DX10 OPERATING SYSTEM @

Application
Programming
Guide

Volume lll

TEXAS INSTRUMENTS

LIST OF EFFECTIVE PAGES

“

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES

Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer
margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.

DX10 Operating System Application Programming Guide, Volume Il| (946250-9703)

Originallssue i, August 1977
Revision. March 1978
Revision. October 1978
Revision. ... o i December 1979
Revision. April 1981
Revision. September 1982
Revision. September 1983
Change 1 i January 1985

Total number of pages in this publication is 436 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Cover 1 2-1-2-7 .o 0 3-16-318............ 1
Effective Pages 1 28, .. 1 319-3-28............ 0
Eff. Pages Cont. 1 29-214 0 41-46.............. 0
Hi-iv........ 1 2-15-2-16 1 47 1
VXV oo 0 217-220............ 0 4-8-412............. 0
XVioooioo oo, 1 31-313............. 0 51-514............. 0
XVil-XX ..o o 0 314, ... 1 6-1-6-32............. 0
11-1-2........... .. 0 315, 0 6-33-6-34............ 1

The computers, as well as the programs that TI has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including

Tl computers—cannot replace sound judgment nor make the manager's business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

© 1977, 1978, 1979, 1981, 1982, 1983, 1985, Texas Instruments Incorporated. All Rights Reserved.
Printed in U.S.A.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES AND DISCARD SUPERSEDED PAGES
Note: The changes in the text are indicated by a change number at the bottom of the page and a vertical bar in the outer

margin of the changed page. A change number at the bottom of the page but no change bar indicates either a deletion or a
page layout change.)

DX10 Operating System Application Programming Guide, Volume 11 (946250-9703)

Continued:
PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.

6-35-650............ 0 10-50......... . 1 S 1
6-51........ 1 11-1-11-10........... 0 B-13-B-35 0
6-52-666............ 0 11-11-1116 1 B36 1
6-67/668............. 1 11-16A-1116B 1 CH1C2 0
71-78.............. 0 11-17-1118 1 D-1-D-10 0
81-83.............. 0 11-18A-11-18B 1 E1-E6 0
84.. 1 M1-19. ... o 0 F1-F2 0
85-829............. 0 11-20-11-21 1 Index-1-Index-10 0
830................. 1 1122, . e 0 User's Response...... 1
831-836............ 0 11-22A-11-22B 1 BusinessReply....... 1
91-930............. 0 11-23-11-36 0 Inside Cover 1
931, 1 12-1-12-4 0 Cover 1
9-32-9-40............ 0 125, . i 1

10-1-10-27 0 126-12-10........... 0

10-28-10-29.......... 1 A1-A14 0

10-30-10-49.......... 0 B-1-B-11 0

10269568052
aping

S,i@sM) Jojeiauary
weiBoid 10800 01 XA

10/6°859.22
apIingy .
s Jasn Areuol3oig eleq

10/6-9G9¢0¢2
lenuepy
30Ua19}aY J011p3
afed sjuswinisuy
Sexal 3dIL0LXa

L0.6-25C9v6
8pIng s asn abiopy/0S
X@ J9Indwon 066 18POW

1L0.6-9970522
aping
$,498M 066-419ND 01 XA

1046°16€7£22
[fenuey aosuslajoy

WHOSIL

sjenuep sjooy

10.6-92v0G2e

apino

$,J8SM J0lRIISIUILIPY
aseg ejeqg 01Xad

10£6-G2¥0522

apiny s sawwesbold
Wa)sAg yuswabeuey
aseg ejeq 01Xa

L0,6°6220v2T
Y00E WaisAg ssaulsng
‘aping s JojesadQ

L026-v£50.22
apinD
$,J98() J9peo WOY

+20.6-81EEEST
(otisawoq)

00€ WalSAG ssaulsng
‘aping s JojessdQ

1026-81££€5C
(feuoneuwialuy)

00€ WalsAg ssauisng
‘apiny s.401808d0

Auanonpold
10261898922
fenuep @ousIdjey
8/-NVHIHO4 L0L6-68920€2
10268600622 9pINY $,498 ¥ 35839y
feLoIn | 10858001 10.6-9698922 JoleInw3 08/2/08.€ 01XA

uoleinByuo) |eosed |1

1026-6150222
lenuep
90UdIa}8Y [e0SEd L

10.6-82¢504¢22
aping s Jswwesbold

([80sBd {1 0LXA

1026-69280€2
lenuep

8ouaiajey OIsva IL

102672566

apIng s swiweiboid
(11 ©dY) Jojeseusn
weiboid voday

|enuepy Suoisualxg
VSI82-NYHLHOS

10£6-629892C
apiny s ewweibold

8/-NvH.1HO4 01LXd

1046-81604¢¢C
{enue 8ousisiay 10909

1046-1250.22
apiny s Jawweibold
10800 0tXa

10/6-606022C
lenuep

aoudleyey abenbuer
Alquisssy 00066/066

1046-5502.2¢2

apIng s 101eiad0
(Si4) weishsqng
[eulula] sjoway 01 Xa

1026-v502.22

fenuey

82ud.a)ey sswwelboid
pue uoijelousy

wasAs (S1y) weyshsang
[eUIWILS] BlOWaY 0LXA

1046-7560522

apiny

s,Jas (SDI) a1emyos
SUONEDIUNLIWIOD
BAIORIBIU] 0£2€ 0L XA

sjenuepy alemjjos sjenuep sjenuepy
Snoaue[|93sIy abenbue suonedIUNWWod
9026°052976
(1A awnop) v0£6:0529v6 20.6-0529v6
L0L6L H96V6 [enuey A19A008Y (A12WNIOA) (i swnjop)

lenuepy
80UB18J3Y J0PT MUl

1046°€516€6

wswnooq ubisaq
walsAg /g ases|oy
waisAg Bunesado gL xa

pue Buinodey Jou3
waysAg Buneledo 01 Xa

S0.6-062976
{AawnjoA) apinD
Buiwwelboid swaisis
walsAg BuitesadQ 01 Xa

[enuep J01Ip3 IX8 1
wesAg Buiessdo 01 Xa

€046-052976

(1] 8WN[OA) 8pPING
Bulwweiboid uoneoyddy
waisAg Buneiado 0LXa

sjenuepy weysAg bunesado gLxad

apiny suoielado
waelsAg BuneladQ 01Xa

10.6-0529¥6

(1awnjop)

S81t|10e 4 pue §)daduo)
walsAg Bunesedo 01 XA

sjenuejy axemijo§ 01 Xd

Change 1

946250-9703

L046-86EvECT
fenuep uonduassq
e12USY) OOZSLW/O06AM

L046-¢925v6

uonesadQ

pue uope|EIsu|
18pesy pied y08 1I3poW
121ndWoY 066 1I9POW

10/6-2¥920€2

uonesadQ pue
uole|jeisu| wajsAg ade
onaubep 009L LW I1SPOW

10/6-6229¥6

uojeisdQ pue
uoile||eisu] WalsAg ade]
oijeube v6.6 19POIN
J81ndwo) 066 1I9POW

10.6-869052¢
uoitesadQ

SiSseY) [euoireulaluy
ym weaisAg ¥siq

10£6-9881922
uotjesadQ pue
uoljejeisu|
os1g Addoj4
3INiTIL 066

1026-2690522

[enuey uonesadp
pue uoize|[eISU|
SISSBYD [eUONBUIAIL)
unm waisAg osig
Addol3 008Q4 19POW
121ndWoY 066 I9POW

1046-€525¥6

uonesadQ pue
uollel[eisu] waisAg osiqg
Addol4 0084 I2POIN
181ndWo9 066 1I8PON

1026-0v190€2
uoyesadQ pue
uole|eIsu| waisAg
abelols ssep
V008AM/0080M

10/6-61€£€52
(saueg

walsAg ssauisng)
nunxsia

1026-692££52

(sauag

WwasAg ssauisng)
Hunsiga
YO0SQM/00SaM I2PON
apiny s Jojessdp

106°1£920€E2

|lenuep uoneiadQ

pue uoije|lelsu| walsig
3$1Q 00€SA I18POW

1026-G19676
uoijeladQ pue
uolnej|eisuj Wolsig
002Sa Ispoi
191ndwa) 066 PPOW

1046-62920€2

[enuepy uoltesadgp

puE UOIje|BlSU|

walsAS %s1Q 08SQa I19POn
18yndwoD 066 I9POow

10£6-88920¢2

(ssueg walsAg
ssauisng) uoyesado
pue uojE|(eISU| WBISAg

10£6-0925v6
uoneladQ pue
uoile|elSuj WalsAS
981 peaH Buirop
leindwoD 066 IBPOW

1026-L£29V6
uoljeladQ pue 1026-28E¥€22
uone|elSu| SWalsAg uojjesado

9813 0580/52Sa 1PPo
191ndwoD 066 1I9POW

1046-1929¥6

uonesadQ pue
uolje|feisu| waisks osig
abpuned 01Sq 1epoi
J91ndwog 066 1I9POW

L0L6-9YELLET

(sauag walsAg
ssauisng) uonjeladQ
pue uonejeISu| WalsAg
%s1a 00 1 QO Jeaduloay

1026-1802422
lenuey uoneiado

pue uolle|eisu|
131uld Aurenp
4987 G601 19po

106-G698922

ienuey uonesado

pue uoie|eIsy]
walsAg Jajund Allend
181187 GO 19pOW
13Indwog 066 19PON

10/6-€¥920€2

(sal18g welsig
ssauisng) uolesadQ pue
uone|[elsuj siaiuld aul
009d7 pue g0Ed siepo

1046-79€0522

|enuep uoljesadg pue
uolie||eisu| SI9)uLd BuIn
009d7 Pue 00EdT 19POW
181ndwo) 066 1epoW

10/6-9529v6

uoiteladQ pue
uoilef{eisu) sid1ulid aur
092¢ pue 0£22 I2PON
191ndwo? 066 19POW

L000-06861.22
lenuep s Jasn
13julid 0G8 19pow

1046-022€£52

S9U9S WIISAg

ssauisng Jajulid OY 0v8
13po ‘eping s JojeiadO

10/6-56920€C

|enuep uoijelado
pue uolle|e)ISU|
18julld OY 0V8 1ePOW
191ndwo) 066 1I9POW

L0.6-¥SP052C
uoyeladp pue
uolje|[eIsu| [BUIULID |
Bleg HSM 028 19ponw
12IndWwo) 066 1I9POW

1016-6228022
fenuep s aoeledo

leulwia] HSH 028 1I9POW

sjenuew
1e1ungd

10.6-95¢82¢2¢

s8lIag WalsAg
ssauisng Jajuild 018
19poW ‘spIng s JojeiadQ

L0/6-09v6€6
uoneradQ

pue uoHB|[RISU|
J91ulid 0i8 19PO
191ndwo) P66 18POW

104£6-GE6592C
[enueyy s Joessdo
leuilIa] Oy 182 12POW

102619256

uonesadQ pue
uole|(eISU| S191ULd
8uI g85 Pue 9ot SI9pow
19IndWwo P66 I9POW

91qIxald 0001 Q4 12POW Y008AM/008AM {3PCW abeiolg ssey pue uone|elsu| walsAg
191ndwoD 066 I9PO apIng s jolesadQ V00SAM/00SaM |, S!00v1aD 1I9poi
. sjenuepy
89149 abeiols
10£6-9£65922
1046-0£28€52 {enuep s Joresado 10£6-0£0v86

1026-LGvEVE

uolneiadQ pue
uole|elsu| jeurula]
Aeidsiq LYO €16 19POW
121ndwoD 066 |I8POW

L0L6-€2YSV6
uoljesadQ pue
uolie||eisu| feulua]
Aeidsiq OBPIA LLE 19PON

Jeindwo) 066 19poW Aedsiq 0apIA LEE [PPOW

1026-89€05¢2
lenuepy uonesadg
pue uolejeISU)
(LA3) leulwI® | 03PIA
21U01}0813 OF6 19POW
‘_mﬂjn_EoO 066 19PON

1000-8226¢22
uoieisdQ pue
uoije|lelsuj [euiua]

sjenuepw
jeutunaj Aeydsig

$8LIBS WalsAg
S$SaUISng J3lulid OH 0v8
[9POW ‘aping s JoresadQ

10£6-66920€2

[enuey uolesado
pue uolejjelSu}
isjuld OH 0v8 1epow
181ndwo? 066 19POW

L0L6-¥SY0622
uoleiadQ pue
uclie|jeIsuj jeurwia
BIBQ YSH 028 I13pow
Jeindwo) 066 [9POW

10£6-G22802¢ [BUIWI3 | YSY €8/ 19POW
lenuepy s,JojessdQ
feuiwss) HSH 028 1I9po 1026-G99€022
fenuepy
1046-8£65922 SWaISAS s[euIWIB]
fenuely AIOWSK §9//C9L SISpOW
s JojesadQ jeutunia]
suonesunwwod L026-799€02C
/82 19POIN suoijonuysu| Bunesadg
S9//€94 Siepon
1026-££659¢2
lenuep 10/6-v20¥86
$,10)813dQ [eulua | lenuepy

SUOIIBDILUNWIWOY

§.J0jesadQ [euiwIa]

582 18POW 81qeUOd GpL [9POIN
sjenuepy
Jeutwis | Ado)-piey

fenuey s Joyeiadg
leulwiaj HSY €vZ 1I9POW

1026-29VEVE
uoilesadQ pue
UOIIE}[R)ISU| [eUIULIB)
BIEQ HSH €V 19POW
181ndwo) 066 19PoW

10£6-652576
uoneiadQ

pue uole|eisu}
feuswia eleq
HSH/HSY £€4 13pow
J9Indwo) 066 19Po

L0L6-LLVSYE
|enuepy) aoualajey
aiempleH WaisAg

J81ndwog 01/066 12POW

feUILID) Sl0WRY
191ndWog 066 [PPOW

feulus | sjowsy
191ndwo 066 1PPOW

1026-P€£50428
aping
$,198 JapeoT WOY

1026-6202.22
uotiesadQ pue
uolle|{eIsu| uoisuedx3y
3INITIL/NYD 066

10£6-8898922
2066502422 8ping
{uonp3 onsawoq) s.49sn 491dnoY INITIL
lenuepy JaindwoD 066 IBPOW

uolle|eIsu| ajempieH
(S14) waisAsang 10/6-8525v6

uolesadQ pue
uonejeisuj 2|Inpoy
Bulwweiboid WOHd

1026€502422 191INdWwoD 066 19POW
{uo1ip3 ueadoinz)

[enuepy 1026-60Y5V6

uolle|jelsu| siempieH uoilesadQ pue

(S14) waisdsang uolje|[eIsu| WalsAs

SUOIEOIUNWWOY
193ndwo) 066 19POW

946250-9703

Change 1

sjenuey asempley
Snosue|aasIy

sjenuepy arempieH 0IXd

Preface

This manual provides general information about how DX10 handles programs, the DX10 input/
output (I/0) system, programming considerations for the DX10 operating system, complete
descriptions of available supervisor calls (SVCs), and information on using the Debugger for
assembly language programs. This manual provides the framework that altows you to understand
how DX10 functions support applications programs. With this understanding, you can design and
implement applications programs in any language supported by DX10.

This is one of a set of six volumes that describe the operational characteristics and features of
DX10. In addition to the six volumes, several support manuals are available for DX10 functions.
Also, each language supported by DX10 has its own associated manuals.

Become acquainted with these volumes and related DX10 manuals as necessary to prepare and
execute application programs on DX10. The following paragraphs contain a brief comment
regarding the contents of the other volumes.in the set. (The full titles and part numbers of all
manuals associated with the DX10 operating system are provided in the frontispiece.)

Concepts and Facilities (Volume) includes features, concepts, and general background
information describing the DX10 operating system. It also contains a master subject index to help
you find the information you need.

The Operations Guide (Volume If) contains information on how to perform an initial program load
(IPL start procedure) and how to log on and operate a terminal. Additionally, this manual contains
an introduction to your interface with DX10, the System Command Interpreter (SCI), and includes a
complete description of the SCI commands required to operate DX10. (The Text Editor and Link
Editor commands are not included in Volume Il, but can be found in their respective manuals.
Debugger commands are in Volume lll.)

The Text Editor Manual (Volume V) includes operating instructions, examples, and exercises for
the interactive Text Editor provided on DX10. The SCI commands and error messages related to
the Text Editor are included.

The Systems Programming Guide (Volume V) includes information required by the system
programmer to maintain and extend a computer system running under DX10. The disk build
procedure required for building your initial system disk, and the system generation procedure and
troubleshooting guide required for system start-up are located in this manual. The manual also
includes support of nonstandard devices and the privileged SVCs available on DX10.

946250-9703) v

vi

The Error Reporting and Recovery Manual (Volume VI) describes each error message you can
receive while operating DX10, and gives suggested. procedures for recovery. It documents task
errors, command errors, SVC errors, SCI errors, and /O errors including those from disk and
magnetic tape. Also included are sections on system crash analysis, and system troubleshooting.

NOTE

Additional, in-depth descriptions related to specific languages
including FORTRAN, COBOL, BASIC, RPG II, Tl Pascal, assembly
language, and Query are found in manuals dedicated to the
appropriate programming language. A Link Editor manual is
provided as a separate volume describing the link edit function in a
DX10 environment. Separate manuals describe the use of an
optional Sort/Merge package and the DBMS package.

946250-9703

Contents

Paragraph

—t
N —

2.1

2.2
2.2.1
222
2.2.21
2222
2223
2224
2225
2226
23

2.4
2.41
2411
2.4.1.2
2413
2.4.2
2.5
251
2.5.1.1
2512
2.5.1.3
252
2521
2522
2.5.3
254
255
2.5.6
2.5.6.1
25.6.2
2.5.6.3
257

946250-9703

Title Page

1 — Introduction

INtrodUCHON . ..o e 21
Program Structure. 2-1
Program Segmentation e 2-2
Program Mapping e e e e 2-3
Implementing Program Segmentation., 2-5
Task SegmentOnly e e 2-5
Task Segment and System CommonSegment 2-5
Task Segment and One or Two Procedure Segments 2-6
Task Segment, Procedure Segment, and System Common 2-7
OV Y S .t e 2-7
Task Execution i e 2-7
How DX10 Manages Task Execution.......... 2-8
Task Scheduling e e e 2-8
POy . e e 29
TaSK SNt Y . oo e e 2-10
How Priority Scheduling Affects Applications 2-10
Dynamic Memory Management 2-10
Programming Considerations i e 2-11
Reentrancy and SharingCode i e e e 2-11
Address-independent Reentrant Procedures 2-12
Address-Dependent Reentrant Procedures 2-12
Data, or “Dirty” ProCceduresttt e 2-12
Sharing Datain Memory ... e 2-13
RestrictionsonUsingSharedData 0 i, 2-13
Cautionsto Observe i e 2-14
Using the Intertask Communication (ITC)Channels 2-15
Sharing Procedure Codeto Save Memory oottt e 2-15
User Program Files o e e e e e 2-15
OV Y S .ttt e e e e 2-16
Overlay StruCtUreso e e e 2-16
Overlay Loading e e 2-16
Relocatable Overlays i e e e e 2-17
Task Attributes e 2-17
vii

Contents

Paragraph

2.5.7.1
25.7.2
2573
25.7.4
25.75
2576
25.7.7
258
2.6
261
26.2

3.1

3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.41
3.24.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.41
3.3.4.2
3.3.4.3
3.3.4.4
3.3.4.5
3.3.5
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.23
3.4.3
3.4.4
3.4.4.1
3.442
3.443
3.44.4
3.45
3.4.5.1
3.4.5.2

viii

.« Title ' Page

Privileged and Nonpnvuleged Tasks FOS 2-17
Systemand UserTasks P 217
Priority.. ..o '. PP 2-18
Disk Resident and Memory Re3|dent Tasks .ot e 2-18
Replicatable and Nonreplicatable Taskst ennnennnn.. 2-18
Arithmetic Overflow Protectionoiiiiiieiiean. 2-18
Execute Protection P 2-18
Programming Prohibitions 2-18
Task Termination....................... e e e 2-19
Normal Termination e e 2-19
Abnormal Termination e e e 2-20

3 — DX10 /O System

INtrodUCHION . . . e e e e e 3-1
Supported File TypesandUsaget i 3-1
Sequential Files e e 3-1
Relative Record Files ...t e e e e e e e e 3-2
KeylIndexed Files i e e 3-3
FileUsage Tradeoffs i e e 3-4
Sequential Files Versus Relative RecordFiles oL, 3-4
Relative Record FilesVersusKIFs i i e 3-5
File FEatUres i it i i e e e 3-6
Blank Suppression and Adjustment 3-6
Expandable Fileso e 3-7
End-of-File (EOF) e e e 3-7
File and Record Protection Features. e, 3-7
Delete and Write Protection i i 3-8
Record LOCKING ... i e 3-8
File ACcess Privileges 3-9
Immediate or Forced Write e e 3-10
Special Usage File Protection 3-11
How the System Handles File /O e e 3-11
Disk File Organization and Management, 3-11
File Management Strategy o i e 3-12
Physical Disk Structure. i e 3-13
Disk SeCtors e 3-13
Allocatable Disk Units (ADUS) i e e e 3-13
Format Information for SupportedDisks. i .. 3-13
File Structure e e e 3-14
LOogical ReCOIaS . ..t e e e 3-14
Constraints forSequential Files. i i 3-15
Constraints for Relative Record Files 3-16
Constraintson Key Indexed Files i, 3-17
Choosing Logical Record Length i 3-18
PhysicalRecords e e e e e 3-18
Choosing Physical Record Size 3-19
Default Physical Record Sizeot i i i e e 3-19

946250-9703

Paragraph

3.4.6
3.4.6.1
3.4.7
3.4.8
3.4.8.1
3.4.8.2
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.5.2.1
3.56.2.2
3.5.3

41

4.2

4.3
4.3.1
4.3.1.1
43.1.2
4.3.1.3
4.3.2
4.3.21
4322
4323
4324
4.3.3
4.3.4
4.3.5

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
525
5.2.6
5.2.7
5.3

5.3.1
5.3.2

946250-9703

Contents

Title Page

Blocking and Blocking Buffers: e 3-20
Choosing Logical Records per Physical Record. 3-20
UNbIOCKEd FileS . o oo e e e e e e e 3-22
How DX10 Allocates Disk FileSpace i, 3-22
Secondary Allocation Algorithm i 3-23
Exceptiontothe Algorithm i i 3-23
Logical Unit Numbers (LUNOs)and Devices, 3-24
110 Device Access Through LUNOS oo 3-25
Global or Station Local LUNO Strategyo oo 3-25
Task Local LUNO Strategy e e e 3-25
Access Logic forDevices e e 3-27
Record-Oriented DeviCesot e 3-27
File-Oriented DeVICESttt e e e s 3-27
Using the Printerand PrinterFiles oot 3-27

4 — Designing Applications for Data Protection

I OAUCT ON & . ettt e e e 4-1
Error Reporting ..o ot e 4-1
Transaction Logging Principles. i 4-2
When to Use TransactionLogging. 4-2
Costoflmplementation. 4-3
Computing Mean Time Between Failures it 4-3
ThelLogFileas Audit Trail. i e 4-4
Designing the Recovery Procedures 4-4
StEP 1 BaCKUD &« ot ittt e 4-5
Step 2: Activity Interval 4-6
Step 3: Archive the TransactionLog e 4-6
StEP 4: RECOVEIY . o ottt 4-6
Blocking LOG ENtries oot e 4.7
File Type forTransaction Log. e 4-9
Tape File Considerationst e 4-10

5 — Programming with Assembly Language on DX10

F ST e Yo LT o3 4 o« TS 5-1
General Programming Considerations i 5-2
Assembly Language Program Segmentation oo 5-2
Attaching ProcedurestoTasks i 5-3
Transfer VeC O .. e e 5-3
End Action ROULINES .. oottt e e e e 5-3
USING SV S .ottt e 5-4
USiNg SUDIOULINES oo e 5-4
USING OVEIIAYS . . v ottt 5-5
Programming with Assembly Language, 5-5
Writing Assembly Language Programs 5-5
Assembling Assembly Language Programso 5-6
ix

Contents

Paragraph

5.3.3
5.3.4
5.3.5
5.3.6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.3.4.4
6.3.4.5
6.3.4.6
6.3.4.7
6.3.5
6.3.5.1
6.3.5.2
6.3.6
6.3.7
6.3.7.1
6.3.7.2
6.3.7.3
6.3.7.4
6.3.7.5
6.3.7.6
6.3.7.7

Title Page
Linking Assembly Language Programs. i it 5-7
Installing Assembly Language Programs, 5-7
Executing Assembly Language Programscoiiiininennneno.. 5-8
Assembly Language Programming EXercisec.ooiiiineunnun.. 5-8

6 — SCI Programming Language

INtrOdUCH ON . o e 6-1
What an SClCommand Procedure Is. oot 6-1
What a Procedure Directory Is i e 6-2
What an SCI Command Processor|s e 6-2
What a ProcessorSubroutinels. i 6-3
Whatthe SCl Language Is. oot e e e 6-3

Implementing Command Procedures, Processors,andMenus 6-4
Creating and Changing SCl Command Proceduresovvunonn... 6-4

Usingthe Text Editor e e e e 6-4
Creating Command Procedures Interactively 6-5
UsingaBatch Stream e, 6-5
Creating a Procedure Directory i, 6-5
Naming New Command Proceduresc.iiiiiiiinnnnnnn... 6-6
Creating and Changing SCl Command ProCessorsouueeeenenn... 6-6
Creating and Changing SCiCommand Menusc.ouruiununen... 6-7
Log-On/Log-Off Command Proceduresouviiniin e e, 6-7
SCI SENEWS File ..o e 6-8

Sl LangUage . .. ot e 6-8
Command Formato 6-8
Special CharaCterso 6-9
Variable TyPes . ..o 6-11
Fleld Prompts. ..o 6-11

ACNM Field Prompt TYpe ..o it e e e i 6-13
INT Field Prompt TYpe . ..o e e e e 6-13
NAME Field Prompt TYPe ...t it i e e e e i 6-14
STRING Field Prompt Type......... e e e e e 6-14
YESNO Field Prompt Typeot e e e 6-15
Abbreviating Field Prompts i 6-15
The Dollar Signininitial Values 6-15
S M ONY IS . oot 6-16
TYPes Of SYNONYMS . ..o 6-16
Synonym Evaluation 6-17
KEYWOIAS ..ottt e 6-19
S PHIMItIVES . oo 6-19
.PROC and .EOP Primitives e e e 6-21
.BID, .QBID, .DBID,and .TBID Primitivesot 6-22
.DATA and .EOD Primitives 6-24
EVAL Primitive ..o 6-26
EXIT Primitive . 6-26
AF, .ELSE,and .ENDIF Primitives 6-27
.LOOP, .UNTIL, .WHILE, and .REPEAT Primitivesc..... 6-28

946250-9703

Paragraph

6.3.7.8
6.3.7.9
6.3.7.10
6.3.7.11
6.3.7.12
6.3.7.13
6.3.7.14
6.3.7.15
6.3.7.16
6.3.8
6.3.8.1
6.3.8.2
6.3.8.3
6.3.8.4
6.4

6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.6.13

7.1
7.2
7.2.1
7.2.2
7.2.3

946250-9703

Contents

Title Page

IMENU PHmMItIVE . . oo e e 6-30
LOPTION Primitive ..o e e e e e 6-31
OVLY Primitive . oottt 6-32
PROMPT Primitive ..ot e e e 6-33
SHOW Primitive . e s 6-34
SPLIT PHMIIVE .« o oottt e e D e 6-34
STOP PHMItIVE oottt e e e 6-36
SYN PHMIIVE oo e e e e 6-37
USE PrimMItIVE .« ot et e et e e e e 6-37
Processor Interfacing Subroutines o i 6-39
String Utility Subroutineso i 6-40
SClInterface SUBIOULINES oottt e 6-43
Arithmetic Utility Subroutines o i 6-52
Terminal Local File (TLF) Access Subroutinesot 6-53
SCI| Environment and Batch Stream Operation oot 6-55
oY 111] =3 R 6-60
Command Procedure EXamplieso 6-60
Command ProcessorExampleo e 6-62
Batch Stream Listing oot 6-64
ErrOr MESSaA0ES . v v v ottt e ettt e 6-64
UnKNOWN VolUME NaAMEttt e e 6-65
9001 — Invalid Access Name Syntax.ottt e e 6-65
9003 — Invalid Keyword Syntaxo 6-65
9005 — Invalid Command Name Syntax i 6-65
9006 — Invalid Relation Namettt e e 6-65
9007 — Invalid Type Specification....... i 6-65
900A — Spurious CharactersatEnd it 6-66
900E — Unknown Command Namettt i 6-66
900F — Unknown Keyword.t e 6-66
9011 — Required Argument NotPresent i 6-66
9019 — Invalid Keyword Value 6-66
FF02 — PROC Library Error . ..o i 6-67
FFOB — Keyword Table Overflow i 6-67

7 — Using Supervisor Calls (SVCs)

I EEOAUCTION & o v ot et e e e e e e e e e e e e 71
Supervisor Call Definition i 7-1
CodingaSupervisorCall. ... 7-2
Defining SupervisorCall BIoCKS 7-3
Returning the ErrorCodeottt 7-8
xi

Contents .

Paragraph

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.25
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12
8.2.13
8.2.14
8.2.15
8.2.16
8.2.17
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.5.3
85.4
8.6
8.6.1
8.6.2
8.6.3

9.1
9.2
9.3
9.4
9.5
9.5.1
9.5.1.1

Xii

Title Page

8 — Program Support Calls

GENeral . .. e e e e 8-1
Program Control SV s i e e e 8-3
>02 —TimeDelay SVC e e e 8-3
S04 —EndofTask SV .. . i e e e 8-3
>06 — Unconditional Wait SVC i i i 8-3
>07 — Activate Suspended Task SVC i 8-4
>00 — DONOtSUSPENd SV C .. o e e 8-7
>0E — Activate Time Delay Task SVC i i i, 8-7
>11 — Change Priority SVC e 8-8
>14 — Loadan Overlay SVC e e 8-9
>16 — End of Program SV C e 8-10
>17 — Get Parameters SVC e e 8-11
>1F — Scheduled Bid Task SVC e i i i 8-11
>2B — Execute Task SVC i e 8-13
>2E — Self-ldentification SVC e 8-15
>2F — End Action Status SVC o e e 8-15
>31 — Map Program NametoIDSVC i .. 8-16
>35 — Poll Status of Task SVC o e 8-18
>3E — ResetEnd Action SVC 8-20
Memory CoNntrol. ... e e e e 8-21
>10 — Get Common Data AddressSVC i 8-21
>12 — GetMemory SVC e 8-22
>13 — Release Memory SVC e e 8-23
>1B — Return Common Data Address SVC e 8-24
Intertask Communications. i e 8-24
>1C — Putdata SV e e e 8-24
>1D — GetdataSVC e e e 8-25
Data Conversion ServiCesot i e 8-27
>0A — Convert Binary-to-Decimal SVC 8-27
>0B — Convert Decimal-to-BinarySVC 8-28
>0C — Convert Binary-to-Hexadecimal SVC 8-29
>0D — Convert Hexadecimal-to-Binary SVC i, 8-30
System Information 8-31
>03 —Dateand Time SV . - e e e 8-31
>21 — System Log SV 8-32
>3F — Retrieve System InformationSVC 8-33

9 — Device 1/0 Supervisor Calls

Device Independent 110 i e e 9-1
Device Dependent 110 i e e 9-2
Programming Considerations i 9-3
Device /IO CallBIOCKS oot i i e B 9-4
Device Dependent/independenti/OSVCs 9-15
>00Subopcode — Open SVC e 9-16
DataTerminals e 9-16

946250-9703

Contents

Paragraph Title Page
9.51.2 PrINtEr DEVICES . v v oot e e 9-16
9.5.1.3 Video Display Terminals oo 9-16
9.5.2 >01Subopcode —CloseSVCS . ..o i 9-17
9.5.3 >02 Subopcode — Close WithEOFSVC 9-17
954 >03 Subopcode — OpenRewindSVC oo 9-17
955 >04 Subopcode — Close Unload SVC i 9-17
9.5.6 >05 Subopcode — Read Device StatusSVCo 9-17
9.5.6.1 MagNEtiC TAPE . . oo v e et e e 9-17
9.5.6.2 Video Display Terminalst 9-17
9.5.6.3 DISK DBVICES . ¢ ottt ettt e e e 9-19
9.5.6.4 Teleprinter DeVICES i 9-20
9.5.6.5 LiNE PriNterS « o ottt e e e e 9-22
9.5.7 >06 Subopcode — Forward SpaceSVC 9-24
9.5.8 >07 Subopcode — Backward Space SVC 9-24
9.5.9 >09 Subopcode — Read ASCHISVC i 9-24
9.5.9.1 MagneticTape Unit 9-24
9.5.9.2 Video Display Terminal e R 9-24
9.5.9.3 Teleprinter DeVICeSot 9-24
9594 733 ASR Cassette Unit. ..ot e 9-25
9.5.9.5 Card REAEr . .. e s 9-25
9.5.9.6 ORI DEVICES . vttt e e e e e 9-25
9.5.10 >0A Subopcode — Read DirectSVC 9-25
9.5.10.1 733 ASRCassette UNit. .ot e e 9-25
9.5.10.2 MagneticTape Unit 9-25
9.5.10.3 Card REAder . ..o e 9-25
9.5.10.4 Video Display Terminal 9-25
9.5.10.5 B0 KO R . oottt e e 9-25
9.5.10.6 Teleprinter DeviCeSot e 9-26
9.5.10.7 ONEI DBVICES . . vttt et e et e e 9-26
9.5.11 >0B Subopcode — Write ASCIISVC 9-26
9.5.11.1 MagNEtiC TAPE .o\ttt 9-26
9.5.11.2 Keyboard/Printer 9-26
9.5.11.3 LiNe PriM T o o vttt e et e et e e e 9-26
9.5.11.4 Video Display Terminalo 9-26
9.5.11.5 733 ASR Cassette Unit........... P 9-26
9.5.11.6 B0 KO R . . oot e 9-26
9.5.11.7 Teleprinter DEVICESot 9-27
9.5.11.8 OthEr DEVICES . . ottt et et et e et e e e 9-27
9.5.12 >0C Subopcode — Write DirectSVCo 9-27
9.5.12.1 733ASRCassette Unit.o e 9-27
9.5.12.2 Magnetic Tape Unit 9-27
9.5.12.3 Video Display Terminal i 9-27
9.5.12.4 B0 KO R . et e e 9-27
9.5.12.5 Teleprinter DEVICESot 9-27
9.5.12.6 LiNg PriMtEr . . vttt e e 9-27
9.5.12.7 OthEr DEVICES . o v vt ittt ettt e e ettt e e s 9-27
9.5.13 >0D Subopcode — Write EOFSVC i 9-28
9.5.13.1 733 ASR Cassette Unit. . ..ottt e i s 9-28
9.5.13.2 Keyboard/Printer e 9-28

946250-9703 xiii

Contents

Paragraph

9.5.13.3
9.5.13.4
9.5.13.5
9.5.13.6
9.56.13.7
9.5.13.8
9.5.14
9.5.15
9.5.16
9.5.17
9.5.18
9.6
9.6.1
9.6.2
9.6.3
96.4
9.6.5
9.6.6
9.6.7
9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.8

9.9

10.1

10.2
10.2.1
10.2.2
10.2.2.1
10.2.2.2
10.2.2.3
10.2.2.4
10.2.2.5
10.2.2.6
10.2.2.7
10.2.2.8
10.2.2.9
10.2.2.10
10.2.2.11
10.2.2.12
10.2.2.13
10.2.2.14

xiv

Title Page

Line Printer e 9-28
Video Display Terminal i i 9-28
Card Readero e e e 9-28
Magnetic Tape Unit e e e e e 9-28

B20 KSR . . e e e e 9-28
Teleprinter DeviCes e e e e 9-28
>0ESubopcode — Rewind SVC e 9-28
>0F Subopcode — Unload SVC i e 9-28
>91 Subopcode — Assign LUNOSVC e, 9-28
>93 Subopcode — Release LUNOSVC e 9-29
>99 Subopcode — Verify Device Name SVC 9-29
KEY TP . . e e e e e e e e 9-29
DataKeysccoveuunnn. e 9-29
Event KeYS .. e 9-29
Task Edit Keys e 9-31
System Edit Keys. 9-32
Repeat Character COmMpPressSion i e et e e 9-33
CharacterValidation i i e e e e e 9-34
Hard Break Key SeqUENCEe i e e i e i 9-36
Otherl/ORelated Calls e e e e e 9-36
>01T —Waitforl/O SV 9-36
>30 — GetEventKey by IDSVC 9-37
>36 — Wait on Multiple Initiate /OSVC 9-37
>39 — GetEvent Key by LUNOSVC i, 9-38
>0F — Abort /O on Specified LUNOSVC it 9-38
Pass Thru Modet e e e 9-38
Edit FlagWords o e e 9-39

Introduction e 10-1
Fille O SV S .ot e e e 10-1
Sequential and Relative Record Filel/OCallBlock 10-1
Sequential and Relative Record File Operations 10-5
>00Subopcode —OpenSVC i 10-5
>01Subopcode — Close SVC i 10-5
>02Subopcode — Close EOF SVC e 10-7
>03 Subopcode — Open RewindSVC i, 10-7
>04 Subopcode — Close Unload SVC i 10-7
>05 Subopcode — Read File CharacteristicsSVC 10-7
>06 Subopcode — Forward Space SVC it 10-9
>07 Subopcode — Backward Space SVC......... 10-9
>09Subopcode — Read ASCIISVC i -.10-9
>0A Subopcode — Read Direct SVC 10-9
>0B Subopcode — Write ASCIHSVC. i 10-9
>0C Subopcode — Write Direct SVC 10-9
>0D Subopcode —Write EOF SVC i e 10-10
>0E Subopcode — Rewind SVC i 10-10
946250-9703

Paragraph

10.2.2.15
10.2.2.16
10.2.2.17
10.2.2.18
10.2.2.19
10.2.3
10.2.3.1
10.2.3.2
10.2.3.3
10.2.3.4
10.2.4
10.2.5
10.2.5.1
10.2.5.2
10.2.5.3
10.2.5.4
10.2.5.5
10.2.5.6
10.2.5.7
10.2.5.8
10.2.5.9
10.2.5.10
10.2.5.11
10.2.5.12
10.2.5.13
10.2.5.14
10.2.5.15
10.2.5.16
10.2.5.17
10.2.5.18
10.2.5.19
10.2.5.20
10.2.5.21
10.2.5.22
10.2.5.23
10.2.5.24
10.2.5.25
10.3
10.3.1
10.3.1.1
10.3.1.2
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9

946250-9703

>0F Subopcode — Unload SVC it
>10 Subopcode — Rewrite SVC i
>11 Subopcode — Modify Access Privileges SVC
>12 Subopcode — Open ExtendSVC
>4A Subopcode — UnlockSVCo
KeyIndexed Files it
KeyIndexed File Keysc i
Key Indexed File Recordsooiviininnn.
Key Indexed File Key and Record Example
Key Indexed File Algorithm......... ot
Key Indexed File Call Block and Currency Blocks
Key Indexed File SVC Subopcodesooun
>00 Subopcode — OpenSVC i
>01Subopcode — CloseSVCot
>03 Subopcode — Open RewindSVC
>05 Subopcode — Read File Characteristics SVC
>06 Subopcode — ForwardSpaceSVC
>07 Subopcode — Backward SpaceSVC....................
>09 Subopcode — Read ASCIISVC
>0A Subopcode — Read DirectSVC
>0E Subopcode — RewindSVC ooty
>40 Subopcode — Open RandomSVC.....................
>41Subopcode — Read GreaterSVC.......................
>42 Subopcode — Read by Key/Read CurrentSVC
>44 Subopcode — Read GreaterorEqual
>45 Subopcode — Read NextSVC i
>46 Subopcode — InsertSVCo i
>47 Subopcode — Rewrite SVC o
>48 Subopcode — Read Previous SVC oL.

> 49 Subopcode — Delete by Key/Delete Current SVC

>4A Subopcode — Unlock CurrentSVC.........t
>50 Subopcode — Set Currency Equal SVC
>51 Subopcode — Set Currency GreaterorEqual
>52 Subopcode — Set Currency Greater
UsingPartial Keys i
Errorand InformativeCodes i
Estimating Key Indexed FileSize............
File Utility SVCs
>90 Subopcode — Create FileSVC ovnt.

Create Sequential FileExample oot

Create Key Indexed File Example. ...t
>91 Subopcode — Assign LUNOSVCty
>92 Subopcode — Delete FileSVC oon
>93 Subopcode — Release LUNOSVC
>95 Subopcode — Rename FileSVCot
>96 Subopcode — Unprotect FileSVC
>97 Subopcode — Write Protect FileSVC....................
>98 Subopcode — Delete Protect FileSVC...................
>99 Subopcode — Verify Pathname SVC

..

