
TEK PROGRAMMERS 070-5969-01
REFERENCE Product Group 07

4400 SERIES
COMMON LISP

~

TEK PROGRAMMERS
REFERENCE

First Printing JAN 1987

070-5969-01
Product Group 07

4400 SERIES
COMMON LISP

Please Check at the
Rear of this Manual
for NOTES and
CHANGE INFORMA TION

COMMITTED TO EXCELLENCE

Reprinted with permission from Franz Inc. Printed in the Untied
States of America.

© 1985, 1986, and 1987 by Franz Incorporated, Alameda,
California. All rights resewed. No part of this publication may be
reproduced, stored in a retrievall system, or transmitted, in any form
or by any means electronic, mechanical, by photocopying or
recording, or otherwise, without the prior and explicit written
permission of Franz incorporated.

TEKTRONIX is a registered trademark of Tektronix, Inc.

This version describes COMMON LISP as implemented by
Teketronix.

Please address all mail to:

Artificial Intelligence Machines
Tektronix, Inc.
P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

III!"" _ •• -,-'-""---.. ~--

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES COMMON LISP

This manual supports the following versions of this product: Version 1.4

REV DATE DESCRIPTION

JAN 1987 Original Issue

COMMON LISP

Tek COMMON LISP Installation

INTRODUCTION
This document describes the Tek COMMON LISP distribution. It describes the diskettes, the file
organization, and discusses how to get COMMON LISP running on your 4400 Series system.

The software comes on a set of floppy diskettes in relative backup format. To install the
software, you must create a directory called common-lisp, restore the files using the restore
utility, then build your COMMON LISP system.

LOADING THE SOFTWARE

The following step-by-step procedure assumes that you have not created a file called common
lisp on your system.

1. Boot your system.

2. Login as system.

3. You must be in the root directory ("/,,). To insure this type:

chd /

4. Create a directory called Icommon-lisp. To do so type:

crdir common-lisp

5. Restore the COMMON LISP files from the distribution diskettes. To do so type:

restore +ldb common-lisp

FILE ORGANIZATION
The organization of the files are as follows:

/common-lisp: Contains the following directories, sub-directories, and files.

• README: Describes how to build the makefile.

• build: Contains files for building a fresh common-lisp. It consists of the
following:

Makefile:

ucl.r

files.bu

static.r

COMMONUSP

Contains scripts for making a COMMON LISP executable image.

Contains a runtime system used only for the 4405/4406.

Contains all binary files comprising the common-lisp system.

Contains static portion of the runtime system.

-1

Tek COMMON USP Installation

• build-4400

• lib:

code

misc

• I common-lisplliblcode

trace/asl

stepfasl

flavorsfasl

vanillafast

tek-graphfasl

joreignfasl

cstructsfasl

• Icommon-lispllibldoc

lisp68k.h:

Contains distribution files similar to those in the build directory
except the COMMON USP image created will run on either the
4404, 4405, or 4406.

This directory contains two sub-directories:

Contains the following files:

[The trace package]

[The Stepper]

[The flavors system]

[The base flavors system]

[The 4400 Tektronix Graphics Library]

[The foreign function interface]

[Lisp interface to interact with C structures]

Contains the follwing file.

C macros for analysing Lisp objects.

Building a COMMON LISP
To build a COMMON USP, follow this procedure:

-2

1. Restore all the diskettes as describe above.

2. Read the file called /common-lispIREADME. To do so type:
sys++ make cl.

It will take a few minutes to create an executable file called /bin/cl. This will be an upper
case-insensitive version (the standard version) of COMMON USP. The file /common
lisplREADME contains details of how to build other case modes and versions of
COMMON USP that will run on the 4404.

3. Run COMMON USP. To do so type:
sys++ cl

You are now inside the Tek COMMON USP interpreter.

Contents

1-'6)

-Ot ·02(26-11·86)

Contents

Preface
1 The language p-l
2 History p-l
3 Comments and suggestions p-2
4 Reporting bugs p-2
5 Keeping abreast p-4

1 Introduction
1.1 Format of the manual 1-1
1.2 An outline of the manual 1-2
1.3 Other documents 1-2
1.4 How to run LIsp 1-3
1.5 How to exit LIsp 1-3
1.6 How to compile functions 1-4

2 Implementation
2.1 Data types 2-1
2.2 Storage allocation 2-2
2.3 Pathnames 2-2
2.4 The compiler 2-4
2.5 Internal functions 2-7
2.6 A note on portability 2-8

3 Extensions
3.1 Reader case modes 3-1
3.2 Errors 3-4
3.3 Search lists 3-5
3.4 Autoloading 3-9
3.5 Miscellaneous functions and symbols 3-9

4 Operating-system interface
4.1 Subprocess functions 4-1
4.2 Environment functions 4-3
4.3 Image functions 4-4

5 Top level
5.1 Initialization 5-1
5.2 Interaction 5-1
5.3 Getting help 5-2
5.4 Command and expression history 5-3
5.5 Break levels 5-4
5.6 Stack commands 5-6
5.7 Miscellaneous commands 5-9
5.8 The tracer 5-10
5.9 The stepper 5-13
5.10 The inspector 5-14
5.11 Top-level variables 5-19
5.12 Adding new top-level commands 5-21
5.13 A sample initialization file 5-23

6 Flavors
6.1 Objects 6-1
6.2 Modularity 6-3
6.3 Generic operations 6-6
6.4 Generic operations in LIsp 6-8
6.5 Simple use of flavors 6-9
6.6 Mixing flavors 6-13
6.7 Flavor functions 6-17
6.8 Defflavor options 6-25
6.9 Flavor families 6-33
6.10 Vanilla flavor 6-34
6.11 Method combination 6-35
6.12 Implementing flavors 6-44
6.13 Property list operations 6-46
6.14 Copying instances 6-47

7 Profiling

8 Foreign functions
8.1 Loading foreign code 8-2
8.2 Load errors 8-3
8.3 Defining a foreign function to lisp 8-5
8.4 Conventions for passing arguments 8-9
8.5 Passing arrays of strings from lisp to C 8-12
8.6 Defining and calling lisp functions from foreign code 8-14
8.7 How foreign-called lisp functions get arguments 8-17
8.8 C structures 8-20
8.9 Argument-passing synopsis 8-26

0-01 -02(26-11.86)

)-OHl2(26-1I·86)

9 Packages
9.1 Packages in Tek COMMON LIsp 9-1
9.2 Symbols in the excl package 9-2

A Summary of symbols

Tektronix 4400 graphics library
1 Introduction S-1
2 Data structures S-1

2.1 Points S-1
2.2 Rectangles S-2
2.3 Forms S-2
2.4 Bbcoms S-3
2.5 Display states S-4
2.6 Menus S-4

3 Rules for bit-bit S-5
4 Variables S-5
5 Functions S-6
6 Halftone forms S-19

Index

.86)

Preface

1 The language p-l
2 History p-l
3 Comments and suggestions p-2
4 Reporting bugs p-2
5 Keeping abreast p-4

:1-86)

The Tek COMMON LISP User Guide and the book, Common Lisp: The
Language, comprise the Tek COMMON LISp documentation kit Together, they
describe the language and its use. Common Lisp details the functions and the
calling conventions of standard COMMON LISP, while the Tek COMMON LISp

User Guide describes features of this implementation of COMMON LISP: its
extensions, added features, and peculiarities. We advise the user to read at
least the following chapters of this document before using Tek COMMON LISp:

Chapter I Introduction

Chapter 2 Implementation

Chapter 4 Operating-system interface

Chapter 5 Top level

The Tek COMMON LISp system consists of an interpreter and an optimizing
compiler. Tek COMMON LISP is a robust and complete implementation of
COMMON LISP, as specified in Common Lisp. In addition, it has been
enhanced by a fast, solid implementation of Flavors and a rich, modeless top
level with extensive intrinsic debugging facilities, and A symmetric interface
package between LISp and foreign data and procedures (e.g. of C and FOR
TRAN). Tek COMMON LISP was designed to be compact and very fast. It is
written in COMMON LISp and a special low-level language.

LISp was one of the first high-level computer languages developed, originating
in the-late fifties, soon after the emergence of FORTRAN. From the beginning
LISP was a memory-intensive language. For this and less practical reasons,
LIsp was used mostly at universities until the parallel development of inexpen
sive fast memory and the nascence of microprocessors in the early eighties
made it practicable for general use. By that time, LISP had diverged into a
number of dialects developed at major research centers. With LISp's increas
ing pervasion, the LISP community felt a concomitantly increasing need to
standardize the language. This need culminated in the efforts of many people
to define a new language. Guy L. Steele, Jr. edited the resulting document

Preface

1
The

language

2
History

p-1

Tektronix, Inc.
p-2 Preface

3
Comments
and
suggestions

4
Reporting
bugs

Common Lisp. The new language, COMMON LISP, combines the features of
the various dialects of LISP into a single lingua franca of the artificial intel
ligence community, now commercial as well as academic. In this process,
inconsistencies and vagaries of particular dialects were rationalized, making
COMMON LISP a 'cleaner' language than older LISPs encrusted with layers of
tributes to generations of hackers come and gone. The book Common Lisp
defines the resulting language. Tek COMMON LISP is a complete implementa
tion of the COMMON LISP language as defined in that book, enhanced with
extensions in important areas such as the top level, error handling, and debug
ging, left undefined or vague by the book. This Tek COMMON LISp User Guide
describes our implementation of COMMON LISP.

We are always seeking a dialogue with our users in order to improve Tek COM
MON LISP. We invite your comments and suggestions. A form is provided at
the back of this manual for your convenience, but of course personal
correspondence is always welcome. The address to which to write, either by
post or by electronic mail, is on the information sheet enclosed with this docu
ment.

We are committed to the highest. standards of software engineering. Releases
of Tek COMMON LISP are extensively tested both internally and in the field
before wide dissemination. Nevertheless, as with all, especially new, compli
cated computer programs, it is possible that you will find bugs or encounter
behavior that you do not expect. In that event, we will do our utmost to resolve
the problem. But, resolving bugs is a cooperative venture, and we need your
help. Before reporting a bug, please study this document and Common Lisp to
be sure that what you experienced was indeed a bug. If the documentation is
not clear, this is a bug in the documentation: Tek COMMON LISP may not have
done what you expected, but it may have done what it is supposed to do. A.
report that such and such happened is generally of limited value in determining
the cause of a problem. It is very important for us to know what happed before
the error occured: what you typed in, what Tek COMMON LISP typed out. A
literatim log, preferably hard copy, may be needed. If you are able to localize
the bug and reliably duplicate it with a minimal amount of code, it will greatly
expedite repairs. It is much easier to find a bug that is generated when a single
isolated function is applied than a bug that is generated somewhere when an
enormous application is loaded. Although we are intimately familiar with Tek
COMMON LISP, you are familiar with your application and the context in which
the bug was observed. Context is also important in determining whether the
bug is really in Tek COMMON LISP or in something that it depends on, such as
the operating system.

To this end, we request that your reports to us of bugs or of suspected
bugs include the following information. If any of the information is missing, it

0-01.02(26.1

i-11-86)

is likely to delay or complicate our response.

Tek COMMON liSP
Preface p-3

• Lisp implementation details. Tell us the implementation of Tek COMMON
LISP that you are using, including at least the release number and date of
release of Tek COMMON LISP, the manufacturer, model, and version of
the hardware on which you are running Tek COMMON LISP, and the
operating system and its release number. The minimum information we
need can be provided by executing the following functions within Tek
COMMON LISP: lisp-implementation-type.. lisp-implementation
version, machine-type, machine-version, software-type, software
version, and short-site-name.

• Information about you. Tell us who you are, where you are and how you
can be reached (an electronic mail address if you are reachable via Inter
net or Usenet, a postal address, and your telephone number), your Tek
COMMON LISp license number, and in whose name the license is held.

• A description of the bug. Describe clearly and concisely the behaviour
that you observe.

• Exhibits. Provide us with the smallest, self-contained LISp source frag
ment that will duplicate the problem, and a log (e.g. produced with the
dribble function) of a complete session with Tek COMMON LISp that
illustrates the bug.

