*i) TEXAS
INSTRUMENTS

TI486 Microprocessor

Reference

Guide

1993 PC Systems Logic

Product Overview

Programming Interface

TI486SLC/E Bus Interface

TI486DLC/E Bus Interface

Electrical Specifications

Mechanical Specifications

Instruction Set

TI486
Microprocessor
Reference Guide

“5‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

Tl warrants performance of its semiconductor products and related software to current
specifications in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that Tl products are not intended for use in life-support appliances, devices,
or systems. Use of Tl product in such applications requires the written approval of the
appropriate Tl officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. in order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of Tl products in such applications is understood to be
fully at the risk of the customer using Tl devices or systems.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
represent that any license, either express orimplied, is granted under any patentright, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1993, Cyrix Corporation

Preface

Read This Fir

About This Manual

Chapter 1

Chapter 2

Chapter 3

This manual describes both the TI486SLC/E and TI486DLC/E product family.
Each chapter except for chapters 3 and 4 cover both the TI486SLC/E and
TI486DLC/E. Chapter 3 explicitly covers the TI486SLC/E and chapter 4
explicitly covers the TI486DLC/E. This document contains the following
chapters:

Product Overview

Chapter 1 introduces the features and itemizes the differences between the
TI486SLC/E and TI486DLC/E, both of which are offered in 3-volt versions
(T1486xL.C/E-V) for battery-powered applications. A functional block diagram,
logic symbol, and I/O signal pins are provided for each of the two
microprocessors. Additional material describes selected system architectures
such as the execution pipeline, the on-chip cache memory, and the power
management techniques. The System Management Mode (SMM) permits the
TI486 microprocessors to respond to and service interrupts having a higher
priority than standard 486 processors.

Programming Interface

Chapter 2 describes the internal operations of the TI486, for both the
TI486SLC/E and TI486DLC/E, mainly from an application programmer’s point
of view. Included in this chapter are descriptions of processor initialization, the
register set, memory addressing, various types of interrupts, and the
shutdown and halt process. Also included is an overview of real, virtual 8086,
and protected operating modes.

TI486SLC/E Bus Interface

Chapter 3 provides an overview of the TI486SLC/E processor signals,
functional description of all pins, functional timing and bus operations
(including non-pipelined and pipelined addressing), interfaces, and power
management. :

About This Manual

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A

Appendix B

Appendix C

vi

TI486DLC/E Bus Interface

Chapter 4 provides an overview of the TI486DLC/E processor signals,
functional description of all pins, functional timing and bus operations
(including non-pipelined and pipelined addressing), interfaces, and power
management.

Electrical Specifications

Chapter 5 provides electrical specifications for both the TI486SLC/E and
TI486DLC/E, including specifications for the 3-volt versions. The
specifications include electrical connection requirements for all package types
and pins, maximum ratings, recommended operating conditions, dc electrical,
and ac characteristics.

Mechanical Specifications

Chapter 6 provides mechanical specifications for both the TI486SLC/E and
Ti1486DLC/E that include pin assignments, package physical dimensions, and
package thermal characteristics.

Instruction Set

Chapter 7 summarizes the TI486 instruction set and provides detailed
information of the instruction encodings. The instruction set is the same for all
TI486 processors.Instructions are listed in an instruction set summary table,
that also provides information on the flags affected and the instruction clock
counts for each instruction.

TI486 SMM Programmer’s Guide

Appendix A provides detailed information, including examples pertinent to
programming the T1486 system management mode (SMM). Included are SMI
examples, testing/debugging SMM code, power management features,
loading SMM programs, detection of CPU type and presence of SMM-capable
devices, creating macros, and altering SMM code limits.

Ti486 Cache Flush

Appendix B provides general cache invalidation techniques and discusses
invalidation in systems with and without secondary cache.

Ti486 BIOS Modification Guide

Appendix C discusses some BIOS changes that may need to be considered
by the PC designer. The areas considered are power-on and hard reset,
protected-mode to real-mode switching, and soft reset. Examples of
assembler code for turning the cache on and off are provided.

Read This First

About This Manual

Appendix D Ordering Information

Appendix D provides detailed ordering information showing what the
components of the part number mean, and a description of each
microprocessor offered. Versions offered include 5-volt and 3-volt versions,
each of which are rated to operate at different speeds. The TI486SLC/E
versions are packaged in the quad flat pack, and the TI486DLC/E versions are
packaged in the ceramic pin grid array package.

Style and Symbol Conventions

This document uses the following conventions.

[Program code listings and program code examples are shown in a
special typeface similarto a typewriter’s.

Here is a sample assembler code program listing:

CLI
MOV EAX, CRO ; set bit 30, turn off cache
OR EAX, 40000000h ; for external cache coherency

(1 In the instruction syntax descriptions, the instruction is in a BOLD
TYPEFACE font and a description of the instruction is in /falic Typeface.
Here is an example of an instruction syntax and description:

RSM Resume from SMM Mode

[0 Square brackets ([and]) identify the location and sequence for specifying
register and/or memory options in the instruction opcodes. Here’s an
example of an opcode that requires register and memory parameters:

Reference: Instruction ADD /nteger Add (Register to Memory)

Opcode = 0 [000w] [mod reg r/m]

vii

Trademarks

Information About Cautions and Warnings

This book may contain cautions and warnings.

S
T

-
y u
Govend g@%&%‘?%&?{i@

LR
-

S

ﬂiw%
o
g}au%

o
ﬁSw&
Sy
e
-

o
e
.

-
e

» -
eeui e o Sos
o - -

: . .
A e

L
o

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Trademarks

EPIC is a trademark of Texas Instruments Incorporated.

viii Read This First

1 Product OVervieWc.icviciveronnnsrnnnurnanssnsrsnsnesnsnsrnsnnnnnnnsnnnnss 1-3
1.1 INtroduCtion o e 1-4
1.2 Differences Between the TI486SLC/E and TI486DLC/E 1-5
1.3 TI486SLC/E OVEIVIBWt ettt et e et e e e e e e e e e inaannns 1-6
1.4 TI486DLC/E OVEIVIEWt et e e et e e e 1-9
1.5 Execution Pipeline i e 1-12
1.6 ON-Chip Cache oo e it ettt aa s 1-12
1.7 PowerManagementottt e 1-13

1.7.1 Suspend Mode and Static Operation, 1-13
1.7.2 BV Operationt e e e 1-13
1.8 System Management Mode (SMM) i 1-13

2 ProgrammingInterfaceccciiiiiiiiiiiii e it st 2-3
2.1 Processor Initialization o i e 24
2.2 Instruction Set OVerview s 2-7

221 LOCK Prefix ... e 2-8
2.3 Register Set ... 2-9
2.3.1 Application Register Set i e 2-9
2.32 SystemRBegisterSet e 2-17
2.4 AdAresS SPaCES ..ottt ittt e 2-37
241 /O AdAreSs SPaACE\ttt ittt et 2-38
242 Memory AdAress SPaceoviiiiiiiiie i ieiaien e 2-39
2.5 Interrupts and EXCeplionst e e 2-45
2.5 INterTUDES . .o e 2-45
2.5.2 EXCEPHONS ...t e 2-46
253 Interrupt Vectorso e 2-47
2.5.4 Interrupt and Exception Priorities i 2-48
255 ExceptionsinRealModettt e 2-49
2.5.6 Eror CoUeSviiitiii e i 2-49
26 SystemManagement Modet e 2-51
2.6.1 IntrodUCHioNo e e 2-51
2.6.2 SMMOPperationscoiiiiiiiii it it i s 2-52
2.6.3 SMM Memory SpaceHeadercciiiiiiiiiiiiiii i 2-53
264 SMM INSIrUCHONSt it i i et e 2-54
265 SMMMeEMOry SPace cuiii ettt 2-55
2.6.6 SMI Service Routine Executiont 2-56
2.7 Shutdownand Halt i 2-58
2.8 Protechion e e 2-58
282 /OPrivilegeLevels e 2-59
2.8.3 Privilege Level Transfers i 2-59
2.8.4 Initialization and Transition to ProtectedMode 2-60

Contents

2.9 Virtual 8086 MOAE ...\ttt e i 2-61
2.9.1 Memory Addressingceeriiiiniiin et 2-61

2.9.2 Protectioniii i i e 2-61

293 IntefruptHandling ...t e 2-62

2.9.4 Enteringand LeavingV86Mode 2-62

3 TI486SLC/EBusInterfaceccociuiiiiiiinrirrrsnnunnsannnncasnnannannnas 3-3
31 OVerview ... S 3-4
3.1.1 BusCycle Definition e 3-13

3.1.2 PowerManagementt e 3-14

3.2 Functional Timingot et et e e 3-16
3.2.1 Reset Timing and Internal Clock Synchronization 3-16

3.2.2 BusOperationciiiiiii e 3-17

3.23 LockedBuUsS CyCleS ...ovviiiii i e e 3-30

3.2.4 Interrupt Acknowiedge (INTA)Cyclesccciriiiiiiiniinnnnn 3-30

3.25 Haltand ShutdownCycles e 3-32

3.26 InternalCachelnterface i i 3-34

3.2.7 Address Bit20Maskingottt e 3-36

3.2.8 Hold Acknowledge State e 3-38

3.29 Coprocessorinterface ... e 3-42
3.2.10 SMMInterface ...t e e 3-42

3.2.11 PowerManagement ...t i i 3-44
B.2.12 Float ..o e, 3-47

4 TIA86DLC/EBusInterfacecoviiuriiirusrrnnninanennasnsnnnsassarssnnes 4-3
L I O 11T 4-4
41,1 BusCycle Definitioncc i e 4-14

4.1.2 PowerManagement e 4-15

42 Functional Timingt e et 4-17
421 Reset Timing and Internal Clock Synchronization 4-17

422 BusOperationc.ciiiiiiiiiii i 4-18

423 BusCyclesUsSINgBS16t iaiie i 4-31

424 LockedBUS CYCleSttt 4-34

4.2.5 Interrupt Acknowledge (INTA)Cycles ..., 4-35

4.2.6 Haltand ShutdownCyclest e 4-37

427 InternalCachelnterface i 4-40

428 AddressBit20 Maskingccuuiiinriiiii i et 4-43

429 HoldAcknowledge Statet i 4-45
4.2.10 Coprocessorinterfacet e 4-49

4211 SMMINterfaceo e 4-49
4212 PowerManagementiiiiiiiiiriiiiii ittt 4-51

5 Electrical Specificationsciiiiiiiiii i e a s 5-3
5.1 Electrical Connections . ..ottt i i e 5-4
5.1.1 Power and Ground Connections and Decoupling 5-4

5.1.2 Pullup/Pulidown Resistorso iiiiiiii e 5-4

51.3 UnusedInputPins ... 5-5

514 NCDesignated Pinscoiiiiiiiii ittt e iieaaaeans 5-5

5.2 Absolute Maximum Ralingsc..iiiiiiii s 5-6
5.3 Recommended Operating Conditions it 5-7
5.4 DC Electrical Characteristicscuuiiiiiiiii i iiiiiaiiiie s, 5-8

Contents

5.5 ACCharacteristics s 5-10
5.5.1 Measurement Points for Switching Characteristics 5-10
5.5.2 CLK2 Timing MeasurementPointscciiiiiiiiiiiinnnenns 5-12
553 RESET SetupandHold Timingc.ooiiiiiiiiiiiii i, 5-17
5.5.4 TI486SLC/E and TI486SLC/E-V Switching Waveforms 5-17
5.5.5 TI486DLC/E Switching Waveforms oo, 5-20
Mechanical Specificationsottt iiiierieeicnsrasararanannnas 6-3
6.1 PN ASSIGNMENTS i et 6-4
6.2 Package DimensiONSttt e e e 6-9
6.3 Thermal Characteristics i e e e 6-11
Instruction Setcoiiiiiiiiiiiicar i aiaatacataan e et n s 7-3
7.1 GeneralInstruction Format i e e s 7-4
7.2 Instruction Fieldso iiiii i i i et et s 7-5
7.2 PrOfIXES ..ttt e 7-5
722 Opcode Fieldo e e 7-6
7.23 WHERiEld ..o et 7-6
7.24 dField ... 7-6
725 regFieldo e e e 7-7
726 modandr/mField i 7-8
72.7 modandbase Fields s 7-9
7.28 ssField ... e 7-10
729 index Field........ccciiiiiiiii et e, 7-10
7210 sreg2 Field i e e e 7-10
7211 sreg3 Fieldo oo e 7-11
7212 eeeField i e e 7-11
726 T - Vo 1= 7-12
7.4 Clock Count SUMMANYoiiiriinat ettt eiiiiineeennes 7-13
741 ASSUMPLONS ..ottt it ettt et et e 7-13
7.4.2 Abbreviations e 7-13
TI486 SMM Programmer’s GUidec.cvviiiiiiiiiiinnrnsuensnrnrssnanananns A-1
Al SMM OVEIVIEW ...t i e e A-2
AT INtroduCtion e A-2
A12 SMMimplementation i it e A-2
A2 SMMImplementationiiiiiini i i it A-3
A.2.1 Hardware Background ittt A-3
A.2.2 SMM Software Considerationsc..coiiiiiiiiiiiiiriiereanns A-4
A3 Enabling SMM ... e A-8
A4 Instruction SUMMaAIYo e e A-9
A.4.1 Restore Registerand Descriptort A-10
A4.2 Restore LDTR and Descriptort iiiiiiae et A-10
A4.3 ResumeNormalModecevivrriennennnennnn. e A-11
A.4.4 Restore TSR and Descriptor ..ottt A-12
A4.5 Save Registerand Descriptorot A-12
A46 SavelDTRand Descriptorc.iiiiiiiiiiiiii i iiaiiienenns A-13
A47 SaveTSandDescriptor A-14
A5 SMIHandler EXampleooiiiiii i e e e A-15

xi

Contents

Cc

Xii

A6 Testing/Debugging SMM Code ...ttt e et iiei e A-22

A.6.1 Software Only Debuggingcccoiiriiiiiiiiin s A-22

A7 TI486 Power Management Featuresc.c.c.iiiiiiiiriiiiiinnnrenennns A-29

A.7.1 Reducingthe Clock Frequencycoiiiiiininiiiiinnnnann.. A-29

A72 SuspendMode ...t e e A-29

A.8 Loading SMM Memory With an SMM Program from Main Memory A-30

A9 Detectionof TI4B6 CPUttt c i aaaanaenannns A-31

A.10 Detection of SMM Capable Versioncc it A-33

A1l SMM Feature CompariSonoertetitteteeet et e e e aanaaanns A-37

A12 SMM Instruction Macros —SMIMACL.INC A-38

A3 TI486DLC/E and SMMttt e it e e A-42

A.14 Format of Data Used by SVDC/RSDC Instructionscovviiiint, A-43

A.15 Altering SMM Code Limitsceiurir i i A-45

A6 SMMEmatat et A-47

TIA86 Cache FIushc.ciuiuiiiiiiiai et iannncernasenatannnecnsssnnnnnnsrnnns B-1

B.1 General Cachelnvalidation i it e B-1
B.1.1 Cache Invalidation for Systems With No Secondary Cache or a

Parallel Secondary Cache ...ttt B-1

B.1.2 Cache Invalidation for Systems With A Serial Secondary Cache B-2

T1486 BIOS Modification Guideiiiiiiiiiieiairrnnncarrrnnnnnnnrsnns C-1

C.1 Introduction ... e e e e e C-1

C.11 PowerOnandHard Reset ...t C-1

C.1.2 Protected-Mode to Real-Mode Switching ...t Cc-2

C.1.3 Soft Reset/CTRL-ALT-DEL ...t eeae e Cc-2

C.1.4 Tuming Onand Offthe IntemalCache oot C-2

Ordering Informationc.ciiiiiiiiiiiinasinerresnacansasnrasssnnnnnnnns D-1

D.1 Ordering Informationc it i e D-1

D.1.1 Part Number Componentsoiviiiiiiiiiiin it iiinnnnarnenens D-1

D.1.2 Part Numbers for TI486 Processors Offered, D-2

1-1
1-2
1-3
14
1-5
1-6
2-1
2-2
2-3
2-4
2-5
2-6

2-8

2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
3-1

3-2

3-3

TI486SLC/E Functional Block Diagramcviiiiieiiniin i eaaaneaennns 1-6
TI486SLC/E Logic Symbol o e 1-7
TI486SLC/E Inputand Output Signalsccoiiiiiiriiii it inaanar e 1-8
Ti486DLC/E Functional Block Diagramc.ccoiiiiiiiiiiiinnnnnnennnns 1-9
TI486DLC/E LOGIC SYMDOI e e e 1-10
TI486DLC/E Input and Output Signalst 1-11
Application Register Seto e 2-10
General Purpose Registersttt i et 2-12
Segment SeleCtor i aaa e 2-14
EFLAGS Registeroiiii i iiiieaae e e 2-15
System Register Set e 2-18
Control Registers e 2-19
Descriptor Table Registers i i i et et 2-21
Application and System Segment Descriptors i 2-22
Gate DS P Or .« .\ttt e 2-24
Task Register e 2-24
32-Bit Task State Segment (TSS) Table ... i es 2-25
16-Bit Task State Segment (TSS) Tableot 2-26
TI486SLC/E Address Region Registers (ARR1-ARR4) 2-28
TI486DLC/E Address Region Registers (ARR1-ARR4), 2-29
TI486SLC/E DebUg REgISIErsS ...ttt e e e e 2-31
TI486DLC/E Debug Registersviiiiieii ittt ittt eeia e ienans 2-32
L2 3 TCT o1 =T 2-34
TI486SLC/E Memory and I/O Address Spaces -ccvvveiveiiiiiinnenenenanennn. 2-37
T1486DLC/E Memory and I/O Address Spacesccoiiiiiiriiinnnnnnnnnnn. 2-38
Offset Address Calculation i i it 2-40
Real Mode Address Calculationt it 2-41
Protected Mode Address Calculation i, 2-41
Selector Mechanismo e e 242
Paging Mechanism i it et 2-43
Directory and Page Table Entry (DTE and PTE) Format 2-43
Error Code Format 2-50
TI486SLC/E Memory and 1/O Address Spacescvviiiireeinnanennennnns 2-51
TI486DLC/E Memory and I/O Address Spacesc.ccciiiiiiiiiiinnnnnennn. 2-52
SMM Execution FIow Diagramc.eeereitmmiiiineae i 2-53
SMM Memory Space Header ...t P 2-54
SMM and Suspended Mode Flow Diagramoiiiiiiiiiiiiiaann 2-57
TI486SLC/E Functional Signal Groupingsoiiieiiianneeneaiiinnns 3-4
Internal Processor Clock Synchronization oo oottt 3-16
Bus Activity from RESET until First Code Fetcht 3-17

Xiii

Figures

34

3-5

3-6

3—7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
4-1

4-3
4-4
4-5
4-6

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26

Xiv

Fastest Non-Pipelined Read Cycles ...t 3-19
Various Non-Pipelined Bus Cycles (NoWait States)t 3-20
Various Non-Pipelined Bus Cycles with Different Numbers of Wait States 3-21
Non-Pipelined Bus States i i i et e eens 3-22
Fastest Pipelined Read Cycleso e e 3-24
Various Pipelined Cycles (OneWaitState)ot 3-26
Fastest Transition to Pipelined Address Following Idle Bus State 3-27
Transitioning to Pipelined Address During Burstof Bus Cycles 3-28
Complete Bus Statest i e 3-29
Interrupt Acknowledge Cycles i i 3-31
Non-Pipelined Halt Cycleo i e e 3-32
Pipelined Shutdown CyCleot et 3-33
Non-Pipelined Cache Fills Using KEN (With Different Numbers of Wait States) 3-34
Pipelined Cache Fills Using KEN (With Different Numbers of Wait States) 3-35
Masking A20 Using A20M During Burstof BusCyclesoooviits, 3-37
Requesting Hold from Idle Bus State i, 3-39
Requesting Hold from Active Non-PipelinedBusooiiiii.t. 3-40
Requesting Hold from Active Pipelined Bus, 3-41
O TIMING .« ot e e e 3-43
VO Trap TimMiNg . oottt e et e i et 3-43
SUSP Initiated Suspend Mode e 3-44
Halt Initiated Suspend Mode i e 3-45
Stopping CLK2 During Suspend Mode ...t 3-46
Enteringand Exiting Float 3-47
TI486DLC/E Functional Signal Groupingscoiiviiiiiiiiiiiiiiininnaenns 4-4
Internal Processor Clock Synchronizationottt 4-17
Bus Activity from RESET until First Code Fetch i i, 4-18
Fastest Non-Pipelined Read Cycles ..ottt iiiannans 4-20
Various Non-Pipelined Bus Cycles (No Wait States)ccciiiviein.. 4-21
Various Non-Pipelined Bus Cycles with Different Numbers of Wait States 4-22
Non-Pipelined Bus Stateso 4-23
Fastest Pipelined Read Cyclesot i e 4-25
Various Pipelined Cycles (OneWait State)o i iiiiiiiiinan.. 4-27
Fastest Transition to Pipelined Address Following IdieBus State 4-28
Transitioning to Pipelined Address During Burstof BusCycles 4-29
Complete Bus States e e s 4-30
Non-Pipelined Bus Cycles UsingBS16 i i 4-32
Pipeliningand BS16ccu..... e 4-34
Interrupt Acknowledge Cycles ... e 4-35
Non-Pipelined Halt CycCle ittt eeans 4-37
Pipelined Shutdown CycCleot i e 4-39
Non-Pipelined Cache Fills USiINng KENttt 4-40
Non-Pipelined Cache Fills Using KENandBS16, 4-41
Pipelined Cache Fills Using KEN i e e 4-42
Masking A20 Using A20M During Burstof BusCyclesccovane. 4-44
Requesting Hold from Idle Bus State, e 4-46
Requesting Hold from Active Non-PipelinedBuso, 4-47
Requesting Hold from Active PipelinedBus ..., 4-48
OMITIMING .. i e 4-50
7@ 2 ¢ o T {311 T 4-50

Figures

4-27
4-28
4-29
5-1
5-2

54
5-5
5-6
5-7
5-8
5-9
5-10

5-11
5-12
5-13
5-14
5-15
6-1
62
6-3

6-5
7-1
A1
B-1
B-2

SUSP Initiated Suspend Modettt it e 4-51
Halt Initiated Suspend Mode i i e e e 4-52
Stopping CLK2 During Suspend Mode it ei i as 4-53
Internal Pullup/Pulldown-IV Characteristic, 5-4
TI486SLC/E and TI486SLC/E-V Drive Level and Measurement Points for

Switching Characteristicsc.co i i et 5-11
TI486DLC/E Drive Level and Measurement Points for Switching Characteristics 5-12
CLK2 Timing Measurement Pointso it ieeiienees 5-12
RESET Setupand Hold TIMiNGuiitiin ittt iiiii i iiae e eeannanneens 5-17
TI486SLC/E and T1486SLC/E-V Input Signal Setup and Hold Timing 5-17
TI486SLC/E and TI486SLC/E-V Output Signal Valid Delay Timing 5-18
TI486SLC/E and T1486SLC/E-V Data Write Cycle Valid Delay Timing 5-18
TI486SL.C/E and TI486SLC/E-V Data Write Cycle Hold Timing 5-18
TI486SLC/E and T1486SLC/E-V Qutput Signa! Float Delay and

HLDA Valid Delay Timingcuvire it ae et eaiieeee e eaaanas 5-19
TI486DLC/E and T1486DLC/E-V Input Signal Setup and Hold Timing 5-20
TI486DLC/E and TI486DLC/E-V Output Signal Valid Delay Timing 5-21
TI486DLC/E and TI486DLC/E-V Data Write Cycle Valid Delay Timing 5-21
TI1486DLC/E and TI486DLC/E-V Data Write Cycle Hold Timing 5-21
TI486DLC/E Output Signal Float Delay and HLDA Valid Delay Timing 5-22
TI486SLC/E and TI486SLC/E-V Pin Assignmentsooiiiiiinninnnnnnnnn. 6-4
TI486DLC/E and TI486DLC/E-V Package Pins (Bottom View) 6-6
TI486DLC/E and TI486DLC/E-V Package Pins (Top View)c.ooiiiiiiiiiinn.. 6-7
100-Pin Plastic Bumpered QFP Package Dimensions

(TI486SLC/E and TI486SLC/E-V)ioiiii ittt it ieeenaaaes 6-9
132-Pin PGA Package Dimensions (T1486DLC/E and TI486DLC/E-V) 6-10
General Instruction Format i e et 7-4
SMM Memory Space Headero it e A-5
FLUSH LOGIC .« .ttt it et et et e et i et anenenns B-1
FLUSH LOgIC ..ot e ettt et et aa e B-2

Xv

2-10
2-11
2-12
2-13
2-14
2—-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25

TI486SLC/E Initialized RegisterContents i 2-5

TI486DLC/E Initialized Register Contentscoiiiiiiiiiiiii i 2-6
Segment Register SelectionRules i 2-14
EFLAGS Definitionso et e 2-16
CROBIt Definitionst e e et e 2-20
Segment Descriptor Bit Definitions e 2-23
Gate Descriptor Bit Definitions D 2-24
TI486SLC/E Configuration Control Registers i, 2-28
TI1486DLC/E Configuration Control Registersccoiiiiiiiiiiiiinnn e, 2-29
CCROBIit Definitionso e e e 2-30
CCR1BIit Definitions e i 2-30
ARR1-ARR4 Block Size Field e 2-31
DR6 and DR7 Field Definitions e 2-32
TR6 and TR7 Bit Definitionso it 2-35
TR6 Attribute Bit Pairs e 2-35
TR3-TR5 Bit Definitionscoiiiiii i e 2-36
Memory AddressingModes ... e 2-40
Directory and Page Table Entry (DTE and PTE) Bit Definitions 2-44
Interrupt Vector Assignments ... e 2-47
Interrupt and Exception Priorities e 2-49
Exception Changesin RealMode it 2-49
Error Code Bit Definitionso e 2-50
SMM Memory Space Headerttt IO 2-54
SMM INStruction Seto e 2-55
Descriptor Types Used for Control Transferottt 2-60
TI486SLC/E Signal SUMMATY . .. oo 3-5
Terminal FUNCHIONSo i ettt e i e neas 3-6
Signal States During RESET and Hold Acknowledgeot 3-12
Bus Cycle Types ... e 3-13
Signal States During Suspend Mode e 3-15
TI486DLC/E Signal SUMMaArYottt ettt nanaaaaenes 4-5
Terminal FUNCHONS et e et . 4-6
Byte Enable Line Definitions i e 4-12
Write Duplication as a Function of BES-BEO oo i, 4-12
Generating A1-AOUSING BE3-BEOD i 4-12
Signal States During RESET and Hold Acknowledgec.oiiiit. 4-13
BUS CYCIE TYPES .ttt e et e e e 4-14
Signal States During Suspend Mode e 4-16
Pins Connected to Internal Pullup and Pulldown Resistors 5-4
Pins Requiring External Pullup Resistorso i 5-5

Tables

5-3

5-4
5-56
5-6

5-10
5-11

5-12
6-1

6~3
64
6-5
7-1

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
A-1

Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted)o e e

TI486 SLC/E Recommended Operating Conditionscciiee....
Ti486DLC/E Recommended Operating Conditionso,

TI486SLC/E DC Electrical Characteristics at Recommended Operating Conditions
(Typical values are at nominal Vo (5V or3.3V)and Tp=25°C)

TI486DLC/E DC Electrical Characteristics at Recommended Operating Conditions
(Typical values are at nominal Vog (5Vor3.3V)and Tp=25°C)

Measurement Points for Switching Characteristics

AC Characteristics for TI486SLC/E-25 and TI486SLC/E-33,
Vog=475V10525V, Tc=0°Ct0100°Cooviiniiiiiiiiiiineinnns

AC Characteristics for TI486SLC/E-V25, Voc=3V10 3.6V, Tc=0°Ct085°C

AC Characteristics for TI486DLC/E-33 and TI486DLC/E-40
Voe =475V 105.25 V, TG =0°Ct085°C ... vvnrrerreaneeaneaneenneannnnn.

AC Characteristics for TI486DLC/E-V25 and T1486DLC/E-V33
Voc=3V103.6V, Te=0°Ct085°C .. .ouuieeireiiraeiaenineenaennaans

TI486SLC/E and T1486SLC/E-V Signal Names Sorted by Pin Number
TI486SLC/E and TI486SLC/E-V Pin Numbers Sorted by Signal Name
T1486DLC/Eand TI486DLC/E-V Signal Names Sorted by Pin Number
T1486DLC/E and TI486DLC/E-V Pin Numbers Sorted by Signal Name
Package Thermal Resistance and Airflow i,
Instruction Fields e
Instruction Prefix Summary ... i e
W Field ENCOdINgo e
AField ENCOdINGot i i et
reg Field ENcodingcoiiiiiii i i e e e
mod rfm Field ENCOdiNgooiii i i e e
mod r/m Field Encoding DependentonwField
mod base Field ENCoding ...ttt it
SSField ENCOAINGt e e
iNndeX Field ENCOAING oot e et et e aae s
sreg2 Field encodingt e
sreg3 Field ENcoding et e
ece Field EnCodingot e
Flag Abbreviations i e
Action of Instruction onFlagt e
Clock Count Abbreviations e
Instructions, Opcodes, Flags, and Clock Summarycoiiiiiinn..
SMM Memory Space Header i i

XVvii

xviii

Product Overview

sl Product O<m_.<mm<<,

1-2

Chapter 1

Features

O oo 0O

Dood o

Provides an immediate upgrade to 486-class performance for 386 footprints

B TI486SLC/E is up to 2.4 times faster than a 386SL/386SX at same clock
frequency (Landmark 2.0 = 107 MHz, Norton Sl 6.0 = 52 at 33 MHz)

MW TI486DLC/E is up to 2 times faster than a 386DX at same clock frequency
(Landmark 2.0 = 130 MHz, Norton SI 6.0 =66, PM MIPS = 14 at 40 MHz)

Advanced power management features for notebook, battery-powered, and
reduced-power desktop PC systems

Bl System Management Mode (SMM)

B High priority System Management Interrupt (SMI) with separate memory
address space

B Suspend mode (initiated by either hardware or software)

3 V versions available; TI486SLC/E-V and T1486DLC/E-V provide approximately
60 percent power savings

486 compatible instruction set

386SX pin-compatible (TI486SLC/E) and 386DX pin-compatible (T1486DLC/E)
versions)

High-performance
B TI486SLC/E clock speeds of 25 MHz and 33 MHz at 5 V
M TI486SLC/E-V clock speed of 25 MHz at 3 V
B TI486DLC/E clock speeds of 33 MHz and 40 MHz at 5 V
B Ti486DLC/E-V clock speeds of 25 MHz and 33 MHz at 3V

On-chip 1 KByte instruction/data cache can be configured as either direct-mapped
or two-way set associative

Fully static device permits clock stop state.
Highly optimized variable length pipeline and on-chip 16-bit hardware multiplier
Texas Instruments EPICTM submicron CMOS technology

Available in two packages: a 100 pin plastic bumpered quad flat pack for
TI486SLC/E and TI486SLC/E-V and a 132 pin ceramic PGA for TI486DLC/E and
TI486DLC/E-V

EPIC is a trademark of Texas Instruments Incorporated.

1-3

Introduction

11

1-4

Introduction

The Texas Instruments T1486 microprocessor is an advanced x86-compatible
processor offering high performance and integrated power management on
a single chip.

The 486SLC/E is 486 instruction set compatible and is backward compatible
with the 386SX pinout. The TI486SLC/E provides up to 2.4 times the
performance of both the 386SL and 386SX at equal clock frequencies. The
TI486SLC/E is an ideal solution for battery-powered applications in that it
typically draws 0.4 mA supply current while the input clock is stopped in
suspend mode. The TI486SLC/E-V version of the TI486SLC/E offers
additional power savings because it operates on a 3-V as well as 5-V power

supply.

The Texas Instruments TI486DLC/E microprocessor is an advanced 32-bit
x86-compatible processor offering high performance and integrated power
management on a single chip. The CPU is 486 instruction set compatible and
is also compatible with the 386DX pinout. This CPU provides up to twice the
performance of the 386DX at equal clock frequencies. The TI486DLC/E is an
ideal solution for battery-powered applications in that it typically draws 0.4 mA
while the input clock is stopped in suspend mode. The TI486DLC/E-V version
of the TI486DLC/E offers additional power savings because it operates on a
3-V as well as 5-V power supply.

The T1486 supports 8-, 16-, and 32-bit data types and operates in real, virtual
8086, and protected modes. The TI486 microprocessor achieves high
performance through use of a highly optimized, variable-length pipeline
combined with a RISC-like single-cycle execution unit, an on-chip hardware
mulitiplier, and an integrated instruction and data cache.

Product Overview

Differences Between the TI486SLC/E and TI486DLC/E

1.2 Differences Between the TI486SLC/E and TI486DLC/E

The TI486SLC/E and TI486DLC/E are the same except for the pin signals
routed and utilized on the processors. Thus, the bus interfaces are different
but the CPU core and cache/memory management are the same. The
TI486SLC/E has a physical address range of 16 MBytes and the TI486DLC/E
has a physical address range of 4 GBytes. Table 1-1 describes the signal
differences between the TI486SLC/E and TI486DLC/E.

Table 1-1. TI486SLC/E/DLC/E Signal Differences

DESCRIPTION TI486SLC/E TI486DLC/E
Data bus 16-bits wide 32-bits wide
(D15-D0) (D31-D0)
Address bus A23-A1 A31-A2
2-byte enables used 4-byte enables used
Byte enables (__BHE, “BTE‘) (E"E"é_'é—E'b‘)
Float bus signal (FLT) supported not supported
Bus size 16 signal
(BS76) not supported supported

TI486SLC/E Overview

1.3 TI486SLC/E Overview

The TI486SLC/E microprocessor is implemented using Texas Instruments
EPIC submicron CMOS technology and is available in 25-MHz and 33-MHz
versions. Both the 5-V TI486SLC/E and 3-V TI486SLC/E-V versions are
packaged in a 100-pin bumpered quad flat pack (QFP).

Figure 1-1 is a functional block diagram of the TI486SLC/E. The TI1486SLC/E
architecture results in up to 2.4 times the performance of conventional 386SX
notebook CPUs as listed below.

[Up to 2.4 times faster than 386SX at same frequency

(1] Landmark 2.0 = 107 MHz, Norton Si 6.0 = 52 at 33 MHz

Figure 1-1. TI486SLC/E Functional Block Diagram

e ——————— e e e 1 R T
| 16byte | | Core |
| Decoder Instruction |« SUSP
| Queue l Clogk] 4___'_|
| |Suspend] SUSPA |
| | Bus | Mode |
l Control immediate | C|C|’2k_ Control CLK2 |
y I 324 | —
SMi
: ROM | pmeral | | | smm [————+>
Address | ataBusl | | Control | SMADS | |
: Sequencerj« > Microcode ROM | | |
| |
I | l |
| Control Immediate |, Memory Enhanced 386SX |
|
| Data Bus | B(:on}pat:'?h :
| | | us interface
- n |
: s o Execution Unit I MBUV)ISS | i o150 |
| ranch ZOM | Limit| Muttiplier 3-input | Shitt | Registerf*—+1 "3 10 et g fle—~—1»
I Unit| Unit | Adder|Unit| Fie | | | Regs | 16 |
Unit | | :
| _Execution Pipeline [———————————— | | |
| | I
: v y | Bus Control |
Control I
| Memory 1 KByte |
| Managementﬂ—» Prﬁf:i:ch »| Instr/Data o | {
| Unit Cache { |
| Instruction |
| I 1‘ Address Bus ! _A23-A1_|
| Cache and Memory i' Address M}.»
| Management Data Address Bus _ | Buffers |
| ! ,
e e e l — ___1
TI486SLC/E Microprocessor
1-6 Product Overview

TI486SLC/E Overview

Figure 1-2. TI486SLC/E Logic Symbol

D
MICROPROCESSOR
TI486SLC/E
CLK2 ———sz Clock Input Bus Hold Request < HOLD
RESET Reset Arbitration Hold Ack. HLDA
NMI—— Non-Maskable Req.
Interrupt Bus Ready |~ READY
INTR——] Maskable Req. :
- Control p..o Next Address Req. 1 «—— NA
SMI—<>— ¢ System Mgmt Int. Cycle
Control Address StrobeV i ADS
T N ¢ Foat SMM Address StrobeVv > SMADS
KEN—L ¢ Cache Enable lé:gﬂ;al
FLUSH—— ¢ Cache Flush |Interface
Data/Control v |——— D/C
PEREQ — © Extension Req. _
Bus| Memory /O ViI— m/iO
BUSY— ¢ Extension Busy | COProcessor Cycle
R Interface Definition Write/Read vV — W/R
ERROR ——| ¢ Extension Error
Bus Lock p—— LOCK
SUSP—™] € Suspend Req. | power
Byte High En. v P——— BHE

SUSPA———— Suspend Ack. Management Byte
Enables Byte Low En. v P——— BLE

A20M—— ¢ Address Bit 20 Mask

DO 0 1 Al

. ° . °

: t| v paa > [Address> v | - :

° 3 L d Y
DiI5s— 15 23 A23

T This symbol is in accordance with ANSI/IEEE Std 91-1984.

1-7

TI486SLC/E Overview

The TI486SLC/E includes two power management signals (SUSP and
SUSPA), two cache interface signals (FLUSH and KEN), an A20 mask input

(A20M), and two SMM signals (SMADS and SMI) that are additions to the
386SX signal set. The complete list of TI486SLC/E signals is shown in

Figure 1-3.

Figure 1-3. TI486SLC/E Input and Output Signals

A20M —»
BUSY —»
CLK2 —
ERROR —P
FLT —¥|
FLUSH —»
INTR —]
HOLD —»
KEN —»

NA —P]
NMI —>
PEREQ —»
SUSP —»
READY —»
RESET —¥|

A

TI486SLC/E
Microprocessor

B Internal Cache Interface

@ Power Management

A A20 Mask

¢ System Management Mode

1-8

PTG

Product Overview

TI486DLC/E Overview

1.4 TI486DLC/E Overview

The TI486DLC/E microprocessor is implemented using Texas Instruments
EPIC submicron CMOS technology and is available in 33-MHz and 40-MHz
versions. Both the TI486DLC/E and the 3-V TI486DLC/E-V are offered in a
132-pin ceramic PGA package.

Figure 1—4 is a functional block diagram of the TI486DLC/E. The T1486DLC/E
typically benchmarks 1.5 to 2 times faster than a 386DX at the same clock
frequency as listed below.

(J Landmark 2.0 = 130 MHz at 40 MHz
[J Norton SI 6.0 = 66 at 40 MHz
(d PMMIPS = 14 at 40 MHz

Figure 1—4. TI486DLC/E Functional Block Diagram

—_——————— e 1 - ————————————— |
: 16-byt I : |
-byte
| Decoder Instruction : Core SUSP |
| Queue Clogk «—
| | | “|suspend| SUSPA |
| Bus Mode
= Control Immediate | Cl?zk_ Control cikz |
i y I 2f | __
SMI
: ROM | Dlntergal | SMM <vAos |
Address | ata Bus [Control SMADS
| |sequencerje——» Microcode ROM [|
| | :'
I
I Control Immediate |, Memory | S
| Data Bus 386DX Compatible |
| | : Bus Interface |
| Execution Unit | Byte
I Branch Control |, ol sl Muxes | LMo ! Data | D31-D0 |
| Limit| Muttiplier] 3-Input| Shift | Registe | and I/0 " 7| Buffers 32
| Unit] Unit AS er | Unit | File Registers | |
| B = I | |
L _Execution Pipefine | ————————————— | | |
|
K ; v : Bus Control |
Control
|
Memory 1 KByte |
Managementf—» PraneiECh »1 Instr/Data > | |
i Cache |
Unit | I
Instruction : |
f Address Bus ! o »Asl'A—zJ
Cache and Memory 1 Address | BES - BEO
Management Data Address Bus | _ | Buffers |
|
e e e e e L __ d

TI486DLC/E Microprocessor

1-9

TI486DLC/E Overview

Figure 1-5. TI486DLC/E Logic Symbol

)
32-BIT MICROPROCESSOR
TI486DLC/E
CLK2 >2x Clock Input Bus |Hold Request |—<—— yo1 p
Arbitration Hold Ack.
RESET —— Reset HLDA
NMI—— Non-Maskable Req. Bus Size 16 [<+— BS16
INTR——| Maskable Req. 'é‘;i::‘;';" Bus Bus Ready |1 «— READY
SMi—e>—] ¢ system Mgmt Int. c C);clt-i Next Address Req. 1« NA
r
ontro Address StrobeV —— ABS
KEN—™>] ¢ Cache Enable l(r:lterr"nal SMM Address StrobeV f~——— SMADS
ache
FLUSH—] @ Cache Flush |Interface
Data/Control v D/C
PEREQ — © Extension Req. Bus| Memory /O V| Mo
_— N . Coprocessor Cycle . _
BUSY € Extension Busy | - ce Definition| Write/Read v WR
ERROR — | ¢ Extension Error Bus Lock P Lock
§USP — | ¢ suspend Req. Power Byte Enable 3V BE3
SUSPA—=] Suspend Ack. | Management Byte Byte Enable 2v |>——— BE2
Enables | pyte Enable 1v P———— BE]
A20M—>| ¢ Address Bit 20 Mask Byte Enable 0V >——— BEO
DO 0 2 A2
] ° . .
: K vl :
. . _ . .
D31 31 31 A31

T This symbol is in accordance with ANSI/IEEE Std 91-1984.

Product Overview

T1486DL.C/E Overview

The TI486DLC/E includes two power management signals (SUSP and
SUSPA), two cache interface signals (FLUSH and KEN), an A20 mask input
(A20M), and two SMM signals (SMADS and SMI) that are additions to the
386DX signal set. The complete list of TI486DLC/E signals is shown in

Figure 1-6.

Figure 1-6. TI486DLC/E Input and Output Signals

A20M —P>| A
BS16 —» :'> A31-A2
BUSY —»| —» ADS
TI486DLC/E o
CLK2 —P» Microprocessor —» BE3-BEO
ERROR —¥, <:> D31-D0
FLUSH —»| m L » DC
INTR —| | 5 HiDA
HOLD —»| |, OCK
KEN —>(m —» MO
NA —» o |—» SUSFA
NMI — | » SVADS
PEREQ —» l—» Wi
SUSP —b| @ — » WA
READY —¥|
RESET —»|

B Internal Cache Interface

@ Power Management

A A20 Mask

¢ System Management Mode

Execution Pipeline / On-Chip Cache

1.5 Execution Pipeline

The TI486 execution path consists of five pipelined stages optimized for
minimal instruction cycle times. These five stages are:

1 Code Fetch

[Instruction Decode

[Microcode ROM Access

(1 Execution

[Memory/Register File Write-Back

These stages have been designed with hardware interlocks that permit
successive instruction execution overlap.

The 16-byte instruction prefetch queue fetches code in advance and prepares

it for decode, helping to minimize overall execution time. The instruction
decoder then decodes four bytes of instructions per clock eliminating the need
for a queue of decoded instructions. Sequential instructions are decoded
quickly and provided to the microcode. Non-sequential operations do not have
to wait for a queue of decoded instructions to be flushed and refilled before
execution continues. As a result, both sequential and non-sequential
instruction execution times are minimized.

The execution stage takes advantage of a RISC-like single-cycle execution
unit and a 16-bit hardware multiplier. The write-back stage provides
single-cycle 32-bit access to the on-chip cache and posts all writes to the
cache and system bus using a two-deep write buffer. Posted writes allow the
execution unit to proceed with program execution while the bus interface unit
completes the write cycle.

1.6 On-Chip Cache

The T1486 on-chip cache maximizes overall performance by quickly supplying
instructions and data to the internal execution pipeline. An external memory
access takes a minimum of two clock cycles (zero wait states). For cache hits,
the T1486 eliminates these two clock cycles by overlapping cache accesses
with normal execution pipeline activity. Additional bus bandwidth is gained by
presenting instructions and data to the execution pipeline up to 32 bits ata time
compared to 16 bits per cycle for an external memory access.

The T1486 cache is a 1-KByte write-through unified instruction and data cache
and lines are allocated only during memory read cycles. The cache can be
configured as direct-mapped or as two-way set associative. The
direct-mapped organization is a single set of 256 four-byte lines. When
configured as two-way set associative, the cache organization consists of two
sets of 128 four-byte lines and uses a Least Recently Used (LRU) replacement
algorithm.

Product Overview

Power Management / System Management Mode (SMM)

1.7 Power Management

1.7.1 Suspend Mode and Static Operation

The T1486 power management features allow a dramatic reduction in current
consumption when the TI486 microprocessor is in suspend mode (typically
less than 3 percent of the operating current). Suspend mode is entered either
by a hardware or software initiated action. Using the hardware to initiate
suspend mode involves a two-pin handshake using the SUSP and SUSPA
signals.

The software initiates suspend mode through execution of the HALT
instruction. Once in suspend mode, the TI486 power consumption is further
reduced by stopping the external clock input. Since the T1486 is a static device,
no internal CPU data is lost when the clock input is stopped.

1.7.2 3-V Operation

The TI486SLC/E-V version of the TI1486SLC/E operates from either a 3-V or
a 5-V supply. While operating with a 3-V supply, the power consumed by the
TI486SLC/E-V is typically only 30 percent of the power consumed while
operating at 5 V. The TI486SLC/E-V is available in 25-MHz speed.

The TI486DLC/E-V version of the TI1486DLC/E operates from either a 3-V or
a 5-V supply. While operating with a 3-V supply, the power consumed by the
TI486DLC/E-V is typically only 30 percent of the power consumed while
operating at 5 V. The TI486DLC/E-V is available in both 25-MHz and 33-MHz
speeds.

1.8 System Management Mode (SMM)

System Management Mode (SMM) provides an additional interrupt and a
separate address space which can be used for system power management
or software transparent emulation of I/O peripherals. SMM is entered using the
System Management Interrupt (SMI) which has a higher priority than any other
interrupt. While running in protected SMM address space, the SMI interrupt
routine can execute without interfering with the operating system or
application programs.

After reception of an SMI, portions of the CPU state are automatically saved,
SMM is entered and program execution begins at the base of SMM address
space. The location and size of the SMM memory is programmabile within the
TI486. Seven SMM instructions have been added to the 486 instruction set
that permit saving and restoring the total CPU state when in SMM mode.

Product Overview

2-1

Programming Interface

2-2

Chapter 2

In this chapter, the internal operations of the Ti486 are described mainly from
an application programmer’s point of view. Included in this chapter are
descriptions of processor initialization, the register set, memory addressing,
various types of interrupts, and the shutdown and halt process. Also included
is an overview of real, virtual 8086, and protected operating modes.

Topic Page

Processor Initialization

2.1 Processor Initialization

The TI486 is initialized when the RESET signal is asserted. The processor is
placed in real mode and the registers listed in Table 2—1 and Table 2—-2 are set
to their initialized values. RESET invalidates and disables the T1486 cache,
and turns off paging. When RESET is asserted, the TI1486 terminates all local
bus activity and all internal execution. During the entire time that RESET is
asserted, the internal pipeline is flushed and no instruction execution or bus
activity occurs. '

Approximately 350 to 450 CLK2 clock cycles (additional 220 + 60 if self-test is
requested) after de-assertion of RESET, the processor begins executing
instructions at the top of physical memory (address location FF FFFOh for the
SLC and FFFF FFFOh for the DLC). When the first intersegment JUMP or
CALL is executed, address lines A23—-A20 for the SLC or A31-A20 for the
DLC are driven low for code segment-relative memory access cycles. While
these address lines are low, the TI486 executes instructions only in the lowest
1 MByte of physical address space until system-specific initialization occurs
via program execution.

Programming Interface

Processor Initialization

Table 2—-1. TI486SLC/E Initialized Register Contents

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xx xxxxh 00 0000h indicates self-test
passed.

EBX Base xx xxxxh

ECX Count xx xxxxh

EDX Data xx 0400 + Revision ID Revision ID = 10h.

EBP Base pointer xx xxxxh

ESI Source index xx xxxxh

EDI Destination index xx Xxxxh

ESP Stack pointer xx xxxxh

EFLAGS Flag word 00 0002h

EIP Instruction pointer 00 FFFOh

ES Extra segment 000Ch Base address set to 00 0000h.
Limit set to FFFFh.

Cs Code segment FOOOh Base address set to 00 0000h.
Limit set to FFFFh.

SS Stack segment 0000h

DS Data segment 0000h Base address set to 00 0000h.
Limit set to FFFFh.

FS Extra segment 0000h

GS Extra segment 0000h

IDTR Interrupt Descriptor Table Register | Base=0, Limit=3FFh

CRO Machine status word 60 0010h

CCRO Configuration Control 0 00h

CCRt1 Configuration Control 1 xx xxx0 (binary)

ARR1 Address Region 1 000Fh 4 GByte non-cacheable region.

ARR2 Address Region 2 0000h

ARR3 Address Region 3 0000h

ARR4 Address Region 4 0000h

DR7 Debug register DR7 00 0000h

Note: x = Undefined value

Processor Initialization

Table 2-2. TI486DLC/E Initialized Register Contents

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator XXXX XXxxh 0000 0000h indicates self-test
passed.

EBX Base XXXX XXxxh

ECX Count XXXX XXxXxh

EDX Data xxxx 0400 + Revision ID Revision ID = 10h.

EBP Base pointer Xxxx xxxxh

ESI Source index XXXX XxXxxh

EDI Destination index XXXX Xxxxh

ESP Stack pointer XXxx Xxxxh

EFLAGS Flag word 0000 0002h

EIP Instruction pointer 0000 FFFOh

ES Extra segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

Cs Code segment FOOOh Base address set to 0000 0000h.
Limit set to FFFFh.

Ss Stack segment 0000h

DS Data segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra segment 0000h

GS Extra segment 0000h

IDTR Interrupt Descriptor Table Register | Base=0, Limit=3FFh

CRO Machine status word 6000 0010h

CCRO Configuration Control 0 00h

CCR1 Configuration Control 1 xxxx xxx0 (binary)

ARR1 Address Region 1 000Fh 4 GByte non-cacheable region.

ARR2 Address Region 2 0000h

ARR3 Address Region 3 0000h

ARR4 Address Region 4 0000h

DR7 Debug register DR7 0000 0000h

Note: x = Undefined value

Programming Interface

Instruction Set Overview

2.2

Instruction Set Overview

The TI486 instruction set can be divided into eight types of operations:

Arithmetic

Bit manipulation

Control transfer

Data transfer

High-level language support
Operating system support
Shift/rotate

String manipulation

All TI486 instructions operate on as few as 0 operands and as many as
3 operands. A NOP instruction (no operation) is an example of a 0 operand
instruction. Two operand instructions allow the specification of an explicit
source and destination pair as part of the instruction. These two operand
instructions can be divided into eight groups according to operand types:

Register to register
Register to memory
Memory to register
Memory to memory
Register to /O

I/O to register

Immediate data to register
Immediate data to memory

An operand can be held in the instruction itself (as in the case of an immediate
operand), in a register, in an I/O port, or in memory. An immediate operand is
prefetched as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are supported. Operand lengths of 8 or
32 bits are generally used when executing code written for 386- or 486-class
(32-bit code) processors. Operand lengths of 8 or 16 bits are generally used
when executing existing 8086 or 80286 code (16-bit code). The default length
of an operand can be overridden by placing one or more instruction prefixes
in front of the opcode. For example, by using prefixes, a 32-bit operand can
be used with 16-bit code or a 16-bit operand can be used with 32-bit code.

Chapter 7 of this manual lists each instruction in the TI486 instruction set along
with the associated opcodes, execution clock counts, and effects on the
FLAGS register.

Instruction Set Overview

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain instructions that read, modify,
then write back to memory. The prefix asserts the LOCK signal to indicate to
the external hardware that the CPU is in the process of running multiple
indivisible memory accesses. The LOCK prefix can be used with the following
instructions:

Bit Test Instructions (BTS, BTR, BTC)

Exchange Instructions (XADD, XCHG, CMPXCHG)

One-operand Arithmetic and Logical Instructions
(DEC, INC, NEG, NOT)

Two-operand Arithmetic and Logical Instructions
(ADC, ADD, AND, OR, SBB, SUB, XOR).

An invalid opcode exception is generated if the LOCK prefix is used with any
other instruction, or with the above instructions when no write operation to
memory occurs (i.e., the destination is a register).

Programming Interface

Register Set

2.3 Register Set

There are 43 accessible registers in the TI486 and these registers are grouped
into two sets. The application register set contains the registers frequently
used by applications programmers, and the system register set contains the
registers typically reserved for use by operating systems programmers.

The application register set is made up of:

M Eight 32-bit general purpose registers
B Six 16-bit segment registers

Bl One 32-bit flag register

B One 32-bit instruction pointer register.

The system register set is made up of the remaining registers which include:

B Three 32-bit control registers

B Two 48-bit and two 16-bit system address registers
B Two 8-bit and four 16-bit configuration registers

M Six 32-bit debug registers

B Five 32-bit test registers.

Each of the registers is discussed in detail in the following sections.

2.3.1 Application Register Set

The application register set (Figure 2—1) consists of the registers most often
used by the applications programmer. These registers are generally
accessible and are not protected from read or write access.

The General Purpose Registers contents are frequently modified by assembly
language instructions and typically contain arithmetic and logical instruction
operands.

The Segment Registers contain segment selectors, which index into tables
located in memory. These tables hold the base address for each segment, as
well as other information related to memory addressing.

The Flag Register contains control bits used to reflect the status of previously
executed instructions. This register also contains control bits that affect the
operation of some instructions.

The Instruction Pointer is a 32-bit register that points to the next instruction that
the processor will execute. This register is automatically incremented by the
processor as execution progresses.

29

Register Set

Figure 2—-1. Application Register Set

31 16 15 87 0
_______ AX] N
AH 1 AL EAX
_______ BX _]
BH ;rx BL EBX
I o] N oL] ECX
————D—H————Dﬁ—————ﬁ—— EDX General
> Purpose
Si ES Registers
DI EDI
BP EBP
SP ESP
7~
15 0
cs h
SS
DS L Segment
ES Registers
FS
GS
~
31 16 15 0
P EIP Instruction
Pointer and
FLAGS EFLAGS Registers

2.3.1.1 General Purpose Registers

The general purpose registers are divided into four data, two pointer registers,
and two index registers as shown in Figure 2-2.

Data Registers

The data registers are used by the applications programmer to manipulate
data structures and to hold the results of logical and arithmetic operations.
Different portions of the general data registers can be addressed by using
different names. An “E” prefix identifies the complete 32-bit register. An “X”
suffix without the “E” prefix identifies the lower 16 bits of the register. The lower
two bytes of the register can be addressed with an “H” suffix to identify the
upper byte or an “L” suffix to identify the lower byte. When a source operand
value specified by an instruction is smaller than the specified destination
register, the upper bytes of the destination register are not affected when the
operand is written to the register.

2-10 Programming Interface

Register Set

Pointer and Index Registers

The pointer and index registers are listed below:

Sl or ESI Source index
Dl or EDI Destination Index
BP or EBP Base pointer
SP or ESP Stack Pointer

These registers can be addressed as 16- or 32-bit registers, with the “E” prefix
indicating 32 bits. These registers can be used as general purpose registers,
however, some instructions use a fixed assignment of these registers. For
example, the string operations always use ESI as the source pointer, EDI as
the destination pointer, and ECX as a counter. The instructions using fixed
registers include double-precision multiply and divide, I/O access, string
operations, translate, loop, variable shift and rotate, and stack operations.

The TI486 processor implements a stack using the ESP register. This stack
is accessed during the PUSH and POP instructions, procedure calls,
procedure returns, interrupts, exceptions, and interrupt/exception returns.
The microprocessor automatically adjusts the value of the ESP during
operation of these instructions. The EBP register may be used to reference
data passed on the stack during procedure calls. Local data may also be
placed on the stack and referenced relative to BP. This register provides a
mechanism to access stack data in high-level languages.

2-11

Register Set

Figure 2-2. General Purpose Registers

DATA REGISTERS
31 16 15 87 0
[| | | | A (Accumulator)
[W l | | B (Base)
| | \ | 1 ¢ (Count)
L | | l "] D (Data)
\ ~ 7
nva
_H
\ /
v
X
N /
vV
E_X
POINTER and INDEX REGISTERS
L ‘ | | | BP (Base Pointer)
I l J L J Sl (Source-Index)
| | | | | DI (Destination-Index)
I_ ') J SP (Stack-Pointer)
\ /
\/
\ - /
\/
E

2-12

Programming Interface

Register Set

2.3.1.2 Segment Registers and Selectors

Segmentation provides a means of defining data structures inside the memory
space of the microprocessor. There are three basic types of segments: code,
data, and stack. Segments are used automatically by the processor to
determine the locations in memory of code, data, and stack references.

There are six 16-bit segment registers:

CS Code segment

DS Data segment

ES Extra segment

SS Stack segment

FS Additional data segment
GS Additional data segment

In real and virtual 8086 operating modes, a segment register holds a 16-bit
segment base. The 16-bit segment base is multiplied by 16 and a 16-bit or
32-bit offset is then added to it to create a linear address. The offset size is
dependent on the current address size. In real mode and in virtual 8086 mode
with paging disabled, the linear address is also the physical address. In virtual
8086 mode, with paging enabled, the linear address is translated to the
physical address using the current page tables.

In protected mode, a segment register holds a segment selector containing a
13-bit index, a table indicator (T1) bit, and a two-bit requested privilege level
(RPL) field as shown in Figure 2-3.

The Index points into a descriptor table in memory and selects one of 8192
(213) segment descriptors contained in the descriptor table. A segment
descriptor is an eight-byte value used to describe a memory segment by
defining the segment base, the segment limit, and access control information.
To address data within a segment, a 16-bit or 32-bit offset is added to the
segment’s base address. Once a segment selector has been loaded into a
segment register, an instruction needs to specify the offset only.

The Table Indicator (T) bit of the selector defines which descriptor table the
index points into. If Ti=0, the index references the Global Descriptor Table
(GDT). If TI=1, the index references the Local Descriptor Table (LDT). The
GDT and LDT are described in more detail later in this chapter.

The Requested Privilege Level (RPL) field contains a 2-bit segment privilege
level (00=most privileged, 11=least privileged). The RPL bits are used when
the segment register is loaded to determine the effective privilege level (EPL).
If the RPL bits indicate less privilege than the program, the RPL overrides the
current privilege level and the EPL is the lower privilege level. If the RPL bits
indicate more privilege than the program, the current privilege level overrides
the RPL and again the EPL is the lower privilege level.

2-13

Register Set

When a segment register is loaded with a segment selector, the segment
base, segment limit, and access rights are also loaded from the descriptor
table into a user-invisible or hidden portion of the segment register, i.e., cached
on-chip. The CPU does not access the descriptor table again until another
segment register load occurs. If the descriptor tables are modified in memory,
the segment registers must be reloaded with the new selector values.

The processor automatically selects a default segment register for memory
references. Table 2-3 describes the selection rules. In general, data
references use the selector contained in the DS register, stack references use
the SS register, and instruction fetches use the CS register. While some of
these selections may be overridden, instruction fetches, stack operations, and
the destination write of string operations cannot be overridden. Special
segment override prefixes allow the use of alternate segment registers
including the use of the ES, FS, and GS segment registers.

Figure 2-3. Segment Selector

15

INDEX I RPL

Tl = Table Indicator

RPL = Requested Privilege Level

Table 2-3. Segment Register Selection Rules

M
TYPE OF MEMORY REFERENCE PLISEE%&):":?ULT) SEGME:;E?:\I’)E RRIDE

Code fetch Cs None
Destination of PUSH, PUSHF, INT, CALL, PUSHA instructions SS None
Source of POP, POPA, POPF, IRET, RET instructions SS None
Destination of STOS, MOVS, REP STOS, REP MOVS instructions ES None
Other data references with effective address using base registers of:

EAX, EBX, ECX, EDX, ESI, EDI DS CS, ES, FS, GS, SS

EBP, ESP SS CS, DS, ES, FS, GS

2-14 Programming Interface

Register Set

2.3.1.3 Instruction Pointer Register

The Instruction Pointer (EIP) register contains the offset into the current code
segment of the next instruction to be executed. The register is normally
incremented with each instruction execution unless implicitly modified through
an interrupt, exception, or an instruction that changes the sequential execution
flow (e.g., jump, call).