Contents

XV

Contents

Paragraph

10.3.10
10.3.11
10.3.12
10.4

11.1
11.2
11.2.1
11.2.2
11.2.3
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.1.4
11.3.1.5
11.3.1.6
11.3.1.7
11.3.1.8
11.3.1.9
11.3.1.10
11.3.1.11
11.3.1.12
11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.3.2.4
11.3.25
11.3.2.6
11.3.2.7
11.3.2.8
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.3.4
11.3.4
11.3.4.1
11.3.4.2
11.3.4.3
11.3.4.4
11.3.45
11.3.5
11.3.5.1

Xvi

Title Page

>0A Subopcode — Add AliasSVC 10-49
>9B Subopcode — Delete AliasSVC i 10-49
>9C Subopcode — Define Write ModeSVC ity 10-49
Temporary Files.o e 10-50

11 — Debugging a Program

General INformation o e e 111
Modes of DebugQiNg . .. oo it e 11-1
Unconditional SUSPeNd i e 11-2
SYMDOIS .« oot e 11-3
g 0 =T T= o 1= PP 114
Commands for AL Tasks ...t e i s 11-6
DataDisplay Commands. vttt e e 11-8
List Breakpoints — LB e 11-8
List LogicalRecord — LLR i 11-9
ListMemory — LM e 119
ListSystemMemory — LSM. 11-10
Show Absolute Disk — SAD i e 11-11
Show Allocatable DiskUnit —SADU i 1112
Show Internal Registers — SIR i 11-13
SHOW Panel — SP . ottt e e e 11-14
Show Programimage — SPl i 11-14
Show RelativetoFile — SRF i e i 11-15
ShoW Value — SV .. i i e e i e e e 11-16A
Show Workspace Registers —SWR oo 11-16A
Data ModificationCommandsottt e 11-16A
Modify Absolute Disk — MAD i 11-16B
Modify Allocatable Disk Unit —MADUt . ..11-18A
Modify Internal Registers — MIR. i i 11-18B
Modify Memory — MM 11-19
Modify Programimage — MPl i i 11-19
Modify RelativetoFile — MRF 11-20
Modify System Memory— MSM i e 11-22
Modify Workspace Registers —MWR. o i 11-22
Breakpoint Commandsttt e 11-23
Assign Breakpoints — AB. 11-23
Delete Breakpoints — DB i e s 11-24
Delete and Proceed from Breakpoint — DPB, 11-24
Proceed from Breakpoint — PB e 11-25
TaskControlCommands i i i 11-25
Activate Task — AT e 11-25
Halt Task — HT . i s s e e e et 11-26
Resume Task — RT ... i et e 11-27
ExecuteinDebugMode — XD 11-27
Executeand Halt Task — XHT i et 11-28
SearCh CoOMMaANAS ..ottt ittt et e e e 11-29
Find Byte — FB i e e 11-29

Change 1 946250-9703

Paragraph

11.3.5.2
11.3.6
11.3.6.1
11.3.6.2
11.3.6.3
11.3.6.4
11.3.6.5
11.3.6.6
11.4

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.8
12.8.1
12.8.2
12.8.3

Appendix

Mmoo w >

946250-9703

Title

Find Word — FW . oo i e e e e v
Controlled Task Commandso oo
Assign Simulated Breakpoint —ASB ...
Delete Simulated Breakpoints —DSB............ ... oo
List Simulated Breakpoints —LSB oo
QuitDebugMode — QD
Resume Simutated Task — RST -t
Simulate Task — ST . . .ot e
Station Dependent Displaysooiiiiiiii i

12 — International Considerations of DX10

INrOdUCHION &« o et e e e e
CoUNtIY COAB . . ottt
information Interchange Codes i
Optional SCIPrompto
Key Indexed File Collating Sequencest
International Devices PR
IPF — International Print FileCommand oot
IPF Command Format............ e e e
IPF Command UsSer ReSPONSESo vv v
IPFCommand Example.o
IPF ErrOrMESSAgES « o« vt vveeieen i acn e
SCC — Show Country Code Command iiiaeons
Command FOrMat ..o v vt et
SCC Command USErReSPONSES . ..o vvvniiineneeen s
SCCCommand Exampleo

Appendixes

Title

Keycap Cross-Reference
ASCIlI Device HO Operationsit i
Task State CodeSs ... v it i e e
Reentrant Programming Example in Assembly Language
File and Device /OSVC CallBlocks
SV O GO . o vttt e et e e

Contents

xvii

Contents

Illustrations

Figure

241
2-2
2-3

31
6-1
7-1
8-1

9-1
9-2

10-1
10-2
10-3
10-4

A-1
A-2
A-3
A-4
A5
A-6
B-1
B-2
B-3

Mapping ... i
Tasks Sharing Segments
Task Memory Configuration

I/OProcessPaths
SF Command Procedure Example
XOPCall Processing...................
Task Synchronization

Device 1/0 SVC Call Block for Assign
Device 1/0 SVC Call Block with Extended Block

Sequential and Relative Record File [/O Call Block
KIF Call Block, Currency Block, and KEY Relationship
File Utility SVC Call Block
Key Indexed File Definition Call Block

911 VDT Standard Keyboard Layout
915 VDT Standard Keyboard Layout
940 EVT Standard Keyboard Layout
931 VDT Standard Keyboard Layout
Business System Terminal Standard Keyboard Layout
820 KSR Standard Keyboard Layout

911 VDT Graphics Character Keyboard Positions
931 VDT Graphics Characters
940 EVT Graphics Characters

Table

3-1
3-2
3-3
3-4
6-1
6-2
6-3
6-4

xviii

FileUsage Tradeoffs...................
File Access Mode Compatibility
Format Information for Supported Disks
Blocking Logical Records for Sequential Files

SCl Special Characters

Valid Field Prompt Types
Standard Synonyms
SCI Primitives

946250-9703

Table

6-5
8-1

9-1
9-2
9-3
9-4
9-5

10-1
10-2
10-3
10-4
10-5
10-6

11-1
11-2

12-1

A-1
A-2
A-3

B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10

C-1

946250-9703

Title Page

Command Privilege Levels.. P 6-21
Program Support SupervisorCalls 8-2
Device /O SVCs and Call Block Requirements it 9-3
Device I/O Assign and Release LUNO Call Block Bit Assignments 9-6
General/Extended /O SVC Call Block Bit Assignments 9-9
Device Dependent Responses to I/O Subopcodest 9-15
Returned Device Types and Default Record Lengthso 9-16
File /O SVC Call Block Bit Assignmentscoviiinnn.s 10-3
Information Returned for the Read File. Characteristics Operation 10-8
Information Returned for Read File Characteristics Operation 10-17
Error and Informative Codes for Key Indexed File Subopcodes................ 10-30
File Utility Call Block Bit Assignmentso et 10-38
Key Indexed File Definition Bit Assignments oot 10-42
Debug COMMANGS ..ttt ittt e 11-7
Command DiSPlays . . oottt e 11-35
DSR Codes for International Characters. oo 12-5
Generic KeyCap NamMesottt A-2
Frequently Used Key SequencCest s A-8
911 Keycap Name Equivalents oo A-8
911 VDT Key Character Code Transformationso oo B-3
931 VDT Key Character Code Transformationst B-8
940 EVT Key Character Code Transformations oot B-13
Business System Terminal Key Character Code Transformations B-17
820 KSR Key Character Code Transformationsot B-21
783 TPD Key Character Code Transformationst B-24
Display Terminal Graphics CharacterSetst B-27
733 and 743 Terminal CharacterSet i e B-29
Card Reader Character Seto v ittt e e B-32
Line PrinterCharacter Set . ..ot e B-34
Task State COUES . o v vttt et e e e e C-1
Xix/xx

Introduction

1.1 GENERAL

The DX10 Applications Programming Guide (V.-olume I1l) provides two specific types of information:
. General information about DX10 facili.ties as they relate to applications programming
. How DX10 supports applications programming in assembly language

The general information focuses on DX10 program management and /O system support. This
information is important to every programmer of DX10, regardless of the programming language
used. The DX10 operating system supports both assembly language and high-level languages as
discussed in the following paragraphs.

The high-level languages supported on DX10 are COBOL, FORTRAN, BASIC, Pascal, and RPG II.
Each high-level language has unique features, and supports DX10 facilities a little differently.
Information about specific features of a high-level language is located in the language documen-
tation for the particular language. Each language has an associated reference manual and pro-
gramming guide. This manual (Volume lll) bridges the gap between the respective language
manuals and specific DX10 operating system information by providing background information
about DX10.

The 990/99000 assembly language is supported by an assembly language reference manual, and
this manual, which functions as an assembly language programming guide.

The official titles and part numbers of all the language documents are furnished in the frontis-
piece. Before reading this manual, you should be familiar with the DX10 operating system as it is
described in DX710 Operating System Concepts and Facilities (Volume).

1.2 APPLICATIONS PROGRAMMING ON DX10

DX10 provides full facilities for developing compiete applications. In a general sense, DX10 allows
you to develop application programs without having to write I/O routines or file management
routines. DX10, along with the languages it supports, provides the processing support associated
with an operating system.

In high-level languages, you issue available statements from the specific language to request

operating system services. Facilities not directly supported by DX10 are supported by the language
run-time packages.

946250-9703 11

Introduction

Services are requested in assembly language by issuing supervisor calls (SVCs) to perform the
operation. You must code the SVCs in the program using SVC call blocks. SVC call blocks contain
the parameters required for each predefined SVC. SVCs are available to perform such program
management and I/O services as executing tasks, opening and closing files, and so on. Information
on how to use SVCs in an assembly language program can be found in Section 7 of this manual.
Each available SVC and associated call block is documented according to its general function in
Sections 8, 9, and 10. -

Developing complete applications includes writing command procedures using the System Com-
mand Interpreter (SCI) programming language. User command procedures supply the
operator/program interface by displaying prompts on the screen so that the operator can submit in-
formation required by the program. These command procedures also function as master programs
by calling the application programs to execute. Information on the SCI programming language and
on writing user-friendly command procedures for your applications is located in Section 6.

For a complete overview of the six-volume DX10 document set, refer to Volume |. Volume 1| contains

a section dedicated to the documentation organization, and also contains a master subject index to
help you find the information you need.

1-2 946250-9703

2

How DX10 Manages Programs

2.1 INTRODUCTION

A program is a collection of machine instructions which directs the activities of a computer. Under
DX10, any activation of a program is called a task. There can be several activations of the same pro-
gram at a given time but each activation is a different task. For example, the System Command
Interpreter (SCI) is a program and each station may have, as a task, a unique activation of the SCI
program. A program becomes a task when DX10 assigns a run-time ID. A program may become
several identical tasks if that program is activated at several different stations or by other tasks.
DX10 assigns different run-time IDs to each activation, making each activation a unique task.

When you install an application program on a program file, you assign it a hexadecimal ID number
which becomes the installed ID. Each time that program is executed, DX10 assigns it a run-time ID.
All programs that are part of the DX10 operating system are already installed on the system pro-
gram file, and have unique installed IDs. The Show Task Status (STS) SCI command lists installed
IDs and run-time 1Ds for all tasks that are active in the system at any given time. (internal system
tasks such as file handling routines and so on are excluded.)

2.2 PROGRAM STRUCTURE

DX10 allows you to structure programs in several ways. Program structure affects the program’s
efficiency, and different structures enhance different applications. There are three components of
program structure, as follows:

. Procedure segments
. Task segments
U Overlay segments

Procedure segments are usually reentrant. When writing a program, you can implement code that
can also be used by other programs, or that can be used repeatedly by the same program without
reinitializing any of the variables. This is called reentrant code because it can be entered repeatedly
at the same address by any task and still execute properly. (Reentrancy is discussed in detail later
in this section.) If a segment of code is reentrant, other programs can use it at the same time. If you
want a segment of code to be sharable, install it on a program file as a procedure segment. The
technique for installing procedure segments is discussed later.

946250-9703 2-1

How DX10 Manages Programs

The task segment is the part of the program that is unique; it can only be executed one time and
then must be reinitialized. For example, code containing data elements that are increased, de-
creased or changed by the program during execution, cannot be reused by the program. This type of
code is nonreentrant and it cannot be shared. When you install a segment of code as a task, it is
understood to be nonsharable. While not all programs need a procedure segment, all programs need
a task segment. This is explained more fully in the paragraphs on program segmentation.

Overlay segments are a third type of structure you can use. Overlays save memory space by re-
placing seldom-used code in a task segment. This reduces the memory required for the task
segment. .
DX10 mapping techniques control program segmentation structure. Program segments and map-
ping are discussed in the following paragraphs.

2.2.1 Program Segmentation
You can segment programs into one of the following configurations:

. A single segment, including executable code and any required data. Install this con-
figuration on a program file as a task segment. Each instance of the program in
execution is a separate task.

. Two separately loadable segments consisting of a procedure segment and a task seg-
ment. The procedure segment contains reentrant executable code. The task segment
can contain executable code (usually nonreentrant) and/or local data.

. Three separately loadable segments consisting of two procedure segments and a task
segment.

NOTE

Programs with fewer than three segments can access system
common. Refer to the discussion of the Get Common SVC.

You can install task, procedure, and overlay segments on the program file using SClI commands.
These commands are the Install Task (IT) SCl command for task segments, the Install Procedure (IP)
SCI command for procedure segments, and the Install Overlay (I0) SCI command for overlay
segments. You can also install tasks, procedures, and overlays using the Link Editor, as described
in the Link Editor Reference Manual. Privileged SVCs that install tasks, procedures and overlays
from another task are described in the DX10 System Programming Guide (Volume V).

Program segmentation, linking and installing segments for programs written in high-level
languages are discussed in the individual language manual, but understanding how DX10 handles
segments is important. If you are programming in assembly language, the specifics of program
segmentation are very important, since you must explicitly create the elements of a program to
allow you to link them together and install them with the desired characteristics.

2-2 946250-9703

How DX10 Manages Programs

2.2.2 Program Mapping '

The computer hardware supported by the DX10 operating system uses a 20-bit memory address bus
and can address 2048K bytes of memory. The logical address space available to a task is limited by
a 16-bit word address to 64K bytes. The difference is resolved by the mapping hardware in the com-
puter that maps the logical address space onto the computer’s physical memory. This mapping
hardware allows the operating system to access one, two, or three segments of memory at the same
time, as if they were contiguous segments. The maximum logical size of any task is 65,504 bytes.
This size represents 64K bytes less 32 bytes. Figure 2-1 illustrates segment mapping.

PHYSICAL ADDRESS
SPACE

s < / // / /////// }M

Dy N7

2283181

Figure 2-1. Mapping

946250-9703 2.3

How DX10 Manages Programs

Segments in the physical address space need not be contiguous. Since DX10 maintains separate
mapping parameters for each task, each task may consist of one, two or three segments with a total
extent of 65,504K bytes. Several tasks may share one or two segments. One segment, the task seg-
ment, is unique to each instance of a program. The shareable segments of a task are procedure
segments. Figure 2-2 illustrates two tasks sharing two segments of memory. The two tasks could be
instances of the same program. For example, both tasks might be instances of the SCI program
executing at different stations.

The computer instructions that control mapping are reserved for system use. Use of these instruc-

tions by nonprivileged user tasks causes fatal errors. DX10 memory management controls mapping
so that the mapping function is transparent to the execution of user tasks.

PHYSICAL ADDRESS
SPACE

TASK 1 TASK 2
LOGICAL ADDRESS LOGICAL. ADDRESS
SPACE SPACE

[e—i
SEE’}AS::‘N / //Si“;jj/* I sgé‘k?é‘m\

/ // i
T
2
\

NANNNN

N\

\

2277816

Figure 2-2. Tasks Sharing Segments

i

2.4 _ 946250-9703

How DX10 Manages Programs

Since DX10 manages memory in 32-byte blocks, the following boundary rules apply for programs
consisting of two or three separate segments:

. The first procedure segment begins at address 0 in the logical address space seen by the
executing program.

° The second procedure segment begins on the first 32-byte boundary immediately follow-
ing the first procedure in the logical address space seen by the executing program.

. The task segment begins on the 32-byte boundary immediately following the last pro-
cedure in the logical address space seen by the executing program.

These memory boundary requirements are supported by the Link Editor, as defined in the Link Editor
Reference Manual.

2.2.2.1 Implementing Program Segmentation. Figure 2-3 illustrates the possible memory con-
figurations for programs under DX10. The following paragraphs outline the processes for achieving
these configurations, primarily from an assembly language programming point of view. The
maximum allowable memory for each task in any configuration is 65,504 bytes.

2222 Task Segment Only. Figure 2-3 illustrates five configurations, denoted with letters A
through E. Illustration A shows a program with a task segment only. The following process
generates this configuration:

1. Assemble (or compile) the source program. This can be done in several modules.

2. Link the object code into one module using the Link Editor if more than one object module
is involved, or if a language runtime must be linked in.

3. Install the linked object module on a program file as a task segment using the Install Task
(IT) SCI command, or as a function of the Link Editor using IMAGE format.

4. Execute the installed task using an Execute Task (XT) SCI command, an Execute Task
SVC, or the .BID SCI command. (Refer to paragraph 2.3 for alternative ways to execute a
program.)

NOTE

Some high-level languages must have their runtime linked as the first
procedure. Therefore they cannot be linked as a task only. Refer to
the applicable language programmer’s guide.

2223 Task Segment and System Common Segment. In Figure 2-3, lilustration B shows the
memory configuration of a program with a task segment and a system common segment. The pro-
cess generating this configuration is the same process generating a task-only configuration, except
that the task itself must issue a Get Common SVC during execution. Executing a Release Common
SVC releases the common segment, but it need not be executed before program termination. (The
system common area must be defined during system generation.)

946250-9703 25

How DX10 Manages Programs

32K
WORDS
MAXIMUM

32K
WORDS
MAXIMUM

2278946

2224 Task Segment and One or Two Procedure Segments.
show a program with a task segment and procedure segment(s). The following process generates

A,

C.

this configuration:

32 BYTE
/BOUNDARY

32 BYTE
o BOUNDARY

32 BYTE

‘/BOUNDARY

TASK
SEGMENT SEEAR/‘T;EKNT
32K
s <
MAXIMUM :
SYSTEM
SINGLE SEGMENT I COMMON]
PROGRAM |
N N —— |
B. SINGLE SEGMENT PROGRAM
WITH SYSTEM COMMON
e
PROCEDURE PROCEDURE
SEGMENT 32 BYTE SEGMENT
/BOUNDARY
32K
TASK WORDS 4 P £
SEGMENT MAXIMUM NT
! |
TWO SEGMENT
PROGRAM | SJS.T,.%“,{‘. :
|
~ e ——)
D. TWO SEGMENT PROGRAM
WITH SYSTEM COMMON
e
PROCEDURE
SEGMENT 32 BYTE
4 BOUNDARY
32K PROCEDURE
WORDS SEGMENT 32 BYTE
MAXIMUM / BOUNDARY
TASK
SEGMENT
.

E. THREE SEGMENT PROGRAM

Figure 2-3. Task Memory Configuration

1. Assemble the various modules of the program separately.

2. Using the Link Editor, link the two (or three) segments of the program. You must use the
PROCEDURE Link Editor command when linking to specify the separate procedures.

Otherwise, they will not be separately loadable.

lillustration C and E in Figure 2-3

946250-9703

How DX10 Manages Programs

3. Install the procedure(s) using the Install Procedure (IP) SCI command (or by using the Link
Editor IMAGE format).

4. Install the task segment using the IT SCI command and using the procedure IDs specified
during the IP command (or by using the Link Editor).

5. Execute the installed task using an XT command, an Execute Task SVC, or the .BID SCI
command. (Refer to paragraph 2.3 for alternative ways of executing a program.)

2225 Task Segment, Procedure Segment, and System Common. lllustration D of Figure 2-3
shows a program with two segments and accessing system common. The process generating this
configuration is the same process generating the program with a task segment and one procedure
segment configuration except that the task itself must issue a Get Common SVC during execution.
Programs consisting of a task segment and two procedure segments may not access system com-
mon, since system common is treated as a segment, and only three segments are allowed.

2.2.2.6 Overlays. Overlays are unshared parts of the task segment. Procedures cannot have
overlayed code. You define and generate overlay structures using the Link Editor for assembly
language programs. High-level languages can use other methods for implementing overlays. Refer
to the Link Editor Reference Manual or the appropriate language programmer’s guide for more
information on organizing overlay structures. How DX10 handles overlays is discussed later in this
section. Refer to Section 8 for a description of the Load Overlay SVC.
2.3 TASK EXECUTION
Task execution is initiated through the following SVCs:

. Execute Task SVC (code > 2B)

. Bid Task SVC (code > 05)

e Scheduled Bid Task SVC (code > 1F)

The Execute Task SVC is the most common method. The Bid Task SVC is included only for com-
patibility with pre-3.X versions of DX10. Scheduled Bid Task executes at a prescheduled time.

There are four ways to access the Execute Task SVC:
. Execute the XT, XHT, or XTS SCI command

. Code the SVC call within a program

. Execute the .BID, .QBID, .DBID, or .TBID primitives of the SCI procedure language, or
call the SCl routine S$BIDT .

. Execute a language runtime routine provided for that purpose

'946250-9703 2.7

How DX10 Manages Programs

If the executing program needs access to synonyms and parameters in the terminal communi-
cations area (TCA) as set up by SCI, use .BID, .QBID, .DBID, or .TBID primitives from an SCI com-
mand procedure, or the S$BIDT interface routine to execute the program. Only these avenues save
the synonyms and parameters. If the executing program does not need that access, you can use
any of the available avenues. S$BIDT can only be used in a task that was itself bid using one of the
avenues that preserves synonyms and parameters.

24 HOW DX10 MANAGES TASK EXECUTION

Task execution management is based on task scheduling. Task scheduling refers to the way the
system chooses a task to receive control of the CPU. Scheduling also encompasses how user
memory is managed, since a task must be in memory in order to execute, and must be loaded into
memory for that purpose. Sometimes other tasks must relinquish the space they occupy so tasks
scheduled for execution can be loaded into that memory space.

2.4.1 Task Scheduling

DX10 always allocates the CPU to the highest priority task awaiting execution. However, certain
conditions can cause a task’s priority to be changed if the Task Sentry is enabled. (Task Sentry is
discussed later in this manual.)

DX10 schedules or reschedules tasks awaiting execution when one of the following occurs:
. An external interrupt bids a task
. An event completes for which a task is waiting
° The executing task suspends

e Task sentry lowers the priority of the executing task (if Task Sentry is enabled as dis-
cussed later in this section)

. The time slice allocated to a task expires (if time slicing is enabled as discussed later in
this section)

. A time delayed task is due to become active

An external interrupt bids a task in response to an event external to the CPU. Typing in the character
sequence requesting log-on is an example of such an event. The interrupt signals the task scheduler
that a specific user program needs to be scheduled to run. The task scheduler examines the queue
of tasks awaiting execution, which now includes the newly-bid task, and selects the task of highest
priority for execution.

Rescheduling occurs when an event for which a task is waiting completes. This is necessary
because the suspended task reactivates and requires CPU time. Completion of disk I/O for a task is
an example.

If the executing task suspends, the task scheduler allocates control of the CPU to the highest pri-

ority task in the system that is ready to execute. A task is ready to execute if it is not waiting on any
other events, such as 1/0.

2-8 Change 1 1946250-9703

How DX10 Manages Programs

If Task Sentry is enabled and lowers the pribrify of the currently executing task, the scheduler
reschedules the tasks awaiting execution. This ensures that the task with highest priority executes.

If time slicing is enabled, tasks execute for a fixed interval of time. Upon expiration of a time slice, a
rescheduling of the tasks is performed. Time slicing allows tasks of equal priority to share the CPU
in a round-robin fashion. ‘

If a time delayed task becomes active, a rescheduling of the tasks in the system is performed to en-
sure that the highest priority task is executing.
NOTE
Task Sentry, time slicing, and time slice duration are options

selected during system generation. System generation is discussed
in the Volume V.

2.41.1 Priority. The DX10 operating system requires that each task be assigned a priority level
when it is installed. This priority level is one of the major determining factors in how the task
scheduler schedules and reschedules tasks awaiting execution.

DX10 provides the following 132 levels of priority:

Level Meaning
(Highest) 0 Critical system tasks (reserved for DX10)
R1-R127 Real-time priorities

1 Foreground interactive tasks

2 Foreground compute bound tasks
(Lowest) 3 Background tasks
(Floating) 4 (Floats between priority 1, 2 in foreground, if background, runs

at 3)

Priority /evel 0 is intended for the most critical system functions and is reserved for DX10 internal
use only. The remainder of system tasks are distributed appropriately among the lower priority
levels with regard to their relative importance.

Real-time priorities provide the user the capability to supersede all except the most important
system tasks. For applications requiring prompt access of the CPU, DX10 delays some lower pri-
ority system functions in an effort to schedule real-time tasks.

Priorities 1, 2, 3 and 4 are designed to satisfy requirements of most installations. Programs requir-
ing user interaction mainly use priority levels 1 and 2. Priority level 1 gives quick response for pro-
grams interacting with the user’s terminal, while priority level 2 is adequate for programs requiring
multiple disk accesses.

946250-9703 29

How DX10 Manages Programs

For programs requiring user interaction and multiple disk accesses, priority level 4 automatically
switches between priority levels 1 and 2 as the program executes. When the task requests input
from a terminal it is assigned priority 1 so that when the user responds, the program can react
quickly to the user’s request. At other times, the task is assigned priority 2 so as not to interfere with
other programs requesting input from a terminal.

Priority level 3 is for programs executing in background, and require no user interaction.

2.4.1.2 Task Sentry. An inherent characteristic of the DX10 task scheduling scheme is that tasks
which are CPU-bound may lock out all tasks of a lower priority level. Task sentry monitors CPU-
bound tasks and lowers their priority by one after a specified number of 50-millisecond intervals
have elapsed. This allows lower priority tasks to be allocated CPU time. When a CPU-bound task
suspends itself (for example, an I/O request), the task sentry resets the suspended task’s priority to
its installed priority level. In the case of floating priority tasks, their priority is reset to either priority
level one or two. You enable the task sentry option during system generation, as described in
Volume V.

Task sentry enables you to gain contro! of a runaway task. However, if such a runaway task has an
SVC call inits loop, the priority is continually reset, preventing task sentry from lowering the task’s
priority. An initial program load (IPL) may be the only way to recover from such a situation.

2.4.1.3 How Priority Scheduling Affects Applications. Priority scheduling can affect applications
because the scheduling algorithm always executes the highest priority task first. A task of a given
priority can effectively prevent tasks of lesser priority from executing if the higher priority task re-
quires a long execution time, and suspends for only very brief periods.

For example, any task with real-time priority that remains in execution, either through a runaway
situation, or by simply requiring a long compute time, can effectively lock out any program of lesser
priority. For tasks executing at priority level 2, a task with priority 1 can lock it out, and so on. Pri-
ority scheduling can also lock out SCI, since it operates at priority 1 or 2 (floating priority), and real-
time priority takes precedence. Communication between tasks can be affected by such a situation.

A lower priority task that must communicate with another task within a specific period of time can
be prevented from communicating if it is effectively locked out by a higher priority task. If the com-
munication does not occur within the specific period, the task targeted for such communication
determines that the lower priority task has terminated abnormally, and an error can result. This
situation can occur with tasks that must communicate with Sort/Merge and TIFORM. An extra load
on the system can cause the execution of any task of priority 3 to be delayed, since most other tasks
execute at priority 1 or 2.

2.4.2 Dynamic Memory Management

DX10 manages memory by allocating memory to high priority tasks and rolling out low priority
tasks. When a task already in memory is selected for execution, a check is made to see if a higher
priority task is waiting to be loaded into memory. If a higher priority task is waiting, an attempt is

made to load it. Allocating memory for the higher priority task can cause the low priority task to be
rolled out of memory.

210 946250-9703

How DX10 Manages Programs

To obtain memory for the current task, DX10 copies (or rolls out) tasks occupying memory to the roll
file which is a system file on disk. The following are eligible for roll-out:

. File blocking buffers (written to appropriate file)
. Disk-resident tasks

U Disk-resident procedures (after all attached tasks are rolled)

Once rolled out, a task remains on the roll file until it is selected for a time slice and brought back
into memory (rolled in). Only the memory-resident file blocking buffer, memory-resident tasks and
procedures are exempt from roll-out. Memory-resident tasks and procedures are those that are
installed on the system program file with the corresponding attribute set.

2.5 PROGRAMMING CONSIDERATIONS

When you begin designing an application, you may wish to use some of the features that DX10 pro-
vides. For example, you may want to share code or data between tasks, or to use overlays to save
memory. The following paragraphs discuss the way DX10 handles programs from the standpoint of
what you need to know to produce an effective applications program structure.

2.5.1 Reentrancy and Sharing Code

A program is reentrant if it can be shared by several tasks. These tasks can be requested by several
users at different terminals. The term reentrant comes from the ability of one copy of the code in
memory to be reentered at the same address by several different tasks at different times, without
reinitializing any of the variables. You may want to use reentrant code for various purposes. The
primary use of reentrant code is to reduce the amount of computer memory that several programs
may require by letting the programs share one copy of the common parts.

In DX10, you make a segment of code sharable by linking and installing it on a program file as a pro-
cedure segment. There are basically three types of sharable code, as outlined in the following list.
Each type is discussed in the paragraphs following the list.

. Address-independent code, called truly reentrant

. Address-dependent code, called pseudo-reentrant because you must carefully arrange the
data in the associated task segment to make it reentrant

. Data that gets modified during task execution, called a dirty procedure. If you want to
share this data among several tasks, you can achieve a simulated reentrancy by carefully
controlling each task’s access to the data.

When programming in a high-level language such as COBOL,'F.ORTRAN, or Pascal, you usually
use only address-dependent code segments.

946250-9703 211

How DX10 Manages Programs

2.5.1.1 Address-Independent Reentrant Procedures. An address-independent reentrant proce-
dure is one in which no routine linked into it modifies itself or any other routine or has any direct
reference within itself to any code or data in the task segment. A direct reference is one in which a
memory location within the procedure segment has as its value the address of an item in the task
segment. If the link map shows modules named $DATA, the routines in the module whose name
appears immediately above use direct references. If there is no $DATA, there may be direct refer-
ences; you need to inspect the listings of the modules to determine if direct references exist.

Indirect references are address-independent. By referencing off a register, the addresses of all
volatile data are given to the reentrant procedure segment as a part of the subroutine call. (Many
high-level language compilers produce the correct subroutine calls for you.) Reentrant procedure
segments can reference constants in the task segment, but must use an indirect reference. Con-
stants embedded within the procedure segment itself can be referenced directly.

Most Tl language compilers do not create truly reentrant code (refer to the associated language
programmer’s guide). With assembly language you can create whatever structures are needed.

2.5.1.2 Address-Dependent Reentrant Procedures. To achieve address-dependent reentrancy,
you must correctly link all code and data segments of the program. All code in the procedure must
be pure: it must not modify itself. Further, the procedure must have a data segment for the pro-
cedure’s local data that is directly referenced. The Link Editor can separate the data segment from
the procedure segment, and link the data with the task segment.

In assembly language, you must create the segments with the PSEG and DSEG directives, as
described in the Link Editor Reference Manual. High-level languages automatically produce needed
segments for each source module compiled. If you specify the appropriate linking commands, the
Link Editor separates the executable code from the data segment in each compiled or assembled
module linked. The executable code can be linked into a procedure segment and the data segment
into a task segment. This process creates direct references from the procedure to the task since
the data items in the data segment are known to the procedure by their memory addresses rather
than being passed in the calling sequence. Refer to the Link Editor Reference Manual for more
information.

While the procedure segment does contain the addresses of data items outside the bounds of the
procedure, you can link several tasks in such a way that the address of any data item used by the
procedure appears at the same address in all the tasks. Use the ALLOCATE Link Editor command.
The procedure will work in reentrant fashion with several tasks, although it is not truly reentrant.
Note that replicated copies of the same task from a program file always meet this requirement.

Address-dependent reentrancy is supported by most of the high-level languages available with
DX10. Refer to the appropriate language programmer’s guide for specific information.

2.5.1.3 Data, or “Dirty” Procedures. |f code linked into a procedure contains data within the
bounds of the procedure that is modified by task execution, the procedure is referred to as dirty.
Tasks sharing the procedure cannot assume that the data is unchanged; the task using the pro-
cedure last could have modified the data. A task cannot assume that subroutines in the procedure
that use the shared data can be called at any time. Some high-level languages available on DX10 do
not support any kind of data sharing. Others, like FORTRAN, do support it. Any structure of shared
data can be constructed with assembly language.

212 946250-9703

How DX10 Manages Programs

2.5.2 Sharing Data in Memory ' :
The following paragraphs discuss some specifics of sharing data between tasks.

2.5.2.1 Restrictions on Using Shared Data. Any task executing in the system can be interrupted
between any two machine instructions. Therefore, the tasks sharing data must cooperate or syn-
chronize themselves so the data is modified correctly.

Any part of a program accessing shared data susceptible to such corruption is called a critical
section. To prevent corruption, a critical section must prevent itself from being interrupted. Under
DX10, it is not necessary for tasks to prevent any hardware interrupts.

Several techniques are available under DX10 for preventing interruption of a critical section. Most
methods require using available SVCs in a particular way, as described in the following paragraphs.
These techniques can usually be implemented in high-level languages also. Refer to the appropriate
language programmer’s guide for details on implementation from high-level languages.

The simplest technique uses the Do Not Suspend SVC (opcode > 09). This SVC prevents any other
task from executing until the time interval expires or until the task uses another SVC. Choose a time
interval long enough for the critical section to finish its execution without interference from other
tasks and short enough to not interfere with the response time of other users. However, with this
method the task cannot use any other SVC (including /O through a language runtime) within its
critical section, since using such an SVC automatically terminates the Do Not Suspend status.

if any other SVC is coded within the critical section, you must use another technique. For example,
you can use a shared variable to prevent a critical section from being interrupted by another critical
section sharing the same data. To employ this technique, each such critical section must employ
the following algorithm.

1. Set the shared variable to -1, either with a data initialization statement, or in the first task
using the shared data.

2. Before a critical section begins execution, test the variable.
3. If the variable value is -1, set the variable to +1 and go to step 5.

4. If the variable value is already + 1, execute the Time Delay SVC (opcode > 02) for a short
period, and go to step 2.

5. Execute the critical section.

6. Set the variable back to -1.

The test and the set must appear as one operation so that there is no chance of scheduling be-
tween the tests and set (steps 2 and 3). Use the Do Not Suspend SVC to prevent interruption be-
tween test and set, or use the ABS assembly fanguage instruction. The ABS assembly language
instruction tests and sets the variable in one operation. If the variable is negative, it sets the con-
dition code to reflect a negative number before it changes the sign. If the variable is positive, it
sets the condition code accordingly but does not change the sign.

946250-9703 2.13

How DX10 Manages Programs

NOTE

You cannot use the ABS function of a higher-level language to per-
form the test and set, since you cannot access the condition codes
and set the variable in one operation. Use an assembly language
subroutine or a Do Not Suspend SVC.

This technique keeps a critical section /locked while the task does any required SVCs. By including
an end action routine you can prevent the task from terminating with the lock variable in the locked
state (+ 1). Otherwise, all other tasks needing the locked data will not be able to access it and the
tasks involved will cease to execute.

If necessary, you can construct queuing mechanisms to handle waiting tasks. These queues
should eliminate the need for a task to continually wait and test. Such a scheme usually uses the
Do Not Suspend SVC to protect the queues themselves, and uses one of the following pairs of
SVCs to handle the tasks:

U Unconditional Wait SVC (opcode >06) and Activate Suspended Task SVC (opcode >07)
when a task must wait and when a task finishes using a critical section, respectively.

. Time Delay SVC (opcode >02) and Activate Time Delay Task SVC (opcode >0E) when a
task must wait and when a task finishes using a critical section, respectively. This pair
has the advantage that the task calling time delay can receive control back after a
specified period of time. Such a task can determine when no other task is going to ac-
tivate it and signal an error condition to the other tasks and/or an operator.

2.5.2.2 Cautions to Observe. There are several cautions to observe when sharing data with tasks
that communicate with other tasks.

DX10 has a mechanism for detecting one activate SVC issued for any given task that is not uncondi-
tionally suspended. This mechanism is inherent in the Activate Suspended Task SVC (opcode > 07).
In other words, this SVC can remember one and only one activate SVC issued, as described in
Section 8.

Code the task receiving messages or commands to receive all waiting messages or commands at
the time it is activated by a single activate SVC.

To ensure the integrity of the queue, list or other data used, use the Do Not Suspend SVC or the lock
variable techniques. The part of the program that maniputates the queue data is a critical section,
so the task must issue the Do Not Suspend SVC before it enters that section, and the time delay
should be long enough to prevent interruption until the Suspend or Activate Suspended Task SVC
completes. The Suspend or Activate Suspended Task SVC should be the last operation of the
critical section.

When DX10 performs the Suspend or Activate Suspended Task SVC, the critical section is finished.
It is not necessary to keep the queue locked until DX10 returns control to the task after the SVC
completes. When queuing messages or maintaining lists in a shared procedure in memory, do not
depend on the fact that an Activate Suspended Task SVC will be remembered.

214 ‘9462509703

How DX10 Manages Programs

Code the task receiving messages to suspend when its queue is empty. The critical section should
include the operations to inspect the queue, determine if it is empty, and execute the Suspend
SVC.

2.5.3 Using the Intertask Communication (ITC) Channels
When sending data using ITC channels, it is not necessary to protect the critical section. The oper-
ating system provides internal protection of the queue linkage process.

Consider the following example:

A receiving task is interrupted after it has determined the queue is empty, and before it suspends.
During the interruption, another task places a message on the queue and executes an Activate
Suspended Task SVC. In this instance, DX10 remembers that an Activate Suspended Task SVC was
issued while the task was active. Therefore, when the receiving task’s Suspend SVC executes, it will
not suspend but will be reactivated by the remembered activate SVC.

DX10 ensures the integrity of all other operations with an ITC because the actual queuing and
dequeuing operations are performed as SVCs, and cannot be interrupted by the scheduler.

2.5.4 Sharing Procedure Code to Save Memory
Sharing code saves memory and program file space on disk. Saving memory can improve response
time because it can decrease the amount of roll-in/roll-out overhead in the system.

To share code, install tasks so that they are attached to the appropriate procedure in the program
file. You do this with the Link Editor, as discussed in the Link Editor Reference Manual, or use the IT
SCl command described in the DX70 Operations Guide (Volume ll). You can change a task’s
attachment with the Modify Program image (MPI) SCI command (also described in Volume II).

When a user task is attached to a procedure, the procedure can be in the same program file as the
task, or in the system program file. It cannot be in any other program file.

When you share a procedure, remember that a procedure is known to the system by its ID and the
program file from which it was loaded. Only tasks loaded from the same program file can share that
procedure, with the following exception: any task can share a procedure on the system program file
even if the task itself is installed on another program file. You indicate that a procedure is not on the
task’s program file when you install the task using the Install Task (IT) SCI command.

2.5.5 User Program Files

User program files are program files that you create yourself for your own applications, using the
Create Program File (CFPRO) SCI command. You use them for application-oriented tasks and pro-
cedures, rather than using the system program file (S$PROGA). By creating and using your own
program files you can do the following:

U Update the release of the operating system more easily. Copy your program file to the new
system disk instead of reinstalling all of the tasks and procedures in the new system pro-
gram file.

e Separate applications to facilitate development. Development can be done on one
application without disturbing operational applications.

946250-9703 ~ Change 1 2-15

How DX10 Manages Programs

] Copy selected applications more easily. If you have installed ali the tasks and procedures
for an application on a separate program file, you only need to copy that file.

Always install tasks in user program files unless the task requires one of the following
characteristics:

e Memory resident
. Biddable by the Scheduled Bid Task SVC (opcode > 1F)
. Biddable by the Bid Task SVC (opcode > 05)

. Nonreplicative, with the installed ID and runtime ID the same

25.6 Overlays _

Overlays are parts (phases) of a program which share memory with a task. The system loads
overlays from a program file into memory during program execution. Overlays reduce the memory
needed for a program because the system only loads part of the program initially and then loads
overlays as needed during execution.

The memory requirements of a program can be reduced even more if the program uses two or more
overlays which share the same overlay area. You can select automatic overlay loading when you link
to create code that controls overlay loading. The code is generated in the control, or root, phase of
the task (which is not overlayed).

Overlays increase execution time by the time required to load them. If you choose frequentiy-used
code for your overlay, the time it takes to load it each time can be a significant part of the total
execution time. You can develop an effective scheme by following some simple rules:

. Avoid calling an overlay within a loop that is executed many times in response to a user
request.

. Choose overiayed code so that only a very few of the overlays are needed for each func-
tion of a program.

. Choose seldom-used code for overlays.
Overlays are only loaded into a task segment, not into procedures.

256.1 Overlay Structures. Overlay structures are defined by the user and generated by the Link
Editor. Refer to the Link Editor Reference Manual for information on organizing overlay structures.

2,5.6.2 Overlay Loading. In the root segment or in phases in memory, use the Load Overlay SVC
as described in Section 8 to load an overlay from a program file into memory. Since control returns
to the instruction after the Load Overlay call, take care that the call itself is not overlayed. The Load
Overlay SVC can be issued from a task or a procedure segment, but the SVC call block must be in
the task segment.

During link edit you can include an automatic load overlay manager to manage the loading of
overlays in a program. Use the LOAD Link Editor command in a link control stream to do this, as
described in the Link Editor Reference Manual. Some languages require this method. For linking
overlays in high-level languages, refer to the appropriate language reference manual for details.

2-16 Change 1 946250-9703

How DX10 Manages Programs

2.5.6.3 Relocatable Overlays. Overlays are usually loaded into memory at the natural load
address determined during link edit. However, you may load an overlay elsewhere in memory.
Modules installed as relocatable overlays in a program file can be relocated by the load overlay call.
This enables users to load overlays where space is available rather than where linked. However, this
can be cumbersome, and sometimes difficult to use.

2.5.7 Task Attributes
Tasks can be installed with one or more of the following attributes specified:

. Privileged/nonprivileged

. System task/user task

. Priority

. Disk resident/memory resident

. Replicatable/nonreplicatable

o Arithmetic overflow protection (990/12 only)
. Execute protection (990/12 only)

You can install procedures with some of these same attributes. Each of these attributes and their
advantages and effects are discussed in the following paragraphs.

2.5.7.1 Privileged and Nonprivileged Tz;sks. Most user tasks are nonprivileged and are therefore
prohibited from executing certain system functions. A task is specified as privileged or nonprivi-
leged by a parameter in the IT SCI command, or by a parameter in the Install Task SVC.
You must install a task as privileged when that task requires use of privileged SVCs, or if you want
to execute privileged machine instructions. Otherwise, install it as nonprivileged.
CAUTION
Tasks installed as privileged have the potential of destroying the

operating system. Tasks should not be privileged unless absolutely
necessary.

2.5.7.2 System and User Tasks. A task is either a system task or a user task. System tasks have
the following characteristics:

J Execute in privileged mode

. Execute in system memory address space (coexistent with other portions of the system)

] Maximum of 16,384 bytes in logical length

946250-9703 217

How DX10 Manages Programs

Cautions given for privileged tasks also apply to system tasks. In fact, they are more dangerous to
the operating system since they execute in system memory space. There should be no need for
application-oriented tasks to be system tasks.

2.5.7.3 Priority. When a task is installed, you must assign a priority level that is used by DX10 to
schedule the task each time it is activated, or when rescheduling occurs. (Priority and scheduling
were discussed in detail earlier in this section.)

25.7.4 Disk Resident and Memory Resident Tasks. Tasks may be memory-resident or disk-
resident. Memory-resident tasks are always in memory, whether executing, suspended, or ter-
minated. Disk-resident tasks are in memory when executing, and can be in memory while waiting for
execution. However, they can also be rolled to disk when not executing to provide memory space for
another task that needs to be rolled in from disk for execution. Most user tasks should be disk-
resident to free memory for other tasks. Also, some SVCs depend on the DX10 roll-in/roll-out facility.

Memory-resident tasks must be installed on the system program file and are effectively disk-
resident tasks until the system is rebooted. Certain support features which depend on roll-in/roll-out
(such as dynamic memory allocation) are not available to a memory-resident task.

Once resident, memory-resident tasks occupy memory, even if terminated, until they are deleted
from the system program file or made non-resident, and the system is rebooted. Residency is a
parameter supplied when the task is installed on the program file.

2.5.7.5 Replicatable and Nonreplicatable Tasks. Tasks specified to be replicatable can have
multiple copies concurrently in memory. Replicatable tasks are frequently used in multiterminal
systems, allocating one (or more) copies for each terminal. Replicatability is a parameter that is
supplied at task installation.

If atask is replicatable and memory resident, the first request to bid the task activates the memory-
resident copy. If that copy is not in state 4 and the task is replicatable, additional invocations func-
. tion exactly like replicated disk-resident tasks.

2.5.7.6 Arithmetic Overflow Protection. The 990/12 allows detection of arithmetic operations that
cause an overflow or underfiow. This error condition is signaled as a task error.

2.5.7.7 Execute Protection. The 990/12 allows execute protection of task segments and execute
and/or write protection of procedure segments. Executing an execute protected task segment or
executing or writing to a protected procedure segment causes a task error.

25.8 Programming Prohibitions
Tasks installed in DX10 are either privileged or nonprivileged. Privilege is enforced by DX10 and the

computer hardware. Most programs are nonprivileged and may not use the following assembly
language instructions:

o Computer control instructions (RSET, IDLE, LREX, LIMI)
. Real time clock instructions (CKON, CKOF)
. Mapping instructions (LMF, LDD, LDS)

. /O instructions (SBO, SBZ, TB, LDCR, STCR) when the CRU address is greater than
>0EOQ0

2-18 946250-9703

How DX10 Manages Programs

Further, nonprivileged tasks may not use the following privileged supervisor calls (SVCs):

Install Disk Volume Delete Task

Unload Disk Volume Delete Procedure

Initialize Disk Volume Delete Overlay

Allocate Disk Space Assign Space on Program File
Direct Disk 1/0 Get System Pointer Table Address
Open File Unblocked Suspend Awaiting Queue Input
Install Task Kill Task

Install Procedure Read/Write Task

Install Overlay Read/Write TSB

Initialize Date and Time Abort 1/O

Finally, no nonprivileged task may access memory outside its assigned memory space. Privileged
tasks can do so, but extreme care must be taken to ensure no damage occurs to the operating sys-
tem. Nonprivileged tasks can request additional memory using the Get Memory supervisor call,
provided the total program size remains less than or equal to 65,504 bytes, and the task is not
memory-resident.

Any prohibited access to instructions, supervisor calls, or memory causes a fatal task error. DX10
aborts the task and transfers execution to the task’s end-action entry point if end action is
specified.

NOTE

Volume V contains all privileged SVC code descriptions.

2.6 TASK TERMINATION

Tasks executing under DX10 may terminate normally or abnormally. In either case, the task should
make provisions for termination. If a task does not explicitly invoke termination, it either loops in-
finitely or it attempts to violate its memory bounds, causing abnormal termination.

2.6.1 Normal Termination)

To terminate normally, a task executes an End Task SVC. (All high-level languages have a stop or
end statement to cause an End Task SVC to be executed.) DX10 then releases the task’s resources
and takes it out of execution. Disk-resident tasks disappear from memory. Memory-resident tasks
remain in memory and occupy space but do not execute.

946250-9703 2-19

How DX10 Manages Programs

2.6.2 Abnormal Termination
If a task commits a fatal error (illegal instruction, supervisor call, or memory reference), two things
can happen:

] If the task transfer vector includes an end action address, the routine at that address is
activated. Typically, the end action routine executes an End Action Status supervisor call,
returns the data, and executes an End Task supervisor call. It is possible for the end
action routine to implement error recovery procedures. When an end action routine com-
mits errors, DX10 unconditionally aborts the task unless a Reset End Action SVC is
issued.