A convenient way of generating at least part of a bug report is to use the drib
ble function in Tek COMMON LISp. (The function is described in §25.3, p. 443
of Common Lisp.) First type (dribble filename) to record the remainder of the
session in file filename. Then apply the functions that were described earlier to
describe your implementation of Tek COMMON LISp. Next duplicate your bug.
And then type (dribble) to end the log. Note that if what you type to duplicate
the bug loads in files either directly or indirectly, attach a complete listing of
the source version of these files to your session log. The following dialogue
provides a rudimentary template for the kernel of a bug report.

<cl> (dribbl.e "bug.dribbl.e")
<cl> (l.isp-impl.ementation-type)
<cl> (l.isp-impl.ementation-version)
<cl> (machine-type)
<cl> (machine-version)
<cl> (software-type)
<cl> (software-version)
<cl> (short-site-name)
<cl> ;; Now duplicate your bug . ..
<cl> (dribbl.e)

Send bug reports to either of the electronic mail or postal addresses that are
given on the information sheet that is enclosed with this document. In general
an electronic report can be acted upon more speedily. When we receive your
bug report, it will be assigned a number by which we can mutually refer to it
concisely and unambiguously, and you will be sent a receipt. We will
investigate the report and inform you of its resolution in a timely manner.

Tektronix, Inc.
p-4 Preface

5
Keeping
abreast

We will meet you more than half way to get your project moving again
when a bug stalls you. We only ask that you take a few steps in our direction.

We maintain mailing lists, both by post and by electronic mail. We also main
tain an electronic mail forum, accessible via Internet and U senet, for users of
Tek COMMON LISP. You are invited to subscribe to our mailings and to
become a member of our electronic forum. We like to hear about what our
customers are doing with Tek COMMON LIsP, and we can keep you abreast of
new releases and other pertinent information. The addresses appear on the
information sheet enclosed with this document. Join us!

0-01-02{26-1

1 Introduction

1.1 Format of the manual 1-1
1.2 An outline of the manual 1-2
1.3 Other documents 1-2
1.4 How to run LISP 1-3
1.5 How to exit LisP 1-3
1.6 How to compile functions 1-4

-11-86)

11-86)

1 Introduction

This document is a user guide designed to supplement Common Lisp: The
Language (Guy L. Steele, Jr., Digital Press, 1984). It describes Franz
Incorporated's Tek COMMON LiSp implementation of the COMMON LiSp
language. This introduction describes the format of this manual, presents an
outline of its contents, and introduces other documents that will be useful to
you. And to get you started, it also explains how to enter and exit Tek COM
MON LiSp and how to compile functions. We urge users to read this chapter
and at least chapters 2, 4, and 5 before using Tek COMMON LiSp.

This document is a reference manual. Neither it nor Common Lisp are pri
mers to COMMON LISp nor introductions to the language. The user is
encouraged to consult textbooks on LiSp such as COMMON LISPcraft (Robert
Wilensky, W. W. Norton and Company, 1986) to gain familiarity with the
language. We assume that you are familiar with at least one dialect of LiSp.

This document is divided up into several chapters describing how we imple
mented features either not described in Common Lisp or not specified exactly
in Common Lisp. We have tried to follow the format of Common Lisp, where
possible. The format is described in detail in § 1.2.5 of Common Lisp. Briefly,
definitions of functions, variables, named constants, special forms and macros
appear on their own line in a special type font and in the following form:

name parameters

For example:

digit-char-p char &optional (radix 10)
default-pathname-defaults
setf {place newvalue}*

[Type}

[Function}
[Variable]

[Macro]

As in Common Lisp, definitions may spill over onto additional lines, and are
followed by explanation and examples.

Type faces are used to distinguish between functions, symbols, constants,
printed forms, and examples. Functions are printed in bold gothiC. Other
symbols are printed in gothic. Constants (such as 0, #AA, 'j\ ", or nil) and spe
cial symbols (such as *package*) are printed in italic gothic. Keywords and
lambda-list keywords (such as :test and &optiona/, respectively) are indicated
in bold italic gothic. Printed forms are printed in italic gothic. Examples in

1 .1
Format of

the manual

1-1

Tektronix, Inc.
1 ~2 Introduction

1.2
An outline of
the manual

1.3
Other
documents

the text are printed in gothic. When examples appear separate from the text,
output from the Tek COMMON LISp system is printed in courier; input to
Tek COMMON LISP is printed in bold courier; and comments are printed
in italic courier.

This document contains the following chapters:
1 This Introduction. Included below is information on how to start (and

exit) Tek COMMON LISp and how to compile files.
2 Implementation. This chapter describes in detail this implementation of

the COMMON LISP language, with sections on data types, storage alloca
tion, pathnames, the compiler, and internal functions. It also includes
some advice for writing portable COMMON LISP code.

3 Extensions. This chapter describes some of the extensions to COMMON
LISP found in Tek COMMON LISP, including the error-handling facility
and search lists.

4 Operating-system interface. Described here are facilities to access
operating-system information, such as running subprocesses, getting
command-line arguments, and changing directories. All of these facilities
are extensions to COMMON LISp.

S Top level. The top level is the user's interface with Tek COMMON LISp.
It includes the debugger, tracer, and inspector.

6 Flavors. Flavors is an object-oriented language extension that is part of
Tek COMMON LISp. Our implementation of Flavors is essentially compa
tible with Symbolics 'Genera 6' Flavors.

7 Profiling. This chapter describes the profiler, a tool for analyzing resource
consumption in your LISP applications.

8 Foreign functions. This chapter describes our interface between LISP and
other languages such as C or FORTRAN.

9 Packages. This chapter describes the packages that are part of Tek COM
MON LISp.

A Summary of symbols. This is an appendix that enumerates all of the sym
bols that are described in this Guide. Functions, macros, and special
forms are described by a template that lists the arguments.

This document comes in several flavors, each targeted for different machines.

Along with this document and Common Lisp, you should have received an
installation guide. Release notes and any supplements described above are
bound in with this document. Most of Tek COMMON LISP is described in Com
mon Lisp. You should refer to that book for most information on the func
tionality of Tek COMMON LISP. This User Guide describes our implementa
tion of COMMON LISp. Here you will find implementation-specific details, cla
rifications of Common Lisp, and descriptions of extensions (features beyond
the scope of the specification in Common Lisp) such as 'Flavors' (chapter 6)

D.(Jl-0'2(26-1l

86)

Tek COMMON LISP
Introduction 1-3

and profiling (chapter 7).
New users should install their system following the instructions in the

installation guide. Once the system has been successfully installed, there
should be no reason to refer to the installation guide again. It should be kept,
however, in case you must reinstall the system for any reason.

We recommend that you at least scan most of this manual before seriously
using Tek COMMON LISP. Also, look over the release notes, which list features
(and problems) that affect this release. Common Lisp should be your main
reference manual. Tek COMMON LISP implements the language as described
in that book. We would appreciate any comments you have about the docu
mentation, its completeness, ease of use, or clarity. You may send comments
to the address listed on the information sheet included with this document.

The installation procedure ends with the building of a file named CZ. The exact
location of this file will depend on your machine configuration. Let us assume,
however, that the file is in a directory contained in your search path (e.g.,
lusrllocal). To get into Tek COMMON LISP, just type

% cl.

There will be a short wait while Tek COMMON LISP is being loaded and initial
ized. Then you should see the Tek COMMON LISP banner and the prompt,
which looks like

<cl>

At this point, you are in the LISP environment and have all of COMMON LISP at
your disposal.

If you have insufficient swap space, LISP may exit with an error message
indicating that the swap space is too small. In that case, either kill other
processes or increase the size of your swap space, and then start Tek COMMON

LIsp again. (If you find it necessary to increase your swap space, refer to your
operating -system documentation.)

Common Lisp is silent on the question of how to exit LIsp. Tek COMMON LISp
has several commands which will cause a LISp session to terminate. The sim
plest is the function exit. The expression

(exit)

will cause the current LISP image to exit. (This function is described in §4.3,
Image functions.) One can also exit LIsp directly from the top level, using the
top-level command :exit, documented in chapter 5.

1.4
How to run

LISP

1.5
How to exit

LISP

Tektronix, Inc.
1-4 Introduction

1.6
How to
compile
functions

, .. '

COl\1M:ON LISP provides two ways to compile functions. The first is to define
the function in the interpretive environment and then call the compile function.
The second way is to write the function to a me either with an editor or some
other means, and then call the compile-file function. For example, suppose
you have the function faa defined already in your LISP environment, then to
compile it, just type

(compile 'foo)

which will replace the interpreted version of faa with the compiled version of
faa. If you want to compile a whole file (say foofnes.ci) full of functions, you
can use the function compile-file as follows

(compile-file "foofncs.cl")

which will result in a new file being created in foofnes .ci' s directory called
foofnesfasl. This file can then be loaded into your LIsp environment (with
either the load function or with the :Id top-level command), and you will then
have all offoofnes's compiled functions at your disposal.

0-01-02(26-1

\.86)

2 Implementation

2.1 Data types 2-1
2.2 Storage allocation 2-2
2.3 Path names 2-2

2.3.1 Parsing pathnames 2-2
2.3.2 Merging pathnames 2-3

2.4 The compiler 2-4
2.4.1 File types 2-4
2.4.2 Declarations and optimizations 2-5
2.4.3 Top-level forms 2-7

2.5 Internal functions 2-7
2.6 A note on portability 2-8

.1-86)

2 Implementation

Tek COMMON LISP contains all of the required COMMON LISP data types plus
an instance data type for use by the flavors system. Fixnums are signed 29-bit
quantities. Bignums may be as large as 21,048,576. There are two distinct
floating-point types. Short-float and single-float are equivalent and are 32-bits
wide. Double-float and long-float are equivalent and are 64-bits wide. The
distinct array data types are the following:

(array t)
(array bit)
(array (unsigned-byte 8))
(array (unsigned-byte 16))
(array (unsigned-byte 32))
(array string-char)
(array single-float)
(array double-float)
(array (signed-byte 8»
(array (signed-byte 16))
(array (signed-byte 32))
(array fixnum)
(simple-array t (*))
(simple-array bit (*))
(simple-array (unsigned-byte 8) (*»
(simple-array (unsigned-byte 16) (*»
(simple-array (unsigned-byte 32) (*»
(Simple-array single-float (*))
(simple-array double-float (*))
(simple-array (signed-byte 8) (*»
(simple-array (signed-byte 16) (*»
(simple-array (signed-byte 32) (*))
(simple-array fixnum (*»

2.1
Data types

2-1

Tektronix, Inc.
2-2 Implementation

2.2
Storage
allocation

2.3
Pathnames

2.3.1
Parsing
pathnames

Tek COMMON LISP uses a two-space,copying garbage collector. Data objects
which cannot move or are unlikely to become garbage are placed in a special
static storage area.

excl:*gcprint* [Variable]

• If the variable *gcprint* is not nil, then when garbage collection is
started a message will be printed on the terminal, and after it is complete
another message will be printed describing the current state of storage
allocation. It prints the statistics in this form: a/be c), where is a is the
number of bytes of dynamic space is use, b is the sum of the dynamic
space in use and the dynamic space free, equalling the total number of
dynamic bytes available to the process, and c is the total number of static
space bytes allocated.

excl:gc [Function]

• This will cause a garbage collection to occur. A garbage collection
will occur automatically whenever the free space is exhausted.

COMMON LISp pathnames do not always map easily into operating-system
filenames. In this section we describe the mapping chosen for Tek COMMON
LISP on the Unix operating system.

The host and version components of pathnames are ignored.
The directory, name, and type fields are determined from a namestring as

follows: If there are no slashes in the namestring, then the directory component
is nil. If there are slashes then all characters from the beginning of the name
string to, but not including, the last slash in the namestring is the directory
component. The one exception is that if there is just one slash and it is at the
beginning of the name, then the directory component is ''I''. After removing the
directory component and the following slash from the namestring, the rest of
the string determines the name and type components. If the rest of the string is
empty then both components are nil, otherwise, the name contains everything
up and excluding the last period in the string. The characters following the
period are the type. If the name ends in a period, then the type is the empty
string. The exceptions are for names beginning with a period. In this case the
period is being used to hide the file from the directory listing program, not to
separate the name and type components, thus a leading period is treated as a
non-period character. The string " .. " is treated specially and is parsed as a
name of ",," and a type of nil. The following table has some examples of path
name parsing:

•
O-OI.{)2(2t\.