2.3.1.4 Flags Register

The Flags Register, EFLAGS, contains status information and controls certain
operations on the T1486 microprocessor. The lower 16 bits of this register are
referred to as the FLAGS register that is used when executing 8086 or 80286
code. The flag bits are shown in Figure 2—4 and defined in Table 2—4.

Figure 2—4. EFLAGS Register

FLAGS
A

\
3 2
4

o=)

2 11111111
3 765432109876543210

000000000000 O RN 2
|

mo

D I|T|s|z|,|Al.|P|,|C
FIF|F|F|F|[O|F F

Q>
=<

ALIGNMENT CHECK —— § ——
VIRTUAL 8086 MODE —— § ————
RESUME FLAG
NESTED TASK FLAG
I/0 PRIVILEGE LEVEL
OVERFLOW
DIRECTION FLAG
INTERRUPT ENABLE
TRAP FLAG

SIGN FLAG

ZERO FLAG
AUXILIARY CARRY
PARITY FLAG
CARRY FLAG

[/, 3w

>>NOP>>000>0W

A = Arithmetic Flag, D = Debug Flag, S = System Flag, C = Control Flag
0 or 1 Indicates Reserved

2-15

Register Set

Table 2—4. EFLAGS Definitions

BIT

POSITION

NAME

FUNCTION

0

CF

Carry Flag. Setwhen a carry out of (addition) or borrow into (subtraction) the most significant
bit of the result occurs; cleared otherwise.

PF

Parity Flag. Setwhenthe low-order 8 bits of the result contain an even number of ones; cleared
otherwise.

AF

Auxiliary Carry Flag. Setwhen a carry out of (addition) or borrow into (subtraction) bit position
3 of the result occurs; cleared otherwise.

ZF

Zero Flag. Set if result is zero; cleared otherwise.

SF

Sign Flag. Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

TF

Trap Enable Flag. Once set, a single-step interrupt occurs after the next instruction completes
execution. TF is cleared by the single-step interrupt.

IF

Interrupt Enable Flag. When set, maskable interrupts (INTR input pin) are acknowledged and
serviced by the CPU.

10

DF

Direction Flag. When cleared, DF causes string instructions to auto-increment (default) the
appropriate index registers (ESI| and/or EDI). Setting DF causes auto-decrement of the index
registers to occur.

1

OF

Overflow Flag. Set if the operation resulted in a carry or borrow into the sign bit of the result
but did not result in a carry or borrow out of the high-order bit. Also set if the operation resulted
ina carry or borrow out of the high-order bit but did not result in a carry or borrow into the sign
bit of the result.

12,13

10PL

1/0 Privilege Level. While executing in protected mode, IOPL indicates the maximum current
privilege level (CPL) permitted to execute I/0 instructions without generating an exception 13
fault or consulting the I/O permission bit map. IOPL also indicates the maximum CPL allowing
alteration of the IF bit when new values are popped into the EFLAGS register.

14

NT

Nested Task. While executingin protected mode, NT indicates that the execution of the current
task is nested within another task.

16

RF

Resume Flag. Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17

VM

Virtual 8086 Mode. If set while in protected mode, the microprocessor switches to virtual 8086
operation handling segment loads as the 8086 does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set by the IRET instruction (if current privilege level=0)
or by task switches at any privilege level.

18

AC

Alignment Check Enable. In conjunction with the AM flag in CRO, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults are
enabled.

2-16

Programming Interface

Register Set

2.3.2 System Register Set

The system register set (Figure 2-5) consists of registers not generally used
by application programmers. These registers are typically used by system
level programmers who generate operating systems and memory
management programs.

The Control Registers control certain aspects of the TI486 microprocessor
such as paging, coprocessor functions, and segment protection. When a
paging exception occurs while paging is enabled, the control registers retain
the linear address of the access that caused the exception.

The Descriptor Table Registers and the Task Register can also be referred to
as system address or memory management registers. These registers consist
of two 48-bit and two 16-bit registers. These registers specify the location of
the data structures that control the segmentation used by the TI486
microprocessor. Segmentation is one available method of memory
management.

The Configuration Registers are used to control the T1486 on-chip cache
operation, power management features, and System Management Mode. The
cache, power management, and SMM features can be enabled or disabled by
writing to these registers. Non-cacheable areas of physical memory are also
defined through the use of these registers.

The Debug Registers provide debugging faciliies for the TI486
microprocessor and enable the use of data access breakpoints and code
execution breakpoints.

The Test Registers provide a mechanism to test the contents of both the
on-chip 1-KByte cache and the translation lookaside buffer (TLB). The TLB is
used as a cache for translating linear addresses to physical addresses when
paging is enabled. In the following sections, the system register set is
described in greater detail.

2-17

Register Set

Figure 2-5. System Register Set

31 16 15

Page Fault Linear Address Register
Page Directory Base Register
47 16 15
Base Limit
Base Limit
Selector
Selector
7
CCRO
15 CCR1

Address Region 1

Address Region 2

Address Region 3

Address Region 4

31

Linear Breakpoint Address 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

Breakpoint Status

Breakpoint Control

31

Cache Test

Cache Test

Cache Test

TLB Test Control

TLB Test Status

CCRO = Configuration Control O
CCR1 = Configuration Control 1

cro |
CR2
CR3

GDTR |
IDTR

LDTR
TR

CCRO
CCRt1
ARR1
ARR2
ARR3
ARR4

DRO
DR1
DR2
DR3
DR6
DR7

TR3
TR4
TR5
TR6

w

Control
Registers

Descriptor Table
Registers

Task Register

Configuration
Registers

Debug
Registers

Test
Registers

Programming Interface

Register Set

2.3.2.1 Control Registers

The control registers (CR0O, CR2, and CR3) are shown in Figure 2-6. The CRO
register contains system control flags which control operating modes and
indicate the general state of the CPU. The lower 16 bits of CRO are referred
to as the Machine Status Word (MSW). The CRO bit definitions are described
in Table 2-5. The reserved bits in the CRO should not be modified.

When paging is enabled and a page fault is generated, the CR2 register retains
the 32-bit linear address of the address that caused the fault. CR3 contains the
20-bit base address of the page directory. The page directory must always be
aligned to a 4-KByte page boundary, therefore, the lower 12 bits of CR3 are
reserved.

When operating in protected mode, any program can read the control
registers. However, only privilege level 0 (most privileged) programs can
modify the contents of these registers.

Figure 2-6. Control Registers

31 12 11 0

PAGE DIRECTORY BASE REGISTER (PDBR) \\ CR3
N RN
PAGE FAULT LINEAR ADDRESS CR2
Navmag

P|C A w TIE|IM|P
dk \\\\\tx\%\ M\PN\\\\\QC’ s |mP|E]

3 3 1 1 5 4 3 2 1 0

1 0 8 6 « ,

e

Ny = RESERVED

2-19

Register Set

Table 2-5. CRO Bit Definitions

BIT
POSITION NAME FUNCTION

0 PE Protected Mode Enable. Enables the segment based protection mechanism. If PE=1,
protected mode is enabled. If PE=0, the CPU operates in real mode, with segment based
protection disabled, and addresses are formed as in an 8086-class CPU.

1 MP Monitor Processor Extension. If MP=1 and TS=1, a WAIT instruction causes fault 7. The TS
bit is set to 1 on task switches by the CPU. Floating-point instructions are not affected by the
state of the MP bit. The MP bit should be set to one during normal operations.

2 EM Emulate Processor Extension. [f EM=1, all floating-point instructions cause a fault 7.

3 TS Task Switched. Set whenever a task switch operation is performed. Execution of a
floating-point instruction with TS=1 causes a device not available (DNA) fault. If MP=1 and
TS=1, a WAIT instruction also causes a DNA fault.

Reserved. Do not attempt to modify.

5 0 Reserved. Do not attempt to modify.

16 WP Write Protect. Protects read-only pages from supervisor write access. The 386-type CPU
allows a read-only page to be written from privilege level 0—2. The TI486 CPU is compatible
with the 386-type CPU when WP=0. WP=1 forces a fault on a write to a read-only page from
any privilege level.

18 AM Alignment Check Mask. If AM=1, the AC bit in the EFLAGS register is unmasked and allowed
to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

29 0 Reserved. Do not attempt to modify.

30 CD Cache Disable. If CD=1, no further cache fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. The cache must also
be invalidated to completely disable any cache activity.

31 PG Paging Enable Bit. If PG=1 and protected mode is enabled (PE=1), paging is enabled.

2-20

Programming Interface

Register Set

2.3.2.2 Descriptor Table Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor Table Registers (GDTR, IDTR and
LDTR), shown in Figure 2-7, are used to specify the location of the data
structures that control segmented memory management. The GDTR, IDTR,
and LDTR are loaded using the LGDT, LIDT, and LLDT instructions,
respectively. The values of these registers are stored using the corresponding
store instructions. The GDTR and IDTR load instructions are privileged
instructions when operating in protected mode. The LDTR can only be
accessed in protected mode.

The Global Descriptor Table Register (GDTR) holds a 32-bit base address and
16-bit limit for the Global Descriptor Table (GDT). The GDT is an array of up
to 8192 8-byte descriptors. When a segment register is loaded from memory,
the Tl bitin the segment selector chooses either the GDT or the local descriptor
table (LDT) to locate a descriptor. If Tl = 0, the index portion of the selector is
used to locate a given descriptor within the GDT table. The contents of the
GDTR are completely visible to the programmer. The first descriptor in the
GDT (location 0) is not used by the CPU and is referred to as the “null
descriptor”. If the GDTR is loaded while operating in 16-bit operand mode, the
TI486 accesses a 32-bit base value but the upper 8 bits are ignored, resulting
in a 24-bit base address.

The Interrupt Descriptor Table Register (IDTR) holds a 32-bit base address
and 16-bit limit for the Interrupt Descriptor Table (IDT). The IDT is an array of
256 8-byte interrupt descriptors, each of which is used to point to an interrupt
service routine. Every interrupt that may occur in the system must have an
associated entry in the IDT. The contents of the IDTR are completely visible
to the programmer.

Figure 2-7. Descriptor Table Registers

48 16 15 0
BASE ADDRESS LIMIT GDTR
BASE ADDRESS LIMIT IDTR
SELECTOR LDTR

The Local Descriptor Table Register (LDTR) holds a 16-bit selector for the
Local Descriptor Table (LDT). The LDT is an array of up to 8192 8-byte
descriptors. When the LDTR is loaded, the LDTR selector indexes an LDT
descriptor that must reside in the global descriptor table (GDT). The contents
of the selected descriptor are cached on-chip in the hidden portion of the
LDTR. The CPU does not access the GDT again until the LDTR is reloaded.
If the LDT description is modified in memory in the GDT, the LDTR must be
reloaded to update the hidden portion of the LDTR.

2-21

Register Set

When a segment register is loaded from memory, the Tl bit in the segment
selector chooses either the GDT or the LDT to locate a segment descriptor.
If TI=1, the index portion of the selector is used to locate a given descriptor
within the LDT. Each task in the system may be given its own LDT, managed
by the operating system. The LDTs provide a method of isolating a given task’s
segments from other tasks in the system.

Descriptors

There are three types of descriptors.

B Application Segment Descriptors that define code, data, and stack
segments

B System Segment Descriptors that define an LDT segment or a TSS

B Gate Descriptors that define task gates, interrupt gates, trap gates,
and call gates.

Application Segment Descriptors can be located in either the LDT or GDT.
System Segment Descriptors can only be located in the GDT. Dependent on
the gate type, gate descriptors may be located in either the GDT, LDT or IDT.
Figure 2-8 illustrates the descriptor format for both Application Segment
Descriptors and System Segment Descriptors and Table 2-6 lists the
corresponding bit definitions.

Figure 2-8. Application and System Segment Descriptors

31 24 23 22 21 20 19 16 15 14 1312 11 8 7 0
A
BASE 31-24 G| D|O|V LIMIT19-16 | P | DPL _? TYPE BASE 23-16 +4
L
BASE 15-0 LIMIT 15-0 +0
2-22 Programming Interface

Register Set

Table 2-6. Segment Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET

NAME

DESCRIPTION

31-24
7-0
31-16

+4
+4
+0

BASE

Segment base address.

32-bit linear address that points to the beginning of the segment.

19-16
15-0

+4
+0

LIMIT

Segment limit. In real mode, segment limit is always 64 KBytes

(OFFFFh)

23

+4

Limit granularity bit:
O=byte granularity, 1=4 KBytes (page) granularity.

22

+4

Default length for operands and effective addresses.
Valid for code and stack segments only: 0=16 bit, 1=32-bit.

20

+4

AVL

Segment available.

15

+4

Segment present.

14-13

+4

DPL

Descriptor privilege level.

12

+4

DT

Descriptor type:
O=system, 1=application

11-8

11

10

+4

TYPE

C/D

A

Segment type.

System descriptor (DT=0):
0010=LDT descriptor
1001=TSS descriptor, task not busy
1011=TSS descriptor, task busy

Application descriptor (DT=1):
O=data, 1=executable

If E=0:
O=expand up, limit is upper bound of segment.
1=expand down, limit is lower bound of segment

IfE=1:
0=non-conforming
1=conforming (runs at privilege level of calling procedure)

If E=0:
O=non-readable
1=readable

If E=1:
O=non-writable
1=writable

O=not accessed, 1=accessed

Gate Descriptors provide protection for executable segments operating at
different privilege levels. Figure 2-9 illustrates the format for Gate Descriptors
and Table 2-7 lists the corresponding bit definitions.

Task Gate descriptors are used to switch the CPU’s context during a task
switch. The selector portion of the Task Gate descriptor locates a Task State
Segment. Task Gate descriptors can be located in the GDT, LDT or IDT.

Interrupt Gate descriptors are used to enter a hardware interrupt service
routine. Trap Gate descriptors are used to enter exceptions or software
interrupt service routines. Trap Gate and Interrupt Gate descriptors can be
located only in the IDT.

2-23

Register Set

Call Gate descriptors are used to enter a procedure (subroutine) that executes
at the same or a more privileged level. A Call Gate descriptor primarily defines
the procedure entry point and the procedure’s privilege level.

Figure 2—-9. Gate Descriptor

31 16 15 14 1312 11 8 7 0]
OFFSET 31-16 P|DPL| O] TYPE | 0| 0| O | PARAMETERS|+4
SELECTOR 15-0 OFFSET 15-0 +0
Table 2—7. Gate Descriptor Bit Definitions
BIT MEMORY
POSITION | OFFSET NAME DESCRIPTION
31-16 +4 OFFSET | Offset used during a call gate to calculate the branch target.
15-0 +0
31-16 +0 SELECTOR | Segment selector used during a call gate to calculate the branch target.
15 +4 P Segment present
14-13 +4 DPL Descriptor privilege level
11-8 +4 TYPE Segment type:
0100=16-bit call gate
0101=tack gate
0110=16-bit interrupt gate
0111=16-bit trap gate
1100=32-bit call gate
1110=32-bit interrupt gate
1111=32-bit trap gate
4-0 +4 Parameters | Number of 32-bit parameters to copy from the caller’s stack to the called
procedure’s stack.

2.3.2.3 Task Register

The Task

Register (TR) holds a 16-bit selector for the current Task State

Segment (TSS) table as shown in Figure 2—10. The TR is loaded and stored
via the LTR and STR instructions, respectively. The TR can be accessed only
during protected mode and can be loaded only when the privilege level is 0
(most privileged).

Figure 2-10. Task Register

2-24

15

SELECTOR

When the

TR is loaded, the TR selector field indexes a TSS descriptor that

must reside in the global descriptor table (GDT). The contents of the selected
descriptor are cached on-chip in the hidden portion of the TR.

Programming Interface

Register Set

During task switching, the processor saves the current CPU state in the TSS
before starting a new task. The TR points to the current TSS. The TSS can be
either a 286-type 16-bit TSS or a 386/486-type 32-bit TSS as shown in
Figure 2-11 and Figure 2—12. An I/O permission bit map is referenced in the
32-bit TSS by the /O Map Base Address.

Figure 2-11. 32-Bit Task State Segment (TSS) Table

31 16 15 0
1/0 MAP BASE ADDRESS 00000O0O0O0OOOOOO0O O|T|+64h
000000O0O0OO0O0ODO0OO0OO0O0COO SELECTOR FOR TASK'S LDT +60h
000000O0O0O0OOO0OCOO GS +5Ch
00000000O0O0O0OOO0OBCOO FS +58h
000060000 O0OOOOOODODO DS +54h
00000O0O0O0O0OOO0OCOGOOODO SS +50h
0000000O0O00O0O00O0O0OO Cs +4Ch
0000000O0O0O0O0O0OO00O0OO0CO ES +48h
EDI +44h
ESI +40h
EBP +3Ch
ESP +38h
EBX +34h
EDX +30h
ECX +2Ch
EAX +28h
EFLAGS +24h
EIP +20h
CR3 +1Ch
0000000000000000' SSforCPL=2 +18h
ESP for CPL =2 +14h
0000000000000000‘ SS for CPL = 1 +10h
ESP for CPL =1 +Ch
0000000000000000] SSforCPL=0 +8h
ESP for CPL=0 +4h
000000000O0O0O00O00O0 OJ BACK LINK (OLD TSS SELECTOR) +0h
0 = RESERVED

2-25

Register Set

Figure 2—12. 16-Bit Task State Segment (TSS) Table

SELECTOR FOR TASK'S LDT +2Ah

DS +28h

SS +26h

cs +24h

ES +22h

Di +20h

Si +1Eh

BP +1Ch

SP +1Ah

BX +18h

DX +16h

CX +14h

AX +12h

FLAGS +10h
IP +Eh
SP FOR PRIVILEGE LEVEL 2 +Ch
SS FOR PRIVILEGE LEVEL 2 +Ah
SP FOR PRIVILEGE LEVEL1 +8h
SS FOR PRIVILEGE LEVEL 1 +6h
SP FOR PRIVILEGE LEVEL 0 +4h
SS FOR PRIVILEGE LEVEL 0 +2h
BACK LINK (OLD TSS SELECTOR) | +0h

2.3.2.4 Configuration Registers

2-26

The TI486 contains six registers that do not exist on other 80x86
microprocessors. These registers include two Configuration Control Registers
(CCRO0 and CCR1) and four Address Region Registers (ARR1 through ARR4)
as listed in Table 2—-8 and Table 2-9. The CCR and ARR registers exist in I/O
memory space and are selected by a “register index” number via /O port 22h.
I/O port 23h is used for data transfer.

Each I/O port 23h data transfer must be preceded by an |/O port 22h register
selection, otherwise the second and later /O port 23h operations are directed
off-chip and produce external I/O cycles. If the register index number is outside
the COh—CFh range, external I/O cycles will also occur.

Programming Interface

Register Set

The CCRO register (Table 2—10) defines the type of cache and determines if
the 64-KByte memory area on 1-MByte boundaries and the 640-KByte to
1-MByte area are cacheable. This register also enables certain pins
associated with cache control and suspend mode.

The CCR1 register (Table 2—-11) is used to set up internal cache operation and
System Management Mode (SMM). The ARR registers (Figure 2-13,
Figure 2—14, and Table 2—8, Table 2—-9) are used to define the location and
size of the memory regions associated with the internal cache. ARR1-ARR3
define three write-protected or non-cacheable memory regions as designated
by CCR1 bits WP1-WP3. ARR4 defines an SMM memory space or
non-cacheable memory region as defined by CCR1 bit SM4. Other CCR1 bits
enable RPL and SMM pins and control SMM memory access. The SMAC bit
allows access to defined SMM space while not in an SMI service routine. The
MMA bit allows access to main memory that overlaps with SMM memory while
in an SMI service routine for data access only.

The ARR registers define address regions using a starting address and a block
size. The non-cacheable region block sizes range from 4 KBytes to 4 GBytes
(Table 2-12). A block size of zero disables the address region. The starting
address of the address region must be on a block size boundary. For example,
a 128 KByte block is allowed to have a starting address of 0 KBytes,
128 KBytes, 256 KBytes, etc. The SMM memory region size is restricted to a
maximum of 16 MBytes. The block size must be defined for SMI to be
recognized.

2-27

Register Set

Table 2-8. TI486SLC/E Configuration Control Registers

REGISTER NAME REGISTER INDEX WIDTH
Configuration Control 0 COh 8
CCRO
Configuration Control 1 Cih 8
CCR1
Address Region 1 C5h—C6h 16
ARR1
Address Region 2 C8h—Coh 16
ARR2
Address Region 3 CBh-CCh 16
ARR3
Address Region 4 CEh-CFh 16
ARR4

Note: The following register index numbers are reserved: C2h, C3h, C4h, C7h, CAh,
CDh, and DOh through FFh.

Figure 2-13. TI486SLC/E Address Region Registers (ARR1-ARRA4)

REG. INDEX = C5h REG. INDEX = C6h
A A
r N N
7 07 4 3 0
]
STARTING ADDRESS SIZE ARR1
A23 A16 A15 A12
ADDRESS REGION 1
REG. INDEX = C8h REG. INDEX = C9h
A A
' N A
7 07 4 3 0
I
STARTING ADDRESS SIZE ARR2
A23 A16 A15 A12
ADDRESS REGION 2
REG. INDEX = CBh REG. INDEX = CCh
A A
r N N
7 07 4 3 0
|
STARTING ADDRESS SIZE ARR3
A23 A16 A15 At2
L
ADDRESS REGION 3
REG. INDEX = CEh REG. INDEX = CFh
A A
'S N R
7 07 4 3 0
]
STARTING ADDRESS SIZEt ARR4
A23 A16 A15 A12

ADDRESS REGION 4

1ARR4 (SIZE) must be 4Kbytes to 16 Mbytes if ARR4 is defined as SMM memory space.

2-28 Programming Interface

Register Set

Table 2-9. TI486DLC/E Configuration Control Registers

REGISTER NAME REGISTER INDEX WIDTH
Configuration Control 0 COh 8
CCRO
Configuration Control 1 Cih 8
CCR1
Address Region 1 C4h—-Céh 24
ARR1
Address Region 2 C7h-C9h 24
ARR2
Address Region 3 CAh-CCh 24
ARRR3
Address Region 4 CDh—CFh 24
ARR4

Note: The following register index numbers are reserved: C2h, C3h, and DCh through FFh.

Figure 2—-14. TI486DLC/E Address Region Registers (ARR1-ARR4)

REG. INDEX = C4h

REG. INDEX = C5h

REG. INDEX = C6éh

A A A
(\/ N/ B
7 07 07 43 0
I
STARTING ADDRESS SIZE ARR1
A31 A24 A23 A16 A15 A12
ADDRESS REGION 1
REG. INDEX = C7h REG. INDEX = C8h REG. INDEX = Coh
A A A
(By N/ \
7 07 07 43 0
| I
STARTING ADDRESS SIZE ARR2
A31 A24 A23 A16 A15 A12
ADDRESS REGION 2
REG. INDEX = CAh REG. INDEX = CBh REG. INDEX = CCh
A A A
(\ (¢ N7 N
7 07 07 43 0
1 I
STARTING ADDRESS SIZE ARR3
A31 A24 A23 A16 A15 A12
ADDRESS REGION 3
REG. INDEX = CDh REG. INDEX = CEh REG. INDEX = CFh
A A A
s \(\(\
7 07 07 43 0
I I
STARTING ADDRESS SIZE ARR4
A31 A24 A3 A16 A15 A12

ADDRESS REGION 4

TARRA4 (SIZE) must be 4Kbytes to 16 Mbytes if ARR4 is defined as SMM memory space.

2-29

Register Set

Table 2—10. CCRO Bit Definitions

REGISTER

BIT POSITION INDEX DESCRIPTION
0 NCO Non-cacheable 1-MByte Boundaries
If=1: Sets the first 64 KBytes at each 1-MByte boundary as non-cacheable.
1 NC1 Non-cacheable Upper Memory Area
If=1: Sets 640-KByte to 1-MByte memory region non-cacheable.
2 A20M Enable A20M pin
If=1: Enables A20M input pin; otherwise pin is ignored.
3 KEN Enable KEN pin
If = 1: Enables KEN input pin; otherwise pin is ignored.
4 FLUSH Enable FLUSH pin
If = 1: Enables FLUSH input pin; otherwise pin is ignored.
5 BARB Enable Cache Flush during Hold
If = 1: Enables flushing of the internal cache when hold state is entered.
6 co Cache Type Select
If = 1: Selects direct-mapped cache.
If = 0: Selects 2-way set-associative cache.
7 SuUs Enable Suspend Pins

If =1: Enables SUSP input pin and SUSPA output pin.
If = 0: SUSPA output pin floats; SUSP input pin is ignored.

Table 2-11. CCR1 Bit Definitions

BIT POSITION

REGISTER
INDEX

DESCRIPTION

0

Reserved

1

SMI

Enable SMM Pins.
If=1: SMI input/output pin and SMADS output pin are enabled.
If= 0: SMI input pin ignored and SMADS output pin floats.

SMAC

System Management Memory Access.

If=1: Any access to addresses within the SMM memory space cause external bus
cycles to be issued with SMADS output active. SMI input is ignored.

If = 0: No effect on access.

NMAC

Main Memory Access.

If = 1: All data accesses which occur within an SMI service routine

(or when SMAC = 1) will access main memory instead of SMM memory space.
If = 0: No effect on access.

WP1

Access Region 1 Control
If = 1: Region 1 is write protected and cacheable.
If = 0: Region 1 is non-cacheable.

wP2

Access Region 2 Control
If = 1: Region 2 is write protected and cacheable.
If = 0: Region 2 is non-cacheable.

WP3

Access Region 3 Control
If = 1: Region 3 is write protected and cacheable.
If = 0: Region 3 is non-cacheable.

SM4

Access Region 4 Control
If = 1: Region 4 is non-cacheable SMM memory space.
If = 0: Region 4 is non-cacheable. SMI input ignored.

2-30

Programming Interface

Register Set

Table 2-12. ARR1-ARR4 Block Size Field

BITS 3-0 BLOCK SIZE BITS 3-0 BLOCK SIZE
Oh Disabled 8h 512 KBytes
1h 4 KBytes %h 1 MBytes
2h 8 KBytes Ah 2 MBytes
3h 16 KBytes Bh 4 MBytes
4h 32 KBytes Ch 8 MBytes
5h 64 KBytes Dh 16 MBytes
6h 128 KBytes Eh 32 MBytes
7h 256 KBytes Fh 4 GBytes

2.3.2.5 Debug Registers

Six debug registers (DR0-DR3, DR6 and DR7), shown in Figure 2-15 and
Figure 2—16, support debugging on the T1486. Memory addresses loaded in
the debug registers, referred to as “breakpoints”, generate a debug exception
when a memory access of the specified type occurs to the specified address.
A breakpoint can be specified for a particular kind of memory access such as
a read or a write. Code and data breakpoints can also be set allowing debug
exceptions to occur whenever a given data access (read or write) or code
access (execute) occurs. The size of the debug target can be set to 1, 2, or
4 bytes. The debug registers are accessed via MOV instructions which can be
executed only at privilege level 0.

Figure 2—15. TI486SLC/E Debug Registers

33222 22222221111 1111 1
1 0987 65432109876 5432 0987654 3210

LEN | RW | LEN | RW | LEN | RW [LEN [RW | o (G| 50| G|L |G|L GLGLGLDR

3| 3|2 2|1 1]o0]o0 D EIE(3|3|2!2(1]|1 |0 |o|PR?
B|B B|B|B|B

ooooooooooooooooTSoo11111111321ODR6

RESERVED DR5

RESERVED DR4

BREAKPOINT 3 LINEAR ADDRESS DR3

BREAKPOINT 2 LINEAR ADDRESS DR2

BREAKPOINT 1 LINEAR ADDRESS DR1

BREAKPOINT 0 LINEAR ADDRESS DRO

All bits marked as 0 or 1 are reserved and should not be modified.

2-31

Register Set

Figure 2-16. TI486DLC/E Debug Registers

33222222222 21111 1111 1
10987 65432109876 5432 09876543210
LEN | RW | LEN | RW | LEN | RW | LEN | R/W G glLla|L|alL|alL |a|L
33| 2] 2111100 |°9D|000ElE|3|3]|2|2]1]|1]0]|0|DR?
B|B BlB|B|B
0000000000 0000 00|22 1j01111 1 11 1/BBBBlore
BREAKPOINT 3 LINEAR ADDRESS DR3
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 0 LINEAR ADDRESS DRO

All bits marked as 0 or 1 are reserved and should not be modified.

Table 2—-13.DR6 and DR?7 Field Definitions

REGISTER

FIELD

NUMBER
OF BITS

DESCRIPTION

DR6

Bi

1

Bi is set by the processor if the conditions described by DRi, R/Wi, and LENi
occurred when the debug exception occurred, even if the breakpoint is not enabled
via the Gi or Li bits.

BT

BT is set by the processor before entering the debug handler if a task switch has
occurred to a task with the T bit in the TSS set.

BS

BS is set by the processor if the debug exception was triggered by the single-step
execution mode (TF flag in EFLAGS set).

DR7

R/Wi

Applies to the DRI breakpoint address register:
00 - Break on instruction execution only
01 — Break on data writes only
10 — Not used
11 — Break on data reads or writes

LENi

Applies to the DRi breakpoint address register:
00 — One byte length
01 —Two byte length
10 — Not used
11 — Four byte length

If set to a 1, breakpoint in DRi is globally enabled for all tasks and is not cleared by
the processor as the result of a task switch.

Li

If set to a 1, breakpoint in DRi is locally enabled for the current task and is cleared
by the processor as the result of a task switch.

GD

Global disable of debug register access. GD bit is cleared whenever a debug
exception occurs.

2-32

The debug address registers DRO—DR3 each contain the linear address for
one of four possible breakpoints. Each breakpoint is further specified by bits
inthe debug control register (DR7). For each breakpoint address in DRO-DRS3,
there are corresponding fields L, R/W, and LEN in DR7 that specify the type
of memory access associated with the breakpoint.

Programming Interface

Register Set

The R/W field can be used to specify execution as well as data access
breakpoints. Instruction execution and data access breakpoints are always
taken before execution of the instruction that matches the breakpoint.

The debug status register (DR6) reflects conditions that were in effect at the
time the debug exception occurred. The contents of the DR6 register are not
automatically cleared by the processor after a debug exception occurs and,
therefore, should be cleared by software at the appropriate time. Table 2-13
lists the field definitions for the DR6 and DR7 registers.

Code execution breakpoints may also be generated by placing the breakpoint
instruction (INT 3) at the location where control is to be regained. The
single-step feature may be enabled by setting the TF flag in the EFLAGS
register. This causes the processor to perform a debug exception after the
execution of every instruction.

2.3.2.6 Test Registers

The five test registers, shown in Figure 2—17, are used in testing the CPU’s
translation look-aside buffer (TLB) and on-chip cache. TR6 and TR7 are used
for TLB testing, and TR3-TR5 are used for cache testing. Table 2-14 and
Table 2-15 list the bit definitions for the TR6 and TR7 registers.

TLB Test Registers

The T1486 TLB is a four-way set associative memory with eight entries per set.
Each TLB entry consists of a 24-bit tag and 20-bit data. The 24-bit tag
represents the high-order 20 bits of the linear address, a valid bit, and three
attribute bits. The 20-bit data portion represents the upper 20 bits of the
physical address that corresponds to the linear address.

The TLB Test Control Register (TR6) contains a command bit, the upper
20 bits of a linear address, a valid bit and the attribute bits used in the test
operation. The contents of TR6 are used to create the 24-bit TLB tag during
both write and read (TLB lookup) test operations. The command bit defines
whether the test operation is a read or a write.

The TLB Test Data Register (TR7) contains the upper 20 bits of the physical
address (TLB data field), two LRU bits and a control bit. During TLB write
operations, the physical address in TR7 is written into the TLB entry selected
by the contents of TR6. During TLB lookup operations, the TLB data selected
by the contents of TR6 is loaded into TR7.

2-33

Register Set

Figure 2—-17. Test Registers

TLB PHYSICAL ADDRESS PCD |PWT| TLB LRU| 0 0 |PL| REP | 0 0 |TR?

31 12 11 10 9 8 7 6 5 4 3 2 1 0
TLB LINEAR ADDRESS v | Dp|DluU|w/W|o o o ofc|Tre

31 12 11 10 9 8 7 6 5 4 3 2 1 0
NN N

ANKARN\ A

31 M 10 9 8 7 6 5 4 3 2 1 0
CACHE TAG ADDRESS CACHE| VALIDBITS | 0 0 0 |TR4

31 9 8 7 6 5 4 38 2 1 0
CACHE DATA TR3

31

NN = RESERVED

2-34

Programming Interface

Register Set

Table 2—-14. TR6 and TR7 Bit Definitions

REGISTER

BIT

NAME | POSITION DESCRIPTION
TR6 31-12 Linear address.
TLB lookup: The TLB is interrogated per this address. If one and only one match occurs in the
TLB, the rest of the fields in TR6 and TR7 are updated per the matching TLB entry.
TLB write: ATLB entry is allocated to this linear address.
11 Valid bit (V).
TLB lookup: Always setto 1.
TLB write: If set, indicates that the TLB entry contains valid data.. If clear, target entry is
invalidated.
10-9 Dirty attribute bit and its complement (D, D). (Refer to Table 2—15).
8-7 User/supervisor attribute bit and its complement (U, U). (Refer to Table 2-15).
6-5 Read/write attribute bit and its complement (R, R). (Refer to Table 2-15).
0 Command bit (C).
1f=0: TLB write.
If=1: TLB lookup.
TR7 31-12 Physical address.
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.
11 Page-level cache disable bit (PCD). Corresponds to the PCD bit of a page table entry.
10 Page-level cache write-through bit (PWT). Corresponds to the PWT bit of a page table entry.
9-7 LRU bits.
TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup.
TLB write: ignored.
4 PL bit.
TLB lookup: If=1, read hit occurred. If=0, read miss occurred.
TLB write: If=1, REP field is used to select the set. If=0, the pseudo-LRU replacement
algorithm is used to select the set.
3-2 Set selection (REP).

TLB lookup: If PL=1, set in which the tag was found. If PL=0, undefined data.
TLB write: If PL=1, selects one of the four sets for replacement. If PL=0, ignored.

Table 2—15. TR6 Attribute Bit Pairs

BIT (B) BIT COMPLEMENT EFFECT ON EFFECT ON
(B) TLB LOOKUP TLB WRITE

0 0 Do not match Undefined
0 1 Match if the bit is 0 Clear the bit

1 0 Match if the bit is 1 Set the bit

1 1 Match is the bitis 1 or 0 Undefined

2-35

Register Set

Cache Test Registers

The TI486 on-chip cache can be configured either as a direct-mapped (256
entries) or as a two-way set associative memory (128 entries per set). Each
entry consists of a 23-bit tag, 32-bit data field, four valid bits, and an LRU bit.
The 23-bit tag represents the high-order 23 bits of the physical address. The
32-bit data represents the four bytes of data currently in memory at the
physical address represented by the tag. The four valid bits indicate which of
the four data bytes contain valid data. The LRU bit is accessed only when the
cache is configured as two-way set associative and indicates which of the two
sets was most recently accessed.

The T1486 contains three test registers that allow testing of its internal cache.
Using these registers, cache test writes and reads may be performed. Cache
test writes cause the data in TR3 to be written to the selected set and entry in
the cache. Cache test reads allow inspection of the data, valid bits and the LRU
bit for the cache entry. For data to be written to the allocated entry, the valid
bits for the entry must be set prior to the write of the data. Bit definitions for the
cache test registers are shown in Table 2-16.

Table 2—-16. TR3—TR5 Bit Definitions

2-36

REGISTER
NAME

POSITION

BIT DESCRIPTION

TR3

31-10 Cache data.
Cache read: data accessed from the cache.
Cache write: to be written into the cache.

TR4

31-9 Tag address.
Cache read: tag address from which data is read.
Cache write: data written into the tag address of the selected line.

7 LRU
Cache read: the LRU bit associated with the cache line.
Cache write: ignored.

6-3 Valid bits
Cache reads: four valid bits for the accessed line, (one bit per byte).
Cache writes: valid bits written into the line.

TR5

104 Line selection. Selects one of 128 lines.

2 Set selection
If=0: set 0 is selected
If=1: set 1 is selected

1-0 Control bits. These bits control reading or writing the cache.
1f=00: Ignored

If=01: Cache write

If=10: Cache read

lf=11: Cache flush (marks all entries as invalid).

Programming Interface

Address Spaces

2.4 Address Spaces

The T1486 can directly address either memory or I/O space. Figure 2—18 and
Figure 2—-19 illustrate the range of addresses available for memory address
space and I/O address space. For the TI486SLC/E, the addresses for physical
memory range between 00 0000h and FF FFFFh (16 MBytes). For the
TI486DLC/E, the addresses for physical memory range between 0000 0000h
and FFFF FFFFh (4 GBytes). The accessible I/0O addresses space for both the
TI486SLC/E and TI486DLC/E ranges between 00 0000h and 00 FFFFh (64
KBytes). The coprocessor communication space for the TI486SLC/E exists in
upper /O space between 80 00F8h and 80 OOFFh. The coprocessor
communication space for the TI486DLC/E exists in the upper I/O space
between 8000 00F8h and 8000 00FFh. These coprocessor 1/O ports are
automatically accessed by the CPU whenever an ESC opcode is executed.
The /O locations 22h and 23h are used for TI486SLC/E and TI486DLC/E
configuration register access.

Figure 2-18. TI486SLC/E Memory and I/O Address Spaces

Accessible
Physical Programmed
Memory Space I/O Space
FF FFFFh FF FFFFh{ = -
Physical :
Meymory 80 00FFh ¢ Coprocessor
16 MBytes 80 00F8h | : Space
00 FFFFh
TI486
Configuration
e sl «— Redister 110
00 0000h 00 0000h Space
00 0023h
00 0022h

2-37

Address Space

Figure 2-19. TI486DLC/E Memory and I/O Address Spaces

Accessible
Physical Programmed
Memory Space /0 Space

FFFF FFFFh FFFF FFFFh

Physical
4 GBytes 8000 00F8h pace

0000 FFFFh

TI486

Configuration

T ¢ gegister /O
pace

0000 0000h 0000 0000h 0000 0023h

0000 0022h

2.4.1 VO Address Space

The T1486 1/O address space is accessed using IN and OUT instructions to
addresses referred to as “ports”. The accessible /0O address space is 64
KBytes and can be accessed as 8-bit, 16-bit or 32-bit ports. The execution of
any IN or OUT instruction causes the M/IO pin to be driven low, thereby
selecting the /O space instead of memory space for loading or storing data.
The upper 8 address bits are always driven low during IN and OUT instruction
port accesses.

The T1486 configuration registers reside within the 1/0 address space at port
addresses 22h and 23h and are accessed using the standard IN and OUT
instructions. The configuration registers are modified by writing the index of
the configuration register to port 22h and then transferring the data through
port 23h. Accesses to the on-chip configuration registers do not generate
external I/O cycles. However, each port 23h operation must be preceded by
a port 22h write with a valid index value, otherwise the second and later port
23h operations are directed off-chip and generate external I/0O cycles without
modifying the on-chip configuration registers. Also, writes to port 22h outside
of the T1486 index range (COh to CFh) result in external I/O cycles and do not
affect the on-chip configuration registers. Reads of port 22h are always
directed off-chip.

2-38 Programming Interface

Address Spaces

2.42 Memory Address Space

The TI486SLC/E directly addresses up to 16 MBytes of physical memory and
the T1486DLC/E directly addresses up to 4 GBytes of physical memory.
Memory address space is accessed as bytes, words (16 bits) or doublewords
(32 bits). Words and doublewords are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The physical address
of a word or doubleword is the byte address of the low-order byte.

With the T1486, memory can be addressed using nine different addressing
modes. These addressing modes are used to caiculate an offset address often
referred to as an effective address. Depending on the operating mode of the
CPU, the offset is then combined using memory management mechanisms to
create and address a physical memory location.

Memory management mechanisms on the T1486 consist of segmentation and
paging. Segmentation allows each program to use several independent,
protected address spaces. Paging supports a memory subsystem that
simulates a large address space using a small amount of RAM and disk
storage for physical memory. Either or both of these mechanisms can be used
for management of the TI486 memory address space.

2.4.2.1 Offset Mechanism

The offset mechanism computes an offset (effective) address by adding
together up to three values: abase, an index, and a displacement. The base,
if present, is the value in one of eight 32-bit general registers at the time of the
execution of the instruction. The index, like the base, is a value that is
determined from one of the 32-bit general registers (except the ESP register)
when the instruction is executed. The index differs from the base in that the
index is first multiplied by a scale factor of 1, 2, 4 or 8 before the summation
is made. The third component added to the memory address calculation is the
displacement which is a value of up to 32 bits in length supplied as part of the
instruction. Figure 2—20 illustrates the calculation of the offset address.

Nine valid combinations of the base, index, scale factor, and displacement can
be used with the TI486 instruction set. These combinations are listed in
Table 2—17. The base and index both refer to contents of a register as
indicated by [Base] and [Index].

2-39

Address Spaces

Figure 2-20. Offset Address Calculation

Index
Base Displacement
Scaling
x1, x2, x4, x8
Offset Address
(Effective Address)
Table 2—17.Memory Addressing Modes
ADDRESSING BASE INDEX SCALE DISPLACEMENT OFFSET ADDRESS (OA)
MODE FACTOR (SF) (DP) CALCULATION

Direct X OA=DP

Register indirect X OA = [BASE]

Based X X OA = [BASE] + DP

Index X X OA =[INDEX] + DP

Scaled index X X X OA = ([INDEX] * SF) + DP
Based index X X OA = [BASE] + [INDEX]
Based scaled X X X OA = [BASE] + ([INDEX] * SF)
index

Based index with X X X OA =[BASE] + [INDEX] + DP
displacement

Based scaled X X X X OA =[BASE] + ([INDEX] * SF) + DP
index with

displacement

2.4.2.2 Real Mode Memory Addressing

2-40

In real mode operation, the TI486 addresses only the lowest 1 MByte (220) of
memory. To calculate a physical memory address, the 16-bit segment base
address located in the selected segment register is shifted left by four bits and
then the 16-bit offset address is added. For the TI486SLC/E, the resulting
20-bit address is then extended with four zeros in the upper address bits to
create the 24-bit physical address. For the T1486DLC/E, the resulting 20-bit
address is then extended with 12 zeros in the upper address bits to create the
32-bit physical address. Figure 2-21 illustrates the real mode address
calculation. Physical addresses beyond 1 MByte cause a segment limit
overrun exception.

The addition of the base address and the offset address may result in a carry.
Therefore, the resulting address may actually contain up to 21 significant
address bits that address memory in the first 64 KBytes above 1 MByte.

Programming Interface

Address Spaces

Figure 2-21. Real Mode Address Calculation

ffset A
Offset Mechanism Offset Address
Linear Address = Physical Address
U >
Selected Segment
Register x16

2.4.2.3 Protected Mode Memory Addressing

In protected mode, three mechanisms calculate a physical memory address

(Figure 2-22).

[Offset Mechanism that produces the offset or effective address as in real
mode

[Selector Mechanism that produces the base address

[J Optional Paging Mechanism that translates a linear address to the
physical memory address

The offset and base address are added together to produce the linear address.
If paging is not used, the linear address is used as the physical memory
address. If paging is enabled, the paging mechanism is used to translate the
linear address into the physical address. The offset mechanism is described
earlier in this section and applies to both the real and protected mode. The
selector and paging mechanisms are described in the following paragraphs.

Figure 2-22. Protected Mode Address Calculation

Offset Add
Offset Mechanism i ress
Linear Address Optional 'I;Ihysical
i i —— Memory
Paging Mechanism Address

Base Address

Selector Mechanism

Selector Mechanism

Memory is divided into an arbitrary number of segments, each containing
usually much less than the 232-byte (4-GByte) maximum.

The six segment registers (CS, DS, SS, ES, FS and GS) each contain a 16-bit
selector that is used when the registeris loaded to locate a segment descriptor
in either the global descriptor table (GDT) or the local descriptor table (LDT).
The segment descriptor defines the base address, limit, and attributes of the
selected segment and is cached on the TI486 as a result of loading the
selector. The cached descriptor contents are not visible to the programmer.
When a memory reference occurs in protected mode, the linear address is

2-41

Address Spaces

generated by adding the segment base address in the hidden portion of the
segment register to the offset address. If paging is not enabled, this linear
address is used as the physical memory address. Figure 2-23 illustrates the
operation of the selector mechanism.

Figure 2-23. Selector Mechanism

Selector

Load

15 0
(Accessed
Index Ti | RPL Selector Segment
Register)

2-42

Segment
Descriptor

Segment
Descriptor B

Global Descriptor Table Local Descriptor Table

—— e —— e —— e —

Descriptor

Memory ____ﬂ Cache ————» Base Address

Reference

Paging Mechanism

The paging mechanism supports a memory subsystem that simulates a large
address space with a small amount of RAM and disk storage. The paging
mechanism either translates a linear address to its corresponding physical
address or generates an exception if the required page is not currently present
in RAM. When the operating system services the exception, the required page
is loaded into memory and the instruction is then restarted. Pages are always
4 KBytes in size and are aligned to 4-KByte boundaries.

A page is addressed by using two levels of tables as illustrated in Figure 2—24.
The upper 10 bits of the 32-bit linear address are used to locate an entry in the
page directory table. The page directory table acts as a 32-bit master index to
up to 1K individual second-level page tables. The selected entry in the page
directory table, referred to as the directory table entry, identifies the starting
address of the second-level page table. The page directory table itself is a
page and is, therefore, aligned to a 4-KByte boundary. The physical address
of the current page directory is stored in the CR3 control register, also referred
to as the Page Directory Base Register (PDBR).

Programming Interface

Address Spaces

Bits 12-21 of the 32-bit linear address, referred to as the Page Table Index,
locate a 32-bit entry in the second-level page table. This Page Table Entry
(PTE) contains the base address of the desired page frame. The second-level
page table addresses up to 1K individual page frames. A second-level page
table is 4 KBytes in size and is itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the Page Frame Offset, locate the desired data within
the page frame.

Since the page directory table can point to 1K page tables, and each page
table can point to 1 K of page frames, a total of 1M of page frames can be
implemented. Since each page contains 4 KBytes, up to 4 GBytes of virtual
memory can be addressed by the TI486 with a single page directory table.

Figure 2-24. Paging Mechanism

Linear Address
31 l 22 21 y 12 11 y 0]
Directory Table Index Page Table Index Page Frame Offset
(DTI) (PTI) (PFO)
Directory Table Page Table Page Frame
4 KB 4 KB 4 KB
»| Physical Data
> PTE
—» DTE
> 0 > 0 > 0

CR3 | Control Register

In addition to the base address of the page table or the page frame, each
Directory Table Entry or Page Table Entry contains attribute bits and a present
bit as illustrated in Figure 2-25 and listed in Table 2—18.

Figure 2-25. Directory and Page Table Entry (DTE and PTE) Format
31 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE ADDRESS AVAILABLE A |PCD US|WR| P

= RESERVED

2-43

Address Spaces

Table 2-18. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT
POSITION

FIELD
NAME

DESCRIPTION

31-12

Base
Address

Specifies the base address of the page or page table.

11-9

Undefined and available to the programmer.

8-7

Reserved and not available to the programmer.

6

D

Dirty bit. If set, indicates that a write access has occurred to the page (PTE only, undefined
in DTE).

A

Accessed flag. If set, indicates that a read access or write access has occurred to the page.

PCD

Page caching disable flag. If set, indicates that the page is not cacheable in the on-chip cache.

Reserved and not available to the programmer.

Lo W I)]

u/s

User/supervisor attribute. If set (user), page is accessible at all privilege levels. If clear
(supervisor), page is accessible only when CPL < 2.

-

W/R

Write/read attribute. If set (write), page is writable. If clear (read), page is read only.

Present flag. If set, indicates that the page is present in RAM memory, and validates the
remaining DTE/PTE bits. If clear, indicates that the page is not present in memory and the
remaining DTE/PTE bits can be used by the programmer.

2-44

If the present bit (P) is set in the DTE, the page table is present and the
appropriate page table entry is read. If P=1 in the corresponding PTE
(indicating that the page is in memory), the accessed and dirty bits are updated
and the operand is fetched. Both accessed bits are set (DTE and PTE), if
necessary, to indicate that the table and the page have been used to transiate
a linear address. The dirty bit (D) is set before the first write is made to a page.

The present bits must be set to validate the remaining bits in the DTE and PTE.
If either of the present bits are not set, a page fault is generated when the DTE
or PTE is accessed. If P=0, the remaining DTE/PTE bits are available for use
by the operating system. For example, the operating system can use these bits
to record where on the hard disk the pages are located. A page fault is also
generated if the memory reference violates the page protection attributes.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is a cache for the paging mechanism
and replaces the two-level page table lookup procedure for cache hits. The
TLB is a four-way set associative 32-entry page table cache that automatically
keeps the most commonly used page table entries in the processor. The
32-entry TLB, coupled with a 4K page size, results in coverage of 128 KBytes
of memory addresses.

The TLB must be flushed when entries in the page tables are changed. The
TLB is flushed whenever the CR3 register is loaded. An individual entry in the
TLB can be flushed using the INVLPG instruction.

Programming Interface

Interrupts and Exceptions

2.5

2.5.1

Interrupts and Exceptions

Interrupts

The processing of either an interrupt or an exception changes the normal
sequential flow of a program by transferring program control to a selected
service routine. Except for SMM interrupts, the location of the selected service
routine is determined by one of the interrupt vectors stored in the interrupt
descriptor table.

Alltrue interrupts are hardware interrupts and are generated by signal sources
external to the CPU. All exceptions, including so-called software interrupts,
are produced internally by the CPU.

External events can interrupt normal program execution by using one of the
three interrupt pins on the TI486.

B Non-maskable Interrupt (NMI pin)
B Maskable Interrupt (INTR pin)
B SMM Interrupt (SMI pin)

For most interrupts, program transfer to the interrupt routine occurs after the
current instruction has been completed. When the execution returns to the
original program, it begins immediately following the interrupted instruction.

The NMI interrupt cannot be masked by software and always uses interrupt
vector 2 to locate its service routine. Since the interrupt vector is fixed and is
supplied internally, no interrupt acknowledge bus cycles are performed. This
interrupt is usually reserved for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional NMls are processed until an
IRET instruction is executed, typically at the end of the NMI service routine.
If NMl is re-asserted prior to the execution of the IRET instruction, one and only
one NMI rising edge is stored and then processed after execution of the next
IRET.

During the NMI service routine, maskable interrupts are still enabled. If an
unmasked INTR occurs during the NMI service routine, the INTR is serviced
and execution returns to the NMI service routine following the next IRET. If a
HALT instruction is executed within the NMI service routine, the T1486 restarts
execution only in response to RESET, an unmasked INTR, or an SMM
interrupt. NMI does not restart CPU execution under this condition.

The INTR interrupt is unmasked when the Interrupt Enable Flag (IF) in the
EFLAGS register is set to 1. With the exception of string operations, INTR
interrupts are acknowledged between instructions. Long string operations
have interrupt windows between memory moves that allow INTR interrupts to
be acknowledged.

2-45

Interrupts and Exceptions

2.5.2 Exceptions

2-46

When an INTR interrupt occurs, the CPU performs two locked interrupt
acknowledge bus cycles. During the second cycle, the CPU reads an 8-bit
vector which is supplied by an external interrupt controller. This vector selects
which of the 256 possible interrupt handlers will be executed in response to
the interrupt.

The SMM interrupt has higher priority than either the INTR or NMI. After SMi
is asserted, program execution is passed to an SMI service routine which runs
in SMM address space reserved for this purpose. The remainder of this
section does not apply to the SMM interrupts. SMM interrupts are described
in greater detail later in this chapter.

Exceptions are generated by an interrupt instruction or a program error.
Exceptions are classified as traps, faults, or aborts depending on the
mechanism used to report them and the restartability of the instruction which
first caused the exception.

A trap exception is reported immediately following the instruction that
generated the trap exception. Trap exceptions are generated by execution of
a software interrupt instruction during single stepping, at a breakpoint, or by
software interrupt instruction (INT O, INT 3, INT n, BOUND) by a single-step
operation, or by a data breakpoint.

Software interrupts can be used to simulate hardware interrupts. For example,
an INT n instruction causes the processor to execute the interrupt service
routine pointed to by the nth vector in the interrupt table. Execution of the
interrupt service routine occurs regardless of the state of the IF flag in the
EFLAGS register.

The one-byte INT 3, or breakpoint-interrupt (vector 3), is a particular case of
the INT n instruction. By inserting this one-byte instruction in a program, the
user can set breakpoints in code that can be used during debug.

Single-step operation is enabled by setting the TF bit in the EFLAGS register.
When TF is set, the CPU generates a debug exception (vector 1) after the
execution of every instruction. Data breakpoints also generate a debug
exception and are specified by loading the debug registers (DR0-DR7) with
the appropriate values.

A fault exception is caused by a program error and is reported prior to
completion of the instruction that generated the exception. By reporting the
fault prior to instruction completion, the CPU is left in a state which allows the
instruction to be restarted and the effects of the faulting instruction to be
nullified. Fault exceptions include divide-by-zero errors, invalid opcodes, page
faults, and coprocessor errors. Debug exceptions (vector 1) are also handled
as faults (except for data breakpoints and single-step operations). After
execution of the fault service routine, the instruction pointer points to the
instruction that caused the fault.

An abort exception is a type of fault exception that is severe enough that the
CPU cannot restart the program at the faulting instruction. Abort exceptions
include the double fault (vector 8) and coprocessor segment overrun
(vector 9).

Programming Interface

Interrupts and Exceptions

2.5.3 Interrupt Vectors

When the CPU services an interrupt or exception, the current program’s
instruction pointer and flags are pushed onto the stack to allow resumption of
execution of the interrupted program. In protected mode, the processor also
saves an error code for some exceptions. Program control is then transferred
to the interrupt handler (also called the interrupt service routine). Upon
execution of an IRET at the end of the service routine, program execution
resumes at the instruction pointer address saved on the stack when the
interrupt was serviced.

Interrupt Vector Assignments

Each interrupt (except SMI) and exception is assigned one of 256 interrupt
vector numbers (Table 2-19). The first 32 interrupt vector assignments are
defined or reserved. INT instructions acting as software interrupts may use
any of the interrupt vectors, 0 through 255. The non-maskable hardware
interrupt (NMI) is assigned vector 2.

In response to a maskable hardware interrupt (INTR), the TI486 issues
interrupt acknowledge bus cycles used to read the vector number from
external hardware. These vectors should be in the range 32-255 because
vectors 0—-31 are predefined.

Table 2—-19. Interrupt Veector Assignments

INJE;?:: T FUNCTION EXCEPTION TYPE

0 Divide error FAULT
1 Debug exception TRAP (see Note)
2 NMI interrupt -
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Coprocessor segment overrun ABORT
10 Invalid TSS FAULT
11 Segment not present FAULT
12 Stack fault FAULT
13 General protection fault FAULT
14 Page fauit FAULT/TRAP
15 Reserved —
16 Coprocessor error FAULT
17 Alignment check exception FAULT

18-31 Reserved —_

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

Note: Some debug exceptions may report both traps on the previous
instruction and faults on the next instruction.

2-47

Interrupts and Exceptions

2.5.4 Interrupt and

2-48

Interrupt Descriptor Table

The interrupt vector number is used by the Ti486 to locate an entry in the
interrupt descriptor table (IDT). In real mode, each IDT entry consists of a
four-byte far pointer to the beginning of the corresponding interrupt service
routine. In protected mode, each IDT entry is an eight-byte descriptor. The
Interrupt Descriptor Table Register (IDTR) specifies the beginning address
and limit of the IDT. Following reset, the IDTR contains a base address of Oh
with a limit of 3FFh.

The IDT can be located anywhere in physical memory as determined by the
IDTR register. The IDT may contain different types of descriptors: interrupt
gates, trap gates, and task gates. Interrupt gates are used mainly to enter a
hardware interrupt handler. Trap gates are generally used to enter an
exception handler or software interrupt handler. If an interrupt gate is used, the
Interrupt Enable Flag (IF) in the EFLAGS register is cleared before the
interrupt handler is entered. Task gates are used to make the transition to a
new task.

Exception Priorities

As the TI486 executes instructions, it follows a consistent policy for prioritizing
exceptions and hardware interrupts as listed in Table 2-20. SMM interrupts
always take precedence. Debug traps for the previous instruction and next
instruction are handled in the next priority. When NMI and maskable INTR
interrupts are both detected at the same instruction boundary, the TI486
microprocessor services the NMI interrupt first.

The TI486 checks for exceptions in parallel with instruction decoding and
execution. Several exceptions can result in a single instruction. However, only
one exception is generated upon each attempt to execute the instruction. Each
exception service routine should make the appropriate corrections to the
instruction and then restart the instruction. In that way, exceptions can be
serviced until the instruction executes properly.

The TI486 supports instruction restart after all faults, except when an
instruction causes a task switch to a task whose task state segment (TSS) is
partially not present. A TSS can be patrtially not present if the TSS is not page
aligned and one of the pages (where the TSS resides) is not currently in
memory.

Programming Interface

Interrupts and Exceptions

Table 2-20. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES
. .) Includes single-step trap and data breakpoints
1 Debug traps and faults from previous instruction. specified in the debug registers.
. . Includes instruction execution breakpoints specified in
2 Debug traps for next instruction. the debug registers.
3 Non-maskable hardware interrupt. Caused by NMI asserted.
4 Maskable hardware interrupt. Caused by INTR asserted and IF=1.
. . . . Includes segment not present, general protection fault
5 Faults resulting from fetching the next instruction. and page fault.
6 Faults resulting from instruction decoding. Ir}cluc'ieSIIIegaI opcode, instruction too long, or privilege
violation.
7 WAIT instruction and TS=1 and MP=1. Device not available exception generated.
8 ESC instruction and EM=1 or TS=1. Device not available exception generated.
9 Coprocessor error exception. Caused by ERROR asserted.
Segmentation faults (for each memory reference | Includes segment not present, stack fault, and general
10 required by the instruction) that prevent transferring the | protection fault.
entire memory operand.
1 Page faults that prevent transferring the entire memory
operand.
12 Alignment check fault.

2.5.5 Exceptions in Real Mode

Many of the exceptions described in Table 2—19 are not applicable in real
mode. Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions

have slightly different meanings

Table 2-21. Exception Changes in Real Mode

in real mode as listed in Table 2-21.

NUMBER | MODE FUNCTION READ MODE FUNCTION
8 Double fault Interrupt table limit overrun
10 Invalid TSS —_
11 Segment not present —
12 Stack fault S8 segment limit overrun
13 General protection fault CS, DS, ES, FS, GS segment limit overrun
14 Page fault —_

2.5.6 Error Codes

When operating in protected mode, the foliowing exceptions generate a 16-bit

error code:

Double fault

Alignment check
Invalid TSS

Segment not present
Stack fault

General protection fault
Page fault

2-49

Interrupts and Exceptions

The error code format is shown in Figure 2-26 and the error code bit
definitions are listed in Table 2-22. Bits 15-3 (selector index) are not
meaningful if the error code was generated as the result of a page fault. The
error code is always zero for double faults and alignment check exceptions.

Figure 2-26. Error Code Format

15 3 2 1 0
Selector index S2 | 81/ S0
Table 2-22. Error Code Bit Definitions
FauLT | SELECTOR s2 s1 so
TYPE (BITS 15-3) (BIT 2) (BIT 1) (BIT 0)

Page fault | Reserved Fault caused by: Fault occurred during: Fault occurred during:
0=not present page O=read access O=supervisor access
1=page-level protection 1=write access 1=user access

violation

IDT fault Index of faulty | Reserved 1 If set exception occurred

IDT selector while trying to invoke
exception or hardware
interrupt handler.