. If the task transfer vector entry for end action is less than 16, DX10 unconditionally aborts
the task.

You can kill a foreground task externally by issuing the Kill Task (KT) SCl command from another
terminal, or by pressing first the Attention key, releasing it, and then holding down the Control key
while you press the X key at the affected terminal. To kill a background task, issue the KT com-
mand from any terminal, or the Kill Background Task (KBT) command from the terminal that origi-
nated the background task.

in either case, the erroris reported to the system log.

In higher-level language programs, the transfer vector and end action address is set up either by
the runtime or by the compiler in the main program. High-level language programmers do not need
to explicitly code an end action address, and usually do not have any control over them. Refer to
the applicable language manual.

NOTE

Throughout this manual, the names of keys are generic key names.
In some cases, the names on the keycaps of the terminals match
the generic key names, but in many cases they do not. Appendix A
contains a table of key equivalents to identify the specific keys on
the terminal you are using. Drawings that show the layout of the
keyboard of each type of terminal are also included.

220 946250-9703

3
DX10 I/O System

3.1 INTRODUCTION

The DX10 I/O support system facilitates disk file I/O for application and system programs. This sup-
port includes managing file /0 requests and disk file space, and controlling device allocations. Disk
file /O is performed through supervisor calls (SVCs) to the operating system, either directly, or
through high-level language runtime facilities.

SVCs are requests for operating system services. Assembly language programmers must code SVC
call blocks directly by coding a call block to include the hexadecimal SVC code, and the additional
parameters required to perform the service. Many of these same services are supported by high-
level languages. They are still performed by calls to the operating system for file services, but the
calls are generated by the language runtime routines. The calls are transparent to the user. An ex-
ample of an SVC in a high level language is a READ statement. In COBOL, the READ statement re-
quests specific services from the operating system, namely, retrieving information from a file. SVCs
are discussed in detail in Sections 7, 8, 9, and 10.

The remainder of this section discusses the supported file types and their usage. The internal
system utilities supporting the DX10 file system, disk file logical and physical organization, and
device and LUNO usage and management are also described.
3.2 SUPPORTED FILE TYPES AND USAGE
DX10 supports three different file types:

] Sequential files

o Relative record files

U Key indexed files
The following paragraphs discuss the basic organization of each file type and when each file type
would be most advantageous to use in an application. Information on how DX10 allocates space for
files, how to choose logical and physical record length, and how DX10 manages files and disk space
are discussed in later subsections.
3.21 Sequential Files

Records in sequential files must be accessed in the order that they appear in the file. They can only
be placed in the file in sequential order.

946250-9703 3-1

DX10 /0 System

Even though there is no random access on sequential files, keys can be imbedded in the record and
used to identify a particular record. Therefore, “random” access can be simulated by reading
through the file and testing each key to determine if it is the key you desire. Every record must be
processed during the search, making this random access on sequential files very inefficient in most
circumstances. If other advantages of sequential files are required, such as maximum space usage,
occasional “random” searches are acceptable.

Sequential files are advantageous in applications where rapid input or output of all records in the
file is required. Data being sent to the line printer or terminal with each record representing a line of
the report or text is an example. A sequential file is also a good format for storing data, since it
takes comparatively less space than other file formats, and can be stored on sequential media such
as magnetic tape. This requires less space because there is no unused disk space as is possible in
relative record formats. Also, there is no space dedicated to a key table as required for key indexed
files. Blank suppression and adjustment can be applied to sequential files to minimize the space re-

quired for each record. Also, record-locking is supported. (These attributes are described in later
subsections.)

Examples of sequential file use include the following:
. Log files to which records are written in sequential order
. Output files generated by applications programs such as written reports
. Any output intended for the line printer
. Source programs
. Listing files from such DX10 processes as the assembier and Link Editor

. Input files of card images (if a logical record length of 80 is specified for the file, the file
then “looks” just like data from a card reader to the program reading the file)

Sequential files are always blocked for efficient file and disk management. Blocking is discussed
later in this section.

3.22 Relative Record Files

Relative record files can be read sequentially, or accessed randomly. Each record in a relative
record file is addressed by a unique record number. The record number represents the relative posi-
tion in the file. For example, record number 10 is located in the tenth record position in the file.

Unlike sequential and key indexed files, the space for a record is reserved in the file whether or not a
record with that number actually exists. Your record numbers should be tightly packed if you use
relative record files to conserve file space. Relative record numbers range from 0 to one less than
the number of records in the file. (Some high-level languages adopt a different convention, handled
by the runtime package. Refer to the individual language manuals.)

The upper limit on the number of records in a relative record file is 22, You can make your data com-
patible with the record numbering by writing your program to compensate for the difference. For ex-
ample, if you have inventory part numbers of closely packed or consecutive numerical values, but

they are ten digits long, include a calculation in your program to subtract the beginning part number
in the series from whatever part number is specified for access.

32 946250-9703

DX101/0 System

DX10 converts the record number to a physical address on the disk (track and sector) and can di-
rectly access any record in one disk access. Conversely, relative record files may be accessed
sequentially by specifying a starting value in the record number field. DX10 automatically
increments the record number after each read or write.

Relative record files can be blocked or unblocked, as discussed later. Program files, image files and
directory files are unblocked relative record files used as special-purpose files. They are accessed
differently than blocked files. Unblocked files do not depend on blocking buffers external to the pro-
gram to manage read/write operations.

3.2.3 Key Indexed Files

A key indexed file allows random access to its records through a primary key value, with up to 13
secondary key values. A key is a character string in a fixed position within the record. For example,
records in an employee file can be accessible by employee 1D, employee name, and employee social
security number. Each record could begin with the employee ID, then the name (in a fixed number of
characters) and then the social security number. These fields would be set up as key fields.

In addition to random access, key indexed files have these features:

U Records may be accessed sequentially in the order of the key values of any key field.
Functionally, this gives the same access as if they had been sorted in that order.

U] Key values can have duplicates; that i's, two or more records in the file can have the same
value for a primary or secondary key. (You specify whether to allow duplicate keys when
you create the file.)

o You can modify secondary key values. This means that you can read a record, change the
key value and rewrite the record. You can also add key values previously missing from a
record. The social security number of an employee can be added, for example. (You can-
not modify and then rewrite primary key values, however. Primary keys are always un-
modifiable.)

. Key values for secondary keys can be null, causing the record to not be catalogued in the
index for that key. A key value is null when it is all blanks or has a value of > FF in the first
byte. A key value containing all binary zeroes is not null.

. Keys may overlap. For exampie, you can use the social security number as a secondary
key, while using a job code and the first three digits of the social security number as an
employee ID.

. A key may be up to 100 contiguous characters in length.

. Records may be of variable length and may change in size on a rewrite. (However, records
may not have a length of zero or an odd number of characters.)

U] Positioning on partial keys is allowed.

. Records are automatically blank suppressed. (Blank suppression is discussed later.)

946250-9703 3-3

DX10 I/O System

. Record level locking is supported. (Record locking is discussed later.)

o Integrity of the files is maintained through preimage logging of modified blocks. Before
the system modifies a physical record, it copies the record to a backup area in the file
overhead area. System crashes and power failures can only result in loss of the last I/O
operation, unless the logging characteristics have been modified using the MKL
command.

Key indexed files are always blocked for maximum disk access efficiency. Generally, they are the
most advantageous files for general-purpose applications data. Some tradeoffs are involved, as
discussed in the following paragraphs.

3.2.4 File Usage Tradeofts

Each file type (sequential, relative record, and KIF) offers certain advantages for different appli-
cations. Table 3-1 shows some of the tradeoffs associated with each file type. The following
paragraphs discuss these tradeoffs. This information represents general guidelines only. For de-
tailed information about file use guidelines for a particular language, refer to the programmer’s
guide for that language.

Table 3-1. File Usage Tradeofis
Disk 1/0s
Type Required Format Utilization
KIF Average of 3-5 1/Os per Maximum 14 keys (alpha- Must allocate disk space
logical operation to re- numeric). Each canbe up for key tables. For widely
trieve record. to 100 bytes. dispersed (random) key
values.
Relative At most, one per logical Record number is inter- No key table, but allo-
operation. nally formatted as a cates space for unused
three-byte binary integer. records. Good for tightly
packed numeric keys.
Sequential At most, one per logical No key. Space efficient for variable-
operation. length records. Good when
records are to be accessed
in order.
3.2.4.1 Sequential Files Versus Relative Record Files. Sequential files use disk space more

efficiently than relative record files when variable-length records are accessed in order. Relative
record files always store records as fixed length. When random access is required, relative record
files are more efficient, since sequential files must be forward spaced or back spaced to access
specific records. The number of physical disk events on forward/back spacing operations can be
reduced by blocking (discussed later). If disk space is not a consideration, relative record files are
more efficient for applications requiring more than occasional random access. Blank suppression
and adjustment in sequential files can also save space.

3-4 946250-9703

DX101/0 System

3.2.4.2 Relative Record Files Versus KIFs. AithoiJgh KIFs are more efficient in most applications
than relative record files, KIFs require additional physical disk events per logical 1/0 operation.
Three major factors determine which of these two file types is best. These factors are as follows:

Key format

If you require an alphanumeric key, you must use KIF. Relative record file keys must
fit into three binary bytes and be numeric only.

You can search a KIF for a partial key if you know part of the key value, and search
on any of up to 14 keys. However, relative record files are randomly accessed by
record number. If the record number is not known, search sequentially, or code the
program to use another search pattern.

File space utilization

Relative record files allocate space for records from zero to the largest key in the file
regardless of the number of records actually used. If the record density in the file is
normally above 70 percent, this is an efficient file type, considering access speed
(discussed below). Compute the density percentage by dividing the number of
records used by the largest record number on the file, then multiply by 100.

KIFs require substantial overhead space for key tables but allocate file space only
for records that are in the file. If the file has widely dispersed key values, KiF should
be selected.

Access speed

Relative record files require only one physical disk /O event for each read or write
operation (zero if the file is blocked and the logical record is already in memory).

KIFs with single keys usually require less than six disk I/O events per logical opera-
tion when the mix of logical operations includes more reads and rewrites than
writes.

KIFs usually require from three to five disk 1/0 events for each random read opera-
tion, and can require over 100 disk I/O events for add operations on files with mul-
tiple keys.

In general, if speed is the overriding consideration, then use relative record files (assuming the key
format is practical). If space is a consideration, the file record density must be taken into account. If
speed or file space are not considerations, select the most convenient file type.

946250-9703

3-5

DX10 I/0 System

3.3 FILE FEATURES

Certain features are available on DX10 that enhance file efficiency or file protection. The following
paragraphs outline these features.

3.3.1 Blank Suppression and Adjustment

Records in a file can be compressed into a smaller space by suppressing the blank characters in the
record. Blank suppression and blank adjustment save disk space within a file by storing data in a
more compact form. Since this essentially makes the record length variable (depending on the
number of blanks in each record), these techniques apply only to sequential files and KIFs. They
cannot be applied to relative record files.

Blank suppression replaces strings of blanks by a count of blanks when writing to disk and restores
the blank string when reading from disk. The blank suppression operation is done by the system,
and is transparent to you. It is generally advantageous to specify blank suppression for all files that
usually contain many blanks, such as:

° Source files

. Listing files

. Text files

It is less advantageous to use blank suppression for files that generally have very few blanks. A
blank-suppressed record with no blanks is two bytes longer. Examples of such files are:

] Binary files (not ASCII data)
. Relocatable ASCIi coded object files

KIFs are automatically blank suppressed. You can specify suppression for sequential files when
you create them.

The second method of blank compression is called blank adjustment. Blank adjustment truncates
trailing blanks on output and restores them on input. Besides KIFs and sequential files, blank
adjustment can be applied to I/O devices with variable record lengths. :

You can implement blank adjustment in KIFs or sequential files by setting the bit in the 1/0 call

block. (In high-level languages that support this feature, blank adjustment is controlled by the run-
time package.)

3-6 946250-9703

DX101/0 System

3.3.2 Expandable Files

When you create a file (using either the SCI commands or the Create I/O SVC), you specify the initial
or primary allocation parameter that indicates the initial file size. You can also specify a secondary
allocation parameter for use by the system to calculate the file space needed if the file outgrows the
initial file space. For sequential and relative record files, specify the file to be expandable when you
create it if you want the system to automatically allocate secondary disk space. (KIFs are always
expandable; there is no expandability parameter in the create file command for KIFs.)

When the file grows to exceed its primary allocation, it is augmented with secondary allocations. If
you designate the file as expandable, and do not provide a secondary allocation parameter, the
system takes a default parameter. Later paragraphs in this section describe secondary allocation
algorithms.

If you do not want a sequential or relative record file to expand beyond the initial allocation, specify
NO to the EXPANDABLE? prompt when you create the file.

3.3.3 End-of-File (EOF)

An EOF mark for a file is a logical position within the file that indicates the end of the file. When a
read operation encounters an EOF mark, the EOF status bit is set (bit two of the system flags). No
data is transferred. Key indexed files have no EOF mark. Relative record files have exactly one EOF
mark, which corresponds to the record following the highest-numbered written record.

Sequential files can have multiple EOF marks. Thus, a sequential file may consist of multiple data
sets or subfiles delimited by EOFs allowing it to function similarly to a magnetic tape containing
several different files. As with magnetic tapes, you must space forward until you encounter an EOF
mark, or the required number of EOF marks, to indicate when you have encountered the desired sub-
file before processing. An attempt to read beyond the last EOF in a file results in an error code of
> 30.

EOFs are internally represented in sequential files by records uniquely recognized as an EOF mark.
A Write EOF or Close with EOF SVC writes the EOF mark on the file. Writing an EOF does not pre-
vent writing more records into the file.
3.3.4 File and Record Protection Features
DX10 provides several features for protecting files from program flaws which might otherwise
destroy valuable data. These protection features are:

. Delete and write protection

. Record locking

. File access privileges

. Immediate write attribute (forced write)

The system protects special usage files (program files, image files, and directory files) from being
accidentally destroyed by preventing a LUNO from being assigned to them without verification.

Each file protection feature is described in the following paragraphs. Except for delete and write

protection, these features are usually handled by the runtime package for high-level languages. For
information on how to implement these features in assembly language, refer to Section 5.

946250-9703 37

DX101/0 System

3.3.4.1 Delete and Write Protection. Two of the file protection features provided by DX10 are
delete and write protection. These file attributes are modifiable by standard I/O SVC calls. Files are
initially created without protection. A subsequent SVC call must be made to invoke protection. High-
level language runtimes do not support delete and write protection. You can set these yourself using
the Modify File Protection (MFP) SCI command.

An attempt to write to or delete a file with write protection will fail and return an error code. An
attempt to delete a file with delete protection will fail and return an error code. Write protection
includes automatic delete protection. These protective attributes are not intended for file security.
However, they provide protection against program flaws and operator errors that might otherwise
destroy valuable data. You can remove write and delete protection using the appropriate non-
privileged SVC.

NOTE
Write protection and delete protection applied to directories do not

protect the files within that directory, but only protect the directory
node itself.

3.3.4.2 Record Locking. DX10 provides record locking for files. Basically, access to a given file
may be shared between several users, yet individual records may be locked to provide exclusive
(single user) read and write access. This is not a security feature since any file user can unlock a
locked record. However, this feature is necessary to ensure that record updates occur one at a time.
For example, inventory files might be accessible from several terminals. Record locking can prevent
two or more users from updating a record simultaneously, causing an undetected loss of one of the
updates.

The following examples illustrate this feature. Without record locking, the following update activity
can occur:

1. User A reads a record.
2. User B reads the same record.
3. User A updates the copy of the record and writes the updated record to disk.

4. User B updates this copy of the record and writes these updates to disk, destroying User
A’s updates to that record.

With record locking, this same activity occurs as follows:

1. User Areads a record. The Lock/Unlock flag in the call block (byte 5, bit 5) is set to lock the
record.

2. User B attempts to read the same record but, finding the record locked, waits for user A
to unlock the record before proceeding.

3. User A updates the record, writes it back to disk which unlocks it.

3-8 946250-9703

DX10 1/0 System

4. User B reads the record and locks it.

5. User B updates the record, writes it back to disk and unlocks it. Both updates are now in-
cluded in the record. -

In assembly language programs, implement record locking using an 1/0 SVC. In high-level languages
that have suitable syntax, use the language to implement record locking. If the language does not
support record locking, you must code an SVC to do so. Refer to the applicable language manual.

NOTE

When program A has a record locked and program B attempts to
read the record, the record pointer for sequential and reiative record
files points to the record that is locked. For a key indexed file, the
currency is updated so that it is possible to read past the locked
record.

3.3.4.3 File Access Privileges. DX10 supports several different access modes, or access
privileges. These access privileges define the relationship between logical units and files and
disallow conflicting accesses by other logical units.

3.3.4.3 File Access Privileges. DX10 supports several different access modes, or access privi-
leges. These access privileges define the relationship between logical units and files and disallow
conflicting accesses by other logical units.

There are four access modes applicable to files, as follows:

. Read Only — Aliows more than one program to read from the file, but a program with
this access mode cannot write to the file.

. Share — Allows more than one program to read, write, or rewrite to the file. (When the
file is sequential, Share allows both read and rewrite operations, but not write oper-
ations.)

. Exclusive Write — Allows more than one program to read the file, but only the program
with this access mode can write to the file.

. Exclusive All — Allows the program with this access mode to read, write, or rewrite to
the file, and no other program can access the file.

In assembly language programs, you specify the access privilege when you code the SVC call
block for the Open, Open Rewind, or Open Random /O SVC operations. Set bits three and four in
the user flags byte of the call block as follows:

Code Privilege
00 Exclusive Write
01 Exclusive All
10 Share
11 Read Only

946250-9703 . 39

DX10 I/0O System

For high-level languages, refer to the appropriate language programmer’s guide and language
reference manual to determine how these access privileges are implemented.

Two programs accessing the same file must be coded with compatible access privileges. If a pro-
gram executes one of these SVCs, and an inconsistency results, the SVC generates an error
indicating a conflict in access privileges. Also, you can change access privileges during program
execution using an 1/O SVC, as long as the change does not cause an inconsistency.

Table 3-2 illustrates the allowed and forbidden combinations of access privileges. In the table, “A”
indicates an allowed combination, and “I” indicates an inconsistent combination.

Table 3-2. File Access Mode Compatibility

Relative Record and Key Indexed Files

Exclusive Exclusive
Read Only Shared* Write All
Read Only A A A |
Shared A A | |
Exclusive Write A | | |
Exclusive All | | | |

A — Aliowed combination.
I — Inconsistent combination.

Note:

* Shared sequential files allow read and rewrite only.

3.3.44 Immediate or Forced Write. When DX10 reads records from a blocked file into memory,
the file block containing the requested record remains in memory as long as possible. Subsequent
read and write requests read and write from and to the memory-buffered file block, and not the disk.
Only when DX10 needs the memory area will the disk be accessed. Since memory is far faster than
disk, deferring of disk writes increases system throughput. However, since the disk write operation
is reported complete and yet is actually deferred, any errors which occur during the write cycle will
be unexpected and in some situations may be undetected by the user. For this reason, a forced write
option is provided at file creation. This file attribute prevents disk write operations from being
deferred.

The most common undetected error is disk failure. A user could update a record in a block and be in-
formed that the update has been successfully completed. However, when the block is actually writ-
ten to disk, possibly several minutes later, an I/O error could occur. This error is returned on the next
supervisor call made to the LUNO after the error. The error is returned even if the service call is not a

write operation.

3-10 946250-9703

DX10 1/0 System

Undetected errors are rare and files with the immediate write attribute are less efficiently pro-
cessed, especially sequential files. Therefore, the user should reserve this attribute for sensitive
files where the loss of small amounts of data is not permissible. Key indexed files always have the
immediate write attribute, subject to options selectable by the MKL SCI command.

To implement the Immediate Write attribute, specify it as an attribute when you create the file
(either using a CF or the Create File SVC).

3.3.4.5 Special Usage File Protection. You can protect special usage files such as program files,
directory files and image files, from accidental use by setting two flags in the SVC call block to zero
when assigning LUNOSs to files. (You can create a call block in high-level languages to do this, but
runtimes do not set these two flags.) The flags indicate whether the LUNO is being assigned to one
of the special-usage files, or to a sequential, KIF or standard relative record file. (Special usage files
are nonstandard relative record files.) Then, when a program requests a file assignment, the file
management utilities check the flags to determine the type of file to be accessed. If these bits are
zero and the file is a special usage file, the LUNO is not assigned and an error results. Otherwise,
the SVC operation completes the Assign LUNO operation. The flags are bits 1 and 2 of byte 16
in the call block of the Assign LUNO SVC. (Refer to Section 10, SVC subopcode >91, for coding
information.)

3.3.5 How the System Handles File 1/O

DX10 uses a queuing mechanism to service file requests. It is possible to have more than one file
operation going concurrently to different files (by creating more than one file manager task at
system generation time), but DX10 strictly controls operations to each individual file with a first in
first out queue. Thus, only one operation is performed on any given file at any given time. All
requests for service on a file that currently has a request active will be queued and processed one at
a time as each previous request completes.

3.4 DISK FILE ORGANIZATION AND MANAGEMENT

Generally speaking, all DX10 files are disk files. They reside on disk, and portions of them are read
into memory as they are needed by various system and user tasks.

All files have certain organizational characteristics in common. Also, each file type has a few
unique organizational characteristics. These organizational characteristics determine how DX10
manages /O requests and disk space for the file.

The DX10 operating system uses three subsystems to handle the required functions of the file
system. These subsystems, governed by the operating system, and transparent to the user, are the
file utility, the file manager, and the disk manager.

The file utility (FUTIL) is the part of the system that performs assign LUNO calls (for devices as well
as files), create file calls, and other functions, in response to calls from user programs. It performs
them one at a time in a first in first out order. If the 1/O SVC subopcode is greater than or equal to
>90 and less than or equal to > 9F, the file utility subsystem processes the call.

946250-9703 3-11

DX10 /0 System

The disk manager (DSKMGR) is the part of the system that performs disk allocation. It finds disk
space in ADUs in response to requests from FUTIL and FILMGR, and determines how physical
records will be blocked into ADUs. This part of the system sets bits in the bit maps on allocation
and clears them on deallocation. Deallocation only occurs on file deletes. (An internal call mecha-
nism is used.)

The file manager (FILMGR) is the part of the system that performs all file /O in response to
requests from user programs and other system tasks. /0 SVC subopcodes in the range 0 through
>14, and >4A for files that are not KIFs, are handled by the main part of FILMGR. All subopcodes
for KIFs, including the sequential subopcodes supported, are handled by-the key indexed file
manager, which is an optional part of the file manager selected during system generation. This
part (FILMGR and KIF, if used) handles blocking of logical records into physical records and deter-
mines how much disk space to request when a file expands.

The remainder of this section describes the basics of DX10 file organization, file management
techniques implemented by the file utilities, and how organization and management are related to
efficient disk file usage.

3.4.1 File Management Strategy
The DX10 file management strategy is designed to meet three performance objectives:

. To provide access to any physical record of the file using one disk access

U To provide for wide dynamic range of file size without incurring excessive allocation
overhead

° To provide for efficient use of disk storage space

The first objective relates to logical records as well as physical records. Typically, there are several
logical records stored within a physical record, as explained later. If the file management system
can access any physical record in a single disk access operation, logical records within the file can
often be accessed in a single disk operation, making file /O for programs more efficient. Exceptions
include key indexed files where several disk accesses are sometimes required to read or write a
logical record to or from the disk file. (Logical and physical records are discussed in detail later in
this section.)

The second objective relates to allowing files to grow in size, and still maintain an efficient way of
tracking their physical location on disk. As files grow and require more space, sometimes the space
needed exceeds the size of any available segment. The file gets segmented, occupying several
smaller, noncontiguous segments of the available space, rather than one or two larger segments.
The DX10 disk management provides a memory-resident directory list called the File Control Block
(FCB) that catalogues all segments of disk space allocated to the file. The size of the allocated
segments varies, but always corresponds to ADU boundaries.

Allocation overhead refers to the following:
e The time spent in the allocation function

. The disk space wasted when the file does not use all the space allocated (this is possibie
since allocations are always in ADUs)

. The memory space used to catalog allocated disk segments

3-12 946250-9703

DX101/0 System

A successful disk management strategy depends on how well the disk access methods mesh with
the physical attributes of the physical disk to provide efficiency in disk storage. The following
paragraphs discuss the relationship between the disk management strategy and disk access
methods in detail.

3.4.2 Physical Disk Structure

To understand DX10’s disk management system, you must understand the physical disk structure
and how DX10 manages ADUs, since DX10’s disk management methods depend on these struc-
tures. DX10 supports several types of physical disk media. All disk media have certain attributes in
common. For example, all are physically divided into sectors, and space on each of them is
allocated in units of a specific size. The size of these sectors and the number of sectors in one
allocatable unit differ among the disk types. The following paragraphs define the physical attributes
of disks in general, and provide the details on the physical attributes of each type of disk supported
by DX10.

3.4.2.1 Disk Sectors. Disks are physically formatted into sectors. When you initialize a new disk
using the Initialize Disk Surface (IDS) SCl command, you are formatting the disk into the proper for-
mat required for DX10. Sectors are like records to a disk. All tracks are initialized into a one-sector-
per-record size. A one-sector-per-record format defines a sector of data as the minimum amount of
data that the hardware can transfer on any given I/O operation. This record is a characteristic of the
type of disk and is not necessarily the physical record size for files created on the disk. However, the
disk hardware may transfer multiple hardware records (sectors) of data. It is desirable for the
physical records and ADUs referenced by the operating system and application programs to be in-
tegral multiples of the hardware records (sectors) in size. This is discussed in more detail later.

3.4.2.2 Allocatable Disk Units (ADUs). An ADU is the unit of space that is the smailest unit that
can be allocated by the system to a disk file (for primary or secondary allocation). ADU size is depen-
dent on the type of disk, and is comprised of one or more whole sectors, depending on the disk type.
ADUs have the following characteristics:

. An ADU always starts on a sector boundary.

. There are no sectors wasted between ADUs. However, if the total number of sectors on a
disk is not a multiple of the number of sectors in an ADU, there will be a few sectors
wasted at the very end of the disk.

. An ADU may extend over two adjacent tracks.

. ADU size is chosen so that several criteria are met:

— It is either one sector in size or a multiple of three sectors.

— The total number of ADUs on a disk is less than or equal to 65535.

— Partial bit maps for allocating all ADUs will fit on track 0 in the space available for
bit maps. Two sectors are always used for volume and bad track information.

3.4.2.3 Format Information for Supported Disks. Table 3-3 shows ADU, sector, and other format
information for disks supported by DX10.

946250-9703 313

DX10 /0 System

Table 3-3. Format Information for Supported Disks

Heads Units Tracks Sectors Sectors Bytes
Disk per per per per per per
Type Drive Drive Disk Track ADU ADU
FD1000 2 1 154 26 1 288
DS31 2 1 406 24 1 288
DS10 4 2 1,632 20 1 288
D825 5 1 2,040 38 3 864
DS50 5 1 4,075 38 3 864
DS80 5 1 4,015 61 6 1536
DS200 19 1 15,485 38 9 2592
DS300 19 1 15,257 61 15 3840
CD1400-32 2 2 821 64 1 256
CD1400-96 (rem) 1 1 821 64 1 256
CD1400-96 (fix) 5 1 4,105 64 6 1536
WD500-5 4 1 600 32 1 256
WD500-10 4 2 600 32 1 256
WD500A 3 1 2,082 32 3 256
WDB800-18 3 1 1,953 37 3 768
WD800-43 7 1 4,557 37 3 768
WDB800A/38 5 1 4,555 33 3 768
WDB800A/69 9 1 8,199 33 6 1536
WD800A/114 15 1 13,560 33 9 2304
WD900-138 10 1 8,050 67 9 2304
WD900-138/2 10 2 4,025 67 6 1536
WD900-425 24 1 16,636 100 27 6912
WD900-425/2 24 2 8,316 100 15 3840

On a new disk, all of the space except for tracks 0 and 1 are available for file space. The used or
overhead portions of the disk contain such information as volume name, location of the
VCATALOG, bad ADU list space, and bit maps containing ADU allocation information. The ADU bit
maps contain the allocation flags for each ADU, which indicate whether that ADU is allocated to a
file (occupied), or non-allocated (free).

3.4.3 File Structure

Files on disk are composed of physical records. Physical records are composed of logical records
that correspond to the data records you store in a disk file and access with application programs.
Logical record usage is closely related to the application requiring the data stored in the file.
Physical records are related to the physical structure of the disk. Efficient disk access is related to
the ratio of logical records to physical records that you specify when you create a file. Efficient disk
storage is related to the ratio of physical record size to ADU size (an integral multiplier or division),
as discussed in the paragraphs on choosing physical and logical record sizes.

3.4.4 Logical Records

A file consists of a collection of data groupings called logical records. They are called logical
records because each one represents the unit of information that can be read or written by a user
program with one SVC. This division of the file into logical records does not necessarily correspond
to the physical division of data on the disk, as discussed later.

314 Change 1 946250-9703

DX10 1/0 System

The length of the logical records within a file can be constant, or it may vary from record to record in
the file. These two file length possibilities are often referred to as fixed length and variable length.
File types differ in the record lengths they aliow, as follows:

. Sequential files — Allow both fixed and variable length records
. Key indexed files — Allow both fixed and variable length records
. Relative record files — Allow only fixed length records

You do not have to specify whether the records will be fixed or variable when you create the file.
However, you must furnish a logical record length parameter for use by the system to allocate disk
space. The following paragraphs discuss how the system uses the logical record length parameter
in managing file space, and the constraints on selecting a logical record length for each file type.

3.4.41 Constraints for Sequential Files. The system uses the logical record length you specify
when you create a sequential file for the following purposes:

. Computation of initial and secondary allocations for the file

. Returning the logical record length to prog'fams via Read Characteristics and Open SVC
calls

Since logical records in sequential files can be of variable length, the record length you specify
should be an average length of the records that will occupy the file. Using this average length, the
system can allocate file space.

Although the system makes no checks on the length of information you place in a logical record, you
must create a sequential file with a logical record length less than or equal to the physical record
length. Since sequential files are always blocked, there is no gain in making the logical and physical
record lengths the same. In fact, there can be considerable waste. In general, a good logical record
iength for sequential files is one that permits at least three logical records per physical record.
However, the best rule of thumb is: choose the logical record length according to the requirements
of the application.

System handling of sequential files is as follows:

. Records written to the file may be any fength, including zero or an odd number of bytes.
They can also be longer than the logical record length specified when the file was created.

. The system makes no check that the written record length matches the record length the
file was created with. Any regulation of record length must be done by the application pro-
gram, or possibly by the high-level language runtime.

. Almost any length can be written, limited only by the address space the file management
system needs to block and unblock the records.

. Whatever length is written, if a sufficient number of characters is requested on a read, the
number available will be returned. There is no error or other indication if the record con-
tained more characters than requested. Any extra characters are passed over by the
system.

946250-9703 3-15

DX101/O System

U] A logical record occupies as many physical records as needed. Usually, several logical
records occupy one physical record.

] Logical records can span physical record boundaries. Therefore, there is no wasted space
inside physical records.

. Deleted records are not supported by the system. Any application that must use deleted
records must do so by writing a flag value in the record. (Existing records can be deleted
by using the rewrite option and changing a character in the record that your program
recognizes as meaning do not process the record.)

U The system supports rewrite operations of records in sequential files. However, the new
record must be of the same length as the old record. In a binary file (not blank sup-
pressed), this is relatively easy to control. In a blank suppressed file, the length after
blank suppression must be the same, which means it is much more difficult to control.
Any change affecting the position of blank fields can result in an error, even if the total
length of blank fields and the total length of nonblank fields is held constant.

. When a sequential file is created, only the first disk sector of the file is cleared to zero.

° Any write operation establishes a new end-of-medium and renders any records past the
point of the write inaccessible.

3.4.4.2 Constraints for Relative Record Files. The system uses the logical record length you
specify when you create a relative record file for the following purposes:

. Computation of the position of the record within the file

. Computation of the initial and secondary allocations for the file

. Returning the logical record length to programs via Read Characteristics and Open calls

. Limiting the length of data written fo the file (since the records are fixed length records)

. Padding the length of data written (if less than the designated fixed length)
Relative record files must have fixed length records because of the organization of the file. A record
occupies the position in the file based on its record number. Space is allocated for all record
numbers from O to the highest number in the file. Fixed length records make it possible for the
system to calculate the physical position of any logical record written on the disk, relative to the
beginning of the file. Essentially, the location on the disk is determined by the system using the
following calculation for relative record files:

Logical record position =

File position + (record number x record length)
In other words, the system multiplies the fixed logical record length by the record number to deter-

mine how many bytes from the beginning of the file the record is located. (The beginning of the file is
always known by the operating system.)

3-16 Change 1 946250-9703

DX101/0 System

When you create the file, specify a logical record length that is less than or equal to the physical
record length. If exactly equal, the file is unblocked; otherwise it is blocked, with the first logical
record of the file beginning at the beginning of the first physical record.

System handling of relative record files is as follows:
. Records written to the file must be an even numerical length.

. Records written to the file are always the same length (fixed length). If the length
specified by the write operation is too long, the data is truncated. If too short, it is filled on
the right with null characters (binary zeros). There is one exception to this rule: if an
unblocked relative record file has records long enough for two sectors to be occupied by
one record, and a record is written with enough characters to only fill part of the first sec-
tor, the second sector is unmodified.

. Records read cannot exceed the created logical record length.

. In a blocked relative record file, logical records do not span physical record boundaries.
Hence, space can be wasted inside physical records if the physical record size is not an
exact multiple of the logical record size.

. Unblocked relative record files do not use the system’s file buffering and blocking
mechanism (described in the subsection on blocking). Therefore, they are not subject to
the limitations imposed by the address space of the file system. Unblocked records may
be up to 32,766 bytes in length.

U The system does not clear any of the disk space allocated to relative record files. Any
clearing must be done by the application program. Some language runtimes handle this
function.

° The system does not support deleting records from relative record files. Any application
that must handle deleted records must do so explicitly by using some flag value written
in records to be considered deleted. Some language runtimes handle this function.

e The write end-of-file (WEOF) on a relative record file shortens the end-of-medium. You
cannot use the WEOF to lengthen the end-of-medium beyond the space allocated to the
file. ‘

3.4.4.3 Constraints on Key Indexed Files. The system uses the logical record length you specify
when you create a key indexed file for the following purposes:

. Computation of initial and secondary allocations for the file
. Returning the logical record length to programs via Read Characteristics and Open SVCs

The system computes the initial file size from the larger of the initial allocation and the maximum
size that you specify. The system also uses the logical record size, physical record size, and alloca-
tion to compute the disk space required. Only the disk space for data is computed and allocated.
Since index blocks are also taken from the allocated disk space when the file is actually loaded, the
file appears to grow when in fact insufficient area was initially allocated. To compensate, specify an
initial allocation large enough to accommodate the computed index block space as well.

946250-9703 Change 1 317

DX101/0 System

System handling of key indexed files is as follows:

. The logical record may be any length that fits in the physical record. The KIF system main-
tains some index information in each block, limiting the actual record size that can be
written to somewhat less than the size of the physical record.

] Logical records do not span physical record boundaries, allowing wasted space inside
physical records to occur. Correct blocking choice will minimize the amount of waste.
KIFs are automaticaily blocked by the system. (Blocking is discussed in paragraph 3.4.6.)

U The system makes no check that a logical record being written matches the created
logical record length. Any regulation of record length must be done by the application pro-
gram or its runtime.

. The DX10 file system initializes only the log blocks and b-tree roots; no other storager‘is
initialized for KIFs.

KIFs are always forced write, unless modified by the Modify KIF Logging (MKL) SCI
command (described in Volume [1).

3.4.4.4 Choosing Logical Record Length. There are certain formulas for determining an efficient
number of logical records per physical record, and is essentially the blocking concept discussed
along with blocking and blocking buffers. Consider the following points when choosing logical
record length:

. Sequential file logical records can be any number of bytes, including zero.
. Key indexed file logical records must be an even number of bytes and cannot be zero.

. Relative record file logical records must be an even number of bytes, must all be the
same length, and cannot be zero.

3.4.5 Physical Records

Physical records are units of space that correspond in size to the size of /O transfer buffers
allocated by the system. The allocation is based on the value you specify as the physical record
length when you create the file. If you do not specify a physical record length, the system generates
a default value. Usually, physical records contain more than one logical record. Therefore, they are
often viewed as blocks of logical records.

Physical records make disk file I/O more efficient by reducing the number of disk I/O events required
for read, write and rewrite operations. Whenever a specific logical record is requested by a program,
the entire physical record in which that logical record resides is read into a blocking buffer in
memory. As other logical records not contained in that physical record are requested, the physical
records containing them are also read into memory, as space allows.

Subsequent requests for logical records often reference records already in blocking buffers in
memory. This minimizes disk 1/O, particularly for sequential files or sequential access to relative
record files. Write operations also occur to these memory images of the physical records, unless
forced write is specified, as mentioned earlier. As other tasks require memory, the system writes
these buffers out to the disk file as a block of data. This is why the practice of placing several
logical records into a single physical record is called blocking. Blocking is discussed in more detail
later in this section.

3-18 Change 1 946250-9703

DX101/0 System

3.4.5.1 Choosing Physical Record Size. A file always begins on an ADU boundary. DX10
allocates ADUs to a file, and places the firstphysical record of a file at the beginning of the first sec-
tor of the first ADU. DX10 then places the rest of the records into the file according to the following
ADU constraints:

. A physical record always starts on a sector boundary within the ADU.

] A physical record never extends over an ADU boundary unless it starts on an ADU
boundary.

For efficient disk file space utilization, choose the physical record size based on the following
Criteria:

e The physical record size should be a multiple of the sector size.

. The physical record size should be a multiple of the ADU size if larger than one ADU, and
should divide evenly into the ADU size if smaller than one ADU.

. If the file is a relative record file, the physical record size should be an integer multiple of
the logical record size.

U The physical record size should be about three times the logical record length to take ad-
vantage of the blocking feature.

. The physical record size should not exceed 3000 bytes unless all related criteria are met
as outlined in the system generation discussion of the memory-resident buffer in
Volume V. .

Several additional criteria must be considered if files are to be transported between disks with dif-
ferent sector sizes, for example, between a DS10 (sector size of 288 bytes, ADU size of one sector),
and a CD1400/96 (sector size 256 bytes, ADU size of six sectors). The amount of wasted space, the
time to copy the file using one of the DX10 SCI copy commands, and the size of the file need to be
considered. Using the preceding criteria, you can develop a file size strategy for your application
that will minimize transport time and trouble. (Refer to Volume Il for information on how DX10 SCI
copy commands preserve physical record iength:)

3.4.5.2 Default Physical Record Size. The default physical record size is used by the system
when you create a file and specify zero or a null response for the physical record size parameter. The
default is obtained by the system by examining the following parameters:

1. The system inspects the directory in which the file is catalogued. If a default physical
record size was specified for it, the system uses that size.

2. |f no default record size was specified, the value specified during system generation for
the disk drive involved is used. Intermediate directories are not examined.

3. When a disk is initialized (INV) and no value is specified for the default physical record
size, the value specified during system generation becomes the default physical record
size for the disk’s VCATALOG. If adifferent value is given at INV, that value becomes the
default for VCATALOG. The default physical record size determined at INV propagates
throughout the disk’s directories unless you specify a default physical record size when
you create directories (CFDIR).

946250-9703 : 319

DX10 I/0 System

3.4.6 Blocking and Blocking Buffers

Blocking is the practice of using intermediate buffers in memory to accomplish file read/write opera-
tions, rather than by requiring disk access each time file 1/O is requested by a program. Blocking
makes disk file I/O much more efficient, because each disk event takes a proportionately longer
time to complete than the same operation on records in memory.

The block size is the physical record size. The block size represents the size of the buffer transferred
between disk and memory.

For blocked files, the file system allocates blocking buffers outside the user’s program space out
of the same memory area of the machine from which user programs are allocated. DX10 uses
these blocking buffers for the disk transfer. (In unblocked files, the transfer is directly to and from
the buffer in your task that you specify in the I/0 SVC.)

When a program writes to a blocked file, normally the block is modified in memory and is not
immediately written to disk. This saves system overhead by minimizing disk 1/O operations. (Refer to
the discussion of immediate and forced write program attributes for additional information.)

DX10 blocks records on disk at two different levels. Logical records are blocked into physical
records, and physical records are blocked into ADUs.

You choose the block size when you select a physical record size. Rules for choosing logical and
physcial record sizes are discussed in preceding paragraphs. Formulas for selecting the number of
logical records in a physical record are given in the following paragraphs, and must be considered
within the context of the rules for choosing record size.

3.4.6.1 Choosing Logical Records per Physical Record. To select an appropriate ratio of logical
records to a physical record, you should estimate the required logical record length for the applica-
tion. Then you can select a physical record size that will be the block size for that file, resulting in
the least amount of wasted space. Another factor is the tradeoffs involved in the disk access
overhead.

The number of logical records per physical record is called the blocking factor. A good blocking fac-
tor depends on the choice of physical record length. The best blocking factor is the one that results
in the least wasted space (unless disk access overhead is an overriding consideration).

One method of choosing a physical record length is to substitute estimated physical record lengths
into a formula. The physical record length that results in the best blocking factor (least wasted
space) is the best length. The formulas for determining a blocking factor are different for each type
of file. Table 3-4 gives the formulas. They are explained in the paragraphs following the table.

3-20 '946250-9703

DX101/0O System

Table 3-4. Blocking Logical Records for Sequential Files

FR = Blocking Factor per Physical Record
PRL = Physical Record Length
LRL = Logical Record Length
Sequential Files: < FR=(PRL—-2)/(LRL+4)

Relative Record Files: FR = (PRL)/(LRL),
(discard remainder)

KIFs: : FR=(PRL - 16)/(LRL +6),
(discard remainder)

WR = Wasted Space per Physical Record

Sequential Files: WR=0
Relative Record Files: WR = PRL — (FR x LRL)
KIFs: WR =(PRL —16) — FR x (LRL + 6)

For sequential files, the system automatically splits logical records over physical record bound-
aries. When a logical record does not fit evenly into the space remaining in a physical record, it is
carried into the next physical record. That is why there is no wasted space for sequential files.

To get the blocking factor for relative record files, divide the projected physical record length by the
logical record length, and discard any remainder. You can determine the number of bytes wasted by
choosing that physical record length by multiplying the resulting blocking factor by the logical
record length, and subtracting the product from the physical record length. This waste represents
the space unused for each physical record in the file.

To get the blocking factor for KiFs, add 6 to the logical record length, and subtract 16 from the pro-
jected physical record length. Then divide the resulting logical record length into the resulting
physical record length, discarding any remainder. To calculate the waste in this formula, multiply
the divisor (LRL + 6) by the resulting blocking factor, and subtract that value from the dividend
(PRL-16). The result represents the space unused for each physical record in the file.

You can generally determine the blocking factor and wasted space if you know the physical record

size and the ADU size for the disk. You can use the following formula. In the formula, FA repre-
sents the blocking factor per ADU, and WA represents the wasted space per ADU.

946250-9703 3-21

DX10 /0 System

. If the block size is smaller than the ADU size:
— Round the PRL up to the next multiple of the sector size
— FA = ADU/ PRL, discard any remainder
— WA = ADU - (FA X PRL)
. If the block size is larger than the ADU size, the number of ADUs used for each block is:

— A =PRL/ADU, if anonzero remainder results, add one to A
— WA=(AxADU)-PRL

The total waste for a file is the sum of the wasted space per physical record times the number of
physical records and the wasted space per ADU times the number of ADUs in use.

3.4.7 Unblocked Files

Only relative record files can be unblocked files. To specify a file as unblocked, make the physical
record length and the logical record length the same. Special-purpose relative record files such as
program files, image files, and directory files are automatically created with the physical and logi-
cal record sizes the same. (Program files and image files are also created with a physical record
length the same as the disk sector size.) I/O operations to unblocked files do not use intermediate
blocking buffers. A file management disk /O routine transfers the requested record directly
between the disk file and the requesting task’s data buffer.

