C30-27 and

TMS320C30-40

@ Data Buses II
CPU DMA
Integer/ Integer/ Address Generators
Floating-Point Floating-Point
Multiplier ALU Control Registers
5 8 Extended-Precision
3 Registers
€
3 Address Address
Generator 0 Generator 1

Timer 0

Peripheral Bus

Timer 1

—

Introduction

TMS320C30 Key Features

1.2 TMS320C30 Key Features
Some key features of the TMS320C30 are listed below.

.

Ll d 0O 000 O O0o0d0dQ0o0o04d

Performance
1) TMS320C30

B 60-ns single cycle instruction execution time
B 33.3 MFLOPS (million floating-point operations per second)
H 16.7 MIPS (million instructions per second)

2) TMS320C30-27

B 74-ns single cycle instruction execution time
m 27 MFLOPS
13.5 MIPS

3) TMS320C30-40

B 50-ns single cycle instruction execution time
40 MFLOPS
B 20 MIPS
One 4K x 32-bit single-cycle dual-access on-chip ROM block
Two 1K x 32-bit single-cycle dual-access on-chip RAM blocks
64 x 32-bit instruction cache
32-bit instruction and data words, 24-bit addresses
40/32-bit floating-point/integer multiplier and ALU
32-bit barrel shifter
Eight extended-precision registers (accumulators)

Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

On-chip direct memory access (DMA) controller for concurrent /O and
CPU operation

Integer, floating-point, and logical operations

Two- and three-operand instructions

Parallel ALU and multiplier instructions in a single cycle
Block repeat capability

Zero-overhead loops with single-cycle branches
Conditional calls and returns

Interlocked instructions for multiprocessing support
Two 32-bit data buses (24- and 13-bit address)

Two serial ports to support 8/16/24/32-bit transfers
Two 32-bit timers ‘
Two-general-purpose external flags, four external interrupts
181-pin grid array (PGA) package; 1-um CMOS

TMS320C31 Key Features

1.3 TMS320C31 Key Features

(M M W

1-6

The TMS320C31 and TMS320C31-27 devices are low-cost 32-bit DSPs that
offer the advantages of a floating-point processor and ease of use. These de-
vices are object-code compatible with the TMS320C30. The devices are func-
tionally equivalent and differ only in their respective electrical and timing char-
acteristics. Chapter 13 describes these differences in detail.

TMS320C31 features are identical to those of the TMS320C30 device, except
that the TMS320C31 uses a subset of the TMS320C30's standard peripheral
and memory interfaces—thus maintaining the TMS320C30 core CPU
33-MFLOP performance while providing the cost advantages associated with
132-pin plastic quad flat pack (PQFP) packaging.

The TMS320C31-27 is a slower speed, pin and object-code compatible ver-
sion of the TMS320C31. It delivers 27 MFLOPS (million floating-point opera-
tions per second) and runs at 27 MHz. The reduced speed allows you to realize
an immediate system cost reduction by using slower off-chip memories and a
lower cost processor.

Some key features of the TMS320C31, incl‘uding those which differentiate it
from the TMS320C30, are summarized as follows:

d Performance
B TMS320C31

® 60-ns single-cycle instruction execution time
= 33.3 MFLOPS
» 16.7 MIPS (million instructions per second)

® TMS320C31-27

m 74-ns single-cycle instruction execution time
= 27 MFLOPS
= 13.5MIPS

Flexible boot program loader
One serial port to support 8/16/24/32-bit transfers
- One 32-bit data bus (24-bit address) |

132-pin plastic quad flat pack (PQFP) package, .8 um CMOS

Introduction

Typical Applications

1.4 Typical Applications

The TMS320 family’s versatility, realtime performance, and multiple functions
offer flexible design approaches in a variety of applications, which are shown

in Table 1--1.

Table 1-1. Typical Applications of the TMS320 Family

" General-Purpose DSP

Graphics/imaging

Instrumentation

Digital Filtering
Convolution

Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Transformations Rendering
Robot Vision

Image Transmission/Compression

Pattern Recognition
Image Enhancement -
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Voice/Speech Control Military
Voice Mail Disk Control Secure Communications
Speech Vocoding Servo Control Radar Processing
Speech Recognition Raobot Control Sonar Processing

Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech
Neural Networks

Laser Printer Control
Engine Control
Motor Control
Kalman Filtering

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems
Sensor Fusion)

Telecommunications

Automotive

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX

Cellular Telephones

Speaker Phones

Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

1200- to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
Consumer Industrial Medical

Radar Detectors Robotics Hearing Aids

Power Tools Numeric Control Patient Monitoring

Digital Audio/TV

Music Synthesizer

Toys and Games

Solid-State Answering
Machines

Security Access
Power Line Monitors
Visual Inspection
Lathe Control

CAM

Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

MR Imaging

1-7

1-8

Introduction

Architectural Overview

cessor Data Sheet

Architectural Overview

Chapter 2

Architectural Overview

The TMS320C3x architecture (shown in Figure 2—1) responds to system
demands that are based on sophisticated arithmetic algorithms and which em-
phasize both hardware and software solutions. High performance is achieved
through the precision and wide dynamic range of the floating-point units, large
on-chip memory, a high degree of parallelism, and the DMA controller.

Maijor areas of discussion are listed below. \

3 Central Processing Unit (CPU) (Section 2.1 on page 2-3)
B Floating-point/integer multiplier

ALU for floating-point, integer, and logical operations

32-bit barrel shifter

Internal buses (CPU1/CPU2 and REG1/REG2)

Aucxiliary register arithmetic units (ARAUSs)

CPU register file

Ld Memory Organization (Section 2.2 on page 2-9)
B RAM, ROM, and cache
B Memory maps
B Memory addressing modes

B Instruction set summary

Li Internal Bus Operation (Section 2.3 on page 2-22)

]

External Bus Operation (Section 2.4 on page 2-23)

(W

Peripherals (Section 2.5 on page 2-24)

B Timers

B Serial ports

L Direct Memory Access (DMA) (Section 2.6 on page 2-26)
[d System Integration (Section 2.7 on page 2-27)

Architectural Overview

Figure 2-1. TMS320C3x Block Diagram

RDY
HOLD
HOLDA
STRB
RW
D31-D0
A23-A0

CACHE
(64 X 32)

RAM RAM o ROM
Block 0 Block 1 " BIGER
(1K X 32) (1K X 32) AR @)
W

DMA Controller

b XD31-XDO

b XA12-XA0

Serial Port 0

RESET —¥]
INT3-0 —;
IACK 4—|
MC/MP —;
XF(1,0)4-»
VpD(3-0)—»,
10DVpp(1.0)—»
ADVpD(1,0) —J
PDVpp—¥]
DDVpp(1,0) —»
MOVpp —¥
Vss(3-0) —¥
DVgg(3-0) —¥;
CVgs(1,0)—»
Vg —¥]
VBBP4—
SUBS —»
X14—
X2/CLKIN —»]
Hi<e—]

H34—

EMUG-0 4-9]
RSV10-04-»;

DIMrrODBAZ00

Global Control

.Register

Port Control
Register

*| Source Address

Register

R/X Timer
Register

Destination

Address
Register

Data Transmit
Register

Transfer
Counter
Register

Data Receive
Register

FSX0
DX0
CLKX0
FSRO
DRO
CLKRO

+Sefial Rt .

32-Bit
Barrel
Shifter

20 .[ALY

40 0

Multiplier

Extended | L¢
Precision
Registers
(R7-R0) [§€

o 4o
o

2-2

Available on

4
Auxiliary 4

Registers ‘
(ARO-AR7) | fa—

Other 32
Registers | J4—
(12)

TMS320C30
TMS320C30-27, and
TM320C30-40

40

..-"'I .“"y. Kﬁegig r‘ly,..v y'"'" ‘

0
o

Oala Transmip” s
et Registern o

o
! :

'I.,.,n":pﬁga"fﬁé'};efye"jl.,..‘w
o Regstar

FSX1
DX1
CLKX1
FSR1
DR1
CLKR1

Timer 0

Global Control
Register

Timer Period
Register

Timer Counter
Register

T» TCLKO

Timer 1

Global Control
Register

Timer Period
Register

Timer Counter
Register

& TCLK1

Port Contro!

Primary

Expansion

Architectural Overview

Central Processing Unit (CPU)

2.1 Central Processing Unit (CPU)

The TMS320C3x has a register-based CPU architecture. The CPU consists
of the following components:

.
.

(M N W

Floating-point/integer multiplier

ALU for performing arithmetic: floating-point, integer, and logical opera-
tions

32-bit barrel shifter
Internal buses (CPU1/CPU2 and REG1/REG2)
Aucxiliary register arithmetic units (ARAUSs)

CPU register file

Figure 2—2 shows the various CPU components that are discussed in the
succeeding subsections.

2-3

Central Processing Unit (CPU)

Figure 2-2. Central Processing Unit (CPU)

o IR c R| R
ol lp P E| [E 32-Bit Barrel
% U G| |G Multiplier Shifter
Dl 1 1] |2
11 |2 i - ALU
1 40 a0
140
v Extended 140
Precision
Registers
32, || (Ro-R7) |2

| ‘Disp, IR0, IR1 |
\AFAD /ey \AFAT /

24
Auxiliary N
Registers 24
(AR0-AR7) 32

Other
Registers
(12)

* Disp = an 8-bit integer displacement carried in a program control instruction

2.4 Architectural Overview

Central Processing Unit (CPU)

211

Multiplier

The multiplier performs single-cycle multiplications on 24-bitinteger and 32-bit
floating-point values. The TMS320C3x implementation of floating-point arith-
metic allows for floating-point operations at fixed-point speeds via a 50-ns in-
struction cycle and a high degree of parallelism. To gain even higher through-
put, you can use parallel instructions to perform a multiply and ALU operation
in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 40-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-bit result. Refer to Chapter 4 for detailed information on data formats and
floating-point operation.

2.1.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and
40-bit floating-point data, including single-cycle integer and floating-point con-
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right
in a single cycle. Refer to Chapter 4 for detailed information on data formats
and floating-point operation.

' Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from

memory and two operands from the register file, thus allowing parallel multi-
plies and adds/subtracts on four integer or floating-paint operands in a single
cycle.

2.1.3 Auxiliary Register Arithmetic Units (ARAUS) ’

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IR0
and IR1), and circular and bit-reversed addressing. Refer to Chapter 5 for a
description of addressing modes.

2.1.4 CPU Register File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupledto the CPU. All of these registers can be operated upon by the multipli-
erand ALU, and can be used as general-purpose registers. However, the reg-
isters also have some special functions. For example, the eight extended-pre-
cision registers are especially suited for maintaining extended-precision float-
ing-point results. The eight auxiliary registers support a variety of indirect ad-
dressing modes and can be used as general-purpose 32-bitinteger and logical

2-5

Central Processing Unit (CPU)

Table 2-1. CPU Registers

registers. The remaining registers provide system functions such as address-
ing, stack management, processor status, interrupts, and block repeat. Refer
to Chapter 6 for detailed information and examples of stack management and
register usage.

The register names and assigned functions are listed in Table 2—1. Following
the table, the function of each register or group of registers is briefly described.
Refer to Chapter 3 for detailed information on each of the CPU registers.

Register Assigned Function
Name
RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 . Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
Ré Extended-precision register 6
R7 Extended-precision register 7
ARO Auxiliary register 0
AR1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
AR5 Auxiliary register 5
AR6 Auxiliary register 6
AR7 Auxiliary register 7
DP Data-page pointer
1RO Index register 0
IR1 Index register 1
BK Block size
SP System stack pointer
ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags
IOF 1/0 flags
RS Repeat start address
RE Repeat end address
RC Repeat counter
PC Program counter

The extended-precision registers (R?—RO) are capable of storing and sup-

porting operations on 32-bit integer and 40-bit floating-point numbers. Any in-

struction that assumes the operands are floating-point numbers uses bits
39 — 0. If the operands are either signed or unsigned integers, only bits
31 — 0 are used; bits 39 —32 remain unchanged. This is true for all shift oper-
ations. Refer to Chapter 4 for extended-precision register formats for float-
ing-point and integer numbers.

The 32-bitauxiliary registers (AR7 — ARO) can be accessed by the CPU and
modified by the two Aucxiliary Register Arithmetic Units (ARAUs). The primary

2-6

Architectural Overview

Central Processing Unit (CPU)

function of the auxiliary registers is the generation of 24-bit addresses. They
can also be used as loop counters or as 32-bit general-purpose registers that
can be modified by the multiplier and ALU. Refer to Chapter 5 for detailed infor-
mation and examples of the use of auxiliary registers in addressing.

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64 K words long with a total of 256
pages. '

The 32-bit index registers (IR0, IR1) contain the value used by the Auxiliary
Register Arithmetic Unit (ARAU) to compute an indexed address. Refer to
Chapter 6 for examples of the use of index registers in addressing.

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement, and a pop performs a post-
decrement of the system stack pointer. The SP is manipulated by interrupts,
traps, calls, returns, and the PUSH and POP instructions. Refer to Section 5.5
for information about system stack management.

The status register (ST) contains global information relating to the state of the
CPU. Typically, operations set the condition flags of the status register accord-
ing to whether the result is zero, negative, etc. This includes register load and.
store operations as well as arithmetic and logical functions. When the status
registeris loaded, however, a bit-for-bit replacement is performed with the con-
tents of the source operand, regardless of the state of any bits in the source
operand. Therefore, following a load, the contents of the status register are
identically equal to the contents of the source operand. This allows the status
register to be easily saved and restored. See Table 3-2for alistand definitions
of the status register bits.

The CPU/DMA interrupt enable register (IE) is a 32-bit register. The CPU in-
terrupt enable bits are in locations 10 — 0. The DMA interrupt enable bits are
in locations 26 — 16. A 1 in a CPU/DMA interrupt enable register bit enables
the corresponding interrupt. A 0 disables the corresponding interrupt. Refer to
subsection 3.1.8 for bit definitions.

The CPU interrupt flag register (IF) is also a 32-bit register (see subsection
3.1.9). A 1in a CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A 0 indicates that the corresponding interrupt is not set.

The 1/0 flags register (IOF) controls the function of the dedicated external
pins, XF0 and XF1. These pins may be configured for input or output and may
also be read from and written to. See subsection 3.1.10 for detailed informa-
tion.

2-7

Central Processing Unit (CPU)

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
the processor is operating in the repeat mode, the 32-bitrepeat start address
register (RS) contains the starting address of the block of program memory
to be repeated, and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, it is a register that can be modified by instructions that modify the program
flow.

Architectural Overview

Memory Organization

2.2 Memory Organization

The total memory space of the TMS320C3x is 16M (million) 32-bit words. Pro-
gram, data, and I/O space are contained within this 16M-word address space,
thus allowing tables, coefficients, program code, or data to be stored in either
RAM or ROM. In this way, memory usage is maximized and memory space al-
located as desired.

2.2.1 RAM, ROM, and Cache

Figure 2—-3 shows how the memory is organized on the TMS320C3x. RAM
blocks 0 and 1 are each 1K x 32 bits. The ROM block, available only on the
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support-
ing two CPU accesses in a single cycle. The separate program buses, data
buses, and DMA buses allow for parallel program fetches, data reads and
writes, and DMA operations. For example: the CPU can access two data val-
ues in one RAM block and perform an external program fetch in parallel with
the DMA loading another RAM block, all within a single cycle.

A 64 x 32-bit instruction cache is provided to store often repeated sections of
code, thus greatly reducing the number of off-chip accesses necessary. This
allows for code to be stored off-chip in slower, lower-cost memories. The exter-
nalbuses are also freed for use by the DMA, external memory fetches, or other
devices in the system. ‘

Refer to Chapter 3 for detailed information about the memory and instruction
cache.

2-9

Memory Organization

Figure 2-3. Memory Organization

RDY — ¥
HOLD —¥
HOLDA —¢

STRE —+—>

RIW —¢—]
D31-Do—¢—¥
A23-A0—¢—

n‘- n

2-10

xcZ

xXc=

RAM RAM ..-"ROM o
cavas | | Beocko | | sLock s | |-BLock:
(1Kx32) | | (kx32) ‘
Jo2 [Jo4 Jeo Jae Jae
r]h: fh:
PDATABUS v
PADDR BUS
DDATABUS _
DADDAYBUS
“DADDR2 ||3us|s
_DMADATABUS

-DMAADDR BUS

szi 24

Program Counter/

32+

Instruction Register

Available on TMS320C30

TMS320C30-27, and

TMS320C30-40

J24 24

324, $24
v
DMA
Controller

mT

o —

4-:"—# XRDY o ,.-"‘,.

o » MSTRB

IOS:I'_RB:"..-
XA ¢,

«—» XD31—XDO
R XA12-XA0]

Architectural Overview

Memory Organization

2.2.2 WMemory Maps

The memory map is dependent upon whether the processor is running in the
microprocessor mode (MC/MP or MCBL/MP = 0) or the microcomputer mode
(MC/MP or MCBL/MP = 1). The memory maps for these modes are similar (see
Figure 2—4). Locations 800000h through 801FFFh are mapped to the expan-
sion bus. When this region, available only on the TMS320C30, is accessed,
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca-
tions 804000h through 805FFFh are mapped to the expansion bus. When this
region, available only onthe TMS320C30, is accessed, [IOSTRB is active. Lo-
cations 806000h through 807FFFh are reserved. All of the memory-mapped
peripheral registers are in locations 808000h through 8097FFh. In both modes,
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM
block 1 is located at addresses 809C00h through 809FFFh. Locations
80A000h through OFFFFFFh are accessed over the external memory port
(STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or bootloader
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations Oh
through OBFh consist of interrupt vector, trap vector, and reserved locations,
all of which are accessed over the external memory port (STRB active). Loca-
tions 0COh through 7FFFFFh are also accessed over the external memory
port.

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or bootloader
(TMS320C31) is mapped into locations Oh through OFFFh. There are 192 loca-
tions (Oh through OBFh) within this block for interrupt vectors, trap vectors, and
areserved space. Locations 1000h through 7FFFFFh are accessed over the
external memory port (STRB active).

Section 3.2 describes the memory maps in greater detail. The peripheral bus
map and the vector locations for reset, interrupts, and traps are also given.

2-11

Memory Organization

Figure 2—4. TMS320C30 Memory Maps

2-12

Oh

0BFh
0COh

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh

806000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

OFFFFFFh

Interrupt Locations
and Reserved (192)
External STRB Active

External
STRB Active

Expansion Bus
MSTRB Active (8K)

Reserved
(8K)

Expansion Bus
IOSTRB Active (8K)

Reserved
(8K)

Peripheral Bus
Memory-Mapped
Registers
(Internal) (6K)

RAM Block 0
(1K) (Internal)

RAM Block 1
(1K) (Internal)

External
STRB Active

(a) Microprocessor Mode

Oh
Interrupt Locations
and Reserved (192)
0BFh
oCoh |~ —————7——7
ROM
(Internal)
OFFFh
1000h
External
STRB Active
7FFFFFh
800000h
Expansion Bus -
MSTRB Active (8K)
801FFFh
802000h
Reserved
(8K)
803FFFh
804000h .
Expansion Bus
IOSTRB Active (8K)
805FFFh
806000h
Reserved
(8K)
807FFFh
808000h
Peripheral Bus
Memory-Mapped
Registers
(Internal) (6K)
8097FFh
809800h
RAM Block 0
(1K) (Internal)
809BFFh
809C00h
RAM Block 1
(1K) (Internal)
809FFFh
80A000h
External
STRB Active
OFFFFFFh
(b) Microcomputer Mode

Architectural Overview

Memory Organization

Figure 2-5. TMS320C31 Memory Maps

oh

0BFh
0Coh

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

FFFFFFh

Interrupt Locations
and Reserved (192)
(External STRB Active)

External
STRB Active

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Internal)

RAM Block 0
(1K Internal)

RAM Block 1
(1K Internal)

External
STRB Active

(a) Microprocessor Mode

Oh

FFFh
1000h

400000h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
808C00h

809FCOh
80A9F1h

809FFFh
80A000h

FFF00Oh
FFFFFFh

(b) Microcomputer/Boot Loader Mode

Reserved for Boot
Loader Operations
(See Section 3.4)

- External
STRB
Active

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Internal)

RAM Block 0
(1K Internal)

RAM Block 1
(1K-64 Internal)

User Program Interrupt

and Trap Branches
(64 Internal)

External
STRB
Active

2-13

Memory Organization

2.2.3 Memory Addressing Modes

2.2.4

2-14

The TMS320C3x supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
‘processing and other numeric-intensive applications. Refer to Chapter 5 for
detailed information on addressing.

Five groups of addressing modes are provided on the TMS320C3x. Six types
of addressing may be used within the groups, as shown in the following list:

[General addressing modes: '
B Register. The operand is a CPU register.
B Short immediate. The operand is a 16-bit immediate value.
E Direct. The operand is the contents of a 24-bit address.
B |ndirect. An auxiliary register indicates the address of the operand.
i Three-operand addressing modes:
B Register. Same as for general addressing mode.
B [ndirect. Same as for general addressing mode.
L3 Parallel addressing modes:
B Register. The operand is an. extended-precision register.
B |ndirect. Same as for general addressing mode.
L3 Long-immediate addressing mode.
B |ong-immediate. The operand is a 24-bit immediate value.
[Conditional branch addressing modes:
B Register. Same as for general addressing mode
B PC-relative. A signed 16-bit displacement is added to the PC.

Instruction Set Summary

Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each table
entry shows the instruction mnemonic, description, and operation. Refer to
Chapter 10 for a functional listing of the instructions and individual instruction
descriptions.

Architectural Overview

Memory Organization

Table 2-2. Instruction Set Summary

Mnemonic Description Operation
ABSF Absolute value of a floating-point number | |src| — Rn
ABSI Absolute value of an integer lsrc| = Dreg
ADDC Add integers with carry src + Dreg + C —> Dreg
ADDC3 Add integers with carry (3-operand) src1 + src2 + C — Dreg
ADDF Add floating-point values src + Rn — Rn
ADDF3 Add floating-point values (3-operand) srel +sre2 = Rn
ADDI Add integel’s SIc + Dreg — Dreg
ADDI3 Add integers (3-operand) srel + src2 + — Dreg
AND BIIWISB logiCaI‘AND Dreg AND src — Dreg
AND3 Bitwise logical-AND (3-operand) src1 AND sre2 — Dreg
ANDN Bitwise logical-AND with complement Dreg AND src — Dreg
ANDN3 Bitwise logical-ANDN (3-operand) src1 AND src2 — Dreg
ASH Arithmetic shift If count = 0:
(Shifted Dreg left by count) — Dreg
Else:
(Shifted Dreg right by |count|) — Dreg
ASH3 Arithmetic shift (3-operand) If count = 0:
(Shifted src left by count) — Dreg
Elsa:
(Shifted src right by |count}) — Dreg
| Becond Branch conditionally (standard) If cond = true:
If Csrc is aregister, Csrc — PC
If Csrcis avalue, Csrc + PC — PC
Else, PC+1—PC
BcondD Branch conditionally (delayed) If cond = true:
if Csrc is aregister, Csrc — PC
If Csrcis avalue, Csrc+PC +3 — PC
Else, PC+1— PC
LEGEND:
src general addressing modes Dreg register address (any register)
srci three-operand addressing modes Rn register address (R7 — R0)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register n (AR7 — ARO)
Sreg register address (any register) addr 24-bitimmediate address (label)
count shift value (general addressing modes) cond condition code (see Chapter 11)
SP stack pointer ST status register
GIE global interrupt enable register RE repeat interrupt register
RM repeat mode bit RS repeat start register
TOS top of stack PC program counter
C carry bit

Memory Organization

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
BR Branch unconditionally (standard) Value — PC
BRD- Branch unconditionally (delayed) Value = PC
CALL Call subroutine PC +1— TOS
Value — PC
CALLcond Call subroutine conditionally If cond = true:
PC+1— TOS
If Csrc is a register, Csrc — PC
If Csrc is a value, Csrc + PC — PC
Else, PC+1 — PC
CMPF Compare floating-point values Set flags on Rn —src
CMPF3 Compare floating-point values Set flags on srct — src2
(3-operand)
CMPI Compare integers Set flags on Dreg — src
CMPI3 Compare integers (3-operand) Set flags on src1 — src2
DBcond Decrement and branch conditionally ARn—1 — ARn
(standard) If cond = true and ARn 2 0:
If Csrc is a register, Csrc — PC
If Csre is a value, Csrc + PC + 1 — PC
Else, PC+1 — PC
DBcondD Decrement and branch conditionally ARn -1 — ARn
(delayed) If cond = true and ARn 2 0:
If Csrc is a register, Csrc — PC
If Csrcis a value, Csre + PC + 3 — PC
Else, PC+1 — PC
FIX Convert floating-point value to integer Fix (src) — Dreg
FLOAT Convert integer to floating-point value Float(src) — Rn
IACK Interrupt acknowledge Dummy read of src
IACK toggled low, then high
IDLE Idle until interrupt PC+1— PC
. Idle until next interrupt
LDE Load floating-point exponent src{exponent) —> Rn(exponent)
LDF Load floating-point value src = Rn
LDFcond Load floating-point value conditionally If cond = true, src = Rn
Else, Rn is not changed
LDF! Load floating-point value, interlocked Signal interlocked operation src — Rn
LDI Load integer src — Dreg
LDlcond Load integer conditionally . If cond = true, src — Dreg
Else, Dreg is not changed

2-16

Architectural Overview

Memory Organization

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
LDl Load integer, interlocked Signal interlocked operation src — Dreg
LDM Load floating-point mantissa src (mantissa) — Rn (mantissa)
LSH Logical shift If count = 0:
(Dreg left-shifted by count) — Dreg
Else:
(Dreg right-shifted by |count|) — Dreg
LSH3 Logical shift (3-operand) If count > 0:
(src left-shifted by count) — Dreg
Else:
(src right-shifted by |count|) — Dreg
MPYF Multiply floating-point values src X Rn = Rn
MPYF3 Multiply floating-point value (3-operand) | grc1 X sre2 — Rn
MPYI Multiply integers src X Dreg — Dreg
MPYI3 Multiply integers (3-operand) src1 X src2 — Dreg
NEGB Negate integer with borrow 0-src— C — Dreg
NEGF Negate floating-point value 0-src — Rn
NEGI Negate integer 0 - src — Dreg
NOP No operation Modify ARn if specified
NORM Normalize floating-point value Normalize (src) — Rn
NOT Bitwise logical-complement src — Dreg
OR Bitwise logical-OR Dreg OR src — Dreg
OR3 Bitwise logical-OR (3-operand) src1 OR src2 — Dreg
POP Pop integer from stack *SP———> Dreg
POPF Pop floating-point value from stack *SP———>Rn
PUSH Push integer on stack Sreg — *++ SP
LEGEND:
src general addressing modes Dreg register address (any register)
srcil three-operand addressing modes Rn - register address (R7 — RO0)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register m (AR7 — ARQ)
Sreg register address (any register) addr 24-bitimmediate address (label)
count shift value (general addressing modes) cond condition code (see Chapter 11)
SP stack pointer ST status register
GIE global interrupt enable register RE repeat interrupt register
RM repeat mode bit RS repeat start register
TOS top of stack PC program counter
Cc carry bit

Memory Organization

Table 2-2. Instruction Set Summary (Continued)
Mnemonic Description Operation
PUSHF Push floating-point value on stack Rn— *++SP
RETIcond Return from interrupt conditionally If cond = true or missing:
' *SP--— PC
1 —> ST (GIE)
Else, continue
RETScond Return from subroutine conditionally If cond = true or missing:
*SP——— PC
Else, continue
RND Round floating-point value Round (src) — Rn
ROL Rotate left Dreg rotated left 1 bit — Dreg
ROLC Rotate left through carry Dreg rotated left 1 bit through carry — Dreg
ROR Rotate right Dreg rotated right 1 bit — Dreg
RORC Rotate right through carry Dreg rotated right 1 bit through carry —
Dreg
RPTB Repeat block of instructions src — RE
1 — ST (RM)
Next PC — RS
RPTS Repeat single instruction src = RC
1 — ST (RM)
Next PC — RS
Next PC — RE
Sial Signal, interlocked Signal interlocked operation
Wait for interlock acknowledge
Clear interlock
STF Store floating-point value Rn — Daddr
STFI Store floating-point value, interlocked Rn — Daddr
Signal end of interlocked operation
ST Store integer Sreg — Daddr
ST Store integer, interlocked Sreg — Daddr
Signal end of interlocked operation
SUBB ‘Subtract integers with borrow Dreg — src — C — Dreg
SUBB3 Subtract integers with borrow (3-operand) srcl —src2 - C —> Dreg
SuBC Subtract integers conditionally If Dreg — src > 0
[(Dreg — src) << 1]JOR 1 — Dreg
Else, Dreg << 1 — Dreg

2-18

Architectural Overview

Memory Organization

Table 2-2. Instruction Sét Summary (Concluded)

Mnemonic Description Operation
SUBF Subtract floating-point values - Rn - src — Rn
SUBF3 Subtract floating-point values (3-operand) | g1e1 — src2 — Rn
SUBI Subtract integers Dreg — src — Dreg
SuUBI3 Subtract integers (3-operand) srci — src2 —> Dreg
SUBRB Subtract reverse integer with borrow src— Dreg - C — Dreg
SUBRF Subtract reverse floating-point value src-Rn — Rn
SUBRI Subtract reverse integer src — Dreg — Dreg
SwWi Software interrupt Perform emulator interrupt sequence
TRAPcond | Trap conditionally If cond = true or missing:
Next PC — * ++ SP
Trap vector N — PC
0 — ST (GIE)
Else, continue
TSTB Test bit fields Dreg AND src
TSTB3 Test bit fields (3-operand) src1 AND src2
XOR Bitwise exclusive-OR Dreg XOR src — Dreg
XOR3 Bitwise exclusive-OR (3-operand) src1 XOR src2 — Dreg
LEGEND:
src general addressing modes Dreg register address (any register)
srct three-operand addressing modes Rn register address (R7 — R0)
src2 three-operand addressing modes Daddr destination memory address
Csrc conditional-branch addressing modes ARn auxiliary register n (AR7 — ARO)
Sreg register address (any register) addr 24-bitimmediate address (label)
count shift value (general addressing modes) cond condition code (see Chapter 11)
sP stack pointer ST status register
GIE global interrupt enable register RE repeat interrupt register
RM repeat mode bit RS repeat start register
TOS top of stack PC program counter
C carry bit

- 2-19

Memory Organization

Table 2-3. Parallel Instruction Set Summary

Mnemonic l Description I Operation
Parallel Arithmetic With Store Instructions
ABSF Absolute value of a floating-point |src2] — dst1
I STF || sre3 — dst2
ABSI Absolute value of an integer |sre2| — dst1
Il ST || src3 —> dst2
ADDF3 Add floating-point srcl + sre2 = dsti
I STF || src3 — dst2
ADDI3 Add integer srcl + src2 — dstd
Il STl | src3 = dst2
" SA'PIDS Bitwise logical-AND src1 AND src2 —> dst
|| sre3 —> dst2
ASH3 Arithmetic shift If count > 0:
ST src2 << count — dst1
|| src3 — dst2
Else:
src2 >> |count] — dst1
|| sre3 — dst2
i IS:‘II')I(Convert floating-point to integer Fix(src2) — dst1
|l sre3 —> dst2
FLOAT Convert integer to floating-point Float(src2) — dsti
I STF || sre3 — dst2
LDF Load floating-point
|| STF src2 —> dsti
|| src3 — dst2
LDI Load integer src2 —> dsti
STt || src3 — dst2
i STI src2 << count — dsti
|| sre3 — dst2
Else:
src2 >> |count] — dst1
|| sre3 — dst2
” g’l’rPFYFS Multlply floating-point srel x src2 — dsti
|| sre3 —> dst2
I gﬂ_ﬁYB Multiply integer src1 x src2 —> dst
|| src3 — dst2
NEGF Negate floating-point 0- src2 —> dsti
src3 — dst2
|| STF I d

2-20

Architectural Overview

Memory Organization

Table 2-3. Parallel Instruction Set Summary (Concluded)

Mnemonic | Description | Operation
Parallel Arithmetic With Store Instructions (Concluded)
gl_l!_ElGl Negate integer 0 — sre2 — dst1
I Il src3 —> dst2
gl_lC_?T Complement srel — dstd
I || sre3 ~> dst2
I g_ﬁfi Bitwise logical-OR src1 OR src2 — dst1
|| src3 — dst2
I g‘ITIE Store floating-point sre1 — dsti
|| sre3 — dst2
I SS_I'l_'ll Store integer srel — dsti
|| sre3 — dst2
i g_lI_JFBFS Subtract floating-point srel — sre2 = dstl
|| src3 — dst2
I g’IL'JIBIS Subtract integer sret — src2 — dsti
|| sre3 — dst2
I %(_P]RS Bitwise exclusive-OR sret XOR sre2 — dstd
|| sre3 — dst2
Parallel Load Instructions
" II__DDIL: Load floating-point src2 —3 dsti
|| src4 — dst2
i Il_-gll Load integer src2 — dsti
|| src4 ~> dst2
Parallel Multiply And Add/Subtract Instructions
MPYF3 Multiply and add floating-point op1 x 0p2 — op3
|| ADDF3
|| op4 + op5 — op6
I g@fg Multiply and subtract floating-point op1 x 0p2 — op3
|| op4 - op5 — op6
I /I\\/IEI;’B(‘I:;& Multiply and add integer op1 X op2 —> op3
|| op4 + op5 —> op6
I SMLTL;,(I'Q? Multiply and subtract integer op1 x op2 — op3
|| op4 — op5 —> opb6
LEGEND:
srci register addr (R7 — RO) src2 indirect addr (disp =0, 1, IR0, IR1)
src3 register addr (R7 — RO0) srcd indirect addr (disp=0, 1, IR0, IR1)
dst1 register addr (R7 — R0) dst2 indirect addr (disp =0, 1, IR0, IR1)
op3 register addr (RO or R1) op6 register addr (R2 or R3)

op1,0p2,0p4,0p5 - Two of these operands must be specified using register addr, and two must be specified
using indirect.

2-21

Internal Bus Operation

2.3 Internal Bus Operation

2-22

Alarge portion of the TMS320C3x’s high performance is due to internal busing
and parallelism. The separate program buses (PADDR and PDATA), data
buses (DADDR1, DADDR2, and DDATA), and DMA buses (DMAADDR and
DMADATA) allow for parallel program fetches, data accesses, and DMA ac-
cesses. These buses connect all of the physical spaces (on-chip memory,
off-chip memory, and on-chip peripherals) supported by the TMS320C30.
Figure 2—3 shows these internal buses and their connection to on-chip and off-
chip memory blocks.

The program counter (PC) is connected to the 24-bit program address bus
(PADDR). The instruction register (IR) is connected to the 32-bit program data
bus (PDATA). These buses can fetch a single instruction word every machine
cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are regis-
ter buses REG1 and REG2 that can carry two data values from the register file
to the multiplier and ALU every machine cycle. Figure 2—2 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a32-bit data bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.

‘ Architectural Overview

External Bus Operation

2.4 External Bus Operation

The TMS320C30 provides two external interfaces: the primary bus and the ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. Both primary and expansion buses consist of a 32-bit data bus and a set
of control signals. The primary bus has a 24-bit address bus, whereas the ex-
pansion bus has a 13-bit address bus. Both buses can be used to address ex-
ternal program/data memory or I/O space. The buses also have an external
RDY signal for wait-state generation. Additional wait states may be inserted
under software control. Refer to Chapter 7 for detailed information on external
bus operation.

2.4.1 External Interrupts

The TMS320C3x supports four external interrupts (INT3—INTO), a number of
internal interrupts, and a nonmaskable external RESET signal. These can be
used to interrupt either the DMA or the CPU. When the CPU responds to the
interrupt, the 1ACK pin can be used to signal an external interrupt acknowl-
edge. Section 6.5 (beginning on page 6-16) cover RESET and interrupt pro-
cessing.

2.4.2 Interlocked-Instruction Signaling

Two external I/0O flags, XFO and XF1, can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the TMS320C3x. The interlocked-operations instruction group supports
multiprocessor communication (see Section 6.4 on page 6-10 for examples of
the use of interlocked instructions).

2-23

Peripherals

2.5 Peripherals

All TMS320C3x peripherals are controlled through memory-mapped registers
on adedicated peripheral bus. This peripheral bus is composed of a 32-bit data
bus and a24-bit address bus. This peripheral bus permits straightforward com-
munication to the peripherals. The TMS320C3x peripherals include two timers
and two serial ports (only one serial port is available on the TMS320C31).
Figure 2—6 shows the peripherals with associated buses and signals. Refer to
Chapter 8 for detailed information on the peripherals.

Figure 2-6. Peripheral Modules

2-24

<pDOEIMZ

mo»on

™

<—:> :{;'

L wCcw P»PH>»O - TP>IMIV—TIMT:

Available on TMS320C30,

™S Serial Port 0
> Port Control Register >— FSXo
: -4¢—»— DX0
R/X Timer Register —b— CLKXO
Data Transmit Register ~4¢—>— FSRO
- - —¢—»— DRO
Data Receive Register +—>— CLKRO
= " Serial Port 1
> e ‘|4—— FSX1
Port Control Register .\ o 5 pxq
P R/X Timer Register || 4—%— CLKX1
R
o
P
H
E
RL »
Al] Timer 0
L
. Global Control Register
A
: —-¢—p—
D Timer Period Register TOLKO
D
E Timer Counter Register
S
S L Timer 1
B Global Control Register
s —€—>— TCLK1
Timer Period Register
Timer Counter Register
\

TMS320C30-27, and

TMS320C30-40

Architectural Overview

Peripherals

2.5.1 Timers

2.5.2 Serial Ports

The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external clocking. Each timer has an I/O
pin that can be used as an input clock to the timer or as an output signal driven
by the timer. The pin may also be configured as a general-purpose /O pin.

The two bidirectional serial ports are totally independent. They are identical
with a complementary set of control registers controlling each one. Each serial
port can be configured to transfer 8, 16, 24, or 32 bits of data per word. The
clock for each serial port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The serial port pins are confi-
gurable as general-purpose I/O pins. The serial ports can also be configured
as timers. A special handshake mode allows TMS320C3xs to communicate
over their serial ports with guaranteed synchronization.

2-25

Direct Memory Access (DMA)

2.6 Direct Memory Access (DMA)

The on-chip Direct Memory Access (DMA) controller can read from or write to
any location in the memory map without interfering with the operation of the
CPU. Therefore, the TMS320C3x can interface to slow external memories and
peripherals without reducing throughput to the CPU. The DMA controller con-
tains its own address generators, source and destination registers, and trans-
fer counter. Dedicated DMA address and data buses allow for minimization of
conflicts between the CPU and the DMA controller. A DMA operation consists
of a block or single-word transfer to or from memory. Refer to Chapter 8 for de-
tailed information on the DMA. Figure 2—7 shows the DMA controller with asso-
ciated buses.

Figure 2-7. DMA Controller

2-26

/ omapATABus — / [B1|p
'DMAADDRBus =/ ol
H||P
E H
R E
Al R
L A
Z L
DMA Controller 2 1A
T D
Global Control Register ‘A g
/—N gl | E
Source Address Register : / B 'S
U :

Destination Address s S
Register |~ 5
Transfer Counter Register ¢ g
N—— S

Architectural Overview

System Integration

2.7 System Integration

In summary, the TMS320C3x is a powerful DSP system because of its integra-
tion of an innovative, high-performance CPU, two external interface ports,
large memories, and efficient buses to support its speed. A single chip con-
tains this system along with peripherals such as a DMA controller, two serial
ports, and two timers. The total system real estate and price have been re-
duced, providing the user with a true single-chip solution.

