| TEXAS INSTRUMENTS

" Improving Man’s Effectiveness Through Electronics

(s

=)

| Model 990 Computer
9 FORTRAN

et Programmer’s Reference Manual

0. MANUAL NO. 946260-9701 ..
. ORIGINAL ISSUE 15 AUGUST 1977 .

. REVISED 1 MAY 1979 . =~ T e

- : . R BN R - IR U L SRR TN . : :

' DigitalSystemsDivision

€ Texas Instruments Incorporated 1977, 1978, 1979
' A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated,

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES [—

: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer FORTRAN Programmer’s Reference Manual (946260-9701)

Original Issue Ceres e e 15 August 1977
o Change b .o u vt it 15 October 1977 (ECN 419803)
T Change2. . .iu i el e 15 December 1977 (ECN 419841)
- Change3...... e e 1 December 1978 (ECN 419617)
Changedvovvvviennanonans e 1 January 1979 (ECN 004415)
Revised............ e ., .. .1 May 1979 (ECN 009760)

Total number of pages in this publication is 304 consisting of the following:

P':\g.!-: o cur?gfss P@g’s cu':\g.ee PA\GF , CHNA&GE
COVEr v vvvenveveannnn 0 Cq1-C8........ veo..0
Effective Pages 0 D1-D20......oounnn 0
{104 L 7 0 E1-E20 0
1-1-18. .o v e i e 0 Fl-F2.....00000e.nn 0
21-222. . e 0 CGl1-G2 e 0
31-312........ ceesd0 CHl-H20....0 .0 .0
41.414.0 Ll-I4........0..... 0
- 5.1.530..... e J 0 IS B U I ,...0
| 61-612......0.0....0 " Index-1-Index-14.,..... 0
1 71-748.0 User’s Response 0
8-1-82..... e 0 BusinessReply 0
91992, 000 0 CoverBlank........... 0
Al-A2. ... vivnenn 0 COVEr v v v vv v v vnennns 0

B-1-B-d6 ...iv.nsnn. 0

O

(J

£

o]
{@ 946260-9701

PREFACE

This manual describes FORTRAN language as implemented for the 990 Computer Family. It is a
reference source for FORTRAN and assembly language programmers. It includes specifications for
the available types of data, descriptions of arithmetic and logical operations, rules for constructing
expressions and discussions of statements for program control and Input/Output. Also included

- are some techniques for careful efficient programming, a discussion of the compiler output, instruc-

tions for running FORTRAN, and discussions of function and subroutine subprograms. This manual
lists the functional subroutines in the FORTRAN library.

The description of 990 FORTRAN contained in this manual includes in-line comments discussing
variations in the implementation of FORTRAN DXI10 2.X, DX10 3.X and TXDS. This manual
also includes operating instructions for DX10 3.X and TXDS. Operating instructions for 990
FORTRAN under DX10 Release 2 are contained in a separate document entitled Model 990
Computer, DX10 Operating System Release 2, FORTRAN Operating Instructions, part number
949619-9701.

Parts of Section I and Sections 11 through VI of this manual describe the features of 990
FORTRAN that are common to most FORTRAN compilers. These portions may be skimmed by
an experienced FORTRAN programmer.

The 990 FORTRAN language discussion contained in this manual is divided into the following
sections and appendixes.

I Section 1 contains an introduction to the FORTRAN language and compiler as applied
to the 990 computer.

II Section II discusses the handling of data in FORTRAN. It also specifies the data con-
ventions that may or may not be allowed in a program.

II1 Section IIl discusses the data, operators, and expressions used in FORTRAN computa-
tion. It also contains a discussion of assignment statements and type conversion,

IV Section IV describes the use of control statements which allows the programmer to
manipulate and control execution of the FORTRAN program.

V Section V describes Input/Output and those statements designed to control the trans-
mission of information between the computer and the peripheral Input/Output devices
or units.

VI Section VI includes an indepth discussion of the functions and subprograms required to
specify relatively complicated operations, such as the termination of a trigonometric
function or the printing of specialized header information, etc.

VI Section VII describes the FORTRAN library of standard external and intrinsic functions
which may be referenced from any program. '

m Digital Systems Division

946260-9701

VIII Section VIII describes recommended programming techniques designed to improve
program structuring by imposing a sct of coding standards.

IX Section IX discusses the compiler: its output listing elements, error diagnostics, object
code, and runtime error traceback information. Section IX also includes a complete
FORTRAN compiler statement error diagnostic message table.

Appendix A discusses the FORTRAN source program character set.

oo]

Appendix B describes the calling sequences between FORTRAN and assembly language
program.

Appendix C discusses the floating point arithmetic package.
Appendix D contains character string manipulation package.
Appendix E contains the FORTRAN runtime description.
Appendix [describes FORTRAN installation on TXDS.

Appendix G discusses FORTRAN execution on TXDS.

o O TomoT 0O

Appendix H discusses FORTRAN execution on a DX10 3.X system.

by

Appendix I discusses FORTRAN compiler and runtime organization.
J Appendix J discusses usage of fixed point numbers.

Information related to the material discussed in this manual is found in the following publications:

Title Part Number

Model 990 Computer DX 10 Operating Systemn Reference Manual 946250-9701

946250-9702

946250-9703

9462509704

9462509705

9462509706

Model 990 Computer DX 10 Operating System Programmers Guide . 945257-9701

Model 990/10 Computer Program Development System Operator'’s 945256-9701
Guide

" Model 990 Computer TMS 990 Assembly Language Programmer’s _ 943441-9701
Guide

Model 990 Computer Models 306 and 588 Line Printers 945261-9701

Installation and Operation

Model 990 Computer PROM Programming Module Installation 9452589701
and Operation

iv Digital Systems Division

asa

)

)

™

(.

/

.- R S SERN ST

946260-9701

Fundamentals of the FORTRAN lan
by Daniel D. McCracken.

Title
990 Computer Family Systems Handbook

Model 990 Computer Communications System Installation and
Operation

Model 990 Computer Communication System Software

‘Model 990 Computer Terminal Executive Development System
(TXDS) Programmer's Guide

Model 990 Computer TX990 Operating System
Programmer’s Guide

Model 990 Computer Model I-D800 Floppy Disc System
Installation and Operation

Model 990 Computer Model 913 CRT Display Terminal
Installation and Operation

Model 990 Computer Model 733 ASR/KSR Data Terminal
Installation and Operation

Model 990 Computer Model 804 Card Reader Installation
and Operation

Model 990 Computer 5M T/6MT Serial Interface Module
Installation and Operation

Model 990 Computer 32 Input/Transition Definition 32-Bit
Output DAta Module and Digital Input{Output Termination
Panel Installation and Operation

990 Link Editor Manual

Part Number

945250-9701

945409-9701

946236-9701

946258-9701

946259-9701

945253-9701

943457.9701

945259-9701

945262-9701

946269-9701

946267-9701

949617-9701

guage can be found in A Guide to FORTRAN [V Programming

v/vi

Digital Systems Division

¢

946260-9701
TABLE OF CONTENTS
Paragraph Title Page
1.1 General et e e e et I-1
1.2 Program Preparation P 1-2
1.2.1 ' Fields in a Source Record e e e e e e s 1-2
1.2.2 FORTRAN Statementso v v v . e e e e e 1-3
1.2.3 Comments . . v v v v e v v v v v e e e e et e 1-4
1.2.4 Source Statement Ordering ..o 0000 e e et e e 1-4
1.2.5 Program Restrictions .., e et el 14
1.3 COPY Statement . . v .« v v v v v v v v o e e e e et e 1-5
1.4 Character String Packageo v i i ittty e 1-6
1.5 FORTRAN Character Set et e e e e s . 1-6
1.5.1 B L e e e e 1-6
1.5.2 Digits e e e e e e e e e e 1-6
1.5.3 Alphanumeric Characters ettt e 1-6
SECTION I1. DATA SPECIFICATIONS
2.1 General et e e 2-1
2.2 Definitions of Termso vvvvnn. e et e e e 2-1
2.2.1 Identifiers o v v v v vt o v v e v v onvanooesas e s e e 2-1
2.2.2 Variables e e e e Gt e e s n e ane st ae e s 2-1
2.2.3 Constants . ..o v vevoooenonnnans e e 2-2
2.3 Type Statements .. v v v en e v eos s e e e e 2-2
2.3.1 INTEGER Statement vvvvov v et e e e e 2-3
23.2 REAL Statement . ..o vvvvnvn e e e 2-3
2.3.3 DOUBLE PRECISION Statemento e e Ce e e 2-3
2.34 COMPLEX Statement e e e e 2-4
2.3.5 LOGICAL Statement s e e .0.2-4
2.3.6 FIXED Statemento v v v vv v e e e r e e e 2-4
2.3.7 IMPLICIT Statement e e et e e 2-5
24 Typesof Data e SN e e 2-5
24.1 Integers ..o v ey e et et e e e ..2-6
24.2 Real Numbers .. v v v ii v nnnoosannnsseas . e e .26
24.2.1 Examples of Real Numbers. e N e cee 0277
24.22 Memory Representation e e e . .2-7
243 Double Precision Numbers. e e 2-8
- 24.3.1 Examples of Double Precision Numbers e e . .29
02432 Memory Representation e e et s ey 29
244 Complex Numberst iiiviioernvns e e 2-9
2.4.5 Logical Constants . v v v v oo v v e e ce . 2-10
24.6 Fixed Point Integers et e e 2-10
24.6.1 External Representation . ..o vviv oo enasonaonses v 2-10
24.6.2 Internal Representation .. cvv v ievreernr oo eevon2-11
24.6.3 Examples . . .o v v vt v i e e e 2-11
2.5 Hollerith Field ... v v i v ittt is it i e nannoooons e . 2-12
2.6 Dimensioned Variables . v v v v v v i ittt ittt it 2-12
2.6.1 Arrays and Subscripts it Cr e e e . 2-12
2.6.2 Storage of Array Elements e e e e 2-14
2.6.3 DIMENSION Statements et e e . 2-14

vii

Digital Systems Division

(o]
{%@ 946260-9701

Paragraph

2.7
2.7.1
2.7.2
2.7.3
2.8

3.1
3.2
3.2.1
3.2.2
323
33
3.3.1

~ 332
3.3.3
334
34
34.1
34.2

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2

44
44.1
~ 442
45
4.5.1
- 4.5.2
4.6
4.6.1
4.6.1.1
4.6.1.2
4.6.1.3
4.6.2
4.6.2.1
4.6.2.2
4.6.2.3
4.6.3

TABLE OF CONTENTS (Continued)

Title Page

COMMON and EQUIVALENCE Statements . . . v v v v v v vt teesivannsteaeeon 2-16
COMMON Statement . . . oo v viviiiiiiieniass sttt 2-16
EQUIVALENCE Statement . .. v v v v vttt anovnenaossnassassoennns 2-19
EQUIVALENCE and COMMON Interactiono vv v ivoernovosonnn 2-20
Funption Reference Cre e ettt e e e 2-20

SECTION 11l. OPERATORS AND EXPRESSIONS

731V S R 3-1
Arithmetic EXpressions « v v v v v v vvvv vt vveeoaes ettt 3-1
Arithmetic Operations . . v v v v e v vt v e v enenon e e e e 3-2
Formation of Arithmetic Expressions....... e e 3-2
Evaluation of Arithmetic EXpressions ..o oo v v v v v vt ovanss 34
Logical Expressions . ..o v v v e
Relational Operations e P)
Logical Operations « . v v v v v vt v iv s e e vt enaso s aesstasnosasensos 3-7
Formation of Logical EXpressions « v oo v v vv i vt nenteoeeisneneenanns 3-8
Evaluation of Logical Expressions I
Summary of Rules for EXpressionso v vttt 39
Operator Precedence et e e e e e 39
Assignment Statements .. oo v v vt i it it e e 39

SECTION 1V. CONTROL

General StalemMENIS 4 v v v v o v o oot ot v s n et e s oo et et oras st es s 4-1

GO TO Statement . 4 o v v v et v v o vosaon ettt e et 4-1
Unconditional GO TO Statement ..o v v v v v v et e et 4-1
Computed GO TO Statement . . . oo o v v e v i it avoeens e 4-2
ASSIGN and Assigned GO TO Statements ..o v vvevvs v oaerstevoorononos 4-2

IF StAtemENl o v o v v v v o v e o oo o v o v s ovossaasssssenaasassososesacssss 4-4
Arithmetic IF Statement et e st e 4-4
Logical IF Statement e e Cre e e e e 4-4

"DO and CONTINUE Statements + o v v v v v v e e v Ch e e e e 4-5
DO Statement . v v v v v e e o e Cee e e e v s enere s a st s e 4-5
CONTINUE Statement, v eeaine ot e e e s ettt et e 49

Transfer of Control to SUbroutings . .o v v vt vt v vt oo oeeosoosostoossssas 4-10
CALL Statement0.. e C b e s e st 4-10
- RETURN Statement e ettt e e 4-11

PAUSE, STOP and END Statcmcnls et et e e e e e 4-11
PAUSE Statement . . v oo v vttt vvvoneon et e e s et 4-12

DX10 PAUSE Statement 2.X Releases « v o v v vt v e v s osaoeeoss e 4-12
DX10 PAUSE Statement 3.X Releases et e 4-12
TXDS PAUSE Statement . . .o v v v v v vt 00 et et e e R S v
STOP Statement . ..o v v v v et e et 4-12
DX10 Statement 2.X Releases o v« v v v e v v v v o vno o P 4-12
DX10 STOP Statement 3.X Recleases et et e e 4-13
TXDS STOP Statement . . e e e e i e e 4-13
END Statement ..o oo v e v v v v o S e e 4-13

viii Digltal Systems Division

)

()

[o]
@ 946260-9701

Paragraph

5.1

5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.14
5.2.1.5
5.2.1.6
5.2.1.7
5.2.2
5.2.3
5.2.3.1
5.23.2
5.233
5.2.34
5.235
5.24
5.2.5
5.2.5.1
5.2.5.2
5.2.6
5.2.7
5.2.8
5.2.9
5.3
5.3.1
5.3.2
5.3.3
5.34
5.3.5
5.3.6
54
5.4.1
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.7
5.7.1

TABLE OF CONTENTS (Continued)

Title Page

SECTION V. INPUT/OUTPUT STATEMENTS

@7 3 Vo | 5-1
FORMAT Statement . . v v vt ittt ot ettt aennes st asoansaeesossnsesenas 5-1
Numerical Data Specificationso v i vt it i it ae oot 5-1
Field Specifications oo i ittt tetreeenasntosesonnnas 5-2

F Field Specificationst v ittt inrrinerinasasasaseensoon 5-3

E Field Specificalions ... v iv v in ittt iieen ittt onas 54

G Field Specifications . .. v vv et iv et n ottt nasnasassonenenans 5-5

D Field Specifications . . . oo v vt vn ittt erreastonnssansseaasss 5-5

Z Ficld Specificalions . . . v v vt it ittt it in sttt noenen 5-5
Scale FaClOrSs . v v v i vt i ittt aa et i ot ooseoseansaassesoennnns 5-6
Logical Data Field Specificationso v vi ittt 5-7
Alphanumeric and Literal Data Specifications .. . oo oo v v 5-7
Carriage Control & v v v ittt ittt it i e s e e 5-7

A Field Specificationottt ii it i i e 5-8

H Field Specification . . v v v v v ve i it nttn e tosasantntnonoeosns 5-8

X Field Specification « oo v v v iv i ettt n ittt naans 59

T Field Specification . .o v v vt ittt it ii ettt e 5-9
CompleX QUANLILIES v v v v v v v vt i st et e a s et oo atsonnoonseassess 5-10
Repeated Group and Field Specifications oo v v v 5-10
Repetition of Field Specifications oo v v i it 5-10
Repetition of Groups + v v v v v i ve v ii e ie o snesnassnononansansas 5-10
Record Separation Indicator (Slash) .o vvvi i i ittt 5-11
Formats Stored as Dataottt it ertieetonoeossosssssseonoans 5-12
Combinations of FOrmMat . . . v vt vttt ottt ot oo oeoossesssaossssaas S-12
Free Field Formatlo i ittt it ittt e is e aonnoasaososssossnons 5-12
READ and WRITE Statements . . o v v oot oot o oo oo oo oonsaoasosossoosons 5-13
READ and WRITE Sequential File Characteristicso vvvovt oo van v 5-13
READ and WRITE Record Characteristics .. . v v v v v vt vt et tneeesonenn 5-14
READ and WRITE Input and Output Lists . . . o v oo v v iv it vvivonennn 5-14
Formatted READ Statement vttt i it e et nnottonosssooonons 5-15
Formatted WRITE Statemento . v i ittt v et nerooosssssssnonsans 5-16
Unformatted READ and WRITE Statementso v v vt et crnoeoeanesoss 5-16
Internal Transmission. h e ettt et e s e 5-17
ENCODE Statement « v v v v v v oot noesesesnastoonassassoossossassnss 5-17
DECODE Statement . v v v v v v o vt v e s oo st onsesonnsesoasaessansssssss 5-18
Mass Storage File Input/Output Statements ovver oo onar oo 5-18
REWIND Statemient & o o oo v ittt o v oo v v nvoeonooassansassososssseas 5-19
BACKSPACE Statement « o v v v v e v e oo s ennonnonnsas e e 5-19
END FILE Statement oo i v v v e ennnsnn et e r e et e 5-19
Direct Access Input/Output . ..o v ittt it ittt et 5-19
DEFINE FILE Statement ... vvvveeveeennanesoens e 5-20
READ Statemento oo i v v v e e v v T 5-23
WRITE Statement ..o v oo e v vt ot an s oot ennosarsososasessoonanosss 5-24
FIND Statement . . oo v v vt vttt s et sttt otrsonoooacsascsssssnnanns 5-24
Console Display Input/Output . o o v v v v vt v ittt n oo etsoesnasonenaas 5-24
ACCEPT Statement . . v v v vt v vt s oo s on v oaosonosnosasnassasassass 5-25

ix Digital Systems Division

(o}
e@ 946260-9701

Paragraph

5.7.2
5.8
5.9
5.10

6.1
6.2
6.2.1
6.2.2
6.3
6.4
6.5
6.6
6.6.1
6.6.2

- 6.7

6.8

7.1
7.2
7.2.1
1.22
7.3
1.3.1
1.3.2
1.3.3
134
7.3.5
7.3.6
137
7.3.8
139
7.3.10
1.3.11
1.3.12
7.3.13
13.14
1.3.15
14
74.1
74.2
7.4.3
14.4
7.4.5
7.4.6

TABLE OF CONTENTS (Continued)

Title Page
DISPLAY SHUEMENT o v vttt vttt et e ettt teeneneneneneeesanens 5-25
Logical and Physical Record Characteristics v v vt i v i vt vvoneonnsonanns 5-27
FORTRAN Unit Numbers ittt ittt ittt eraannasnoonnssanoas 5-28
Valid FORTRAN [/O Operations .. v v v i i v vt veonroreaseronesonsss 5-28
' SECTION VI FUNCTIONS AND SUBPROGRAMS
L7 6-1
T 0 o 074 T 1 1 6-1
Definitions ... oo v v v v i Y 6-1
Dummy Identifierso i v ittt ittt i i i i i i e e e e 6-1
Statement Functions Definitions .. oo v v vt e it ittt n s oo ssoossononnnes 6-2
FUNCTION Subprogram v ittt i ittt tonaaasonsossnas 6-3
SUBROUTINE Subprogramo i i ittt it ittt iiii et ieraassaanasanan 6-5
Specification Subprograms for Data Initialization v v i i i i e i 6-6
DATA Statement & . v v v v it ittt it ettt e s e o nsesaesaeessssasesans 6-7
BLOCK DATA Statement . . o v v vt vt ittt v v aosooasssosnansnosssonss 6-9
EXTERNAL Statement . .o v oot vttt it nn e sonoesnsnuonsonessensnsss 6-9
REENTRANT Statement . o v v v v v vt v ot tnestnonnooeannsssosoasonsnnan 6-10
SECTION VII. FORTRAN LIBRARY
General oot in ittt i e i i e i e e e e e 7-1
Library Subroutines . . o v v v v v vt it i i i e e e R S
BUFIN Subroutine iiiiiinaiiennnnn e e e 7-1
BUFOUT Subrouting . v v v vt vt vttt tnostnansnssestsssoneanssassas 7-5
ISA EXtensions . v v v v v v v 0o v bttt et et s e e 7-6
Start @ Programo ittt it ittt e i it i e e et e e e 7-6
Start a Program at a Specified Time . . oo v v i vt vttt i oo anas 7-7
Delay Continuation of a Programo v v v et v e e 7-8
Digital Inpul o . v vt ittt ittt e s a s et e it e e e s 7-8
Latched Digital Output . . o vttt s ittt e st tsosannosoesonnsasssos 7-9
Momentary Digital OQutput Ch et 7-10
Obtain Date .o v i ittt et e ittt sosanssonanesonas 7-10
Obtain Time ..ot v ittt it i e nnananssonnnnenas e 7-10
Analog Data Handling .. .0 v it n ittt iiiiinsasaasosoens 7-11
CFILW Subrouting . . . v v vt v v ittt s i ittt ansotsnassoonossnansonns 7-13
DFILW Subroutinet rnnnnss e et e .l 1-14
OPENW/CLOSEW Subroutine Ve e e e et 7-15
RDRW/WRTRW Subroutine. .. vvvvvvunn e e e 7-16
SVCFUT Subroutinet ivnnrtonnns e e e 7-17
MODAPW Subroutineo ittt ittt ioel ittt nennaonessnanss . 7-18
990 FORTRAN Callable Subroutinesot v i it eennennns e 7-19
Pscudo-Random Number . . v .o it i i ittt eesesnssononaanans 7-19
. Preset Random Number Generator .. .o v v v vt v nn v o e e 7-19
Generate Supervisor Callo0v et et 7-19
Absolute Address .. v oo ve i ittt i i e et e 7-19
TG 1 1 7-20
7-20

Delayed Bit Task .o v v v v in it e entivvvnoneseoasans it e

X Digital Systems Division

O

)

O

TN

i\tgp 946260-9701

TABLE OF CONTENTS (Continued)

] e % e

Paragraph Title . Pagcf
1.4.7 CRU Input o 7-20
7.4.8 CRU OQutput . .o 7-20
7.4.9 Obtain Date and Time ..., . .. 0 7-21
7.4.10 obtain ASCIL Date ..o 7-21
74.11 Obtain ASCIl Time,'"" R 7-21
7.4.12 Obtain Military Date, .. o[11 7-21
1.5 FORTRAN-PROM Program Subroutines ..., 7-22
7.5.1 pimitations 7-22
7.5.2 Subroutine Package Modules T 7-22
7.5.2.1 IMGBLD Module [7-22
7.5.22 PRGROM Module e e e e 7-22
7.5.2.3 RDPROM Module ... o e 7-22
7.5.3 User FORTRAN Routine ...,, . .l /" ooeeeeeeees 7-22
7.5.3.1 Inputting the PROM Program from Mass Storage 7-22
7.5.3.2 Writing the PROM ... 0 7 7-24
7.5.3.3 Reading the PROMo L, ol e 7-26
1.5.4 Sample Program Deseriptions . ..o 7-27
7.6 SMT/6MT Serial Interface Module Subroutines 7-31
7.6.1 OPENMT . oo 7-32
7.6.2 CLOSMT ..o 7-32
7.6.3 RDSTS oo 7-33
1.64 RDMTR oo 7-33
7.6.5 RDMTS AR 7-34
1.6.6 WRMTR 0 et et e e 7-35
7.6.7 WRMTS ... 7-36
1.7 32 Input/ Transition Detection Module Subroutines 7-37
7.7.1 OPNI v 7-38
7.7.2 CLS32L. e 7-38
7.1.3 WRIMSK .o 7-38
1.74 READIZ. oo 7-39
1.7.5 . RDIBIT et e i e e, e e i e e e 740
1.8 Multi-key Index File Handler ... oo o 741
SECTION VIII. PROGRAMMING TECHNIQUE
SECTION IX. FORTRAN COMPILER OUTPUT
9.1 General ., ...,..... T T ettt 9-1
9.2 Output Listing Elements e e i e, et i 9-1
9.3 Error Diagnostics and Messages .o 9-1
9.3.1 statement Error Diagnostics, ..., iitiiiie 9-1
9.3.2 Program Error Diagnostics Vet e e e 9-2
9.3.3 Runtime Ercor Diagnostics 011" 7 ceeeeeee 9.2
9.4 Object Code, ..., et e L 9-2
9.5 Runtime Error Traceback Information e S et e e it 9-9
xi Digital Systems Division

946260-9701
APPENDIXES
Appendix Title Page
A FORTRAN Source Program Character Set vttt eenn A-l
B Calling Sequences Between FORTRAN and Assembly Language Programs B-1
C Floating Point Arithmetic Package v vttt i e it e ii it i o s C-1
D Character String Manipulation vttt ittt i s D-I
E FORTRAN Runtime Description e et et e e E-1
F FORTRAN Installation on TXDS ..o\ i tinintiiiiianenenenenons F-1
G FORTRAN Execution on TXDS . .. (. ittt ittt iiiiiinineneseoss G-1
H FORTRAN Execution on a DX10 3.X System oo vttt i v v et eonvsnoanensan H-1
I FORTRAN Compiler and Runtime Organizationo vvivvernve v I-1
J Usage of Fixed Point Numbers . ..o vvvi ittt ittt J-1
1’
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Memory Representation of Real Numberso cv oo i 2-8
- 2-2 Memory Representation of Double Precision Numbers .. oo v v vaneen 2-9
- 51 Definc File Example Output . . v oot i v i iniv ittt ansaosettoeeasasas 5-22
6-1 Example of Subroutine ... vttt i i e e 6-6
7-1 IMGBLD Data Flow i e e e 7-23
7-2 Example: Read a 2708 EPROM it it 7-27
7-3 Example: Write Zeros to a 2708 EPROMo iii i, 7-28
74 Example: Write a Bipolar S287 PROM to Ones o vv i ineneen 7-29
7-5 Example: Read and Rclocate an Object Moduleo vviviviieinnn 7-30
. 1-6 RDIBIT Calling Program Buffero iv v it ii e e iiienanetroreenans 7-40
~ LIST OF TABLES
Table Title : Page
-1 Fields in a FORTRAN Program Lineccvivvveeenn e 1-3
-2 Ordering of FORTRAN Source Statements . . oo v v evven e oceansosen oo 1-5
©2-1 - Example of an Array: Precipitation in Selected United States CIities v v v v v e nenns 2-13
31) Precedence of OPErators v v v v v v v v vt v oneonavoneroesen et 39
32 Assignment Statement Type Conversion e e rree e ceee o 310
51 Validate DX FORTRAN [/O Operations ..o vvv v ennn [.. 529
5-2 Validate TX FORTRAN 1/O Operations ..o vv vt e onsotansonenesans 5-30
xii Digital Systems Division

il

()

R L T Ty

AR DAY etk T a7

946260-9701

LIST OF TABLES (Continued)

Table Title Page
7-1 FORTRAN Library Basic External Functions0'vvurnnnnnnnn.. 7-2
7-2 FORTRAN Library Intrinsic Functionsvuiiininnneeeennnnnns 74
7-3 Error Table ..o e 7-24
74 SMT/OMT ISA Subroutines . .o vvu it ittt et eee e eeennnn, 7-31
7-5 « 321T Module ISA Subroutines v vttt u ittt ittt eeee e e, 7-37
9-1 FORTRAN Compiler Statement Error Diagnostic Messages . . .o v oo s e nneennn. 9-3
9-2 FORTRAN Compiler Program Error Diagnostic MeESSages vttt e 9-6
9-3 FORTRAN Runtime Package Diagnostic Messages « . v v v vvvneeneeeneennn.. 9-8
94 FORTRAN Runtime Error Messages . oo oottt e teeseennnennn. 9-10

xiiif/xiv Digital Systems Division

-
N

946260-9701

SECTION 1

INTRODUCTION

1.1 GENERAL :
This manual describes the FORTRAN language and compiler for the Model 990 Computer. The

compiler meets the specifications set forth in American National Standards [nstitute publication
USAS X3.9-1966; such a compiler is referred to as ANSI standard FORTRAN or FORTRAN 1V.

A FORTRAN program is a series of FORTRAN statements that accomplish a problem-solving task
involving mathematical and logical computations. FORTRAN statements may be one of the follow-

ing four types:
® Arithmetic operations
® Modifications of the flow of control within the program
e Declarations containing information about procedures and data
e Input/output operations
FORTRAN statements must be transformed, or translated, into a form that may be handled con-

veniently within the computer. This form is machine code, which is handled within the computer
system hardware as a series of binary digits. FORTRAN is a high level language whose form is

much more like mathematical statements and English language words than machine code. The

FORTRAN statements are the source code and the machine code is the object code.

The version of FORTRAN implemented on the 990 computer includes extensions to ANSI
standard FORTRAN that provide increased flexibility. These extensions include:

e Internal data manipulation statements

e Variable names of any lengt.h

® General integer expressions in subscripts

® Video Data Terminal data handling statements

® Direct Access 1/O

L M%xed mode expressions

°* Hollcrith‘and hexadecimal consta'nts and assignments
o Extended Integers

L] 16-bit fixed-point arithmetic

~® Implicit variable typing

1-1 Digital Systems Division

RN RTINS

o]
{@ . 9462609701

In addition, 990 FORTRAN incorporates the extensions to FORTRAN language recommended
by the Instrument Society of America (ISA Extensions S61.1-1975). These features include:

Control of program starting (immediate, execution after a delay, or execution at a time
of day).

Delay of program continuation

Control of analog and digital 1/O (analog input in sequential order or in any order,
analog output, and digital input and output).

Logical operations (OR, AND, NOT, Exclusive OR)
Bit string shifts
Bit testing and setting

Time and date information

990 FORTRAN under the DX10 3.X operating systems, provides the ISA FORTRAN (S61.2-1976)
procedures for file access and the control of file contention. These external procedures provide

means for accessing files, and for resolving problems of file access contention in a multiprogram--

ming environment. These procedures include:

.. LA .

Create a file

- Delete a file

Open a 'ﬁlc

Close a file

Modify éccéss privileges

Inpﬁt/output to unformatted direct access files
NOTE

These procedures are not supported under release 2.X of the DX10
operating system,

1.2 PROGRAM PREPARATION
Each statement in a FORTRAN program appears in a single line; however, continuation lines for
individual statements may be used.

If carfis are used as the source medium, each line is punched on a separate card, using the
Hollerith character code. If disk or cassette is the source medium, each line is recorded in ASCII

code.

1.2.1 FIELDS IN A SOURCE RECORD. Each line of the program, corresponding to a record,
consists of 80 characters or less that are divided into four fields, as shown in table 1-1.