3.4.8 How DX10 Allocates Disk File Space
DX10 allocates file space on disk on the basis of the following:

. Physical and logical record sizes
. Initial and secondary file allocation parameters

. Whether or not the file is expandable

You specify these parameters when you create the file. DX10 allocates space for the file in multiples
of ADUs. The total file space can be as small as one ADU, or as large as the total available space on
the disk. If you elect the file to be expandable, the file can grow beyond the primary allocation.

The system allocates disk space to files when a program executes a create file supervisor call and
when a program writes sufficient data to a file to fill all previously allocated disk space. When a file
is created, FUTIL requests space and builds the file descriptor records to allow a user program to
use the newly created file. When a file is expanded, FILMGR requests space and updates the file

descriptor record allocation tables to add the newly allocated disk space so the user program can
use it.

DSKMGR scans the disk tables (using a first-fit algorithm) for the appropriate disk. Then it locates
an area on disk that is large enough for the request, or it locates the largest area on the disk.

DSKMGR sets the bits in the bit maps on track O (or clears them, for deletes) to mark the correct
state of the corresponding ADUs.

3-22 946250-9703

DX101/0 System

3.4.8.1 Secondary Allocation Algorithm. The file expansion algorithm allows a file to grow as
needed, and keeps the number of secondary allocations needed to a minimum. The algorithm is in-
tended to keep files from being more than an average of 25 percent empty. (This space can be
recovered using the CD command on most systems.)

The secondary allocation parameter indicates the maximum number of records to be placed in the
secondary allocation space. The File Utility (FUTIL) uses the secondary allocation value and the
logical record size to compute the number of ADUs required to contain records specified in the
secondary allocation. The number is never less than one ADU. The system uses this value when the
file expands. The system computes the amount of disk space needed to expand a file using an
algorithm that involves scaling the number of times the file has been expanded into a muitiplying
factor by using a modified exponential algorithm. Thus, subsequent secondary allocations
automatically and progressively increase in size over the previous allocation.

Files add secondary allocations up to a maximum of 16 'secondary allocations. If the first secondary
allocation has size N bytes, then the second secondary allocation has size 2N bytes, the third has
size 4N bytes, and the sixteenth allocation has 2*N or 32,768N bytes,

3.4.8.2 Exception to the Algorithm. The exception to this algorithm occurs when the available
space on the target disk is in smaller segments than the amount of space indicated by the
algorithm. This is called fragmentation. When fragmentation occurs, the fragments are allocated in-
stead of the indicated secondary allocation. This situation does not allow for maximum expansion
of the file because each allocation to a fragment of space still occupies one of the 16 available en-
tries in the secondary allocation table for each file.

The number of expansions is not always the same as the number of secondary allocation entries oc-
cupied. When the system extends a file, it first attempts to obtain storage that is physically con-
tiguous to the last secondary allocation (or initial allocation if there are no secondary allocations). If
successful, the number of expansions is incremented but the storage is appended to an existing
allocation, so an extra expansion slot is not used.

File usage should be arranged so that expansion characteristics do not create a problem. For
example, if two files are expanding in a “hopscotch” manner on a disk, they can quickly run out of
secondary allocations because each prevents the other from appending extensions to previous
allocations. On a freshly initialized disk, hopscotching may not be a problem because the ex-
pansions get larger fast enough to fill a disk before the secondary allocation table fills up, rendering
the file no longer expandable. On a disk with some fragmentation already on it, the size of available

space limits the expansion of the file, and continued expansion can cause the secondary allocation
table to fill up.

946250-9703 3-23

DX10 l/O System

3.5 LOGICAL UNIT NUMBERS (LUNOs) AND DEVICES
All IO performed under DX10 is done to logical units rather than devices. This characteristic allows
an application program to view different devices equally, and not require special coding for each dif-
ferent device. You can assign a logical unit number (LUNO) to a device or file either in a batch
stream or interactively, with the program accessing the device by that assigned LUNO.
This method facilitates what is known as device independent 1/0. DX10 also supports device depen-
dent I/O, which allows you to take advantage of particular features of a device. This usually requires
an SVC within an assembly language routine. Device dependent and independent /O are discussed
in Section 9. *
The following devices can be considered equivalent by a program:

. 911, 913, and 931 video display terminals

. 733 ASR/KSR data terminals

. 703/707 and 743 KSR data terminals

. 820 RO KSR and 781 RO data terminals

. 915 remote video terminal

. 783/785/787 data terminals

* 763/765 bubble memory terminals

o 804 card readers

. 588, 810, 850, 855, 2230, 2260, LQ45, and 306 line printers

° 940 electronic video terminal/Business System terminal

o 840 RO data terminals
This list can be expanded to include any other device that has a device service routine (DSR)
implemented as described in the DX70 Operating System Systems Programming Guide (Volume V).

All physical devices associated with your configuration must be defined to the system during
system generation.

3.24 946250-9703

DX10 1/0 System

3.5.1 /O Device Access Through LUNOs
When you write a program that performs /O, you must include the following steps:

1. Assign a logical unit number (LUNO) to.the device.
2. Open the logical unit for /0.

3. Transfer data.

4. Close the logical unit.

5. Release the logical unit.

DX10 maintains a list of logical unit numbers (LUNOs) that indicate the corresponding physical
device. LUNOs may be assigned by operator action or by program action and may have one of three
scopes:

. Global LUNOs are defined (and available) for all tasks.
. Station LUNOs are defined (and available) for all tasks assigned to a given station.
. Task LUNOs are defined only for the task that defines them.

When you allow the program to assign the LUNO, use an Assign Luno SVC (or equivalent) rather
than coding a LUNO assignment into the program. This allows the system to control LUNO assign-
ment. There are two strategies for logical device assignment implemented by selecting the scope of
LUNO assignment:

3.5.1.1 Global or Station Local LUNO Strategy. The global LUNO strategy isolates logical device
assignment from program execution. For example, an analog to digital (A/D) converter can be used
as a process monitor, requiring many programs to interact in the process. It would be convenient
to assign a single global LUNO to the A/D converter. All the programs associated with this process
monitor could access the A/D data without making provision in each program for logical device
assignment.

Station local LUNOs may be used to isolate logical device assignment from program execution in a
similar manner. Extending the preceding example, suppose that there are several operator stations,
each with an operator terminal and A/D converter. The strategy is similar to the global LUNO
strategy: each station can have several programs that access the A/D converter. Thus, it would be
convenient to assign a single station local LUNO to the A/D converter. In this case, any program
entered at an operator station could access the A/D converter assigned to the station without pro-
gram provision for logical device assignment. In addition, if the station LUNO numbers are the same
for each station, a particular program may be replicated for every station without reprogramming.

3.5.1.2 Task Local LUNO Strategy. This strategy binds resource allocation assignment to task
execution and is appropriate for tasks having 1/0 access to several different devices or files. For
example, a language processor (such as a FORTRAN compiler) usually allows the user to specify,
on each execution, the input source file (or devnce) the output object file (or device), and the
listing file (or device).

946250-9703 3-25

DX101/0 System

The task local LUNO strategy is appropriate for the preceding example. You supply access
pathnames to the processor and have the processor use task focal LUNO assignments for logical
device assignment. This way, several instances of a processor may be executing at the same time,
each instance having distinct 1/0 channels.

In some applications, it may be desirable to use both strategies; a single program may use global,
station local, and task local LUNOs.

The 1/O process paths for the two strategies are illustrated in Figure 3-1.

OPERATOR ACTION PROGRAM ACTION
1. ASSIGN ASSIGN LUNO ASSIGN LUNO
LUNO SCI COMMAND SVC CALL
[_ TASK LOCAL
GLOBAL OR LUNO STRATEGY
STATION LOCAL. y
LUNO STRATEGY \
OPEN LUNO
2. OPEN LUNO SVC CALL
3. TRANSFER DATA VARIOUS
1/0 CALLS DEVICE
READ,WRITE... > INDEPENDENT
ETC CALLS
4, CLOSE LUNO CLOSE LUNO
SVC CALL
GLOBAL OR
STATION LOCAL 7
LUNO STRATEGY TASK LOCAL
T 7" LUNO STRATEGY
4
5. RELEASE
LUNO RELEASE LUNO RELEASE LUNO
SCl COMMAND SvC CALL
2279463

Figure 3-1. /O Process Paths

3-26 946250-9703

DX101/0 System

CAUTION

When DX10 searches the LUNO tables, it first looks for task local
LUNOs, then for station local LUNOs, and finally for global LUNOs.
Thus, a task local LUNO may mask a station local or global LUNO
with the same number. The system uses global LUNOs in the range
>00 to >90 and >DO0 to >FF. Use of task local or station LUNOs in
this range may produce unpredictable system performance. Typi-
cally, the language processors fail. If automatic LUNO generation is
specified, there will be no masking problem. The global LUNOs in
the range >91 to >CF are reserved for user files.

3.5.2 Access Logic for Devices

DX10 devices are either file-oriented or record-oriented. All terminals and all disk drives (for direct
disk I/0) are record-oriented devices. For other devices, record/file orientation is an option selec-
table during system generation. As described in the following paragraphs, device orientation deter-
mines the programming necessary for access control.

3.5.2.1 Record-Oriented Devices. Record-oriented devices may be shared at the logical record
level. Any task may access a record-oriented device through any LUNO assigned to the device. The
LUNO must have the appropriate scope. A task accessing a record-oriented device need not OPEN
the associated LUNO. If the program can execute in an environment where it accesses a file-
oriented device, the open call must be coded to maintain device independence.

3.5.2.2 File-Oriented Devices. Only one task at a time may have access to a file-oriented device.
A task gains access to a file-oriented device through the OPEN call. Before any other task may
OPEN a file-oriented device, the previous user must have CLOSED it. The following rules apply to
file-oriented devices:

] Any number of LUNOs may be assigned to a file-oriented device, but only one may be
open.

° If an attempt is made to open a LUNO which is assigned to a file-oriented device which
already has an open LUNO, the attempt is rejected with error code > OF.

. If an attempt is made to open a LUNO which is assigned to a file-oriented device and if the
LUNO is already open to the same task making the attempt, then the OPEN is processed
and no error occurs. This provides a convenient way to modify attributes assigned by the
OPEN call.

The system automatically closes all open LUNOs when the task terminates.

For information on using LUNOSs in high-level languages, refer to the appropriate language pro-
grammer’s guide. For assembly language programs, you must use SVCs to access LUNOs.

3.5.3 Using the Printer and Printer Files

The printer on a DX10 system can be accessed in several ways. The printer can also have one of
two access modes (record oriented or file oriented) depending on a system generation option.
(Refer to paragraph 3.5.2.) This paragraph describes the format of data that you use to access a
printeron a DX10 system.

946250-9703 3-27

DX10 1/0 System

All 110, as described earlier, is accomplished by using SVCs that specify a LUNO assigned to the
desired 1/O device or file. Most high-level languages have a method of specifying the connection
between the 1/O unit on the language and the access name of the I/O unit of the DX10 system. The
language runtime assigns the LUNOs and opens them.

The printer is accessed by one of several methods in DX10:

. Direct writes to the printer — This is accomplished by assigning a LUNO to the printer
device and using write SVCs to write to the LUNO. In this mode, the user program must
supply all carriage control to delimit lines and pages. The user program can also supply
special control codes for special printers (for example, letter-quality printers). The DX10
program that services printer requests does not remove any characters from the buffers
that the program requests to be written.

. Writes to a disk file, automatically queued for printing — This is accomplished by
assigning a LUNO to a printer pseudo-device, LP$x, where x can range from 1 to 9. (LP$1
prints on LPO1, LP$2 prints on LP02, and so on.) DX10 creates an intermediate file and
assigns a LUNO to that file. The program’s writes then go to the file. When the LUNO is
released, DX10 queues the file for printing through the SCI print queuing capability. (It
simulates a Print File (PF) command through the background of station zero.) The format
of the file follows the rules for printed files (as described in the next item). It is not possi-
ble to specify the equivalent of the PF command’s ANSI format using the LP$x devices,
or to specify the number of lines per page. Your system disk must also have the direc-
tory .S$PRINT on it.

o Writes to a disk file — To accomplish this, the program assigns a LUNO to a disk file and
writes the records to it. Then, the user or an SCi command procedure uses the PF com-
mand to queue the file for printing. A program associated with SCI then assigns LUNOs
to the file and the printer, and copies the file to the printer device.

The PF command handles the file differently depending on whether or not it finds any non-ASCI|
characters (character code less than >20) in the first record. If the command finds any such
codes, which include special control codes for printers, it assumes that the whole file contains all
necessary carriage control and the records are copied from the file to the printer with no changes.
If the PF command finds no carriage control characters, it causes a form feed before printing, adds
a carriage return and line feed to each line, and inserts a form feed after the number of lines speci-
fied in the lines per page prompt. Therefore, you should not concatenate files together for printing
when some have their own control characters and others do not.

If you specify 255 lines per page when using the PF command, it adds a carriage return and a line
feed to each line. It does not add any other control to the data as it is printed.

Text Editor files do not have any carriage control characters in them. The outputs of programs
such as compilers, the Link Editor, and the SCI batch stream process do have such characters. If
you need to determine whether a file has such characters, use the List Logical Record (LLR) com-
mand to list the first record. Inspect the record for any character code less than > 20.

3-28 946250-9703

4

Designing Applications
- for Data Protection

4.1 INTRODUCTION

Successful applications must be more than fast and efficient. They must provide maximum protec-
tion for the user’s data. There are two major aspects of data protection, as follows:

. Consistent and accurate error reporting
. Transaction logging

Undetected errors can proliferate throughout a user data base, causing inaccurate reporting.
Detecting errors, capturing a meaningful error code, and returning the error code to the program or
operator prevent these errors from proliferating.

Transaction logging provides a record of changes to data, which can then be reconstructed in the
event the data storage media is lost or damaged.

The responsibility for effective error detection and transaction logging falls primarily on the pro-
grams that actually massage the data. Additionally, log files, recovery programs, and a good
recovery scenario support the data protection effort.

This section discusses error reporting and transaction logging principles. Since regular data
backups are an integral part of data protection, also refer to Volume Il for a general discussion of
backup and recovery techniques, and backup/recovery SClI commands.

4.2 ERROR REPORTING

Most errors affecting data operations occur when a supervisor call (SVC) is being executed. DX10
reports any error codes occurring when an SVC call is issued from an assembly language program.
These error codes and recovery suggestions are documented in Volume VI.

However, you cannot get to the error code if the SVC is executed through the syntax of a high-level
language. Some high-level languages have status subroutines to retrieve these error codes, but
often the languages do not report error codes directly.

When using high-level languages, it may be necessary to include subroutines to obtain those error
codes. For any error significant enough to terminate program execution, the program should
report both the DX10 error code, and the activity in the program at the time of the error (such as
which file is being accessed).

946250-9703 41

Designing Applications for Data Protection

4.3 TRANSACTION LOGGING PRINCIPLES

Transaction logging refers to the practice of retaining a description of all changes made to a collec-
tion of data. In the event of major software or hardware failure, you can use transaction logging to
restore your data, with the possible exception of the transaction in progress at the time of failure. To
restore the data, execute a special program against your record of all transactions. The program

should recreate each transaction that occurred since the last backup, and therefore update the data
base.

In this discussion, the description of changes is called a transaction log, and is written either on
magnetic tape or disk file. The collection of data is usually called the data base, and is used here
to mean all user data rather than only files maintained by the TI DBMS system. The data base can
consist of any of the following:

. Key indexed files
. Relative record files
. Sequential files

. DBMS files

. Information maintained in the memories of special-purpose devices connected to the
DX10 system

The program used to read the log and reproduce the changes to the data base is called the recovery

program, and the process of restoring from backup and running the recovery program is called
recovery or the recovery procedure.

4.3.1 When to Use Transaction Logging

The costs of implementing and maintaining a transaction logging system may not outweigh the
benefits. The primary motive for using transaction logging is to possess the capability of restoring
such data to operational integrity in as short a time as possible after system or media failure
occurs. If your data base does not contain critical or volatile data, or your volume of transactions is

relatively low, a regular data backup program may be sufficient. Any time data is lost, reenter the
transactions manually.

The TI DBMS system includes a transaction logging subsystem. If you elect to use it, you may not
need to read this section. The principles outlined here are used in the DBMS subsystem.

If you elect to implement a transaction logging system, you should be familiar with the data flow of
your applications. Successful implementation of a transaction logging system depends heavily on
the planning and designing stages.

946250-9703

Designing Applications for Data Protection

4.3.1.1 Cost of Implementation. The follow'ing list contains some component costs of a trans-
action logging system: ‘

. Implementing the additional code in the applicatioh programs to create the log entries

. Implementing the recovery program

. Maintaining the extra device and/or online storage capacity necessary to write the trans-
action log

. Extra operator effort to maintain the log device and its media (for example, changing tape
reels when one fills up)

The cost of restoring daita (by whatever means) has two basic components:

. Time required by data entry operators to rekey the lost data, or the time required by the
computer operator to run a recovery procedure

. Time lost by the users of the system while waiting for the data to be restored

Depending on the use of the data, the incidental and consequential costs of a failure and/or the time
to recover can be high, and you may want to include such costs in your evaluation of the potential
benefit.

Generally, use transaction logging whenever the overall cost of using it is lower than other methods
of protecting your data base integrity.

4.3.1.2 Computing Mean Time Between Failures. A comparison of absolute costs can be difficult
to compute however. For one thing you must also determine the mean time between failure (MTBF).
A comparison of the relative cost of restoring data with different methods can be made without
knowing the MTBF of the system, but it does not allow you to compute the payback on initial
development or hardware costs.

If you have an extremely critical data base the incidental and consequential costs of a failure can
be high enough to make MTBF a very small factor. For example, a hospital data base maintaining
prescription data for its patients can have an extremely high consequential cost if the data is not
up to date and readily available. In such a case, the shorter recovery time furnished by transaction
logging may be preferred over a less costly manual recovery system.

The MTBF of a system is composed of three factors:

* The overall MTBF of the system hardware. Tl Field Service can sometimes provide this
data.

. The overall MTBF of the system software. Software failures can induce inconsistencies in
a data base. Table area overflow is an example.

. The MTBF of operational procedures. Operator error including backing up to the wrong
disk pack, deleting necessary files, restoring from the wrong backup, and improperly
archiving logs are examples. Proper design and documentation of procedures guards
against many of these. You can gain additional security by delete-protecting files.

946250-9703 4.3

Designing Applications for Data Protection

To arrive at the MTBF, first determine the factor with the longest MTBF. Then note how many
instances of the other two factors occur during that time. The overall MTBF is the time interval
divided by the total number of possible failures.

4.3.1.3 The Log File as Audit Trail. The log file can serve as an audit trail, but the following dif-
ferences should be noted:

. A transaction log does not need to contain inquiries, while an audit trail can require a
record of all accesses to the file, including inquiries. Available storage medium may prove
to be inadequate for such a volume of data.

° A transaction log does not need to contain the identification of the user who initiated the
change, while an audit trail may require user ID or other information.

. A transaction log must be written to a different device from the one containing the data
base. Ideally, it should be written to a device on a different hardware controller. Other-
wise, you risk losing the transaction log along with the data base when failure occurs.

. The log must contain enough data so that the recovery program can remake all the
changes to update a copy of the file (as restored from backup) to the point where the
failure occurred. Such data would include;

— File position data such as key values or record numbers. Do not use internal
pointers such as currency blocks for KIFs since these are not retained when the file
is backed up with usual backup utiities.

— Type of change activity (for example, delete, create, change).
— Some identification of which fields of the affected record changed.

— The new data, either new field contents or amount of change of the value in a
numeric field.

4.3.2 Designing the Recovery Procedures
The success of any recovery operation depends on the design of the recovery procedures. The

following discussion presents a possible scenario for data recovery. First, however, some terms
must be defined.

The term transaction usually refers to any changes made to a data base that accomplish a given
function. For example, entry of an order may require changing quantity in stock in one file and
creating an invoice in another file. Changing the quantity and producing the invoice comprise one
transaction, although changes to many records in several files may be involved. The word trans-
action in this section refers to a function which when properly completed leaves the data base in a
consistent state. If it is not completed, the data base is in an inconsistent state (for example, quanti-
ty in stock may be out of balance). Logging is used to help you restore a consistent state, although
logging by itself may not be enough as noted below.

Each individual record written in the log is referred to as an item or entry in the log. More than one
log entry may be necessary to describe one transaction.

4-4 946250-9703

Designing Applications for Data Protection

The term transaction level logging refers specifically to the case where more than one entry is made
in the log for one transaction, and sufficient control is exercised to guarantee that for each trans-
action, the recovery program is able determine which log entries comprise a complete transaction
and thus avoid making some of the changes related to the partially-completed last transaction.

Without this control, restoring a data base using a transaction log may finish the restore process by
making only part of the changes related to the last transaction. The extent of the changes depends
on when the failure interrupts the transaction or the logging process. This last transaction can re-
quire close consideration to determine exactly which files have been updated and which have not. In
a very complex application, a highly customized procedure may be required to complete the
recovery operation for this last transaction.

The general recovery scenario is given in the following steps. Considerations for designing specific
steps follow the scenario.

1. Back up the file(s) using a suitable utility.

2. Continue normal activity for the usual time interval until the next backup. This produces
atransaction log of the activity on the file.

3. If all goes normally, archive the transaction log, start a new log, and then continue with
step 1. If a failure occurs during the use of the file, proceed with step 4.

4. Restore the file from backup.
5. Run the log recovery program to bring the file up to date to the time of failure.
6. Go to step 2 and proceed with file activity.

4.3.2.1 Step 1: Backup. The utility suitable for backup depends on the type of file position data
retained in the log file. If your position data consists of internal pointers, such as KIF currency
blocks, you must use a form of backup that retains the physical record contents intact. Tl does not
recommend using this form of backup, particularly with KiFs, because KIF currency blocks are not
well enough controlled to provide a consistent means of recording the position in the file at which
the update should be made. (DBMS keeps its own internal pointers in relative record files, and
exercises its own control to assure that the log entries are usable. Therefore, DBMS only requires
that the logical records of the DX10 file remain intact.) The record number for sequential and rela-
tive record files is sufficiently controilled, and does not require a form of backup that retains the
physical records intact.

Additional factors in choosing a suitable backup utility are its speed and its ability to verify the
copy. Verification is very important, and should always be performed when backing up a file. Speed
is usually relative to the size of the file, the speed of the backup medium, and requirements for
availability of the system during the backup process.

946250-9703 4-5

Designing Applications for Data Protection

4.3.2.2 Step 2: Activity Interval. Set the time interval between backups based on the following
factors:

* The volume of transactions processed in a given interval
U The length of the supporting log entries

. The capacity of the log file medium

* The time required to back up the data base files

. The time it takes to perform a restore operation. The longer the log file, the longer it takes
to perform a recovery.

If the time to recover exceeds the time allowed for a recovery based on user requirements and/or
cost, consider making backups more often to shorten the log file.

4.3.2.3 Step 3: Archive the Transaction Log. Archiving the transaction log means making a copy
of the log on another disk pack or magnetic tape, and saving it offline where it can be available if
needed. The archive medium usually depends on the relative cost of the device and/or medium. A
small transaction log may be effectively archived on disk, but you may want to archive a larger log
on magnetic tape. You should archive a log each time you make a backup and start a new log. In ad-
dition, keep accurate records so you can easily determine which logs to use if a recovery operation
needs to be done. The record should be handwritten because such records kept on disk files are sub-
ject to the same kind of failures that can damage your data base.

The number of archived logs you keep will depend on how many generations of backup you need to
keep. Note that in a three-disk rotation system described for general backup, after making a backup
you have two identical disks and one “old” backup. Thus, the log made by operations during the
previous interval is all you need to save. As you process data, you will accumulate a current log.
These two logs are used in recovery.

4.3.24 Step 4: Recovery. Usually, only the current disk or one or two files on the current disk are
lost. In such a case, restore the files from the backup made at the beginning of the activity interval
and execute recovery against the log made during the current operations (since the backup was
taken). You must always use exactly the log entries made since the backup was taken.

A three-disk rotation system allows recovery if the backup made at the beginning of the activity
interval is unusable. Restore from the previous interval’s backup disk and run the recovery program
with both the archived log and the current log. Plan to archive enough logs so that the oldest backup
in the rotation cycle can be used to restore the data.

Suppose, in a three-disk rotation, that while you are making a backup of your current disk a hard-
ware failure damages it beyond use. Now your current disk is unusable, and the copy disk is also
unusable because it was only partly done. You now have only one backup. It is unwise to try to
accomplish recovery without first determining the cause of the preceding failures. You could not
afford to damage your last backup.

If you want to further protect against loss of that backup (made at the beginning of the previous in-

terval), your rotation system can contain four disk packs (or three sets of tape). Archive two logs to
use along with the current log.

4-6 946250-9703

Designing Applications for Data Protection

Note that a four-disk rotation system makes it possible to omit the copy operation in step 4 used to
restore the file(s) to the state it had at the beginning of the current interval. It is only necessary, if a
full disk backup is used, to mount the backup pack and apply the logs to it. However, a four-disk
rotation allows you to do that only once; after running the recovery you have the equivalent of a three
disk rotation backup. If, in recovery (after omitting step 4), you have to restore from backup again,
you should copy the data to a backup to avoid the possibility of a complete loss.

4.3.3 Blocking Log Entries

Log entries can be blocked by the application program so that one write operation to the log file will
write several entries. This can be done with either a disk file or tape file log, but it is usually only
done with a tape file. This is because DX10 does not handle blocking tape records but does handle
blocking file records. The principal problem with blocked log entries is ensuring that the log entries

can be applied to the data base by the recovery program to produce the correct state of the data
base. :

Your log must retain the order of the updates to ensure that the data is correct after recovery. If your
log contains updates in a different order than the chronological order they were applied to the
original file, log entries should specifiy changes rather than the result of a change, or should con-
tain a tag or ID so the recover program can order them properly.

The following example illustrates the possible faulty results from such a design. In this example,
assume there are multiple users on the system, and you are logging transactions on an inventory
master file, with each program blocking its own updates. At the beginning of the example, Item X
has 4 units in stock, and Item Y has 10.
1. User A removes 1 Item X. The new quantity recorded in the data base and log block is 3.
2. UserBremoves 1Item X. The new quantity recorded in the data base and log block is 2.
3. UserBremoves 1Item Y. The new quantity recorded in the data base and log block is 9.
4. User B’s block is full; write it to the log file.
5. User Aremoves 2 Item Y. The new quantity recorded in the data base and log block is 7.
6. User A’s blockis full; write it to the log file.
The log contains the following entries:
Item X new QTY 2.
Item Y new QTY 9.
Item X new QTY 3.
Item Y new QTY 7.

If you have to recover from the log, the quantity for Item Y would be correct but that for ltem X would
not.

9462509703 Change 1 4.7

Designing Applications for Data Protection

The operation illustrated in the following example avoids the problem. Again, assume ltem X begins
with 4 units in stock and Item Y begins with 10:

1. User Aremoves 1 ltem X. New quantity recorded in the data base is 3; the log block shows
a change of —1.

2. User Bremoves 1 Item X. New quantity recorded in the data base is 2; the log block shows
a change of —1.

3. User Bremoves 1 item Y. New quantity recorded in the data base is 9; the log block shows
a change of —1.

4. Block is full; write it to the log file.

5. User Aremoves 2 ltem Y. New quantity recorded in the data base is 7; the log block shows
a change of - 2.

6. Block is full; write it to the log file.
Now, the log contains the following entries:

ltem X decrease by 1.
Item Y decrease by 1.
Item X decrease by 1.
Item Y decrease by 2.

If you need to recover from the log, all quantities will be correct using this procedure.

If you have data in a form that cannot be readily described with a change you must write the entire
new record in the log instead of just the changes. You must also guarantee that the log entries are
applied to the data base in the correct order. One way to do this is by locking the log file before
beginning the update to the data base. You can write whatever log entries you need, block them to
tape if necessary, and unlock the log file after the transaction is complete.

The recovery programs should be coded in such a way that no user input is needed after the data
base update process begins until after it is finished.

You can use tags or some other ID that allows the recovery program to order updates correctly. The
recovery program must be able to read and save several blocks or entries, and determine when it has
read a complete transaction before applying that transaction. You can use a separate entry in the
log marking the end of the transaction, or you can place a flag in the last entry of a transaction. The
application programs may have to use a shared record to assign transaction IDs. This shared record
should be handled with locking, in much the same way as the flag record described for relative
record files. Generally, the transaction ID will not be in chronological order. Only a time and date
stamp made in the correct way will have the chronological order necessary to allow proper recovery
from tape. The time and date stamp concept is discussed in the following paragraphs.

4.8 946250-9703

Designing Applications for Data Protection

4.3.4 File Type for Transaction Log

The preferred file type for a log is sequential. A magnetic tape is a sequential file media, but log files
can also reside on disk files. If you use a magnetic tape, be sure to note the special considerations
for tape files discussed later.

If log entries have a significant number of blanks, you may elect to make it blank suppressed.
Whether or not you make it forced write depends on how you will access and control the file.

Its physical record size need not be large, especially if forced write is selected. Since the forced
write attribute makes the system write the blocks to disk any time a record is placed in them, a large
physical record size can be detrimental to system throughput.

If several programs will be updating the log, a file type that will support shared write operations
(relative record file or keyed index file) could be used, but you must ensure that each program uses
the correct records. You can select either the first record or a record of another file to be used as a
flag record, and have each program use the following algorithm to gain access to the log file:

1. Attempt to read the flag record with lock.

2. If it cannot be locked, delay a short time and go back to step 1. Some languages will per-
form the delay and retry function for you.

3. Update the data base and write the desired log entries.

4. Unlock the flag record. If the flag record contains next record information, use a rewrite to
update that information.

This makes transaction level logging easy. You can depend on the read file characteristics opera-
tion to yield the correct end of file record number only if you can guarantee no other program can
write to the file between the time you read characteristics and finish writing. Locking a flag record
guarantees this condition.

Several programs can use a sequential file, but each program must open the file and close it for
each log operation, according to the following algorithm:

1. Attempt to open the file with exclusive write or exclusive all access privileges. An open
extend operation will cause the program to write log entries at the correct place. It is not
necessary to use a flag record with a sequential file or tape.

2. If you get an access conflict error, delay a short time and go to step 1.

3. Update the data base and write entries to the log as needed.

4. Close the file.

Transaction logging is easy if a file without forced write is used, because the close operation
causes all records to be written and the end of the file to be updated. With a forced write file, the

records are always written and the end of file is always kept up to date without a close operation,
which requires a flag in the last entry for a transaction to achieve transaction level logging.

946250-9703 4-9

Designing Applications for Data Protection

It is desirable to put a time and date stamp in each record of a disk file transaction log. (Use the
same algorithm as given below for tape blocks.) It is less necessary than with tape, but it will give
you a means of identifying records so that if you have to restore logs in a certain order you do not
have to depend on the last update date for the file. Copying the file may alter the last update (de-
pending on the utility used) but not the time and date stamp in the record.

4.3.5 Tape File Considerations

iIf you use magnetic tape for a transaction log, some special characteristics of tape must be
handled by the log and recovery programs. At the time of a system failure, depending on the nature
of the failure and the position of the tape, the end of the current log is indicated by either a tape
error, an end-of-tape indication, an end-of-file mark on the tape, or by a log entry whose date and
time stamp indicates that it was made earlier than the last entry processed. Each block must con-
tain a date and time stamp that reflects the chronological order the blocks are written to the tape.

To correctly stamp a block, the program writing the log should use the following algorithm:

1. Issue a Do Not Suspend SVC of sufficient length to cover program execution up to and in-
cluding the write operation.

2. Issue a Get Date and Time SVC (which does not terminate the DO NOT SUSPEND status).
3. Place the time and date in the block that is ready to be written.

4. Write the block. This will automatically nullify the effect of the Do Not Suspend SVC.

A tape can be made to behave like a sequential file in terms of how the program gains access,
although the error returned by an attempt to open a tape that is open by another program is different
from the error returned with a sequential file. (You use the same algorithm.) This is done by making it
file oriented during system generation. Alternatively, a tape can be made to appear sharable like a
relative record file by making it record oriented during system generation. A flag record is required
to control access as described in the paragraph on blocking log entries. A tape has no record
number; its physical position determines where the next record will be written. It always behaves
like a forced write file.

If you block log entries for tape, allow for the fact that a block being composed in memory at the
time of a failure will be lost. If a transaction requires more than one block to write the log entries, a
flag will be necessary in the last block so the recovery program can avoid applying a partial trans-
action at the end of the log. Blocking is generally desirable because a tape has interrecord gaps that
can take most of the tape if the records are short, limiting the capacity of a reel to something far
less than its theoretical capacity.

A tape being written at the time of a failure has no end-of-medium mark like a file on disk does. A
tape reel may be new or it may be mostly filled with a previous log. If a failure occurs when the tape
is only partly used, the tape may have no errors on it or it may have a parity, format, or timeout error
at the end of the current log, depending on where the tape stopped on the last operation.

4-10 946250-9703

Designing Applications for Data Protection

The recovery program must be able to stop when it detects any one of several conditions:
. Detection of an EOF mark on the tape
o Detection of end-of-tape status
. A tape error occurs
] Detection of a date out of sequence
* Detection of a disk file EOF mark

The program must be able to detect an EOF mark on tape in case you need to recover with more
than one log. The EOF mark indicates the end of a normal log. The program then stops so you can
continue the recovery using the next log.

If you have a high volume of transactions, you may require a multi-reel log. The program must be
able to execute an orderly stop at the end of the tape to allow you to mount the next reel.

If a tape error occurs, the program should stop immediately. Such an error could be an actual error
in the media, preventing recovery of a particular transaction, or it could just indicate the end of the
current log. That is, the record producing the error is a record left from some preceding log, and
was not completely written over by current logging.

To determine the cause of the error (other than a timeout error), the program shouid read the time
and date stamp of the record following that record producing the error. If the time and date pre-
cede the previous record, then you have reached the end of the current log, and recovery is com-
plete. If the time and date of the next block follows that of the last block processed, the program
should flag an error condition. The record will require special recovery efforts.

If an error (other than a timeout error) occurs when attempting to read the next record, then the
first error could easily be a media error. The transaction log tape must be kept relatively new, and
the tape drive should receive regular maintenance to minimize the risk of such an error occurring
in the middle of the transaction log.

The system time and date must be maintained as correct at all times so that if the date of the
record just read is prior to the date of the last record read from the log tape, it always indicates the
end of the current log. If an operator gives the incorrect date and time when executing the IS
command, special recovery efforts may be necessary. -

The program should be capable of running from a disk file, in case your tape drive experiences

hardware failure. If you archive your logs on disk in addition to archiving on tape, you have an
optional means of recovery.

1946250-9703 4-11/412

5

Programming with
Assembly Language on DX10

5.1 INTRODUCTION

This section describes the DX10 assembler, and discusses any special considerations you need to
program in Tl assembly language.

The 990/99000 Macro Assembler (SDSMAC) is the macro assembler supported by DX10. SDSMAC
supports the full set of instructions from the 990 computer inventory, and additionally supports
the following capabilities:

. Extensive macro language

. Use of parentheses in expressions

. Logical operators in expressions

. Relational operators in expressions

. Two additional output options

. Workspace pointer directive

. Copy source file directive

. Define operation directive

. Transfer vector pseudo instruction

. Common/Program/Data segment directives

The macro assembler recognizes the Tl assembly language instruction set. This instruction set is
detailed in the 990/99000 Assembly Language Reference Manual.

DX10 provides a number of supervisor calls (SVCs) that perform services and functions such as
device and file I/O, task synchronization and program support. As described in Section 7, SVCs are
accessed from assembly language programs by coding a supervisor call block and then issuing the
extended operation (XOP) assembly language instruction. Coding the call block involves placing the
SVC code and the data required by the SVC routine into a specific format that can be recognized by
the routine. The XOP instruction is issued in the task’s procedure area, and contains the label on the
first word of the call block, and the XOP level. This level is 15 for pre-written SVCs, 0-14 for user-
written SVCs that can be added during system generation. Refer to Volume V for informaton on
writing SVC processors.

946250-9703 5-1

Programming with Assembly Language on DX10

SVCs can be privileged or nonprivileged. Privileged SVCs are discussed in Volume V, and include
such operations as direct disk I/0. Nonprivileged SVCs are discussed by functional category in Sec-
tions 8, 9, and 10 of this manual.

The remainder of this section discusses some specific points of assembly language programming,
'such as how to take advantage of the concept of program segments, and how to transfer control to
the task to begin execution. An assembly language programming exercise is included at the end of
the section.

5.2 GENERAL PROGRAMMING CONSIDERATIONS

Previous sections describe the general characteristics of the DX10 1/0 system and program han-
dling techniques. Although important, much of the material is geared to the general programming
audience. The following paragraphs enhance that material and supply information specifically for
assembly language programming.

5.2.1 Assembly Language Program Segmentation
Assembly language programs are composed of one or more segments, as described in Section 2.
The types of segments possible in an assembly language program are:

. Task segment
. Procedure segment
. Overlay segment

All programs have a task segment, which is the portion of code that is replicated whenever that task
ID is bid by the system. A task in DX10 is any activation of a program. Each time a task is bid, it is
given a runtime ID for the time it is executing. If the same task is bid several times, each activation
executing concurrently has a different runtime ID. The task segment usually contains the program’s
data, so it is usually not reentrant. Task segments cannot be shared, even if they are reentrant.

Procedure segments are sharable. They are not replicated at each program activation. When a pro-
gram containing both a task and a procedure segment is bid several times, only the task segment is
replicated and assigned separate runtime IDs. Each replication of the task shares the same pro-
cedure code. A procedure is identified by its installed ID and the program file it is loaded from.

Overlay segments are loaded over other seldom-used program code in the task segment. They are
specified as overlays when you link the program, or by installing them as overlays. Once loaded,
a BL or BLWP assembly language instruction accesses the code. During execution, the task
segment code manages the overlays.

As discussed in Section 2, sharing procedure segment code saves memory space. it can also save
overhead, since procedure segment code is usually not rolled in and out. Therefore, when you design
a program, separate the code into functional segments whenever practical. Usually, the decision is
based on the relative sizes of the task and procedure and how many copies will be in use for an ex-
tended period of time.

5-2 946250-9703

Programming with Assembly Language on DX10

To aid in coding shared procedures, you can code the modules using the DSEG directive. DSEG will
produce a data part that can be separated by the Link Editor and placed in the task segment, while
the procedural code (PSEG) is placed in a procedure segment. (The Link Editor Reference Manual
discusses DSEG and PSEG in detail.)

Task, procedure and overlay segments must be assembled, linked together, and installed.
Paragraph 5.3 discusses these steps.

5.2.2 Attaching Procedures to Tasks

The “attach” process makes sure that the flags in the program file entry for the task indicate that
the procedure is to be loaded with the task. This can be done by linking, at the time you install the
task (IT), or with the MTE command (Modify Task Entry).

5.2.3 Transfer Vector

DX10 transfers control to a task through a transfer vector in the task segment of program. The first
three words of an assembly language program task segment must be the transfer vector, coded as
follows:

1st word: Initial workspace address (WP)
2nd word: Initial program entry point address (PC)
3rd word: End action entry point address

An example of the code required is as follows:

IDT ‘TASK’
REF PROC1, ERPROC
DATA WSPACE

DATA PROC1
DATA ERPROC
WSPACE BSS 32 WORKSPACE
#
Task Data
»
*
PROCH EQU % SPROGRAM ENTRY POINT
#
#
ERPROC EQU ¢ $END ACTION ENTRY POINT
*
#* #*
END

2284641
5.2.4 End Action Routines

An end action routine cleans up after an error. End action routines are user-written, and controlled
by the program. They are accessed through a specified address called the end action entry point.

946250-9703 5-3

Programming with Assembly Language on DX10

If the end action entry point address is less than or equal to > 0F, DX10 terminates the task when a
fatal error is detected. If the address is greater than > OF, control is transferred to the specified
address. DX10 releases resources from the task and takes it out of execution when one of the
following conditions occur:

] A fatal error occurs and no end action routine exists.
. The end action routine executes an End Task SVC (> 04).

. The end action routine itself receives an error and has not executed the Reset End
Action SVC.

A Reset End Action SVC should be used only if the end action routine causes normal execution to
resume.

5.2.5 Using SVCs

Assembly language programs access SVCs through a supervisor call block and the XOP instruction.
You must code the SVC call block in the task segment, and issue the XOP instruction from the pro-
cedure segment, task segment or an overlay. Since each SVC has specific parameters, each call
block is particular to the SVC. All SVC call blocks include the hexadecimal code number unique to
that SVC.

SVC call blocks are generally 1 to 14 bytes long, but can be longer if the particular SVC requires
more information. SVC call block formats are described in subsequent sections. Section 7
discusses SVCs, call blocks, and general usage, while Sections 8 through 11 supply specific infor-
mation about each SVC in the following functional categories:

U] Program support calls

e Device l/O calls

. File 1/0 calls
5.2.6 Using Subroutines
You can also implement assembly language subroutines with any assembly language program, by
coding the routine, then using a series of user-designed assembly language instructions to access
the subroutine. Usually, subroutines are sections of code that perform a specific function. The ad-
vantages of using subroutines are:

. The main program can be smaller and more understandable.

. They support top-down, logical structure by providing modularization.

U They lessen programming effort, since a subroutine, coded one time, can be accessed
from several different places in the program.

Any subroutine can contain a call to another subroutine. However, certain conventions must be
used.

5-4 946250-9703

Programming with Assembly Language on DX10

In order to implement a subroutine, you must have a calling sequence, and return logic. A calling se-
quence is a series of assembly language instructions that save the current place in the main pro-
gram then transfer control to the subroutine code. The return logic is the set of instructions that
retrieve the address of the last instruction executed in the main program and then transfer control
back to that place.

There are two types of subroutines:

. Subroutines that use the same workspace as the calling program, therefore using the
Branch and Link (BL) instruction

. Subroutines that require a new workspace, therefore using the Branch and Load
Workspace Pointer (BLWP) instruction

Information on the specifics of implementing subroutines in assembly language are found in the
Assembly Language Reference Manual.

5.2.7 Using Overlays

There are two directives used for coding and controlling overlays. These are the REF and DEF. A
REF directive to a DEF in an overlay causes the Link Editor to resolve the REF to the location the
DEF would be if the overlay were linked completely in the root (phase 0). Refer to the Link Editor
Reference Manual.

Any number of subroutines can be placed in an overlay. They need not be related in function,
although most programmers select related functions. If DSEGS exist in modules linked into an
overlay, the data is placed with the code. This means that every time an overlay is loaded, its data is
reinitialized.

The Link Editor allows you to select automatic overlay loading. With automatic overlay loading, the
Link Editor builds a table in the task segment that allows it to intercept a call to a subroutine in an
overlay. It checks if the overlay is loaded, and if not, loads it.

5.3 PROGRAMMING WITH ASSEMBLY LANGUAGE

The following paragraphs describe the steps necessary to successfully write and implement an
assembly language program. SCI commands mentioned in this section are discussed in detail in
Volume lI.

5.3.1 Writing Assembly Language Programs

You can write assembly language programs using the Text Editor (described in Volume IV). You can
also implement programs prepared externally by entering them into the system using a card reader
or magnetic tape. If the externally-prepared program is in source code format, copy the program into
a sequential file and then proceed with assembling and linking, or assemble from the tape or card
reader. If the program is already assembled, copy it to a file and link it.

946250-9703 5-5

Programming with Assembly Language on DX10

To generate an assembly language program using the Text Editor, you first invoke the editor using
the XE command, press the Skip key to have the editor.generate a fresh sequential file (take the
defauits for exclusive edit and line length prompts). You can then enter the program code line by
line. When you finish entering source code, exit the Text Editor using the Quit Edit (QE) command.
Respond NO to the ABORT? prompt, and supply a pathname in response to the QUTPUT FILE
ACCESS NAME prompt. The editor writes the source code to that file in printable format. The file
does not need to be precreated, but if it is, it must be a sequential file. (Refer to the Text Editor
Manual (Volume V) for complete information on using the Text Editor.)

NOTE

Throughout this manual, the names of keys are generic key names.
In some cases, the names on the keycaps of the terminals match
the generic key names, but in many cases they do not. Appendix A
contains a table of key equivalents to identify the specific keys on
the terminal you are using. Drawings that show the layout of the
keyboard of each type of terminal are also included.