2-27

2-28 Architectural Overview

CPU Registers, Memory, and Cache

CPU Registers, Memory, and Cache

Chapter 3

CPU Registers, Memory, and Cache

The CPU register file contains 28 registers that can be operated on by the multi-
plierand ALU (arithmetic Ioglc unit). Included inthe registerfile are the auxiliary
registers, extended-precision registers, and index registers. The registers in
the CPU register file support addressing, floating-point/integer operations,
stack management, processor status, block repeats, and interrupts.

The TMS320C3x provides a total memory space of 16M (million) 32-bit words
containing program, data, and I/O space. Two RAM blocks of 1K x 32 bits each
and a ROM block, available only on the TMS320C30, of 4K x 32 bits permit two
CPU accesses in asingle cycle. The memory maps for the microcomputer and
microprocessor modes are similar, except that the on-chip ROM is not used
in microprocessor mode.

A 64 x 32-bit instruction cache stores often repeated sections of code. This
greatly reduces the number of off-chip accesses and allows code to be stored
off-chip in slower, lower-cost memories. Three bits in the CPU status register
control the clear, enable, or freeze of the cache.

This chapter describes in detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics are as follows:

L3 CPU Register File (Section 3.1 on page 3-3)
B Extended-precision registers (R7 — R0)

Auxiliary registers (AR7 — ARO)

Index registers (IR0, IR1)

Block-size register (BK)

Data-page pointer (DP)

System stack pointer (SP)

Status register (ST)

CPU/DMA interrupt enable register (IE)

CPU interrupt flag register (IF)

I/0 flags register (IOF) ‘

CPU Registers, Memory, and Cache

B Repeat-counter (RC) and block-repeat registers (RS, RE)

B Program counter (PC)

L Memory (Section 3.2 on page 3-12)
B Memory maps
B Peripheral bus map
W Reset/interrupt/trap map
Ld Instruction Cache (Section 3.3 on page 3-19)
B Cache architecture
B Cache algorithm

B Cache control bits

3-2 CPU Registers, Memory, and Cache

CPU Register File

3.1 CPU Register

Table 3-1. CPU Registers

File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupled to the CPU. The PC s notincluded in the 28 registers. All of these reg-
isters can be operated upon by the multiplier and ALU, and can be used as gen-
eral-purpose 32-bit registers. However, the registers also have some special
functions for which they are particularly appropriate. For example, the eight ex-
tended-precision registers are especially suited for maintaining extended-pre-
cision floating-point resuits. The eight auxiliary registers support a variety of
indirect addressing modes and can be used as general-purpose 32-bit integer
and logical registers. The remaining registers provide system functions such
as addressing, stack management, processor status, interrupts, and block re-
peat. Refer to Chapter 5 for detailed information and examples of the use of
CPU registers in addressing.

The registers names and assigned function are listed in Table 3—1.

Register Assigned Function Name
RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7

ARO Aucxiliary register 0
AR1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
AR5 Auxiliary register 5
AR6 Aucxiliary register 6
AR7 Auxiliary register 7
DP Data-page pointer
IR0 Index register 0
IR1 Index register 1
BK Block-size register
SP System stack pointer
ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags
IOF /0 flags
RS Repeat start address
RE Repeat end address
RC Repeat counter
PC Program counter

CPU Register File

3.1.1 Extended-Precision Registers (R7 — R0)

The eight extended-precision registers (R7 — RO0) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions:

A bits 39 — 32: dedicated to storage of the exponent (e) of the floating-point
number.

L3 bits 31 — 0: store the mantissa of the floating-point number:
B bit 31: sign bit (s),
B bits 30 — 0: the fraction (f).

Any instruction that assumes the operands are floating-point numbers uses
bits 39 — 0. Figure 3—1 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Figure 3-1. Extended-Precision Register Floating-Point Format

39 32 31 30 0

e s fraction (f)

mantissa g

Forinteger operations, bits 31 — 0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31 — 0. Bits 39 — 32 re-
main unchanged. This is true for all shift operations. The storage of 32-bit inte-
gers in the extended-precision registers is shown in Figure 3-2.

Figure 3-2. Extended-Precision Register Integer Format

39 32 31 0

unchanged signed or unsigned integer

3.1.2 Auxiliary Registers (AR7 — ARO0)

3-4

The eight 32-bit auxiliary registers (AR7 — ARO) can be accessed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUSs). The pri-
mary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used as loop counters in indirect addressing or as
32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Chapter 5 for detailed information and examples of the use of
auxiliary registers in addressing.

CPU Registers, Memory, and Cache

CPU Register File

3.1.3

3.1.4

3.1.5

3.1.6

Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register, which is loaded using the LDP
instruction. The eight LSBs of the data-page pointer are used by the direct ad-
dressing mode as a pointer to the page of data being addressed. Data pages
are 64 K words long with a total of 256 pages. Bits 31 — 8 are reserved; you
should always keep these zero.

Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the Auxiliary Register
Arithmetic Unit (ARAU) for indexing the address. Refer to Chapter 5 for de-
tailed information and examples of the use of index registers in addressing.

Block-Size Register (BK)

The 32-bit block-size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 5.3 on page 5-24).

System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the stack
perform preincrement and postdecrement, respectively, on all 32 bits of the
stack pointer. However, only the 24 LSBs are used as an address. Referto Sec-
tion 5.5 on page 5-30 for information about system stack management.

3.1.7 Status Register (ST)

The status register (ST) contains global information relating to the state of the
CPU. Typically, operations set the condition flags of the status register accord-
ing to whether the result is zero, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, the contents of the source operand replace the
current contents bit-for-bit, regardless of the state of any bits in the source op-
erand. Therefore, following a load, the contents of the status register are identi-
cally equal to the contents of the source operand. This allows the status regis-
ter to be saved easily and restored. At system reset, 0 is written to this register.

3-5

CPU Register File

The format of the status register is shown in Figure 3-3. Table 3-2 defines the
status register bits, their names, and functions.

Figure 3-3. Status Register

31 30 29 28 27 26 21 20 19 18

. 25 24 23 22
'xxIxxlxxIxx'xxIxxIxxbxlxxlxxlxxlxxlx

6

17 1
Ixxlxxl

x
—
x
x

15 14 13 12 1 10 9 8 7 6 5 4 3 1 0
I XX I xlelE [CC I CE I CF I XX | RM IOVMI LUF LLV I UF I N I P4 I v l (o] |
AW RW RW RW RW RW RW RW RW RW RW RW RW

NOTE: xx = reserved bit.
R = read, W = write.

3-6 ‘ CPU Registers, Memory, and Cache

CPU Register File

Table 3-2. Status Register Bits Summary

Bit Name Reset Value Function

ot (o} 0 Carry flag.

1t \Y 0 Overflow flag.

ot z 0 Zero flag.

at N 0 Negative flag.

4t UF 0 Floating-point underflow flag.

5T Lv 0 Latched overflow flag.

61 LUF 0 Latched floating-point underflow flag.

7 OVM 0 Overflow mode flag. This ﬂag affects only the integer operations. If OVM
= 0, the overflow mode is turned off; integer results that overflow are
treated in no special way. If OVM =1,

a) integer results overflowing in the positive direction are set to the
most positive 32-bit twos-complement number (7FFFFFFFh)

b) integer results overflowing in the negative direction are set to the
‘most negative 32-bit twos-complement number (80000000h).

Note that the function of V and LV is independent of the setting of OVM.

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modified in either the
repeat-block or repeat-single mode.

9 Reserved 0 Read as 0.

10 CF 0 Cache freeze. When CF =1, the cache is frozen. If the cache is enabled
(CE =1), fetches from the cache are allowed, but no modification of the
state of the cache is performed. This function can be used to save fre-
quently used code resident in the cache. At reset, 0 is written to this bit.
Cache clearing (CC=1) is allowed when CF=0.

11 CE 0 Cache enable. CE = 1 enables the cache, allowing the cache tobeused
according to the least recently used (LRU) cache algorithm. CE = 0 dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for
system debug. At system reset, 0 is written to this bit. Cache clearing
(CC =1) is allowed when CE=0.

12 cc 0 Cacheclear. CC =1 invalidates all entries in the cache. This bitis always
cleared afteritis written to and thus always read as 0. Atreset, Ois written
to this bit.

13 GIE 0 Globalinterruptenable. If GIE =1,the CPUresponds to anenabledinter-
rupt. If GIE = 0, the CPU does not respond to an enabled interrupt.

15— 14 | Reserved 0 Read as 0.
31— 16 | Reserved 0-0 | Value undefined.

t The seven condition flags (ST bits 6 —0) are defined in Section 10.2 on page 10-9.

3-7

CPU Register File

3.1.8 CPU/DMA Interrupt Enable Register (IE)

The CPU/DMA interrupt enable register (IE) is a 32-bit register (see
Figure 3~4). The CPU interrupt enable bits are in locations 10 — 0. The DMA
interrupt enable bits are in locations 26 — 16. A 1 in a CPU/DMA interrupt en-
able register bit enables the corresponding interrupt. A 0 disables the corre-
sponding interrupt. At reset, 0 is written to this register. Table 3—-3 defines the
register bits, the bit names, and the bit functions.

Figure 3-4. CPU/DMA Interrupt Enable Register (IE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
xx | xx § xx | xx | xx | EDINT ETINT1 ETINTO ERINT1 EXINT1 ERINTO EXINTO EINT3 EINT2 EINT1 EINTO
(DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA)

RW RW RW RW RW RW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xx | xx | xx § xx | xx § EDINT ETINT1 ETINTO ERINT1 EXINT1 ERINTO | EXINTO EINT3 EINT2 EINT1 EINTO
"1 (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU)

RW RW RW RW RW " RW RW RW RW RW RW

NOTE: xx = reserved bit, read as 0.

R = read, W = write.

3-8 CPU Registers, Memory, and Cache

CPU Register File

Table 3-3. IE Register Bits Summary

Bit Name Reset Value Function
0 EINTO 0 Enable external interrupt 0 (CPU)
1 EINT1 0 Enable external interrupt 1 (CPU)
2 EINT2 0 Enable external interrupt 2 (CPU)
3 EINT3 0 Enable external interrupt 3 (CPU)
4 EXINTO 0 Enable serial-port 0 transmit interrupt (CPU)
5 ERINTO 0 Enable serial-port 0 receive interrupt (CPU)
6 EXINT1 0 Enable serial-port 1 transmit interrupt (CPU)
7 ERINT1 0 Enable serial-port 1 receive interrupt (CPU)
8 ETINTO 0 Enable timer 0 interrupt (CPU)
9 ETINT1 0 Enable timer 1 interrupt (CPU)
10 EDINT 0 Enable DMA controller interrupt (CPU)
15— 11 | Reserved o] Value undefined
16 EINTO 0 Enable external interrupt 0 (DMA)
17 EINT1 0 Enable external interrupt 1 (DMA)
18 EINT2 0 Enable external interrupt 2 (DMA)
19 EINT3 0 Enable external interrupt 3 (DMA)
20 EXINTO 0 Enable serial-port 0 transmit interrupt (DMA)
21 ERINTO 0 Enable serial-port 0 receive interrupt (DMA)
22 EXINTA 0 Enable serial-port 1 transmit interrupt (DMA)
23 ERINT1 "0 Enable serial-port 1 receive interrupt (DMA)
24 ETINTO 0 Enable timer 0 interrupt (DMA)
25 ETINTA 0 Enable timer 1 interrupt (DMA)
26 EDINT 0 Enable DMA controller interrupt (DMA)
31— 27 | Reserved 0-0 Value undefined

3.1.9 CPUInterrupt Flag Register (IF)

The 32-bit CPU interrupt flag register (IF) is shown in Figure 3-5. A1ina CPU
interrupt flag register bit indicates that the corresponding interrupt is set. The
IF bits are set to 1 when anvinterrupt occurs. They may also be set to 1 through
software to cause an interrupt. A 0 indicates that the corresponding interrupt
isnotset. If a 0 is written to an interrupt flag register bit, the corresponding inter-
ruptis cleared. At reset, 0 is written to this register. Table 3—4 lists the bit fields,

bit field names, and bit field functions of the CPU interrupt flag register.

CPU Register File

Figure 3-5. CPU Interrupt Flag Register (IF)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Pechx x| x| s J o | | | o] o o | oxx | x|

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P ex fxex [xx x| DINT | TINT1] TinTo | RINTS | XINT1 | RINTO | XINTo | inT3] inT2] iNT1 | INTO
RW RW PRW RW RW RW RW RW RW RW RW

NOTE: xx = reserved bit, read as 0.
R =read, W = write.

Table 3-4. IF Register Bits Summary

Bit Name Reset Value Function

0 INTO 0 External interrupt 0 flag

1 INT1 0 External interrupt 1 flag

2 INT2 0 External interrupt 2 flag

3 INT3 0 External interrupt 3 flag

4 XINTO 0 Serial-port 0 transmit interrupt flag
5 RINTO 0 Serial-port 0 receive interrupt flag
6 XINT1T 0 Serial-port 1 transmit interrupt flag
7 RINT1T 0 Serial-port 1 receive interrupt flag
8 TINTO 0 Timer 0 interrupt flag

9 TINT1 0 Timer 1 interrupt flag

10 DINT 0 DMA channel interrupt flag

31— 11 | Reserved 0-0 Value undefined

t Reserved on TMS320C31.

3.1.10 /O Flags Register (IOF)

The 1/O flags register (IOF) is shown in Figure 3-6 and controls the function
of the dedicated external pins, XFO and XF1. These pins may be configured
forinput or output. They may also be read from and written to. At reset, 0 is writ-
ten to this register. The bit fields, bit field names, and bit field functions are
shown in Table 3-5.

Figure 3-6. /O Flag Register (IOF)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IXXIXXIxXlxXIXXIXXIXXIXXl XX | XX l XX IXXI XX I XX l XX Iﬁl"
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P Foxx P Jox Joe Pxx e [xx | NP1 | outxes | woxe1 {xx] nxFo] ourxro | woxFo x|
R RW RW R RW RW
NOTE: xx = reserved bit, read as 0.

R =read, W = write.

310 CPU Registers, Memory, and Cache

CPU Register File

Table 3-5. IOF Register Bits Summary

Bit Name Reset Value Function
0 Reserved 0 Read as 0.
1 T/OXFO 0 If VOXFQ = 0, XFO is configured as a general-purpose input pin.
If VOXFO = 1, XFO is configured as a general-purpose output pin.
2 OUTXFO0 0 Data output on XFO.
3 INXFO 0 Data input on XFO0. A write has no effect.
4 Reserved 0 Read as 0.
5 - | VOXF1 0 If JOXF1 = 0, XF1 is configured as a general-purpose input pin.
If VOXF1 = 1, XF1 is configured as a general-purpose output pin.
6 OUTXF1 0 Data output on XF1.
7 INXF1 0 Data input on XF1. A write has no effect.
31 — 8 | Reserved 0-0 Read as 0. ‘

3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE)

The repeat-count register (RC) is a 32-bit register used to specify the number
of times a block of code is to be repeated when performing a block repeat.

The repeat start address register (RS) is a 32-bit register contai‘ning the start-
ing address of the block of program memory to be repeated when operating
in the repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of the
block of program memory to be repeated when operating in the repeat mode.

3.1.12 Program Counter (PC)

The program counter (PC) is a 32-bit register containing the address of the next
instruction to be fetched. While the program counter is not part of the CPU reg-
ister file, it is a register that can be modified by instructions that modify the pro-
gram flow.

3.1.13 Reserved Bits and Compatibility

In order to retain compatibility with future members of the TMS320C3x family
of microprocessors, reserved bits that are read as zero must be written as zero.
Reserved bits that have an undefined value must not have their current value
modified. In other cases, the user should maintain the reserved bits as speci-
fied.

Memory

3.2 Memory

The TMS320C3x’s total memory space of 16M (million) 32-bit words contains
program, data, and I/O space, allowing tables, coefficients, program code, or
data to be stored in either RAM or ROM. In this way, memory usage can be
maximized and memory space allocated as desired.

RAMblocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits. Each
on-chip RAM and ROM block is capable of supporting CPU two accesses in
asingle cycle. The separate program buses, data buses, and DMA buses allow
for parallel program fetches, data reads/writes, and DMA operations. Chapter
9 covers this in detail.

3.2.1 TMS320C3x Memory Maps

The memory map is dependent upon whether the processor is running in the
microprocessor mode (MC/MP or MCBL/MP = 0) or the microcomputer mode
(MC/MP or MCBL/MP = 1). The memory maps for these modes are similar (see
Figure 3—7). Locations 800000h through 801FFFh are mapped to the expan-
sion bus. When this region, available only on the TMS320C30, is accessed,
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca-
tions 804000h through 805FFFh are mapped to the expansion bus. When this
region, available only on the TMS320C30, is accessed, IOSTRB is active. Lo-
cations 806000h through 807FFFh are reserved. All of the memory-mapped
peripheral registers are inlocations 808000h through 8097FFh. In both modes,
RAM block 0 is located at addresses 809800h through 809BFFh, and RAM
block 1 is located at addresses 809C00h through 809FFFh. Memory locations
80A000h through OFFFFFFh are accessed over the primary external memory
port (STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or bootloader
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown in
Figure 3—7, locations Oh through BFh consist of interrupt vector, trap vector,
and reserved locations, all of which are accessed over the primary external
memory port (STRB active). Interrupt and trap vector locations are shown in
Figure 3-9. Locations C0h through 7FFFFFh are also accessed over the pri-
mary external memory port.

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or bootloader
(TMS320C31) is mapped into locations Oh through OFFFh. There are 192 loca-
tions (Oh through BFh) within this block for interrupt vectors, trap vectors, and
areserved space. Locations 1000h through 7FFFFFh are accessed over the
primary external memory port (STRB active).

Do notread and write reserved portions of the TMS320C3x memory sbace and
reserved peripheral bus addresses. Doing so may cause the TMS320C3x to
halt operation and require a system reset to restart.

CPU Registers, Memory, and Cache

Memory

Figure 3-7. TMS5320C30 Memory Maps

Oh

0BFh
'0COh

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C0Ch

809FFFh
80A000h

OFFFFFFh

Interrupt Locations
and Reserved (192)
External STRB Active

External
STRB Active

Expansion Bus
MSTRB Active (8K)

Reserved
(8K)

Expansion Bus
IOSTRB Active (8K)

Reserved
(8K)

Peripheral Bus
Memory-Mapped
Registers
(Internal) (6K)

RAM Block 0
(1K) (Internal)

RAM Block 1
(1K) (Internal)

External
STRB Active

(a) Microprocessor Mode

Oh

0BFh
0COh

OFFFh
1000h

7FFFFFh
800000h

801FFFh
802000h

803FFFh
804000h

805FFFh
806000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

OFFFFFFh

Interrupt Locations
and Reserved (192)

ROM
(Internal)

External
STRB Active

Expansion Bus
MSTRB Active (8K)

Reserved
(8K)

Expansion Bus
IOSTRB Active (8K)

Reserved
(8K)

Peripheral Bus
Memory-Mapped
Registers
(Internal) (6K)

RAM Block 0
(1K) (Internal)

RAM Block 1
(1K) (Internal)

External
STRB Active

(b} Microcomputer Mode

3-13

Memory

3.2.2 TMS320C31 Memory Maps

3-14

Setting the state of the TMS320C31 MCBL/MP pin determines the mode in
which the TMS320C31 can function: ‘

[Microprocessor mode (MCBL/MP = 0)
@ Microcomputer/boot loader mode (MCBL/MP = 1)

The major difference between these two modes is their memory maps (see
Figure 3-8). The program boot load feature is enabled when the MCBL/MP pin
is driven high during reset.

Notice that special memory locations are used by the loader (internal and ex-
ternal). They are identified in the microcomputer/boot loader memory map
shown in Figure 3-8.

CPU Registers, Memory, and Cache

Memory

Figure 3-8. TMS320C31 Memory Maps

Oh

0BFh
0Cch

7FFFFFh
800000h

807FFFh
808000h

8097FFh
8092800h

809BFFh
809C00h

809FFFh
80A000h

FFFFFFh

Interrupt Locations
and Reserved (192)
(External STRB Active)

External
STRB Active

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Internal)

RAM Block 0
(1K Internal)

RAM Block 1
(1K Internal)

External
STRB Active

(a) Microprocessor Mode

Oh

FFFh
1000h

400000h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FCOh
80A9F1h

809FFFh
80A000h

FFF00Oh
FFFFFFh

Reserved for Boot
Loader Operations
(See Section 3.4)

External
STRB
Active

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Internal)

RAM Block 0
(1K Internal)

RAM Block 1
(1K-64 Internal)

User Program Interrupt
and Trap Branches
(64 Internal)

External
STRB
Active

(b) Microcomputer/Boot Loader Mode

3-156

Memory

Boot 1-3 locations are used by the boot loader function. See Section 3.4 for
a complete description. All reserved memory locations are described in
Table 12-5 of Section 12.8.

3.2.3 Reset/Interrupt/Trap Vector Map

The addresses for the reset, interrupt, and trap vectors are Oh through 3Fh, as
shown in Figure 3-9. The vectors stored in these locations are the addresses
of the start of the respective reset, interrupt, and trap routines. For example,
at reset, the contents of memory location Oh (the reset vector) are loaded into
the PC and execution begins from that address.

Traps 28 — 31 are reserved; do not use them.

- 3-16 CPU Registers, Memory, and Cache

Figure 3-9. Reset, Interrupt, and Trap Vector Locations

0oh
01h
02h
03h
04h
05h
o6h
07h
08h
0gh
0Ah
0Bh

0oCh
1Fh

20h

3Bh
3Ch
3Dh
3Eh
3Fh

RESET

INTO

INT1

INT2

INT3

XINTO

RINTO

XINT1T

RINT1T

TINTO

TINTA

DINT

RESERVED

TRAP 0

TRAP 27

TRAP 28 (Reserved)

TRAP 29 (Reserved)

TRAP 30 (Reserved)

TRAP 31 (Reserved)

T Reserved on TMS320C31

3-17

Memory

3.2.4 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheral bus memory map is shown in Figure 3—10. Each pe-
ripheral occupies a 16-word region of the memory map. Locations 808010h
through 80801Fh and locations 808070h through 8097FFh are reserved.

Figure 3-10. Peripheral-Bus Memory Map

808000h

8080QFh
808010h

80801Fh
808020h

80802Fh
808030h

80803Fh
808040h

80804Fh
808050h

80805Fh
808060h

80806Fh
808070h

8097FFh

DMA Controller Registers
(16)

Reserved
(16)

Timer 0 Registers
(16)

Timer 1 Registers
(16)

Serial-Port 0 Registers
(16)

Serial-Port 1 RegistersT
(16)

Primary and Expansion Port
Registers (16)

Reserved

T Reserved on TMS320C31

CPU Registers, Memory, and Cache

Instruction Cache

3.3

3.3.1

Instruction Cache

A 64 x 32-bit instruction cache facilitates maximum system performance with
minimal system cost by storing sections of code that can be fetched when re-
peatedly accessing time-critical code. This reduces the number of off-chip ac- .
cesses necessary and allows for code to be stored off-chip in slower, lower-
cost memories. The cache also frees external buses from program fetches so
they can be used by the DMA or other system elements.

The cache can operate in a completely automatic fashion without the need for
user intervention. Section 3.3.2 describes a form of the LRU (least recently
used) cache update algorithm.

Cache Architecture

The instruction cache (see Figure 3—11) contains 64 32-bit words of RAM and
is divided into two 32-word segments. Associated with each segmentis a 19-bit
segment start-address (SSA) register. For each word in the cache, there is a
corresponding single bit: Present (P) flag.

Figure 3-11. Instruction Cache Architecture

Segment Start P
Address Registers Flags Segment Words LRU
A A Stack
/ N 4 o i Most Recently Used
Segment Numbel
| SSA Register 0 I 0 Segment Word 0 egment Fumber
l(— 19 —’l 1 Segment Word 1 Least Recently Used
. Segment Number
. Segment 0
30 Segment Word 30
31 Segment Word 31
e— 32 ——|
I SSA Register 1 l 0 Segment Word 0
1 Segment Word 1
: Segment 1
30 Segment Word 30
31 Segment Word 31

When the CPU requests an instruction word from external memory, a check
is made to determine if the word is already contained in the instruction cache.
Figure 3—11 shows the partitioning of an instruction address as used by the

3-19

Instruction Cache

cache control algorithm. The 19 most significant bits of the instruction address
are used to select the segment, and the 5 least significant bits define the ad-
dress of the instruction word within the pertinent segment. The 19 MSBs of the
instruction address are compared with the two segment start address (SSA)
registers. If a match is found, a check is made of the relevant P flag. The P
flag indicates whether or not the word within a particular segment is already
present in cache memory.

Figure 3-12. Address Partitioning for Cache Control Algorithm

23 54 0

segment start address instruction word
(SSA) address within segment

If there is no match, one of the segments must be replaced by the new data.
The segmentreplaced in this circumstance is determined by the LRU (least-re-
cently-used) algorithm. The LRU stack (see Figure 3—11) is maintained for this
purpose.

The LRU stack determines which of the two segments qualifies as the least-re-
cently-used after each access to the cache; therefore, the stack contains either
0,1 or 1,0. Each time a segment is accessed, its segment number is removed
from the LRU stack and pushed onto the top of the LRU stack. Therefore, the
number at the top of the stack is the most recently used segment number, and
the number at the bottom of the stack is the least recently used segment num-
ber.

Atsystemreset, the LRU stack isinitialized with 0 at the top and 1 at the bottom.
All P flags in the instruction cache are cleared.

When areplacement is necessary, the leastrecently used segment is selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment's SSA register is replaced with the 19 MSBs of the in-
struction address.

3.3.2 Cache Algorithm

3-20

When the TMS320C3x requests an instruction word from external memory,
one of two possible actions occurs: a cache hit or a cache miss. These are de-
scribed in the following list:

(A CacheHit. The cache contains the requested instruction, and the follow-
ing actions occur: '

B The instruction word is read from the cache.

B The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack, thus moving the
other segment number to the bottom of the stack.

CPU Registers, Memory, and Cache

Instruction Cache

[Cache Miss. The cache does not contain the instruction. Types of cache
miss are

El Word miss. The segment address register matches the instruction ad-
dress, but the relevant P flag is not set. The following actions occur in
parallel:

o The instruction word is read from memory and copied into the
cache.

o The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack, thus moving
the other segment number to the bottom of the stack.

g The relevant P flag is set. .

B Segment miss. Neither of the segment addresses matches the in-
struction address. The following actions occur in parallel:

m Theleastrecently used segmentis selected for replacement The
P flags for all 32 words are cleared.

s The SSA register for the selected segment is loaded with the 19
MSBs of the address of the requested instruction word.

a The instruction word is fetched and copied into the cache. It goes
into the appropriate word of the least recently used segment. The
P flag for that word is setto 1.

m The number of the segment containing the instruction word is re-
moved from the LRU stack and pushed to the top of the LRU stack,
thus moving the other segment number to the bottom of the stack.

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (i.e.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates. .

Take care when using self-modifying code. If an instruction resides in'cache
and the corresponding location in primary memory is modified, the copy of the
instruction in cache is not modified.

You can make more efficient use of the cache by aligning program code on
32-word address boundaries. Do this by using the ALIGN directive when cod-
ing assembly language.

3-21

Instruction Cache

3.3.3 Cache Control Bits

Three cache control bits are located inthe CPU status register: the cache clear
bit (CC), the cache enable bit (CE), and the cache freeze bit (CF).

Cache Clear Bit (CC). Writing a 1 to the cache clear bit (CC) invalidates all
entries in the cache. All P flags in the cache are cleared. The CC bitis
always cleared afterthe cache is cleared. Itis therefore always read as
a 0. At reset, the cache is cleared and 0 is written to this bit.

Cache Enable Bit (CE). Writing a 1 to this bit enables the cache. When en-
abled, the cache is used according to the previously described cache
algorithm. Writing a 0 to the cache enable bit disables the cache; no
updates or modification of the cache can be performed. Specifically,
no SSA register updates are performed, no P flags are modified (un-
less CC = 1), and the LRU stack is not modified. Writinga 1 to CC when
the cache is disabled clears the cache, and, thus, the P flags. No
fetches are made from the cache when the cache is disabled. Atreset,
0 is written to this bit.

Cache Freeze Bit (CF). When CF = 1, the cache is frozen. If, in addition, the
cache is enabled, fetches from the cache are allowed, but no modifica-
tion of the state of the cache is performed. Specifically, no SSA register
updates are performed, no P flags are modified (unless CC = 1), and
the LRU stack is not modified. This function can be used to keep fre-
quently used code resident in the cache. Writing a 1 to CC when the
cache is frozen clears the cache, and, thus, the P flags. At reset, 0 is
written to this bit.

Table 3-6 defines the effect of the CE and CF bits used in combination.

Table 3-6. Combined Effect of the CE and CF Bits

CE CF Effect
Cache not enabled

Cache not enabled
Cache enabled and not frozen

bl =2 Bl K=

Cache enabled and frozen

3-22 _ CPU Registers, Memory, and Cache

Using the TMS320C31 Boot Loader

3.4 Using the TMS320C31 Boot Loader

This section describes how to use the TMS320C31 microcomputer/boot loader
(MCBL/MP)function. This feature is unique to the TMS320C31 and is not avail-
able on the TMS320C30 device.

3.4.1 Boot Loader Operations

The boot loader lets you load and execute programs that are received from a
host processor, inexpensive EPROMs, or other standard memory devices.
The programs to be loaded reside in one of three memory mapped areas identi-
fied as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 3-8), or
the programs are received by means of the serial port.

User-definable byte, half-word, and word data formats are supported. 32-bit
fixed burstloads from the TMS320C31 serial port are also supported. See Sec-
tion 8.2 for a detailed description of the serial port operation.

3.4.2 Invoking the Boot Loader

The boot loader function is selected by resetting the processor while driving
the MCBL/MP pin high. Figure 3—-13 shows the flow of this operation, which is
dependent upon the mode selected (external memory or serial boot).
Figure 3—14 shows memory load operations; Figure 3—15 shows serial port
load operations.

Figure 3-13. Boot Loader Mode Selection Flowchart

Reset
MCBL/MP =1

Serial Port Load

3-23

Using the TMS320C31 Boot Loader

Figure 3-14. Boot Loader Memory Load Flowchart

Yes

Branch to Address Bik Size = 07
Boot 1,
Boot 2, or
Boot 3
Y Load Destination
Determine Mode Address
8, 16, or 32?7 >
v
Set Memory . Yes
Configuration Blk Size = 07
Control Word
v
Load Block Size Transfer Data From
Source to
| Destination
Blk Size -1

Load Block Size

Branch to Destination
Address of First
Block Loaded

}

Begin Program Execution

3-24 CPU Registers, Memory, and Cache

Using the TMS320C31 Boot Loader

Figure 3-15. Boot Loader Serial Port Load Mode Flowchart

Yes
Blk Size = 0?
Set up Serial Port
for 32-bit
Fixed Burst Mode
Y / Wait for Serial /
Wait for Serial Port Input
Port Input T
TrangsferI II?’ata from
i erial Port to
l Load Block Size J Destination Address
> T
| Bksize-1 |
Yes
Blk Size = 0? <) } No

Wait for Serial
Port Input / Wait for Serial /

Port Input
1 p
Load Destination Y -
ddress | LoadBlockSize |
v 000

y

|

Branch to Destination
Address of First
Block Loaded

v

Begin Program Execution

3.4.3 Mode Selection

After reset, the loader mode is determined by polling the status of the INT3—
INTO pins. Table 3-7 lists the options that you can select. The options are
based upon the active low state of the INT3-INTO signals. The TMS320C31
device begins reading data from the boot memory location selected by the ac-
tive interrupt signal. Interrupts can be driven any time after the RESET pin has
been deasserted.

3-25

Using the TMS320C31 Boot Loader

Table 3~7. Loader Mode Selection

Active Interrupt Loader Mode Memory Addresses
INTO External memory Boot 1 address 0x001000
INTT External memory Boot 2 address 0x400000
INT2 External memory Boot 3 address 0xFFF000
INT3 32-bit serial Serial port 0

3.4.4 External Memory Loading

Table 3-8 shows and describes the information that you must specify to define
boot memory organization (8, 16, or 32 bits), the code block size, the load desti-

_nation address, and memory access timing control for the boot memory. This

must be done before a source program can be externally loaded.

This information must be specified in the first four locations of the Boot 1, Boot
2, or Boot 3 areas. The header is followed by the data or program code that
is the BLK size in length.

Table 3-8. External Memory Loader Header

Location Description Valid Data Entries
0 Boot memory type (8, 16, or 32) 0x8, 0x10, or 0x20 specified as a 32-bit number.
1 Boot memory configuration See Chapter 7 of the TMS320C3x User's Guide
(defined # of wait states, etc.) for valid bus control register entries.
2 Program block size (BLK) Any value 0 < BLK < 224,
3 Destination address Any valid TMS320C31 24-bit address.
4 Program code starts here Any 32-bit data value or valid TMS320C3x in-
struction.

The loader fetches 32 bits of data for each specified location, regardless of
what memory configuration width is specified. The data values must reside
within or be written to memory, beginning with the value of least significance
for each 32 bits of information.

3.4.5 Examples of External Memory Loads

- 3-26

Example 3—1, Example 3—2, and Example 3-3 show memory images for
byte-wide, 16-bit wide, and 32-bit wide configured memory.

These examples assume that

1) an INTO signal was detected after reset is deasserted (external memory
load from Boot 1).

2) theloader header resides at memory location 0x1000 and defines the fol-
lowing:

CPU Registers, Memory, and Cache

Using the TMS320C31 Boot Loader

a) boot memory type EPROMSs that require two wait states and SWW =
11,

b) aloaderdestination’address at the beginning of the TMS320C31’s in-
ternal RAM Block 0, and

¢) asingle block of memory that is 0x1FF in length.

Example 3-1. Byte-Wide Configured Memory

Address Value Comments
0x1000 0x08 Memory width = 8 bits
0x1001 0x00
0x1002 0x00
0x1003 0x00
0x1004 0x58 Memory type = SWW = 11, WCNT = 2
0x1005 0x10
- 0x1006 0x00
0x1007 0x00
0x1008 OxFF Program code size = Ox1FF
0x1009 0x01
0x100A 0x00
0x100B 0x00
0x100C 0x00 Program load starting address = 0x809800
0x100D 0x98
0x100E 0x80
0x100F 0x00

Example 3-2. 16-Bit Wide Configured Memory

Address Value Comments
0x1000 0x10 Memory width = 16
0x1001 0x0000
0x1002 0x1058 Memory type = SWW = 11, WCNT =2
0x1003 0x0000
0x1004 Ox1FF Program code size = Ox1FF
0x1005 0x0000
0x1006 0x9800 Program load starting address = 0x809800
0x1007 0x0080

3-27

Using the TMS320C31 Boot Loader

Example 3-3. 32-Bit Wide Configured Memory

Address Value Comments
0x1000 0x00000020 Memory width = 32
0x1001 0x00001058 Memory type = SWW = 11, WCNT =2
0x1002 0x000001FF Program code size = 0x1FF
0x1003 0x00809800 Program load starting address = 0x809800

After the header is read, the loader transfers BLK, 32-bit words beginning at
a specified destination address. Code blocks require the same byte and half-
word ordering conventions. Additionally, the loader can be used to load multi-
ple code blocks at different address destinations.

If multiple code blocks are loaded, execution begins at the first block of code
loaded. Consequently, the first code block loaded should be a startup routine
to access the other loaded programs.

If another code block is to be loaded, the following header and its correspond-
ing code must be appended to the preceding code block:

BLK size 1st location
Destination address 2nd location

Repeat this procedure for additional code blocks. End the loader function and
begin execution of the first code block by appending the value of 0x00000000
to the last block.

3.4.6 Serial Port Loading

3-28

Boot loads, by way of the TMS320C31 serial port, are selected by driving the
INT3 pin active low following reset. The loader automatically configures the se-
rial port for 32-bit fixed burst reads. It is interrupt-driven by the FSR signal. You
cannot change this mode for boot loads. The serial port clock and FSR are ex-
ternally generated by your hardware.

Asin parallel loading, a header must precede the actual program to be loaded.
However, only the block size and destination address must be provided be-
cause serial port speed and data format are predefined by the loader and your
hardware (i.e., skip data words 0 and 1 from Table 3-8).

CPU Registers, Memory, and Cache

Using the TMS320C31 Boot Loader

The transferred data-bit order must begin with the most significant bit (MSB)
and end with the least significant bit (LSB). ‘

3.4.7 interrupt and Trap Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot loader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests.
Dual vectoring was implemented to ensure code compatibility with future ver-
sions of TMS320C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than di-
rectinterrupt vectoring, are used. The normal interrupt and trap vectors are de-
fined to vector to the last 63 locations in the on-chip RAM. When the loader is
invoked, the TMS320C31’s last 63 locations of RAM Block 1 are assumed to
contain interrupt and trap branch instructions.

care to ensure thatt
ritten by loaded progra

Table 3-9 shows the MCBL/MP mode interrupt and trap instruction memory
maps.

3-29

Using the TMS320C31 Boot Loader

Table 3-9. TMS320C31 Interrupt and Trap Memory Maps

3-30

Address Description
809FC1 INTO
809FC2 INTT
809FC3 INT2
809FC4 INT3
809FC5 XINTO
809FC6 RINTO
809FC7 Reserved
809FC8 Reserved
809FC9 TINTO
809FCA TINTT
809FCB DINTO
809FCC-809FDF Reserved
809FE0 TRAPO
809FE1 TRAP1

. .

. .

L] L
809FFB TRAP27
809FFC-809FFF Reserved

CPU Registers, Memory, and Cache

Data Formats and Floating-Point Operation

Data Formats and Floating-Point Operation

Chapter 4

Data Formats and Floating-Point Operation

" In the TMS320C3x architecture, data is organized into three fundamental
types: integer, unsigned-integer, and floating-point. Note that the terms, inte-
ger and signed-integer, are considered to be equivalent. The TMS320C3x sup-
ports short and single-precision formats for signed and unsigned integers. It
also supports short, single-precision and extended-precision formats for float-
ing-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-
putations. Specifically, the TMS320C3x implementation of floating-point arith-
metic facilitates floating-point operations at integer speeds while preventing
problems with overflow, operand alignment, and other burdensome tasks com-
mon in integer operations.

This chapter discusses in detail the data formats and floating-point operations
supported on the TMS320C3x. Major topics in this section are as follows:

Integer Formats (Section 4.1 on page 4-2)

Unsigned-Integer Formats (Section 4.2 on page 4-3)
Floating-Point Formats (Section 4.3 on page 4-4)

Floating-Point Multiplication (Section 4.4 on page 4-10)
Floating-Point Addition and Subtraction (Section 4.5 on page 4-14)
Normalization (Section 4.6 on page 4-18)

Rounding (Section 4.7 on page 4-20)

Floating-Point to Integer Conversions (Section 4.8 on page 4-22)

O 00000000 O

Integer to Floating-Point Conversions (Section 4.9 on page 4-24)

Integer Formats

4.1 Integer Formats

The TMS320C3x supports two integer formats: a 16-bit short integer format
and a 32-bit single-precision integer format. When extended-precision regis-
ters are used as integer operands, only bits 31— 0 are used; bits 39 — 32re-
main unchanged and unused.