Statement numbers that are not needed may decrease efficiency during compilation and should,
therefore, be avoided. The last statement of each program must be an END statement. In
addition, each FORTRAN source file must be terminated with the end-of-file record.

e e 142 - .. Digital Systems Division

. P N
\V'

o~

946260-9701

, NOTE
C .

When the source is on cards, the end-of-file record consisting of a
slash (/) in the first character position and an asterisk (*) in the
second position is the last card.

* 1.2.2 FORTRAN STATEMENTS. A statement cousists of an initial line and any number of
continuation lines. An initial line is a line that is neither a comment line nor an END line and
contains either a blank or the digit 0 in Column 6. A continuation line is not a comment line
and contains any character other than blank or 0 (zero) in Column 6. The character in Column 6
is not recognized as a statement character and only serves to indicate continuation. An END lme
is a line containing an END statement, which cannot be continued.

Example:
Card Column |l|2|3l4|5|6|7|8|9|10|ll 12
' 2lofol| [al=]B]4
Xjc
P: Xijt|D
Table 1-1. Fields in a FORTRAN Program Line
Columns , ‘ Field
15 7, Statement Number. Serves as statement identifier for cross-references. Number optional as

identifier for other statements. The statement number consists of one to five digits of any
value from 1 to 99999. Blanks and leading zeros are ignored; however, zero may not be a
statement number. Statement numbers may appear anywhere within the field but must not
contain nonnumeric characters. They may be assigned in any order. The sequence of opera-
- ‘ tions depends on the order of the statements in the program, not on the statement number.

f*} L Two alphabetic characters (C and D) may be placed in column 1. The character C in
' ~ column 1 indicates the program appears in columns 2-72. The character D in column 1 treats
columns 2-72 as comments if conditional compilation is not specified; it specified, these

columns are treated as though column 1 contained a blank.

6 : Continuation Indicator. A nonzero, nonblank character indicates that the line is a continua-
tion line. Any number of continuation lines are allowed, up to the memory capacity limit.

7-72 Statement lield. The FORTRAN statement appears in these columns. Both the initial and
continuation lines occur within these field limits. Blanks in these columns are ignored except
in certain alphanumeric fields, and may be used to improve readability.

73-80 Identification Field. These columns are not used by the FORTRAN compiler. They may be
used as an identifier for the program, for sequencing, or any other similar purpose.

1-3 Digital Systems Division

1 o]
{@ 9462609701

The first line of this example is an initial line. The second and third lines are continuation lines.
The statement label is 200. The statement is equivalent to:

A=B+C+D

One kind of FORTRAN statement is used to compute a new value of a variable. This is done
with an assignment statement of the form:

variable = expression

where a variable name appears to the left of the equal sign and an expression to the right. The
value of the expression is calculated and that value is given to the variable on the left. Variables
and expressions are discussed in more detail in Section [L

Another example of a valid FORTRAN statement is
J=1+1

This statement calculates the sum of the current value of J and one, and assigns the sum as the
new value of J. Note that this is not a valid algebraic statement from a mathematical viewpoint.
The value of J is replaced with a new value.

1.2.3 COMMENTS. Comments are for the convenience of the programmer to describe the
program. A comment line cannot be followed by a continuation line. It can only be followed either
by another comment line or by the initial line of a statement.

Comment lines have the charaéter C in Column 1. Columns 2 through 72 may be used in any desired
format.

1.2.4 SOURCE STATEMENT ORDERING. Table 1-2 shows the order in which source statements
of each program must be written. Within each group the statements may be written in any
sequence. DATA statements may appear anywhere after Group 2 and before Group 7, but must
appear after any declarations (COMMON, DIMENSION, or type) affecting the variables to be
initialized. FORMAT statements may appear anywhere after Group 1 and before Group 7. COPY

~ statements may appear anywhere before Group 7.

' 1.2.5 PROGRAM RESTRICTIONS. The programmer must observe certain program size restric-

tions when developing a FORTRAN program (due to the nature of the compiler constructions).
The number of each of the following terms within each main program, subroutine, or function must

be less than 1024:

Scalar Variables

Array Variables

Common Variables

Equivalenced Variable Names

Statement Numbers

Names in Explicit Type Statements

- 14 Digital Systems Division

—

N

()

946260-9701

oo ® Unique INTEGER Constants
: ® Unique LOGICAL Constants

" ® Unique Subprograms Called

1.3 COPY STATEMENT

Arjthmetic Statement Function Definitions

® Unique Extended INTEGER, REAL, DOUBLE PRECISION and COMPLEX Constants

The COPY statement enables parts of the program to be stored in more than one file and allows

many FORTRAN programs to use a single common source. This statement appears as follows:

COPY name

where name is a full-qualified file access name or synonym (under DX10). The name must be com-

(.,;,‘" pletely contained on one line (not extended across continuation lines) and may not contain blanks.
A DXI10 program may contain any number of COPY statements, but they should not be nested
~. deeper than five. The file is rewound before the COPY operation begins.
NOTE
COPY statements may NOT be nested at all in TXDS.
£
N
Table 1-2. Ordering of FORTRAN Source Statements
Group Source Statement Group Source Statement Group Source Statement
1 BLOCK DATA 4 EXTERNAL 6 DISPLAY
copry (Cont.) FORMAT (Cont) DO
FUNCTION REENTRANT ENCODE
SUBROUTINE ENDFILE
= : FIND
Q._', . 2 CorYy) cory FORMAT
= FORMAT DATA* GO TO
P ’ EQUIVALENCE
J IMPLICIT FORMAT IF
Statement Function PAUSE
3 COMPLEX READ
FIXED 6 ACCEPT RETURN
INTEGER Assignment REWIND
LOGICAL ASSIGN STOP
: REAL BACKSPACE WRITE
r DOUBLE PRECISION CALL
CONTINUE 7 END
4 COMMON cory
CorY DATA*
. DATA* DECODE
“ DIMENSION DEFINE FILE

*Must follow declarations for the initialized variables.

1-5

Digital Systems Division

ERRF =7 ST

o
{@ 946260-9701

The contents of the named file are inserted into the source program such that the first record of
the file will be the next line after the COPY statement. Thus, COPY statements may be labeled

and referenced the same as CONTINUE statcments.

For example, if the DX10 file, .COPY.DATA contains FORTRAN source, this source can be

included in another FORTRAN source program with a COPY statement as follows:

COPY .COPY.DATA

END

1.4 CHARACTER STRING PACKAGE

~+ This package will enable the user to:

-~

1. Move characters into and out of arrays
,‘2' , Comt)are characters
3 ACheck for illegal characters
" 4. "Verify characters

5 Find the length of character strings

" 6. Translate characters

.....

1.5 FORTRAN CHARACTER SET
-~ The FORTRAN character set consists of twenty six letters, ten digits, and twelve special characters.

15 1 LETTERS A letter is one of the twenty-six characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

i l 5 2 DIGITS A dlgnt is one of the ten characters

0123456789

- The character stnng package was written so that the user need not concern himself with word
- boundaries or data type when manipulating character strings.

1 5 3 ALPHANUMERIC CHARACTERS An alphanumcrlc character is a letter or a digit.

1-6

Digital Systems Division

W

I i b L

T

TR

e LS e e e T L e

5

946260-9701

1.5.4 SPECIAL CHARACTERS. A special character is one of the twelve characters:

Other characters may appear in a FORTRAN statement only as part of a Hollerith constant or
alphanumeric literal. Any printable character may appear in a comment. Refer to Appendix A for

additional characters.

Character

-+

RN e

>

Name of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Period
Apostrophe
Greater Than Sign

1-7/1-8

Digital Systems Division

~ma)‘..,.4;:o¢.;-“ P

e
/ Y

SN

/_: "‘.“

946260-9701

SECTION 11

DATA SPECIFICATIONS

2.1 GENERAL
This section discusses the handling of data in FORTRAN, and specifies the data conventions that

are or are ot allowed in a program. The topics discussed include:
e How data may be represented in FORTRAN statements.
e Types of data.
® FORTRAN statements that specify or manipulate data.
e Mathematical functions.

Data used with 990 FORTRAN is classified as integers, real numbers, double precision numbers,
complex numbers, logical, and fixed. Data of these classes may be handled as individual data ele-
ments or grouped in multidimensional arrays. FORTRAN statements define the data characteristics
and data arrangements for each program. If declarations arc not stated, the compiler defaults to
predefined characteristics.

2.2 DEFINITIONS OF TERMS
The terms identificr, variable and constant which are used to specify and define data must be under-

stood before any data characteristics are discussed.

22.1 IDENTIFIERS. An identifier is a character string that represents a variable, function or
subprogram in a program. The identifier may be any alphanumeric combination as long as the
first character is a letter. The compiler does not restrict the number of characters that may be
used in an identifier. When the identifier is used in the program, however, the compiler recog-
nizes only the first six characters of the identifier. Therefore, no two identificrs can contain the
same characters in the first six character positions, If MODIFICATION is used as an identifier,
for example, MODIFIER2 cannot be used. The first six characters in both is MODIFI. Since blanks
are not significant within identifiers, the following example is valid: ’

ROOT OF EQUATION = SQRT (FIRST COEFFICIENT)

2.2.2. VARIABLES. Variables are data whose values can change during the execution of a program.
Becuase the value is dynamic, variables are assigned unique, fixed identifiers for reference within
the program. In a program, the value of the variable is the most recent value stored in that variable’s
storage area. For example, the following three statements define the relationship of the variable

identifiers, A and B:
A=80
B=A+20
A=A+10

2-1 Digital Systems Division

9462609701

The first statement assigns a value to A. The second statement defines the relationship of B to A.
The value of A is used to calculate the value of B. The third statement assigns a new value to A
by adding 1.0 to the old value and storing the new value in the same storage location. A variable
identifier may refer to data in any of the six categories of data listed in paragraph 2.1.

. 2.2.3 CONSTANTS. Constants are data that do not change in value during the execution of a

program. They are not assigned an identifier and are referred to by their explicit values. For
example, the integer seven is represented in a program as the number 77",

2.3 TYPE STATEMENTS
Data may be one of six types named in paragraph 2.1, two of which (integers and real numbers)
may have variable names implicitly defined:

e If the variable name starts with the letter I, J, K, L, M or N, it is an integer variable.
e If the variable name starts with any other letter, it is a real variable.

The rules for integers and real numbers may be altered through the use of an IMPLICIT statement.
The other four data types must have variable names that are explicitly declared in the program to
be that particular data type. (Data types are described in more detail in paragraph 2.4.) In addition,
if the programmer wishes to use a variable name for integer or real number data that does not con-
form to the rules above, for example a real variable name beginning with the letter I, he may do so.
Assignment of variable names to data types in this manner is accomplished through a type
statement.

The type statement is one example of the FORTRAN statements known as a declaration.
FORTRAN declarations are used to supply descriptive information about the program rather than
specify computation or other’action. Such descriptive information is concerned primarily with the
interpretation of source program identifiers and object program storage allocation.

“Six type stateméritrs are used to explicitly specify identifier types appearing in the program. These
include: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and FIXED. The
following rules apply to these type statements:

® The name of the statement type is followed by identifiers (used for variable names) that
are separated by commas. The FIXED statement includes a scale factor in parenthesis
before the identifier. '

e Type declaration statements must precede any nondeclarative statements, arithmetic
function definition statements or DATA statements in the program. Arithmetic function
definition statements and DATA statements are discussed in Section VI.

e FEach ty})e statement must appear in the program before the first use of any identifiers
named in the statement.

® Anidentifier may appear in only one type statement.

® Type statements may be used to declare arrays that are not dimensioned in either the
DIMENSION or the COMMON statement.

A statement similar to type statements is available for declaring a function name to be an argument
in a subprogram call. This statement, the EXTERNAL statement, is described in Section VL

22 Digital Systems Division

o

0

O

e
L

e

0
-

Q
{@) 946260-9701

2.3.1 INTEGER STATEMENT.
Form:

INTEGER identifier, identifier, . . .
or

INTEGER*2 identifier, identifier, . . .
and

INTEGER*4 identifier, identifier, . .

The first two forms are equivalent and are used to declare the listed identifiers to be integer type
with each datum occupying one word (two bytes). The third form, INTEGER*4, declares extended
integer type data occupying two words (four bytes) each.
Examples:

INTEGER ALPHA,P

INTEGER*4 LAMBDA
2.3.2 REAL STATEMENT.

Form:

REAL identifier, identifier, . . .
or '

REAL*4 identifier, identifier, . .
and

REAL?*8 identifier, identifier, . . .

The first two forms arc equivalent and are used to declare the listed identifiers to be real type with
each datum occupying two words (four bytes) in floating point format. The last form, REAL*S,
declares four words (eight bytes) of floating point data. REAL*8 is equivalent to DOUBLE
PRECISION.
Examples:
REAL LOGX, MASS(10,4)

- REAL*8 A
233 DOUBLE PRECISION STATEMENT.
Form:

DOUBLE PRECISION identifier, identifier, . . .

This statement declares the listed identitiers to be of double precision type. Double precision

~data occupies four words in floating point tormat.

2-3 Digital Systems Division

o
e@ 946260-9701

Example:

DOUBLE PRECISION RATE,Y,FLOW
2.3.4 COMPLEX STATEMENT.
Form:

COMPLEX identitier, identifier, . ..

This statement declares the identifiers to be of complex type. Euch datum occupies four words,
two floating point numbers representing the real and imaginary parts.

Example:
COMPLEX ZETA W ,ROOT
2.3.5 LOGICAL STATEMENT.
. Form:
| LOGICAL identifier, identifier. .. .

This statement declares the listed identifiers to be of logical type. Euch datum occupies one
word where zero represents .FALSE. and nonzero represents " TRUL..

Example:

LOGICAL BOOL,P.Q,ANSWER
A2.3.6 FIXED STATEMENT.
Form:

FIXED (scaie) identifier, iden‘tiﬁer, cen

Scale is a signed or unsigned integer constant within the range of -31 < scale < 31. The FIXED
statement declares the listed identifiers to be of fixed type with the stated binary scale factor.
. Each datum occupies one word.

Example:
FIXED(3) WEEKLY NET

This statement declares the two variables WEEKLY and NET are of fixed type with three bits to
the right of the binary point (the value is multiplied by 2-3).

- Example:

FIXED(-21)HUGE(10)

This statement declares an array with the binary point of each element assumed to be 21 bits to
the right of the word; i.e., the value is multiplied by 22!,

Examples of fixed integers are given in paragraph 2.4.6.

24 Digital Systems Division

'0'"\
. [
A

946260-9701

2.3.7 IMPLICIT STATEMENT. The IMPLICIT statement establishes the implicit type of an
identifier if the programmer wishes it to be different from the default type wherein identifiers
beginning with letters [, J, K, L, M, N are integer, and others are real..

Format:

IMPLICIT type."(A. Agy o)types(AsAg, L), .
where type; represents one of the f(ollowing: INTEGER, INTEGER*Z, INTEGER*4, REAL,
REAL*4,' REAL*8, DOUBLE PRECISION, COMPLEX, LOGICAL, FIXED (scale); and A,

A,,...represent single alphabetic characters or a range of characters (in alphabetic sequence)
denoted by the first and last character of the range separated by a minus sign (e.g., A-D).

This statement applies only to variables not mentioned in an explicit type statement. Variables,
whose first character is listed following a type identifier assume the type appearing before the list.

Unlisted variables assume their default types.
Example:
IMPLICIT INTEGER (A-C,X),DOUBLE PRECISION(D),LOGICAL(L)
This statement would cause the following implicit declarations to be in effect:
1. Identifiers beginning with A, B, C, [, J, K, M, N, X are integer.
"~ 2. Identifiers beginning with D are double precision.
3. Identifiers beginning with L are logical.

4. Identifiers beginning with E, F, G, H, O, P, Q, R, S, T, U, V, W, Y, Z are real.

2.4 TYPES OF DATA
The compiler recognizes six types of data as input for processing. These types and the number of

words of machine storage they occupy are as tollows:

Data Type S(orr::e: xords
Integer 1or2
Real number 2
Double precision number 4
Complex number 4
Logical quantity 1
Fixed ' !

The following paragraphs describe each of these data types. Data type declarations (described in
naragraph 2.3) are used to specify a particular data type for use in a program.

There are two other types of data for which data type declarations do not exist. They are
Hollerith data, discussed in paragraph 2.5, and functions, discussed in paragraph 2.8. Declarations

for Hollerith data and functions are handled in a different manner.

25 , Digital Systems Division

P.

946260-9701

2.4.1 INTEGERS. Integers are whole numbers whose least significant digit represents the one’s
position. Integers may be positive, negative or zero. If unsigned, they are assumed to be positive.
If not explicitly declared, an integer variable name must start with the letter [, J, K, L, M or N.

Integers cannot contain a decimal point. The compiler assumes that the decimal point is located
to the right of the rightmost digit position. A comma may not be used in the number (to
separate the thousands digit from the hundreds digit, for example). Only numbers are valid
characters in the integer.

Simple integers. occupy one 16-bit word: extended integers occupy two 16-bit words. In either
case the high-order bit is reserved for the sign. Therefore, the range of integers in 990
FORTRAN is -32768 to +32767 (-2'S to +2'5-1) for simple integers and -2147483648 to
+2147483647 (-2°' to +23'-1) for extended integers.

- For example, the following numbers are valid integers for input to the compiler:

3298

-3298
1234567890

«b R
0001
The following numbers are not valid integers for input to the compiler:
3,287 ‘ Commas cannot be used in integer data.
42 Decimal points cannot be used in integer data.

3234567890 This number exceeds the upper bound of
- 2147483647 for positive integer values.

Hexadecimal constants may be written in two forms:
>D;D,...
nZD;D,...Dn

where n is an unsigned integer constant, Z or > indicates hexadecimal, and Dj represents a
hexadecimal digit (0-9, A-F). Hexadecimal constants are stored internally right justified in one
word, if there are four or less hexadecimal digits, or in two words. They are treated as integers
or extended integers within expressions.

2.4.2 REAL NUMBERS. Real numbers contain up to seven significant decimal digits and must
have a decimal point. Real numbers may have an exponent in the input and can represent any
values within the approximate range 10778 to 1075, including zero. A real number may be
represented in either of two forms:

® Digits and decimal point, which may be preceded by a plus or minus sign: a number in
the range -32768. to +32767.

® Power-of-ten form: a number times 10 raised to an integer power.

2-6 Digital Systems Division

—
g

C

VN

946260-9701

The power-of-ten form is as follows:
zzzbn

where the letters “zzz” represent a numerical value of any number of digits (only the first seven
are significant) that may or may not contain a decimal point. The letter E indicates that the
number following it, represented by “n”, is a power of ten. The power may be an integer; positive, -
negative or zero. The number must be within the specified range for real numbers.

An unsighed number is assumed to be positive. Commas cannot appear in the data input. If not
explicitly declared, a real variable name must start with a letter of the alphabet other than 1, J,
K, L. MorN.)

2.4.2.1 Examples of Real Numbers. The following numbers are correct representations of real
numbers:

1387.

1.23456

13762 (1.37 X 10?)

137E-2 (137 X 102 or 1.37)

-4.53716E2 (-4.53716 X 10?)
3E3 3 X 10%)

The following numbers are not correctly formulated real numbers for input to the compiler:

387 Numbers not in exponential form require a decimal point.
3E | | The exponent value has been omitted after the letter E.
3,871.E2 Commas cannot be used in real number data input.

SE2.5 ' Nonintegral expﬁnent of ten is not allowed.

4.72E76‘ Number larger than upper bound of permissible range.

2.4.2.2 Memory Representation. The real numbers described in paragraph 2.4.2 are single
precision. Single precision real numbers are stored in memory in two 16-bit words as illustrated
in figure 2-1. Before being stored in memory, however, the number is transformed to a normalized
hexadecimal fraction, a corresponding hexadecimal exponent that is a power of 16 and a sign bit.

The fraction portion of the number is normalized; that is, it is shifted to the left to eliminate

leading zeros between the radix point and the first significant bit of the fraction. Normalization is
by hexadecimal digits; therefore, the number is shifted 4 bits at a time until the left most 4 bits
are not all zeros. Each bit position shift in the normalization process produces a corresponding
change in the exponent portion of the number to maintain the correct magnitude of the number.

" When completely normalized, the hexadecimal fraction is stored in bits 8 through 15 of the first

memory word and in the entire second memory word. The radix point for the fraction is assumed
to be positioned between bits 7 and 8 of the first memory word (at the start of the hexadecimal
fraction).

2-7 Digital Systems Division

9462609701

RADIX POINT

o 1 : 7 8 15
1ST WORD S EXPONENT MOST SIGNIFICANT 8 BITS
OF NUMBER NORMALIZED
HEXADECIMAL
2ND WORD LEAST SIGNIFICANT 16 BITS OF NUMBER FRACTION

(A)133468

Figure 2-1. Memory Representation of Real Numbers

The exponent portion of the number is biased by 40,, (excess 64 notation), so that an
exponent for the number 16° is represented in memory by 40,,. Positive exponents, therefore,
are represented by numbers greater than 40,,, and negative exponents are represented by
numbers less than 40,,. For example, 168 is represented in the exponent field by a value of
38,¢. The exponent may be any value from 00,, to 7F,,. Using the 40,, bias value, these
numbers represent exponent values from -40,, to +3F,, (16%% to 16°). The seven exponent
bits are stored in bits | through 7 of the first memory word. : '

Bit 0 of the first memory word is used for a sign bit. When this bit is a zero, the number is
positive; when this bit is one, the number is negative.

Examples:

Hexadecimal Contents
of Memory Words

Base Ten Number Word 1 Word 2
1.0) 4110 0000
0.5 4080 0000
100.0 ; 4264 0000
03125 3F80 0000
(1/32)
1.0 C110 0000

2.4.3 DOUBLE PRECISION NUMBERS. Double precision numbers are similar to real numbers,

except that they occupy two more memory words and provide up to sixteen significant digits

_ (56 bits) instead of the seven available with real numbers. Double precision numbers, like real

- numbers, are restricted to the range of values from 10778 to 1075, including zero. The numbers
may be positive, negative or zero; if unsigned, they are assumed to be positive. The numbers
must be written in an exponential form similar to real numbers:

"~ zzzDn

where zzz represents any number of digits (only the first sixteen are significant) that may or
may not include a decimal point. The letter D indicates that the number following it is a power
of ten; it must be included in the data format. The power, represented by “n”’, may be positive,
negative or zero, and must be within the specified range for double precision numbers. Commas
cannot appear in the data input.

2-8 Digital Systems Division

e~

-
. 3

B W S, JUUA

L\

946260-9701

2.4.3.1 Examples of Double Precision Numbers. The following numbers are correct representa-
tions of double precision numbers:)

3D-16 (3 X 10716)
487.318264D0 (487.318264)

The following numbers are not correctly formulated double precision numbers for input to the
compiler: :

3.8D+327 Exponent exceeds the upper bound of 75.
4,134,904DS Commas cannot be used for double precision data input.
8.333333D-2.7 Nonintegral exponent of ten is not allowed.

8.33333333333 Letter D not included.

2.4.3.2 Memory Representation. Double precision real numbers are stored in memory in four

16-bit words as illustrated in figure 2-2. The most significant bit of the first word is a sign bit

for the data value field: 0 if the number is positive and 1 if it is negative. Bits | through 7 of
the first word are the exponent. The exponent follows the same form as for real number
exponents. The remaining bits of the first word of the other three words contain the double
precision number.

2.44 COMPLEX NUMBERS. A complex number has two components, a real part and an

imaginary part. The imaginary part is a real number multiplicd by i =+/-T. Such a number may
be represented graphically on a two-dimensional plane with perpendicular axes, one axis for the
real part and one for the imaginary part.

In 990 FORTRAN. complex numbers are written as an ordered pair of real numbers in this

form:

(Clsc2)

where ¢, represents the real part of the complex number and ¢, represents the coefficient of i
for the imaginary part of the complex number. Since ¢, and ¢, are both real numbers, they
must conform to the format for real numbers described in paragraph 2.4.2. Each of these

o 1 7 8 15
1ST WORD S EXPONENT MOST SIGNIFICANT 8 BITS
OF NUMBER
2ND WORD 16 BITS OF NUMBER
3RD WORD ‘ 16 BITS OF NUMBER
4TH WORD . 16 LEAST SIGNIFICANT 81TS OF NUMBER
(A)133469

Figure 2-2. Memory Representation of Double Precision Numbers

29 Digital Systems Division

946260-9701

numbers may be signed or unsigned. The parentheéses and comma are required in the complex
number representation. The following are correctly formatted complex numbers for use with the
compiler:

(1.25,:8.6) Represents the expression 1.25 - 8.6i
(0.,0.) Represents the expression 0 + 0i
(2.5E-7,-3) Represents the expression 2.5 X 107 - 3i

2.4.5 LOGICAL CONSTANTS. A logical constant may assume one of two logical states, true
or false. These states are expressed as follows for use with the compiler:

.TRUE.
.FALSE.

The enclosing periods are part of the constant and must be used regardless of context. These
values can be assigned to variables just as numerical values can, provided the variables have been
previously declared to be logical variables (refer to the declarations of data types in paragraph
2.3). A logical constant occupies one word (16 bits) in memory. That word is either all zeros
(.FALSE.) or any nonzero value (TRUE.). The following expression is valid if the variable A has
been declared to be a logical variable:

- A =.TRUE.

The use of the relational operators and logical operators in logical expressions is described in
Section I1I. e

2.4.6 FIXED POINT INTEGERS. A fixed point integer is an integer data type having a binary
“scale factor associated with it. The motivation behind this scaled integer feature is to provide a
mechanism for performing simple floating-point-like operations using integer arithmetic which is
much faster than floating point arithmetic. The feature is also useful in scaling and normalization
for accuracy optimization.

2.4.6.1 External Representation. Fixed point integers are represented in source text by variable
names declared in a FIXED type statement or by constants of the form:

ﬁQrs“
where:
i is the integer bortion an(AJ‘ consists of a string of decimal digits with no periods allowed.
i must be m the range -32768 to 32767.
s is the scz;le‘ factor portion-and consists of one or two decimal digits.

s must be in the range -31 to 31.

2-10 Digital Systems Division

A

PR

N

946260-9701

2.4.6.2 Internal Representation. The integer portion is represented internally as a 16-bit two's
complement binary number. The scale factor then represents. the position of the binary point
much like the integer portion. A scale factor of zero indicates the binary point is just right of the
least signficant bit of the integer portion. This orientation of the binary point is identical to that
of the usual integer data type. A positive scale factor s indicates the binary point is s bits to the
left of the least significant bit; a negative scale factor, s bits to the right. For example:

19Q0 is represented as:

0 15

ojlojojJojJojojojojo]JojJOoft}joOo]lO| 1 |1

BINARY POINT

19Q3 is represented as:

t

BINARY POINT

19Q-3 is represented as:
and Q i VIRTUAL BIT
POSITIONS

BINARY POINT

NOTE

The binary point is not stored internally as a part of the integer
portion. Its position is maintained separately by the FORTRAN
compiler.

, 2.4.6.3 Examples.

512Q0 o
256Q-1 All of these have a decimal value of 512.
4096Q+3 :

- 13Q0 is equivalent to a decimal value of 13.
13Q4 is equivalent to a decimal value o' 0.8125.
13Q-2 is equivalent to a decimal value ot 52.

See Appendix J for a more detailed discussion of fixed point integers use.

Change3 2-11 Digital Systems Division

946260-9701

2.5 HOLLERITH FIELD Y
A Hollerith field is defined as a string of characters. The characters are represented internally in { i
standard ASCII code. Hollerith fields may contain any of the characters represented in ASCII code '
and are not restricted to the character set defined for FORTRAN programming. The blank
character is significant within the Hollerith field. Hollerith fields do not have an associated type
declaraction in the sense of paragraph 2.3. Hollerith data can be assigned to a variable by using a
DATA statement if such an assignment is required. However, since Hollerith field codes occupy
eight bits per character, only two characters can be assigned to an integer variable and only four
characters can be assigned to a real number variable. .

A Hollerith constant may be written in an assignment statement (IA = ‘BC’). in the argument list
of a CALL statement (Section IV) or in a DATA (Section VI) or a FORMAT (Section V)
statement. The constant is written in one of two forms. The first form appears as:

nHecyc;.. ¢,
In this format, the letter n specifies the number of constants to be used, the letter H designates

that the constants are character data, and the letters c, through ¢, represent the input
characters,

P
L

The second form encloses the desired character field in apostrophes to indicate that the data
represents character constants rather than numenical data. For this form. an apostrophe in the
character field must be represented by two adjacent apostrophes. Therefore, the statement:

10 FORMAT (‘DON"T’)
represents the literal statement {)
DON'T ' G

As an illustration of the two forms, note that these Hollerith constants are equivalent:
28HOUTPUT NO. 3 ISN'T MORE THAN
‘OUTPUT NO. 3 ISN”"T MORE THAN’

2.6 DIMENSIONED VARIABLES ' v
A programmer must often perform calculations using large sets of related data. It is generally)
convenient to handle such data as a unit, and FORTRAN allows a single variable name to be
assigned to such a set of data. To be used in a program, the set of data consists of a specified
number of individual data items. The discussion of arrays, subscripts, and the DIMENSION
statement in the following paragraphs describes the handling of grouped and related data in
FORTRAN. '

;\-’

2.6. ARRAYS AND SUBSCRIPTS. A sct of related data is culled an array, retlecting the fact
that the data can be arranged into lists, or tables of rows and columns. Table 2-1 shows a group
of data presented in a two-dimensional array. Each number in the table represents the average
precipitation in inches of a particular city during a particular month, and is an element of the
array. If the array is given the variable name PRECIP, any element in the array can be identified .
by a row number and a column number following the name, for example PRECIP (3,5) = 4.8,
the average precipitation in Dallas in May. The numbers 3 and S are called subscripts. The
number of subscripts following the variable name is the same as the number of dimensions in the
array. Commas separate the subscripts.

2-12 Digital Systems Division

946260-9701

€9 14 oy I'e ol 80 91 Ul v'e g€ a4 Ls

13 141 I'e 6t 144 Lre te Le Ve ot 8T 133
6'C I't 0 o 00 00 1’0 <o Cl £C 1383 I'e
Le LT Lt 8T 61 61 (4 84 oy 6T 9C €T
61 rars 8¢ Le e ve 'y Lt ot Lt 9l 61
vy o€ e £e 9°€ Ly 8¢ [43 194 vs Y 142
33Qq *AON 30 ydsg 3ny Amng aung Kepy ady TRy Qo uef
@@ (n (o) (o) (® 03] (9 (s)) (€) @ (
fpuoyy

S SIAEIS PAAUN P3PS Ut uonedidaly :Aeury ue Jo sdurexy *{-z djqel

L

amess (9)
104 maN (S)
s3peduy sog ()
sefieg (€)
odeaty) (7)

guepy (1)

A

Digital Systems Division

2-13

%@ 946260-9701

Any element in the array in table 2-1 could be’denoted as PRLECIP (1,J), where 1 equals an
integer value from 1 to 6 for the cities and J equals an integer value from 1 to 12 for the months.
Arrays are often used as described above in programs where a computation is to be performed on
cach element in turn.