Segment Index of faulty | Tl bit of faulty selector 0 If set exception occurred

fault selector while trying to invoke

exception or hardware
interrupt handler.
2-50 Programming Interface

System Management Mode

2.6 System Management Mode

2.6.1 Introduction

System Management Mode (SMM) provides an additional interrupt which can
be used for system power management or software transparent emulation of
I/O peripherals. SMM is entered using the Software Management Interrupt
(SMI) which has a higher priority than any other interrupt, including NMI. After
receiving an SMI, portions of the CPU state are automatically saved, SMM is
entered and program execution begins at the base of SMM space
(Figure 2-27 and Figure 2-28). Running in protected SMM address space,
the interrupt routine does not interfere with the operating system or any
application program.

Seven SMM instructions have been added to the TI486 instruction set that
permit saving and restoring of the total CPU state when in SMM mode. Two
new pins, SMI and SMADS, support SMM functions.

Figure 2-27. TI486SLC/E Memory and I/O Address Spaces

Physical Potential
Memory Space SMM Addres Space
FF FFFFh FF FFFFh \
Physical Defined
Memory SMM
16 MBytes Address
Space
4 KBytes to . SMADS S ADS
16 MBytes active active
Y -
00 0000h 00 0000h /
Non-SMM Mode SMM Mode
ADS Active

2-51

System Management Mode

Figure 2-28. TI486DLC/E Memory and I/O Address Spaces

Physical Potential
Memory Space SMM Address Space
FFFF FFFFh FFFF FFFFh \
~ ~N
Physical Defined
Memory SMM
4 GBytes Address
Space
4 KBytes to . SMADS . ADS
16 MBytes % active f active
L 7~
0000 0000h 0000 0000h /

Non-SMM Mode SMM Mode
ADS Active ©

2.6.2 SMM Operations

2-52

SMM operation is summarized in Figure 2-29. Entering SMM requires the
assertion of the SMI pin for at least four CLK2 periods. For the SMI input to be
recognized, the following configuration register bits must be set as shown
below:

SMI CCR1(1) =1
SMAC CCRI1(2) =0
SM4 CCR1(7) =1
ARR4 SIZE(3-0) >0

The configuration registers are discussed in detail earlier in this chapter. After
recognizing SMI and prior to executing the SMI service routine, scme of the
CPU state information is changed. Prior to modification, this information is
automatically saved in the SMM memory space header located at the top of
the SMM memory space. After the header is saved, the CPU enters real mode
and begins executing the SMI service routine starting at the SMM memory
base address.

The SMI service routine is user definable and may contain system or power
management software. if the power management software forces the CPU to
power down, or if the SMI service routine modifies more than what is
automatically saved, the complete CPU state information must be saved.

Programming Interface

System Management Mode

Figure 2-29. SMM Execution Flow Diagram

MI Sampled Active

+

CPU State Stored in SMM
Address Space Header

il

Program Flow Transfers
to SMM Address Space

-

CPU Enters Real Mode

L

Execution Begins at SMM
Address Space Base Address

-

RSM Instruction Restores CPU
State Using Header Informatiomn

+

Normal Execution Resumes

A complete CPU state save is performed by using MOV instructions to save
normally accessible information, and by using the SMM instructions to save
CPU information that is not normally accessible to the programmer. As will be
explained, SMM instructions (SVDC, SVLDT, and SVTS) are used to store the
LDTR, TSR and segment registers and their associated descriptor cache
entries in 80-bit memory locations. After power up or at the end of the SMI
service routine, the MOV and additional SMM instructions (RSDC, RSLDT,
and RSTS) are used to restore the CPU state. The SMM RSM instruction
returns the CPU to normal execution.

2.6.3 SMM Memory Space Header

With every SMl interrupt, certain CPU state information is automaticaily saved
in the SMM memory space header located at the top of SMM address space
(Figure 2-30 and Table 2-23). The header contains CPU state information
that is modified when servicing an SMI interrupt. Included in this information
are two pointers. The Current IP points to the instruction executing when the
SMI was detected. The Next IP points to the instruction that will be executed
after exiting SMM. Also saved are the contents of debug register 7 (DR7), the
extended flags register (EFLAGS), and control register 0 (CRO). If SMM has
been entered due to an I/O trap for a REP INSx or REP OUTSx instruction, the
Current IP and Next IP fields (Table 2—23) contain the same addresses and
the | and P fields contain valid information.

2-53

System Management Mode

Figure 2-30. SMM Memory Space Header

31 0
Top of SMM —p
Address Space DR7 -4h
EFLAGS
-8h
CRO
-Ch
Current IP 10h
Next IP
31 16 15 0!_14n
Reserved CS Selector &h
-1
CS Descriptor (Bits 63—32)
-1Ch
CS Descriptor (Bits 31-0) 210
31 -20h
Reserved Pl
-24h
Reserved
-28h
Reserved
-2Ch
ESI or EDI
-30h

Table 2-23. SMM Memory Space Header

NAME DESCRIPTION SIZE
DR7 The contents of the debug register 7. 4 Bytes
EFLAGS The contents of the extended flag register. 4 Bytes
CRO The contents of the control register 0. 4 Bytes
Current IP The address of the instruction executed prior to servicing the SMI interrupt. 4 Bytes
Next IP The address of the next instruction that will be executed after exiting the SMM mode. 4 Bytes
CS Selector Code segment register selector for the current code segment. 2 Bytes
CS Descriptor Code register descriptor for the current code segment. 8 Bytes
P REP INSx/OUTSx Indicator 1 Bit

P =1 if current instruction has a REP prefix
P =0if current instruction does not have REP prefix

IN, INSx, OUT, or OUTSx Indicator 1 Bit
I =1 if current instruction performed is an I/O WRITE
| = 0 if current instruction performed is an /O READ

ESl or EDI

Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or 4 Bytes
REP INSx instruction when one of the 1/O cycles caused an SMI trap

Note: INSx = INS, INSB, INSW, or INSD instruction.
Note: OQUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

2.6.4 SMM Instructions

2-54

The TI486 automatically saves the minimal amount of CPU state information
when entering SMM which allows fast SMI service routine entry and exit. After
entering the SMI service routine, the MOV, SVDC, SVLDT, and SVTS
instructions can be used to save the complete CPU state information. If the
SMiI service routine either modifies more than what is automatically saved or
forces the CPU to power down, the complete CPU state information must be
saved. Since the T1486 is a static device, its internal state is retained when the
input clock is stopped. Therefore, an entire CPU state save is not necessary
prior to stopping the input clock.

Programming Interface

System Management Mode

The new SMM instructions, listed in Table 2-24, can be executed only if: (a)
the Current Privilege Level (CPL) = 0 and the SMAC bit (CCR1, bit 2) is set;
or (b) CPL =0 and the CPU is in an SMI service routine (SMI = 0). If both these
conditions are not met and an attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RSTS, or RSM instruction, an invalid opcode
exception is generated. These instructions can be-executed outside of defined
SMM space provided the above conditions are met. All ofthe SMM instructions
(except RSM) save or restore 80 bits of data, allowing the saved values to
include the hidden portion of the register contents.

Table 2—-24.SMM Instruction Set

INSTRUCTION

OPCODE FORMAT DESCRIPTION

SVvDC

OF 78 [mod sreg3 r/m] | SVDC mem80, sreg3 | Save Segment Register and Descriptor

Saves reg DS, ES, FS, GS, or SS to mem80.

RSDC

OF 79 [mod sreg3 r/m] | RSDC sreg3, mem80 | Restore Segment Register and Descriptor

Restores reg DS, ES, FS, GS, or SS from mem80.
(CS is automatically restored with RSM)

SVLDT

OF 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor

Saves Local Descriptor Table (LDTR) to mem80.

RSLDT

OF 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor

Restores Local Descriptor Table (LDTR) from
mem80.

SVTS

OF 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor

Save Task State Register (TSR) to mem80.

RSTS

OF 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor

Restores Task State Register (TSR) from mem80.

RSM

RSM Resume Normal Mode

Exits SMM mode. The CPU state is restored using
the SMM memory space header and execution
resumes at interrupted point.

Note: mem80 = 80-bit memory location.

2.6.5 SMM Memory Space

SMM memory space is defined by assigning Address Region 4 to SMM
memory space. This assignment is made by setting bit 7 (SM4) in the on-chip
CCR1 register. ARR4, also an on-chip configuration register, specifies the
base address and size of the SMM memory space. The base address must
be a multiple of the SMM memory space size. For example, a 32 KByte SMM
memory space must be located at a 32 KByte address boundary. The memory
space size can range from 4 KBytes to 16 MBytes.

SMM memory space accesses can use address pipelining, and are always
non-cacheable. SMM accesses ignore the state of the A20M input pin and
drive the A20 address bit to the unmasked value.

Access to the SMM memory space can be made while not in SMM mode by
setting the System Management Access (SMAC) bitin the CCR1 register. This
feature may be used to initialize the SMM memory space.

2-55

System Management Mode

While in SMM mode, SMADS address strobes are generated instead of ADS
for SMM memory accesses. Any memory accesses outside the defined SMM
space result in normal memory accesses and ADS strobes. Data (non-code)
accesses to main memory that overlap with defined SMM memory space are
allowed ifbit3in CCR1 (MMAC) is set. In this case, ADS strobes are generated
for data accesses only and SMADS strobes continue to be generated for code
accesses.

2.6.6 SMI Service Routine Execution

2-56

Upon entry into SMM after the SMM header has been saved, the CRO,
EFLAGS, and DR?7 registers are set to their reset values. The Code Segment
(CS) register is loaded with the base and limits defined by the ARR4 register
and the SMI service routine begins execution at the SMM base address in real
mode.

The programmer must then save the value of any registers that may be
changed by the SMI service routine. For data accesses immediately after
entering the SMi service routine, the programmer must use CS as a segment
override. I/O port access is possible during the routine but care must be taken
to save registers modified by the 1/O instructions. Before using a segment
register, the register’s descriptor cache contents should be saved using the
SVDC instruction. While executing in the SMM space, execution flow can
transfer to normal memory locations.

Hardware interrupts (INTRs and NMls) may be serviced during an SMl service
routine. If interrupts are to be serviced while operating in the SMM memory
space, the SMM memory space must be within the 0to 1 MByte address range
to guarantee proper return to the SMI service routine after handling the
interrupt. INTRs are automatically disabled when entering SMM since the IF
flag is set to its reset value. However, NMIs remain enabled. If it is desired to
disable NMI, it should be done immediately after entering the SMI service
routine by the system hardware logic.

Within the SMI service routine, protected mode may be entered and exited as
required, and real or protected mode device drivers can be called.

To exit the SMI service routine, a Resume (RSM) instruction, rather than an
IRET, is executed. The RSM instruction causes the T1486 to restore the CPU
state using the SMM header information and resume execution at the
interrupted point. If the full CPU state was saved by the programmer, the stored
values should be reloaded prior to executing the RSM instruction using the
MOV and the RSDC, RSLDT, and RSTS instructions.

CPU States Related to SMM and Suspend Mode

The state diagram shown in Figure 2-31 illustrates the various CPU states
associated with SMM and suspend mode. While in the SMI service routine, the
TI486 can enter suspend mode either by (1) executing a HALT instruction or
(2) by asserting the SUSP input.

Programming Interface

System Management Mode

During SMM operation and while in SUSP initiated suspend mode, an
occurrence of either NMI or INTR is latched. In order for INTR to be latched,

the IF flag must have been set. The INTR or NMI is serviced after exiting
suspend mode.

If suspend mode is entered via a HALT instruction from the operating system
or application software, the reception of an SMI interrupt causes the CPU to
exit suspend mode and enter SMM. If suspend mode is entered via the
hardware (SUSP = 0) while the operating system or application software is
active, the CPU latches one occurrence of INTR, NMI, and SMI.

Figure 2-31. SMM and Suspended Mode Flow Diagram

Interrupt
Service
Routine

NMI or INTR

Suspend Mode
(SUSPA =0)

HALT*

OS/Application

Suspend Mode
RESET Software (SUSPA = 0)
(INTR, NMI, and SMI Latched)
_Non-SMM Qerations S
SMM Operations
SMI Service

Routine HALT*
(SMI =0)

Suspend Mode
INTR or NMI (SUSPA = 0)
A
IRET*
INTR and NMI
Interrupt Interrupt
Service Service
Routine Routine

Suspend Mode
(SUSPA =0)

* Instructions
(INTR and NMI

Latched)

2-57

Shutdown and Halt / Protection

2.7 Shutdown and Halt

2.8 Protection

The halt instruction (HLT) stops program execution and prevents the
processor from using the local bus until restarted. The T1486 then enters a
low-power suspend mode. INTR with interrupts enabled (IF bit in EFLAGS =
1), SMI, NMI, or RESET forces the CPU out of the halt state. If interrupted, the
saved code segment and instruction pointer specify the instruction following
the HLT.

Shutdown occurs when a severe error is detected that prevents further
processing. An NMI input can bring the processor out of shutdown if the IDT
limit is large enough to contain the NMI interrupt vector (at least 000Fh) and
the stack has enough room to contain the vector and flag information (i.e.,
stack pointer is greater than 0005h). Otherwise, shutdown can be exited only
by a processor reset.

Segment protection and page protection are safeguards buiit into the T1486
protected mode architecture which deny unauthorized or incorrect access to
selected memory addresses. These safeguards allow multitasking programs
to be isolated from each other and from the operating system. Page protection
is discussed earlier in this chapter in Section 2.4. This section concentrates
on segment protection.

Selectors and descriptors are the key elements in the segment protection
mechanism. The segment base address, size, and privilege level are
established by a segment descriptor. Privilege levels control the use of
privilege instructions, 1/O instructions, and access to segments and segment
descriptors. Selectors are used to locate segment descriptors.

Segment accesses are divided into two basic types, those involving code
segments (e.g., control transfers) and those involving data accesses. The
ability of a task to access a segment depends on:

B the segment type

B the instruction requesting access

M the type of descriptor used to define the segment
B the associated privilege levels

Data stored in a segment can be accessed only by code executing at the same
ora more privileged level. A code segment or procedure can be called only by
a task executing at the same or a less privileged level.

2.8.1 Privilege Levels

2-58

The values for privilege levels range between 0 and 3. Level 0 is the highest
privilege level (most privileged), and level 3 is the lowest privilege level (least
privileged). The privilege level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the privilege level defined for a
segment in the segment descriptor. The DPL field specifies the minimum
privilege level needed to access the memory segment pointed to by the
descriptor.

Programming Interface

Protection

The Current Privilege Level (CPL) is defined as the current task’s privilege
level. The CPL of an executing task is stored in the hidden portion of the code
segment register and essentially is the DPL for the current code segment.

The Requested Privilege Level (RPL) specifies a selector’s privilege level and
is used to distinguish between the privilege level of a routine actually
accessing memory (the CPL), and the privilege level of the original requestor
(the RPL) of the memory access. The lesser of the RPL and CPL is called the
effective privilege level (EPL). Therefore, if RPL = 0 in a segment selector, the
effective privilege level is always determined by the CPL. If RPL = 3, the
effective privilege level is always 3 regardless of the CPL.

For a memory access to succeed, the effective privilege level (EPL) must be
at least as privileged as the descriptor privilege level (EPL > DPL). If the EPL
is less privileged than the DPL (EPL < DPL), a general protection fault is
generated. For example, if a segment has a DPL = 2, an instruction accessing
the segment succeeds only if executed with an EPL > 2.

2.8.2 1/O Privilege Levels

The I/O Privilege Level (IOPL) allows the operating system executing at
CPL = 0 to define the least privileged level at which IOPL-sensitive instructions
can unconditionally be used. The IOPL-sensitive instructions include CLI, IN,
OUT, INS, OUTS, REP INS, REP OUTS, and STI. Modification of the IF bit in
the EFLAGS register is also sensitive to the I/O privilege level.

The IOPL is stored in the EFLAGS register. An /O permission bit map is
available as defined by the 32-bit Task State Segment (TSS). Since each task
can have its own TSS, access to individual I/O ports can be granted through
separate I/O permission bit maps.

If CPL < IOPL, IOPL-sensitive operations can be performed. If CPL > IOPL,
a general protection fault is generated if the current task is associated with a
16-bit TSS. If the current task is associated with a 32-bit TSS and CPL > IOPL,
the CPU consults the I/O permission bitmap in the TSS to determine on a
port-by-port basis whether or not I/O instructions (IN, OUT, INS, OUTS, REP
INS, REP OUTS) are permitted, and the remaining IOPL-sensitive operations
generate a general protection fault.

2.8.3 Privilege Level Transfers

A task’s CPL can be changed only through intersegment control transfers
using gates or task switches to a code segment with a different privilege level.
Control transfers result from exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET, and RET instructions.

The five types of control transfers are summarized in Table 2-25. Control
transfers can be made only when the operation causing the control transfer
references the correct descriptor type. Any violation of these descriptor usage
rules causes a general protection fault.

2-59

Protection

Any control transfer that changes the CPL within a task results in a change of
stack. The initial values for the stack segment (SS) and stack pointer (ESP)
for privilege levels 0, 1, and 2 are stored in the TSS. During a JMP or CALL
control transfer, the SS and ESP are loaded with the new stack pointer and the
previous stack pointer is saved on the new stack. When returning to the
original privilege level, the RET or IRET instruction restores the less-privileged
stack.

Table 2-25. Descriptor Types Used for Control Transfer

OPERATION DESCRIPTOR DESCRIPTOR
TYPE OF CONTROL TRANSFER TYPES REFERENCED TABLE
Intersegment within the same privilege level | JMP, CALL, RET, IRET Code segment GDT or LDT
Intersegment to the same or a more CALL Call gate GDT or LDT

privileged level. Interrupt within task (could

change CPL level). E\;:::z ::ts;::xfglton Exception, | Trap orinterrupt gate | IDT

Intersegment to a less privileged level RET, IRET Code segment GDT or LDT

(changes task CPL).

Task switch via TSS CALL, JMP Task state segment | GDT

Task switch via task gate CALL, JMP Task gate GDT or LDT
IRET, Interrupt instruction, Task gate IDT

Exception, External interrupt

2.8.3.1 GQGates

Gate descriptors provide protection for privilege transfers among executable
segments. Gates are used to transition to routines of the same or a more
privileged level. Call gates, interrupt gates, and trap gates are used for
privilege transfers within a task. Task gates are used to transfer between tasks.

Gates conform to the standard rules of privilege. In other words, gates can be
accessed by a task if the effective privilege level (EPL) is the same or more
privileged than the gate descriptor’s privilege level (DPL).

2.8.4 Initialization and Transition to Protected Mode

2-60

The T1486 microprocessor switches to Real Mode immediately after RESET.
While operating in real mode, the system tables and registers should be
initialized. The GDTR and IDTR must point to a valid GDT and IDT,
respectively. The size of the IDT should be at least 256 bytes, and the GDT
must contain descriptors which describe the initial code and data segments.

The processor can be placed in protecied mode by setting the PE bit in the
CRO register. After enabling protected mode, the CS register should be loaded
and the instruction decode queue should be flushed by executing an
intersegment JMP. Finally, all data segment registers should be initialized with
appropriate selector values.

Programming Interface

Virtual 8086 Mode

2.9 Virtual 8086 Mode

Both Real Mode and Virtual 8086 (V86) Mode are supported by the T1486 CPU
allowing execution of 8086 application programs and 8086 operating systems.
V86 Mode allows the execution of 8086-type applications, yet still permits use
of the TI486 protection mechanism. V86 tasks run at privilege level 3. Upon
entry, all segment limits are set to FFFFh (64K) as in real mode.

2.9.1 Memory Addressing

2.9.2 Protection

While in V86 mode, segment registers are used in an identical fashion to Real
Mode. The contents of the segment register are shifted left four bits and added
to the offset to form the segment base linear address. The T1486 CPU permits
the operating system to select which programs use the V86 address
mechanism and which programs use protected mode addressing for each
task.

The TI486 also permits the use of paging when operating in V86 mode. Using
paging, the 1-MByte address space of the V86 task can be mapped to
anywhere in the 4-GByte linear address space of the T1486 CPU. As in real
mode, linear addresses that exceed 1 MByte cause a segment limit overrun
exception.

The paging hardware aliows multiple V86 tasks to run concurrently, and
provides protection and operating system isolation. The paging hardware
must be enabled to run multiple V86 tasks or to relocate the address space of
a V86 task to physical address space greater than 1 MByte.

All V86 tasks operate with the least amount of privilege (level 3) and are
subject to all of the T1486 protected mode protection checks. As a result, any
attempt to execute a privileged instruction within a V86 task results ina general
protection fault.

In V86 mode, a slightly different set of instructions is sensitive to the 1/0
privilege level (IOPL) than in protected mode. These instructions are: CLI,
INT n, IRET, POPF, PUSHF, and STI. The INT3, INTO and BOUND variations
of the INT instruction are not IOPL sensitive.

2-61

Virtual 8086 Mode

2.9.3 Interrupt Handling

To fully support the emulation of an 8086-type machine, interrupts in V86 mode
are handled as follows. When an interrupt or exception is serviced in V86
mode, program execution transfers to the interrupt service routine at privilege
level O (i.e., transition from V86 to protected mode occurs) and the VM bit in
the EFLAGS register is cleared. The protected mode interrupt service routine
then determines if the interrupt came from a protected mode or V86 application
by examining the VM bit in the EFLAGS image stored on the stack. The
interrupt service routine may then choose to allow the 8086 operating system
to handle the interrupt or may emulate the function of the interrupt handler.
Following completion of the interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM = 1) and segment selectors and
control returns to the interrupted V86 task.

2.9.4 Entering and Leaving V86 Mode

2-62

V86 mode is entered from protected mode either by executing an IRET
instruction at CPL = 0 or by task switching. If an IRET is used, the stack must
contain an EFLAGS image with VM = 1. If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in the VM bit position. the POPF
instruction cannot be used to enter V86 mode since the state of the VM bit is
not affected. V86 mode can be exited only as the result of an interrupt or
exception. The transition out must use a 32-bit trap or interrupt gate which
must point to a non-conforming privilege level 0 segment (DPL = 0), or a 32-bit
TSS. These restrictions are required to permit the trap handler to IRET back
to the V86 program.

Programming Interface

o
.
e o

. L e
L Cireminitia b

: =

e
-
o
a%%«m -
-
.

e
.
=

‘sﬁ«%‘ﬁa

-
.

- %
. .
. .
Ll

e ;s%“ S
..

-
.

3-1

B TI486SLC/E Bus Interface

3-2

Chapter 3

TI486SLC/E Bus Interface

In this chapter, an overview of the T1486 provides a summary of the processor
signals, functional description of all pins, functional timing and bus operations
(including non-pipelined and pipelined addressing), various interfaces, and
power management.

Topic Page

3-3

Overview

3.1 Overview

The following sections describe the TI1486SLC/E input and output signals. The
discussion of these signals is arranged by functional groups as shown in
Figure 3—-1. Table 3—1 gives a brief description of each of the TI486SLC/E
signals.

Figure 3—1. TI486SLC/E Functional Signal Groupings

2x Clock ——p| CLK2 TI486SLC/E INTR |¢
Interrupt
Roset ~ % RESET NMI [Control
<: A23-A1 SV le—
Address < BLE
Bus S KEN [¢—— Internal
| «— BFE Cache
Dat FLUSH j[¢— Interface
Bl @ D15-DO
~ =] AHONT | Address Bit
<+— WR A20M [¢— 20 Mask
C?;Z J «—pC PEREQ [¢—
Definiton | €—— MO BUSY j¢&— ﬁ?grrfgzzssor
. «— LOCK ERROR [¢—
[—>{ NA HOLD 4——} Bus
Bus | | READY L, [Arbitration
Cycle 4 READY HLDA
Control <«—1 ADS SUSF ¢ Bower
~ 4—— SMADS SUSPA |—» [Management
FLT L—f Float
Control

34

Tl486SLC/E Bus Interface

Overview

Table 3—1. TI486SLC/E Signal Summary

SIGNAL SIGNAL NAME SIGNAL GROUP
A20M Address bit 20 mask
A23-A1 Address bus lines Address bus
ADS Address strobe Bus cycle control
BHE Byte high enable Address bus
BLE Byte low enable Address bus
BUSY Processor extension busy Coprocessor interface
CLK2 2X clock input
D15-D0 Data bus lines
D/C Data/control Bus cycle definition
ERROR Processor extension efror Coprocessor interface
FLT Float
FLUSH Cache flush Internal cache interface
HLDA Hold acknowledge Bus arbitration
HOLD Hold request Bus arbitration
INTR Maskable interrupt request Interrupt control
KEN Cache enable Internal cache interface
LOCK Bus lock Bus cycle definition
M0 Memory/input-output Bus cycle definition
NA Next address request Bus cycle control
NMI Non-maskable interrupt request Interrupt control
PEREQ Processor extension request Coprocessor interface
READY Bus ready Bus cycle control
RESET Reset
SMADS SMM address strobe Bus cycle control
sMmi System management interrupt Interrupt control
SUSP Suspend request Power management
SUSPA Suspend acknowledge Power management
W/R Write/read Bus cycle definition

The following sections describe the signals and their functional timing
characteristics. Additional signal information may be found in Chapter 5,
Electrical Specifications. Chapter 5 documents the dc and ac characteristics
for the signals including voltage levels, propagation delays, setup times, and
hold times. Specified setup and hold times must be met for proper operation
of the T1486.

Overview

Table 3-2. Terminal Functions

PIN /o DESCRIPTION
NAME NO.

Al 18

A2 51

A3 52

A4 53

A5 54

A6 55

A7 56 Address Bus (active high). The address bus (A23—A1) signals are 3-state outputs that
A8 58 provide addresses for physical memory and I/O ports. All address lines can be used for
A9 59 addressing physical memory allowing a 16 MByte address space (00 0000h to FF
A10 60 FFFFh). During 1/O port accesses, A23—-A16 are driven low (except for coprocessor
A1l 61 accesses). This permits a 64 KByte 1/0 address space (00 0000h to 00 FFFFh).

A12 62 0o/z

A13 64 During all coprocessor /O access address lines A22—-A16 are driven low and A23 is
Al4 65 driven high. This allows A23 to be used by external logic to generate a coprocessor select
A15 66 signal. Coprocessor command transfers occur with address 80 00F8h and coprocessor
A16 70 data transfers occur with addresses 80 00FCh and 90 OOFEh. A23-A1 float while the
A17 72 CPU is in a hold acknowledge or float state.

A18 73

A19 74

A20 75

A21 76

A22 79

A23 80
ADS 16 O/Z | Address Strobe (active low). This is a 3-state output thatindicates the TI486 has driven

a valid address (A23-A1, BHE, BLE) and bus cycle definition (M/I0), D/C, W/R) on the
appropriate TI486SLC/E output pins. During non-pipelined bus cycles, ADS is active for
the first clock of the bus cycle. During address pipelining, ADS is asserted during the
previous bus cycle and remains asserted until READY is returned for that cycle. ADS
floats while the TI1486SLC/E is in a hold acknowledge or float state.

A20M 31 | Address Bit 20 Mask (active low). This input causes the TI486SLC/E to mask (force
low) physical address bit 20 when driving the external address bus or performing an
internal cache access. When the processor is in real mode, asserting A20M emulates
the 1 MByte address wrap around that occurs on the 8086. The A20 signal is never
masked when paging is enabled regardless of the state of the A20M input. The A20M
input is ignored following reset and can be enabled using the A20M bit in the CCRO
configuration register.

A20M is internally connected to a pullup resistor to prevent it from floating active when

left unconnected.
BHE 19 0/Z | Byte Enables (active low). Byte Low Enable (BLE) and Byte High Enable (BHE) are
BLE 17 3-state outputs that indicate which byte(s) of the 16-bit data bus will be selected for data

transfer during the current bus cycle. BLE selects the low byte (D7-D0) and BHE selects
the high byte (D15-D8).

When BHE and BLE are asserted, both bytes (all 16 bits) of the data bus are selected.
BLE and BHE float while the CPU is in a hold acknowledge or float state.

BHE = BLE = 1 never occurs during a bus cycle.

3-6 : TI486SLC/E Bus Interface

Overview

Table 3—-2. Terminal Functions (Continued)

PIN
NAME NO.

BUSY 34 | Coprocessor Busy (active low). This is an input from the coprocessor that indicates to
the T1486SLC/E that the coprocessor is currently executing an instruction and is not yet
able to accept another opcode. When the TI486SLC/E processor encounters a WAIT
instruction or any coprocessor instruction that operates on the coprocessor stack (i.e.,
load, pop, arithmetic operation), BUSY is sampled. BUSY is continually sampled and
must be recognized as inactive before the CPU will supply the coprocessor with another
instruction. However, the following coprocessor instructions are aliowed to execute even
if BUSY is active since these instructions are used for coprocessor initialization and
exception clearing: FNINIT, FNCLEX.

/0 DESCRIPTION

BUSY is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

CLK2 15 | 2X Clock Input (active high). This signal is the basic timing reference for the
Ti486SLC/E microprocessor. The CLK2 input is internally divided by two to generate the
internal processor clock. The external CLK2 is synchronized to a known phase of the
internal processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

DO 1

D1 100

D2 99

D3 96

Bg gi Data Bus (active high). The Data Bus (D15~D0) signals are 3-state bidirectional signals

D6 03 that provide the data path between the TI486SLC/E and external memory and I/O

D7 P devices. The data bus inputs data during memory read, /O read and interrupt

D8 90 I/O/Z | acknowledge cycles and outputs data during memory and I/O write cycles. Data read

D9 89 operations require that specified data setup and hold times be met for correct operation.

D10 88 The data bus signals are high active and float while the CPU is in a hold acknowledge

D11 87 or float state.

D12 86

D13 83

D14 82

D15 81

D/C 24 O/Z | Data/Control. This signal is low during control cycles and is high during data cycles.
Control cycles are issued during functions such as a halt instruction, interrupt servicing
and code fetching. Data bus cycles include data access from either memory or I/O.

ERROR 36 | Coprocessor Error (active low). This is an input used to indicate that the coprocessor

generated an error during execution of a coprocessor instruction. ERROR is sampled by
the TI486SLC/E processor whenever a coprocessor instruction is executed. If ERROR
is sampled active, the processor generates exception 16 which is then serviced by the
exception handling software.
Certain coprocessor instructions do not generate an exception 16 even if ERROR is
active. These instructions, which involve clearing coprocessor error flags and saving the
coprocessor state, are listed as follows: FNINIT, FNCLEX, FNSTSW, FNSTCW,
FNSTENV, FNSAVE. ERROR is internally connected to a pullup resistor to prevent it
from floating active when left unconnected.
ERROR s internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

FLT 28 | Fioat (active low). This input forces all bidirectional and output signals to a 3-state

condition. Floating the signals allows the TI486SLC/E signals to be externally driven
without physically removing the device from the circuit. The TI486SLC/E CPU must be
reset following assertion or deassertion of FLT. Itis recommended that FLT be used only
for test purposes.

FLT is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

Overview

Table 3-2. Terminal Functions (Continued)

NAME

PIN

NO.

o

DESCRIPTION

FLUSH

30

Cache Flush (active low). This is an input that invalidates (flushes) the entire cache.
Use of FLUSH to maintain cache coherency is optional. The cache may also be
invalidated during each hold acknowledge cycle by setting the BARB bit in the CCRO
configuration register. The FLUSH input is ignored following reset and can be enabled
using the FLUSH bit in the CCRO configuration register.

FLUSH is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

HOLD

Hold Request (active high). This input is used to indicate that another bus master
requests control of the local bus. The bus arbitration (HOLD, HLDA) signals allow the
Ti486SLC/E to relinquish control of its local bus when requested by another bus master
device. Once the processor has relinquished its bus (3-stated), the bus master device
can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or sequence
of locked bus cycles, the TI486SLC/E responds by floating the local bus and asserting
the hold acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus master until
HOLD becomes inactive. When the TI486SLC/E recognizes HOLD is inactive, it
simultaneously drives the local bus and drives HLDA inactive. External pullup resistors
may be required on some of the TI486SLC/E 3-state outputs to guarantee that they
remain inactive while in a hold acknowledge state.

The HOLD input is not recognized while RESET is active. If HOLD is asserted while
RESET is active, RESET has priority and the TI486SLC/E places the bus into an idle
state instead of a hold acknowledge state. The HOLD input is also recognized during
suspend mode provided that the CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and hold times for correct operation.

HLDA

Hold Acknowledge (active high). This output indicates thatthe TI486SLC/E isinahold
acknowledge state and has relinquished control of its local bus. While in the hoid
acknowledge state, the TI486SLC/E drives HLDA active and continues to drive SUSPA,
if enabled. The other TI486SLC/E outputs are in a high-impedance state allowing the
requesting bus master to drive these signals. If the on-chip cache can satisfy bus
requests, the TI486SLC/E continues to operate during hold acknowledge states. A20M
is internally recognized during this time.

The processor deactivates HLDA when the HOLD request is driven inactive. The
T1486SLC/E stores an NMI rising edge during a hold acknowledge state for processing
after HOLD is inactive. The FLUSH input is also recognized during a hold acknowledge
state. If SUSP is asserted during a hold acknowledge state, the TI486SLC/E may or may
not enter suspend mode depending on the state of the internal execution pipeline.
Table 3-3 summarizes the state of the TI486SLC/E signals during hold acknowledge.

INTR

40

Maskable Interrupt Request. This is a level-sensitive input that causes the processor
to suspend execution of the current instruction stream and begin execution of an interrupt
service routine. The INTR input can be masked (ignored) through the Flags Register IF
bit. When unmasked, the Ti486SLC/E responds to the INTR input by issuing two locked
interrupt acknowledge cycles. To assure recognition of the INTR request, INTR must
remain active until the start of the first interrupt acknowledge cycle.

TI486SLC/E Bus Interface

Overview

Table 3-2. Terminal Functions (Continued)

NAME

PIN

NO.

Vo

DESCRIPTION

KEN

29

Cache Enable (active low). This is aninput which indicates that the data being returned
during the current cycle is cacheable. When KEN is active and the TI486SLC/E is
performing a cacheable code fetch or memory data read cycle, the cycle is transformed
into a cache fill. Use of the KEN input to control cacheability is optional. The
non-cacheable region registers can also be used to control cacheablity. Memory
addresses specified by the non-cacheable region registers are not cacheable regardless
of the state of KEN. I/O accesses, locked reads, SMM address space accesses, and
interrupt acknowledge cycles are never cached.

During cached code fetches, two contiguous read cycles are performed to completely
fill the 4-byte cache line. KEN must be asserted during both read cycles in order to cause
a cache line fill. During cached data reads, the TI486SLC/E performs only those bus
cycles necessary to supply the required data to complete the current operation. Valid bits
are maintained for each byte in the cache line, thus allowing data operands of less than
4 bytes to reside in the cache.

During any cache fill cycle with KEN asserted, the TI486SLC/E ignores the state of the
byte enables (BHE and BLE) and always writes two bytes of data into the cache. The
KEN input is ignored following reset and can be enabled using the KEN bit in the CCRO
configuration register.

KEN is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

LOCK

26

LOCK (active low). LOCK is asserted to deny control of the CPU bus to other bus
masters. The LOCK signal may be explicitly activated during bus operations by including
the LOCK prefix on certain instructions. LOCK is always asserted during descriptor and
page table updates, interrupt acknowledge sequences and when executing the XCHG
instruction. The TI486SLC/E does not enter the hold acknowledge state in response to
HOLD while the LOCK input is active.

MAO

23

o/z

Memory/lO. This signal is low during I/O read and write cycles and is high during
memory cycles.

Next Address Request (active low). This is aninput used to request address pipelining
by the system hardware. When asserted, the system indicates that it is prepared to
accept new bus cycle definition and address signals (M/10, D/C, W/R, A23-A1, BHE, and
BLE) from the microprocessor even if the current bus cycle has not been terminated by
assertion of READY. If the TI486SLC/E has an internal bus request pending and the NA
inputis sampled active, the next bus cycle definition and address signals are driven onto
the bus.

NC

27,45, 46

No connection. Should be left disconnected.

NMI

38

Non-maskable Interrupt Request. Thisis arising-edge-sensitive inputthat causes the
processor to suspend execution of the current instruction stream and begin execution
of an NMI interrupt service routine. The NMI interrupt service request cannot be masked
by software. Asserting NMI causes an interrupt which internally supplies interrupt vector
2h to the CPU core. External interrupt acknowledge cycles are not necessary since the
NMI interrupt vector is supplied internally.

The TI486SLC/E samples NMI at the beginning of each phase 2. To assure recognition,
NMI must be inactive for at least eight CLK2 periods and then be active for at ieast eight
CLK2 periods. Additionally, specified setup and hold times must be met to guarantee
recognition at a particular clock edge.

Overview

Table 3-2. Terminal Functions (Continued)

PIN
NAME NO.

PEREQ 37 1 Coprocessor Request (active high). This is an input that indicates the coprocessor is
ready to transfer data to or from the CPU. The coprocessor may assert PEREQ in the
process of executing a coprocessor instruction. The TI486SLC/E internally stores the
current coprocessor opcode and performs the correct data transfers to support
coprocessor operations using PEREQ to synchronize the transfer of required operands.

Vo DESCRIPTION

PEREQ is internally connected to a pulldown resistor to prevent this signal from floating
active when left unconnected.

READY 7 | Ready. Thisis aninputgenerated by the system hardware thatindicates the current bus
cycle can be terminated. During a read cycle, assertion of READY indicates that the
system hardware has presented valid data to the CPU. When READY is sampled active,
the TI486SLC/E latches the input data and terminates the cycle. During a write cycle,
READY assertion indicates that the system hardware has accepted the TI486SLC/E
output data. READY must be asserted to terminate every bus cycle, including halt and
shutdown indication cycles.

RESET 33 I Reset (active high). When asserted, RESET suspends all operations in progress and
places the TI486SLC/E into a reset state. RESET is a level-sensitive synchronous input
and must meet specified setup and hold times to be properly recognized by the
TI486SLC/E. The TI486SLC/E begins executing instructions at physica! address
location FF FFFOh approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active all other input pins, except FLT, are ignored. The remaining
signals are initialized to their reset state during the internal processor reset sequence.
The reset signal states for the TI486SLC/E are shown in Table 3-3.

SMADS 20 0O/Z | SMM Address Strobe (active low). SMADS is asserted instead of the ADS during SMM
bus cycles and indicates that SMM memory is being accessed. SMADS floats while the
CPU is in a hold acknowledge or float state. The SMADS output is disabled (floated)
following reset and can be enabled using the SMI bit in the CCR1 configuration register.

o
=

47 110 System Management Interrupt (active low). This is a bidirectional signal and level
sensitive interrupt with higher priority than the NMI interrupt. SMI must be active for at
least four CLK2 clock periods to be recognized by the TI486SLC/E. After the SMI
interrupt is acknowledged, the SMI pin is driven low by the TI486SLC/E for the duration
of the SMI service routine. The SMi input is ignored following reset and can be enabled
using the SMI bit in the CCR1 configuration register.

SMiis internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

SUSP 43 | Suspend Request (active low). This is an input that requests the TI486SLC/E enter
suspend mode. After recognizing SUSP active, the processor completes execution of
the current instruction, any pending decoded instructions and associated bus cycles. In
addition, the TI486SLC/E waits for the coprocessor to indicate a not busy status
(BUSY = 1) before entering suspend mode and asserting suspend acknowledge
(SUSPA).

SUSP is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSPA 44 (o] Suspend Acknowledge (active low). This output indicates that the TI486SLC/E has
entered the suspend mode as a result of SUSP assertion or execution of a HALT
instruction.

3-10 TI486SLC/E Bus Interface

Overview

Table 3—-2. Terminal Functions (Continued)

NAME

PIN

NO.

/o

DESCRIPTION

Vce

8
9
10
21
32
39
42
48
57
69
71
84
o
97

5-V Power Supply. All pins must be connected and used.

Vss

2

5

11

12
13
14
22
35
41
49
50
63
67
68
77
78
85
98

Ground Pins. All pins must be connected and used.

W/R

25

o/Zz

Write/Read. W/Ris low during read cycles (data is read from memory or I/O) and is high
during write bus cycles (data is written to memory or I/O).

Overview

Table 3-3. Signal States During RESET and Hold Acknowledge

3-12

SIGNAL SIGNAL STATE | SIGNAL STATE DURING
NAME DURING RESET | HOLD ACKNOWLEDGE

A20M Ignored Input recognized
A23-A1 1 Float
ADS 1 Float
BHE, BLE 0 Float
BUSY Initiates self test | Ignored
D15-DO Float Float
D/C 1 Float
ERROR Ignored Ignored
FLT Input recognized | Input recognized
FLUSH Ignored Input recognized
HLDA 0 1
HOLD Ignored Input recognized
INTR Ignored Input recognized
KEN Ignored Ignored
LOCK 1 Float
MAO 0 Float
NA Ignored ignored
NMi Ignored Input recognized
PEREQ Ignored Ignored
READY Ignored Ignored
RESET Input recognized | Input recognized
SMADS Float Float
SMI Ignored Input recognized
SUSP Ignored Input recognized
SUSPA Float Driven
W/R 0 Float

TI486SLC/E Bus Interface

Overview

3.1.1 Bus Cycle Definition

Table 3—4. Bus Cycle Types

The bus cycle definition (M/10, D/C, W/R, LOCK) signals consist of four 3-state
outputs that define the type of bus cycle operation being performed. Table 3—4
defines the bus cycles for the possible states of these signals. M/IO, D/C and
W/R are the primary bus cycle definition signals and are driven valid as ADS
(Address Strobe) becomes active. During non-pipelined cycles, the LOCK
output is driven valid along with M/IO, D/C and W/R. During pipelined
addressing, LOCK is driven at the beginning of the bus cycle, which is after
ADS becomes active for that cycle. The bus cycle definition signals are active
low and float while the TI486SLC/E is in a hold acknowledge or float state.

Mo D/IC W/R LOCK BUS CYCLE TYPE
0 0 0 0 Interrupt acknowledge
0 0 0 1 —
0 0 1 X —
0 1 X 0 —
0 1 0 1 1/O data read
0 1 1 1 1/0 data write
1 0 X 0 —
1 0 0 1 Memory code read
1 0 1 1 Halt: A23-A1=2h, BHE=1and BLE=0
Shutdown: A23-A1=0h, BHE=1 and BLE=0
1 1 0 0 Locked memory data read
1 1 0 1 Memory data read
1 1 1 0 Locked memory data write
1 1 1 1 Memory data write
X =don'’t care

— = does not occur

3-13

Overview

3.1.2 Power Management

The power management signals allow the TI486SLC/E to enter suspend
mode. Suspend mode circuitry allows the TI486SLC/E to consume minimal
power while maintaining the entire internal CPU state.

3.1.2.1 Suspend Request (SUSP)

Suspend Request (SUSP) is an active-low input that requests the TI486SL.C/E
to enter suspend mode. After recognizing SUSP is active, the processor
completes execution of the current instruction, any pending decoded
instructions and associated bus cycles. In addition, the TI486SLC/E waits for
the coprocessor to indicate a not busy condition (BUSY=1) before entering
suspend mode and asserting suspend acknowledge (SUSPA). During
suspend mode, internal clocks are stopped and only the logic associated with
monitoring RESET, HOLD and FLUSH remains active. With SUSPA asserted,
the CLK2 input to the TI486SLC/E can be stopped in either phase. Stopping
the CLK2 input further reduces current consumption of the TI486SLC/E.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP input. The processor then resumes instruction
fetching and begins execution in the instruction stream at the point it had
stopped. The SUSP input is level sensitive and must meet specified setup and
hold times to be recognized at a particular clock edge. The SUSP input is
ignored following reset and can be enabled using the SUSP bit in the CCRO
configuration register.

3.1.2.2 Suspend Acknowledge (SUSPA)

314

The Suspend Acknowledge (SUSPA) output indicates that the TI486SLC/E
has entered the suspend mode as a result of SUSP assertion or execution of
a HALT instruction. If SUSPA is asserted and the CLK2 input is switching, the
TI486SLC/E continues to recognize FLT, RESET, HOLD, and FLUSH. If
suspend mode was entered as the result of a HALT instruction, the
TI486SLC/E also continues to monitor the NMI input and an unmasked INTR
input. Detection of INTR or NMI forces the TI486SLC/E to exit suspend mode
and begin execution of the appropriate interrupt service routine. The CLK2
input to the processor may be stopped after SUSPA has been asserted to
further reduce the power consumption of the TI486SLC/E. The SUSPA output
is disabled (floated) following reset and can be enabled using the SUSP bit in
the CCRO configuration register.

TI486SLC/E Bus Interface

Overview

Table 3-5 shows the state of the TI486SLC/E signals when the device is in
suspend mode.

Table 3-5. Signal States During Suspend Mode

SIGNAL SIGNAL STATE DURING SIGNAL STATE DURING HALT
NAME HOLD ACKNOWLEDGE INITIATED SUSPEND MODE

A20M Ignored Ignored
A23-A1 1 1
ADS 1 1
BHE, BLE 0 0
BUSY Ignored Ignored
D15-D0 Float Float
D/C 1 1
ERROR Ignored Ignored
FLT Input recognized Input recognized
FLUSH Input recognized Input recognized
HLDA 0 0
HOLD Input recognized Input recognized
INTR Latched Input recognized
KEN Ignored Ignored
LOCK 1 1
M/O 0 0
NA Ignored Ignored
NMI Latched Input recognized
PEREQ Ignored Ignored
READY ignored Ignored
RESET Input recognized Input recognized
SMADS 1 1
SMI Latched Input recognized
SUSP Input recognized Ignored
SUSPA 0 0
W/R 0 0

3.1.2.3 Coprocessor Interface

The data bus, address bus, and bus cycle definition signals, as well as the
coprocessor interface signals (PREQ, BUSY, ERROR), are used to control
communication between the TI486SLC/E and a coprocessor. Coprocessor or
ESC opcodes are decoded by the TI486SLC/E and the opcode and operands
are then transferred to the coprocessor via I/O port accesses to addresses
80 00F8h, 80 00FCh, or 80 OOFEh. Address 80 00F8h functions as the control
port address and 80 00 FCh and 80 OOFEh are used for operand transfers.

Functional Timing

3.2 Functional Timing

3.2.1 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when it is asserted. When RESET is asserted, the
TI486SLC/E aborts any bus cycle. Idle, hold acknowledge, and suspend
states are also discontinued and the reset state is established. RESET is used
when the TI486SLC/E microprocessor is powered up to initialize the CPU to
a known valid state and to synchronize the internal CPU clock with external
clocks.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the TI486SLC/E microprocessor. If the self-test feature is to be invoked,
RESET must be asserted for at least 80 CLK2 periods. RESET pulses less
than 15 CLK2 periods may not have sufficient time to propagate throughout
the TI486SLC/E and may not be recognized. RESET pulses less than 80 CLK2
periods followed by a self-test request may incorrectly report a self-test failure
when no true failure exists.

Provided the RESET falling edge meets specified setup and hold times, the
internal processor clock phase is synchronized as illustrated in Figure 3-2.
The internal processor clock is half the frequency of the CLK2 input and each
CLK2 cycle corresponds to an internal CPU clock phase. Phase 2 of the
internal clock is defined to be the second rising edge of CLK2 following the
falling edge of RESET.

Following the falling edge of REST (and after self-test if it was requested), the
T1486SLC/E microprocessor performs an internal initialization sequence for
approximately 400 CLK2 periods. The TI486SLC/E self-test feature is invoked
if the BUSY input is in an active-low state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to
complete. Even if the self-test indicates a problem, the TI486SLC/E
microprocessor attempts to proceed with the reset sequence. Figure 3-3
illustrates the bus activity and timing during the TI486SLC/E reset sequence.

Upon: completion of self-test, the EAX register contains 0000 0000h if the
TI486SLC/E microprocessor passed its internal self-test with no problems
detected. Any non-zero value in the EAX register indicates that the
microprocessor is faulty.

Figure 3-2. Internal Processor Clock Synchronization

6 2o0rd1 | o 2or o1 | 02 | o1 |

| | I I I
I |

RESET

INTERNAL
PROCESSOR

3-16

CLOCK

~

]
AR
KON \ /

I
I
|
L
I
I
I

TI486SLC/E Bus Interface

Functional Timing

Figure 3-3. Bus Activity from RESET until First Code Fetch

CLK
(rvormal) :)QOOO@OOOOU’\./"\./‘MM
I I

ERROR

< >e Internal > Cycle 1
Reset Initialization Non-Pipeiined

S L
| 2 150LK2 duration ff not | It self-test is performed, add | (Read)
| going to request self-test. 20 .
| 280 CLK2 duration before | 20°" + 60" to these numbers ™ T2
|

requsting self-test. 1 2 3 17 18 19 392* 393*394* 395*
| {

* Approximately

RESET |/ ’ \ | |
02| 01| 02| 010201 62 lo1]02]

GBS

RIS
RIS S

ORIy oeeyoes mmmm BRI
SRR High for no Sel-Test (see Note) | RGEBEEEENK

&
_ —pt Low to Begin Self Test
TR XX KR XX | KX K KX X X KK KKK XXX R
O e e) e o o e o e o e e e et

Up to 30 CLK2

BUSY

BRI (RXITXETILIAIRY
KX

W/R, M/iO, f— t 3 I
|

HLDA yp to 30 CLK2 —P

I L6 I

!
_A23-A1 XXX s) e -
D/C, LOCK XXX’ High |\l

Note:

Up to 30 CLK2 —
755 R R ” N
OOOORAQOQORXXY” | High |

AN

R KX KKK KRR XY,
0 o e e e e e e e e e o et e e ooy

R RXRXE

(XXX XX XXKXXXXXXX)

Y TRRXXTIRITIXRLTIS
SESEEEEENAENE

2<

XXX XK (TR R X X X XX XXX K, R XXX
0 e et e e e e e o e 00 ot e e e ooy

% X V\’;’;.“v TR

TRRRITXIX
0200 00 e

AL

PAVAV.A

RTIIXTRIIT? ,

D15-D0 R —— — —H—————— (Floating) = === ————i ————a—
| |

SUsPA ARy~ —— = ————— (Floating) = ——— 4= — Y- ——— L —

BUSY should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

3.2.2 Bus Operation

The TI486SLC/E microprocessor communicates with the external system
through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus
configurations where the address and data are presented on the same pins
at different times.

T1486SLC/E instructions can act on memory data operands consisting of 8-bit
bytes, 16-bit words or 32-bit double words. The TI486SLC/E bus architecture
allows for bus transfers of these operands without restrictions on physical
address alignment. Any byte boundary may require more than one bus cycle
to transfer the operand. This feature is transparent to the programmer.

3-17

Functional Timing

3-18

The TI486SLC/E data bus (D15-D0) is a 16-bit-wide bidirectional bus. The
TI486SLC/E drives the data bus during write bus cycles, and the external
system hardware drives the data bus during read bus cycles. The address bus
provides a 24-bit value using 23 signals for the 23 upper-order address bits
(A23-A1), defining which 16-bit word is being accessed, and two byte enable
signals (BHE and BLE) to directly indicate which of the two bytes within the
word are active.

Every bus cycle begins with the assertion of the address strobe (ADS). ADS
indicates that the TI486SLC/E has issued a new address and new bus cycle
definition signals. A bus cycle is defined by four signals: M/IO, W/R, D/C and
LOCK. M/10 defines if a memory or I/O operation is occurring, W/R defines the
cycle to be read or write, and D/C indicates whether a data or control cycle is
in effect. LOCK indicates that the current cycle is a locked bus cycle. Every bus
cycle completes when the system hardware returns READY asserted.

The TI486SLC/E performs the following bus cycle types:

Memory read

Locked memory read

Memory write

Locked memory write

I/0 read (or coprocessor read)

I/O write (or coprocessor write)
Interrupt acknowledge (always locked)
Halt/shutdown

When the TI486SLC/E microprocessor has no pending bus requests, the bus
enters the idle state. There is no encoding of the idie state on the bus cycle
definition signals; however, the idle state can be identified by the absence of
further assertions of ADS following a completed bus cycle.

TI486SLC/E Bus Interface

Functional Timing

3.2.2.1 Bus Cycles Using Non-Pipelined Addressing

Non-Pipelined Bus States

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period (two CLK2 periods) in
duration. A complete data transfer occurs during a bus cycle, composed of two
or more bus states.

The first state of a non-pipelined bus cycle is called T1. During phase one (first
CLK2) of T1, the address bus and bus cycle definition signals are driven valid
and, to signal their availability, address strobe (ADS) is simultaneously
asserted.

The second bus state of a non-pipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY input and valid data is either input or
output depending on the bus cycle type. The fastest TI486SLC/E
microprocessor bus cycle requires only these two bus states. READY is
ignored at the end of the T1 state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 3—4.

Figure 3—4. Fastest Non-Pipelined Read Cycles

I | I I
F— Non-Pipelined —bﬂ— Non-Pipelined —bﬁ— Non-Pipelined —ﬁ
| (Read) (Read)

Cycle 1 Cycle 2 Cycle 3

(Read) | |
T | T2 T | T2 T1 | T2 |

011 62 o1l o2 o111 02| o110 92 o1l 62| ¢1] 92, ot

A23-A1, BHE, BLE,
M/O, D/IC, W/R

READY

LOCK

D15-D0O
(Input During Read)

I I | I I |
] | | | | |

|
|
X Valid 1 X Valid 2 X Valid 3 X
I
I
I

X Valid 1 X Valid 2 X Valid 3 X
I

|
I | | I I I

DO

Note: Fastest non-pipelined bus cycles consist of T1 and T2.

3-19

Functional Timing

Non-Pipelined Read and Write Cycles

Any bus cycle may be performed with non-pipelined address timing.
Figure 3-5 shows a mixture of read and write cycles with non-pipelined
address timing. When a read cycle is performed, the TI486SLC/E
microprocessor floats its data bus and the externally addressed device then
drives the data. The TI486SLC/E microprocessor requires that all data bus
pins be driven to a valid logic state (high or low) at the end of each read cycle,
when READY is asserted. When a read cycle is acknowledged by READY
asserted in the T2 bus state, the TI486SLC/E CPU latches the information
present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the TI486SLC/E
CPU beginning in phase two of T1. When a write cycle is acknowledged, the
TI486SLC/E write data remains valid throughout phase one of the next bus
state to provide write data hold time.

Figure 3-5. Various Non-Pipelined Bus Cycles (No Wait States)

I I Cycle 1 I Cycle 2 I Cycle 3 I | Cycle 4 I [

| Idle | Non-Pipelined | Non-Pipelined | Non-Pipelined | Idle | Non-Pipelined | Idle |

| | (Write) | (Read) | (Write) | | (Read) | |

I T T o |

I T A | T2 [T | T2 [T | T2 [T R | T2 [(R
CLK2

| |

BHE, BLE, valid1 X validz X vaid3 YR Valid4
M/IO, D/C ™7 [T] | f T

XX

| F

W/ﬁWiN|"/iWIIM
|

I | | ! | |
ADS | N\ I/ I\ I/ I\ / , N\ I/ | |
X

| | | |
JE— ‘;"‘;“‘;“".";’;‘;’;“"‘;"""" \VAvAvAvAVAY, ‘ 4 ‘ XXX XXX XXX KK XXX XX XXX XXX v’v‘v’v‘ v’v’§:”tt XXX v';‘

XXX X XXX KK XX XXX X X KX XXX XXX S
e e e e e e e o e o e e e e o et e o e oot o ot ot

e TXRTRXXITIRIIITT, | [T FITIRRXIIITTN |
RRREERLIILLLEEILLEN RRBRRLLEEN LRI

v v v v |
! ! | EndCycle1 | EndCycle2 | EndCycle3 | | End Cycle 4

TOCK LR valid1 X valid2 X Valid 3 W Vaiid 4 XX
|

I | I I | | I I I | l
s I SE) & GCTI SR (D S

Note: Idle states are shown here for diagram variety only.

3-20 TI486SLC/E Bus Interface

Functional Timing

Non-Pipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external
system hardware using the TI486SL.C/E READY input. Acknowledging the
bus cycle at the end of the first T2 resulits in the shortest possible bus cycle,
requiring only T1 and T2. If READY is not immediately asserted however, T2
states are repeated indefinitely untilthe READY input is sampled active. These
intermediate T2 states are referred to as wait states. If the external system
hardware is not able to receive or deliver data in two bus states, it withholds
the READY signal and at least one wait state is added to the bus cycle. Thus,
on an address-by-address basis the system is able to define how fast a bus
cycle completes.

Figure 3-6 illustrates non-pipelined bus cycles with one wait state added to
cycles 2 and 3. READY is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY is sampled
active at the end of the second T2 and the cycle is then terminated. The
TI486SLC/E ignores the READY input at the end of the T1 state.

Figure 3-6. Various Non-Pipelined Bus Cycles with Different Numbers of Wait States

| | Cycle 1 | Cycle 2 | | Cycle 3 | I
| Idle | Non-Pipelined | Non-Pipelined | Idle | Non-Pipelined | Idle |
[| (Read) [(Write) | | (Read) | |
I | | I | | I | | | I |
I N I | T2 [T | T2 T2 A T A & B ¢ | T2 [T
CLK2
| | | | | I |
A23-A1, oot | ' I | I
BHE, BLE. vaid1 X Valid 2 Valid 3
I

M/O, DC

[

win TR 1Y :
|

|

ADS | | | :

I |
TR KKK XX KX XXX KXY
o e e e e e e e,

V’V‘V’V‘V"’v"""’V‘V’V’V’V’V‘V
e

XRAXKIXIUAIX A XXX XXX XXX ORI XXXXXX XS
RRRRRRIRTIRIRIN | AT R RIS

LR

v ¥ N
! I | EndCyclet | | End Cycle 2 [! End Cycle 3

LOCK AN valid1 X Valid 2 Valid 3
[I I ! I I I

[
D15-D0 -{-——-{-———}——(|r|1 D24 | Out 2)—{-——+——-+--<EE>--{
1 | 1 1 1 ' 1 .

]

Note: Idle states are shown here for diagram variety only.

3-21

Functional Timing

Initiating and Maintaining Non-Pipelined Cycles

The bus states and transitions for non-pipelined addressing are illustrated in
Figure 3—7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always
followed by a T2 state. If a bus cycle is not acknowledged during a given T2
and NA is inactive, T2 is repeated resulting in a wait state. When a cycle is
acknowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the T1486SLC/E is ready to enter
the hold acknowledge state, the Th state is entered.

Figure 3—7. Non-Pipelined Bus States

HOLD Asserted

HOLD Negated

HOLD Negated Request Pending

No Request

HOLD Asserted READY Asserted
HOLD Asserted

READY Asserted
HOLD Negated

No Request
h ALWAYS
HOLD Negated T
No Request Request Pending
HOLD Negated)

READY Asserted
HOLD Negated

Request Pending READY Negated

NA Negated

Bus States: _

T1 — First clock of a non-pipelined bus cycle (CPU drives new address and asserts ADS)

T2 — Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
Ti — Idle State

Th — Hold Acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

3-22 TI486SLC/E Bus Interface

Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and
foliowing any idle bus state, the processor always uses non-pipelined address
timing. Pipelined or non-pipelined address timing is then determined on a
cycle-by-cycle basis using the NA input. When address pipelining is not used,
the address and bus cycle definition remain valid during all wait states. When
wait states are added and it is desirable to maintain non-pipelined address
timing, it is necessary to negate NA during each T2 state of the bus cycle
except the last one.

3.2.2.2 Bus Cycles Using Pipelined Addressing

The address pipelining option allows the system to request the address and
bus cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY asserted. If address pipelining is
used, the external system hardware has an extra T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA input.

Pipelined Bus States

Pipelined addressing is always initiated by asserting NA during a
non-pipelined bus cycle. Within the non-pipelined bus cycle, NA is sampled at
the beginning of phase 2 of each T2 state and is only acknowledged by the
TI486SLC/E during wait states. When address pipelining is acknowledged,
the address (BHE, BLE, and A23-A1) and bus cycle definition (W/R, D/C, and
M/IO) of the next bus cycle are driven before the end of the non-pipelined
cycle. The address status output (ADS) is asserted simultaneously to indicate
validity of the above signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA during the pipelined bus
cycles.