4.1.1 Short Integer Format

The short integer format is a 16-bit twos-complement integer format used for
immediate integer operands. For those instructions that assume integer oper-
ands, this format is sign-extended to 32 bits (see Figure 4—1). The range of an
integer si, represented in the short integer format, is =215 < si< 215 —1. In
Figure 4—1, s = signed bit.

Figure 4-1. Short Integer Format and Sign Extension of Short Integer

15 0

s

(a) Short Integer Format

31 16 15 0

$§$S8§S8SS5SSSSSSSSss Ss)s

(b) Sign Extension of a Short Integer

4.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in twos-com-
‘plement notation. The range of an integer sp, represented in the single-preci-
sioninteger format, is — 231 < sp< 231 -1, Figure 4-2 shows the single-preci-
sion integer format.

Figure 4-2. Single-Precision Integer Format

31 0

s

4-2 Data Formats and Floating-Point Operation

Unsigned-integer Formals

4.2 Unsigned-Integer Formats

Two unsigned-integer formats are supported on the TMS320C3x: a 16-bit
short format and a 32-bit single-precision format. In extended-precision regis-
ters, the unsigned-integer operands use only bits 31— 0; bits 39 — 32 remain
unchanged.

4.2.1 Short Unsigned-Integer Format

Figure 4-3 shows the16-bit, short, unsigned-integer format used for immedi-
ate unsigned-integer operands. For those instructions that assume
unsigned-integer operands, this format is zero-filled to 32 bits. In Figure 4-3
below, x = MSB (1 or 0).

Figure 4-3. Short Unsigned-Integer Format and Zero Fill

(a) Short Unsigned-Integer Format

31 16 15 0

0000000000000 00O0 Q] x

(b) Zero Fill of a Short Unsigned Integer

4.2.2 Single-Precision Unsigned-integer Format

In the single-precision unsigned-integer format, the number is represented as
a 32-bit value, as shown in Figure 4—4. '

Figure 4—4. Single-Precision Unsigned—lntegef Format

31 0

Floating-Point Formats

4.3 FIloating-Point Formats

All TMS320C3x floating-point formats consist of three fields: an exponent field
(e), a single-bit signfield (s), and a fraction field (f). These are stored as shown
in Figure 4-5. The exponent field is a twos-complement number. The sign field
and fraction field may be considered as one unit and referred to as the mantissa
field (man). The twos-complement fraction is combined with the sign bit and
the implied most significant bit to create the mantissa. The mantissa is used
to represent a normalized twos-complement number. In a normalized repre-
sentation, a most significant nonsign bit is implied, thus providing an additional
bit of precision. The value of a floating-point number xas a function of the fields
e, s, and fis given as

x=01.fx2¢ if s =0, or where the leading zero is the sign bit and the
one is the implied most significant nonsign bit.
10.fx 2¢ if s =1, or where the leading one is the sign bit and the
zero is the implied most significant nonsign bit.
0 if e = most negative twos complement

value of the specified exponent field width.

Figure 4-5. Generic Floating-Point Format

e s f

Io— man (mantissa) ————bl

e = exponent field
s = single-bit sign field
f = fraction field

Note:

Three floating-point formats are supported on the TMS320C3x. The first is a
short floating-point format forimmediate floating-point operands, consisting of
a4-bitexponent, 1 sign bit, and an 11-bit fraction. The second is a single-preci-
sion format consisting of an 8-bit exponent, 1 sign bit, and a 23-bit fraction. The
third is an extended-precision format consisting of an 8-bit exponent, 1 sign bit,
and a 31-bit fraction.

4.3.1 Short Floating-Point Format

4-4

In the short floating-point format, floating-point numbers are represented by a
twos-complement 4-bit exponent field (¢) and a twos-complement 12-bit man-
tissa field (man) with an implied most significant nonsign bit.

Data Formats and Floating-Point Operation

Floating-Point Formats

Figure 4-6. Short Floating-Point Format

15 12|11|1O) o]

!-‘. man

>

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point twos-complement
number x in the short floating-point format is given by
x=01.fx28 ifs=0

10.fx 2¢ if s=1

0 ife=-8

You must use the following reserved values to represent zero in the short float-
ing-point format:

=-8
s=0
f=0

The following examples illustrate the range and precision of the short float-
ing-point format:

Most Positive: x=(2-2-1)x 27 = 25594 x 102
Least Positive: x=1%x2-7=7.8125%x10-3

Least Negative: x=(-1-2-1)x2-7=-7.8163 x10 -3
Most Negative: X=-2x27=-25600x102

45

Floating-Point Formats

4.3.2 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bitexponentfield (¢) and atwos-complement 24-bit mantissa field (man) with
an implied most significant nonsign bit.

Operations are performed with an implied binary point between bits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by

x=01.fx2¢ ifs=0

10.fx 28 ifs=1
0 if e=-128

Figure 4-7. Single-Precision Floating-Point Format

31 24| 23| 22 0

e s f

,I: man :!
You must use the following reserved values to represent zero in the single-pre-
cision floating-point format:
=-128
s=0
f=0

The following examples illustrate the range and precision of the single-preci-
sion floating-point format.

Most Positive: x=(2-2-23)x 2127 = 3.4028234 x1038
Least Positive: x=1x2-127 = 58774717 x10 -39

Least Negative: x=(-1-2-28) x2 -127 =— 58774724 x10~39
Most Negative: =—2x2127-_ 3.4028236x1038

4.3.3 Extended-Precision Floating-Point Format

4-6

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a. 32-bit mantissa field (man) with an implied
most significant nonsign bit. . ‘

Data Formats and Floating-Point Operation

~ Floating-Point Formats

Operations are performed with an implied binary point between bits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number xis given by:
x=01.fx2¢ ifs=0

10.fx 28 ifs=1

0 if e=—128

Figure 4-8. Extended-Precision Floating-Point Format

39 32| 31 | 30) 0

e s f

X
vy

man

You must use the following reserved values to represent zero in the exten-
ded-precision floating-point format:

=-128
s=0
f=0

The following examples illustrate the range and precision of the extended-pre-
cision floating-point format:

Most Positive: x=(2-2-31)x 2127 = 3,4028236683 x1038

Least Positive: x=1x2-127 = 58774717541 x10 —39

Least Negative: x=(-1-2-31)x2 127 =— 5 8774717569 x10 —39
- Most Negative: x=—2x2127 =~ 3,4028236691 x 1038

Floating-Point Formats

4.3.4 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-
puts. These formats often require conversion from one floating-point format to
another (e.g., short floating-point format to extended-precision floating-point
format). Format conversions occur automatically in hardware, with no over-
head, as a part of the floating-point operations. Examples of the four conver-
sions are shown below. When a floating-point format zero is converted to a
greater-precision format, itis always converted to avalid representation of zero
in that format. In the below figures, s = sign bit of the exponent.

L3 Short floating-point format conversion to single-precision floating-
point format.

15 12 11 10 . 0

s x x x| yly y

(a) Short Floating-Point Format

31 27 24 23 22 12 11 0

§8§S8S8SX XXX yly yl0 0

(b) Single-Precision Floating-Point Format

In this format, the exponent field is sign-extended and the fraction field filled
with zeros.

Ld Short floating-point format conversion to extended-precision float-
ing-point format.

15 12 11 10) 0

s x x x1ylYy y

(a) Short Floating-Point Format
39 35 32 31 30 20 19 0

ssssxxxx|yly ylo 0

(b) Extended-Precision Floating-Point Format .

The exponent field in this format is sign-extended and the fraction field filled
with zeros.

4-8 Data Formats and Floating-Point Operation

Floating-Point Formats

L3 Single-precision floating-point format conversion to extended-pre-
cision floating-point format.

31 24 23 22 0

X Xryly y

(a)Single-Precision FI‘oating-Point Format

39 32 31 30 8 7 . 0

X xlyly ylo 0

(b) Extended-Precision Floating-Point Format

The fraction field is filled with zeros.

Gk Extended-precision floating-point format conversion to single-pre-
cision floating-point format.

39 32 31 30 8 7 0

X xlvly ylz z

(a) Extended-Precision Floating-Point Format

31 24 23 22 0

x x|y ly y

(b) Single-Precision Floating-Point Format

The fraction field is truncated.

4-9

4.4 Floafing-Point Multiplication

4-10

Afloating-point number o.can be written in floating-point format as in the follow-
ing formula, where a(man) is the mantissa and a(exp) is the exponent.

o = a(man) x 20(exp)

The product of o and b is ¢, defined as
¢ = ax b = a(man) x b(man) x 2{c{exp)+b (exp))

c(man) = a(man) x b(man)
c(exp) = a(exp) + b(exp)

During floating-point multiplication, source operands are always assumed to
be in the single-precision floating-point format. If the source of the operands
is in short floating-point format, it is extended to the single-precision float-
ing-point format. If the source of the operands is in extended-precision float-
ing-point format, it is truncated to single-precision format. These conversions
occur automatically in hardware with no overhead. All results of floating-point
multiplications are in the extended-precision format. These multiplications oc-
cur in a single cycle.

A flowchart for floating-point multiplication is shown in Figure 4-9. In step 1,
the 24-bit source operand mantissas are multiplied, producing a 50-bit result
¢(man). (Note thatinput and output data are always represented as normalized
numbers.) In step 2, the exponents are added, yielding c(exp). Steps 3 through
6 checkfor special cases. Step 3 checks for whether c(man) in extended-preci-
sion format is equal to zero. If c(man) is zero, step 7 sets c(exp) to —128, thus
yielding the representation for zero. '

Steps 4 and 5 normalize the result. If a right shift of one is necessary, then in
step 8, c(man) is right-shifted one bit, and one is added to c(exp). If a right shift
of two is necessary, then in step 9, ¢c(man) is right-shifted two bits, and two is
added to c{exp). Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precision floating-point format. Steps
11 through 16 check for special cases of c(exp). In step 14, if c(exp) has over-
flowed (step 11) in the positive direction, then c(exp) is set to the most-positive -
extended-precision format value. If c(exp) has overflowed in the negative di-
rection, then c({exp) is set to the most-negative extended-precision format val-
ue. If c(exp) has underflowed (step 12), then c is set to zero (step 15); i.e.,
c(man) = 0 and c(exp) = —128.

Data Formats and Floating-Point Operation

Floating-Point Multiplication

Figure 4-9. Flowchart for Floating-Point Multiplication

a(man)

b(man) o(exp)

b(exp)

(1‘ Jy J,(z

Multiply mantissas

Add exponents

c(man) = a(man) x b(man)

(50-bit result)

c(exp) = a(exp) + b(exp)

Test for special cases of c(man)
() @ eN ®)
c(man) =0 Right- shift1 Right- shift2 No shift
to normalize to normalize to normalize
(7) (8) Jr (9)
c(exp) = c(man) > > 1 c(man) >>2
-128 and c(exp) = and c(exp) =
c(exp) + 1 clexp) + 2
Dispose of extra bits (10)
Put c(man)in extended
precision floating-point
format
-

Test for special cases of c(exp)

c(exp) overflow

(11) (12)
c(exp) underflow

(13)

c(exp) in range

¢ (14)

If e(man) > 0, c{exp) =—-128 (15)

set ¢ to most c(man)=0

positive value.

If c(man) <0,

set ¢ to most

negative value.

I Set ¢ to final result |(16)
c=oaxb

4-11

Floating-Point Multiplication

The following examples illustrate how floating-point multiplication is performed
on the TMS320C3x. For these examples, the implied most significant nonsign
bit is made explicit.

Example 4-1. Floating-Point Multiply (Both Mantissas = -2.0)
Let

o =-2.0 x 2e(exp) = 10.00000000000000000000000 x 2¢(exp)
b =-2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp)

where a and b are both represented in binary form according to the normalized
single-precision floating-point format. Then

10.00000000000000000000000 x 2(€xp)
x 10.00000000000000000000000 x 2b(exp)

0100.00 x 2 (a(exp) +b(exp))

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add two to the exponent. This yields

10.00000000000000000000000 x 2“(éXP)
x 10.00000000000000000000000 x 2b(exp)

01.00 x 2 ((exp) +b(exp)+2)

In floating-point multiplication, the expohent of the result may overflow. This
can occur when the exponents are initially added or when the exponent is mo-
dified during normalization.

Example 4-2. Floating-Point Multjply (Both Mantissas = 1.5)
Let

a=1.5x2«(exp) = 01.10000000000000000000000 x 20(exp)
b =1.5x2b(ex0) = 01.10000000000000000000000 x 2b(exp)

where a and b are both represented in binary form according to the single-pre-
cision floating-point format. Then

01.10000000000000000000000 x 2%(exp)
x 01.10000000000000000000000 x 2b(exp)

0010.0100 x 2 (a(exp) +b(exp))

4-12 Data Formats and Floating-Point Operation

Floating-Point Multiplication

To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add one to the exponent. This yields

01.10000000000000000000000 x 20(exp)
x 01.10000000000000000000000 x 2b(exp)

01.00100 x 2 («(exp) +b(exp) +1)

Example 4-3. Floating-Point Multiply (Both Mantissas = 1.0)
Let

a = 1.0 x 2o(exp) = 01.00000000000000000000000 x 2c(exp)
b = 1.0 x 2b(exp) = 01.00000000000000000000000 x 2b(exp)

where a and b are both represented in binary form according to the single-pre-
cision floating-point format. Then

01.00000000000000000000000 x 2(€xp)
x 01.00000000000000000000000 x 2b(exp)

0001.00 x 2 (x(exp) +b(exp))

This number is in the proper normalized format. Therefore, no shift of the man-
tissa or modification of the exponent is necessary.

These examples have shown cases where the product of two normalized num-
bers can be normalized with a shift of zero, one, or two. For all normalized in-
puts with the floating-point format used by the TMS320C3x, a normalized re-
sult can be produced by a shift of zero, one, or two.
Example 4-4. Floating-Point Multjply Between Positive and Negative Numbers
‘ Let

a = 1.0 x 2e(exp) = 01.00000000000000000000000 x 22(exp)
b = —2.0 x 2b(exp) = 10.00000000000000000000000 x 20(exp)

Then

01.00000000000000000000000 x 2(€xp)
x 10.00000000000000000000000 x 2b(exp)

1110.00 x 2 («(€xp) +b(exp))

The result is ¢ =— 2.0 x 2(a(exp) + b(exp)

Example 4-5. Floating-Point Multjply by Zero

All mulitiplications byé floating-point zero yield a result of zero (f=0, s=0, and
exp = —128).

4-13

Floating-Point Addition and Subtraction

4.5 Floating-Point Addition and Subtraction

4-14

In floating-point addition and subtraction, two floating-point numbers . and b
can be defined as

o. = a(man) x 2 o(exp)
b = b(man) x 2 b(exp)

The sum (or difference) of o. and b can be defined as
c=oztb
= (a(man) + (b(man) x 2 —(e(exp)—b(exp)))) x 2 oexp),
if o(exp) = b(exp)
= ((cel(man) x 2 —(b(exp)—a(exp))) + b(man)) x 2 b(exp),
if a(exp) < b(exp)

The flowchart for floating-point addition is shown in Figure 4—10. Since this
flowchart assumes signed data, it is also appropriate for floating-point subtrac-
tion. Inthis figure, itis assumed that c.(exp) < b(exp). In step 1, the source expo-
nents are compared, and c(exp) is set equal to the largest of the two source
exponents. In step 2, d is set to the difference of the two exponents. In step 3,
the mantissa with the smallest exponent, in this case a(man), is right-shifted

~ d bits in order to align the mantissas. After the mantissas have been aligned,

they are added (step 4).

Steps 5 through 7 check for a special case of c(man). If c(man) is zero (step
5), then c(exp) is set to its most negative value (step 8) to yield the correct re-
presentation of zero. If ¢(man) has overflowed ¢ (step 6), thenin step 9, c(man)
is right-shifted one bit, and one is added to c(exp). In step 10, the result is nor-
malized. In steps 11 and 12, special cases of c(exp) are tested. If c(exp) has
overflowed, then c is set to the most positive extended-precision value if it is
positive; otherwise, it is set to the most negative extended-precision value.

Data Formats and Floating-Point Operation

Floating-Point Addition and Subtraction

Figure 4-10. Flowchart for Floating-Point Addition

a(man)

b(man)

a(exp)

v

b(exp)

v_a

Compare exponents

Align mantissas

a(man) = a(man) >>d

Discard LSBs to keep
a(man) in

If o(exp) < = b(exp)
c(exp) = b(exp)
else
c(exp) = a(exp)
[Assume for simplicity
that a(exp) < < = b(exp)]

. v

extended-precision

@)

Subtract exponents

d = b(exp) — a(exp)

floating-point format K—
| I
k14

(4)

Add mantissas

¢ (man) = o(man) + b(man)

v

Test for special cases of ¢(man)

(5)

c(man) =0

(6)

Overflow of c(man)

7)
k = # leading
non-significant
sign bits

v

c(man) = c(man) > > 1
c(exp) = c(exp) + 1
Discard LSBs to keep in
extended-precision
floating-point format

(9

(8)

c(exp) =128

c(man) <<k
c(exp) = c(exp)—k

Test for special cases of ¢(exp)

(11)

c(exp) overflow

(12)
» ¢(exp) underflow

(13)
c(exp) in range

v

v

If ¢(man) > 0,
set ¢ to most
positive value.

If ¢(man) <0,
set ¢ to most
negative value.

(14)

set ¢ to zero (15)
c(exp) =-128
¢(man)=0

—

(16)

Set ¢ to final result

v

c=oa+b

4-15

Floating-Point Addition and Subtraction

The following examples describe the floating-point addition and subtraction
operations. It is assumed that the data is in the extended-precision
floating-point format.

Example 4-6. Floating-Point Addition

In the case of two normalized numbers to be summed, let

o =1.5=01.1000000000000000000000000000000 x 20
b = 0.5 = 01.0000000000000000000000000000000 x 2~

Itis necessary to shift b to the right by one so that 0. and b have the same expo-
nent. This yields

b = 0.5 = 00.1000000000000000000000000000000 x 20
Then

01.10000000000000000000000000000000 x 20
+ 00.10000000000000000000000000000000 x 20

010.00000000000000000000000000000000 x 20

Asinthe case of multiplication, itis necessary to shift the binary pointone placé
to the left and to add one to the exponent. This yields

01.1000000000000000000000000000000 x 20
+ 00.1000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 21

Example 4-7. Floating-Point Subtraction
A subtraction is performed in this example. Let

.= 01.0000000000000000000000000000001 x 20
b = 01.0000000000000000000000000000000 x 20

The operation to be performed is o — b. The mantissas are aiready aligned be-
cause the two numbers have the same exponent. The resultis alarge cancelia-
tion of the upper bits, as shown below.

01.0000000000000000000000000000001 x 20
— 01.0000000000000000000000000000000 x 20

00.0000000000000000000000000000001 x 20

4-16 ‘ 4 ' Data Formats and Floating-Point Operation

Floating-Point Addition and Subtraction

The result must be normalized. In this case, a left-shift of 31 is required. The
exponent of the result is modified accordingly. The result is

01.0000000000000000000000000000001 x 20
— 01.0000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 2-31

Example 4-8. Floating-Point Addition With a 32-Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to nor-
malize the result. Let

o =0111111111 111111 11111111111111111 x 2127
b = 10.0000000000000000000000000000000 x 2127

The operation to be performed is o + b.

01.1111111111111111111111111111111 x 2127
+ 10.0000000000000000000000000000000 x 2127
1111111111 11111111111111111111111 x 2127

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from
the exponent. The result is
o1 111111111 111111111111 1111111111 x 2127
+ 10.0000000000000000000000000000000 x 2127
10.0000000000000000000000000000000 x 295

Example 4-9. Floating-Point Addition/Subtraction and Zero

When floating-point addition and subtraction are performed with a float-
ing-point 0, the following identities are satisfied:

o0t0=o(o=0)
0+£0=0

0—oa=—a(az0)

4-17

Normalization Using the NORM Instruction

4.6 Normalization Using the NORM Instruction

The NORM instruction normalizes an extended-precision floating-point num-
ber that is assumed to be unnormalized. Since the number is assumed to be
unnormalized, no implied most significant nonsign bit is assumed. The NORM
instruction executes the following three steps:

1) Locates the most significant nonsign bit of the floating-point number.
2) Left-shifts to normalize the number.
3) Adjusts the exponent.

Given the extended-precision floating-point value a to be normalized, the nor-
malization, norm (), is performed as shown in Figure 4—11.

Figure 4-11. Flowchart for NORM Instruction Operation

o

v

Test for special cases of ¢ (man)
)

(1) Leading non-significant
o (man) =0 sign bits
k = # leading
nonsignificant
sign bits
) :—I @)
exp) =—128
(exp) Sign-extended o(man) 1 bit

¢ (man) = a{man) <<k
c (exp) = afexp)—k

| Remove most significant nonsign bit | (5)

Test for special cases of ¢ (exp)

(6)]

¢ (exp) clexp) in
underflow range
(8) ¢ (exp) =-128

No change to ¢ (man)

.

9) I Set c to final result

v

¢.= norm{o)

4-18 Data Formats and Floating-Point Operation

Normalization Using the NORM Instruction

Example 4—? 0. NORM Instruction

Assume that an extended-precision register contains the value
man = 00000000000000000001000000000001, exp =0

When the normalization is performed on a number assumed to be unnormal-
ized, the binary point is assumed to be

man = 0.0000000000000000001000000000001, exp =0

This number is then sign-extended one bit so that the mantissa contains 33
bits.

man = 00.0000000000000000001000000000001, exp=0

The intermediate result after the most significant nonsign bit is located and the
shift performed is:

man = 01.0000000000010000000000000000000, exp =-19

The final 32-bit value output after remo\/ing the redundant bit is:
man = 00000000000010000000000000000000, exp =—19

The NORM instruction is useful for counting the number of leading zeros or
leading ones in a 32-bit field. If the exponent is initially zero, the absolute value
of the final value of the exponent is the number of leading ones or zeros. This
instruction is also useful for manipulating unnormalized floating-point num-
bers.

4-19

Rounding: The RND Instruction

4.7 Rounding: The RND Instruction

4-20

The BND instruction rounds a number from the extended-precision float-
ing-point format to the single-precision floating-point format. Rounding is simi-
lar to floating-point addition. Given the number a to be rounded, the following
operation is performed first. ’

¢ = o(man) x 204exp) 4 (1 x 2o(exp)—24)

Next, a conversion from extended-precision floating-point to single-precision
floating-point format is performed. Given the extended-precision floating-point
value, the rounding, rnd(), is performed as shown in Figure 4—12.

Data Formats and Floating-Point Operation

Rounding: The AND Instruction

Figure 4-12. Flowchart for Floating-Point Rounding by the RND Instruction

' exp)— 24
[1><2a(0)

P4

Add o(man) and 1/2 an LSB

¢ (man) = o (man) + 2-24

- Test for special cases of c(man)
c{man)=0 Overflowofc (man) No special case
C (exp) =128 ¢ (man)=c (man) < <1

¢ (exp) = o (exp) + 1

I

Test for special cases of ¢ (exp)
¢ (exp) overflow ¢ (exp) in range
Ifc (man) > 0,

set ¢ to most positive
single-precision value.
Ifc (man) <0,

set ¢ to most negative
single-precision value.

—
L

74
Set 8 LSBs of c(man) to zero

|
v

¢ =rnd(o)

4-21

Floating-Point to Integer Conversion

4.8 Floating-Point to Integer Conversion

4-22

Floating-point to integer conversion, using the FIX instructions, allows exten-
ded-precision floating-point numbers to be converted to single-precision inte-
gers in a single cycle. The floating-point to integer conversion of the value x
is referred to here as fix(x). The conversion does not overflow if a, the number
to be converted, is in the range

-281<o<231 -1
First, you must be certain that
oexp) < 30

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If a(exp) is
within the valid range, then o(man), with implied bit included, is sign-extended
and right-shifted (rs) by the amount

rs = 31 — of{exp)

This right-shift (rs) shifts out those bits corresponding to the fractional part of
the mantissa. For example:

If 0 <x <1, then fix(x) = 0.
If =1 £ x <0, then fix(x) = -1.

The flowchart for the floating-point to integer conversion is shown in
Figure 4—13.

Data Formats and Floating-Point Operation

Floating-Point to Integer Conversion

Figure 4-13. Flowchart for Floating-Point to Integer Conversion by FIX Instructions

o

!

Test for special cases of a(exp)

o(exp) > 30

a(exp) in range
rs = 31 — a(exp)

Overflow

If a(man) > 0,

If a(man) <0,

¢ = most positive integer.

¢ = most negative integer.

Shift

c=o(man)>>rs

—

Set c to final result

|

¢ = fix(ar)

4-23

Integer to Floating-Point Conversion Using the Float Instruction

4.9 Integer to Floating-Point Conversion Using the FLOAT Instruction

Integer to floating-point conversion, using the FLOAT instruction, allows sing-
le-precisionintegers to be converted to extended-precision floating-point num-
bers. The flowchart for this conversion is shown in Figure 4—14.

Figure 4-14. Flowchart for Integer to Floating-Point Conversion by FLOAT Instructions

o

3

c{man)=a
¢ (exp) =30

v

Test for special cases of ¢ (man)

Leading nonsignificant
c(man)=0 sign bits.

k = # leading
nonsignificant
sign bits

C (exp) =—128 ¢ (man)=c (man) <<k
c(exp)=30-k

I Remove most significant nonsign bit I

I Set c to final result l

¢ = float (@)

4-24 Data Formats and Floating-Point Operation

Addressing

Addressing

Chapter 5

Addrg§§§ng

The TMS320C3x supports five groups of powerful addressing modes. Six
types of addressing may be used within the groups, which allow access of data
from memory, registers, and the instruction word. This chapter details the oper-
ation, encoding, and implementation of the addressing modes. It also dis-
cusses the management of system stacks, queues, and deques in memory.
These are the major topics in this chapter:

X Types of Addressing (Section 5.1 on page 5-2)
‘Register

Direct

Indirect

Short-immediate

Long-immediate

PC-relative

[Groups of Addressing Modes (Section 5.2 on page 5-19)
General addressing modes

Three-operand addressing modes

Parallel addressing modes

Long-immediate addressing mode

Conditional-branch addressing modes

L

Circular Addressing (Section 5.3 on page 5-24)

(o

Bit-Reversed Addressing (Section 5.4 on page 5-29)

i

System Stack Management (Section 5.5 on page 5-30)

Types of Addressing

5.1

Types of Addressing

Six types of addressing allow access of data from memory, registers, and the
instruction word: ‘

B Register
B Direct
| Indifect
‘B Short-immediate
B [ong-immediate

B PC-relative

Some types of addressing are appropriate for some instructions and not oth-
ers. For this reason, the types of addressing are used in the five different
groups of addressing modes as follows:

G

General addressing modes (G):

B Register
B Direct
B Indirect

B -Short-immediate

Three-opefand addressing modes (T):

B Register

B |ndirect

Parallel addressing modes (P):

Register

B [ndirect

Long-immediate addressing mode

B Long-immediate

Conditional-branch addressing modes (B):
H Register

B PC-relative

The six types of addressing are discussed first, followed by the five groups of
addressing modes.

Addressing

Types of Addressing

5.1.1 Register Addressing

In register addressing, a CPU register contains the operand, as shown in this
example:

ABSF R1 ; Rl = |R1]|

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 5-1.

Table 5-1. CPU Register/Assembler Syntax and Function

CPU Register Assembler ~ Assigned
Address Syntax Function

00h RO Extended-precision register
01h R1 - Extended-precision register
02h R2 Extended-precision register
03h R3 Extended-precision register
04h R4 Extended-precision register
05h R5 Extended-precision register
06h R6 Extended-precision register
07h R7 : Extended-precision register
08h ARO Auxiliary register
0%h AR1 Auxiliary register
0Ah AR2 Auxiliary register
0Bh AR3 Auxiliary register
0Ch AR4 Auxiliary register
0Dh AR5 Auxiliary register
OEh AR6 Auxiliary register
OFH AR7 Auxiliary register
10h DP Data-page pointer
11h IRO Index register 0
12h IR1 Index register 1
13h BK Block-size register
14h SP Active stack pointer
15h ST Status register
16h IE CPU/DMA interrupt enable
17h : IF CPU interrupt flags
18h IOF I/O flags
19h RS Repeat start address
1Ah RE Repeat end address
1Bh RC Repeat counter

5-3

Types of Addressing

5.1.2 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight least significant bits of the data page pointer (DP) with the 16 least signifi-
cant bits of the instruction word (expr). This results in 256 pages (64K words
per page), giving the programmer a large address space without requiring a

change of the page pointer. The syntax and operation for direct addressing are
listed below.

Syntax: @expr
Operation: address = DP concatenatéd with expr

Figure 5-1 shows the formation of the data address. Example 5-1 gives anin-
struction example with data before and after instruction execution.

Figure 5-1. Direct Addressing

31 16 15 0

Example 5-1 ; Direct Addressing

5-4

lnstrwg%n S— expr
31 8 7 0
DP —®| x X...X X page
(Data
Page Pointer)
31 24 23 0
0 0...0 O address
31 0
operand
ADDI QOBCDEh, R7
Before Instruction: After Instruction:
DP = 8Ah ’ DP = 8Ah
R7 =0h R7 = 12345678h
Data at SABCDEh = 12345678h Data at S8ABCDEh = 12345678h

Addressing

Types of Addressing

5.1.3 Indirect Addressing

Indirect addressing is used to specify the address of an operand in memory
through the contents of an auxiliary register, optional displacements, and index
registers. Only the 24 least significant bits of the auxiliary registers and index
registers are used in indirect addressing. This arithmetic is performed by the
auxiliary register arithmetic units (ARAUSs) on these lower 24 bits and is un-
signed. The upper eight bits are unmodified.

The flexibility of indirect addressing is possible because the ARAUs on the .
TMS320C3x are used to modify auxiliary registers in parallel with operations
within the main CPU. Indirect addressing is specified by a five-bit field in the
instruction word, referred to as the mod field. A displacement is either an ex-
plicit unsigned 8-bit integer contained in the instruction word or an implicit dis-
placement of one. Two index registers, IR0 and IR1, can also be used in indi-
rect addressing. In some cases, an addressing scheme using circular or bit-
reversed addressing is optional. The mechanism for generating addresses in
circular addressing is discussed in Section 5.3, bit-reversed in Section 5.4.

Table 5-2 lists the various kinds of indirect addressing, along with the value of
the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 18 examples show the operation for each kind of indirect
addressing.

5-5

Types of Addressing

Table 5-2. Indirect Addressing

5-6

Mod Field | Syntax | Operation Description
Indirect Addressing with Displacement
00000 *+ARn(disp) addr = ARn + disp With predisplacement add -
00001 *— ARn(disp) addr = ARn - disp With predisplacement subtract
00010 *++ARn(disp) | addr = ARn + disp With predisplacement add and modify
ARn = ARn + disp
00011 *— - ARn(disp) | addr= ARn-—disp With predisplacement subtract and modify
ARn = ARn —disp
00100 *ARn++(disp) | addr=ARn With postdisplacement add and modify
ARnN = ARn + disp
00101 *ARn — - (disp) | addr = ARn With postdisplacement subtract and modify
ARn = ARn - disp
00110 *ARn++(disp)% | addr = ARn With postdisplacement add and circular
ARn = circ(ARn + disp) | modify
00111 *ARn — — (disp)%| add = ARn With postdisplacement subtract and
ARn = circ(ARn —disp) | circular modify
Indirect Addressing with Index Register IRO
01000 *+ARn(IR0) addr = ARn + IR0 With preindex (IR0} add
01001 *— ARn(IR0) addr = ARn -~ IRO With preindex (IR0) subtract
01010 *++ARN(IR0) addr = ARn + IR0 With preindex (IR0) add and modify
ARn = ARn + IRO
01011 *—~ARN(IR0) | addr= ARn-IR0 With preindex (IR0) subtract and modify
ARn = ARn - IRO
01100 *ARn++(IR0) addr = ARn With postindex (IR0) add and modify
-ARn = ARn + IRO
01101 *ARn - - (IR0) | addr= ARn With postindex (IR0) subtract and modify
ARn = ARn - IRO
01110 *ARn++(IR0)% | addr=ARn With postindex (IR0) add and circular
ARn = circ(ARn + IR0) modify
01111 *ARn - -~ (IR0)%| addr= ARn With postindex (IR0) subtract and circular
ARn = circ(ARn) - IR0 modify
LEGEND:
addr = memory address
ARn = auxiliary register ARO — AR7
IRn = index register IR0 or IR1
disp = displacement
++ = add and modify
- = subtract and modify
cire() = address in circular addressing

%o

where circular addressing is performed

Addressing

Types of Addressing

Table 5-2. Indlirect Addressing (Concluded)

Mod Field | Syntax | Operation Description
Indirect Addressing with Index Register IR1
10000 *+ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add
10001 * — ARn(IR1) addr = ARn - IR1 With preindex (IR1) subtract
10010 * ++ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add
ARn = ARn + IR1 and modify
10011 *——ARn(IR1) addr = ARn - |IR1 With preindex (IR1) subtract
ARn = ARn - IR1 and modify
10100 * ARn ++ (IR1) addr = ARn With postindex (IR1) add
ARn = ARn + IR1 and modify
10101 *ARn - - (IR1) addr = ARn With postindex (IR1) subtract
ARn = ARn - IR1 and modify
10110 * ARn ++ (IR1)% addr = ARn With postindex (IR1) add
ARn = circ(ARn + IR1) and circular modify
10111 * ARn - - (IR1)% addr = ARn With postindex (IR1) subtract
ARn = circ(ARn — IR1) and circular modify
Indirect Addressing (Special Cases)
11000 *ARn addr = ARn Indirect
11001 *ARn ++ (IR0)B addr = ARn With postindex (IR0) add
ARn = B(ARn + IR0) and bit-reversed modify
LEGEND:
addr = memory address
ARn = auxiliary register ARO — AR7
IRn = index register IR0 or IR1
disp = displacement
++ = add and modify
- = subtract and modify
circ() = address in circular addressing
% = where circular addressing is performed
B = where bit-reversed addressing is performed

Types of Addressing

Example 5-2. Auxiliary Register Indirect

An auxiliary register (ARn) contains the address of the operand to be fetched.

Operation: operand address = ARn
Assembler Syntax: *ARn
Modification Field: 11000
31 24 23 0
ARn —P x X address
31 l 0
operand

Example 5-3. Indirect With Predisplacement Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn+ disp
Assembler Syntax: *+ARn(disp)
Modification Field: 00000
31 24 23 0
_ ARn ——DI X X address
L 8 7 0
disp] 0 0...0 0 integer F——=% (+)
31 , 0
operand

5-8 Addressing

Types of Addressing

Example 5-4. Indirect With Predisplacement Subtract

The address of the operand to be fetched is the contents of an auxiliary register
(ARnN) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation:

operand address = ARn-disp

Assembler Syntax: *— AR n(disp)
Modification Field: 00001
31 24 23 0
ARn —DI X X address
31 8 7 0 ‘
disp| O 0..0 0| integer fb—>» (9

31

operand

Example 5-5. Indirect With Predisplacement Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and the displacement (disp). The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1. After
the data is fetched, the auxiliary register is updated with the address gener-

ated.
Operation:

operand address = ARn+ disp
ARn = ARn + disp

Assembler Syntax: *++ARn(disp)
Modification Field: 00010
31 24 23 0
ARn—¥ x X address
31 8 7 0
disp} O 0.0 0] integer —p (+)

31

operand

5-9

Types of Addressing

Example 5-6. Indirect With Predisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1. Af-
terthe data is fetched, the auxiliary register is updated with the address gener-

ated.
Operation: operand address = ARn— disp
ARn= ARn+ disp

Assembler Syntax: *— — ARn(disp)

Modification Field: 00011
31 24 23 0

ARn —#¥ x X address
31 8 7 0
disp| O 0...0 0] integer |—p ()
[
31 ' 0
operand

Example 5-7. Indirect With Postdisplacement Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
auxiliary register. The displacement is either an eight-bit unsigned integer con-
tained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn= ARn+disp
Assembler Syntax: *ARn++ (disp)
Modification Field: 00100
31 24 23 0
ARn —P] x X address
31 ’ 8.7 0 T
disp| 0 0..0 0] integer —p (+) ¢—o
31 w O
operand

5-10 - Addressing

Types of Addressing

Example 5-8. Indirect With Postdisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the auxiliary register. The displacement is either an eight-bit unsigned integer
contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn—-disp
Assembler Syntax: *ARn-— (disp)
Modification Field: 00101
31 24 23 0
ARn —P x x| address
31 8 7 0 T
disp| O 7 0..0 0] integer |—p (-)
31 0
operand

Example 5-9. Indirect With Postdisplacement Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn+ disp)
4 Assembler Syntax: *ARn++ (disp)%
Modification Field: 00110
31 24 23 0
ARn —Dlx X address
31 8 7 0 (%)
I
disp| O 0..0 0| integer|—> (+)
31 0
operand

5-11

Types of Addreséing

Example 5-10. Indirect With Postdisplécemenf Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacementis either an eight-bitun-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn= circ(ARn—disp)
Assembler Syntax: *ARn- — (disp)%
Modification Field: 00111
31 24 23 0
ARn —Dl X X address
31 ' 8 7 0 (%)
disp] O 0.0 0| integer —p (I_)
31 0
operand

Example 5-11. Indirect With Preindex Add

The address of the operand to be fetched is the sum of an auxnllary register
(ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn+ IRm
Assembler Syntax: *+ ARn(IRm)
Modification Field: 01000 ifm=0

10000 ifm=1

31 24 23 0
ARn —P§| x X address
31 24 23 0
IRm—9 x X index) —>» ()
31) 0
operand

5-12 _ Addressing

Types of Addressing

Example 5-12. Indirect With Preindex Subtract

The address of the operand to be fetched is the difference of an auxiliary regis-
ter (ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn— IR m
Assembler Syntax: *~ AR n(IRm)
Modification Field: 01001 ifm=0

- 10001 if m=1

31 24 23 0
ARn —ﬁl X X address
31 24 23 0 '
IRm—p x X index)
31 l 0
operand

Example 5-13. Indirect With Preindex Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IR0 or IR1). After the data is fetched, the auxiliary
register is updated with the address generated.

Operation: operand address = ARn+ IRm
ARn= ARn+IRm

Assembler Syntax: *++ AR n{IRm)

Modification Field: 01010 ifm=0

10010 if m=1

31 24 23 0
ARn—9 x X address
31 24 23 0
IRm—p-{ x X index —» ()
L
31 0
operand

5-13

Types of Addressing

Example 5-14. Indirect With Preindex Subz‘ract and Modify

The address of the operand to be fetched is the difference of an auxiliary regis-
ter (ARn) and an index register (IR0 or IR1). The resuiting address becomes
the new contents of the auxiliary register.

Operation: operand address = ARn—1Rm
ARn=ARn-IRm

Assembler Syntax: *——ARnN(IRm)

Modification Field: 01011 ifm=0

10011 if m=1

31 24 23 0
ARn —Bpf x X address
31 24 23 0 i
IRm —¥ x x index —> ()
31 : 0
operand

Example 5-15. Indirect With Postindex Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added to
the auxiliary register.