An example of a one-dimensional array is the data for the average precipitation in Atlanta in
each month (refer to table 2-1). If this array is named PI, it has as its elements P1(1) =4.4,
P1(2) = 4.5, and so forth through P1(12) =4.4.

The number of subscripts permissible in a 990 FORTRAN array is limited to three. A
sufficiently large area of storage must be available to accommodate the array.

All elements in an array must be the same data type, where the data type is one of the six
described in paragraph 2.4.

2.6.2 STORAGE OF ARRAY ELEMENTS. Arrays are stored in storage locations in the
following manner. The first subscript is incremented through its possible values; then the second
subscript is incremented by one and the first subscript is again incremented through its possible
values. When the second subscript has been incremented through its possible values in this
manner, the third subscript is incremented by one and the first and second subscripts are again
incremented through their ranges of values.

For example, the 3 by 3 by 3 array variable A(1,J,K) would be stored in this order:

A(LL1); A2,1,1); AGB,1L,1D); A(1,2,1); A(2,2,1); A(3,2,1): A(1,3,1);
A(2,3,1); A(3,3,1); A(1,1,2); A(2,1,2); AG3,1,2); A(1,2,2); A(2,2,2);
A(3,2,2); A(1,3,2); A(2,3,2); A(3,3,2); A(1,1,3); A(2,1,3); A(3,1,3);
A(1,2,3); A(2,2,3); A(3,2,3): A(1,3,3); A(2,3,3); A(3,3,3)

The identifiers for arrays follow the same rules as identifiers for undimensioned variables. For
example, these are valid array names:

ARRAY
E !
ST64A

These are not valid array names:

2X2 Identifier may not begin with a numeral.

RUN# Characters other than letters and numerals may not
appear in an identifier.

2.6.3 DIMENSION STATEMENT. The DIMENSION statement is used to declare identifiers to
be array identifiers and to specify the number and bounds of the array subscripts. The

information supplied in a DIMENSION statement is required for the allocation of memory for

arrays. Any number of arrays may be declared in a single DIMENSION statement.
Form:

DIMENSION §,,S3,....5;

where S is an array specification.

o . - - 214 Digital Systems Division

L
'

£
J

l)
R

9462609701

Each array variable appearing in the program must represent an element of an array declared in a
DIMENSION statement. unless the dimension information is given in another statement. When
the dimension information is provided in a COMMON or type declaration statement, it may not
appear in a DIMENSION statement.

Each array specification gives the array identifier and the maximum values that each of its
subscripts may assume, thus:

identifier(max, [,max,[,max,]])

The maxima must be integers. An array may have one, two or three dimensions. The dimension

information for an array must be given before the occurrence of that array variable in the pro-

gram. Subscripts must not exceed their maximum values declared in the DIMENSION statement.
NOTE

Check that the program does not reference an array beyond its
dimension to avoid affecting adjoining variables.

For example, the statement
DIMENSION EDGE(10,8)

specifies EDGE to be a two-dimensional array, the first subscript of which may vary from | to
10 inclusive, and the second from | to 8 inclusive. Zero and negative subscripts are not

permitted.

Example:
DIMENSION PLACE(3,3,3),HI(2,4),K(256)
Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(10,4),Y,Z2
INTEGER A(7,32),B
DOUBLE PRECISION K(6,10)

Note that each element of an integer or logical array requires one word of storage. Each element
of a real array requires two words of storage, double-precision require four words of storage,
and complex require four words of storage.

Within a subprogram, array specifications may use integer variables instead of constants, provided
that the array name and variable dimensions are dummy arguments of the subprogram. The
actual array name and values of the dummy variables are given by the calling program when the
subprogram is called. Quantities needed for reference to the array are evaluated when the
subprogram is entered. These quantities are not changed by any subsequent modification of the
dimension variables.) ‘

Example:
DIMENSION BETA(L,M,G),B(20)

The identifiers BETA,L,M, and G must all be dummy arguments.

2-15 Digital Systems Division

(l_@ 946260-9701

2.7 COMMON AND EQUIVALENCE STATEMENTS
The COMMON and EQUIVALENCE statements provide flexibility in the naming of variables and

the assignment of storage locations to them.

The COMMON statement is used to make an identifier in a program and in separate subprograms
refer to the same variable. Generally, variables that have the same name but are in different
programs or subprograms are distinct variables. The COMMON statemcnt assigns these distinct
variables to the same storage location,

The EQUIVALENCE statement causes two or more variables ina single program or subprogram
to be placed in the same storage location. This statement can be used for these purposes:

® Two or more identifiers may be defined to have identical meanings.

® A storage location can be used to contain two or more variables that are never needed
at the same time.

2.7.1 COMMON STATEMENT. A COMMON statement has the following form:

COMMON block-list

The COMMON statement specifies that certain variables or arrays are to be stored in an area also
available to other programs. By means of COMMON statements, a program and its subprograms
may share a common storage area.

Example:
"COMMON A,B(2,3),C,D(4)

This statement causes A to be stored in the first location of the common area, the array B to be
stored in the next six locations (in the order specified in paragraph 2.6.2), then C in the
following location, followed by the array D in four locations.

One COMMON statement by itself does not cause multiple assignments of an area of storage.
One or more additional COMMON statements, each assigning storage in a specified order to
variables, accomplishes this. For example, if one program contains the above example and a

subprogram contains this statement:
"COMMON G(6),F,E(2,2), H

then the common area shared by the two programs or subprograms will contain the following
data. Each rectangle represents a storage location.

A G(1)
B(1,1) G(2)
B(2,1) G(3)
B(1,2) G(4)
B(2,2) G(S)
8(1,3) G(6)
B8(2,3) F

c E(1,1)
D(1) E(2,1)
D(2) E(1,2)
0(3) E(2,2)
D(4) H

2-16 ‘ Digital Systems Division

o~
\

g

(.

‘o

-

)

-

)

946260-9701

The preceding illustration is an example of blank conumon, where all COMMON statements refer
to a single unnamed common area of storage. It is possible to hive a number of distinct common
areas or blocks, each named with an identitier. A named common block is known as lahcled
conunon.

The common area may be divided into separate blocks identified by block names. A block is
specified in this way:

fidentifier/identificr,identificry, . . . identifier,

The identifier enclosed in slashes is the block name. The subscripted identifiers which follow are
the names of the variables or arrays assigned to the block. These eclements are placed in the
block in the order in which they appear in the block specification.

Quantities placed in a common block by means of equivalences (refer to paragraph 2.7.2) may
cause the end of the common block to be extended. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(A,Y)

cause the common block R to extend from X to A(4), arranged as follows:

X

Y A1)

z A(2)
A(3)
A(4)

Equivalence which causes extension of the start of a common block is not allowed. For example,
the sequence

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3))

is not permitted since it requires block R to be arranged

A(1)

A(2)
X A(3)
Y A(4)
z

A(1) and A(2) extend the start of block R.
Redundant COMMON entries are not allowed. For example, the following is invalid:

COMMON AB,C,A

2-17 Digital Systems Division

Tl

946260-9701

A variable written with subscripting information in a COMMON or type statement must not be
mentioned in a DIMENSION statement. A variable in a DIMENSION statement, however, may
be mentioned without subscript dimensions in a COMMON or type statement.

The block-list of the COMMON statement consists of a sequence of one or more block
specifications. For example, the statement:

COMMON/R/X,Y,T/C/UV.W,Z

indicates that the elements X, Y, and T, in that order, are to be placed in block R and that U,
V, W, and Z are to be placed in block C.

Block entries are concatenated throughout the program unit, beginning with the first COMMON
statement. For example, the statements:

COMMON/D/ALPHA/R/A,B/C/S
COMMON/C/X,Y/R/U,V,W

have the same eftect as the statement
COMMON/D/ALPHA/R/A,B,U,V,W/C/S XY

One block of common storage may be left unlabeled, in effect making it blank common. Blank
common is indicated by two consecutive slashes. For instance,

. COMMON/R/X,Y//B,C.D
indicates that B, C,‘and D are‘ placed in blank common.
The slashes may be omitted whren blunk common is the first block of the statement.
COMMON B,C,D

Array names appearing in COMMON statements may have dimension information appended, as in
a DIMENSION statement. For example:

COMMON ALPHA,T(15,10,5),GAMMA
specifies the dimensions of the array T while entering T in blank common.
NOTE

Dummy arguménts for SUBROUTINE or FUNCTION statements
Lannot appear in COMMON statcments

A smglt COMMON statcmcnt may Lontdm variable names, array names. and dimensioned array
names (but not array elements). For example, the following are valid:

 DIMENSION B(5,15)
COMMON A,B,C(9.9,9)

218 Digital Systems Division

)

S’ ‘

o~

TN,

.946260-9701

Variables or arrays that appear in the main program or a subprogram may be made to share the
same storage locations with variables or arrays in other subprograms, by use of the COMMON state-
ment. For example, if one program contains the statement:

COMMON TABLE,A,B,C
and a second program contains the statement:

COMMON LIST
The variable names TABLE and LIST refer to the same storage locations.

If the main program contains the statement:

COMMON A,B,C

and a subprogram contains the statement:

COMMON X,Y,Z XX,YY,ZZ

and A, B, and C are equal in length to X, Y, and Z, respectively, then A and X refer to the same
storage locations, as do B and Y, and C and Z. XX, YY and ZZ are unique; that is, they do not
share a storage location with any other variables.

Within a specific program or subprogram, variables and arrays are assigned storage locations in
the sequence in which their names appear in a COMMON statement. Subsequent sequential
storage assignments within the same program or subprogram are made with additional COMMON
statements.

A dummy variable can be used in a COMMON statement to establish shared locations for

" variables that would otherwise occupy different locations. For example, the variable Z of the

previous example will share storage with S if the following statement is used:
COMMON Q,R,S
where Q and R are dummy names that are not used elsewhere in the program.

2.7.2 EQUIVALENCE STATEMENT. The EQUIVALENCE statement allows more than one

" identifier to represent the same quantity.

Form:
EQUIVALENCE (ryf2,. .. 1)(s182, - -« Spy)s - -« o(tistane o)

where 1, s, and t represent the equivalenced variables, and n, m, and k represent the number of
variables cquivalenced. Variables ry through r are equivalent: that is. they represent the same
quantity. Variables s, through s, all represent a second quantity.

The references of an EQUIVALENCE statement may be variables or array identifiers or array
element references. The subscripts of an array element must be integer constants. The number of
subscripts must be equal to the array dimension or must be one.

2-19 Digital Systems Division

NOTE

o
{@ 946260-9701

Conversion to single subscripts is permitted only in
EQUIVALENCE statements.

Since entire arrays are shifted to satisfy the equivalence, only the relative positions of the
references arc important. In the following example

EQUIVALENCE (BETA(1),ALPHA(7))
or EQUIVALENCE (BETA(2),ALPHA(8))

accomplish the same result.

Note that the relation of equivalence is transitive, e.g., the two statements

EQUIVALENCE (A,B),(B,C)
EQUIVALENCE (A,B,C)

have the same effect. Redundant equivalence statements are allowed:

EQUIVALENCE (X,Y)
EQUIVALENCE (Y,X)

2.7.3 EQUIVALENCE AND COMMON INTERACTION. Identifiers may appear in both .

COMMON and EQUIVALENCE statements, provided no two quantities in common are set
- equivalent to one another. ,

2.8 FUNCTION REFERENCE
A mathematical function is a quantity or group of quantitics that are defined in terms of

- relations between or operations upon some other quantity or quantities over a specified range of
values. The value of the function depends on one or more independent variables. These

independent variables are called arguments.
An example of a function is:
f(x) =x2+2x +1

The function value f(x) is defined in terms of the single argument x. For a given argument value
such as x =3, there is an associated function value, in this case f(x)=16.

In a program, an arithmetic function is a subprogram which acts upon a number of arguments
and produces a single numerical quantity as the function value. Function references are denoted
by the identifier which names the function, followed by an argument list enclosed in parenthe-

- §€S.

identifier (argument , argument,, ..., argument)

.

2-20 Digital Systems Division

-

—~

946260-9701

7 In this case, there are n arguments. There must be at least one. An argument may be an
(i expression, an array identifier, or a subprogram identifier. '

A function reference represents a quantity, namely the function value, and acts as a basic
element. The type of the function value is given by the type of the identifier which names the
function. The type of the function is independent of the types of its arguments.

Examples:

X = COS(THETA)
" I =IZETA(S+SQRT(S))

NOTE

In these examples, a real value X is returned for the function COS,
and an integer value I is returned for IZETA, in accordance with the
rules for implicit declarations of variables.

References to logical functions are written in the same way as references to arithmetic functions.
- The identifier used to name the function must be a logical identifier. The function arguments
may be expressions (logical or arithmetic), array identifiers, or subprogram identifiers.

2-21/2-22 Digital Systems Division

\, |
o

946260-9701

SECTION 111
OPERATORS AND EXPRESSIONS

3.1 GENERAL - _

Data (mathematical elements consisting of constants, variables and functions) used in FORTRAN
computation may be combined or altered using mathematical operators. The operators indicate the
manner in which a group of values is to be changed to obtain a new value.

A sequence of mathematical or logical elements, separated by operators and possibly by
parentheses according to specific rules, is called an expression. The mathematical elements are
constants, variables and functions. The parentheses indicate how elements are grouped within the

expression,

FORTRAN expressions may be considered to belong to either of two general classes: arithmetic
or logical. The mathematical data values in the expression and the types of operators that relate

them determine the class of a given expression.

The six data types described in Section II may be divided into those which have numeric values
and those which have logical values. Integers, real numbers, double precision numbers, fixed and
complex numbers are all numeric data. The sixth type, logical data, is distinct from the others
because its value is either true or fulse rather than a numeric quantity.

Data values may be combined or transformed by means of operators, yielding a result which is a
new data value. The FORTRAN operators may be any of three types:

® Arithmetic operators specify operations on numeric quantities.

e Relational operators express a logical relation between numeric quantities. The result
of the operation is a logical value.

~® Logical operators specify operations on logical quantities.

The class of an expression is determined by the results of the operations within it. If the results
are numeric values, the expression is aritlimetic; if they are logical values, the expression is
logical. Arithmetic expressions contain arithmetic operators, while relational and logical operators
appear in logical expressions.

3.2 ARITHMETIC EXPRESSIONS
The following paragraphs describe the arithmetic operators and the rules for forming and
evaluating arithmetic expressions. :

3-1 Digital Systems Division

(o]
@ ,946260-9701

3.2.1 ARITHMETIC OPERATIONS. There are five arithmetic operations, represented in
FORTRAN by the following symbols: - '

+ Addition

- Subtraction

* Multiplication
/ Division

** Exponentiation

Two of these symbols are also used as algebraic signs to indicate positive or negative values:

+ Positive sign
- Negative sign

These algebraic signs are handled as operators by the FORTRAN compiler. They are read as
positive and negative signs rather than addition and subtraction operators if they are not
immediately preceded by an arithmetic quantity.

If the precedence of operations is not given explicitly by parentheses, the order of precedence is
taken to be the following:

Operator Operation

hihd Exponentiation (highest precedence)

- Negative sign

*and / Multiplication and division

+and - Addition, positive sign and subtraction (lowest precedence)

When the operators are of equal precedence, they are understood to be grouped from the left,
except for exponentiation which is performed from right to left. Thus, the expression
A+B+C+D is calculated as ((A + B) + C)+ D. This convention takes care of such ambiguous
expressions as:

A**B**C
X/Y/Z

In 990 FORTRAN, these expressions are calculated as

A**¥(B**()
(X/Y)/Z

3.2.2 FORMATION OF ARITHMETIC EXPRESSIONS. An arithmetic expression consists of
numerical elements, arithmetic operators and parentheses. It has a single value which is the result
of the calculations specified by the quantities and operators in the expression.

The rules for forming arithmetic expressions are the following:

1. An expression may consist of a single element (constant, variable, or function
reference):

2.71828
Z(N)
-TAN(THETA)

32 Digital Systems Division

s,

-——
\-..4/

O

O

946260-9701

2. Compound expressions may be formed by using operators to combine basic elements:

X+3
TOTAL/POINTS
TAN(PI*M)

3. Any expression may be enclosed in parentheses and considered to be a single element:

(X+Y)/2
(ZETA)
COS (SIN(PI*M)+X)
4. Expressions may be preceded by a positive signh or negative sign:
+X
-(ALPHA*BETA)
-SQRT (-GAMMA)
5. No two operators may appear in sequence. For instance:
X*-Y

is improper. Use of parentheses yields the correct form:

X*(-Y)

6. The precedence of operations, if not given explicitly with parenthescs, is according to the

- rules in paragraph 3.2.1. For example, the expression
A*B+C/D**E
is taken to be
(A*B)+(C/(D**E))

7. Sequences of operations are evaluated according to the rules in paragraphs 3.2.1 and
3.2.3.

NOTE

Parentheses may not be used to imply multiplication. The asterisk
arithmetic operator must always be used for this purpose. There-
fore, the algebraic expression:

(a b) («c4)
must be written as:

(A*B) * (-C**D)
NOTE

Hexadecimal constants may be used in the algebraic expres-
sions. For example:

[=>73C+4

3-3 Digital Systems Division

o
{.@P 9462609701

3.2.3 EVALUATION OF ARITHMETIC EXPRESSIONS. The value of an arithmetic expression
may be of the integer, fixed, real, double-precision or complex typé. If more than one of these .
types appears in an expression, the expression’s data type is that of the highest rank of any
element in the expression.
The arithmetic data types are ranked as follows:

Complex (highest rank)

Double precision

Real

Fixed

Extended Integer

Integer (lowest rank)

. The type of a subscripted variable, however, is determined by the type of the variable identifier.
Each operation within an expression is evaluated in the type of the operation’s highest ranking
operand. Thus, the evaluation of an expression is not changed to a higher rank until necessary.
For example, if [and J are integers, R is REAL*4, DP is a REAL*8 number and C is a complex
variable, then the expression: '

(1/J + R)*DP*C

is evaluated as:

CMPLX((DBLE(FLOAT(I/J)+R)*DP),0)*C

where:
COMPLX function that converts real > complex
DBLE function that converts' real = double
.. FLOAT function that converts integer — real

Integer and fixed expressions are evaluated using binary integer arithmetic throughout, giving an
~integer value as the result. In integer arithmetic, fractional parts arising in division are truncated,
not rounded. For example:

7/3 yields 2
6/7 yields 0

All other calculations use binary floating point arithmetic.

34 Digital Systems Division

R

oy
R

®

()

19462609701

Conversions to higher rank are performed as follows:

(\ 1. An integer quantity becomes the integer part of a fixed or real quantity. The fractional
part is zero.

2. A fixed quantity is converted to real such that the part to the left of the binary point
_is the integer part and the part to the right of the binary point is the fractional part.

3. A real quantity becomes the most significant part of a double precision real quantity.
The least significant part is zero.

4, A real quantity becomes the real part of a complex quantity. The imaginary part is
Zero.

5. A double precision quantity is converted to single precision and becomes the real part
of a complex quantity. The imaginary part is zero.

In exponentiation (**), the types of the base and exponent are restricted as follows:

Pt

4
L' 1. Complex exponents are not allowed.
2. Only integer exponents may be used with complex bases.
3. Fixed bases are not allowed.
In exponentiation (**), the evaluation is as follows:
[1. If the base is exponentiated by an integer expression, the result is the same type as the
base. '

2. An INTEGER*2 or INTEGER*4 expression may be exponentiated by an INTEGER*?2
or INTEGER*4 expression. The result of two INTEGER*2 expressions is INTEGER*?2;
otherwise, the result is INTEGER*4,

3. A real or double-precision base may have a real or double-precision exponent; only
if both arithmetic expressions are real, will the result be real.

(:_/ 4, With a complex base and integer exponent, the result is complex.
~
Operations are performed by evaluating exponentiation first, then negative signs, then multiplica-
tion and division, then addition, subtraction and positive signs. Operations of the same priority
are evaluated left to right, except for exponentiation. The following example illustrates how this
process is carried out for the five arithmetic operations:
| 2%*3/445%6-7
" 8 /4+5%6-7
2 +5%6-7
2 + 30-7
32 -7
25

3-5 Digital Systems Division

o
@ 946260-9701

Expressions within parentheses are evaluated first. Nested groups of parentheses are evaluated by
starting with the innermost sets of parentheses and working outward. Nesting of parentheses to
any level is permitted in FORTRAN. The following example illustrates how this type of expression

is evaluated:

4*(5 ((17437)/73**(1+2)))+((21-9)/(10-6)+13)
4*(5-(54 /3**(1+2)))+ (21-9)/(10-6)+13)
4*(5-(54 3** ; +((21-9)/(10-6)+13)
4*(5-(54 +((21-9)/(10-6)+13
4*(5- +((21-9)/(10-6)+13
L +((21-9)/(10-6)+13
12 +((21-9)/(10-6)+13
12 + 12 /(10-6)+13
12 +§ 12 / 4 413)
12 + 3 +13)
12 + 16
28

When several variables or numbers in sequence are to be multiplied and/or divided, they are
calculated as if grouped from the left. For example, these two are equivalent:

A*B/C*D
((A*B)/C)*D

Similarly, a string of variables or numbers to be added and/or subtracted are calculated as if
. grouped from the left. These two are also equivalent:

A-B+C-D
. ((A-B)+C)-D

3.3 LOGICAL EXPRESSIONS
Four basic elements are used in FORTRAN logical computations: constants, variables, functional

references, and relations. All of these basic elements represent logical quantities. Logical identi-
fiers are written in the same way as numerical identifiers; however, they must always be

explicitly declared to be of the logical type.

A logical quantity may have either of two values: true or false. Logical quantities occupy one
word.

~ The following paragraphs discuss relational operations, logical operations, and the formation and
cvaluation of logical expressions.

3.3.1 RELATIONAL OPERATIONS. Relations are constructed from arithmetic expressions of
the integer, fixed, real or double-precision type. These relations make use of the relational

operators:
.GT. Greater than
.GE. Greater than or equal to

.LT. Less than

ey

36 ‘ Digital Systems Division

—~—

()

i
\\/'

946260-9701
.LL. Less than or equal to
.EQ. Equal to
NE. Not equal to

The enclosing periods are part of the operator and must be present.

Complex operands are allowed for .EQ. and .NE. only. Relational operators have lower precedence
than arithmetic operators. Two expressions of integer, fixed, real, or double-precision type,
separated by a relational operator, form a relation. For example:

X+2. LE.3*Y
is a relation. The entire relation constitutes a basic logical element.

The value of such an element is .TRUE. if the relation expressed is .TRUL. otherwise, the value
is .FALSE.. In the example above, the element has the value TRUE. if Xis 2 and Y is 2, and

the value .FALSE. if Xis 2 and Y is I.

Examples of valid relational expressions are:

Q1 .GT. Q2
Q3**3 .EQ. (6¥Q4+2)
0.4*FLN .LE. 1.83D4

Ql, Q2, Q3, Q4, and FLN are arithmetic quantities. In the following examples, A is an
arithmetic variable and S, T! and T2 are logical variables. Examples of illegal relational
expressions are:

A .GT. (4.345, 7.614) Complex numbers are illegal in logical
expressions except .EQ. and .NLE..

S .CE. (T1 + T2) Logical quantities may not be joined
by relational operators.

3.3.2 LOGICAL OPERATIONS. There are three logical operators, which are arranged according
to precedence in the evaluation of an expression:

.NOT. Logical not (highest precedence)

.AND. Logical and

.OR, Logical or (lowest precedence)
The enclosing periods are part of the operators and must be present.
The logical opt,rdtlons have specific meamngs as follows. The expression NOT P is true if P is
false and false if P is true. The expressnon P.AND.Q is true if P and Q are both true; otherwise,

it is false. The expression P.OR.Q is false if P and Q are both false; otherwise, it is true. In a
FORTRAN program, P and Q would have been explicitly defined as logical variables.

3-7 Digital Systems Division

o
{@ 946260-9701

3.3.3 FORMATION OF LOGICAL EXPRESSIONS. Logical expresqmns are formed according to
the following rules:

1. A logical expression may consist of a single logical element. For example:

TRUE.
BOOL(N)
X.GE.3.14159

2. Singlé elements may be combined through use of the logical operators .AND. and .OR.
to form compound expressions, such as:

TVAL.AND.INDEX
BOOL(M).OR.K.EQ.LIMIT

3. Any logical expression may be enclosed in parentheses and regarded as an element:

(T.OR.S).AND.(R.OR.Q)
(BOOL(M))
PARITY.OR.((2.GT.Y.OR.X.GE.Y).AND.NEVER)

4. Any logical expression may be preceded by the operator .NOT. as in:

NOT.T
NOT.X+7.GT.Y+Z
OOL(K) AND..NOT(TVAL.OR.R)

The only situation in which two loglcal operators may occur in sequence is when the
second operator is .NOT.. An example is:

P.AND..NOT.Q

5. Expressions whose values are either true or false may be combined using logical
operators.

3 3.4 EVALUATION OF LOGICAL EXPRESSIONS When logical expressions are evaluated, the
relational operations have precedence over the logical operations; in other words, the relational
operations are evaluated before the logical operations.

Among the logical operators, .NOT. is evaluated first; then .AND.; .OR. is evaluated last.
Therefore, the expression

" T.AND..NOT.S.OR..NOT.P.AND.R
is interpreted
(T.AND(NOT.S)) OR ((NOT. P).AND.R)

In this case, NOT S and .NOT.P are evaluated first and second, respectnvely. followed by the
two expressions with .AND., and finally .OR..

3.8 Digital Systems Division

()

o

R T A

946260-9701

3.4 SUMMARY OF RULES FOR EXPRESSIONS
(The following paragraphs summarize the hierarchy of operator precedence and provide some
: general comments about permissible arithmetic and logical statements.

3.4.1 OPERATOR PRECEDENCE. The hierarchy of precedence of arithmetic and logical
operators in FORTRAN is summarized in table 3-1. The first item in the table has the highest
precedence if functions and expressions within parentheses have been evaluated. Note that
arithmetic operators are evaluated before relational and logical operators. All operators of the
same precedence are evaluated from left to right.

For example, the logical expression
NOT.ZETA**2+Y*MASS.GT.K-2.0R.PARITY.AND.X.EQ.Y
is interpreted

(NOT.(((ZETA**2)+(Y*MASS)).GT.(K-2))).OR.(PARITY.AND.(X.EQ.Y))

Table 3-1. Precedence of Operators
~ "
Operator Operation
* Exponentiation
. Negative sign
* and / Multiplication and division
+ and - Addition, positive sign and subtraction
- GT.
{0 .GE.
AT .LT. Relational operations
.LE.
.EQ.
NE.
.NOT. Logical not
.AND. Logical and
OR. Logical or
v 3.4.2 ASSIGNMENT STATEMENTS. Arithmetic and logical FORTRAN assignment statements
£ have the form: , :
~ variable = expression

whereAexpr'ession may be any arithmetic or logical expression.
The statement defines the value of the variable by evaluating the expression to the right of the equal

sign.

" Note that an assignment statement is not a mathematical equation, for the *=""sign is not used in its
usual mathematical sense. In a FORTRAN statement, the “="" means is replaced by the value of
rather than is equal to the value of. For example, the statement

N=N+1

is interpreted to mean “N is replaced by the value N+17; i.e., one is added to the value of N. N
is assigned a new value which is greater than its previous value by 1.

39 Digital Systems Division

[e]
{@ 9462609701

Examples: i
Y = 2*Y
P = .TRUE.

X(N) = N*ZETA(ALPHA*M/PI)

If the type of the expression on the right of the assignment statement differs from the type of
the variable on the left, the expression on the right takes on the type of the variable on the left.
Table 3-2 summarizes the conversion for all combinations of expressions and variables.

Assignment statements of the form:

variable = Hollerith constant

are special cases. The character string represented by the Hollerith constant is transferred to the
variable without any type conversion. The string is left-justified in the variable with blanks added
on the right as necessary to fill the variable. The number of characters cannot be greater than

the number of bytes in the variable.
A Example: -
X ="AR
The example X = ‘AB’ implies that the four bytes represented by X (REAL*4) appear as

ABbb

Table 3-2. Assignment Statement Type Conversion

Type of Variable Type of Expression

R

(Left Side of (Right side of Conversion
Statement) Statement) ' :
INTEGER*2 INTEGER*2 None.
INTEGER*2 INTEGER*4 Take least significant word.
INTEGER*2 FIXED Take least significant 16 bits of the integer part.
INTEGER*2 REAL Truncate fractional part; convert to integer form.
- INTEGER*2 DOUBLE PRECISION Truncate fractional part; convert to integer form.
INTEGER*2 COMPLEX Truncate fraction part of real part; convert to in-
S - : teger form.
" INTEGER*4 INTEGER*2 Extend sign into most significant of two words.
INTEGER*4 INTEGER*4 None.
INTEGER*4 FIXED Take least significant 16 bits of the integer part.
INTEGER*4 REAL Truncate fractional part; convert to integer form.
INTEGER*4 DOUBLE PRECISION Truncate fractional part; convert to integer form.
INTEGER*4 COMPLEX Truncate fractional part of real part; convert to
: integer form.
FIXED INTEGER*2 Integer becomes integral part; shift according to

scale.

Digital Systems Division

v
-
g

-
e
V

946260-9701

Type of Variable
(Left Side of

Type of Expression
(Right Side of

Table 3-2. Assignment Statement Type Conversion (Continued)

Conversion

Statement) Statement)
FIXED INTEGER*4 Integer becomes integral part; shift according to
' scale.

FIXED FIXED None, except possible shift.

FIXED REAL Convert both integral and fractional parts to inte-
ger form; shift according to scale.

FIXED DOUBLE PRECISION Convert both integral and fractional parts to inte-
ger form; shift according to scale.

FIXED COMPLEX Convert both integral and fractional parts of real
part to integer form; shift according to scale.

REAL INTEGER*2 Convert to floating-point form.

REAL INTEGER*4 Convert to floating-point form,

REAL FIXED Convert to floating-point form.

REAL REAL None.

REAL DOUBLE PRECISION Take first two words of extended floating point.

REAL COMPLEX Take real part.

DOUBLE PRECISION INTEGER*2 Convert to extended floating-point form,

DOUBLE PRECISION INTEGER*4 Convert to extended floating-point form.

DOUBLE PRECISION FIXED Convert to extended floating-point form.

DOUBLE PRECISION REAL Extend single floating point to extended form.

DOUBLE PRECISION DOUBLE PRECISION None. '

DOUBLE PRECISION COMPLEX Extend real part to extended floating-point form.

COMPLEX INTEGER*2 Convert to real form; assign to real part; assign
zero imaginary.

COMPLEX INTEGER*4 Convert to real form; assign to real part; assign
zero imaginary.