Tek COMMON liSP
Implementation 2-3

Pathname components

Namestring Directory Name Type

"/" "/" nil nil
"/foo" "/n "faa" nil
"/foo." "1" "foo" ''''

"/foo.b" "/" "faa" "b"
''/foo .bar. " "/" "foo.bar" fur

''/foo .bar.baz" "/" "foo.bar" "baz"
',/foo .. bar" "/n "faa." "bar"
"faa. bar" nil "faa" "bar"
"fa 0/" "faa" nil nil
"foo/bar" "faa" "bar" nil
"foo/bar/baz" "foo/bar" "baz" nil
"foo/bar/" "foo/bar" nil nil
".lisprc" nil ".lisprc" nil
"x.lisprc" nil "x" "lisprc"
" " nil " " nil
" " nil " " nil
" " nil " " ""

Table 2.1. Examples of conversions of namestrings to path
names.

Merging of pathnames is handled specially by Tek COMMON LISP on the Unix
operating system to take advantage of directory hierarchies.

Given two pathnames a and b, then the result (c) of merging these path
names may cause merging of their directory components.

(setf c (merge-pathnames a b))

If pathname a does not have a directory component, then the directory com
ponent of pathname b becomes the directory component of the result c. If
pathname a's directory component is absolute (i.e. it begins with a slash ''/'')
then pathname c will have pathname a's directory component.

If pathname a has a directory component that is relative, then the directory
component of pathname c depends on the directory component of pathname b.
If pathname b has a relative directory component, then e's directory component
will be the same as a's. If b's directory component is absolute, the relative
directory component of pathname a is appended to the absolute component and
the result is canonicalized to eliminate such components as "." and " .. ". For
example if pathname b's directory component is "/foo" and pathname a's direc
tory component is "./bar", then pathname e's directory component will be

2.3.2
Merging

pathnames

Tektronix, Inc.
2-4 Implementation

2.4
The compiler

2.4.1
File types

',/foolbar". Finally, if pathname b does not have a directory component, the
directory component of pathname a becomes c's directory component.

There are several implementation-dependent facets to a COMMON LISP com
piler. These include the naming of source and object files, and how declara
tions are handled and optimizations are performed.

The default source-file type in Tek COMMON LISP is "cI". The default
compiled-file type in Tek COMMON LISP is "fas!", which is a mnemonic for
'fast-Ioadable' file. The default source-file type may be changed to suit your
preferences.

The variable system:*souree-file-types* is a list of pathname types of
COMMON LISp source files. The default value of this variable is ("cI'? This
means that if no file type is specified for the argument of compile-file (or the
top-level command :cf) the file type "ef" will be assumed. For example

(compile-file "foo")

will cause the compiler to first look for the file joo.cl. If this file is not found,
then the compiler will search for joo.1 Some users prefer to use "lisp" as a
source file type instead of "ct".

(setq system:*source-file-type* '(flcI" "lisp"))

will cause the compiler to look for files with file type "lisp" as well as "c/".
Then

(compile-file "foo")

will look for joo.el, joo.lisp, and joo in that order, and compile the first file
found.

An element of system:*souree-file-types* may be nil, denoting a file
name with no type. For example, a value of (nil "cl") will cause (compile-fiJe-if
needed "bar") to look first for bar then for bar.cl.

Users who change system:*souree-fi/e-types* may also wish to change
system:*/oad-seareh-/ist* and system:*require-seareh-list* so that the func
tions load and require will look for files with the desired file types as well.
See §3.3, Search lists, for a description of these variables.

I Refer to §2.3, Path names, in this chapter for a description of how Tek COMMON LIsp parses
UNIX namestrings and merges UNIX pathnames.

0-01-02(26-11

·86)

Tek COMMON Lisp
Implementation 2-5

The compiler generates code which, in addition to carrying out the tasks
required by the LISp code, checks that input is of the correct type, allows for
profiling and facilitates debugging, and checks for interrupts. This additional
code is fast and small, but of necessity somewhat reduces the speed and
increases the size of the compiled code. Users can control the amount of this
extra code that is produced with the options specified below. The fIrst line of
control is to set the safety, size and speed options. The descriptions below
show how values of safety, size and speed affect code generation. The values
run from 0 to 3 for safety, size and speed, with 0 representing the least concern
for safety, size and speed, and 3 representing the greatest concern. The user
can control the level of safety, size and speed by using the proclaim function,
as follows:

{proclaim '(optimize (safety n1) (size n2) (safety n3)))

where n 1, n2 and n3 are integers from 0 to 3. The following variables define
what the various settings of safety, size and speed do. They are bound to func
tions which return t or nil for the given settings of safety, size and speed. Note
that with the current definitions, the setting of size does not affect the code
generated by the compiler. The user may change the definitions so that size is
relevant. The code for changing the settings is given after the definitions.

compiler:declared-fixnums-remain-fixnums-switch [Variable]

• Bound to a function which, given safety, size and speed, returns t if the
compiler should assume that the sum and the difference of arguments
declared to be fixnums will result in a fixnum. By default, returns t if
speed is greater than 2 and safety is less than 2.

compiler:generate-call-count-code-switch [Variable]

• Bound to a function which, given safety, size and speed, returns t if the
compiler should generate call-counting code. Call counting is used only
by the profiler. Its overhead is small, however, so it is recommended that
it be done. By default, returns t unless speed is set to 3.

compiler:generate-interrupt-check-switch [Variable]

• Bound to a function which, given safety, size and speed, returns t if the
compiler should generate code to check for asynchronous interrupts (like
control-C from the keyboard.) If this check is not made, there is no way to
stop LISp and regain control if the program goes into an infinite loop. By
default, returns t unless speed is set to 3.

2.4.2
Declarations

and
optimizations

Tektronix, Inc.
2-6 Implementation

compiler:trust-declarations-switch [Variable}

• Bound to a function which, given safety, size and speed, By default,
returns t if declarations the user provides should be trusted without verify
ing them at runtime. By default, returns t when speed is greater than
safety.

compiler:verify-argument-count-switch [Variable}

• Bound to a function which, given safety, size and speed, returns t if the
compiler should generate code to verify that the correct number of argu
ments have been passed to a function. Note: if the wrong number of argu
ments are passed to a function without detection, the consequences can be
fatal to LISP. Argument checks are always done if there are &opfional or
&resf arguments. By default, returns t is speed is less than 3 or safety is
greater than O.

compiler:verify-car-cdr-switch [Variable}

• Bound to a function which, given safety, size and speed, returns t if the
compiler should generate code to verify that the type of an object whose
type is undeclared is a list before doing a car or cdr of the object. By
default, returns t for speed less than 3 or safety greater than 1.

compiler:verify-non-generic-switch [Variable}

• Bound to a function which, given safety, size and speed, returns t if the
compiler should generate code to verify that the type of an object whose
type is undeclared is of the correct type when the object appears as an
argument to a non-generic function, (e.g. svref). By default, returns t for
speed less than 3 or safety greater than 1.

compiler:verify-symbol-value-is-bound-switch [Variable}

• Bound to a function which, given safety, size and speed, returns t if the
compiler should generate code to detect that a symbol's value is bound
before that value is used. By default, returns t for speed less than 3 or
safety greater than 1.

The user may change the safety, size and speed values that trigger these vari
able settings in the following way.

(setq var #'(Iambda (safety size speed)
(declare (ignore size))
(logical-form)))

where (logical-form) is nil or t as a function of safety, speed and size.

Tek COMMON LiSp
Implementation 2-7

Thus, if the following code is executed, the compiler will not generate call
counting code for speed set greater than 1 of safety set less than 1 or size
greater than 1.

(setq compiler:generate-call-count-code-switch
#'(Iambda (safety size speed)

(cond ((> speed 1) nil)
((< safety 1) nil)
((> size 1) nil)
(tt))))

Safety, size and speed all have default value 1.

Certain top-level forms are evaluated by the compiler in its execution environ
ment2 in addition to being otherwise processed normally. The functions below
are all evaluated by the compiler when seen at top level.

make-package
in-package
shadow
shadowing-import
export
unexport
use-package
unuse-package
import
require

In effect the functions above are treated as if they were surrounded by (eval
when (compile eval load) ...). Among these functions, only require is not
explicitly mentioned in § 11.7 of Common Lisp.

Users trying to debug code will often have occasion to look at the stack for
recent function calls. There, one may find, instead of *, +, <, etc., oddly named
functions of the form:

string _2op
string _30p

where string is *, +, <, etc. These functions are called for compiler efficiency,
and should be interpreted as the functions named by string. Thus, for

2 This is referred to in Comrrwn Lisp as processing the fonn in compile-time-too mode. Cf.
§§11.7 and 5.3.3.

2.4.3
Top-level

forms

2.5
Internal

functions

Tektronix, Inc.
2-8 Implementation

2.6
A note on
portability

example, <_2op should be interpreted < (i.e. the not-greater predicate).

COMMON LISP. code written without implementation-dependent extensions
(that is using the language strictly as described in Common Lisp) should in
theory be portable across various implementations and machines. In practice,
however, true portability is rarely achieved, and it is likely that Tek COMMON
LISP code will not port to other COMMON LISP implementations without at
least some effort. The reasons for this include the following.

• Use of implementation-dependent features. Most large programs will use
some implementation dependent features. These will not, of course, port
to other implementations of COMMON LISp. Tek COMMON LISP allows
users to isolate almost all implementation dependent features by placing
them in the excl and implementation independent features in the lisp
package. See chapter 9 for further discussion of the packages in Tek
COMMON LISP.

• Use of extensions. Extensions are really implementation-dependent
features; however, they are distinct in that they involve functions, macros,
or variables defined in Common Lisp. Because of this, the symbols will
not be isolated by the package system. In Tek COMMON LISP all exten
sions are upward-compatible. In Release 1.4, the only function that has
been extended is load. It takes additional keyword parameters that facili
tate the loading of foreign code. Its behaviour when used to load LISp
code complies with the specification in Common Lisp.

• Latitude in interpretation or laxity of specification. The standard as
described in Common Lisp is very complex. Implementors may in good
faith interpret specifications in incompatible ways. Usually, the confusing
specifications concern declarations and scoping issues. Until there is a
nationally defined standard (with public ally available validation tests) dif
ferent implementations of COMMON LISp will certainly differ on certain
arcane features.

We have striven to produce a correct implementation of the COMMON LISp as
described in Common Lisp, and have then added those extensions which we
feel are useful to users. Our experience porting code written for other imple
mentations of COMMON LISP have not shown any great difficulties. We
encourage our users to report any problems they have porting COMMON LISp
code.

3 Extensions

3.1 Reader case modes 3-1
3.1.1 Changing case modes 3-3
3.1.2 Compatibility 3-3
3.1.3 Case preference 3-3
3.1.4 Compiled code 3-4

3.2 Errors 3-4
3.3 Search lists 3-5

3.3.1 Structure 3-5
3.3.2 Example 3-7
3.3.3 Variables 3-8

3.4 Autoloading 3-9
3.5 Miscellaneous functions and symbols 3-9

, .• f

3 Extensions

Common Lisp is purposefully incomplete in some areas. An interface to
foreign functions is not specified, nor are a top level and an error-handling
mechanism. Foreign functions and the top level are left out because they are
very system dependent; error handling because there was no agreement on
what should be done when Common Lisp was published (and there still is not
as of this writing, November 1986). We have provided extensions to COMMON
LISP in all these areas. Error handling is documented in this chapter, foreign
functions in chapter 8 and the top level in chapter 5. Users should be aware
that these extensions are not portable across implementations of COMMON
LISP.