Operation: operand address = ARn
ARn=ARn+ IRm

Assembler Syntax: ‘ *ARn++ (IRm)

Modification Field: 01100 ifm=0

10100 ifm=1

31 24 23 0
ARn ——" X X address
31 24 23 0 T
IRm —»| X X index —> (+)
31 0
operand

5-14 Addressing

Types of Addressing

Example 5-16. Indirect With Postindex Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARN). Afterthe operand is fetched, the index register (IR0 or IR 1) is subtracted
from the auxiliary register.

Operation: operand address = ARn
ARn= ARn-Rm
Assembler Syntax: *ARn—-— (IRm)
Modification Field: 01101 ifm =0
10101 ifm =1
31 24 23 0

ARn —bl X X address

31 24 23 0 T
lRm—’l X X index —p (-)

31 -0
operand

Example 5-17. Indirect With Postindex Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added to
the auxiliary register. This value is evaluated using circular addressing and re-
places the contents of the auxiliary register.

Operation: operand address = ARn
ARn= circ(ARn+ IRm)

Assembler Syntax: *ARn++ (IRm%

Modification Field: 01110 fm=0

10110 . if m =1

31 24 23 0
ARn —DI X X address
31 24 23 0 (%)
IRm —>{ x X index —> (+) ¢
31 0
operand

5-15

Types of Addressing

Example 5-18. ' Indiirect With Postindex Subtract and Circutar Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). Afterthe operand is fetched, the index register (IR0 or IR 1) is subtracted
from the auxiliary register. This result is evaluated using circular addressing
and replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn= circ(ARn—IRm)

Assembler Syntax: *ARn—- (IRm)%

Modification Field: 01111 ifm=10

10111 ifm =1

31 24 23 0
ARn ——p x X _ address
24 23 0 (%)
IRm —OI X X index —» (-) 4—¢
31 v O
operand

Example 5-19. Indirect With Postindex Add and Bit-Reversed Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). Afterthe operandis fetched, the index register (IR0) is added to the aux-
iliary register. This addition is performed with a reverse-carry propagation and
can be used to yield a bit-reversed (B) address. This value replaces the con-
tents of the auxiliary register.

Operation: operand address = ARn
ARn=B(ARn+IR0)
Assembler Syntax: *ARn++(IR0)B
Modification Field: 11001
31 24 23 ' 0
ARn —3{ x X address
T
31 24 23 0 (B)
IRm —¥ x x index —> (+)
31 0
operand

5-16 Addressing

Types of Addressing

5.1.4 Short-immediate Addressing

. In short-immediate addressing, the operand is a 16-bit immediate value con-
- : tained in the 16 least significant bits of the instruction word (expr). Depending
upon the data types assumed for the instruction, the short-immediate operand
may be a twos-complement integer, an unsigned integer, or a floating-point
number. This is the syntax for this mode:

Syntax: expr

Example 5-20 gives an instruction example with before- and after-instruction
data.

Example 5-20. Short-Inmediate Addressing

SUBI 1,R0
Before Instruction: After Instruction:
RO = 0h RO = OFFFFFFFFh

5.1.5 Long-Immediate Addressing

In long-immediate addressing, the operand is a 24-bit immediate value con-
tained in the 24 least significant bits of the instruction word (expr). This is the
syntax for this mode:

Syntax: expr

Example 5-21 gives an instruction example with before- and after-instruction
data.

Example 5-21. Long-Immediate Addressing

BR 8000h
Before Instruction: After Instruction:
PC =0h PC = 8000h

5-17

Types of Addressing

5.1.6 PC-Relative Addressing

PC-relative addressing is used for branching. The assembler takes the src (a
label or address) specified by the user and generates a displacement. If the
branch is a standard branch, this displacement is equalto the label - (PC +1).
If the branch is a delayed branch, this displacement is equal to the la-
bel — (PC + 3).

The displacement is stored as a 16-bit signed integer in the least significant
bits of the instruction word. This displacement is added to the PC if the condi-
tion is true.

Syntax: expr

. Example 5-22 gives an instruction example with before- and after-instruction

data.

Example 5-22. PC-Relative Addressing

BU NEWPC ; pc=1001h,NEWPC= 1005h,displacement= 3
Before Instruction: After Instruction:
PC =1001h PC =1005h

Addressing

Groups of Addressing Modes

5.2 Groups of Addressing Modes

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form
these five groups of addressing modes:

Ld General addressing modes (G)
Three-operand addressing modes (T)
Parallel addressing modes (P)

Long-immediate addressing mode

0000

Conditional-branch addressing modes (B)

5.2.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose in-
structions, such as ADDI, MPYF, and LSH. Suchinstructions usually have this
form:

dst operation src — dst

where the destination operand is signified by dst and the source operand by
src; operation defines an operation to be performed using the general ad-
dressing modes to specify certain operands. Bits 31 — 29 are zero, indicating
general addressing mode instructions. Bits 22 and 21 specify the general ad-
dressing mode (G) field, which defines how bits 15 through O are to be inter-
preted for addressing the src operand.

Options for bits 22 and 21 (G field) are as follows:

00 register (all CPU registers unless specified otherwise)

01 direct
10 indirect
11 immediate

If the srcand dstfields contain register specifications, the value in these fields
contains the CPU register addresses as defined by Table 5~1. For the general
addressing modes, the following values of ARn are valid:

ARn,0 £ n< 7

Figure 5-2 shows the encoding for the general addressing modes. The nota-
tion modn indicates the modification field that goes with the ARn field. Refer
to Table 5-2 for further information.

5-19

Groups of Addressing Modes

Figure 5-2. Encoding for General Addressing Modes

31 2928 2322 2120 1615 1110 87 54 0
000 operation 0 o dst 00000000000 | src
000 operation 0 1 dst direct
000 operation 1 0 dst modn | ARn| disp
000 operation 1 1 dst immediate

l | G | Destination | Source Operands

5.2.2 Three-Operand Addressing Modes

5-20

Instructions that use the three-operand addressing modes, such as
ADDI3, LSH3, CMPF3. or XORS, usually have this form:

SRC1 operation SRC2 — dst

where the destination operand is signified by dst and the source operands by
SRC1 and SRC2; operation defines an operation to be performed. Note that
the 3 can be omitted from three-operand instructions.

Bits 31-29 are set to the value of 001, indicating three-operand addressing
mode instructions. Bits 22 and 21 specify the three-operand addressing mode
(T) field, which defines how bits 15 — 0 are to be interpreted for addressing the
SRCoperands. Bits 15 — 8are usedtodefinethe SRC1 address, andbits7— 0
to define the SRC2 address. Options for bits 22 and 21 (T) are as follows:

T SRCH1 SRC2
00 register register
01 indirect register
10 register indirect
11 indirect indirect

Figure 5-3 shows the encoding for three-operand addressing. If the SRC1
and SRC2 fields use the same auxiliary register, both addresses are correctly
generated. However, only the value created by the SRC1 field is saved in the
auxiliary register specified. The assembler issues a warning if this condition
is specified by the user. ‘

The following values of ARn and ARm are valid:

ARn,0<n< 7
ARM,0<m<7

The notation modmor modnindicates the modification field goes withthe ARm

or ARn field, respectively. Refer to Table 5-2 for further information.

Addressing

Groups of Addressing Modes

In indirect addressing of the three-operand addressing mode, displacements
(if used) are allowed to be 0 or 1, and the index registers (IR0 and IR1) can be
used. The displacement of 1 is implied and is not explicitly coded in the instruc-
tion word.

Figure 5-3. Encoding for Three-Operand Addressing Modes

31 29 28 23 22 21 20 16 15 1312 11 10 87) 54 3 2 0
0 0 1| operaton [0 o dst 00olf srel 000 sre2
00 1 operation 0 1 dst modn ARn 000 src2
00 1 operation 1 0 dst coo srcl modn ARn
00 1 operation 1 1 dst modn I ARn modm ARm
I T l l SRCH | SRC2 I

5.2.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by || (two vertical bars), al-
low for the greatest amount of parallelism possible. The destination operands
are indicated as d1 and d2, signifying dst7 and dst2, respectively (see Figure
6—4). The source operands, signified by src7 and src2, use the extended-pre-
cision registers. The parallel operation to be performed is called operation.

- Figure 5-4. Encoding for Parallel Addressing Modes

31 3029 26 252423 22 21 1918 1615 10 11 87 32 0
I 10 Ioperationl P |d1 |d2| srcl I src2 | modn I ARn I modm | ARm l

| sred | sro4 |

The parallel addressing mode (P) field specifies how the operands are to be
used, i.e., whether they are source or destination. The specific relationship be-
tweenthe P field and the operands is detailed in the description of the individual
parallel instructions (see Chapter 10). However, the operands are always en-
coded inthe same way. Bits 31 and 30 are set to the value of 10, indicating par-
allel addressing mode instructions. Bits 25 and 24 specify the parallel address-
ing mode (P) field, which defines how bits 21 — 0 are to be interpreted for ad-
dressing the src operands. Bits 21 — 19 are used to define the src1 address,
bits 18 — 16to define the src2address, bits 15 — 8the src3 address, and bits
7 — (the src 4address. The notations modn and modm indicate which modifi-
cation field goes with which ARn or ARm (auxiliary register) field, respectively.
The paralle! addressing operands are listed below.

5-21

Groups of Addressing Modes

srcl 0<src1 <7 (extended-precision registers RO — R7)
src2 0<src2<7 (extended-precision registers RO — R7)
di If0, dst1is RO. If 1, dst? is R1.

d2 If 0, dst2is R2. If 1, dst2is R3.

P 0<P<3

src3 indirect (disp = 0, 1, IR0, IR1)

src4 indirect (disp = 0, 1, IR0, IR1)

As in the three-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of 0 or 1 and the use of the index
registers (IR0 and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 5-4, if the src3 and src4 fields
use the same auxiliary register, both addresses are correctly generated, but
only the value created by the src3field is saved in the auxiliary register speci-
fied. The assembler issues a warning if this condition is specified by the user.

5.2.4 Long-Immediate Addressing Mode

5-22

The long-immediate addressing mode is used to encode the program control
instructions (BR, BRD, and CALL); for this, it is useful to have a 24-bit absolute
address contained in the instruction word. The unconditional branches, BR
(standard) and BRD (delayed), use the long-immediate addressing mode. Bits
31 — 26are set to the value of 011000, indicating long-immediate addressing
mode instructions. Selection of bit 24 determines the type of branch: D = 0 for
astandard branch or D = 1 for a delayed branch. The long-immediate operand
is the 24-bit src. These instructions are encoded as shown in Figure 5-5.

Addressing

Groups of Addressing Modes

Figure 5-5. Encoding for Long-Immediate Addressing Mode

31 25 2423 0
lo 1+ 1 00 o]x|p] src |
or for BR(D):

31 25 24 23 0
lo 1100 0 o]D] src |
orfor CALL:

31 25 24 23 0
lo 1100 0 1]D] src |

5.2.5 Conditional-Branch Addressing Modes

Instructions using the conditional-branch addressing modes (Bcond, BconaD,
CALLcond, DBcond, and DBconadD) can perform a variety of conditional oper-
ations. Bits 31 — 27 are settothe value of 01101, indicating conditional-branch
addressing mode instructions. Bit26is setto 0 or 1;the former selects DBcond,
the latter Bcond. Selection of bit 25 determines the conditional-branch ad-
dressing mode (B). If B = 0, register addressing is used; if B = 1, PC-relative
addressing is used. Selection of bit 21 sets the type of branch: D = 0 for a stan-
dard branch or D = 1 for a delayed branch. The condition field(cond) specifies
the condition checked to determine what action to take, i.e., whether or notto
branch (see Chapter 11 for a list of condition codes). Figure 6-6 shows the en-
coding for conditional-branch addressing.

Figure 5-6. Encoding for Conditional-Branch Addressing Modes

DBcond (D).
531 26 25 24 2221 20 16 15 5 4 0
0o 1 0 1 1B ARn |D cond OOOOOOOOOOOI srcreg

1 0 1t 1fB| ARn |D cond immediate (PC relative)
Bcond (D):
31 26 25 24 222120 16 15 5 4 0
0 1 0 1 ofBjooo D cond OOOOOOOOOOOI src reg

1 0 1 0fBjoO0O D cond immediate (PC relative)
CALLcond:
31 26 25 24 222120 16 15 5 4 0
0 1 0 o|Bjooo|o cond 00000000000| src reg
0 1 0 0|J]B]JoOO {0 cond "~ immediate (PC relative)

5-23

Circular Addressing

5.3 Circular Addressing

5-24

Many algorithms, such as convolution and correlation, require the implementa-
tion of a circular buffer in memory. In convolution and correlation, the circular
bufferis used to implement a sliding window that contains the most recent data
to be processed. As new data is brought in, the new data overwrites the oldest
data. Key to the implementation of a circular buffer is the implementation of a
circular addressing mode. This section describes the circular addressing mode
of the TMS320C3x. '

The blocksize register (BK) specifies the size of the circular buffer. The bottom
of the circular buffer is specified by the first bit (counting from the most signifi-
cant bit to the least significant bit) in the lower 16 bits of the BK register, plus

~ auser-selected auxiliary register (ARn). With the location of the first 1 bit speci-

fied as bit N, the address at the top of the buffer is referred to as the effective
base (EB) and is equal to bits 31 through (N+1) of ARn with bits N-1 through
0 of EB being zero and bit N being one.

Figure 5-7 illustrates the 'relationships between the blocksize register (BK),
the auxiliary registers (ARn), the bottom of the circular buffer, the top of the cir-
cular buffer, and the index into the circular buffer.

A circular buffer of size R must start on an N-bit boundary (i.e., N LSBs of ad-
dress are 0) where N is the smallestinteger that satisfies 2N> R. Also, the value
R must be loaded into the BK register. For example, a 31-word circular buffer
must start at an address whose 5 LSBs are 0 (e,
XXXXXXXXXXXXXXXXXX000000b) and 31 must be loaded into BK.

Addressing

Circular Addressing

Figure 5-7. Flowchart for Circular Addressing

New
ARn

First 1 at Location N

31 N+1 N 0 31 Net vN 0
ARn H...H L...L 1 (N LSBs
BK 0 e 0 of BK)
1 (NLSBs
EB H...H 0...0 H...H of BK)
Bottom of Buffer + 1
31 N+1 N 0
Index H...H L...L
Circular
Addressing
Algorithm
Logic
New , ,
Index 0 0 L...L
31 N+1 N 0
H...H L...vw
LEGEND:
ARn = auxiliary register n L = low-order bits
BK = block-size register L ~ =new low-order bits
EB = effective base LSB = least significant bit
H = high-order bits N = bit value

5-25

Circular Addressing

In circular addressing, index refers to the N LSBs of the auxiliary register se-
lected, and step is the quantity being added to or subtracted from the-auxiliary
register. Follow these two rules when you use circular addressing:

L& The step used must be less than or equal to the blocksize.

L3 The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:
If 0 <index + step < BK:
index = index + step.
Else if index + step = BK:
index = index + step — BK.
Else if index + step < O:
index = index + step + BK.

Figure 5-8 shows how the circular buffer is implemented. ltillustrates the rela-
tionship of the quantities generated and the elements in the circular buffer.

Figure 5-8. Circular Buffer Implementation

Address Data
31 N+1 N 0 Top of Circular Buffer
Effective Base (EB) | H...H 0.0 | = Element 0
: Element 1
31 N+1 N 0

Auxiliary Register (ARn) H...H | L...L l - Element (N LSBs of ARn)

31 N+1 N 0 Last Element
I H...H [LSBs BK - Last Element + 1

5-26 , Addressing

Circular Addressing

Figure 5-9 gives an example of the operation of circular addressing. Assum-
ing that all ARs are four bits, let ARO = 0000,andBK = 0110 (blocksize of 6).
This example shows a sequence of modifications and the resuiting value of
ARQO. It also shows how the pointer steps through the circular queue with a vari-
ety of step sizes (both incrementing and decrementing).

Figure 5-9. Circular Addressing Example

*ARO ++ (5)% ; ARO = 0 (Othvalue)
*ARO ++ (2)% ; ARO = 5 (1stvalue)
*ARO - - (3)% ; ARO = 1 (2ndvalue)
*ARO++(6)% ; ARO = 4 (3rdvalue)
*ARO - - % ; ARO = 4 (4thvalue)
*ARO ; ARO = 3 (5thvalue)
Value Data Address
Oth _ Element 0 0.
ond — Element 1 ’ 1
Element 2 2
5th — Element 3 3
4th,3rd Element 4 4
1st — Element 5 (Last Element) 5
Last Element + 1 6

5-27

Circular Addressing

Circular addressing is especially useful for the implementation of FIR filters.
Figure 5-10 shows one possible data structure for FIR filters. Note that the ini-
tial value of ARO points to h(N —1), and the initial value of AR1 points to x(0).
Circular addressing is used in the TMS320C3x code for the FIR filter shown
in Figure 5-11.

Figure 5-10. Data Structure for FIR Filters .

ARO —

Impulse Response

Input Samples

h(N-1) x(N —1)
h(N - 2) X(N - 2)
h(2) x(2)
h(1) x(1)
h(0) x(0) " | « AR

Figure 5-11. FIR Filter Code Using Circular Addressing

5-28

* Initialization

*

TOP

LDI
LDI
LDI

LDF
STF

LDF
LDF

Filter

RPTS
MPYF3
ADDF3
ADDF

STF
B

N, BK :
H, ARO 7
X,AR1 ;
IN, R3 ;

R3, *AR1++% ;

0,RO ;
0,R2 ;
N -1 H
*ARO++%, *ARL++%
RO,R2,R2 ;
RO,R2 ;
R2,Y ;
TOP ;

Load block size.

Load pointer to impulse response.
Load pointer to bottom of input
sample buffer.

Read input sample.

Store with other samples.
and point to top of buffer.
Initialize RO.)
Initialize R2.

Repeat next instruction.

,RO

Multiply and accumulate.
Last product accumulated.

Save result.
Repeat.

Addressing

Bit-Reversed Addressing

5.4 Bit-Reversed

Addressing

Bit-reversed addressing on the TMS320C3x enhances execution speed and
program memory for FFT algorithms that use a variety of radices. The base
address of bit-reversed addressing must be located on a boundary of the size
of the table. For example, if IR0 = 271, the n LSBs of the base address must
be zero. The base address of the data in memory must be on a 2" boundary.
One auxiliary register points to the physical location of a data value. IR0 speci-
fies one-half the size of the FFT; e.g., the value contained in IR0 must be equal
to 211 where n is an integer and the FFT size is 2". When you add IR0 to
the auxiliary register by using bit-reversed addressing, addresses are gener-
ated in a bit-reversed fashion.

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let
AR2 contain the value 0110 0000 (96). This is the base address of the data in
memory. Let IR0 contain the value 0000 1000 (8). Figure 5-12 shows a se-
quence of modifications of AR2 and the resulting values of AR2.

Figure 5-12. Bit-Reversed Addressing Example

*AR2++ (IR0)B ; AR2 = 0110 0000 (Oth value)
*AR2++ (IR0)B ; AR2 = 0110 1000 (1lst value)
*AR2++ (IR0)B ; AR2 = 0110 0100 (2nd value)
*AR2++ (IR0O)B ; AR2 = 0110 1100 (3rd value)
*AR2++ (IR0)B ; AR2 = (0110 0010 (4th wvalue)
*AR2++ (IR0)B ; AR2 ‘= 0110 1010 (5th wvalue)
*AR2++ (IR0)B ; AR2 = (0110 0110 (6th wvalue)
*AR2 ; AR2 = 0110 1110 (7th wvalue)

Table 5-3 shows the relationship of the index steps and the four LSBs of AR2,
As you can see, you can find the four LSBs by reversing the bit pattern of the
steps. ‘

Table 5-3. Index Steps and Bit-Reversed Addressing

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4

'3 0011 1100 12
4 0100 0010 2
5 0101 1010 ' 10
6 0110 0110 6
7 0111 . 1110 14
8 1000 0001 1
9 1001 | 1001 9
10 1010 0101 5
1 1011 1101 13
12 1100 0011 3
13 1101) 1011 11
14 1110 o111 7
15 111 1111 15

5-29

System and User Stack Management

5.5 System and User Stack Management

The TMS320C3x provides a dedicated system stack pointer (SP) for building
stacks in memory. The auxiliary registers can also be used to build a variety
of more general linear lists. This section discusses the implementation of the
following types of linear lists:

Stack A linear list for which all insertions and deletions are made at one
end of the list. :

Queue Alinear list for which all insertions are made at one end of the list,
and all deletions are made at the other end.

Deque Adouble-ended queue linear list for which insertions and deletions
are made at either end of the list.

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 5—13). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, andinterrupts. Itis popped from the system stack on returns. The system
stack can be pushed and popped using the PUSH, POP, PUSHF, and POPF
instructions.

Figure 5-13. System Stack Configuration

5-30

Low Memory

Bottom of Stack

P — Top of Stack

(Free)

High Memory

Addressing

System and User Stack Management

5.5.1 Stacks

Stacks can be built from low to high memory or high to low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrement/ .

~ decrement and postincrement/decrement modes of modifying the auxitiary

registers (AR). Stack growth from high-to-low memory can be implemented in
two ways:

CASE 1: Stores to memory using *— — ARn to push data onto the stack and
reads from memory using *ARn ++ to pop data off the stack.

CASE 2: Storestomemoryusing*ARn — —to push data onto the stack and
reads from memory using * ++ ARn to pop data off the stack.

Figure 5—14 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top of the stack, and incase 2, the AR always points
to the next free location on the stack.

Figure 5-14. Implementations of High-to-Low Memory Stacks

Case 1 Case 2
Low Memory Low Memory
(Free) ARn — (Free)
ARn — Top of Stack Top of Stack
Bottom of Stack ' Bottom of Stack

High Memory High Memory

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3: Stores to memory using *++ ARn to push data onto the stack and
reads from memory using *ARn — — to pop data off the stack.

CASE 4: Stores to memory using *ARn ++ to push data onto the stack and
reads from memory using *— — ARn to pop data off the stack.

Figure 5~15 shows these two cases. In the case 3, the AR always points to the
top of the stack. In case 4, the AR always points to the next free location on
the stack.

5-31

System and User Stack Management

Figure 5-15. Implementations of Low-to-High Memory Stacks

5.5.2 Queues

5.32

Case 3 Case 4
Low Memory Low Memory
Bottom of Stack Bottom of Stack
ARn — Top of Stack Top of Stack
(Free) ARn — (Free)
High Memory High Memory

A queue is like a FIFO. The implementation of queues is based upon the ma-
nipulation of auxiliary registers. Two auxiliary registers are used, one to mark
the front of the queue from which data is popped (or dequeued) and the other
to mark the rear of the queue where data is pushed. By properly managing the
auxiliary registers, the queue may also be circular. (A queue is circular when
the rear pointer is allowed to point to the beginning of the queue memory after
it has pointed to the end of the queue memory.)

Addressing

Program Flow Control

Program Flow Control

Chapter 6

Program Flow Control

The TMS320C3x provides a complete set of constructs that facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes operations, re-
set, and interrupts. Because programming includesa variety of constructs, you
can select the one suited for your particular application.

Several interlocked operations instructions provide flexible multiprocessor

support and, through the use of external signals, a powerful means of

synchronization. They also guarantee the integrity of the communication and
result in a high-speed operation.

The TMS320C3x supports a nonmaskable external reset signal and a number
of internal and external interrupts. These functions can be programmed for a
particular application.

This chapter discusses the following major topics:

[d Repeat Modes (Section 6.1 on page 6-2)
Initialization

@ Operation

Delayed Branches (Section 6.2 on page 6-7)
Calls, Traps, and Returns (Section 6.3 page 6-8)
Interlocked Operations (Section 6.4 on page 6-10)

Reset Operation (Section 6.5 on page 6-16)

Cd O d O

Interrupts (Section 6.6 on page 6-20)

Repeat Modes

6.1 Repeat Modes

The repeat modes of the TMS320C3x can implement zero-overhead looping.
For many algorithms, most execution time is spent in an inner kernel of code.
Using the repeat modes allows these time-critical sections of code to be ex-
ecuted in the shortest possible time.

The TMS320C3x provides two instructions to support zero-overhead looping:
RPTB (repeat a block of code) and RPTS (repeat a single instruction). RPTB
causes a block of code to be repeated a specified number of times. RPTS
causes a single instruction to be repeated a number of times and reduces the
bus traffic by fetching the instruction only once.

Three registérs (RS, RE, and RC) are associated with the updating of the pro-
gram counter when it is updated in a repeat mode. Table 6—1 describes these
registers.

Table 6-1. Repeat-Mode Registers

Register Function .

RS Repeat Start Address Register. Holds the address of the first instruction
of the block of code to be repeated.

RE Repeat End Address Register. Holds the address of the last instruction
of the block of code to be repeated.

RC Repeat-Count Register. Contains one less than the number of times
the block remains to be repeated. For example, to execute a block N
times, load N-1 into RC.

6.1.1 Repeat-Mode Initialization

6-2

Two bits are important to the operation of RPTB and RPTS: the RM and S bits.

The RM (repeat-mode flag) bit in the status register specifies whether the pro-
cessor is running in the repeat mode. If RM = 0, fetches are not made in repeat
mode. If RM = 1, fetches are made in repeat mode.

The Sbitis hidden from the user butis necessary to fully describe the operation
of RPTB and RPTS. If S = 0, the CPU is not performing fetches in the repeat-
single mode. If S =1 and RM = 1, the CPU is performing fetches in the repeat-
single mode.

The correct operation of the repeat modes requires that all of the above regis-
ters and status register fields be initialized correctly. The RPTB and RPTS in-
structions perform this initialization in slightly different ways (see Sections
6.1.2 and 6.1.3). :

Program Flow Control

Repeat Modes

6.1.2 RPTB Initialization
When RPTB srcis executed, the following operations take place:

1) PC +1—RS

2) src — RE
3) 1 — RM status register bit
4) 0 — S bit.

Step 1 loads the start address of the block into RS. Step 2 loads the src into
the RE (end address of the block). The srcoperand is a 24-bit value contained
in the instruction word. Step 3 sets the status register to indicate the repeat
mode of operation. Step 4 indicates thatthis is the repeat block mode of opera-
tion.

The last bit of information required is the number of times to repeat the block.
The value is determined by properly initializing the RC (repeat count) register.
Since the execution of RPTB does not load the RC, you must load this register
yourself. The typical setup of the block repeat operation is shown below.

LDI 15,RC ; 15 —- RC, LOOP will be executed 16 times
RPTB LOOP ; LOOP —RE, PC + 1 RS, 1 —-RM, 0 =S

The repeat modes repeat a block of code at least once in a typical operation.
The repeat counter should be loaded with one less than the number of times
to repeat the block; i.e., a value of 0 in RC repeats the block of code one time.
All block repeats initiated by RPTB can be interrupted.

6.1.3 RPTS Initialization
When RPTS srcis executed, the following sequence of operations occurs:

1) PC+1—>RS

2) PC+1—RE

3) 1 — RM status register bit
4) 1 — S bit

5) src — RC

The RPTS instruction loads all registers and mode bits necessary for the oper-
ation of the single instruction repeat mode. Step 1 loads the start address of
the block into RS. Step 2 loads the end address into the RE (end address of
the block). Since this is a repeat of a single instruction, the start address and
the end address are the same. Step 3 sets the status register to indicate the

.6-3

Repeat Modes

repeat mode of operation. Step 4 indicates that this is the repeat single-instruc-
tion mode of operation. The operand srcis loaded into RC, as in Step 5 and
the following instruction is executed src+1 times.

Repeats of a single instruction initiated by RPTS are not interruptible, because
the RPTS fetches the instruction word only once and then keeps it in the in-
struction register for reuse. An interrupt would cause the instruction word to be
lost. The refetching of the instruction word from the instruction register reduces
memory accesses and, in effect, acts as a one-word program cache. Ifitis nec-
essary to have a single instruction that is repeatable and interruptible, you can
use the RPTB instruction.

6.1.4 Repeat-Mode Operation

The information in the repeat-mode registers and associated control bits is
used to control the modification of the PC when the fetches are being made
in repeat mode. The repeat modes compare the contents of the RE register
with the program counter (PC). If they match and the repeat counteris nonneg-
ative, the repeat coLnter is decremented, the PC is loaded with the repeat start
address, and the processing continues. The fetches and appropriate status
bits are modified as necessary. Note that the repeat counter (RC) is never mo-
dified when RM is 0. The maximum number of repeats occurs.when RC =
080000000h. This will resultin 080000001 h repetitions. The detailed algorithm
for the update of the PC is described in Figure 6-1.

Figure 6-1. Repeat-Mode Control Algorithm

6-4

if RM ==
if 5 ==

if first time through
fetch instruction from memory

If in repeat mode (RPTB or RPTS)
If RPTS

If this is the first fetch
Fetch instruction from memory

e Ne e N N

else If not the first fetch
fetch instruction from IR ; Fetch instruction from IR
RC - 1 — RC ; Decrement RC
if RC < 0 ; If RC is negative :
; Repeat single mode completed
0 — ST(RM) ; Turn off repeat mode bit
0 — S ; Clear S

PC + 1 — PC

else

fetch instruction from memory

; Increment PC
if S == ; If RPTB
; Fetch instruction from memory

if PC == RE If this is the end of the block
RC -1 — RC ; Decrement RC
if RC 20 ; If RC is not negative
RS — PC) ; Set PC to start of block
else if RC < O ; If RC is negative :
0 — ST(RM) ; Turn off repeat mode bits
0 —> S ; Clear S
PC + 1 — PC ; Increment PC

Program Flow Control

Repeat Modes

The RPTB and RPTS are four-cycle instructions. These four cycles of
overhead are incurred only on the first pass through the loop. All subsequent
passes through the loop are accomplished with zero cycles of overhead. In
Example 6—1, the block of code from STLOOP to ENDLOP is repeated sixteen
times.

Example 6-1. RPTB Operation

LDI 15,RC ; Load repeat counter with 15

RPTB ENDLOP ; Exzecute the block of code

STLOOP H from STLOOP to ENDLOP 16 times

\

ENDLOP

Using the repeat block mode of modifying the PC facilitates analysis of what
would happen in the case of branches within the block. Assume that the next
value of the PC will be either PC + 1 or the contents of the RS register. Itis thus
apparent that this method of block repeat allows many amount of branching
within the repeated block. Execution can go anywhere within the user’s code
viainterrupts, subroutine calls, etc. For proper modification of the loop counter,
the last instruction of the loop must be fetched. You can stop the repeating of
the loop prior to completion by writing a 0 into the repeat counter or writing 0
into the RM bit of the status register.

Since the block repeat modes modify the program counter, other instructions
cannot modify the program counter at the same time. Two rules apply here:

1) The last instruction in the block (or the only instruction in a block of
size one) cannot be a Becond, BR, DBcond, CALL, CALLcond, TRAP-
cond, RETlcond, RETScond, IDLE, RPTB, or RPTS. Example 6-2
shows an incorrectly placed standard branch.

2) None of the last four instructions from the bottom of the block (or the
only instruction in a block of size one) can be a BcondD, BRD, or
DBcondD. Example 6-3 shows an incorrectly placed delayed branch.

If either of these rules is violated, the PC will be undefined.

6-5

Repeat Modes

Example 6-2. Incorrectly Placed Standard Branch

LDI 15,RC ; Load repeat countexr with 15
RPTB ENDLOP ; Execute block of code
STLOOP ; from STLOOP to ENDLOP 16 times
ENDLOP BR OOPS ; This branch violates rule 1

Example 6-3. Incorrectly Placed Delayed Branch

LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOP ; Exzecute block of code

STLOOP . ; from STLOOP to ENDLOP 16 times
BRD OOPS ; This branch violates rule 2
ADDF
MPYF

ENDLOP SUBF

Block repeats (RPTB) are nestable. Since all of the control is defined by the
RS, RE, RC, and ST registers, these registers must be saved and stored in or-
derto nestblock repeats. The RMbitin the status register can be used to deter-
mine if the block repeat mode is active. For example, if you write an interrupt
service routine that requires the use of RPTB, it is possible that the interrupt
associated with the routine may occur during another block repeat. The inter-
rupt service routine can check the RM bit. If this bit is set, the interrupt routine
saves RS, RE, RC, and ST. The interrupt routine can then perform a block re-
peat. Before returning to the interrupted routine, the interrupt routine restores
RS, RE, RC, and ST. If the RM bit is not set, you don’t need to save and restore
these registers.

Program Flow Control

Delayed Branches

6.2 Delayed Branches

The TMS320C3x offers two main types of branching: standard and delayed.
Standard branches empty the pipeline before performing the branch; this guar-
antees correct management of the program counter and results in a
TMS320C3x branch taking four cycles. Included in this class are repeats, calls,
returns, and traps.

Delayed branches on the TMS320C3x do not empty the pipeline, but rather
guarantee that the next three instructions will execute before the program
counter is modified by the branch. The result is a branch that requires only a
single cycle, thus making the speed of the delayed branch very close to the op-
timal block repeat modes of the TMS320C3x. However, unlike block repeat
modes, delayed branches may be used in situations other than looping. Every
delayed branch has a standard branch counterpart that is used when a
delayed branch cannotbe used. The delayed branches of the TMS320C3x are
BcondD, BRD, and DBconadD.

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend
upon the instructions following the delayed branch. The condition flags are set
by a previous instruction only when the destination register is one of the exten-
ded-precision registers (R0O-R7) or when one of the compare instructions
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed
branches guarantee that the next three instructions will execute, regardless
of other pipeline contlicts.

When a delayed branch is fetched, it remains pending until the three following
instructions are executed. None of the three instructions that follow a delayed
branch can be Bcond, BconadD, BR, BRD, DBcond, DBcondD, CALL, CALL-
cond, TRAPcond, RETIcond, RETScond, RPTB, RPTS, or IDLE. (see
Example 6—4).

Delayed branches disable interrupts until the three instructions following the
delayed branch are completed. This is independent of whether or not the
branch is taken.

If delayed branches are used incorrectly, the PC will be undefined.

Example 6-4. Incorrectly Placed Delayed Branches

Bl:

B2:

BD L1

NOP

NOP

B L2 ; This branch is incorrectly placed
NOP

NOP

NOP

6-7

Calls, Traps, and Returns

6.3 Calls, Traps, and Returns

6-8

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
on the stack before changing the PC’s contents. The stack thus provides a
return using either the RETScond or RETIcond instruction.

.

.

The CALL instruction places the next PC value on the stack and places
the src (source) operand intothe PC. The srcis a 24-bit immediate value.
Figure 6—2 shows CALL response timing.

The CALLcondinstructionis similar to the CALL instruction (above) except
that (1) it executes only if a specific condition is true (the 20 condi-
tions — including unconditional — are listed in Section 10.2) and (2) the
src is either a PC-relative displacement or in register addressing mode.
The condition flags are set by a previous instruction only when the destina-
tion register is one of the extended-precision registers (R0-R7) or when
one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or
TSTB3) is executed.

The TRAPcondinstruction also executes only if a specific condition is true
(same conditions as for the CALLcond instruction). When executing, (1)
interrupts are disabled with 0 written to bit GIE of the ST, (2) the next PC
value is stored on the stack, and (3) a vector is retrieved from one of the
addresses 20h to 3Fh and loaded into the PC. The particular address is
identified by a trap number in the instruction. Using the RETlcondto return
re-enables interrupts.

RETScond returns execution from any of the above three instructions by
popping the top of the stack to the PC. To execute, the specified condition
must be true. Conditions are the same as for the CALLcond instruction.

RETIcondreturns from traps or calls similar to the RETScond (above) with
the addition that RETIcond also sets the GIE bit of the Status Register
which thus enables all interrupts whose enabling bit is set to 1. Conditions
are the same as for the CALLcond instruction.

Functionally, calls and traps accomplish the same task (i.e., a subfunction is
called, executed, and control then returned to the calling function. Traps offer
several advantages:

1)

2)

Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Thus, traps are
generally terminated with-a RETIcond instruction to re-enable interrupts.

You can use traps to indirectly call functions. This is particularly beneficial
when a kernel of code contains the basic subfunctions to be used by appli-
cations. Inthis case, the functions in the kernel can be modified and relo-
cated without recompiling each application.

Program Flow Control

Calls, Traps, Returns

Figure 6-2. CALL Response Timing

Fetch First
Store PC Instruction of
| FetchCALL | | | onStack | CALLRoutine |

" W
"N S SS
First Instruction
/ A

/ % ddress
Stack
ADDR . __Address X »

Interlocked Operations

6.4 Interlocked Operations

One of the most common multiprocessing configurations is the sharing of glob-
al memory by multiple processors. In order for multiple processors to access
this global memory and share data in a coherent manner, some sort of arbitra-
tion or handshaking is necessary. This requirement for arbitration is the pur-
pose of the TMS320C3x interlocked operations.

The TMS320C3x provides a flexible means of multiprocessor support with five
instructions, referred to as interlocked operations. Through the use of external
signals, these instructions provide powerful synchronization mechanisms.
They also guarantee the integrity of the communication and result in a high-
speed operation. The interlocked-operation instruction group is listed in
Table 6-2.

Table 6-2. Interlocked Operations

6-10

Mnemonic Description Operation
LDFI Load floating-point value into a register, Signal interlocked
interlocked src — dst
LDl Load integer into a register, interlocked Signal interlocked
src —> dst
SiGl Signal, interlocked Signal interlocked
Clear interlock
STFI Store floating-point value to memory, src —> dst
interlocked Clear interlock
STil Store integer to memory, interlocked src — dst
Clear interlock

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin, and XF1 as an input pin. When configured
in this manner, XF0 signals an interlock operation request, and XF1 acts as an
acknowledge signal for the requested interlocked operation. In this mode, XFO
and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores is the same as for stan-
dard load and stores. The interlocked loads and stores may be extended like
standard accesses by using the appropriate ready signal (RDYjn; or XRDYijn1).
(RDY;nt and XRDYy; are a combination of external ready input and software
wait states. Refer to Chapter 7, External Bus Operation, for more information
on ready generation.)

The LDFI and LDl instructions perform the following actions:

1) Simultaneously set XF0 to 0 and begin a read cycle. The timing of XFO
is similar to that of the address bus during a read cycle.

Program Flow Control

Interlocked Operations

2) Execute an LDF or LDI instruction and extend the read cycle until XF1
is set to 0 and a ready (RDYjnt or XRDYjpy) is signalled.

3) Leave XFO0 set to 0 and end the read cycle.

The read/write operation is identical to any other read/write cycle except for the
special use of XFO and XF1. The srcoperand for LDF! and LDl is always a di-
rectorindirectmemory address. XF0is setto 0 only if the srcis located off-chip;
i.e., STRB, MSTRB, orIOSTRBIs active, orthe srcis one of the on-chip periph-
erals. If on-chip memory is accessed, then XF0 is not asserted, and the opera-
tion is as an LDF or LD! from internal memory.

The STFI and STl instructions perform the following operations:

1) Simultaneously set XFO0 to 1 and begin a Write cycle. The timing of XFO
is similar to that of the address bus during a write cycle.

2) Execute an STF or STlinstruction and extend the write cycle until aready
(RDYint or XRDYijpt) is signaled.

As in the case for LDFI and LDII, the dst of STFI and STl affects XFO. If dst
is located off-chip (STRB, MSTRB, or IOSTRB is active) or the dst is one of
the on-chip peripherals, XFQ is setto a 1. If on-chip memory is accessed, then
XFO is not asserted and the operations are as an STF or STi to internal
memory.

The SIGI instruction functions as follows:

1) Sets XFO0 to 0.

2) Idles until XF1 is setto 0.

3) Sets XFO to 1 and ends the operation.