COMPLEX FIXED Convert to real form; assign to real part; assign
zero imaginary.

COMPLEX REAL Assign to real part; assign zero imaginary,

COMPLEX DOUBLE PRECISION Take first two words of extended floating point;
assign to real part; assign zero imaginary.

COMPLEX COMPLEX None.

3-11/3-12 Digital Systems Division

946260-9701

SECTION 1V

CONTROL

4.1 GENERAL STATEMENTS .

Statements in FORTRAN programs are normally executed sequentially. This sequence may be
altered by the use of control statements which allow the programmer to make decisions during the
course of his program and control the order of execution of the program.

FORTRAN statements may be given numbers to be referenced by control statements. A statement
number is written as an unsigned, nonzero integer of five digits or less. Leading zeros are ignored.
Although statement numbers are written as integers, they represent labels rather than numerical
quantities. Statement numbers are used for program control, not numerical calculation. Statement
numbers must be unique within any separately compiled program unit. For example, no two state-
ments may have the same number in a program which will be called ANY in this example: however,
ANY may contain a statement numbered j and may call a subprogram which contains a statement

numbered j.

4.2 GO TO STATEMENT
The following paragraphs discuss the various forms of the GO TO statement and a statement
used in conjunction with it, the ASSIGN statement. The statements included are:

e Unconditional GO TO statement

e Computed GO TO statement

e ASSIGN statement

e Assigned GO TO statement
4.2.1 UNCONDITIONAL GO TO STATEMENT.
Form:

oo,
This statement transfers control from one point of a program to another by indicating the
number of the statement to be executed next, j. Each time the GO TO statement is reached, the
program transfers control to statement number j and proceeds sequentially from there until
another control statement is ‘rcached.
Example:

GO TO 10
8 A=B+C
10 B=B+l

Statement 10 is executed immediately after the GO TO statement.

4-1 Digital Systems Division

946260-9701

4.2.2 COMPUTED GO TO STATEMENT.
Form:

GO TO Guijaras -« - adg)b]i
This statcmem allows control to be transferred to any one of n different statements, where
dvs Jased,, are the statement numbers, and i is a nonsubscripted integer variable which has a value in
the range 1 through n. The computed GO TO causes control to be transferred to the statement
whose label is ji, where k is the value of the integer variable i. If i is outside the range 1 through

n, then the next sequential statement following the GO TO statement is executed. The comma
separating i from the statement list is optional.

Example:
GO TO (89,14,92,21),ICE

Statement 89 is executed next if the value of ICE is 1. If the value of ICE is 3, statement 92 is
executed.

4.2.3 ASSIGN AND ASSIGNED GO TO STATEMENTS.
Forms:

1. ASSIGN i TO variable

GO TO variable
2. GO TO variable, (nynyn3,...,n,)

Variable is a nonsubscripted integer variable, i is an executable statement number, and
n,,n,,..,n, are executable statement numbers.

The second form of the assigned GO TO is allowed for coding compatibility with other versions
of FORTRAN only. It is important to note that the list of statement numbers is not used to
limit transfer of control, i.e., the statement number does not have to be included in the list for
the program to work. However, the list may be used as a handy reference of all possible transfer
points, and if a listed statement number is not used as a label somewhere in the program, an
error message is printed by the compiler. :

This statement transfers control to the statement whose number was assigned to the variable.
The assignment must take place in a previously cxecuted ASSIGN statement.

4-2 “=- - Digital Systems Division

O

,,,,,,,,

946260-9701

- “The variable is a control variable, having a label as a value, not a numerical quantity. At the time-

of execution of an assigned GO TO statement, the current value of variable must have been
defined by the previous execution of an ASSIGN statement. The value of the integer variable is
not the integer statement number; ASSIGN 10 TO I is not the same as 1 =10.

Example 1:

,-* ASSIGN 40 TO NERROR

GO TO NERROR
40 A=A+B

In example 1, control is transferred to the statement numbered 40.

o VE_xa‘mplel 2

-~ GO TO N, (10,25,8)

If the current assignment of the integer variable N is statement number 8, then the statement
numbered 8 is executed. If the current assignment of N is statement number 10, then the

- statement numbered 10 is executed next. If N is assigned statement number 25, statement 25 is

executed next. If N is assigned statement number 12, statement 12 is executed, even though it is
not included in the list within parentheses.

Exampie 3

0 ASSIGN 10 TO ITEM

GO TO ITEM,(8,12,25,50,10)

10 '<B=C-YPD ,'5',1‘:"" ENETE
2+ ASSIGN 25 TO ITEM
GOTOI3 i

- 4-3 Digital Systems Division

PRI e RN

RN

946260-9701

In example 3, the first time statement 13 is executed, control is transferred to statement 10. On
the second execution of statement 13, control is transferred to statement 25.

4.3 IF STATEMENT
The following paragraphs describe the two forms of the [F statement: the arithmetic IF
statement and the logical IF statement.

4.3.1 ARITHMETIC IF STATEMENT.

Form:
IF (e) ny,nany

The quantity e is an arithmetic expression and n,;, n,, and n; are statement numbers. The simple
GO TO statement causes an unconditional transfer of control to a specified statement. The transfer
does not depend on any condition of the data, status of the machine, or any other changeable hard-
ware or software condition. The unconditional GO TO by itself would permit little work to be
done; it is also necessary to be able to transfer if some condition is met during program execution.
The arithmetic IF statement accomplishes this. If the value of the expression within parentheses is
negative, the statement having statement number n, is executed next; if the value of the expression
is zero, statement n, is executed next; if the expression is positive, n; is executed next.

Example:
IF (A(J,K)**3-B) 104,30

4 D=B+C
30 C=(DtC)**2

10 E=(F*B)/(D+1)
In this example, if the value of the expression (A(J,K)**3-B) is negative, statement number 10 is
executed next. If the value of the expression is zero, statement number 4 is executed next. If
the value of the expression is positive, statement number 30 is executed next.
43.2 LOGICAL IF STATEMENT.

Form:

IF(e)s

4-4 Digital Systems Division

")

0

(0

e

PR

Q
{@ 946260-9701

Another tool for transfer of control is the logical II° statement, where ¢ is a logical expression
F and s is any other statement except another logical 1FF or a DO (discussed in paragraph 4.4). The
; most common form of logical expression in this context is one that asks a question about two

arithmetic expressions. Such relational expressions are written by using the six relational

operators: .GT.; .GE.; .LT.; .LE.; .EQ.; .NE.. (These operators are discussed in Section IIl.)

v The action of the logical IF is as follows: if the logical expression is true, statement s is
executed; if the logical expression is false, statement s is not executed. In either case, the next
statement executed is the one following the logical IF, unless s is a GO TO or an arithmetic IF,
and the expression is true.

Example 1:

¢ IF (A.LE.0) GO TO 25
C=D+E
P
25 W=X**Z

If the value of the expression (A.LE.Q) is true, indicating that A is less than or equal to 0, the

statement GO TO 25 is executed next and control is passed to statement number 25. If the

value of (A.LE.O) is false, indicating that A is greater than 0, the statement GO TO 25 is ignored
o and control is passed to the next sequential instruction.

Example 2:

Assume that P and Q are logical variables.

() ~ IF (P.OR.NOT.Q) A=B
* C=B**2
~ In the first statement, if the value of (P.OR..NOT.Q) is true. the value of A is replaced by the

value of B and the second statement is executed next. If the value of (P.OR..NOT.Q) is fulse, the
statement A=B is skipped and the second statement is executed.

4.4 DO AND CONTINUE STATEMENTS
- The following paragraphs describe the DO statement and a statement used in conjunction with it,
. the CONTINUE statement.
4.4.1 DO STATEMENT.

- Forms:

DO n i=k, .k,
DO n i=k|,k2,k3 ’

4-5 Digital Systems Division

(l_@ 946260-9701

Most of the computation and information processing involved in a program is essentially
repetitive. The DO statement serves as a powerful tool in FORTRAN by facilitating the
definition and control of repetitive processes. For example, the following statements:
Y
I=1
10 SQ)=A()*A(l)
[=1+1
IF(I1.LE.SO)GO TO 10

which calculate.the squares of SO numbers can be replaced by:

DO 10 I=1,50
10 SQ(=A)*A(I)

where the DO statement simplifies the iterative process controlled by the first, third, and fourth
statements.

In the general form of the DO statement, n is a statement number, i is a nonsubscripted integer
variable, k,, k;, and k3 are unsigned integer constants or nonsubscripted integer variables. All
integer variables must be INTEGER*2 type. If kj is not stated, it is assumed to be 1. The value
k, is called the initial value, k, is called the test value, and k; is called the increment.

NOTE

Specifying a K, (DO loop test value) of -1 results in an infinite
DO loop.

The n which follows DO is called the range limit and indicates that all the instructions following
the DO statement. up to the including statement n. should be executed until the value of i

exceeds k.

The variable i is referred to as the index and may be used as a subscript or ordinary integer
variable within the DO loop. It may also be changed within the DO loop. Once outside the DO
loop, the index may be redefined and used again.

The DO statement first sets the index to the initial value k. After the statements in the range
have been executed, the value of i is incremented by the value k; (or 1 if k; is not specified),
“and i is then tested to see whether it is greater than the test value k,. If it is not, all the
. statements in the range are executed again. It i does exceed the test value, control passes to the
next statement immediately tollowing the one labeled n. This is referred to as a normal exit
from the DO statement and the value of the index i is undefined. An exit can also occur due to a
transfer within the range, in which case the value of index i is still defined.

Because the test value is compared with the value of the index following the execution of the
range, a DO loop is always performed at least once. even if the initial value is greater than the test
value when the DO is entered.

Digital Systems Division

*}
.

5

3

()

ittt

PN

946260-9701

Example 1:

DO 5 1=1,20

C=A*B

AN dE W —

In this example, statements 1-5 will be executed 20 times with I ranging in value from 1-20.
After completion of the DO loop, statement 6 is executed.

Example 2:

DO 25 [=1,1000
25 STOCK(I)=STOCK(I)-OUT(l)
A=B+C

In example 2, the index, I, is set to the initial value of 1. Before the second execution of
statement 25, | is increased by the increment, 1, and statement 25 is again executed. After 1000
executions of the DO loop, I equals 1000. Since 1 is now equal to the highest value that does
not exceed the test value, 1000, control passes out of the DO loop and the third statement is
executed next. Note that the DO variable I is now undefined; its value is not necessarily 1000 or
1001. : '

Example 3:

DO 25 I=1,10,2

J=I+K :
25 ARRAY(J)=BRAY(J)
- A=B+C

In example 3, statement 25 is the end of the range of the DO loop. The DO variable, 1, is set to
the initial value of 1. Before the second execution of the DO loop, | is increased by the
increment, 2, and the second and third statements are executed a second time. After the fifth
execution of the DO loop, 1 equals 9. Since 1 is now equal to the highest value that does not
exceed the test value, 10, control passes out of the DO loop and the fourth statement is
executed next. Note that the DO variable I is now undefined; its value is not necessarily 9 or 11.

4-7 Digital Systems Division

R |

~

946260-9701

Programming considerations in using a DO loop are as follows:

1.

Example

50

Example 2:

1S
10

The indexing parameters of a DO statement (i, k,, k,, k) may be changed (provided
they are not constants) by a statement within the range of the DO loop. This is not
allowed in most other versions of FORTRAN.

There may be other DO statements within the range of a DO statement. All statements
in the range of the inner DO must be in the range of the outer DO. A set of DO
statements satisfying this rule is called a nest of DOs.

l:

DOSOI=14 A
A(D) = B()**2 Range of
DO5S0J=1,5 Range of Quter DO
CJ+1) = A(l) Inner DO

DO 10 INDEX = LM
N = INDEX + K Range of
DO 15 J =1,100,2 Range of Outer DO
TABLE(J) = SUM(J,N)-1 Inner DO

B(N) = A(N)

A transfer out of the range of any DO loop is permissible at any time. A normal exit
from a DO loop makes the value of index i undefined. A transfer out of the range of the
DO loop reserves the current value of the index i.

The extended range of a DO is defined as those statements that are executed between
the transfer out of the innermost DO of a nest of DOs and the transfer back into the
range of this innermost DO. The extended range must be within the program unit
containing the DO statement. The following restrictions apply:

a. Transfer into the range of a DO permitted only if such a transfer is from the
extended range of the DO.

b. The extended range of a DO statement must not contain another DO statement
having an extended range when the contained (second) DO statement is within
the same program unit as the first.

Note that a statement that is the end of the range of more than one DO statement is
within the innermost DO. The statement label of such a terminal statement may not be
used in any GO TO or arithmetic IF statement that occurs anywhere but in the range
of the most deeply contained DO with that terminal statement.

4-8 Digital Systems Division

-
Nt

()

€)

[o]
@ 9462609701

\‘./-

(A)131223

EXAMPLE Do . po
DO Do
1 4
Do
6
. 2 \ 5
3 7

In the preceding example, the transfers specified by the numbers 1, 2, and 3 are
permissible, whereas those specified by 4, 5, 6, and 7 are not. Transfers | and 3 are
from a point in an inner DO to a point in a DO containing the inner DO. Transfer 2 is
within the range of the innermost DO. Transfers 4 and 6, from a point in a DO to a
point in a second DO contained within the first, are not allowed. Transfer 5 is from a
point in a DO to a terminal statement shared with a contained DO; this transfer is not

* allowed. Transfer 7 is into a DO from outside its range; it also is not allowed.

Example:

.

The last statement in the range of a DO loop must be an executable statement. The
statement cannot be a GO TO statement of any form, or a PAUSE, STOP, RETURN,
arithmetic IF statement, another DO statement, or a logical IF statement containing the
forms GO TO, PAUSE, STOP, RETURN, or arithmetic IF. When the last statement
in the range of a DO loop is a logical IF, control is transferred to the next statement
when the conditions satisfying that DO loop are met.

DOSK =14 A
5 IF (X(K).GT.Y(K)) Y(K) = X(K)

6 CONTINUE

1.

Statement 5 is executed four times regardless of the outcome of the IF statement.

Statement 6 is executed following the fourth execution of statement 5 regardless of
the outcome of the IF statement.

The use of, and return from, a subprogram from within any DO loop in a nest of DOs
is permitted. '

The indexing paraméters of a DO statement (i, k,, kz, k3) must be of the type

. INTEGER*2.

'4.4.2 CONTINUE STATEMENT.

Form:

CONTINUE

Digital Systems Division

e

Q
{@ 946260-9701

-~

The CONTINUE statement causes no instructions to be executed; it serves only as a dummy
statement to indicate that in the normal sequence of the program, the statement following is to

be executed next.

The primary use of the CONTINUE statement is as the range limit for the DO loop. It must be
used when the loop would otherwise terminate with an IF, GO TO, STOP, PAUSE, or RETURN
statement. The CONTINUE also acts as a transfer point for IF and GO TO statements within the
range of the DO that are intended to begin another iteration of the loop.

Example 1: .

DO 30 1=1,20
7 IF (A(1)-B(1)) 5,30,30
5 A(=A()+1.0
. B(1)=B(1)-2.0

GO TO7
30 CONTINUE
C=A3)+B(7)

In example 1, the CONTINUE statement is used as the last statement in the range of the DO in
order to avoid ending the DO loop with the statement GO TO 7.

Example 2:

DO 30 1=1,20

IF (A(1)-B(1))5,40,40
5 A()=C(I)

GO TO 30
40 A(1)=0.0
30 CONTINUE

In example 2, the CONTINUE statement provides a branch point enabling the programmer to
bypass the execution of statement 40.

4.5 TRANSFER OF CONTROL TO SUBROUTINES
The following paragraphs describe the CALL statement and the RETURN statement.

4.5.1 CALL STATEMENT.
fFform:

CALLs (a,32,....,)

4-10 Digital Systems Division

~

()

946260-9701

- The CALL statement causes a transfer of control to a SUBROUTINE subprogram (described in
[- Section VI): s is the symbolic name of the subprogram and a, ja,,... Ay are arguments that may
be required by the subprogram. The symbolic name of the subprogram is not assigned a type and
has no relation to the type of the arguments. If the subprogram requires no arguments,
ay,a,,...,a, are not required in the CALL statement.

Examples:

CALL MULTI (A,B.C)
CALL PRODUCE (A,10,50,P)

The CALL statement causes control to transfer to the first executable statement of the
SUBROUTINE subprogram. The dummy variables are replaced by the values of the arguments in
the CALL statement. Arguments appearing in a CALL statement may be any constant, any
subscripted or nonsubscripted variable, any expression, or a subprogram name. A SUBROUTINE
subprogram may use one or more of its arguments to return results to the calling program. A

£ constant should not be used as an argument if a value is being returned to that argument by the

7 subroutine. The following example illustrates a problem that might be encountered when a
constant is used as an argument.

MAIN PROGRAM SUBROUTINE SUBPROGRAM

.

SUBROUTINE MIN (NM,1)
CALL MIN (6,3,25) M=N*I

. RETURN

20 §$=3 END

Here the subroutine replaces the constant 3 with the value N * I, which is 150 in this case. This
results in the variable S being assigned a value of 150 when statement 20 is executed, rather than
w7 ~ the expected value of 3.

N\,

- '4.5.2 RETURN STATEMENT.
Form:
RETURN

This statement returns control from a subprogram to the calling program. Normally, the last

statement executed in a subprogram is a RETURN statement. It need not be physically the last

statement of the subprogram. Any number of RETURN statements may be used. RETURN may
_ appear only m subprograms. ,

' ‘4.6 PAUSE. STOP AND END STATEMENTS
The following paragraphs describe the PAUSE statement, STOP statement and END statement.

4-11 Digital Systems Division

[+
{@ 9462609701

4.6.1 PAUSE STATEMENT.
Forms:
PAUSE
PAUSE n
In the second fomt of the statement, n is an integer constant.

4.6.1.1 DX10PAUSE Statement 2.X Releases. The PAUSE statement is included for compatibility
with other versions of FORTRAN. The integer constant (or zero if the integer is omitted) is written
in a runtime file by the FORTRAN language processor. The file is assigned a name consisting of:

.L (5000 + terminal id).

The contents of this file may be displayed by doing a Show File (SDS) following execution of the
FORTRAN program. The file is recreated each time a program runs and the previous contents of
the file are destroyed. When the integer has been written into the file, execution continues without
waiting for a reply from the console. The PAUSE statement may be useful in program debugging.

4.6.1.2 DX10 PAUSE Statement 3.X Releases. The PAUSE statement is included for compatibility
with other versions of FORTRAN. The integer constant (or zero if the integer is omitted) is written
in the Terminal Local File (TLF) by the FORTRAN language processor.

The TLF contents are displayed on the terminal screen following execution of the FORTRAN
program. The file is recreated each time a program runs, so that the previous contents of the file
are destroyed. When the integer has been written into the file, execution continues without waiting
for a reply from the console. This statement is sometimes useful in program debugging.

4.6.1.3 TXDS PAUSE Statement. The PAUSE statement is included for compatibility with other
versions of FORTRAN. The integer constant (or zero if the integer is omitted) is written in a
runtime file by the FORTRAN language processor. The contents of this file are displayed on the
system console following execution of the FORTRAN program. When the integer has been written
into the file, execution continues without waiting for a reply from the console. This statement is
sometimes useful in program debuggmg

4.6.2 STOP STATEMENT.
Forms:
STOP |
_ STOPn
i lln the second form of tlle statement nis an mteger constant.
4.6. 2 1 DX10 STOP Statement 2.X Releases The integer constant (or zero if the mteger constant
is omitted) is written in a runtime file by the FORTRAN ldnguage processor The file is created

w1th the name

(5000 + terminal id).

R e I 412 Digital Systems Division

e

"

H ?
o~

S

L
A

ot

946260-9701

. The contents of the file may then be displayed by doing a Show File (SDS). Program processiné,
(\ stops and control returns to the operating system. The file is created each time a program uses the
~ STOP statement from a particular terminal. Previous contents of the file are destroyed.

- 4.6.2.2 DX10 STOP Statement 3.X Releases. The integer constant (or zero if the integer constant
is omitted) is written in the TLF by the FORTRAN language processor.

®

. The TLF contents are displayed on the terminal screen, program processing stops, and control
 returns to the operating system. The file is created each time a program uses the STOP statement
. from a particular terminal. Previous contents of the file are destroyed.

4.6.2.3 TXDS STOP Statement. The integer constant (or zero if the integer constant is omitted)

is written in a runtime file by the FORTRAN language processor. The contents of this file are

displayed on the system console, program processing stops, and control returns to the operating
- system. el o ,

' 463 ENDSTATEMENT.

~ Form:
"~ END

" The END statement is a nonexecutable statement that defines the end of a source program or
source subprogram for the compiler. Physically, it must be the last statement of each program or
‘subprogram. If program execution reaches the END statement, the effect is exactly as if a STOP

7. statement has been executed. The END statement must be on a single source line; continuation

“7 lines are not allowed. If the END statement has a statement number, it is equivalent to a STOP

.o statement, oot

4-13/4-14 L) ~ Digital Systems Division

o
%@ 946260-9701

' _ SECTION V

INPUT/OUTPUT STATEMENTS

5.1 GENERAL : '
The input/output (I/O) statements control the transmission of information between the com-

puter and the peripheral 1/O devices or units. 1/O statements are classified as follows:

® FORMAT Statement. The FORMAT statement is a nonexecutable statement which
specifies the conversions required between internal and external data forms. It
describes how the data is arranged for input or output. Data transferred without a
FORMAT statement is unformatted and reflects the data as it appears in computer

o memory.
VL . .
® READ and WRITE Statements. READ and WRITE are statemel}ts W.thh specify
1~ transmission of information between computer memory and various input/output
‘ devices. :
® Mass Storage File Input/Output Statements. REWIND, BACKSPACE, and END FILE
provide positioning and file termination for magnetic tape and disc 1/0.
NOTE
o - All devices are opened on first 1/O operation, not at initialization.
(N - It is recommended the user do an initial /O operation, such as a
REWIND, to open a device prior to the first actual 1/O. This will
ensure proper execution of the first actual 1/0O.
5.2 FORMAT STATEMENT
All formatted input or output requires the use of a data format specifying the external format of
the data and the type of conversion to be used. The data format is given in a FORMAT
~ statement or as an alphanumeric string in a data array.
o " . . : :
p Form:
PN
FORMAT(S, .Sy, . . - ,S;)
~ where S is a data field specification as defined in the following paragraphs.
5.2.1 NUMERICAL DATA SPECIFICATIONS. Conversion of arithmetic data may be one of
the following five types: - . ‘
® D field specification. The internal form is double-precision binary floating point. The
‘ . external form is double-precision decimal floating point. The specification has the form
. 3 ' Dw.d

® F field specification. The internal form is binary floating point. The external form is
decimal floating point. The specification has the form

" . Ewd

5-1 Digital Systems Division

946260-9701

® F field specification. The internal form is binary floating point. The external form is
decimal fixed point. The specification has the form

Fw.d

® G field specification. The internal form is binary floating point. The external form is
decimal fixed point or floating point. The specification has the form

Gw.d

® [field specification. The internal form is binary integer. The external form is decimal
integer. The specification has the form

Iw

.

® Z field specification. The internal form is binary, the external form is hexadecimal
integer. The specification has the form

Zw

The letter D, E, F, G, I or Z designates the conversion type; w is an integer specifying the field
width, which inchides any preceding blanks, minus sign, decimal point, and exponent; d is an
integer specifying the number of decimal places to the right of the decimal point. For example,
the statement

FORMAT (I5,F10.2,D25.8) . .

could be used to output the line

cowuMmns: |1 |23 als|le]7]|e]o]iopriphafiafsafis|riefr7fisliaf20{2r1]22|23f24|e5])26]27{28129]30]3¢{32{33]34]35|36[37|38(39]40

The field width w, includes all characte'rS in the number. If the number is too large for the field
width, the field is filled with question marks. :

The type of conversion used must correspond to the type of the variable in the input/output list.
I conversion is used for integer or extended integer variables: E, F or G conversion is used for real
variables; The D conversion is used for double-precision variables; and the Z conversion is used for
any variable. B

© 5.2.1.1 I Field Specifications. The [field specification is used to input or output an integer
value. The form Iw specifies that w character positions are to be allotted to the number. The
number is right justified within the w-field and unused space remains blank. It a value requires
more than w positions, an error condition exists and is indicated by w question marks placed in
the field. If the value is negative, a minus sign immediately precedes the leftmost digit. If the
value is positive, a blank space immediately precedes the leftmost digit. A position must be

reserved for the sign (either minus sign or blank space); thus, a number with a size greater than
- w-1 digit position results in an error condition. Blanks received as input are interpreted as zeros.

5-2 Digital Systems Division

946260-9701
. The following examples show how each of the values on the left is printed for the format
(\ specification 14: '
Value Stored Internally Appearance on Printed Line

459 459

v : +459 459
2360 -360

10 10

10000 7

5.2.1.2 F Field Specification. For this form of conversion, the specification is

Fw.d

The F indicates conversion between an internal real value dnd an external number without an

A exponent. The quantity w refers to the data length of the total field, and d refers to the number

of places which are to appear to the right of the decimal point (the fractional portion). The total

field length must provide positions for a sign, if any, a decimal point, and a digit to the left of

~ the decimal point. The sign is printed only if the number is negative. In general, w should be
greater than or equal to d+3 for output.

If a fractional portion requires more positions than are reserved by d, it is rounded by adding S to
the digit beyond the rightmost digit to be output. If the positions reserved by d are not filled,
zeros are placed from the right of the last digit to the end of the field. The portion of the field

. specified by w is treated in the same manner as numbers converted by the 1 field specification
on both input and output. Blanks received as input are interpreted as zeros.

i.,»"‘w,
When determining the field specification, it is important to remember that a real value has only
seven significant digits, and that a double precision value has 16 significant digits.

The following examples show how each of the values on the left is printed according to the
specification F7.3:
Value Stored Internally Appearance on Printed Line
(. 32.447 ' 32447
o . -88.668 -88.668
~ -33 0.330
s ' 8.6452 8.645
-3. -3.000
8.064 8.064
325.943 ‘ MM
. Question marks are placed in all error fields.
For F field specification input, the decimal point in the data field is optional. If a decimal point
is present that is inconsistent with the format specification. the actual position of the decimal
‘ point overrides that indicated in the format and governs the conversion. If no decimal point is
present, space should not be reserved for it. The number is given a decimal point when converted
internally: the format specification is used to place the decimal point in the correct position. For
example, these two input fields yield the same result internally if the specification is F7.3:
¢ 246.135
246135

5-3 Digital Systems Division

946260-9701

For F field specification output, fractional numbers are usually prin’ted with a zero immediately AN
to the left of the decimal point. If d is zero, a fractional value is printed as a sign, a zero, and a (’
decimal point.

For example, for the specification F4.0:
-.3564 is converted to -0.
A zero value is printed with a zero preceding the decimal point. B

Numbers in an E field specification format are accepted as data for F field specification input.

5.2.1.3 E Field Specification. For E-type conversion, the field specification is
Ew.d

The E indicates conversion between an intemal real value and an external number with an
exponent. The d indicates the fractional portion. For output, the minimum requirement is the d
field, a decimal point, a digit to the left of the decimal point, a place for a sign (or blank), and
four places for the exponential portion. Each of these must have an allotted space on output. If
w<d+6 an output error condition will occur. For input, space for all of these positions is not
necessary. In general, the relationship w=d+7 should be sufficient.

The exponent is a signed or unsigned one- or two-digit integer constant preceded by the letter E
- and within the range -78<e<75. The integer indicates the power of ten which is used to multiply .
the number to obtain its true internal value. Blanks received as input are interpreted as zeros.

. The following examples show how cach of the values on the left is printed according to the ()
specification E11.4,

Value Stored Internally Appearance on Printed Line

4381. 0.4381E 04
00000000004 381 0.4381E-10
262610 0.2626E 06 v ,}
Question marks are placed in all error fields. For example, an attempt to print the above values
in E10.4 (w=d+6) will result in a string of 10 question marks on the printed line.
For input, the start of the exponential field may be indicated by a + or - sign rather than an F.
The following numerical fields would each yield the same result:
1.25E04,1.25E4,1 .25E+04,1.25E+4,1.25+04.1.25+4
E conversion will accept F field specification data as input. For example. an input field of .
12500.
produces the same value internally as the examples immediately above. It the decimal point is .

omitted from the input field, the format specification will place the decimal point in the correct
position.

54 Digital Systems Division

B

946260-9701

52.1.4 G Field Specification. The G field specification is used for numbers that may be
represented in either fixed or floating point. The format editor automatically selects one of the
two representations for data output. The numeric field descriptor Gw.d indicates that the
external field occupies w positions with d significant digits. The value of the list item appears, or
is to appear, internally as a real data item. Input processing is the same as for the F field

specification.

The method of representation in the external output string is a function of the magnitude of the
real data item being converted. Let N be the magnitude of the internal data item. The following
tabulation’ exhibits a correspondence between N and the equivalent method of conversion that
will be effected:

Magnitude Equivalent
of Conversion
Data Item Effected
0.1<N<1 F(w4)d4X
I<N<I0 F(w-4).(d-1),4X
10¢-2N< 1041 ’ F(w-4).1,4X
107 "SN<I10 F(w-4).0,4X
Otherwise sEw.d

(N<O0.1; N>104)

where s is the current scale factor (refer to paragraph 5.4.1.7), and E field conversion is used.
Note that the effect of the scale factor is suspended unless the magnitude of the data item to be
converted is outside of the range that permits effective use of F field conversion.

When used for data input, values read into variables using a G field specification are converted
according to the type of the corresponding variable in the input list.

5.2.1.5 D Field Specification. In D field conversion, the intemmal value must be double precision.
The numeric field descriptor Dw.d indicates that the external field occupies w positions, the

fractional part of which consists of d digits.

The basic form of the external input field is the same as for real conversions. Any of the
following are valid inputs in a D field specification, and will produce the same result internally:

3DI
3E1
30.
The external output field is the same as for E conversion, except that the character D replaces

the character E in the exponent.

5.2.1.6 Z Field Specification. The Z field specification is used for the transmission of hexadecimal
data. The input fields are scanned right to left with any leading, imbedded, or trailing blank treated
as zeroes. In internal storage, 2 hexadecimal digits occupy one byte of storage. If the input data
is an odd number of digits padding occurs on the left in storage. When the input data is too large

5-5 Digital Systems Division

ik i s

946260-9701

for the storage arca, truncation occurs at the high-order digits. With output, if the number of
characters in storage is less than w, the leftmost positions are filled with blanks. If storage is greater
than w, the leftmost digits are truncated.