We have added some further extensions, including functions or capabili
ties that we believe make COMMON LISp easier to use. Among these are case
sensitivity, a 'keyword-oriented' conditional construct, and additional type
checking functions. These extensions are documented in this chapter.

Again, the user is cautioned that taking advantage of these extensions will
produce code that is not portable across implementations. Chapter 9 discusses
the how symbols in Tek COMMON LISp are dispersed among several packages,
and how the user interested in portability can best achieve it using packages.

In standard COMMON LISP, the reader converts all unescaped lowercase char
acters to uppercase, so that for example Foo and foo are both read as FOO.
This is a sign of the age of the LISp programming language. When LIsp was
invented in the sixties, most tenninals could only handle uppercase. When
lowercase terminals started to appear, most operating systems and languages
were modified to simply map lowercase characters to uppercase and then
proceed as before. Some modern programming languages (C, Smalltalk,
Modula-2, Newspeak) distinguish between uppercase and lowercase in identif
iers and programmers use this distinction to great advantage. In C, constants
are usually in uppercase and variables in lowercase. In Small talk, capitaliza
tion is used to distinguish words in multi-word identifiers, and to classify iden
tifiers. The excl:set-case-mode function can change Tek COMMON LISP's
reader so that the case of characters in identifiers is significant.

There are two parameters that determine the reader's actions: case prefer
ence and case sensitivity. The preferred case is either upper or lower, and
refers to the case of the characters in the print names of all of the standard sym
bols, such as car and cdr. Case sensitivity is either sensitive or insensitive.

3.1
Reader case

modes

3-1

Tektronix, Inc.
3-2 Extensions

Case-sensitive means that the reader doesn't modify the case of any characters
it reads. Case-insensitive means that characters that are not of the preferred
case are converted to the preferred case.

There are four possible values for the combination of case preference and
case sensitivity.

• Case-insensitive, uppercase-preferred. This is the mode used in standard
COMMON LISP and in most of the older LISPs such as MacLrSP. With this
mode you can even enter LISP programs with a card punch.

• Case-sensitive, uppercase-preferred. This is the mode used by InterLISP.
This is perhaps the most difficult mode to use since you have to hold the
shift key down to type the names of system functions, or else they won't
be recognized.

• Case-insensitive, lowercase-preferred. This mode is very similar to the
case-insensitive, uppercase-preferred mode.

• Case-sensitive, lowercase-preferred. This is the mode use by FRANZ LIsp
(and the C programming language). It matches the conventions of the
UNIX and UniFLEX operating systems, and thus is the most natural mode
to use for some programmers.

The function exel:set-ease-mode and two variables excl:*current-case
mode* and excl:*ignore-package-name-case* are provided for controlling
and sensing case modes.

exel:set-ease-mode new-mode [Function]

• new-mode is one of the four keywords: :case-insensitive-upper,
:case-insensitive-Iower, :ease-sensitive-upper, and :case-sensitive
lower. Function set-ease-mode converts LIsp to use the new mode for
subsequent reading and returns a keyword denoting the previous mode.
This function must do quite a bit of consistency checking when changing
between modes with different case preferences, and may may take as long
as several minutes to complete. Below we go into more detail on the
operation of exel:set-ease-mode and the implications on compatibility.

excl:*current-case-mode* [Variable]

• The value of this variable is the keyword denoting the current mode.
This variable should be considered read-only, it is changed by exel:set
case-mode to reflect the current mode. Its initial value is :case
insensitive-upper.

excl:*ignore-package-name-case* [Variable]

• If this value is true, then the case of characters in single-case package
names and nicknames is ignored by the reader when looking up qualified
symbols. This variable is initially nil, but the user may find it useful to
give this variable a non-nil value if he chooses to operate in one of the

11_M6l

Tek COMMON LISP
Extensions 3-3

case-sensitive modes. This is described in more detail below.

Initially the reader is in :case-insensitive-upper mode. If the user executes
(set-ease-mode :case-sensitive-upper), the set-ease-mode function need only
infonn the reader not to alter the case of characters it reads, and infonn the
printer that lowercase characters needn't be escaped on output. If the user
wants to change the mode to one of the lowercase-preferred modes, then much
more work must be done. Every (interned) symbol's printname is examined.
If the print name does not contain characters of different cases, then the print
name is converted to the new preferred case (in this example, lowercase). If
the print name contains characters of different case then it isn't modified at alL
If converting a symbol's print name to lowercase would cause there to be two
symbols with the same print name in the same package, then no conversion is
done for the symboL Similarly, the names and nicknames of packages are con
verted to the new preferred case if the names do not contain both lowercase and
uppercase characters. After excl:set-ease-mode has examined and converted
as many symbols as possible, it prints a list of those symbols that could not be
converted due to mixed case or a symbol conflict.

The version of Tek COMMON LISp that you receive will work in any
mode. We expect that most users will either choose to use Tek COMMON LISP
in its standard :case-insensitive-upper mode or choose to use :case
sensitive-lower mode. The fIrst group can simply use LISp as distributed and
ignore everthing about case modes. The second group should execute the
exel:set-ease-mode function, create an image with excl:dumplisp and use
that LISp. In order to load or compile source code written assuming the stan
dard :case-insensitive-upper mode, the second group should use excl :set
case-mode to put LISp in :case-insensitive-Iower mode. It is much faster to
go from :case-sensitive-Iower mode to :case-insensitive-Iower mode, than
to :case-insensitive-upper mode, and the two insensitive modes are nearly
equivalent in their effect.

Changing the case of identifiers or making LISP case-sensItIve is not an
upward-compatible change to LISP. Thus the use"r must weigh the advantages
of a more 'modern' Lisp syntax against possible future drawbacks, such as not
being able to run the code in other versions of COMMON LISP. We examine the
possible compatibily problems.

None of the standard Tek COMMON LiSp code depends on the case of the char
acters in identifiers, and it is unlikely that future code will. Packages are unfor
tunately referred to by strings and thus compatibility problems can crop up.
The exel :set-ease-mode function will convert the case of package names to
the preferred case. However, if lowercase is the preferred case and the user

3.1.1
Changing

case modes

3.1.2
Compatibility

3.1.3
Case

preference

Tektronix, Inc.
3-4 Extensions

3.1.4
Compiled
code

3.2
Errors

types (in-package "LISP") then this will create a new package LISP distinct
from the existing lisp package. There are two solutions to this problem. One is
to set the excl:*ignore-package-name-case* variable to t. In this case, when
in-package looks for and doesn't find a package named LISP, it converts it to
lisp and then finds the package. If in-package is given a name containing
uppercase and lowercase characters, then even if excl:*ignore-package-name
case* is t, it will not convert it to the preferred case. For example, (in
package "Lisp") will fail to match the package named lisp. The second solu
tion to this problem is to always use symbols when referring to packages, i.e.
use (in-package 'lisp). This expression will refer to the lisp package in all
modes except :case-sensifive-upper.

When a file is compiled, the case-mode setting at the beginning of the compila
tion is stored in the fasl file. If the preferred case when a file was compiled is
different than than when it is loaded, the fast loader will do case conversion on
the fly to those symbols whose print names which do not have both lowercase
and uppercase characters.

Tek C0M110N LISP provides a primitive error-handling facility in the form of a
single function excl :errorset. When the C0M110N LISP standard specifies an
error-handling system, this function may be obsoleted. The excl:errorset
function evaluates an expression and devours any errors that might arise; it
regurgitates a Boolean value indicating whether it got an error to feed on or
not.

excl:errorset form [announcep] [Macro]

• The expression form is evaluated, and if no errors occurred then the
first value returned from errorset will be t, and the rest will be the values
returned from the evaluation of form. If an error occurs, then the single
value nil is returned. If announcep is non-nil, then the error message
associated with the error will be printed, otherwise nothing is printed.

Tek COMMON LiSp
Extensions 3-5

The functions require and load (and the equivalent top-level command :Id)
read files. The COMMON LISp standard specifies how the file-name argument
to these functions is processed to yield the true name of the file to be read: the
argument is merged (using merge-pathnames) with the value of *default
pathname-defaults*.1 The value of *default-pathname-defaults* is usually the
pathname of the directory in which LISP is being run. This file-finding
mechanism is inadequate for all but the simplest of applications.

Addressing the need for a more flexible file-finding mechanism, Tek
COMMON LISP incorporates search lists, data structures embodying informa
tion about how the functions load and require will find a file to load into LISp.
Each function uses its own search list.

Search lists permit the user to specify a sequence of pathnames to be
merged with the file-name argument to load or require. We henceforth refer
to this file-name argument as the supplied name. From among those path
names resulting from the sequence of merging operations, the one pathname
that satisfies the given criteria will be loaded. Further, it is possible to specify
side effects, e.g. to compile a file if the source file has been modified or
created more recently than the corresponding compiled (jasl) file. This very
general mechanism provides considerable control over file-loading operations.

A search list is a recursive data structure. It may be a symbol, string, path
name, or a list of search lists. (The car of a list is interpreted specially.) The
elements of a search list are processed sequentially. If the search list is recur
sive, it is processed in depth-first fashion. The goal of processing a search list
is to locate a file to be loaded-in effect a search list 'returns' the pathname of
a file. It is often convenient to refer to search lists as returning a pathname,
especially when discussing recursive search lists.2 It is an error if a file cannot
be located within the given constraints .

• Symbols. If the symbol is bound, then its value is interpreted as a search
list. If the symbol is unbound, it is ignored. If the symbol is nil, the
denoted file is simply the file-name argument to load or require.

• Strings and pathnames. The file denoted by merging the string or path
name with the supplied name. If search-element is a string or pathname
search lis t, the denoted file will be

1 Note that this merging operation effectively fills in the missing components of an incomplete
file-name specification from the corresponding components of *default-pathname-defaults*.
If a file-name argument to require or load already unambiguously identifies a file to be read,
the merging operation is superfluous. In Tek COMMON LiSp, a file name must be an absolute
UNIX pathname and specify a file 'type' to be unambiguous in this context. (See §2.3, Path
names, for further information.)
2 In reality of course, a function is being applied recursively to a search list and it is this func
tion that is returning a pathname.

3.3
Search lists

3.3.1
Structure

Tektronix, Inc.
3-6 Extensions

(merge-pathnames supplied-name search-element)

• Lists. The car of the list determines how the elements of the list are pro
cessed. The car may be a keyword or a search list. If it is a keyword, it
must be one of :first, :newest, :newest-ssk-compile, :newest-do
compile, or :csll. If it is not a keyword, the list is treated as if it began
with the keyword :first.

:first [Keyword]

• A list in which this keyword appears denotes the pathname of the first
existing file found by merging the remaining elements of the list with the
supplied name. The search list 'returns' nil if no such file exists. The
search list is processed sequentially from head to tail. Once an existing
flIe is found, any remaining elements in the search list are not processed.

:newest [Keyword]

• All of the remaining elements in the list in which this keyword appears
are processed. From among all existing flIes denoted by these elements,
the list returns the newest file, or nil if no files exist.

:newest-ssk-compile [Keyword]

• The second (cadr) element of the list containing this keyword must be
a string or pathname. This second element is merged with the supplied
name and the resulting pathname must name a fasl (compiled LISP) flIe.
The remaining (cddr) elements of the list are then all merged with the sup
plied name and the first existing file denoted among them, which should
be a source file, is selected. If the fasl me exists, and if it is newer than
the first source file, the pathname of the fasl file will be returned. If no
source file exists, the fasl file is returned. If no fasl file exists, or if the
fasl file is older than the first source file, the user is asked whether the
source file should be compiled to yield a new fasl file. If the response is
affirmative, the file is compiled and the pathname of the fasl file is
returned. Otherwise, the pathname of the newest source file is returned.
If neither fasl file nor source file exists, nil is returned.

:newest-do-compile [Keyword]

• A list containing this keyword is processed identically to a list contain
ing the :newest-ssk-compile keyword, except that the user is not asked
whether a file should be compiled, the compilation is always performed if
required and the pathname of the resulting fasl file is returned.