As in non-pipelined bus cycles, the fastest bus cycles using pipelined address
require only two bus states. Figure 3-8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1P
and T2P or T1P and T2l. The T1P state is entered following completion of the
bus cycle in which the pipelined address and bus cycle definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1P state follows a T2 state if the previous cycle was
non-pipelined, and follows a T2P state if the previous cycle was pipelined.

3-23

Functional Timing

Figure 3-8. Fastest Pipelined Read Cycles

A23-A1, BHE, BLE,
MO, D/C, W/R

ADS

LOCK

D15-DO
(Input During Read)

011 02 011 02 o111 921 o11 92 o1 02| ¢11 ¢2

Cycle 1 | Cycle 2 | Cycle 3 |
Pipelined | Pipelined | Pipelined |
(Read) | (Read) | (Read) |

TP | T2P | TIP | T2P | TIP | T2P |

X

Valid 1 X Valid 2 X Valid 3 X
I

T To e

Note: Fastest pipelined bus cycles consist of T1P and T2P.

3-24

Within the pipelined bus cycle, NA is sampled at the beginning of phase 2 of
the T1P state. If the TI486SLC/E has an internally pending bus request and
NA is asserted, the T1P state is followed by a T2P state and the address and
bus cycle definition for the next pending bus request is made available. If no
pending bus request exists, the T1P state is followed by a T2I state regardless
of the state of NA and no new address or bus cycle information is driven.

The pipelined bus cycle is terminated in either the T2P or T2l states with the
assertion of the READY input and valid data is either input or output depending
on the bus cycle type. READY is ignored at the end of the T1P state.

Pipelined Read and Write Cycles

Any bus cycle may be performed with pipelined address timing. When a read
cycle is performed, the TI486 SLC/E microprocessor floats its data bus and the
externally addressed device then drives the data. When a read cycle is
acknowledged by READY asserted in either the T2P or T2l bus state, the
TI486SLC/E CPU latches the information present at its data pins and
terminates the cycle.

When a write cycle is performed, the data bus is driven by the TI486SLC/E
CPU beginning in phase 2 of T1P. When a write cycle is acknowledged, the
TI486SLC/E write data remains valid throughout phase 1 of the next bus state
to provide write data hold time.

TI486SLC/E Bus Interface

Functional Timing

Pipelined Wait States

Once a pipelined bus cycle begins, it continues until acknowledged by the
external system hardware using the TI486SLC/E READY input.
Acknowledging the bus cycle at the end of the first T2P or T2I state results in
the shortest possible pipelined bus cycle. If READY is not immediately
asserted, however, T2P or T2l states are repeated indefinitely until the READY
input is sampled active. Additional T2P or T2I states are referred to as wait
states.

Figure 39 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA asserted during T1P and a
pending bus request. READY is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY is sampled
active at the end of the second T2P and the cycle is then terminated. The
T1486SLC/E ignores the READY input at the end of the T1P state. Note that
ADS, the address and the bus cycle definition signals for the pending bus cycle
are all valid during each of the T2P states. Also, asserting NA more than once
during the cycle has no additional effects. Pipelined addressing can only
output information for the very next bus cycle.

Cycle 2 in Figure 3-9 illustrates a pipelined cycle, with one wait state, where
NA is not asserted until the second bus state in the cycle. In this case, the CPU
enters the T2 state following T1P because NA is not asserted. During the T2
state, the TI486SLC/E samples NA asserted. Because a bus request is
pending internally and READY is not active, the CPU enters the T2P state and
asserts ADS, valid address and bus cycle definition information for the
pending bus cycle. The cycle is then terminated by an active READY at the end
of the T2P state.

Cycle 3 of Figure 3-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA is asserted
in T1P requesting the next address. Because the CPU does not have an
internal bus request pending, The T2I state is entered. However, by the end
of the T2l state, a bus request exists. Because READY is not asserted, a wait
state is added. The CPU then enters the T2P and asserts ADS and valid
address and bus cycle definition information for the pending bus cycle. As long
as the CPU enters the T2P state at some point during the bus cycle, pipelined
addressing is maintained. NA needs to be asserted only once during the bus
cycle to request pipelined addressing.

3-25

Functional Timing

Figure 3-9. Various Pipelined Cycles (One Wait State)

Cycle 1 Cycle 2 Cycle 3 Cycle 4

l¢—— Pipelined ——»/¢——— Pipelined — P 4——— Pipelined ——P4— Pipelined
I (Write) I (Read) I (Write) I (Read)
| | |

S ST P | T2P B ST | TeP l TIP | T2l | TeP : TIP |

A23-A1, | I | ! | ' | !

BHE,BLE, Valid 1 Valid 2
M/IO, DIC

ADS is assIerted as sloon
as the CPU has another
bus cycle to perform,
which is not always
immediately after NA is
asserted.

l |

| 1
WR | | |
I I I
| |
ADS I
I | ! I
|
I . | I As Iong as the CPU enters the TZID
Note: ADS is asserted state during Cycle 3, address pipelining
| inevery T2P state. I is maintained in Cycle 4.
NA (X XXX XX HXXXXXXXXXES { X XXX XXX X X X XAXXXXXXXXXXD
NA LSO LSEEEN. ¢ LSRN
I I I | I I I
_Y | — | |
| Asserting NA more than l NA could have been asserted in | l | |
once during any cycle has | T1P if desired. Assertion now is |
| no additional effects.] the latest time possible to allow I | | |
I | the CPUtoenter T2P stateto | | I I
| | | | maintain pipelining in Cycle 3. | | | |
| | | | | | | I I | |
| LOXXXKKY {XXXXXXXKS |
READY AR | LK) | -
| i i | !] | | | L |
ook~ X Valid 1 X Valid 2 X Valid 3 X Valid 4
| | | [I | | | I | |
]] L L ' I L [} L] |
| \ /
D15-DO (|Jut X Out 1 | — — Iln2 P Out3 D
! I ! ! !

3-26 , TI486SLC/E Bus Interface

Functional Timing

Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA during a
non-pipelined bus cycle with at least one wait state. For the first bus cycle
following RESET, an idle bus, or a hold acknowledge state is always
non-pipelined. Therefore, the TI486SLC/E always issues at least one
non-pipelined bus cycle following RESET, idle, or hold acknowledge before
pipelined addressing takes effect.

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA is sampled active, the TI486SLC/E
microprocessor is free to drive a new address and bus cycle definition on the
bus as early as the next bus state and as late as the last bus state in the cycle.

Figure 3—10 iliustrates the fastest transition possible to pipelined addressing
following an idle bus state. In Cycle 1, NAis driven during state T2. Thus, Cycle
1 makes the transition to pipelined address timing, since it begins with T1 but
ends with T2P. Because the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it begins with a T1P state.
Cycle 2 begins as soon as READY asserted terminates Cycle 1.

Figure 3—10. Fastest Transition to Pipelined Address Following Idle Bus State

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Idle | Non-Pipelined | Pipelined | Pipelined | Pipelined | Idle
| (Write) | (Read) [(Write) | (Read) |
— e p
I

T I T I 2 | o1op | e | Top I TP I ToP I TR R I Ti
B_éf?é—T/E | L | . | . | .
MG, D& W Valid 1 BRELLS

RN
SN

RRAAEARAR

WR 00000000 020002000 0 s,

\VavaY4 \vavaravavavaravavavs

ORI
e e e

I}
(XL

AX

NA TXXXXIXIIIIIIITON
SN SEOEEEEN

XXXXXXXXOOOOOOCON

RIRITXXX) (TR
N N

| | RRRRERs

XXX XX XXKD
Y AN | LKL

XCRRRAXRES
OXAXRAX XX XX XX XXX XXX XXRUXRXD

L0000)
I ! I ! I ! I I
LOCK XX Valid 1 X vaid2 X vaida X Valid 4 R
BB | | I
I

I | I [I
I I |

| I I I
D15-D0 ~=— = Out 1)——I——(mrz)- { ous >——I_...._I___
| I =T T T | | I
Note: Foliowing any idle bus state (Ti) the address is always non-pipelined and NA is sampled only during wait states. To start

address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

3-27

Functional Timing

Figure 3—11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
Cycle 2 to Cycle 1 of Figure 3—10 illustrates that a transition cycle is the same
whenever it occurs consisting of at least T1, T2 (NA is asserted at that time),
and T2P (provided the TI486SLC/E microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 3—11 show that once address pipelining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA and detecting that the TI486SLC/E
microprocessor enters T2P during the current bus cycle. The current bus cycle
must end in state T2P for pipelining to be maintained in the next cycle. T2P is
identified by the assertion of ADS. Figure 3—10 and Figure 3—11 each show
pipelining ending after Cycle 4. This occurred because the Ti486SLC/E CPU
did not have an internal bus request prior to the acknowledgment of Cycle 4.

Figure 3-11. Transitioning to Pipelined Address During Burst of Bus Cycles

TP | T2 | Ti

| | Cycle 1 | Cycle 2 | Cycle 3 | Cycle4 | |
| Idle | Non-Pipelined | Non-Pipelined | Pipelined | Pipelined | Idle |
| [(Write) | (Read) + (Write) o (Read) o I
I S R A I O - | TP | TP | T2P | :

CLK2

A23-A1, | I | | | | | |

BHE, BLE, Gk Vvalidl X validz X valida X Valida O EXKKKKNE

Mio, o/c Y T I T I

W/R

(XX '0;0;0‘0;0;0;0‘

XXX
o

ADS

XX KX XX KKK KX TIKRR
o o 0 e e e el o oo

NS S N \YA"A"AY,

RRRIXXIRIKXI
ALK

NA ALK

20002000

RRXIRTIN
l:.z.s.z.t.t.t.z.zﬁ
s TN | sy KT |
SOESBABEBXILLLLEN. | LSS | \ AN
! | | | | | I | !

LOCK AN Valid 1 X Valid 2 X vaida X valida YRR

| I I I | |

I I ‘ I I : I I

e GHTID S S o () D GCTENID S e GO
I | I | I I

READY XX v‘;.zov.;‘v’v XXX

CCQRRRARR

L0

<)

I | | I
| I | | | f

Note: Following any idle bus state (Ti), addresses are non-pipelined bus cycles, NA is sampled only during wait states.

Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at
least one wait state (Cycle 2 above).

The complete bus state transition diagram, including operation with pipelined
address is given in Figure 3—12. This is a superset of the diagram for
non-pipelined address. The three additional bus states for pipelined address
are shaded.

3-28 TI486S1.C/E Bus Interface

Functional Timing

Figure 3—-12. Complete Bus States

HOLD Asserted

READY Asserted -
HOLD Asserted

NA Asserted -
HOLD Negated - READY Asserted - (HOLD Asserted +
No Request HOLD Asserted No Request)

HOLD Negated -

HOLD Negated-
No Request

|
_ (No Request +
RESET Request Pending HOLD Asserted)-
Asserted HOLD Asserted . NA Asserted - |
READY Asserted- READY Negated
I

ALWAYS

|
! NA Negated
T
|

Request Pending

HOLD Negated READY Asserted*

HOLD HOLD Negated -
Negated Request Pending
No Request Negated -
READY Asserted - NA Negated
READY Asserted - HOLD Negated -
HOLD Negated Request Pending
No Request

READY Negated -
NA Asserted
HOLD Negated
Request Pending

READY Negated-
(No Request +
HOLD Asserted)

READY Negated
Request Pending
HOLD Asserted

/

NA Asserted -
HOLD Negated -
Request Pending

@ened

READY Negated

Bus States: .

T1 - First clock of a non-pipelined bus cycle (CPU drives new address and asserts ADS).

T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

T2l — Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle but there
is not yet an internal bus request pending (CPU drives new address and asserts ADS).

T2P - Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle and there
is an internal bus request pending (CPU drives new address and asserts ADS).

T1P - First clock of a pipelined bus cycle.

Ti - Idle state.

Th - Hold Acknowledge state (CPU asserts HLDA).

3-29

Functional Timing

3.2.3 Locked Bus Cycles

When the LOCK signal is asserted the TI486SLC/E microprocessor does not
allow other bus master devices to gain control of the system bus. LOCK is
driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK is also active during interrupt acknowledge cycles.

LOCK is activated on the CLK2 edge that begins the first locked bus cycle and
is deactivated when READY is returned at the end of the last locked bus cycle.
When using non-pipelined addressing, LOCK is asserted during phase 1 of
T1. When using pipelined addressing, LOCK is driven valid during phase 1 of
T1P.

Figure 3—4 through Figure 3-6 illustrate LOCK timing during non-pipelined
cycles and Figure 3-8 through Figure 3—11 cover the pipelined address case.

3.2.4 Interrupt Acknowledge (INTA) Cycles

3-30

The T1486SLC/E microprocessor is interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The
T1486SLC/E microprocessor responds with two locked interrupt acknowledge
cycles. These bus cycles are similar to read cycles. Each cycle is terminated
by READY sampled active as shown in Figure 3-13.

TI486SLC/E Bus Interface

Functional Timing

Figure 3—13. Interrupt Acknowledge Cycles

Interrupt Idle Interrupt
idie | Acknowledge (4 Bus States) I Acknowledge Idie
I Cycle 1 I Cycle 2
»>i¢ Pt

I I

| I
bid bid
P e e

I | I

| i T |

BHE SRR R R KX

XXX XXX XXX XXX XXX XXX XXX XX XXX

K RIS

XXX XXXAXXX

A1, m ORI EXRXXRXXKR

BLE, M/iO, ARG I | RXRREEREE
D/C, W/R

— TR XXX KR REXXXXRX XXX TR

AZ JELEEY I e LK

5 TXRRRRXXXIIRRY
LRI

R R R R RRRRXXTTTXXN TR

(0NN X XXX XXX XX XXX XXX XXXXX XX XXX XXX XXX XXXXXKN

B XXX

RIS
RRERBELXLS oY

BRRRRRRIRRLLES

|
o e
S S S PR S - N S S VA VAR N s v N
|

I I l I I | I
| | | : Ignored | | | | | Ignored

e €2 MM e s p
. . . I I

Note: Interrupt Vector (0-255) is read on D7-D0 at end of second interrupt acknowledge bus cycle. Because each Interrupt
Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect.

The state of A2 distinguishes the first and second interrupt acknowledge
cycles. The address driven during the first interrupt acknowledge cycle is 4h
(A23-A3, A1, BLE=0; A2, BHE=1). the address driven during the second
interrupt acknowledge cycle is Oh (A23-A1, BLE=0; BHE=1).

To assure that the interrupt acknowledge cycles are executed indivisibly, the
LOCK output is asserted from the beginning of the first interrupt acknowledge
cycle until the end of the second interrupt acknowledge cycle. Four idle bus
states (Ti) are always inserted by the TI486SLC/E microprocessor between
the two interrupt acknowledge cycles.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the TI486SLC/E microprocessor from D7-DO0 of the data bus. The
vector indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, D15-DO float. At the end
of the first interrupt acknowledge cycle, any data presented to the TI486SLC/E
is ignored.

3-31

Functional Timing

3.2.5 Halt and Shutdown Cycles
Halt Indication Cycle

Executing the HLT instruction causes the TI486SLC/E execution unit to cease
operation. Signaling its entrance into the halt state, a halt indication cycle is
performed. The halt indication cycle is identified by the state of the bus cycle
definition signals (M/10=1, D/C=0, W/R=1, LOCK=1) and an address of 2h
(A23-A2=0, A1=1, BHE=1, BLE=0). The halt indication cycle must be
acknowledged by READY asserted. A halted TI486SLC/E microprocessor
resumes execution when INTR (if interrupts are enabled), NMI, or RESET is
asserted. Figure 3—14 illustrates a non-pipelined halt cycle.

Figure 3—14. Non-Pipelined Halt Cycle

CLK2

| Cyclet l Cycle 2 ! |
| Non-Pipelined | Non-Pipelined | Idle |
| (Write) | (Halt) | ‘
— Pie— pie »
l | I | : | | | =
| T T T Ti o

|

|

I ' CPU remains halted

__ | | |
A1, BHE . ! O o, D o

b X v /1 UK mm e

| | | | | | | |

A23-A2, - R AR E XX XA RXARXX

aebe X N L .m.'.r.w.O.zmwmwwww.

' e ———
w N A R
| | | | | } } |

’V’V’V’V "v v’V’v \/\/ V’V’V V‘V‘V’V’v‘V’v‘V’v’v’V‘v’V \/\/\/ v‘v.v.v \/\/ V’V’V‘V’V’v’v‘V’V‘V‘V""V"‘V‘v V‘V \/ "V \/\/\/
e e e e e e e e e e e e e e e

A A

N/ N/ \/

AVAAN NN NN

BEARV YOO OO OO
READY | LXRXKRRRON L RN L R KRR KR KXRKREX

|

! |
Note: Halt cycle must be acknowledged |
by READY asserted. Wait states may be |
I

|

1

add?d to the cycle if desired. |
' |

' 0 XKD TTXXXS
RRRRRRLRRERRLERLLLKIK

| | | !

| |
| |
] |
| |
| |
! ! |
[OCK X Valid 1 / |
. /o
| I s I

I

D15-DO Outx Out 1 X Undefined >——: (Floating) 'l————-r————}
! |

I

|
|
|
|
,'

3-32 TI486SLC/E Bus Interface

Functional Timing

Shutdown Indication Cycle

Shutdown occurs when a severe error is detected that prevents further
processing. The TI486SLC/E microprocessor shuts down as a result of a
protection fault while attempting to process a double fault as well as the
conditions referenced in Chapter 2. Signaling its entrance into the shutdown
state, a shutdown indication cycle is performed. The shutdown indication cycle
is identified by the state of the bus cycle definition signals (M/I0=1, D/C=0,
W/R=1, LOCK=1) and an address of Oh (A23-A1=0, BHE=1, BLE=0). The
shutdown indication cycle must be acknowledged by READY asserted. A
shutdown TI1486SLC/E microprocessor resumes execution only when NMI or
RESET is asserted. Figure 3—15 illustrates a shutdown cycle using pipelined
addressing.

Figure 3—15. Pipelined Shutdown Cycle

I Cycle 1 | Cycle 2 | '
| Pipelined | Pipelined | Idle |
| (Read) | (Shutdown) [|
— —pie > q
| | | | | | | |
| TP TP TP TP l

I

CPU remains shut-

|
I
(X (X ; l

R R RRTRIRRRS Sonmuni i or
' |

BHE .
wio.wr Vaidi [/ - l
BLE is low for
Shutdown Cycle
A23-A1, .
BLE, D/C Valid 1 |

o AR AR

| [
I | | | |

EERD QOO XHXXXXXXXY OOXXXK XX XXX XX XXX XXX
RERDY | ARGERSK0N | ARSI L AR KRR
| ! | | |
T R T R
| ' Note: Shutdown cycle must be acknowledged by READY [|
| : asserted. Wait staes may be added to the cycle if desired. : I
| | | | |
! l l I ' 00 00 OOAXK) 000 00
TOCK ; 9 S,
LOCK | V""";‘ ! I/ | KRR
| | | ! | | | | |
D15-DO ——i————(lm >- -< Undefined >——'[(Floating) Ai————-i-——-——}
T T |
|

3-33

Functional Timing

3.2.6 Internal Cache Interface

3.2.6.1 Cache Fills

Any unlocked memory read cycle can be cached by the TI486SLC/E. The
TI486SLC/E automatically does not cache accesses to memory addresses
specified by the non-cacheable region registers. Additionally, the KEN input
can be used to enable caching of memory accesses on a cycle-by-cycle basis.
The T1486SLC/E acknowledges the KEN input only if the KEN enable bit is set
in the CCRO configuration register.

As shown in Figure 3—16 and Figure 3—17, the TI486SLC/E samples the KEN
input one CLK2 before READY is sampled active. If KEN is asserted and the
current address is not set as non-cacheable per the non-cacheable region
registers, then the TI1486SLC/E fills two bytes of a line in the cache with the
data present on the data bus pins. The states of BHE and BLE are ignored if
KEN is asserted for the cycle.

Figure 3—16. Non-Pipelined Cache Fills Using KEN

(With

o1l 02 o1l 92 o011 92| o1 02| 911 ¢2 |
I | I

Different Numbers of Wait States)
Cycle 1 | Cycle 2
(Read — Cache Fill) (Read — Cache Fill)

Non-Pipelined | Non-Pipelined :
T1 | T2 | ™ | T2 | T2 :

| |
I | | | |

D/C, M1O, WR

I
A23-A1, BHE, BLE, —t . <
X v X vaiaz P
I
|
= N/ N
ADS |

! i l
| | |

I
I I I |
| | | |
| I | I
I | | |
I | I I
I

] [I
I | |
I I I
| I |
I | |
I | |
| I |
I I |
I | I
| |

o TN L STTTTTTTEN B i
[i

|

I I |
I

| | |
— | | | |
= /T N\ T\
| | |
|]]

Y
LOCK X Valid 1 X Valid 2 W

|
I

I jl | I I N
I | I I

I

D15-D0 ;D‘ __I___@___I_____J___@__I

(Input During Read) | [| I
! I ! | | , I

3-34

T1486SLC/E Bus Interface

Functional Timing

Figure 3—17. Pipelined Cache Fills Using KEN (With Different Numbers of Wait States)

Cycle 1 Cycle 2
I I I
I Pipelined | Pipelined |
| (Read — Cache Fill) I (Read — Cache Fill) I
I TIP | T2P | T2P | TIP | T2P | T1P
011 02 o1l o2 o1! 02| o1l 92| o1 92, o1 ¢2|
CLK2
| | i | | | |
| |
A23-A1, BHE, BLE, : >< :)
D/C MO, WR Valid 1 Valid 2 X Valid 3
I I I [v | {
I I I | | I
w0 | I | \ I
ADS I | | |
I I I I I I
| 1 | |
o I
I I
I I

 TITTTTTXILIIIIIIN, ETXTSS
REN SRR L,m s

| |
| | | ’

T
| |
READY |/ | | | |
| | |
| |
| I

N

h . I
LOCK 2 Valid 1 x Valid 2 X Valid 3

| [| I I |
I I I I I I

!
|
DI5-D0 |, > __J_____I___@__._I___@_ —
(Input During Read) [I | I
! | | ! |, ! |

3.2.6.2 Flushing the Cache

To maintain cache coherency with external memory, the TI486SLC/E cache
contents should be invalidated when previously cached data is modified in
external memory by another bus master. The TI486SLC/E invalidates the
internal cache contents during execution of the INVD and WBINVD
instructions, following assertion of HLDA if the BARB bit is set in the CCRO
configuration register, or following assertion of FLUSH if the FLUSH bit is set
in CCRO.

3-35

Functional Timing

The TI486SLC/E samples the FLUSH input on the rising edge of CLK2
corresponding to the beginning of phase 2 of the internal processor clock. If
FLUSH is asserted, the TI486SLC/E invalidates the entire contents of the
internal cache. The actual point in time where the cache is invalidated depends
upon the internal state of the execution pipeline. FLUSH must be asserted for
at least two CLK2 periods and must meet specified setup and hold times to be
recognized on a specific CLK2 edge.

3.2.7 Address Bit 20 Masking

3-36

The T1486SLC/E can be forced to provide 8086 1-MByte address wraparound
compatibility by setting the A20 bit in the CCRO configuration register and
asserting the A20M input. When the A20M is asserted, the 20th bit in the
addresstoboth the internal cache and the external bus pin is masked (zeroed).

TI486SLC/E Bus Interface

Functional Timing

As shown in Figure 3—-18, the TI486SLC/E samples the A20M input on the
rising edge of CLK2 corresponding to the beginning of phase 2 of the internal
processor clock. If A20M is asserted and paging is not enabled, the
TI486SLC/E masks the A20 signal internally starting with the next cache
access and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M. A20 remains
masked until the access following detection of an inactive state on the A20M
pin. A20M must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

An alternative to using the A20M pin is provided by the NCO bit in the CCRO
configuration register. The TI486SLC/E automatically does not cache
accesses, to the first 64 KBytes and to 1 MByte + 64 KBytes, if the NCO bit is
set. This prevents data within the wraparound memory area from residing in
the internal cache and thus eliminates the need for masking A20 to the internal
cache.

Figure 3-18. Masking A20 Using A20M During Burst of Bus Cycles

| Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 |
ildle | Non-Pipelined | Non-Pipelined | Pipelined | Pipelined | Idle
[(Write) | (Read) (Write) | (Write) |
e »e ait————»r———»lq-——
' lm 2l 2!l eplmp !l 2P| TP | T2 | ’
CLK2 |
A19-AT1, I I | | | | I

A23-A21, XX = o~ . :
BHE BLE, SO0OiiosX Va1t X vaiide X vaids X vaid4 QIR
M/0,D/C |

W/R

;0;0;0‘0;0;0;0‘0‘0‘0;0’

‘V’v‘v‘v’v’v‘v’v’v‘v’v’v‘v‘v
BB AN

R

I
S5 QBB

S Valid 1

DRI XX IEYIXXILTIXLKXTIXTINN (TR
S EEEEEUEEEN SN,

TRXIIIIR XRRTIIXXXXIIR
AOSEEEEN LEGEKN | AEEEEEEAAEKE

Al

X5 R 00N

BEANRY KKKKXXXXXXXXXXXXXXX X OOOOXXX QOO XXX
READY (XBBRABEEEEEN | LS | AN | LRI

e . —
[OCK XN valid1 X Valid 2 X vaids X validd R0
I - I I I I l] I [| !

D15-DO —}———%——-:r——-—:r—-—(ln;Q)--(; Out3;)'"II— (n) _-{

3-37

Functional Timing

3.2.8 Hold Acknowledge State

3-38

The hold acknowledge state provides the mechanism for an external device
in a TI486SLC/E system to acquire the TI486SLC/E system bus while the
TI486SLC/E is held in an inactive bus state. This allows external bus masters
to take control of the TI1486SLC/E bus and directly access system hardware
in a shared manner with the TI486SLC/E. The TI486SLC/E continues to
execute instructions out of the cache (if enabled) until a system bus cycle is
required.

The hold acknowledge state (Th) is entered in response to assertion of the
HOLD input. in the hold acknowledge state, the TI486SLC/E microprocessor
floats all output and bidirectional signals, except for HLDA and SUSPA. HLDA
is asserted as long as the TI486SLC/E CPU remains in the hold acknowledge
state and all inputs except HOLD, FLUSH, FLT, SUSP and RESET are
ignored.

State Th may be entered directly from a bus idle state, as in Figure 3—19, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 3—20 and Figure 3-21. The CPU samples the HOLD
input on the rising edge of CLK2 corresponding to the beginning of phase 1
of internal processor clock. HOLD must meet specified setup and hold times
1o be recognized at a given CLK2 edge.

The hold acknowledge state is exited in response to the HOLD input being
negated. The next bus start is an idle state (Ti) if no bus request is pending,
as in Figure 3-19. If a bus request is internally pending, as in Figure 3—20 and
Figure 3-21, the next bus state is T1. State Th is also exited in response to
RESET being asserted. If HOLD remains asserted when RESET goes
inactive, the TI486SLC/E enters the hold acknowledge state before
performing any bus cycles provided HOLD is still asserted when the CPU is
ready to perform its first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in state Th, the
event is remembered as a non-maskable interrupt 2 and is serviced when the
state is exited.

Tl486SLC/E Bus Interface

Functional Timing

Figure 3-19. Requesting Hold from Idle Bus State

Idle Iﬁ——— Hold Acknowledge ——ﬂl Idle
| | | I
Ti | Th | Th | Th | Ti

g

I I I I
|
Ho> | | | N |
' T |
| I I I | I
| | . — e I
HLDA | | / : I : \ |
| | I | | I
I | I I I I
Tl T vAVAVAVAVAVAVAVAV, | _ I |
4 R RERRRGy-—=T~ o=~ TRRES
ADS i I_.____.I__ | I I

Floating —-II- ————— L/

| |
| | | | |

- %
N R RRRLLILLLLLRIRIILLLLRIILLR
| | | I ! |

READY XXX XXX RARIIXRNK)
I I I I

]
|
\VAVAVAVAVAVAVAVAV, | [|
oo Ryt~ - (XX
| | |
| |
01500 — e pm———— ~— Fioating - ————— ————— —

Note: For maximum design fiexibility the CPU has no internal pullup resistors on its outputs. External pullups may be required
on ADS and other output to keep them negated during hold acknowledge period.

Functional Timing

Figure 3-20. Requesting Hold from Active Non-Pipelined Bus

| Cycle 1 Hold Acknowledge Cycle 2
| Non-pipelined Non-pipelined
| (Read) (Write)

| I
| |
| I
I T2 2 | T Th:T‘I T2

[
| | |] ! | | |
| ' | | I
HOLD | l -/ | L\ | |
| | l | | | |
| | | | HOLD asserted no later I I [
| | than READY asserted | | |
| | | | R | |
W | LN
A S (N PO s B
A23-A1, BHE, BLE, | | (Floating) I . |
BLE, D/IC X Valid 1 >— ——————— —(Valid 2
M/IO, W/R I
| [[| | |] |
T | ' | (Flclating) | : !
ADS | | N)
| |

R R X XK X XXX

A‘A JAVAY A’ ‘A’ ’A‘A‘A’A‘A A’A A‘A A‘A A‘A A’A A‘A A.A A‘A AN A’

NA QXKLL KR SRR

IR

(Negated, or Last Locke Cycle) | | | | |

READY |

R

AN JAVAVA'

[OoCK Valid 1 ———{-————'(Valid 2
s s A D s i
(Floating) | (Floating) |
D15-D0 —-{-—-———|L——— —_— —_——t————— out2
| | | (Flo:ating) ' ' 1

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met.
This waveform is useful for determining hold acknowledge latency.

3-40 TI486SLC/E Bus Interface

Functional Timing

Figure 3-21. Requesting Hold from Active Pipelined Bus

Cycle 1 Hold Acknowledge | Cycle 2
Pipelined | Non-Pipelined
(Write) } (Read)

I I
I |
I |
I 1P T2! T2 | ™ T oM T2

+
HOLD | HOLD asserted in—Isame bus
I state as NA assertt'ed.

| |
| l |
HLDA | | | /
| |
| |
| |

|
[
|
[
|
[
}
! |
T |
| |
)|

|
|
| |
T |
| |
1
I |
I [
|
Il

!
|
!
I
I
|
|
!
|
[
|
I
|

|

i3 Floating)
A23-A1, BFE, BLE, —~7 (.
B SRR - (s

- R R R KT
NA ARSI LLLRLLLLLKLLRLKKS

I
roy | (TRRRXTRXYD

AN A‘A’A‘A’A‘A‘A’A A’A' I A‘A‘A‘A’A A‘A’A’A A’A‘A VAN A‘A‘A‘A VAVAY A‘A A’A’A&’A

|

VVVVVVVVVVVVVYVVVV/VVV/ N/ I
N
|

|

I (Negated, or Last LocketI Cycle) I I |
' ' L ' (Floating) ['
LOCK X Valid 1 ———-i———— | Valid 2
| I I [I
| | |

I
I | | [I,
(Floating) |
o500 0w X | ou >‘I‘““I“““I“<Ez
I
I

-

1 | | |
| | I I I l !

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met.
This waveform is useful for determining hold acknowiedge latency.

3-41

Functional Timing

3.2.9 Coprocessor Interface

The coprocessor interface consists of the data bus, address bus, bus cycle
definition signals, and the coprocessor interface signals (BUSY, ERROR and
PEREQ). The TI1486SLC/E automatically accesses dedicated coprocessor I/O
addresses 80 00F8h, 80 00FCh, and 80 OOFEh to transfer opcodes and
operands to/from the coprocessor whenever a coprocessor instruction is
decoded. Coprocessor cycles can be either read or write and can be either
non-pipelined or pipelined. Coprocessor cycles must be terminated by
READY and, as with any other bus cycle, can be terminated as early as the
second bus state of the cycle.

BUSY, ERROR and PEREQ are asynchronous level-sensitive inputs used to
synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase 1 and must meet specified setup and hold times to
be recognized at a given CLK2 edge.

3.2.10 SMM Interface

System Management Mode (SMM) uses two TI486SLC/E pins, SMI and
SMADS. the bidirectional SMI pin is a non-maskable interrupt that is higher
priority than the NMI input. SMI must be active for at least four CLK2 periods
to be recognized by the TI486SLC/E. Once the TI486SLC/E recognizes the
active SMI input, the CPU drives the SMI pin low for the duration of the SMI
service routine.

The SMADS pin outputs the SMM Address Strobe that indicates a SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS functional timing, output delay times and float delay times
are identical to the main memory address strobe (ADS) timing.

3.2.10.1 SMI Handshake

3-42

The functional timing for SMl interrupt is shown in Figure 3-22. Five significant
events take place during a TI486SLC/E SMI handshake:

1) The SMI input pin is driven active (low) by the system logic.
2) The CPU samples SMI active on the rising edge of CLK2 phase 1.

3) Four CLK2s after sampling the SMI active, the CPU switches the SMI pin
to an output and drives SMI low.

4) Following execution of the RSM instruction, the CPU drives the SMI pin
high for two CLK2s indicating completion of the SMI service routine.

5) The CPU stops driving the SMI pin high and switches the SMI pin to an
input in preparation for the next SMI interrupt. The system logic is
responsible for maintaining the SMI pin at an inactive (high) level after the
pin has been changed to an input.

TI486SLC/E Bus Interface

Functional Timing

Figure 3-22. SMI Timing
ot 92 o1 o2 lo1 g2 1ot o2 1ot o2 lo1 o2 1ot 02 1ot o2 Lot 92 lo1 g2le1 92 lo1 ¢2:
CLK2 |

<

—
R
o
| l

a b
= |ndicates that the TI486SLC/E drives the SMI pin.

|
|
:
|
!
Cc

3.2.10.2 I/O Trapping

The TI486SLC/E provides 1/O trapping that can be used to facilitate power
management of 1/O peripherals. When an 1/O bus cycle is issued, the /0O
address is driven onto the address bus and can be decoded by external logic.
If a trap to the SMI handler is required, the SMI input should be activated at
least three CLK2 edges prior to returning the READY input for the 1/0O cycle.
The timing for creating an I/O trap via the SMI input is shown in Figure 3-23.
The TI486SLC/E immediately traps to the SMI interrupt handler following
execution of the I/O instruction, and no other instructions are executed
between completion of the I/O instruction and entering the SMI service routine.
The I/O trap mechanism is not active during coprocessor accesses.

Figure 3-23. I/O Trap Timing

| 1/0 CYCLE |
:4-————— (Read or Write) ——————D:

T1 T2 T2 T2
| I I | |

(RRRIIIIRIIIXR
QLK

VAVAVAVAVAVAVAVAVAVAVAVAVAN

| L
Address, §§§§§§§§§>< ;
Byte Enables Valid

3-43

Functional Timing

3.2.11 Power Management

SUSP Initiated Suspend Mode

The TI486SLC/E enters suspend mode when the SUSP input is asserted and
execution of the current instruction, any pending decoded instructions and
associated bus cycles are completed. The TI486SLC/E also waits for the
coprocessor to indicate a not busy status (BUSY=1) prior to entering suspend
mode. The SUSPA output is then asserted. The TI486SLC/E responds to
SUSP and asserts SUSPA only if the SUSP bit is set in the CCRO configuration
register.

Figure 3—24 illustrates the TI486SLC/E functional timing for SUSP initiated
suspend mode. SUSP is sampled on the phase 2 CLK2 rising edge and must
meet specified setup and hold times to be recognized at a particular CLK2
edge. The time from assertion of SUSP to activation of SUSPA varies
depending on which instructions were decoded prior to assertion of SUSP. The
minimum time from SUSP sampled active to SUSPA asserted is 2 CLK2s. As
a maximum, the TI486SLC/E may execute up to two instructions and
associated bus cycles prior to asserting SUSPA. The time required for the
TI486SLC/E to deactivate SUSPA once SUSP has been sampled inactive is
4 CLK2s.

If the TI486SLC/E is in a hold acknowledge state and SUSP is asserted, the
processor may or may not enter suspend mode depending on the state of the
TI486SLC/E internal execution pipeline. If the TI486SLC/E is in a SUSP
initiated suspend state and the CLK2 input is not stopped, the processor
recognizes and acknowledges the HOLD input and stores the occurrence of
FLUSH, NMI and INTR (if enabled) for execution once suspend mode is
exited. '

Figure 3-24. SUSP Initiated Suspend Mode

CLK2

|
susp__*/_\

BUSY

3-44

o1

I I I | I
62 | o1] 62 | 61| 62 | o1 | 62 | o1 | ¢2 | ¢1]| ¢2

L s

e

2 CLK2s

I
|
I
I
|
-
I

——//I—____

Min

1
I

le——— 4cLK2s ——PI .
|
v
|

1
I

TI486SLC/E Bus Interface

Functional Timing

HALT Initiated Suspend Mode

The TI486SLC/E also enters suspend mode as a result of executing a HALT
instruction. The SUSPA output is asserted no more than 17 CLK2s following
a READY sampled active for the HALT bus cycle as shown in Figure 3-25.
Suspend mode is then exited upon recognition of an NMI or an unmasked
INTR. SUSPA is deactivated 12 CLK2s after sampling of an active NMI or
unmasked INTR. If the TI486SLC/E is in a HALT initiated suspend mode and
the CLK2 input is not stopped, the processor recognizes and acknowledges
the HOLD input and stores the occurrence of FLUSH for execution once
suspend mode is exited.

Figure 3-25. Halt Initiated Suspend Mode
Non-Pipelined HALT

M/AO, WIR,
A1, BHE

I
[
} ;
17 CLK2s Max —f{€¢————————++—P])
|

3-45

Functional Timing

Stopping the Input Clock

Because the TI486SLC/E is a static device, the input clock (CLK2) can be
stopped and restarted without loss of any internal CPU data. CLK2 can be
stopped in either phase 1 or phase 2 of the clock and in either a logic high or
logic low state. However, entering suspend mode prior to stopping CLK2
dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 is to initiate T1486SLC/E suspend
mode, wait for assertion of SUSPA by the processor and then stop the input
clock.

The TI486SLC/E remains suspended until CLK2 is restarted and suspend
mode is exited as described above. While CLK2 is stopped, the TI486SLC/E
can no longer sample and respond to any input stimulus including the HOLD,
FLUSH, NMI, INTR and RESET inputs. Figure 3-26 illustrates the
recommended sequence for stopping CLK2 using SUSP to initiate suspend
mode. CLK2 should be stable for a minimum of 10 clock periods before SUSP
is deasserted.

Figure 3-26. Stopping CLK2 During Suspend Mode

o1 | 02 |61 | 02 | e 02 | o1 | 02 | o1 | 2
CLK2 | ' r_
J LJ— o Ll L]
s T\ | 5
SUSP !
()% ()() I ()(’-/
((((I ((((
BUSY o))) l })))
10 CLK2s Min — 14 g
|
((
SUSPA x \ |/

3-46

I~
<

TI486SLC/E Bus Interface

Functional Timing

3.2.12 Float

Activating the FLT input floats all TI486SLC/E microprocessor bidirectional
and output signals. Asserting FLT electrically isolates the TI486SLC/E
microprocessor from the surrounding circuitry. This feature is useful in
board-level test environments. As the TI486SLC/E microprocessor is
packaged in a surface mount PQFP, it is not usually socketed and cannot be
removed from the motherboard when In-Circuit Emulation (ICE) is needed.
Float capability allows connection of an emulator by clamping the emulator
probe onto the TI486SLC/E microprocessor PQFP without removing it from
the circuit board.

FLT is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the
outputs of the TI486SLC/E microprocessor as shown in Figure 3-27. FLT
must be asserted for a minimum of 16 CLK2 cycles. To exit the float condition,
RESET should be asserted and held asserted until after FLT is deasserted.

Asserting the FLT input unconditionally aborts the current bus cycle and forces
the TI486SLC/E microprocessor into the float mode. As a result, the
TI486SLC/E microprocessor is not guaranteed to enter float in a valid state.
After deactivating FLT, the TI486SLC/E CPU is not guaranteed to exit float in
avalid state. The TI486SLC/E microprocessor RESET input must be asserted
prior to exiting float to guarantee that the TI486SLC/E is reset and that it
returns in a valid state.

Figure 3-27. Entering and Exiting Float

PN AVAAAAAAAAAAAVAVAVAVAVAVAVAVAVaVaY

FLT \

CONTROL

ADDRESS

RESET

3-47

3-48 TI486SLC/E Bus Interface

TI486DLC/E Bus Interface

4-2

Chapter 4

In this chapter, an overview of the TI486DLC/E provides a summary of the
processor signals, functional description of all pins, functional timing and bus
operations (including non-pipelined and pipelined addressing), various
interfaces, and power management.

Topic Page

4-3

Overview

4.1 Overview

The following sections describe the TI486DLC/E input and output signals. The
discussion of these signals is arranged by functional groups as shown in
Figure 4—1. Table 4-1 gives a brief description of each of the TI486DLC/E
signals.

Figure 4—1. TI486DLC/E Functional Signal Groupings

2x Clock

Reset

Address
Bus

Data
Bus

Bus
Cycle
Definition

Bus
Cycle
Control

4-4

(&
<

/‘_*.
‘*_
]+

CLko TI486DLC/E

RESET
A31-A2
BE3-BEO

D31-D0

< —P

ADS
SMADS

INTR
NMI

>

Interrupt
Control

Internal
Cache
Interface

Address Bit
20 Mask

Coprocessor
Interface

Bus
Arbitration

Power
Management

TI486DLC/E Bus Interface

Overview

Table 4—1. TI486DLC/E Signal Summary

SIGNAL SIGNAL NAME SIGNAL GROUP
A20M Address Bit 20 Mask
A31-A2 Address Bus Lines Address bus
ADS Address Strobe Bus cycle control
BE3-BEO | Byte enables Address bus
BS16 Bus size 16 Bus cycle control
BUSY Processor extension busy Coprocessor interface
CLK2 2X clock input
D31-D0 Data bus
D/IC Data/control Bus cycle definition
ERROR Processor extension error Coprocessor interface
FLUSH Cache flush Internal cache interface
HLDA Hold acknowledge Bus arbitration
HOLD Hold request) Bus arbitration
INTR Maskable interrupt request Interrupt control
KEN Cache enable Internal Cache interface
LOCK Bus lock Bus cycle definition
MAO Memory/input-output Bus cycle definition
NA Next address request Bus cycle control
NMI Non-maskable interrupt request Interrupt control
PEREQ Processor extension request Coprocessor interface
READY Bus ready Bus cycle control
RESET Reset
SMADS SMM address strobe Bus cycle control
SMI | System management interrupt Interrupt control
SUSP Suspend request Power management
SUSPA Suspend acknowledge Power management
W/R Write/read Bus cycle definition

The following sections describe the signals and their functional timing
characteristics. Additional signal information may be found in Chapter 5,
Electrical Specifications. Chapter 5 documents the dc and ac characteristics
for the signals including voltage levels, propagation delays, setup times, and
hold times. Specified setup and hold times must be met for proper operation
of the TI486DLC/E.

Overview

Table 4-2. Terminal Functions

PIN
NAME NO. /o DESCRIPTION

A2 C4

A3 A3

A4 B3

A5 B2

A6 C3

A7 c2

A8 C1

A9 D3

A10 D2

:}12 E; Address Bus (active high). The address bus (A31-A2) signals are 3-state outputs that
Al3 E2 provide gddresses for physical memory and I/O ports. All address lines can be used for
Ald E1 addressing p.hysical memory allowing a 16 MByte adqress space (0000 0000h to FFFF
A15 = FFFFh). During I/O p_ort accesses, A31-A16 are driven low (except for coprocessor
A16 G1 o accesses). This permits a 64 KByte |/O address space (0000 0000h to 0000 FFFFh).
A7 Hi During all coprocessor /O access address lines A30-A16 are driven low and A31 is
A18 H2 . : . .
A19 H3 d‘rlven high. This allows A31 to be used by external log |c_to generate a coprocessor select
A20 i signal. Coprocessor command transfers occur with address 8000 OOF8h and
A21 K1 coprocessor data transfers occur with address 8000 00FCh. A31—-A2 float while the CPU
A22 K2 is in a hold acknowledge state.
A23 L1
A24 L2
A25 K3
A26 M1
A27 N1
A28 L3
A29 M2
A30 P1
A31 N2

ADS E14 O/Z | Address Strobe (active low). Thisis a 3-state output thatindicates the TI486DLC/E has
driven a valid address (A31-A2, BE3-BEO) and bus cycle definition (M/I0), D/C, W/R)
on the appropriate TI486DLC/E output pins. During non-pipelined bus cycles, ADS is
active for the first clock of the bus cycle. During address pipelining, ADS is asserted
during the previous bus cycle and remains asserted until READY is returned for that
cycle. ADS floats while the TI486DLC/E is in a hold acknowledge state.

A20M F13 | Address Bit 20 Mask (active low). This input causes the TI486DLC/E to mask (force
low) physical address bit 20 when driving the external address bus or performing an
internal cache access. When the processor is in real mode, asserting A20M emulates
the 1 MByte address wrap around that occurs on the 8086. The A20 signal is never
masked when paging is enabled regardless of the state of the A20M input. The A20M
input is ignored following reset and can be enabled using the A20M bit in the CCRO
configuration register.

A20M is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

BE3 A13 O/Z | Byte Enables BE3-BEO (active low). These are 3-state outputs that determine which

BE2 B13 bytes within the 32-bit data bus will be transferred during a memory or I/O access

BE1 C13 (Table 4—3). During a memory write, one or both of the upper bytes (D and C) of the data

BEO E12 bus may be duplicated in the lower bytes (B and A) of the bus. This duplication is
dependent on BE3-BEQ as listed in Table 4-4.

Generating A1-A0 using BE3-BEO can be achieved by using the following equations:
AO = (BEO » BE2) + (BEOC ¢ BE1)
Al = BEO « BE1
The relationship between A1-~A0 and BE3-BEO is shown in Table 4-5.
4-6 TI486DLC/E Bus Interface

Overview

Table 4-2. Terminal Functions (Continued)

PIN

NAME NO. /o DESCRIPTION

BS16 C14 | Bus Size 16 (active low). Thisis an input that allows connection of the 32-bit TI486DLC/E
data bus to an external 16-bit data bus. When this input is activated, the microprocessor
performs multiple bus cycles to couple read and write accesses from devices that cannot
provide (accept) 32 bits of data in a single cycle. During bus cycles with BS16 active, data
is transferred using data bus signals D15-DO only.

BUSY B9 | Coprocessor Busy (active low). This is an input from the coprocessor that indicates to
the TI486DLC/E that the coprocessor is currently executing an instruction and is not yet
able to accept another opcode. When the TI486DLC/E processor encounters a WAIT
instruction or any coprocessor instruction that operates on the coprocessor stack (i.e.,
load, pop, arithmetic operation), BUSY is sampled. BUSY is continuaily sampled and
must be recognized as inactive before the CPU will supply the coprocessor with another
instruction. However, the following coprocessor instructions are allowed to execute even
if BUSY is active since these instructions are used for coprocessor initialization and
exception clearing: FNINIT, FNCLEX.

BUSY is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

CLK2 F12 | 2X Clock Input (active high). This signal is the basic timing reference for the
TI486DLC/E microprocessor. The CLK2 input is internally divided by two to generate the
internal processor clock. The external CLK2 is synchronized to a known phase of the
internal processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

Do H12

D1 H13

D2 H14

D3 J14

D4 K14

D5 K13

D6 L14

D7 K12

D8 L13

D9 N14

D10 M12

D11 N13

D12 N12 s . - .

D13 P13 Data Bug (active high). The Data Bus (D31-D0) signals are 3-state bidirectional signals
D14 P12 that provide the data path between the TI486DLC/E and external memory and /O
D15 M1 devices. The data bus inputs data during memory read, I/O read and interrupt
D16 N1 1/0/Z | acknowledge cycles and outputs data during memory and /O write cycles. Data read
D17 N10 operations require that specified data setup and hold times be mgt for correct operation.
D18 P11 The data bus signals are high active and float while the CPU is in a hold acknowledge
D19 P10 or float state.

D20 M9

D21 N9

D22 P9

D23 N8

D24 P7

D25 N6

D26 P5

D27 N5

D28 Mé

D29 P4

D30 P3

D31 M5

Overview

Table 4-2. Terminal Functions (Continued)

PIN
NAME NO.

o DESCRIPTION

D/C Al O/Z | Data/Control. This signal is low during control cycles and is high during data cycles.
Control cycles are issued during functions such as a halt instruction, interrupt servicing
and code fetching. Data bus cycles include data access from either memory or 1/0.

ERROR A8 | Coprocessor Error (active low). This is an input used to indicate that the coprocessor
generated an error during execution of a coprocessor instruction. ERROR is sampled by
the T1486DLC/E processor whenever a coprocessor instruction is executed. If ERROR
is sampled active, the processor generates exception 16 which is then serviced by the
exception handling software.

Certain coprocessor instructions do not generate an exception 16 even if ERROR is
active. These instructions, which involve clearing coprocessor error flags and saving the
coprocessor state, are listed as follows: FNINIT, FNCLEX, FNSTSW, FNSTCW,
FNSTENV, FNSAVE. ERROR is internally connected to a pullup resistor to prevent it
from floating active when left unconnected.

ERROR is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

FLUSH E13 | Cache Flush (active low). This is an input that invalidates (flushes) the entire cache.
Use of FLUSH to maintain cache coherency is optional. The cache may also be
invalidated during each hold acknowledge cycle by setting the BARB bit in the CCRO
configuration register. The FLUSH input is ignored following reset and can be enabled
using the FLUSH bit in the CCRO configuration register.

FLUSH is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

HLDA M14 (0] Hold Acknowledge (active high). This outputindicates thatthe TI486DLC/E isinahold
acknowledge state and has relinquished control of its local bus. While in the hold
acknowledge state, the TI486DLC/E drives HLDA active and continues to drive SUSPA,
if enabled. The other TI486DLC/E outputs are in a high-impedance state allowing the
requesting bus master to drive these signals. If the on-chip cache can satisfy bus
requests, the TI486DLC/E continues to operate during hold acknowledge states. A20M
is internally recognized during this time.

The processor deactivates HLDA when the HOLD request is driven inactive. The
TI486DLC/E stores on NMI rising edge during a hold acknowledge state for processing
after HOLD is inactive. The FLUSH input is also recognized during a hold acknowledge
state. If SUSP is asserted during a hold acknowledge state, the TI486DLC/E may or may
not enter suspend mode depending on the state of the internal execution pipeline.
Table 3-3 summarizes the state of the TI486DLC/E signals during hold acknowledge.

4-8 TI486DLC/E Bus Interface

Overview

Table 4-2. Terminal Functions (Continueq)

PIN
NAME

NO.

/o

DESCRIPTION

HOLD

D14

Hold Request (active high). This input is used to indicate that another bus master
requests control of the local bus. The bus arbitration (HOLD, HLDA) signals allow the
TI486DLC/E to relinquish control of its local bus when requested by another bus master
device. Once the processor has relinquished its bus (3-stated), the bus master device
can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or sequence
of locked bus cycles, the T1486DLC/E responds by floating the local bus and asserting
the hold acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus master until
HOLD becomes inactive. When the TI486DLC/E recognizes HOLD is inactive, it
simultaneously drives the local bus and drives HLDA inactive. External pullup resistors
may be required on some of the TI486DLC/E 3-state outputs to guarantee that they
remain inactive while in a hold acknowledge state.

The HOLD input is not recognized while RESET is active. If HOLD is asserted while
RESET is active, RESET has priority and the TI486DLC/E places the bus into an idle
state instead of a hold acknowledge state. The HOLD input is also recognized during
suspend mode provided that the CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and hold times for correct operation.

INTR

B7

Maskable Interrupt Request. This is a level-sensitive input that causes the processor
to suspend execution of the current instruction stream and begin execution of an interrupt
service routine. The INTR input can be masked (ignored) through the Flags Register IF
bit. When unmasked, the TI486DLC/E responds to the INTR input by issuing two locked
interrupt acknowledge cycles. To assure recognition of the INTR request, INTR must
remain active until the start of the first interrupt acknowledge cycle.

X
m
P4

Bi12

Cache Enable (active low). This is an input which indicates that the data being returned
during the current cycle is cacheable. When KEN is active and the TI486DLC/E is
performing a cacheable code fetch or memory data read cycle, the cycle is transformed
into a cache fil. Use of the KEN input to control cacheability is optional. The
non-cacheable region registers can also be used to control cacheablity. Memory
addresses specified by the non-cacheable region registers are notcacheable regardless
of the state of KEN. I/O accesses, locked reads, SMM address space accesses, and
interrupt acknowledge cycles are never cached.

During cached code fetches, two contiguous read cycles are performed to completely
fill the 4-byte cache line. KEN must be asserted during both read cycles in order to cause
a cache line fill. During cached data reads, the TI486DLC/E performs only those bus
cycles necessary to supply the required data to complete the current operation. Valid bits
are maintained for each byte in the cache line, thus allowing data operands of less than
4 bytes to reside in the cache.

During any cache fill cycle with KEN asserted, the TI486DLC/E ignores the state of the
byte enables (BE3 — BEO) and always writes two bytes of data into the cache. The KEN
input is ignored following reset and can be enabled using the KEN bit in the CCRO
configuration register.

KEN is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

LOCK

c10

LOCK (active low). LOCK is asserted to deny control of the CPU bus to other bus
masters. The LOCK signal may be explicitly activated during bus operations by including
the LOCK prefix on certain instructions. LOCK is always asserted during descriptor and
page table updates, interrupt acknowledge sequences and when executing the XCHG
instruction. The TI486DLC/E does not enter the hold acknowledge state in response to
HOLD while the LOCK input is active.

MAO

At2

0o/z

Memory/IO. This signal is low during I/O read and write cycles and is high during
memory cycles.

4-9

Overview

Table 4-2. Terminal Functions (Continued)

PIN
NAME NO.

NA D13 | Next Address Request (active low). This is aninput used to request address pipelining
by the system hardware. When asserted, the system indicates that it is prepared to
accept new bus cycle definition and address signals (M/I0, D/C, W/R, A31-A2, BS16,
and BE3-BEO) from the microprocessor even if the current bus cycle has not been
terminated by assertion of READY. If the TI486DLC/E has an internal bus request
pending and the NA input is sampled active, the next bus cycle definition and address
signals are driven onto the bus.

N/C B6 — No connection. Should be left disconnected.

NMI B8 | Non-maskable Interrupt Request. This is a rising-edge-sensitive input that causes the
processor to suspend execution of the current instruction stream and begin execution
of an NMl interrupt service routine. The NMI interrupt service request cannot be masked
by software. Asserting NMI causes an interrupt which internally supplies interrupt vector
2h to the CPU core. External interrupt acknowledge cycles are not necessary since the
NMI interrupt vector is supplied internally.

/o] DESCRIPTION

The TI486DLC/E samples NMI at the beginning of each phase 2. To assure recognition,
NMI must be inactive for at least eight CLK2 periods and then be active for at least eight
CLK2 periods. Additionally, specified setup and hold times must be met to guarantee
recognition at a particular clock edge.

PEREQ Cc8 1 Coprocessor Request (active high). This is an input that indicates the coprocessor is
ready to transfer data to or from the CPU. The coprocessor may assert PEREQ in the
process of executing a coprocessor instruction. The TI486DLC/E internally stores the
current coprocessor opcode and performs the correct data transfers to support
coprocessor operations using PEREQ to synchronize the transfer of required operands.

PEREQ is internally connected to a pulldown resistor to prevent this signal from floating
active when left unconnected.

READY G13 | Ready. Thisis aninputgenerated by the system hardware thatindicates the current bus
cycle can be terminated. During a read cycle, assertion of READY indicates that the
system hardware has presented valid data to the CPU. When READY is sampled active,
the TI486DLC/E latches the input data and terminates the cycle. During a write cycle,
READY assertion indicates that the system hardware has accepted the TI486DLC/E
output data. READY must be asserted to terminate every bus cycle, including halt and
shutdown indication cycles.

RESET Cco | Reset (active high). When asserted, RESET suspends all operations in progress and
places the TI486DLC/E into a reset state. RESET is a level-sensitive synchronous input
and must meet specified setup and hold times to be properly recognized by the
TI486DLC/E. The TI486DLC/E begins executing instructions at physical address
location FF FFFOh approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active all other input pins are ignored. The remaining signals are
initialized to their reset state during the internal processor reset sequence. The reset
signal states for the TI486DLC/E are shown in Table 4-6.

SMADS C6 0/Zz | SMM Address Strobe (active low). SMADS is asserted instead of the ADS during SMM
bus cycles and indicates that SMM memory is being accessed. SMADS floats while the
CPU is in a hold acknowledge or float state. The SMADS output is disabled (floated)
following reset and can be enabled using the SMI bit in the CCR1 configuration register.

SMI Cc7 /0 System Management Interrupt (active low). This is a bidirectional signal and level
sensitive interrupt with higher priority than the NMI interrupt. SMI must be active for at
least four CLK2 clock periods to be recognized by the TI486DLC/E. After the SMI
interrupt is acknowledged, the SMI pin is driven low by the TI486DLC/E for the duration
of the SMI service routine. The SMI input is ignored following reset and can be enabled
using the SMI bit in the CCR1 configuration register.

SMI is internally connected to a pullup resistor to prevent it from floating active when left
unconnected.

4-10 TI486DLC/E Bus Interface

Overview

Table 4-2. Terminal Functions (Continued)

PIN
NAME NO.

SUSP A4 I Suspend Request (active low). This is an input that requests the TI486DLC/E enter
suspend mode. After recognizing SUSP active, the processor completes execution of
the current instruction, any pending decoded instructions and associated bus cycles. In
addition, the TI486DLC/E waits for the coprocessor to indicate a not busy status
(BUSY = 1) before entering suspend mode and asserting suspend acknowledge
(SUSPA).

/o DESCRIPTION

SUSP is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSPA B4 0 Suspend Acknowledge (active low). This output indicates that the TI486DLC/E has
entered the suspend mode as a result of SUSP assertion or execution of a HALT
instruction.

Vce A1 | 5-V Power Supply. All pins must be connected and used.
A5
A7

A10
Al4
C5
C12
D12
G2
G3
G12
G14
L12
M3
M7
M13
N4
N7
P2
P8

Vss A2 | Ground Pins. All pins must be connected and used.
A6
A9
B1
B5
B11
B14
c1
F2
F3
F14
J2
J3
J12
J13
M4
M8

M10
N3
P6

P14

WR B10 0O/z | Write/Read. W/Ris low during read cycles (data is read from memory or I/O) and is high
during write bus cycles (data is written to memory or 1/O).

Overview

Table 4-3. Byte Enable Line Definitions

BYTE ENABLE BYTE
LINE TRANSFERRED
BEO D7-DO
BET D15-D8
BE2 D23-D16
BE3 D31-D24

Table 4—4. Write Duplication as a Function of BE3—BEO

BE3-BEO D31-D24 D23-D16 D15-D8 p7-po | PURLICATED
0000 D C B A no
0001 D C B X no
0011 D o] D C yes
0111 D X D X yes
1000 X C B A no
1001 X C B X no
1011 X C X C yes
1100 X X B A no
1101 X X B X no
1110 X X X A no

NOTE: BE3 — BEO combinations not listed, do not occur during TI486DLC/E bus cycles.
A = logical write data D7 — DO.
B = logical write data D15 — D8.
C = logical write data D23 ~ D16.
D = logical write data D31 — D24.
x = not defined.