5.2.1.7 Scale Factors. Scale factors may be specified for D, E, and F field specifications.

Form:

nPS

where n is a signed or unsigned integer specifying the scale factor, P is the identifying character,
and S is a data field specification. The factor changes the position of the decimal point for both
input and output operations.
For F field conversion, the scale factor specifies a power of ten such that

external number=(internal number)*(power of ten)
For D and E field conversions, the scale factor multiplies the number by a power of ten, but the
exponent is changed accordingly, leaving the number unchanged except in form. For example, if
the statement

FORMAT (F8.3,E16.5)
corresponds to the line

26.451 -0.41321E-01
then the statement

FORMAT (-1PF8.3,2PE16.5)

corresponds to the line

When no scale factor is given, it is understood to be 0. However, once a scale factor is given, it
holds for all following D, E and F field conversions within the same format. The scale factor is
reset to zero by giving a scale factor of zero. Refer to paragraph 5.2.1.4 for the effect of a scale
factor on G field conversions.

Scale factors have no effect on [or Z conversions.

For input operations, the scale factor may be supplied for all real number inputs, but is ignored
for all inputs containing an exponent in the external field. When used with input data, the
direction of the decimal point movement is opposite that for an equivalent output Spt‘\,lrtdllon
For example, if the statement

FORMAT (F8.3)

5-6 Digital Systems Division

-

”

(o

N

%@ 946260-9701

inputs data to be used intemally as
26.451

then the statement
FORMAT (-1PF8.3)

inputs data. to be used intemally as:
2.645

5.2.2 LOGICAL DATA FIELD SPECIFICATION.Logical data can be transmitted in a manner
similar to numerical data by use of the logical data format. The field specification for the format
is:

.

Lw
where L is the control character and w is an integer specifying the field width.
Data is transmitted as the value of a logical variable in the input/output list.

On input, the first non-blank character in the data field must be T or F, and the value of the
logical variable is stored as true or false, respectively. The remainder of the field is ignored. If
the entire data field is blank, a value of false is stored. .

On output, w-1 blanks followed by T or F is output, depending on whether the value of the
logical variable is true or false, respectively.

5.2.3 ALPHANUMERIC AND LITERAL DATA SPECIFICATIONS. The following paragraphs
describe printer carriage control characters, the alphanumeric data field specification, and the
specifications for the H and X fields.

5.2.3.1 Carriage Control. The first character in a record to be printed on a listing device is used
for carriage control. This character is not printed and is usually specified at the beginning of the
format field specification for the record as 1Hx, where x is a blank, 0, 1, or +. The specification
may also be a slash (/). The effect of each character is given as follows:

Blank Skip one line before printing.

0 Skip two lines before printing.
1 Skip to first line of next page before printing.
+ Suppress line spacing before printing (overprint).
/ Skip one line bei‘ore printing — does not require
I H prefix. o \,
Example:

10 FORMAT(9HI1bbbPAGED,I3/1HO0)

5-7 Digital Systems Division

RRC=SP

J@; 946260-9701

In this statement the character “1” following the 9H prefix is interpreted as carriage control
and causes the literal message “ PAGE » to be printed at the top of the next page. Similarly,
the character “0” following the IH prefix is interpreted as carriage control to skip two lines
before the next line is printed. The slash (/) represents an end-of-record and causes a line feed
before the 1HO specification is interpreted. The net result is three blank lines between the
“ PAGE ” label output and any subsequent lines.

5.2.3.2 A Field Specification. The specification for alphanumeric data has the form:

Aw
where A is the control character and w is the number of characters in the field.

Alphanumeric data can be transmitted in a manner similar to numerical data by use of the form
Aw. The alphanumeric characters are transmitted as the value of a variable in an input/output
list. The variable may be of any type. For example, the sequence:

READ (2,5)V
S FORMAT (A2)

causes two characters to be read and placed in memory as the value of the variable V.

The number of characters transmitted is limited by the maximum number of characters which
can be stored in the space allotted for the variable. If w exceeds the available space, leading
characters are lost on input and replaced with blanks on output. When w is less than the
available space, blanks are filled in after the given characters until the maximum is reached. If
character strings are read one character per word, each character is stored in the word left
justified, and an ASCII blank is inserted in the right half of the word. Thus, character strings
may be read and tested at the FORTRAN level as follows:

COMMON ICHAR (80)
DATA IB/2HBb/
READ (5,6) ICHAR
6 FORMAT (80Al)
IF (ICHAR(1).EQ.IB) GO TO 7

5.2.3.3 H Field Specification. An alphanumeric format, or Hollerith data, field may be specified
within a format by preceding the alphanumeric string by the form nH. H is the control character
and n is the number of characters in the string, counting blanks. In all examples, b represents a
blank.

FORMAT (1 THbPROGRAMbCOMPLETE)
can be used to output

PROGRAM COMPLETE

on the output listing. On input the external characters are stored in the format itself only if
there js no list in the READ statement.

5-8 Digital Systems Division

Ss?

946260-9701

An alternate form of this ficld is to specify the alphanumeric string within single quotation
marks. The FORMAT statement above could have been written this way:

FORMAT (‘6tPROGRAMbCOMPLETE’)

The input and output results are the same as the first FORMAT statement in this paragraph.
Where an apostrophe appears in a character string of this nature, it must be represented by two
single quotation marks in succession ().

An alphanumeric format field may be placed among other fields of the format. For example, the
statement

FORMAT (15,8HHBFORCEb=F10.5)
can be used to output the line
22 FORCE = 17.68901
The separating comma may be omitted after an alphanumeric format field.
5.2.3.4 X Field Specification. Blanks may be introduced into an output record or characters
skipped in an input record by use of the specification nX. The control character is X, and n is

the number of blanks or characters skipped. The quantity n must be greater than zero. For
example, the statement

FORMAT (SHbSTEPIS,10X,3HYb=F7.3)
may be used to output the lixie

~STEP 28bbbbbbbbbbY = 3.872
where ten blanks separate the two quantities.

§.2.3.5 T Field Specification. For tabular output, the T field specification can be used to
designate the position in the output record where data transfer will begin. The form of the
specification is :

Tn
where T is the control character and n designates the character position within the output record
that will be occupied by the first character of the transfer. For printed output, the first

character of the output record is reserved for carriage control. Therefore, a one-character skew
occurs between the character’s position in the output record and its position on the printed line.

Example:

FORMAT(T20,'NAME”)

5-9 Digital Systems Division

946260-9701

This statement results in printing the character string NAME beginning at printed column
position 19. Also, because of the presence of the carriage control’ character, the following two
statements produce identical output:

FORMAT(T1,6HbGRADE)

FORMAT(T2,5SHGRADE)

Both of these statements print the character string GRADE beginning at the leftmost print
position. A combination of these two statements, however, is not correct:

FORMAT(T! ,SHGRADE)

causes the format editor to interpret the letter G as a carriage control character and output the
character string RADE beginning at the leftmost print position.

To create output in many columns, several T field specifications may be included in one
FORMAT statement. The order that the specifications appear in the FORMAT statement is not
important; that is, a T70 specification may appear in the statement before a T12 specification
without affecting the desired appearance of the output.

Example:
FORMAT(T20,'NAME’, T40,'AGE’,T1,61{bGRADL)

prints the character string GRADE beginning at the leftmost print position, NAME beginning at
printed column position 19, and AGE beginning at printed column position 39.

5.2.4 COMPLEX QUANTITIES. Complex quantities are transmitted as two independent real
quantities. The format specification is given as two successive real specifications or one repeated
real specification. For instance, the statement

FORMAT (2E15.4,2(F8.3,F8.5))

could be used in the transmission of thrcc complex quantitics.

5.2.5 REPEATED GROUP AND FIELD SPECIFICATIONS. Repetition of the same field
specification may be indicated conveniently in a FORMAT statement. In addition, groups of
repeated specifications may be represented conveniently.

5.2.5.1 Repetition of Field Specifications Repctition of a field specification may be performed
by preceding the control character D, E, F, G, I, L, A or Z by an unsngncd integer giving the
- number of repetitions desired. For (,xample

FORMAT (2E12.4,315)
is equivalent to‘

FORMAT (E12.4,E12.4,15,15,15)

5.2.5.2 Repetition of Groups. A group of field specifications may be repeated by enclosing the
group in parentheses and preceding the whole with the repetition number. For example,

FORMAT (218,2(E15.5,2F8.3))

5-10 Digital Systems Division

("

)

O

C)

o

946260-9701

is equivalent to
FORMAT (218,E15.5,2F8.3,E15.5,2F8.3)

Up to two levels of parentheses are allowed in group repetition, in addition to those enclosing
the entire format. For example, the statement

'FORMAT (I5,2(E15.5,2(F8.3,F17.1)))

“exhibits the maximum level of nesting. The outermost parenthesis pair is termed level zero, the

next level one, and the innermost level two.

5.2.6 RECORD SEPARATION INDICATOR (SLASH). To specify a group of input/output
records with different records having different field specifications, use a slash *‘/*" to indicate a
new record. For example, the statement

FORMAT (318/15,2F8.4)

" is equivalent to

* FORMAT (318)
for the first record and
FORMAT (15,2F8.4)

for the second record. The separating comma may be omitted when a slash is used. Blank
records may be written on output.or records skipped on input by using consecutive slashes.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a
record. If the list of an input/output statement dictates that transmission of data is to continue
after the closing parenthesis of the format is reached, the format is repeated from the last left
parentheses of level one or zero. Level one is used when it exists; otherwise, level zero is used.

-~ Thus, the statement

FORMAT (F7.2,(2(E15.5,E15.4),17))
cau'ses' the format

 F7.2,2(E15.5,E15.4),17

" to be used on the first record and the format

2(E15.5,E15.4),17

on succeeding records.

. As a further example, consider

FORMAT (F7.2/(2(E15.5,E15.4),17))

Digital Systems Division

~

946260-9701

The first record has the format
F7.2

and successive records have the format
UE1S.5,E15.4).17

5.2.7 FORMATS STORED AS DATA. The alphanumeric string comprising a format specifica-
tion may be stored as the values of an array. Input/output statements may reference the format
by giving the array name rather than the statement number of a FORMAT statement. The stored
format must have the same form as a FORMAT statement. excluding the word FORMAT. The
enclosing parentheses must be included.

As an example, consider the sequence

INTEGER SKELETON(6)

READ (5,1 X\SKELETON(1),I=1,6)
I FORMAT (6A2)

READ (SSKELETON)K,X

The first READ statement enters the character string into the array SKELETON. The input
record contains

(15,F9.3)

The second READ statement will cause K and X to be input as if the following format were
used:

FORMAT (i5,F9.3)

5.2.8 COMBINATIONS OF FORMATS. The different types of field specifications described in
the preceding paragraphs may be combined and used in a single. FORMAT statement. An
alphanumeric format field (H field specification) may be combined with other field specifications

as described in paragraph 5.2.3.3.

5.2.9 FREE FIELD FORMAT. When performing a Formatted READ with 990 FORTRAN, the
data can be arranged in a “free field” format that terminates each field with a comma. The comma
.denotes both the end of one field and the start of the next field. Data in the field is right justified.
‘To use this format the field specification must account not only for the positions used by the
largest number, but also for the position used by the comma. For example, to place a |- to 4- digit
positive integer into five sequential fields using the “free field” format, the format statement must

be changed to
FORMAT(515)
to allow for the comma position. The input record can appear as
3,52,538,6744,5313,
WARNING

The “free field” format may not be used to read alphanumeric data,

5-12 Digital Systems Division

()

EEGT B S

946260-9701

- The last comma in the input record is necessary to maintain the value of the parameter. Without
(- that comma, the value is interpreted as a standard 15 format pdrameter and is assigned the value
: of §3130. The comma can be omitted it a zero or blank precedes the 5313 in the input record,

i.e.,:
b5313
NOTE

The character b used throughout this manual represents one blank
character.

When the “‘free field” format is used from a data terminal, a carriage return may replace the last
comma to terminate the data field and the input record.

5.3 READ AND WRITE STATEMENTS

& In general. a READ or WRITE statement provides:
® Specification of the operation required. by using the verbs READ or WRITE to
~ indicate input or output, respectively.

® The logical input/output unit to be used for transmission, i.e., the particular device
involved.

® Reference to a data format which specifies the types of conversions required between

o internal and external data forms. The reference is either the number of a FORMAT

‘ - statement or the identifier of an array which contains a data format. Data conversion

(' is either from the input form to the form accepted by the FORTRAN runtime, or from
the form accepted by the FORTRAN runtime to the output form.

® A list of the variables the values of which are to be transmitted. The values are
transmitted in the order in which the information exists on the input medium or will
exist on the output medium.

) Example:
(-~ ‘ WRITE(1,5)A,X K
~. This statement specifies that the values of A, X, and K, in that order, are to be written on

logical I/O unit 1 according to the format given in the FORMAT statement numbered 5.

NOTE
- When reading from or writing to the CRT screen, the appropriate
carriage control (paragraph 5.3.5) must be specified in the format
statement,
s
N

5-13 Digital Systems Division

946260-9701

53.1 READ AND WRITE SEQUENTIAL FILE CHARACTERISTICS. A sequential file has the
following characteristics: |

® If the file contains one or more records, those records exist as a totally ordered set.

® There exists a unique position of the file called its initial point. If a file contains no
records, the unit is positioned (physically or logically) to write starting at the initial
point. If the unit is positioned at the initial point and the file contains records, the
first record of the file is defined as the next record. No record precedes the initial
point.

e [f a unit is positioned at a point of the file beyond the initial point, a unique preceding
record and a unique next record are associated with that position.

e Upon completion of the execution of a WRITE or END FILE statement, there exist
no records following the records created by that statement.

® When the next record is transmitted, the position of the records being read or written
by the unit is changed so that the record just transmitted becomes the preceding
record. .

5§.3.2 READ AND WRITE RECORD CHARACTERISTICS. A data file consists of one or more
records. Records may be formatted or unformatted. A formatted record consists of a string of
the characters that are permissible in alphanumeric constants. The transfer of such a record requires
that a FORMAT statement be referenced to supply the necessary positioning and conversion
specifications. The number of records transferred by the execution of a formatted READ or WRITE
is dependent upon the list and format specification. An unformatted record consists of binary
data. When an unformatted or formatted READ statement is executed, the required records on the
identified unit must be, respectively, unformatted or formatted records.

5.3.3 READ AND WRITE INPUT AND OUTPUT LISTS. Each READ or WRITE statements
includes a list of the names of variables, arrays, and array clements. The named clements are
assigned values on input and have their values transferred on output. The list of a READ or WRITE
statement specifies the order of transmission of variable values. During input, the new values of
listed variables may be used in subscripts for variables appearing later in the list. For example:

READ(2,3)L,A(L),B(L+1)
reads a new value of L and uses this value in the subscripts of A and B.
 The transmission of array variables may be controlled by indexing similar to that used in the DO
statement. The list of controlled variables, followed by index control, is enclosed in parentheses
and the whole acts as a single element of the list. For example:

READ(7,23)(X(K),K=1,4)
is equivalent to

READ(7,23)X(1),X(2),X(3),X(4)

5-14 Digital Systems Division

o~
)

SN
-

e

946260-9701

(~ ' The indexing may be nested as in the following
READ(2,13)((MASS(K,L),K=1,5),L=1,4)
This statement reads in the elements of array MASS in the order
K MASS(1,1),MASS(2,1),....MASS(5,1),MASS(1,2),...,.MASS(5.4)
If an entire array is to be transmitted, the indexing may be omitted and only the array identifier
written. The array is transmitted in order of increasing subscripts with the first subscript varying
most rapidly. Thus, the example above can be written

READ(2,13)MASS

5.3.4 FORMATTED READ STATEMENT. The purpose of the READ statement is to transfer
information to the computer’s memory from an input device.

e
A

Form:
’ READ(c,f,END=S,,ERR=S,)list

where ¢ is an unsigned integer (I*2) constant, or variable whose value is the logical unit number
of the input device; f is the statement number of the FORMAT statement describing the
data, or the name of an array containing FORMAT data; END=S, defines a statement number to
receive control when an end of file is encountered; ERR=s, defines a statement number to
receive control when an error is detected; and /ist is a list of variable names, separated by
commas, which are assigned the values of the input data. The parameters, END=S; and ERR=S,
are optional and may be in reverse order. In order to process the detected error function, NERRST
(described in table 7-1) should be used. NERRST clears the error indicator and determines the
error condition. The list indicates the number of items of data to be placed in memory and the
order in which they are read. Any number of items may appear on a list.

For example, consider the following logical record:
) 116-337bb2bbb400
The following statements are used in a program to input the information on the card:

READ(5,3)N,I,S K
3 FORMAT(I2,1X,14,2X,11,3X,I3)

causing the variable N to be assigned the value 11, I the value -337, S the value 2, and K the
value 400.

Each time the READ statement is executed, the variables obtain new values depending upon
what information is in the next record read.

If an input record contains more values than there are items in a list, only enough values to fill
the list are read. The remaining values are ignored. If a list requires more values than are on a
record, the next sequential record or records are read until the list has been satisfied.

5-15 Digital Systems Division

946260-9701

The READ (c,f) form may be used with a FORMAT statement to read alphanumeric data and
modify an existing H-type field (described in paragraph 5.2.3.3). The 'information read is inserted
into the memory location of the H-type field. The amount of data to be read in depends on the

size of the field.
Example:

6 FORMAT (21 HTHISbISbAbREPLACEMENT)

READ(S,6)

These statements cause the 21 characters in the H-type alphanumeric field:

THIS IS A REPLACEMENT
to be replaced by the first 21 characters from the next record of the file on unit 5.

5.3.5 FORMATTED WRITE STATEMENT. The WRITE statement causes the computer to
transfer information from memory to any one of the output devices.

Form:

WRITE(c.f,ERR=S,){list]
where ¢ is an unsigned integer (I1*2) constant, or variable whose value is the logical unit number
of the output device; f is the statement number of the FORMAT statement describing
the data or the name of an array containing FORMAT data; ERR=S, defines a statement

. number to receive control when an error is detected; and /ist is a list of variable names which are
assigned the values of the output data. The parameters ERR=S, and list, are optional.

The WRITE(c,f) list form is used to write the data currently stored in memory, corresponding to
the variable names in the /list, onto the file on unit ¢, using a form specified by the FORMAT
statement f. The conventions described in paragraph 5.2.4 are also used to define an output

record. .

The WRITE(c,f) form is a means of writing alphanumeric data. The FORMAT statement specifies
the exact data to be written so that the need for an 1/O list is eliminated.

Example:

~ WRITE(6,10)

10 FORMAT(19HTHISbISbABQUOTATION)
" This may also be written: ,’

WRITE(6,10)
10 FORMAT(‘THISbISbABQUOTATION')

P N

5-16 Digital Systems Division

)

946260-9701

Two apostrophes together represent one in the format. Example:
(_\ FORMAT('DON"T")
is interpreted as (SHDON'T).

When using the WRITE statement, carriage control is edited into the output buffer for the tele-
printer, line printer, and VDT. The editing is performed by the run-time subroutine F$XIOF and in-
volves the first character in the output buffer. .

For no advance, the character + is replaced by a carriage return.

For double spacing, the character 0 is replaced by a line feed, and a carriage return and line feed are
inserted on the front of the buffer. Then the buffer address is decremented by two, and the char-

acter count is incremented by one.

For single spacing, all other characters in the first character position in the output buffer are
(replaced by a line feed, and a carriage return is inserted on the front of the buffer. Then the buffer
address is decremented by one, and the character count is incremented by one.

Editing is not performed on output to disk, cassette, or device types greater than six. Refer to the
Model 990 Computer DX10 Operating System Reference Manual, part number 946250-9703, table

6-3 for device types.

Application note: If an EIA device is interfaced to the computer via a line printer interface, carriage
control is lost if output is written. to a disk file and then copied from disk to the line printer.

5.3.6 UNFORMATTED READ AND WRITE STATEMENTS.
Fonn‘s;
READ(c,END=S, ,ERR=S, }list

WRITE(c,ERR=S,)list

C

where ¢ is an unsigned integer constant, variable, or expression assigned the value of the logical
unit number used; END=S, defines a statement number to receive control when an end of file is
o~ encountered; ERR=S, defines a statement number to receive control when an error is detected;
and list is a list of variable names separated by commas. The parameters END=S, and
ERR=S,, are optional and may be in reverse order.

" The READ(c) list form reads a record of binary information, with no conversion, into memory

from unit ¢. No FORMAT statement is required. The number of items in the list determines the

7 amount of data read. If the record contains more values than are listed, the unread items are
St skipped. The total length of the list of variable names must not be longer than the record.

Omitting the list from the READ statement causes the record on unit ¢ to be skipped and no
information is transmitted from the input device.

"~ The WRITE(¢) flist form is used to write binary information, with no data conversion, on unit c.

5-17 Digital Systems Division

Lo
{@ 946260-9701

5.4 INTERNAL TRANSMISSION) .
The ENCODE and DECODE statements are similar to formatted READ and WRITE statements (

except that no I/O unit is used in the data transfer. Data is transferred under format specnﬁca-
tions from one area of computer memory to another.

5.4.1 ENCODE STATEMENT. (AT — BU I FER (= LJ/U?'E)

Form:
ENCODE(c,f,b,n)list
*
ENCODE(c,f,b)list
where:
c is an integer constant or integer variable describir;g
the number of characters per record in storage. 7y
f is a format reference.
P
b is a simple variable, array reference, or array name
at which the first record is to start. This is the
“buffer”. -
n is a simple integer variable inta which the number
of characters actually processed will be stored.
. list is as defined for 1/O list. _ ‘ S _ (:‘5
This statement is analogous to a WRITE statement. It converts the data in the list according to
the format and stores it in records beginning at b, with ¢ characters per record. If the format
attempts to convert more than ¢ characters per record, an error message is given on the device
- assigned to the list file. If the format converts less than ¢ characters, the remainder of the record
" is filled with blanks.
Example A _— (:j
ENCOI)[:(80 100,BUFF)A,B,C

ENCODE(I,FMT,B,COUNT)D

The first statement uses the format in statement 100 to transfer data from the list members A, B
- and C and store |t in locatlon BUFF in 80 character records.

" The second statement uses the format defined in FMT to transfer ddtd from the single list
member D and store it in location B in records whose size is defined by 1. When the transfer is
~ complete, COUNT contains the actual number of characters stored in B.

5-18 Digital Systems Division

946260-9701

(5.4.2 DECODE STATEMENT. BufferR — CIST (L EAD)
‘ Form:
DECODE(c,f,bn)list
" DECODE(c,f,b)list
where ¢,f,b,n are as defined for ENCODE.

DECODE is particularly useful when inputting records in several different forms with an unknown
or random order. For example, the program might input a record in alphanumeric (literal)
FORMAT, and then on the basis of keywords or character strings in the input use a DECODL
statement to place numeric values in the appropriate numeric variable.

This statement is analogous to a READ statement. It converts and edits the data from the
s records starting at b and consisting of ¢ characters each, and stores it in the variables specified in
' the list. When the format specifies more than ¢ characters per record, an error message is given.
When fewer than ¢ characters per record are specified, the remainder of the record is ignored.

Example:
DECODE(78,103,BUFFER)LDATA

The statement transfers records of 78 characters from BUFFER to LDATA and uses the format
defined in statement 103.

5.5 MASS STORAGE FILE INPUT/OUTPUT STATEMENTS

There are three types of mass storage file input/output statements. Use of these statements is
limited to magnetic tape, cassette and disk applications. They are REWIND, BACKSPACE, and
END FILE.

5.5.1 REWIND STATEMENT.
(V Form:
REWIND u
‘where u is an I/O unit designation.

This statement directs the 1/O unit designated to reposition to the first record of the first file.
“The unit designation is given as a constant or a simple integer (I*2) variable.

Examples:

REWIND 7
REWIND KMIO

5-19 Digital Systems Division

Lo
{@ 946260-9701

5.5.2 BACKSPACE STATEMENT.

Form:
BACKSPACE u

where u is an [/O unit designation.

This statement directs the designated I/O unit to backspace one logical record. The unit designation
is given as a constant or a simple integer (I*2) variable. If backspace is requested after a write, an

end of file is done before the backspace is executed.

Examples:

BACKSPACE 7
BACKSPACE N

5.5.3 END FILE STATEMENT.
Form:‘
END FILE u

where u is an I/O unit designation.

The statement directs the I/O unit designated to terminate the file being written. The unit
designation is given as a constant or a simple integer (1*2) variable.

~ Examples:

ENDFILE4 R
END FILE K

5.6 DIRECT ACCESS INPUT/OUTPUT
Direct access I/O statements allow the programmer to access records within a relative record file in a

random, rather than sequential, manner. For direct access, a file is viewed as a collection of n
records, and each record is assigned a unique record number in the range O to n-1. The programmer
must specify in READ, WRITE, and FIND statements not only the unit number, as for sequential
I/O, but also the number of the first record to be read, written, or found. There are four direct
access I/O statements: READ, WRITE, DEFINE FILE, and FIND.

5.6.1 DEFINE FILE STATEMENT. The DEFINE FILE statement describes the characteristics
of an 1/O unit to be used for direct access [/O operations. To use a direct access READ, WRITE,
or FIND statement, the I/O unit must be described with a DEFINE FILE statement. Only direct
access 1/O statements may refer to units defined by DEFINE FILE statements. The DEFINE
FILE statement must logically precede (i.e., must be executed prior to) any /O statement
referring to the unit defined.

Form:

DEFINE FILE ll|(l]|,S],f],V|),Uz(n2,Sz,r2,V2). .

5-20 Digital Systems Division

PlaN
A

C

946260-9701

where:

u is an integer constant, or a simple integer (1*2) variable, 1/O unit designation (logical unit
number). :

nis an integer constant specifying the number of records in the file.

s is an integer constant specitying the maximum size of each record. The record size is in
terms of bytes or memory words, depending upon the specitication of f.

f indicates whether or not the file is to be accessed with format control. The f parameter
may be one of the following:

L indicates the file is to be read or written with or without format control. The
maximum record size s is in bytes.

E indicates the file is to be read or written with format control. The maximum record
size s is in bytes.

U indicates the file is to be read or written without format control. The maximum
record size s is in words.

v is a simple integer variable. At the conclusion of each read or write operation, v is set to
the record number of the record that immediately follows the last record transmitted. At
the completion of a find operation, v is set to the record number of the record found. The
record numbers range from O to n-1, where v is called the associated variable.

Under the TX990 operating system a relative record file must be created before execution by using
the TX Development System (TXDS). With the DX10 operating system a file can be created either
before execution or at runtime. If it is created at runtime, the file will be a noncontiguous, relative
record file. The file will be created with a physical record length of 864 (360,4) characters. If a file
is to be created before execution, the DX10 System Command Interpreter (SCI) must be used to
create a relative record file. Additional information describing logical and physical records is found

in paragraph 5.8.

Figure 5-1 is an example of the first four logical records from a precreated relative record file.

5-21 Digital Systems Division

946260-9701

FILE TSTFIL RECORD © ,
OoD8 FFFF 5445 4953 2049 S320 4120 5445 5354 .. TH IS 1S A TE ST
O318 2040 494E 4520 4652 4F4D 2052 4543 443IR LINE FR OM R EC D:
Q020 O0OR 5445 4953 2049 SIZO 44170 5445 5354 .. TH IS 1 S A TE ST
OBZ0 2040 494E 4520 4652 4F4D RS2 4543 442A L INE FR OM R EC D: .
OO4E DODR S448 4953 2049 5326 4120 S445 5354 .. TH IS I S A TE ST
BRSH 2040 494E 4520 4652 4F4D 2052 4547 443A LIMNE FROM R EC D:
GEED QRN S448 4953 2049 S220 44120 5445 5354 .. TH IS 1 5 A TE ST
GETE 2040 4949E 4520 4652 4F40 2052 4543 443A LINE FROM R EC D:
ORSE oooa
FILE TSTFIL RECORD 1)
DA FFFF 5448 4953 2049 SI20 44120 5445 S3S4 .. TH IS I S A TE ST L
0018 ZE4C 494E 4520 4652 4F4D 2052 4543 443A LINE FR OM K EC D:
ORZB OOl 5445 9952 2049 SI20 4120 54495 5354 .. TH IS IS R TE ST
BOIH ZR40 494E 4520 4552 4F4D 2052 4543 443A L INE FR OM R EC D:
GE40 EAR1 S44% 495% 2049 SIZO 4420 S445 S354 0 .. TH IS I 5 A TE ST
BOSH 2040 494E 4520 4652 4F4D 2652 4543 443A LINE FR OM R EC D:
GOEn BaO1 S442 4953 2049 SIZA 4120 S445 5354 .. TH IS I S A TE ST
OETA 2040 494 4520 4652 4F4D 2052 4547 443A LINE FROM R ECD
[5]a}=d4] il
FILE TSTFIL RECORD 2 : ‘
OOEE FFFF S4458 4953 2049 S320 4120 5445 5354 .. TH IS 15 A TE =57 (“
CBELR 204C 494E 4520 4652 4F4D 2052 4543 443A LINE FROM E EC D: ‘_)
GEZE BBRZ S448 4953 2049 SIZ0 4170 5445 5354 .. TH IS 1S @& TE ST
. eRTa 2040 494E 4523 4652 4F4D 2052 4543 443R LINE FR OM FR EC D:
BR4E PEO2 S443 4952 2049 S3I20 4120 5445 5354 .. TH IS 1S A TE ST
0958 2O4C 494E 4528 4552 4F4D 2052 4543 443R L INE FR OM R EC D:
QAER BAGZ S9448 4952 2049 S3I20 41206 S445 5354 .. TH IS 1 S A TE ST
OETE 2040 434E 45280 4552 4F4D 2652 4543 443R L INE FR OM R EC D:
coEn 0ERZ
FILE TSTFIL RECORD = {)
GOa3 FFFF 5448 4953 2049 S3I20 4120 S445 5354 .. TH IS 1 S A TE ST
. 0B1R 204C 494E 4520 4652 4F4D 2052 4543 443A LINE FR OM FE EC D:
L eaZa O0aT S44% 4952 2049 SIZO 4126 S445 S354 .. TH IS 1 S AR TE ST
Qaza 2040 494E 4520 4652 4F4D 2052 4543 943A LINE FROM R EC D:
BO40 DOEX S448 4952 2049 SISO 4120 S445 5354 .. TH IS 1S A TE ST
DOSE 204C 4594E 4528 4652 4F4D 2052 4543 443A L INE FR OM R EC D:
OYED OO S448 4953 2049 SIZD 4420 S445 5354 .. TH IS 1 S R TE ST
OATE 2040 494E 4520 4652 4F4D 2052 4543 443A LINE FROM FE EC D:
(15 e 05 B 5 155 XA
Figure 5-1. Define File Example Output
a4

5-22 Digital Systems Division

946260-9701

(, Example:

10

INTEGER*2 IREC
DIMENSION K(15)
DATA K/'THIS IS A TEST LINE FROM REC D'/

DEFINE FILE 8(50, 64, U, IREC)
DO 10 J=1, 50

1=50-J
"WRITE (8')K,LK,LK,LK,I

The above example is a program that writes 50 (32,¢) records beginning with record 31. The file
is on unit 8. Each record is 64 words of unformatted data. IREC contains the number of the record
that immediately follows the last record transmitted. The file has been created before execution
with a logical record size of 64, and physical record size of 130. The first four records generated by

this example program are shown in figure 5-1.