O-OI-CJ2(26-1

.86)

Tek COMMON LISP
Extensions 3-7

:call [Keyword]

• The second element of a list containing this keyword must be
fu ncall able. This function is applied, once, to two arguments: the sup
plied name and the remaining elements (cddr) of the list. The function
must return a pathname or a string or nil, and this value is returned by the
search list.

Suppose that you maintain a personal LISP 'library' in a subdirectory of your
login directory, and that you wish to have the load function look for files in
this subdirectory. Let us assume this subdirectory is named lisplib and that
your login name is user. It would be reasonable, and you are a reasonable per
son, to search your library directory after searching your current working direc
tory but before searching the default library directory. Further, you'd like to
automatically compile all files that are in your working or library directories.
The following initialization of system:*load-search-path* in your initializa
tion file will accomplish this. We assume that your home directory pathname
is luserlreasonable.

(setq system:*load-seareh-list*
'(:first

(:newest-do-eompile #.(make-pathname :type "fasl")
#.(make-pathname :type "el"»

(:newest-do-eompile
#.(make-pathname :direetory "/user/reasonable/lisplib"

:type "fasl")
#.(make-pathname :direetory "/user/reasonable/lisplib"

:type "el")
exel ::*library-eode-fasl-pathname*
exel::*library-eode-el-pathname*»

If you start up LIsp in the directory -Iwork and the Tek COMMON LISP
library directory is lusrllocallliblcl, the expression

(load "faa")

will result in the following pathnames being generated.

-/worklfoo.fasl
-/worklfoo.el
-/lisplib/foo.fasl
-/lisplib/foo.el
lusrlloeal/lib/ellfoo.fasl
lusrlloealllib/ellfoo.el

If 7worklfoo.cl exists, 7worklfoofasl will be compiled, if necessary, and
loaded. If -Iworklfoofasl exists but 7worklfoo.cl does not, 7worklfoofasl will

3.3.2
Example

Tektronix, Inc.
a-8 Extensions

3.3.~
Variables

be loaded. If neither of these files exists, the next two files are examined. If
7lispliblfoo.cl exists, 7lispliblfoofasl will be compiled, if necessary, and
loaded. If 7lispliblfoofasl exists but 7lispliblfoo.cl does not, 7lispliblfoofasl
will be loaded. If neither of these files exists, the last two files are examined.
If lusrllocallliblclifoofasl exists, it is loaded. If it does not exist,
lusrllocallliblcllfoo.cl is loaded if it exists. If this last file does not exist, an
error is signalled.

=> If you change the value of *require-seareh-list*, you must include
exe/::*library-eode-fas/-pathname* and exe/::*library-eode-e/-pathname* so
that LISP will be able to find library files such asflavorsfasl andforeignfasl.

The search list for the load function is bound to the symbol system:*/oad
seareh-list*. The default value for this symbol is

(*default-pathname-defaults *
#.(make-pathname :type "fasl")
#.(make-pathname :type "cl")
excl ::*library-code-fasl-pathname*
excl ::*library-code-cl-pathname*)

The load function looks for the file first by its exact name (without merging a
file type, unless *defau/t-pathname-defau/ts* has a non-nil file-type com
ponent) in the directory described by *default-pathname-defaults*. If it can
not find the file there, it looks in the same place for a file with a "fas/" file type,
and· then with a "e/" file type. Then it looks in the directory specified by
exel::*library-eode-fas/-pathname* and finally in the location specified by
exe/::*library-eode-el-pathname*. => The only difference between these two
variables is the file type. If no file is found, then the search list returns nil and
an error is signalled.

The search list for the require function is bound to the symbol
system:*require-seareh-list* and its default value is identical to that of
system:*/oad-seareh-list* just described.

system:*load-search-list* [Variable]

• The search list examined by the load function. The default value of
this search list is

{ *default-pathname-defaults*
#.(make-pathname :type "fasl")
#.(make-pathname :type "cl")
excl::*library-code-fasl-pathname*
excl ::* library-code-cl-path name*

O'()I.Q2(26-

Tek COMMON liSP
Extensions 3-9

system:*require-search-list* [Variable]

• The search list examined by the require function. The default value of
this search list is the same as the value of *Ioad-seareh-Iist*.

exel::* I ibrary-code-fasl-path name* [Variable]

• The value of this symbol is the pathname of the Tek COMMON LISp
library directory's fasl files. This symbol should be included in the search
lists *Ioad-seareh-list* and *require-seareh-Iist*.

excl:: *1 ibrary-code-cl-path name* [Variable]

• The value of this symbol is the pathname of the Tek COMMON LISp
library directory's source files. This symbol should be included in the
search lists */oad-seareh-list* and *require-seareh-/ist*.

Tek COMMON LISp has the ability to 'autoload' files. A number of functions
that are extensions to Standard COMMON LISP and which have a specialized
audience are autoloaded. When the function is first referenced, the file in
which the function is defined is loaded into LISp.3 These autoload files are
stored in a library directory on disk. The pathnames describing the location of
lasl (fast-Ioadable, compiled) files and source files in this library directory are
specified by the values of the variables excl::*library-eode-fasl-pathname* and
excl::*library-eode-el-pathname*. (The double colon indicates the symbol is
not exported from the exel package.)

excl :uncompile function-name [Function]

• If the function function-name was compiled with the compile function
(as opposed to having been in a file that was compiled with compile-file
and subsequently loaded), then the function is 'uncompiled,' i.e. its func
tion definition is replaced by the original interpreted lambda form.

excl:bignump object
excl:fixnump object
excl:ratiop object
excl :single-floatp object

[Function]
[Function]
[Function]
[Function]

• These functions, like similar ones in Common Lisp return t if object is
of the type specified, and nil otherwise.

3 Examples of packages that are autoloaded are Flavors and the foreign-function interface.

3.4
Autoloading

3.5
Miscellaneous

functions
and symbols

Tektronix, Inc.
3-10 Extensions

excl:file-older-p file-1 fi/e-2 [Function]

• If file-1 and file-2 both exist, and if file-1 is older than file-2, this func
tion returns t. OthelWise, it returns nil.

excl:compile-file-if-needed filename &key :output-file :force- [Function}
compile

• The file filename will be compiled if it is younger than the output file
specified by the :output-file keyword argument, or if the value of the
:force-compile keyword argument is t.
o If :output-file is not given, the compiled pathnarne will be constructed
by merging the extension with filename.
o This function, like compile-file, merges the value of *source-file
type* to filename. See §2.4.1, File types, for a complete description.

excl :pp name [Macro]

• The definition of the function or macro name is 'pretty printed' to
standard-output. Note that name is not evaluated.

excl:if* test-form then then-form+ {e/seif else-test-form {then
else-then-form+ I thenret} }* [else else-form+]

[Macro]

• This form consists of a series of clauses introduced by the symbols
then, elseif, else, and thenret. First the predicate test-form is evaluated.
If it is non-nil, the then-forms are evaluated, and the value of the last such
form is returned. If test-form evaluates to nil, any remaining clauses are
processed. If no clauses remain, if* returns nil. When a then ret clause is
encountered no further evaluation takes place, and the value of the most
recently evaluated predicate is returned. When an else if clause is encoun
tered, the predicate else-test-form is evaluated. If it is non-nil, the else
then-forms are evaluated, and the value of the last such form is returned;
otherwise any remaining clauses are processed. If no clauses remain, if*
returns nil. And lastly, when an else clause is encountered, the else-forms
are evaluated, and the value of the last such form is returned.

D-OI-02(2'

1-86)

lisp:intern
lisp:find-symbol
lisp:unintern
lisp:export
lisp:unexport
lisp:import
lisp:shadowing-import
lisp:shadow
lisp:use-package
lisp:unuse-package

Tek COMMON LiSp
Extensions 3-11

[Function}
[Function}
[Function}
[Function}
[Function}
[Function}
[Function}
[Function}
[Function}
[Function}

• All of these standard COMMON LISp functions take a package as an
optional argument. They have been extended to accept a symbol or a
string instead, allowing the user in that way to specify a package with that
name. If no package with the name exists, an error is signaled.

seurce-file-type [Variable}

• This variable is merged with the file-name arguments to the function
compile-file, the equivalent top-level command :cf, and the function
compile-file-if-needed. It is fully described in § 1.6.1.

excl:generate-library-pathnames Iibrary-roet-directory [Function}

• This function changes the pathname of the Tek COMMON LISp library
directory. It updates the values of the symbols excl::*library-pathname*,
excl::*library-code-pathname* , exc!::*library-code-fas!-pathname*,
exc/::*library-code-c1-pathname*, and exc/::*Iibrary-doc-pathname*.
The argument library-reet-directery must be a string. It cannot be a path
name.

1·86)

4 Operating-system interface

4.1 Subprocess functions 4-1
4.2 Environment functions 4-3
4.3 Image functions 4-4

11-86)

4 Operating-system interface

This chapter describes functions in Tek COMMON LISP that interact with the
host operating system. These functions include those providing control and
interaction with subprocesses, determination and change of the current working
directory, and saving the state of a LISP session.

system :os-wait [Function]

• If a process is started by the excl:run-shell-command with :wait
being nil), then the process will remain in the system until either LISP
exits or the process exits and LISp executes system:os-wait to inquire
about the exit status. To prevent the system becoming clogged with
processes, a program that spawns a number of processes with :wait set to
nil must be sure to call system:os-wait for each spawned process. This
function returns two values, the exit status of the process, and the process
identification number. If there are no subprocesses running, then it will
return immediately with the values nil, nil.

excl:run-shell-command command &key :input :output
:error-output :wait :if-input-does
not-exist :if-output-exists :if-error-
output-exists

[Function]

• This function returns either one or three values, depending on the value
of :waif. If :wait is t, the single value returned is the exit status of the
spawned process. If :wait is nil, the three values returned are

stream-a
stream-b
process-id

where stream-a is a stream if either :input or :output is :stream and nil
otherwise; and stream-b is a stream if :error-output is :stream and nil
otherwise. The process-id is the spawned process's process identification
number. Thus the user can communicate with the spawned process,
including running any shell command, easily communicating the output to
LISP. Writing to stream-a will send input to the spawned process if :input
is :stream, and reading from stream-a will read the output of the process
if :output is :stream.

4.1
Subprocess

functions

4-1

Tektronix, Inc.
4-2 Operating-system interface

o The values of :input, :output, and :error-output control what the pro
cess will use as standard input (file descriptor 0), standard output (file
descriptor 1) and standard error (file descriptor 2). The values can be

• nil-inherit standard input, output or error (respectively) from Lisp.
~ This is UNIX standard input and output inherited from the LiSp
process and is unrelated to the LISP variables *standard-input* and
standard-output .

• A pathname (or string)--open the file specifed by the pathname (or
string) and use the stream;

• A stream-use the stream (which must be able to do input/output in
the right direction);

• :stream--create create a stream and return it to the LiSp program.
Since waiting and having a stream open to a process can cause the
process to hang, :wait must be nil; if :wait is t, an error will result.

:error-output has an additional allowed value: :output, which directs
standard error to the same place as standard output. The default value in
all cases is nil.
o :wait may be t or nil. If :wait is t, LiSp will wait for the command to
exit before resuming. If :wait is nil, LiSp will start the process and then
resume without waiting for it to finish. The default for :wait is t.
o The keywords :if-input-does-not-exist, :if-output-exists and :if
error-output-exists all are used for better control when :input, :output
or :error-output are pathnames (or strings), LISP uses open to open a
stream to the file identified by the pathname (or string) and the values of
:if-input-does-not-exist, :if-output-exisfs and :if-error-output-exists
are passed to the open function as the value of the :if-does-not-exist
parameter (for :input) or the :if-exists parameter (for :output or :error
output.) The permissable values for :if-does-not-exist are :error,
:create and nil and for :if-output-exists and :if-error-output-exists are
:error, :0 verwrite , :append, :supersede and nil. The default is :error
in all cases.

Here are examples of excl:run-shell-command. The first runs a simple shell
command (path). The output goes to standard output (in this case the terminal.)

<cl> (run-she11-command "path")
/usr/tech/dm
cox ttyp2 Sep 15 17:19
dm ttyp8 Sep 16 14 :01 (franz)
o
<cl>

The next example reads the output into a stream, which can be manipulated by
LiSp.