Table 4-5. Generating A1-A0 Using BE3-BEO

4-12

A31-A2 | A1 A0 | BE3 BE2 BE1 EO
0 0 X X X 0
— |0 1 X X 0 1
—_ 1 0 X 0 1 1
—_ | 1 1 0 1 1 1

TI486DLC/E Bus Interface

Overview

Table 4-6. Signal States During RESET and Hold Acknowledge

SIGNAL SIGNAL STATE | SIGNAL STATE DURING
NAME DURING RESET | HOLD ACKNOWLEDGE

A20M Ignored Input recognized
A31-A2 1 Float
ADS 1 Float
BE3-BEO 0 Float
BS16 Ignored Ignored
BUSY Initiates self test | Ignored
D31-D0 Float Float
D/iC 1 Float
ERROR Ignored Ignored
FLUSH Ignored Input recognized
HLDA 0 1
HOLD Ignored Input recognized
INTR Ignored Input recognized
KEN Ignored Ignored
LOCK 1 Float
M0 0 Float
NA Ignored Ignored
NMI Ignored Input recognized
PEREQ Ignored Ignored
READY Ignored Ignored
RESET Input recognized | Input recognized
SMADS Float Float
SMI Ignored Input recognized
SUSP Ignored Input recognized
SUSPA Float Driven
W/R 0 Float

4-13

Overview

411

Bus Cycle Definition

The bus cycle definition (M/10, D/C, W/R, LOCK) signals consist of four 3-state
outputs that define the type of bus cycle operation being performed. Table 4-7
defines the bus cycles for the possible states of these signals. M/IO, D/C and
W/R are the primary bus cycle definition signals and are driven valid as ADS
(Address Strobe) becomes active. During non-pipelined cycles, the LOCK
output is driven valid along with MO, D/C and W/R. During pipelined
addressing, LOCK is driven at the beginning of the bus cycle, which is after
ADS becomes active for that cycle. The bus cycle definition signals are active -
low and float while the TI486DLC/E is in a hold acknowledge or float state.

Table 4-7. Bus Cycle Types

4-14

M/0 D/C W/R LOCK BUS CYCLE TYPE
0 0 0 0 Interrupt acknowledge
0 0 0 1 —
0 0 1 X —
0 1 X 0 —
0 1 0 1 I/O data read
0 1 1 1 1/O data write
1 0 X 0 -—
1 0 0 1 Memory code read
1 0 1 1 Halt: A31-A2=0h, BE3-BEQ=1011
Shutdown: A31-A2=0h, BE3-BEO=1110
1 1 0 0 Locked memory data read
1 1 0 1 Memory data read
1 1 1 0 Locked memory data write
1 1 1 1 Memory data write
X = don't care

— = does not occur

TI486DLC/E Bus Interface

Overview

4.1.2 Power Management

The power management signals allow the TI486DLC/E to enter suspend
mode. Suspend mode circuitry allows the TI486DLC/E to consume minimal
power while maintaining the entire internal CPU state.

4.1.2.1 Suspend Request (SUSP)

Suspend Request (SUSP) is an active-low input that requests the TI486DLC/E
to enter suspend mode. After recognizing SUSP is active, the processor
completes execution of the current instruction, any pending decoded
instructions and associated bus cycles. In addition, the TI486DLC/E waits for
the coprocessor to indicate a not busy condition (BUSY=1) before entering
suspend mode and asserting suspend acknowledge (SUSPA). During
suspend mode, internal clocks are stopped and only the logic associated with
monitoring RESET, HOLD and FLUSH remains active. With SUSPA asserted,
the CLK2 input to the TI486DLC/E can be stopped in either phase. Stopping
the CLK2 input further reduces current consumption of the TI486DLC/E.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP input. The processor then resumes instruction
fetching and begins execution in the instruction stream at the point it had
stopped. The SUSP input is level sensitive and must meet specified setup and
hold times to be recognized at a particular clock edge. The SUSP input is
ignored following reset and can be enabled using the SUSP bit in the CCRO
configuration register.

4.1.2.2 Suspend Acknowledge (SUSPA)

The Suspend Acknowledge (SUSPA) output indicates that the TI486DLC/E
has entered the suspend mode as a result of SUSP assertion or execution of
a HALT instruction. If SUSPA is asserted and the CLK2 input is switching, the
TI486DLC/E continues to recognize RESET, HOLD, and FLUSH. If suspend
mode was entered as the result of a HALT instruction, the TI486DLC/E also
continues to monitor the NMI input and an unmasked INTR input. Detection
of INTR or NMI forces the TI486DLC/E to exit suspend mode and begin
execution of the appropriate interrupt service routine. The CLK2 input to the
processor may be stopped after SUSPA has been asserted to further reduce
the power consumption of the TI486DLC/E. The SUSPA output is disabled
(floated) following reset and can be enabled using the SUSP bit in the CCRO
configuration register.

4-15

Overview

Table 4-8 shows the state of the TI486DLC/E signals when the. device is in
suspend mode.

Table 4-8. Signal States During Suspend Mode

SIGNAL SIGNAL STATE DURING SIGNAL STATE DURING HALT
NAME HOLD ACKNOWLEDGE INITIATED SUSPEND MODE

A20M ignored Ignored
A31-A2 1 1
ADS 1 1
BE3-BEO 0 0
BS16 Ignored Ignored
BUSY Ignored Ignored
D31-D0 Float Float
D/C 1 1
ERROR Ignored Ignored
FLUSH Input recognized Input recognized
HLDA 0 0
HOLD Input recognized Input recognized
INTR Latched Input recognized
KEN Ignored ignored
LOCK 1 1
MO 0 0
NA Ignored ignored
NMI Latched Input recognized
PEREQ Ignored Ignored
READY Ignored Ignored
RESET Input recognized Input recognized
SMADS 1 1
SMI Latched Input recognized
SUSP Input recognized Ignored
SUSPA 0 0
W/R 0 0

4.1.2.3 Coprocessor Interface

4-16

The data bus, address bus, and bus cycle definition signals, as well as the
coprocessor interface signals (PEREQ, BUSY, ERROR), are used to control
communication between the TI486DLC/E and a coprocessor. Coprocessor or
ESC opcodes are decoded by the T1486DLC/E and the opcode and operands
are then transferred to the coprocessor via 1/O port accesses to addresses
8000 00F8h and 8000 00FCh. Address 8000 00F8h functions as the control
port address and 8000 00FCh is used for operand transfers.

TI486DLC/E Bus Interface

Functional Timing

4.2 Functional Timing

4.2.1 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when it is asserted. When RESET is asserted, the
TI486DLC/E aborts any bus cycle. Idle, hold acknowledge, and suspend
states are also discontinued and the reset state is established. RESET is used
when the TI486DLC/E microprocessor is powered up to initialize the CPU to
a known valid state and to synchronize the internal CPU clock with external
clocks.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the TI486DLC/E microprocessor. If the self-test feature is to be invoked,
RESET must be asserted for at least 80 CLK2 periods. RESET pulses less
than 15 CLK2 periods may not have sufficient time to propagate throughout
the TI486DLC/E and may not be recognized. RESET pulses less than 80
CLK2 periods followed by a self-test request may incorrectly report a self-test
failure when no true failure exists.

Provided the RESET falling edge meets specified setup and hold times, the
internal processor clock phase is synchronized as illustrated in Figure 4-2.
The internal processor clock is half the frequency of the CLK2 input and each
CLK2 cycle corresponds to an internal CPU clock phase. Phase 2 of the
internal clock is defined to be the second rising edge of CLK2 following the
falling edge of RESET.

Following the falling edge of REST (and after self-test if it was requested), the
TI1486DLC/E microprocessor performs an internal initialization sequence for
approximately 400 CLK2 periods. The TI486DLC/E seli-test feature is invoked
if the BUSY input is in an active-low state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to
complete. Even if the self-test indicates a problem, the TI486DLC/E
microprocessor attempts to proceed with the reset sequence. Figure 4-3
illustrates the bus activity and timing during the TI486DLC/E reset sequence.

Upon completion of self-test, the EAX register contains 0000 0000h if the
TI486DLC/E microprocessor passed its internal self-test with no problems
detected. Any non-zero value in the EAX register indicates that the
microprocessor is faulty.

Figure 4-2. Internal Processor Clock Synchronization

CLK2

INTERNAL
PROCESSOR
CLOCK

o2orol | o2or o1 | 62 | o1 |

I I I I I
| |

AN

AN

JAVAN

| |

I I |

I | I

RESET ; ! I [
i |

| |

I

|

]
RXTRTIERT
QREERIERLLRERKKKY

JAVAVAN

4-17

Functional Timing

Figure 4-3. Bus Activity from RESET until First Code Fetch
e Internal Cycle 1
———— Resat oI alizaon ™ Non-é(i:peelined

Initialization |

| = K2 ion i

| gongto reuestcotedt. | f solttestis performed, add | (Read)

| 230iko duton betore | C 2020 + 60* to these numbers | T

| requesting self-test. 1 2 3 17 18 19 392* 393*394* 395*

| - * Approximately

RESET |/ v \ | |
[02] 01|02l 01]02 61 02 [91]02]

CLK
(rterma) DQOOOG?OOOOUV\IMM
I |

BUSY JuXiafie| High for no Selt-Test (see Note) _ |RAGGEACCAANKKREEIAACKN

! —pt Low to Begin Self Test
B B R R R R R XX R XXX XXX (EX XX ZLIIXERR
ERROR A RN KA BN

Up to 30 CLK2

BE3-BED, W/R, XXXXXXXXXXXRION, | Low ‘/_'_—
. R XRXIIN oW)) o

eh) 1) T I ,

Upto30CLK2 —¥ . .
4 4 4 |
ADS ! High \—V
TRRXRXRR] XXX XX XXX R XXX XX XX R KR XXX TR
% e o e e e e e 00 ot e e o] e e e ottt o ot

|
A31-A2 ~if a _
D/E, LOGK 2XXRRRIRERIEREY | High N__Vald
A20M BS16’ \VAvAvavavavavavavavavavavavavavavayl vavavavavavavaAvaY,
X ¢ &

Up to 30 CLK2 — P
= " ’.’ v’v’v‘v’v‘v’v.vvvvv 870707070707674747476 .v‘r‘v V‘v’v.vvvvvv‘v’vvv
FLUSH, KEN, NA, XXXKXXXXEXXKK AKX

AAD QAN BA

AVal AV

READY, SUSP

XIRITZITIY? i
D31-D0 R~ — 4= ——=———"— (Floating) ‘_""“3'—“-—”'—:-"'—'}'"‘
s0593. TRy — -4 ot i

Note: BUSY should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

4.2.2 Bus Operation

The TI486DLC/E microprocessor communicates with the external system
through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus
configurations where the address and data are presented on the same pins
at different times.

TI486DLC/E instructions can act on memory data operands consisting of 8-bit
bytes, 16-bit words or 32-bit double words. The TI1486DLC/E bus architecture
allows for bus transfers of these operands without restrictions on physical
address alignment. Any byte boundary may require more than one bus cycle
to transfer the operand. This feature is transparent to the programmer.

4-18 TI486DLC/E Bus Interface

Functional Timing

The TI486DLC/E data bus (D31-DO0) is a bidirectional bus that can be
configured as either a 16-bit or 32-bit wide bus as determined by BS16. The
bus is 16 bits wide when BS16 is asserted. When 32 bits wide, memory and
I/O spaces are physically addressed as arrays of 32-bit double words. The
TI486DLC/E drives the data bus during write bus cycles, and the external
system hardware drives the data bus during read bus cycles.

Every bus cycle begins with the assertion of the address strobe (ADS). ADS
indicates that the TI486DLC/E has issued a new address and new bus cycle
definition signals. A bus cycle is defined by four signals: M/10, W/R, D/C and
LOCK. M/1O defines if a memory or I/O operation is occurring, W/R defines the
cycle to be read or write, and D/C indicates whether a data or control cycle is
in effect. LOCK indicates that the current cycle is a locked bus cycle. Every bus
cycle completes when the system hardware returns READY asserted.

The TI486DLC/E performs the following bus cycle types:

Memory read

Locked memory read

Memory write

Locked memory write

I/O read (or coprocessor read)

I/O write (or coprocessor write)
Interrupt acknowledge (always locked)
Halt/shutdown

When the TI486DLC/E microprocessor has no pending bus requests, the bus
enters the idle state. There is no encoding of the idle state on the bus cycle
definition signals; however, the idle state can be identified by the absence of
further assertions of ADS following a completed bus cycle.

4-19

Functional Timing

4.2.2.1 Bus Cycles Using Non-Pipelined Addressing
Non-Pipelined Bus States

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period (two CLK2 periods) in
duration. A complete data transfer occurs during a bus cycle, composed of two
or more bus states.

The first state of a non-pipelined bus cycle is called T1. During phase one (first
CLK2) of T1, the address bus and bus cycle definition signals are driven valid
and, to signal their availability, address strobe (ADS) is simultaneously
asserted.

The second bus state of a non-pipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY input and valid data is either input or
output depending on the bus cycle type. The fastest TI486DLC/E
microprocessor bus cycle requires only these two bus states. READY is
ignored at the end of the T1 state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 4—4.

Figure 4—4. Fastest Non-Pipelined Read Cycles
Cycle 1 Cycle 2 Cycle 3
F— Non-Pipelined ——Pp— Non-Pipelined —bﬁ—— Non-Pipelined —>|
(Read) (Réaz; | (Rclepad)

I T | T2 | T1 | T2 | T | T2 |

o1l o2 o1l 92 011 921 o1 02 ¢11 92| o11 62, o1
(Input) ;

|] | | |

| 1
A31,\;';% %%'3:/5% Valid 1 X valid 2 valid 3 X
| | [| I | 1
ADS | | I
I | | | | |
| | | I
__ + - —+ } — | -+
NA- | | | | | |
| | | I | | I
| | | | | | |
BS16 | | | H |
| | | | |
I | !
I | I

| I I

LOCK

I
] I I I
D31-D0 |, —_—l —_ —_———
(Input During Read) | | |
i | I I

Note: Fastest non-pipelined bus cycles consist of T1 and T2.

4-20 TI486DLC/E Bus Interface

Functional Timing

Non-Pipelined Read and Write Cycles

Any bus cycle may be performed with non-pipelined address timing.
Figure 4-5 shows a mixture of read and write cycles with non-pipelined
address timing. When a read cycle is performed, the TI486DLC/E
microprocessor floats its data bus and the externally addressed device then
drives the data. The TI486DLC/E microprocessor requires that all data bus
pins be driven to a valid logic state (high or low) at the end of each read cycle,
when READY is asserted. When a read cycle is acknowiedged by READY
asserted in the T2 bus state, the TI486DLC/E CPU latches the information
present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the TI486DLC/E
CPU beginning in phase two of T1. When a write cycle is acknowledged, the
TI486DLC/E write data remains valid throughout phase one of the next bus
state to provide write data hold time.

Figure 4-5. Various Non-Pipelined Bus Cycles (No Wait States)

| [Cycle 1 | Cycle 2 | Cycle 3 | | Cycle 4 | |

| Idle | Non-Pipelined | Non-Pipelined | Non-Pipelined | Idle | Non-Pipelined | Idle |

| | (Write) | (Read) | (Write) | | (Read) | |

| | | | | l | [I | I |

(I O I | T2 LT T2 Lo | T2 lmolmo T2 T
CLK2

| | | | !

BE3-BEQ, LRGN valid1 X valid2 X vaid3 XXX valida XX

M/O, D/C] ! T | T | | |

I
I

A31-A2, | | | ’ ' |
[

I
we TR TR
| | l | | | |
| | ' | |

32-Bit 32-Bit 32-Bit 32-Bit
| I | Bus Sizel ! Bus Size! | Bus Size' ! | Bus Size!

BSTE XRKREREEKEY KR Y KR

XX

e TR RXTRRRRIIITR) (XTI XRTRTRIXITTTTR
READY {8 RXKRARERRIAILEEN | LTI | LRRRX KR LERLXKRLN, |

v |

! I I EndCycle1 | EndCycle2 | EndCycle3 l l EndCycled |

[OCK KON valid1 X vaid2 X vaiidda YO0 valida XX
|

! ! 1T | | | | 1
D31-DO --{-———I-—(_ Out 1 |)—Ir—_@ :___ |___

Note: Idle states are shown here for diagram variety only.

4-21

Functional Timing

Non-Pipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external
system hardware using the TI486DLC/E READY input. Acknowledging the
bus cycle at the end of the first T2 results in the shortest possible bus cycle,
requiring only T1 and T2. If READY is not immediately asserted however, T2
states are repeated indefinitely until the READY inputis sampled active. These
intermediate T2 states are referred to as wait states. If the external system
hardware is not able to receive or deliver data in two bus states, it withholds
the READY signal and at least one wait state is added to the bus cycle. Thus,
on an address-by-address basis the system is able to define how fast a bus
cycle completes.

Figure 46 illustrates non-pipelined bus cycles with one wait state added to
cycles 2 and 3. READY is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY is sampled
active at the end of the second T2 and the cycle is then terminated. The
T1486DLC/E ignores the READY input at the end of the T1 state.

Figure 4-6. Various Non-Pipelined Bus Cycles with Different Numbers of Wait States

I I Cycle 1 I Cycle 2 I I Cycle 3 I I

| Idie | Non-Pipelined | Non-Pipelined | Ide | Non-Pipelined | Idle |

| | (Read) | (Write) | | (Read) | |

| I | I I | I

S I R : T | T : T2 |I T2 | T of T I T2 : T2 | T

CLK2 |
A1,] | L ! | | | | | I |

BES-BED, {00 Valid1 X Valid 2 XXX Valid 3

MO, D/C <7 | | | | | | : I I
N
I I I |
I I
| I

wr G 1Y/
I
S

I I
RRREERKERXERXELKY

ADS | | ' I
| | '

AN

& TXXXXRR
e e e e e o tete

RXRRXKCKRRKCCR
RBIELEK

32-Bit |
I I | Bus, Size! I |Bus Sizel I I |Bus SizeI |
I | | 4 | | | A | | | |4 |
BST6 R XXX TR RRCIATITT R XXXXXXXXX XXX XXXXXXXXXAL X XYXXXXRRXS
B 16 KRS RIS e oo e e R

AO OAOAOAOJ

XN/

0;‘;7 TS

=157 BRI R R R R R RRXRY
READY S000000000EEOTONON. | ACKKE AKX

v v v
| I | Endcycle1 | End Cycle 2 I End Cycle 3

i N b, T 1 I
I

LOCK AN valid 1 X Valid 2 XXX Valid 3

1]
| | | . . , . I | I
D31-D0 --!-——-!-——-!——(Ir|1 1< l Out|2 | 3—1-——-1-—— '——@_—

Note: Idle states are shown here for diagram variety only.

4-22 T1486DLC/E Bus Interface

Functional Timing

Initiating and Maintaining Non-Pipelined Cycles

The bus states and transitions for non-pipelined addressing are illustrated in
Figure 4—7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always
followed by a T2 state. If a bus cycle is not acknowledged during a given T2
and NA is inactive, T2 is repeated resulting in a wait state. When a cycle is
acknowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the TI486DLC/E is ready to enter
the hold acknowledge state, the Th state is entered.

Figure 4-7. Non-Pipelined Bus States

HOLD Asserted

HOLD Negated
Request Pending

HOLD Negated
No Request

HOLD Asserted READY Asserted
HOLD Asserted

RESET _
Asserted READY Asserted
HOLD Negated

No Request

ALWAYS

\

HOLD Negated
No Request

Request Pending
HOLD Negated

/

READY Asserted
HOLD Negated _—_——
Request Pending RE\IAA)I\\J(el\éz?:;ed

Bus States: -
T1 — First clock of a non-pipelined bus cycle (CPU drives new address and asserts ADS)

T2 -~ Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.
Ti - Idie State

Th — Hold Acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

4-23

Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and
following any idle bus state, the processor always uses non-pipelined address
timing. Pipelined or non-pipelined address timing is then determined on a
cycle-by-cycle basis using the NA input. When address pipelining is not used,
the address and bus cycle definition remain valid during all wait states. When
wait states are added and it is desirable to maintain non-pipelined address
timing, it is necessary to negate NA during each T2 state of the bus cycle
except the last one.

4.2.2.2 Bus Cycles Using Pipelined Addressing

4-24

The address pipelining option allows the system to request the address and
bus cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY asserted. If address pipelining is
used, the external system hardware has an extra T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA input.

Pipelined Bus States

Pipelined addressing is always initiated by asserting NA during a
non-pipelined bus cycle. Within the non-pipelined bus cycle, NA is sampled at
the beginning of phase 2 of each T2 state and is only acknowledged by the
TI486DLC/E during wait states. When address pipelining is acknowledged,
the address (BE3-BEO, and A31-A2) and bus cycle definition (W/R, D/C, and
M/O) of the next bus cycle are driven before the end of the non-pipelined
cycle. The address status output (ADS) is asserted simultaneously to indicate
validity of the above signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA during the pipelined bus
cycles.

As in non-pipelined bus cycles, the fastest bus cycles using pipelined address
require only two bus states. Figure 48 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressingare T1P
and T2P or T1P and T2I. The T1P state is entered following completion of the
bus cycle in which the pipelined address and bus cycle definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1P state follows a T2 state if the previous cycle was
non-pipelined, and follows a T2P state if the previous cycle was pipelined.

Ti486DL.C/E Bus Interface

Functional Timing

Figure 4-8. Fastest Pipelined Read Cycles

Cycle 1 | Cycle 2 | Cycle 3 |
Pipelined Pipelined Pipelined

| I I

(Read) | (Read) | (Read) |

TP | T2P | TIP | T2P | TIP | T2P |

o1l 02 o116 902 o011 92| o1l 92| o1l 02| o1] ¢2

A31-A2, BES-BEQ,
M/0, D/C, W/R

ADS

READY

LOCK

D31-D0
(Input During Read)

1 | 1 | |

Valid 2 Valid 4

Valid 1 X Valid 2 : * Valid 3 *
I

oo

Note: Fastest pipelined bus cycles consist of T1P and T2P.

Within the pipelined bus cycle, NA is sampled at the beginning of phase 2 of
the T1P state. If the TI486DLC/E has an internally pending bus request and
NA is asserted, the T1P state is followed by a T2P state and the address and
bus cycle definition for the next pending bus request is made available. If no
pending bus request exists, the T1P state is followed by a T2l state regardless
of the state of NA and no new address or bus cycle information is driven.

The pipelined bus cycle is terminated in either the T2P or T2l states with the
assertion of the READY input and valid data is either input or output depending
on the bus cycle type. READY is ignored at the end of the T1P state.

Pipelined Read and Write Cycles

Any bus cycle may be performed with pipelined address timing. When a read
cycleis performed, the TI486DLC/E microprocessor floats its data bus and the
externally addressed device then drives the data. When a read cycle is
acknowledged by READY asserted in either the T2P or T2l bus state, the
TI486DLC/E CPU latches the information present at its data pins and
terminates the cycle.

4-25

Functional Timing

4-26

When a write cycle is performed, the data bus is driven by the TI486DLC/E
CPU beginning in phase 2 of T1P. When a write cycle is acknowledged, the
TI486DLC/E write data remains valid throughout phase 1 of the next bus state
to provide write data hold time.

Pipelined Wait States

Once a pipelined bus cycle begins, it continues until acknowledged by the
external system hardware using the TI486DLC/E READY input.
Acknowledging the bus cycle at the end of the first T2P or T2l state results in
the shortest possible pipelined bus cycle. If READY is not immediately
asserted, however, T2P or T2 states are repeated indefinitely until the READY
input is sampled active. Additional T2P or T2l states are referred to as wait
states.

Figure 4-9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA asserted during T1P and a
pending bus request. READY is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY is sampled
active at the end of the second T2P and the cycle is then terminated. The
TI486DLC/E ignores the READY input at the end of the T1P state. Note that
ADS, the address and the bus cycle definition signals for the pending bus cycle
are all valid during each of the T2P states. Also, asserting NA more than once
during the cycle has no additional effects. Pipelined addressing can only
output information for the very next bus cycle.

Cycle 2 in Figure 4-9 illustrates a pipelined cycle, with one wait state, where
NA is not asserted until the second bus state in the cycle. In this case, the CPU
enters the T2 state following T1P because NA is not asserted. During the T2
state, the TI486DLC/E samples NA asserted. Because a bus request is
pending internally and READY is not active, the CPU enters the T2P state and
asserts ADS, valid address and bus cycle definition information for the
pending bus cycle. The cycle is then terminated by an active READY atthe end
of the T2P state.

Cycle 3 of Figure 4-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NAis asserted
in T1P requesting the next address. Because the CPU does not have an
internal bus request pending, The T2I state is entered. However, by the end
of the T2l state, a bus request exists. Because READY is not asserted, a wait
state is added. The CPU then enters the T2P and asserts ADS and valid
address and bus cycle definition information for the pending bus cycle. As long
as the CPU enters the T2P state at some point during the bus cycle, pipelined
addressing is maintained. NA needs to be asserted only once during the bus
cycle to request pipelined addressing.

Ti486DLC/E Bus Interface

Functional Timing

Figure 4-9. Various Pipelined Cycles (One Wait State)

Cycle 1 Cycle 2 Cycle 3 Cycle 4
l¢—— pipelined ——Pl¢—— Ppipelined ——P4—— Pipelined ——P4— Pipelined
| (Write) I (Read) I (Write) | (Read)
I I |
: e t2p t2p Lme 2 tp Lo T2 Tep : TP |

BE,BE, Valid 1 vaidd X
M/I0, D/C | T |
| | | I
1 I |
| ADS is asserted as soon
as the as another
I the CPU h th
| bus cycle to perform,
| which is not always
| immediately after NA is
asserted.
W/R
ADS
| |
| — : As long as the CPU enters the T2P
Note: ADS is asserted state during Cycle 3, address pipelining
| inevery T2P state. is maintained in Cycle 4.
NA EXXXXIXKKXKXXXXXXS
NA BEEEREBEOEENKY
| I | I
v l . i I
| Asserting NA more than | NA could have been asserted in 1 | I, :
once during any cycle has l T1P if desired. Assertion now is '
no additional effects.	the latest time possible to allow		l			
	[the CPU to enter T2P state to				
			maintain pipelining in Cycle 3.			
I	I I			I	I	
BS16 W ! I I I I I I						
						I
I	I I					
A XXX K KKAAAAS \						
o _	(T			AR		
		!]			
LOCK X Valid 2 X Valid 3 Valid 4						
! I 1		1	1 1			
1 L L L] L L						
D31-D0 Out X Out 1) I 1 — 2 3 Out3)-1—						
!			I I	1 T		
	!					

Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA during a
non-pipelined bus cycle with at least one wait state. The first bus cycle
following RESET, an idle bus, or a hold acknowledge state is always
non-pipelined. Therefore, the TI486DLC/E always issues at least one
non-pipelined bus cycle following RESET, idle, or hold acknowledge before
pipelined addressing takes effect.

4-27

Functional Timing

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA is sampled active, the TI486DLC/E
microprocessor is free to drive a new address and bus cycle definition on the
bus as early as the next bus state and as late as the last bus state in the cycle.

Figure 4-10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In Cycle 1, NA is driven during state T2. Thus, Cycle
1 makes the transition to pipelined address timing, since it begins with T1 but
ends with T2P. Because the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it begins with a T1P state.
Cycle 2 begins as soon as READY asserted terminates Cycle 1.

Figure 4-10. Fastest Transition to Pipelined Address Following Idle Bus State

Cycle 1 Cycle 2 Cycle 3 Cycle 4
idie | Non-Pipelined | Pipelined | Pipelined | Pipelined | Idle
(Write) | (Read) | (Write) | (Read) |
| | | | | | | | | | I
Ti | T T2 T2P | T1P T2P | T1P | T2P | TP | T21 T21 | Ti
B_é?}a__ég | . . ! . i . I . X |
- , " " N " 0
MAO, DIC Valid 1 Vaid2 X Valid3 Validd KR
I) I I
__ peomeeon Sl TR
WIR EEEEERKK BRI
ADS
TE OTOTIXIXTTITON (TR (TR R CCRR
NA K KIEESEEEIN ROGEE0EN, LOSOGIOGON ¢ LUEIEAKEAININEK
To allow rec\ To allow rec To allow rec? | |
| | ognizing NA \ ognizing NA \ ognizing NA | |
| | 4 | | A |
BS16 !
|
READY XXX R AL LB QR |

XXX XU XX RN RN XUN XY | RXXXXXAXXXXN XXX XXXXXXN LOOOROCK

R T T N N I N N

|]

LOCK XXRXN Valid 1 X vaid2 X validsa X valida R0
I { [[I | l | | | I |
| | | | | | | | | | l

|
D31-D0 == =" out 1 Yed=in2)-{ oOuts)—-J———l———
| | T ™ | T T T | |
Note: Following any idle bus state (Ti) the address is always non-pipelined and NA is sampled only during wait states. To start

address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

Figure 4-11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
Cycle 2 to Cycle 1 of Figure 3—10 illustrates that a transition cycle is the same
whenever it occurs consisting of at least T1, T2 (NA is asserted at that time),
and T2P (provided the TI486DLC/E microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 4—11 show that once address pipelining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

4-28 TI486DLC/E Bus Interface

Functional Timing

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA and detecting that the TI486DLC/E
microprocessor enters T2P during the current bus cycle. The current bus cycle
must end in state T2P for pipelining to be maintained in the next cycle. T2P is
identified by the assertion of ADS. Figure 4-10 and Figure 4-11 each show
pipelining ending after Cycle 4. This occurred because the TI486DLC/E CPU
did not have an internal bus request prior to the acknowledgment of Cycle 4.

Figure 4—-11. Transitioning to Pipelined Address During Burst of Bus Cycles

| | Cycle 1 I Cycle 2 | Cycle 3 | Cycle 4 | |

| Idle | Non-Pipelined | Non-Pipelined f Pipelined I Pipelined | Idle |

| | (Write) L (Read) * (Write) | (Read) | |

| RO | o ||

I U A AT -2 I S B | TP | TP TP | TP T2 | T

|

CLK2

p1po,] | | | ! | | T T | |

|

M/0, D/C

R R

IR
QRXXHXXXXXX LI

W/R XXX XX XAXX XXX

ADS

TR XX XX XXX XK XKD
00 0 e 0 e 0 0 e o e e

'v‘VQV’v‘V’V‘V’V.V Y’V‘V’V’V‘V
LRI
To allow rec?
ognizing NA
1 4 |

IIIW

NA

To allow rec®
ognizing NIA
!

~J
To allow rec?
| ; | | ognizing NA
| | I ! 4 |

YOO X XY OO XARS OO OO
SEBEBERXEEEEXEEEIN. | AXRLLEEKS LN OB

<)

|
| |] I . 1
[OCK XN valid1 X Valid 2 X vaid3 X valida XKD

[| I I I

I I ' ' I |

S S GECTIND S S (P GICTERID S SR CD S
- I I , I

| I | | !

Note: Following any idle bus state (Ti), addresses are non-pipelined bus cycles, NA is sampled only during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at
least one wait state (Cycle 2 above).

The complete bus state transition diagram, including operation with pipelined
address is given in Figure 3—12. This is a superset of the diagram for
non-pipelined address. The three additional bus states for pipelined address
are shaded.

4-29

Functional Timing

Figure 4-12. Complete Bus States

HOLD Asserted

READY Asserted -
HOLD Asserted

NA Asserted -
HOLD Negated - READY Asserted- (HOLD Asserted +
No Request HOLD Asserted No Request)
|
HOLD Negated- (No Request +
RESET Request Pending HOLD Asserted) -
Asserted HOLD Asserted __ NA Asserted -
READY Asserted - READY Negated

HOLD Negated -
No Request

ALWAYS
Request Pending -
READY Asserted -
HOLD HOLD Negated HOLD Negated -
Negated Request Pending
No Request e
READY Asserted - NA Negated

READY Asserted - HOLD Negated -
HOLD Negated- Request Pending
No Request READY Negated -
NA Asserted -

HOLD Negated
Request Pending

READY Negated-
(No Request +
HOLD Asserted)

READY Negated
Request Pending

HOLD Asserted
NA Asserted -

HOLD Negated -
Request Pending

READY Negated

Bus States: o

T1 - First clock of a non-pipelined bus cycle (CPU drives new address and asserts ADS).

T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

T2l — Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle but there
is not yet an internal bus request pending (CPU drives new address and asserts ADS).

T2P — Subsequent clocks of a bus cycle when NA has been sampled asserted in the current bus cycle and there
is an internal bus request pending (CPU drives new address and asserts ADS).

T1P — First clock of a pipelined bus cycle.

Ti - Idle state.

Th — Hold Acknowledge state (CPU asserts HLDA).

4-30 TI486DLC/E Bus Interface

Functional Timing

4.2.3 Bus Cycles Using BS16

Assertion of BS16 during a bus cycle effectively changes the TI486DLC/E
32-bit bus into a 16-bit data bus. Although slower, the 16-bit data bus usually
requires less hardware interface circuitry and generally offers greater
compatibility with 16-bit devices.

Non-Pipelined Cycles

With BS16 asserted, all operand transfers physically occur on data bus lines
D15-D0. With BS16 asserted during a 32-bit non-pipelined read or write,
additional bus cycles are issued by the CPU to transfer the data.

For data reads with only the two upper bytes selected (BE3 and/or BE2
asserted), data is read from D15-D0.

For data writes with only the two upper bytes selected (BE3 and/or BE2
asserted), data is duplicated on D15-D0 and no further action is required.

For data reads with all four bytes selected (at least BE1, BE2 asserted and
possibly BEO and/or BE3 also asserted), the CPU performs two 16-bit read
cycles using data lines D15-D0. Lines D31-D16 are ignored.

Data writes with all four bytes selected (at least BE1, BE2 asserted and
possibly BEO and/or BE3 also asserted), the CPU performs two 16-bit write
cycles using data lines D15-D0. Bytes 0 and 1 (corresponding to BEO, BET)
are sent on the first bus cycle and bytes 2 and 3 (corresponding to BE2, BE3)
are sent on the second bus cycle. BEO and BET are always negated during
the second 16-bit bus cycle. Figure 4—13 illustrates two non-pipelined bus
cycles using BS16.

4-31

Functional Timing

Figure 4-13. Non-Pipelined Bus Cycles Using BS16

A Transfer Requiring Two Cycles A Transfer Requiring Two Cycles
on 16-Bit Data Bus on 16-Bit Data Bus
(A h'd A
| Cycle 1 | Cycle 1A | Cycie 2 | Cycle2A | |
lde | Non-Pipelined | Non-Pipelined | Pipelined | Pipelined | ldle |
| Write, Part One | Write, Part Two Read, Part One | Read, Part Two |
| | I | |
w1 e 1l 2 ol 2] 7| 1| T | :
CLK2 |
. | | | . | | | | | | !
BE1,BEO W Valid 1 / Always Inactive Valid 2 Always Inactive
| 1 I During Part 2 | Durir]g Part 2 |
.Y 1. R — : R —
B3, b2, TR Vel Vel 2

DAAAA

MO, D/C <4<
| |

W/R '
mw I
| 1 |]

NA

|

1

|

I | I
| | AR XRRTKRR
! LXREUXHXIAHUXKD
I

I

(XXX XXX XXXX

! I
I !
| | ;
' |
' |

|

'|
I
T I
| |
| I

XXXXXXXXHXXXAXKXXXXXX Don't XXXXXXXX XX, Don't XAXXXXXAXX Don't (XXXXAKXXXXX D XX ARAKXAXAKARRKRXX
RREAKKRIRKRE: care SREKKRKL Core QIKKKKKIOK Care SXXXKKKKRK Care HULLLLAAAAAS

marr TOXRXXIXIITIRIIR FIIXIIIR) FXXIIIIR (TTTIRITLITRIIR o
BST16 XRRLLLLLLRAEERUN | SN ASSSSSOEEEN | LKA

[| | 168t | | 16-Bit | | 168t | | 16-Bit | | |
| | | Bus Size | |Bus Size | | Bus Size | | Bus Size | i |

I, | LRI XTI TRXTRITTETTS
LN | AN | ABEEEKKEN | AELLEEEN | LRI
I

I
L[OCK Wgé(Valid 1 |)(Valid 2
: { | di5-do, | d31-d16] | d15-d0 | da1-d16 ; :
D15-00 4————= out X ou y—t— —_— —_
I } I') !d31—d16! ! : ignored I Ignored I I
D31-D16 —I———}——(I ' out | |)T—_@—T—_@_T___!

READY X Oaeaciaacony

PaVaVAV.S

Note: Dn = physical data pin n.
dn = logical data bit n.

4-32 Ti486DLC/E Bus Interface

Functional Timing

Pipelined Cycles

The input signal NA is a request to the CPU to drive the address, byte enables,
and bus status signals for the next bus cycle as soon as they become internally
available. “Pipelining” this address allows the system logic to anticipate the
next bus cycle operation.

The CPU cannot acknowledge both address pipelining and BS16 for the same
bus cycle. If NA is already sampled when BS16 is asserted, the data bus
remains 32-bits wide. If NA and BS16 are asserted in the same window, NA
is ignored and BS16 remains effective (the data bus becomes 16-bits wide).
Figure 4-14 illustrates the interaction between NA and BS16.

4-33

Functional Timing

Figure 4—-14. Pipelining and BS16

A Transfer Requiring Two Cycles
on 16-Bit Bus
A

(A
- Cycle 1A | Cycle 1B | Cycle 2 I
Pg;,’é?:s I Pipelined | Non-Pipelined | Non-Pipelined | Idle
[Write, Part One L, Write, Part Two P Read ’|
l TP | TPl T2 | T2 1 11 | T2l T2 Tl 12! TOP| i :
CLK2 |
| | | ! I | | | | . | |
BE1,BEO Valid 1 Always Inactive Valid 2 Valid 3
|X T T : T |/ During Part 2 I\(T |X T l
_A31-A2, | i | ! l l | | | | I
BE3,BE2, Valid 1 X vaid2 X Vvaid3
MO, DIC

I [| [
N
I | |

i
I

[
_ f —
wR /| |
I I |
_ | I
ADS | |
|

\v2

I OOOY,
LKLY

[I
| | NA must be negated in these T’s to allow |
| recogni}ion of asslerted BS1l6 in final TZS.

\Vavav

0'0;0;0‘0;0;0‘0;0‘0‘0‘Q‘Q‘Q‘Q‘O‘

\NOXX D XOOOOXXX XX QOOOXXXY
L QLKLY SRR ALK

Q XXXAXAXXD

| | | |
RRXXXTXXXXITKIXKIRIIIITN | ATKRRIXTRIR TN | ATRRRRRIRR ? XTI
I U N I % UL

| | I | 1e-Bit | I | 16-Bit | | | |

] | | Bus Size | | Bus Size | I |
(RIS (TR R (RITRIXXC
LS LXK | \ | AR |

READY

OO A0

| | I I | | | | | I | |
LOCK AN Valid 1 X Valid 2 XK
[
I 41500 | di5-do | | dsi—dts | } : dis-do |

p15-00 ——— In y— out X out }—.I-_—_i.__@_..} |
I gsilate | | d31-d16 | ! ! | : aB1-d16 |

D31-D16 -:F_< IIn>_(I | | Out | | ; }—-:r-——T—.@__i

Dn = physical data pin n.

dn = logical data bit n.

Cycle 1A is pipelined. Cycle 1B cannot be pipelined, but its address can be inferred from cycle 1 to externally simulate
address pipelining during cycle 1B.

4.2.4 Locked Bus Cycles

When the LOCK signal is asserted, the TI486DLC/E microprocessor does not
allow other bus master devices to gain control of the system bus. LOCK is
driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK is also active during interrupt acknowledge cycles.

4-34 TI486DLC/E Bus Interface

Functional Timing

LOCK is activated on the CLK2 edge that begins the first locked bus cycle and
is deactivated when READY is returned at the end of the last locked bus cycle.
When using non-pipelined addressing, LOCK is asserted during phase 1 of
T1. When using pipelined addressing, LOCK is driven valid during phase 1 of
T1P.

Figure 4—4 through Figure 4-6 and Figure 4—13 illustrate LOCK timing during
non-pipelined cycles and Figure 4-8 through Figure 4-11 and Figure 4-14
cover the pipelined address case.

4.2.5 Interrupt Acknowledge (INTA) Cycles

The TI486DLC/E microprocessor is interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The
T1486DLC/E microprocessor responds with two locked interrupt acknowledge
cycles. These bus cycles are similar to read cycles. Each cycle is terminated
by READY sampled active as shown in Figure 4-15.

Figure 4-15. Interrupt Acknowledge Cycles

Interrupt Idle Interrupt
idle | Acknowledge | (4 Bus States) | Acknowledge | Idie
| Cycle 1 | | Cycle 2

CLK2

XX XX XXX X XAXX

X XXXXKXXXXXS XXX AKX KKK X AR XK XK XXX XXX XX XKXXXXXXS
SEEEEEKKY SO 00000 00000990099 0990.090.99.09.0¢ "3’0’0’0’&0’0’0’0’"‘2

BE3-BE1 YRS | |

__A31-A3,
BEO, M/IO, m R KRR TR KR TKII RS R RRRIIRRR
D/C, WR ! | LR EAEARIIKKKXAN | QERRRRXERXK

RRRRIIIRR
AL

Y

XX R XX XK XN

QXXX XXX XX XXX XXX XXX XX XXX XXX

|
|
|
|

o | TR
BS16 Ignored | ?“:i:?&
I I
READY | [
~ I
| | | Ignored | | | | | | Vector
m$o+__+__ﬁ____ _L__;__J_-J__J__{_ -
I I I I I
[| [Ignored | | | | | | Ignored

R e e R R O

Note: Interrupt Vector (0-255) is read on D7-DO at end of second interrupt acknowledge bus cycle. Because each Interrupt
Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect.

4-35

Functional Timing

4-36

The state of A2 distinguishes the first and second interrupt acknowledge
cycles. The address driven during the first interrupt acknowledge cycle is 4h
(A31-A3=0, A2=1, BE3-BE1=1, and BE0=0). The address driven during the
second interrupt acknowledge cycle is Oh (A31-A2=0, BE3-BE1=1, and
BE0=0).

To assure that the interrupt acknowledge cycles are executed indivisibly, the
LOCK output is asserted from the beginning of the first interrupt acknowledge
cycle until the end of the second interrupt acknowledge cycle. Four idle bus
states (Ti) are always inserted by the TI486DLC/E microprocessor between
the two interrupt acknowledge cycles.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the TI1486DLC/E microprocessor from D7-DO of the data bus. The
vector indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, D31-DO float. At the end
of the first interrupt acknowledge cycle, any data presented to the TI486DLC/E
is ignored.

Ti486DLC/E Bus Interface

Functional Timing

4.2.6 Halt and Shutdown Cycles
Halt Indication Cycle

Executing the HLT instruction causes the TI486DLC/E execution unit to cease
operation. Signaling its entrance into the halt state, a halt indication cycle is
performed. The halt indication cycle is identified by the state of the bus cycle
definition signals (M/I0O=1, D/C=0, W/R=1, LOCK=1) and an address of 2h
(A31-A2=0, BE3=1, BE2=0, BE1-BEO=1). The halt indication cycle must be
acknowledged by READY asserted. A halted TI486DLC/E microprocessor
resumes execution when INTR (if interrupts are enabled), NMI, or RESET is
asserted. Figure 416 illustrates a non-pipelined halt cycle.

Figure 4-16. Non-Pipelined Halt Cycle

Ti [Ti | Ti |

|

BEO. BET, I I | I l CPU remains halted

I |
BE3 i QAKARUAR O unti |
o G CERRR sty |

|

|

|

| I | I
A31-A2, - XXX XXX XXX XYY
BEZ, DIC h>< valid 1 \ ' RN

|

|

I Cycle 1 I Cycle 2 ' |
| Non-Pipelined | Non-Pipelined | Idle |
| (Write) | (Hait) I |
“ o e g
I T1 | T2 | T | T2 | Ti |

I

[[[I
| | |

]
| |
. I\ |/ | | | |
ADS | | | | | | I
VVVV’V VVVVVVVVVVVVVYV VNV V VNV VNNV VVVVVVVVV \/ VVVVVV

7> RXRXXIXXIX) XXX TXXIRXIIXIIXR
e e s e e e e o e e e e e e e e

/\ JAVAVAVAVAY

| I |

—_— V’V V’V‘V \ \/ V‘v V’V‘V‘V‘V‘V’V‘V‘V’V V‘V‘V‘V’V’V’V’V \/ V‘V‘V’V’V’V’V‘V’V V’V‘V V’V‘V \/ V’V‘V’V \/

BSTE. KXRXRXEK) QISR anored X ceX XXX XRXRXKRX
I

READY TR TR R R XX RKTRRRLS

READY | AXRDRRCR0N | R0 1 AR R E XXX

by READY asserted. Wait states may be

I I

! | !

Note: Halt cycle must be aknowledged | I
| |

added to the cycle if desired. | |

' | |

| |

| |

| |

| I

I | | . I
— : R RRXTTIXT) XD
Hock IX Va"] ! / | KRR

I
| I .

| | I I I

D31-D0 Out X Out 1 X Undefined >-——I (Floating)]l————-l-————}
I |

I

| | T | | | |
l | | | |

4-37

Functional Timing

Shutdown Indication Cycle

Shutdown occurs when a severe error is detected that prevents further
processing. The TI486DLC/E microprocessor shuts down as a result of a
protection fault while attempting to process a double fault as well as the
conditions referenced in Chapter 2. Signaling its entrance into the shutdown
state, a shutdown indication cycle is performed. The shutdown indication cycle
is identified by the state of the bus cycle definition signals (M/10=1, D/C=0,
W/R=1, LOCK=1) and an address of Oh (A31-A2=0, BE3-BE1=1, and
BEO0=0). The shutdown indication cycle must be acknowledged by READY
asserted. A shutdown TI486DLC/E microprocessor resumes execution only
when NMI or RESET is asserted. Figure 4-17 illustrates a shutdown cycle
using pipelined addressing.

4-38 TI486DLC/E Bus Interface

Functional Timing

Figure 4-17. Pipelined Shutdown Cycle

Cycle 1
Pipelined
(Read)

Cycle 2
Pipelined

(Shutdown) Idle

|
|
|
-
| ! |
| T1P | T2P TIP T2P Ti | Ti | Ti |

' l ' | | 6PU remai i
BE3-BEI1,) 1 G R remains shut-
wio.WR =2/ | | R RESET s s, |

| - |

|

|

|

|

=

- y__ _

| |
| |
e pe—
| I
| |

|

(R XX KRR XXX KX XX KKK X
f mnuum,wmow‘o,o‘nmowm,q
! | | | | |
T | | | | | |
ADS |- | f | | | | |

| | | | | | l |
X RTXXIXX) XX XXX XXX
QX e N s e e e e e e e e e o e e o e

JAVAVA' £ AN AN JAVAVAVAVAN JAVAVAVAVAVAVAVAVAVAVAVAVAVAL A

NA

0<
4
>

PN
<
S
<
<l
<]
<
<
<]
<
<
4
<]
<
<]
4]
<
X

| | | | | | | | |
BS16 [| | OO0 OO OO
576 w | | R R R R R AR
|
|

READY RTINS
READY. | LXK

VAVAVAV.A

(RRXTIITD R XXX KKK
0 NI e e o e e e e oo

JAVAVAY, \WAVAVAVAY

XXXXXX
| : 1 | | |

| ' | | |
| Note: Shutdown cycle must be acknowledged by READY |
| asserted. Wait states may be added to the cycle if desired. |

TAVAN

S - RIS
LOCK Valid 1 / KRR

4-39

Functional Timing

4.2.7 Internal Cache Interface

4.2.7.1 Cache Fills

Any unlocked memory read cycle can be cached by the TI486DLC/E. The
TI1486DLC/E automatically does not cache accesses to memory addresses
specified by the non-cacheable region registers. Additionally, the KEN input
can be used to enable caching of memory accesses on a cycle-by-cycle basis.
The TI486DLC/E acknowledges the KEN input only if the KEN enable bit is set
in the CCRO configuration register.

As shown in Figure 4—19 and Figure 4-20, the TI1486DLC/E samples the KEN
input one CLK2 before READY is sampled active. If KEN is asserted and the
current address is not set as non-cacheable per the non-cacheable region
registers, then the TI486DLC/E fills two bytes of a line in the cache with the
data present on the data bus pins. The states of BE3-BEO are ignored if KEN
is asserted for the cycle.

Figure 4-18. Non-Pipelined Cache Fills Using KEN

|
¢1I¢2|¢1I ¢1I¢2|¢1|¢2:¢1| |
| I I I

Cycle 1	Cycle 2	
Non-Pipelined	Non-Pipelined	
(Read — Cache F	II)	(Read — Cache Fill)
I ™ | T | T2 |

A31-A2, BE3-BEQ,
D/C, MO, WR

hY
X Valid 1 X Valid 2 W
I | I I I I I
| | | | | | |
! | | | |
| | |

| | |

L |

I I

BST6 W .0.0.0,0.0.0.0.0.0.0.0&0.0.0' W

: I |
I | |
| | |

| | | |

| | I |

| | : l

| | | |
|

| l l

| | |

o TN
| |

| |

LOCK

| I ! I [
I | I I

|
|
\
|
|

I

I I

D D e D
| | , | | , |

4-40

Ti486DLC/E Bus Interface

Functional Timing

Figure 4-19. Non-Pipelined Cache Fills Using KEN and BS16

Cycle 1 Cycle 2

| I I
| Non-Pipelined | Non-Pipelined [
| (Read — Cache Fill) | (Read — Cache Fill) |
' T | T | T2 l

I

¢1I¢2I¢1|¢2 ¢1|¢2|¢1I¢2:¢1I¢2 |
I | I |

| | ! | | | I

ASTZ 5—',5%‘,%% X Valid 1 X Valid 2 W
| | |
I | | | |

I

I
| |
I I |
| | | |

|

|

I | i
I I |
" | |
| | BS16 must be asserted during both BS16 |

cycIes in order for the cache fill to occur.
| |
I | |
| |
I | I I
|] | |
o X e X we XORR

f I | [
| | d15-d0 |

[|

| |

D31-D0 |, > __L__@___L____L__@_.—_J

(Input During Read) | [[|
! | | | ! |

READY | | I

4-41

Functional Timing

Figure 4-20. Pipelined Cache Fills Using KEN

Cycle 1 Cycle 2
I I |
| Pipelined | Pipelined |
| (Read — Cache Fill) | (Read — Cache Fill) |
I TP | TP | T2P | TIP | TP TP
o1l 02 o1l o2 o1l 62, o1l 02| o1l 62, o1l ¢21
CLK2 ’
I l I
__ | | [| | | |
AST P2, BESDER: Valid 1 X Valid 2 X Valid 3

i I A S
I I
= TR, TN TR

|
|
Reaoy |/ :
|
| . | .

LOCK X Valid 1 X Valid 2 X Valid 3

| I [|
I | | | I

|
|
| |
D31-D0 > __I_____L__@.__L__@___L__
(Input During Read) | [I |
. | | ' | , |

4.2.7.2 Flushing the Cache

To maintain cache coherency with external memory, the TI486DLC/E cache
contents should be invalidated when previously cached data is modified in
external memory by another bus master. The TI486DLC/E invalidates the
internal cache contents during execution of the INVD and WBINVD
instructions, following assertion of HLDA if the BARB bit is set in the CCRO
configuration register, or following assertion of FLUSH if the FLUSH bit is set
in CCRO.

4-42 TI486DLC/E Bus Interface

Functional Timing

The TI486DLC/E samples the FLUSH input on the rising edge of CLK2
corresponding to the beginning of phase 2 of the .internal processor clock. If
FLUSH is asserted, the TI486DLC/E invalidates the entire contents of the
internal cache. The actual pointin time where the cache is invalidated depends
upon the internal state of the execution pipeline. FLUSH must be asserted for
at least two CLK2 periods and must meet specified setup and hold times to be
recognized on a specific CLK2 edge.

4.2.8 Address Bit 20 Masking

The TI486DLC/E can be forced to provide 8086 1-MByte address wraparound
compatibility by setting the A20 bit in the CCRO configuration register and
asserting the A20M input. When the A20M is asserted, the 20th bit in the
address to both the internal cache and the external bus pin is masked (zeroed).

4-43

Functional Timing

As shown in Figure 4-21, the TI486DLC/E samples the A20M input on the
rising edge of CLK2 corresponding to the beginning of phase 2 of the internal
processor clock. If A20M is asserted and paging is not enabled, the
TI486DLC/E masks the A20 signal internally starting with the next cache
access and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M. A20 remains
masked until the access following detection of an inactive state on the A20M
pin. A20M must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

An alternative to using the A20M pin is provided by the NCO bit in the CCRO
configuration register. The TI486DLC/E automatically does not cache
accesses, to the first 64 KBytes and to 1 MByte + 64 KBytes, if the NCO bit is
set. This prevents data within the wraparound memory area from residing in
the internal cache and thus eliminates the need for masking A20 to the internal
cache.

Figure 4-21. Masking A20 Using A20M During Burst of Bus Cycles

| Cycle 1 | Cycle 2 | Cycle 3 | Cycle4 |
ide | Non-Pipelined | Non-Pipelined | Pipelined | Pipelined | Idie
o (Write) A (Read) * (Write) ‘L (Write) ’l
T D T |
sl e | o1l 12 b repl 1Pl 2P| TP | T2 | I
CLK2 |
A19-A2, | | | . ' , ‘ |

A31-A21, " — - -
o ey, SR valid1 X valid2 X valids X Validd XXX

MAO, D/C
WIR XXX | |

|
—_— | | | | | | | /
' ' | | |
|
|

0'0'0'0‘0‘0‘0;0‘0;0‘0‘0‘0‘0‘

LA

A20M

) DOOOOOOOONHX
XA QBB

SXXXXXXXXN)

K Valid 4

A20 Valid 1

mara ORI XXX KRR TR XXRIIXIIRX
BS16 NI RS RS Y REEEEEEEK

. R XX XXX RITIXIIR) [RITIIIIR) (RXTXXRIXXXKIIRR
NI 4 00 0 00 NI 0 0 2 0 e N4 e 0 e e 0 e e %

| pocodouss
RN

XXX XX XK XXX XY OOOQOOKX XX OO0
SEAEEBBESEKXIIOEBKLEEN. | LY | AN | AR

| | I |
LOCK 0N valid1 X Valid 2 X vaidda X valida XK
I

l I i I

| | ! I | | |
SR Y e S Ao
| | I | I l

4-44 Ti486DLC/E Bus Interface

Functional Timing

4.2.9 Hold Acknowledge State

The hold acknowledge state provides the mechanism for an external device
in a TI486DLC/E system to acquire the TI486DLC/E system bus while the
TI486DLC/E is held in an inactive bus state. This allows external bus masters
to take control of the TI486DLC/E bus and directly access system hardware
in a shared manner with the TI486DLC/E. The TI486DLC/E continues to
execute instructions out of the cache (if enabled) until a system bus cycle is
required.

The hold acknowledge state (Th) is entered in response to assertion of the
HOLD input. in the hold acknowledge state, the TI486DLC/E microprocessor
floats all output and bidirectional signals, except for HLDA and SUSPA. HLDA
is asserted as long as the TI486DLC/E CPU remains in the hold acknowledge
state and all inputs except HOLD, FLUSH, SUSP and RESET are ignored.

Th may be entered directly from a bus idle state, as in Figure 4-22, or after the
completion of the current physical bus cycle if the LOCK signal is not asserted,
as in Figure 4-23 and Figure 4-24. The CPU samples the HOLD input on the
rising edge of CLK2 corresponding to the beginning of phase 1 of internal
processor clock. HOLD must meet specified setup and hold times to be
recognized at a given CLK2 edge.

The hold acknowledge state is exited in response to the HOLD input being
negated. The next bus start is an idle state (Ti) if no bus request is pending,
as in Figure 4-22. If a bus request is internally pending, as in Figure 4—23 and
Figure 424, the next bus state is T1. Th is also exited in response to RESET
being asserted. If HOLD remains asserted when RESET goes inactive, the
TI486DLC/E enters the hold acknowledge state before performing any bus
cycles provided HOLD is still asserted when the CPU is ready to perform its
first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in Th state, the
event is remembered as a non-maskable interrupt 2 and is serviced when the
state is exited.

4-45

Functional Timing

Figure 4-22. Requesting Hold from Idle Bus State

| | l

} ldle lﬁ——— II-IoId Acknowledglje ——H Idie
|

| Ti | Th | Th | Th | Ti

|
|
HOLD | éi? 1
|
|
HLDA | | /
| | I
A31-A2, BE3-BED, .
DIC, MO, W/R W_——_T_ Floating _T _____ m

| | | | |
-\ | I |
| h————Jl—— Floating —-Jl- ————— -:--’ |
il Jl | ! | I
BSIB T O K KKK IR I KICKK K KKIKICKIICK K KICIRAKKKD
I

[! | I |
| I I I I |

' ' I | |
o Ryt prra— -~
| I

I
R S A N

D31-D0 ——f————— —“————— — Floating ~————=—————— —
| L

|
l
I
|
I
|
|
I
|
l
I
|

|

!
ADS ;
I

Note: For maximum design flexibility, the CPU has no internal pullup resistors on its outputs. External pullups may be required
on ADS and other output to keep them negated during hold acknowledge period.

4-46 TI486DLC/E Bus Interface

Functional Timing

Figure 4-23. Requesting Hold from Active Non-Pipelined Bus

| Cycle 1 | Hold Acknowledge Cycle 2
| Non-pipelined | Non-pipelined
| (Read) |

I

I
} (Write)
I
I

| | |
] A R

I
HOLD | ! ! | i L | |
I | l HOLD asserted no later : } {
| Il I than READY asserted | | |

| | |

| I I | | |
oA I I / N\ | |

I | '

| | | | |

|
|
| »
ADS |\ | / | {L--ﬂ?@L--Iﬁ
| | | | | | |
] |

|

- IR

NA W PRRRIS OO RRRINAS

-bit

| | bus silze | | |] |

BS16 XXXKKLLLRLLLLLY RLLLRLLLLLLLLRLLLIILRRLRRRRRKKKS
Note: If asserting BS16 requires a second

bus cycle to be performed, the second cycle I I I | |

is performed before hold acknowledge I I I I I
\vav; VAV | \VAvAV

READY | AKKEIILKLELLLILKN. N LKL

| (Negated, or Last Locked Cycle) | | [[

I
LOCK Valid 1)————JI—————Ki Valid 2

| T T | | ! T |
| | (Floating)]' J I (Floating) :
D81-Dy ———————————— ——-I---———--I-— Out2

I I I (Floating) ‘ T
| | I | I I |

—

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met.
This waveform is useful for determining hold acknowledge latency.

4-47

Functional Timing

Figure 4-24. Requesting Hold from Active Pipelined Bus

Cycle 1 Hold Acknowledge | Cycle 2
Pipelined Non-Pipelined
(Write) (Read)

I |

| | }

| ! 1 | | ‘

[£1 T2l 28 | h Th loT o T2

.
¥ T
HOLD | HOLD asserted in same bus
| state as NA asserted.
N I
|

HLDA

|
\
|
| |
|
l

|
|
|
:
|
|
|
|

—A2 BE3-BEO 7 (Floating)
T T G

R R S R S KRS
AL LLLRLLLRLLLLLLLLRLLIRLRE

R R R R R R R R R R R TR XX
R R RRRKLERRNNE

LERIEKT |

AN

LLERLLLILLLLLLLLLLRN

I
|

|
(Flo;xting) |

1 I
LOCK X Valid 1 ———Jl—_—_ | Valid 2
l l | l |] :]I
1
' ' ' ’ I (Floating) |
D31-Do Out X Out 1 >—~|—————|—————L_— In2
l

[[[b
I

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met.
This waveform is useful for determining hold acknowledge latency.

4-48 TI486DLC/E Bus Interface

Functional Timing

4.2.10 Coprocessor Interface

The coprocessor interface consists of the data bus, address bus, bus cycle
definition signals, and the coprocessor interface signals (BUSY, ERROR and
PEREQ). The TI486DLC/E automatically accesses dedicated coprocessor
I/0O address 8000 00F8h and 80 00FCh to transfer opcodes and operands to
or from the coprocessor whenever a coprocessor instruction is decoded.
Coprocessor cycles can be either read or write and can be either non-pipelined
or pipelined. Coprocessor cycles must be terminated by READY and, as with
any other bus cycle, can be terminated as early as the second bus state of the
cycle.

BUSY, ERROR, and PEREQ are asynchronous level-sensitive inputs used to
synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase 1 and must meet specified setup and hold times to
be recognized at a given CLK2 edge.