5.6.2 READ STATEMENT.

-~ Form:

READ (u'n,f,END=S; ,ERR=S,)list

where:

u is an /O unit designation.

f is an optional format reference.

END=S, and ERR=S, are optional and their order may be rev,
destinations in the event of an end-of-file or an error, respectively.

DIMENSION K(6)

DEFINE FILE 4(500,80,E.1F4)
FORMAT (/5(7X,13))

READ (4'6,100)(K(1),1=1,6)

READ (4'[F4-3,I00_)K

_ nis an integer expression representing the relative record number.

rsed. They indicate exit

The READ statement 1001 reads records 7 and 8 from the file associated with unit 4. The
- READ statement specifies record 6 but the format statement contains a leading slash which

‘causes a skip to the following record. Two records must be read in order to satisfy the 1/O list

of six elements in the array K. At the completion of the first READ, the associated variable 1174
is set to the value 9, the record following the last one read. Thus, the second READ, statement
1002, performs exactly the same as the first READ because the relative record expression, 1F4-3,

(.‘ \ Example:
P
100
1001
. 1002
F S
is equal to 6.

5-23

Digital Systems Division

]
{@ 946260-9701

5.6.3 WRITE STATEMENT. ("\
Form: |
WRITE (u'n,f,ERR=S, list
where:
u is an [/O unit designation.
n is an integer expression representing the relative record number.
f is an optional format reference.
ERR=S, is optional and indicates an exit destination in the event of an error.
Example: ‘iﬂ)
DEFINE FILE 5(40,20,U,IF5)
[=25
88 WRITE (5'1)A,B,C
99 WRITE (S'IF5)X,Y

The first WRITE statement, number 88, writes record number 25 and the second WRITE,
number 99, writes record 26.

5.6.4 FIND STATEMENT. The FIND statement causes the next ihput record to be located ()
while the present record is being processed. This increases the execution speed of the program. B
FIND does not transfer any data to or from the file. There is no advantage to preceding a

WRITE with a FIND.
Form:

FIND (u'n)

'

where: ' 4 ' {:
u is an I/O unit designation.
n is an integer expression representing the relative record number.

Example:

FIND (3'1526)

READ (3'1526)X

5.7 CONSOLE DISPLAY INPUT/OUTPUT
The ACCEPT and DISPLAY statements allow the programmer to transfer data to and from the
screen of cathode ray tube [/O devices (CRTs).

5-24 Digital Systems Division

946260-9701

5.7.1 ACCEPT STATEMENT.

Form:
ACCEPT (u.f.LINE=n, POSITION=0, ERASE.PROMPT.ECHO,ERR=S,)item

where:
uis an I/O unit designation (TX operating system ignores an I/O unit designation; see G.2.3).
f is a format reference.

LINE=n, is a line number on the CRT screen that is an integer constant or integer variable in
the range 1 to the number of lines on the screen. If the value is greater than the number of
lines on the CRT screen, it is adjusted modulo to the maximum. If the value is zero or the
LINE phrase is not present, then the data is accepted from the next line below the current
cursor position. Unless the value specified in the POSITION phrase is zero, then the data is
to be accepted from the line at the current cursor position. If incrementing to the next line
generates a line number greater than the maximum number of lines on the screen, an auto-
matic erase occurs with reset to line one.

POSITION=n, is a character position in a line that is an integer constant or integer variable in
the range 1 to the number of characters per line. If the value is greater than the maximum
number of characters within a line on the screen, it is adjusted modulo to the maximum
numbers of characters.

ERASE means clear the screen before input.

PROMPT means fill input field on the screen with asterisks before input.
NOTE

When using prompt for alphanumeric input, the system will not
allow asterisks to be keyed in.

ECHO causes the contents of an item to be displayed on the CRT screen. Conversion and
justification occur prior to display. [f the ECHO phrase is not specified, the original input
data remains in the field. :

ERR=S, indicates a statement number to transfer control to when an error is detected.

Item is a scalar variable, a subscripted array reference, or an unsubscripted array name.

All of the parameters in the parenthesis with the exception of u and f are optional and may
appear in any order.

Example:

ACCEPT(10,99.LINE=3,POSITION=10,PROMPT)ICOUNT
99 FORMAT(IS5)

5-25 Digital Systems Division

{@? 946260-9701

This ACCEPT statement would display five asterisks on line 3 in positions 10-14, position the —~
cursor at the first asterisk, and wait for a five digit integer to be ihiput. Input is terminated by {
the pressing of the NEW LINIE key. When it is. the value is transferred to the variable ICOUNT. '

NOTE

The item is accepted under normal FORTRAN input conversion .
rules. Under some input specitications, positioning is significant.

To input alphanumeric data you may use integer, real or double precision scalar variables or arrays.
To insure that the input field width agrees with the alphanumeric character capacity of the variable
type, the following formats should be used.

Variable Type ' Format Specification
Integer*2 A2 i J
‘ Real*4 Ad
~ Real*8 A8

No repetition factor need be specified for arrays since the field width is automatically adjusted
according to the array size. The use of variables and arrays which are of type COMPLEX should
be avoided for input of alphanumeric data.

When using the ACCEPT statement to input numeric data into arrays, the repetition factor is auto-

matically determined as in the case of alphanumeric input. Care should be taken to insure that each
data item is in its proper field, unless commas are used to separate the data items, in which case Q k
the only requirement is that all the input items fit into the field width for the entire array. J

5.7.2 DISPLAY STATEMENT.
Form:

DISPLAY(u,f,LINE=n,,POSITION=n, , ERASE ERR=S)list
LR

where:
~ u is an I/O unit designation. (Ignored by TX operating system, see G.2.3.)

f is a format reference.

LINE=n, is a line number on the CRT screen that is an integer constant or integer variable in

the range 1 to the number of lines on the screen. If the value is greater than the number of

lines on the CRT screen, it is adjusted modulo to the maximum, If the value is zero or the -
LINE phrase is not present, then the data is accepted from the next line below the current
cursor position. Unless the value specified in the POSITION phrase is zero, the data is to be
displayed from the line at the current cursor position. If incrementing to the next line
generates a line number greater than the maximum number of lines on the screen, _an auto-
matic erase occurs with reset to line one.

5-26 Digital Systems Division

R

946260-9701

POSITION=n, is a character position in a line that is an integer expression in the range | to
the number of characters per line. If the value is greater than the maximum number of char-
acters within a line on the screen, it is adjusted modulo to the maximum number of characters.

ERASE is clear screen before output.

ERR=S, indicates a statement number to transfer control to when an error is detected.
and list is a normal 1/O list.

Example:

27 DISPLAY(10,55,LINE=S POSITION=20,ERASE)
55 FORMAT(‘STATEMENT 27 EXECUTED’)

All of the parameters in the parentheses except u and fare optional and may appear in any
order.

If a slash appears in the DISPLAY’s format statement the output for each line begins at the
specified position number and does not begin at column 1.

Since display output is a normal 1/O list, an array containing alphanumeric characters can be
output in the normal fashion under regular format specifications. See the preceding section on
ACCEPT statements for information on alphanumeric field widths. Repetition factors should
be specified in DISPLAY formats to output an entire string on one line.

‘5.8 LOGICAL AND PHYSICAL RECORD CHARACTERISTICS
Input/output record formats associated with the FORTRAN READ, WRITE, REWIND, BACK-
SPACE, and END FILE statements and the BUFOUT subroutine are described in the following

paragraphs.

A FORTRAN logical record is a unit of data which contains one or more FORTRAN physical
records. To compute the logical record length (LRECL) for formatted I/O, multiply the LRECL in
words by 2. To compute the LRECL for unformatted 1/O, multiply the LRECL in words by 2 and
add 2 words for a control word.

A relative record file has one physical record in a logical record, and a sequential file has one or
more physical records in a logical record.

The maximum FORTRAN buffer size is 144 bytes. Additional information about the 1/O buffer
may be found in Appendix E paragraph E.3.2

Each unformatted write statement produces one logical record consisting of one or more physical

. records. The first word of each physical record contains a zero, and the last physical record of

the logical record contains a nonzero count. The count in the last physical record indicates the num-
ber of physical records in the logical record. If the physical record count is positive, the file is an
ASCII tfile. If the count is negative, the file is an unformatted file. The physical record count is
used in the execution of the backspace statement.

5-27 Digital Systems Division

(o}
{@? 946260-9701

For a sequential file, the logical record can be any size since the length is dependent on the amount
of data written to the file. The logical record is broken up into physical records 144 bytes in length
when using READ and WRITE statements. When using BUFOUT, the physical record length may be

any size.

When using relative record files, a DEFINE FILE statement is required. Since the maximum buffer
size is 144 bytes, the largest usable logical record length in the DEFINE FILE statement is 144
bytes. If the specified logical record length is greater than 144 bytes, only 144 bytes are transferred
for a READ or WRITE operation. A truncation warning message is issued if the LRECL specified in
the DEFINE FILE statement is greater than 144 bytes, or if the defined LRECL exceeds the

created LRECL.

When using the DX10 operating system, a relative record file can be created at runtime. The file will
be noncontiguous and have a physical record length of 864 bytes. If the file is to be created before
execution, the DX10 System Command Interpreter (SCI) must be used to create a relative record
file. For efficient use of disk space and faster random access, the physical record length should be
evenly divisible by the FORTRAN logical record length.

Under the TX990 operating system, a relative record file must be precreated using the TX develop-
ment system (TXDS). At present, the sector size on a diskette is 128 bytes. When writing to the
diskette, each logical record begins on a sector boundary. Therefore, for maximum utilization of the
space on a diskette, the FORTRAN logical record length should be evenly divisible by 128.

Attempts to read or write unformatted records on printing devices result in an error condition and
control is returned to the operating system. Attempts to read from a device which cannot read,
and attempts to write on a device which cannot write. also result in an error condition and a
return to the system. However. use of the ERR=S; specification in the 1/O statement preempts
the return of control to the operating system and transters control to the indicated statement

number.

59 FORTRAN UNIT NUMBERS

Input and output unit numbers used in FORTRAN programs may be any decimal INTEGER*2
value from 1 to 99. These unit numbers must be assigned to actual units to be used before the pro-
gram is executed. Appendixes G and H contain LUNO assignment for TXDS and DX10 respectively.

A device is treated as a sequential file. If one logical unit number is used to perform a Write, Read
sequence (i.e. both input and output), a Rewind must be performed after the Write command.

#™ 510 VALID FORTRAN 1/0 OPERATIONS

When working with FORTRAN I/O operations at a particular unit number, only certain operations
can follow a given operation, Table 5-1 may be used to validate DX FORTRAN 1/O operations, and
table 5-2 may be used to validate TX FORTRAN I/O operations. Given the last operation, the table
indicates if the current operation is valid. For example, a WRITE operation followed by a READ
~ operation causes an error found in table 9-4. The error type is an illegal operation.

5-28 Digital Systems Division

AN

)

Y\) ’.‘,

n

o]
(@ 946260-9701

Table 5-1. Validate DX FORTRAN I/O Operations

CLIRRENT COFERATION I=

R W R B E E B
D R W = Q I T
S T D F F o)
L O # B # B ® 3 H OH 3 # CHOH
A’ #* #*
= ROE # YES YES YEZ YES YES ERR ERR #
T * *
WRT # ERR YE= EOF EOF YES ERR ERR #
) # 3#
P RWD # YES YES YES WR1 YEZS YES YES #
E #* #
R BsF # YES YES YES YES YES YET YET #
A *) #
T EZJF # ERR YES YEZ YES YES YES YES-#
1 #* . #
i kI # ERR ERR ERR ERR ERR ERR YEZ #
N # #
~ BT= # ERR ERR YES YES YE=S YES WRZ #
W #* #*
A READ EOF # ERR ERR YES YEZ ERR ERR ERR #
S #* *
: HoH H # 3 3 % K % 3 3 # 3 # #
OPERATIONS:
RDS -~ READ
- WRT — . WRITE
RWD — REWIND
BSP — BACKSPACE
EOF — ENDOFFILE
BIO — BUFFER I/O (BUFIN/BUFOUT)
BTS - BUFFER1/O STATUS CHECK (IUNIT)
OPERATION RESULTS:
. YES — Operation is performed.
. ERR — Operation is not allowed. Refer to table 94 for error messages.
- EOF — Anend of file is generated. :
WR1 — Warning, backspace after rewind.
WR2 — Warning, redundant buffer I/O status check.
- 529

Digital Systems Division

e —— i n ot Whznan

{@? 946260-9701

L
A
S
T
]
P
E
R
A
T
-~ :
N
W
A
S
-~

4 3 4t B H# 3 B O 3 # d 3
#
RD3 # YES ERR YES YEZ ERR ERR ERR #
3#
WRT # ERR YES EOF ERR YES ERR ERR #
3#* 3
RWD # YES YES YES WR1 YEZ YES YES 3#*
#
BSF # YES ERR YES YES YES YEZ YES #
#
EOF # ERR YES YES ERR YEZ YEZ YES #
#*
EIO # ERR ERR ERR ERR ERR ERR YEZ *
#
BTS # ERR ERR YES YES YES YEZ WR2 #
3*
READ EOF # YES YES YES ERR YES ERR ERR #
#
P IR KR TR I A
OPERATIONS:
RDS - READ
WRT - WRITE
RWD - REWIND
BSP — BACKSPACE
EOF — ENDOFFILE .
BIO — BUFFER [/O (BUFIN/BUFOUT)
BTS — BUFFERI/O STATUS CHECK (IUNIT)
OPERATION RESULTS:
YES — Operation is performed.
ERR — Operation is not allowed. Refer to table 944 for error messages.

Taﬁle 5.2. Validate TX FORTRAN I/O Operations

CURRENT OFERATION I3

R W R B E B
D R 2] S5 o I
S T D F F o

o —-m

EOF — Anend of file is generated.
WR1 — Waming, backspace after rewind.
WR2 — Warning, redundant buffer I/O status check.

5-30

Digital Systems Division

O

(

946260-9701

SECTION VI

FUNCTIONS AND SUBPROGRAMS

6.1 GENERAL

In the FORTRAN language it is possible to specify relatively complicated operations, such as the
determination of the sine of an angle or the printing of variable multiline header information, in
one program instruction. This is accomplished by first programming the operation to be
performed, and then accessing the code for this operation explicitly by a CALL statement, or
implicitly by a function reference. Several methods and requirements exist for using the available
FORTRAN facilities; they are discussed in detail in this chapter.

6.2 SUBPROGRAMS
The following paragraphs define several terms needed to explain arithmetic functions and
subprograms, and describe the purpose of dummy identifiers.

6.2.1 DEFINITIONS. FORTRAN subprograms may be internal or external. Internal subpro-
grams are defined within the program which calls them. They are defined within a single
statement, the function definition statement. Internal subprograms are defined and may be used
only within the program containing the definition. External subprograms are defined separately
from (external to) the program which calls them and are complete programs conforming to all
the rules of FORTRAN programs. They are compiled independently.

Two types of external subprograms may be defined: FUNCTION subprograms and SUBROUTINE
subprograms. The use of the declarations FUNCTION and SUBROUTINE in the definition of
these subprograms is described in paragraphs 6.4 and 6.5.

Intrinsic functions are external subprograms which are predefined in the FORTRAN language.
The intrinsic function identifiers, definitions, and types are given in Section VII. These defini-
tions are overridden by using the function identifier in any context other than a function
reference.

~Any subprogram, internal or external, may call other subprograms; recursion is allowed. If a sub-
program calls itself, either directly or indirectly, recursion exists (paragraph 6.8).

6.2.2 DUMMY IDENTIFIERS. Subprogram definition statements declare certain identifiers to
be dummies representing the arguments of the subprogram. They are used as ordinary identifiers
within the subprogram definition and indicate what sort of arguments may appear and how the
arguments are used. The dummy identifiers are replaced by the actual arguments when the
subprogram is executed.

Dummy identifiers may not appear in COMMON, EQUIVALENCE, or DATA statements.

When a subprogram is called, the dummy parameters must agree with the actual parameters as to
number, and should agree as to order, type, and length (except for Hollerith strings). For
example, if an actual parameter is a 16-bit integer constant then the corresponding dummy
parameter should be of INTEGER*2 type.

6-1 Digital Systems Division

i

© o e A Mt s i,

946260-9701

The number of parameters is checked and must match both at compile time and at runtime. Other
attributes are not checked. If the actual and dummy parameters disagree in type, the subprogram
must be aware of the disagreement. For example, a Hollerith constant may be used as an actual
parameter corresponding to a dummy parameter which is a real array. If this is the case, the sub-
routine should not operate upon the array as though it contained floating point values.

If a dummy parameter is an array name, the corresponding actual parameter may be either an
array name or an array clement.

If a dummy parameter is assigned a value in the subprogram, the corresponding actual parameter
should be a simple variable, array element, or array name. A constant or expression should not
be used as an actual parameter if the corresponding dummy parameter may be assigned a value.

6.3 STATEMENT FUNCTION DEFINITIONS
Form:
identifier(identifier, identifier,, . . .)=expression

The statement function definition statement defines an internal subprogram. The single statement
contains the entire definition of the function. All statement function definitions must precede
the first executable (nondeclarative) statement of the program.

To the left of the equal sign, an identifier followed by one or more identifiers in parentheses
appear. The first identifier is the function name; the identifiers in parentheses represent argu-
ments of the function and are known as dummy identifiers. To the right of the equal sign, the
statement contains an expression whose value is the value of the function.

The function identifier is the name of the subprogram being defined. A function is single-valued
and must have at least one argument. The data type of the function is determined by the type
of the function identifier.

The arguments of the function are named by the dummy identifiers, which appear in parentheses
after the function name. The following rules apply to dummy identifiers:

® They must be unique only within the individual function definition statement.

® They may be identical to identifiers of the same type appearing elsewhere in the
program.

® They must agree in order, number, type and length with the actual arguments provided
at execution time.

The portion of the function definition statement to the right of the equal sign must be an
expression. The expression defines the value of the function. The occurrence of a dummy
identifier determines how the identifier is handled in the defining expression. Identifiers that do
not represent arguments are treated as ordinary variables. The following rules apply to the
defining expression: ~

® Dummy identifiers may appear only as scalar variables in the defining expression, not
as subscripted variables.

® The defining expression may include references to external functions or other previ-
ously defined intemal functions.

6-2 Digital Systems Division

()

(o]
@ 946260-9701

r Examples of function definition statements follow: .

SSQR(K) = K*(K+1)*(2K+1)/6
NOR(T,S) = .NOT.(T.OR.S)
ACOSH(X) = (EXP(X/A)+EXP(-X/A))/2

In the second example above, the data type of the function NOR must have been previously
declared to be logical. In the last example above, X is a dummy identifier and A is an ordinary
identifer. At runtime the function is evaluated using the current value of the quantity repre-
sented by A.

6.4 FUNCTION SUBPROGRAM

A FUNCTION subprogram is a function which is single-valued and is referenced as a basic
element in an expression. The subprogram is compiled separately from the main program, yet
there may be an interchange of data between it and the main program. Its variable names are
. completely independent of the main program and other subprograms. A FUNCTION subprogram
oo is called implicitly by use of a function reference in the main program.

P A FUNCTION subprogram begins with a FUNCTION declaration and returns control to the
v calling program by means of one or more RETURN statements. The FUNCTION subprogram
must terminate with an END statement.

- Form:

[type] FUNCTION identifier(identifier, jdentifier,, .. .)

C i This statement declares the program which follows to be a function subprogram. The argument type

’ defines the type of the function. The first identifier is the name of the function being defined. This
identifier must appear as a scalar variable and be assigned a value durmg execution of the sub-
program. This value is the function value.

Example:

FUNCTION ROOT (A B,C)
ROOT=(-B+SQRT(B**24.0* A*C))/(2.0*A)
. .~ RETURN

END

Identifiers appearing on the list enclosed in parentheses are dummy identifiers representing the
function arguments. They must agree in number, order, type and length with the actual arguments
given at runtime. A FUNCTION subprogram may have any number of arguments, including arrays,
within the limitations of available storage area. FUNCTION subprogram arguments may be
expressions, array names, or subprogram names. Dummy identifiers may appear in the subprogram
as scalar identifiers, array identifiers, or subprogram identifiers.

N

6-3 Digital Systems Division

0
{@) 946260-9701

Dummy identifiers which represent array names must be dimensioned within the subprogram by
a DIMENSION or type statement. Dimensions given as constants must equal the dimensions of
the actual arrays given at runtime. In a DIMENSION or type statement, dummy identifiers may
be used to specify variable dimensions for array name arguments. For example, in the statement
sequence

FUNCTION TABLE (A,M,N,B,X,Y)

DIMENSION A(M,N),B(10),C(50)

the dimensions of array A are specified by the dummies M and N, and the dimension of array B
is given as a constant. The values given for M and N at runtime must be the actual dimensions of
array A. ‘

Dummy dimensions may be given only for dummy arrays. In the example above, the array C
must be given absolute dimensions since C is not a dummy identifier.

The type of the function is the type of the identifier which names the function. Alternately, the
function may be explicitly typed in the FUNCTION statement by replacing the word FUNCTION
with one of the following:

INTEGER FUNCTION
INTEGER*2 FUNCTION
INTEGER*4 FUNCTION

FIXED (scale) FUNCTION

REAL FUNCTION

REAL*4 FUNCTION

REAL*8 FUNCTION

DOUBLE PRECISION FUNCTION
COMPLEX FUNCTION

LOGICAL FUNCTION

The symbolic name of the function may not appear in any nonexecutable statement except as the
name in a function statement. ' ‘

For example, the statement

COM-PLEX FUNCTION HPRIME(S,N)
defines a complex function HPRIME.
Examples:

FUNCTION MAY (RANGE XP,YP ZP)
REAL FUNCTION COT(ARG)

64 Digital Systems Division

946260-9701

(R The first example defines a FUNCTION subprogram MAY, with four dummy arguments. The
- second example explicitly defines the subprogram COT to be REAL.

6.5 SUBROUTINE SUBPROGRAM

Another type of subprogram that is compiled by itsell is the SUBROUTINE subprogram. A
v SUBROUTINE subprogram is not a function; it may be multivalued and can be referred to only i

by a CALL statement. A SUBROUTINE subprogram begins with a SUBROUTINE declaration :

and returns control to the calling program by means of one or more RETURN statements. There

are two possible forms for the SUBROUTINE declaration. ‘

Forms:

SUBROUTINE identifier
SUBROUTINE identifier(identifier,identifier,,...)

> This statement declares the program which follows to be a SUBROUTINE subprogram. The first
identifier is the subroutine name. The identifiers in the list enclosed in parentheses are dummy
' identifiers representing the arguments of the subprogram. These identifiers must agree in number,

-~ order, type and length with the actual arguments given to the subprogram at runtime.

SUBROUTINE subprograms may have expressions, alphanumeric strings, array names. and
subprogram names as arguments. The dummy identifiers may appear as scalar, array. or
subprogram identifiers within the subprogram.

Dummy identifiers that represent array names must be dimensioned within the subprogram by
s, a DIMENSION or type statement. As in the case of a FUNCTION subprogram, either constuants
e or dummy identitiers may be used to specity dimensions in a DIMENSION or type statement.

A SUBROUTINE subprogram may use one or more of its dummy identifiers to represent results.
- The subprogram name is not used for return of results. :

A SUBROUTINE Sllbprogrurn need not have any arguments at all.

- Examples:

SUBROUTINE EXIT
. SUBROUTINE FACTOR (COEF.N.ROOTS)
~ - SUBROUTINE RESIDU (NUM,D.DEN,M.RES)

The example shown in figure 6-1 illustrates the principal features of a SUBROUTINE subpro-
gram. The arguments of subprogram AVGN include values that are inputs to the subroutine and
_results calculated by the subroutine for output to the main program. The inputs are an array
- name and the number of values to be averaged. The subprogram calculates an average value and
n . the number of values that are greater than or equal to zero. '

To cqll this subprogram, the main program might contain a statement like this:

T CALL AVGN (ALTA30.YMEANNPOS)

S 65 ~ Digital Systems Division

1o
{@ 946260-9701

-~

SUBROUTINE AVGN(X,J,AVG,1Z)
C SUBROUTINE COMPUTES AVERAGE OF FIRST J ELEMENTS
C AND THE NUMBER OF ELEMENTS THAT ARE GREATER THAN
C OR EQUAL TO ZERO.

DIMENSION X(100)

AVG = 0.0
IZ = 0
Do 10 I=1,J

AVG = AVG + X(I)
© IF (X(I) .GE. 0.0) IZ = IZ+1
10 CONTINUE

XN =4

AVG = AVG/XN
RETURN

END

Figure 6-1. Example of Subroutine

This statement calls the subprogram to calculate the average of the first 30 values of an array
named ALTA. The computed average is stored as the value of YMEAN, and the value 1Z
computed by the subprogram is stored as the value of NPOS. If the main program later requires
the average of the first 52 values of an array named ARRAY, with the computed average to be
stored in FPT3 and the number of values greater than or equal to zero stored in K, it would

include this statement:
CALL AVGN (ARRAY,52,FPT3K)

The callihg program must provide values for the subprogram’s input variables and must contain
dcf'ned vanables to store the values calculated by the subprogram.

The subprogram nced not have arguments, as illustrated in this example:

SUBROUTINE WARN
~ WRITE(S,15)
15 FORMAT(‘A DEFAULT HAS OCCURRED")
RETURN
END

6.6 SPECIFICATION SUBPROGRAMS FOR DATA INITIALIZATION

A specification subprogram, unlike the FUNCTION and SUBROUTINE subprograms, may not be
referenced by any other program. This is indicated in the structure of the specitication
subprogram, i.e., it contains no executable statements, and its beginning statement contains no
identifier. The purpose of this type of subprogmm is to establish initial values of variables in the

- labeled COmmon areas.

A specxﬁcatlon subprogram begins with a BLOCK DATA declaration; therefore, it is sometimes
referred to as a block data subprogram. Following the opening declaration, there may be
DIMENSION, type, COMMON, and DATA declarations as requnred to specify the values to be
asmgned to the variables.

The data speciﬁcation statements DATA and BLOCK DATA are used to specify initial values for

_variables. These values are compiled into the object program. They become the values assumed

by the variables when execution begins.

6-6 Digital Systems Division

(N

N

Ry

N,
Py

946260-9701

6.6.1 DATA STATEMENT.
Form:
DATA vy/d,/ va/dsf, . ..
where v is a variable list and d is a data list.

The variable lists in a DATA statement consist of scalar variables, array names or array elements
separated by commas.

Variables in common may appear in the lists only if the DATA statement occurs in a BLOCK
DATA subprogram.

DATA statements may also be used in main programs and in FUNCTION and SUBROUTINE

" subprograms to set values for noncommon variables. When used in this way, the DATA

statements must be placed before arithmetic function definition statements, if there are any; they
must precede all e)gecutable (nondeclarative) statements.

The storage area that will be occupied by the initialized data items of each data list must match
the storage length of the initialization. For example, simple integer data requires one word and
real number data requires two words. The storage requirements of the six data types are listed in
the discussion of types of data in Section II.

The following considerations apply to data items in a DATA statement:
e Data items may be numerical constants or alphanumeric strings. For example
DATA ALPHA,BETA/S.,16.E-2/

specifies the value 5.0 for ALPHA and the value 0.16 for BETA. The form of the
constant, not the type of the variable, determines the data type of the stored constant.

® Alphanumeric data are packed into words, one or two characters per word, as in the
case of A-conversion. Excess characters are not permitted.

Example:
DATA NOTE/2HNO/,REALVR/4HADCD/

® Any data item may be preceded by an integer and an asterisk. The integer indicates
' the number of times the item is to be repeated. For example

DATA A(l),A(Z),A(3),A(4),A(5)76] E2,4*32E1/

' specifies five values for the array A; the value 6100 for A(1) and the value 320 for A(2)
through A(5). :

6-7 Digital Systems Division

o | V 7 b
e@ 946260-9701 , l

® When an unsubscripted array name is included in the variable list, all elements of the
array are initialized to the indicated value. The notation is equivalent to specifying
each clement of the array individually.

Example: -
DIMENSION A(5)
"DATA A/61E2,4*32E1/

) .

is equivalent to
DATA A(I),A(2),A‘(3)V,‘A(4),A(5)/6lE2,4*32El /
° The form of the constant, not the type of the variable, determines the data type. -
Hollerith constants, or alphanumeric stﬁngs; afe treated specially in the DATA statement. A
single Hollerith constant may initialize more than one variable element, whereas any other type

r of constant corresponds to a single element. A Hollerith constant may not contain excess
characters, but it is extended with blanks so as to fill an integral number of elements.

Examples:

The statements:

" DIMENSION 1(2) i
DATA I/'A’B/ :

— imply:
(1) = ‘A’

I(2) = 'Bb’

" and the additional statement
7 DATA 1/'ABC/
- P, implies .~ R : o | - -

I =AR

SRy T T

SR

“However, the statement:

. DATAJ['ABC/

>

e IR R ey

" is an error since J is not dimensioned. - .

”
o STy
FOAVT FRON

RV

Bt ‘“":;:‘f:":;”‘";“: i T 68 . Digital Systems Division '

o
%@ 946260-9701

(~ Further, the statements: .

DIMENSION R(2)
DATA R/2*A’/

r imply
- R(1) = ‘AW’ ' 3

R(2) = ‘Ab’ | |
6.6.2 BLOCK DATA STATEMENT. P ‘
Form:

BLOCK DATA

(v This statement declares the program which follows to be a data specification subprogram. Data
specification for variables in common blocks requires the use of a BLOCK DATA subprogram.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram
may contain only the declarative statements associated with the data being defined.

Example:

BLOCK DATA ' o ,
COMMON/R/X,Y/C/ZW.V : ,
DIMENSION Y(3)

COMPLEX Z ‘
DOUBLE PRECISION X
DATA Y(1),Y(2),Y(3)/1E-1,2*3E2/

-~ DATA X,Z/11.877D0,(-1 41421 1.41421)/

~ END :

: : A’ Data may be entered into more than one common block in one subprogram. A blank common can
P not be initialized. Any common block mentioned must be listed sufficiently to define those vari-
Lo ables being used. However, the first reference to a common block must be listed in full. In the

' . example above W and V are listed in block C although no data values are defined for them.

v67 EXTERNAL STATEMENT
“';_‘Form
EXTERNAL ldentlﬁer,,ndenuf‘erz, .. ldenu['er
- ,-'ThlS statement declares the listed identifiers to be ‘subprogram names. Any subprogram name

o given as an argument to another subprogram must appear in an EXTERNAL declaratuon in the
;callmg program o , : e

69 ! T Digital Systems Division

(]
@ 946260-9701

Example:

EXTERNAL SIN,COS
CALL TRIGF (SIN,1.5,ANSWER)

CALL TRIGF (COS,.87, ANSWER)

END

 SUBROUTINE TRIGF(FUNC,ARG,ANSWER)
ANSWER = FUNC(ARG)

RETURN
END

. 6.8 REENTRANT STATEMENT

-~

Form:

- REENTRANT identifier,identifier,. . .,identifier

~ This statement declares the listed identifiers to be the names of subprograms that are to be called
" using the specnal reentrant subprogram callmg sequence. The generated code for calling these sub-

. programs is as follows .