D.<Jt-02(26-1

Tek COMMON LISP
Operating-system interface 4-3

<cl> (run-sheIl-command "csh" :input :stream
: output : stream
:wait nil)

*<buffered terminal stream @ *x2c8c39>
nil
12059
<cl> (setq foo *)
*<buffered terminal stream @ *x2c8c39>
<cl> (format foo "path -%")

;; -% is a carriage return
nil
<cl> foo
*<buffered terminal stream @ *x2c8c39>
<cl> (read fool
/usr/tech/dm

excl :shell &opfional command [Function}

• If the command argument is not given, then an interactive shell is
spawned. To get back to LISP, exit from the shelL If the command (a
string) is given, then a shell is spawned and directed to execute that com
mand.

excl:chdir pathname &key simple [Function}

• This function changes the current directory of the process to the direc
tory denoted by pathname (using the name and type information, not just
the directory component of the pathname), and then sets the *defauft
pathname-defaufts* to the directory just changed to. Argument simple
defaults to nil, but if it is set to t, then *defauft-pathname-defaults* is
unchanged (allowing, for example, files to be easily loaded from the origi
nal directory.)

excl :current-directory [Function}

• Return a pathname with the directory component holding the current
directory.

system :command-line-argument n
system:command-line-arguments
system :command-I ine-argument-count

[Function}
[Function}
[Function}

• These functions provide information about the command line that
invoked Tek COMMON LiSp. They return, respectively, a string naming
the nth argument (or the program name, if n is 0); a list of strings naming
the program and the arguments; and a [unum equal to the number of

4.2
Environment

functions

Tektronix, Inc.
4-4 Operating-system interface

4.3
Image
functions

arguments.

excl :username-to-home-directory name [Function]

• Return a pathname with the directory component holding the named
user's home directory. returns nil if the name is not recognized by the sys
tem.

system :getenv string [Function]

• This function returns the value (a string) of an environment variable
(such as "TERM"). If the environment variable is not defined, nil is
returned.

excl:dumplisp &key :name :restart-function :read-init-file [Function]

• Save an image of the currently executing COMMON LISP as an execut
able file. The name of the executable file will be savedcl unless the
:name argument is provided. Unless the :read-init-file argument is given
a value nil, when the saved image is executed, it will will search for and
load the .clinit.cl file (see chapter 5, Top level, for a description of this
file). Normally, the next step is for the top level to print a prompt and
enter the read-eval-print loop. If however the :restart-function argument
is given a non-nil value, then that value will be funcalled. Should the
:restart-function return, the standard read-eval-print loop will be
entered.

excl :exit &optional val [Function]

• Exit LISP and return exit status val to the operating system or shell.

0·01-02126-11

·'6)

5 Top level

5.1 Initialization 5-1
5.2 Interaction 5-1

5.2.1 Case sensitivity of input 5-2
5.2.2 Commands and expressions 5-2

5.3 Getting help 5-2
5.4 Command and expression history 5-3
5.5 Break levels 5-4
5.6 Stack commands 5-6
5.7 Miscellaneous commands 5-9
5.8 The tracer 5-10
5.9 The stepper 5-13
5.10 The inspector 5-14
5.11 Top-level variables 5-19
5.12 Adding new top-level commands 5-21
5.13 A sample initialization file 5-23

5 Top level

The user interacts with COMMON LISP in the top level. The top level facilitates
the user's interactions with LISP, allowing the user access the full power of the
LISp environment In the top level, the user loads, debugs, and runs programs.
The essence of the top level is a read-eval-print loop, which reads user input,
evaluates it, and prints the result. Also in the top level are a set of commands
that allow the user to do useful things, such as reevaluating a previously typed
command, loading files, recovering from errors and debugging.

The debugging tools in Tek COMMON LISP are integrated into the top
level. They consist of a tracer, stepper, and inspector, a set of top-level com
mands that allow dynamic examination and manipulation of LISP data and the
run-time evaluation stack, and mechanisms to single-step through expressions
or function calls.

The Tek COMMON LISP top level is modeless-all top-level commands
are always accessible, regardless of what you are currently doing, be it tracing
a function or simply entering expressions for evaluation. For example, while
stepping through the expressions in a function, the user may want to examine
the function's parameters, abort stepping, display a traceback, ask for help on
any top-level command, or exit COMMON LISP. There is one set of top-level
commands that control all the functions of the top level.

When COMMON LISP is flrst invoked it looks for and loads one or more initiali
zation files. COMMON LISP flrst searches the user's home directory for a me
called loading it if it is there; then COMMON LISP searches the current directory
for a file of the same name, and if found, loads it too. The initialization me in
the current directory overrides defaults set in the users home directory initiali
zation file. Any valid LISp expressions may be present in the initialization file,
and it customizes the users LISP environment, by, for example, loading pro
grams or changing reader syntax.

Top-level commands (prefixed by the top-level command character) can
not be used from within the initialization me, or any other file. They may only
be typed to the top level.

Before reading input from the user, the top level issues a prompt. This prompt
is initially the four character string "<cl> If. The user can change this prompt by
changing the string value of the variable top-Ievel:*prompt*. This string is

5.1
Initialization

5.2
Interaction

5-1

Tektronix, Inc.
5-2 Top level

5.2.1
Case
sensitivity of
input

5.2.2
Commands
and
expressions

5.3
Getting help

given to the format function along with one argument, the current input
expression number. For example, if the prompt string includes the two
character subsequence -d", the top level substitutes these characters with the
decimal number that will, be assigned to the next input expression. See the
documentation for format in Common Lisp for more information.

A top-level command has the form

:name arg 1 arg2 '" argn

The function that implements the command is passed n arguments, each
corresponding to an argument read by the top level. The arguments may be
read either the current case mode (for example :case-sensitive-Iower or
case-insensitive-Iower) or always in a case-sensitive mode. The only prede
fined top-level commands that always read their arguments in a case-sensitive
mode are :Id and :cf, both of which take filenames as arguments. All other
top-level commands read the arguments in the current case mode. When the
user defines a top-level command (using the macro top-Ievel:alias described in
§5.12, Adding new top-level commands, below), the case sensitivity of input
may be specified. Case sensitivity in general is discussed in §3.1, Reader case
modes.

The top level understands two sorts of input: top-level commands and LISP
expressions. A top-level command is identified to COMMON LISP by prefixing
it with a single character (initially the colon character). This can be changed
by binding a different character object to the variable top-Ievel:*command
char*.

A newline typed to the top level is the null command, which is ignored,
extra spaces and tabs are ignored, and typing an end-of-file has a special mean
ing, which is discussed below (see §5.5 and the description of the variable
top-Ievel:*exit-on-eof* in §5.11). In Tek COMMON LISP there is no top-level
command that puts the user in debugging mode. Debugging commands are
always available-the standard function calling sequence allows for the max
imum debugging information on the run-time stack.

Some top-level commands may be abbreviated-refer to the :help com
mand for a list of the commands and valid abbreviations.

:help [command-name] [Command]

• Without an argument, print a summary of the commands, mostly con
sisting of name, abbreviation, and valid arguments; if command-name is
present, then print detailed documentation about this command.

0-01-02(2·1

~-86)

Tek COMMON Lisp
Top level 5-3

As the user types commands and expressions to the top level, they are recorded
on an entity called the history list. The value of top-Ievel:*history* is the
number of user inputs (commands or expressions) to remember, and is the
maximum size the history list can grow. When the history list reaches its max
imum size, the oldest entries are thrown off as new ones are added. Note that
only expressions and commands typed to the top level are added to the history
list, but not input read from programs that are called from the top level.

The following commands print and retrieve expressions from the history
list:

:history [:reverse] [n] [Command]

• Print the last n, defaulting to 15, items on the history list, in reverse
order if :reverse is present.

:[+I-]number [?]
::pattern [? I +]

[Command]
[Command]

• These two forms are the how previously typed expressions are
reevaluated. The first form, :number, reevaluates the numberth typed
expression, as reported by the history command. The second form, with
an optional pattern, searches the history list for input matching pattern and
reevaluates the matching expression as if it were typed to the top level,
otherwise, the last expression typed is reevaluated. If + is given as an
argument to the :: command form, then the search will be in the reverse
sense, from the beginning of the history list forward, instead of from the
end backward. If? is an argument to either type of command, then the
user will be asked to confIrm the reevaluation of the command or expres
sion. For example:

<cl> (setq top-1eve1:*prompt* "<c1 -d> ")

"<cl - d> "
<cl 3> :hi.s

1 (dribble "faa")
2 (setq top-level:*prompt* "<cl -d> ")
3 :his
<cl 4> (setq a 10)

10
<cl 5> (set 'b 'setq)

setq
<cl 6> :: setq
(set ' b ' setq)

5.4
Command

and
expression

history

Tektronix, Inc.
5-4 Top level

5.5
Break levels

setq
<cl 7> :: (setq
(setq a 10)

10
<cl 8> :6
(set 'b 'setq)

setq
<cl 9> :hi.s

1 (dribble "foo")
2 (setq top-level:*prompt*
3 :his
4 (setq a 10)
5 (set 'b ' setq)
6 (set 'b ' setq)
7 (setq a 10)
8 (set 'b ' setq)
9 :his
<cl 10>

"<cl - d> ")

The main, or topmost, read-eval-print loop is labeled break level 0, and this is
the level the user first enters. Each time an error occurs, a new read-eval-print
loop, and thus a new break level, is entered. A new break level can only be
entered in one of the following ways: (1) through the functions error, cerror,
and break; (2) through the tracer, stepper, and inspector; (3) by external sig
nals, such as a keyboard interrupt; or (4) due to errors while reading, evaluat
ing, or printing user input. Cases (2) through (4) are really special cases of (1):
all entrances to new read-eval-print loops are through the functions error, cer
ror and break.

When a new break level is entered a message is printed, indicating the
cause, and when break levels are exited, a reminder of the previous cause is
printed. A break level is exited by using one of the :pop, :prt, :continue, or
:reset commands. The function of the :pop command is also achieved by typ
ing an end-of-file character (usually AD on UNIX systems).

Here are the commands to manipulate break levels:

:reset [Command]

• This will reset the state of the top level, and return the user to break
level O. If errors have occurred, then all error conditions will be cleared,
and a throw to the topmost level will be done.

0-01-02(2.1

.86)

:continue

Tek COMMON LiSp
Top level 5-5

[Command]

• If the current break level is continuable, then continue computation
with side effects specified by the :error command.

:pop [n] [Command]

• Pop up to the previous break level, or to the n th previous one, if n is
given.
o ~ An end-of-file character typed in a break loop will have the same
effect as :pop 1.

:prt [Command]

• Return to the previous break level, and retry the command that caused
the error. The previous user input is printed before reevaluation as a rem
inder.

:error [Command]

• Print the cause of entering the current break level.

<cl> (setq foo bad)
Error: Attempt to take the value of the unbound symbol bad.
[1] <cl> (/ 1 0)
Error: An attempt was made to divide by zero.
[2] <cl> :pop
Previous error: Attempt to take the value of the unbound symbol bad.
[1] <cl> (setq bad :not-so-bad)

:not-so-bad
[1] <cl> :prt

<cl> (setq foo bad)

:not-so-bad
<cl> foo

:not-so-bad
<cl> (cerror "just conti.nue" "error!")

Continuable Error: error!
If continued with : continue, just continue
[lc] <cl> :cont

nil

Tektronix, Inc.
5-6 Top level

5.6
Stack
commands

The run-time stack is the entity where arguments to LISP functions are stored.
When a function is called, the calling function evaluates and pushes the argu
ments to the called function onto the stack. The called function then references
the stack when accessing its arguments. A stack frame is the area on the stack
where the arguments to one function call reside. If 100 calls bar, which in
turns calls ya1, then three stack frames are active when yaf is entered. The
frame for the most recently called function is on the top of the stack. The fol
lowing commands that access and display the stack operate on a single stack
frame. After a frame is examined, it normally becomes the current stack
frame, so further reference to the stack will, by default, operate on the previ
ously selected stack frame. When a break level is entered, the current frame
pointer starts at the top of the stack.