If the program is in segments, such as a task segment with attached procedure segments or overlay
code, you can generate the segments separately, and then link them together using the Link Editor.

When generating an assembly language program in one module, take the desired structure into ac-
count. If the program is composed of a task segment plus attached procedure segments or overlay
segments, and you want to use sequential libraries in the Link Editor, you should generate the code
so that the procedures are first, the task is second, and any overlay code is last. This way, when you
assemble the program, the object output will be in the correct order required for linking and install-
ing. (If you assemble in separate modules, you can link them in any order.)

5.3.2 Assembling Assembly Language Programs
To-assemble the source code, use the Execute Macro Assembler (XMA). You can assemble modules
of the program separately, or you can include them in one module.

When executing the XMA command, supply the pathname where you stored the source code as
the SOURCE ACCESS NAME. You also supply a pathname for the OBJECT ACCESS NAME, where
the assembler places the assembled output. The LISTING ACCESS NAME is a file for the results
of the assembling operation, showing the program line-by-line, the address references, and any
errors that occur. The ERROR ACCESS NAME is a file where only the error references, if any, are
written. Enter the appropriate response to each prompt and press the Return key after each
response. The assembler begins execution as soon as all the entries are made.

MACRO ASSEMBLY COMPLETE, nnnn ERRORS, nnnn WARNINGS
If the assembler detects any errors, you must reenter the Text Editor and correct the source file.

Consult the Assembly Language Reference Manual if you need help in correcting any of the
errors. When all the errors are corrected, reassemble the program.

5-6 946250-9703

Programming with Assembly Language on DX10

5.3.3 Linking Assembly Language Programs

The Link Editor links separately-assembled segments into a program. It can also link segments that
you assembled together in one module. Assembled task segments that are entirely self-contained
(no DSEGs or REFs) do not need to be linked and can be installed directly into a program file using
the IT command. Such tasks can have attached procedures, but you must reference data and/or
routines without REFs (or DEFs).

If the assembled segment contains references to external programs or modules, you must link the
segment to those modules, since the Link Editor resolves external references between two or more
independently assembled modules.

The Link Editor Reference Manual focuses primarily on how to link assembly language programs.
There are several variations on the procedure that depend on the program structure. They are
discussed in detail in the manual, and the general steps are outlined in the following paragraphs.

You must create a control file for the Link Editor, as described in the Link Editor Reference Manual.
The control file specifies the assembled object modules that you want to link together, and contains
link directives. You can link tasks and procedures, or produce partially linked modules to be in-
cluded in other modules.

When you execute the Link Editor, (using the XLE command), supply the control file pathname as the
CONTROL ACCESS NAME. Also supply pathnames for the output file and the listing file (generated
as the Link Editor executes). You can use the listing file to facilitate debugging. Accept the default
values for the print width and page length prompts.

The output of the Link Editor is in one of three formats. You specify the format you want in the con-
trol stream. Two of the formats, normal tagged object and compact tagged object, are output to a
sequential file and must be installed in a program file before execution. The third format, image, is
installed by the Link Editor directly to a user-specified program file. If you specify IMAGE format in
the link control file, you do not need to install the program.

5.3.4 Installing Assembly Language Programs

Installing a program means placing it on a program file. As mentioned in Section 2, you should
create and use your own application program files. Programs should be installed on the system pro-
gram file only if specific characteristics, such as memory residency, are required. Using your own
program files will increase application transportability, and make revision of the operating system
easier.

Since an assembly language program can be constructed in several segments, you must consider
the structure of the program when you perform the install operation(s). If the program consists of
only a task segment, use the Install Task (IT) command. If the program is a task segment with
attached procedures or overlays, you must install the procedures and overlays separately. Use the
Install Procedure (IP) command for procedure segments, and the Install Overlay (I10) command for
overlay code. If the task is a real-time task, you must use the Install Real-time Task (IRT) command
to install it.

If a progfam contains procedure segments, you must install the procedures first, then the task seg-
ment, and then any overlays. Linked object files must contain the separate object modules in that
order, so you can install them correctly. Since some of the rules for installing segments of a pro-

gram also apply to higher-level languages, the subject is discussed in more detail in a separate
section.

946250-9703 ’ 5.7

Programming with Assembly Language on DX10

5.3.5 Executing Assembly Language Programs
There are basically three ways to execute assembly language programs, as follows:

. Bid them from a batch stream using the .BID, .QBID, .DBID or .TBID primitives
. Bid them interactively using the XT, XTS, or XHT SCI commands
. Bid them from another task using an SVC

Since any activation of a program can be referred to as a task, the following discussion uses the
term task rather than program. In this context, executing a task is not limited to activation of code
installed as a task segment only. The task can have attached procedures and overlays.

The .BID, .QBID, .DBID, and .TBID commands are SCI primitives. Primitives are the lowest-level
components of the SCI language as described in Section 6. Tasks initiated by the .BID task exe-
cute in foreground and can pass synonyms from the terminal communications area (TCA) to other
tasks. The .QBID primitive bids a task in background. The .DBID primitive bids a task in back-
ground mode in an unconditionally suspended state, and waits to be activated by a debug com-
mand. The .TBID primitive bids a task and terminates SCI so that the SCI task does not occupy
system resources. SCl must be activated when the task terminates. Refer to Section 6 for further
information.

The XT, XTS, and XHT SClI commands are issued either interactively from a terminal or from a
batch stream. The XT command executes a task in deep background. In deep background, a task is
not associated with SCI in either background or foreground. SCI remains active at the terminal.
Since this allows you to continue working at the terminal, use XT only to execute tasks that require
no terminal affiliation or terminal I/0. Send 1/O to files or special devices.

The XTS command executes a task and suspends SCI at the terminal until the task terminates. Use
XTS to execute tasks that interact with the terminal to avoid contention between SCI and the task
for terminal access. The XHT command executes and halts the task immediately, by placing the
task in memory in a suspended state. This is useful for debugging, since you can assign break-
points before reactivating the task. Each of the commands you use for executing tasks are
detailed in Volume II.

5.3.6 Assembly Language Programming Exercise

The brief assembly language program given in this section displays a message and requests the
input of three numbers. The procedure given here assumes that a VDT is used. It is also assumed
that a printer (LPO1) is available.

1. Enterthe program into the computer.

a. Assuming you have powered up and logged on, invoke the Text Editor by executing
the XE command.

b. Since you have no previous source file to edit, press the Skip key to bypass the
FILE ACCESS NAME parameter. If you were reentering the source file to correct
compilation errors, you would specify the pathname where you stored the source
code.

5-8 '946250-9703

Programming with Assembly Language on DX10

Enter the following sample program:

33 3360 30 3636 30 33030 3030 3 320 3 30 30 30 302036 303000 36 3030 3300 3B 3 300 3 30303030 030 303033 0 30 330 3

DATA SECTION #*

B30 304 3 3036 30 3030 30 3030 I 3023030 300 3030 30 S0 S 30 I I ISR SRR R R
IDT “RESPONSE”

330 33033 2 336 36 40 363 36 3 3030 39 203 3030 3030 30 3 30 300 30 30 R 0 30 30 30 3050 3 SRR AR

#* OPENING DATA WORDS *
* 1. WORKSPACE POINTERS *
* 2. PO VALUE AT START OF PROGRAM #*
* 2. END ACTION ITEM #*
Fe e HedE B A 36 3330 340 33 36 3 36 36 30 38 35 26 36 36 33636 30 30 34 300 3 0 340 30 H 3090 30 3030 330 3 Fodt e A 30 030 403

DATA WS WORKSPACE FOINTER ADDRESS

DATA START FC AT PROGRAM BEGINNING

DATA O END ACTION (NONE SPECIFIED)
WEF R3s 322 WORKSPACE REGISTERS
DOFEN DATA O I1/0 REQUEST

BYTE 0,220 OFEMN-REWIND LUND 220

DATA O

0DATA O

DATA ©

DATA O
MG DATA O 1/0 REQUEST

BYTE B, 320 WRITE AZCII ON LUNG 20

DATA O

INATA GREET MESSAGE LOCATION

DATA O

DATA MSSGL-GREET MESSAGE LENGTH
L T T R R TR R R LS R R A S
SPECIFY THE FIRST MEZSAGE #*
B4 B B I B3 B3 363 3636 36 40 336 30 30 I 2 30 2 0 BRI S B B I3 3RS 3 I S S B

SREET DATA >0A0D)
TEXT “HELLD, PLEASE INPUT NUMBER OF ITEMS<
TEXT - SOLD TODAY. USE 4-DIGIT NUMBERS.
DATA >OAOD

M35G1 DATA O I/0 REQUEST
BYTE R, 20 WRITE TO LUND >20
BRYTE 0,40 RESPONSE FOLLOWS MESSAGE
DATA ITEMI1
DATA © CHARACTERS SPECIFIED IN INFUT ROUTE
DATA 10 MESSAGE LENGTH
DATA STR1 LOCATION OF INFUT FPARAMETERS
STR1 DATA STORE SAVE PARAMETERE IN STORE
DATA 4 STORE 4 CHARACTERS

ATA O CHARACTER COUNT AFTER INPUT
STORE BSS 12
ITEM1I DATA Z0AOD

TEXT “ITEM 1~

MS3G2 DATA O 1/0 REQUEST
BYTE B, >20 WRITE TO LUND 20
RYTE Q.40 READ AFTER WRITE
DATA ITEMZ
DATA O
DATA 10 MESSAGE LENGTH
DATA STRZ
STRZ2 DATA STORE+4 ZND ITEM CHARACTERS STORE LOCATION
DATA 4 STORE FOUR DIGITS
DATA O

ITEMZ DATA >0AOD
TEXT ~ITEM 27

MSSG2 DATA O 1/ REGQUEST
BYTE B, 20 WRITE TO LUND 20
BYTE 0,240 READ AFTER WRITE
DATA ITEM2
DATA O
DATA 10

DATA STRZ

Programming with Assembly Language on DX10

5-10

DATA STORE+2
CATA 4

DATA O

DATA Z0AOD

TEXT “ITEM 27
[ATA O

BYTE >B,>20

LATA O

DATA GDODEY

DATA O

DATA CLOSE-BODDBY

ZRD ITEM STORE LUOCATION

I/0 REQUEST
WRITE TO LLND >20

MEZSAGE LOCATION

MESSAGE LENGTH

BB 0303 30 H B A e 3 I 3 A3 e e R BB B 3 330 B 36 3 S 3R 30 30 30 3 3

FINAL MESSAGE

3*

e 330 3 30 30 H H 3 B 00 0 B 3 6 3 4 36 36 3 B e 0 30 HH 30 30 3B 20 30 30 I3

GOODRY DATA >0A0D
TEXT “THANE YOLL.
BYTE 327

THAT COMPLETES TODAY”

TEXT 7S TRANSACTIONS. 7

DATA >0A0D
DATA O
BRYTE 1.320
DATA O
DATA O
DATA O
DATA O
EOF BYTE 14,0

START XOF @OFEN, 15
XOP @MSEGO, 15
XOF @MSZG1,15
XOP @eMSSGZ, 1T
XOF @GMSSG32, 15
XOP @MSEG4, 15
XOF @CLOSE, 15
XOP @EOP, 1S
END

170 REQUEST
CLOSE LUND 220

TERMINATE TAZSK

OFEN LLUND >20

OPENING MESSAGE

INPUT 1

INPUT 2

INPUT =

EXIT MESSAGE

CLOSE FILE, UNLDAD/REWIND
TERMINATE TASK

d. Press the Command key and enter QE, and then press the Return key to quit the
Text Editor. Specify NO to the ABORT? prompt, and supply an appropriate path-
name for the source code to be stored under.

2. Assemble the program.

a. Invoke the macro assembler by entering XMA. Supply the pathname where the
-source is stored, the pathname for the object output and a pathname for the
assembler listing. The following shows example pathnames, which place the

listings on the system disk.

SOURCE ACCESS NAME: .SQOURCE

OBJECT ACCESS NAME: .OBJECT

LISTING ACCESS NAME: .LNKOUT
ERROR ACCESS NAME: (Press the Return key)
OPTIONS: (Press the Return key)

MACRO LIBRARY PATHNAME:

(Press the Return key)

PRINT WIDTH: 80
PAGE LENGTH: 60

946250-9703

946250-9703

Programming with Assembly Language on DX10

The assembler runs in background mode. Enter a WAIT command to wait for com-
pletion of the assembly. When the assembly completes, the following message
appears:

MACRO ASSEMBLY COMPLETE, nnnn ERRORS, nnnn WARNINGS

Press the Return key to reenter the command mode.

Link the object code.

a.

First create a command file for the Link Editor. Invoke the Text Editor by entering
XE. Press the Skip key in response to the FILE ACCESS NAME prompt, then press
the Return key twice.

Enter the following Link Editor control file:

TASK LANGTST
INCLUDE .OBJECT
END

Press the Command key, enter QE, and then press the Return key to quit the Text
Editor. Respond NO to the ABORT? prompt, and supply a pathname where the Text
Editor can store the control file. You can respond to the rest of the prompts with the
Return key.

When the SCI prompt returns, invoke the Link Editor by entering XLE and pressing
the Return key. Supply the pathname of the control file you created and the path-
name of a file where the results of the linking process can be placed by the Link
Editor. Specify another pathname for the listing of the linking process. Accept the
print width and page length defaults by pressing the Return key.

The Link Editor executes in background mode, so you can enter WAIT and press
the Return key to wait for the linking process to complete. When the Link Editor
terminates, the following message appears:

LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS

Press the Command key to return to SCI.

5-11

Programming with Assembly Language on DX10

4. Install the program.

a. Enter the Install Task (IT) command to place the program on the system program file.
(Zero causes the IT command to use .S$PROGA as the program file. We are using
this file for simplicity, but do not necessarily recommend using the system program
file for user programs.) Specify the following parameters:

PROGRAM FILE OR LUNO: 0
TASK NAME: LANGTST

TASKID: 0
OBJECT PATHNAME OR LUNO: .OBJECT
PRIORITY: 4

DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES: NO

The system provides the installed ID, and displays it in the following form when the
installation completes:

TASK NAME = LANGTST
TASK ID=nn

Press the Command key to return to SCI.
5. Execute the program.

a. Since the program uses LUNO > 20, that LUNO must be assigned to the VDT. Use the
Assign LUNO (AL) command and respond as follows:

LUNO: >20
ACCESS NAME: ME
PROGRAM FILE?: NO

The message ASSIGNED LUNO = >20 appears. Press the Command key to return
to SCI.

b. Execute the program using the Execute Task and Suspend (XTS) SCI command.
Select the following parameters:

PROGRAM FILEORLUNO: 0
TASKNAMEORID: LANGTST
PARM1: 0
PARM2: 0
STATIONID: ME
The test program now executes and displays the following on the screen:
HELLO, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT NUMBERS.

ITEMA1

5-12 946250-9703

Programming with Assembly Language on DX10

Enter a four-digit number. The following is then displayed:
ITEM 2

Enter a four-digit number. The following is then displayed:
ITEM 3

Enter a four-digit number. The following is then displayed:
THANK YOU. THAT COMPLETES TODAY’S TRANSACTIONS.

The message is displayed briefly, then control returns to SCI. Delete the task entry by using the
Delete Task (DT) command as follows:

DELETE TASK
PROGRAM FILE OR LUNO: O
TASK NAME OR ID: LANGTST

Use the Delete File (DF) command to delete the following:
.SOURCE
.OBJECT

.LNKOUT
.CNTRLINK

946250-9703 : 5-13/5-14

6

SCI Programming Language

6.1 INTRODUCTION

The SCI programming language is available for creating SCl commands to support applications, or
for modifying existing commands to better support your particular operations. If you are not familiar
with SCI and SCI commands, refer to Volume Il before continuing with this section.

All SCIl commands shipped with the DX10 system are written in the SCI programming language. Pro-
gramming in SCl is logically similar to programming with common high-level languages. The SCI
programming language is composed of commands called primitives, variables called synonyms,
field prompts, and keywords, and a syntax structure. Together, these components provide a conve-
nient way of tailoring menus and SCI commands to meet your application needs.

The following paragraphs provide background information that is helpful in understanding a dis-
cussion of the SCI programming language. This section discusses how to create and modify SCI
command procedures, processors, and menus, and then presents a complete guide to the SClI
programming language itself. The final portion of the section describes the environment in which
the SCI command procedures and processors operate, including procedure file and directory
names, batch stream operation, and common error messages.

6.1.1 What an SCI Command Procedure Is

When you enter a valid SCI command into the system in response to the SCI prompt ([]), you initiate
the execution of an SCl command procedure. The command procedure is similar to a program since
it can request information from you interactively, then take the information and perform a single
operation or several specific operations.

An SCI command procedure can execute other SCI commands just as a program can execute
subroutines. It can also place tasks in execution through the .BID, .QBID, .DBID, or .TBID
primitives, and invoke menus to be displayed on the terminal screen. These menus and the SCI
command procedures, which are composed of the commands and syntax of the SCI programming
language, are described later in this section.

To create a new SCI command, you must create an SCl command procedure, and install it in a pro-
cedure library or directory. Create a sequential file containing valid statements composed of the SCI

language, and place that file in a standard directory that you have designated to contain only com-
mand procedures and menus.

A command procedure collects the necessary input by displaying field prompts on the screen and
receiving operator input, or by recognizing input coded in the procedure itself. It then sets up the
environment required for the operation, and finally bids a pre-written task to complete the opera-
tion. The task, called a command processor, can be a user-written task, or one of the system tasks.
The command procedure uses one of the bid primitives (.BID, .QBID, .DBID, or .TBID) to place the
task into execution. The parameters needed by the task are passed to it from the command
procedure.

946250-9703 ' 6-1

SCI Programming Language

The following example performs a list directory function. It requests the pathname and listing
access name from the user, and then bids a task with ID > 32 to do the listing operation.

LD(LIST DIRECTORY),

PATHNAME = ACNM,

LISTING ACCESS NAME = *ACNM

.BID TASK=>32,CODE = >32,

PARMS =(>32,@ &PATHNAME, @ &LISTING ACCESS NAME)

The first line of the example defines the name of the command procedure. The next two lines dis-
play prompts on the screen by specifying a character string to be displayed, and equating it with
the ACNM prompt designation. The ACNM specification requires that the input be a valid path-
name or device. The next line bids task >32 and passes the parameters required for the listing
operation through the CODE and PARMS keywords. The parameters are supplied by the operator

in response to the field prompts. The ampersands (&) in the PARMS list denote field prompt
names.

6.1.2 What a Procedure Directory Is

A procedure directory is any directory containing SCI command procedures. For example, the direc-
tory .S$PROC on the system disk contains all the system SCI command procedures. (You can view
the .S$PROC directory using the LD command.)

When an SCI command is executed, SCI searches the .S$PROC directory for a file name matching
the command name. If it exists, SCI executes the file; if not, an error is returned.

When you create several related SCl commands, store them in a separate command procedure
directory. Use the .USE primitive to specify this new directory as one of the user directories. SCI
then automatically searches this new directory as explained later. Refer to the discussion of the
.USE primitive for more information.

To create a command procedure directory, use the standard Create Directory File (CFDIR) SCI com-
mand. Further details are given in subsequent paragraphs.

6.1.3 What an SCI Command Processor Is

An SCl command processor is any task placed into execution from an SCl command procedure. The
task can can be a simple routine or an entire applications program, and can be written in assembly
or any high-level language supported by DX10. You can use the .BID .QBID, .DBID or .TBID primitive
in a command procedure to place a command processor task into execution.

SCI processors can access system processor subroutines that perform particular opera:[ions, or
provide the interface between procedures and processors. For example, the S$STOP processor
subroutine terminates the processor, and allows SCI to resume in an orderly fashion. Always
include this subroutine at the end of any program used as a command processor. The available
system processor subroutines are described in the next paragraph.

6-2 946250-9703

SCI Programming Language

6.1.4 What a Processor Subroutine Is
There are three types of processor subroutines included with DX10, and available for use by an SCI
processor. These types are:

. String utility subroutines
. SCl interface subroutines
e Terminal local file display subroutines

String utility subroutines operate on character strings passed from SCI to the particular routine.
You can use these subroutines to convert binary integers to ASCII, convert from ASCII to binary in-
teger, compare two strings, or copy a string into another address.

SCI interface subroutines allow a command processor to access its parameters from the com-
mand processor (that is, its PARMS and CODE values), to locate and modify the synonyms defined
for the terminal, and to return control to SCI. The parameters they access are located in the ter-
minal communications area (TCA), so these subroutines include an S$GTCA operation (Get TCA),
and an S$RTCA operation (Release TCA). The remaining interface subroutines can be issued any
time after an S$GTCA call and before an S$RTCA call.

Terminal local file display subroutines open, close and construct records in the terminal local file
(TLF). Special routines are required because the TLF is a file of ASCIl data and is accessed by SCI
itself. Whenever you wish to place data or text on the terminal screen, you must open the TLF, write
records to it and close it when you finish.

The available processor subroutines are discussed individually later in this section.

6.1.5 What the SCI Language Is

The SCI language is a programming language made up of commands and data definition
statements. These statements direct the operation of DX10 according to the structure of the com-
mand that they compose. The compconents of the SCI language are as follows:

] Primitives
. Variables
. Special characters

Primitives are the basic unit of the SCI language. They are predefined operators recognized by SCI
as verbs, and are similar to verbs in high-level languages. These primitives perform such diverse
functions as logical operations, data manipulation, control, and task activation. The format of a
primitive is a verb, preceded by a period (.). Examples of primitives are .IF, .SHOW, .STOP, and .BID.
SCI primitives are discussed in more detail later in this section.

Variables in the SCI language are similar to variables in high-level languages. You can assign dif-
ferent values to them according to the requirements of the command procedure. The three types of
variables in the SCI language are field prompts, synonyms, and keywords. Variables are explained in
detail later in this section.

946250-9703 6-3

SCI Programming Language

Certain special characters are recognized by the SCI language as indicators and delimiters. For ex-
ample, an asterisk (*) in column one indicates that the line is a comment line; if it is in any other col-
umn, it denotes an optional field prompt. An exclamation mark (!) marks the end of a record. All valid
special characters are defined later in this section.

6.2 IMPLEMENTING COMMAND PROCEDURES, PROCESSORS, AND MENUS

The following paragraphs provide a further overview of the SCI programming language by explaining
how to create and implement new command procedures, processors, and menus. The steps required
to complete these processes allow a better understanding of the details of the programming
language itself.

6.2.1 Creating and Changing SC| Command Procedures

To create a working SCI command procedure, you must write the command procedure using the SClI
language and syntax, and then install the procedure in a procedure directory. The procedure direc-
tory must already exist. If you want to create your own procedure directory, do so before creating
command procedures. There are three ways to create a command procedure:

. Using the Text Editor
. Using the .PROC primitive interactively
. Using a batch stream

These are explained in the following paragraphs.

6.2.1.1 Using the Text Editor. Use the Text Editor to enter the written procedure into the system.
Install the procedure by storing it under a procedure directory when you quit the Text Editor. The file
name you store it under must be identical to the procedure name specified on the first line of the

procedure code. That name can be up to eight characters long, and can contain the special
character $.

Figure 6-1 is an example of a command procedure that performs a show file function. The procedure
name, SF, must be defined on the first line. If you are using the Text Editor, you must specify a
pathname such as VOL1.SAMPLE.SF when you quit the Text Editor, to indicate where the system
stores the new file. In the example pathname, SAMPLE represents the name of the command direc-

tory. The file name, SF, is identical to the name defined on the first line of the command procedure
itself.

SF (SHOW FILE),
FILE PATHNAME = ACNM(@SFP)
.SHOW &FILE PATHNAME

Figure 6-1. SF Command Procedure Example

6-4 946250-9703

SCI Programming Language

When you execute this command procedure, by entering SF in response to the SCI prompt ([), the
first line of the command procedure displays along with the prompts. This display serves to identify
the command procedure to the user.

6.2.1.2 Creating Command Procedures Interactively. You can also create new command pro-
cedures interactively. Use the .PROC primitive to alert SCI that you are entering lines in a com-
mand procedure, as shown in the following example. The first step in this example creates a new
procedure directory, which may not be necessary in every case. Once you have entered the .PROC
primitive, SCI accepts strings until it receives the .EOP primitive. Note that this example is not
intended to create an executable procedure.

[JCFDIR PATHNAME =SYSVOL.MYLIB,MAX =101
[J.USE SYSVOL.MYLIB,.S$PROC
[PROC EXP(EXAMPLE PROCEDURE),
EXAMPLE NAME = NAME,
NUMBER = INT
.BID TASK= >55PARMS =(“&EXAMPLE NAME",“&NUMBER”’),
.EOP
[Inext SCI command

A new command procedure name must be unique within the procedure directory where it resides.
You can create a command procedure with the same name as an existing SCI procedure only if you
place it in a separate procedure directory. If you modify an existing command procedure to perform
alternate functions, do not store the new command procedure in the .S$PROC directory, unless you
plan for it to completely replace the standard SCI command by that name. Complete replacement is
not recommended in most cases.

The .EOP primitive signals the end of that command procedure, and SCI begins recognizing input as
SCl commands. You can then issue any valid SCI command, including another .USE or .PROC
primitive to begin another command procedure.

If you have many command procedures to enter into the system, this method becomes rather time
consuming.

6.2.1.3 Using a Batch Stream. Batch streams are files that contain standard SCI commands. The
system reads these commands from the file just as if they were issued by a user at a terminal. The
prompt responses are coded into the batch stream itself. To create a command procedure using a
batch stream, you create a batch stream file that contains the commands described previously for
creating them interactively. This is very useful if you want to install several new procedures in dif-
ferent procedure directories.

Batch streams and batch stream operation are explained in detail in a later paragraph.

6.2.1.4 Creating a Procedure Directory. A procedure directory can be any directory of sequential
files. The system’s procedure directory is .S$PROC. All SCI commands that are shipped with DX10
are sequential files in the .S$PROC directory. Although you can add procedures to the .S$PROC
directory, it is usually more convenient to create your own procedure directories, according to the re-
quirements of your applications. This practice can also make transporting applications easier.

946250-9703 6-5

SCI Programming Language

To create user procedure directories, use the CFDIR SCI command. Specify a maximum size
approximately 10% larger than the anticipated size to minimize access time. If you want the direc-
tory on the system disk, specify a pathname beginning with a period (.), since pathnames beginning
with a period always reference the system disk. If you want the directory on a separate volume,
indicate the volume name as the first item in the pathname. If your applications are modular, it is
usually most convenient to have the procedure directory accompanying the application programs
that use the commands. ‘

Sometimes a procedure directory is called a procedure library, since it contains a collection of func-
tionally similar files. References to procedure libraries usually occur in error messages relating to
directory/procedure discrepancies. For example, if you store a new procedure under a file name dif-
ferent from the name you gave it on the first line of the procedure, the following message appears
when you attempt to execute it:

**** ERROR FF02 **** PROCEDURE LIBRARY. ERROR

The .USE primitive ensures that you always access the correct procedure directory. The .USE prim-
itive can have from one to five procedure directories as parameters. Within a command procedure,
you can issue a .USE primitive before bidding another procedure. SCl searches the directories in
the order specified. You can also specify a different procedure directory for interactive SCI input
by executing the .USE primitive in response to the SCI prompt ([]) and specifying the desired direc-
tories, or by modifying the log-on command procedure as discussed in the next paragraph. The
.USE primitive can be invoked interactively or within a command procedure such as the
.S$PROC.M$00 log-on procedure.

6.2.1.5 Naming New Command Procedures. A new command procedure name must be unique
within the procedure directory where it resides. You can create a command procedure with the same
name as an existing SCI procedure only if you place it in a separate procedure directory. If you
modify an existing command procedure to perform aiternate functions, do not store the new com-
mand procedure in the .S$PROC directory, uniess you plan for it to completely replace the standard
SCI command by that name. Complete replacement is not recommended in most cases.

Before creating a new command procedure, review the .S$PROC procedure directory using the LD
SCl command. If the name you plan to use does not already exist, you can place it in the system pro-
cedure directory, or an alternate directory.

To modify existing command procedures, change the command procedure file. Invoke the Text
Editor, and specify the pathname of the command procedure you want to change. Modify it as
required, and save it back in the same file. To move it from one procedure directory to another, use
the Copy Concatenate (CC) SCI command to copy the command procedure file to the new, existing
directory, and then delete the file from the old directory.

6.2.2 Creating and Changing SCI Command Processors
When creating new command processors, you should identify all the activities the processor should
perform. It may be more desirable to use several command processors if the function is long, or re-

quires several separate operations. Each processor can then be called from the same command
procedure.

6-6 1946250-9703

SCI/ Programming Language

You should also determine whether you want the processor to execute in background or in
foreground. Processors that require interaction with the user, or produce output for the terminal
should execute in foreground, and be placed into execution by a .BID primitive in the command pro-
cedure. If no terminal interaction is necessary, you can use the .QBID primitive, which executes a
task in background. These primitives are explained later in this section.

Before a command processor can execute, you must link it with the interface subroutines and
install it on a program file. To link a command processor with the interface subroutines you must
specify SCI990.S$OBJECT as a library when you link the processor. This library contains all the
interface subroutines. Also, command processors can access the synonym table. Access to both
PARMS and synonyms is through the TCA. The task can return synonym values and completion
codes or messages. The task itself does not need to be in assembly language, but access to the re-
quired S$ routines must be gained either through high-level language runtime routines or a user-
written assembly language interface routine.

6.2.3 Creating and Changing SCI Command Menus

SCl menus are special-purpose files referenced by command procedures. They contain a for-
matted display to appear on the terminal screen..You create or change the display using the Text
Editor.

You activate a menu interactively by a single word, preceded by a slash (/). SCI uses the slash to
determine if the following string is a menu name. The .MENU primitive, described later, displays the
menu file on the screen. :

Menu file names must begin with the M$ prefix, and must reside in the same command procedure
directory as the command procedures they support. SCl recognizes the M$ prefix as a menu file, and
processes it appropriately.

An example of a menu is the main SCI menu that appears after you log on to a terminal. When you
select one of the available command groups, a sub-menu appears. When you enter a specific com-
mand, that command executes. If you are unfamiliar with the menu concept in DX10, refer to the
discussion of menus in Volume | before continuing here.

To create menus to support your applications, create a file and place up to 23 lines of data in it. That
data will appear just as you enter it when that menu is activated.

The SCI command menus reside in the .S$PROC command directory. The main menu is named
M$LC, and the submenus are generally named according to the command group they support. For
example, the submenu displayed when you specify the /[EDIT command group from the main menu is
named M$EDIT. If you want a new menu to be displayed at log-on, rather than the SCi top-level menu
that is currently the default, you can modify the log-on command procedure as described in the next
paragraph.

6.2.4 Log-On/Log-Off Command Procedures

When you log on, SCI searches for a command procedure called M$00 residing under the path-
name .S$PROC.M$00 (on the system disk). This procedure is not shipped on the DX10 operating
system disk, but you can create it and use it to include special log-on processing.

946250-9703 6-7

SCI Programming Language

For example, if you want to change the default menu from the main SC| menu, M$LC, to another
menu, you can create an M$00 command procedure and change the .USE option to select a directory
containing another menu named M$LC. You can also change the default procedure directory by
modifying M$00. You can specify that another directory be searched before or after the .S§PROC
directory, or you can specify two user procedures to be searched instead of .S$PROC.

When you log off the system, SCI executes the M$01 command procedure. If you want to change or
add to the log off activities performed by SCI, modify the M$01 command procedure.

6.2.5 SCI.SSNEWS File
After completing the initial log-on procedure, SCI searches for a file on the system disk named

S$NEWS. If it finds the .SSNEWS file, it displays it on the terminal screen before displaying the
default menu.

Since the entire file is displayed as it exists, you can use it to convey messages to all terminal
users. .SSNEWS is a sequential file, so you can place messages in it using the Text Editor. You can
use .SSNEWS instead of a message to the terminal, because you can be sure that each user who
logs on has the opportunity to see it.

6.3 SCI LANGUAGE

The SCI language functions similarly to any other high-level language. It is composed of primitives,
variables and special characters, that, when used in the correct command format, function together
to make a logical programming language.

The following paragraphs describe the SCI language. Command format and special characters are
reviewed first, since they are rather simple concepts. Then variables are discussed in detail, and
each primitive available in the SCI language is presented. Finally, each SClI command processor
subroutine is described. Several procedure examples are included to help you understand how the
elements of the language work together.

6.3.1 Command Format

The command format described here is required for statements in the SCI programming language.
SCl commands entered interactively in response to the SCI prompt ([]) always take the form of 1-8
alphabetic characters and possibly an imbedded dollar sign, and may additionally employ an
elongated form called “expert mode” described in Volume II.

Commands within an SCI command procedure must conform to certain format constraints. There
are two basic command formats in the SCI language, command format and primitive format.

Command format is used within a procedure to assign values to character strings that are prompts.
It assumes the following general form:

< command> < blank(s)> < field prompt assignments>
An example of the command format is as follows:

IDT YEAR = 1982,MONTH = 4,DAY = 27,HOUR = 18,MINUTE = 56

6-8 946250-9703

SCI Programming Language

This example duplicates the effect produc’ed if you typed in the IDT command in response to the SCI
prompt ([]), and then responded to the prompts displayed. Since there are several types of prompts
in the SCI language, they are discussed later in more detail.

Primitive format is used for all other lines in a command procedure. It assumes one of the following
general forms:

< primitive> < blank(s)> < keyword list>

< primitive> < blank(s)> < single argument>
Examples of the primitive format are as follows:

.PROC NM(NEW MENU PROC)

.STOP TEXT =NORMAL TASK COMPLETION,
CODE=3

SYN MY = VOL2.SMITH.SOURCE
SHOW @MY.DATA1

In the first example, the primitive .PROC specifies a new procedure is being created. The .PROC
primitive does not require keywords. Instead, it requires a single argument indicating the name of
the new procedure. The argument must be in a special format as required by the .PROC primitive.

In the second example, the primitive .STOP indicates the end of execution in a command processor.
The keyword TEXT contains the termination message to be returned to the procedure, and the
keyword CODE returns a user-defined termination code.

In the third example, the keyword MY is designated as a synonym by the .SYN primitive. The value of
the synonym keyword is a pathname.

In the fourth example, the primitive .SHOW is issued. This primitive has associated keywords, but
needs a single argument to indicate the name of the file to be shown. The argument in this example
uses the synonym assigned in the third example. The special character @ indicates a synonym that
needs to be resolved. In this example, MY is resolved to the pathname VOL2.SMITH.SOURCE. (Table
6-1 details all valid special characters and their meanings.)

A command format can span several lines through the use of continuation characters such as the
comma. However, there cannot be more than one command format on one line.

All valid primitives are explained in detail later in this section. The special characters used in the
SCI programming language are discussed in the following paragraphs.

6.3.2 Special Characters

The commands and syntax of the SCI programming language are greatly expanded through the use
of a small set of special characters. They are used in conjunction with other valid elements of the
language, such as commands, field prompts, primitives, and keyword lists described above to
create powerful SCI command procedures.

946250-9703 6-9

SCi Programming Language

Table 6-1 lists the valid special characters and their meanings.

Table 6-1. SCI Special Characters

Character Usage

! Indicates end of record. Comments may occur after an ! character.

* If in column 1, indicates a comment statement. If preceding a valid prompt type,
indicates that field prompt response is optional.

@ Indicates that the character string following the @ is a synonym. If the synonym was
previously defined, this causes the @ sign and character string to be replaced by the
synonym value. Otherwise, the’ value of the synonym is defined as the character string.

& Indicates that the character string following the & is a field prompt name, to distinguish
it from synonyms and literals. SCI replaces the & and the character string with the field
prompt value. If no value is assigned, a null string results.

A Delimits synonyms.

= If in column 1, causes the line in a batch stream to execute, but not written to the listing
file. Also used to assign values to keywords or field prompt names. A language line end-
ing with = is automatically continued.

, Delimits elements of a keyword list or field prompt assignments. If it appears as the last
character on a command line, indicates continuation of that line.

() When placed around a field prompt type, indicates that the response can be a single
item or a list. (Within a batch stream, the response list must also be enciosed in paren-
theses). When placed around a character string that follows a field prompt name, in-
dicates that the string appears as an initial value for the prompt.

e Used with character strings representing a synonym, or that otherwise would be am-

biguous. Use them to enclose strings containing the @ sign, or other special characters

to be resolved literally. When used with the @ sign, they indicate that the synonym
resolves to a list of items.

Indicates the next character string is an SCI primitive. -

Examples using these special characters are contained throughout the discussion of the SCI pro-
gramming language, and at the end of the section. When studying the examples, refer often to Table
6-1. This way you can see the effect the special character has when used with the particular
primitive or variable (field prompt, keywords, synonyms, and so on) being presented at the time.

6-10 946250-9703

SCI Programming Language

6.3.3 Variable Types
The three types of variables in the SCI programming language are as follows:

. Field Prompts
. Synonyms
U Keywords
The following paragraphs discuss these variable types.

6.3.4 Field Prompts

Field prompts are used in command procedures that interact with the terminal user. They function
as variables, and the user assigns the values. The field prompts you specify in a command pro-
cedure are the same ones that are displayed on the screen when the command procedure executes.

When you execute an SCI command, that command requires you to supply additional information,
based on the function of the command. This information can be in several forms. For example, you
can enter pathnames, integers, or strings like “YES” or “NO.” Sometimes if you enter the wrong type
of data in response to a prompt, an error results, because the data you enter must be compatible
with the characteristics of the field prompt type specified in the command procedure. Valid SCl field
prompt types are shown in Table 6-2.

Table 6-2. Valid Field Prompt Types

Prompt Type Format Value Restrictions
ACNM ACNM File pathname or device name;
ACNM(initial value) include optional initial value
INT INT Integer value;
INT(initial value) include optional initial value
NAME NAME Letters, numbers, or $ sign;
NAME(initial value) include optional initial value
YESNO YESNO Response beginning with Y or N;
YESNO(initial value) include optional initial value
STRING STRING Alphanumeric or special characters;
STRING(initial value) include optional initial value

946250-9703 6-11

SCI Programming Language

The following list of rules governs field prompt types:

6-12

An asterisk (*) preceding the field prompt type makes the response optional. The user
can press the Return key without entering a response.

Parentheses around a string that follows the field prompt specification makes that string
appear on the screen as an initial value fqr that prompt.

Initial values that resolve to a character string beginning with the dollar sign ($) resolve to
a null string.

The response to a field prompt can be a single value or a list of values. To indicate that the
response can be a list, enclose the prompt type in parentheses. For example,
INPUT = (ACNM) indicates that the field prompt INPUT can assume a single value, or a list
of values of the ACNM type. Responses to the INPUT prompt can then be either a single
item or a list of items. When the you enter a list of items as a response on the screen,
separate each item with a comma. When supplying the response list in a batch stream,
separate items with a comma, and enclose the entire response list in parentheses.

Initial values can be specified for all field prompt types. Initial values that are lists must
be enclosed in quotation marks.

Field prompt names can be up to 28 characters in length, including spaces.

Field prompt names cannot include the following special characters:

@ At sign
A Caret
= Equal sign

& Ampersand
Double quote
‘ Single quote
, Comma

The following characters affect the operation of the .EVAL primitive and should be
avoided in prompt names:

+ Plus sign
- Minus sign
/ Slash

* Asterisk

946250-9703

SCI Programming Language

. Prompt responses can be up to 50 characters in length.
. Prompt names referenced within a batch stream or in expert mode can be in an
abbreviated form. The system resolves these references using a near equality algorithm.
The near equality algorithm is discussed in more detail following the discussion of field
prompt types.
The system’s SCI command procedures provide many good examples of how these field prompt
types function. You can use the SF command to view any of the SCI command procedures. Some
good examples to study are: '
. S$PROC.CFDIR
. S$PROC.AS
o .S$PROC. INV

e S$PROC.DF

Each field prompt type is described in the following paragraphs. Additional examples are provided
at the end of this section.

6.3.4.1 ACNM Field Prompt Type. The ACNM field prompt type restricts input to a file name or a
device name. An example of the ACNM field prompt type is:

FILE PATHNAME = *ACNM(“@ SFP”)
This syntax and special character usage in this example indicates the following:
] The response is optional, since an asterisk appears in front of the field prompt type.

. The response must be a single value, since there are no parentheses around the field
prompt type.

. The characters SFP represent a synonym since they are preceded by an at (@) sign.

U The quotation marks around the characters @SFP indicate that the value of the
synonym is a list.

. The parentheses around the characters “@SFP” indicate that the value appears as an
initial value.

6.3.4.2 INT Field Prompt Type. The INT field prompt type restricts input to an integer value. The
expression is a 32-bit hexadecimal integer expression in the range of >80000000 through
> 7FFFFFFF or decimal integer expression in the range of -2147483648 through 2147483647. The >

sign or a leading zero denotes a hexadecimal value. The following is an example of the INT field
prompt type:

PARM1 = INT(256)

in this example, the value 256 appears as an initial decimal value.

946250-9703 6-13

SCI Programming Language

6.3.4.3 NAME Field Prompt Type. The NAME field prompt type restricts input to alphabetic
characters, digits 0-9, and the dollar sign. This input can begin with a dollar sign or alphabetic
character. Characters entered in lower case are optionally mapped to upper case by SCI, if the
lowercase option was previously selected with the .OPTION primitive. The following is an example
of the NAME field prompt type:

TASK NAME = *NAME

In this example, the asterisk preceding the field prompt type indicates that the user response is
optional.

6.3.4.4 STRING Field Prompt Type. The STRING field prompt type restricts input to a string of
characters which does not include quotation marks, exclamation marks, equal signs, parentheses,
or commas. STRING can also accept a string of characters enclosed by double quotation marks,
known as a quoted string. A quoted string can include quotation marks, exclamation marks, equal
signs, parentheses and commas. Lower case characters within a quoted string are not mapped to
upper case. The following is an example of the STRING field prompt type:

INPUT = *(STRING)(“ @ ABCS”)
The syntax and special characters of this example indicate the following:

] The user resonse is optional, indicated by the asterisk preceding the field prompt type.

* The userresponse to the field prompt can be a single value or a value list, indicated by the
parentheses around the field prompt type.

U] The characters ABCS represent a synonym, indicated by the at (@) sign preceding the
characters.

. The value of the synonym can be a list of values, indicated by the quotation marks around
the characters @ ABCS.

. The synonym list is an initial value, indicated by parentheses around the characters
“@ABCS”.

If you want double quotation marks to appear in the string text, use two sets of double quotation
marks in the field prompt assignment line, as follows:

INPUT = STRING(“PRESS ““RETURN””” TO CONTINUE”)
In this example, the initial value of the INPUT field prompt reads:

PRESS “RETURN” TO CONTINUE

6-14 946250-9703

SCI Programming Language

6.3.4.5 YESNO Field Prompt Type. The YESNO field brompt type restricts input to an alphabetic
character string beginning with either Y or N. The following is an example of the YESNO field
prompt type:

ARE YOU SURE? =YESNO

Any response beginning with Y or N is valid, since SCI only examines the first character of the
response. The value is determined to be YES if the response begins with Y, and NO if the response
begins with N.

6.3.4.6 Abbreviating Field Prompts. SCI allows you to abbreviate field prompt names when
referencing them within a command procedure. This is especially useful when building batch
streams. SCI uses a near equality algorithm to match abbreviated field prompt references to the cor-
rect field prompt. The following rules apply to field prompt abbreviations.

. The field prompt name and the field prompt abbreviation must have the same first
character.

. All characters in the abbreviated field prompt must appear in the full field prompt, and ap-
pear in the same order.

. Numeric characters in the full field prompt name must also be in the abbreviated field
prompt name. For instance, if the full field prompt name is SOURCE1 ACCESS NAME, the
abbreviated field prompt must be at least S1. No characters beyond a special character
will match if the special character is not in the abbreviated field prompt.

e The first character in the abbreviated prompt that is not in the current word in the full field
prompt name must be the first character of the next word in the full field prompt name.
The field prompt SOURCE ACCESS NAME could be abbreviated as SOA (the first two
characters of SOURCE and the first character of ACCESS), but not as SON.

. Each abbreviation must be unique; it cannot be a valid abbreviation for any other prompt
in the procedure. DELETE THE FILE? and DATE TO PRINT can both be abbreviated as
DT, but SCI cannot properly identify the intended prompt. In this case, DTTF and DTP
would be more appropriate abbreviations.