* ' REENTRANT SUB
* CALLSUB(AB)
" BLWP @F$XREC
 DATA SUB
DATA 2
DATA A
DATA B

~In order for the above to work properly, subroutine SUB must be coded thh the specml reentrant
'_ . recexvmg protocol (Appendtx B, paragraph B. 3)

Digital Systems Division

946260-9701

| (: | o NOTE .

The concept of reentrant subprograms serves two purposes. The first
is to allow the user to share a subprogram between two or more
separate tasks. This facility is only possible with a mapped processor
running under the DX10 operating system and does not require the
use of the REENTRANT statement nor the special calling sequence
that it generates. Appendix H, paragraph H.2.2.1, explains how to
share subprograms (procedures) between two or more FORTRAN
tasks running under DX10.

~ The other advantage inherent in reentrant programming is the ability
for a subprogram to call itself directly or indirectly. This technique is

 known as recursion and has many useful applications in computer

- programming. In the case of direct recursion (a subprogram which
calls itself), the special calling sequence is automatically generated if
the compiler R option is in effect. If the R option is not in effect,

R T recursive calls generate an error. In order to properly call a recursive

' . ..7nf 7 subprogram from another program module, the REENTRANT
€ T 0 statement must be used to declare the special calling sequence for

_ that subprogram. Refer to Appendix E, paragraph E.3.6 for infor-
- mation about using recursive FORTRAN subprograms.

- 6-11/6-12 S o - Digital Systems Division

o
{@ 946260-9701

SECTION VII

FORTRAN LIBRARY

7.1 GENERAL _

The FORTRAN system supplies a library of standard functions that may be referenced from any

: program.” These functions are divided into two sets, basic external functions and intrinsic

¢ functions. The basic external functions are called by the object program in the same manner as
normal, user-supplied functions. Table 7-1 lists and defines these functions. Intrinsic function
names are known by the compiler and intrinsic function references may be treated in nonstan-
dard ways (such as inline function expansion). The programmer can replace any of the intrinsic
functions with his own function by including the name of the new function in EXTERNAL
statements in all calling programs. Table 7-2 lists and defines the intrinsic functions included in

(™ the 990 FORTRAN library.

7.2 LIBRARY SUBROUTINES

p— " In addition to the basic external and the intrinsic functions provided in the FORTRAN library,
two other subroutines are available to perform buffered input and output. Any program may use
these subroutines by referencing them with a CALL statement. Both of these subroutines enable
the programmer to implement overlapped I/O. That is, by calling one of these subroutines the
program can place the I/O operation under control of the called subroutine and return to
program execution while the [/O operation is in progress. If this technique is used, the program
, must ensure that the previous I/O operation is complete before starting another 1/O operation
cewl ~with the same unit. This is done by including an IUNIT test (from the basic external library func- A
_tions) in the program to check the status of the unit involved. Only when the previous 1/O operation
is no longer incomplete can the program proceed with the next I/O operation. The following para-

graphs describe the buffered I/O subroutines contained in the FORTRAN library.

~7.2.1 BUFIN SUBROUTINE. The BUFIN subroutine transmits one physical record from an I/O
device to a prescribed buffer area in memory. The subroutine is activated with a CALL
statement in the following form:

C TR ‘ E ,C»ALL BUFIN(u,m,s,w) 7
| ' whére | |
- u is an 1/O unit designator
lm' is an integer mode indicator (0 = ASCI], 1 = binary)
»‘_s»is a variable naxﬁé indi‘cating the starting address of the data transfer

‘w is an integer‘variable containing the number of bytes to be transferred upon input and the
.. number of bytes actually transferred after an IUNIT test indicates successful completion of
* o the operation. ... KRR :

The subroutine retrieves one physical record from I/O unit number u and stores it in memory
* beginning at the address s using the format indicated by the mode indicator m. If the value of w

is less than the number of bytes in the physical record, only w bytes are transferred and the
ke remaining bytes in the record are ignored. If the value of w is greater than the number of bytes
" -+ .inthe physical record, the transmission stops at the end of the physical record.

7-1 , Digital Systems Division

946260-9701

Table 7-1. FORTRAN Library Basic External Functions

Type of Type of
Function Format Parameter Result Definition
Exponential EXP (a) Real Real e? -
DEXP (a) Double Double
CEXP (a) Complex Complex
*Natural Log ALOG (a) Real Real In () .
c DLOG (a) Double Double
CLOG (@) Complex Complex
.Common Log ALOGI10 (a) Real Real - logyo (2)
DLOGI10 (a) Double Double
Sine (Angles are SIN (a) Real Real sin (a) O
in radians.) DSIN (a) Double Double
L CSIN (a) Complex Complex
.. Cosine (Angles are -COS (a) Real Real cos (a)
in radians.) - DCOS (a) Double Double
‘ ~ CCOS (a) Complex Complex
* Hyperbolic Sine “SINH(a) Real Real sinh(a) , :
T Hyperbolic Cdsine - COSH(a) Real Real cosh(a) o ()
Hyperbolic Tan " TANH (a) Real Real tanh (a)
* Square Root 'SQRT (a) Real Real O
s DSQRT (a) Double Double
CSQRT (a) Complex Complex
Arctmigent (Angles ATAN (2) " Real Real - arctan (a) ()
are in radians.) DATAN (a) Double Double
. L ATAN2 (a1 ,3;) Real Real - arctan (a; fap)
DATAN2 (a; ,3;) Double Double _
Remaindering (Tl1e DMOD (a, ;az) Double Double a; (mod a;y)
_function DMOD T o
" (ay,az)is defined as
" a;—{a, /ay] where
- [ay /a2] is the integer s
.-+ 77 whose magnitude does o
~-_not exceed (a;fa;). S
Absb]uiéa Vglue o CABS (a) | Complex Complex . Absolute value of complex .
" JOR (a132) *Integer Integer " Inclusive OR
LAND (a; ;) Integer Integer Logical AND ‘ -
"~ NOT (ay) ‘ Integer Integer " Logical negation = Q
IEOR (a, ,a;) Integer Integer - Exclusive OR T N
7-2

Digital Systems Division

L own ey

ran

™

946260-9701

Table 7-1. FORTRAN Library Basic External Functions (Continued)

Type of Type of
Function . Format Parameter Result
NOTE

Definition

Boolean functions IOR, LAND, NOT and IEOR are ’cxp?mded in line.

Bit Manipulation ISHFT (a, ,a3) Integer Integer
IBTEST (a,,a3) Integer Logical
IBSET (a; ,3) Integer Integer
IBCLR (a; ,a;) Integer Integer
NOTE

Shift a, by a, bits (shift
left logical if a, is positive;
shift right logical if a; is
negative)

Test the a, th bit of a,
(Bits are numbered right
toleft,0t0 15.)

Set the a) th bit ofal
(Bits are numbered right
to left,0 to 15.)

Clear the a, th bit of a;
(Bits are numbered right
to left,0 to 15.)

Bit manipulation functions ISHFT, IBTEST, IBSET and IBCLR will be expan-

ded in line if a, is a constant.

Check I/O Status - TUNIT (a) Integer Integer a is an I/O unit designator;
: Result is:
1 = IJO operation incomplete
2 =1/O operation successful
3 = End of file
4 = Error
Find /O Error NERRST (a) . Integer Integer Calling NERRST clears the
Condition error indicator;a is an 1/O
_unit designator; Result is:
0 = No error)
1 = Illegal unit
2 = lllegal operation
3 =1/0 error
4 = End of file (Only if the
END=S, parameter has
not been selected; if
END=S,, NERRST
returns a no error
code, 0.
5 = File previously open
11 = Invalid format
12 = Overflow on input
13 = Field overflow on output
14 = lllegal input character
15 = Numeric or logical mis-
match between format
and list
7-3

Digital Systems Division

946260-9701

Function

Absolute Value

Truncation

Remaindering

Choose Largest Value

Choose Smallest Value

Table 7-2. FORTRAN Library Intrinsic Functions

Format

ABS (a)
IABS (a)
LABS (a)
DABS (2)
INT (a)
LINT(a) -
AINT(a)
IDINT(a)
DINT(2)
AMOD (al,a;)
MOD (8],32)
LMOD (a,,a,)

AMAXO (a,ay, ..
AMAXI1 (a;a;,, .
MAXO (a;a,, .
(Zl|,l;, .
LMAXO (aa,, ..
LMAXI (aga,, ..
DMAXO (a,,a,, . .
DMAX1 (ﬂl,az, .
AMINO (al,az, S
AMINI (a2, ..
MINO (aa,, ..
(a;a,, ..
LMINO (a,,a,, ..
LMINI (a,a;, ..

MAXI

MIN1

.
N e S N

.
N N N - S N

Type of
Parameter

Real
Integer
Extended
Double
Real

Real

Real
Double
Double
Real
Integer
Extended
Integer
Real
[nteger
Real
Extended
Real
Integer
Double
Integer
Real
Integer
Real
Extended
Real

Type of
Result

Real
Integer
Extended
Double
Integer
Extended
Real
Integer
Extended
Real
Integer
Extended
Real

Real
Integer
Integer
Extended
Extended
Double
Double
Real

Real
Integer
Integer
Extended
Extended

Definition

lal

a, (mod a,)

Max (a2, ...)

h{ln (lll,flz. P -)

DMINO (4, a. .. Integer Double
DMINI (a0, . .0) Double Double
Type Conversion FLOAT (a) Integer Real Conversion from Integer to
Real
LFLOAT(a) Extended Real Conversion from Extended
‘ Integer to Real
IFIX (a) Real Intege: Conversion from Real to
Integer
LFIX (a) Real Extended Conversion from Real 1o Ex-
tended [nteger
SNGL (a) Double Real Conversion from Double to
Real
DBLE (a) Real Double Conversion from Real to
Double
CMPLX (a,,a;) Real Complex a; +ayv/ T
Transfer of Sign SIGN (a,a,) Real Reul Sign of a; times la,|
: ‘ ISIGN (a,,a;) Integer Integer
LSIGN (a,a,) Extended lixtended
DSIGN (a ;) Double Double
Positive Difference DIM (a,.a,) ~ Real Real a,—-min (a,a,)
IDIM (a.a;) Integer Integer
LDIM (a,,2,) Extended - Extended
7-4

Digital Systems Division

L 4
e AN F i e lr a1

e,

Gt i eknd

nre |

S

S e
B F R

{@ 946260-9701

(r\\ Table 7-2. FORTRAN Library Intrinsic Functions (Continued)
’ .
i Type of Type of
Function Format Parameter Result Definition °
Complex Number CONJG (a) Complex Complex Obtain Conjugate of Complex
E Manipulation REAL (3) Complex Real Obtain Real Part of Complex
AIMAG (a) Complex Real Obtain lmaginary Part of
Complex
v The status of I/O unit number u must be checked with an IUNIT test before proceeding with the

operation. When the IUNIT test indicates the BUFIN operation is complete, the number of bytes
read is returned in W.

~ Example:

DIMENSION IARRAY(40)
REWIND 15
DO 20 I=1, 100
- CALL BUFIN(15,1 ,JARRAY,ICHAR=80)

» (Any processing not involving UNIT 15 or IARRAY)
10 - ISTAT = IUNIT(15)

IF (ISTAT .EQ. 1) GO TO 10
IF (ISTAT .NE. 2) STOP

20 CONTINUE

: 722 BUFOUT SUBROUTINE. The BUFOUT subroutine transfers one physical record from a
buffer area in memory to a specified [/O device. The subroutine is activated with a CALL

- statement in the following form:
N - CALL BUFOUT(u,ms.w) |
-~ where: | 7 o
o uis éh 1/0 imit désignator

m is an ihteget that indicates transfer mode (0 = ASCIL, 1 = binary)

sisa va__riqble namé ind‘icating the start‘mg address of the data transfer

w i$ the nilmber of byteé to be transferred.
_:::'l’he' sﬁbféu}tir‘le“transfets W'bytes-from the’ buffer area in memory beginning at location s to I/0

. unit number u. The data is written in one physical record using the format indicated by the
~mode indicator m. o

7-5 Digital Systems Division

Q
Q?p 946260-9701

The status of 1/O unit number u must be checked with a TUNIT test before proceeding with the

operation.
NOTE
The file must be terminated with an END FILE statement before
the [/O uﬂnit may be repositioned.
Example: | |

DIMENSION IARRAY(40)
REWIND 15
DO 20 I=1,100

3

ICHAR=80
- CALL BUFOUT (15,1, JARRAY,80)

-~ + (Any processing not involving UNIT 15 or IARRAY)
10 [STAT = IUNIT(15) |

IF (ISTAT.EQ.1) GO TO 10
IF (ISTAT.NE.2) STOP

20 CONTINUE
ENDFILE 15
END '

7.3 ISA EXTENSIONS

“The FORTRAN library also includes a set of subroutines that satisfy the extensions to the
FORTRAN language recommended by the Instruments Society of America (ISA Extensions,
S61.1-1975 and S61.2-1976). These subroutines permit interface with exccutive programs,

~process input and output functions, provide uccess to time and date information. and provide
procedures for file access and control of file contention. The following paragraphs describe the
function and calling sequence of cach of the ISA Extension functions provide in the 990
FORTRAN library.

, N NOTL
To reduce the size of a program link, an ISA subroutine may be

declared an integer (example: INTEGER*2 OCRU) to prevent the
FORTRAN RUNTIME real arithmetic package trom being linked in.

" 7.3.1 START A PROGRAM. The START subroutine allows the user to specily a specific time
delay before beginning a specified task. On DX10, the specified task must be installed nonreplica-
table on the system program file. The form of the call to this subroutine is

1. " CALLSTART (task. delay, units, code)

7-6 Digital Systems Division

e —

(

o atn ———Ges

[e]
@ 946260-9701

r The required parameters for this call are defined as follows: .

TN

e task — the name of a 3-element INTEGER*2 array. The first element contains the task
id of the task to be started. The last two elements contain the four bytes of task

parameters, i.e., terminal [/O, data etc.

»
e delay — an [*2 integer indicating the number of units that the task will be delayed before
starting. A negative or zero value results in an immediate start.
® units — an I1*2 integer, either 0, 1, 2 or 3 that specifies the units to be used in measuring
the time delay. The digits indicate the following units:
0 = 8.3 millisecond units (system clock)
, 1=1 mi"isecond units
7 2 = 1 second units
~ ' 3 = 1 minute units
® code — an I*2 variable to accept a return code from the subroutine that indicates the
disposition of the request as follows:
1 = Request accepted
- 2 = The specified task id does not exist
L 3 = Illegal time
4 = The system is unable to accept the request
5 = Error
NOTE
ERY) .
(‘:' , Clock resolution is limited to one second intervals.
: " 7.3.2 $TART A PR(?GRAM AT A SPECIFIED TIME. The TRNON subroutine allows the user
4 to specxf)f a specific time f)f day at which to start execution of a specified task. The specified task
must be installed nonreplicatable on the system program file. The form of the call to this sub-
~ routine is ,
CALL TRNON (task, time, code)
r'e L The required parameters for this call are defined as follows:

. * . ‘task — the name of a 3-element INTEGER*2 array. The first element contains the task
. o : id of the task to be started. The last two elements contain the four bytes of task
T . parameters.

® time — the name of an INTEGER*2 array. The first three elements of the array contain
the hour, minute, and second values that define the military (24-hour) time at which the

, : program will be started.

7-7 Digital Systems Division

[P

ia

946260-9701

® code - an argument to accept a return code from the subroptine that indicates the dis-
position of the request as follows:

1 = Request accepted
. 2 = The specificd task 1D does not exist
3 = Illegal time
4I = The system is unable to accept the request
NOTE
The TRNON subroutine is not supported on the TX(990/4) system.
7.3.3 DELAY CONTINUATION OF A PROGRAM. The WAIT subroutine allows the user to
specify a specific time delay before continuing with the execution of a program sequence. The
form of the call to this subroutine is
h CALL WAIT (delay, units, cédc)
The requircd parameters for this .call are defined as follows:

® delay — an [*2 integer indicating the number of units that the program sequence will
be delayed. A negative or zero value results in no program delay.

® units — an [*2 integer, either 0, 1, 2 or 3, that specifies the units to be used in measuring
the time delay. The digits indicate the following units:

0 = 8.3 millisecond units (system clock)

1 = 1 millisecond units (delay is computed in 50 millisecond intervals)
2 = | second units

3 = | minute units

- ® code — an [*2 variable to accept a return ¢ode from the subroutine that indicates the
~. disposition of the request as follows:

1 = Request accepted
2 = Delay too long (maximum delay = 1638.375 sceconds)
3 = llegal unit specification

 7.3.4 DIGITAL INPUT. The DIW subroutine allows the user to input sets of bits from the CRU
. -intertace and store those bits in a specitied array. The torm of the call to this subroutine is

CALL DIW (number, specification, target, code)

7-8 Digital Systems Division

L-———

(

. -

(‘1‘_./;

e s R

946260-9701

(\ The required parameters for this call are defined as follows: .

® number — an I*2 integer expression indicating the number of bit groups to be input from
the CRU (must be between 1-16).

e specification — a 2 by “number” [*2 integer array. The first element of each doublet
is the decimal CRU base as it would be used in Register 12, and the second element is
the number of bits to transfer.

e target — an [*2 array which is “number” elements long into which bit group are store
right justified.

&

® code — an I*2 variable to accept a return code from the subroutine that indicates the
disposition of the request as follows:

1 = All data collected

3
A 2 = (This number is not used)
~ 3 = The “number” parameter is specified as zero
4 = The CRU address is out of the valid range
5 = The number of bits are not in the valid range of 1 to 16 bits.

. 7.3.5 LATCHED DIGITAL OUTPUT. The DOLW subroutine allows the user to output bits of
A information to the CRU. The bits can be latched in cither the set or the reset condition. The form
AN of the call to this subroutine is

CALL DOLW (number, specification, source, mask, code)
The required parameters for this call are defined as follows:
® npumber — an I*2 integer express:on indicating the number of bit groups to be output to
65; ' - the CRU (must be between 1-16).
o specification — a 2 by “number” 1*2 integer array. The first element of each doublet
~ : ‘ is the decimal CRU base as it would be used in Register 12, and the second element is
y - the number of bits to transfer.
® source — an I*2 array from which the output bit groups are fetched. The data in the
array must be right justified.
‘e mwsk — the library subroutme ignores this parameter. It must be provided for compati-
® - bility with other ISA libraries.
NOTE
7 CRU input and output data is bit-reversed. For a more detailed
description of the CRU refer to paragraph 3.89.8 in Model 990
Computer Assembly Language Programmer’s Guide, part num-
ber 943441-9701.

7-9 Digital Systems Divisfon

946260-9701

o code — an I*2 variable to accept a return code from the subroutine that indicates the
disposition of the request as follows:

1 = Request complete

2 = (This number is not used)

3 = The “number” parameter is specified as zero

4'= The CRU address is out of the range

5= Thé number of bits are not in the valid range of 1 to 16 bits

7.3.6 MOMENTARY DIGITAL OUTPUT. The DOMW subroutine allows the user to output bit
groups to the CRU. The bit groups consist of momentary digital output signals. All specitied bits
are reset after a delay of “time™. The form of the call to this subroutine is

CALL DOMW (number, specification, source, time, code)

The required parameters, except “time” have the same definitions as those for the Latched Digital
Output subroutine, DOLW. Time specifies a time delay before continuing the execution of a pro-
gram scquence. The parameter time is a 3-dimensioned array whose elements correspond to the
parameters of the WAIT routine (sec paragraph 7.3.3).

7.3.7 OBTAIN DATE. The DATE subroutine allows the user to determine the correct calendar
date. The form of the call to this subroutine is

CALL DATE ()

The required argument i is an INTEGER*2 array containing three clements. The first element
contains an integer representation of the year (A.D.), the second element contains an integer
representation of the month, and the third element contains an integer representation of the day.

7.3.8 OBTAIN TIME. The TIME subroutine allows the user to determine the correct time of
day (if the system time and date was initialized correctly). The form of the call to this
subroutine is '

CALL TIME (j)
The required argument j is an INTEGER*2 array containing three elements. The first element

contains the hour, the second element contains the minute and the third element contains the
second.

7-10 Digital Systems Division

)

946260-9701

(" 7.3.9 ANALOG DATA HANDLING. The 990 Computer family provides for analog data handling
~ by an optimal analog-to-digital conversion module and an optimal digital-to-analog conversion
module. These hardware ‘modules can be controlled from FORTRAN by the following ISA

subroutines:
« ' Subroutine Purpose
AISQW Analog Input in Sequence
. AIRDW Analog Input in Random
AOW Analog Output

The AISQW subroutine samples points in an order determined by the A/D hardware module. Each
call samples consecutive channels beginning with channel 0 on a single A/D module. A maximum of
64 channels can be sampled since an A/D module contains no more than 64 channels. The sub-
S routine samples a channel and stores a 12-bit integer in the least significant bits of the input vector;
= any scaling of values is left to the user. The choice of voltage or current range and code scheme
(straight binary or two’s complement) is a hardware switch selectable option left to the user.

The AIRDVW subroutine samples points in an order determined by the user. Each call samples any
number of channels from any A/D module sequence in any order. The user specities the number of
sample points desired and provides an I*2 vector to receive the converted values. In addition, each
point must be tagged with a CRU A/D module address and a channel number. The subroutine
samples the specified channel on the specified module and stores a 12-bit integer in the 12 least
significant bits of the input vector; any scaling of values is left to the user. The choice of voltage
or current range and code scheme (straight binary or two’s complement) is a hardware switch
o option left to the user. If two’s complement is switch selected, the converted value is not sign
pTRS - extended to 16 bits; it remains a 12-bit positive integer. To sign extend the value, the following
statements can be used:

IF(IBTEST(IVALUE,1 1))IVALUE=IOR(IVALUE 4ZF000)
where IVALUE contains the 12-bit value.

The AOW subroutine converts digital values in an order specified by the user. The 990 Digital-To-
Analog (D/A) hardware module can be ordered with 1 to 4 channels. The digital interface is
common to all channels so the same digital value can be sent to any combination of the 4 channels.
~ Each call converts any number of values through any combination of D/A modules using any
combination of channels. The user specifies the number of values to convert and provides an [*2
vector containing the values. Each value must be tagged with a CRU D/A module address and a set
of channel enable bits. The subroutine transfers the 12 least significant bits of a value to the D/A
hardware module and channels. All scaling is left to the user. The choice of voltage or current
range and code scheme is a hardware switch option left to the user.

All three subroutines have a similar calling sequence. The form of the call for the AISQW
subroutine is:

CALL AISQW(points, CRU addr, input vector, code)

7-11 Digital Systems Division

{@ 946260-9701

where: ,
points is an 1*2 expression for the number of conversions to perform.

CRU addr is the CRU address for the chassis slot containing the A/D module. This is
. the value stamped on the chassis for the slot.

input vector is an I*2 vector to receive the converted values.
code ' is an I*2 variable to receive the completion code. Where the completion code:
| 1 — Normal completion
2 — Operation incomplete (hardware failed to respond)
3 — CRU address out of range
The form of the call for the AIRDW subroutine is:
~ CALL AIRDW (points, addr & chan # vector, input vector, code)

Where:

points is an I*2 expression for the number of conversions to perform.

addr & chan # vector are a two dimensional 1*2 vector used to tag the source for each con-
version. The dimensions should be 2 and the number of points. For each two word entry, the
first word contains the A/D module CRU address and the record contains the channel number
to use on the A/D module. In the example, point J, the entry is:

ADDR (1, J) = CRU address of A/D module
ADDR (2, J) = Channel number

Note that channel numbers are in the range 0 to 63.
inpuf vector is an [*2 vectof to receive the converted values.
-~ . codé is an I*2 variable to receive the completion code. Where the completion code:
| 1= Nbrmal complétion
2 = Operation incbmplete (hardware failed to respond)
3= CRU address out of range
4 = Channel number Oilt of range
The form of the call for the AOW subroutine is:

CALL AOW (<points>, <addr & chan enable>, <out.put vector>, <code>)

© 712 Digital Systems Division

S
213 SRR

-

C

L

-~

{@ 946260-9701

where: '
points is an I*2 expression for the number of conversions to perform.
addr & chan enable are a two dimensional I*2 vector used to tag the destination for each con-
version. The dimensions should be 2 and the number of points. For each two word entry, the
first word contains the D/A CRU module address and the second contains the channel enable

mask. The channel enable mask is stored in the 4 least significant bits of the array word. The
bits are defined as:

Bit Number Purpose

15 1 = Enable conversion on channel 0
0= _Inlu'bit conversion on channel 0

14 1 = Enable conversion on channel 1
0 = Inhibit conversion on channel 1

13 1 = Enable conversion on channel 2
0 = Inhibit conversion on channel 2

12 1 = Enable conversion on channel 3
0 = Inhibit conversion on channel 3

output vector is an I*2 vector containing the digital values to convert.

code is an [*2 variable to receive the completion code. Where the completion code:
1 = Normal completion |
2 = Operation incomplete
3 = CRU address ouf of range

7.3.10 CFILW SUBROUTINE. The CFILW subroutine allows the user to create a specific file. The
form of this call is:

Call CFILW (CFILE, RECLNGTH, RECNUM, AB1)
The required parameters for this call are defined as follows:

® CFILE — An I*2 array that contains three items. The user must dimension this array such
that its length will accommodate all three items.

These items are:
1) File type
2) Number of characters in the pathname

3) Pathname (2 characters per element)

7-13 Digital Systems Division

RIS

EREART Y
1 o

(o]
("@ 946260-9701

The first element is the file type: .
01 = Sequential file

02 = Relative record file

The second element contains the number of chdmcters in the pathname, and the re-

maining elements contain the pathname.
Example:

Dimension FNAM(6), CFILE(8)
EQUIVALENCE (FNAM(1), CFILE(3))
DATA CFILE(1) /01/, CFILE(2) /12/
DATA FNAM /‘SYS00312.TST’/

RECLNGTH - Record length and even numbers greater than >1F, that specifies the

number of characters in a record.

RECNUM — An I*4 datum which indicates the maximum number of records in the

file.
AB1 — Error code:

1 — Normal completion

2 or greater — Signals an error. Proper reference is to the normal system error codes,

NOTE

When attempting to debug a program, it is important to remember
that 990 FORTRAN generates its own internal ID’s for the file
control blocks to use when referencing LUNO’s assigned in the ISA

extensions.

7 3. ll DFILW SUBROUTINE. The DFILW subroutine allows the user to delete a specified file.
The form of this call is:

CALL DFILW (DFILE, AB1)

The requ1red parameters for this call are defined as follows:

DFILE — is an I*2 array. The first element of the array contains the number of characters

in the pathname, while the remaining elements contain the pathname.
See 7.3.10 for an example.
AB1 — Error code:

1- Normal completion

2 or greater — Signals an error. Proper reference is to the normal system error codes.

7-14

Digital Systems Division

- ICCVC SN

®»

946260-9701

7.3.12 OPENW/CLOSEW SUBROUTINE. The subroutine CALL OPENW/CALL CLOSEW allows
for the opening and closing of @ LUNO with an associated file name. A call to OPENW does not
create a nonexistent file. Also, note that once you specify the parameters in the first call to the sub-
routines, the same number of parameters must be used in subsequent calls. The form of these

calls are:
CALL OPENW (LUNO, FILENAME, ACCESS, AB1)

CALL CLOSEW (LUNO, AB1)

The required parameters for this call are defined as follows:

® LUNO - is the LUNO assigned.

e FILENAME — is an array name, the first word of which must contain the character
length of the pathname or device name; the remainder of the array contains the path-
name or device name itself.

® ACCESS — specifies the access method:
1 — Read only |
2 — Shared
3 — Exclusive write
4 — Exclusive all
e ABI - Error code:
I — Normal completion

2 or greater — Signals an error. The error may be a normal system error code or one
of the following special error codes:

40 — LUNO requested is invalid
241 — File previouély opened and not closed
>42 — FCB table full

243 — Access method requested is invalid

NOTE

The parameter AB1 may be omitted and automatic error termination
with traceback will result if an error occurs. If AB1 is not omitted, it
is the user’s responsibility to code an error-handling routine to
handle values returned in AB1. Note also that a file must have been
opened previously with ISA OPENW before it can be closed or auto-
matic error termination with traceback will result.

7-15 Digital Systems Division

o]
é@ 946260-9701

NOTE

When attempting to debug a program, it is important to remember
that 990 FORTRAN generates its own internal ID’s for the file
control blocks to use when referencing LUNO’s assigned in the ISA

extensions.

7.3.13 RDRW/WRTRW SUBROUTINE. This subroutine allows for relative record read and write.
The form for this call is:

CALL RDRW (LUN, RECNUM, BUF, WRDCNT, ABI)

CALL WRTRW (LUN, RECNUM, BUF, WRDCNT, ABI)

The required parameters for this call are defined as follows:

LUN - is the LUNO assigned
RECNUM - specifies the record number to be read/written (AN INTEGER*4 DATUM).

BUF — designates the first variable into which information is to be read/written.
WRDCNT - specifies the maximum number of integers to be read/written.
AB1 — error code:

1 — Normal completion

2 or greater — Signals an error. The error may be a normal system error code or the
following special error code: ’

> 40 — LUNO requested invalid
NOTE

The parameter AB] may be omitted and automatic error termination
with traceback results if error occurs.

NOTE

The file to be read or written must have been previously opened
by the ISA OPEN (OPENW) and must be closed by the ISA CLOSE

(CLOSEW).

7-16 Digital Systems Division

Q

~
)

;/' "\“

1o
{@ 946260-9701

NOTE

When attempting to debug a program, it is important to remember
that 990 FORTRAN generates its own internal ID’s for the file
control blocks to use when referencing LUNO’s assigned in the ISA
extensions.

7.3.14 SVCFUT SUBROUTINE.

NOTE

The SVCFUT subroutine is not supported on “EB&ser. DX10 2.X
releases.

The SVCFUT subroutine allows the user to set up the SVC call block, with each SVC Block (I)
equaling one word of the block. The form of this call is:

CALL SVCFUT (OPCDE, TYPE, LUN, VALID, RECLNGTH, FILANDISC, NUMREC, ALLOCATION, AB1)

The required parameters for this call are defined as follows:

OPCDE - is the utility operation code
TYPE — is the file type
LUN — is the LUNO to be assigned or released

VALID — is the validation identifier (not implemented in current operating system.