4.2.11 SMM Interface

System Management Mode (SMM) uses two TI486DLC/E pins, SMI and
SMADS. the bidirectional SMI pin is a non-maskable interrupt that is higher
priority than the NMI input. SMI must be active for at least four CLK2 periods
to be recognized by the TI486DLC/E. Once the TI486DLC/E recognizes the
active SMI input, the CPU drives the SMI pin low for the duration of the SMI
service routine.

The SMADS pin outputs the SMM Address Strobe that indicates a SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS functional timing, output delay times and float delay times
are identical to the main memory address strobe (ADS) timing.

4.2.11.1 SMI Handshake

The functional timing for SMIl interrupt is shown in Figure 4-25. Five significant
events take place during a TI486DLC/E SMI handshake:

1) The SMI input pin is driven active (low) by the system logic.
2) The CPU samples SMI active on the rising edge of CLK2 phase 1.

3) Four CLK2s after sampling the SMI active, the CPU switches the SMI pin
to an output and drives SMI low.

4) Following execution of the RSM instruction, the CPU drives the SMI pin
high for two CLK2s indicating completion of the SMI service routine.

5) The CPU stops driving the SMI pin high and switches the SMI pin to an
input in preparation for the next SMI interrupt. The system logic is
responsible for maintaining the SMI pin at an inactive (high) level after the
pin has been changed to an input.

4-49

Functional Timing

Figure 4-25. SMI Timing

o1 g2 lo1 02 lo1 92 1ot o2 Lot 02 1ot g2 lo1 o2 lo1 o2 1ot g2 Lot 92101 g2 ot ¢2}
CLK2 |
(Input) |

| |

| | I/
i (Q)

)

|

IRl

] |
ot uf
| |

|
|
|
C
-eee |ndicates that the TI486DLC/E drives the SMI pin.

4.2.11.2 I/O Trapping

The TI486DLC/E provides I/O trapping that can be used to facilitate power
management of 1/O peripherals. When an 1/O bus cycle is issued, the 1/O
address is driven onto the address bus and can be decoded by external logic.
If a trap to the SMI handler is required, the SMI input should be activated at
least three CLK2 edges prior to returning the READY input for the I/O cycle.
The timing for creating an I/O trap via the SMI input is shown in Figure 4-26.
The TI486DLC/E immediately traps to the SMI interrupt handler following
execution of the 1/O instruction, and no other instructions are executed
between completion of the I/O instruction and entering the SMi service routine.
The I/O trap mechanism is not active during coprocessor accesses.

Figure 4-26. I/O Trap Timing

| /O CYCLE I
{4——-——- (Read or Write) ——————P:

| T | T2 | T2 | T2 |

L R
(Input)
| I I | |

Address, "
o
ADS I
(Output) | |

— 5
READY (XKLL

n

| I
I i
™I I |
I I
I |

I

|

I

|

|

|

[

|

|

. I
3CLK2s <4 PI

4-50 TI486DLC/E Bus Interface

Functional Timing

4.2.12 Power Management
SUSP Initiated Suspend Mode

The TI486DLC/E enters suspend mode when the SUSP input is asserted and
execution of the current instruction, any pending decoded instructions and
associated bus cycles are completed. The TI486DLC/E also waits for the
coprocessor to indicate a not busy status (BUSY=1) prior to entering suspend
mode. The SUSPA output is then asserted. The TI486DLC/E responds to
SUSP and asserts SUSPA only if the SUSP bit is set in the CCRO configuration
register.

Figure 4-27 illustrates the TI486DLC/E functional timing for SUSP initiated
suspend mode. SUSP is sampled on the phase 2 CLK2 rising edge and must
meet specified setup and hold times to be recognized at a particular CLK2
edge. The time from assertion of SUSP to activation of SUSPA varies
depending on which instructions were decoded prior to assertion of SUSP. The
minimum time from SUSP sampled active to SUSPA asserted is 2 CLK2s. As
a maximum, the TI486DLC/E may execute up to two instructions and
associated bus cycles prior to asserting SUSPA. The time required for the
TI1486DLC/E to deactivate SUSPA once SUSP has been sampled inactive is
4 CLK2s.

If the TI486DLC/E is in a hold acknowledge state and SUSP is asserted, the
processor may or may not enter suspend mode depending on the state of the
TI486DLC/E internal execution pipeline. If the TI486DLC/E is in a SUSP
initiated suspend state and the CLK2 input is not stopped, the processor
recognizes and acknowledges the HOLD input and stores the occurrence of
FLUSH, NMI and INTR (if enabled) for execution once suspend mode is
exited.

Figure 4-27. SUSP Initiated Suspend Mode

I I I I I
01 | 62 | o1 [62 | o1 | 62| o1 | 62| o1] 62| 61| 02

e AR AR AR

|

| I
/{ ; | |
| |
| |
BUSY I I
I‘_’ — 4 CLK2s ___’I
|
!

)
|
|

I
I
T
I

I

e

I
I
|
2 CLK2
:4— Min
I
I
|
I
|

%]
2
>

I

4-51

Functional Timing

HALT Initiated Suspend Mode

The TI1486DLC/E also enters suspend mode as a result of executing a HALT
instruction. The SUSPA output is asserted no more than 17 CLK2s following
READY sampled active for the HALT bus cycle as shown in Figure 4-28.
Suspend mode is then exited upon recognition of an NMI or an unmasked
INTR. SUSPA is deactivated 12 CLK2s after sampling of an active NMI or
unmasked INTR. If the TI486DLC/E is in a HALT initiated suspend mode and
the CLK2 input is not stopped, the processor recognizes and acknowledges
the HOLD input and stores the occurrence of FLUSH for execution once
suspend mode is exited.

Figure 4-28. Halt Initiated Suspend Mode
Non-Pipelined HALT

ADS

BES, BET,
BEO, M/IO,
WIR,

A31-A2,
BE2, D/C

READY

NMI

-
17 CLK2s Max]

4-52 TI486DLC/E Bus Interface

Functional Timing

Stopping the Input Clock

Because the TI1486DLC/E is a static device, the input clock (CLK2) can be
stopped and restarted without loss of any internal CPU data. CLK2 can be
stopped in either phase 1 or phase 2 of the clock and in either a logic high or
logic low state. However, entering suspend mode prior to stopping CLK2
dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 is to initiate TI486DLC/E suspend
mode, wait for assertion of SUSPA by the processor and then stop the input
clock.

The TI486DLC/E remains suspended until CLK2 is restarted and suspend
mode is exited as described above. While CLK2 is stopped, the TI486DLC/E
can no longer sample and respond to any input stimulus including the HOLD,
FLUSH, NMI, INTR and RESET inputs. Figure 3-26 illustrates the
recommended sequence for stopping CLK2 using SUSP to initiate suspend
mode. CLK2 should be stable for a minimum of 10 clock periods before SUSP
is deasserted.

Figure 4-29. Stopping CLK2 During Suspend Mode

o1

62

ot g2 | | |

|
.

UL L ML

I
)]
SUSP ((((! (I
)))) 1)
_{({ I (({(
BUSY))) |))))
10 CLK2s Min ¢ —>
m |
SUSPA \ (((((/
DO)))

4-53

4-54 TI486DLC/E Bus Interface

T
=
e L

Electrical Specifications

5-2

Chapter 5

Electrical specifications for the Ti486 are provided in this chapter. The
specifications include electrical connection requirements for all package pins,
maximum ratings, recommended operating conditions, dc electrical, and ac
characteristics. '

Electrical connection requirements provides the designer with specific
requirements for power and ground connections decoupling, termination of
inputs having internal pullup/pulldown resistors, termination of system
functional inputs requiring external pullup resistors, termination of unused
inputs, and termination of inputs designated NC.

The absolute maximum ratings provide the designer with specific limits
regarding power supply and input voltages, input and output current limits, and
operating and storage temperatures.

Recommended operating conditions provide the designer with specific values
for power supply and input voltages, required input threshold ranges, output
drive currents available for system interfacing, and operating levels for clamp
currents and case temperature.

The dc electrical characteristics provides specific data regarding the
capabilities of the T1486 devices to interface directly with either CMOS or TTL
type system functions.

The ac characteristics provide detailed information regarding measurement
points, specific timing requirements for setup and hold times, and propagation
delay times of the TI1486 processors.

Topic Page

Electrical Connections

5.1 Electrical Connections

5.1.1 Power and Ground Connections and Decoupling

Due to the high frequency operation of the T1486, it is necessary to install and
test this device using standard high-frequency techniques. The high clock
frequencies used in the TI1486 and its output buffer circuits can cause transient
power surges when several output buffers switch output levels simultaneously.
These effects can be minimized by filtering the dc power leads with
low-inductance decoupling capacitors, using low-impedance wiring, and by
connecting all of the Vg and GND (Vgg) pins. There are 14 Vg and 18 Vss
pins on the 100-pin quad flat package, and 20 Vgc and 21 Vgg pins on the
132-pin pin grid array package.

5.1.2 Pullup/Pulidown Resistors

Table 5-1. Pins Connected to Internal Pullup and Pulldown Resistors

Current - pA

60

50

40

30

20

10

Table 51 lists the input pins that are internally connected to pullup and
pulldown resistors (See Figure 5-1). The pullup resistors are connected to
V¢c and the pulldown resistors are connected to Vgg. When unused, these
inputs do not require connection to external pullup or pulldown resistors.

SIGNAL T|4sgﬁlLC/E TI48§&LCIE RESISTOR
A20M 31 F13 pullup
BUSY 34 B9 pullup
ERROR 36 A8 pullup
FLT 28 - pullup
FLUSH 30 E13 pullup
KEN 29 B12 pullup
PEREQ 37 (071 pulldown
SMI 47 c7 pullup
SUSP 43 A4 puliup
Figure 5—1. Internal Pullup/Pulldown-1V Characteristic
1 |]] | | 1 1 |
0.5 1 1.5 2 25 3 35 4 45
Voltage - V

Electrical Specifications

Electrical Connections

Itis recommended that the ADS and LOCK output pins be connected to pullup
resistors, as indicated in Table 5-2. The external pullups guarantee that the
signals will remain negated during hold acknowledge states.

Table 5-2. Pins Requiring External Pullup Resistors

TI486SLC/E | TI486DLC/E EXTERNAL
SIGNAL PIN PIN RESISTOR
ADS 16 E14 20-kQ pullup
LOCK 26 c10 20-kQ pullup

5.1.3 Unused Input Pins

All inputs not used by the system designer and not listed in Table 5-1 should
be connected either to ground or to V. Connect active-high inputs to ground
through a 20-kQ (x 10%) pulidown resistor and active-low inputs to Vg
through a 20-kQ (£ 10%) pullup resistor to prevent possible spurious
operation.

5.1.4 NC Designated Pins

Pins designated NC should be left disconnected. Connecting an NC pin to a
pullup resistor, pulldown resistor, or an active signal could cause unexpected
results and possible circuit malfunctions.

5-5

Absolute Maximum Ratings

5.2 Absolute Maximum Ratings

Table 5-3 specifies the absolute maximum ratings for the T1486SLC/E,
T1486SLC/E-V, TI486DLC/E, and TI486DLC/E-V microprocessors.

Table 5-3. Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted)t

PARAMETER MIN MAX | UNIT
Supply voltage, Vo With respect to Vgg -0.5 6.5 \
Voltage on any pin With respect to Vgg -05 Vccot+05 \
Input clamp current, ljk Power applied 10 mA
Output clamp current, ok Power applied 25 mA
Case temperature Power applied -65 110 °C
Storage temperature No bias —65 150 °C

t Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.

5-6 Electrical Specifications

Recommended Operating Conditions

5.3 Recommended Operating Conditions

Table 54 and Table 5-5 presents the recommended operating conditions

for the TI486SLC/E,
processors.

TI486SLC/E-V, TI486DLC/E, and TI486DLC/E-V

Table 5—4. T1486 SLC/E Recommended Operating Conditions

TI486SLC/E TI486SLC/E-V
PARAMETER UNIT
MIN MAX MIN MAX
Vcc Supply voltage l With respect to Vgg 4.75 5.25 3 3.6 Vv
VIH High-level input voltage 2 Vgo+0.3 2 Vcc+0.3 \
ViL Low-level input voltage -0.3 0.8 -0.3 0.6 \
ViLc CLK2 low-level input voltage -0.3 0.8 -0.3 0.5 \'
VIHc CLK2 high-level input voltage 37 Vcc+03 | Vec05 Vee+0.3 \
loH High-level output current | VoH=VOH(min) -1 =1 mA
loL Low-level output current | VoL =VoL (max) 5 3| mA
ik Input clamp current VIN<Vss or VN>V 10 10| mA
lok Output clamp current VouT<Vss or Vout>Vce 25 25 mA
tc Case temperature Power applied 0 100 0 85 °C
Table 5-5. TI486DLC/E Recommended Operating Conditions
TI486DLC/E TI486DLC/E-V
PARAMETER UNIT
MIN MAX MIN MAX

Vcec Supply voltage With respect to Vgg 4.75 5.25 3 3.6 \Y
VIH High-level input voltage 2 Vcco+0.3 2 Vge+0.3 \'
ViL Low-level input voltage -0.3 0.8 -0.3 0.6 \"
ViLc CLK2 low-level input voltage -0.3 0.8 -0.3 05 \'
VIHc CLK2 high-level input voltage 37 Vge+0.3 | Voc-0.5 Vec+0.3 \
loH High-level output current | VoH=VOH(min) -1 -1 mA
loL Low-level output current | VoL=VOL(max) 5 3] mA
1% Input clamp current VIN<Vss or VIN>VCC 10 10 mA
lok Output clamp current VouT<Vss or VouT>Vce 25 25| mA
tc Case temperature Power applied 0 85 0 85 °C

DC Electrical Characteristics

5.4 DC Electrical Characteristics

Table 5-6 and Table 5-7 presents the dc electrical characteristics for the
TI486SLC/E, TI486SLC/E-V, TI486DLC/E, and T1486DLC/E-V processors.

Table 5-6. TI486SLC/E DC Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Voc (5 V or 3.3 V) and Ty = 25°C)

. TEST TI486SLC/E TI486SLC/E-V
PARAMETER CONDITIONS MIN TYP MAX N Tve max| "
v Low-level loL=3mA 0.35 v
OL outputvoltage [, =5 mA 045
Vor High-leve! loH =—1mA 24 Vcc 0.4 v
outputvoltage ||~ =-0.2 mA Vee-0.5 Voo-0.4
Input current | 0 < V|N < VCC,
W (leakage) See Note 1 15 5[pA
High-level
. VIN=24,
IH input current : 200 200 pA
at PEREQ See Note 2
Low-level ViL=045YV,
o input current See Note 3 —400 —400 WA
25 MHz
395 495 225 285
| Supply current | (CLK2 =50 MHz) A
CC (Active mode) [33 MHz m
(CLK2 = 66 MHz) 495 615 - -
25 MHz
| (S;pply curtent | (CLK2 = 50 MHz) 9 15 6 10 .
ccsm (Suspen mA
mode) 33 MHz 10 18 — —
(CLK2 = 66 MHz)
0 MHz, Suspended/
Standby ’
Iccss CLK?2 stopped, 0.4 2 0.3 21 mA
supply current See Note 3
Input fc =1 MHz,
CiN capacitance | See Note 5 10 10} pF
Outputor /O | fo=1MHz,
COUT capacitance | See Note 5 12 12| pF
Input capaci- | fg=1MHz,
CCLK tance CLK2 | See Note 5 20 20| pF

Notes: 1) Applicable for all input pins except those listed in Note 3.
2) PEREQ input has an internal pulldown resistor.
3) Applicable for A20M, BUSY, ERROR, FLT, FLUSH, KEN, SMI, and SUSP inputs that have an internal pullup resistor.

4) Allinputs at 0.4 or Voc—0.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded
(static loyT = 0 mA).

5) Not 100% tested.

5-8 ‘ Electrical Specifications

DC Electrical Characteristics

Table 5-7. TI486DLC/E DC Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Voo (5 V or 3.3 V) and Ty = 25°C)

PARAMETER TEST TI486DLC/E TI486DLC/E-V UNIT
CONDITIONS MIN TYP MAX MIN TYP MAX
v Low-level loL =3 mA 0.35 y
OL outputvoltage [15, = 5ma 0.45
Vo High-level loH =—1mA 2.4 Vcc-0.4 v
OH outputvoltage [15, "= —02mA Veo-05 Voo-0.4
Input current | 0 < VIN < VoG,
h (leakage) See Note 1 15 15| A
High-level
: VIN =24,
i input current 200 200 pA
at PEREQ See Note 2
Low-level ViIL=045YV,
hL input current | See Note 3 —400 —400 | pA
25 MHz
(CLK2 = 50 MHz) - - 240 305
Supply current | 33 MHz
ICC (Active mode) | (CLK2 =66 MHz) 520 650 800 3751 mA
40 MHz
(CLK2 = 80 MHz) 560 700 - -
25 MHz
(CLK2 = 50 MHz) - - 6 10
Supply current
33 MHz
lccsm (Suspend _ 75 15 7 12| mA
mode) (CLK2 = 66 MHz)
40 MHz
(CLK2 = 80 MHz) 10 20 - -
0 MHz, Suspended/
Standby ’
Iccss CLK2 stopped, 0.4 2 03 2 mA
supply current See Note 3
Input fc =1MHz,
CiN capacitance | See Note 5 10 10 pF
Outputor /O | fc=1MHz,
Cout capacitance See Note 5 12 12 pF
Input capaci- fc =1 MHz,
CCLK tance CLk2 | See Note 5 20 201 pF
Notes: 1) Applicable for all input pins except those listed in Note 3.

2) PEREQ input has an internal pulldown resistor.

3) Applicable for A20M, BUSY, ERROR, FLUSH, KEN, SMI, and SUSP inputs that have an internal pullup resistor.
4) Allinputs at 0.4 or Vcc-0.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded

(static loyT = 0 mA).
5) Not 100% tested.

5-9

AC Characteristics

5.5 AC Characteristics

5.5.1 Measurement Points for Switching Characteristics

The rising clock edge reference level VRgfg, and other reference levels are
specified in Table 5-8 for the TI486SLC/E, T1486SLC/E-V, TI486DLC/E, and
T1486DLC/E-V. Input or output signals must cross these levels during testing.
Table 5-9, Table 5-10, Table 5-11, and , Table 5-12 list the ac characteristics
including output delays, input setup requirements, input hold requirements,
and output float delays. These measurements are based on the measurement
points identified in Figure 5-2, Figure 5-3, and Figure 5—4.

Figure 5-2 and Figure 5-3 show delays (A and B) and input setup and hold
times (C and D). Input setup and hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window a synchronous input signal
must be stable for correct operation.

The TI486SLC/E and TI486SLC/E-V outputs A23-A1, ADS, BHE, BLE, D/C,
HLDA, LOCK, M/IO, SMADS, SMI, and W/R change only at the beginning of
phase one (Figure 5-2, ¢1). Outputs D15-D0 (write cycles) and SUSPA
change at the beginning of phase two, ¢2.

The TI486SLC/E and TI486SLC/E-V inputs BUSY, D15-DO0 (read cycles),
ERROR, FLT, HOLD, PEREQ, and READY are sampled at the beginning of
phase one (Figure 5-2, ¢1). Inputs A20M, FLUSH, INTR, KEN, NA, NMI, SM{
and SUSP are sampled at the beginning of phase two, ¢2.

The TI486DLC/E and TI486DLC/E-V outputs A31-A2, ADS, BE3-BEO, D/C,
HLDA, LOCK, M/10, SMADS, SMI, and W/R change only at the beginning of
phase one (Figure 5-3, ¢1). Outputs D31-D0 (write cycles) and SUSPA
change at the beginning of phase two, ¢2.

The TI486DLC/E and TI486DLC/E-V inputs BUSY, D31-D0 (read cycles),
ERROR, HOLD, PEREQ, and READY are sampled at the beginning of phase
one (Figure 5-3, ¢1). Inputs A20M, BS16, FLUSH, INTR, KEN, NA, NMI, SMI
and SUSP are sampled at the beginning of phase two, ¢2.

Table 5-8. Measurement Points for Switching Characteristics

5-10

SYMBOL TI486SLC/E TI486SLC/E-V | TI486DLC/E | Ti486DLC/E-V UNIT
VREFC 2 1.5 2 1.5 Vv
VREF 1.5 1.2 1.5 1.2 \Y
VIHC Vec-0.8 Vcc-0.5 Vcc-0.8 Vcc-0.5 \
ViLc 0.8 0.6 0.8 0.6 \'J
VIHD 3 23 3 23 \
ViLD 0 0 0 0 \

Electrical Specifications

AC Characteristics

Figure 5-2. TI486SLC/E and TI486SLC/E-V Drive Level and Measurement Points for
Switching Characteristics

I o1 I ¢2 I

Clk2 VREFC f————— N~~~ g~ ———— VREF

I

OUTPUTS: “ ’| I I |

_A23-A1, ADS — VIId :
BHE, BLE, D/C, all ali

HLDA, LOCK, Outputn VREWVREF Output n+1 |

I I

I

I

I

M/IO, SMADS,
SMI, WR |

Max

I‘ ®) . I
OUTPUTS: — ' L
all all
D15-D0, SUSPA Outputn VHEWVREF Output n+1
[
INPUTS: |
A20M, FLUSH, VIHD I
INTR, KEN, NA, Valld ,
NMI, SMI, SUSP v VREF input_VREF ///// I
ILD |
INPUTS: —(c)—»¢—D)—»!
BUSY, D15-Do, VIHD W v
ERROR, FLT, v put Y W
HOLD, PEREQ, ViLp REF pput 'REF Z

READY

LEGEND: A — Maximum Output Delay Specification
B — Maximum Output Delay Specification
C — Minimum Input Setup Specification
D — Minimum Input Hold Specificaton

AC Characteristics

Figure 5-3. TI486DLC/E Drive Level and Measurement Points for
Switching Characteristics

| 1 I 2 |

ClK2: VRgppc H#1mr—"""""NF——"""-—"—"f—"———

OUTPUTS: |' @ ' Meax I

A31-A2, ADS

SMI,W/R I

Max

|
|
| |

BE3-BEO, D/C
== Valid Valid |

HDALOCK. Glipun Y WKV

MG, ShADS, Quteutn "REF, REF 0Utpuln+1 |
|
|
|
|

| | C |
OUTPUTS: E&» |
- Valid Vard
D31-D0, SUSPA O?J;putn VREWVREF Ou;putn+1
INPUTS: |
_ AZ0M, BST6, VIHD :
FLUSH, INTR, KEN, Valld
NA, NMI, SMi, SUSP v VREF _input VREW I
ILD |
INPUTS: —(O—de—(D)—
BUSY, D31-DO0, ViHD Valid
ERROR, HOLD, v v W
PEREQ, READY ViLD M REF_imput RFT A

LEGEND: A — Maximum Output Delay Specification
B — Maximum Output Delay Specification
C — Minimum Input Setup Specification
D — Minimum Input Hold Specificaton

5.5.2 CLK2 Timing Measurement Points

The CLK2 timing measurement points are illustrated in Figure 5—4 for the
TI486SL.C/E, TI486SLC/E-V, TI486DLC/E, and TI486DLC/E-V.

Figure 5—-4. CLK2 Timing Measurement Points

e T1 »

l|1——T2a——”| :

v [l T2b—y| |

HC — — — J=——— —— I
VREFC—————— ____%E S —1\

CLK2 lWe—A 17—~ \ X ———— I—._____r -_5 5 5
—» & T5 lm—st—ml —» T4

—— T3a —P

5-12 Electrical Specifications

AC Characteristics

Table 5-9. AC Characteristics for TI486SLC/E-25 and TI486SLC/E-33,
Vog =4.75 V10 5.25 V, Tg = 0°C to 100°C

TI486SLC/E-25 TI486SLC/E-33
SYMBOL PARAMETER FIGURE NOTES
MIN (ns) | MAX(ns) | MIN (ns) | MAX (ns)

T CLK2 period 20 15 5-4 Note 1

T2a CLK2 high time 7 6.25 5-4 Note 2

T2b CLK2 high time 4 45 5-4 Note 2

T3a CLK2 low time 7 6.25 5-4 Note 2

T3b CLK2 low time 5 4.5 5-4 Note 2

T4 CLK2 fall time 7 4 5-4 Note 2

T5 CLK2 rise time 7 4 5-4 Note 2

T6 A23-A1 valid delay 4 21 4 15 5-7,5-10 | C_=50pF

T6a SMl valid delay 4 21 4 15 5-7,5-10 | Cp =50 pF

T7 A23-AT1 float delay 4 30 4 20 5-10 Note 3

T8 BHE, BLE, LOCK valid delay 4 21 4 15 5-7,5-10 | C =50 pF

T9 BHE, BLE, LOCK float delay 4 30 4 20 5-10 Note 3
ADS, D/C, M/IO, W/R

T10 valid delay 4 21 4 15 5-7,5-10 | CL =50 pF

T10a | SMADS valid delay 4 21 4 15 5-7,5-10 | C =50 pF
ADS, D/C, M/I0, W/R

T11 float delay 4 30 4 20 5-10 Note 3

Ti11a | SMADS float delay 4 30 4 20 5-10 Note 3

T12 D15-DO0 write data, SUSPA 7 27 7 24 5-7,5-8 | CL=50pF,
valid delay 5-10 Note 5

T12a | D15-DO0 write data hold time 2 2 5-9

T13 D15-DO0 write data, SUSPA 4 22 4 17 5-10 Note 3, Note 6
float delay

T14 HDLA valid delay 4 22 4 20 5-10 CL=50pF

T15 | NA, SUSP, FLUSH, KEN, 5 5 5-6
A20M setup time

T16 NA, SUSP, FLUSH, KEN, 3 3 5-6
A20M hold time

T19 READY setup time 9 7 5-6

T20 READY hold time 4 4 5-6

T21 D15-D0 read data setup time 7 5 5-6

T22 D15-D0 read data hold time 5 3 5-6

T23 HOLD setup time 9 1 5-6

T24 HOLD hold time 3 2 5-6

T25 RESET setup time 8 5 5-5

T26 RESET hold time 3 2 5-5

T27 NMI, INTR setup time 6 5 5-6 Note 4

T27a | SMI setup time 6 5 5-6 Note 4

T28 NMI, INTR hoid time 6 5 5-6 Note 4

T28a | SMI hold time 6 5 5-6 Note 4

T29 | PEREQ, ERROR, BUSY 6 5 56 | Note 4
setup time

T30 PEREQ, ERROR, BUSY 5 4 5-6 Note 4
hold time

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than || in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing
purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.
6) SUSPA floats only in response to activation of FLT. SUSPA does not float during a hold acknowledge state.

5-13

AC Characteristics

Table 5—-10.AC Characteristics for TI486SLC/E-V25,
Vec=3V1t03.6V, Tc =0°Cto85°C

TI486SLC/E-V25
SYMBOL PARAMETER FIGURE NOTES
MIN (ns) | MAX(ns)
T CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 5-4 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 5-4 Note 2
T5 CLK2 rise time 7 5-4 Note 2
T6 A23—-A1 valid delay 3 21 5-7,5-10 | CL=50pF
T6a SMIi valid delay 3 21 5-7,5-10 |Cy_=50pF
T7 A23-AT1 float delay 4 30 5-10 Note 3
T8 BHE, BLE, LOCK valid delay 25 18 5-7,5-10 | CL =50 pF
T9 BHE, BLE, LOCK float delay 4 30 5-10 Note 3
T10 | ADS, D/C, M/1O, W/R valid delay 4 19 5-7,5-10 | Cy =50 pF
T10a | SMADS valid delay 4 o, 39 5-7,5-10 | Cp =50pF
T11 ADS, D/C, MAO, W/R fioat delay 4 §§\ ?@“ 30 5-10 Note 3
T11a | SMADS float delay & m 30 5-10 Note 3
T12 | D15-DO write data, SUSPA valid delay %gl’? 27 57,5-8 | C| =50 pF, Note 5
T12a | D15-DO0 write data hold time AN 5-9
T13 D15-D0 write data, SUSPAfloat delay 4 22 5-10 Note 3, Note 6
T14 HDLA valid delay 2 22 5-10 CL=50pF
Ti5 |NA, SUSP, FLUSH, KEN, A20M setup time 5 5-6
T16 NA, SUSP, FLUSH, KEN, A20M hold time 35 5-6
T19 READY setup time 9 5-6
T20 READY hold time 4 5-6
T21 D15-DO0 read data setup time 7 5-6
T22 D15-DO0 read data hold time 5 5-6
T23 HOLD setup time 9 5-6
T24 HOLD hold time 35 5-6
T25 RESET setup time 8 5-5
T26 RESET hold time 3 5-5
T27 NMI, INTR setup time 6 5-6 Note 4
T27a | SMI setup time 6 5-6 Note 4
T28 NMI, INTR hold time 6 5-6 Note 4
T28a | SMI hold time 6 5-6 Note 4
T29 PEREQ, ERROR, BUSY setup time 6 5-6 Note 4
T30 PEREQ, ERROR, BUSY hold time 5 5-6 Note 4

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than || in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing
purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.
6) SUSPA floats only in response to activation of FLT. SUSPA does not float during a hold acknowledge state.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

5-14

Electrical Specifications

AC Characteristics

Table 5—11. AC Characteristics for TI486DLC/E-33 and T1486DLC/E-40
Voc =4.75 V10 5.25 V, To = 0°C to 85°C

Ti486DLC/E-33

TI486DLC/E-40

hold time

SYMBOL PARAMETER FIGURE NOTES
MIN(ns) | MAX(ns) { MIN (ns) | MAX (ns)

T CLK2 period 15 12.5 5-4 Note 1

T2a CLK2 high time 6.25 5 5-4 Note 2

T2b CLK2 high time 4.5 3.25 5-4 Note 2

T3a CLK2 low time 6.25 5 54 Note 2

T3b CLK2 low time 4.5 3.25 5-4 Note 2

T4 CLK2 fall time 4 4 5-4 Note 2

T5 CLK2 rise time 4 4 5-4 Note 2

T6 A31-A2 valid delay 4 15 3 125 5-12,5-15 | Cp =50 pF

Téa SMi valid delay 4 15 3 12.5 5-12,5-15 | C_ = 50 pF

T7. A31-A2 float delay 4 20 3 17 5-15 Note 3

T8 BES - BEO, LOCK valid delay 4 15 3 125 | 5-15,5-15 | Cp =50 pF

T9 BE3 — BEO, LOCK float delay 4 20 3 17 5-15 Note 3

T10 | ADS, D/C, MO, W/R valid 4 15 3 125 5-12,5-15 | CL = 50 pF
delay

T10a | SMADS valid delay 4 15 3 125 5-12,5-15 | C|_=50 pF

T11 ADS, D/C, M0, W/R float 4 20 3 17 5-15 Note 3
dela

T11a | SMADS float delay 4 20 3 17 5-15 Note 3

T12 D31-D0 write data, SUSPA 7 24 5 20 5-12,5-13 | CL = 50 pF, Note 5
valid delay

T12a | D31-DO write data hold time 2 2 5-14

T13 D31-D0 write data, SUSPA 4 17 3 145 5-15 Note 3
float delay

T14 HDLA valid delay 4 20 3 17 5-15 CL =50pF

T15 | A20M, FLUSH, KEN, NA, 5 5 5-11
SUSP setuptime

T16 A20M, FLUSH, KEN, NA, 2 2 5-11
SUSP hold time

T17 BS16 setup time 5 5 5-11

T18 BS16 hold time 2 2 5-11

T19 READY setup time 7 5 5-11

T20 READY hold time 4 3 5-11

T21 D31-D0 read data setup time 5 5 5-11

T22 D31-D0 read data hold time 3 3 5-11

T23 HOLD setup time 7 4 5-11

T24 HOLD hold time 2 2 5-11

T25 RESET setup time 5 4.5 5-5

T26 RESET hold time 2 2 5-5

T27 NMI, INTR setup time 5 5 5-11 Note 4

T27a | SMI setup time 5 5 5-11 Note 4

T28 NMI, INTR hold time 5 5 5-11 Note 4

T28a | SMI hoid time 5 5 5-11 Note 4

T29 PEREQ, ERROR, BUSY 5 5 5-11 Note 4
setup time

T30 PEREQ, ERROR, BUSY 4 3 5-11 Note 4

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than I} in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for
testing purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.

5-15

AC Characteristics

Table 5—-12. AC Characteristics for TI4A86DLC/E-V25 and TI486DLC/E-V33

Vec =3 V10 3.6V, Tg =0°C to 85°C

TI486DLC/E-V25 TI486DLC/E-V33
SYMBOL PARAMETER FIGURE NOTES
MIN(ns) | MAX(ns) | MIN (ns) | MAX (ns)

T CLK2 period 20 15 5-4 Note 1

T2a CLK2 high time 7 6.25 5-4 Note 2

T2b CLK2 high time 4 4.5 5-4 Note 2

T3a CLK2 low time 7 6.25 5-4 Note 2

T3b CLK2 low time 5 45 5-4 Note 2

T4 CLK2 fall time 7 4 5-4 Note 2

T5 CLK2 rise time 7 4 5-4 Note 2

T6 A31-A2 valid delay 3 21 3 15 |5-12,5-15 | CL =50 pF

T6a SMI valid delay 3 21 3 15 5-12,5-15 | C_ =50 pF

T7 A31-A2 float delay 4 30 4 20 5-15 Note 3

T8 BE3-BEQ, LOCK validdelay | 2.5 18 25 18 |5-12,5-15 | CL =50 pF

T9 BE3 - BEO, LOCK float delay 4 30 4 20 5-15 Note 3

T10 | ADS, D/C, M/IO, W/R valid 4 19 4 19 |5-12,5-15 | CL =50 pF
dela

T10a | SMADS valid delay 4 19 4 19 5-12,5-15 | C|_= 50 pF

T11 | ADS, D/C, M/IO, W/R float 4 30 4 20 5-15 | Note 3
dela:

Ti1a | SMADS float delay 4} 8 4 |l dd 515 |Note3

T12 D31-D0 write data, SUSPA 3.5%%£‘%‘* 27 3.5&&? &‘é*\ 24 5-12, 5-13 | Ci_ =50 pF, Note 5
valid delay 2 A

Ti2a |D31-DO write data hold time 2o C 514

T13 | D31-DO write data, SUSPA & 22 & 17 515 |Note3
float delay

T14 | HDLA valid delay 22 20 515 |Cp =50pF

T15 | A20M, FLUSH, KEN, NA, 5-11
SUSPsetuptime

T16 A20M, FLUSH, KEN, NA, 3.5 3.5 5-11
SUSP hold time

T17 BS16 setup time 7 5 5-11

T18 BS16 hold time 2 2 5-11

T19 | READY setup time 9 7 5-11

T20 READY hold time 4 4 5-11

T21 D31-D0 read data setup time 7 7 5-11

T22 | D31-DO read data hold time 5 4 5-11

T23 | HOLD setup time 15 12 5-11

T24 HOLD hold time 4 4 5-11

T25 RESET setup time 8 5 5-4

T26 RESET hold time 3 2 5-4

T27 'NMI, INTR setup time 6 5 5-10 Note 4

T27a | SMI setup time 6 5 5-10 Note 4

T28 | NMI, INTR hold time 6 5 510 |Note4

T28a | SMI hold time 6 5 5-10 Note 4

T29 PEREQ, ERROR, BUSY 6 5 5-10 Note 4
setup time

T30 PEREQ, ERROR, BUSY 5 4 5-10 Note 4
hold time

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than |} in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for
testing purposes, to assure recognition within a specific CLK2 period.
5) T12 minimum time is not 100% tested.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characleristic data and other
specifications are subject to change without notice.

5-16

Electrical Specifications

AC Characteristics

5.5.3 RESET Setup and Hold Timing

RESET and Hold timing for the TI486SLC/E, TI486SLC/E-V, and Ti486DLC/E
are illustrated in Figure 5-5.

Figure 5-5. RESET Setup and Hold Timing

4—— Reset pid¢ Initialization Sequence >

| ¢1ore2 | dlore2 I $2 I o1 I

I | I I

I | I I I
T26 —4—»! |
I
RESET !
| |

fe—»— 125

5.5.4 TI486SLC/E and TI486SLC/E-V Switching Waveforms

Switching waveforms for the TI486SLC/E and Ti486SLC/E-V are illustrated in
Figure 5-6 through Figure 5-10.

Figure 5-6. TI486SLC/E and TI486SLC/E-V Input Signal Setup and Hold Timing
Tx Tx Tx
| o2 I o1 I 2 I 1 |
| }4—— T19 —bL— T20 — ! | I

:<— T23 —Pe— T24 —b: |

o IK X

IH— T21 —P— 22— }

s TTK X000

09— Pl— T30 —» {

PEREQ, %W(| W

S
(& T27,T27a ->|<— T28,T28a

5-17

AC Characteristics

Figure 5-7. TI486SLC/E and TI486SLC/E-V Output Signal Valid Delay Timing

T8 ——-h—h' Mm
T12 —p > i >|

SUSPA Validn %/////////////ﬁ(Vaiid s

Figure 5-8. TI486SLC/E and TI486SLC/E-V Data Write Cycle Valid Delay Timing

Figure 5-9. TI486SLC/E and TI486SLC/E-V Data Write Cycle Hold Timing

T

: ¢1 | $2 | o1
| |
we /NS N\
l I I
| |
| |
WR :\ Valid n+1
[

5-18 Electrical Specifications

AC Characteristics

Figure 5-10. TI486SLC/E and TI486SLC/E-V Output Signal Float Delay and HLDA Valid

Delay Timing
_ | ¢2 i o1 Tlh $2 i 1 K oIr v ¢2 |
- { T9 —:“’?ﬂm__’l,—'f Max T8 “:‘_’;m—!_’LMax |
SR Ok T -———-~—<0
P T”'Tﬂam?ff _1 ~ %////// I////'K Max
M/iO, SMAVEV’% p— —qu—»h\—/‘T—lL—ﬂl v T8 —lh—’fm—f-", Max
A23-At ! Y/////////////ﬁ-———-{—’%//////////////)(
D15-DO (Write | 18 T Max 1T

! Max
Data), SUSPA ! N W

[
T4 le Max T4 'Min Max

DA oy NI

5-19

AC Characteristics

5.5.5 TI486DLC/E Switching Waveforms

Switching waveforms for the TI486DLC/E and TI486DLC/E-V are illustrated
in Figure 5-11 through Figure 5-15.

Figure 5-11. TI486DLC/E and TI486DLC/E-V Input Signal Setup and Hold Timing

$2 | o1

le— Ti9 —de—T120 —» |

X

}t— T23 —bd— T24 —»l

wow 7771/X

X

Q—— T21 —Pd— T22 —»

D31-DO W

X0,

le— Too—be— T30 —»

X,

PEREQ, ERBOR, W<

NA, SUSP,
FLUSH, KEN,
A20M

BS16

NMI, INTR, SMI

5-20

!

lﬁ-— T15——P}1——- Tie —»

.4

ﬁ-— TI7—»

«— T18 —P!

1K

'ﬁ— T27,T27a

|

T28,T28a —»!

K

X,

Electrical Specifications

AC Characteristics

Figure 5-12. TI486DLC/E and TI486DLC/E-V Output Signal Valid Delay Timing

T8 —It—ii T
_BE_S% Valid n W////////////// : Valid n+1
MO, *sﬂ%?%, \%Eﬁ' Valid r]1 jé'/"//////////%:(’“ a)i/alld N+t

- e SR
T Ta—T

SUSPA Vaiid n W Valid n+1

Figure 5-13. TI486DLC/E and TI486DLC/E-V Data Write Cycle Valid Delay Timing

T
I ¢1 $2 I ¢

|
| | |
we /N N\
| | I
|
|
WR / |
[|

T2 | Min | Max

o N7

Figure 5-14. TI486DLC/E and TI486DLC/E-V Data Write Cycle Hold Timing

T

o1 ¢2 I ¢1

I I
I | I
cLre —/——_./___/__
I I I
I |
| |
WR :\ Valid n+1
I —
T12a | Min

o0 p x%%g e

5-21

AC Characteristics

Figure 5-15. TI486DLC/E Output Signal Float Delay and HLDA Valid Delay Timing

I I
| Th TiorT1
I

I $2 I ¢2 I | $2 |
I

I .

- } To —-Iq—ylle——J—;I T8 —I‘“"_l—’|
= Y/ -~

L T11,TH1a E—L—————l——ﬂ 1'101'10 —l‘—ﬂ———J—Jl * Max
MO, SI\/I,A\B% — Y///ﬂ//////)— —_—*"JW///////KMM
Ast-A2 7///////////%——--—#—*77//////////%
D31-D0 : 3 A{'jmn-—r—’: Max T12+_TW——_*’| Max
g R/ e /@
T14 —Iﬂ—iI————bI

|
T14 ¢y,

oA Voie RN

5-22 Electrical Specifications

= ;m
. &g%giggg
e .

.

¢ i
.
e
e

.
.
-

%ﬁ;f’%ﬁ*%?%ﬁ

6-1

Mechanical Specifications

6-2

Chapter 6

Topic Page

6-3

Pin Assignments

6.1 Pin Assignments

The pin assignments for the TI486SLC/E and TI486SLC/E-V are shown in
Figure 6-1. The signal names are shown in Table 6—1 sorted by pin numbers

and in Table 6-2 sorted by signal names.
Figure 6-1. TI486SLC/E and TI486SLC/E-V Pin Assignments

-
(a]

99— D2
98 |—T1 > Vgg
97 —T—> Voo
96 I——> D3
o5 —T "D D4
94 —I1—P D5
93— D6
92 [E=—T—> p7
91— Vge
[oTo)| nmm—— R Y-}
89 —I1—P D9
88 I—T—D D10
871—1—D D11
86 I—T—P D12
85 —T > Vgg
84 |—1—> Voo
83|—1T > D13
82— T > D14
81—1T—> D15
80F—T D A23
79— A22
78 F—T > Vgg
77 —1T—> Vgg
76 —I—> A21

100

VDo (< — —
SS
HLDS =]
HOLD a«—1—}
Vss a1
NA <—1T—]
READY <——T1—]
Voo <—1—]
Voo <——1—

Vce 10
Vss 1
xss |12
sSs 13
Vss % 14
CLK2 «—1T—{15
ADS <—T—{ 16
BLE <—T— 17
At C—1T—118
BHE <——1T—1 19
SMADS <—T—} 20
Ve <—1— 21
Vs <c—1T— 22
W10 «——T—} 23
D/IC <——T—}j24
W/R <1/ 25

OCONOOPWN =

(TOP VIEW)

[— | T
PEREQ T—T—} 37
<1 —} 44

NC <—1—1 45
NC «—1— 46

NC a«—1— 27

LOCK «——1—{| 26
FLT <<—1— 28
KEN <<——1— 29

FLUSH <——1T—1 30

A20M <T—IL— 31
Vee <—1— 32

RESET <——_1T—1 33

BUSY <—1T—} 34
Vgg <—1T— 35
NMI <—1—| 38
Vce «—T— 39
INTR <—1— 40
Vgg T—T— 41
Ve «—T—— 42

SUSP <—1—1| 43
SMI <—1T—1| 47
Vec «<—T— 48
Vgg <——1—4| 49
Vgg «<—1— 50

SUSPA

ERROR

NC — No internal connection

6-4

A20
A19
A18
A17
Vee
A16
Vee
Vss
Vss
A15
Al4
A13
Vss
A12
A1
A10
A9
A8
Vee
A7
A6
A5

A3

Mechanical Specifications

Pin Assignments

Table 6—1. TI486SLC/E and TI486SLC/E-V Signal Names Sorted by Pin Number

PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME
1 Do 21 Vce 41 Vss 61 At 81 D15
2 Vss 22 Vss 42 vee 62 A12 82 D14
3 HLDA 23 Mo 43 SUSP 63 Vss 83 D13
4 HOLD 24 D/C 44 SUSPA 64 A13 84 Vce
5 Vgs 25 W/R 45 NC 65 Al4 85 Vss
6 NA 26 LOCK 46 NC 66 A15 86 D12
7 READY 27 NC 47 SMi 67 Vss 87 D11
8 Vee 28 FLT 48 Vce 68 Vgsg 88 D10
9 Vee 29 KEN 49 Vss 69 Vee 89 D9
10 Vce 30 FLUSH 50 Vgs 70 At6 90 D8
11 Vss 31 A20M 51 A2 7 Vee 91 Vee
12 Vss 32 Vee 52 A3 72 A7 92 D7
13 Vss 33 RESET 53 A4 73 A18 93 D6
14 Vss 34 BUSY 54 A5 74 A19 94 D5
15 CLK2 35 Vgs 55 A6 75 A20 95 D4
16 ADS 36 ERROR 56 A7 76 A21 96 D3
17 BLE 37 PEREQ 57 Vce 77 Vss 97 Vee
18 Al 38 NMI 58 A8 78 Vss 98 Vss
19 BHE 39 Vee 59 A9 79 A22 99 D2
20 SMADS 40 INTR 60 A10 80 A23 100 D1

Table 6-2. TI486SLC/E and TI486SLC/E-V Pin Numbers Sorted by Signal Name

SIGNAL PIN | SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN
NAME NO. NAME NO. NAME NO. NAME NO. NAME NO.
A1 18 A21 76 D11 87 PEREQ a7 Ve 97
A2 51 A22 79 D12 86 READY 7 Vss 2
A3 52 A23 80 D13 83 RESET 33 Vss 5
A4 53 ADS 16 D14 82 SMADS 20 Vss 11
A5 54 A20M 31 D15 81 SMI 47 Vss 12
A6 55 BHE 19 D/C 24 SUSP 43 Vss 13
A7 56 LE 17 | ERROR 36 SUSPA 44 Vss 14
A8 58 BUSY 34 LT 28 Ve 8 Vss 22
A9 59 CLK2 15 FLUSH 30 VGG 9 Vss 35
A10 60 DO 1 HOLD 4 VGG 10 Vss 41
A1 61 D1 100 HLDA 3 VEe 21 Vss 49
A12 62 D2 99 | INTR 40 VGG 32 Vss 50
A13 64 D3 96 KEN 29 VCe 39 Vss 63
A14 65 D4 95 LOCK 26 VGe 42 Vss 67
A15 66 D5 94 | MO 23 VGG 48 Vss 68
A16 70 D6 93 NA 6 VGG 57 Vss 77
A17 72 D7 92 NC 27 Ve 69 Vss 78
A18 73 D8 9 NC 45 VCe 71 Vss 85
A19 74 D9 89 NC 46 VCe 84 Vss 98
A20 75 D10 88 NMI 38 VCee 91 W/R 25

Pin Assignments

The pin assignments for the TI486DLC/E and TI486DLC/E-V are shown as
viewed from the pin side in Figure 6-2 and as viewed from the top side
(component side when mounted on a PC board) in Figure 6-3. The signal
names are listed in Table 6—3 and Table 6—4, sorted by pin number and signal
name respectively.

Figure 6-2. TI486DLC/E and TI486DLC/E-V Package Pins (Bottom View)

Pin # 1 Index Mark
(On Top Side)

©
()
®
®
©,
®
®
®
®
®

OOOOO®O |-
OOOO®®® |-

9,
9,
OOOOOE®OOOOE®OO® |-

1 OO

| @36 oTIoNE (=)
| D)

o ()6 (=)

| D@ «

2 (D@ () (D@ E) (=) (D) ()

o @EEEEEE (O EE
{@EEEEEEEOEEEEE

NC — No internal connection

6-6 Mechanical Specifications

Pin Assignments

Pin # 1 Index Mark

(On Top Side)

Figure 6-3. TI486DLC/E and TI486DLC/E-V Package Pins (Top View)

(0000000000000
016/0010/0/6,010/00010/0
010/001016/00/010/0/6010

OO
HO®
000
000
0010
000
OO
OO®

TI486DLC/E
(TOP VIEW)

000
®OO®
0010,
OO
000,
000,
0/0]0,
©/010,

0/0/0/0/010/0/010/0/010/010
0/0/0/0/0/010/0/0/010/0/0]0,
(WOOOOO®OO®OO®O®W

6-7

NC — No internal connection

Pin Assignments

Table 6—3. TI486DLC/Eand TI1486DLC/E-V Signal Names Sorted by Pin Number

PIN SIGNAL | PIN SIGNAL | PIN SIGNAL | PIN SIGNAL | PIN SIGNAL | PIN SIGNAL
NO. NAME | NO. NAME | NO. NAME | NO. NAME | NO. NAME | NO. NAME
A1 Voo B9 BUSY D3 A9 H1 A17 L13 D8 N7 Vece
A2 Vss B10 W/R D12 Vee H2 A18 L14 D6 N8 D23
A3 A3 B11 Vss D13 NA H3 A19 M1 A26 N9 D21
A4 SUSP B12 KEN Di4 HOLD | Hi2 DO M2 A29 N10 D17
A5 Voo B13 BE2 E1 Al4 H13 D1 M3 Vee N11 D16
A6 Vss B14 Vss E2 A13 H14 D2 M4 Vss N12 D12
A7 Ve Cct A8 E3 A12 J1 A20 M5 D31 N13 D11
A8 ERROR | C2 A7 E12 BEO J2 Vss M6 D28 N14 D9
A9 Vss C3 A6 E13 FLUSH | J3 Vss M7 Voo P1 A30
A10 Ve, C4 A2 E14 ADS J12 Vss M8 Vss P2 Vee
AN D/C C5 Vce F1 A5 J13 Vss M9 D20 P3 D30
A12 M0 c6 SMADS | F2 Vss J14 D3 M10 Vss P4 D29
A13 BE3 c7 SMi F3 Vss K1 A21 M11 D15 P5 D26
Al4 Vee C8 PEREQ | F12 CLK2 K2 A22 M12 D10 P6 Vss
B1 Vss C9 RESET | F13 A20M K3 A25 M13 Vee P7 D24
B2 A5 C10 LOCK | F14 Vss K12 D7 M14 HLDA P8 vVee
B3 A4 ci1 Vss G1 A16 K13 D5 N1 A27 P9 D22
B4 SUSPA | C12 Ve G2 Voo K14 D4 N2 A31 P10 D19
B5 Vss c13 BE1 G3 Veo L1 A23 N3 Vss P11 D18
B6 NC Cia BS16 | Gi2 vVee L2 A24 N4 Ve P12 D14
B7 INTR D1 A1 G13 READY | L3 A28 N5 D27 P13 D13
B8 NMI D2 A10 G14 vVee L12 Ve N6 D25 P14 Vsg
Table 6-4. TI486DLC/E and TI486DLC/E-V Pin Numbers Sorted by Signal Name
SIGNAL PIN |SIGNAL PIN |SIGNAL PIN [SIGNAL PIN |[SIGNAL PIN |SIGNAL PIN
NAME NO. | NAME NO. | NAME NO. | NAME NO. (NAME NO. | NAME NO.
A2 c4 A23 L1 D4 K14 D26 P5 SUSP A4 Vss A2
A3 A3 A24 L2 D5 K13 D27 N5 | SUSPA B4 Vss A6
A4 B3 A25 K3 D6 Li4 D28 M6 vVce Al Vss A9
A5 B2 A26 M1 D7 K12 D29 P4 Ve A5 Vss B1
A6 C3 A27 N1 D8 L13 D30 P3 Voo A7 Vss B5
A7 c2 A28 L3 D9 N14 D31 M5 Ve A10 Vss B11
A8 Ct A29 M2 D10 M12 [ERROR A8 Voo At4 Vsg B14
A9 D3 A30 P1 D11 N13 | FLUSH Ei3 Vce C5 Vgs cn
A10 D2 A31 N2 D12 N12 | HLDA Mi14 Voo c12 Vss F2
A1 D1 ADS E14 D13 P13 | HOLD D14 Voo D12 Vss F3
A12 E3 BEO E12 D14 P12 INTR B7 6% G2 Vss F14
A13 E2 BET c13 D15 M11 KEN B12 Vee G3 Vss J2
A14 E1 BE2 B13 D16 N11 LOCK C10 Voo G12 Vss J3
A15 Fi BE3 A13 D17 N10 MAO A12 Voo G14 Vss J12
A16 G1 BSi6 Ci14 D18 P11 NA D13 Vee L12 Vss J13
A17 H1 BUSY B9 D19 P10 NC B6 vVee M3 Vss M4
A18 H2 CLK2 F12 D20 M9 NMI B8 Ve M7 Vss M8
A19 H3 DIC A1 D21 N9 | PEREQ C8 Voo M13 Vss M10
A20 J1 DO H12 D22 P9 | READY Gi13 Voo N4 Vss N3
AZ0M Fi3 D1 H13 D23 N8 | RESET ©9 Vce N7 Vss P6
A21 K1 D2 H14 D24 P7 SMI c7 vVee P2 Vss P14
A22 K2 D3 J14 D25 N6 | SMADS Cé6 Ve P8 W/R B10
6-8 Mechanical Specifications

Package Dimensions

6.2 Package Dimensions

The package dimensions for the TI486SLC/E and TI486SLC/E-V are shown
in Figure 6—4 and the package dimensions for the TI486DLC/E and
Ti486DLC/E-V are shown in Figure 6-5.

Figure 6—4. 100-Pin Plastic Bumpered QFP Package Dimensions
(TI486SLC/E and TI1486SLC/E-V)

100MAB
ORaEnananananaaanaaRnng
(TR
| e e | i
= —
3 ——
== Pin #1 L.D. =5
| v | j—1
=} —T1
| e —T1
—— T
f e s | v |
) f—
== == 1524
= == (0.600)
—_——3 —1
Ty —T=
| e 13
] —1
—T—] %
| S — ==
B FATHAR
pouneonaooouoauaaoooat
p 19,13 (0.753)* >
18,97 (0.747)"
22,48 (0.885) >
22,23 (0.875)
22,93 (0.903)
——— 2578(0807) — ™
4,57 (0.180) See Detail A
|k g
\ »:;\@%3‘* o .
/:::::.‘: BEHHHHH :.H‘ 7\ :; W:j{&’}é‘
..
0,635 (0.025) 4" l(— L
TYP ‘bl 0,025 (0.010)
TYP
* Note: For metal BQFP package only, this dimension is:

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

— 3,56 (0.140) NOM 0,15
(0.006)
7N T
0°-8°
TYP
E—j;*
0,51 (0.020) MIN L—ﬂ

0,51 (0.020) MIN
Seating Plane

DETAIL A

18,75 (0.738)
18,59(0.732)

Package Dimensions

Figure 6-5. 132-Pin PGA Package Dimensions (TI486DLC/E and TI486DLC/E-V)

P~~~

koS SRR E T i
¥ l l l l ‘ I |\ 18,4 (0.725) I“_

[00EEEECREEEEEO | — s

2| ©©@©@0@OOEL@O@O@O@©() [— 14.0(s50

3 @@@@@@@‘@@@@@@@ —— 11,4(0.450)

41 @@ ©(©@(©) | — 8,89(0.350)

5| ©@© 1 ©©@(©) | — &35(0.250)

6| ©@© ! ©©@(©) |— 381(0.150)

10000 || _ _ ©@© —— 1.27(8.050)

QOO TI486DLC/E QO

9l ©@@© (BOTTOM VIEW) 00, 0,025 (0.001)R

101 9©© 00, " MINTYP

11 OO @O

2| EOOEEEEROOCOOD | oo

L IO00/0/00/0,000/00/0/0) 1

14 \@@@@@@@@@@@@@/@/ =

R st e —>| e
368301.450) ' 3,05 (0.120) «—
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

6-10 Mechanical Specifications

Thermal Characteristics

6.3 Thermal Characteristics

The TI486SLC/E is designed to operate when the case temperature is
between 0°C and 100°C. The T1486SLC/E-V, TI486DLC/E and TI486DLC/E-V
are designed to operate when the case temperature is between 0°C and 85°C.
The case temperatures are measured on the top center of the package. The
maximum die temperature (Tjmax) and the maximum ambient temperature
(Tamax) can be calculated using the following equations.

Timax = Te + (Pmax % 8jc)
Tamax = Tj— (Pmax X 6ja)

where:

Tjmax = Maximum average junction temperature (°C)
Tc = Case temperature at top center of package (°C)
Pmax = Maximum device power dissipation (W)

8jc = Junction-to-case thermal resistance (°C/W)
Tamax = Maximum ambient temperature (°C)

Tj = Average junction temperature (°C)

8ja = Junction-to-ambient thermal resistance (°C/W)

Values for 6j5 and 6jc are given in Table 6-5 for various airflows.

Table 6-5. Package Thermal Resistance and Airflow

THERMAL RESISTANCE (°C/W)
AIRFLOW 100-LEAD 132-PIN CERAMIC
(FT/SEC) PLASTIC BQFP PGA PACKAGE
Oja 9jc Oja Oc
0 21 2 20 3
100 19 2 18 3
250 16 2 14 3
500 13 2 10 3

6-12

Mechanical Specifications

Instruction Set 7

7-1

¥ Instruction Set

7-2

Chapter 7

This section summarizes the TI486SLC/DLC instruction set and provides
detailed information on the instruction encodings. All instructions are listed in
the Instruction Set Summary Table (Table 7-17), which provides information
on the instruction encoding, which flags are affected, and the instruction clock
counts for each instruction. The clock count values are based on the
assumptions described in subsection 7.4.1.

Topic Page

General Instruction Format

7.1 General Instruction Format

All of the T1486SLC/DLC machine instructions follow the general instruction
format shown in Figure 7-1. These instructions vary in length and can start at
any byte address. An instruction consists of one or more bytes that can
include: prefix byte(s), at least one opcode byte(s), mod r/m byte, s-i-b byte,
address displacement byte(s) and immediate data byte(s). An instruction can
be as short as one byte and as long as 15 bytes. If there are more than 15 bytes
in the instruction, a general protection fault (error code of 0) is generated.

Figure 7-1. General Instruction Format

[PPPPPPPP][TTTTTTTT|mod RRR rm]ss index base |d32/16|8| none id32[168| none

7 07 076 5320765320
\ A A A A _A /
Y V Vo —V A —V
optional prefix opcode mod r/m s-i-b address immediate
byte(s) (one or two bytes) byte byte displacement data
\ , (4,2, 1 bytes, (4, 2, 1 bytes,
: \V/ or none) or none)

register and address
mode specifier

P — prefix bit
T - opcode bit
R — opcode bit or reg bit

7-4 Instruction Set

Instruction Fields

7.2

Instruction Fields

The general instruction format shows the larger fields that make up an
instruction. Certain instructions have smaller encoding fields that vary
according to the class of operation. These fields define information such as the
direction of the operation, the size of the displacements, register encoding and
sign extension. All the fields are described in Table 7—1 and the subsequent

paragraphs provide greater detail.

Table 7-1. Instruction Fields

FIELD NAME DESCRIPTION NUMBER OF BITS

e oo Coe soaar, T P 825, P23 | g byt

Opcode Identifies instruction operation. 1 or 2 bytes

w Specifies if data is byte or full size (full size is either 16 or 32 bits). 1

d Specifies direction of data operation. 1

s Specifies if an immediate data field must be sign-extended. 1

reg General register specifier. 3

mod r/m Address mode specifier. 2 for mod; 3 for r/m

ss Scale factor for scaled index address mode. 2

index General register to be used as index register. 3

base General register to be used as base register. 2

sreg2 Segment register for CS, SS, DS, and ES. 2

sreg3 Segment register for CS, SS, DS, ES, FS, and GS. 3

eee Control, debug and test register specifier. 3

Address displacement | Address displacement operand. 1, 2 or 4 bytes

Immediate data Immediate data operand. 1, 2 or 4 bytes
7.2.1 Prefixes

Prefix bytes can be placed in front of any instruction. The prefix modifies the
operation of the immediately following instruction only. When more than one
prefix is used, the order is not important. There are five types of prefixes as

follows:

1) Segment override explicitly specifies which segment register an

instruction will use.

2) Address size switches between 16- and 32-bit addressing. Selects the

inverse of the default.

3) Operand size switches between 16- and 32-bit addressing. Selects the

inverse of the default.