6.3.4.7 The Dollar Sign in Initial Values. If the initial value specified for a field prompt begins with
a dollar sign ($), then that initial value becomes a null string. The following example illustrates this:

INPUT FILE = ACNM(@$ABC)

The prompt has an initial value, which is the value of the synonym $ABC. Ordinarily, if a synonym is
not previously defined, the initial value resolves to the synonym name itself, in this case, $ABC.
However, since the synonym name begins with a dollar sign, the system resolves the initial value to
a null string. ‘

946250-9703 6-15

SCI Programming Language

Also, a synonym having an assigned value beginninng with a dollar sign would resolve to a null
string. For example:

.SYN PATH=$ABC
INPUT FILE = ACNM(@PATH)

Since the synonym PATH has an assigned value of $ABC, the initial value of INPUT FILE is resolved
as $ABC; then it is further resolved to a null value because of the leading dollar sign.

6.3.5 Synonyms

You are probably already familiar with synonyms and their usage in the interactive SCI environment.
Synonyms in the interactive environment provide a means to assign a single word abbreviation to a
pathname, and allow you to use that abbreviation instead of entering the entire pathname in
response to an SCl command’s prompts. Although technically, SCl treats these synonyms the same
as the synonyms in the SCl language, they are sometimes used a little differently within a command
procedure than in an interactive environment. The accessiblity to synonyms by command pro-
cedures gives the procedures great flexibility.

6.3.5.1 Types of Synonyms. There are two kinds of synonyms used in the SCI programming
language:

U Synonyms that you both define and assign values to within the command procedure.

° Synonyms that are already defined, and are available for you to use within the command
procedure, by assigning your own values.

Synonyms that you both define and assign values to are used similarly to synonyms in interactive
SCI. The following example represents possible command lines in a command procedure:

.SYN MY = VOL2.SMITH.SOURCE
SHOW @MY.DATA1
SHOW @MY.DATA2

In this example, the synonym MY is defined and assigned a value of a specific pathname, using the
SYN primitive. Then, the synonym MY is used instead of the full pathname in the SHOW primitive. It
is resolved to the assigned pathname when SCI encounters the @ sign.

Synonyms that are defined by the system are also available to command procedures. These
synonyms are used by DX10 to keep track of such things as the last file pathname specified in the
Show File (SF) SCI command, or the last line printer you used in a Print File (PF) command. When
you execute these SCl commands, and others, the initial value displayed is the last value you used
with that command during the terminal session. They are stored as part of the workspace
associated with your user ID, and are not deleted until the Q command is executed.

Some of the common system synonyms are given in Table 6-3. You can also review the list of

synonyms currently associated with your user ID by executing the List Synonym (L.S) command. All
system synonyms begin with a dollar sign.

6-16 946250-9703

SCI Programming Language

Table 6-3. Standard Synonyms

Synonym Meaning of Assigned Value

$$MO A two-digit hexadecimal code for the SCI mode:

00 = Batch mode
01 = TTY mode

OF = VDT mode
$$ST A two-digit decimal station number
$$UI A six-character user identification
ME A four-character station name (for example, ST09)
$$CC A five-digit hexadecimal code returned by the S$STOP subroutine

in foreground

$$BC A five-digit hexadecimal code returned to the foreground
synonym table by the .STOP primitive in a background procedure
or by S$STOP from a background task.

An example of the way these synonyms are used is shown by a SF command procedure below:

SF(SHOW FILE)
FILE PATHNAME = “ACNM(@ SFP)
.SYN SFP = “&FILE PATHNAME”
JF “&FILE PATHNAME” ,NE,"”
.SHOW @ &FILE PATHNAME
.ENDIF

6.3.5.2 Synonym Evaluation. When the SF command procedure shown in the preceding example
executes, it assigns the synonym SFP a value equal to the character string entered as a response
to the prompt FILE PATHNAME. Any procedure that uses the synonym SFP for an initial value
automatically uses the file name last specified in the SF command, or whatever procedure or pro-
cessor last updated the value of the synonym, SFP. In the SF example, the .SYN primitive updates
the value of SFP to whatever character string is entered in the prompt FILE PATHNAME.

The reference @ &FILE PATHNAME causes SCI to evaluate &FILE PATHNAME as the name of a
synonym rather than a data field. For example, your response to the FILE PATHNAME prompt could
be MYFILE, which is already defined as a pathname such as VOL1.ME.DATA1. MYFILE gets re-
solved to the correct pathname. If the pathname is entered instead of a synonym like MYFILE, SCI
first attempts to find a synonym with that name, and then searches for a file by that name. This
allows you to enter either synonyms or pathnames in response to field prompts.

To delete synonyms in a command procedure, set the value equal to a null value, as follows:

.SYN MYFILE=""

946250-9703 6-17

SCI Programming Language

When the at sign (@) is encountered, SCI proceeds to resolve the synonym as follows:

° As soon as SCI encounters the @ sign, it tries to match the first portion of the string
following the @ with a name in the synonym table. The first portion of the string consists
of those characters between the @ sign and another special character other than a dollar
sign, and can contain letters, numbers and $ symbols.

. If the string does not have a match, the synonym is currently undefined. SCl assigns it the
value of the string itself. In some situations where the synonym is not followed by a
special character, you can enclose the synonym with carets (A) to facilitate proper
substitution. For example, if the synonym USER had a value of ID01 and appeared in the
context USERFILE with no special character after USER, you would use the following
code to obtain proper synonym substitution:

@ AUSERAFILE
After substitution, the field would appear as follows (with the carets (A) removed):

IDO1FILE
You can embed synonyms within pathnames in command procedures.

Responses to prompts may not include special characters such as the caret (A) and the at sign (@).
Because of this restriction, interactive prompt responses cannot use the full power of synonym
evaluation. The preceding example, when entered as a prompt response, returns an error message.
Within a procedure, SHOW @ AUSERAFILE is evaluated as .SHOW IDO1FILE, according to the rules
previously stated.

Because of the significance of special characters in the evaluation of synonyms, the use of
synonyms to represent DX10 pathnames can cause problems. If a synonym is used to represent an
entire pathname or only the first component of a pathname, no problem exists. Synonyms can be
secondary components of a pathname if the @ sign is properly placed in the string evaluation. For
example, VOL1.MYCAT.@$ is evaluated as VOL1.MYCAT.SOURCE, where S is the synonym for the
value of SOURCE.

However, if a synonym is used as a secondary component of a pathname, and the @ sign is placed

in front of the pathname, the synonym is not properly resolved. The pathname @ VOL1.MYCAT.S is
an example.

Procedures that create synonyms for temporary use must delete them to avoid synonym table
overflow. This must be done as the last step of any procedure.

6-18 946250-9703

SCI Programming Language

6.3.6 Keywords

Keywords are variables used to specify parameters for SCI primitives. Keywords are stored in the
keyword table, which occupies the same physical space on disk as the synonym table, along with
the value initially assigned in the command procedure. Although keywords are usually required
arguments for SCI primitives, the word keyword is sometimes used in error messages to mean
prompt.

Not all SCI primitives require keywords. Some primitives require more than one keyword. The .BID
primitive requires you to assign values to three keywords, and optionally to a fourth keyword. The
keywords for .BID are TASK, and optionally LUNO, CODE, and PARMS. If you do not specify a value
for the keyword TASK, the .BID primitive cannot perform the bid function.

The .SPLIT primitive requires you to assign values to two keywords, and optionally, a third. The
keywords are LIST, FIRST, and optionally, REST. You must assign values to the first two keywords in
order for the primitive to execute properly, while the third keyword allows you additional usage flexi-
bility. These keywords and the values you assign to them become the parameters of the primitive.

A keyword can be assigned several values, known as a list of values. The keyword LIST in the .SPLIT
primitive can have a series of elements specified as its values, with each element separated by a
comma.

The function of keywords becomes more obvious after you begin studying the SCI primitives.

6.3.7 SCI Primitives

SCI primitives are the basic members of the SCI programming language. They are similar to verbs or
operators in high-level languages since each primitive initiates a specific function, and demands a
properly formatted argument or keyword list.

Each SCI primitive is discussed in the following paragraphs. Table 6-4 lists the available primitives
and their formats. With the exception of the .PROC primitive, the primitive definitions are in
alphabetical order with related primitives grouped together. In the following table, items enclosed in
square brackets [] are optional format components. Items in lowercase and enclosed in angle
brackets < > are response types for each argument component.

946250-9703 6-19

SCI Programming Language

Table 6-4. SCI Primitives

Primitive Command

Parameters

.PROC
.EOP

.BID
.QBID
.DBID
.TBID

.DATA
.EOD

.EVAL

EXIT

AF
.ELSE
.ENDIF

.LOOP
.UNTIL
WHILE
.REPEAT

.MENU

.OPTION

.OVLY
.PROMPT
SHOW

SPLIT

.STOP
.SVC
SYN

.USE

< name> [(< full name>)][= < int>][,< prompt list>]

TASK = < name/int> [,LUNO = < int>][, CODE =< int>]
[PARMS = (< string,...,string>)]

< acnm> [,EXTEND = < YES/INO> J,SUBSTITUTION = < YES/NO>]
[LREPLACE = < YES/NO> |

<synonym> = <value >

<opi1> < relation> ,< op2>

<opt> < relation>,< op2>

< op1> <relation> < op2>

[< menu name>]

[PROMPT = < string>][MENU = < name>]
LPRIMITIVES =< YES/NO> |
[,LOWERCASE =< YES/NO>

Reserved for system use

[(< full name>)j[= < int>][,< prompt list>]
<acnm>[<acnm,...>}

LIST = (< string> ,< string> ...< string>),
FIRST = <synonym>

[LREST = <synonym>]

[TEXT = < string>][,CODE =< int>]
Reserved for system use

< name> = “<value>"

[<acnm1>][,<acnm2>][, <acnm3>][,<acnm4 >][, <acnm5>]

6-20

946250-9703

SCI Programming Language

6.3.7.1 .PROC and .EOP Primitives. The .PROC primitive signals SCI that the character strings
following the .PROC primitive are part of a command procedure. Use .PROC to install a command
procedure onto a command procedure library through a batch stream or interactively through the

terminal. If you are using the Text Editor to create a command procedure, the .PROC primitive is not
required.

The .PROC primitive has the following format:
.PROC < name> [(< full name>)][=< int>][,< prompt list>]

The name parameter is required. It defines the name of the procedure, and may be up to eight
characters in length. It cannot contain any special characters except the doflar sign. The numbers 0
through 9 and the dollar sign cannot be the first character of a procedure name. An optional full
name, enclosed- in parentheses, may be given immediately following the procedure name. The full
name is displayed on the terminal when the procedure is invoked. The name of the file where you

save the command procedure, and the name you specify within the command procedure as the pro-
cedure name must be the same.

A new command procedure name must be unique within the procedure directory where it resides.
You can create a command procedure with the same name as an existing SCI procedure only if you
place it in a separate procedure directory. If you modify an existing command procedure to perform
alternate functions, do not store the new command procedure in the .S$PROC directory, unless you
plan for it to completely replace the standard SCI command by that name. Complete replacement is
not recommended in most cases.

An optional field, [= < int>], can follow the full procedure name to specify the desired privilege level
of the command. Table 6-5 shows the valid privilege levels and their meanings.

Table 6-5. Command Privilege Levels

Level Meaning

0 Lowest level of access privilege. For example, the Show File (SF)
command can be accessed by all users.

1 User-defined

2 System access level. For example, the Kill Task (KT) command
requires experienced user access only.

3 User-defined

4 Management access level. For example, only system management or

system security personnel can access the Assign User ID (AUI) or
Modify User ID (MUI) commands.

5 User-defined

6 Combination of System and Management. For example, the Execute
System Generation Utility (XGEN) command requires restricted
access.

7 User-defined

946250-9703 6-21

SCI Programming Language

Command privilege levels prevent commands from being invoked by a user having a privilege level
lower than the level assigned to a particular command. (The user’s privilege level is assigned using
the Assign User ID (AUI) or Modify User ID (MUI) SC! commands.) The privilege level allows you to
limit access to SCl commands based on how powerful the command is, and how knowledgeable
each user is. The default privilege level is zero.

The optional field [,< prompt list>] can follow the privilege level definition. The comma is placed at
the end of the .PROC line to indicate continuation of the line, if the prompt list is on the following
line. The format of the field prompt list is as follows:

prompt[=type]

In the example, the prompt is the character string that you want to appear on the screen as the
prompting message. The type is optional, and represents the name of one of the field prompt types
discussed earlier. If a field prompt type is not specified, the prompting message is not disptayed,
and the prompt is called a “hidden prompt”. More than one prompt can be specified by entering
them in a list, separated by commas. Do not place a comma after the last item in the field prompt
list. An example of a field prompt list is shown below:

.PROC EXP(EXAMPLE PROC)=0,
INPUT FILE = ACNM, OUTPUT FILE =
ACNM(INITIAL), LINES PER PAGE = INT(55),
NUMBER OF COPIES = INT(1)

.EOP

The preceding example would prompt the user to enter four fields: INPUT FILE, OUTPUT FILE, LINES
PER PAGE, and NUMBER OF COPIES. The equal sign and the comma both function as continuation
characters. The NUMBER OF COPIES prompt line has no comma after it.

A maximum of 22 prompts can be displayed on the 911, 931, 940, and Business System terminal
screens, and up to 10 prompts can be displayed on the 913 VDT.

6.3.7.2 .BID,.QBID, .DBID, and .TBID Primitives. The .BID, .QBID, .DBID, and .TBID primitives each
place a specified task into execution. There are several other ways to place a task into execution,
as explained in Section 2. However, using primitives to execute a task allows the task to access
the SCI PARMS list, which is the record in S$FGTCA and S$BGTCA containing all synonyms. The
PARMS list allows you to pass values from the command procedure to the task.

The .BID primitive places a task into execution in the foreground mode of execution. Foreground
execution means that SCI closes the LUNO assigned to the initiating terminal, then suspends
itself until the executing task has terminated. This allows the executing task full access to the
terminal. All synonyms in the terminal communications area are available to and shared by all
tasks executing in foreground. Foreground tasks execute serially, so you cannot mvoke other
tasks at the terminal until the task bid has completed, except with .TBID.

6-22 \ 9462509703

SCI Programming Language

.BID. The .BID primitive has operands to identify the command processor and pass parameters to
the processor.

The .BID primitive requires the following format:

.BID TASK = < name/int>[,LUNO =< int>] [CODE =< int>]
[,PARMS = (< string,...,string>)]

The TASK = name/int parameter identifies the task to be bid. The identifier can be either a name or
an installed ID. The specified task must currently reside on a program file, and the LUNO parameter
identifies a LUNO assigned to that program file. For .BID, the LUNO may be either station local or
global. For .QBID and .DBID, it must be a global LUNO. You must specify a LUNO if the program file
where the task resides is not the system program file. The default value for the LUNO is zero, and in-
dicates the .S$PROGA program file. You can assign the LUNO to the appropriate file any time
before you execute the task. Use the AL or AGL commands manually or in the IS procedure, or, you
can assign the LUNO in the batch stream that initiates the task execution.

The CODE parameter represents the termination code of the executing task. This code can be
accessed by the executing command processor through an S$STAT interface subroutine call. You
can assign an integer value 0 through 255 to CODE; the default value is zero.

PARMS is a list of character strings, separated by commas, that can be accessed by the task.
PARMS is used to supply any required parameters needed by the task being bid. The parameters
specified here are accessed through a SSPARM subroutine call, and are not the same as parameters
obtained by the Get Parameters SVC.

SCI transfers control to the task when it encounters the .BID. When the task terminates, SCI pro-
cesses the next statement in the command procedure. The following is an example of the .BID
primitive usage:

PROC EXP(EXAMPLE PROC — BIDS LIST DIRECTORY)=0,
PATHNAME = *ACNM(@LDP),
LISTING ACCESS NAME = *ACNM
SYN LDP = “&PATHNAME”
JIF “&PATHNAME” NE,*”
.BID TASK = > 32,CODE = > 24,
PARMS = (> 12,@ &PATHNAME, @ &LISTING ACCESS NAME)
ENDIF
.EOP

In the preceding example, the .BID primitive is used to bid a task with an ID of > 32 residing on the
.S$PROGA program file. Three parameters passed to the > 32 task are responses to prompts.

Literals and synonyms may also be passed as parameters. Commas are used to separate
parameters. The task initiated by the .BID primitive uses interface subroutines to access the
parameters. These subroutines are discussed in detail later in this sec_tion.

When the .BID primitive bids a task, the synonym $$CC is set to 0 before the task begins executing.
When the task completes, any value coded in the call to S$STOP gets placed in $$CC, and is passed
to the foreground as the completion code. (The $$CC synonym is discussed further with the .STOP
primitive.)

946250-9703 6-23

SCI Programming Language

.QBID and .DBID. .QBID and .DBID use the same format as the .BID primitive, except any LUNO
specified for the LUNO keyword must be global. When .QBID or .DBID is used to bid a task, SCl does
not suspend, and does not close the LUNO assigned to the terminal. Therefore, the bid task should
not attempt to send output to the terminal.

Both .QBID and .DBID bid tasks for execution in background. In background execution, a copy of the
foreground synonyms is made for the exclusive use of the task executing in background, since
tasks running in background cannot access foreground synonyms. This is necessary to protect
synonyms used by background tasks from being inadvertently modified by the operator.

None of these synonyms copied for background use can be passed back to foreground except the
$$BC synonym, which carries the completion code. (This completion code is supplied in the CODE
parameter discussed earlier.) The S$STOP interface routine or the .STOP primitive passes the code
to the command procedure. It is not set until control is returned to the primary input, so you cannot
test it for the value of the return code until then. Primary input is the command control stream. For
foreground input, this is the SCI prompt ([]), in background it is the batch stream. The synonym $$CC
also gets assigned the completion code value, but it has no effect since it is not passed back to
foreground.

The .DBID primitive bids a task for background execution and immediately suspends it. The task
does not begin execution until it is activated, usually by one of the debug commands associated
with the Debugger, described in Section 11.

.TBID. The .TBID primitive bids a task and terminates SCI at the associated terminal. SCI must be
activated when the task terminates. If SCl is in background (batch), .TBID executes the task in
background. If SCl is in foreground, .TBID executes the task in foreground. When .TBID bids a task
in foreground, any background task continues to run.

Since SCI is terminated after .TBID is issued from a command procedure, any statements in the
procedure following .TBID are not executed. This is also true of a batch stream that issues .TBID.

6.3.7.3 .DATA and .EOD Primitives. Data may be copied to a file directly from an input stream by
the .DATA primitive, which has the following format:

.DATA <acnm>[,EXTEND = <YES/NO>][,SUBSTITUTION = < YES/NO >]
[LREPLACE = < YES/NO >]

NOTE

SCl does not map the .EOD primitive from lowercase to uppercase.
Therefore, the .EOD primitive must be issued in uppercase to ter-
minate the data stream.

The <acnm> parameter must be a valid file name, but it need not already exist. The .DATA primitive

copies data to the file specified by acnm. The user has three parameters (EXTEND, SUBSTITUTION,
and REPLACE) which affect the copying process.

6-24 946250-9703

SCI Programming Language

The EXTEND parameter specifies whether or not the data file is to be opened extended. This
parameter permits the user to concatenate several-data streams under one pathname. The default
value of EXTEND is NO. :

The SUBSTITUTION parameter specifies whether textual substitution is to be done on the data
stream before it is copied to the specified file. A response of YES causes the appropriate values to
be substituted for indicated field prompts and synonyms, and multiple blanks compressed to a
single blank unless enclosed by quotes. The default value of SUBSTITUTION is NO.

The REPLACE parameter specifies whether or not the data stream is to replace the file, if it already
exists. The default value of REPLACE is YES. -

The following is an example procedure that uses the .DATA and .EOD primitives:

.PROC EXP(EXAMPLE PROC)=0,

INPUT PATHNAME = ACNM(@ $EXSIP),

OUTPUT PATHNAME = (ACNM)

CC IAN = @&INPUT PATHNAME,

OAN = @&OUTPUT PATHNAME)
.DATA VOL1.MYLIB.MESSAGE,SUBSTITUTION = YES
COPY COMPLETED FOR: @ &INPUT PATHNAME
TO: @&OUTPUT PATHNAME

.EOD '
.EOP

In this example, the .DATA and .EOD primitives are used to write a message to the
VOL1.MYLIB.MESSAGE file after an input file has been copied to a specified output file. If the user
response to the INPUT PATHNAME prompt is VOL1.MYFILE.IN and the response to the OUTPUT
PATHNAME prompt is VOL1.MYFILE.OUT, the message written to the MESSAGE file is:

COPY COMPLETED FOR: VOL1.MYFILE.IN
TO: VOL1.MYFILE.OUT

The Copy/Concatenate (CC) command is used in the example to copy the input file to the output file.
The message written to the file VOL1.MYLIB.MESSAGE shows the input and output file names. IAN
and OAN are prompt names formed according to the rules of abbreviation previously explained. IAN
refers to INPUT ACCESS NAME(S) and OAN refers to OUTPUT ACCESS NAME, the required
prompts in the CC command procedure. These are examples of abbreviated field prompt references.

Refer to the description of the .IF primitive for a more detailed explanation of using procedure calls
within procedures.

946250-9703 6-25

SCI Programming Language

6.3.7.4 .EVAL Primitive. The .EVAL primitive has the following format:
.EVAL < synonym> =< value>

The .EVAL primitive evaluates a string as a numeric expression, converts the result to decimal
ASCIl, and stores it as the value of a synonym. The string to be evaluated is specified in the
<value> parameter. The following example assigns the value 13 to the synonym RESULT.

SYN THREE = 3

SYNTWO = 2

.SYN RESULT = 0

.EVAL RESULT = @RESULT + @ THREE*5-@TWO

The .EVAL primitive provides the arithmetic capability of SCI. It also provides a mechanism for set-
ting up counter variables, as shown in the example for the .LOOP primitive.

NOTE

The RESULT synonym must not have the at sign (@) preceding it on
the left of the equal sign. If the same synonym is used on the right
side of the equal sign, it must have the at sign (@).

If prompt names are used in a .EVAL primitive only one prompt name may appear to the right of the
equal sign and that must be the last name on the line. For example:

.EVAL RESULT = @RESULT + &NO OF COPIES?

If the prompt &NO OF COPIES? is the first operand after the equal sign, followed by a plus sign
(+), the plus sign is interpreted as a part of the prompt.

6.3.7.5 .EXIT Primitive. The .EXIT primitive is used to terminate the execution of a current com-
mand procedure. (The .EOP is used to terminate the definition of a command.) The .EXIT can be used
anywhere within a command procedure definition, as often as needed.

The .EXIT primitive has the following format:
EXIT
The following is an example of the .EXIT primitive:

.PROC EXP(EXAMPLE PROC)=0,

INPUT PATHNAME = ACNM(@ EXSIP),

DELETE FILE? = YESNO(N)

SF FILE = &INPUT PATHNAME

AF &DELETE FILE?,NE,“Y”

EXIT

.ENDIF

DF PATHNAME = &INPUT PATHNAME

.EOP

6-26 946250-9703

SCI Programming Language

In this example if &DELETE FILE? is not equal to Y, the .EXIT primitive terminates execution of the
procedure. If &DELETE FILE? is equal to Y, the input file is deleted.

6.3.7.6 .IF, .ELSE, and .ENDIF Primitives. The conditional primitive of the SCI language is the
conventional IF-THEN, IF-THEN-ELSE construction. The .IF conditional primitive is used in conjunc-
tion with the .ELSE and .ENDIF conditional primitives. The .IF and .ELSE primitives allow the user to

specify an action depending on the outcome of a comparison. The .ENDIF primitive terminates the
IF primitive.

The .IF primitive has the following format and must be used in conjunction with the .ENDIF and
possibly the .ELSE primitives: '

IF < op1> < relation> ,< op2>
.ELSE

.ENDIF
When the .IF condition is true, statements following the .IF are executed. When the condition is
false, the statements following the .ELSE, if present, are executed. Execution then continues with
the statements after the .ENDIF.

The relation between the op1 and op2 parameters are as follows:

Relation Meaning
<opi1>,EQ,< op2> op1 is equal to op2
<op1>,NE,< op2> op1 is not equal to op2
<op1>,GT,<op2> op1 is greater than op2
<opi1>,LT<op2> op1 is less than op2
<opi1>,GE,< op2> op1 is greater than or equal to op2
<opi1>,LE< 0p2> op1 is less than or equal to op2

The op1 and op2 parameters may be strings, variables, or concatenated strings. If both op1 and op2
are numeric, a numeric comparison is done. Otherwise, a string comparison is done in the ASCII col-
lating sequence.

Any SCI primitives or calls to other procedures may be used between an .IF and an .ENDIF primitive
including another .IF primitive. Nested conditionals are allowed up to 32 levels deep.

The .ELSE primitive is used with the .IF and .ENDIF primitives to allow the user to specify an action
to be executed when the .IF comparison yields a false condition.

The .ENDIF conditional primitive terminates the .IF primitive.

946250-9703 6-27

SCI Programming Language

The following example shows the use of the .IF, .ELSE, and .ENDIF primitives. In the example, IAN
and OAN of the CC command represent the input and output pathnames, respectively. The prompt
names supplied to the CC procedure are abbreviations of INPUT ACCESS NAME(S) AND OUTPUT
ACCESS NAME.

.PROC EXP(EXAMPLE PROC)=0,
INPUT PATHNAME = ACNM,
OUTPUT PATHNAME = ACNM,
DELETE? = YESNO(N)
IF &DELETE?,NE,“N”
JF&DELETE?,NE,*“Y"” '
MSG TEXT = “RESPONSE TO DELETE? MUST BE Y OR N”
EXIT
.ENDIF
.ENDIF
CC IAN = &INPUT PATHNAME,
OAN = &OUTPUT PATHNAME
IF &DELETE?,EQ,-“Y”
DF PATHNAME(S) = &INPUT PATHNAME
.ENDIF
.EOP

In this example, the .IF primitive is used to compare the user response to the DELETE? prompttoY
or N. If the response is any value other than Y or N, the message is displayed and the procedure
returns to SCI via the .EXIT primitive.

After verifying that the value of DELETE? is either Y or N, the procedure copies the input file to the
output file. After the copy, the input file is deleted using the DF (Delete File) command procedure if
the response to DELETE? was Y.

6.3.7.7 .LOOP, .UNTIL, .WHILE, and .REPEAT Primitives. The loop primitives (LOOP, .UNTIL,
WHILE, .REPEAT) are used to repeat blocks of SCI statements. The .LOOP primitive begins the
repetition, which must be terminated by a .REPEAT primitive. The .UNTIL or WHILE primitives can
be used anywhere and as many times as necessary in the repeated block.

The loop primitives have the following format:
.LOOP
UNTIL < op1> < relation> ,< op2>

WHILE < op1> < relation> < op2>
.REPEAT

6-28 946250-9703

SCI Programming Language

The op1 and op2 parameters may be st-rings;- variables, or concatenated strings. The relation

parameter designates the type of string or numeric comparison to be performed. The basic structure
of a loop in an SCI procedure is as follows:

.LOOP
SCI statements
.UNTIL or WHILE
. SCI statements

REPEAT

The loop is initiated by the .LOOP primitive and ended by a .REPEAT primitive. The loop must con-
tain at least one .WHILE or .UNTIL primitive, and can contain more than one such primitive. Both the
WHILE and .UNTIL primitives can occur anywhere within the loop. The SCI statements within the
loop are continually executed until the condition specified by the WHILE primitive becomes false,
or the condition specified by the .UNTIL primitive becomes true, at which time SCl executes the first
statement following the .REPEAT primitive. Loops can be nested to a maximum depth of 32.

If multiple .UNTIL and .WHILE primitives are contained within a loop, SCI will discontinue the loop

when any .UNTIL condition becomes true or any .WHILE condition becomes false. SCI then executes
the first statement following the .REPEAT.

The following is an example of the loop primitives.

.PROC EXP(EXAMPLE PROC) =0,
INPUT PATHNAME = ACNM(@ EXIP),
LISTING DEVICE = NAME(@ PFD),
NUMBER OF COPIES? =INT(1)
.SYN EXSIP = &INPUT PATHNAME
.SYN PFD = &LISTING DEVICE
.SYN NUM = &NUMBER OF COPIES?

.LOOP
.UNTIL @ NUM,LE,0)
PF FILE= @EXIP,L= @PFD
.EVAL NUM=@NUM -1

.REPEAT
SYN NUM =«

.EOP

In this example, the .LOOP, .UNTIL, .EVAL, and .REPEAT primitives function together as a counting
mechanism.

946250-9703 6-29

SCI Programming Language

The synonym NUM is given the integer value entered as the response to the NUMBER OF COPIES?
prompt. The .UNTIL primitive checks the value of NUM against zero. If NUM is greater than zero, the
PF command procedure is bid to print the file identified by the response to the INPUT PATHNAME
prompt on the listing device identified by the response to the LISTING DEVICE prompt. Then, the
.EVAL primitive decreases the value of NUM by 1, and the .REPEAT primitive causes the loop to
repeat. The loop repeats until the value of NUM is less than or equal to zero, at which time execution
continues with the primitives following the .REPEAT primitive.

The .SYN primitive at the end of the procedure is used to delete the synonym NUM from the synonym
table. Procedures must delete internal synonyms before terminating, or the synonym table can
overflow.

Itis possible to enter a negative value in response to the INT prompt type. This is the reason for com-
paring less than or equal to zero in the .UNTIL primitive.

An infinite loop is easily created when using the .LOOP primitive, if the .WHILE or .UNTIL are
improperly coded. If such a loop occurs, you cannot escape using the terminal control keys. If the
system has only one terminal, the solution is to reinitialize the system. However, if there are several
active terminals, this solution may be impractical. In this case enter the Show Task Status (STS)
command at another terminal to obtain the RUN ID of the task (you must know the station ID of the
terminal affected). Then issue a Kill Task (KT) command against that 1D to abort it.

6.3.7.8 .MENU Primitive. The .MENU primitive causes SCI to display a specified menu when SCI
returns to command mode. A menu cycle occurs just before the SCI prompt is displayed. The MENU
primitive only affects the next menu cycle. Subsequent menu cycles revert to the default menu. The
.MENU primitive has' the following format:

.MENU [< menu name>]
There are three variations of the menu name parameter:

. No menu specified — Use of a .MENU with no menu name specified causes SCI to bypass
the menu cycle before the next SCI prompt is displayed.

. Menu name — If a menu name (1 through 6 alphanumeric characters) is specified, SCI
displays the menu in the next menu cycle, whether the station is in TTY or VDT mode. SCI
appends the characters M$ at the beginning of the menu name to obtain the file name
within the user’'s command procedure library(s) of the file where the menu resides.

° Menu name — If a menu name preceded by an * is specified, the menu is displayed only if
the station is in VDT mode. '

The slash (/) symbol, entered in response to the SCI prompt, is converted by SCI to .MENU. The stan-
dard menu shown later in this section illustrates the use of the slash. The terminal user enters
IPDEV to see the program development menu. The slash is resolved by SCI to .MENU and the entry
becomes .MENU PDEV.

/ is equivalent to .MENU

/ DEV is equivalent to . MENU DEV
[*DEV is equivalent to .MENU *DEV

6-30 946250-9703

SCI Programming Language

The following is an example of the .MENU primitive:
.PROC NM(NEW MENU PROC)
.MENU MYMENU
.EOP

The menu shown with the .MENU command displays once. To change the defauit menu displayed
with the SCI prompt, use the MENU parameter of the .OPTION primitive. The standard system menu
is named .S$PROC.M$LC.

6.3.7.9 .OPTION Primitive. The .OPTION primitive enables users to modify some basic interface
characteristics of SCI to suit local language or application requirements. The .OPTION primitive
has the following format:

.OPTION [PROMPT = < string> J,MENU = < name> J,PRIMITIVES = < YES/NO>]
[LOWERCASE =< YES/NO> |

The parameter definitions are as follows:

Keyword Assigned Value Function

PROMPT An alternative prompt character Enables you to specify the SCI
string, which must be less than 50 prompt. The default SCI prompt is [],
characters in length. represented by the ASCII codes of

- >7B and >7D.

MENU Main menu name. The M$ prefix is Allows you to control which top-level
automatically supplied by SCI for the menu is displayed when control
specified menu name, so the file can returns to SCI.
be located in the user directory.

PRIMITIVES YES or NO, with YES as the default. Prevents interactive use of

LOWERCASE YES or NO, with NO as the default.

946250-9703

primitives. If you specify .OPTION
PRIMITIVES = NO, you cannot enter
a primitive in response to the SCI
prompt []. Primitives are still allowed
in procedures. Also, .OPTION
PRIMITIVES = NO in a batch stream
prevents further use of primitives in
that batch stream.

Enables or disables lower case to
upper case mapping on input to SCI.

6-31

SCI Programming Language

NOTE

The LOWERCASE option applies only to prompts processed by SClI
directly. Responses to prompts processed within a command pro-
cessor cannot be mapped to uppercase, since they are not directly
under SCI control. Examples of commands in which the lowercase
option does not apply are: DCOPY, MS, XANAL, MVI and INV. Once
invoked, these commands bypass the SCI interface, and perform
their own input processing. The user ID and password supplied dur-
ing log on must also be entered in uppercase.

The following example shows the use of the .OPTION primitive to display the characters [YES,
CAPTAIN?] instead of the usual SCI prompt, [].

.PROC EXP(NEW PROMPT PROCEDURE)
.OPTION PROMPT = “[YES, CAPTAIN?]"
.EOP

Alternative prompts can also be displayed, depending on the user ID in use at a terminal, by writing
the following .OPTION primitive in the M$00 file of the command procedure library:

.OPTION PROMPT = ST@$$ST USER: @ $$UI[|

If the synonym $$UI contained the value JF0012, the following text would display when the user logs
on:

STO01 USER:JF0012[]

The synonyms in the preceding example are only evaluated at the time the .OPTION primitive is
executed. The values of the synonyms at that time become the permanent values of the SCI prompt

until another .OPTION statement is executed or a log-off, log-on sequence is performed for the
terminal.

In the following example, the .OPTION primitive is used to select MSEDIT menu for display at each
menu display cycle of SCI. This command also disables primitives at the primary level, and enables
the use of lower case characters as input to SCI.

.OPTION MENU = EDIT, PRIMITIVES = NO, LOWERCASE = YES

6.3.7.10 .OVLY Primitive. The .OVLY primitive is used in standard DX10 SCI procedures. It is
documented here to help you understand the function of the SCI procedures that use it.

The .OVLY primitive overlays portions of the SCI code in certain procedures where the command
processor is quite lengthy.

Using the .OVLY primitive to call existing SCI functions is not recommended, since references to
this primitive may not be compatible with future extensions of the operating system. Further, there
is a considerable potential for system failure due to improperly coded .OVLY calls.

6-32 946250-9703

SCl Programming Language

The .OVLY primitive is not suitable to call user-defined functions, since you cannot properly link
such functions with the overlay mechanism. The .OVLY primitive invokes overlays to the SCI code

itself, and is therefore restricted to functions previously linked to SCI. The DX10 object kit does not
contain all the elements necessary to link SCI.

CAUTION

Improper use of the .OVLY primitive can result in system failure.

6.3.7.11 .PROMPT Primitive. Use the .PROMPT primitive to solicit additional information from a
terminal operator. The .PROMPT primitive can be used to collect additional prompts when more
are required than can be displayed with the .PROC prompt list. When using the .PROC prompt list,
the 911, 931, 940, and Business System terminals can dispiay up to 22 prompts; the 913 VDT can
display a maximum of 10 prompts. The .PROMPT primitive can be used to collect optional
responses after normal procedure prompts. The syntax for the .PROMPT primitive is as follows:

PROMPT [(< full name>)][=< int>][,< prompt list>]

The prompts defined by .PROMPT are not displayed on the same screen with those defined by
.PROC. The screen is cleared and the new prompts are displayed. For a procedure with .PROMPT

in it to be usable in batch, all the prompts required by .PROMPT primitives must be named as
hidden prompts as part of the .PROC prompt list.

The full name parameter is optional and is a character string to be displayed when .PROMPT is
executed in interactive mode. The < int> parameter specifies the lowest privilege level that can in-
voke the procedure. However, this privilege level can be higher than that specified by .PROC. The
< prompt list> parameter is a list of the prompts to which the user responds.

The following is an example of the .PROMPT primitive:

.PROC EXP(EXAMPLE PROC)=0
INPUT PATHNAME = ACNM,
OUTPUT PATHNAME = ACNM,
DISPLAY OR COPY? = STRING(DISPLAY)
AF &DISPLAY OR COPY?,EQ,"“DISPLAY”
SF FILE = &INPUT PATHNAME
.ELSE
CC IAN = &INPUT PATHNAME,
OAN = &OUTPUT PATHNAME
.PROMPT (SUPPLEMENTARY QUESTION)=3
DELETE FILE? = YESNO(N)
AF &DELETE FILE?,EQ,"Y”
DF PATHNAME = &INPUT PATHNAME
.ENDIF
.ENDIF
.EOP

946250-9703 Change 1 6-33

SCI Programming Language

In this example, the DELETE FILE? prompt of the supplementary questions is not displayed unless
the user is copying the file and the procedure is invoked by a user whose privilege level is at least 3.
A user with a privilege level lower than 3 receives an error message when the .PROMPT is en-
countered in the procedure, and the procedure is aborted at that point.

6.3.7.12 .SHOW Primitive. The .SHOW primitive displays the contents of a specified file, or files,
to an interactive terminal. The .SHOW primitive has the following format:

SHOW <acnm>[,<acnm,...>]
Here, acnm is the name of a file or a synonym referring to a file.

The .SHOW primitive cannot be used to show a program file or an image file. .SHOW is the
equivalent of issuing an SF command. /

The following is an example of the .SHOW primitive:

.PROC EXP(EXAMPLE SHOW FILE)=0,
INPUT FILENAME = ACNM(@ SFP)
.SYN SFP = &INPUT FILENAME
.SHOW @ @ SFP
.EOP

In this example, the .SHOW primitive causes the file identified by the response to the INPUT
FILENAME prompt to be displayed. The initial value of the prompt is set to the file name of the last
input file. The name of the last input file is then changed by the .SYN primitive to the name of the file
entered as INPUT FILENAME to this procedure.

Synonyms used as file name prompts for the .SHOW primitive must be coded with two at signs
(@ @) as shown in the example. If a prompt name is used and a synonym name can be entered in the
prompt, the prompt name must be preceded by one at sign (@). For example, @ &INPUT FILENAME
indicates that a synonym can be used for the input file name.

6.3.7.13 .SPLIT Primitive. The .SPLIT primitive is used to remove the first term from a value list
and has the following format:

SPLIT LIST =< string>, FIRST = < synonym name> [,REST = < synonym name>]

6-34 Change 1 946250-9703

SCI Programming Language

The < string> supplied on the right-hand side of the LIST = must begin with a left parenthesis and
end with a right parenthesis. The operation of the .SPLIT primitive is best explained by the following
examples: C

Before Execution of the Results After Execution
.SPLIT Primitive) of the .SPLIT Primitive
Syntax of Value of Value of Value of
LIST Synonym in Synonym on Synonym on
Example Right-Hand Right-Hand
Syntax Side of Side of
. FIRST = REST =
LIST =(A,B,C) — A (B,C)
LIST=(A) — A null
LIST=() — : null null
LIST = ((X,Y),Z,G) — ; XY) (Z,G)
LIST=(@SYN) AB,C A (B,C)
LIST= @ WXB (A,B,C) A (B,C)
LIST=(@XY2) (A,B,C) (A,B,C) null
LIST=(@B1)* A(,B,C) '
LIST= @B2* A,B,C
Note:

* Produces an error.

Items in the value list must be separated by commas. Parentheses are used to control how the list is
split.

The following is an example of the .SPLIT primitive used in a command definition:

.PROC EXP(EXAMPLE PROC),
INPUT PATHNAME = ACNM(@ EXIP),
OUTPUT PATHNAME(S) = (ACNM)
.SYN EXIP = &INPUT PATHNAME
.SYN EXOP = (&OUTPUT PATHNAME)
.LOOP
SPLIT LIST= @EXSOP, .
FIRST = $SEXS$P,
REST = EXOP
CC IAN = @EXIP,OAN = @ EXP
WHILE @EXOP,NE,EXOP
.REPEAT
.EOP

In this example, the file identified by the response of the INPUT PATHNAME prompt is copied to the
file, or files, identified by the responses to the OUTPUT PATHNAME(S) prompt. The .SPLIT primitive
is used within a loop to access the current output file to which the input file is to be copied. When
one copy has completed, .SPLIT updates the current output file to be the next output file.

946250-9703 6-35

SCI Programming Language

The .WHILE primitive is used within the loop to check if the input file has been copied to all
specified output files. When the synonym EXOP has no value, the output file pathnames have
been exhausted.

The parentheses around &OUTPUT PATHNAME in the .SYN primitive are required for a list value.

The .WHILE primitive should be encoded as shown with an at sign (@) on the first synonym name
and no at sign on the second synonym name. When the first operand, @ EXOP, resolves to a null
value because the list is empty, the resolved value becomes the synonym name, EXOP. The
second operand in the WHILE primitive is treated as a literal because it has no at sign in front of it.
The two operands are equal and the loop terminates at this point.

6.3.7.14 _.STOP Primitive. The .STOP primitive in a foreground procedure logs the user off SCI. In
a batch stream, .STOP ends the batch stream. .STOP has the following format:

.STOP [TEXT =< string>], CODE =< int>]

The string specified by the TEXT parameter and the CODE value are optional. The TEXT parameter
can be used to pass a string back to the foreground SCI to be displayed instead of the BATCH SCI
HAS COMPLETED message. The TEXT = parameter cannot exceed a single line in the procedure.

During execution of a foreground task, the CODE parameter can be used to set the synonym $$BC in

the synonym table of the bidding SCl task to a four-digit hexadecimal value at the completion of the
batch stream.

When a background task is initiated, the foreground synonym table of the SCI task at that terminal
is copied to background for use by the background task. At this time, the $$BC synonym is set to

null. The background task can place the completion code in $$BC and return it to foreground in the
the CODE parameter.

The value is not placed in the $$BC synonym until any active foreground procedure terminates.
Therefore, the $$BC synonym can only be used by a procedure executed after the procedure origi-
nally calling the background task. SCI ignores the TEXT and CODE parameters if not in batch mode.

If the .STOP primitive is issued in foreground mode, any unfinished text editing is lost.
The following is an example of the interactive use of the .STOP primitive:

.PROC EXP(TERMINAL IS LOGGING OFF)=0 !FULL NAME DISPLAYED

.STOP 'TERMINATE SCI
.EOP

In this example, the .STOP primitive is used within a command procedure to stop SCI and log-off the
terminal. This is functionally equivalent to the Q command used to quit SCI.

Upon termination of a batch stream, SCI passes the message specified in the TEXT parameter
back to the foreground SCI for the terminal from which the batch stream was submitted. If the ter-
minal is in a WAIT command, SCI immediately displays the TEXT message. If the terminal is
displaying the SCI prompt, pressing the Return key causes a display of the message. If the ter-
minal is processing a command in foreground mode, the message will be displayed when the fore-
ground task is completed.

6-36 946250-9703

SCI Programming Language

6.3.7.15 .SYN Primitive. The .SYN primitive is used to assign values in the synonym table and has
the following format:

.SYN < name> =‘“<value>"...
The < name> parameter specifies the name of a synonym without the at sign (@). The < value> can
be a string, variable, or a concatenated expression. Parentheses are required for values containing
lists.

Assigning a null value to a synonym deletes the synonym from the synonym table. Assign a null
value to a synonym as follows:

.SYN < name> ="

The following is an example of the .SYN primitive used in a command definition:

PROC EXP(EXAMPLE PROC) =0, .

INPUT PATHNAME(S) = (ACNM)(@ EXSIP),

OUTPUT PATHNAME = ACNM(@ EXOP),
SYN EXIP = (&INPUT PATHNAME)
SYN EXOP = &OUTPUT PATHNAME

CC IAN = @$EXSIP,
OAN = @EXSOP

.EOP

This example assigns values to synonyms EXIP and EXOP. These synonyms may be accessed
by other command procedures. The synonym EXSIP is the name of the last input file and EXOP is
the name of the last output file. Procedures can assign values to these synonyms, making them ac-
cessible to subsequent SCI tasks.