The user must supply a dummy value.)

RECLNGTH - is the record length. An even number greater than 1F (base 16) that
specifies the number of characters in the record.

FILANDISC — is the name of an INTEGER*2 array that holds the file pathname. The
first element of this array contains the number of characters in the pathname, and the
remaining elements contain the pathname.

NUMERC - is an INTEGER*4 variable for the maximum number of records in the file.
ALLOCATION - specifies the allocation. Contiguous (0) and Noncontiguous .

AB1 —is an INTEGER*2 datum into which the RTND value of control byte ABI (error
code) is placed.

'NOTE

When attempting to debug a program, it is important to remember
that 990 FORTRAN generates its own internal ID’s for the file
control blocks to use when referencing LUNO’s assigned in the ISA
extensions.

7-17 Digital Systems Division

(o]
@ 946260-9701

7.3.15 MODAPW SUBROUTINE. The subroutine allows the user to change the access method of a
previously opened file. The form of the call is:

CALL MODAPW (LUNd, ACCESS, ABI)

The required parameters for this call arc defined as follows:

o
o
~
o

LUNO is the LUNO assigned.
ACCESS specifies the access privilege:
1 = Read only
2 = Shared
3 = Exclusive write

4 = Exclusive all

NOTE

When using a TX system, only SHARED and EXCLUSIVE ALL
access methods are allowed. Therefore, ACCESS = 2 and ACCESS =
4 are allowed on TX systems.

ABI is the error code:

1 — Normal completion

2 or greater — signals an error. The error may be a normal system error code or the
following 40— LUNO requested invalid

NOTE

The parameter AB1 may be omitted and automatic error termination
with traceback results if an error occurs.

NOTE

When attempting to debug a program, it is important to remember
that 990 FORTRAN generates its own internal ID’s for the file
control blocks to use when referencing LUNO’s assigned in the ISA
extensions.

7-18 Digital Systems Division

R

()

~ar”

{@ 946260-9701

7.4 990 FORTRAN CALLABLE SUBROUTINES

(In addition to the standard FORTRAN library subroutines and the ISA extension subroutines,
the 990 FORTRAN library provides subroutines for additional user convenience. These functions
include a random number generator, additional program control calls, various forms of time and
date information, and CRU 1/O calls. The following paragraphs explain the function and format
of these additional library members.

7.4.1 PSEUDO-RANDOM NUMBER. The library function, RANF, provides the user with the
ability to access a number generated by a pseudo-random number generator algorithm. The
function can be used in an assignment statement, such as

X = RANF (d)

The argument d is a dummy argument that forces the compiler to recognize RANF as a
function. The result of this statement is the assignment of a pseudo-random number to the
variable X. The random number provided is a REAL*4 number in the range of 0 to +1.

74.2 PRESET RANDOM NUMBER GENERATOR. The library subroutine, RANSET, allows
N the user to preset the seed value of the random number generator to any desired value. The form
~ ~ of the call for this subroutine is

CALL RANSET (x)

The argument x can be any integer value, and designates the value to preset the random number
generator.

7.4.3 GENERATE SUPERVISOR CALL. The library subroutine, SVC, allows the user to
generate a DX10 supervisor call by providing the SVC control block. The form of the call for
this subroutine is

" CALL SVC (sve block, abl, auto abort flag, register block)
The required arguments are defined as follows:
e svc block — the name of the array containing the SVC control block.

e abl — an INTEGER*2 variable into which the SVC returns a control byte (usually an
~ error code). ‘

® auto abort flag — a LOGICAL input variable that when true allows errors to abort task.
When the call is aborted, argument abl contains a nonzero value and the operating
system initiates a traceback.

e register block — the name of a 10-word array that the SVC uses for pseudo-registers.

7.4.4 ABSOLUTE ADDRESS. The library function, LOC, allows the user to access the absolute
address of a single argument. The function can be invoked with an assignment statement as follows

e ~ I=10C (B)

The single argument, B, specifies the parameter whose absolute address will be assigned to the
variable I. The returned value is INTEGER*2.

7-19 Digital Systems Division

1o
{@ .946260-9701

7.4.5 BID TASK. The library subroutine, BIDTSK, allows the user tb issue a DX10 Bid Task SVC.
The specified task must be installed nonreplicatable on the system program file. The form of the
call to this subroutine is

CALL BIDTSK (task, abl)

The argumeﬁt, task, is a 3-element INTEGER*2 array. The first element contains the task id; the
other two elements contain task parameters. The argument, abl, is an INTEGER*2 variable into
which the SVC returns the task state upon completion of the call.

7.4.6 DELAYED BID TASK. The library subroutine, DLYBID, allows the user to issue a DXI10
Delayed Bid Task SVC. The specified task must be installed nonreplicatable on the system program
file. The form of the call to this subroutine is

CALL DLYBID (task, date, abl)
The required arguments for this call are defined as follows:

e task — a 3-element INTEGER*2 array. The first element contains the task id; the
other two elemcnts contain task parameters.

® date — a S-clement INTEGER*2 array that contains the date and time at which to
start the task. Element 1 contains the binary value of the year; element 2 contains the
binary value of the day, element 3 contains the binary value of the hour, element 4
contains the binary value of the minute; element S contains the binary value of the
second. :

- ® abl — an INTEGER*2 variable that receives the completion code from the SVC upon
completion.

7.4.7 CRU INPUT. The library function ICRU allows the user to read from onc to 16 input
CRU lines. The function can be used in an assignment statement, such as

I = ICRU (cru base, number lines)
The required arguments are defined as follows:

® cru base — the base address to be used in the data transfer as it should appear in
workspace register 12,

@ number lines — the number of contiguous CRU lines to be transferred.
The value read is then assigned to the variable I, right justified.

7.48 CRU OUTPUT. The library subroutine, OCRU, allows the user to output data to one to
16 output CRU lines. The subroutine call appears in the following form:

CALL OCRU (cru base, number lines, value)

7-20 Digital Systems Division

(

-

<)

O

Q)

",

@ 946260-9701

The required arguments are defined as follows:

(e cru base — the base address to be used in the data transfer as it should appear in
workspace register 12.

® number lines — the number of contiguous CRU lines to be transferred.

o wvalue — a literal value, expression or other legal argument whose value (right justified)
will be output to the selected CRU lines.

7.4.9 OBTAIN DATE AND TIME. The library subroutine, DATIME, allows the user to fetch
the binary values of the date and time parameters supplied by the operating system. The form of
the call for this subroutine is

CALL DATIME (time)

The required argument, time, is a S-clement INTEGER*2 array. The first element receives the

. binary value for the year, the second ¢lement receives the binary value for the day, the third
clement receives the binary value for the hour, the fourth element receives the binary value for
~ the minute, and the fifth element receives the binary value for the second.

7.4.10 OBTAIN ASCII DATE. The library subroutine ADATE allows the user to access the date
information supplied by the operating system and store the values as ASCII characters. The form
of the call for this subroutine is

CALL ADATE (1)

The required argument I is a 3-element INTEGER*2 array. The first element receives two ASCII

numbers representing the month (0l - 12), the second element receives two ASCII numbers
- representing the day (0l -31), and the third element receives two ASCII numbers representing
" the year. '

7.4.11 OBTAIN ASCII TIME. The library subroutine ATIME allows the user to access the time
information supplied by the operating system and store the values as ASCII characters. The form
of the call for this subroutine is

O CALL ATIME (J)

~ The required argument J is a 3-element INTEGER*2 array. The first element receives two ASCII
’ numbers representing the hour (01 -24), the sccond element receives two ASCIT numbers
representing the minute (00 - 59), and the third element receives two ASCII numbers represent-

ing the seconds (00-59).

7.4.12 OBTAIN MILITARY DATE. The library subroutine MDATE allows the user to access
the date information supplied by the operating system and store the values in military date
format, e.g., 04 JUL 76. The routine receives the information in integer format and reformats it
into ASCII characters that correspond to the required format. The form of the call for this
subroutine is

CALL MDATE (1)

The required argument [is a 4-clement INTEGER*2 array. The first element receives two ASCII
numbers representing the day (01 - 31), the second and third elements receive the three ASCII
characters that are the first three letters of the month, and the fourth element receives two
ASCII numbers representing the year.

7-21 Digital Systems Division

iy ol

{)’@ 946260-9701

7.5 FORTRAN-PROM PROGRAM SUBROUTINES
NOTE

The package described in paragraph 7.5 is supported only by the
DX10 3.X and TX990 2.2 releases.

The FORTRAN-PROM Programmer Subroutine package contains three FORTRAN callable
assembly subroutines that provide software interface capability between a user written FORTRAN
program, a FORTRAN accessible DX10 or TXDS file, and a PROM programmer module. This
interface capability allows the FORTRAN user to write and read PROMs via the PROM program-
ming module by calling the subroutines to perform the Input/Output functions that exceed
standard FORTRAN capability. These routines may be used with either the crasable (EPROM)

PROM device or bipolar devices.

7.5.1 LIMITATIONS. The FORTRAN-PROM Programmer Subroutine package is designed to
transfer object programs to PROM or EPROM. It is 16 bit, record oriented, not 8 bit byte or 4 bit
nibble oriented, and is not intended to be a general purpose PROM programmer. For example, the
programmer subroutine, PRGROM, transfers no more than 8 bits from a memory array word to
the PROM. When programming a data table with 8 bit entrics in 2708 EPROM, every other byte
in the memory image array may not be used since only 8 bits of a memory image array location
are transferred to a corresponding EPROM location.

7.5.2 SUBROUTINE PACKAGE MODULES. Each of the three PROM programmer modules is
a 990 assembly code subroutine and must be called using the standard FORTRAN linkage. Argu-
ments required by these modules are described under user software interface (see paragraph 7.5.3).
The PROM programming module is software driven via status lines and interrupts are not used.

7.5.2.1 IMGBLD Module, IMGBLD module takes the object file output by SDSMAC assembler
and builds an absolute image of the object file by relocating all relocatable objects by the user
specified bias. The absolute image is stored in a user defined array and each entry is a 16-bit word.

7.5.2.2 PRGROM Module. PRGROM module writes a bit string contained within a user selected
memory image array element into the PROM at an address, passed by the user as a call argument,
using PROM Programmer characteristics also passed by the user.

7.5.2.3 RDPROM Module. RDPROM module reads a PROM address defined by a caller argument
using a physical word bit width also defined by the caller. The string is returned in a call argument
designated memory image array element where it replaces bits starting with a bit position passed
as an argument.

753 USER FORTRAN ROUTINE. The FORTRAN user calling the PROM Programmer Subrou-
tines must provide storage allocation, PROM characteristics, and PROM and memory addressing
capability. Additionally, he must provide FORTRAN input logic for object record input from the
object file. The PROM physical characteristics are dependent on the specific PROM and the user

normally uses those characteristic values furnished by the manufacturer.

7.5.3.1 Inputting the PROM Pragram From Mass Storage. The user’s PROM program relocatable
object must reside on a file that may be accessed with FORTRAN Input/Output statements. The
user assigns a FORTRAN unit number to this file and reads it sequentially. As records are read by
the FORTRAN main program, the subroutine IMGBLD is called, one call per standard object
record, to build a biased memory image in the memory image array. The data flow is shown in
figure 7-1. All call arguments are of the INTEGER*2 type.

7-22 Digital Systems Division

s~

)

O

946260-9701

L]
C FORTRAN READ
. READ (9,30) (INRECD)
30 FORMAT (40A2)
TO OBJECT RECORD

MASS STORAGE

OBJECT ARRAY, INRECD
RECORD

FILE WITH PROM

PROGRAM OBJECT

RECORDS

990
| = 40 MEMORY
BUILD PROGRAM IMAGE ARRAY

C CALL IMGBLD (200,1024, MIMAGE
INRECD ,MIMAGE (1)
1.,1,ILAST ,IERR) (1)
(2)
(3)
~?
-
7z h
TO PROGRAM
ARRAY (990 MEMORY)
(40) /
(41)
(42) /
(43) //
(44)
N 4
N4 -
v 4
(1024)

C ON RETURN 1=44

Example:

Figure 7-1. IMGBLD Data Flow

18148, LEGTH,

CALL IMGBLD (200;1024,INRECD MIMAGE(I),I,ILAST,IERR)

“where:

26018005
1074 LensTH

‘is the PROM progrém load bias.

is the dimension value of the memory image array. If this value is less than the
actual length of the PROM program, the user is responsible for array overlay
management. Special care should be taken in that IMGBLD will terminate on
array overflow conditions and data of the current record must be reprocessed
once array space is available to prevent data loss. Also the array index must be

reinitialized.

7-23 Digital Systems Division

946260-9701

INRECD

MIMAGE(I)

ILAST

IERR

is the user integer array containing the object record to be loaded into the
memory image array designated by MIMAGE(I).

is the memory image array. It is a one dimensional integer array declared in the
users FORTRAN program for the purpose of storing the loaded and biased
PROM program in the 990 memory.

is the memory image array index. When IMGBLD is called to load an object
record the value of this argument gives the starting array element for the
current record object. On return the value of argument S is the index for the
next sequential unoccupied array element.

is a variable initialized by the caller to -1. Upon return, IMGBLD passes the
final array index value when the end of file is encountered. This index value
is the word length of the PROM program if the array has not been overlaid.

contains an error code if IMGBLD encounters an error condition. See
table 7-3 for error codes.

7.5.3.2 Writing the PROM. Once the user memory image array contains the biased data to be
transmitted to the PROM, the user’s FORTRAN program must successively select an array element
~and a bit string within the 16 bit array element, and pass this information with the appropriate
PROM bit address to the subroutine PRGROM. The number of successive bits that can be
physically written by any one call to PRGROM may vary from one physical PROM word to an
entire PROM. The PROM physical characteristics must be passed as arguments with each call.

Table 7-3. Error Table

"~ Code Error Condition Module
0 No error All
2 Absolute module error IMGBLD
3 Data array overflow error IMGBLD
4 Checksum error IMGBLD
5 Non-ASCII character error IMGBLD
12 Hardware not online PRGROM
13 Duty cycle out of range (1-100) PRGROM
14 Pulse width index out of range (1-32) PRGROM
15 EPROM parm 3 must equal parm 4 PRGROM
16 EPROM retry count must be 0 PRGROM
17 EPROM duty cycle must be 100 , PRGROM
18 Number of bits (parm 3) out of range (1-8) PRGROM
19 "~ PROM Programmer hardware error PRGROM
- ?2 Hardware not online ‘ RDPROM
7-24 Digital Systems Division

-~

)

{@ 946260-9701

(Example: '

CALL PRGROM (IERR, INCAUT, IPBITS, IPWORD 1, MIMAGE(I), MDISP, IPPDSP, LOWHI,
IDUTY 2, IRETRY, ICRU, IPULSE)

where:

IERR returns an error code if PRGROM encounters an error condition. See table 7-1
for error codes.

INCAUT is initialized by the caller with the PROM physical word count to be written
with the call. A count of one is automatic if the user passes a value less than
or equal to zero. A count equal to the PROM word size will cause the complete
PROM to be written with one subroutine call and reduce processing time per
PROM significantly. In the event an error occurs before the count is com-
pleted, the subroutine returns the uncompleted count value in INCAUT and
the error code in argument 1.

~ IPBITS is the number of PROM bits that can concurrently be written. This value is
: defined by the manufacturer, but generally is equal to one for bipolar
PROMs and is equal to the PROM physical word size for EPROMs.

IPWORDI is the number of bits in the PROM physical word.

MIMAGE(]) is the memory image array element (16 bits) from which a maximum of 8 con-
L secutive data bits will be taken and then written into the PROM.

MDISP is the integer bit number (0-15) indicating the start bit within the memory
image, array element (MIMAGE(])).

IPPDSP is the PROM physical word address for the PROM write operation. If INCAUT
S is greater than one, this address will be automatically incremented and written
until INCAUT is exhausted.

- LOWHI is an integer O l;or low PROM logic programming (i.e. PROM bits are all one

, . value initially) and 1 for high PROM logic programming (i.e. PROM bits are
-~ : all zero values initially).

IDUTY?2 is the PROM duty cycle which is less than or equal to, the maximum duty cycle
G . as given in the PROM characteristics with percent sign removed.

IRETRY is the number of physical attempts allowed to write a PROM word in the event
_ _of an error condition. This argument must be zero for EPROMs because of the
requirement that they be programmed sequentially and repetitively.

7-25 Digital Systems Division

@ 9462609701

ICRU

IPULSE

is the integer CRU base address of the PROM Programming Module. This
address is found on the CRU chassis. '

is an integer index which determines the hardware write pulse width.

Pulse Pulse Width
Index (Millisec)
1 S
2 1.
4 2.
8 4.
16 8.
32 16.

7.5.3.3 READING THE PROM

-~ To retrieve data from PROM, the users FORTRAN program must successively select a physical
PROM word address, a memory array element, and an clement bit start address to be passed to the
subroutine RDPPROM. The user’s FORTRAN program must also provide any listing logic required
after the information is transferred from the PROM to the integer memory image array.

Example:

Call RDPROM (IERR, INCAUT, IPWORD, MDISP, IPPDSP 1, ICRU, MIMAGE(]))

where:

- IERR

INCAUT

~ “MDISP

. IPPDSP 1
" ICRU

7 MIMAGE(Q)

IPWORD

- contains an error code in the event of an error condition. The error codes
and corresponding conditions are found in table 7-3.

contains the number of PROM physical words to be read with the current
call. When greater than one, successive PROM locations are addressed and read
until the count is exhausted or an error condition exists. The error condition
code returned in IERR and INCAUT contains the number of unread words

remaining.

is the number of bits in the PROM physical word.

- is the bit number (0-15) indicating the start bit within the memory array
element for the PROM data read by the call.

is the PROM word physical address from which data is to be read.

~is the CRU base address of the PROM Programming Module.

is the integer memory image array element into which the read PROM data is

placed, starting with the bit denoted in MDISP.

7-26 Digital Systems Division

O

€

N

o7

[o]
@ 946260-9701

7.5.4 SAMPLE PROGRAM DESCRIPTIONS. Figures 7-2 through 7-5 contain four sample PROM
(program subroutines employed in routines designed to acquaint the user with their structure and
e application.

Figure 7-2 is a sample program for reading a 2708 EPROM into a FORTRAN array in main
memory.

Figure 7-3 is a sample program for writing all zeros to a 2708 EPROM and then reading the EPROM
to verify the write. '

% ' Figure 7-4 is a sample program for writing a bipolar S287 PROM to all ones and for reading the
PROM after the write to verify the write.

Figure 7-5 is a sample program to read an object module, relocate it and program it into 4 bipolar
S287 PROMs.

LI
o~ oOREADR ANY FROM ATTACHED TO THE FROM FPROGEAMMER
C
DIMENSTON MIMAGE (1824
(I
COFOLLOMING ARE STHTIC PARAMETERS USER TO READ A FROM
':: N . "

TMOCHT =164
.. . IFRMMD=3
£ ISTEIT=3

\ ICRU=166
C
C-CLEAR MEMORY WHERE FROM IS TO MRITE FOR EASY CHECE MG
C ,
DO 10 I=1, 1624
| MIMAGES I)=@
18 CONTINUE
E: .
(. C READ ENTIRE FROM INTO MIMAGE BITS S-15
. c
-~ » 1EFROM=R
I=1

CHLL RDFROMCIERR, TWMOCNT, IFRMWCG, TSTEIT, IEFROM, TCRLL
#MIMAGECT 2>

coo
C DUMP MIMAGE TO YERIFY THAT READ WORKED, USE HEX OUTFUT
. o |
f IFCIERR. HE, 92GD TO =6
WRITE (6. 28O MIMAGE
20 FORMAT (C2C2K, 293

v ~ STOF

s MRITECE, 4832 IERR, TWDCNT
i FORMAT (2, “READ FROM ERROR = 7, IZ, 7 MORD CHT = 7, 143
STaF
o END
- ‘ Figure 7-2. Example: Read a 2708 EPROM

7-27 Digital Systems Division

946260-9701

a2

-

—
.

-

QOO0

oo oam

N
e EuEw]

xR el R

T

WOOO T

3

C TEST PROGRAM FRGEOM BY MRITIHG ALL 475 OF 875

CIMENSION MIMAGEC189z4)

SET MIMAGE TO DESIRED BIT STREAM DEPEMDIMNG OM TEST

LD 5 I=1.48z24
MIMAGECI >=233
- COMTINUE

DEFINE FROM CHARHCTERISTICS

IPEITS=5
IFWD=3
LOMHI=R
ICUTY =160
IPIILEE=2
IRETR/=

THDCHT =1824
I=1
ISTEIT=3
ICRLU=1e0

C DEFIME ALL REMAIMING PARAMETERS FOR CALL OF FREGROM

FROGREAM FROM. 0O LOOP USED TO ACCLUMULATE 188 MILLASECONGE

OF PULSE MEEC TO MAKE EFROM WRITE WOREK

DD 40 K=1.192
©1EFROM=S

CALL PRGROMCIERE, TMOCHT, IFEITS: IFWNE, MIMAGECT 2.
ISTEIT, IEBFFOM. LOMHT. 10UTY. IRETEY. ICRU, TFULSED

CIFCIERR. NE. ©XGO TO 28

CONT TMUE :

GO T 3@ :
WRITECE, 259 IERR, THDCHT

o 14>
STnF'

REARD FFUH TO VERIFY MWEITE

IEFROM=0
I=1

*MIMAGEL T YD
 IFCIERR. NE. @30 TO S@
WRITE(LS, 493MIMAGE
FORMAT (82K, 24>
STOP
WRITECE, 687 IERR. THOCNT

FORMAT 2K, “READ FROM ERROR = 7, IZ. 7 WORD

Figure 7-3. Example: Write Zeros to a 2708 EPROM

CALL ROFROMCIERR. IMDCHT, IPWD, ISTRIT, IBFROM,

FORMATC Y WRITE FROM ERREOR = 7, 12,7 MWORD CHT = 7.

ICELL

CHT = 7. 142

7-28

Digital Systems Division

A,

s

e’

%@ 9462609701

C
Y [
C

C

. U
_. c
C

C

C

’ C

' C
15

[}

N

D, C
€ 2o

-~

29

- 4Q
54

TEST FROGRAM FRGROM BY MRITIMG ALL 175,0R Q75

CDIMENSION MIMAGEC2SE)

SET MIMAGE TQ DESIRED BIT STREAM DEFENDIMNG OM TEST

DO S I=1, 256
MIMAGECI >=1%5
COMNTINUE

DEFIMNE FROM CHARACTERISTICS

IPRBITS=1
IFD=¢4
LOMHI=A
IDUTY=25
IPULSE=2
IRETRY=08

DEFIME ALL REMAIMING FARAMETERS FOR CALL OF FRGROM

IMDCHT =256

I=1

ISTRIT=12

ICRU=1e&

IEFROM=8

CALL FRGROMCIERR, TWMOCNT. IPBITS. IFMD. MIMAGECD Y,

*#IZTEIT, IBFROM. LOWHI, IDUTY. IRETRY., ICRLU, IPLILSED

IFCIERR. EGL @250 TD Z2a
MRITEC(E, 12 IERF., THMDCHT
FORMARTCZ MRITE FREOM ERREOR = 7, 13,7 WORD CMT = 7, I4)

STOF .

FEARD FEOM AS CHECK 0OF MRITE

IBFROM=8
I=1
CALL KDFREOMCIERR, TWMDCHT, IPHD, ISTEIT. IBFREOM. ICRU.

#MIMAGECI > >

IFCIERR. NE. 85G0 TD 44
MRITECS, ZA2MIMAGE
FORMATCSC2K, 242
STOP .
MRITECE, SQ2IERR, THMOCHT
FORMAT (2X. “READ FROM ERROR = 7, IZ. 7 WORD CHT = 7, 142
STOF
END

Figure 74, Example: Write a Bipolar S287 PROM to Ones

7-29 Digital Systems Division

o
(@ 946260-9701

C USE IMGELD TO CREATE REBSOLUTE OBJECT CODE OF RELOCATRELE

C OBJECT FILE ANWND THEM FPROGREAM 4 5227 PROMS MITH THE ("\
C RESQLUTE COBJECT CREATEDR BY IMGELD. ‘,}
C .
DIMEMSION MIMASGSEC2SS2, INRECD(4a)
DO 1 I=1,325¢
MIMAGECI >=415 .
1 CONTIMLUE
IBIAS=254
J=1
JLAST=-1 .
REWIMND 5
5] READCS, 16> INRECD
14 FORMAT C4aRZ >
c
C CONYERT TO AEBSOLUTE CBJECT THE RECORD JUST READ
C .
CALL IMGELDCIBIAS. 256, INRECD, MIMAGECI>, J, JLAST. 1IERRD {)
c
C USE vHLUE OF JLAST TO DETECT EMD COF FILE
~ ¢
) IFCIERR. ME. 8> GO TO 7@
IFCILAST. EQ. —1> GO TO 5
IFEITS=1
IFWD=4 o
LOWHI =8 e
IDUTY=25 ‘
IFULSE=2 (;“ :
IRETRY=2 J}‘
IWDCHT =256
ISTEBIT=0
ICRU=1£6
IBFROM=8
J=1
Do 49 I=41.4
DISPLAYC(Z, 26, LINE=5, POSITION=1) ‘ .
2a - FORMAT ¢ “LOAD ELANK FROM, ENTER DIGIT MWHEN DONE‘)» £3 :
o ACCEPTC(Z, 28, LIMNE=&, FOSITION=16, ECHO>ISHW 5
38 - FORMATCIL) :
(. CALL PRGROMCIERR. IWMDCNT, IFEITS. IFKWD, MIMAGECJ), i
*® , ISTEIT, IBFROM. LOWHI, IDUTY. IRETRY. ICRU., IFULSE> E
IFCIERR. HE. 8> 150 TCQ S& : 1
ISTBIT=ISTEBIT+4 , §
IEFPROM=8 _ 4
44 ~ COMTINUE ' : .
. STOF e :
59 i WRITECE, 662 1ERR, TWDCHT ;
(5] , FORMATC” MWRITE ERROR = 7, 12, 7 WORD CHT = 7, I3 “
STOP - | .
g - HWRITECS, 880 1ERR, IWOCHT
=15 FORMATY 7 IMGELD ERROR = 7, I2)
STOF
EMD ‘
C o)
Figure 7-5. Example: Read and Relocate an Object Module C.J"'

7-30 Digital Systems Division

L ARG L h e 1

PR R

946260-9701

(‘.‘\ 7.6 SMT/6MT SERIAL INTERFACE MODULE SUBROUTINES
|

CAUTION

The following subroutines can be used only if the Device Service
Routine (DSR) for the SMT/6MT module has been included in the
system during system generation.

The 990 computer family provides interface capability with up to 256 input/output lines from the
SMT/6MT modules through the serial interface module. This interface module monitors and
controls up to 256 input/output lines of digital information either one line at a time or up to 16
lines at a time. The interface module operates in two modes: sequential or random.

In the sequential mode the user transfers data in 16-bit blocks. As many as 16 of these 16-bit blocks
may be transferred with a single instruction (up to 256 bits). In the random mode the user transfers
data a single bit at a time. As many as 16 single bit transfers may be transferred with a single
instruction (up to 16 bits).

N

The SMT/6MT serial interface module can be controlled from FORTRAN programs by using calls
to seven different subroutines. Table 7-4 lists the subroutines; the following paragraphs define the
requirements for using these subroutines in a FORTRAN program,

NOTE

In all of these subroutines, the CRU input and output data is bit

reversed due to the nature of the CRU data transfer operation. Refer

to the Assembly Language Programmer’s Guide for an explanation of
(%} this concept.

Table 7-4. SMT/6MT ISA Subroutines

Subroutine Purpose
OPENMT Open the device

() CLOSMT Close the device
RDSTS Read status
RDMTR Read random
RDMTS Read sequential
WRMTR Write random
WRMTS Write sequential

O
7-31 Digital Systems Division

i
Al

946260-9701

7.6.1 OPENMT. The OPENMT subroutine call opens the module for data transfer. This operation
is required because the module is a file-oriented device. The subroutine is called with the following

, /D
sequence: \

CALL OPENMT (luno, flag, error)

The required parameters for this call are defined as follows: -
¢ luno — The FORTRAN unit number assigned to the SMT/6MT module
e flag — The Integer *2 program variable that keeps track of the open or closed status of .
the device. After an OPENMT call, the subroutine places a 1 in this variable to indicate
that the device has been opened. After a CLOSMT call, the subroutine places a O in this
variable to indicate that the device has been closed.
°

error — The Integer *2 program variable that contains a status code upon completion of
any operation. The subroutine places the status code in this location. If no error occurs, a
zero is returned. O

Error Status Codes:

00
02
04
- 06

7.6.2 CLOSMT. The CLOSMT subroutine call closes the module for data transfer. This operdtion
is required because the module is a file-oriented device. The subroutine is called with the following

— Normal completion

— Illegal operation

— Record loss due to power failure

— Terminated abnormally due to some external event.

=N
A

sequence:

CALL CLOSMT (luno, flag, error)

The required parameters for this call are defined as follows:

© luno — The FORTRAN unit number assigned to the SMT/6MT module
© flag — The Integer *2 program variable that keeps track of the open or closed status of)
the device. After an OPENMT call the subroutine places a 1 in the variable to indicate
that the device has been opened. After a CLOSMT call, the subroutine places a 0 in this
variable to indicate that the device has been closed.
® error — The Integer *2 program variable that contains a status code upon completion of
any operation. The subroutine places the status code in this location.
Error Status Codes: ' .
00 - Normal completion
02 — Illegal operation
04 - Record loss due to power failure .
06 — Terminated abnormally due to some external event.

0

L] e T

7-32 Digital Systems Division

R T

-

946260-9701

7 6.3 RDSTS. The RDSTS subroutine reads the present state of all 256 input lines and stores them
in a 17 element program buffer. The last element in that buffer provides module status information
such as output module power on and interrupt mask status. In operation, the information from the
SMT/6MT input modules, is read into an input RAM on the interface module. The subroutine reads
the information from this RAM into the program buffer. The calling sequence for this subroutine is:

CALL RDSTS (luno, flag, buffer address, error)
The required paramete‘rs for this call are defined as follows:

® luno — The FORTRAN unit number assigned to the SMT/6MT module

e flag — The Integer *2 program variable that keeps track of the open or closed status of
the device. After an OPENMT call, the subroutine places a 1 in this variable to indicate
that the device has been opened. After a CLOSMT call, the subroutine places a 0 in this
variable to indicate that the device has been closed.

e buffer address — The location of the 17 element program buffer for storage of status in-
formation from the modules. This buffer must be declared Integer *2 in the FORTRAN

program.

e error — The Integer *2 program variable that contains a status code upon completion of
any operation. The subroutine places the status code in this location.

Error Status Codes

00 - Normal completion

02 — Illegal operation

04 — Record loss due to power failure