4) Repeat is used with a string instruction which causes the instruction to be

repeated for each element of the string.

5) Lock is used to assert the hardware LOCK signal during execution of the

instruction.

Instruction Fields

Table 7-2 lists the encodings for each of the available prefix bytes. The
operand size and address size prefixes allow the individual overriding of the
default value for operand size and effective address size. The presence of
these prefixes select the opposite (non-default) operand size and/or effective
address size as the case may be.

Table 7-2. Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION
ES: 26h Override segment default, use ES for memory operand.
CSs: 2Eh Override segment default, use CS for memory operand.
SS: 36h Override segment default, use SS for memory operand.
DS: 3Eh Override segment default, use DS for memory operand.
FS: 64h Override segment default, use FS for memory operand.
GS: 65h Override segment default, use GS for memory operand.
Operand size 66h Make operand size attribute the inverse of the default.
Address size 67h Make address size attribute the inverse of the default.
LOCK Foh Assert LOCK hardware signal.
REPNE F2h Repeat the following string instruction.
REP/REPE F3h Repeat the following string instruction.

7.2.2 Opcode Field

The opcode field is either one ortwo bytes inlength and specifies the operation
to be performed by the instruction. Some operations have more than one
opcode, each specifying a different form of the operation. Some opcodes
name instruction groups. For example, opcode 0x80 names a group of
operations that have an immediate operand, and a register or memory
operand. The group opcodes use an opcode extension field of 3 bits in the
following byte, called the MOD R/M byte, to resolve the operation type.
Opcodes for the entire TI486SLC/DLC instruction set are listed in the
Instruction Set Summary Table. The opcodes are given in hex values unless
shown within brackets ([]). Values shown in brackets are binary vaiues.

7.2.3 w Field
The 1-bitfield indicates the operand size during 16- and 32-bit data operations.
Table 7-3. w Field Encoding

w FIELD OPERAND SIZE OPERAND SIZE
16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS
0 8 bits 8 bits
1 16 bits 32 bits

7.2.4 d Field

The d field determines which operand is taken as the source operand and
which operand is taken as the destination.

Table 7—-4. d Field Encoding

d FIELD DIRECTION OF OPERATION SOURCE OPERAND DESIGNATION OPERAND
0 Register — Register/Memory reg mod r/m or mod ss-index-base
1 Register/Memory — Register mod r/m or mod ss-index-base reg

7-6 Instruction Set

Instruction Fields

7.2.5

reg Field

The reg field determines which general registers are to be used. The selected
register is dependent on whether 16- or 32-bit operation is current and the

status of the “w” bit.

Table 7-5. reg Field Encoding

opiration | opeaamiON 16-BIT 16-BIT 32-BIT 32-BIT
reg OPERATION | OPERATION | OPERATION | OPERATION

w FIELD NOT | w FIELD NOT s . o R

PRESENT | PRESENT = = = =

000 AX EAX AL AX AL EAX
001 CX ECX cL CX cL ECX
010 DX EDX DL DX DL EDX
ot BX EBX BL BX BL EBX
100 P ESP AH sP AH ESP
101 BP EBP CH BP cH EBP
110 Sl = DH si DH ES|
1 DI EDI BH DI BH EDI

7-7

Instruction Fields

7.2.6 mod and r/m Field

Table 7-6. mod r/m Field Encoding‘

The mod and r/m sub-fields, within the mod r/m byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g.,
PUSH or POP) and therefore, these fields are not present. Table 7-6 lists the
addressing method when 16-bit addressing is used and a mod r/m byte is
present. Some mod r/m field encodings are dependent on the w field and are
shown in Table 7-7.

modrim | 1&:BITADDRESSMODE |\l 00 O\
NO s-i-b BYTE PRESENT
00 000 DS:[BX+SI] DS:[EAX]
00 001 DS:[BX+DI] DS:[ECX]
00010 SSS:[BP+SI) DS:[EDX]
00 011 SS:[BP+DI] DS:[EBX]
00100 DS:[SI] s-i-b is present (see subsection 6.2.7)
00 101 DS:[DI] DS:[d32]
00 110 DS:[d16] DS:[ESI]
00 111 DS:[BX] DS:[EDI]
01 000 DS:[BX+S|+d8] DS:[EAX+d8]
01 001 DS:[BXI+DI+d8] DS:[EAX+d8]
01010 SS:[BP+SI+d8] DS:[EDX+d8]
01011 SS:[BP+DI+d8] DS:[EBX+d8]
01 100 DS:[SI+d8] s-i-b is present (see subsection 6.2.7)
01101 DS:[Di+d8] SS:[EBP+d8]
01 110 SS:[BP+d8] DS:[ESI+d8]
o1 111 DS:[BX+d8] DS:[EDI+d8]
10 000 DS:[BX+Sl+d16] DS:[EAX+d32]
10 001 DS:[BX+Dl+d16] DS:[ECX+d32]
10010 SS:[BP+Sl+d16] DS:[EDX+d32]
10011 SS:[BP+DI+d16] DS:[EBX+d32]
10100 DS:[Sl+d16] s-i-b is present (see subsection 6.2.7)
10101 DS:[Di+d16] SS:[EBP+d32]
10110 SS:[BP+d16] DS:[ESI+d32]
10 111 DS:[BX+d16] DS:[EDI+d32]
11 000-11 111 | See Table 7-7 | See Table 7-7

Instruction Set

Instruction Fields

Table 7-7. mod r/m Field Encoding Dependent on w Field

16-BIT 16-BIT 32-BIT 32-BIT
mod r/m OPERATION OPERATION OPERATION OPERATION

w=0 w=1 w=0 w=1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
1101 BL BX BL EBX
11 100 AH SP AH ESP
11 101 CH BP CH EBP
11 110 DH SI DH ESI
11111 BH DI BH EDI

7.2.7 mod and base Fields

In Table 7—7, the note “s-i-b present” for certain entries forces the use of the
mod and base field as listed in Table 7-8.

Table 7-8. mod base Field Encoding

32-BIT ADDRESS MODE
mod r/m WITH mod r/m BYTE AND
NO s-i-b BYTE PRESENT
00 000 DS:[EAX+(scaled index)]
00 001 DS:[ECX+(scaled index)]
00010 DS:[EDX+(scaled index)]
00 011 DS:[EBX+(scaled index)]
00 100 SS:[ESP+(scaled index)]
00 101 DS:[d32+(scaled index)]
00 110 DS:[ESl+(scaled index)]
00 111 DS:[EDI+(scaled index)]
01 000 DS:[EAX+(scaled index)+d8]
01 001 DS:[ECX+(scaled index)+d8]
01010 DS:[EDX+(scaled index)+d8]
01011 DS:[EBX+(scaled index)+d8]
01 100 SS:[ESP+(scaled index)+d8]
01101 SS:[EBP+(scaled index)+d8]
01110 DS:[ESI+(scaled index)+d8]
01 111 DS:[EDI+(scaled index)+d8]
10 000 DS:[EAX+(scaled index)+d32]
10 001 DS:[ECX+(scaled index)+d32]
10010 DS:[EDX+(scaled index)+d32]
10011 DS:[EBX+(scaled index)+d32]
10100 SS:[ESP+(scaled index)+d32]
10101 SS:[EBP+(scaled index)+d32]
10 110 DS:[ESI+(scaled index)+d32]
10 111 DS:[EDI+(scaled index)+d32]

Instruction Fields

7.2.8 ss Field

The ss field (Table 7-9) specifies the scale factor used in the offset mechanism
for address calculation. The scale factor multiplies the index value to provide
one of the components used to caiculate the offset address.

Table 7-9. ss Field Encoding

ss FIELD SCALE FACTOR
00 x1
01 x2
10 x4
11 x8

7.2.9 index Field

The index field (Table 7-10) specifies the index register used by the offset
mechanism for offset address calculation. When no index register is used
(index field=100), the ss value must be 00 or the effective address is
undefined.

Table 7-10.index Field Encoding

index FIELD INDEX REGISTER

000 EAX
001 ECX
010 EDX
011 EBX
100 none
101 EBP
110 ESI

111 EDI

7.2.10 sreg2 Field

The sreg2 field (Table 7—11) is a 2-bit field that allows one of the four 286-type
segment registers to be specified.

Table 7-11. sreg2 Field encoding

SEGMENT REGISTER
sreg2 FIELD SELECTED
00 ES
01 cs
10 SS
11 DS

7-10 Instruction Set

Instruction Fields

7.2.11 sreg3 Field

The sreg3 field (Table 7-12) is 3-bit field that is similar to the sreg2 field, but
allows use of the FS and GS segment registers.

Table 7-12.sreg3 Field Encoding

sreg3 FIELD SE G T AEGISTER
000 ES
001 cs
010 SS
011 DS
100 FS
101 GS
110 undefined
111 undefined

7.2.12 eee Field

The eee field is used to select the control, debug, and test registers as
indicated in Table 7—13. The values shown are the only valid encodings for the
eee bits.

Table 7-13.eee Field Encoding

eee FIELD REGISTER TYPE BASE REGISTER
000 Control register CRO
010 Control register CR2
o1 Control register CR3
000 Debug register DRO
001 Debug register DR1
010 Debug register DR2
011 Debug register DR3
110 Debug register DR6
111 Debug register DR7
011 Test register TR3
100 Test register TR4
101 Test register TR5
110 Test register TR6
111 Test register TR7

7-11

Flags

7.3 Flags

The Instruction Set Summary Tabie lists nine flags that are affected by the
execution of instructions. The conventions shown in Table 7-14 are used to
identify the different flags. Table 7-15 lists the conventions used to indicate
what action the instruction has on the particular flag.

Table 7-14.Flag Abbreviations

Table 7-15. Action of Instruction on Flag

7-12

ABBREVIATION NAME OF FLAG
OF Overflow flag
DF Direction flag
IF Interrupt enable flag
TF Trap flag
SF Sign flag
ZF Zero flag
AF Auxiliary flag
PF Parity flag
CF Carry flag
INSTRlslsthlggLTABLE ACTION
m Flag is modified by the instruction
u Flag is not changed by the instruction
0 Flag is reset to “0”
1 Flag is set to “1”

Instruction Set

Clock Count Summary

7.4 Clock Count Summary

7.41 Assumptions

The following assumptions have been made in presenting the clock count
values for the individual instructions.

1)
2)
3)

4)
5)

6)

7)

8)

7.4.2 Abbreviations

The instruction has been prefetched, decoded and is ready for execution.
Bus cycles do not require wait states.

There are no local bus HOLD requests delaying processor access to the
bus.

No exceptions are detected during instruction execution.

If an effective address is calculated, it does not use two general register
components. One register, scaling and displacement can be used within
the clock count shown. However, if the effective address calculation uses
two general register components, add 1 clock to the clock count shown.

All clock counts assume aligned 16-bit memory/IO operands for cache
miss counts.

If instructions access a misaligned 16-bit operand or a 32-bit operand on
even addresses, add 2 clocks for read or write, and add 4 clock counts for
read and write.

If instructions access a 32-bit operand on odd addresses, add 4 clocks for
read or write, and add 8 clocks for read and write.

The clock counts listed in the Instruction Set Summary Table are grouped by
operating mode and whether there is a register/cache hit or a cache miss. In
some cases, more than one clock count is shown in a column for a given
instruction, or a variable is used in the clock count. The abbreviations used for
these conditions are listed in Table 7-16.

Table 7-16.Clock Count Abbreviations

L SoLNT EXPLANATION
/ Register operand/memory operand
n Number of times operation is repeated
L Level of the stack frame
| Condition jump taken | conditional jump not taken
\ CPL <IOPL\ CPL > IOPL

7-13

vi-L

188 uoponisul

Table 7-17.Instructions, Opcodes, Flags, and Clock Summary

REAL MODE

PROTECTED

FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
olo|1|T]|s|z|Aa|P|c|cneye |cacHE | ReSi | cacHE | READ | PROTECTED
F|F|F|F|F|F|F|F|F MISS MISS | MODE MODE
HIT HIT
AAA ASCII Adjust AL after Add 37 ujulujulufulm]u|m 4 4
AAD ASCII Adjust AX before Divide D5 0A ulujuju|mim]u|mju 4 4
AAM ASCII Adjust AX after Multiply D4 0A ufjulujuimimju|mlu 16 16
AAS ASCII Adjust AL after Subtract 3F uflufululufjulm]u]|m 4
ADC Add with Carry mlujulufm|im|m|m|m 1 2
Register to Register 1 [00dw] [11 reg r/m] 1 1
Register to Memory 1 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 1 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 010 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 1 [010w]t 1 1
ADD Integer Add mljujujulmim|m|m|m 1 2
Register to Register 0 [00dw] [11 reg r/m] 1 1
Register to Memory 0 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 0 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 000 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 0 [010w]T 1 1
AND Boolean AND Ojujuljulm|mjulm]|]O 1 2
Register to Register 2 [00dw] [11 reg r/m] 1 1
Register to Memory 2 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 2 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 100 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 2 [010w]t 1 1
ARPL Adjust Requested Privilege Level ujujuluju|mjul]ulju 3 2
From Register/Memory 63 [mod reg r/m] 6/10 10
BOUND Check Array Boundaries 62 [mod reg r/m] ufufujufufufufuilu 1,4 2,5,6,7,8
If Out of range (Int 5) 11+int 11+int
If In Range 11 1
BSF Scan Bit Forward ufufujujufmjufuju 1 2
Register/Memory, Register OF BC{mod reg r/m] 5/7+n 9+n 5/7+n 9+n

Arewiwing junos o0}

Si-L

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
ofp|r|T]|s|z|a]|r|c|ies |cACHE | AESH. | CACHE | READ | PROTECTED
FIF|F|F|F|F|F F MISS MISS | MODE MODE
HIT HIT
BSR Scan Bit Reverse ulujufjulu|mju u 1 2
Register/Memory, Register OF BC[mod reg r/m] 5/7+n 9+n 5/7+n 9+n
BSWAP Byte Swap OF C[1 reg] ulujujujujul]u u 4 4
BT Test Bit u u u u m 1 2
Register/Memory, Immediate OF BA[mod 100 r/m]t 3/4 5 3/4 5
Register/Memory, Register OF A3[mod reg r/m] 3/6 7 3/6 7
BTC Test Bit and Complement ujujujujulufu m 1 2
Register/Memory, Immediate OF BA[mod 111 r/m]t 4/5 6 4/5 6
Register/Memory, Register OF BB[mod reg r/m] 5/8 9 5/8 9
BTR Test Bit and Reset ujujujujujuiju m 1 2
Register/Memory, Immediate OF BA[mod 110 r/m]t 4/5 6 4/5 6
Register/Memory, Register OF B3[mod reg r/m] 5/8 9 5/8 9
BTS Test Bit and Set ujujujujulufu m 1 2
Register/Memory OF BA[mod 101 r/m] 3/5 6 3/5 6
Register (short form) OF AB[mod reg r/m] 4/7 8 477 8
1 = immediate data } = 8-bit displacement § = 16-bit displacement 91 = 32-bit displacement m = Flag modified u =Flag unchanged
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the

maximum S8 limit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit

is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

Arewiwing Junoo 390D

Dy
iy
D

168 uononssuy

Table 7—-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
ofD|(I|T|S|{Zz|A|P|C CACHE CACHE CACHE CACHE | READ | PROTECTED
F|{F|F|{F|F|F|F|F|F MiSS MISS | MODE MODE
HIT HIT

CALL Subroutine Call ujujulufjulufu]u|u 1 2,6,7,8
Direct within Segment E8q| 7 7
Register/Memory Indirect within Segment FF [mod 010 r/m] 8/9 10 8/9 10
Direct Intersegment 9A [unsigned full offset, 12 30

Call Gate to Same Privilege selector] 41 49

Call Gate to Different Privilege No P 83 97

Cali Gate to Different Privilege Ps 81+4x | 95+4x

16-Bit Task to 16-bit TSS 262 263

16-Bit Task to 32-bit TSS 293 317

16-Bit Task to V86 Task 179 206

32-Bit Task to 16-bit TSS 238 258

32-Bit Task to 32-bit TSS 296 340

32-Bit Task to V86 Task 182 229
Indirect Intersegment FF [mod 011 r/m] 14 17 14 34

Call Gate to Same Privilege 43 51

Call Gate to Different Privilege No P 85 99

Call Gate to Different Privilege Ps 86+4x | 100+4x

16-Bit Task to 16-bit TSS 267 268

16-Bit Task to 32-bit TSS 298 322

16-Bit Task to V86 Task 181 211

32-Bit Task to 16-bit TSS 243 263

32-Bit Task to 32-bit TSS 301 345

32-Bit Task to V86 Task 184 230
P = Parameters
CBW Convert Byte to Word 98 ulujulujulujulul]u 3 3
CDQ Convert Doubleword to Quadword 99 ujululufujulu|u]u 1 1
CLC Clear Carry Flag F8 uluJulufujujujul]oO 1 1
CLD Clear Direction Flag FC u|Ofjujufujujulu]u 1 1
CLI Clear Interrupt Flag FA ulu]O|Jujujujuju]u 7 7 9
CLTS Clear Task Switched Flag OF 06 ulujujulujul]Jujulju 5 5 10 11
CMC Complement the Carry Flag F5 ulufjujululufjulu|m 1 1
CMP Compare Integers mjujuljumimim|m|m 1 2
Register to Register 3 [10dw] [11 reg r/m] 1 1
Register to Memory 3 [101w] [mod reg r/m] 3 5 3 5
Memory to Register 3 [100w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 111 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 3[110w]t 1 1

Arewwng juno2 000

YARYA

Table 7—-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
O|IDJI]|T|S{Z|A|P]|C CACHE CACHE CACHE CACHE | READ | PROTECTED
F|I|F|F|F|F|F|F]|F|F MISS MISS | MODE MODE
HIT HIT

CMPS Compare String Af011w] mijujujulmim|mimim 7 8 7 8 1 2
CMPXCHG Compare and Exchange mijujujulmm|m|m|m
Register1, Register2 OF B[00Ow] [11 reg2 reg1] 5 5
Memory, Register OF B[000w] [mod reg r/m] 7 8 7 8
CWD Convert Word to Doubleword 99 ujujujujujujulul]u 1 1
CWDE Convert Word to Doubleword Extended | 98 ujujujujujujuljuiju 3 3
DAA Decimal Adjust AL after Add 27 ujujul]uim|mim|m|m 4 4
DAS Decimal Adjust AL after Subtract 2F ujujuljulm{mimim|m 4 4
DEC Decrement by 1 mjujujujm|m|m]|mju 1 2
Register/Memory F [111w] [mod 001 r/m] 1/3 5 1/3 5
Register (short form) 41 reg] 1 1
DIV Unsigned Divide F [011w] [mod 110 r/m] ujlu|ululu]ujul]ulju 1.4 2,4
Accumulator by Register/Memory
Divisor: Byte 14/15 17 14/15 17

Word 22/23 24 22/23 24

Doubleword 38/39 40 38/39 40
ENTER Enter New Stack Frame C8 [8-bit level]§ ujulujulujujujulju 1 2
Level =0 7 7
Level =1 10 10 10 10
Level (L) > 1 6+4*L | 6+4*L | 6+4*L | 6+4°L
HLT Halt F4 ujujulujujulujuiju 3 3 11

1 = immediate data 1 = 8-bit displacement § = 16-bit displacement 9} = 32-bit displacement m = Flag modified u =Flag unchanged
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum SS limit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10) This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

Arewnuns juno? 320[0

8l-L

18S uononysuy

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE

PROTECTED

FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
olpft]|r|s|z|a]|r|c|iede |cackE | RES | cAcHE | READ | PROTECTED
F|IF|F|F|[F|F|F F MISS MISS | MODE MODE
HIT HIT
IDIV Integer (Signed) Divide ujuJujulujul]u u 1,4 24
Accumulator by Register/Memory F [011w] [mod 111 r/m]
Divisor: Byte 19/20 22 19/20 22
Word 27/28 29 27/28 29
Doubleword 43/44 47 43/44 47
IMUL Integer (S{gned) Multiply mjufulujuluifu m 1 2
Accumulator by Register/Memory F [011w] [mod 101 r/m]
Multiplier: Byte 3/5 7 3/5 7
Word 3/5 7 3/5 7
Doubleword 7/9 13 7/9 13
Register with Register/Memory OF AF[mod reg r/m]
Multiplier: Byte 3/5 7 3/5 7
Word 3/5 7 3/5 7
Doubleword 7/9 13 7/9 13
Register/Memory with Immediate to Register2 6 [10s1] [mod reg r/m]t
Multiplier: Byte 3/5 7 3/5 7
Word 3/5 7 3/5 7
Doubleword 7/9 13 7/9 13
IN Input from I/O Port ujujufjulufuju u 9
Fixed Port E [010w] [port number] 16 16 6/19 6/20
Variable Port E [110w] 16 16 6/19 6/20
INC Increment by 1 mjululuimim|m u 1 2
Register/Memory F [111w] [mod 000 r/m] 1/3 5 1/3 5
Register (short from) 4 [0 reg] 1 1
INS Input String from I/O Port 6 [110w] ululu|ujufulju u 20 20 6/19 6/20 1 2,9
INT Software Interrupt m{Ofu uifu u 1,4 5,6,7,8
INT i CDi] 14 16
Protected Mode:
Interrupt or Trap to Same Privilege 57 58
Interrupt or Trap to Different Privilege 91 92
16-Bit Task to 16-bit TSS by Task Gate 265 266
16-Bit Task to 32-bit TSS by Task Gate 296 320
16-Bit Task to V86 Task by Task Gate 177 205
32-Bit Task to 16-bit TSS by Task Gate 241 261
32-Bit Task to 32-bit TSS by Task Gate 299 343
32-Bit Task to V86 Task by Task Gate 180 232
V86 to 16-bit TSS by Task Gate 241 261
V86 to 32-bit TSS by Task Gate 299 343
V86 to Privilege 0 by Trap Gate/Int Gate 106 114
Continued on next page . . .

Alewwng junoo o010

61-2

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
INSTRUCTION OPCODE
ofpfi|t|s|z{alr|c| AR |cace | RES | cackE | READ | PROTECTED
F|F|F|F|F|F|F|F|F MISS MISS | MODE MODE
HIT HIT
INT Software Interrupt (Continued) ulm|Ojujujulju]ulju 1,4 5,6,7,8
INT3 CC 14 16
Protected Mode:
Interrupt or Trap to Same Privilege 57 58
Interrupt or Trap to Different Privilege 91 92
16-Bit Task to 16-bit TSS by Task Gate 265 266
16-Bit Task to 32-bit TSS by Task Gate 296 320
16-Bit Task to V86 by Task Gate 177 205
32-Bit Task to 16-bit TSS by Task Gate 241 261
32-Bit Task to 32-bit TSS by Task Gate 299 343
32-Bit Task to V86 by Task Gate 180 232
V86 to 16-bit TSS by Task Gate 241 261
V86 to 32-bit TSS by Task Gate 299 343
V86 to Privilege 0 by Trap Gate/Int Gate 106 114
INTO CE ulufmlOolufulululu
IfOF==0 1 1 1 1
if OF == 1 (INT4) 15 17
Protected Mode:
Interrupt or Trap to Same Privilege 57 58
Interrupt or Trap to Different Privilege 91 92
16-Bit Task to 16-bit TSS by Task Gate 265 266
16-Bit Task to 32-bit TSS by Task Gate 296 320
16-Bit Task to V86 by Task Gate 177 205
32-Bit Task to 16-bit TSS by Task Gate 241 261
32-Bit Task to 32-bit TSS by Task Gate 299 343
32-Bit Task to V86 by Task Gate 180 232
V86 to 16-bit TSS by Task Gate 241 261
V86 to 32-bit TSS by Task Gate 299 343
V86 to Privilege 0 by Trap Gate/Int Gate 106 114
1 = immediate data } = 8-bit displacement § = 16-bit displacement 9 = 32-bit displacement m = Flag modified u =Flag unchanged

Notes: 1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum SS limit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

9) An exception 13 fault occurs if CPL is greater than IOPL.

Arewwng junoo o000

Oc-L

188 uononysuy

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE

PROTECTED

FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
olp|i|T[s|z|a|r|c| et |cACHE | RESH | cACHE | READ | PROTECTED
F F{F|(F|[F|F F MISS MISS | MODE MODE

HIT HIT
INVD /Invalidate Cache | OF 08 u ufufufulu u 4 4
INVLPG /nvalidate TLB Entry OF 01[mod 111 r/m] u ujujuju]u u 4 4
IRET Interrupt Return CF m mim|mim|m m 2,5,6,7,8
Read Mode 14 14
Protected Mode

Within Task to Same Privilege 35 37
Within Task to Different Privilege 74 78

16-Bit Task to 16-bit TSS 259 260
16-Bit Task to 32-bit TSS 290 314
16-Bit Task to V86 Task 173 203
32-Bit Task to 16-bit TSS 235 255
32-Bit Task to 32-bit TSS 295 339
32-Bit Task to V86 Task 176 226
JBANAENC Jump on Below/Not u ujujlujulfu u 8
Above or Equal/Carry
8-Bit displacement 72% 41 61
Full displacement OF 82 411 611
JBE/JNA Jump on Below or Equal/Not Above u ululujulju u 8
8-Bit displacement 76% 41 61
Full displacement OF 861 4n 6l1
JCXZ Jump on CX Zero E3t u ujujujuifu u 713 713 8
JENZ Jump on Equal/Zero u ujujujfulu u 8
8-Bit displacement 74% 401 6l1
Full displacement OF 841 4an 611
JECXZ Jump on ECX Zero E3t u ulujujulu u 713 713 8
JLAINGE Jump on Less/Not Greater or Equal u ulujululju u 8
8-Bit displacement 7Ct 41 61
Full displacement OF 8C1Y| 411 611

Algwiwing uno9 X00[0

le-L

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
OID|[I|T|S|Z]|A C CACHE CACHE CACHE CACHE | READ | PROTECTED
F|F|F|F|F|F|F F MISS MISS | MODE MODE
HIT HIT ,

JLE/ANG Jump on Less or Equal/Not Greater ujujulujulul]u u 8
8-Bit displacement 7Et 41 61
Full displacement OF 8EY| 41 61
JMP Unconditional Jump ulu|ufululutfu u 1 2,6,7,8
Short EB$ 4 6
Direct within Segment E9 4 6
Register/Memory Indirect within Segment FF [mod 100 r/m] 6/8 10 6/8 10
Direct Intersegment EA [full offset, selector] 9 26

Call Gate Same Privilege Level 45 45

16-Bit Task to 16-bit TSS 265 266

16-Bit Task to 32-bit TSS 296 320

16-Bit Task to V86 Task 182 209

32-Bit Task to 16-bit TSS 241 261

32-Bit Task to 32-bit TSS 299 343

32-Bit Task to V86 Task 185 232
Indirect Intersegment FF [mod 101 r/m] 11 14 30 30

Call Gate Same Privilege Level 47 47

16-Bit Task to 16-bit TSS 270 271

16-Bit Task to 32-bit TSS 301 325

16-Bit Task to V86 Task 184 214

32-Bit Task to 16-bit TSS 246 268

32-Bit Task to 32-bit TSS 304 348

32-Bit Task to V86 Task 187 237
JNB/JAE/JNC Jump on Not Below/ ujululuju|u]u u 8
Above or Equal/Not Carry
8-Bit displacement 73% 41 611
Full displacement OF 831 411 61

1 = immediate data
Notes:

} = 8-bit displacement
1) Exception 13 fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

§ = 16-bit displacement

f = 32-bit displacement

m = Flag modified

u =Flag unchanged

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partiaily or fully extends beyond the

maximum SS limit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segrent limit violation or an access rights violation. If a stack limit

is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

Arewiwing juno? 2010

~
1
)V

18S uononsu|

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE

PROTECTED

FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
) i{tls|z|a car | cacHE | RESL | CACHE | READ | PROTECTED
F F|F{F|F|F MISS MISS | MODE MODE

HIT HIT
JNBENA Jump on Not Below or Equal/Above u ujujujulu 8
8-Bit displacement 77% 41 611
Full displacement OF 871 41 6l1
JNE/JNZ Jump on Not Equal/Not Zero u ufjulujulu 8
8-Bit Displacement 75% a1 6i1
Fuli Displacement OF 859 41 61
JNL/JGE Jump on Not Less/Greater or Equal u ujlulujulu 8
8-Bit displacement 7D% 411 6I1
Full displacement OF 8DY 41 6i1
JNLE/NG Jump on Not Less or Equal/Greater u ulujfjujulfu 8
8-Bit displacement 7F% 41 61
Full displacement OF 8FY 41 611
JNO Jump on Not Overflow u ujujlujulu 8
8-Bit displacement 71% 41 61
Full displacement OF 811 4N 61
JNP/JPO Jump on Not Parity/Parity Odd u utulufuiju 8
8-Bit displacement 7B% 41 611
Full displacement OF 8BY 41 61
JNS Jump on Not Sign u ujujujuiju 8
8-Bit displacement 79% 41 61
Full displacement OF 89 41 61
JO Jump on Overflow u ufujfjufuifu 8
8-Bit displacement 70% 41 61
Full displacement OF 801 41 61
JP/JPE Jump on Parity/Parity Even u ujujujulju 8
8-Bit displacement 7At 41 61
Full displacement OF 8AY| 41 61
JS Jump on Sign u ujujujul]u 8
8-Bit displacement 78% 41 61
Full displacement OF 881 41 61

Arewiwing juno) 3000

€c-L

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/

O|D|I|T|S|Z|A|P]|C CACHE CACHE CACHE CACHE | READ | PROTECTED

FIF|F|{FIF|F|F|F{F HIT MISS HIT MISS | MODE MODE
LAHF Load AH with Flags 9F ufjuljujujufujujulu 2 2
LAR Load Access Rights ulufjufjulufmjuluiu 3 2,5,6,12
From Register/Memory OF 02[mod reg r/m] 11/12 14
LDS Load Pointer to DS C5 [mod reg r/m] ujuju ulu|uju 6 7 23 24 1 2,6,13
LEA Load Effective Address 8D [mod reg r/m] ulujulufufufujulu
No Index Register 2 2
With Index Register 3 3
LEAVE Leave Current Stack Frame Cc9 ujujulufuju]u]ulu 3 4 3 4 1 2
LES Load Pointer to ES C4 [mod reg r/m] ujuluf|u]Jujujulu]u 6 7 23 24 1 2,6,13
LFS Load Pointer to FS OF B4[mod reg r/m] ufufujulujufu]ulu 6 7 23 24 1 2,6,13
LGDT Load GDT Register OF 01[mod 010 r/m] ujujulujuljujufulu 9 9 9 9 1,10 2,11
LGS Load Pointer to GS OF B5[mod reg r/m] ulujujuluju]u|uju 6 7 23 24 1 2,6,13
LIDT Load IDT Register OF 01[mod 011 r/m] ujuljujujulu]ufulu 9 9 9 9 1,10 2N
LLDT Load LDT Register ujulululufuju]uiju 3 2,5,6,11
From Register/Memory OF 00[mod 010 r/m] 16/17 18
LMSW Load Machine Status Word ululujuluju]u]uju 1,10 2,11
From Register/Memory OF 01[mod 110 r/m] 5 8 5
LODS Load String A[110w] uflufu]ulJujufu]ulu 4 4 4 4 1 2
LOOP Offset Loop/No Loop E2t ujulufujulufujulu 714 913 8

T = immediate data

1 = 8-bit displacement § = 16-bit displacement 9l = 32-bit displacement m = Flag modified u = Flag unchanged

1) Exception 13fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFgé IExcep’tion 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum imit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10) This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

13)For segment load operations, the CPL, RPL, and DPL must agree witht he privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate “present” or
exception 11 (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs.

Arewwing Juno) X200

~
0
S

1os uooniisul

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
olp|i|T|s|z]|a oneer: | cAcHE | REG! | CACHE | READ | PROTECTED
F F|F|F|F|F MISS MISS | MODE MODE
. HIT HIT

LOOPNZ/LOOPNE Offset EOt u ujufuiuiju 74 913 8
LOOPZ/LOOPE Offset Elf u ujujujulu 714 913 8
LSL Load Segment Limit u ujulu|miju 3 2,5,6,12
From Register/Memory OF 03[mod reg r/m] 22/23 25
LSS Load Pointer to SS OF B2[mod reg r/m] u ulujufulu 6 7 23 24 3 2,6,13
LTR Load Task Register OF 00[mod reg r/m] u ujujuluiju 3 2,5,6,11
From Register/Memory 16/17 18
MOV Move Data u ujujujulju 1 2,6,13
Register to Register/Memory 8 [110w] [mod reg r/m} 1/2 2 12 2
Register/Memory to Register 8[101w] [mod reg r/m] 1/2 4 1/2 4
Immediate to Register/Memory C [011w] [mod 000 r/m]t 1/2 2 1/2 2
Immediate to Register (short form) B [w reglt 1 1
Memory to Accumulator (short form) A [oo0w]q| 2 4 2 4
Accumulator to Memory (short form) A [001w]Y 1/2 2 1/2 2
Register/Memory to Segment Register 8E [mod sreg3 r/m] 2/3 5 15/16 18
Segment Register to Register/Memory 8C [mod reg r/m] 1/2 2 1/2 2
MOV Move toffrom Control/Debug/Test Registers u ujulujuiju 1
Register to CRO/CR2/CR3 OF 22[11 eee reg] 11/3/3 11/3/3
CRO/CR2/CR3 to Register OF 20[11 eee reg] 1/3/3 1/3/3
Register to DRO-DR3 OF 23[11 eee reg] 1 1
DRO-DR3 to Register OF 2111 eee reg] 3 3
Register to DR6-DR7 OF 23{11 eee reg] 1 1
DR6-DR?7 to Register OF 21[11 eee reg] 3 3
Register to TR3-5 OF 26[11 eee reg] 5 5
TR3-5 to Register OF 24[11 eee reg] 5 5
Register to TR6-TR7 OF 26[11 eee reg] 1 1
TR6-TR7 to Register OF 24[11 eee reg] 3 3
MOVS Move String A010w] u ujujufuiju 5 5 5 5 1
MOVSX Move with Sign Extension u ulujujulju 1
Register from Register/Memory OF B[111w] [mod reg r/m] 1/3 5 1/3 5
MOVZX Move with Zero Extension u ufufiuifulu 1 2
Register from Register/Memory OF B[011w] [mod reg r/m] 2/3 5 2/3 5

Alewiwing juno? 300[D

Gc-L

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
o|DlI|{T|S|ZiA|P|C CACHE CACHE CACHE CACHE | READ { PROTECTED
F|F|F|F|F|F|F|F|F MISS MISS | MODE MODE
HIT HIT

MUL Unsigned Multiply F [011w] [mod 100 r/m] mljujulujulu]ujul|m 1 2
Accumulator with Register/Memory
Multiplier: Byte 3/5 7 3/5 7

Word 3/5 7 3/5 7

Doubleword 7/9 13 7/9 13
NEG Negate Integer F [011w] [mod 011 r/m] mjulululim|m|{m|{m]|m 1/3 5 1/3 5 1 2
NOP No Operation 90 ulujufulujujuluiju 3 3
NOT Boolean Complement F [011w] [mod 010 r/m} ujuluJuju|ujuijulu 1/3 5 1/3 5 1 2
OR Boolean OR Ojujujumimim|m]|O 1 2
Register to Register 0 [10dw] [11 reg r/m] 1 1
Register to Memory 0 [100w] [mod reg r/m] 3 5 3 5
Memory to Register 0 [101w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [000w] [mod 001 r/m]t 1/3 5 1/3 5
Immediate to Accumulator O [110wlt 1 1
OUT Oulput to Port ujulujJulujufujulu 9
Fixed Port E [011w] [port number] 18 18 M7 2M\18
Variable Port E [111w] 18 18 4M7 4\18
OUTS Output String 6 [111w] ujulujujulufujulu 20 20 6\19 6\19 1 2,9

1 = immediate data 1 = 8-bit displacement § = 16-bit displacement §] = 32-bit displacement m = Flag modified u = Flag unchanged

Notes:

1) Exception 13 fault(general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FF FFé% IException 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum imit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10)This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

13)For segment load operations, the CPL, RPL, and DPL must agree witht he privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate “present” or
exception 11 (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs.

Alewiwing uno?) 3909

1
D

18 uononusuj

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
o T|s|z|a|p|c|RES |cache | RS/ | cAcHE | READ | PROTECTED
F F{F|F|F F MISS MISS | MODE MODE
HIT HIT

POP Pop Value off Stack u ujufjuiu u 1 2,6,13
Register/Memory 8F [mod 000 r/m] 3/5 4/5 3/5 4/5
Register (short form) 51 reg] 3 4 3 4
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 4 5 18 19
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 001] 4 5 18 19
POPA Pop All General Registers 61 u ujujulu u 18 18 18 18 1 2
POPF Pop Stack into FLAGS 9D m mim|m|{m m 4 5 4 5 1 2,14
PREFIX BYTES u ujufufu u 9
Assert Hardware LOCK Prefix FO
Address Size Prefix 67
Operand Size Prefix 66
Segment Override Prefix:

CSs 2E

DS 3E

ES 26

FS 64

GS 65

SS 36
PUSH Push Value onto Stack u ujlulu]u u 1 2
Register/Memory FF [mod 110 r/m] 2/4 4 2/4 4
Register (short form) 5[0reg] 2 2 2 2
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 2 2 2 2
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 000] 2 2 2 2
Immediate 6 [10s0]t 2 2 2 2
PUSHA Push All General Registers 60 u uifu u 17 17 17 17 1 2
PUSHF Push FLAGS Register 9C u ujujulju u. 2 2 2 2 1 2
RCL Rotate Through Carry Left m ulululfu m 1 2
Register/Memory by 1 D [000w] [mod 010 r/m] 9/9 10 9/9 10
Register/Memory by CL D [001w] [mod 010 r/m] 9/9 10 9/9 10
Register/Memory by Immediate C [000w] [mod 010 r/m]t 9/9 10 9/9 10

Arewiwing uno? x00[9

le-L

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continueq)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
O|ID|I]T|S|Z|A|P]|C CACHE CACHE CACHE CACHE | READ | PROTECTED
F|IFIF|F|F|F|F{F]|F MISS MISS | MODE MODE

HIT HIT
RCR Rotate Through Carry Right mliujujujujujujuim 1 2
Register/Memory by 1 D [000w] [mod 011 r/m] 9/9 10 9/9 10
Register/Memory by CL D [001w] [mod 011 r/m] 9/9 10 9/9 10
Register/Memory by Immediate C [000w] [mod 011 r/m]t 9/9 10 9/9 10
REP INS /nput String F2 6[110w] ujujufulufjufu]ufjul] 20+9n | 20+9n 5+9n\ 5+9n\ 1 2,9

18+9n 19+9n
REP LODS Load String F2 A[110w] ulufjujululufu]ulul 4+5n 4+5n 4+5n 4+5n 1 2
REP MOVS Move String F2 A[010w] ujlujulujulufu]ulu| 5+4n 5+4n 5+4n 5+4n 1 2
REP OUTS OQutput String F2 6[111w] ulujujujuju]u]ufu| 20+4n | 20+4n 5+4n\ 5+4n\ 1 2,9
18+4n 19+4n

REP STOS Store String F2 A[101w] ujujujujujujujuju} 3+4n 3+4n 3+4n 3+4n 1 2
REPE CMPS Compare String F3 A[011w] mjujujuimimimimim}] 5+8n 5+8n 5+8n 5+8n 1
(Find non-match)
REPE SCAS Scan String F3 A[111w] mlujujufm|m|mim]|m]| 4+5n 4+6n 4+5n 4+6n 1 2
(Find non-AL/AX/EAX)
REPNE CMPS Compare String F2 A[011w] miulufulmim|m|m|{m]| 5+8n 5+8n 5+8n 5+8n 1 2
(Find match)
REPNE SCAS Scan String F2 Af111w] mjujululmfimim|m]|m] 4+5n 4+6n 4+5n 4+6n 1 2
(Find AL/AX/EAX)

1 = immediate data

Notes:

1 = 8-bit displacement § = 16-bit displacement 1 = 32-bit displacement m = Flag modified u =Flag unchanged

1) Exception 13 fault{general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFgg :’:‘xception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum imit.

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10) This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

13)For segment load operations, the CPL, RPL, and DPL must agree witht he privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate “present” or
exception 11 (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs.

14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = 0.

Arewiwing juno? X009

8¢-L

188 uononsy|

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
ofpji|r|s|z|a]|p|c|HES |cacHE | FESS | cACHE | READ | PROTECTED
FIF|F|F|F|F|F{F|F MISS MISS | MODE MODE
HIT HIT

RET Return from Subroutine ulujuljulujujululu 1 2,5,6,7,8
Within Segment C3 10 10
Within Segment Add immediate to SP C2§ 10 10
Intersegment CB 13 13 26 26
Intersegment Add Immediate to SP CAS§ 13 13 26 27
Protected Mode: Different Privilege Level

Intersegment 69 72

Intersegment Add Immediate to SP 69 72
ROL Rotate Left mljujujujulufufu|m 1 2
Register/Memory by 1 D [000w] [mod 000 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 000 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 000 r/m]t 2/4 6 2/4 6
ROR Rotate Right mjujuju|ulujujul|m 1 2
Register/Memory by 1 D [000w] [mod 001 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 001 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 001 r/m]t 2/4 6 2/4 6
RSDC Restore Segment Register and OF 79 [mod sreg3 r/m] ulujuflujujulujulju 14 14 16 16
Descriptor
RSLDT Restore LDTR and Descriptor OF 78 [mod 000 /m] ufufjulufufjulufulfu 14 14 16 16
RSM Resume from SMM Mode oF AA ufjujulufujuju]ul]u 58 58 16 16
RSTS Restore TSR and Descriptor OF 7D [mod 000 r/m] vjujulufujufjul]ul]u 14 14 16 16
SAHF Store AH in FLAGS 9E ulufuju|m|mjuim|m 2 2
SAL Shift Left Arithmetic mjujujfulm|mju|m|m
Register/Memory by 1 D [000w] [mod 100 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 100 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 100 r/m}t 2/4 6 2/4 6
SAR Shift Right Arithmetic mjujujulm|m|im|m|m
Register/Memory by 1 D [000w] [mod 111 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 111 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 111 r/m]t 2/4 5 2/4 8

Alewwng uno? x20j9

6¢-L

Table 7—-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
O|D|I|T]|S]|Z]A C CACHE CACHE CACHE CACHE | READ | PROTECTED
F{F|F|F}|F|F|F F MISS MISS | MODE MODE
HIT HIT
SBB Integer Subtract with Borrow mlujujulm]|m|m m 1 2
Register to Register 1 [10dw] [11 reg r/m] 1 1
Register to Memory 1 [100w] [mod reg r/m] 3 5 3 5
Memory to Register 1 [101w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 011 r/m]t 1/3 5 1/3 5
Immediate to Accumulator (short form) 1[110w]t 1 1
SCAS: Scan String Al111w] mjujujulm|mim m 5 5 5 5 1 2
SETB/SETNAE/SETC Set Byte on Below/ ulufujujufuiu u
Not Above or Equal/Carry
To Register/Memory OF 92[mod 000 r/m] 2/2 2 2/2 2
SETBE/SETNA Set Byte on Below or Equal/ ulujujujujuiu u 2
Not Above
To Register/Memory OF 96 [mod 000 r/m] 2/2 2 2/2 2
SETE/SETZ Set Byte on Equal/Zero Register/ ujujufujutuiju u 2
Memory OF 94 [mod 000 r/m] 2/2 2 2/2 2
SETL/SETNGE Set Byte on Less/ ulufjulujulu|u u 2
Not Greater or Equal
To Register/Memory OF 9C[mod 000 r/m] 2/2 2 2/2 2
SETLE/SETNG Set Byte on Less or Equal/ ujulJufujufufu u 2
Not Greater
To Register/Memory OF 9E[mod 000 r/m] 2/2 2 2/2 2

T = immediate data

maximum SS limit.

1 = 8-bit displacement

§ = 16-bit displacement

9 = 32-bit displacement
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the

m = Flag modified

u = Flag unchanged

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit

is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.
16)All memory accesses using this instruction are non-cacheable as this instruction uses SMM address space.

Arewwing Juno?)00/o

0e-L

Jog uofjonijsuy

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
olo|i|t]s|z|a|r|c|Ew |cackE | RES | cacHe | Reap | PROTECTED
F F|F|F|F|F F MISS MISS | MODE MODE
HIT HIT
SETNB/SETAE/SETNC Set Byte on Not Below/ u ulujujulu u 2
Above or Equal/Not Carry
To Register/Memory OF 93[mod 000 r/m] 22 2 2/2 2
SETNBE/SETA Set Byte on Not Below or u uluflujulu u 2
Equal/ Above
To Register Memory OF 97{mod 000 r/m] 2/2 2 2/2 2
SETNE/SETNZ Set Byte on Not Equal/ u ulujuluju u 2
Not Zero
To Register/Memory OF 95[mod 000 r/m] 2/2 2 2/2 2
SETNL/SETGE Set Byte on Not Less/ u ulujujulu u 2
Greater or Equal
To Register/Memory OF 9D [mod 000 r/m] 2/2 2 2/2 2
SETNLE/SETG Set Byte on Not Less or u ujujujluifu u 2
Equal/Greater
To Register/Memory OF 9F[mod 000 r/m} 2/2 2 212 2
SETNO Set Byte on Not Overflow u ujlulujulju u 2
To Register/Memory OF 91[mod 000 r/m] 2/2 2 2/2 2
SETNP/SETPO Set Byte on Not Parity/ u ulujfjujulu u 2
Parity Odd
To Register/Memory OF 9B[mod 000 r/m] 2/2 2 2/2 2
SETNS Set Byte on Not Sign u ulujujulju u 2
To Register/Memory OF 99[mod 000 r/m] 2/2 2 2/2 2
SETO Set Byte on Overflow u ujujufulu u 2
To Register/Memory OF 90[mod 000 r/m] 2/2 2 2/2 2
SETP/SETPE Set Byte on Parity/Parity Even u ujufufuju u 2
To Register/Memory OF 9A[mod 000 t/m] 2/2 2 2/2 2
SETS Set Byte on Sign u ulujufuiju u 2
To Register/Memory OF 98[mod 000 r/m] 2/2 2 2/2 2
SGDT Store GDT Register u ujujJujulju u 1,10 2
To Register/Memory OF 01[mod 00 r/m} 6 6 6 6
SHL Shift Left Logical m ulu|m|mju m 1 2
Register/Memory by 1 D [000w] [mod 100 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 100 r/m] 3/5 7 3/5 7
Register/memory by immediate C [000w] [mod 100 r/m]} 2/4 6 2/4 6

Alrewiwing uno? 300j9

1€-4

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE

PROTECTED

FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
O|ID|I1]T|S|Z]A|P|C CACHE CACHE CACHE CACHE | READ | PROTECTED
F|F|F|F|F|F|F{F|F MISS MISS | MODE MODE
HIT HIT
SHLD Shift Left Double ujujujulmimjuim|m
Register/memory by iImmediate OF A4[mod reg r/m}t 1/3 5 1/3 5
Register/Memory by CL OF A5[mod reg r/m] 3/5 7 3/5 7
SHR Shift Right Logical mjujujuimimju|mjm 1 2
Register/Memory by 1 D [000w] [mod 101 /m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 101 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 101 r/m}t 2/4 5 2/4 6
SHRD Shift Right Double ulufjufjulmimiu|m[m
Register/Memory by Immediate OF AC[mod reg r/m]t 1/3 5 1/3 5
Register/Memory by CL OF AD[mod reg r/m] 3/5 7 3/5 7
SIDT Store IDT Register ulujujufujuju]u]u 1,10 2
To Register/Memory OF 01[mod 001 r/m] 6 6 6 6
SLDT Store LDT Register ulufujulujuju]ulju 3 2
To Register/Memory OF 00fmod 000 r/m} 1/2
SMSW Store Machine Status Word OF 01[mod 100 r/m] ulujujulujujujulu 1/2 2 1/2 1,10 2,1
STC Set Carry Flag F9 ulujujulJujululjuijt 1 1
STD Set Direction Flag FD ufl1|ulujuluflufjulu 1 1
STI Set Interrupt Flag FB ujultju]ujufjululu 7 7 9

1 = immediate data

maximum SS limit.

1 = 8-bit displacement

§ = 16-bit displacement

9 = 32-bit displacement
Notes: 1) Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the

m = Flag modified

u =Flag unchanged

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit

is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.
9) An exception 13 fault occurs if CPL is greater than IOPL.

10) This instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

16)All memory accesses using this instruction are non-cacheable as this instruction uses SMM address space.

Arewiwing junop Xo0[9

ace-L

18s uononnsuy

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE

PROTECTED

FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE
olp|i|T]s|z|a|r|c|RES | cacHE | PG | cACHE | READ | PROTECTED
F|F|F|F|F|F|F|F|F MISS MISS | MODE MODE
HIT HIT

STOS Store String A[101w] ujufujuju]u]ujulu 3 3 3 3 1 2
STR Store Task Register ulufjujujujulujulju 3
To Register/Memory OF 00[mod 001 r/m] 1/2 2
SUB Integer Subtract mjuljujujmIm|mim|m 1 2
Register to Register 2 [10dw] [11 reg r/m] 1 1
Register to memory 2 [100w] [mod reg r/m] 3 5 3 5
Memory to Register 2 [101w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 101 r/m]t 1/3 5 1/3 5
Immediate to Accumulator (short form) 2 [110w]t 1 1
SVDC Save Segment Register and Descriptor | OF 78 [mod sreg3 r/m] ulufjululujufujulu 22 22 16 16
SVLDT Save LDTR and Descriptor OF 7A [mod 000 r/m] ufufu{ufufufuju{u 22 22 16 16
SVTS Save TSR and Descriptor OF 7C [mod 000 r/m] uljujujujutujuluju 22 22 16 16
TEST Test Bits Ojujujulmlimju|m}o 1 2
Register/Memory and Register 8 [010w] [mod reg r/m] 1/3 5 1/3 5
Immediate Data and Register/Memory F [011w] [mod 000 r/m]t 1/3 5 1/3 5
Immediate Data and Accumulator A [100w]t 1 1
VERR Verify Read Access ujujululuymjujulu 3 2,5,6,12
To Register/Memory OF 00[mod 100 r/m] 9/10 12
VERW Verl?/ Write Access ujlujujulu|mjujul]u 3 2,5,6,12
To Register/Memory OF 00[mod 101 1/m] 9/10 12
WAIT Wait Until FPU Not Busy 9B ufufjufufufujulfu 5 5 5 5
WBINVD Write-Back and Invalidate Cache OF 09 uifu uf{ujujufulu 4 4
XADD Exchange and Add mlujujujm]mmim|m
Register1, Register2 OFC[000w] [11 reg2 reg1] 3 3
Memory, Register OFC[000w] [mod reg r/m] 6 6 6 6
XCHG Exchange ujujlulujujujululu 1,15 2,15
Register/Memory with Register 8 [011w] [mod reg r/m)] 3/4 4 3/4 4
Register with Accumulator 9 [0 reg] 3 3

Areuiing juno9 o010

€6-L

Table 7-17. Instructions, Opcodes, Flags, and Clock Summary (Continued)

REAL MODE PROTECTED
FLAGS CLOCKS MODE CLOCKS NOTES
INSTRUCTION OPCODE REG/ REG/
O|D|I]|T|S|Z]|A|P|C CACHE CACHE CACHE CACHE | READ | PROTECTED
FIFIFIF|FIF|F|F|F MISS MISS | MODE MODE
HIT HIT
XLAT Translate Byte D7 ujujujujuiujuluiju 3 5 3 5 2
XOR Boolean Exclusive OR Ofuju]Jufm|m|u[m]O 1
Register to Register 3 [00dw] [11 reg r/m] 1 1
Register to Memory 3 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 3 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 110 r/m]t 1/3 5 1/3 5
Immediate to Accumulator (short form) 3[010w]t 1 1
T = immediate data f = 8-bit displacement § = 16-bit displacement 9 = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13fault (general protection) will occur in Read Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFg% 'Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum imit. '

2) Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

4; An exception may occur, depending on the value of the operand.

5) LOCK is asserted during descriptor table accesses.

6) Al se%ment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10gThis instruction may be executed in Real Mode. in Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

13)For segment load operations, the CPL, RPL, and DPL must agree witht he privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate “present” or
exception 11 (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, and exception 12 occurs.

14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = 0.

15; LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.

16)All memory accesses using this instruction are non-cacheable as this instruction uses SMM address space.

Arewiwing 3unoy Xo0[0

Clock Count Summary

7-34 Instruction Set

Appendix A

This programmers guide provides detailed information, including example
code listings, macros, and instructions, pertinent to the Ti486 system
management modes (SMM).

Topic Page

A-1

SMM Overview

A.1 SMM Overview

A11

Introduction

This programmer’s guide has been written to aid programmers in the creation
of software using the TI486 system management mode (SMM). SMM is
currently implemented in both the TI486SLC/E and the T1486DLC/E, and the
3-volt versions of each (T1486xLC/E-V) microprocessor.

For anintroduction to SMM and additional information, refer to the 71486 32-Bit
Microprocessor Reference Guide. Section A.13 describes the differences
between the TI486SLC/E and the TI486DLC/E with SMM. Section A.16
contains important information concerning SMM programming.

A.1.2 SMM Implementation

SMM operation in the TI486 microprocessors is similar to related operations
performed by the AMD and Intel microprocessors. Each of these three
microprocessors switches into real mode upon entry into the SMM interrupt
handler. Each manufacturer’s CPU has unique SMM code locations. The Tl
CPU has aprogrammable location and size for the SMM memory region. Each
of the manufacturer’s processors saves the programmer-visible register
contents upon entry and also saves the non-programmer visible register
contents. The TI486 CPU automatically saves the minimal register
information, reducing the entry and exit clock count to 140. This compares with
Intel’s clock overhead for entry and exit of 804 clocks and AMD’s minimum of
694 clocks. (See Section A.11 for a comparison of SMM overhead.)

The TI486 SMM implementation provides unique instructions that save
additional segment registers as required by the programmer, in addition to the
x86 MOV instruction that saves the general purpose registers.

Although all three manufacturer’s CPUs provide /O trapping, the T1486 SMM
simplifies identification of I/O type and instruction restarting. The T1486 SMM
process is unique in its ability to permit software relocation and sizing of the
SMM address region. This flexibility facilitates run time changes to SMM
support. This software flexibility allows an operating system or debugger to
change, modify, or disable the SMM code.

TI486 SMM Programmer’s Guide

SMM Implementation

A.2 SMM Implementation

The following sections provide an overview of TI486 SMM coding and
information helpful in developing SMM code.

A.2.1 Hardware Background

A.2.1.1 SMM Pins

The SMi and SMADS pins are used to implement SMM. The bidirectional SMI
pin is used by the chip set to signal the CPU that an SMI has occurred. While
the CPU is in the process of servicing an SMM interrupt, the same pin is used
to send a signal to the chip set to indicate that the SMM processing is
occurring. The SMADS address strobe is generated instead of the ADS
address strobe while executing or accessing data in SMM address space.

A.2.1.2 SMI Pin Timing

In order to enter TI486 SMM mode, the SMI pin must be asserted for at least
4 CLK2 periods. Once the CPU recognizes the active SMI input, the CPU
drives the SMI input low for the duration of the SMI routine. The SMi routine
is terminated with an SMI specific resume RSM instruction. When the RSM
instruction is executed, the CPU drives the SMI pin high for 2 CLK2 periods.
The SMI pin bidirectional design:

1) Prohibits more than one SMI interrupt from becoming active.
2) Provides feedback to the chip-set/core logic that an SMI is in process.

3) Provides compatibility with other SMM hardware interfaces.

A.2.1.3 Address Strobes

The Ti486 CPU has two address strobes, ADS and SMADS. ADS is the
address strobe used during normal operations. The SMADS address strobe
replaces ADS during SMM operations when data is written, read, or fetched
in the SMM defined region. Using a separate address strobe increases chip
set compatibility and control.

During an SMM interrupt routine, control can be transferred to main memory
via a JMP, CALL, Jcc instruction or execution of a software interrupt (INT).
Execution in main memory will cause ADS to be generated for code and data
outside of the defined SMM address region. (It is assumed, but not required,
that the chip set ultimately translates SMADS and a particular address to some
other address.) To access code in main memory that overlaps the SMM
address space, the MMAC bit (CCR1, bit 3) must be set. This allows ADS
strobes to be generated for MOV instructions that overlap main memory while
in SMM mode. Itis not possible to execute code in main memory that overlaps
SMM space while in the SMM mode.

SMADS can also be generated for memory reads/writes and code fetches
within the defined SMM region when the SMAC bit (CCR1, bit 2) is set while
in normal mode. The generation of SMADS would permit a program in normal

SMM Implementation

space to jump into SMM code space. Care should be taken to be in real mode
before the jump occurs into SMM space. A routine should be followed to
initialize used registers to their real-mode state. The RSM instruction should
not be used after jumping into SMM space unless return information is first
written into the SMM context area before the RSM instruction is executed.

A.2.1.4 Chip-Set READY

The T1486 CPU has one READY input. Chip sets that implement the dual
READY lines can OR the two ready lines together for the single READY. The
AMD implementation of SMM provides for two READY lines from the chip set,
one for SMM space (SREADY) and one for the normal READY.

A.2.2 SMM Software Considerations

A.2.2.1 SMM Handler Entry State

A-4

Atthe start of the SMM routine, before control is transferred to code executing
at SMM base, some of the CPU state is saved at the end of SMM memory. This
is one area where the T1486 CPU SMM state is unique. The CPU saves the
minimum CPU state information necessary for an interrupt handler to execute
and return to the interrupted context. The information is saved at the top of the
defined SMM region (starting at SMM base + size — 30h). Of the typically used
program registers only the CS, EFLAGS, CRO, and DR7 are saved upon entry.
This requires that data accesses use a CS segment override to save other
registers and access data. To use any other register the SMM programmer
must first save the contents using the SVDC instruction for segment registers
or MOV operations for general purpose registers (See SMM Instructions,
Section A.12). It is possible to save all the CPU registers as needed.

Unique to the TI1486 CPU is the saving of the previous IP, before the SMI, and
the next IP to be executed after exiting the SMI handler. Upon execution of an
RSM instruction, control is returned to the “next IP”. The value of the “next IP”
may need to be modified for restarting OUTSx/INSx instructions; this
modification is a simple move (MOV) of the “previous IP” value to the “next IP”
location. Execution is then returned to the I/O instruction, rather than the
instruction after the next I/O instruction. (The restarting of /O instructions may
also require modifications to the ESI, ECX, and EDI depending on the
instruction. See Section A.5 for an example.)

Figure A—1 and Table A-1 describe the SMM memory space header. The P
and | bits indicate whether a INSx/OUTSx and REP prefix were being
executed. IN/OUT instructions will be restarted by changing “NEXT IP” and
leaving the SMI handler.

The only area in the SMM header that the programmer should consider
altering is the “NEXT IP”. Altering any other header values can have
unpredictable results.

The EFLAGS, CRO0, and DR7 registers are set to the reset values upon entry
to the SMI handler. This has implications for setting break points using the
debug registers. Break points can not be set prior to the SMI using debug

T1486 SMM Programmer’s Guide

SMM Implementation

registers. The INT 3 debug code trap technique can be used, however, prior
to the occurrence of the SMI in SMM space. Once the SMI has occurred and
the debugger has control in SMM space, the debug registers can be used for
the remaining SMI execution.