While the LDFI, LDIl, and SIGl instructions are waiting for XF1 to be settc 0,
you can interrupt them. LDFI and LDII require a ready signal (RDYip; or
XRDYijnt) in order to be interrupted. Because interrupts are taken on bus cycle
boundaries (see Section 6.6), an interrupt may be taken any time after a valid
ready. This allows you to implement protection mechanisms against deadlock
conditions by interrupting an interlocked load that has taken too long. Upon re-
turn from the interrupt, the next instruction is executed. The STFl and STl in-
structions are not interruptible. Since the STFI and STl instructions complete
when ready is signaled, the delay until an interrupt can occur is the same as
for any other instruction.

Interlocked operations can be used to implement a busy-waiting loop, to ma-
nipulate a multiprocessor counter, to implement a simple semaphore mecha-
nism, or to perform synchronization between two TMS320C3xs. The following
examples illustrate the usefulness of the interlocked operations instructions.

Interlocked Operations

Example 6-5 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waiting loop can be used as shown.

Example 6-5. Busy-Waiting Loop

LDI 1,R0O
Ll: LDIT @LOCK,R1

STII RO, @LOCK

BNZ Ll

Se Ne N N

Put 1 in RO

‘Interlocked operation begun

Contents of LOCK — R1

Put RO (= 1) into LOCK, XFO =1
Interlocked operation ended
Keep trving until LOCK = 0

Example 6-6 shows how alocation COUNT may contain a count of the number
of times a particular operation needs to be performed. This operation may be
performed by any processor in the system. If the count is zero, the processor
waits until it is nonzero before beginning processing. The example also shows
the algorithm for modifying COUNT correctly.

Example 6-6. Multiprocessor Counter Manipulation
CT: OR 4,IOF

LDII Q@COUNT,R1

BZ CT
SUBI 1,R1

STII R1,@COUNT

’
’

’

’
’
’
’
’

XFO = 1 :

Interlocked operation ended
Interlocked operation begun
Contents of COUNT — R1

If COUNT = 0, keep trying
Decrement R1 (= COUNT)
Update COUNT, XFO =1
Interlocked operation ended

Figure 6-3 illustrates multiple TMS320C3xs sharing global memory and using
the interlocked instructions as in Example 6-7, Example 6-8, and

Example 6-9.

6-12

Program Flow Control

Interlocked Operations

Figure 6-3. Multiple TMS320C3xs Sharing Global Memory

Global Memory

e “

1y < |

o = T

2| 3| ©

5 Arbitration Logic N
' Lock, Count, or S
XFO0 XF1 (X)A (X)A XFO XF1
TMS320C3x #1 HXD (X)D} r\is320C3x #2
CTRL CTRL
Local Local
Memory Memory

Sometimes it may be necessary for several processors to access some shared
data or other common resources. The portion of code that must access the
shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only non-negative integer values.
Two primitive, indivisible operations are defined on semaphores (with S being
a semaphore):

V(S): S+ 1 —>Ss
P(S): P: if (S == 0), go to P

else S -1 = S

’

Indivisibility of V(S) and P(S) means that when these processes access and
modify the semaphore S, they are the only processes accessing and modify-
ing S. ‘

To enter a critical section, a P operation is performed on a common sema-
phore, say S (S is initialized to 1). The first processor performing P(S) will be
able to enter its critical section. All other processors are blocked because S
has become 0. After leaving its critical section, the processor performs a V(S),
thus allowing another processor to execute P(S) successfully.

6-13

Interlocked Operations

The TMS320C3x code for V(S) is shown in Example 6—7, and code for P(S)
is shown in Example 6-8. Compare the code in Example 6-8 to the code in
Example 6-6. ‘

Example 6-7. Implementation of V(S)

V: LDII @S,RO ; Interlocked read of S begins (XFO = 0)
; Contents of S — RO
ADDI 1,RO ; Increment RO (= S)
STII RO,@S ; Update S, end interlock (XFO = 0)

Example 6-8. Implementation of P(S)

End interlock (XFO = 1)
Interlocked read of S begins

P: OR 4,I0F ;
;
; Contents of S — RO

LDII @S,RO

BZ P
SUBI 1,RO
STII RO,@s

; If£ S = 0, go to P and try again
Decrement RO (= S)
; Update S, end interlock (XFO = 1)

The SIGI operation may be used to synchronize, at an instruction level, multi-
ple TMS320C3xs. Consider two processors connected as shown in
Figure 6—4. The code for the two processors is shown in Example 6-9.

Figure 6~4. Zero-Logic Interconnect of TMS320C3xs

TMS320C3x #1 TMS320C3x #2
XFO XF1
XF1 XF0

Processor #1 runs until it executes the SIGI. It then waits until processor #2
executes a SIGI. At this point, the two processors have synchronized and con-
tinue execution. '

6-14 : Program Flow Control

Interlocked Operations

Example 6-9. Code to Synchronize Two TMS320C3xs at the Software Level

Time Code for TMS320C3x #1 Code for TMS320C3x #2

o o o
-] (-}
(] (-]
SIGI °
o
o
v o
(WAIT))
(+]

L
v)

0 <¢———Synchronization Occurs—# SIGI
l o (-
o]
$. .
N o []

6-15

Reset Operation

6.5 Reset Operation

The TMS320C3x supports a nonmaskable external reset signal (RESET),
which is used to perform system reset. This section discusses the reset opera-
tion. '

At powerup, the state of the TMS320C3x processor is undefined. You can use
the RESET signal to place the processor in a known state. This signal must
be asserted low for 10 or more H1 clock cycles to guarantee a system reset.
H1 is an output clock signal generated by the TMS320C3x (see Chapter 13 for
more information).

Reset affects the other pins on the device in either a synchronous or asynchro-
nous manner. The synchronous reset is gated by the TMS320C3x’s internal
clocks. The asynchronous reset directly affects the pins, and is faster than the
synchronous reset. Table 6—3 shows the state of the TMS320C3x’s pins after
RESET = 0. Each pin is described according to whether the pin is reset syn-
chronously or asynchronously.

Table 6-3. Pin Operation at Reset

6-16

Signal | #Pins | Operation at Reset
Primary Interface (61 Pins)
D31 —DO 32 Synchronous reset. Placed in high-impedance state.
A23 — A0 24 Synchronous reset. Placed in high-impedance state.
RW 1 Synchronous reset. Placed in high-impedance state.
STRB 1 Synchronous reset. Deasserted by going to a high level.
RDY 1 Reset has no effect.
HOLD 1 Reset has no effect.
HOLDA 1 Reset has no effect.
Expansion Interface (49 Pins)t
XD31 — XDO 32 Synchronous reset. Placed in high-impedance state.
XA12 — XA0 13 Synchronous reset. Placed in high-impedance state.
XRW 1 Synchronous reset. Placed in high-impedance state.
MSTRB 1 Synchronous reset. Deasserted by going to a high level.
IOSTRB 1 Synchronous reset. Deasserted by going to a high level.
XRDY 1 Reset has no effect.
Control Signals (9 Pins)
RESET 1 Reset input pin
INT3 — INTO 4 Reset has no effect.
TACK 1 Synchronous reset. Deasserted by going to a high level.
MC/MP or 1 Reset has no effect.
MCBL/MP
XF1 — XFO 2 Asynchronous reset. Placed in high-impedance state.

T Present only on TMS320C30

Program Flow Control

Reset Operation

Table 6-3.

Pin Operation at Reset (Continued)

Signal ' # Pins | Operation at Reset
Serial Port 0 Signals (6 Pins)
CLKX0 1 Asynchronous reset. Placed in high-impedance state.
DXo0 1 Asynchronous reset. Placed in high-impedance state.
FSX0 1 Asynchronous reset. Placed in high-impedance state.
CLKRO 1 Asynchronous reset. Placed in high-impedance state.
DRO 1 Asynchronous reset. Placed in high-impedance state.
FSRO 1 Asynchronous reset. Placed in high-impedance state.
Serial Port 1 Signals (6 Pins) t
CLKX1 1 Asynchronous reset. Placed in high-impedance state.
DX1 1 Asynchronous reset. Placed in high-impedance state.
FSX1 1 Asynchronous reset.-Placed in high-impedance state.
CLKR1 1 Asynchronous reset. Placed in high-impedance state.
DR1 1 Asynchronous reset. Placed in high-impedance state.
FSR1 1 Asynchronous reset. Placed in high-impedance state.
Timer 0 Signal (1 Pin)
TCLKO I 1 I Asynchronous reset. Placed in high-impedance state.
Timer 1 Signal (1 Pin) '
TCLKA1 I 1 | Asynchronous reset. Placed in high-impedance state.
Supply and Oscillator Signals (29 Pins)

Vpp(3—0) 4 Reset has no effect.

10DVpp (1,0) 2 Reset has no effect.

ADVpD (1,0) 2 Reset has no effect.

PDVpp 1 Reset has no effect.

DDVpp (1,0) 2 Reset has no effect.

MDVpp 1 Reset has no effect.

Vss(3—0) 4 Reset has no effect.

DVgs(3—0) 2 Reset has no effect.

CVgs (1,0) 2 Reset has no effect.

IVss 1 Reset has no effect.

VBBP 1 Reset has no effect.

SUBS 1 Reset has no effect.

X1 1 Reset has no effect.

X2/CLKIN 1 Reset has no effect.

H1 1 Synchronous reset. Will go to its initial state when RESET

makes a 1 to 0 transition. See Appendix A.
H3 1 Synchronous reset. Will go to its initial state when RESET
makes a 1 to 0 transition. See Appendix A.

T Present only on TMS320C30

6-17

Table 6-3.

6-18

Pin Operation at Reset (Continued)

Signal | # Pins | Operation at Reset
Emulation, Test, and Reserved (18 Pins)
EMUO 1 Undefined.
EMU1 1 Undefined.
EMU2 1 Undefined.
EMU3 1 Undefined.
EMU4/SHZ 1 Undefined.
EMuUsT 1 Undefined.
EMUsT 1 Undefined.
Rsvot 1 Undefined.
Rrsvit 1 Undefined.
Rsvat 1 Undefined.
Rrsvat 1 Undefined.
RSvat 1 Undefined.
RSV5T 1 Undefined.
Rrsvet 1 Undefined.
Rsv7t 1 Undefined.
Rrsvat 1 Undefined.
Rsvet 1 Undefined.
Rsviof 1 Undefined.

T Present only on TMS320C30

Program Flow Control

Reset Operation

At system reset, the following additional operations are performed:

L The peripherals are reset. This is a synchronous operation. The peripheral
reset is described in Chapter 8.

L The following CPU registers are loaded with zero:
ST (CPU status register)
B |E (CPU/DMA interrupt enable flags)

IF (CPU interrupt flags)

B |OF (/O flags)

|

(A The reset vector is read from memory location Oh and loaded into the PC.
This vector contains the start address of the system reset routine.

L3 Execution begins. Refer to Section 11.1 for an example of a processor
initialization routine.

Multiple TMS320C3xs driven by the same system clock may be reset and syn-
chronized. Whenthe 1 to 0 transition of RESET occurs, the processor is placed
on a well-defined internal phase, and all of the TMS320C3xs will come up on
the same internal phase.

Interrupts

6.6 Interrupts

The TMS320C3x supports multiple internal and external interrupts, which can
be used for a variety of applications. This section discusses the operation of
these interrupts.

Afunctional diagram of the logic used to implement the externalinterruptinputs
is shown in Figure 6-5; the logic for internal interrupts is similar. Additional in-
formation regarding internal interrupts can be found in Chapter 8.

Figure 6-5. Interrupt Logic Functional Diagram

Internal [nterrupt
Set Signal EINTn(CPU)

Interrupt GIE(CPU)

Flag (n)

INTh — =< Set Q Internal To
DQ DQ DQ Interrupt }—>» Control

Proce Section
CLK CLK CLK ‘— RESET ocessor
r r |— Internal Interrupt

GIE(DMA
M Ha A Clear//\scigrr:g:lvledge {)
EINTn(DMA)

External interrupts are synchronized internally, as illustrated by the three flip-
flops clocked by H1 and H3. Once synchronized, the interrupt input will set the
" corresponding interrupt flag register (IF) bit if the interrupt is active.

External interrupts are latched internally on the falling edge of H1 (see the data
sheet for timing information). An external interrupt must be held low for at least
one H1/H3 cycle to be recognized by the TMS320C3x. Interrupts should be
held low for only one ortwo H1 falling edges. If the interrupt is held low for three
or more H1 falling edges, multiple interrupts may be recognized.

6.6.1 Interrupt Control Bits

When a particular interruptis processed by the CPU or DMA controller, the cor-
responding interrupt flag bit is cleared by the internal interrupt acknowledge
signal. It should be noted, however, that if INTn is still low when the interrupt
acknowledge signal occurs, the interrupt flag bit will be cleared only for one
cycle and then set again because INTn is still low. Accordingly, it is theoretically
possible that, depending on when the IF register is read, this bit may be zero
eventhough INTnis zero. When the TMS320C3x is reset, zero is written to the
interrupt flag register, thereby clearing all pending interrupts.

6-20 Program Flow Control

Interrupts

The interrupt flag register bits may be read and written under software control.
Writing a 1 to an IF register bit sets the associated interrupt flag to 1. Similarly,
writing a 0 resets the corresponding interrupt flag to 0. In this way, all interrupts
may be triggered and/or cleared through software. Since the interrupts flags
may be read, the interrupt pins may be polled in software when an interrupt-dri-
ven interface is not required.

Internal interrupts operate in a similar manner. Inthe IF register, the bit corre-
sponding to an internal interrupt may be read and written through software.
Writing a 1 sets the interrupt latch, and writing a 0 clears it. Allinternal interrupts
are one H1/H3 cycle in length.

The CPU global interrupt enable bit (GIE), located in the CPU status register
(8T), controls all CPU interrupts. All DMA interrupts are controlled by the DMA
global interrupt enable bit, which is not dependent upon ST(GIE) and is local
to the DMA. The DMA global interrupt enable bit is dependent, in part, upon
the state of the DMA SYNCH bits. It is not directly accessible through software
(see Chapter 8). The AND of the interrupt flag bit and the interrupt enables is
then connected to the interrupt processor.

To provide for maximum performance in servicing interrupts, the interrupt ac-
knowledge (IACK) instruction is provided. IACK drives the |ACK pin and per-
forms a dummy read. The read is performed from the address specified by the
IACK instruction operand. When IACK is used, it typically is placed in the early
portion of an interrupt service routine. For certain applications, it may be better
suited at the end of the interrupt service routine or be totally unnecessary.

'6.6.2 TMS320C3x Interrupt Considerations

Give careful consideration to TMS320C3x interrupts, especially if user modifi-
cations are made to the status register when the global interrupt enable (GIE)
bit is set. This can result in the GIE bit being erroneously set or reset as de-
scribed in the following paragraphs.

The GIE bitis setto 0 (zero) by an interrupt. This may cause a processing error
if any code following within two cycles of the interrupt recognition attempts to
read or modify the status register. For example, if the status register is being
pushed onto the stack, it will be stored incorrectly if an interrupt was acknowl-
edged two cycles before the store instruction.

When an interrupt signal is recognized, the TMS320C3x continues executing
the instructions already in the read and decode phases in the pipeline. Howev-
er, because the interrupt is acknowledged, the GIE bit is reset to 0, and the
store instruction already in the pipeline will store the wrong status register val-
ue. For example, if the program is something like:

6-21

Interrupts

PUSH
LDI-
NOP
NOP
AND
POP

iE

NOP

interrupt recognized --> LDI @QV_ADDR, ARl
MPYI *AR1, RO
PUSH ST

POP ST

the PUSH ST instruction will save the ST contents in memory, which includes
GIE = 0. Since the programmer expects GIE = 1, the POP ST instruction will
put the wrong status register value into the ST.

A similar situation may occur if the GIE bit=1 and an instruction executes that
intends to modify the other status bits and leave the GIE bit set. In the above
example, this erroneous setting would occur if the interrupt is recognized two
cycles before the POP ST instruction. In that case, the interrupt would clear
the GIE bit, but the execution of the POP instruction would set the GIE bit. Since
the interrupt has been recognized, the interrupt service routine will be entered -
with interrupts enabled, rather than disabled as expected.

One solution is to make use of traps. For example, you can use TRAP O to reset
GIE and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and
TRAP 1 be the instructions RETS and RETI, respectively.

Another alternative incorporates the following code fragment, which protects
from modifying or saving of the status register by disabling interrupts through
the interrupt enable register:

Added instruction
to avoid pipeline
problems.

; Save IE register ¢ Added instructions to
0, IE ; Clear IE register avoid pipeline problems.

: o 2 NOPs or useful instructions
ODFFFh, ST ; Set GIE = 0 ¢ Instruction that reads or
IE ; writes to ST register.

6.6.3 TMS320C30 Interrupt Considerations

6-22

The TMS320C30 has two additional exceptions to the interrupt operation.

1) The status register global interrupt enable (GIE) bit may be erroneously
reset to 0 (disabled setting) if all of the following conditions are true:

- L aconditional trap instruction (TRAPcond) has been fetched,
L4 the condition for the trap is false, and

3 apipeline conflict has occurred, resulting in a delay in the decode or
read phases of the instruction.

During the decode phase of a conditional trap, interrupts are temporarily
disabled to guarantee that the trap will execute prior to a subsequent inter-

Program Flow Control

Interrupts

2)

rupt. If a pipeline conflict occurs, causing a delay in execution of the condi-
tional trap, the interrupt disabled condition may become the last known
condition of the GIE bit..In the case that the trap condition is false, inter-
rupts will be permanently disabled until the GIE bit is intentionally set. The
condition does not present itself when the trap condition is true, because
normal operation of the instruction causes the GIE to be reset, and stan-
dard coding practice will set the GIE to a one before the trap routine is ex-
ited. Several instruction sequences that may cause pipeline conflicts have
been found:

a) LDI mem, SP
TRAPcond n

b) LDI mem, SP
NOP
TRAPcond n

C) STI SP, mem
TRAPcond n

d) STI R, *ARY
LDI *AR:xz, Ry

|l LDI *ARz, Rw

TRAPcond n

Other similar conditions may also cause a delay in the execution. There-
fore, the following solution is recommended to avoid or rectify the problem.

Insert two NOP instructions immediately prior to the TRAPcond instruc-
tion. One NOP is insufficient in some cases, as illustrated in case 2 above.
This eliminates opportunity for any pipeline conflicts in the immediately
preceding instructions and enables the conditional trap instruction to ex-
ecute without delays.

Asynchronous accesses to the interrupt flag register (IF) may cause the
TMS320C3x to fail to recognize and service an interrupt. This may occur
when an interrupt is generated and is ready to be latched into the IF regis-
ter on the same cycle that the IF is being written to by the CPU.

The logic currently gives the CPU write priority; consequently, the asserted
interrupt may be lost. This is particularly true if the asserted interrupt has
been generated internally, such as a DMA interrupt. This situation may
arise as a result of a decision to poll certain interrupts or a desire to clear
pending interrupts due to a long pulse width. For the case of the long pulse
width, the interrupt may be generated after the CPU responds to the inter-
rupt and attempts to automatically clear it by the interrupt vector process.

The recommended solution is not to use the interrupt polling technique but
to design the external interrupt inputs to have pulse widths between 1 and
2 instruction cycles in length. The alternative to strict polling is to periodi-
cally enable and disable the interrupts that would be polled, thereby allow-

6-23

Interrupts

6-24

ISR n:

ISR n_START: .

ISR_n_END:

PUSH ST

ing the normal interrupt vectoring to take place; that automatically clears
the interrupt flag without affecting other interrupts. In the event there is a
need to clear a pending interrupt, it is recommended that a memory loca-
tion be used to indicate that the interrupt is invalid. Then the interrupt ser-
vice routine can read that location, clear it (if the pending interrupt is inval-
id), and return immediately. The following code fragments show how a
dummy interrupt due to a long interrupt pulse might be handled:

PUSH DP

PUSH RO

ILDI 0, DP

LDI ~ @DUMMY_INT, RO
BNN ISR n_START
STI DP, @DUMMY_INT

Save registers

Clear Data Page Pointer

If DUMMY_INT is O or positive,
go to ISR_n_START

Set DUMMY INT = 0

POP RO

POP DP

POP ST Housekeeping, return from interrupt
RETI

Ne Se Ne Ne Ve Ne Se e N Se N

normal interrupt service routine
. code goes here

LDI INT Fn, RO

AND IF, RO

BZ ISR n END

LDI 0, Dp~

LDI OFFFFh, RO

STI RO, Q@DUMMY_ INT

If ones in IF reg match
INT _Fn, exit ISR
Otherwise clear

DP and set

- DUMMY_INT negative & exit

NeNe Se Ne Ne S e N

POP RO ;
POP DP ; Exit ISR
POP ST ;
RETI ;

Program Flow Control

Interrupts

6.6.4 Prioritization and Control

The CPU controls all prioritization of interrupts (see Table 6—4 for reset and in-
terrupt vector locations and priorities). If the DMA is not using interrupts for syn-
chronization of transfers, it will not be affected by the processing of the CPU
interrupts. If the CPU is involved in a pipeline conflict (branch, register, or
memory), it will not respond to the interrupts until that conflict is resolved. It is
therefore possible to interrupt the CPU and DMA simultaneously with the same
or different interrupts and, in effect, synchronize their activities. For example,
it may be necessary to cause a high-priority DMA transfer that avoids bus con-
flicts with the CPU, i.e., make the DMA higher priority than the CPU. This may
be accomplished by using an interrupt that causes the CPU to trap to an inter-
ruptroutine that contains an IDLE instruction. Thenif the same interruptis used
to synchronize DMA transfers, the DMA transfer counter can be used to gener-
ate aninterrupt and, thus to return control to the CPU following the DMA trans-
fer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clearaninterrupt flag before the CPU canrespondtoit. Forexample, ifthe CPU
interrupts are disabled, the DMA can respond to interrupts and thus clear the
associated interrupt flags. ‘

Table 6-4. Reset and Interrupt Vector Locations

Reset or Vector Priority Function
Interrupt Location :
RESET oh 0 External reset signal input on the RESET
pin.
INTO 1h 1 External interrupt input on the INTO pin.
INTT 2h 2 External interrupt input on the INTT pin.
INT2 3h 3 External interrupt input on the INTZ pin.
INT3 4h 4 External interrupt input on the INT3 pin.
XINTO 5h 5 Internal interrupt generated when serial-port
0 transmit buffer is empty.
RINTO 6h 6 Internal interrupt generated when serial-port
0 receive buffer is full.
XINT1 T 7h 7 Internal interrupt generated when serial-port
1 transmit buffer is empty.
RINT1 T 8h 8 Internal interrupt generated when serial-port
1 receive buffer is full.
TINTO sh 9 Internal interrupt generated by timer 0.
TINT1 0Ah 10 Internal interrupt generated by timer 1.
DINT 0Bh 1 IInteornal interrupt generated by DMA control-
er0.

T Reserved on TMS320C31

6-25

6-26

If there is a delayed branchinthe pipeline, interrupts are held pending until after
the branch. If the interrupt occurs in the first cycle of the fetch of an instruction,
the fetched instruction is discarded (not executed), and the address of thatin-
struction is pushed to the top of the system stack. If the interrupt occurs after
the first cycle of the fetch, in the case of a multicycle fetch due to wait states,
thatinstruction is executed and the address of the next instruction to be fetched
is pushed to the top of the system stack. If no program fetch is occurring, then
no new fetch is performed. After the address of the appropriate instruction has
been pushed, the interrupt vector is fetched and loaded into the PC, and ex-
ecution continues.

The TMS320C3x allows the CPU and DMA to respond to and process inter-
rupts in parallel. Figure 6—6 shows interrupt processing flow. The interrupts are
polled and the CPU and DMA begin processing them. In the interrupt flow per-
taining to the CPU, the interrupt flag corresponding to the highest-priority en-
abled interrupt is cleared, and GIE is set to 0. The CPU completes all fetched
instructions. The interrupt vector is fetched and loaded into the PC, and the
CPU continues execution. The DMA cycle is similar to that for the CPU. After
the pertinent interrupt flag is cleared, the DMA proceeds according to the sta-
tus of the SYNCH bits in the DMA global control register.

Program Flow Control

Interrupts

Figuré 6-6. Interrupt Processing

Is an Enabled
Interrupt Set
2

Yes
If Enabled If Enabled
Interrupt Is Interrupt Is
A CPU Interrupt A DMA Interrupt

l L

Clear Interrupt Flag CPU

GIE — 0 Clear Interrupt Flag
Complete All Fetched DMA Proceeds Based
Instructions Upon Synch Bit
PC — (++SP) DMA Continues

Fetch Interrupt Vector

CPU Continues

6-27

6-28 | Program Flow Control

External Bus Operation

External Bus Operation

Chapter 7

External Bus Operation

e

Memories and external peripheral devices can be accessed with two external
interfaces on the TMS320C30: the primary bus and the expansion bus. Onthe
TMS320C31, one bus, the primary bus, is available to access external memo-
ries and peripheral devices. Wait-state generation, permitting access to slower
memories and peripherals, can be controlled by manipulating memory-
mapped control registers associated with the interfaces and by an external in-
put signal.

Major topics discussed in this hardware interface section are listed below.

Ld External Interface Control Registers (Section 7.1 on page 7-2)

B Primary bus
B Expansion bus

(d External Interface Timing (Section 7.2 on page 7-5)
i Programmable Wait States (Section 7.3 on page 7-27)
i Programmable Bank Switching (Section 7.4 on page 7-29)

External Interface Control Registers

7.1 External Interface Control Registers

The TMS320C30 provides two external interfaces: the primary bus and the ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. The primary bus consists of a 32-bit data bus, a 24-bit address bus, and
a set of control signals. The expansion bus consists of a 32-bit data bus, a
13-bit address bus, and a set of control signals. Both buses support software-
controlled wait states and an external ready input signal, and both buses are
useful for data, program, and I/O accesses.

Access is determined by an active strobe signal (STRB, MSTRB, IOSTRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the TMS320C30 supports two types of accesses:

1) Memory access signalled by MSTRB low. The timing fora MSTRB access
is the same as that of the STRB access on the primary bus.

2) External peripheral device access is signaled by IOSTRB low.

The primary bus and the expahsion bus each have an associated control regis-
ter. These registers are memory-mapped as shown in Figure 7—1.

Figure 7-1. Memory-Mapped External Interface Control Registers

Register Peripheral
Address
Expansion Bus Control (See subsection 7.1.2)T 808060h
Reserved 808061h
Reserved 808062h
Reserved 808063h
Primary Bus Control (See subsection 7.1.1) 808064h
Reserved 808065h
Reserved 808066h
Reserved 808067h
Reserved 808068h
Reserved 80806%h
Reserved ~ 80806Ah
Reserved 80806Bh
Reserved 80806Ch
Reserved 80806Dh
Reserved 80806Eh
Reserved 80806Fh

T Reserved on the TMS320C31

External Bus Operation

External Interface Control Registers

7.1.1 Primary-Bus Control Register
The primary bus control regiéter is a 32-bit register that contains the control bits

for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with the
bit names and functions.

Figure 7-2. Primary-Bus Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
XX FXX] XX | XX | XXP XXFP XX| XX] XX§ XX | XX} XX]| XX XX XX XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|xx |xx| xx| BNKCMP | WTCNT | SWW |HIZ|NOHOLD|HOLDST|

R/WR/WRW RWRWR/WRWRWRWRWRW RW R

NOTE: xx =reserved bit, read as 0.
R =read, W = write.

Table 7-1. Primary-Bus Control Register Bits Summary

Bit Name Reset . Function
Value

0 HOLDST xt Hold status bit. This bit signals whether the port is being held
(HOLDST = 1) or is not being held (HOLDST = 0). This status bit is
valid whether the port has been held via hardware or software.

1 NOHOLD 0 Port hold signal. NOHOLD allows or disallows the port to be held by
anexternal HOLD signal. When NOHOLD =1, the TMS320C3x takes
overthe external bus and controlsit, regardless of serviced orpending
requests by external devices. No hold acknowledge (HOLDA) is as-
serted when a HOLD is received. However, it is asserted if aninternal
hold is generated (HIZ = 1). NOHOLD is set to 0 at reset.

2 HIZ 0 Internal hold. When set (HIZ = 1), the port is put in hold mode. This
is equivalent to the external HOLD signal. By forcing a high-impe-
dance condition, the TMS320C3x canrelinquish the external memory
portthrough software. HOLDA goes low when the portis placed in the
high-impedance state. HIZ is set to 0 at reset.

4—3 SWW 1 Software wait mode. In conjunction with WTCNT, this 2-bit field de-
fines the mode of wait-state generation. It is setto 1 1 at reset.

7—5 | WTCNT 111 Software wait mode. This 3-bit field specifies the number of cycles to
use when in software wait mode for the generation of internal wait
states. The range is zero (WTCNT =00 0)toseven(WTCNT = 111)
H1/H3 cycles. Iltis setto 1 1 1 at reset.

12 — 8 | BNKCMP 10000 Bank compare. This 5-bit field specifies the number of MSBs of the
address to be used to define the bank size. Itis setto 1 000 0 atreset.

31 — 13| Reserved 0-0 Read as 0.

T x=0o0r1

7-3

External Interface Control Registers

7.1.2 Expansion-Bus Control Register

The expansion bus control register is a 32-bit register that contains control bits
for the expansion bus (see Figure 7-3 and Table 7-2).

Figure 7-3. Expansion-Bus Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
xx fxx] oxx] oxx] oxx] oxx | xx | xx | oxx| xx] xx] xx| xxf xx | xx| xx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ixx'xxlxxIxxIxxIxxIxxIxxI WTCNT ISWW Ixxlxxlxx'

R/W R/W R/W R/W R/W
NOTE: xx =reserved bit, read as 0.
R =read, W = write.
Table 7-2. Expansion-Bus Control Register Bits Summary
Bit Name Reset Function
Value
2— 0| Reserved 000 Read as 0.
4—3 SWw 11 Software wait-state generation. In conjunction with the WTCNT,

. this 2-bit field defines the mode of wait-state generation. It is set
to 1 1 atreset.

7—5 | WTCNT 111 Software wait mode. This 3-bit field specifies the number of cycles

. to use when in software wait mode for the generation of internal
wait states. The range is zero (WTCNT.= 0 0 0) to seven
(WTCNT=111) H1/H3 clock cycles. ltis setto 1 1 1 at reset.

31 —8 | Reserved 0-0 Read as 0.

7-4 ‘ ‘ External Bus Operation

External interface Timing

7.2 External Interface Timing

This section discusses functional timing of operations on the primary bus and
the expansion bus, the TMS320C3x’s two independent parallel buses. De-
tailed timing specifications for all TMS320C3x signals are contained in Chap-
ter 13, TMS320C3x Signal Descriptions and Electrical Characteristics.

The parallel buses implement three mutually exclusive address spaces distin- -
guished through the use of three separate control signals: STRB, MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB control accesses on the expansion bus. Since the two
buses are independent, two accesses may be made in parallel.

With the exception of bank switching and the external HOLD function (dis-
cussed later in this section), timing of primary bus cycles and MSTRB expan-
sion bus cycles are identical and are discussed collectively. The acronym
(M)STRBis used in references that pertain equally to STRB and MSTRB. Sim-

- ilarly, (X)R/W, (X)A, (X)D, and (X)RDY are used to symbolize the equivalent
primary and expansion bus signals. The IOSTRB expansion bus cycles are
timed differently and are discussed independently.

7.2.1 Primary-Bus Cycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined to be from one falling edge of H1 to the next falling edge of H1. For full-
speed (zero wait-state) accesses, writes take two H1 cycles and reads take
one cycle; however, if the read follows a write, the read takes two cycles.This
applies to both the primary bus and the MSTRB expansion bus access. Recall
that, internally (from the perspective of the CPU and DMA), writes require only
one cycle if no accesses to that interface are in progress. The following discus-
sions pertain to zero wait-state accesses unless otherwise specified.

The (M)STRB signalis low for the active portion of both reads and writes, which
lasts one H1 cycle. Additionally, before and after the active por-
tion—(M)STRB low—of writes only, there is a transition cycle of H1. During
this transition cycle, the following occur:

1) (M)STRB is high.
2) If required, (X)R/W changes state on H1 rising.

3) If required, address changes on H1 rising if the previous H1 cycle was thé
. active portion of a write. If the previous H1 cycle was a read, address
changes on H1 falling.

External Interface Timing

Figure 7—4 illustrates a read-read-write sequence for (M)STRB active and no

wait states. The datais read as late in the cycle as possible to allow for the max-

imum access time from address valid. Note that although external writes take

two cycles, internally (from the perspective of the CPU and DMA), they require

only one cycle if no accesses to thatinterface are in progress. In the typical tim-

ing for all external interfaces, the (X)R/W strobe does not change until
. (M)STRB or IOSTRB goes inactive.

Figure 7-4. Read-Read-Write for (M)STRB = 0

' 1 1]] i : :
XXXN [' ' P .
(X)D 2’,’&0 : Read : Read : < \{Vnte Data

(XRDY \./ \/ | ‘\E/l

7-6 External Bus Operation

External Interface Timing

Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately one-half

cycle after (M)STRB changes.
Figure 7-5. Write-Write-Read for (M)STRB = 0

(X)R/W—\ - : ,&%?x ' : '

o X —_
00 Wi Bt irie s
oy N/ N\ /" ~N /"

5N
%

7-7

External Interface Timing

Figure 76 illustrates a read cycle with one wait state. Since (X)RDY =1, the
read cycle is extended. (M)STRB, (X)R/W, and (X)A are also extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 7-6. Use of Wait States for Read for (M)STRB =0

H3 4) 4 \ / \ /) / \

el aWaas

(M)STRB : /o N /: :
XRAN ' : : I AN E . : /_

7-8 : External Bus Operation

External Interface Timing

Figure 7-7 illustrates a write cycle with one wait state. Since initially (X)RDY =
1, the write cycle is extended. (M)STRB, (X)R/W, and (X)A are extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 7-7. Use of Wait States for Write for (M)STRB = 0

H3 1 1 ' 1 1 1 U 1 U)]
(M)STRB ! \ : : /' \' : /' \

(X)D ——(' Write Data ') 4 Wiite Data —
()RDY /N \ L N/
' ' I i‘_ Ex'tra __.i '

Cycle

7-9

External Interface Timing

7.2.2 Expansion-Bus I/O Cycles

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are
both two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The IOSTRB signal always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 7-8 illustrates read and write cycles when IOSTRB is active and there
are no wait states. For IOSTRB accesses, reads and writes require a minimum
of two cycles. Some off-chip peripherals may change their status bits when
read or written. Therefore, it is important that valid addresses be maintained
when communicating with these peripherals. For reads and writes when
IOSTRB is active, IOSTRB is completely framed by the address.

' Figure 7-8. Read and Write for (OSTRB = 0

7-10

'
'
'
]
'
L

NV annmnnN

External Bus Operation

~ External Interface Timing

Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and
Figure 710 illustrates a write with one wait state when IOSTRB is active. For

~each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

Figure 7-9. Read With One Wait State for (OSTRB = 0

7-11

=0

External Bus Operation

Figure 7-10. Write With One Wait-State for (OSTRB

External Interface Timing

Write Data

........ VA G B

= >
% oz

IOSTRB
XA
XD
D

7-12

External Interface Timing

Figure 7-11 through Figure 7-21 .illustrate the various transitions between
memory reads and writes, and 1/O writes over the expansion bus.

Figure 7-11. Memory Read and I/O Write for Expansion Bus

H3 [l l (]) () (v (
MSTRE \ . / ! '. : : ‘. l
| i : I ' : I : :
OSTRE . | ! I : \ i ' I
I : ' ! - ! l i !
G I | N : A
XA Memory Address W 1/0 Address >@
' (Road H>—r! : % . P
XD) ' ead . : " 1/0 Write ' :
XRDY \ ' / \: /

7-13

External Interface Timing

Figure 7-12. Memory Read and I/O Read for Expansion Bus

7-14

XRW

XA

XD

. ' ! ' 1 ' '
: ! ' [} 1 . 1
'] ! ' ' ' l
v Memory . ,
@< Address X 1/0 Address m

External Bus Operation

External Interface Timing

Figure 7-13. Memory Write and /O Write for Expansion Bus

@ \
@ =
o =
............... 3t-{191t- A
<
Q
R DR B -1 o -1 A
2 £
o3 =
3 z /
o
< £
f []
...... d-------]-15}- L ..
2 =
(0]
=
Jus) m < o >
oC [t 2 < = [a
= = [I
2] 1] x >
= O

7-15

Figure 7-14. Memory Write and I/O Read for Expansion Bus

External Interface Timing

1
I/0 Address

----------.-- -e-.
2 g
o =
3 >
[o]
< £
............... 15t gt-----
£
[
=
) 0 < o >-
o s 2 = =)
= -~ e 1
0 0 %3 4
=]

External Bus Operation

7-16

External Interface Timing

«

S e U s
@

<

S

w

oy

S

S NG
w

-

S

L

=

S ---N\C---

>

£

D

S .. /o
©

<

«

2

=

W -f -
S

e}

N}

s ® X 7%
5 [=4
))
ic =

IOSTRB

Memory Write

Memory Address

110 Address

1/0 Write

XA
XD
XRDY

7-17

External Interface Timing

Figure 7-16. 1/0 Write and Memory Read for Expansion Bus

H3

H1

IOSTRB

Memory Address

/O Address

XA

S

1/0 Write

XD
D

External Bus Operation

7-18

External Interface Timing

Figure 7-17. /O Read and Memory Write for Expansion Bus

’v’v.v‘v‘V
KR

V‘V
0

(RIS
RS

'
1
'
1
¢
t
'
L

Memory Write

Memory Address

/0 Address

7-18

External Interface Timing

Figure 7-18. I/0 Read and Memory Read for Expansion Bus

H3

H1

1/0 Address

1

XD
D

External Bus Operation

7-20

External Interface Timing

Figure 7-19. /O Write and I/0 Read for Expansion Bus

H3

H1

Write Data

7-21

External Interface Timing

Figure 7-20. 1/O Write and I/O Write for Expansion Bus

Write Data

Write Data

XD

External Bus Operation

7-22

External Interface Timing

Bus

nsion

Figure 7-21. /O Read and /O Read for Expa

Read

Read

XD
XRDY

7-23

External Interface Timing

Figure 7—22 and Figure 7-23 illustrate the signal states when a bus is inactive
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB,

MSTRB, IOSTRB) and (X)R/W) go to 1. The address is undefined, and the
ready signal (XRDY or RDY) is ignored.

Figure 7-22. Inactive Bus States for IOSTRB

I : 1 : o 1 | : | Z

IOSTRE \[: /. : : I : : l :

R : : /. | : | : :
(X)A X Address Undefined

! : : ; : : : . : .

X)D —<: Write Data N : . : : L .

() ' . /; [] 1]] [

(X)RDY : \ .: / (X)RDY Ignored
2 i i | i i . . .

Y

a7

Bus Inactive

7-24 ‘ External Bus Operation

External Interface Timing

Figure 7-23. Inactive Bus States for STRB and MSTRB

H3

Address Undefined

(XA

(X)RDY lgnored

Bus Inactive

Write Data

7-25

External Interface Timing

Figure 7-24 illustrates the timing for HOLD and HOLDA. HOLD is an external
asynchronous input. There is a minimum of one cycle delay from the time when
the processor recognizes HOLD = 0 until HOLDA = 0. When HOLDA = 0, the
address, data buses, and associated strobes are placed in a high-impedance
state. All accesses occurring over an interface are complete before a hold is
acknowledged.