:zoom arguments* [Command]

• This command prints the evaluation stack. It uses the current stack
frame as the center of attention, and prints some number of frames on
either side of the current frame. The value of the variable top
level:*zoom-display* is the total number of frames to display, and an
equal number of frames are printed above and below the current stack
frame, if possible. The arguments to the :zoom command control the type
and quantity of the displayed stack. After a :zoom, the special variable *
contains the LISP expression representing the current frame.
D Only one of the following three argument options may be specified.
(The following output control options stick, meaning once you ~se one,
the next :zoom will use the same output style.)

: brief [Keyword]

o Print the function names of stack frames only.

: moderate [Keyword]

o Print function names, and actual parameters (the values passed on
the stack). The output of this form is LISP-like in appearance.

: verbose [Keyword]

o Print function names, formal (the names of the parameters in the
function definition) and actual parameters.

o One of the following two options may also be specified:

C'(]l.()2{2·1

: top

Tek COMMON LiSp
Top level 5-7

[Keyword]

o Move the current stack frame pointer to the top of the stack before
printing. Newer stack frames are toward the top of the stack.

: bottom [Keyword]

n

:up [n)
:dn [n)

o Move the current stack frame pointer to the bottom of the stack
before printing. Older stack frames are toward the bottom of the
stack.

[Option]

o Print n frames, where n is an integer, instead of using the value of
top-Ievel:*zoom-display*, initially 8.

[Command]
[Command]

• Move up or down the stack by n frames, or 1 if no argument is sup
plied. The special variable top-Ievel:*auto-zoom*, which defaults to t,
controls whether a :zoom is done after moving the stack pointer.

:find func options* [Command]

• Find the frame where function func is being called. The default direc
tion to search the stack is down, or towards older stack frames. The
current frame pointer is set to point to the matching stack frame, and the
LISP expression corresponding to the match is bound to the variable *.
The options to :find are:

:up
:dn

[Keyword]
[Keyword]

o Find func going up (toward newer stack frames) or down (toward
older stack frames) the stack.

:skip n [Keyword]

:current

o Skip n matching occurrences of func before setting the current
frame pointer.

[Command]

• Print the current stack frame, as a LISP expression.

Tektronix, Inc.
5-8 Top level

:Iocal name [Command]

• This prints the value of the local (or lexical) variable name. When a
variable is bound in a function by using let, for example, the scope of this
variable is visible only inside this function. For this reason, the :Iocal
command is needed to examine the environments of functions on the
stack.

The following special variables are used by the :zoom command.

top-Ievel:*zoom-display* [Variable}

• The value of this variable is the number of stack frames displayed by
the :zoom command.

top-Ievel:*zoom-print-Ievel*
top-Ievel:*zoom-print-Iength*

[Variable]
[Variable]

• During the printing of stack frames, *print-Ievel* and *print-Iength *
are bound to these, respectively. See page 372 of Common Lisp for an
explanation of *print-Ievel* and *print-Iength*.

<cl> (defun func (x) (car x»

func
<cl> (func 10)
Error: Attempt to take the car of 10 which is not a cons.
[1] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop nil ...)
(error)
(car 10)
(block func ...)
(funcall (lambda * ...) ...)
(eval (func 10»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

[1] <cl> :firtd block
Evaluation stack:

(lisp::read-eval-print-loop nil ...)
(error)
(car 10)

->(block func ...)
(funcall (lambda * ...) ...)
(eval (func 10»
(lisp::read-eval-print-loop nil ...)

D-Ol-02(2-12

2-86)

Tek COMMON LISP
Top level 5-9

(start-reborn-lisp)

[1] <cl> *

(block func (car x»
[1] <cl> :local x
10
[1] <cl> :error
current error: Attempt to take the car of 10 which is not a cons.
[1] <cl> :current
(block func (car x»
[1] <cl> :pop
<cl> (comp~le 'func)

#<Function func @ #xl148c1>
<cl> (func 10)
Error: Attempt to take the car of 10 which is not a cons.
;; notice that there is less information on the stack
;; when the function 'func' is compiled ...
[1] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop nil ...)
(error)
(func 10)
(eval (func 10»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

[1] <cl>

:aliases [Command] 5.7
• This command prints all user-defined aliases in tabular fonnat, with the Miscellaneous
documentation string, if there is one. commands
OSee §5.12, Adding new top-level commands, below for a further
discussion of aliases.

:cf file* [Command]

• The one or more arguments are interpreted as file names, which should
represent the names of Tek COMMON LISP source files. The list of source
files are compiled, resulting in files with the same name, but with the file
type of "fas/". For example, :cf foo would compile foo.cl into foofasl,
which is acceptable to the function load. The files are compiled in the
order they appear in the argument list. For convenience, as the previous
example illustrates, the file names may be given without the file type,

Tektronix, Inc.
5-10 Top level

5.8
The tracer

which then default to "c/". The user may change the default source-file
type. This is discussed in §2.4.1, File types. Compiling fIles and func
tions is discussed in § 1.6, How to compile functions. Pathnames are
discussed in §2.3 of this User Guide and in Chapter 23 of Common Lisp.
o The arguments to this command are read in case-sensitive mode.
o If no arguments are given to :cf, then the arguments to the last call to
:cf are used again.

:exit [val] [Command]

• Exit LISP and return exit status val to the operating system or shell.

:Id file* [Command]

• The arguments to :Id are loaded into LISP by the load function.
o The arguments to this command are read in case-sensitive mode.
o With no arguments, the last fIles given to the :Id command are loaded
again.

The tracer provides a way to track or trace when functions are called. For
example, when tracing a function, a message is printed upon entering and exit
ing the function.

The tracer is invoked at the top level using :trace and turned off using
:untrace. The tracer can also be invoked and exited using the functions trace
and untrace, which have the same argument syntax as their top-level com
mand counterparts (see the example below).

The output from trace is designed to be readable-a function being traced
may be called many times, and the entrance and exit from each instance should
be obvious, by the numbers at the beginning of the lines and the indentation of
the lines printed by the traced function. The trace function and all the special
variables are exported from excl package (see Chapter 9).

:trace function-or-option-list* [Command]

• With no arguments, all the functions currently being traced are printed,
otherwise the arguments to :trace are function names (symbols) or option
lists. An option list starts with a function name, and the rest of the list are
options for tracing that particular function, and do not affect the tracing of
any other function. The options come in pairs, the fIrst element of the pair
being the option name (Le., a keyword), and the second part being the
option value. Missing options default to nil.
o The following are valid options to :trace:

Te'k COMMON LIsp
Top level 5-11

:condition expr

• Trace this function if expr evaluates to non-nil.

: break-before val
: break-after val
: break-all val

[Keyword]

[Keyword]
[Keyword]
[Keyword]

• The expression val is evaluated just before entering a function,
just after exiting a function, and at both times, respectively. If val is
t, then enter a new break level is entered. Otherwise, execution con
tinues.

:inside tunc [Keyword]

• Trace this function if we are currently inside the evaluation of the
function tunc. func may also be a list of functions. For example,
(trace (deeper :inside deep)) would trace the function deeper only
when called from within a call to deep.

:print-before expr
: print-after expr
: print-all expr

[Keyword]
[Keyword]
[Keyword]

• expr should either be a single object or a list of object which are
evaluated, and the results printed before entering or after leaving the
function, or both, in the case of :print-all.

:untrace [function-list] [Command]

• With no arguments, stop tracing all functions currently being traced,
otherwise the arguments are assumed to be the names of currently traced
functions which are to be untraced. :untrace also has a function counter
part, called untrace.

The following are special variables understood by the tracer.

excl: *trace-output* [Variable]

• The stream where :trace sends output, which is normally *termina/
io*.

excl:*trace-print-Ievel*
excl:*trace-print-Iength*

[Variable]
[Variable]

• During the printing of trace forms, *print-Ievel* and *print-Iength* are
bound to these, respectively. See page 372 of Common Lisp for an expla
nation of *print-Ievel* and *print-Iength*.

I

Tektronix, Inc.
5-12 Top level

<cl> (defun fact (n)
(cond «= n 1) 1)

(t (* n (fact (1- n»»»

fact
<cl> (fact 5)

120
<cl> :tra fact
fact
<cl> (fact 5)

0: (fact 5)
1: (fact 4)

2: (fact 3)
3: (fact 2)

4: (fact 1)
4: returned 1

3: returned 2
2: returned 6

1: returned 24
0: returned 120

120
<cl> (defun deep (x) (deeper (list x»)

deep
<cl> (defun deeper (x) (format t "-'-s-%" x»

deeper
<cl> (deep 10)

(10)

nil
<cl> :tr (deeper :inside deep)
deeper
<cl> (deeper 10)

10

nil
<cl> (deep 10)

0: (deeper (10))
(10)

0: returned nil
nil
<cl> :tr (deeper :break-before t)

0-01.02(2-1

.·861

. Tek COMMON Lisp
Top level 5-13

deeper
<cl> (deep 10)

0: (deeper (10»
Break: trace entry
[lc] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop t ...)
(break "trace entry")
(lisp::trace-call (lambda * ...) ...)
(let (* *) ...)

(funcall (lambda * ...) ...)
(block deep ...)
(funcall (lambda * ...) ...)
(eval (deep 10»

[lc] <cl> :cont

(10)

0: returned nil
nil
<cl>

The stepper allows the user to watch and control the evaluation of LISP expres
sions, either inside certain functions or over certain expressions. When step
ping is turned on, evaluation of all expressions is done in single-step mode
after evaluating one foon, a step read-eval-print loop is entered, from which the
user may continue or abort.

As with the :trace command, :step is a top-level command and step is a
function.

With no arguments or an argument of nil, step turns off stepping. With
an argument of t, stepping is turned on globally, otherwise the arguments are
checked to be functions, and stepping is done only when inside one of the func
tions given to step.

Once stepping is turned on, the top level recognizes three more com
mands: :scont, :sover, and carriage return (which is a synonym for :scont 1).
Also, the top-level prompt for step read-eval-print loops is prefixed with [step],
as a reminder that the above step commands are available.

:step [t I nil I function-list] [Command]

• With no arguments or an argument of nil, stepping is disabled, with an
argument of t, stepping is enabled globally, otherwise the arguments are
assumed to be a list of functions wherein stepping should occur. Any

5.9
The stepper

Tektronix, Inc.
5-14 Top level

5.10
The
inspector

non-functions supplied to :step will be flagged as invalid arguments, and
an error will not occur.

:scont [n] [Command}

• Continue stepping, for n expressions, and evaluate the last expression
printed by the stepper. After evaluating the last printed expression, the
next expression to be evaluated is printed. If there are no more expres
sions stepping is turned off. When stepping is enabled, a carriage return
(or new-line) character is equivalent to :scont 1, allowing the user to step
quickly with minimum keystrokes.

:sover [Command}

• Evaluate the current expression in nonnal, non-stepping mode.

The following special variables, all exported from exc/ package, control output
from the stepper:

step-print-Ievel
*step-print -length *

[Variable}
[Variable}

• During the printing of forms to be evaluated, *print-Ievel* and *print
length* are bound to the value of these variables, respectively. See page
372 of Common Lisp for an explanation of *print-Ievel* and *print
length*.

The inspector allows the user to look at the internal structure of Tek COMMON
LISP objects. The commands that control inspecting objects are part of the Tek
COMMON LISp top level command structure. The :inspect command simply
invokes a recursive top-level command interpreter. Thus all the normal Tek
COMMON LISp commands are available while inspecting objects. The inspect
commands are all variations of the top-level command :inspect which may be
abbreviated :i. The inspector maintains a stack of objects whose components
are being inspected. The top object on that stack is called the current object,
and can be displayed at any time. When the current object has components,
these are displayed with prefixes of the form index name where index is a
numeric index associated with the component and name is a symbolic name for
the component. The user can select a component of the current object by name
or index, and add it to the stack, making the selected component the new
current object. The user can also pop the current object off the stack, making
its parent object the current object again. In this way the user can explore the
structure of compond objects to any depth. All the inspect commands except
:inspect q described below, return the current object so that it gets bound to *
(see above for a description of *).