Figure A—1. SMM Memory Space Header

31 0
Top of SMM —»
Acﬁiress Space DR7 -4h
EFLAGS
-8h
CRO
-Ch
Current IP 10h
Next IP
31 16 15 01_14n
Reserved CS Selector 18h
-18
CS Descriptor (Bits 63—32)
-1Ch
31 CS Descriptor (Bits 31-0) 210
-20h
Reserved Pl
-24h
Reserved
-28h
Reserved
-2Ch
ESI or EDI
-30h
Table A—1.SMM Memory Space Header
NAME DESCRIPTION SIZE
DR7 The contents of the debug register 7. 4 Bytes
EFLAGS The contents of the extended flag register. 4 Bytes
CRO The contents of the control register 0. 4 Bytes
Current IP The address of the instruction executed prior to servicing the SMI interrupt. 4 Bytes
Next IP The address of the next instruction that will be executed after exiting the SMM mode. 4 Bytes
CS Selector Code segment register selector for the current code segment. 2 Bytes
CS Descriptor Code register descriptor for the current code segment. 8 Bytes
P REP INSx/OUTSx Indicator 1 Bit
P =1 if current instruction has a REP prefix
P =0if current instruction does not have REP prefix
I IN, INSx, OUT, or OUTSx Indicator 1 Bit
| =1 if current instruction performed is an /O WRITE
I = 0 if current instruction performed is an I/O READ
ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or 4 Bytes
REP INSx instruction when one of the I/O cycles caused an SMI trap

Note: INSx=INS,

INSB, INSW, or INSD instruction.

Note: OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

A.2.2.2 Exiting the SMI Handler

When the RSM instruction is executed at the end of the SMI handler the IP is
loaded from the top of the SMM at the address (SMMbase +SMMsize - 14h)
called SMI_NEXTIP. This permits the instruction to be restarted. The values

A-5

SMM Implementation

of ECX, ESI, and EDI, prior to the execution of the instruction that was
interrupted by SMI, can be restored from information in the header that
pertains to the INx and OUTx instructions. The only registers that are restored
from the SMM header are CS, NEXT_IP, EFLAGS, CRO, and DR7.

A.2.2.3 Addressing SMM Code With the Same Address as Main Memory

To access main memory overlapping the SMM space (i.e., generate ADS from
memory MOV instructions rather than SMADS) set the MMAC bit in CCR1.
The following code will enable MMAC:

MMAC

shl 3

mov
out
in

mov
mov
out
mov
or

out

al, Oclh
22h, al
al, 23h
ah, al
al, Oclh
22h, al
al, ah
al, MMAC
23h, al

;select CCR1

;jget CCR1 current value

;save it

;set MMAC

;Now all data memory access will use ADS#, Code fetches will continue to
be done ;

with SMADS# from SMM memory

I

.
7

;Disable MMAC

mov
out
mov

out

al, Oclh ;select CCR1

22h, al

al, ah ;get old value of CCR1l
23h, al ;and restore it

A.2.2.4 Miscellaneous Execution Details

1)

Execution of SMM code begins at the start of SMM space. This is the value
entered onto the base portion of AAR4. The CS base will be set to the
ARR4 SMM base, and EIP will be equal to 0.

The A20 input to the CPU is ignored for all SMM space accesses. These
are all accesses which use SMADS.

All SMM instructions can be executed outside the SMM defined space,
provided that SMAC bit is set in CCR1 or if execution of an SMI handler
is in progress. (An SMI handler is “in progress” during the time the CPU
is driving the SMI pin low.)

Setting the MMAC bit permits the reading and writing of main memory
addresses that overlaps SMM memory while an SMl is in progress.

It is not possible to execute code in main memory that overlaps SMM
memory addresses.

T1486 SMM Programmer’s Guide

SMM Implementation

8)

9)

NMI is the only enabled interrupt at the entry to the SMI handler. It is
advised that system designers provide latches to disable NMI while the
SMl is in progress.

The SMI handler can execute calls, jumps, and other changes of flow and
will generate software interrupts and faults using the current definition of
the IDT. (Note that on entry to the SMI handler the IDT is not set to the reset
real mode value of 0:0.)

The SMIi handler can go from real mode to protected mode and vice-versa.
Almost anything that can be done normally may be done during the SMi
service routine.

Data from SMM memory is not cached.

10) If the location of SMM space is beyond 1 MByte, the value in CS will

truncate the segment above 16 bits. This would prohibit doing calls or
INTS from real mode without restoring the 32-bit features of the 486
because of the incorrect return address on the stack.

11) An undefined opcode exception will typically be generated when

conditions are not correct to permit the execution of SMM instructions.

12) To execute outside the SMM region (BIOS, debugger, etc.) the CS limit

must be changed after entry to the SMI handler. The limit of the CS
segment register is set to the size of the SMM region in AAR4. This means
that EIP cannot become larger than the SMM region size. Since jumps in
real mode do not change the CS limit, this has implications for software
interrupts and jumps out of SMM space. (See Section A.15 for details and
options.

13) Segment registers other than the CS have the limits set in the

non-programmer-visible portion that were present before the SMI. To
avoid a protection error due to limit or other violation, the RSDC SMM
instruction should be used to change the limit of the register in use. (See
Section A.14.)

A-7

Enabling SMM

A.3 Enabling SMM

The enabling and setup of SMM in the T1486 CPU is done by setting all 4 of
the SMM registers/bits to:

Register/Bit Locationt Value Description
SMI CCR1 bit 1 1 Enable SMI pin
Sm4 CCR1 bit7 1 Make ARR4 as SMM space
SM_loc ARRA4 bits 12—4 Start SMM region SMM base address
SM_size ARR bits 3-0 >4KB and < 16MB | SMM size

T See subsection 2.3.2.4 for further information on CCR1 and ARR4.

Setup example

SMM Location

SMM Size

mov
out
in

or

mov
out
out
mov
out
mov
out
mov
out
mov

out

A-8

= 0c8000H
= 8KB
al, Oclh
22h, al
ah, 23h
ah, 082h
al, Ocih
22h, al
23h, ah
al, Oceh
22h, al
al, Och
23h, al
al, Ocfh
22h, al
al, 082h
23h, al

; index to CCR1

; select CCR1 register

; index to CCR1

; select CCR1 register

; select

; write value

; write value

; read current CCR1 value

; enable SMI and SM4 region

; write new value to CCR1

; index ARR4 SMM base address bits <23-16>

; set ARR4 SMM base address upper bits

; index ARR4 SMM base address bits <15-12>

; and 4 bits for SMM size

; set SMM lower address bits and SMM size

TI486 SMM Programmer’s Guide

Instruction Summary

A.4 Instruction Summary

These instructions are valid only when CPL is 0 and either:

1) The SMAC bit is set and a valid SMM region is defined (the SMM size
defined to be greater that 0), and the SMI bit of CCR1 is set and the SM4
bit of CCR1 is set.

2) The SMI pin is driven low by the CPU. (The CPU drives SMI low after it
recognizes the SMI interrupt, and continues to drive it low until an RSM is

executed.)

The CPU will always generate an undefined opcode fault when the above
conditions are not met and one of the SMM instructions are executed.

The MACROs used in the descriptions below are excerpted from the file
smimac.inc, Section A.12.

Instruction Opcode Parameters Clocks
rsdc OF 79 [mod sreg3 r/m] | sreg3, mem80 14
rsldt OF 7B [mod 000 t/m] [mem80 14
rsm OF AA <hone> 58
rsts OF 7D [mod 000 r/m] | mem80 14
svdc O0F78 [mod sreg3 r/m] | mem80, sreg3 22
svidt OF 7A [mod 000 /m] | mem80 22
svts OF 7C mem80 22

A-9

Instruction Summary

A.4.1 Restore Register and Descriptor

Instruction Opcode Parameters Clocks
rsdc OF 79 [mod sreg3 r/m] | sreg3, mem80 14
Description:
Load the information at the mem80 into the sreg register and its associated descripton.
Example: ‘
_ds equ 3
Srsdc MACRO
db 0fh, 79%h
ENDM
cs_over MACRO
db 02eh
ENDM
; rsdc ds, cs:[590h]
cs_over ; ¢s segment override
Srsdc ; opcode for restore register
db (06 or (_ds SHL 3) ; build [mod sreg3 r/m]
dw 0590h ; displacement

A.4.2 Restore LDTR and Descriptor

Instruction Opcode Parameters Clocks
rsldt OF 7B [mod 000 r/m] | mem80 14

Description:

Load the local descriptor table register with the selector and the associated descriptor at the
mem80 parameter

Example:
Srsldt MACRO
db 0fh, 7bh
ENDM
cs_over MACRO
db 02eh
ENDM
; rsldt cs:[590]
cs_over
Srsldt
db 6 ; build [mod sreg3 r/m]
dw 590h ; displacement

A-10 TI486 SMM Programmer’s Guide

Instruction Summary

A.4.3 Resume Normal Mode

Instruction

Opcode

Parameters

Clocks

rsm OF AA

<none>

58

Description:

RSM restores the state of the CPU from the SMM header at the top of the SMM space and exit SMM
mode. This is the last instruction to be executed in SMI handler. This instruction can be executed in

either SM memory or main memory.
Example:
Srsm MACRO
db 0fh, Oaah
ENDM

mov ax, word ptr cs: [520]
mov bx, word ptr cs: [522]
mov cx, word ptr cs: [524]

rsm

restore
some

registers

last instruction in
SMI handler

A-11

Instruction Summary

A.4.4 Restore TSR and Descriptor

Instruction Opcode Parameters Clocks
rsts OF 7D [mod 000 r/m] | mem80 14
Description:
This instruction restores the task state register in the CPU from the mem80 location.
Example:
Srsts MACRO
db 0fh, 7dh
ENDM
cs_over MACRO
db 02eh
ENDM
; rsts cs: [600h]
cs_over
Srsts ; build [mod sreg3 r/m], 6 == DS: [dl6]
db 6 ; displacement
A.4.5 Save Register and Descriptor
Instruction Opcode Parameters Clocks
svdc OF 78 [mod sreg3 r/m] | mem80, sreg3 22

Description:

This instruction saves the 80486 segment register into the 80-bit mem80 location.

Example:

Ssvdc

cs_over

DS

i

; svdc cs:

cs_over

$svdc

MACRO
db 0fh,
ENDM

78h

MACRO
db 02eh
ENDM
EQU 3

[680h] , DS

db (06 or (_DS SHL 3))

dw

.
’

.
1

build [mod sreg3 r/m]

displacement

Note: The non-programmer-visible information of the segment register is also saved. See Section A.14
for a description of the storage format.

A-12

TI486 SMM Programmer’s Guide

Instruction Summary

A.4.6 Save LDTR and Descriptor

Instruction Opcode Parameters Clocks
svidt OF 7A [mod 000 r/m] | mem80 22
Description:
This instruction stores local descriptor table register to the 80-bit mem80 location.
Example:
Ssvldt MACRO
db O0fh, 7ah
ENDM
cs_over MACRO
db 02eh
ENDM
;7 svldt cs: [700h]
Cs_over
$svldt
db 6 ; build [mod sreg3 r/m]
dw 700h ; displacement

Note: The non-programmer-visible information about the register is also saved.

A-13

Instruction Summary

A.4.7 Save TS and Descriptor

Instruction Opcode Parameters Clocks
svis OF 7C mem80 22

Description:
Save the task register and associated descriptor into the 80-bit mem80 location.
Example:
Ssvts MACRO
db 0fh, 7ch
ENDM
cs_over MACRO
db 02eh
ENDM

; svts cs: [780h]

cs_over

Ssvts

db 6 ; build [mod sreg3 r/m]
dw 780h ; displacement

Note: The non-programmer-visible information about the segment register is also saved.

A-14 T1486 SMM Programmer’s Guide

SMI Handler Example

A.5 SMI Handler Example

This section contains fragments of typical coding found within TI486 SMI

handlers.
SMBASE= 0C8000H ; base address of SMM space
SMSIZE= 2 ; SMM space size is 8k bytes
SMEND = SMSIZE SHL (SMSIZE-1) ;works for most cases
INCLUDE smimac.inc ;See Section A.12
.MODEL SMALL
.386P
.CODE
COMMENT ~

Execution begins here in real mode, with CS defined at the SMBASE and EIP=0

A

public smi_start

smi_start:
jmp

EAXsavedd
DSsavedt
DStempb
$skipdata:
mov
svdc
rsdc
mov
mov
COMMENT 4

sskipdata ;skip data area, makes it easy for
;assembler

?

?

0ffh, 0ffh, 0,0,0,92h,8fh,0,0,0 ;4gig present segment

dword ptr cs:[EAXsavel],eax; save EAX

c¢s:, [DSsavel], ds ; save DS
ds,cs:, [DStemp] ; setDS
ax, cs

ds, ax

We need to extend the limits of DS so that we don‘t get a fault when we use
it to access low memory. It may be not present with a limit of 0, and these
values won’t be changed when we set it using a real mode load.

A-15

SMI Handler Example

;Determine Why Are We In The SMI Handler

COMMENT 4
Chip set/Core logic unique instructions will follow. The chip set will be
used to determine what caused the SMM interrupt to occur. The BIOS could also

“jump” to this point in the SMM region.
A

.
’

;Decision Tree:

’

;a) If timer, go to timer_expired
;o) If port i/o occurred to a trapped location, go to port_io_caused
;C) If the cpu was turned off, go to cpu_turned_ off

.
’

;timer_expired;

COMMENT 4
A chip set timer has expired. Unique code would appear to determine which
timer. Depending on the purpose of the timer the handler could;

12

: 1) Reduce the clock frequency

; 2) Execute a halt instruction and enter suspend mode
; 3) Turn current off to the CPU

: 4) Turn off a peripheral device

; 5) Reset the timer and increment a counter

’
~

reduce_clock:

COMMENT ~

To go to a lower CPU current requirement the CPU clock can be reduced. The
CPU clock can be reduced from its current setting to a lower value. That
value could be zero. Since the CPU is a static device and will maintain the
state of all its registers in the absence of a clock input there is no state
saving requirement. It is assumed that by writing to the chip set it will
reduce or zero the clock. If the clock is stopped then the next instruction
to be executed will be one in this SMI handler immediately following the
point where the chip set turned the clock off.

A

jmp end_timer:

A-16 Ti486 SMM Programmer’'s Guide

SMI Handler Example

execute_halit:

COMMENT 4

To go to a lower CPU current consumption the SMI handler will now execute a
HALT instruction. The HALT instruction will put the CPU into a low power
sleep mode until a non-SMI interrupt occurs. Interrupt(s) will need to be
enabled to permit the interrupt to wake-up the CPU. A common choice would be
the keyboard interrupt. A flag would need to be set in main memory to
indicate that the SMI handler should be jumped into or SMI created, to permit
it to restore the state/context of the CPU, prior to the halt for servicing
the interrupt. The interrupt in low memory must point to the BIOS handler for
the return to be made to the SMI handler. An interrupt handler in SMM space

could also service the interrupt rather than a BIOS routine.
A

;[Alternatively the chip set could pull the SUSP# CPU pin low to enter]
; [suspend mode. The chip set would have to pull SUSP# high to exit]
; [suspend mode.]

:To be sure that BIOS will get control on intr

;check for keyboard interrupt vector pointing to BIOS

;1f not BIOS, save existing and set to BIOS vector or jump to
can_not_halt

;Set a flag in main memory indicating SMI HALT executed

;If an SMM space interrupt handler is used then IDTR and/or the vector

;would need to be updated to the SMM space routine.

mov ax, 0 ; point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in main memory
;<set cpu state for bios int>
halt ; last instruction executed here
;<the chip set could remove the clock to go to suspend mode now>
nop
can_not_halt: ;CPU state will not be correct at interrupt

jmp end_timer

A-17

SMI Handler Example

turn_off_cpu:

; set bit in main memory to indicate to the BIOS that SMI handler
; turned power off to CPU and CPU state should be restored by
; the SMI handler

mov ax, O ; point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in memory

; (save entire CPU state. See Restore CPU state label)

: (Chip set specific instructions to be executed to remove power to
; cpu)

; jmp end_timer

turn_off_peripheral:
; Chip set specific instructions to turn off peripheral and enable
; chip set I/0 trapping of the devices io range or enable timer
; to allow polling of peripheral requirements.
jmp end_timer
reset_timer:
; Chip set specific instructions to be executed to reset a timer and
; possibly increment a counter to maintain number to time out occurred
; for a particular device.
Jjmp end_timer

end_timer:

jmp done

A-18 T1486 SMM Programmer’s Guide

SMI Handler Example

port_io_caused:

COMMENT 4
The TI486 SMM support for I/0 being interrupted provides information that

permits the restarting of the I/O instruction without investigating the
actual code where the instruction is located.

Many things can be done at this point beyond turning on a powered down
peripheral. The CPU clock could now be speeded up in anticipation of heavy
CPU processing requirements, timers could be reset, etc.

A

; ** Restart the interrupted instruction

mov eax,dword ptr [SMEND+SMI_PREVIQUSIP]

mov dword ptr [SMEND+SMI_NEXTIP],eax

mov al,byte ptr cs:[SMEND+SMI_BITS]
;test for REP instruction

bt al,2 ;rep instruction?

; (result to Carry)
adc ecx, 0 ;if so, increment ecx
test al,1 shl 1 ;test bit 1 to see

;1f an OUTS or INS
jnz out_instr

COMMENT *

** A port read (INx) instruction caused the chip set to generate an
SMI instruction. Restore EDI saved by SMI microcode.

A

mov edi, dword ptr cs:[SMEND+SMI_EDIESI]
jmp commonl
out_instr:

COMMENT ~
** A port write (OUTx) instruction caused the chip set to generate an

SMI instruction. Restore ESI saved by SMI microcode.

mov esi, dword ptr cs:[SMEND+SMI_EDIESI]

commonl:
Jmp done

A-19

SMI Handler Example

cpu_turned_off:

COMMENT 4

This handler turned off the current to the CPU. Before it did, the handler
set a bit in main memory or battery backed-up CMOS indicating that this event
happened. At reset, BIOS will determine that this was the case and ”jump”

SMI handler will then restore the entire state/context
of the CPU prior to current being removed. The bit in main memory would also
be cleared indicating that the SMI handler had removed current.

into the SMI handler.

A

mov
mnov
mov
mnov
mov

ax, 0
ds, ax
[4851, O
ax, cs
ds, ax

{Restore Complete CPU State}

A-20

eax
ebx
ecx
edx
edi
esi
ebp
esp
cs
ds
ss
es
fs
gs
ldtr
gdtr
idtr
tr
eflags
cr0
cr2
cr3
dr0
drl
dr2
dr3
dr6
dr7
ccr0
cerl
ccr2

;use
;use
;use
;use
;use
;use

rsdc
rsdc
rsdc
rsdc
rsdc
rsdc

point to bottom segment

ds segment is now in main memory
clear BIOS flag in main memory
restore ds to SMM area

Save the configuration registers with index C3h through FFh

TI486 SMM Programmer’s Guide

SMI Handler Example

’
’

’

for future TI486 product compatibility

arrl
arr2
arr3
arrd

jmp done

done:

return

mov
rsdc
rsm

eax, cs: [EAXsave]
ds,cs:, [DSsave]

A-21

Testing/Debugging SMM Code

A.6 Testing/Debugging SMM Code

There are several ways to debug SMM code:

1) Emulation Technology TI486SLC/E pod with an HP 16500/550 Logic
Analyzer.

B Supports selective trace capture

B SMM instruction disassembly

2) Periscope — Software only

B Full screen debugging

B TSR

B Single stepping and break points
3) DOS debug — Software only

B Single stepping and break points

4) Other selected logic analyzers

A.6.1 Software Only Debugging

A-22

It is possible to write an SMI handler and debug it as a TSR. You will need to
use a debugger that can set break points at any address in memory. Use the
following code sequence as a model of how to build your SMI handler as a
TSR. This code sequence also contains a section that loads the CS
non-programmer-visible section to change the limit. This is required so that a
protection error will not occur whenever code is executed outside of the SMM
region. It is assumed that ADS and SMADS from the CPU are ORed together
by the chip set or external logic. Also, the chip set should support
programmable SMM locations.

This code will mark the SMI handier address in the user interrupt INT 66
location (0:198h). This is done so that the programmer can determine the
location of the SMM region and set break points.

The debugger will only be able to set a code break point using INT 3 outside
of the SMI handler. This is because the debug control register DR7 is set to
the reset value upon entry to the SMI handler. This causes break conditions
in DRO-3 to be disabled. Debug registers can be used if set after entry to the
SMI handler and DR0-3 are saved.

Using a TSR to debug SMI has some limitations:
Bl Other code could overwrite the region.

W Jumps or calls must be to known offsets.

TI486 SMM Programmer’s Guide

Testing/Debugging SMM Code

What follows is an example that can be used for the first step in debugging of
SMI code:

.MODEL SMALL
.STACK

.386P

INCLUDE smimac.inc

RD_WR EQU 12h ;read/write
EX_RD EQU 12h ;execute/readable
COMMENT 4

This is an example of SMI code which can exist below the 1 MByte boundary. It
must be before the 1 MByte boundary because it uses the value in the cs
register in order to form fixups based on its location as well as for the
jump to return to real mode.

A

.CODE

smi_handler:

Jmp Sover ;pass data area for assembler
db 100 dup (?)
stacksmilabel

;our smi handler gdt

’

gdt dg 0 ;null
ADDR = 0
LIMT = 100000h
g_big = §$ - gdt
dw (LIMT-1 and O0ffffh)
dw (ADDR and Offffh)
db ((ADDR SHR 16) and 0ffh)
db RD_WR OR (0 SHL 5) OR (1 SHL 7)
db (((LIMT-1) SHR 16) AND 0fh) OR (0 SHL 6) OR (1 SHL 7)
db ((ADDR SHR 24) and 0£ffh)
g _code = $-gdt
ADDR = 0
LIMT = 100000h
Adw (LIMT-1 and Offffh)
dw (ADDR and Offffh)
db ((ADDR SHR 16) and 0ffh)
db EX_RD OR (0 SHL 5) OR (1 SHL 7)
db (((LIMT-1) SHR 16) AND Ofh) OR (0 SHL 6) OR (1 SHL 7)
db ((ADDR SHR 24) and 0ffh)

A-23

Testing/Debugging SMM Code

GDTSIZE

csareadb
dsareadb
ssareadb
esareadb
fsareadb
gsareadb
tsareadb

gdtsave

= ($-gdt)

dafz

gdtnewdw

eaxsave
ebxsave
ecxsave
edxsave
espsave

Sover:
COMMENT

dadr
dade
ddar
dadr
ddr

A

GDTSIZE - 1

dd

10
10
10
10
10
10
10

?

dup
dup
dup
dup
dup
dup
dup

(?)
(?)
(?)
(?)
(?)
(?)
(?)

;address

The debugger may want to use ss,ds,es,fs,gs. The limits may be shortened if
the program had been running in protected mode. We therefore extend the
limits of these registers before we enable the debugger.

~

svdc
svdc
svdc
svdc
svdc
mov

mov
mov

COMMENT

A

cs:, [ssareal, ss
cs:, [dsareal ,ds
cs:, [esareal , es
cs:, [fsareal, fs
cs:, [gsareal ,gs

cs: [eaxsave] ,eax
cs: [ebxsave], ebx
cs: [espsave] , esp

;save the stack pointer

Clear VM flag in Eflags (See Section A.16).

A

rsdc
mov

mov

mov

mov
push
mov

push
push

iretd

Q@:

A-24

Ss,
esp,
ax,
ss,
eax,
eax
eax,
eax,
eax

cs:, [gdt+g big]
offset smistack

cs
ax
0

cs

offset @F

Ti486 SMM Programmer’s Guide

Testing/Debugging SMM Code

sgdt fword ptr cl: [gdtsavel]
COMMENT 4

fixup code for smi base
A

;patch gdt
mov eax,cs ;segment of us here
shl eax, 4
mov ebx,offset gdt ;offset to here
add ebx, eax
mov dword ptr [gdtnew+2], ebx ;define gdt base

;patch far jump into protected mode
mov ebx,offset S$next0
add ebx, eax
mov dword ptr cs:[patchl],ebx
;patch far jump back to real mode
mov word ptr cs:[patch2],cs

start here

COMMENT 4
extend the limits for the code segment
A

db 66h

lgdt fword ptr [gdtnew]

mov eax, cr0

or al,1l
mov cr0, eax
db 66h
db Oeah
patchldd ?
dw g_code
$Snext0: mov bx,g_big ;extend the limits of the data segments

mov ss,bx
mov ds, bx

mov es,bx

mov fs,bx

mov gs,bx

xXor al,l

mov cr0, eax ;back to real mode

db Oeah

dw offset S$nextl
patch2 dw ? ;far jump to set ¢s and writable bit
$Snextl:
COMMENT 4

define a valid stack
A

mov ax,cs
mov ss,ax
mov esp,offset stacksmi

A-25

Testing/Debugging SMM Code

COMMENT *
kk%* Tngert user specific smi code here & set breakpoints. ****
A

db 66h

lgdt fword ptr cs:[gdtsave]

rsdc ss,cs:, [ssarea]

rsdc ds,cs:, [dsareal

rsdc es,cs:, [esareal

rsde fs,cs:,flsareal

rsdc gs,cs:, [gsareal

mov eax,dword ptr cs:[eaxsave]

mov ebx,dword ptr cs:[ebxsave]

mov esp,dword ptr cs:[espsave]

rsm
smi_handlere:
SMI_SIZE = offset smi_handlere - offset smi_handler
Install PROC

;¥**** Enable SMM Region *****%*
; Don‘t enable SMI yet because we’re not ready for it.

mov al, Oclh ;select CCR1

out 22h,al

in al, 23h ;read CCR1

or al, 80h ;enable SMADS# and SMM region (not SMI)
mnov ah, al

mov al, Ocilh ;select CCR1

out 22h, al
mov al, ah
out 23h, al ;write new CCR1 value

mov eax,offset endresident
mov ebx, cs

shl ebx, 4

add eax, ebx

add eax,0fffh

and eax,NOT Offfh ;eax = start of smi space
mov edx, eax
push edx

A-26 TI486 SMM Programmer’s Guide

Testing/Debugging SMM Code

R R R RS R R R SRR R SRR TR RS SRR SRS EEEEEEEEREEE RS EEREESEEEEEEEEEEEEEEREE RS
7

; * Load SMI address and size into ARR4

i
pREKEKK

ek hkkkhk
’

j¥**xx% Config Reg

j¥*xx%x% Address

mov
out
mov
shr
out

mov
out
mov
shr
out

mov
out
mov
shr
and
or

out

al, Ocdh
22h, al
eax, edx
eax, 24
23h, al

al, Oceh
22h, al
eax, edx
eax, 16
23h, al

al, Ocfth
22h, al
eax, edx
eax, 8
al, 0f0Oh
al, 1
23h, al

31-28 27-24, 23-20 19-16, 15-12 <size>
31-28 27-24, 23-20 19-16, 15-12 11-8, 7-4 3-0

;region 4 1lst word

; get smi handler address
;move address <31-24> to al
; [7-0]=>smbase[31-24]

;region 4 2nd word

; get smi handler address
; move address <23-16> to al
; [7-0]=>smbase[23-16]

;region 4 3rd word

; get smi handler address

; move address <15-12> to al
; clear bottom nibble

; select 4KB SMI size

; and [3-0]=>smsize

R EEEEEEEE SRR SRR SR EREEEEEEEEEEREEEREEEEERERERESEEEEEEEEEREEEREEEREEES SRS EEET
7

pop
mov
add
mov
shl
sub
she
push
shr
mov
mov
mov
mov
int
pop

edx

eax, edx
edx,1000h
ebx, es
ebx, 4
edx, ebx
edx, 4

dx

eax, 4
es,ax

ds, ax
dx, 0

ax, 2566h
21h

dx

;start of smi area

;reserve 4k for smi handler
;current psp

;bytes to reserve
;paragraphs to reserve in dx

;paragraph of smi handler
;save for later

;always starts at O
;int 66h vector at 0:198h

;tsr address

A-27

Testing/Debugging SMM Code

;move the code to the smi_area

mov al, Oclh
out 22h, al
in al, 23h
mov ah, al
mov al, Oclh
out 22h, al
mov al, ah
or al, 04h
out 23h,al

RELOCATE = 0
IF RELOCATE

;select CCR1

;read CCR1
;save old value
;select CCR1

;get old value
;enable SMAC
;be clean on ah for later

sub egi,esi
sub edi, edi
mov cx,Cs
mov ds,cx
mov ecx, (SMI_SIZE+3)/4
rep movs dword ptr es:[edi],dword ptr ds:[esil
ELSE
;put the far jump at the start of the smi_area to above code
mov byte ptr es:[0],0eah
mov word ptr ex:[1],offset smi_handler
mov word ptr ex:[3],cs
ENDIF
;restore smi state and enable SMI
mov al, Oclh ;select CCR1
out 22h, al
mov al, ah ;get old wvalue
or al, 02h ;set SMI bit to enable SMI
out 23h,al ;be clean on ah for later
COMMENT 4

SMIs may happen at any time now.

A

;dx = offset in this segment to tsr

mov ax, 3100h
int 21h
Install ENDP
;——=—end of resident code---—-
endresident label byte

db 2000h dup (?)

END Install

’.**

A-28

; Request function 31h, error code=0

; Terminate-and-Stay-Resident

TI486 SMM Programmer’s Guide

T1486 Power Management Features

A.7 TI486 Power Management Features

The TI486 CPU provides several methods and levels of power management.
The fully static design, suspend mode, system management mode (SMM),
and 3.3-volt operation can be used to achieve optimum CPU and system
power management. The following table summarizes the various power
management options for the T1486:

Option

Power Savings

Reduced Clock Frequency

lcc = (12x focLk2 (MHZz)) + 150 MA @ 5V

Lower Supply Voltage (Vo)

lcc = (130 x Vo) — 256 mA @ 25 MHz

Suspend Mode

2% of typical loc

Remove Clock

25% of typical I

Suspend Mode and Remove Clock

400 pA

Remove Power

OpA

A.7.1 Reducing the Clock Frequency

The T1486 CPU is a fully static design meaning that the input clock frequency
can be reduced or stopped without a loss of internal CPU data or state. The
system designer can make decisions to reduce the clock by utilizing the SMM
capabilities to support Advanced Power Management (APM) software APl in
concert with chip set capabilities. When the clock is removed then restarted,
CPU execution will begin with the instruction where the clock was removed.

A.7.2 Suspend Mode

The T1486 CPU supports suspend mode operation that can be entered either
through software or hardware initiation.

Software initiates suspend mode through execution of a HALT instruction.
After HALT is executed, the CPU enters suspend mode and asserts suspend
acknowledge (SUSPA), if enabled.

Hardware initiates suspend mode by using the SUSP and SUSPA pins of the
Ti486. When SUSP is asserted the CPU completes any pending instructions
and bus cycles and then enters suspend mode. Once in suspend mode, the
SUSPA pin is asserted by the CPU.

A-29

Loading SMM Memory

A.8 Loading SMM Memory With an SMM Program from Main Memory

SMI
SMAC
MMAC
SM4

A-30

mov
out
in

mov
mov
out
mov
or

out
mov
mov
mov
mov
mov
mov
rep
mov
out
in

mov
mov
out
mov
and
out

N

To load SMM memory with an SMI interrupt handler it is important that the SMI
interrupt does not occur before the handler is ready to accept it. This can be
done by not having SMAC = 0 and SMI = 1 (in the CCR1 register) before the
SMI handler is installed. It is necessary o set SM4 = 1 and ARR4 with
appropriate values before using the SMM memory. To load SMM memory with
aprogram itis first necessary to enable SMM with the exception of the SMI pin
by setting SMAC. (See Section A.3.) The SMM region is then mapped over
main memory at the same location. This is done by the generation of SMADS
for memory access for the SMI. A REP MOV instruction can then be used to
transfer the program to the location. Then, turn off SMAC to activate potential
SMis.

shl 1

shl 2

shl 3

shl 7
al, Oclh ; index to CCrl
22h, al ; select CCR1 register
al, 23h ; read current CCR1l value
ah,al ;
al, Oclh ; index to CCR1
22h, al ; select CCR1 register
al, ah
al, SMI or SMAC;
23h, al ; write new value to CCR1
ax, SMI_SEGMENT
es, ax
edi, O ;start of the SMM area

esi, offset SMI_ROUTINE

ds, seg SMI_ROUTINE

ecx, (SMI_ROUTINE_LENGTH+3) /4

movs dword ptr es:[edi],dword ptr ds:[esil]

al,Oclh ; index to CCR1

22h, al ; select CCR1 register

al, 23h ; read current CCR1 value
ah,al

al, Oclh ; index to CCR1

22h, al ; select CCR1 register

al, ah ‘

al,NOT SMAC ;disable SMAC, enable SMI#
23h, al ; write new value to CCR1

TI486 SMM Programmer’s Guide

Detection of TI486 CPU

A.9 Detection of T1486 CPU

COMMENT 4
Name detect.ASM

Purpose: * Detect the presence of a TI486 micprocessor.
* The undefined flags on a TI486 remain unchanged
following a divide. The Intel part will modify some of the
undefined flags. In this example the ZF flag should change.
* pseudocode
save flags before
load dividend and divisor
do unsigned divide
save flags after
cmp flags before with flags after
return a 1 if flags are unchanged
(TI486 part detected)

Called by: Main();
Inputs: none

0 if Intel is detected

Returns: ax

ax = 1 if TI486 is detected
A
DOSSEG ;select Intel-convention segment ordering
.MODEL SMALL ;select small model (nearcode and data)
.DATA ;TC—compatible initialized data segment
flags_mask dw 08D5H ;mask to isolate the undefined bits
;masks all but OF, SF¥,ZF,AF,PF,CF flags
flags_before DW ? ; flags before div
flags_after DW ? ; flags after div
dividend DW OFFFFh ; dividend
divisor DW 4h ; divisor
result DW 0 ; results of flags compare
; O=different (not TI486)
; l=same (TI486)
.DATA? ;TC-compatible uninitialized data segment
.CODE ;TC—compatible code segment

PUBLIC _TI486_detect

_TI486_detect PROC ;function (near-callable in small model)
.286
push bp ; “C” calling convention
mov bp, sp
pusha ; save processor state
pushf

A-31

Detection of TI486 CPU

; set flags to a known value

mov ax, 0

cmp ax,ax

pushf ; load flags into ax

pop ax

mov ds: [word ptr flags_beforel], ax ;save flags to mem

; do a div instruction so that the signature of the undefined flags
; can be observed

mov ax, dividend

mov dx, 0

mov bx, divisor

div bx

pushf ;load flags into ax
pop ax

mov flags_after, ax ;save flags to mem

; recall flags_before and clear unwanted bits
mov ax, flags_mask
and ax, flags_before

; recall flags_after and clear unwanted bits
mov bx, flags_mask

and bx, flags_after

; compare the signature of the undefined bits before and after

cmp ax,bx
jnz Diff
mov result, 1l ; set if flag bits are unchanged

; TI486 part found
jmp Done

Diff: mov result,0 ; clear if flag bits are changed
; TI486 part not found

Done:
popf ;restore processor state
popa
mov ax, result ; return value in ax
pop bp ; "C" calling convention
ret
_M5_detect ENDP
END ;end detect.ASM module

A-32 T1486 SMM Programmer’s Guide

Detection of SMM Capable Version

A.10 Detection of SMM Capable Version

At powerup/reset the EDX register will contain part type and stepping

information.
EDX Stepping SMM Available
0410h A No
0411h B Yes

The following technique can be used to identify the stepping of a Ti486 CPU
after the reset information in EDX is lost. The method uses two functions: the
mixed C and assembler function isb() and assembly language illegal opcode
handler interrupt handler ill_op. The function isb() will return a 1 to indicate
when a B step part is present, 0 otherwise. The function isb() installs an illegal
opcode handler, ill_op. Then isb() sets up conditions to execute an SMM
segment save instruction, SVDC. If an A step part is present the illegal opcode
handler will be invoked. The ill_op process will then modify the return address
on the stack to return to the instruction after the SVDC instruction. The storage
location used by the SVDC instruction is then checked to see if it changed. If
it has changed the part being tested is a B step part. This detection technique
must be run at protection ring 0.

//***
//********************************* isb.c (R SRS E SRR RS SRR RS SRS ESEEE S S S

//***

#define TRUE 1
#tdefube FALSE 0

int old_off;
int old_seg;

extern ill_op();
//***

// Function: isb ()
// Returns: 1 if TI486 B step
// 0 if TI486 A step

//***

isb ()
{
int i, b_step;
char mem([10];
for (i=0; i<10; mem[i++]1=0;

asm {

.386
extrn _ill_op:near

A-33

Detection of SMM Capable Version

I.***

;¥***%*% get present illegal opcode handler
;***

push es

push bx

mov ax, 3506h
int 21h

mov old_seg, es
mov old_off, bx
pop bx
pop es

;***

j****** ingtall new illegal opcode handler
;***

push dx
push bx
push ds

mov ax, 2506h

mov dx, OFFSET _ill_op
mov bx, c¢s

mov ds, bx

int 21h
pop ds
pop bx
pop dx

char save_ccrl, save_cf, save_ce, save_cd;

B E AR RS EEESEEEEEEEEEEREEEREEEEEEEEEEEEESEEREREESEREEEREREEESE]
7

jrxxxxkk get SM4 and SMAC and SMI bit to allow SMM instructions
I.***
mov al, Oclh

out 22h, al

in al, 23h

mov byte ptr [save_ccrl, al

or al, 86h

mov ah, al

mov al, Oclh

out 22h, al

mov al, ah

out 23h, al

;***

;R**FF* Setup non-zero SMM region
;***
mov al, Ocfh

out 22h, al

in al, 23h

mov byte ptr [save_cf], al

mov al, Ocfth

out 22h, al

mov al, 1

out 23h, al

A-34 TI486 SMM Programmer’s Guide

Detection of SMM Capable Version

I-***

j¥¥*x*% GSet SMM region to the top of memory to
j****%* ayoid overlapping with this program
I.***
mov al, Ocdh

out 22h, al

in al, 23h

mov byte ptr [save_cd], al

mov al, Oceh

out 22h, al

in al, 23h

mov byte ptr [save_cel, al

mov al, Ocdh

out 22h, al

mov al, Offh

out 23h, al

mov al, Oceh

out 22h, al

mov al, Oh

out 23h, al

mov al, Ocfh

out 22h, al

in al, 23h

and al, Ofh

out 23h, al

;¥**x%* flush prefetch after changing configuration

jmp $+2

;***

j¥*¥xx%x Execute SMM instruction svdc
;***
;svdc word ptr mem, ds

Word ptr mem == ss: [bx]
lea bx, mem
db 36h 0fh 78h 1fh

’.***

j¥***** restore configuration registers
;***
mov al, Ocdh

out 22h, al

mov al, byte ptr save_cd

out 23h, al

mov al, Oceh

out 22h, al

mov al, byte ptr save_ce

out 23h, al

mov al, Octh

out 22h, al

mov al byte ptr save_cf

out 23h, al

mov al, Oclh

out 22h, al

mov al byte ptr save_ccrl

out 23h, al

A-35

Detection of SMM Capable Version

’.***

;*¥**%*%*%x yegtore o0ld illegal opcode handler
;***

push dx
push bx
push ds

mov ax, 2506h

mov dx, OFFSET old_off
mov bx, OFFSET old_seg
mov ds, bx

int 21h
pop ds
pop bx
pop dx

) // isb asm region

for (i=0, b_step=FALSE; 1i<10; ++i)

if (mem[i] != 0)
{
b_step = TRUE;
break;
}

return (b_step);
} // isb ()

;********************** bad_op.asm khkkkhkkkddkhkhrkdkdhkxdkhkkhkhhrkxr

public _ill_op
assumecs:_TEXT

_TEXT segment byte public ‘CODE’
_1ll_op proc near

pop ax
add ax, 5
push ax
iret

_1ill1 _op endp

_TEXT ends

end

A-36 TI486 SMM Programmer’s Guide

SMM Feature Comparison

A.11 SMM Feature Comparison

Feature TI486 386SL AMD
SMM Entry Point Base of SMM Space 38000h Reset Vector
CPU State Save Area | Top of SMM Space 3FFA8h-3FFFFh 60000h—600CANh
and 60100h—60126h
SMM Space Programmable 38000/30000h Entire Address Space
(4K to 32M (32K/64K)

Data Auto-Saved

8 32-bit registers
1 16-bit register
1 4-bit register

44 32-bit registers
9 16-bit registers

| 53 32-bit registers

8 16-bit registers

SMM Memory Restric- | None 8-bit on 8 MHz XD Bus | Non-pipelined

tions No dynamic bus-sizing
Normal Mode SMM Yes Yes No

Memory Access

Hardware Pins 2 NA — Must use 82360 |4

Incremental CPU State | Yes - No No

Save Instructions

I/O Trapping Yes Yes Yes

SMI Input Maskin g Yes Yes No

A-37

SMM Instruction Macros

A.12 SMM Instruction Macros — SMIMAC.INC

A

COMMENT 4
Basic macros which allow you to create your own mod/rm bytes

A

cs_over

Ssvdc

Srsdc

$svldt

Srsldt

Ssvts

Srsts

Srsm

A-38

MACRO
db
ENDM
MACRO
db
ENDM
MACRO
db
ENDM
MACRO
db
ENDM
MACRO
db
ENDM
MACRO
db
ENDM
MACRO
db
ENDM
MACRO
db
ENDM

COMMENT A
SMM Macro Implementation, smimac.inc (by Dean C. Wills)

This Section provides a complex set of macros that generate SMM opcodes
containing the appropriate mod/rm bytes. For explicit SMM opcode definition,
basic macros that define the opcode byte alone are provided with a’$’ prefix
to distinguish them from the other macros.

The complex macros require that the labels they access correspond to the
segment specified or the macros will be inoperative. Segment overrides must
by passed to the macro as an argument. If an address size override is used,
afinal argument of ‘1’ must be passed to the macro. Segment and address size
overrides must be presented explicitly to prevent the assembler from
generating them automatically and breaking the macros. Examples of these
macros are provided in the file smitest.asm.

2eh

0fh, 78h

0fh, 79

0fh, 7Ah

0fh, 7Bh

0fh, 7Ch

0fh, 7Dh

0fh, AAh

Ti486 SMM Programmer’s Guide

SMM Instruction Macros

COMMENT 4

Complex macros which gererate mod/rm automatically
A

svdc MACRO segover, addr, reg, adover
domac segover, addr, reg, adover, 78h
ENDM

rsdc MACRO segover, addr, adover
domac segover, addr, reg, adover, 7%9h
ENDM

svldt MACRO segover, addr, adover
domac segover, addr, es,adover, 7ah
ENDM

rsldt MACRO segover, addr, adover
domac segover, addr, es, adover, 7bh
ENDM

svts MACRO segover, addr, adover
domac segover, addr, es, adover, 7ch
ENDM

rsts MACRO segover, addr, adover
domac segover, addr, es, adover, 7dh
ENDM

rsm MACRO
db ofh, Oaah
ENDM

COMMENT 4

Sub-Macro used by the above macro
A

domac MACRO segover, addr, reg, adover, op
local placel,place2, count

count =0
ifnb <adover>

count=count+1
endif
if (count eqg 0)

nop ;we’'re expanding the opcode one byte

endif
placel = §

;pull off the proper prefix byte count
mov word ptr segover addr,reg
org placel+count
mov word ptr segover addr,reg

place 2 = ¢
;patch the opcode

org placel+ (count*2) -1
db OFh, op
org place2

ENDM

A-39

SMM Instruction Macros

COMMENT 4

Offset Definition for access into SMM space
A

SMI_SAVE STRUC

$EDIESI DD ?

$RES3 DD ?

$RES2 DD ?

$BITS DD ?

$CSDES DO ?

$CSSEL DW ?

$RES1 DW ?

$NEXTIP DD ?

$PREVIOUSIP DD ?

$CRO DD ?

SEFLAGS DD ?

$DR7 DD ?
SMI_SAVE ENDS ;
SMI_EDIESI EQU ($EDIESI - SIZE SMI_SAVE)
SMI_RES3 EQU ($RES3 - SIZE SMI_SAVE)
SMI_RES?2 EQU (SRES2 - SIZE SMI_SAVE)
SMI_BITS EQU ($BITS - SIZE SMI_SAVE)
SMI_CSDES EQU ($CSDES - SIZE SMI_SAVE)
SMI_CSSEL EQU ($CSSEL - SIZE SMI_SAVE)
SMI_RES1 EQU ($RES1 - SIZE SMI_SAVE)
SMI_NEXTIP EQU ($NEXTIP - SIZE SMI_SAVE)
SMI_PREVIOUSIP EQU ($PREVIOUSIP - SIZE SMI_SAVE)
SMI_CRO EQU ($CRO - SIZE SMI_SAVE)
SMI_EFLAGS EQU ($EFLAGS - SIZE SMI_SAVE)
SMI_DR7 EQU ($DR7 - SIZE SMI_SAVE)

A-40 T1486 SMM Programmer’s Guide

SMM Instruction Macros

SMM Instruction macro example: TEST.ASM

.MODEL SMALL
.386

COMMENT *

SMM Macro Examples

by Dean C. Wills

include smimac.inc
.DATA

public hello, there ; so they’ll be easy to find in map file.

there db 10 dup (?)
.CODE
svdc cs:,hello,ds
rsdc ds,cs:,hello
rsdc gs,cs:,hello
svdc cs:, [eax+ebx*2+hello] ,ds, 1
;address size override here
svdc , [ebx], fs,1

;address size override
svdc ,there, gs
svldt cs:,hello
rsldt cs:,hello

rsts cs:,hello
svts cs:, [eax+ebx*2+hello], 1l;address size override here
svldt , [ebx],1
;address size override
svts , there
hello db 10 dup (?)
align 16 ;align so we’ll create a more legible

;map file

end

A-41

TI486DLC/E and SMM

A.13 TI486DLC/E and SMM

A-42

With respect to SMM programming, the TI1486DLC/E with SMM differs from the
TI486SLC/E in the following ways:

1) The SMM memory region size ranges from 4 KBytes to 4 GBytes.

2) The SMM memory base location can be from 0 Bytes to 4 GBytes less 4
KBytes (FFFF EFFFh).

3) Address region 4 is eight bits wider to support a 4 GByte physical address
space by adding address lines 24 to 31. The additional lines are indexed
by 0CDh.

Ti486 SMM Programmer’s Guide

Format of Data Used by SVDC/RSDC Instructions

A.14 Format of Data Used by SVDC/RSDC Instructions

The SVDC/REDC instructions should be used to change limits and r/iw
priveleges of segment registers before they are used by SMM code. The
instructions use a 10 byte area that is comprised of two major portions of the
segment register value/contents and the non-programmable visible internal
descriptor that has the following format:

| Segment Register Descripton <8 bytes>|Segment Register Selector <2 bytes>|

1) Segment Register Selector: This is the segment if the segment
register was loaded in real mode or the selector if the segment register was
loaded in protected mode. In real mode, this is also equal to the Segment
base divided by 10h and clipped to 16 bits.

dw | Selector or Segment |
2) Segment Register Descriptor, which is the actual descriptor if the

segment was loaded in protected mode, or a psuedo-descriptor if the segment
register was loaded in real mode.

dw | Limit [15:0] |

dw | Base [15:0] |

db | Base [23:16] |

db | P | DPL | 1 | E | DscTy[2:0] | A |

db |G | D | r | AVL | Limit [19:16] |

db | Base [31:24] |

Limit Max size

Base Starting Address

A Segment Accessed Flag

DscTy E == 1l: Executable, E == 0: Data,
C|R ED|W
C == 1: Conforming ED == 1: Expand Down
R == 1: Readable W == 1: Writable

DPL Protection Level

P 1 Segment present, 0 not present

AVL

D 0 16 bit address and operand size

G 0 byte, 1 page granular

A-43

Format of Data Used by SVDC/RSDC Instructions

Example:

;Load SS descriptor (non-programmer-visible region) values appropriate to
REAL mode.

INCLUDE smimac.inc

old_val dt ? ; location to store old ss
value

real_mode:dw Offffh ; limit
dw 0 ; base
db 0 ; base
db 10010011B ; 92h, data segment
db 0 ; G=0, D=0, upper limit=0
db 0 ; high portion of base
dw 0 ; selector/segment

svdc cs:, [old_vall, ss

rsdc ss, cs:, [real_mode]

mov ax, cs

mov ds, ax

A-44 T1486 SMM Programmer’s Guide

Altering SMM Code Limits

A.15 Altering SMM Code Limits

SMMBASE = 15000H

.386P
jmp
dg
$-gdt
dw
dw
db
db
db
db
g_code =
dw
dw
db
db
db
db

gdt
G_4gig=

$-gdt

GDTSIZE
gdtinit DW
' DD

($-gdt)

$skip:
mov
mov
shr
mov
mov
mov
add
mov
db
lgdt
mov
mov
or
mov
db
dw
dw

pmode:
mov
db
dw
dw

pmode?2 :

Since it is not possible to use the rsdc instruction to modify the
non-programmer-visible portion of the CS information, a switch into protected
mode becomes necessary and is demonstrated here.

S$skip

0 ;null

0ffffh ;limit

0 ;linear low

0 ;linear high

12h or (0 shl 5) or 80h:read/write, plQ0 present
0fh or 80h ;G=1, high limit = OFh

0 ;extra high (0cOh for EMC chip)
0ffffh ;low limit

0 ;base

0 ;base

lah or (0 shl 5) or 80h;

8fh ;4gig limit

0 ;base

GDTSIZE-1

? ;base

eax, SMMBASE

word ptr cs:[gdt+g_code+2],ax;low base

eax, 16

byte ptr cl:[gdt+g_code+4],al
byte ptr c¢s:[gdt+g_code+7],ah;base
eax,offset gdt

eeax, SMMBASE

dword ptr cs:[gdtinit+2],eax;

66h

cs: fword ptr [gdtinit];load gdt

eax, cr0 ;get death register
ebx, eax ;save in ebx

eax, 1 ;turn on protected mode
cr0, eax ;g0 to protected mode

Oeah ;load new descriptor with far jump
offset pmode

g_code

cr0, ebx ;back to real mode

Oeah

offset pmode2

SMMBASE / 10h ;we could patch this run time if desired

. A45

Altering SMM Code Limits

COMMENT 4
now we are back to real mode with the limits set as desired
A

; <<user smi code>>

; rsm
db 0fh
db O0aah

Setting other registers to the value of the CS register during the SMI

COMMENT 4

load DS register with the same value as CS register. If our base is beyond 1

MByte, we can’‘t rely on the CS selector to be accurate so we need to use svdc
and rsdc. svdc may be used on the CS segment to determine the base and limit.
We need to set the segment type ourselves.

A-46 T1486 SMM Programmer’s Guide

SMM Errata

A.16 SMM Errata

rsdc
mov
mov
mov
mov
push
mov
push
mov
push
iretd

The following condition is known to exist:

If the CPU is in V86 mode and is interrupted by an SMI, the VM bit in the
EFLAGS register is not cleared as it should be during real mode operation. Not
clearing this bit can cause protection errors of valid instructions that are being
executed in the SMI handler. This can be resolved by adding the following code

after saving all used registers:

ss, cs:, [gdt+g_big]
esp, offset smistack

ax, cs
ss, ax
eax, O
eax
eax, cs
eax

eax, offset @QF
eax

; new stack segment

flags after iretd

segment after iretd

; offset after iretd

Note: See Section A.6, debugging example, for usage of above code.

; change ss limit to 4 GBytes
; create new stack pointer

A-47

A-48 T1486 SMM Programmer’s Guide

Appendix B

B.1 General Cache Invalidation

When the FLUSH bit in CCRO is set, the FLUSH input invalidates the entire
contents of the T1486 internal cache when asserted low. This may be used to
assure that data stored in the T1486 internal cache does not differ from data
stored in system memory. Additionally, the cache may be invalidated by
execution of the 486-compatible invalidate instructions (INVD,WBINVD) or in
response to a Hold Acknowledge state if the BARB bit in CCRO is set. The
method chosen for invalidating the Tl486 internal cache may be different,
depending on whether or not the system has a serial secondary cache.
Invalidation methods are described for systems with and without a serial
secondary cache.

B.1.1 Cache Invalidation for Systems With No Secondary Cache or a Parallel
Secondary Cache

When the only cache memory in the system is the T1486 internal cache, or
when the secondary cache has a parallel (or look-aside) architecture, there
are two general methods of invalidating the cache and maintaining cache
coherency.

Method 1 Invalidate the Ti486 every time the CPU enters a HOLD state. By setting the
BARB bit in CCRO, automatic cache flush occurs when the TI486 is placed in
a HOLD state. If the chip set does not support hidden refresh, this may lead
to very frequent cache invalidation, since it will put the CPU in hold during
DRAM refresh cycles, which occur approximately every 15 ps. If the chip set
supports hidden refresh, this may be an acceptable solution, since the cache
will only be invalidated during DMA or bus master reads from or writes to
memory.

Method 2 |nvalidate the TI486 internal cache when a DMA or bus master writes to
system memory. This requires external hardware to drive the T1486 FLUSH
input when DMA or bus masters are detected writing to system memory. This
can be done with the simple circuit shown in Figure B-1. The circuit will
generate an active-low FLUSH to the CPU every time a HOLD state is entered
(defined by HLDA = 1) and memory write occurs (defined by MEMW = 0).

Figure B-1.FLUSH Logic
MEMW
(from ISA bus)
FLUSH
HLDA (to TI486)

(from CPU)

B-1

General Cache Invalidation

B.1.2 Cache Invalidation for Systems With A Serial Secondary Cache

In a system with a serial (or look-through) secondary cache, flushing the cache
cannot be accomplished by setting the BARB bit in CCR0O because bus
arbitration occurs between the serial cache controller and the system. This
allows the CPU to continue executing out of cache.

The secondary cache controller arbitrates the bus between itself and DMA
controllers or bus masters and asserts HLDA to the chip set when the bus has
been granted. Each time a DMA or bus master write is detected, the FLUSH
pin on the T1486 must be asserted. The circuit shown in Figure B-2 may be
used. Note that the HLDA signal is now generated by the secondary cache
controller rather than the CPU. This is the preferred solution since in many
cases with secondary serial caches, the CPU is not putin HOLD so that it can
continue execution from cache while DMA or bus master activity is occurring
on the system bus.

Figure B-2. FLUSH Logic

B-2

MEMW
(from ISA bus)
FLUSH
HLDA (to TI486)

(from CC)

T1486 Cache Flush

Appendix C

11486 BIOS Modification Guide

C.1 Introduction

In order to reap full benefit from the T1486 microprocessors, the system BIOS
should be modified to support the internal registers that control the on-chip
cache and other extra features. This Appendix serves as a guide to some of
the changes that need to be considered, and includes sample assembler code
for controlling the cache.

There are three main areas of consideration that will be discussed in relation
to the internal cache registers:

B Power-on and hard reset
B Protected-mode to real-mode switching
M Soft reset/CTRL-ALT-DEL

In each case, the state of the CPU cache registers and when and how to
change their values must be known.

C.1.1 Power-On and Hard Reset

In these two cases, the system will be booted into the operating system. Due
to the reset line to the CPU going active, the internal cache will be disabled,
making the CPU act much like a 386. At some point the cache must be turned
on before the OS is booted. A convenient time to turn on the cache may be
during final chip set initialization, understanding that the cache should remain
off during memory sizing. Many BIOSs provide the user an option to disable
the system cache using the setup screen. As most user cache control options
are stored in non-volatile RAM, the flag responses, and potentially other flags,
should be checked before turning the cache on.

Introduction

C.1.2 Protected-Mode to Real-Mode Switching

Protected-mode to real-mode switching can be implemented to handle cases
where the OS has been booted, applications have been running, and the CPU
needs to be reset to switch from protected mode to real mode. The objective
is to switch CPU modes and jump back into the OS or application at some
saved return address. Because the CPU was reset, the internal cache wll have
been disabled. Before returning control to the application the cache should be
turned back on, but only if it was on before the reset occurred, This is
accomplished by checking the cache enable flag in the non-volatile RAM, to
see if the user enabled caching from the setup screen. However, if the BIOS
allows the user to turn off the cache by a hot-key combination (perhaps as part
of speed switching), other checks may need to be performed to see if the cache
should be turned back on.

C.1.3 Soft Reset/CTRL-ALT-DEL

The objective of a soft reset is to reset the system and reboot the OS, similar
to power-on and hard-reset, but a hard reset of the CPU is not generated.
Thus, the CPU’s internal cache is not disabled (if it was on). This can have a
negative impact on memory sizing code, such as generating memory size
mismatch errors. In this situation, disable the internal cache and enable it prior
to booting, if enabled by the user in setup.

C.1.4 Turning On and Off the Internal Cache

C-2

When the TI486 internal cache is turned on or off, the following guidelines
should be observed:

1) Turn off interrupts — CLI

2) Turn off cache using CRO bit 30 and flush using WBINVD
3) Manipulate cache registers

4) Turn on cache and flush using WBINVD

5) Turn on interrupts — STI

The above sequence ensures that the process is not interrupted until complete
and that no cache coherency issues arise when the cach is turned back on.
When manipulating the cache registers it is a good idea to explicitly set each
register instead of relying on default values.

T1486 BIOS Modification Guide

Introduction

Some example assembler code for turning the cache off follows:

CacheOut MACRO index, wvalue
MOV AL, index
ouT 22h, AL
MOV AL, value
ouT 23h, AL

ENDM

CLI

MOV EAX, CRO

OR EAX, 40000000h ; set bit 30, turn off cache

MOV CRO, EAX '

WBINVD ; for external cache coherency

CacheOut 0COh, 00h

CacheOut 0Clh, 00h

CacheOut 0C4h, 00h

CacheOut 0C5h, 00h

CacheOut 0C6h, OFh

CacheOut 0C7h, 00h

CacheOut 0C8h, 00h

CacheOut 0C%h, 00h

CacheOut 0CAh, 00h

CacheOut OCEh, 00h

CacheOut 0CCh, 00h

CacheOut 0CDh, 00h

CacheOut 0CEh, 00h

CacheOut 0CFh, 00h

WBINVD

MOV EAX, CRO

AND EAX, OBFFFFFFFh

MOV CRO, EAX

STI

Introduction

CLI
MOV
OR
MOV
WBINVD

CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

WBINVD
MOV
AND
MOV
STI

Turning on the T1486 cache can be done by modifying some of the register
values as shown below. The CacheOut macro definition remains the same:

EAX, CRO

EAX, 40000000h
CRO, EAX

0COh,
OC1h,

0c4h,
0C5h,
0céh,

0C7h,
0c8h,
0C%h,

0CAh,
0CBh,
0CCh,

0CDh,

OCEh,
OCFh,

EAX, CRO

EAX, OBFFFFFFFh

CRO, EAX

0lh
00h

00h
0Ah
06h

00h
0Ch
07h

00h
00h
00h

00h
00h
00h

set bit 30, turn off cache

for external cache coherency

set NCO bit

non-cache region at A0000
that is 128K in size

non-cache region at C0000
that is 256K in size

T1486 BIOS Modification Guide

Appendix D

D.1 Ordering Information

D.1.1 Part Number Components

Components of the TI486 processor part number are diagrammed in the
following example.

EXAMPLE: ——u—pp TI ﬂsSLCIE -V __2_&_3_ - _P_Ai
Texas Instruments Prefix —_r

Device Name:
486SLC/E
486DLC/E

Supply Voltage:
Blank = 5 volts
V =3 volts

Speed:
25 =25 MHz
33 =33 MHz
40 = 40 MHz

Package Type:

PAF = Quad Flat Package
GA = Ceramic Pin Grid Array

D-1

Ordering Information

D.1.2 Part Numbers for TI486 Processors Offered

The following table lists the complete part number for each version of the Ti486
processor offered and provides a short description consisting of the supply
voltage, performance capabilities, and the mechanical package offered for
each.

TI486SLC/E/DLC/E Part Numbers

PART NUMBER DESCRIPTION
TI486SLC/E-25-PAF 5V, 25 MHZ, QFP Package
TI486SLC/E-33-PAF 5V, 33 MHZ, QFP Package
TI486SLC/E-V25-PAF 3.3V, 25 MHZ, QFP Package
TI486DLC/E-33-GA 5V, 33 MHz, PGA Package
TI486DLC/E-40-GA 5V, 40 MHz, PGA Package
TI486DLC/E-V25-GA 3.3V, 25 MHZ, PGA Package
TI486DLC/E-V33-GA 3.3V, 33 MHZ, PGA Package

D-2 Ordering Information

{'P TEXAS
INSTRUMENTS

Printed in U.S.A. SRZUO005A