Figure 7-24. HOLD and HOLDA Timing

I
=

>
4.

N A e \'"'\""" o

/. : —

! 1 1] ' ' : 1 '

N 1 ' . ' 1
- . \ 1 L} X 1 I’

D Write Data P) " ; <
1 ' ¢ ' '
Bus
Inactive

7-26 External Bus Operation

Programmable Wait States

7.3 Programmable Wait States

Control wait-state generation by manipulating memory-mapped control regis-
ters associated with both the primary and expansion interfaces. Use the
WTCNT field to load an internal timer, and use the SWW field to select one of
the following four modes of wait-state generation:

External RDY

[WTCNT-generated RDYwtcnt

2 Logical-AND of RDY and RDYwtcnt
(& Logical-OR of RDY and RDYwtcnt

The four modes are used to generate the internal ready signal, RDYjp, that
controls accesses. As long as RDYyt = 1, the current external access is
delayed. When RDYjn; =0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the pri-
mary bus interface is described in the following paragraphs.

RDYyicnt is an internally generated ready signal. When an external access is
begun, the value in WTCNT is loaded into a counter. WTCNT may be any value
from O through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next ac-
cess. While the counter is nonzerd, RDYyicnt = 1. While the counter is 0,
RDYwient = 0.

7-27

Programmable Wait States

When SWW =0 0, RDYy,; is dependent only upon RDY. RDY yicnt is ignored.
The truth table for this mode is Table 7-3.

Table 7-3. Wait-State Generation When SWW =00

RD RDYwicnt RDYint
0 0 - 0
0 0
i 1
1 1

<

1
0
1

When SWW =0 1, RDYjqt is dependent only upon RDYyicnt- RDY is ignored.
Table 7-4 is the truth table for this mode.

Table 7-4. Wait-State Generation When SWW =0 1

0 0 0
0 1 1
1 0 0
1 1 1

When SWW = 1 0, RDYjy is the logical-OR (electrical-AND, since these
signals are low true) of RDY and RDYycnt (see Table 7-5).

Table 7-5. Wait-State Generation When SWW =10

0 0 0
0 1 0
1 0 0
1 1 1

When SWW = 1 1, RDYjy; is the logical-AND (electrical-OR, since these
signals are low true) of RDY and RDYycnt. The truth table for this mode is

Table 7-6.
Table 7-6. Wait-State Generation When SWW =11
RDY RDYwtent RDYint
0 0 0
0 i 1
1 C 1
1 1 1

External Bus Operation

7-28

Programmable Bank Switching

7.4 Programmable Bank Switching

Programmable bank switching allows you to switch between external memory
banks without externally inserting wait states due to memories that require sev-
eral cycles to turn off. Bank switching is implemented on the primary bus and
not on the expansion bus.

The size of a bank is determined by the number of bits specified to be ex-
amined. For example (see Figure 7-25), if BNKCMP =186, the 16 MSBs of the
address are used to define a bank. Since addresses are 24 bits, the bank size
is specified by the 8 LSBs, yielding a bank size of 256 words. If BNKCMP = 186,
only the 16 MSBs are compared. Bank sizes from 28 = 256 to 224 = 16M are
allowed. Table 7—7 summarizes the relationship between BNKCMP, the ad-
dress bits used to define a bank, and the resulting bank size.

Figure 7-25. BNKCMP Example

N

lﬁ 24-bit address

23 8| 7 0

I“— Number of bits to compare —*— Defines bank size —"’l

Table 7-7. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)
00000 None ' 224 16M
00001 ' 23 223= gM
00010 23—22 . 222 4M
00011 23—21 221= 2M
00100 23—20 220= 1M
00101 23—19 219_ 512K
00110 23—18 218 256K
00111 23—17 217- 128K
01000 23—16 216= 64K
01001 23—15 2152 32K
01010 23—14 214 16K
01011 23—13 213 gK
01100 23—22 212- 4K
01101 23—11 2112 2K
01110 23— 12 210- 1K
01111 23—9 29 =512
10000 23—38 28 =256
10000 — 11111 Reserved Undefined

7-28

Programmable Bank Switching

The TMS320C3x has an internal register that contains the MSBs (as defined
by the BNKCMP field) of the last address used for a read or write over the pri-
mary interface. At reset, the register bits are set to zero. If the MSBs of the ad-
dress being used for the current primary interface read do not match those con-
tained in this internal register, a read cycle is not asserted for one H1/H3 clock
cycle. During this extra clock cycle, the address bus switches over to the new
address, but STRB is inactive (high). The contents of the internal register are
replaced with the MSBs being used for the current read of the current address.
If the MSBs of the address being used for the current read match the bits in
the register, a normal read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When aread is performed from a different memory bank, memory
conflicts are avoided by the insertion of an extra cycle. This feature can be dis-
abled by setting BNKCMP to 0. The insertion of the extra cycle occurs only
when a read is performed. The changing of the MSBs in the internal register
occurs for all reads and writes over the primary interface.

Figure 7-26illustrates the addition of an inactive cycle when switches between
banks of memory occur.

Figure 7-26. Bank Switching Example

7-30

External Bus Operation

Peripherals

Peripherals

Chapter 8

Peripherals

The TMS320C3x features two timers, two serial ports (one on the
TMS320C31), and an on-chip Direct Memory Access (DMA) controller. These
peripheral modules are controlled through memory-mapped registers located
on the dedicated peripheral bus.

The DMA controller is used to perform input/output operations without interfer-
ing with the operation of the CPU. Therefore, it is possible to interface the
TMS320C3x to slow external memories and peripherals (A/Ds, serial ports,
etc.) without reducing the computational throughput of the CPU. The result is

improved system performance and decreased system cost. ’

Major topics discussed in this chapter on peripherals are listed below.
[Timers (Section 8.1 on page 8-2)
Registers
B Pulse generation
Operation modes
[Serial Ports (Section 8.2 on page 8-12)
B Registers
B Operation configurations
B Timing
Examples
[d DMA Controller (Section 8.3 on page 8-38)
B Registers
B DMA memory transfer operation

B Synchronization of DMA channels

8-1

Timers

8.1

Timers

The TMS320C3x timer modules are general-purpose, 32-bit, timer/event
counters, with two signaling modes and internal or external clocking (see
Figure 8-1). The timer modules can be used to signal to the TMS320C3x or
the external world at specified intervals, or to count external events. With an

“internal clock, the timer can be used to signal an external A/D converter to start

aconversion, orit caninterrupt the TMS320C3x DMA controller to begin adata
transfer. The timer interrupt is one of the internal interrupts. With an external
clock, the timer can count external events and interrupt the CPU after a speci-
fied number of events. Available to each timer is an I/O pin that can be used
as an input clock to the timer, an output clock signal, or a general-purpose /O

pin.

Figure 8-1. Timer Block Diagram

8-2

[€¢— Internal Cloc_:k/2

Counter (32-bit) G—G'(: External Clock
\ INV

Counter Register .
(31-0)

_isz —]

Period Register (31-0)

32

Comparator
?

Period = Counter

y

Pulse Generator

INV

ﬁi*_b TSTAT

Timer Out

Three memory-mapped registers are used by each timer:

Ld Gilobal-control register

[Period register

[Counter register

The global-control register determines the operating mode of the timer,

monitors the timer status, and controls the function of the I/O pin of the timer.

Peripherals

Timers

The period register specifies the timer’s signaling frequency. The counter
register contains the current value of the incrementing counter. The timer can
be incremented on the rising edge or the falling edge of the input clock. The
counteris zeroed and can cause aninternal interrupt whenever its value equals
thatin the period register. The pulse generator generates two types of external
clock signals: pulse or clock. The memory map for the timer modules is shown
in Figure 8-2.

Figure 8-2. Memory-Mapped Timer Locations

Register Peripheral Address
Timer 0 Timer 1
Timer Global Control (See Table &8-1) 808020h 808030Ch
Reserved 808021h 808031h
Reserved 808022h 808032h
Reserved 808023h 808033h
Timer Counter (See subsection 8.1.2) 808024h 808034h
Reserved 808025h 808035h
Reserved 808026h 808036h
Reserved 808027h 808037h
Timer Period (See subsection 8.1 .2) 808028h 808038h
Reserved 80802%h 80803%h
Reserved 80802Ah 80803Ah
Reserved 80802Bh 80803Bh
Reserved 80802Ch 80803Ch
Reserved 80802Dh 80803Dh
Reserved 80802Eh 80803Eh
Reserved 80802Fh 80803Fh

8.1.1 Timer Global-Control Register

The timer global control register is a 32-bit register that contains the global and
port control bits for the timer module. Table 8—1 defines the register bits,
names, and functions. Bits 3 — 0 are the port control bits; bits 11 — 6 are the
timer global control bits. Figure 8-3 shows the 32-hit register. Note that at re-
set, all bits are set to 0 except for DATIN (set to the value read on TCLK).

8-3

Timers

Figure 8-3. Timer Global-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

I XX | XX I XX | XX | XX | XX | XX | XX | XX I XX I XX I XX | XX | XX | XX | XX I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| xx [xx | xx [x« [STAT [INV [cLksRe [c/P | AED | Go [xx [xx [bATIN | patout | 70 [FUNC |
RW RW RW RW RW RW R RW RW RW

NOTE: xx = reserved bit, read as 0.

R =read, W = write.

Table 8-1. Timer Global-Control Register Bits Summary

Function

FUNC controls the function of TCLK. If FUNC =0, TCLK is configured
as ageneral-purpose digital /O port. f FUNC =1, TCLK is configured
as a timer pin (see Figure 8-7 for a description of the relationship
between FUNC and CLKSRC).

If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general pur-
pose /O pin. In this case, if /O = 0, TCLK is configured as a general-
purpose input pin. If 170 =1, TCLK s configured as a general-purpose
output pin.

DATOUT drives TCLK when the TMSS2003x is in I/O port mode.
DATOUT can also be used as an input to the timer.

Data input on TCLK or DATOUT. A write has no effect.

Read as 0.

The GO bit resets and starts the timer counter. When GO = 1 and the
timeris not held, the counteris zeroed and begins incrementingonthe
nextrising edge of the timer input clock. The GO bitis cleared onthe
same rising edge. GO = 0 has no effect on the timer.

Counter hold signal. When this bit is zero, the counter is disabled and
held inits current state. If the timer is driving TCLK, the state of TCLK
is also held. The internal divide-by-two counter is also held so that the
counter can continue where it left off when HLD'is set to 1. The timer
registers can be read and modified while the timer is being held.

RESET has priority over HLD. Table 8-2 shows the effect of writing
to GO and HLD.

Clock/Pulse mode control. When C/P = 1, clock mode is chosen, and
the signaling of the status flag and external output will have a 50
percent duty cycle. When C/P = 0, the status flag and external output
will be active for one H1 cycle during each timer period (see
Figure 8-4).

Specifies the source of the timer clock. When CLKSRC =1, aninternal
clock with frequency equal to one-half the H1 frequency is used to in-
crement the counter. The INV bit has no effect on the internal clock
source. When CLKSRC = 0, an external signal from the TCLK pincan
be used to increment the counter. The external clock is synchronized
internally, thus allowing external asynchronous clock sources that do
not exceed the specified maximum allowable external clock frequen-
¢y. This will be less than f(H1)/2. (See Figure 8-7 for a description of
the relationship between FUNC and CLKSRC).

Bits Name Reset Value
0 FUNC . 0
1 [fle] 0
2 - DATOUT 0
3 DATIN xt

5—4 Reserved 0-0
6 GO 0
7 HLD 0
8 C/P 0
9 CLKSRC 0

T x=0o0or1

8-4

Peripherals

Table 8-1. Timer Global-Control Register Bits Summary (Continued)

Bits

Name

Reset Value

Function

10

INV

0

Inverter control bit. If an external clock source is used and INV = 1, the
external clock is inverted as it goes into the counter. If the output of the
pulse generator is routed to TCLK and INV = 1, the output is inverted
before it goes to TCLK (see Figure 8-1). If INV = 0, no inversion is
performed on the input or output of the timer. The INV bit has no effect,
regardless of its value, when TCLK is used in I/O port mode.

11

TSTAT

This bit indicates the status of the timer. It tracks the output of the
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from
0 to 1. A write has no effect.

31—12

Reserved

0-0

Read as 0.

Table 8-2 shows the result of a write using specified values of the GO and HLD
bits in the global control register.

Table 8-2. Result of a Write of Specified Values of GO and HLD

Result

GO LD ‘
0 0 All timer operations are held. No reset is performed. (Reset value)
0 1 Timer proceeds from state before write.
1 0 All timer operations are held, including zeroing of the counter. The GO bit
is not cleared until the timer is taken out of hold.
1 1 Timer resets and starts.

Timers

8.1.2 Timer Period and Counter Registers

The 32-bittimer period register is used to specify the frequency of the timer sig-
naling. The timer counter register is a 32-bit register, which is reset to zero
whenever it increments to the value of the period register. Both registers are
set to O at reset. :

Certain boundary conditions affect timer operation, such as a zero in the period
register and an overflow of the counter. These conditions are listed as follows:

L1 Whenthe period and counter registers are zero, the operation of the timer
is dependent upon the C/P mode selected. In pulse mode (C/P = 0),
TSTAT is set and remains set. In clock mode (C/P = 1), the width of the
cycle is 2/f(H1), and the external clocks are ignored.

4 Whenthe counter register is not 0 and the period register = 0, the counter
will count, roll over to 0, and then behave as described above.

L3 Whenthe counter register is set to a value greater than the period register,
the counter may overflow when being incremented. Once the counter
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks over to
0 and continues.

Writes from the peripheral bus override register updates from the counter
and new status updates to the control register.

8.1.3 Timer Pulse Generation

8-6

The timer pulse generator (see Figure 8—1) can generate several different ex-
ternal signals. These signals may be inverted with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 8—4. In both
modes, an internal clock source has a frequency of f(H1)/2, and an external
clock source has a maximum frequency of f(H1)/2.6. Refer to timer timing in
Appendix A. In pulse mode (C/P = 0), the width of the pulse is 1/f(H1).

Peripherals

Timers

Figure 8-4. Timer Timing

h—q—Q/f(Hﬂ
h——1—— 1(H1)
! | ! 1 1 3] 5 1] 1 1]
»] t 1 1]]] 1 n—
1]) 1] 1) 1
e
Ih——»i— 1/(CLKSRC) l' ‘
¢ P period register/f(CLKSRC)
TINT TINT TINT

(a) TSTAT and Timer Qutput (INV = 0) When C/P = 0 (Pulse Mode)

d———»— 1/{(CLKSRC)
lc———-»lr—t— 2/f(H1)

L] period registei'/f(CLKSRC)
j¢—— 2 x period register/f(CLKSRC} ————— M
TINT TINT TINT
(b) TSTAT and Timer Output (INV = 0) When C/P = 1 (Clock Mode)

"‘AF‘"'I_""'_

The rate of timer signaling is determined by the frequency of the timer input
clock and the period register. The following equations are valid with either an
internal or an external timer clock:

f(pulse mode) = f(timer clock) / period register
f(clock mode) = f(timer clock) / (2 x period register)

Figure 8-5 provides some examples of the TCLKx output when the period reg- -
ister is set to various values and clock or pulse mode is selected.

8-7

Timers

Figure 8-5. Timer Output Generation Examples

K—d— 2H1
Hi -3 el

igligigisipm

(@) INV =0, C/P =0 (Pulse Mode)
Timer Period = 1

M rnrnor

(b) INV =0, C/P = 0 (Pulse Mode)
Timer Period = 2

K—4H1—ﬂ|
|

e

I _ rn _r.r

{(¢) INV =0, C/P =0 (Pulse Mode)
Timer Period = 3

— 4H1 9
 2H1e= |

__IIVIIIIIIII

(d) INV =0, C/P =1 (Clock Mode)
Timer Period = 0

¢—— 8H1 ———i

4H1 - I

J 1 111"

{e) INV=0,C/P =1 (Clock Mode)
Timer Period = 1

(f) INV=0,C/P =1 (Clock Mode)
Timer Period = 2

8-8 ‘ Peripherals

Timers

8.1.4 Timer Operation Modes

The timer can receive its input and send its output in several different modes,
depending upon the setting of CLKSRC, FUNC, and I/0. The four timer modes
of operation are defined as follows:

gu

If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal
clock. The internal clock is not affected by the INV bit. In this mode, TCLK
is connected to the I/O port control and can be used as a general-purpose
I/0 pin (see Figure 8-6). If I/O = 0, TCLK is configured as a general-pur-
pose input pin whose state can be read in DATIN. DATOUT has no effect
on TCLK or DATIN. If VO = 1, TCLK is configured as a general-purpose
output pin. DATOUT is placed on TCLK and can be read in DATIN.

Figure 8-6. Timer /O Port Configurations

i

|
Internal | External
|
|
DATOUT (NC) o <4 TCLK
l |
DATIN.
1/10=0
(a)
I .
Internal | External
|
OATOUT l TCLK
|
DATIN
110 =1
(b)

If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal
clock, and the timer output goes to TCLK. This value may be inverted using
INV, and the value output on TCLK can be read in DATIN.

If CLKSRC = 0 and FUNC = 0, the timer is driven according to the status
of the 1/0 bit. If /0 = 0, the timer input comes from TCLK. This value can
be inverted using INV, and the value of TCLK can be read in DATIN. If /O
=1, TCLK is an output pin. Then, TCLK and the timer are both driven by
DATOUT. Ali 0-to-1 transitions of DATOUT increment the counter. INV has
no effect on DATOUT. The value of DATOUT can be read in DATIN.

If CLKSRC = 0 and FUNC = 1, TCLK drives the ﬁmer. If INV =0, all 0-to-1
transitions of TCLK increment the counter. If INV = 1, all 1-to-0 transitions
of TCLK increment the counter. The value of TCLK can be read in DATIN.

8-9

Timers

Figure 8—7 shows the four timer modes of operation.

Figure 8-7. Timer Modes as Defined by CLKSRC and FUNC

Internal | External
Timer

Internal |
Timer In j&— Glock

Timer Out |— l——:’TCLK
I |

TSTAT /O Port
Control

CLKSRC = 1 (Internal)
FUNC = 0 (I/O Pin)

(@
Timer Internal | External
Timer In < { » TCLK
Timer Out |— 4 |
TSTAT 1/0 Port
Control

CLKSRC = 0 (External)
FUNC = 0 (/O Pin)
(©

8.1.5 Timer Interrupts

‘Internal | External

Timer
Internal |
Timer In [Clock |
Timer Out TCLK
|
TSTAT DATIN

CLKSRC =1 (Internal)
FUNC =1 (Timer Pin)

(b)
Timer Internal | External
Timer In : TCLK
Timer Out |—]
TSTAT DATIN

CLKSRC = 0 (External)
FUNC =1 (Timer Pin)
(d)

Atimer interrupt is generated whenever the timer automatically resets the tim-
er counter register to zero. The timer counter register is automatically reset to
zero wheneveritis equal to or greater than the value in the timer period register.
The timer interrupt can be used to interrupt either the CPU or the DMA. Inter-
rupt enable control for each timer, for either the CPU or the DMA, is found in
the CPU/DMA interrupt enable register. Refer to subsection 3.1.8 for more in-
formation on the CPU/DMA interrupt enable register.

When a timer interrupt occurs, a change in state of the corresponding TCLK
pin will be observed ifthe FUNC = 1 and CLKSRC =1 in the timer global-control
register. The exact change of state depends on the state of the C/P bit.

8-10

Peripherals

Timers

8.1.6 Timer Initialization/Reconfiguration

The timers are controlled through memory-mapped registers located on the
dedicated peripheral bus. A general procedure for initializing and/or reconfi-
guring the timers follows:

1) Haltthetimerby clearing the GO/HLD bits of the timer global-control regis-
ter. This can be accomplished by writing a 0 to the timer global-control reg-
ister. Note that the timers are halted on RESET.

2) Configure the timer via the timer global-control register (with GO = HID
= 0), as well as the timer counter register and timer period register, if nec-
‘essary.

3) Start the timer by setting the GO/HLD bits ofthe timer global-control regis-
ter.

8-11

Serial Ports

8.2 Serial Poris

8-12

The TMS320C30 has two totally independent bidirectional serial ports. Both
serial ports are identical with a complementary set of control registers in each
one. Only one serial port is available on the TMS320C31. Each serial port can
be configured to transfer 8, 16, 24, or 32 bits of data per word simultaneously
in both directions. The clock for each serial port can originate either internally,
via the serial porttimer and period registers, or externally, via a supplied clock.
Aninternally generated clock is a divide-down of the clockout frequency, f(H1).
A continuous transfer mode is available, which allows the serial port to transmit
and receive any number of words without new synchronization pulses.

Eight memory-mapped registers are provided for each serial port:
Global-control register
Two control registers for the six serial I/O pins

Three receive/transmit timer registers

O d o od

Data-transmit register

[d Data-receive register

The global-control register controls the global functions of the serial port and
determines the serial-port operating mode. Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete word to be transmitted. The receive buffer contains the last complete
word received. Three additional registers are associated with the transmit/re-
ceive sections of the serial-port timer. A serial-port block diagram is shown in
Figure 8-8, and the memory map of a serial port is shown in Figure 8-9.

Peripherals

Serial Ports

‘Figure 8-8. Serial-Port Block Diagram

lt—— Receive Section Mo Transmit Section ————————4
TSTA'?LKR CLKX
Receive FTa=1 =y | TSTAT Transmit
Timer (16) [5] Ci'KR CLRXT < Timer (16)
RINT <)———l] FSR FSX ‘——B* XINT
Receive Clock FS‘,R | | FSlX
Bit Counter j&—¢ \ / \ / P1 Bit Counter
(8/16/24/32) (8/16/24/32)
q_—
RSR : XSR
(32) 4 L B (32)
Z
Load Load Load +
Control Control 1
DX DX
DR DR
<7 DX
DRR Load DXR
(32) (32)

Serial Ports

Figure 8-9. Memory-Mapped Locations for the Serial Port

Register Peripheral Address

Serial Serial

Port 0 Port 11
Serial-Port Global Control (See Table 8-3) 808040h 808050h
Reserved 808041h 808051h
FSX/DX/CLKX Port Control (See Table 8-4) 808042h 808052h
FSR/DR/CLKR Port Control (See Table 8-5) 808043h 808053h
R/X Timer Control (See Table 8-6) 808044h 808054h
R/X Timer Counter (See Figure 8-13) 808045h 808055h
R/X Timer Period (See Figure 8-14) 808046h 808056h
Reserved 808047h 808057h
Data Transmit (See Figure 8-15) 808048h 808058h
Reserved 808049h 808058h
Reserved ' 80804Ah 80805Ah
Reserved 80804Bh 80805Bh
Data Receive (See Figure 8-16) 80804Ch 80805Ch
Reserved 80804Dh 80805Dh
Reserved 80804Eh" 80805Eh
Reserved 80804Fh 80805Fh

T Reserved locations on the TMS320C31

8.2.1 Serial-Port Global-Control Register
The serial-port global-control register is a 32-bit register that contains the glob-

al control bits for the serial port. Table 8-3 defines the register bits, bit names,
and bit functions. The register is shown in Figure 8-10.

8-14 :) Peripherals

Serial Ports

Figure 8-10. Serial-Port Global-Control Register

31 30 20 28 27 26 24 23 22 21 20 19 18 17 16
[} x| xx | xx JrreseT| xReseT] RINT] RTINT | xin | xTint | RLEN | XLEN | Fsre | Fsxe |

RW RW RW RW RW RW AW RW RW RW RW RW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRP | DXP | CLKRP

CLKXP| RFSM

XFSM| RVAREN | XVAREN{ RCLK} XCLK | HS] RSR XSR [FSXQUT| XRDY | RRDY

SRCE | SRCE FULL] EMPTY

RW RW RW

R =read

RW RW RW RW RW RW RW RW R R RW R R

, W = write.

NOTE: xx = Reserved bit, read as 0.

Table 8-3. Serial-Port Global-Control Register Bits Summary

Bit

Name

Reset Value

Function

RRDY

0

If RRDY =1, the receive buffer has new data and s ready to be read. A three H1/H3
cycle delay occurs from the reading of DRR to RRDY = 1. The rising edge of this sig-
nal sets RINT. If RRDY= 0 at reset, the receive buffer does not have new data since
the last read. RRDY = 0 at reset and after the receive buffer is read.

XRDY

If XRDY =1, the transmit buffer has written the last bit of data to the shifter and is

ready for a new word. A three H1/H3 cycle delay occurs from the loading of the trans-

mitshifter untit XRDY is setto 1. Therising edge of this signal sets XINT. If XRDY =0,
the transmit buffer has not written the last bit of data to the transmit shifter and is not

ready for a new word. XRDY = 1 at reset.

FSXOUT

This bit configures the FSX pin as aninput (FSXOUT =0) or an output (FSXOUT = 1).

XSREMPTY

If XSREMPTY =0, the transmit shift registeris empty. lf XSREMPTY =1, the transmit
shift register is not empty. Reset or XRESET causes this bit to = 0.

RSRFULL’

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous mode,
RSRFULL is set to 1 when both RSR and DRR are full. In noncontinuous mode,
RSRFULL is setto 1 when RSR and DRR are fulland a new FSR s received. Aread
causes this bit to be set to 0. This bit can be set to 0 only by a system reset, a serial
portreceive reset (RRESET = 1), or aread. When the receiver tries to set RSRFULL
to a1 atthe same time that the global register is read, the receiver will dominate and
RSRFULL is setto 1. If RSRFULL = 0, no overrun of the receiver has occurred.

HS

IfHS =1, the handshake mode is enabled. If HS = 0, the handshake mode is disabled.

XCLKSRCE

It XCLKSRCE =1, the internal transmit clock is used. If XCLKSRCE = 0, the external
transmit clock is used.

RCLKSRCE

If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE = 0, the external
receive clock is used.

XVAREN

This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate signaling
when transmitting. With a fixed data rate, FSX is active for at least one XCLK cycle
and then goes inactive before transmission begins. With variable data rate, FSX is
active while all bits are being transmitted. When you use an external FSX and vari-
able data rate signaling, the DX pin s driven by the transmitter when FSXis held ac-
tive or when a word is being shifted out.

RVAREN

This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate signaling
when receiving. With a fixed data rate, FSR is active for atleast one RCLK cycle and
then goes inactive before the reception begins. With variable datarate, FSR is active
while all bits are being received.

8-15

Serial Ports

Table 8-3.

Serial-Port Global-Control Register Bits Summary (Continued)

Bit

Name

Reset Value

Function

10

XFSM

0

Transmit frame sync mode. Configures the port for continuous mode opera-
tion(XFSM= 1) or standard mode (XFSM = 0). In continuous mode, only the firstword
of a block generates a sync pulse, and the rest are simply transmitted continuously
to the end of the block. In standard mode, each word has an associated sync pulse.

ik

RFSM

Receive frame sync mode. Configures the port for continuous mode (RFSM =1) or
standard mode (RFSM = 0) operation. in continuous mode, only the first word of a
block generates a sync pulse, and the rest are simply received continuously without
expectation of another sync pulse. In standard mode, each word received has an
associated sync pulse. :

12

CLKXP

CLKX polarity. If CLKXP = 0, CLKX is active high. If CLKXP =1, CLKX is active low.

13

CLKRP

CLKR polarity. If CLKRP = 0, CLKR is active high. If CLKRP =1, CLKR is active low.

14

bXP

DX polarity. if DXP = 0, DX is active high. If DXP = 1, DX is active low.

15

DRP

DR polarity. If DRP = 0, DR is active high. If DRP = 1, DR is active low.

16

FSXP

FSX polarity. If FSXP = 0, FSX is active high. If FSXP = 1, FSX is active low.

17

FSRP

o|ojojolo]|oO

FSR polarity. If FSRP = 0, FSR is active high. If FSRP = 1, FSR is active low.

19—18

XLEN

These two bits define the word length of serial data transmitted. All datais assumed
to be right-justified in the transmit buffer when fewer than 32 bits are specified.

0 0--- 8 bits 1 0--- 24 bits
0 1--- 16 bits 1 1-- 32 bits

21—20

RLEN

00

These two bits define the word length of serial data received. All data is right-justified
in the receive buffer.

0 0-- 8 bits 1 0--- 24 bits
0 1--- 16bits 1 1--- 32 bits

22

XTINT

Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt is disabled.
If XTINT =1, the transmit timer interrupt is enabled.

23

XINT

Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If XINT= 1,
the transmit interrupt is enabled. Note that the CPU transmit interrupt flag XINT is
the logical OR of the enabled transmit timer interrupt and the enabled transmit inter-
rupt. .

24

RTINT

Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is disabled.
If RTINT = 1, the receive timer interrupt is enabled.

25

RINT

Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If RINT= 1,
the receive interrupt is enabled. Note that the CPU receive interrupt flag RINT is the
OR of the enabled receive timer interrupt and the enabled receive interrupt.

26

XRESET

Transmit reset. If XRESET = 0, the transmit side of the serial port is reset. To take
the transmit side of the serial port out of reset, set XRESET to 1. However, do not
set XRESET to 1 until atleast three cycles after XRESET goes inactive. This applies
only to system reset. Setting XRESET to 0 does not change the contents of any of
the serial-port control registers. It places the transmitter in a state corresponding to
the beginning of a frame of data. Resetting the transmitter generates a transmitinter-
rupt. Reset this bit during the time the mode of the transmitter is set. XFSM can be
toggled without resetting the global-control register.

8-16

Peripherals

Serial Ports

Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded)

Bit
27

Name Reset Value Function

RRESET 0

Receive reset. If RRESET = 0, the receive side of the serial port is reset. To take
the receive side of the serial port out of reset, set RRESET to 1. Setting RRESET
to 0 does not change the contents of any of the serial-port control registers. It places
the receiver in a state corresponding to the beginning of a frame of data. Reset this
bit at the same time the mode of the receiver is set. RFSM can be toggled without
resetting the global-control register.

Read as 0.

31 — 28] Reserved

8.2.2 FSX/DX/CLKX Port Control Register
This 32-bit port control register controls the function of the serial port FSX, DX,

and CLKX pins. At reset, all bits are setto 0. Table 8—4 defines the register bits,
bit names, and functions. Figure 8—11 shows this port control register.

Figure 8~11. FSX/DX/CLKX Port Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| XX l XX I XX | XX | XX | XX l XX | XX l XX I XX I XX | XX | XX | XX | XX | XX |
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FSX FSX FSX FSX DX DX DX | DX | CLKX CLKX | CLKX | CLKx
XXk XX XX pATIN | DATOUT 10 FUNC | DATIN | DATOUT | /O | FUNC | DATIN | DATOUT | 1O - | FUNC
R RW RIW RW R RW RW RW R RW RW RW
NOTE: xx = reserved bit, read as 0.
R =read, W = write.
Table 8-4. FSX/DX/CLKX Port Control Register Bits Summary
Bit Name Reset Value Function
0 CLKXFUNC 0 CLKXFUNC controls the function of CLKX. If CLKXFUNC =0, CLKX is confi-
gured as ageneral-purpose digital I/O port. If CLKXFUNC =1, CLKX is a serial
port pin.
1 CLKXI/O 0 If CLKX 1/O = 0, CLKX is configured as a general-purpose input pin. If CLKX
I/0 = 1, CLKX is configured as a general-purpose output pin.
CLKXDATOUT 0 Data output on CLKX.
3 CLKXDATIN Data input on CLKX. A write has no effect.
4 DXFUNC DXFUNC controls the function of DX. If DXFUNC = 0, DX is configured as a
general-purpose digital I/O port. If DXFUNC = 1, DX is a serial port pin.
5 DX 1/0 0 If DX /O = 0, DX is configured as a general-purpose input pin. If DX 1/0 = 1,
DX is configured as a general-purpose output pin.
DXDATOUT 0 Data output on DX.
DXDATIN x 1 Data input on DX. A write has no effect.
FSXFUNC 0 FSXFUNC controls the function of FSX. If FSXFUNC = 0, FSX is configured
as ageneral-purpose digital I/O port. [f FSXFUNC =1, FSX s a serial port pin.
t x=0o0r1

8-17

Ser/al Ports

Table 8—4. FSX/DX/CLKX Port Control Register Bits Summary (Continued)

Reset Value Bit Name Function
o] 9 FSX 10 If FSX 1/0 = 0, FSX is configured as a general-purpose input pin.
If FSX 1/0 = 1, FSX is configured as a general-purpose output pin.
0 10 FSXDATOUT Data output on FSX.
xt 11 FSXDATIN Data input on FSX. A write has no effect.
0-0 31 —12| Reserved Read as 0.
T x=0o0r1

8.2.3 FSR/DR/CLKR Port Control Register

This 32-bit port control register is controlled by the function of the serial port
FSR, DR, and CLKR pins. At reset, all bits are set to 0. Table 8-5 defines the
register bits, the bit names, and functions. Figure 8—12 illustrates this port con-
trol register.

Figure 8-12. FSR/DR/CLKR Port Control Register
31 20 29 28 27 26 25 24 23 22 1 20 19 18 17 16
Ixxlxxlxxlxxl |xx|xx|xxlxx xxlxxlxxlxxlxxlxxlxxl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
w | o | oxx | xx | FSR FSR FSR FSR DR DR DR | DR | CLKR | CLKR |CLKR | CLKR
DATIN | DATOUT 110 FUNC | paTIN | patout | o | Func | DaTIN | DATOUT | O | FUNC
R RW RW RW R RW RW RW R RW RW RW
NOTE: xx = reserved bit, read as 0.
R =read, W = write.
Table 8-5. FSR/DR/CLKR Port Control Register Bits Summary
Bit Name Reset Value Function

0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC = 0, CLKRis

configured as a general-purpose digital /O port. If CLKRFUNC = 1,
o CLKR is a serial port pin.

1 CLKRI/O 0 If CLKRV/O = 0, CLKR is configured as a general-purpose input pin.

If CLKRI/O = 1, CLKR is configured as a general-purpose output pin.

2 CLKRDATOUT 0 Data output on CLKR.

3 CLKRDATIN Data input on CLKR. A write has no effect.

4 DRFUNC DRFUNC controls the function of DR. If DRFUNC = 0, DRis configured
as ageneral-purpose digital /O port. If DRFUNC = 1, DR is a serial port
pin.

5 DR.I/O 0 If DRI/O = 0, DR is configured as a general-purpose input pln

If DRI/O = 1, DR s configured as a general-purpose output pin.
6 DRDATOUT 0 Data output on DR.
7 DRDATIN xT Data input on DR. A write has no effect.
FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is confi-
gured as a general-purpose digital I/O port. If FSRFUNC =1, FSRis a
serial port pin.
t x=0ort

8-18

Peripherals

Serial Ports

Table 8-5. FSR/DR/CLKR Port Control Register Bits Summary (Continued)

Bit Name Reset Value Function’
9 FSR1/0 0 If FSR 11O = 0, FSR is configured as a general-purpose input pin.
IfFSR I/0 = 1, FSRis configured as a general-purpose output pin.
10 FSRDATOUT 0 Data output on FSR.
1 FSRDATIN X Data input on FSR. A write has no effect.
31 — 12| Reserved 0-0 Read as 0.

8.2.4 Receive/Transmit Timer Control Register

A 32-bit receive/transmit timer control register contains the control bits for the
timer module. At reset, all bits are set to 0. Table 8-6 lists the register bits, bit
names, andfunctions. Bits5 — Qcontrol the transmitter timer. Bits 11 — 6con-
trol the receiver timer. Figure 8—13 shows the register. The serial port receive/
transmit timer function is similar to timer module operation. It can be consid-
ered as a 16-bit-wide timer. Refer to Section 8.1 for more information on timers.

Figure 8-13. Receive/Transmit Timer Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| XX I XX I —[XX I XX L XX | XX J XX l XX L XX ‘ XX l XX l XX I XX —’ XX] XX |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[[sx | xx [s [mstar |« [mowmre | re@ | AR | meo [x7star | « [xciksre | xc | %A | xeo |

R RW RW R RW RW R RW RW RW
NOTE: xx = reserved bit, read as 0.
R =read, W = write.
Table 8-6. Receive/Transmit Timer Control Register
Bit Name Reset Value Function

0 XGO 0 The XGO bit resets and starts the transmit timer counter. When XGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementing on the next rising edge of the timer input clock. The XGO
bit is cleared on the same rising edge. Writing 0 to XGO has no effect
on the transmit timer.

1 XHLD 0 Transmit counter hold signal. When this bitis set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when XHLD
is setto 1. The timer registers may be read and modified while the timer
is being held. RESET has priority over XHLD.

“2 XC/P 0 XClock/Pulse mode control. When XC/P = 1,theclockmodeis chosen.
‘ The signaling of the status flag and external output has a 50-percent
duty cycle. When XC/P =0, the status flag and external output are active

for one CLKOUT cycle during each timer period.

8-19

Serial Ports

Table 8-6. Receive/Transmit Timer Control Register (Concluded)

Bit

Name

Reset Value

Function

3

XCLKSRC

0

This bit specifies the source of the transmit timer clock. When
XCLKSRC = 1, an internal clock with frequency equal to one-half the
CLKOUT frequency is used to increment the counter. When XCLKSRC
=0, an external signal from the CLKX pin can be used to increment the
counter. The external clock source is SYNChronized internally, thus al-
lowing for external aSYNChronous clock sources that do not exceed
the specified maximum allowable external clock frequency, i.e., less
than f(H1)/2.6.

Reserved

Read as zero.

| XTSTAT

This bit indicates the status of the transmit timer. It tracks what would
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt
on a transition from 0 to 1. A write has no effect.

RGO

The RGO bit resets and starts the receive timer counter. When RGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementing on the nextrising edge of the timer input clock. The RGO
bit is cleared on the same rising edge. Writing 0 to RGO has no effect
on the receive timer.

Receive counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when RHLD
is setto 1. The timer registers may be read and modified while the timer
is being held. RESET has priority over RHLD.

RC/P

RClock/Pulse mode control. When RC/P = 1, the clock mode is chosen.
The signaling of the status flag and external output has a 50-percent
duty cycle. When RC/P = 0, the status flag and external output are ac-
tive for one CLKOUT cycle during each timer period.

RCLKSRC

This bitspecifies the source of the receive timer clock. When RCLKSRC
=1, aninternal clock with frequency equal to one-half the CLKOUT fre-
quengcy is used to increment the counter. When RCLKSRC =0, an ex-
ternal signal from the CLKR pin can be used to increment the counter.
The external clock source is SYNChronized internally, thus allowing for
external aSYNChronous clock sources that do not exceed the specified
maximum allowable external clock frequency, i.e., less than f(H1)/2.6.

10

Reserved

Read as.zero.

11

RTSTAT

This bitindicates the status of the receive timer. It tracks what would be
the output of the uninverted CLKR pin. This flag sets a CPU interrupt
on a transition from 0 to 1. A write has no effect.

31—12

Reserved

0-0

Read as 0.

8-20

Peripherals

Serial Ports

8.2.5 Receive/Transmit Timer Counter Register

The receive/transmit timer counter register is a 32-bit register (see
Figure 8—14). Bits 15 — 0 are the transmit timer counter, andbits31 — 16are
the receive timer counter. Each counter is set to 0 whenever it increments to
the value of the period register (Section 8.2.6). It is also set to 0 at reset.

Figure 8-14. Receive/Transmit Timer Counter Register

31 16
| Receive Counter)
15 0
L Transmit Counter |

NOTE: All bits are read/write.