6.3.7.16 .USE Primitive. The .USE primitive specifies the procedure directories, or libraries, to be
used by SCI. The .USE primitive has the following format:

USE{[{<acnmi>][,<acnm2>][,<acnm3>][,<acnm4>][,<acnmb5>]

After the .USE statement is executed, any command procedures or menus to be executed are
searched for in the directories specified as <acnm1> through <acnmb5>, in that order. The .USE
primitive remains in effect until overridden by another .USE or until a log-off/llog-on sequence
occurs. To revert to the standard system library, specify a .USE with no operands. This causes the
default value .S$PROC to be <acnm1>, and all other access names are null.

When a command procedure is installed usinAg the .PROC primitive interactively or in a batch
stream, SCI places the command definition into the directory specified by pathname 1.

946250-9703 6-37

SCI Programming Language

One of the pathnames must contain the main menu specified by the .OPTION primitive or a warn-
ing message will occur after the .USE primitive is invoked. This menu is usually the file named
.S$PROC.M$LC. When an SCI command is typed in response to the prompt [], SCI forms the file
name of the command library by first concatenating the procedure name entered by the user to
pathname 1, and if not found, concatenating the procedure name to pathname 2 and so on through
pathname 5. If no file is found in any of the directories, you receive an error. The following prompts
cause SCI to look for acommand file named .S$PROC.EX:

[].USE.S$PROC, .USERLIB
[JEX

If no such file is found, SCI then searches for .USERLIB.EX. The .USE command establishes the pro-
cedure library directory names.

NOTE

If the default menu cannot be found after the .USE primitive is
invoked, a warning is displayed and no menu is shown. If this occurs
in a procedure, the procedure is aborted at that point. One of the pro-
cedure libraries named in the .USE command should have a file con-
taining the default menu.

Issuing a .USE without parameters returns control to the system procedure library (S$PROC).

The S$PROC.M$00 file is frequently used to invoke user procedure libraries with the .USE primitive.
For example,

.PROC M$00
.USE .S$PROC,.USERLIB
IF @$3UILLEQ,JF0012
.USE .S$PROC,.JFLIB
.OPTION MENU =JF
.ENDIF
.EOP

In the preceding example, M$00 adds the procedure library .USERLIB for all users except the user
with an ID of JF0012. JFO012 would use the procedure library .JFLIB and would also have a defauit
menu name of M$JF.

If the M$00 procedure exists in the .S$PROC command directory, it is automatically executed when

any user logs on to SCI. You can use M$00 to perform any custom initialization for your application
needs, as discussed earlier in this section.

6-38 946250-9703

SCI Programming Language

6.3.8 Processor Interfacing Subroutines ,

The SCI processor subroutines provide the interface between procedures and processors, provide
data manipulation facilities, and control messages directed to the terminal user. These routines
reside in .SCI990.S$OBJECT and can be linked with user programs.

When linking a program that uses these routines, it is usually best to let routine references be
resolved through automatic symbol resolution using the LIBRARY statement in the link edit con-
trol stream. If this method is used, the LIBRARY .SCI990.S$OBJECT statement should be the first
LIBRARY statement in the link stream.

The four categories of interface subroutines and the subroutines in each category are as follows:

946250-9703

String Utility Subroutines

— S$IASC — Convert Binary Integer to ASCI|

S$INT — Convert ASCIi to Binary Integer
S$SCOM — Compare Two Strings

S$SCPY — Copy String

SCI Interface Subroutines

S$GTCA — Get Terminal Communications Area (TCA)
S$PTCA — Put TCA

S$BIDT — Bid a Task from the Processor
S$RTCA — Release TCA

S$NEW — Initialize the TCA

S$PARM — Get the I-th Parameter

S$SETS — Set Synonym Value

S$MAPS — Map Synonym (get its value)
S$SNCT — Search Name Correspondence Table
S$STAT — Get Terminal Status

S$SPLT — Split List into Components

S$STOP — Return to SCI

6-39

SCI Programming Language

. Arithmetic Utility Routines
— S$IADD — Add 32-bit Integers .
— S$ISUB — Subtract 32-bit Integers
— S$IMUL — Multiply 32-bit Integers

— S$IDIV — Divide 32-bit Integers

. Local Display File Routines

— S$OPEN — Open the Terminal Local File (TLF)

— S$WRIT — Write to the TLF

— SSWEOL — Write End-of-Line to the TLF

— 88$CLOS — Close the TLF

Each of these interface subroutines are described in the following paragraphs.

6.3.8.1 String Utility Subroutines.
character strings. These strings are stored in buffers with the following form:

Operands for command processors are passed from SCI as

STRING
LENGTH

Cc1

c2

CN

2283183

The string length is the number of characters in the string (one byte per character), and the buffer is
one byte longer than the string. A maximum of 255 can be specified as the string length. In the for-

mat illustration, C1, C2 and CN are characters in the string.

Empty buffers reserved for string storage should have the buffer length minus one (maximum string
length) in the first byte. The following routines are provided to operate on strings.

6-40

'946250-9703

SCI Programming Language

S8IASC — Convert Binary Integer to ASCIl. This routine is used to convert a 32-bit binary integer
into an ASCII text string representing that number. R1 contains the address of the 32-bit number. R2
points to a buffer which is to receive the ASCI| text.-The buffer is of the form of the string variable,
with the first byte containing the length of the buffer minus one. The 32-bit integer will either be
taken as a two’s complement number or as a positive binary number, depending on the base byte
(second byte) of R3. If the base byte is zero, the number is treated as a two’s complement binary in-
teger and will be converted into the ASCII representation of the decimal (base 10) number, with
leading blanks and a “-" character if the number is negative. If base is anything but zero, the 32-bit
integer is treated as positive and will be converted into the ASCIl representation of the integer in the
specified base, with leading zeros. S$1ASC puts the length of the ASCII string into the first byte of
the receiving buffer.

Calling sequence: BLWP @S$IASC

Registers Used: RO — Error code returned by S$IASC
R1 — Address of the 32-bit integer
R2 — Address of the buffer which is to receive the ASCII text

R3 — Byte 0: number of ASCIlI characters to be output (field
width); zero means variable number; maximum is
32
Byte 1: Base (e.g., 10 or 16) into which the integer is to be
converted, prior to representation in ASCIl (0 =
decimal)
Example: , INT DATA 2,0 INTEGER = 128K
BUFFER BYTE 15 LENGTH OF BUFFER
BSS 15
LI R1,INT Rl = ADDRESS OF INT
L R2,BUFFER R2 = ADDRESS OF BUFFER
LI R3,> 0010 FIELD WIDTH = VARIABLE
* BASE = 16

BLWP @S$IASC CONVERT

S$INT — Convert ASCIl to Binary Integer. This routine converts an ASCII test string representing
an integer expression into a 32-bit binary value. The integer expression to be converted can con-
tain the standard arithmetic operators +, —, *, and /. If the ASCI| string contains a number
beginning with > or 0, the number is assumed to be hexadecimal; otherwise, it is assumed to be in
the base specified in workspace register R4.

Calling Sequence: BLWP @S$INT
Registers Used: RO — Error code returned by routine
R2 — Pointer to the ASCII string to be converted to an integer

R3 — Pointer to a 4-byte (32-bit) buffer in which the converted binary
integer is to be stored

R4 — Base of the number represented by the input string (e.g., 10 or
16). If R4 is zero, base 10 is assumed.

946250-9703 6-41

SC! Programming Language

Example: NUMBER BYTE 5 LENGTH OF TEXT
TEXT > AE80’ HEX NUMBER
EVEN
INT BSS 4 BUFFER FOR INTEGER
LI R2,NUMBER R2 = ASCIll NUMBER
LI R3,INT R3 = BUFFER
LI R4,16 R4 = BASE 16
BLWP @SS$INT CONVERT THE NUMBER

S$SCOM — Compare Two Strings. This routine compares two strings, and sets the arithmetic bits
in the status register to reflect the results of the comparison. If one string is shorter than the other,
it is assumed to be filled with the NULL characters (hexadecimal 00). If one string is a substring of
the other (matching from the left), RO is set to zero. The two strings are pointed to by registers Ra
and Rb, where Ra and Rb are specified in the two bytes immediately following the call to S$SCOM
(see example). '

Calling Sequence: BLWP @S$SCOM
BYTE Ra, Rb
Registers Used: RO — Substring test code returned by S$SCOM: If 0, one string is a

substring. If — 1, the strings differ at some character.
Ra — Pointer to the first string

Rb — Pointer to the second string
Exampile: FIRST BYTE 6 LENGTH OF FIRST STRING

TEXT ‘SUBSTR’

SECOND BYTE 9 LENGTH OF SECOND STRING
TEXT ‘SUBSTRING’
LI R3,FIRST R3 POINTS TO FIRST
LI R5,SECOND R5 POINTS TO SECOND
BLWP @S$SCOM COMPARE THE TWO
BYTE R3,R5 DEFINE ‘A’ AND ‘B’
Mov RO,RO
JEQ SuB THIS JUMP WILL OCCUR

S$SCPY — Copy String. This copies the string pointed to by register Ra into the buffer pointed to
by register Rb, placing the length of the copy string in the first byte of Rb. Registers Ra and Rb are
defined in the two bytes immediately following the call to S$SCPY. The buffer containing the string
(pointed to by register Ra) must not overlap the buffer in which the copy is to be placed. The buffer at
Rb must be set up as a string buffer, as described earlier in this section. If the length of the receiving
buffer is less than the text string to be copied, an error code is returned in RO. If register Ra is zero,

or the string to be copied is the null string (zero length), the buffer length (first byte) of the buffer at
Rb will be set to zero.

Calling Sequence: BLWP @S$SCPY
BYTE Ra, Rb

Registers Used: RO — Error code returned by S$SCPY
Ra — Pointer to text to be copied
Rb — Pointer to buffer to receive text

6-42 946250-9703

SCI Programming Language

Example: STRING BYTE 7 LENGTH OF STRING
TEXT ‘COPY ME’
COPY BYTE 20 LENGTH OF BUFFER
BSS 20
LI R1,STRING R1 POINTER TO STRING

i

LI R8,COPY R8 = POINTER TO BUFFER
BLWP @S$SCPY CALL S$SCPY
BYTE R1,R8 DEFINE ‘A’ AND ‘B’

6.3.8.2 SCI Interface Subroutines. SCI interface subroutines allow a command processor to
access parameters passed to it from the command procedure through the PARMS and CODE key-
word values in the .BID, .QBID, .DBID, or .TBID primitve or an S$BIDT subroutine call. The task
must be bid in one of these five manners to access the parameters. They also allow the command
processor to access and modify synonyms defined for the teminal, and to return control to SCIL.
These synonyms reside in the terminal communications area (TCA) of the terminal, which acts as
an information buffer between SCI and processors.

You must issue a SSGTCA subroutine to get the TCA before calling any of the other routines in this
category. After your processing is complete, issue a SSRTCA subroutine call to release the TCA.
Return control to SCI by issuing an S$STOP subroutine. Although you can issue the S$STOP routine
at any time, it is good practice to release the TCA first.

S$GTCA — Get Terminal Communications Area. This routine makes the TCA available for use by
the calling routine (a command processor). This routine must be cailed before a command processor
can access prompt and synonym values, and receive parameters passed to it by the SCI procedure.

Calling Sequence: BLWP @S$GTCA
Registers Used: RO — Error code returned by S§GTCA
Example: *BEGINNING OF COMMAND PROCESSOR

BEGIN BLWP @ S$GTCA OPEN TCA

946250-9703 6-43

SCI Programming Language

S$PTCA — Put Terminal Communications Area. This routine must be called by a command pro-

cessor that has written in the TCA (using the S$SETS routine), before the processor terminates or
calls S$RTCA.

Calling Sequence: BLWP @S$PTCA
Registers Used: RO — Error code returned by S$PTCA
Example:

*THE TCA HAS BEEN MODIFIED
WRITE BLWP @S$PTCA UPDATE THE TCA

S$BIDT — Bid a Task. This routine allows you to bid tasks from within currently executing tasks.
The task must be linked with these routines and must be bid with one of the five methods
described in paragraph 6.3.8.2. (If it is not linked with these routines, you can execute another task
using the Execute Task SVC (opcode >2B).)

Before calling S$BIDT, initialize the TCA with an S$GTCA call.
Calling Sequence: BLWP @ S$BIDT

Registers Used: RO — Error code returned by S$BIDT

R1 — The left byte contains the task ID and the right byte contains the
program file LUNO associated with the bid task.

R2 — Contains the address of a table of addresses pointing to
parameters passed to the bid task. Set this register to zero to
pass the parameters of the calling task to the bid task without
modification.

R3 — Left byte is the CODE passed to the bid task. Set to zero if no
CODE is passed. The right byte indicates flags in bits 8, 12, 15.
Set other bits to zero. The flag bits indicate the following:

Bit 8 — Return runtime 1D flag
Bit 12 — Terminate calling task flag
Bit 15 — Suspend calling task flag

The calling task places the ID of the bid task in the left byte of R1, and the LUNO of the bid task’s
program file in the right byte.

The table of addresses specified in R2 point to the parameters passed to the bid task. The table
must contain zero as the last entry, and byte zero of each parameter must contain the number of
characters in the parameter. Bytes 1 through n contain the characters of the parameter. To pass no
parameters to the bid task, place an address in R2 that points to an address containing zero. This,
in effect, is an empty table of addresses. If the table is not empty, your task must be small enough
to allow S$BIDT to obtain 864 bytes of memory or an error is returned.

6-44 946250-9703

SCI Programming Language

The calling task places the CODE parameter value in R3, and sets the flag bits as follows:

Bit 8 If set to 1, the calling task returns the runtime ID of the bid task in the ieft byte of R1.
If set to 0, Rt remains unchanged.

Bit 12 If set to 1, the calling task is terminated after the called task is bid. If set to 0, the
calling task remains active.

Bit 15 If set to 1, the calling task is suspended until the called task terminates. If set to 0,
the calling task remains active.

NOTE

Either bit 12 or bit 15 must be set to 1 when the bid task is initiated. If
both are zero, the results are unpredictable.

The following example sets up a structure to pass three parameters to a task:

ADRTBL DATA PARM1
DATA PARM2
DATA PARM3
DATA O

PARM1 BYTE 3,’A’,'B’,C’

PARM2 BYTE 0

PARM3 BYTE 2, ‘1’0’
The first parameter passed to the task is the string ABC, which is 3 bytes long. The second
parameter is a null parameter (no value). The third parameter is the string 10, which is 2 bytes long.
The table ADRTBL is terminated with a value of zero.
To set R2 to be used with the example, use the following instruction:

LI R2,ADRTBL

The values passed to S$BIDT are used to build an Execute Task SVC block which S$BIDT then
issues. S$BIDT also passes the synonyms of the calling task to the called task.

SSRTCA — Release Terminal Communications Area. This routine must be cailled by a command
processor after it no longer needs access to the TCA. Usually, just before terminating.

Calling Sequence: BLWP @ S$RTCA

Registers Used: RO — Error code returned by S$RTCA

946250-9703 6-45

SCI Programming Language

Example:

*THIS ROUTINE IS FINISHED WITH THE TCA
BLWP @ S$RTCA RELEASE TCA

SSNEW — Initialize the System Data Base. This routine initializes a terminal communications
area (TCA) for use by the various system routines according to the terminal state, mode, and ID.
Command processors that do not call S§GTCA, but use other S$xxxx routines, must call SSNEW
before using any of the other routines. Processors that do call S$GTCA need not call SSNEW, since
S$GTCA does so.

Calling Sequence: BLWP @S$SNEW
Registers Used: RO — Error code returned by SSNEW
Example: *THIS IS THE BEGINNING OF THE ROUTINE.

BEGIN BLWP @ S$SNEW

S$PARM — Get the I-th Parameter. This routine may be used by a command processor to get the
parameters in the TCA which were passed to it by the command procedure through the PARMS
parameter of a .BID, .QBID, or .DBID primitive. These parameters are text strings, delimited by com-
mas, as shown under the .BID primitive description. Register Ra contains an integer that is the
number of the parameter desired. Register Rb points to a buffer, into which the text string is to be
copied. The first byte of the buffer must contain the length of the buffer. If the buffer is too short, an
error code is returned in RO. Registers Ra and Rb are specified in the two bytes immediately follow-
ing the call to S$PARM.

Calling Sequence: BLWP @ S$PARM
BYTE Ra, Rb
Registers Used: RO — Error code returned by S$PARM
Ra — Parameter number
Rb — Pointer to the buffer for the parameter text string

6-46 946250-9703

SCI Programming Language

Example: PARMI BYTE 28 - BUFFER FOR PARAMETER
BSS - 28
LI. R2,PARMI R2 = POINTER TO BUFFER
LI R1,3 R1 = 3 (GET THE 3RD PARM)
BLWP @S$PARM

BYTE R1,R2 DEFINE ‘A’ AND ‘B’

S$SETS — Set Synonym Value. This routine is used to define or redefine a synonym in the ter-
minal communications area. The synonym is a text string, pointed to by register Ra. The value to be
assigned to the synonym is a text string pointed to by register Rb. If register “b” is zero, or points to
a zero length string, the synonym is deleted from the TCA.

NOTE

In order to update the TCA with the new synonym value, S$PTCA
must be called after the last call to S$SETS.

Calling Sequence: BLWP @S$SETS
BYTE Ra, Rb
Registers Used: RO — Error code returned by S$SETS
Ra — Pointer to synonym name text string
Rb — Pointer to synonym value text string
Example:
SYNO4 BY.TE 5 LENGTH OF SYN0O4 NAME
TEXT ‘SYNO4’
VALUEH1 BYTE 15 LENGTH OF VALUE

TEXT ‘DS02.CAT1.INPUT’

L R3,SYNO4 R3 = POINTER TO SYN NAME
L R7.VALUE1 R7 = POINTER TO SYN VALUE
SETS BLWP @S$SETS DEFINE SYN

BYTE R3,R7 DEFINE ‘A’ AND ‘B’

946250-9703 6-47

SCI Programming Language

SSMAPS — Map Synonym (Get Its Value). This routine will search the terminal communications
area for the synonym name pointed to by Ra. If the synonym is found, and the buffer is large enough,
its value is placed in the buffer pointed to by Rb, and the length of the value string is placed in the
first byte of the buffer. The buffer is a text string buffer, with the first byte containing the length of
the buffer minus one. If the buffer is too small, an error code will be returned in RO. If the synonym is
not found in the TCA, a zero-length string is copied into the buffer. If the synonym name pointed to
by Ra has a “.” in it, the text preceding the “.” will be replaced by its synonym value, if any exists,
and the remainder of the synonym name will be copied into the value buffer without modification.

Calling Sequence: BLWP @ S$MAPS
BYTE Ra,Rb
Registers Used: RO — Error code returned by SSMAPS
Ra — Pointer to synonym name
Rb — Pointer to buffer for synonym value
Example:
SYNO5 BYTE 10 LENGTH OF SYNO5
TEXT ‘SYNO4.DATA’
VALO5 BYTE 50 LENGTH OF VALUE
BSS 50
LI 2,SYNO5 R2 = POINTER TO NAME
LI 3,VALO5 R3 = POINTER TO BUFFER
MAPS BLWP @ S$MAPS GET SYN VALUE
BYTE R2,R3

S$SNCT — Search Name Correspondence Table. This routine searches the synonym table in the
TCA for any synonym that is the immediate alphabetical predecessor or successor of the text string
pointed to by register Ra. Finding the predecessor or successor depends on the value in RO.

If the desired synonym is found, the name is placed the buffer pointed to by Ra. If no synonym is
found, a null string (zero length) is placed in the buffer pointed to by Ra. If Ra originally points to a
zero length string, the alphabetically smallest synonym and its value are returned. If Rb is equal to
zero, any synonym found is returned in the Ra buffer, but the corresponding value is not returned. If
Rb is nonzero, the value of the synonym found is copied into the buffer pointed to by Rb. This routine
is intended to be used to access synonyms in alphabetical order. Parameters entered by the PARMS

parameter of a .BID, .QBID, or .DBID primitive are accessed using SSPARM (Get the Ith Parameter)
routine.

6-48 946250-9703

Calling Sequence:

Registers Used:

Example:

946250-9703

NOTE

SCI Programming Language

S$SNCT assumes that the buffer pointed to by Ra is 256 bytes long,
and that the character count value in the first byte is a count of the
string currently in the buffer. This is the only 8$ routine that does
not check buffer length before writing in the buffer.

BLWP @S$SNCT
BYTE Ra,Rb

RO —

If 0, the alphabetical successor is searched for; if —1, the

alphabetical predecessor is searched for

Ra —

is found, it is placed here
Rb — Pointer to the buffer to receive the synonym value

SYN BYTE
NAME TEXT
BSS
BYTE
BSS

VALUE

LI

LI

LI
BLWP
BYTE
CLR
MOVB
JEQ

GETNXT

‘SYN’
252
255
255

R0,0
R3,SYN
R4,VALUE
@S$SNCT
R3,R4

R1

*R3,R1
ouT

*PROCESS THE SYNONYM

ouT

Pointer to buffer containing original string; if a synonym name

LENGTH OF SYN BUF

LENGTH OF VALUE BUF

RO = GET SUCCESSOR
R3 = NAME OF SYN
R4 = VALUE BUFFER
GET NEXT SYN

DEFINE ‘A’ AND ‘B’

Rt =0

CHECK FOR

END OF NCT

6-49

SCI Programming Language

S$STAT — Get the Status of the Terminal. This routine returns the status of the terminal from
which the calling routine (command processor) was activated. The information is returned in four
bytes (two words), which have the following meaning:

Byte Bit ' Meaning

1 0 Reserved
1-3 User privilege code, 0-7, as defined by the Assign User ID (AUl) command
4-7 The current terminal mode, in hexadecimal, as follows:

>00 = batch mode or background
>01 = TTY mode
>0F = VDT mode

2 Station ID
3 Reserved
4 The value of the CODE parameter from the most recently executed .BID,

.QBID, or .DBID primitive.

The calling sequence and registers used are as follows:

Calling Sequence: BLWP @S$STAT
Registers Used: RO — Error code returned by S$STAT
R3 — Pointer to a 32-bit buffer
Example:
EVEN
INFO BSS 1 TERMINAL INFO
ID BSS 1 STATION ID
BSS 1 RESERVED
CODE BSS 1 ‘cobE’
LI R3,INFO R3 = POINTER TO BUFFER

BLWP @S$STAT GET STATUS

S$SPLT — Split List into Components. This routine is used to remove the first element of a list, in
the same manner as the .SPLIT primitive copies the first element (all text up to the first comma) of
the list pointed to by R1 into the buffer pointed to by R2, putting the rest of the list into the buffer
pointed to by R3. R1 and R3 may point to the same buffer.

Calling Sequence: BLWP @S$SPLT

Registers Used: RO — Error code returned by S$SPLT
R1 — Pointer to list text string
R2 — Pointer to buffer to receive first element of the list
R3 — Pointer to buffer to receive the rest of the list

6-50 946250-9703

SCI Programming Language

Example:
LIST BYTE 32 LENGTH OF LIST
TEXT 20,LIST ACCESS’
TEXT ‘NAME,OUTPUT FILEY

FIRST BYTE 20 LENGTH OF ‘FIRST’ BUF
BSS 20
LI. R1,LIST R1 = LIST POINTER
LI R2,FIRST . R2 = FIRST POINTER

MOV R1,R3 R3
BLWP @S$SPLT

REST POINTER = R1

S$STOP — Return to the System Command Interpreter. This routine is used to terminate a com-
mand processor by returning control to SCI. It can be called at any point within the command pro-
cessor. If S§CLOS was called earlier, with R1 = 0, the terminal local file will be displayed when
control returns to SCI. If, upon calling S$STOP, R2 is not zero, the message text pointed to by R2 will
be displayed after the terminal local file. This allows command processors to return error or com-
pletion messages. The value of R1 is converted to a four-digit hexadecimal integer and assigned as
the value of synonym $$CC. The maximum message length for the routine S$STOP is 77 characters.

Calling Sequence: BLWP @S$STOP
Registers Used: R1 — Completion code. If zero, no error occurred.
R2 — Pointer to a text string. If zero, no message is displayed.

The value in R1 is converted to hexadecimal ASCII, and assigned to the synonym $$CC if the pro-
cessor was executed using .BID, or the synonym $$BC if the processor was executed using .QBID. If
this processor is started by .QBID from a batch SCI, both $$CC and $$BC are assigned the value in
R1.

Completion messages are passed to the foreground SCl via the TCA. If there is not available space
in the TCA to hold the message, the message is not passed to the TCA and no error message is
displayed to the user.

Example: ERRO BYTE 18 MESSAGE LENGTH
TEXT ‘NORMAL TERMINATION’
MOV @ERRCOD,R1 R1 = ERROR CODE
JEQ ERRET JUMP TO ERROR RETURN
RETNRM LI R2,ERRO R2 = MESSAGE
BLWP @S$STOP
ERRET LI R2,0 DON'T RETURN MESSAGE
BLWP @S$STOP RETURN TO SCI
END

946250-9703 Change 1 6-51

SCI Programming Language

6.3.8.3 Arithmetic Utility Subroutines. Four routines perform addition, muitiplication, division,
and subtraction using 32-bit signed integers as operands. Each routine also sets the status register
bits 0 through 2, as do the normal assembly language arithmetic instructions.

S$IADD — Add 32-bit Integers. This routine adds two 32-bit integers (two’s complement numbers),
yielding a 32-bit integer. The two operands are pointed to by R1 and R2, and the result is placed in
the 32-bit buffer pointed to by R3. Any of the registers may point to the same 32-bit area (add A to A,

giving A). The status register arithmetic bits are set, as in the normal assembly language add
instruction.

Calling Sequence: BLWP @S$IADD

Registers Used: RO — Error code returned by S$AIDD
(— 1 means overflow)
R1 — Pointer to 32-bit integer
R2 — Pointer to 32-bit integer
R3 — Pointer to 32-bit buffer for result

Example: NUM1 DATA 1,0 FIRST NUMBER = 64K
NUM2 DATA 0,>FFFF SECOND NUMBER = 64K-1
LI R1,NUM1 R1 = NUM1 POINTER

LI R2,NUM2 R2 = NUM2 POINTER
MOV R2,R3 R3 = RESULT POINTER
BLWP @S$IADD ADD NUM1 + NUM2 GIVING NUM2

S$ISUB — Subtract 32-bit Integers. This routine is used to subtract 32-bit integers and works like
S$IADD. If R1 is zero, the negative of the number pointed to by R2 is calculated.

Calling Sequence: BLWP @ S$ISUB

S$IMUL — Multiply 32-bit Integers. This routine multiplies the two 32-bit integers pointed to by R1
and R2 and places the result in the 32-bit buffer addressed by R3. Any of the registers may address
the same 32-bit area. This routine works the same as S$IADD and S$ISUB.

Calling Sequence: BLWP @ S$IMUL

6-52 946250-9703

SCI Programming Language

S$IDIV — Divide 32-bit Integers. This routine djvides the 32-bit integer pointed to by R1 by the
32-bit integer pointed to by R2 and places the quotient in the 32-bit buffer pointed to by R3 and the
remainder in the 32-bit buffer addressed by R4. Any of the registers may address the same 32-bit
area. If R3 = R4, only the quotient is stored. The status register arithmetic bits are set, as in
SS$IADD.

Calling Sequence: BLWP @S$DIV

Registers Used: RO — Error code returned by S$IDIV (divide by zero = —1)
R1 — Address of the dividend
R2 — Address of the divisor
R3 — Address of the quotient

R4 — Address of the remainder
Example: NUMBER DATA 80 NUMBER = 80000
LI R1NUMBER R1 = NUMBER
MOV RiR2 R2 = NUMBER
MOV Ri.R3 R3 = NUMBER
STWP R4 R4,R5 = REMAINDER
Al R4,R4*2
BLWP @S$DIV DIVIDE

*NUMBER = 1, R4 ANDR5 = 0

6.3.8.4 Terminal Local File (TLF) Access Subroutines. The TLF for a terminal is a file of ASCII
data in displayable format. The following routines are provided for opening and closing such a file,
and for constructing and writing records to the file. The task that uses this set of routines must be
bid via a.BID, .QBID, .DBID, or .TBID primitive or an S$BIDT subroutine call. The record is assumed
to be no more than 134 characters. Data items are written at specific columns, and each line is
terminated by a call to S$WEOL. Carriage control characters are edited into the text by the
routines as required.

S$OPEN — Open File. The S$OPEN routine opens the terminal local file (TLF) or a user-specified

file for write access. If R1 contains zero, the TLF is assumed. Any other value must represent the ad-
dress of text containing the pathname of a file.

946250-9703 6-53

SCI Programming Language

The TLF is used to to communicate informaton from a command processor to the user through short
messages or listings. Each terminal has two terminal local files, one for foreground and one for
background.

Calling Sequence: BLWP @ S$OPEN
Registers Used: RO — Error code returned by SSOPEN

R1 — Zero or address of text containing the pathname of a file
Example: CLR R1 R1 SET FOR TLF

BLWP @S$OPEN OPEN TLF

SSWRIT — Write to the Terminal Local File. This routine concatenates the text string addressed
by R1 with the line currently being written to the TLF. If R2 is positive or zero, it specifies the column
(0..133) in which the text should begin. The text string assumes the form described previously, with
the first byte containing the length of the string. Additionally, if the byte value > 7F is encountered in
the string, then the preceding character is repeated n times, where n is the value in the byte follow-
ing the > 7F. The string should not contain device control characters, such as line feed, since these
are supplied by S$WRIT as needed.

Calling Sequence: BLWP @S$WRIT
Registers Used: RO — Error code returned by SSWRIT
R1 — Address of text to be written
R2 — Column position at which text is to be placed

Example: *ASSUME THAT S$WRIT HAS BEEN CALLED,

AND
*R2 POINTS TO THE END OF THE LAST WRITE
NEWTXT BYTE 3 LENGTH OF NEW TEXT
TEXT e THIS TEXT IS A
BYTE >7F STRING OF ASTERISKS
REPEAT BYTE 0 REPEATED
*THIS CODE WILL FILL THE 80 CHAR LINE WITH
ASTERISKS
LAB LI R3,80 CALCULATE NUMBER
S R2,R3 OF ASTERISKS NEEDED
SWPB R3
MOVB R3,@REPEAT
LI - R1,NEWTXT R1 = ADDRESS OF NEWTXT

BLWP @S$WRIT

6-54 946250-9703

SCI Programming Language

SSWEOL — Write End-of-Line to the Termipal Local File. This routine terminates the current line
being written to the TLF and writes it to-the fileTIf SSWRIT has not been called since S$OPEN or
S$WEOL, a blank line is written. .

Calling Sequence: BLWP @S$WEOL
- ‘
Register Used: RO — Error code returned by SSWEOL
S$CLOS — Close the Terminal Local File.- This routine is used to terminate writing to the TLF. If

the TLF is open, the S$CLOS routine should be called before the S$STOP routine. If R1 is zero, the
file is displayed after the command completes (before the S$STOP message is displayed).

Calling Sequence: BLWP @S$CLOS
Registers Used: RO — Error code returned by S$CLOS
R1 — If zero, the terminal local file will be displayed }
Examples:
SETO Ri
BLWP @S$CLOS CLOSE,DON'T DISPLAY
CLR Ri
BLWP @S$CLOS DISPLAY THE TLF

6.4 SCI ENVIRONMENT AND BATCH STREAM OPERATION

Batch streams are command streams that control the operation of background tasks. A batch
stream contains a stream of SCl commands and prompt responses that appear to the SCl task as if
they were issued by a user at a terminal. However, since batch streams cannot interact with the ter-
minal, you must supply field prompt responses within the batch stream.

Batch streams usually reside in a disk file. You execute them using the XB command.

The first line of a batch stream is a BATCH command and the last line is an EBATCH command.
Before the first line is executed, the M$00 procedure is processed if it exists. After EBATCH, the
M$01 procedure is executed if it exists. Then, the background SCI terminates.

The BATCH and EBATCH commands remove unnecessary SCl-generated synonyms from your
synonym list for the background copy of the synonyms. To determine which synonyms are cleared
in batch execution, execute the SF command to view the BATCH, EBATCH, and Q$SYN
procedures.

946250-9703 6-55

SCI Programming Language

NOTE

Any modifications that you make to the Tl-supplied Q$SYN, BATCH,
and EBATCH procedures may adversely affect the execution of Ti
installation batch streams. The contents of user-written M$00 and
M$01 procedures may also affect batch execution.

In addition to the BATCH and EBATCH commands, batch streams can contain both SCI primitives
and SCl commands. SCI primitives have already been discussed in detail. When using an SCI
command in a batch stream, you must supply the following information:

U The command itself

e The keywords (prompting messages, and so on) associated with the command
. The parameter values (user responses) assigned to the keywords.

Use the following format for supplying this information:
< command> K1 =< value> ,K2 =< value>, .. .Kn=<value>

The command can be any SCI command. (All SCl commands except Text Editor and Debugger com-
mands are fully documented in Volume 1l.) The keywords indicated by K1, K2, and so on, are the ac-
tual prompting messages that appear on the screen when you execute the command interactively;
the value of that keyword is coded into the command instead of being supplied interactively.

NOTE

The keyword can be either the full prompting message, or an
abbreviation of the prompting message that includes enough
characters to make it recognizable as the intended prompt. A near
equality algorithm compares the full keywords with their abbrevia-
tions. Often, only the first character of a keyword is required. This is
shown in several of the examples used in this section. Refer also to
the discussion of the near equality algorithm.

The BATCH command procedure bids an SCI task in background. It uses the .QBID primitive to bid
the SCI task, so the terminal communications area synonyms are handled the same as with any
other .QBID. That is, a copy is made of the foreground synonyms into background. These synonyms
are then used by the batch stream just as a foreground SCI task would use foreground synonyms.
The BATCH command procedure also executes the Q$SYN command procedure to release certain
synonyms. If the batch stream you create needs synonyms normally released by Q$SYN, duplicate

the Q$SYN command procedure in a separate command directory, and modify it not to release the
needed synonyms.

6-56 946250-9703

SCI Programming Language

The background SCI task executes the M$00 log-on procedure before processing commands from
the batch stream, if the procedure is present in the command directory used. The M$01 procedure,
if present, is executed when the background SCI terminates. Since these procedures may perform
operations that you do not want performed upon entry and exit from a batch stream (such as delet-
ing synonyms at log-off), you may want to prevent the rest of these procedures from being exe-
cuted if called from background. You can do this by including the following code at the beginning
of the M$00 and M$01 procedures:

| DO NOT EXECUTE REMAINDER OF M$01 IF CALLED BY BACKGROUND

I EXECUTION.

IF @$$MO,EQ,"“00” ITEST MODE SYNONYM.

EXIT IEXIT PROC IF MODE IS BACKGROUND.
.ENDIF

When you issue a .QBID within a batch stream, .QBID functions like .BID when issued from a
command running in foreground; that is, the batch stream suspends until the .QBID task com-
pletes. This means that synonyms are passed back from a batch stream to a parent batch stream.

Use the Text Editor to create a batch stream and store it in a disk file. The technique for batch
streams is the same as for command procedures. However, a batch stream does not have to beina
particular directory.

You initiate a batch stream using the XB command. XB can be executed in response to the SCI
prompt ([]), or as part of a command procedure.In either case, two prompts must be supplied to the
XB command: Input Access Name and Listing Access Name. The input access name is the name of
the batch stream file. The listing access name is either a printer unit ID or disk file pathname on
which the batch stream operating report can be recorded.

In the following example, the batch stream called PRTPAYB prints a series of payroll reports. The
batch stream assumes the reports were generated earlier, and now reside on disk in a directory
called REPORTS. As the PRTPAYB batch stream executes, it produces a listing file, shown as an ex-
ample in paragraph 6.5.3.

BATCH 'PRTPAYB P/R BATCH

PF FILE = REPORTS.PAYROL1, LD=LP0O1

PF FILE = REPORTS.PAYROL2, ANSI=Y, LD=LPO01

PF FILE = (REPORTS.PAYROL3,REPORTS.PAYROL4), LD =LP01
PF FILE = REPORTS.PAYROLS5, LD=L1P02

EBATCH TEXT = THE PAYROLL REPORT PRINTING IS COMPLETE

The following is an example of an SCl command procedure coded to call and execute the PRTPAYB
batch stream. This calling command procedure is named PRTPAY. The command procedure
assumes the batch stream resides in the PAYLIB directory, and the listing file that generates as the
batch stream executes is stored in the file called PAYLIB.PRBTCH.

PRTPAY(PRINT PAYROLL REPORTS)

XB,

IAN = PAYLIB.PRTPAYB,

LAN = PAYLIB.PRBTCH

MSG TEXT = PAYROLL REPORT PRINTING BEGUN

946250-9703 6-57

SCI Programming Language

Both the command procedure (PRTPAY) and the batch stream (PRTPAYB) are disk files, but they
need not be in the same directory. The command procedure must be in an accessible command
directory, but the batch stream can be in any directory, since the XB command aliows entry of the
full pathname.

The command procedure, PRTPAY calls the XB command, and passes to it the batch stream
pathname and a listing access name. As soon as the XB command is activated, PRTPAY displays
the message PAYROLL REPORT PRINTING BEGUN. The terminal then returns to foreground mode,
activating SCI at that terminal.

The XB command procedure initiates the batch stream PAYLIB.PRTPAYB. In the preceding ex-
ample, the input access prompt abbreviation is IAN, and the listing access prompt is LAN. Coding
them into the procedure makes it unnecessary for the terminal user to know the pathnames of the
files. The alternative method is to activate the PRTPAYB batch stream by entering XB in response to
the SCI prompt, and supplying both the input file pathname and a listing file hame.

The listing access name can be either a printer device ID or a disk pathname where a listing of the
batch stream operation can be recorded. This listing is a detailed record of the execution of the
batch stream, and it appears very similar to the batch stream itself. Any errors occurring during
execution appear in this listing. A sample batch stream listing for the PRTPAYB batch stream is
given in paragraph 6.5.3.

XB, BATCH, and EBATCH are the three command procedures required for any batch stream execu-
tion. The XB command can be initiated from the terminal or within another command procedure. The
BATCH and EBATCH command procedures are called within the batch stream itself. All three of
these command procedures can be found in the directory .SCI990.PROCO on the system disk. You
can view them using a SF command. The following list describes the processing steps performed
when you execute a batch stream. These steps reference the preceding example, in which the batch
stream is executed from a foreground command procedure called PRTPAY. Item 1 details the
necessary user action, and the activity he observes. The remaining steps detail the processing
activity.

1. When you enter PRTPAY in response to the SC!| prompt ([]) and press the Return key, SCI
displays the full procedure name, PRINT PAYROLL REPORTS. It then processes for a
few seconds, and displays the message PAYROLL REPORT PRINTING BEGUN at the
bottom of the screen. The message must be acknowledged by pressing the Return key
to return to interactive SClI.

2. As soon as the PRTPAY procedure name appears on the screen, PRTPAY initiates
execution of the XB command procedure. The IAN and LAN prompt responses are coded
into the PRTPAY command procedure, so PRTPAY automatically passes these two
pathnames to the XB command procedure.

3. S8Cl uses a near equality algorithm to identify the IAN and LAN field prompt abbreviations
as INPUT ACCESS NAME and LISTING ACCESS NAME.

4. The XB command procedure assigns the values of IAN and LAN to synonyms. The input
pathname .PAYLIB.PRTPAYB is assigned to the synonym XBl, and the listing pathname
PAYLIB.PRBTCH is assigned to the synonym XBL. (The BATCH procedure references
these synonyms to identify the batch stream pathname and listing device.)

6-58 946250-9703

10.

11.

12.

13.

14.

15.

16.

17.

'946250-9703

SCI Programming Language

The XB command procedure now issues the .QBID primitive which activates an SCI task
in the associated terminal’s background area.

The .QBID primitive also provides the background SCI task with a copy of the foreground
synonyms resident in the terminal communications area of the associated terminal.

The XB command procedure (still executing in foreground), now clears the two synonyms
used to pass the pathname values to the background SCI task. It clears the foreground
copy of these synonyms to help keep the synonym table from overflowing, but they are
still available to the background task.

The XB command procedure terminates after clearing the synonyms. The SCI menu,
prompt ([J), and any messages appear.

Processing continues in the background. The background SCI task accesses the input ac-
cess file PAYLIB.PRTPAYB, where the PRTPAYB batch stream resides.

The BATCH command procedure must be the first command in the batch stream. The
BATCH command uses two standard SCI synonyms, $$Ul and $$ST, to identify the user ID
and station ID currently associated with the originating terminal. These IDs are printed on
the batch stream listing. The listing access name and the listing device are identified
through the XBI and XBL synonyms.

If the LS prompt in the BATCH command procedure is set to Y, the BATCH command also
provides a list of the synonyms in the synonym table as part of the batch stream listing.

The BATCH command procedure verifies that it is executing in the background by check-
ing the synonym $$MO. It terminates itself if it is not.

The BATCH command procedure clears several specific synonyms, and issues a Q$SYN.
It then returns control to the batch stream or background SCI.

The next command in the example batch stream (PRTPAYB) is the PF command pro-
cedure, which is called to print the files. The values assigned to the field prompts in the
PRTPAYB batch stream correspond to field prompts for the PF command. A pathname
and listing device must be specified. Each PF command invoked in the batch stream
requires its own printing parameters. This may be convenient if you need the reports
printed at different terminals or locations, or if you were printing checks, and the check
forms were already loaded onto a specific printer.

The EBATCH command procedure is executed next. The parameters of the EBATCH com-
mand include a text message. This message is assigned to the TEXT parameter, but does
not display until the batch stream terminates.

The SDT command procedure now executes, placing the date and time on the listing
report. SDT is invoked from within the EBATCH command.

EBATCH now terminates the batch stream with a .STOP primitive. The TEXT = assign-
ment causes the background SCI to pass this message back to the foreground SCI.

6-59

SCI Programming Language

$
18. The foreground SCI task is active at the terminal during the entire background process-
ing, and the terminal user may be conducting other activities. The message from the

batch stream appears on the terminal screen when the terminal user does one of the
following things.

. Terminates a foreground procedure
. Presses the Return key in response to the SCI prompt
. Initiates a WAIT SCI command

e Presses the Command key

Press the Return key to acknowledge the displayed message and then continue usual
activities.

Within the batch stream itself, you can call any number of other SCl command procedures. This
makes a batch stream a very efficient method of performing routine processing either in off hours,
or when interactive terminals are occupied.

6.5 EXAMPLES

The following pages contain additional examples of SCI language component usage, such as
prompts, keywords, and synonyms, by presenting example command procedures. A command pro-
cessor example and a batch stream listing are also supplied.

6.5.1 Command Procedure Examples

The following command procedures represent examples only. They use actual SCI command pro-
cedure names to help you determine what function the command is performing.

AA(ADD ALIAS TO PATHNAME),
PATHNAME = ACNM(“ @ AAP"),
ALIAS PATHNAME = ACNM
.OVLY OVLY=>1B,LUNO=0,
PARMS = (35,@ &PATHNAME, @ &ALIAS PATHNAME)
.SYN AASP = “&PATHNAME”

6-60 946250-9703

SCI Programming Language

In this example, a pathname is supplied as an initial value, by enclosing the string following the field
prompt type in parentheses. Whatever value the synonym AAP has at the time is the initial value
displayed. If you enter another pathname instead of accepting the initial value, that response is
assigned to the synonym $AASP at the end of the procedure so that it can appear as the initial value

the next time AA is executed. The responses to the prompts PATHNAME and ALIAS PATHNAME
can be synonyms. They are resolved when passed to the overlay.

BATCH (BEGIN BATCH EXECUTION),

USER ID *STRING (“@$$U1"),
STATION ID *STRING (“ST@$$ST"),
BATCH INPUT ACCESS NAME *STRING (“@XBSI”),
BATCH LISTING ACCESS NAME *STRING (“@XBL"),
LS (LIST SYNONYMS) ? “YESNO (NO)
IF @3MO, NE, 0

EXIT

ENDIF
SYN XBSI =", XBL = "
SYN MR = “’, SMRM$ = “’, MT =
SYN XDD = “, XDF = “*, XDS = "
SYN $CFKSL = *”, CFKPN = “”, CFKLRL = “”, CFKKN = "
.SYN CFKPRL =, CFKKS = ", $CFKS$IA = ", CFKM = «”
.SYN CFKSA = “’, CFKMS ="
SYN EC=0
Q$SYN
JIF “&LS”, GE, “Y”

LS L=

ENDIF
SDT

|| VI T T [

The BATCH command must also appear in any batch stream. The command procedure tests the
variable $MO for the value 0, indicating batch mode. Defaults are provided for all the user prompts. If
the synonym provided for the default is unassigned, no default appears on the screen.