8.2.6 Receive/Transmit Timer Period Register

The receive/transmit timer period register is a 32-bit register (see
Figure 8-15). Bits 15 — 0 are the timer transmit period, and bits 31 — 16 are
the receive period. Each register is used to specify the period of the timer. It
is also set to 0 at reset.

Figure 8-15. Receive/Transmit Timer Period Register

31 16
l Receive Period |

15 0
I Transmit Period 1

NOTE: All bits are read/write.

8.2.7 Data-Transmit Register

When the data-transmit register (DXR) is loaded, the transmitter loads the
word into the transmit shift register (XSR), and the bits are shifted out. The
delay from awrite to DXR untilan FSX occurs (or can be accepted) is two CLKX
cycles. The word is not loaded into the shift register until the shifter is empty.
When DXR is loaded into XSR, the XRDY bit is set, specifying that the buffer
is available to receive the next word. Four tap points within the transmit shift
register are used to transmit the word. These tap points correspond to the four
data word sizes and are illustrated in Figure 8—16 . The shift is a left-shift (LSB
to MSB) with the data shifted out of the MSB corresponding to the appropriate
tap point.

8-21

Seria/ Ports

Figure 8-16. Transmit Buffer Shift Operation

« Shift Direction «

31 24 23 16 15 7 0
32-bit 24-bit 16-bit 8-bit
word tap word tap word tap word tap

8.2.8 Data-Receive Register

When serial data is input, the receiver shifts the bits into the receive shift regis-
ter (RSR). When the specified number of bits are shifted in, the data-receive
register (DRR) is loaded from RSR, and the RRDY status bitis set. The receiv-
er is double-buffered. If the DRR has not been read and the RSR is full, the re-
ceiverisfrozen. New data cominginto the DR pinis ignored. The receive shifter
will not write over the DRR. The DRR must be read to aliow new data in the
RSR to be transferred to the DRR. When a write to DRR occurs at the same
time that a RSR to DRR transfer takes place, the RSR to DRR transfer has

priority.

Data is shifted to the left (LSB to MSB). Figure 8-17 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it is
assumed that an 8-bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left.
When the data receive register is read, both bytes a and b are read.

Figure 8-17. Receive Buffer Shift Operation
« Shift Direction «

31 24 28 16 15

After Byte a ©X X X

After Byte b X X a

8-22

Peripherals

Serial Ports

8.2.9 Serial-Port Operation Configurations

Several configurations are provided for the operation of the serial port clocks
andtimer. The clocks for each serial port can originate eitherinternally or exter-
nally. Figure 8—18 shows serial port clocking in the /0O mode (FUNC = 0) when
CLKX is either an input or an output. Figure 8—19 shows clocking in the serial-
port mode (FUNC = 1). Both figures use a transmit section for an example. The
same relationship holds for a receive section.

Figure 8~18. Serial-Port Clocking in I/O Mode

Internal | External

TSTAT - Internal

XSR —o

|
!
|
Ly
I

DATOUT —»—
DATIN—4¢——

FUNC = 0. (I/O Mode)
CLKXI/O = 1 (CLKX, an Output)
XCLKSRC = 1 (Internal CLK for Timer)

(@
Internal | External
TSTAT |
“Gioti" |
XSR ¢ CLKX
DATOUT (NC) —o
DATIN —¢——

FUNC = 0 (/O Mode)
CLKXI/O = 0 (CLKX, an Input)
XCLKSRC =1 (Internal CLK for Timer)

(©

Internal , External

TSTAT

Q—I"ﬁmerin |-<—
XSR [<4—e
DATAOUT —p—-
DATIN _"——J)
FUNC = 0 (/O Mode)
CLKXI/O =1 (CLKX, an Output)
{
)

|

|

|

I »
>

I

XCLKSRC = 0 (External CLK for Timer)
(b

Internal | External

TSTAT
e oLkx
XSR |

DATOUT (NC) —o Y
DATIN —e——

FUNC = 0 (I/O Mode)
CLKXI/O = 0 (CLKX, an Input)
XCLKSRC = 0 (External CLK for Timer)

(d)

8-23

Serial Ports

Figure 8-19. Serial-Port Clocking in Serial-Port Mode

Internal| External lnternaﬁ External
TSTAT Internal | TSTAT, Internal |
T LImerf* ek | +—{Tmer}<— 5" |
z\ | |
CLKX
XS < ,-)Dr XoR J< .—G(_’_ “l CLKX
DATOUT (NC) —o INV DATOUT (NC) —o .
DATIN —4¢——— DATIN —<4¢— INV
FUNC =1 (Serial-Port Mode) FUNC = 1 (Serial-Port Mode)
XCLKSRCE= 1 (Output Serial-Port CLK) XCLKSRCE= 0 (Input Serial-Port CLK)
XCLKSRC =0 or1 XCLKSRC = 1 (Internal CLK for Timer)

(@) (b)

Internal | External
|

TSTAT
|

CLKX
J"G(—_, !
XSR 4o

DATOUT (NC) —o INV
DATIN —<—— ‘

FUNC =1 (Serial-Port Mode)
XCLKSRCE= 0 (Input Serial-Port CLK)
XCLKSRC = 0 (External CLK for Timer)

(c)

8.2.10 Serial-Port Timing

8-24

The formula for calculating the frequency of the serial-port clock with an inter-

. nally generated clock is dependent upon the operation mode of the serial-port

timers, defined as
f (pulse mode) = f (timer clock)/period register
f (clock mode) = f (timer clock)/(2 X period register)

An externally generated serial-port clock (CLKX or CLKR) has a maximum fre-
quency of less than f(H1)/2.6. See serial port timing in Chapter 13. Also, see
subsection 8.1.3 for information on timer pulse/clock generation.

Transmit datais clocked outon the rising edge of the selected serial-port clock.
Receive data is latched into the receive shift register on the falling edge of the
serial-port clock. Alt data is transmitted and loaded MSB first and right-justified.
If fewer than 32 bits are transferred, the data are right-justified in the 32-bit
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are
the bits that are transmitted.

Peripherals

Serial Ports

The transmit ready (XRDY) signal specifies that the data-transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon as
the data is loaded into the transmit shift register (XSR). The last word may still
be shifting out when XRDY goes active. If DXR is loaded before the last word
has completed transmission, the data bits transmitted will be consecutive;i.e.,
the LSB of the first word immediately precedes the MSB of the second, with
all signaling valid as in two separate transmits. XRDY goes inactive when DXR
is loaded and remains inactive until the data is loaded into the shifter.

The receive ready (RRDY) signal is active as long as a new word of data is
loaded into the data receive register and has not been read. As soon as the
data is read, the RRDY bit is turned off.

When FSX is specified as an output, the activity of the signal is determined
solely by the internal state of the serial port. If a fixed datarate is specified, FSX
goes active when DXR is loaded into XSR to be transmitted out. One serial-
clock cycle later, FSX turns inactive, and data transmission begins. If a variable
data rate is specified, the FSX pin is activated when the data transmission be-
gins, and remains active during the entire transmission of the word. Again, the
data is transmitted one clock cycle after itis loaded into the data transmit regis-
ter.

Aninput FSXin the fixed data rate mode should go active for at least one serial
clock cycle and then inactive to initiate the data transfer. The transmitter then
sends the number of bits specified by the LEN bits. In the variable data-rate
mode, the transmitter begins sending from the time FSX goes active until the
number of specified bits has been shifted out. In the variable data-rate mode,
when the FSX status changes prior to all the data bits being shifted out, the
transmission completes, and the DX pin is placed in a high-impedance state.
An FSR input is exactly complementary to the FSX.

Whenusing an external FSX, if DXR and XSR are empty, a write to DXR results
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs.
When the external FSX is received, the XSR begins shifting the data. If XSR
is waiting for the external FSX, a write to DXR will change DXR, but a DXR-to-
XSR transfer will not occur. XSR begins shifting when the external FSX is re-
ceived, or when it is reset using XRESET.

Continuous Transmit and Receive Modes

When continuous mode is chosen, consecutive writes do not generate or ex-
pect new sync pulse signaling. Only the first word of a block begins with an ac-
tive synchronization. Thereafter, data continues to be transmitted as long as
new data is loaded into DXR before the last word has been transmitted. As
soon as TXRDY is active and all of the data has been transmitted out of the
shiftregister, the DX pinis placedin a high-impedance state, and a subsequent
write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data-receive buffer is not read before the next word is shifted in,

8-25

Serial Ports

subsequent incoming data will be lost. The RFSM bit can be used to terminate
the receive-continuous mode.

Handshake Mode

The handshake mode (HS = 1) allows for direct connection between proces-
sors. In this mode, all data words are transmitted with a leading 1 (see
Figure 8—20). For example, if an 8-bit word is to be transmitted, the first bit sent
is a 1, followed by the 8-bit data word.

In this mode, once the serial port transmits a word, it will not transmit another
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that
precedes every data word is, in effect, a request bit.

Figure 8-20. Data Word Format in Handshake Mode

Data Word (8 Bits)

leading one

R
. -

After a serial port receives a word (with the leading 1) and that word has been
read from the DRR, the receiving serial port sends a single 0 to the transmitting
serial port. Thus, the single 0 bit acts as an acknowledge bit (see Figure 8-21).
This single acknowledge bit is sent every time the DRRis read, evenifthe DRR
does not contain new data.

Figure 8-21. Single Zero Sent as an Acknowledge

8-26

Dx_@_

single zero

When the serial port is placed in the handshake mode, the insertion and dele-
tion of a leading 1 for transmitted data, the sending of a 0 for acknowledgement

. of received data, and the waiting for this acknowledge bit are all performed au-

tomatically. Using this scheme, it is simple to connect processors with no exter-
nal hardware and to guarantee secure communication. A typical configuration
is shown in Figure 8-22.

Inthe handshake mode, FSXis automaticaily configured as an output. Contin-
uous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.

Peripherals

»Serial Ports

Figure 8-22. Direct Connection Using Handshake Mode

TMS320C3x #1 TMS320C3x #2
CLKX CLKR
FSX FSR
DX DR
CLKR CLKX
FSR FSX
DR DX

8.2.11 Serial-Port Interrupt Sources

-A serial port has four interrupt sources:

1)
2)

3)

4)

The transmit timer interrupt: The rising edge of XTSTAT causes a single-
cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is dis-
abled.

The receive timer interrupt: The rising edge of RTSTAT causes a single-
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is dis-
abled.

The transmitter interrupt: Occurs immediately following a DXR-to-XSR
transfer. The transmitter interrupt is a single-cycle pulse. When the
serial-port global-control register bit XINT is 0, this interrupt pulse is dis-
abled.

The receiver interrupt: Occurs immediately following a RSR to DRR trans-
fer. The receiver interrupt is a single-cycle pulse. When the serial-port glo-
bal-control register bit RINT is 0, this interrupt pulse is disabled.

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create
the CPU transmit interrupt flag XINT. The receive timer interrupt pulse is ORed with the
receiver interrupt pulse to create the CPU receive interrupt flag RINT.

8-27

Serial Ports

8.2.12 Serial-Port Functional Operation

8-28

The following paragraphs and figures illustrate the functional timing of the vari-
ous serial-port modes of operation. The timing descriptions are presented with
the assumption that all signal polarities are configured to be positive, i.e.,
CLKXP = CLKRP = DXP = DRP = FSXP = FSRP = 0. Logical timing, in situa-
tions where one or more of these polarities are inverted, is the same except
with respect to the opposite polarity reference points, i.e. rising vs. falling
edges, etc. :

These discussidns pertain to the numerous operating modes and configura-
tions of the serial-port logic. When it is necessary to switch operating modes
or change configurations of the serial port, do this only when XRESET or
RRESET are asserted (low), as appropriate. Therefore, when transmit config-
urations are modified, XRESET should be low, and when receive configura-
tions are modified, RRESET should be low. When you use handshake mode,
however, since the transmitter and receiver are interrelated, you should make
any configuration changes with XRESET and RRESET both low.

All of the serial-port operating configurations can be broadly classified in two
categories: fixed data-rate timing and variable data-rate timing. The following
paragraphs discuss fixed and variable data-rate operation and all of their varia-
tions.

Fixed Data-Rate Timing Operation

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode operation, transfers of single words are sepa-
rated by periods of inactivity on the serial port. In continuous mode, there are
no gaps between successive word transfers; the first bit of a new word is trans-
ferred onthe next CLKX/R pulse following the last bit of the previous word. This
occurs continuously until the process is terminated.)

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 8-23), transmissionis initiated by loading DXR. In this mode, there
is a delay of approximately 2.5 CLKX cycles (depending on CLKX and H1 fre-
quencies) from the time DXR is loaded until FSX occurs. With an external FSX,
the FSX pulse initiates the transfer, and the 2.5-cycle delay effectively be-
comes a setup requirement for loading DXR with respect to FSX. Therefore,
in this case, DXR must be loaded no later than 3 CLKX cycles before FSX oc-
curs. Once the XSR is loaded from the DXR, an XINT is generated.

Peripherals

» Serial Ports

Figure 8-23. Fixed Burst Mode

TS e T e T e I Y Y N e Y e N e N
FSR/FSX (External) M R Tl
FSX (Internal) I I
5 —_ Al)(j X_AN)—
DXR Loaded XINT RINT

In receive operations, once a transfer is initiated, FSR is ignored until the last
bit. For burst mode transfers, FSR must be low during the last bit, or another
transfer will be initiated. After a full word has been received and transferred to
the DRR, an RINT is generated.

In fixed data rate mode, continuous transfers may be performed even if
R/XFSM = 0, as long as properly timed frame synchronization is provided, or
if DXR is reloaded each cycle with an internally generated FSX (see
Figure 8-24).

Figure 8-24. Fixed Continuous Mode With Frame Sync

ouor LML LML rrerer

FSX (Internal)

FSR/FSX (External)

DXR Loaded XINT

DXR Loaded Load DXR Load DXR
Read DRR Read DRR

Forreceive operations and with externally generated FSX, once transfers have
begun, frame sync pulses are required only during the last bit transferred to
initiate another contiguous transfer. Otherwise, frame sync inputs are ignored.
Therefore, continuous transfers will occur if frame sync is held high. With an
internally generated FSX, there is a delay of approximately 2.5 CLKX cycles
from the time DXR is loaded until FSX occurs. This delay occurs each time
DXR is loaded; therefore, during continuous transmission, the instruction that

8-29

Serial Ports

loads DXR must be executed by the N-3 bit for an N-bit transmission. Since
delays due to pipelining may vary, a conservative margin of safety should be
incorporated in aliowing for this delay.

Once the process begins, an XINT and an RINT are generated at the beginning
of each transfer. The XINT indicates that the XSR has been loaded from DXR
and can be used to cause DXR to be reloaded. To maintain continuous trans-
mission in this mode, especially with an internally generated FSX, DXR must
be reloaded early in the ongoing transfer.

The RINT indicates that a full word has béen received and transferred into the
DRR. RINT is therefore commonly used to indicate an appropriate time to read
DRR.

Continuous transfers are terminated by discontinuing frame sync pulses or,
in the case of internally generated FSX, not reloading DXR.

Continuous serial-port transfers can be accomplished without the use of frame
sync pulses if R/ XFSM are set to one. In this mode, operation of the serial port
is similar to continuous operation with frame sync except that a frame sync
pulse is involved only in the first word transferred, and no further frame sync
pulses are used. Following the first word transferred (see Figure 8-25), no in-
ternal frame sync pulses are generated, and frame sync inputs are ignored.
Additionally, R’XFSM should be set prior to or during the first word transferred
and must be set no later than the transfer of the N-1 bit of the first word, except
for transmit operations. For transmit operations in the fixed data-rate mode,
XFSM must be set no later than the N-2 bit. Clearing RZ’XFSM must be per-
formed no later than the N—1 bit to be recognized in the current cycle.

Figure 8-25. Fixed Continuous Mode Without Frame Sync

owoon — LI LI LML LML rmrerir

FSR/FSX (External)

8-30

FSX (Internal)

D T D T T YAy Ty
B G B KRR

>

__________ :XANXB1X:;:‘[X BN X ST X

IRE !

DXR Loaded

XINT Set XINT XINT
R/XFSM RINT RINT
DXR Loaded Load DXR Load DXR
Read DRR Read DRR

Timing of RINT and XINT and data transfers to and from DXR and DRR, re-
spectively, are the same as in fixed data-rate continuous mode with frame

Peripherals

Serial Ports

sync. This mode of operation also exhibits the same delay of 2.5 CLKX cycles
after DXR is loaded before aninternal FSX is generated. As inthe case of con-
tinuous operation in fixed data-rate mode with frame sync, DXR must be re-
loaded no later than transmission of the N-3 bit.

When you use continuous operation in fixed data-rate mode, R/’XFSM may be
set and cleared as desired, even during active transfers, to enable or disable
the use of frame sync pulses as dictated by system requirements. Under most
conditions, the effect of changing the state of R/XFSM occurs during the trans-
fer in which the R/’XFSM change was made, provided the change was made
early enough in the transfer. For transmit operations with internal FSX in fixed
data-rate mode, however, a one-word delay occurs before frame sync pulse
generation resumes when clearing XFSM to zero (see Figure 8-26). There-
fore, one additional word is transferred in this case before the next FSX pulse
is generated. Also note that, as discussed previously, clearing XFSM will be
recognized during the transmission of the current word being transmitted as
long as XFSM s cleared no later than the N—1 bit. Setting XFSM is recognized
as long as XFSM is set no later than the N-2 bit.

 Figure 8-26. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal

CLKX

FSX
(Internal)

wmrm_rmmuwmmm
J——l | : LT 1 [[
-------- X EXE XD DEXE D EHEX Y

Variable Data-Rate Timing Operation

Variable data-rate timing also supports operation in either burst or continuous
mode. Burst mode operation with variable data-rate timing is similar to burst
mode operation with fixed data rate timing. With variable data-rate timing (see
Figure 8-27), however, FSX/R and data timing differ slightly at the beginning
and end of transfers. Specifically, there are three major differences between
fixed and variable data-rate timing:

1) FSX/R pulses typically last for the entire transfer interval, although FSR
and external FSX are ignored after the first bit transferred. FSX/R pulses
in fixed data-rate mode typically last only one CLKX/R cycle but can last
longer.

8-31

Serial Ports

2) Datatransferbegins duringthe CLKX/R cycle in which FSX/R occurs, rath-
er than the CLKX/R cycle following FSX/R, as is the case with fixed data-
rate timing.

3) With variable data-rate timing, frame sync inputs are ignored until the end
of the last bit transferred, rather than the beginning of the last bit trans-
ferred as is the case with fixed data-rate timing.

Figure 8—27. Variable Burst Mode

FSR/FSX (External) | W

FSX (Internal) |) "‘ |

XX
| T T

DXR Loaded XINT RINT

A AN]

When you transmit continuously in variable data-rate mode with frame sync,
timing is the same as for fixed data-rate mode, except for the differences be-
tweenthese two modes as described under burst mode operation with variable
data-rate timing. The only other exception to this is that DXR must be reloaded
no later than the N=4 bit to maintain continuous operation of the variable data-
rate mode (see Figure 8-28); no later than the N-3 bit for fixed data-rate
mode.

Figure 8-28. Variable Continuous Mode With Frame Sync

CLKX/R www

FSR/FSX (External) ORISR

N

3o
23

FSX (Internal) | i Y
DX/DR ————— e — —(E T XA X B X X BN X e X ez X
DXR Loaded XINT XINT XINT
RINT RINT
Load
DXR Load DXR Load DXR
Read DRR Read DRR

8-32 Peripherals

»,Serial Ports

Continuous operation in variable data rate mode without frame sync is also
similar to continuous operation without frame sync in fixed data-rate mode. As
with variable data-rate mode continuous operation with frame sync (see
Figure 8—29), DXR must be reloaded no later than the N—4 bit to maintain con-
tinuous operation. Additionally, when R/XFSM is set or cleared in the variable
data-rate mode, the modification must be made no later than the N-1 bit for
the result to be affected in the current transfer.

Figure 8-29. Variable Continuous Mode Without Frame Sync

e S e e e Y e Y Y Y Y Y o I e N
FSR/FSX (External) |—m

FSX (Internal) [o |

o

QOOOOOOOCAX GO XX XXX OGO DO XY OGOOGOCOOOOOG X OOCOOOOOCOON XXX XXX XX
O B AR KKK

Set XINT XINT

DXR Loaded R/XFSM RINT RINT
Load DXR Load DXR
DXR Loaded Read DRR Read DRR

8.2.13 TMS320C3x Serial Port Interface Examples

8.2.13.1 Handshake Mode Example

When handshake mode is used, both the transmit (FSX/DS/CLKX) and re-
ceive (FSR/DR/CLKR) signals are used to transmit and receive data, respec-
tively. In other words, even if the TMS320C3x serial port is receiving data only
with handshake mode, the transmit signals are still needed to transmit the ac-
knowledge signal. The serial port registers, setup for the TMS320C3x serial
port handshake communication, as shown in Figure 8—-22 are shown below:

Global control 011x0x0xxxx00000000xx01100100

o

Transmit port control 0111h :
Receive port control = 0111h
S_port timer control = '0Fh
S_port timer count = Oh
>

S_port timer period 01h (if two G3xs have the same
system clock)

Note: x =user configurable.

Since the FSX is set as an output and continuous mode is disabled when hand-
shake mode is selected, the SFSM and RFSM bits should be set to 0 and the

8-33

Serial Ports

8-34

Setup 1:

Global control
Transmit port control
Receive port control
S_port timer control
S_port timer count
S_port timer period

Setup 2:

Global control
Transmit port control
Receive port control
S_port timer control
S_port timer count
S_port timer period

FSXOUT bit should be set to 1 in the global control register. The XRESET,
RRESET, and HS bits should also be set to 1 in order to start the handshake.
communication. It is recommended that the polarity of the serial port pins be
set to active high for simplification. Although the CLKX/CLKR can be set as ei-
therinputor output, itis recommended to set the CLKX as output and the CLKR
as input. The rest of the bits are user configurable as long as both serlal ports
have the consistent setup.

The serial port timer is needed only if the CLKX or CLKR is configured as an
output. In the above case, since only the CLKX is configured as an output, the
timer control register should be set to OFh. When the serial port timer is used,
the serial timer period register must also be set to the proper value for the clock
speed. The serial porttimer clock speed setupis similar to the TMS320C3x tim-
er. Refer to Section 8.1 for detailed information on timer clock generation.

The maximum clock frequency for serial transfers is F(CLKIN)/4 if the internal
clock is used and F(CLKIN)/5.2 if an external clock is used. Therefore, if two
TMS320C3xs have the same system clock, as inthe the case above., the timer
period register should be set to be equal to or greater than 1 which make the
clock frequency equal to F(CLKIN)/8. ' '

Examples of serial port register setups for the above case are shown below.
(Assume two TMS320C3xs have the same system clock.)

0EBCO0064h ; 32 bits, fixed data rate, burst mode,

= 0111h ; FSX (output), CLKX (output) = F(CLKIN)/8
= 0111h ; CLKR (input), handshake mode, transmit
= OFh ; and receive interrupt is enabled.

= Oh

> 01h

= 0C000364h ; 8 bits, variable data rete, burst mode,

= 0111h ; FSX (output), CLKX (output) = f(CLKIN)/24
= 0111h ; CLKR (input), handshake mode, transmit
= OFh ; ; and receive interrupt is disabled.

= Oh

2 01h

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand-
shake mode, the TMS320C3x serial port can distinguish the signals between
the data and the acknowledge signal. Therefore, evenifthe TMS320C3x serial
portreceives the data before the acknowledge signal, the data will not be misin-
terpreted as the acknowledge signal and be lost. In addition, the acknowledge
signal is not generated until the data is read from the data receive register,
DRR. Therefore, the TMS320C3x will not transmit the data and the acknowl-
edge signal simultaneously.

Peripherals

Serial Ports

8.2.13.2 Serial AlC Interface Example

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a
zero glue-logic interface to the TMS320C3x family of DSPs. The interface is
shown in Figure 8-30. This interface is used as an example of the TMS320C3x
serial port conflguratlon and operation.

Figure 8-30. TMS320C3x Zero Glue-Logic Interface to TLC3204x Example

TMS320C3x TMS320C4x
XFO RESET WORD —— VCC
CLKRO SCLK
CLKX0 OUT+ [Analog
FSRO FSR ouT- Out
DRO DR
FSXo0 FSX IN+ & Analog
DXo0 DX IN- In
TCLKO MCLK —§‘7

GND

The TMS320C3x resets the AIC through the external pin XFO. It also generates
the master clock for the AIC through the timer 0 output pin, TCLKO. (Precise
selection of a sample rate may require the use of an external oscitlator rather
than the TCLKO output to drive the AIC MCLK input.) Inturn, the AIC generates
the CLKRO and CLKXO0 shift clocks as well as the FSR0 and FSXO frame syn-
chronization signals.

A typical use of the AIC requires an 8 kHz sample rate of the analog signal. If
the clock input frequency to the TMS320C3x device is 30 MHz, the following
values should be loaded into the serial port and timer registers.

Serial Port: :
Port global control register: 0E970300h
FSX/DX/CLKX port control register 00000111h
FSR/DR/CLKR port control register 00000111h
Timer:

Timer global control reglster 000002C1h
Timer period register 00000001h

8.2.13.3 Serial A/D and D/A Interface Example

The DSP201/2 and DSP101/2 family of D/As and A/Ds from Burr Brown also
offer a zero glue-logic interface to the TMS320C3x family of DSPs. The inter-
face is shown in Figure 8-31. This interface is used as an example of the
TMS320C3x serial port configuration and operation.

8-35

Serial Ports

Figure 8-31. TMS320C3x Zero Glue-Logic Interface to Burr Brown A/D and D/A Example

22 pF T

v

8-36

0

T

Burr Brown DSP102 A/D Burr Brown DSP202 D/A
CASC +5V +5V — CASC
TMS320C3x l
XCLK CLKRO CLKXo0 XCLK
SOUTA {——»DRO DX0 SINA
+2.75V —p VINA VOUTA}—» £3V
SYNC SINB
+2.75V VINB FSRO
+2. —» FSX0 SYNCVOUTB -——b» ':t3 \Y
0SCo SSF f— 45V .
I pes +5V — SSF
+5V— SWL
1 MOhm CONV TCLKO CONV
12.29 MHz l

22 pF

The DSP102 A/D is interfaced to the TMS320C3x serial port receive side; the
DSP202 D/A is interfaced to the transmit side. The A/Ds and D/As are hard
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a
convert command to the A/D, via the TCLKO pin, both analog inputs are con-
verted into two 16-bit words which are concatenated to form one 32-bit word.
The A/D signals the TMS320C3x, viathe A/D's SYNC signal (connected to the
TMS320C3x FSRO pin), that serial data is to be transmitted. The 32-bit word
is then serially transmitted, MSB first, out the SOUTA serial pin of the DSP102
to the DRO pin of the TMS320C3x serial port. The TMS320C3x is programmed
to drive the analog interface bit clock from CLKXO0 pin of the TMS320C3x. The
bit clock drives both the A/D’s and D/A's XCLK input. The TMS320C3x transmit
clock also acts as the input clock on the receive side of the TMS320C3x serial
port. Since the receive clock is synchronous to the internal clock of the
TMS320C3x, the receive clock can run at full speed (that is, f(H1)/2).

Similarly, upon receiving a convert command, the pipelined D/A converts the
last word received from the TMS320C3x and signals the TMS320C3x, via the
SYNC signal (connected to the TMS320C3x FSXO0 pin), to begin transmitting
a 32-bit word representing the two channels of data to be converted. The data, .
transmitted from the TMS320C3x DXO pin is input to both the SINA and SINB
inputs of the D/A as shown in the figure.

Peripherals

Serial Ports

The TMS320C3x is set up to transfer bits atthe maximum rate of about 8 Mbps
with a dual channel sample rate of about 44.1 kHz. This standard mode, fixed
data rate signaling interface is configured by setting the following registers as
described below:

Serial Port:

Port global control register: OEBC0040h
FSX/DX/CLKX port control register 00000111h
FSR/DR/CLKR port control register 00000111h
Receive/transmit timer control register 0000000Fh
Timer: :
Timer global control register 000002C1h
Timer period register 0000005Ah

8.2.14 Serial Port lnitialization/Réconfiguration

The serial ports are controlled through memory-mapped registers located on
the dedicated peripheral bus. A general procedure for initializing and/or recon-
figuring the serial ports follows:

n

3)

Halt the serial port by clearing the XRESET and/or RRESET bits of the ser-
ial-port global-control register. This can be accomplished by writing a 0 to
the serial-port global-control register. Note that the serial ports are halted
on RESET.

Configure the serial port via the serial-port global-control register (with
XRESET = RRESET =0), FSX/DX/CLKX and FSR/DR/CLKR port control
registers, as well as the receive/transmit timer control register (with XHLD
= RHLD =0, receive/transmit timer counter register and the receive/irans-
mit timer period register, if necessary. Refer to subsection 8.2.13,
“TMS320C3x Serial Port Interface Examples.”

Start the serial port by setting the XRESET and RRESET bits of the serial-
port global-control register and the XHLD and RHLD bits of the serial port
receive/transmit timer control register, if necessary.

8-37

DMA Controller

8.3 DMA Controller

8-38

The TMS320C3x has an on-chip Direct Memory Access (DMA) controller that
reduces the need for the CPU to perform input/output functions. The DMA con-
troller can perform input/output operations without interfering with the opera-
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow
external memories and peripherals (A/Ds, serial ports, etc.) without reducing
the computational throughput of the CPU. The resultis improved system per-
formance and decreased system cost.

A DMA transfer consists of two operations: a read from a memory location and
a write to a memory location. The DMA controller can read from and write to
any location in the TMS320C3x memory map. This includes all
memory-mapped peripherals. The operation of the DMA is controlled with the
following set of memory-mapped registers:

& DMA global-contro! register

(3 DMA source address register

(3 DMA destination address register
L3 DMA transfer counter register

These registers, their memory-mapped addresses, and their functions are
shown in Figure 8-32. Each of these DMA registers is discussed in the
succeeding subsections.

Peripherals

DMA Controller

Figure 8-32. Memory-Mapped Locations for a DMA Channel

Register Peripheral
Address
DMA Global Control (See Table 8-7) 808000h
Reserved 808001h
Reserved 808002h
Reserved 808003h
DMA Source Address (subsection 8.3.2) 808004h
Reserved 808005h
DMA Destination Address (subsection 8.3.2) 808006h
Reserved 808007h
DMA Transfer Counter (subsection 8.3.3) 808008h
Reserved 80800%h
Reserved : 80800Ah
Reserved 80800Bh
Reserved 80800Ch
Reserved 80800Dh
Reserved 80800Eh
Reserved 80800Fh

8.3.1 DMA Global-Control Register

The global-control register controls the state in which the DMA controller oper-
ates. This register also indicates the status of the DMA, which changes every
cycle. Source and destination addresses can be incremented, decremented,
or SYNChronized using specified global-control register bits. At system reset,
all bits in the DMA control register are set to 0. Table 8-7 lists the register bits,
names, and functions. Figure 8-33 shows the bit configuration of the global-
control register. , :

8-39

DMA Controller

Figure 8-33. DMA Global-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
’Xxl xxlxxl xx| XX | XX I XX | XX | XX | XX | XX | XX | XX [XX | XX | xxJ
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| xx| xx| XX | XX | TClNTI 'rc| SYNC | DECDST' INCDST | DECSRC| INCSRC | STAT | START |

RW RW RW RW RW RIW RIW R/W R R RW RW

NOTE: xx = Reserved bit, read as 0.
R =read, W = write.

Table 8-7. DMA Global-Control Register Bits

Bit Name Reset Value Function
0—1 | START 0-0 These bits control the state in which the DMA starts and stops. The
DMA may be stopped without any loss of data (see Table 8-8).
2—3 | STAT 0-0 These bits indicate the status of the DMA and change every cycle
(see Table 8-9).
INCSRC 0 If INCSRC = 1, the source address is incremented after every read.

5 DECSRC 0 If DECSRC = 1, the source address is decremented after every
read. If INCSRC = DECSRC, the source address is not modified af-
ter aread.

6 INCDST 0 If INCDST = 1, the destination address is incremented after every

‘ : write.

7 DECDST 0 If DECDST = 1, the destination address is decremented after every
write. If INCDST = DECDST, the destination address is not modified
after a write.

9—8 | SYNC 0-0 The SYNC bits determine the timing synchronization between the
‘events initiating the source and the destination transfers. The inter-
' pretation of the SYNC bits is shown in Table 8-10.

10 TC 0 The TC bit affects the operation of the transfer counter. If TC = 0,
transfers are not terminated when the transfer counter becomes
zero. If TC = 1, transfers are terminated when the transfer counter
becomes zero.

11 TCINT 0 If TCINT = 1, the DMA interrupt is set when the transfer counter
makes atransition to zero. If TCINT = 0, the DMA interruptis not set
when the transfer counter makes a transition to zero.

31—12 | Reserved 0-0 Read as zero.

8-40 Peripherals

DMA Controller

Table 8-8. START Bits and Operation of the DMA (Bits 0-1)

START

Function

00

DMA read or write cycles in progress will be completed; any data read will be ig-
nored. Any pending read or write will be cancelled. The DMA is reset so that when
it starts, a new transaction begins; i.e., a read is performed. (Reset value)

01

If a read or write has begun, it is completed before it stops: for example, in the
middle or at the end of a DMA transfer. If aread or write has not begun, no read
or write is started. .

10

If a DMA transfer has begun, the entire transfer is completed (including both read
and write operations) before stopping. If a transfer has not begun, none is started.

11

DMA starts from reset or restarts from the previous state.

Table 8-9. STAT Bits and Status of the DMA (Bits 2-3)

STAT

Function

00

DMA is being held between DMA transfer (between a write and read). This is the
value at reset. (Reset value)

01

DMAisbeing heldin the middie of a DMA transfer, i.e.,between aread and a write.

10

Reserved.

11

DMA busy; i.e., DMA is performing a read or write.

Table 8-10. SYNC Bits and Synchronization of the DMA (Bits 8-9)

SYNC

Function

00

No synchronization. Enabled interrupts are ignored. (Reset value)

01

Source synchronization. A read is performed when an enabled interrupt occurs.

10

Destination synchronization. A write is performed when an enabled interrupt oc-
curs.

11

Source and destination synchronization. A read is performed when an enabled in-
terrupt occurs. A write is then performed when the next enabled interrupt occurs.

8-41

DMA Controller

8.3.2 Destination and Source Address Registers

The DMA destination and source address registers are 24-bit registers whose
contents specify destination and source addresses. As specified by control bits
DECSRC, INCSRC, DECDST, and INCDST of the DMA global control register,
these registers are incremented and decremented at the end of the corre-
sponding memory access, thatis, the source register for aread, the destination
register for a write. On system reset, 0 is written to these registers.

8.3.3 Transfer Counter Register

The transfer counter register is a 24-bit register, controlled by a 24-bit counter
that counts down. The counter decrements at the beginning of a DMA memory
write. In this way, it can be used to control the size of ablock of data transferred.
The transfer counter register is set to 0 at system reset. When TCINT bit of
DMA global control register is set, the transfer counter register will cause a
DMA interrupt flag to be set upon count down to zero.

8.3.4 CPU/DMA Interrupt Enable Register

The CPU/DMA interrupt enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt enable bits are in locations 10 — 1. The
DMA interrupt enable bits are inlocations 26 — 16. A1 ina CPU/DMA interrupt
enable register bit enables the corresponding interrupt. A 0 disables the corre-
sponding interrupt. At reset, 0 is written to this register.

Table 8—11 lists the bits, names, and functions of the CPU/DMA interrupt en-
able register. Figure 8-34 shows the IE register. The priority and decoding
schemes of CPU and DMA interrupts are identical. Note that when the DMA
receives an interrupt, this interrupt is acted upon according to the SYNC field
of the DMA control register. Also note that an interrupt may affect the DMA but
not the CPU and may affect the CPU but not the DMA. Refer to Chapter 6 and
to subsection 3.1.8.

8-42 ' Peripherals

DMA Controller

Figure 8-34. CPU/DMA Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
w | | s] e | EDINT ETINT1 ETINTO ERINT1 | EXINT1 ERINTO EXINTO EINT3 EINT2 EINT1 EINTO
(DMA) (DMA) (DMA) (DMA) (DMA) (DMA) -(DMA) (DMA) (DMA) (DMA) (DMA)
RW RW RW RW RW RW RW RW RW RW RW

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
w | oxx | xx | xx | xx EDINT ETINT1 ETINTO ERINT1 | EXINT1 ERINTO EXINTO EINT3 EINT2 EINT1 EINTO
(CPU) (CPU) (CPU) (CPU}) (CPU) (CPU) (CPU) (CPU) (CPU) | (CPUL) (CPU)
" RW RW RW RW RW RW RW RW RW RW RW

NOTE: xx = Reserved bit, read as 0.
R =read, W = write.

Table 8-11. CPU/DMA Interrupt Enable Register Bits

Bit Name Function
0 EINTO Enable external interrupt 0 (CPU)
1 EINT1 Enable external interrupt 1 (CPU)
2 EINT2 Enable external interrupt 2 (CPU)
3 EINT3 Enable external interrupt 3 (CPU)
' 4 EXINTO Enable serial-port 0 transmit interrupt (CPU)
5 ERINTO Enable serial-port 0 receive interrupt (CPU)
6 EXINT1 Enable serial-port 1 transmit interrupt (CPU)
7 ERINTA1 Enable serial-port 1 receive interrupt (CPU)
8 ETINTO Enable timer 0 interrupt (CPU)
9 ETINT1 Enable timer 1 interrupt (CPU)
10 EDINT Enable DMA controller interrupt (CPU)
15—M Reserved Read as 0
16 EINTO Enable external interrupt 0 (DMA)
17 EINT1 Enable external interrupt 1 (DMA)
18 EINT2 Enable external interrupt 2 (DMA)
19 EINT3 Enable external interrupt 3 (DMA)
20 EXINTO Enable serial-port 0 transmit interrupt (DMA)
21 ERINTO Enable serial-port 0 receive interrupt (DMA)
22 EXINT1 Enable serial-port 1 transmit interrupt (DMA)
23 ERINT1 Enable serial-port 1 receive interrupt (DMA)
24 ETINTO Enable timer 0 interrupt (DMA)
- 25 ETINT1 Enable timer 1 interrupt (DMA)
26 EDINT Enable DMA controller interrupt (DMA)
31—27 Reserved Read as 0

8-43

DMA Controller

8.3.5 DMA Memory Transfer Operation

8-44

Each DMA memory transfer consists of two parts:

1) Read data from the address specified by the DMA source register.
2) Write datathat hasbeenreadtothe address specified by the DMA destina-
tion register.

A transfer is complete only when the read and write are complete. A transfer
may be stopped by setting the START bits to the desired value. When the DMA
is restarted (START = 1 1), it completes any pending transfer.

At the end of a DMA read, the source address is modified as specified by the
SRCINC and SRCDEC bits of the DMA global control register. At the end of
a DMA write, the destination address is modified as specified by the DSTINC
and DSTDEC bits of the DMA global control register. At the end of every DMA
write, the DMA transfer counter is decremented.

DMA on-chip reads and writes (reads and writes from on-chip memory and pe-
ripherals) are single cycle. DMA off-chip reads are two cycles. The first cycle
is the external read, and the second cycle loads the DMA register. The external
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical
to CPU off-chip writes. If the DMA has been started and is transferring data
over either external bus, the bus control register associated with that bus
should not be modified. If the bus control register (see Chapter 7) needs to be
modified, the DMA should be stopped, modification made, and then the DMA
restarted. Failure to do so may produce an unexpected zero-wait-state bus ac-
cess.

Through the 24-bit source and destination registers, the DMA is capable of ac-
cessing any memory-mapped location in the TMS320C3x memory map.
Figure 8-35 through 8-34 show the number of cycles a DMA transfer requires,
depending upon whether the source and destination are on-chip memory and
peripherals, the external port, or the I/O port. Trepresents the number of trans-
fers to be performed, C, represents the number of wait-states for the source
read, and C,, represents the number of wait-states for the destination write.
Each entry in the table represents the total cycles required to do the T trans-
fers, assuming that there are no pipeline conflicts.

Accompanying each table is a figure illustrating the timing of the DMA transfer.
|R| and [W]| represent single-cycle reads and writes, respectively. |R.R| and
|W.W| represent multicycle reads and writes. |Cr| and [Cw| show the number
of wait cycles for a read and write.

Peripherals

DMA Controller

Figure 8-35. Timing and Number of Cycles for DMA Transfers When Destination Is On-Chip

Cycles (H1)

1]2]3]a]s]6]7]8]0]10|n

Source On-Chip Rl IR] [R]|

Destination On-Chip

wl |w| [w]

|12 | 13| 14|15|16|17|18|19

Source Primary Bus R.R.R:l1| |R.R.-R:1] |R.R.R:l]

| C | = ¢« | C | : 2 | C | :
Destination On-Chip R !W| |W| R lWI
Source Expansion Bus R.-R-R: 1| |R.R.R:I| |R.R.R:I]|

| G | - | Cr | | Cr |
Destination On Chip :oro W wl ¢ |w]

Source Destination On-Chip
On-Chip (1+1)T
Primary Bus (2+Cr+1)T
Expansion Bus @+Cr+1)T

Legend:

T = Number of transfers

Cr = Source-read wait states
Cw = Destination-write wait states
IR} = Single-cycle reads

|W| = Single-cycle writes

[R.Rl = Multicycle reads

[W.W| = Multicycle writes

[y

Internal register cycle

8-45

DMA Controller

Figure 8-36. DMA Timing When Destination Is a Primary Bus

Cycles (H1) 1 |2 |3 |4 |5|6 |7 ‘8 I 9 |10|11|12|13|14J15|16l17|18|19
Source On-Chip R| IR] [R] : & ¢+ ¢ & & @ 2
lw.w.wwlwww.www.ww|
Destination Primary Bus | Cw | | Cw | | Cw |
Source Primary Bus R.R.R:I]| .R -R.R : I}
| C | I IS B
lw.w.w.w| s lwwoww|
Destination Primary Bus S | cw | | cw |
Source Expansion Bus R-R.R:I| |R.R.R:1I|] |R.R.R:I]
| G | | C | | C |
: lwww.w| |www.w| [wwww]
Destination Primary Bus |cw | | Cw | | Cw |

Expansion Bus

Source Destination Primary Bus
On-Chip 1+(2+Cy) T
Primary Bus (2+Cr+2+CW)T
(2+Cr+2+Cy)

+(2+Cy+max(0, Cr— Cy+1))(T-1)

Legend:

T = Number of transfers

Cr = Source-read wait states
Cw = Destination-write wait states
IR| = Single-cycle reads

W] = Single-cycle writes

IR.R] = Multicycle reads

|W.W| = Multicycle writes

I

= Internal register cycle

8-46

Peripherals

DMA Controller

Figure 8~-37. DMA Timing When Destination Is an Expansion Bus

Cycles (H1)

1 l2 |3 |4 |5 | 6 |7 |8 I 9 |10I11|12|13l14|15|16|17|18|19

Source On-Chip R

| IR [R |

lw.Wwwwlwwwwlww.w.w|

. Destination Expansion Bus

Destination Expansion Bus | cw | | Cw | | cw |
Source Primary Bus R-R.R|I|] |R-R.R: 1| |[R-R.R:I|
| S | : : r : : | G :

wwwwl| jlwwwwl| |wwwwl
| cw | | Cw | | Cw |

Source Expansion Bus R

|R.R.R: 1]
s | G |

lw.w.w.wi lw.w.w.w]

Destination Expansion Bus | Cw | | Cw |
Source Destination Expansion Bus
On-Chip 1+(2+Cy) T
Primary Bus (2+C+2+Cy)
+(2+Cy+max(0,C—Cy+1))(T-1)
Expansion Bus (2+C+2+C\) T

Legend:
Cr

IR
Wi
IR.R|
W.W|
[

1

Number of transfers
Source-read wait states
Destination-write wait states
Single-cycle reads
Single-cycle writes
Multicycle reads

Multicycle writes

Internal register cycle

8-47

DMA Controller

Table 8-12 shows the maximum DMA transfer rates, assuming that there are
no wait states (Cy = Gy = 0). Table 8—13 shows the maximum DMA transfer
rates, assuming there is one wait state for the read (C; = 1) and no wait states
for the write (C,, = 0). Table 8—14 shows the maximum DMA transfer rates,
assuming there is one wait state for the read (C, = 1) and one wait state for the

write (Cy, = 1).

In each table, the time for the complete transfer (the read and the write) is con-
sidered. Since one bus access is required for the read and another forthe write,
internal bus transfer rates will be twice the DMA transfer rate. It is also as-
sumed that no confiicts with the CPU exist.

Table 8-12. Maximum DMA ﬁansfer Rates When G, = Gy, =0

Destination
Source
Internal Primary Expansion
Internal 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec
Primary 22.2 Mbytes/sec 16.7 Mbytes/sec 22.2 Mbytes/sec
Expansion 22.2 Mbytes/sec 22.2 Mbytes/sec 16.7 Mbytes/sec
Table 8-13. Maximum DMA Transfer Rates When G, = 1, Gy = 0
Destination
Source)
Internal Primary Expansion
Internal 33.3 Mbytes/sec 33.3 Mbytes/sec 33.3 Mbytes/sec
Primary 16.7 Mbytes/sec 13.3 Mbytes/sec 16.7 Mbytes/sec
Expansion 16.7 Mbytes/sec 16.7 Mbytes/sec 13.3 Mbytes/sec
Table 8-14. Maximum DMA Transfer Rates When G, =1, Gy = 1
Destination
Source
Internal Primary Expansion
Internal 33.3 Mbytes/sec 22.2 Mbytes/sec 22.2 Mbytes/sec
Primary 16.7 Mbytes/sec 11.1 Mbytes/sec 16.7 Mbytes/sec
Expansion 16.7 Mbytes/sec 16.7 Mbytes/sec 11.1 Mbytes/sec

8-48

Peripherals

DMA Controller

8.3.6 Synchronization of DMA Channels

A DMA channel may be synchronized through the use of interrupts. Refer to
Table 8-10 for the relationship between the SYNC bits of the DMA global con-
trol register and the synchronization performed. This section describes the fol-
lowing four synchronization mechanisms:

& No synchronization (SYNC = 00)

[d Source synchronization (SYNC = 0 1)

L4 Destination synchronization (SYNC =1 0)

(A Source and destination synchronization (SYNC =1 1)
No Synchronization

When SYNC =00, no synchronization is performed. The DMA performs reads
and writes whenever there are no conflicts. All interrupts are ignored and,
therefore, are considered to be globally disabled. However, no bits in the DMA
interrupt enable register are changed. Figure 8-38 shows the synchronization
mechanism when SYNC =0 0.

Figure 8-38. No DMA Synchronization

IDisabIe DMA Interrupts Globally l

| DMA Channel Performs a Read I

]

| DMA Channel Performs a Write |

Source Synchronization

When SYNC =0 1, the DMA is synchronized to the source (see Figure 8-39).
A read will not be performed until an interrupt is received by the DMA. Then,
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt
enable register are changed.

8-49

DMA Controller

Figure 8-39. DMA Source Synchronization

|\dle Until Enabled Interrupt Is Received |

| Disable DMA Interrupts Globally |

| DMA Channel Performs a Read |

| DMA Channel Performs a Write }

| Enable DMA Interrupts Globally |

Destination Synchronization

When SYNC =1 0, the DMA is synchronized to the destination. First, all inter-
rupts are ignored until the read is complete. Though the DMA interrupts are be
considered to be globally disabled, no bits in the DMA interrupt enable register
are changed. A write will not be performed until an interrupt is received by the
DMA. Figure 8—40 shows the synchronization mechanism when SYNC = 10.

Figure 8-40. DMA Destination Synchronization

| DMA Interrupts are Disabled Globally |

{ DMA Channel Performs a Read |

| DMA Interrupts Are Enabled Globally |

Jidle Until Enabled Interrupt Is Received |

| Disable DMA Interrupts Globally |

v

| DMA Channel Performs a Write |

Source and Destination Synchronization

When SYNC =1 1, the DMA is synchronized to both the source and destina-
tion. A read is performed when an interrupt is received. A write is performed
onthe following interrupt. Source and destination synchronlzatlon when SYNC
=11 is shown in Figure 8—41.

8-50 Peripherals

DMA Controller

Figure 8-41. DMA Source and Destination Synchronization

Ildle Until Enabled Interrupt is Received |

| Disable DMA Interrupts Globally |

i

| DMA Channel Performs aRead |

Il

| Enable DMA Interrupts Globally |

|1dle Until Enabled Interrupt Is Received |

| Disable DMA Interrupts Globally |

!

| DMA Channel Performs a Write |

v

| Enable DMA Interrupts Globally |

8.3.7 DMA Interrupts

A DMA interrupt to the CPU may be generated whenever the transfer count
reaches zero, indicating that the last transfer has taken place. The TCINT bit
inthe DMA global control register determines whether the interrupt will be gen-
erated. If TCINT = 1, the DMA interrupt is generated. If TCINT = 0, the DMA
interrupt is not generated. If the DMA interrupt is generated, the EDINT bit, bit
10 in the interrupt enable register, must also be set to enable the CPU to be
interrupted by the DMA.

A second bit in the DMA global control register, the TC bit, is also generally as-
sociated with the state of the TCINT bit and the interrupt operation. The TC bit
determinesif transfers are terminated when the transfer counter becomes zero
orif they are allowed to continue. If TC = 1, transfers are terminated when the
transfer count becomes zero. If TC = 0, transfers are not terminated when the
transfer count becomes zero.

In general, if TCINT is 0 then TC should also be set to 0. Otherwise, the DMA
transfer will terminate and the CPU will not be notified. If TCINT is 1 then in
most cases TC should also be 1. In this case, the CPU will be notified when
the transfer completes and the DMA will be halted and ready to start a new
transfer.

8-51

DMA Controller

8.3.8 DMA Setup and Use Examples

8-52

Transfer a 256-word block of data from off-chip memory to on-chip memory
and generate an interrupt on completion. The order of memory is to be main-
tained. :

DMA source address: 800000h
DMA destination address: 809800h
DMA transfer counter: 00000100h
DMA global control: 00000C53h

CPU/DMA interrupt enable (IE): 00000400h

Transfer a 128-word block of data from on-chip memory to off-chip memory
and generate an interrupt on completion. The order of memory is to be in-
verted, i.e., the highest addressed member of the block is to become the lowest
addressed member.

DMA source address: 809800h
DMA destination address: 800000h
DMA transfer counter: 00000080h
DMA global control: 00000C93h

CPU/DMA interrupt enable (IE): 00000400h

Transfer a 200-word block of data from the serial port O receive register to on-
chip memory and generate an interrupt on completion. The transfer is to be
synchronized with the serial port 0 receive interrupt.

DMA source address: 80804Ch
DMA destination address: 809C00h
DMA transfer counter: 000000C8h
DMA global control: 00000D43h

CPU/DMA interrupt enable (IE): 00200400h

Transfer a 200-word block of data from off-chip memory to the serial port 0
transmit register and generate an interrupt on completion. The transfer is to be
synchronized with the serial port 0 transmit interrupt.

DMA source address: 809C00h
DMA destination address: 808048h
DMA transfer counter: 000000C8h
DMA global control: 00000E13h

CPU/DMA interrupt enable (IE): 00400400h

. Peripherals

DMA Controller

Transfer data continuously between the serial port 0 receive register and the
serial port 0 transmit register to create a digital loop back. The transfer is to be
synchronized with the serial port 0 receive and transmit interrupts.

DMA source address: 80804Ch

. DMA destination address: 808048h
DMA transfer counter: 00000000h
DMA global control: 00000303h

CPU/DMA interrupt enable (IE): 00600000h

8.3.9 DMA Initialization/Reconfiguration

The DMA is controlled through memory-mapped registers located on the dedi-
cated peripheral bus. A general procedure for initializing and/or. reconfiguring
the DMA follows:

1) Halt the DMA by clearing the START bits of the DMA global-control regis-
ter. This can be accomplished by writing a 0 to the DMA global-control reg-
ister. Note that the DMA is halted on RESET.

2) Configure the DMA via the DMA global-control register (with START = 00),
as well as the DMA source, destination, and transfer-counter registers, if
necessary. Refer to subsection 8.3.8, “DMA Setup and Use Examples.”

3) Startthe DMA by setting the START bits of the DMA global-control register
as necessary. ’

8-53

8-54 Peripherals

Pipeline Operation

Pipeline Operation

Chapter 9

Pipeline Operation

Two characteristics of the TMS320C3x that contribute to its high performance
are pipelining and concurrent /O and CPU operation.

Five functional units control TMS320C3x operation: fetch, decode, read, ex-
ecute, and DMA. Pipelining is the overlapping or parallel operations of the
fetch, decode, read, and execute levels of a basic instruction.

By performing input/output operations, the DMA controller reduces the need .
for the CPU to do so, thereby decreasing pipeline interference and enhancing
the CPU’s computational throughput.

Major topics discussed in this chapter are as follows:
X Pipeline Structure (Section 9.1 on page 9-2)

(X Pipeline Conflicts (Section 9.2 on page 9-4)
O Branch conflicts
8 Register conflicts
@ Memory conflicts

Lk Resolving Memory Conflicts (Section 9.4 on page 9-19)

L4 Clocking of Memory Accesses (Section 9.5 on page 9-21)
O Program fetches
O Data loads and stores
O DMA accesses

9-1

Pipeline Structure

9.1 Pipeline Structure

The five major units of the TMS320C3x pipeline structure and their functions
are as follows: :

Fetch Unit (F) Fetches the instruction words from memory and
updates the program counter (PC).

Decode Unit (D) Decodes the instruction word and performs ad-
dress generation. Also controls any modification of
the auxiliary registers and the stack pointer.

Read Unit (R) If required, reads the operands from memory.

Execute Unit (E) If required, reads the operands from the register
file, performs the necessary operation, and writes
resultsto the registerfile. If required, results of pre-
vious operations are written to memory.

DMA Channel (DMA) Reads and writes memory.

A basic instruction has four levels: fetch, decode, read, and execute.
Figure 9—1 illustrates these four levels of the pipeline structure. The levels are
indexed according to instruction and execution cycle. The perfect overlap in
the pipeline, where ali four units operate in parallel, occurs at cycle (m). Those
levels about to be executed are at m +1, and those just executed are at m—1.
The TMS320C3x pipeline control allows a high-speed executionrate of one ex-
ecution per cycle. It also manages pipeline conflicts so that they are transpar-
ent to the user. You do not need to take any special precautions to guarantee
correct operation.

Pipeline Operation -

Pipeline Structure

Figure 9-1. TMS320C3x Pipeline Structure

CYCLE

3
N
N X = M

< X =

<+—— Perfect overlap

3
F
Y
1
N
=oxX =
KooX =

Notes: 1) W, X, Y, and Z represent instructions.
2) F, D, R, E = fetch, decode, read, and execute, respectively.

Priorities from highest to lowest have been assigned to each of the functional
units as follows:

Execute (highest)

Read

Decode

Fetéh

Jd O d QO od

DMA (lowest).

When the processing of an instruction is ready to pass to the next higher pipe-
line level, but that level is not ready to accept a new input, a pipeline conflict
occurs. In this case, the lower priority unit waits until the higher priority unit
completes its currently executing function.

Despite the DMA controllers low priority, conflicts with the CPU can be mini-
mized or even eliminated by suitable data structuring because the DMA con-
troller has its own data and address buses.

P(peline Conflicts

9.2 Pipeline Conflicts

The pipeline conflicts of the TMS320C3x can be grouped into the following
main categories:

Branch Conflicts Involve most of those instructions or operations
that read and/or modify the PC.

Register Conflicts Involve delays that can occurwhenreading fromor
writing to registers that are used for address gen-
eration.

Memory Conflicts Occur when the internal units of the TMS320C3x

compete for memory resources.

Each of these three types is discussed in the following sections. Examples are
included. Note in these examples, when data is refetched or an operation is
repeated, the symbol representing the stage of the pipeline is appended with
anumber. Forexample, if afetch is performed again, the instruction mnemonic
is repeated. When an access is detained multiple cycles because of notready,
the symbols RDY and RDY are used to indicate not ready and ready, respec-
tively.

9.2.1 Branch Conflicts

9-4

The first class of pipeline conflicts occurs with standard (non-delayed)
branches, i.e., BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETIcond,
RETScond, interrupts, and reset. Conflicts arise with these instructions and
operations because during their execution, the pipeline is used only for the
completion of the operation; other information fetched into the pipeline is dis-
carded or refetched, or the pipeline is inactive. This is referred to as flushing
the pipeline. Flushing the pipeline is necessary in these cases to guarantee
that portions of succeeding instructions do not inadvertently get partially ex-
ecuted. TRAPcond and CALLcond are classified differently from the other
types of branches and are considered later.

Example 9—1 shows the code and pipeline operation for a standard branch.
Note thatone dummy fetch is performed (MPYF instruction), and then after the
branch address is available, a new fetch (OR instruction) is performed. This
dummy fetch affects the cache.

Pipeline Operation

Pipeline Confilicts

Example 9-1. Standard Branch

BR THREE ; Unconditional branch
MPYF ; Not executed
ADD ; Not executed
SUBF ; Not executed
AND ; Not executed
THREE . OR ; Fetched after BR is fetched
STI

PIPELINE OPERATION

PC F D R E
n BR - - -
n+1 MPYF BR - -
n+1 ——(no_p)__ (nop) * BR -
n+1 (nop) (nop) (nop) BR

THREE /1 OR (nop) (nop) (nop)

/q ' STI OR (nop) (nop)
THREE — PC Fetch held for
new PC value

'RPTS and RPTB both flush the pipeline, allowing the RS, RE, and RC registers

to be loaded at the proper time relative to the flow of the pipeline. If these regis-
ters are loaded without the use of RPTS or RPTB, no flushing of the pipeline
occurs. If none of the repeat modes are being used, RS, RE, and RC may be
used as general-purpose 32-bit registers without any pipeline conflicts occur-
ring. In cases such as the nesting of RPTB due to nested interrupts, it may be
necessary to load and store these registers directly while using the repeat
modes. Since up to four instructions can be fetched before entering the repeat
mode, loads should be followed by a branch to flush the pipeline. If the RC is
changing when an instruction is loading it, the direct load takes priority over the
modification made by the repeat mode logic.

Pipeline Confiicts

Delayed branches are implemented to guarantee the fetching of the next three
instructions. The delayed branches include BRD, BcondD, and DBcondD.
Example 9-2 shows the code and pipeline operation for a delayed branch.

Example 9-2. Delayed Branch

BRD THREE ; Unconditional delayed branch

MPYF ; Executed
ADD ; Executed
SUBF ; Executed
AND ; Not executed
THREE MPYF ’ ; Fetched after SUBF is fetched
PIPELINE OPERATION
PC | F | D | R | E |
n BRD - - -
n+1 MPYF BRD - - No execute delay
n+2 ADDF MPYF BRD -
n+3 SUBF ADDF MPYF BRD
/;HREE MPYF SUBF ADDF MPYF

THREE — PC

9.2.2 Register Contflicts

Registerconflicts involve the reading or writing of registers used for addressing
purposes. These conflicts occur when the pertinent register is not ready to be
used. Some conditions under which register conflicts can be avoided are dis-
cussed in Section 9.3.

The registers compose the following three functional groups:

9-6 ’ Pipeline Operation

Pipeline Conflicts

Group 1 Auxiliary registers (AR0 — AR?7), index registers (IR0, IR1), and
block size register (BK)

Group 2 Data-page pointer (DP)
Group 3 System stack pointer (SP)

If an instruction writes to one of these three groups, the decode unit cannotuse
any register within that particular group untii the write is complete, i.e., instruc-
tion execution is completed. In Example 9-3, an auxiliary register is loaded,
and a different auxiliary register is used on the next instruction. Since the de-
code stage needs the result of the write to the auxiliary register, the decode of
this second instruction is delayed two cycles. Every time the decode is delayed,
a refetch of the program word is performed; i.e., the ADDF is fetched three
times. Since these are actual refetches, they can cause not only conflicts with
the DMA controller but also cache hits and misses.

Example 9-3. Write to an AR Followed by an AR for Address Generation

PC

n+1
n+2
n+2
n+2

n+3

LDI 7,AR1 ;7 = AR1
NEXT MPYF *AR2,R0O ; Decode delayed 2 cycles
ADDF
FLOAT
PIPELINE OPERATION
| F | o | R | E |
LDI - - -
MPYF LDI

Decode/address
generation held
for a new AR value

ADDF MPYF

ADDF MPYF (nop) LDI 7,AR1 AR1 loaded
ADDF MPYF (nop) (nop)
FLOAT ADDF MPYF (nop)

The case for reads of these groups is similar to the case for writes. If an
instruction must read a member of one of these groups, the use of that particu-
lar group by the decode for the following instruction is delayed until the read
is complete. The registers are read at the start of the execute cycle and there-
fore require only a one-cycle delay of the following decode. For four registers
(IR0, IR1, BK, or DP) no delay is incurred. In all other cases, including the SP
the delay occurs. '

9-7

Pipeline Conflicts

In Example 9-4, two auxiliary registers are added together with the result go-
ing to an extended-precision register. The next instruction uses a different aux-
iliary register as an address register.

Example 9-4. A Read of ARs Followed by ARs for Address Generation

PC

n+1

n+2

n+2

n+3

NEXT

ADDI ARO,AR1,R1 ; ARO + ARl — R1

MPYF *++AR2,R0 ; Decode delaved 1 cycle
ADDF

FLOAT

PIPELINE OPERATION

ADDI

MPYF

ADDF

ADDF

FLOAT

Decode/address
generation held
until AR is read’

‘ -— ARs read
MPYF | ADDI =

MPYF (nop) ADDI ARO,AR1,RO

ADDF MPYF (nop)

The DBR (decrement and branch) instruction’s use of auxiliary registers for
loop counters is treated the same as if the use were for addressing. Therefore,
the operation shown in the two previous examples can also occur for this in-

struction.

Pipeline Operation

~ Pipeline Conflicts

9.2.3 Memory Conflicts

Memory conflicts can occur whenthe memory bandwidth of a physical memory
space is exceeded. For example, RAM blocks 0 and 1 and the ROM block can
supportonly two accesses every cycle. The external interface can supportonly
one access per cycle. Some conditions under which memory conflicts can be
avoided are discussed in Section 9.4.

Memory pipeline conflicts consist of the following four types:

Program Wait A program fetch is prevented from begin-
ning.

Program Fetch Incomplete A program fetch has begun but is not yet
complete.

Execute Only An instruction sequence requires three CPU

data accesses in a single cycle.

- Hold Everything A primary or expansion bus operation must
complete before another one can proceed.

These four types of memory conflicts are illustrated in examples and discussed
in the paragraphs that follow.

Program Wait
Two conditions can prevent the program fetch from beginning:

[d The start of a CPU data access when

B Two CPU data accesses are made to an internal RAM or ROM block,
and a program fetch from the same block is necessary.

B Oneofthe external ports is starting a CPU data access, and a program
fetch from the same port is necessary.

L A multicycle CPU data access or DMA data access over the external bus
is needed.

9-9

Pipeline Conflicts

Example 9-5illustrates a program wait until a CPU data access completes. in
this case, *ARO and *AR1 are both pointing to data in RAM block 0, and the
MPYF instruction will be fetched from RAM block 0. This results in the conflict
shown. Since no more than two accesses can be made to RAM block 0 in a
single cycle, the program fetch cannot begin and must wait until the CPU data
accesses are complete.

Example 9-5. Program Wait Until CPU Data Access Completes

9-10

PC

n+1
n+2
n+2
n+3

n+4

ADDF3 *ARO, *AR1, RO
FIX

MPYF

ADDF3

NEGB

PIPELINE OPERATION

| F I o | R | E|

Fetch held until
ARs are read

ADDFE'3 - - -

FIX ADDFE3 -
/ ARs read
(WAIT) FIX ADDF3 -

MPYF (nop) FIX ADDF3 *ARO, AR1,RO
ADDF3 MPYF (nop) FIX

NEGB ADDF3 MPYF (nop)

Example 9—6 shows a program wait due to a multicycle data-data access or
amulticycle DMA access. The ADDF, MPYF, and SUBF are fetched from some
portion in memory other than the external port the DMA requires. The DMA be-
gins a multicycle access. The program fetch corresponding to the CALL is
made to the same external port the DMA is using.

Either of two cases may produce this situation:

L Crossing one of two memory boundaries
® from 7F FFFFh to 80 0000h, or

H from 80 9FFFh to 80 A0QOOh.

@ Code is executed that has been cached, and the instruction prior to the -
ADDF is one of the following (conditional or unconditional):
B adelayed branch instruction, or '
B adelayed decrement and branch instruction

Even though the DMA has the lowest priority, multicycle access cannot be
aborted. The program fetch must therefore wait until the DMA access com-
pletes.

Pipeline Operation

Pipeline Confiicts

Example 9-6. Program Wait Due to Multicycle Access

PC

n+1
n+2
n+3
n+3

n+4

PIPELINE OPERATION
| F | b | R | E |

ADDF - - -

MPYF ADDF - -

T

SUBF MPYF ADDF -

v 2-cycle DMA access
(WAIT) SUBF MPYF ADDF |

CALL (nop) SUBF MPYF

- CALL (nop) SUBF

Program Fetch Incomplete

A program fetch incomplete occurs when a program fetch takes more than one
cycle to complete due to wait states. In Example 9-7, the MPYF and ADDF are
fetched from memory that supports single-cycle accesses. The SUBF is
fetched from memory requiring one wait state. One example that demonstrates
this conflict is a fetch across a bank boundary on the primary port. See Sec-

tion 7.4.

Example 9-7. Multicycle Program Memory Fetches

PC

n

n+1

n+2 RDY
n+2 RbY

n+3

PIPELINE OPERATION
| F | o | R | E |
MPYF - - -
ADDF MPYF - -
-
SUBF ADDF MPYF - .
1 wait state required
SUBF (nop) ADDF MPYF R
ADDI SUBF (nop) ADDF

9-11

Pipeline Conflicts

Execute Only

The Execute Only type of memory pipeline conflict occurs when a sequence
of instructions requires three CPU data accesses in a single cycle or when per-
forming an interlocked load. There are three cases in which this occurs:

X Aninstruction performs a store and is followed by an instruction that does
two memory reads.

Ld An instruction performs two stores and is followed by an instruction that
performs at least one memory read.

[Aninterlocked load (LDl or LDF!) instruction is performed, and XF1 = 1.

The first case is shown in Example 9-8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF || LDF
is delayed one cycle. Note that a refetch of the next instruction can occur.

Example 9-8. Single Store Followed by Two Reads

PC

n+1

n+2

n+3

n+4

n+4

STF RO, *AR1 ; RO — *AR1
LDF *AR2,R1 ; *AR2 — R1 in parallel with
I LDF *AR3,R2 ; *AR3 —> R2

PIPELINE OPERATION

F | o | R | E |
STF - - -
LoF!| LDF STF - -
W 1oFl| LDF STF - Write must complete
KX before the two

X W LoF|| LDF STF RO, *AR1 reads can complete.
X W 1or|| LDF (nop)

Y X W LDFl| LDF *AR2,R1 and *AR3,R2

Pipeline Operation

Pipeline Confilicts

Example 9-9 shows a parallel store followed by a single load or read. Since
the two parallel stores are required, the next CPU data memory read must wait
a cycle before beginning. One program memory refetch may occur.

Example 9-9. Parallel Store Followed by Single Read

PC

n+1

n+2

n+3

n+4

n+4

F
sTEl| sTF
ADDF
IACK
ASH

ASH

STF RO, *ARO’ ; RO — *AR0 in parallel with
STF R2, *AR1 ; R2 — *AR1
ADDF @SUM, R1 ; Rl + @SUM — R1
IACK .
ASH
PIPELINE OPERATION

b | R | E |

Read must

wait until the
writes are complete

sl stF -
ADDF stFl| sTF
IACK ADDF strl| STF RO, *ARO and R2, *AR1
IACK ADDF (nop)
ASH IACK ADDF

Pipeline Confiicts

Example 9-10. Interlocked Load

PC

n+1

n+2

n+3

n+3

n+4

The final case involves an interlocked load (LDl or LDF) instruction and XF1
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the
read can complete, they may need to extend the read cycle, as shown in
Example 9—-10. Note that a program refetch may occur.

NOT
LDII
ADDI

CMPI

NOT R1,RO
LDIT 300h, AR2
ADDI *AR2,R2
CMPI RO, R2
PIPELINE OPERATION
D R | E |
NOT - -
XF1 =1
LDII NOT /
ADDI LDII ‘y XF1=0
CMPI ADDI LDII
CMPI ADDI LDII

Pipeline Operation

Pipeline Conflicts

Hold Everything
There are three types of Hold Everything memory pipeline conflicts:

[d A CPU data load or store cannot be performed because an external port
is busy.

LX An external load takes more than one cycle.
L1 Conditional calls and traps.

The first type of Hold Everything conflict occurs when one of the external ports
is busy due to an access that has started but is not complete. In Example 9-11,
the first store is a two-cycle store. The CPU writes the data to an external port.
The port control then takes two cycles to complete the data-data write. The
LDF is a read over the same external port. Since the store is not complete, the
CPU continues to attempt LDF until the port is available.

Example 9~11. Busy External Port

PC

n+1

n+2

n+2

n+2

n+3

n+4

STF RO, @DMA1
LDF @DMA2, RO

PIPELINE OPERATION
| F | D | R |E|
STF - - -
LDF STF = -
4 LDF STF -
W LDF (nop) STF T
2-cycle external bus
W LDF (nop) (nop) J write access
X W LDF (nop)
Y X W LDF

The second type of Hold Everything conflict involves multicycle data reads.
The read has begun and continues until completed. In Example 9-12, the LDF
is performed from an external memory that requires several cycles to com-
plete.

9-15

P(peline Conflicts

Example 9-12. Multicycle Data Reads

PC

n+1

n+2

n+3

n+3

LDF @DMA, RO

PIPELINE OPERATION

| F | o | R | E |
LDF - - -
I LDF - -
J I LDF - T
2-cycle external bus
K , (dummy) I LDF - J readaccess
Ko J I LDF

The final type of Hold Everything conflict deals with conditional calls and traps,
which are different from the other branch instructions. Whereas the other
branch instructions are conditional loads, the conditional calls and traps are
conditional stores, which take one cycle more than a conditional branch (see
Example 9—13). The added cycle is used to push the return address after the
call condition is evaluated.

Example 9-13. Conditional Calls and Traps

9-16

PIPELINE OPERATION

PC | F | D | R | E |
n CALLcond - : - -
n+1 I CALLcond - -
n+1 (nop) (nop) CALLcénd -
n+1 (nop) (nop) (nop) CALLcond

' PC store
n+1 (nop) (nop) (nop) CALLcond]_ cycle
n+2/CALLaddr 1 (nop) (nop) (nop)

Pipeline Operation

Resolving Register Conflicts

9.3 Resolving Register Conflicts

If the auxiliary registers (AR7-ARO), the index registers (IR1-IR0), data page

* pointer (DP), or stack pointer (SP) is accessed for any reason other than ad-
dress generation, pipeline conflicts associated with the next memory access
may occur. The pipeline conflicts and delays were presented in subsection
9.2.2. .

The following examples, Example 9-14 through Example 9—16, demonstrate
some common uses of these registers that do not produce a conflict or ways
that the conflict can be avoided.

Example 9-14. Address Generation Update of an AR Followed by an AR for Address Generation

LDF 7.0,RO ; 7.0 — RO
MPYF *++AR0 (IR1) , RO '
ADDF *AR2,R0O

FIX
MPYF
ADDF
PIPELINE OPERATION
PC] F] D | R | E |
n LDF - - -
Address generation and AR update
n+1 MPYF LDF ‘/_—
n+2 ADDF MPYF " LDF — Address generation
n+3 FIX ADDF MPYF LDF
n+4 MPYF FIX ADDF MPYF
n+5 ADDF MPYF FIX ADDF

9-17

Resolving Register Conflicts

Example 9-15. Write to an AR Followed by an AR for Address Generation Without a Pipeline Conflict

LDI @TABLE, AR2
MPYF @QVALUE,R1
ADDF R2,R1

MPYF *AR2++,R1
SUBF

STF

PIPELINE OPERATION

PC | F | D | R | E |
No AR address
n LDI - - - generation done
for these two
n+1 MPYF LDI - - : instructions
n+2 ADDF MPYF AR2 used for

address generation

n+3 MPYF ADDF

7, AR2 $—0

AR2 loaded
n+4 SUBF MPYF ADDF MPYF
n+5 STF SUBF MPYF ADDF
Example 9-16. Write to DP Followed by a Direct Memory Road Without a Pipeline Conflict
LDP TABLE_ADDR
POP RO
LDF *-AR3(2),R1
DI @TABLE_ADDR, ARO
PUSHF R6
PUSH R4
PIPELINE OPERATION
PC | F | D | R | E |
n LDP - - -
n+1 POP 1L.DP - -
n+2 LDF POP LDP - / DP loaded
n+3 LDI LDF POP LDP
n+4 PUSHF LDI LDF POP
n+5 PUSH PUSHF. LDI LDF

9-18 Pipeline Operation

Resolving Memory Confiicts

9.4 Resolving Memory Conflicts

If program fetches and data accesses are performed in such a mannerthat the
resources being used cannot provide the necessary bandwidth, the program
fetch is delayed until the data access is complete. Certain configurations of
program fetch and data accesses yield conditions under which the
TMS320C3x can achieve maximum throughput.

Table 9—1 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and a single data
access, and still achieve maximum performance (one cycle). Four cases
achieve one-cycle maximization.

Table 9-1. One Program Fetch and One Data Access for Maximum Performance

Case # Primary Bus Accesses From Expansion Bust
Accesses Dual-Access Or Peripheral
Internal Memory Accesses
1 1 1 -
2 1 - 1
2 from any
3 - combination -
of internal memory
4 - 1 1

T Expansion bus only available on TMS320C30.

9-19

Resolving Memory Conflicts

Table 9-2.

9-20

Table 9-2 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and two data ac-
cesses, still achieving maximum performance (one cycle). Six cases achieve

this maximization.

One Program Fetch and Two Data Accesses for Maximum Performance

Case #

Primary Bus
Accesses

Accesses From
Dual-Access
Internal Memory

Expansiont Or
Peripheral Bus
Accesses

1

2 from any
combination
of internal memory

ot

1 Program

1 Data

1 Data

3t

1 Data

1 Data

1 Program

2 from same internal
memory block and
1 from a different
internal memory
block

3 from different
internal memory
blocks

2 from any
combination
of internal memory

t Expansion bus available only on TMS320C30.

Pipeline Operation

Clocking of Memory Accesses

9.5 Clocking of Memory Accesses

Internal clock phases (H1 and H3) and their relationship to memory accesses
are discussed in this section to show how the TMS320C3x handles multiple
memory accesses. Whereas the previous section discussed the interaction
between sequences of instructions, this section discusses the flow of data on
an individual instruction basis.

Each major clock period of 60 ns is composed of two minor clock periods of
30 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time
when that signal is high.

Major Clock Period

H1

H3

The precise operation of memory reads and writes can be defined according
to these minor clock periods. The types of memory operations that can occur
are program fetches, data loads and stores, and DMA accesses.

9.5.1 Program Fetches

Internal program fetches are always performed during H3 unless a single data
store must occur at the same time due to another instruction in the pipeline.
In this case, the program fetch occurs during H1 and the data store during H3.

External program fetches always start at the beginning of H3 with the address
being presented on the external bus. At the end of H1, they are completed with
the latching of the instruction word.

9-21

Clocking of Memory Accesses

9.5.2 Data Loads and Stores

Four types of instructions perform loads, memory reads, and stores: two-oper-
and instructions, three-operand instructions, multiplier/ALU operation with
store instructions, and parallel multiply and add instructions. See Chapter 5 for
detailed information on addressing modes.

As discussed in Chapter 7, the number of bus cycles for external memory
accesses differs in some cases from the number of CPU execution cycles. For
external reads, the number of bus cycles and CPU execution cycles is identi-
cal. For external writes, there are always at least two bus cycles, but unless
there is a port access conflict, there is only one CPU execution cycle. In the
following examples, any difference inthe number of bus cycles and CPU cycles
is noted.

Two-Operand Instruction Memory Accesses

Two-operand instructions include all those instructions with bits 31 — 29 being
000 or 010 (see Figure 9-2). In the case of a data read, bits 15 — 0 represent
the srcoperand. Internal data reads are always performed during H1. External
data reads always start at the beginning of H3 with the address being pres-
ented on the external bus, and they complete with the latching of the data word
at the end of H1. .

Inthe case of a data store, bits 15 — 0 represent the dstoperand. Internal data
stores are performed during H3. External data stores always start at the begin-
ning of H3 with the address and data being presented on the external bus.

Figure 9-2. Two-Operand Instruction Word

9-22

31 24 23 - 16 15 87 0
1] ')) 1 1 J 1])] 1 LI I I L] 1) 1 1] 1 1
0 X0 Operation G dst(src) src(dst)

Three-Operand Instruction Memory Reads

Three-operand instructions include allinstructions with bits 31 — 29 being 001
(see Figure 9-3). The source operands, src1 and src2, come from either regis-
ters or memory. When one or more of the source operands are from memory
these instructions are always memory reads. ‘

If only one of the source operands is from memory (either src? or src2) and is
located in internal memory, the data is read during H1. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address being presented on the external bus, and completes with the
latching of the data word at the end of H1.

Pipeline Operation

Clocking of Memory Accesses

If both source operands are to be fetched from memory, then several cases oc-
cur. If both operands are located ininternal memory, the src?readis performed
during H3 and src2 during H1, thus completing two memory reads in a single
cycle.

If sret is in internal memory and src2is in external memory, the src2 access
‘begins at the start of H3 and latches at the end of H1. At the same time, the
src1 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If srctis in external memory and src2is in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, the internal src2 access is
performed. The srct is also performed, but not latched until the next H3.

If src1and src2 are both from external memory, two cycles are required to com-
plete the two reads. In the first cycle, the src7 access is performed and loaded
on the next H3; in the second cycle, the src2 access is performed and loaded
on that cycle’s H1.

Figure 9-3. Three-Operand Instruction Word

31 24 23 . 16 15 87 0
L LI S N T LI T T

0 01 Operation T dst srcl src2

Operations with Parallel Stores

The nextclass of instructions includes all instructions that have a store in paral-
lel with another instruction. Bits 31 and 30 for these instructions are equal to
11.

For those operations that perform a multiply or ALU operation in parallel with
a store, the instruction word format is shown in Figure 9—4. If t