XB (EXECUTE BATCH),

INPUT ACCESS NAME = ACNM,

LISTING ACCESS NAME = ACNM

.SYN XBI = “&INPUT ACCESS NAME”

.SYN XBL = “&LISTING ACCESS NAME”

.QBID TASK => 20, PARMS = (“@ &INPUT ACCESS NAME”,

“@&LISTING ACCESS NAME”)
.SYN XBSI = “”, $XBSL =

946250-9703 6-61

SCI Programming Language

This XB command procedure in the preceding example is quite similar to the actual XB command
procedure required to execute any batch stream. This command procedure uses the .QBID primitive
to bid the task that actually executes the batch stream.

DF(DELETE FILE) = 2,
PATHNAME(S) = (ACNM)
.SYN $DF = “(&PATHNAME(S))”
.LOOP
SPLIT LIST=“@$DF”, FIRST = $DF1, REST = $DF
.OVLY OVLY =>1B,PARMS = (8,@ @ $DF1)
WHILE “@$DF”, NE, “$DF”
.REPEAT
.SYN $DF1=*"

In this example, the parentheses around the prompt type shows that the response can be a list of
pathnames. The loop within the procedure uses overlay code to delete one file at a time. It uses the
.SPLIT primitive to determine when the last pathname has been processed.

6.5.2 Command Processor Example

Command processors are tasks bid from an SClI command procedure. They can access some
interface subroutines supplied with the DX10 operating system. These routines are explained in
preceding paragraphs, and perform functions such as opening the TCA so that the task can access
the synonyms.

The command processor in the following example calls the interface subroutines SSGTCA, S$RTCA,
S$STOP, and S$PARM. The command processor must contain a REF statement for each interface
subroutine called in the code, although several routines can be referenced by one REF statement.

When S$STOP terminates the command processor, control returns to the command procedure at
the statement following the .BID primitive that initiated the processor.

IDT ‘EXPRO’
THIS IS AN EXAMPLE COMMAND PROCESSOR TO BE CALLED
BY A PROCEDURE. IT GETS 2 PARAMETERS AND RETURNS
THEM AS A MESSAGE IN THE MESSAGE BUFFER. THE
MESSAGE IS THEN DISPLAYED WHEN THE RETURN TO THE
COMMAND INTERPRETER IS MADE.

REF S$GTCA,S$PARM,S$RTCA,S$STOP

DATA WS,PC,ERRORO

* * * * *

WS BSS 32 PROCESSOR WORKSPACE
MSG BYTE 255 TOTAL MESSAGE SIZE
BSS 255 MESSAGE BUFFER
ERRO BYTE 17
TEXT “END ACTION TAKEN’
ERR1 BYTE 27
TEXT “ERROR RETURNED FROM S$PARM’
ERR2 BYTE 27

TEXT “ERROR RETURNED FROM S$GTCA’

6-62 946250-9703

PC

RETURN

*

ERRORO

*

ERROR1

*

ERROR2

9462509703

SCI Programming Language

. GET THE TCA
- TERMINATE

IF ERROR

GO GET

THE FIRST
PARAMETER,WHICH IS
“&EXAMPLE NAME”
TERMINATE
IF ERROR
SET R7 = NUMBER OF
CHARACTERS READ IN
R4 POINTS TO LAST CHARACTER
OF FIRST STRING
R7 = LENGTH OF
REMAINING BUFFER
R6 = LAST CHARACTER OF 1ST STRING
R4 NOW POINTS TO THE
REMAINING BUFFER
GO GET THE SECOND
PARAMETER,WHICH IS
“&NUMBER”
TERMINATE
IF ERROR
@MSG CONTAINS LENGTH OF MESSAGE
RESTORE LAST CHAR OF 1ST STRING

RETURN MESSAGE

RELEASE TCA
RETURN TO SCI

BLWP @S$GTCA

MOV RO,RO

JNE ERROR2

LI R4,MSG

LI R3,1

BLWP @S$PARM

BYTE R3,R4

MoV RO,RO

JNE ERROR1

MOVB @MSG,R7

SRHL R7,8

A R7,R4

NEG R7

Al R7,255

MOVB *R4,R6

SWPB R7?

MOVB R7,"R4

LI R3,2

BLWP @S$PARM

BYTE R3,R4

MOV RO,RO

JNE ERROR1

AB “R4,@MSG

MOVB R6,*R4 '
NORMAL NO ERROR RETURN

LI R2,MSG

CLR R1

BLWP @S$RTCA

BLWP @S$STOP
END ACTION

Li R2,ERRO

LI R1,>8000

JMP RETURN
ERROR RETURN FROM S$PARM

LI R2,ERR1

LI R1,> 8000

JMP RETURN
ERROR RETURN FROM S$GTCA

Li R2,ERR2

LI R1,>8000

JMP RETURN

END

6-63

SCI Programming Language

6.5.3 Batch Stream Listing

As batch streams execute, the execution results are sent to a file whose pathname you specify
when you execute the XB command. The following example is a listing for the PRTPAYB sample

batch stream presented in paragraph 6.4.

SCIYP0 #% SCIP90 ## SCI9P0 #% SCI9P0

<0001> BATCH

USER 1D JFOO012

STATION ID STOS

BATCH INPUT ACCESS NAME «MYLIB.FRTPAYE
BATCH LISTING ACCESS NAME «PRBTCH

LS (L.IST SYNONYMS) 7 NC

1S:55: 32 WEDNESDAY. AUG 18, 1982.
<O002> PF FILE =.FPAYROL1, LDO=LFOL

FILE PATHNAME (Z) -FPAYROL.1
ANSI FORMAT? NO
LISTING DEVICE LFPO1
DELETE AFTER PRINTING? NO

NUMBER OF LINES/FAGE #3 NULL 3%

USER DEVICE STATUS FILE NAME
JFOO12 LFO1 ACTIVE . PAYROL.1

<00Q03> PF FILE =.FPAYROLZ, ANSI=Y, LD=LFO1

FILE PATHNAME(S) . PAYROLZ
ANSI FORMAT? Y

LISTING DEVICE LFO1
DELETE AFTER PRINTING? NO

NUMBER 0OF LINES/PAGE 3 NULL 3

USER DEVICE STATUS FILE NAME
JFOO1Z LPOL ACTIVE .FPAYROLZ

<0004 PF FILE =(.PAYROLZ, .PAYROL4), LD=LFO1
.PAYROLZ, . PAYROL4

FILE FATHNAME (=)

ANZI FORMAT? NO

LISTING DEVICE LFO1
DELETE AFTER PRINTING? NO

NUMBER OF LINES/FAGE #3 NULL 33

USER DEVICE E=TATUS FILE NAME
JFOO12 LFO1 ACTIVE .PAYROLZ
JFO01E LPO1 WAITING .FAYROLA4

<000S> PF FILE =.PAYROLS, LD=LFOZ

FILE FATHNAME(S) .PAYROLS
ANZ=I FORMAT? NCt
LISTING DEVICE LFOZ
DELETE AFTER FRINTING N

NUMBER OF LINES/FAGE #3 NULL #3¢
USER DEVICE STATULE FILE NAME

JFOO1Z2 LFPOZ ACTIVE <FAYROLS

#3#

SCI9Y0

##BATCH

<00046> EBATCH TEXT=THE FAYROLL REFORT PRINTING IS COMPLETE

14:210:22 WEDNESDAY, AUG 1%, 1982,

6.6 ERROR MESSAGES

Some of the errors likely to occur as a result of preparing SCI procedures are discussed in the
following paragraphs. A complete listing of SCI error messages can be found in the DX70 Error

Reporting and Recovery Manual (Volume VI).

6-64

946250-9703

SCI Programming Language

6.6.1 Unknown Volume Name .

This error indicates an attempt to open a file with an incorrect file name. A common reason for this
error in a procedure, forgetting to code the ampersand (&) in front of a prompt name, is shown in the
following example:

SHOW FILE PATHNAME

This example is incorrectly interpreted by SCI as a request to show the file named FILE PATHNAME.
An ampersand must be coded in front of prompt names to identify them to SCI. The correct format is
as follows:

.SHOW &FILE PATHNAME
6.6.2 9001 — Invalid Access Name Syntax
This error can result from a failure to encode the at sign (@) in front of a synonym name as in the
following example:

.SHOW SFP

This primitive results in the 9001 error message. The synonym must be coded as @ SFP.

6.6.3 9003 — Invalid Keyword Syntax
A prompt has been improperly defined. Examine the prompts in the procedure for syntax errors.

6.6.4 9005 — Invalid Command Name Syntax
This error usually occurs because the comma required after the command name is missing, as
shown in the following examples:

EXP(EXAMPLE PROC) FILE PATHNAM-E = ACNM

EXP(EXAMPLE PROC)
FILE PATHNAME = ACNM

A comma is required after the command name:
EXP(EXAMPLE PROC), FILE PATHNAME = ACNM

EXP(EXAMPLE PROC),
FILE PATHNAME = ACNM

6.6.5 9006 — Invalid Relation Name
This error is caused by using an invalid relational operator in a command procedure. Refer to the .IF,
.ELSE, and .ENDIF primitives.
6.6.6 9007 — Invalid Type Specification
This error is caused by a prompt type other than ACNM, STRING, NAME, INT, or YESNO as in the
following example:

FILE PATHNAME = ACNN

The misspelled prompt type (ACNN) in this line causes the 9007 error.

946250-9703 6-65

SCI Programming Language

6.6.7 900A — Spurious Characters at End
This error can occur as a result of improper use of double quotes as in the following example:

MSG TEXT = “ENTER “RETURN” TO CONTINUE”

Quoted strings require two double quotes within the string. The correct form for this command is as
follows:

MSG TEXT = “ENTER ““RETURN”” TO CONTINUE”

6.6.8 900E — Unknown Command Name
Any procedure line in which SCI cannot identify a primitive or prompt name will result in this error.
For example,

EXP(EXAMPLE PROC)=0
FILE PATHNAME = ACNM

This example is incorrect because there is no comma after the procedure name line.

6.6.9 900F — Unknown Keyword
A prompt has been referenced in the procedure which is not defined in a prompt list and does not fit
any of the standard rules of abbreviation. Verify the prompt names used in the procedure.

6.6.10 9011 — Required Argument Not Present

When an SCI procedure is called from another procedure, the calling procedure may be required to
pass the prompt values. If the calling procedure is in foreground mode, it can call another procedure
and pass no prompt values. In this case you are required to enter the prompt values in the normal
fashion. If the calling foreground procedure wishes to pass any prompt values automatically it must
pass all of the required prompt values; otherwise, the 9011 error will occur.

Required prompts are prompts that are not given initial values and are not declared optional by plac-
ing an asterisk in front of the field type modifier. In the following example, only the first prompt is
required.

FILE PATHNAME = ACNM,
OUTPUT FILE = *ACNM,
DELETE FILE = YESNO(NO),
PRINT FILE = ACNM(@ SFP)

OUTPUT FILE is an optional response. DELETE FILE is set to an initial value. PRINT FILE shows an
initial value if SFP has an assigned value; otherwise, the synonym will resolve to a null string
because it begins with a $ sign. In the background mode, a procedure is required to pass all required
values to any other called procedures. This is necessary because background procedures cannot
access the terminal.

6.6.11 9019 — Invalid Keyword Value

The value of a prompt is of a form not allowed for that prompt type. An INT type prompt cannot con-
tain alphabetical values greater than F.

6-66 9462509703

SCI Programming Language

6.6.12 FF02 — PROC Library Error
This error occurs when the procedure name is not the same as its file name.

EXP(EXAMPLE PROC)=0,

If the file name for the example is .S$PROC.SF, an FF02 error occurs when the procedure is
invoked.

6.6.13 FFOB — Keyword Table Overflow

This error indicates that the workspace that SCl uses to store prompt values has filled up. This error
can be caused by a number of things. Recursive calls of procedures, or failure to release temporary
files at the end of the procedure are common problems. The keyword table occupies the same
memory space as the synonym table. "

When a procedure calls another procedure, the two procedures use the same workspace. Therefore,
recursive calls of procedures by other procedures can cause the keyword table to overflow.

Within a single procedure, enough information could possibly be generated to overflow the keyword
table. While this is highly unlikely, several things could lead to the condition. First, very long lists of
file names entered as responses can cause overflow. Second, a large number of very long prompt
names may cause the condition because the keyword table stores both the prompt name and its
associated data.

946250-9703 Change 1 6-67/6-68

7

Using Supe'rvisor Calls (SVCs)

7.1 INTRODUCTION

User tasks interface with the DX10 operating system by issuing supervisor calls (SVCs), which re-
quest that the operating system perform a specific function. SVCs are provided within DX10 to per-
form device and file I/O, task control, service functions, memory control, and file utilities.

SVCs are explicitly used in assembly language tasks, whereas high-level language statements are
processed by the appropriate interpreter or compiler and are translated to the particular SVC re-
quired to perform the requested operation. If a statement to access a particular SVC is not available
in the high level language, you can write an assembly language subroutine to access the SVC. Some
high level languages support calls to SVCs through special coding practices. Refer to the applicable
language programmer’s guide for further information on this technique.

To use SVCs, you do not need to be an accomplished assembly language programmer; however, you
do need to be familiar with general concepts and practices of assembly language programming, as
presented in earlier sections of this manual.
The following paragraphs define a supervisor call and the format for writing a supervisor call in
assembly language.
7.2 SUPERVISOR CALL DEFINITION
SVCs are predefined routines in the operating system that perform functions generally required by
assembly language programs, such as opening files, assigning LUNOs, and so on. You can also
define your own SVCs for special purposes, if they are not supplied on DX10. Refer to the DX70
Systems Programming Guide (Volume V) for details.
The three categories of SVCs are as follows:

. Program support SVCs

. Device I/O SVCs

. File I/O SVCs
Program support SVCs control memory use, control program execution, and perform some miscel-
laneous functions such as data conversion among binary, decimal, and hexadecimal representa-

tions. Program support SVCs are discussed individually in Section 8. Appendix F lists all DX10
SVCs and the SVC opcodes for easy reference.

946250-9703 71

Using Supervisor Calls (SVCs)

Device /0 SVCs control both device-dependent and device-independent 1/O, by allowing you to code
the call blocks differently, depending on the function desired. Device I/O SVCs control assigning
and releasing LUNOs, and all read, write, and special functions for devices.

File /0 SVCs control /O to files by controlling LUNO assignment and release, and all read and write
operations to the file. Appendix E contains a call block coding chart showing both file and device I/O
opcodes.

In an assembly language program, you must access code an SVC call block in order to access
SVCs. The call block must contain the SVC code and any parameters required to complete the
requested function. Then you must issue the XOP assembly language instruction using 15 as the
XOP number, and the address of the coded SVC call block as the effective address of the XOP
instruction. The XOP instruction initiates an extended operation, which causes execution control
to be passed to the operating system. (For more detailed information on the XOP instruction, see
the 990/99000 Assembly Language Reference Manual.)

The supervisor call block referenced in the XOP instruction contains the necessary parameters for
the requested operation. The first byte of the call block always contains the SVC code, which
specifies the particular service routine to perform the needed operations. Figure 7-1 illustrates the
processing steps occurring when you issue an XOP instruction for a supervisor call.

XOP POINTS TO CALL BLOCK

CALL BLOCK

SVC CODE RETURNED
NUMBER STATUS

OTHER
ARGUMENTS OR
RETURNED VALUES

2283182

Figure 7-1. XOP Call Processing
7.21 Coding a Supervisor Call
Within the assembly language program, supervisor calls can be issued in either of two ways:

. Use the XOP instruction, with the extended operation level defined as 15 and the effective
address being that of the supervisor call block.

. Use the DXOP instruction to define a new extended operation. DXOP allows you to assign
a symbol that can be used in the operator field of the XOP instruction.

72 946250-9703

Using Supervisor Calls (SVCs)

To use the XOP instruction, you must specify the-address of the SVC call block as an argument. The
following is an example of this coding technique using a supervisor call block that has been labeled
BLOCK: ~

XOP @BLOCK,15 PERFORM EXTENDED OPERATION 15

* USING THE SUPERVISOR CALL BLOCK AT
* THE ADDRESS DEFINED BY THE SYMBOL
* BLOCK

The second method of coding supervisor calls involves using the DXOP instruction to assign a sym-
bol to the operator field of XOP instructions. Before coding a supervisor call, you can define the XOP
level 15 to be equivalent to some symbol. That symbol can then be used instead of the XOP instruc-
tion when coding SVCs. To illustrate, all the examples showing how to code various SVCs in this
document assume that the Extended Operation 15 has been defined by the following directive to be
the symbol SVC, as follows:

DXOP SVC,15

This allows the symbol SVC to replace the XOP instruction in the operator field of the assembly
language program. The following example shows an SVC coded after the DXOP instruction is
executed:

SVC @BLOCK

The preceding instruction specifies that extended operation 15 be performed using the call block at
the location defined by the symbol BLOCK.

7.2.2 Defining Supervisor Call Blocks

Supervisor call blocks are defined within the user task by the use of DATA, BYTE, and TEXT direc-
tives. Note that the DATA directive is used to define word entries (16 bits); the BYTE directive is
used to define byte entries (8 bits). Bits are numbered from left to right. The TEXT directive is used
to define character string entries. Since some of the call blocks must be aligned on a word bound-
ary, either the DATA directive must be used, forcing alignment on a word boundary, or the defini-
tions for the block of data must be preceded by an EVEN directive, which also forces the block to
begin on a word boundary. Beginning all supervisor call blocks on a word boundary is a good cod-
ing practice.

The number of parameters required within the call block varies for each supervisor call. However,
the first byte (byte 0) of the call block must contain the SVC opcode for the service required. The
second byte (byte 1) of the call block is generally used by the system to return a status or error code.
This enables you to test the error code and process any error that occurs by including the necessary
statements in your program. Using the error code byte is discussed in more detail in Paragraph
7.2.3.

CAUTION

DX10 uses XOP R15,15 (alternatively SVC R15) to implement break-
points. Do not use workspace register 15 as a supervisor call block.

9462509703 7-3

Using Supervisor Calls (SVCs)

When coding a supervisor call block, label entries used to store data returned by the system or
entries containing variable data. This facilitates access of the data by the user task. The label
associated with the first byte of the call block is used by the XOP and DXOP instructions as the
effective operand to reference the block.

The following assembly language programming example performs one /O cycle. The program
assigns a LUNO, opens it, writes to it, closes it and finally releases it, using SVCs. For this dis-
cussion, note the SVC call blocks and the commands required to access them. This example also
provides example usage of REF statements for the interface subroutines explained in Section 9.

TASK L

0001
0002
0003
0004
0005
Q004

0007
000a
Q002
0010
0011
0012
0013
0014

Q015
0014
0017

0020
00z1
Q022
0022
0024
QOZS
0026
0027

0oze

002%

QOO0
Q002
0004

QOO
0004
0007
Q008
0007
O0O0A
Q0OOC
QOO0E
Q010
0012
0014
0014
o017
001s
001A
QO1C
O01E
0020
0022
0024
0026
Qoza

O02A
00zA
O0ZE
Q02
00zn
QOZE
QOZF
00320
00321
QOz2
0034
[ala)cT

SDEMAC 247075

0078~
0000
0000

00

00

1

00
0000
o000
Q000
Q000
Q000
Q000

00

00
Q000
0000
OORS
0000
Q000
QOO0
o000
0000
QOO0

00
00
00
00
00
00
00
00
QOO0
OO0
Q000

oT
*
#TASK HEADE
*

REF

DATA

#E 02:37:34 TUESDAY, AUG 02, 19XX

“TASK1"

R

FPROC1
TWE, FROC1,0

TRANSFER VECTOR

DEF ALLING, ALNUM, OFEN, CLNLIM
DEF WRITE1l,WILNUM, WRITEZ, WILNLIM
CLOSE » CLNUM, RELEAS . RLNUM

DEF
3
#ASSIGN LUN
#*

EVEN
ALUNG ERYTE
BYTE
ALNUM BYTE
ODATA

ALLIFLG BRYTE

[ATA
*
#0OFEN FRE
*
EVEN
OFEN BYTE
BYTE
OLNUM BYTE
BYTE
BYTE
DATA

0 BLOCK

0,0
»21

>00
0,0,0,0,0,0

04,0

I0,5TATUE

ALUNG OFCODE
LUND NUMBER
NOT UsED

0,0, DEVNAM.0,0,0,0,0,0

0.0
0
(o]
Q,0
0,0

0,0,0

I0, 5TATLE

OFEN

LLING, TO BE FILLED
SYSTEM, USER FLAGE

DEVICE TYFE

IN

FAGE 0001

UTILITY FLAGZ-GENERATE LLUNG

946250-9703

Using Supervisor Calls (SVCs)

falsicle) #*
0031 #WRITE ONE FRE
0032 #
QOR3 EVEN
0024 00 WRITEL BYTE 0,0 10, STATLE
00
OO35 QR BYTE =B WRITE ASCII
0056 00 WILNUM BYTE O . LUNDL T BE FILLED IN
0037 OQZC 00 BEYTE 0.0 SYSTEM, USER FLAGS
TASE 1 SDSMAL 247075 #E 0z237:34 TUESDAY, ALG 02, 19XX
PAGE 0002
Q020 Q0
0038 O0ZE OO9s~ DATA TEXT1 BUFFER ADDRESE
QO Q040 0010 DATA TEXTIL CHAR COUNT
0040 0042 Q010 DATA TEXTIL CHAR COUNT
Q041 0044 QOO0 DATA ©
0042 #*
o042 #WRITE TWO FRE
0044 #
0045 0044 EVEN
0044 QOAL 00 WRITEZ BYTE 0,0 I0,5TATUE
0047 Q0
Q047 0045 OR BYTE >R WRITE ASCII
004 0047 00 WZLNUM RYTE O LUND, TO BE FILLED IN
0049 O04A 00 BYTE 0,0 SYSTEM, USER FLAGE
Q04B 00
0050 0040 O0AS DATA TEXTZ BLIFFER ADDRESS
0051 004E QOOD DATA TEXTZL CHAR COLUNT
QOS2 0050 0000 OATA TEXT2L CHAR ZOLUNT
QOSE 0052 0000 ODATA ©
Q054 *
0055 #ZLASE FPRRE
Q054 #*
0057 0054 EVEN
QOEE 0054 00 CLOZE BYTE 0,0 IN. STATUE
0055 Q0
QOS2 0056 01 BYTE 1 CLOSE
QO&O 0057 00 CLNUM RBYTE O LUNG, T RBE FILLED IN
0061 0052 00 BYTE 0,0 AYSTEM, USER FLAGE
QOS5 00
QO&EZ 0058 0000 DATA 0,0,0,0 NOT USED
QOSC 0000 :
QOSE 0000
QOLD OOO0
QO #*
Q044 #RELLEASE LLIND
Q&S *
QO&L 0062 EVEN
Q0LT7 OOLZ 00 RELEAS BYTE 0,0 I0,5TATUS
QOLS 00
QO0eE 0064 k2] BYTE RELEASZE LLING
Q06T 0065 00 RLNUM BYTE O LUNGD, TO BE FILLED IN
0070 Q0&L QOGO DATA 0,0,0,0,0,0,0,0,0 NIT LISED

QOGS 0000
00&LA QOO0
O0&T QOO0
QOLE QOO0
QO70 QOO0
Q072 0000
0074 0000
QO74L 0000

946250-9703 75

Using Supervisor Calls (SVCs)

0071 *
Q072 #TASk 1 DATA
0073 3+
Q074 Q072 TWS BES 162
0075 4% TEXT1 TEXT "1 AM TASKE ONE.SS-
QO 20
0O9A 413
QOYR 41
Q09C 20
QO 54
TASEL SOEMAC 947075 #E 02127224 TUESDAY. AUG 02, 19XX
OOE 41
OO9F oz
0O0OAO 4R
00A1 20
00OAZ 4F
Q0A3 4E
00A4 45
0O0AS ZE
00AL 35
00A7 25
Q074 o0o0on TEXTIL EGU $-TEXT1
0077 Q0AS 4E TEXTZ TEXT “NIW I AM DONE- .
O0OA% 4F
O0AA =57
O0AR 20
O0ALC 4%
QOAN 20
Q0AE 41
QOAF 40
Q0RO 20
O0OE1 44
O0OEZ 4F
QOR3Z 4E
O0OR4 4%
Q072 OO00 TEXT2L EQL $-TEXTZ
0072 OORS 04 DEVNAM RYTE 4
0020 O0BRA 4 TEXT “LFO1-
QOR7 S0
OORZ 20
(1) =54 21
[RIaT=5] ENL
N ERRORS
FROCT SHEMAC 247075 #E 13213552 MONDIAY. ALG 01, 19XX
0001 #*
0002 #PROCEDURE SEGMENT 1
Q003 #*
0004 IDT “FROCL”
Q0O0S DEF PROCH
QOOL REF FROCZ
0007 REF ALLND, ALMUM, OFEN, (L NMUIM
QOoa REF WRITE1,WILNUIM, WRITEZ, W2LNUM
0002 REF CLOZE,CLNUM, RELEAS, RLNLUIM
Q010 *
o011 #PROCEDURE ONE
o012 #
00173 0000 PROC1 EQU %)
0014 0000 ZFEO XOF @ALLING, 1S ACCESS LUNO NUMBER

FAGE 00032

FAGE 0001

946250-9703

0015 0004
Q00&
000
QO00A
QOO
QOOE
0010
0012
0014
Q016
0 001a
001A
(1o 3 ot
001E
0020
Qo222
0024
0026

Q014
0017
QO18

0019

"

fe)

02

[

Q021
Q22
QOZ=

0024
NO ERRORS,

PRIC2

0001
0002
Q00=
0004
Q003
QQ0&
0007
Q008
Q009
0010
0011 0000
0002
0004
Q006

001z

00132
0014 GO
QO0O0A
0013
0014
0017
001E 000C
QOO
Qo1e

NO ERROREZ

946250-9703

DO20 MOVE
0000
nEoo MOVE
(slolulv]
nz00 MOVE
Q000
ne0o MOVE
0000
DEOo MOVE
QOO0
jatz]ule] MOVE
0000
2FEQ pniy
0000
2FEO XOF
Q000
0460 B
Q000

END

NI WARNINGS

SNEMAL 947075
#
#PROCEDURE
*
10T
DEF
REF
#
#FROCEDLURE
#
Q000" PROCZ EQU
2FEO XIaF
0000
<FEQ XOF
0000
* XOQF
2FEO XaF
QOOC

@ALUND, RO
RO, @0OLNUM
RO, @WILNLIM
RO, @W2LNUM
RO, @CLNUM

RO > @RLNLIM
@OFEN, 15

@WRITEL1, 15

@FROCZ

#E

SEGMENT 2

PROCZ
FROCZ

08143132

Using Supervisor Calls (SVCs)

MOVE LUNO NUMBER TO FRE

OFEN LUNO

WRITE TEXT 1

s
P

GO TO FROC

TUEZDAY. ALIG 02, 19XX

FAGE Q001

WRITEZ, CLOSE, RELEAS

TWi

+
CWRITE, 173

@CLOSE, 15

@RELEAZ, 15
CEOT, 15

3*
#CONSTANT DATA

#

04 EOT
00

END

BYTE 4,0

WRITE TEST 2
CLOSE LUND

RELEASE LLUNO##DUMMY IF NOT FILE#
END OF TAZE

END OF TASE

7-7

Using Supervisor Calis (SVCs)

7.2.3 Returning the Error Code

Usually, byte one of the call block is used as the error code byte. If an error occurs during the
execution of the requested SVC, the system returns an error code in byte one. It is the responsibility
of the calling task to check this error byte to determine whether the requested operation has been
completed normally. If the byte contains a nonzero value, an error has ocgurred and the calling task
must provide the code to handie the error in the proper manner. Error codes are documented in the
DX10 Operating System Error Reporting and Recovery Manual (Volume VI).

It is often useful to define error code bytes within call blocks by a separate BYTE directive and label-
ing it with a descriptive label such as ERRC. This allows the calling task to easily access the byte to
determine whether an error has occurred. The following series of statements could be used within
the calling task to test the error code and branch to the correct routine if an error has occurred.

MOVB @ERRC,@ERRC COMPARE THE ERROR CODE TO ZERO
JNE ERRTN IF NOT ZERO, GO TO ERROR ROUTINE
. IF ZERO, CONTINUE NORMAL PROCESSING

7-8 946250-9703

8

Program Support Calls

8.1 GENERAL

Program support calls are SVCs used in application programs to request the services of DX10 for
operations not directly related to I/0 operations. Such services include placing tasks in execution,
terminating tasks, synchronizing intertask communication, identifying tasks, and task end action.
The program support SVCs fall into the following categories:

. Program control SVCs

. Memory control SVCs

. Intertask communications SVCs
o Data conversion SVCs

. System information SVCs

This section discusses the SVCs in each group. Table 8-1 shows program support SVCs by
function. Appendix F lists all SVCs.

Usually, SVCs are accessible through assembly language programs and subroutines. The high-level
languages use statements in their respective repertoires to achieve the same results, where ap-
plicable, as the supervisor calls. If no statement is provided within the high-level language that ac-
cesses the desired supervisor call, you can write an assembly language module that issues the
supervisor call, and is callable from the high-level language program. You must link these assembly
language routines to the high-level language object module using the Link Editor.

Some high-level languages can support SVC calis directly, provided the call is coded in a special
way. The methods applicaable to each language are documented in the individual language pro-
grammer’s guides.

The descriptions of individual SVCs presented in this section assume the foliowing:

¢ The DXOP instruction has previously defined XOP 15 to be the mnemonic SVC. In all
examples showing the assembly language code required to initiate an SVC, the
mnemonic SVC is used. The DXOP directive initiates the call operation, using the SVC

mnemonic and the value 15 as arguments. The DXOP directive is discussed in the
preceding section.

U The call block examples use the label ERRC for the error code byte. The error code byte is
usually byte one of the call block.

946250-9703 , 8-1

Program Support Calls

Table 8-1. Program Support Supervisor Calls

Hexadecimal

Call SVC Code

Program Control Calls
Time Delay 02
End of Task 04
Unconditional Wait 06
Activate Suspended Task 07
Do Not Suspend 0¢]
Activate Time Delay Task OE
Change Priority 11
Load an Overlay 14
End of Program 16
Get Parameters 17
Schedule Bid Task 1F
Execute Task 2B
Self ldentification 2E
End Action Status 2F
Map Program Name to ID 31
Poll Status of Task in Terminal Task Set 35
Reset End Action 3E

Memory Control Calls
Get Common Data Address 10
Get Memory 12
Release Memory A 13
Return Common Data Address 1B

Intertask Communications Calls

Putdata 1C
Getdata 1D

Data Conversion Calls
Convert Binary to Decimal OA
Convert Decimal to Binary 0B
Convert Binary to Hexadecimal oC
Convert Hexadecimal to Binary oD

System Information Calls

Date and Time Support 03
System Log 21
Retrieve System Information 3F

8-2

946250-9703

Program Support Calls

8.2 PROGRAM CONTROL SVCs

Program Control SVCs are SVCs that directly affect a task. They can execute a task, suspend a
task, or terminate a task. The following paragraphs define each of the Program Control SVCs and
give the format of the SVC call block, the SVC opcode, and the errors returned by the system. In addi-
tion, an example of each Program Control SVC is supplied.

8.21 >02 — Time Delay SVC

The Time Delay SVC is used to suspend the calling task for a specified minimum number of full
50-millisecond clock periods. Specifying 0 implies a delay from 0 to 50 ms; specifying 1 implies a
delay from 50 ms to 100 ms, and so on. A task in time delay may be reactivated before the end of the
specified time interval by another task issuing an Activate Time Delay Task SVC (opcode > OE). The
following is an example of the block required to delay a task for 10 seconds:

SCBF DATA >0200 CALL CODE AND SET BYTE ONE TO ZERO
INTV DATA 200 DELAY FOR 200 TIME INTERVALS

Within the procedure, the call to perform the Time Delay operation using the preceding call block is
written as follows:

SvC @SCBF

8.22 >04 — End of Task SVC

The End of Task SVC call is used to terminate execution of the calling task. The call block consists
of one byte, which contains the call code, and need not be aligned on a word boundary. An example
of the call block is as follows:

SCBE BYTE 4 END OF TASK CALL OPCODE
The function is called as follows:
SvVC @SCBE

The End of Task SVC | performs such functions as releasing the local logical device tables, releas-
ing task memory and the task status block for disk-resident tasks, reinitializing the task status
block for memory resident tasks, and clearing of any outstanding breakpoints.

8.2.3 >06 — Unconditional Wait SVC
The Unconditional Wait supervisor call suspends the calling task indefinitely, or until another task
issues an Activate Suspended Task SVC (opcode > 07).

If an Activate Suspended Task SVC is issued to a task that is not suspended, then an Unconditional
Wait SVC subsequently encountered will have no effect. That is, the task is reactivated immediately.
If two Activate Suspended Task SVCs are issued to an active task, only the first Unconditional Wait
SVC encountered has no effect. Therefore, only one Activate Suspended Task SVC can be
“remembered” by the system.

946250-9703 8-3

Program Support Calls

The call block for the Unconditional Wait call consists of one byte, which contains the call code and
does not need to be aligned on a word boundary. The following is an example of the Unconditional
Wait call block:

SCBH BYTE 6 SUSPEND CALLING TASK

The Unconditional Wait service is called from the procedure section of the task by the following
statement:

sSvC @SCBH

8.24 >07 — Activate Suspended Task SVC

The Activate Suspended Task SVC reactivates a task that has placed itself in a suspended state us-
ing the Unconditional Wait SVC. You must specify the suspended task’s runtime ID when you issue
an Activate Suspended Task SVC.

The system remembers one (and only one) Activate Suspended Task SVC call for each task acti-
vated. If task A is not suspended, but task B issues an Activate Suspended Task SVC against task
A, then task A will reactivate immediately after it issues an Unconditional Wait (opcode >06) SVC.
However, if task B issues more than one Activate Suspended Task SVC against task A before task
A suspends, only the first reactivation SVC is remembered, and task A immediately reactivates
only once. Figure 8-1 illustrates this feature.

This provides a means of synchronizing tasks by allowing one task to wait for another task to com-
plete an operation and then become reactivated. This is illustrated in the preceding example. If Task
A requires that Task B complete some operation before it can continue, Task A issues an Uncondi-
tional Wait for itself, and when Task B completes the function, it issues an Activate Suspended
Task call for Task A to reactivate it. If Task B completes its function and issues an Activate
Suspended Task call that references Task A before Task A has suspended itself, no action is taken
until Task A issues an Unconditional Wait, at which point it is immediately reactivated.

NOTE
In general, the Activate Suspended Task call is only effective for

tasks that have been self-suspended, (that is, suspended using SVC
opcode > 06)

8-4 Change 1 946250-9703

TASK A

NORMAL USE

SVC > 06

ONE LEVEL
OF
“REMEMBER ING”

SVC > 06 o=

SVC > 06 —wad

TASK A

l— RESUMES

IMMEDIATELY

TASK A

SVC >06

SVC >06

SVC > 06

2283136

946250-9703

Figure 8-1.

RESUMES
IMMEDIATELY

DOES NOT RESUME
UNTIL A SUBSEQUENT

— >07 1S ISSUED

Program Support Calls

TASK B

——te SVC > 07 ON TASK A

TASK B

—t— SVC > 07 ON TASK A

SVC > 07 ON TASK A

TASK B

L. SVC > 07 ON TASK A
l— SVC > 07 ON TASK A

—=SVC > 07 ON TASK A%

—te SVC > 07

¥ THIRD SVC >07 ON TASK A
HAS NO EFFECT

Task Synchronization

8-5

Program Support Calls

The SVC cali block for the Activate Suspended Task supervisor call consists of three bytes and does
not need to be aligned on a word boundary. The bytes have the following meanings:

Byte Bit Meaning
0 Contains the SVC opcode. Must be > 07.
1 The system returns the task state in this byte. If the task cannot be found,

this byte contains the error code >FF. Refer to Appendix C for a list of
possible task state codes.

2 The hexadecimal identifier of the task to be activated. Note that this is the
run-time identifier, which usually differs from the installed identifier of the
task.

This implies that if several tasks are to cooperate and be synchronized, they must know the run-time
identifier of each other. Several methods are available to accomplish this, as described in the
following:

o Any task can determine its own runtime identifer by using the Self Identification SVC.

. When one task places another task in execution by using the Execute Task supervisor
call, the calling task is informed of the run-time ID of the called task. If the called task
needs to know the run-time ID of the calling task, it must be passed from the calling task
to the called task as a parameter.

. If more comprehensive communications is required among cooperating tasks, a shared
procedure segment may be used. The shared procedure segment is preferable to system
common memory for cooperating tasks, since the size is not limited by a system genera-
tion parameter.

The following is an example of an SVC call block that performs the Activate Suspended Task call for
a task with a run-time 1D of > 3C:

SCBB BYTE 07 ACTIVATE SUSPENDED TASK OPCODE
ERRC BYTE 00 SET BYTE ONE TO ZERO
TID BYTE >3C RUNTIME ID OF TASK TO BE ACTIVATED

Within the procedure portion of the calling task, the following statement is used to perform the
operation:

SvVC @SCBB
If task > 3C had previously been suspended by an Unconditional Wait call, it would be activated by

the preceding statement. If task > 3C had not been suspended, but is suspended by an Uncondi-
tional Wait statement subsequent to the preceding call, it would be immediately reactivated.

8-6 946250-9703

Program Support Calls

8.25 >09 — Do Not Suspend SVC :

The Do Not Suspend SVC causes the system to override the time slice for the calling task by
inhibiting the system from suspending the task. The task may suspend itself by executing an 1/O
SVC, or a Time Delay, Wait for I/0, or an Unconditional Wait SVC. The call block contains two bytes,
and need not be aligned on a word boundary. Byte 0 contains the code, and byte 1 contains O or a
positive number. When byte 1 contains 0, the task will not be suspended for 200 ms. When byte 1
contains a positive number, the task will not be suspended for that number of system units (50 ms).

Suspension of a task may be inhibited for a period of from 50 ms. to 12.750 seconds (1 to 255 50-ms
periods).

The following example shows a coded call-block for a Do Not Suspend SVC:

SCB BYTE 9,15 INHIBIT SUSPENSION OF CALLING TASK
* FOR 750 MS

The following call is an example to ’perform' the Do Not Suspend SVC using the preceding call block:
SvC @SCB

Use the Do Not Suspend SVC to inhibit termination of a task at the end of a current time slice
instead of a LIMI instruction with an operand of zero.

When a task manipulates a data structure that is used by several tasks, the task should complete
its alterations to the data structure before any of the tasks that use the data execute again. The Do
Not Suspend supervisor call allows such a task to lock out other tasks while changing the data.

8.26 >O0E — Activate Time Delay Task SVC

The Activate Time Delay Task SVC activates a specified task that is in a time delay state. A task
enters the time delay state when a Time Delay SVC is issued within the task. The call block for the
Activate Time Delay SVC consists of three bytes and does not require alignment on a word
boundary.

Byte Bit Meaning
0 Contains the SVC opcode. Must be > OE.
1 Initialize to zero. System returns any error.
2 Runtime ID of task to be activated.

The error code returned is the task state. The following is an example of an SVC block coded to
activate task > 1B:

SCBH BYTE >0E SUPERVISOR CALL OPCODE

ERRC BYTE 0 SET BYTE ONE TO ZERO
TRID BYTE >1B TASK IDENTIFIER (RUNTIME)

9462509703 8-7

Program Support Calls

Code the following statement in the procedure portion of the calling task to perform the Activate
Time Delay Task functions:

SVC @SCBH

8.2.7 >11 — Change Priority SVC

The Change Priority supervisor call allows the calling task to change its own priority. This is
valuable in a situation where a task that normally runs at low priority needs to perform a critical
operation. Use of this call allows a task to change its priority to a higher or lower level.

The call block for the Change Priority SVC consists of two bytes and does not need to be aligned on
a word boundary. Byte zero of the call block contains the SVC code > 11 and byte one contains the
new priority level. On return from the SVC call, the priority in effect prior to the call is returned in
byte one. This priority code can be 0, 1, 2, or 3 if the task is not real-time task priority, and between 1
and 127 (inclusive) if the task is real-time priority. Real-time priority is indicated by setting the high-
order bit. These priorities are explained following the example. (Priority 4, which automatically alter-
nates between priorities 1 and 2 is not a valid priority level for this SVC.)

An example of a call block required to change the calling task’s priority level to real-time priority
>80 is as follows:

SCBG BYTE > 11 CODE OF THE CHANGE PRIORITY CALL
PRI BYTE >DO0 SET PRIORITY TO REAL-TIME 80

Within the procedure portion of the task, the following statement causes the Change Priority call to
be performed:

SvC @SCBG PERFORM EXTENDED OPERATION 15 USING
THE CALL BLOCK AT LOCATION SCBG

Specification of an illegal priority will result in an error code of >80 being returned in byte 1 of the
call block.

The DX10 operating system requires that each task have a defined priority level. There are 132
priorities available: Level 0 (highest), 127 real-time priorities (denoted R1-R127), level 1, 2, and 3

(lowest). Also, priority four is a dynamic priority which is level one while in the interactive mode, and
otherwise is level two.

Level zero is intended for the most critical system functions and is thus reserved for DX10 internal
use. The remainder of the system tasks are appropriately distributed among the lower priorities with
regard to their relative importance.

Real-time priorities provide the user the capability to supersede all except the most important
system tasks. For these applications which require an expeditious access to the CPU, DX10 will
forgo some routine maintenance of system duties in an effort to schedule real-time tasks. The
actual priority strength of the real-time priority levels 1-127 falls between priority level 0 and 1 of the
nonreal-time priority leveis.

8-8 946250-9703

Program Support Calls

Priorities one, two, three and four are designed to satisfy the requirements of most installations.
Priority level one gives quick response for programs which interact with the user’s terminal, while
priority level two is adequate for programs which perform muitiple disk accesses. Both levels one
and two are used mainly by programs which*require some interaction with a user. For programs
which do both user interaction and multiple disk access, priority four will automatically switch be-
tween priorities one and two as the program executes. This is advantageous to the overall system in
that programs that require user attention can be serviced quickly. Priority level three is for batch

execution, which requires no user interaction. *

Bit zero of the priority field, when set, indicates real-tinfe priority as shown below:

SVC OP CODE BIT ZERO OF THE PRIORITY FIELD, WHEN
SET, INDICATES REAL TIME PRIORITY

1,6 " PRIORITY

o1 7

PRIORITIES 1 TO 4 ARE SPECIFIED AS >1,>2,>3, AND>4,
2277792

8.28 >14 — Load an Overlay SVC

The Load Overlay SVC is used to load a specufued overlay from disk into memory. Within the call
block, the user specifies an overlay number, the LUNO of the overlay’s program file, and the address
at which the overlay is to be loaded. The call block consists of seven bytes and is aligned on a word
boundary. The bytes within the call block have the following meanings:

Byte Bit _ , Meaning

0 Contains the SVC opcode. Must be > 14.

1 Initialize to zero. System returns any error.

2-3 Contain the optional user specified load address for the overiay. This

parameter is used along with information supplied when the overlay was
installed to determine the load address and whether relocation is to be
performed. Certain restrictions apply, as discussed in the following
paragraphs.

4-5 Contain the number of the overlay to be loaded. Specify an overlay number
that is less than or equal to 255 (decimal).

6 Contains the user-specified LUNO of the program file where the overlay
resides. This LUNO must not be open when the call is issued. Two special-
case values are as follows: If the LUNO field is zero, the overlay is loaded
from the system program file. If the LUNO field is > FF, the overlay is
loaded from the same program file as the calling task. In this case, do not
release LUNO > FF.

946250-9703 8-9

Program Support Calls

If bytes two and three of the call block zero or equal to the natural load address of the overlay (the
natural load address is determined when the overlay is linked), the overlay is loaded at the natural
load address without relocation.

If bytes two and three of the call block are not equal to either zero or the natural