O'()1-02(2.12

inspect object

Tek COMMON LIsp
Top level 5-15

[Function]

• Perfonn special bindings of the inspector's state variables, including
the inspect ,stack. Then initialize the (new) inspect stack to contain only
object display object's structure, and then invoke a top-level read-eval
print loop. The read-eval-print loop is tenninated when the user enters the
command :inspect q and inspect then returns object.

:inspect? [Command]

• This command prints a message describing the inspector commands.

:inspect [Command]

• When entered with no arguments, :inspect redisplays the structure of
the current object.

:inspect * [Command]

• This command initializes the inspect stack to hold only the value of *,
that is, the fIrst result from the last top-level evaluation. This object
becomes the inspector's current object and its structure is displayed.
(inspect *) is like an :inspect * invoked within a recursive read-eval
print loop that sets up its own inspect stack.

:inspect index [Command]

• This command, where index is an integer, selects the indexth com
ponent of the current object. The selection is made according to the com
ponent indexes displayed by inspect, which may not be the same as the
element numbers used by other Tek COMMON LISP functions. Some
object components cannot be selected. Elements of a specialized vector,
for example, are displayed as components but cannot be made the current
object. Attempting to select such a component will elicit an explanatory
message but will not signal an error.

:inspect name [Command]

• This command, where name is a symbol that is not one of the special
inspector command symbols (such as *, q, and set), selects the named
component of the current object. The component names are those
displayed by inspect They are compared using string-equal, so case and
package are not signifIcant If a component's name is shadowed by
another component's name or by one of the inspector command symbols,
then the numeric index can be used to select the shadowed component.
The inspector considers the tail of a dotted list to be a component with no
numeric index but with the component name tail. The tail of a proper list
can also be designated by name, even though no tail component is

Tektronix, Inc.
5-16 Top level

displayed for such an object. In addition, the component names car, cdr,
caar, cadr, cdar, cddr, caaar, ... , cdddr, caaaar, ... , cddddr, are recognized
for selecting the named components of list structures.
o As with selection by index, attempting to select an unselectable com
ponent by name results in an explanation but no error.

:inspect - [Command]

• Remove the current object from the inspect stack and display the new
current object. The new current object will be the parent of the old
current object. If the inspect stack is empty or has only one entry, then the
current object is not changed and an explanatory message is displayed.

:inspect q [Command]

• This command clears the inspect stack, so that there is no current
object. If there is an active invocation of inspect, then the inner-most
invocation returns to its caller. (This is important if you are looking at a
large object which you want to be garbage collected. No object on the
inspect stack will be garbage collected.)

:inspect set index form [Command]

• The form is evaluated for a single value. If the current object has a
settable component indexed by index, then the value of form is stored as
that component. If there is no current object, or it has no settable com
ponent indexed by index, or if the type of that component does not admit
assignment of form's value, then an explanatory message is displayed and
the component is not changed. Many components that are not selectable
are settable. Elements of specialized vectors, for example, are settable.

:inspect set name form [Command]

• This sets a named component of the current object. It is identical to the
indexed :inspect command except for the method of selection. See
:inspect name.

:inspect print max [Command]

• The inspector limits the number of components that it displays. The
maximum number defaults to 12, but can be changed by using the
:inspect print command. max must be a positive integer.

:inspect skip n [Command]

• The inspector redisplays the current object, omitting the fIrst n com
ponents. This allows the display of any section of a large structure or
array without filling the screen with unwanted information.

O'()I.02(2·12·

2·86)

:inspect tree

Tek COMMON Lisp
Top level 5-17

[Command]

• This command displays the elements of the inspect stack so the user
can see the geneology of the current object relative to the object specified
by :inspect * or (inspect x).

<cl> (1nspect '#(car x 12 # #*1000 (1/2 0.5 0.5dO»)
A simple T vector (6) @ #x2c5749

0-> The symbol CAR
1-> The symbol X
2-> The fixnum 12. [#x00000060]
3-> The character # [#x00000308]
4-> A simple-bit-vector (4) #*1000
5-> A proper list with 3 elements

[1] <cl> :1 0
The symbol CAR @ #xlb4622

which is an EXTERNAL symbol in the LISP package
o value-> .. unbound ..
1 package-> The LISP package
2 function-> #<Function CAR @ #x229c29>
3 name-> A simple-string (3) "CAR"
4 plist-> A proper list with 6 elements
5 hash-> Bit field: #x013c
6 flags-> Bit field: #xOOOO

[1] <cl> :1 4
A proper list @ #xlb463c with 6 elements

0-> The symbol COMPILER:: .ARGS.
1-> A dotted list with 1 cells
2-> The symbol M68K::.S-BIFS.
3-> The symbol M68K::S-CAR
4-> The symbol EXCL: :SETF-INVERSE
5-> The symbol EXCL:: .INV-CAR

[1] <cl> :1 tree
In first recursive call to inspect.
The current object is:
A proper list with 6 elements, which is the
plist component of
The symbol CAR, which is component number 0 of
A simple T vector (6), which was
selected by "(inspect ...)"
[1] <cl> :1 -
The symbol CAR @ #xlb4622

which is an EXTERNAL symbol in the LISP package
o value-> .. unbound ..
1 package-> The LISP package
2 function-> #<Function CAR @ #x229c29>
3 name-> A simple-string (3) "CAR"
4 plist-> A proper list with 6 elements
5 hash-> Bit field: #x013c

Tektronix, Inc.
5-18 Top level

6 flags-> Bit field: #xOOOO
[1] <cl> ::i. 5
Cannot select the element indexed by 5
[1] <cl> ::i. -
A simple T vector (6) @ #x2c5749

0-> The symbol CAR
1-> The symbol X
2-> The fixnum 12. [#x00000060]
3-> The character # [#x00000308]
4-> A simple-bit-vector (4) #*1000
5-> A proper list with 3 elements

[1] <cl> ::i. 1
The symbol X @ #x2cS3da

which is an INTERNAL symbol in the USER package
o value-> .. unbound ..
1 package-> The USER package
2 function-> #<Function NIL @ #x1a29a9>
3 name-> A simple-string (1) "X"
4 plist-> The symbol NIL
5 hash-> Bit field: #x0078
6 flags-> Bit field: #xOOOO

[1] <cl> ::i. set value 0
The symbol X @ #x2c53da

which is an INTERNAL symbol in the USER package
o value-> The fixnum O. [#xOOOOOOOO]
1 package-> The USER package
2 function-> #<Function NIL @ #x1a29a9>
3 name-> A simple-string (1) "X"
4 plist-> The symbol NIL
5 hash-> Bit field: #x0078
6 flags-> Bit field: #xOOOO

[1] <cl> ::i. -
A simple T vector (6) @ #x2cS749

0-> The symbol CAR
1-> The symbol X
2-> The fixnum 12. [#x00000060]
3-> The character # [#x00000308]
4-> A simple-bit-vector (4) #*1000
5-> A proper list with 3 elements

[1] <cl> ::i. 5
A proper list @ #x2c564c with 3 elements

0-> A RATIO object 1/2
1-> A single-float 0.5 [#x3fOOOOOO]
2-> A double-float 0.5dO [#x3feOOOOO 00000000]

[1] <cl> ::i. set ta:i.l (cdr *)
A closed list @ #x2cS64c with I-element header
and 2-element cycle

0-> A RATIO object 1/2
1-> A single-float 0.5 [#x3fOOOOOO]

0-01-02(2-

86)

Tek COMMON LIsp
Top level 5-19

2-> A double-float O.SdO [*x3feOOOOO 00000000]
3 == 1

[1] <cl> :1. tai.~
Object has no selectable component named TAIL
[1] <cl> :1. q
* (CAR X 12 *\a **1000 (1/2 0.5 O.SdO 0.5 O.SdO 0.5 O.SdO 0.5 O.SdO 0.5
<cl>

The following variables are maintained or used by the top level.

top-Ievel:*auto-zoom* [Variable]

• If nil, then the top-level commands :dn and :up will not cause the stack
to be printed. The default is t, which causes a :zoom, printing the frames,
to happen after moving to the new frame.

top-Ievel:*command-char* [Variable]

• The character recognized as the prefix for top-level commands. The
value of this variable must be a character object, and is initially the LISP
character object u#\:.

top-Ievel:*history* [Variable]

• The number of commands which are remembered by the history
mechanism, defaulting to 15.

top-Ievel:*prompt* [Variable]

• The value of this variable is printed by the top-level as a prompt for
user input; it must be a LISP string. For break levels greater than 0, this
prompt will be augmented with the break level number. In continuable
break levels a 'c' will be present next to the break level indicator.

top-Ievel:*exit-on-eof* [Variable]

• If bound to a non-nil value and the current break level is 0, then typing
an end-of-file to the top-level will exit LISP, without asking for confirma
tion. The method of exit is taken via the function exit. The default value
is nil.

top-level:*ld-options* [Variable]

• Since the :Id command now simply calls the COMM:ON LISP function
load, passing all the arguments to :Id unchanged to load, this variable is
now obsolete and has no effect. Options for load are optained by the ,tf B
search-list facility described in §3.3.

5.11
Top-level
variables

Tektronix, Inc.
5-20 Top level

top-level : *fHe-ig no re-case* [Variable]

• Since in this release, by default, :Id and :cf read arguments in a case
sensitive fashion, this variable, which controlled case-sensitivity of those
is now obsolete. It has no effect in this release. Users can control the case
sensitivity of top-level commands when they are defined using the top
level:alias command described in §S.12.

top-Ievel:*read*
top-Ievel:*eval*
top-level :*print*

[Variable]
[Variable]
[Variable]

• The values of these variables, if bound to valid functions (acceptable to
the function funcall), will be funcalled to read user input, evaluate the
result the top-Ievel:*read*, and print the result of top-Ievel:*eval*,
respectively. Great care should be taken before setting one of these vari
ables, since binding these to something other than a function will result in
a recursive error (since after an error, another read-eval-print loop is
called).

top-Ievel:*print-Ievel*
top-Ievel:*print-Iength*

[Variable]
[Variable]

• lisp:*print-Ievel* and Iisp:*print-Iength* are bound to these, respec
tively, during the application of the top-Ievel:*print* function on the result
of the top-Ievel:*eval* function. See page 372 of Common Lisp for an
explanation of lisp:*print-Ievel* and lisp:*print-Iength*.

top-Ievel:*reset-hook* [Variable]

• If non-nil, and bound to a valid function (something acceptable to fun
call), then this function is called after executing the :reset command.

Note: The following variables are required by Common Lisp.

+
++
+++

[Variable]
[Variable]
[Variable]

• While an expression or form is being evaluated by top-Ievel:*eval*,
the variable + is bound to the previous form read by top-Ievel:*read*.
The variable ++ holds the previous value of +, or the form read two reads
ago, and +++ holds the previous value of ++.

0-01-02(2-

!-86}

Tek COMMON LISp
Top level 5-21

*
**

I
II
III

[Variable]

• While a form is being evaluated by top-Ievel:*eval*, the variable - is
bound to the form itself, or the value which will be given to + after top
level:*eval* returns.

[Variable]
[Variable]
[Variable]

• While a form is being evaluated by top-Ievel:*eval*, the variable * is
bound to the last value returned from top-Ievel:*eval*, or the value pro
duced by evaluating the form in +. If more than one value is returned, all
but the first are discarded, and if zero values were returned, then * is
bound to nil. The variable ** holds the previous value of *, or the result
of the second previous top-Ievel:*eval*, and *** holds the previous
value of **.
o If the evaluation of + produces an error, then *, **, and *** are left
untouched; they are updated before top-Ievel:*print* is called.

[Variable]
[Variable]
[Variable]

• While a form is being evaluated by top-Ievel:*eval*, the variable I is
bound to the list of results from the last top-Ievel:*eval*, or the list of all
values produced by evaluating the form in +. The value of * should be
the same as the car of the value of I. The variable II holds the previous
value of I, or the list of results from second previous top-Ievel:*eval*, and
III holds the previous value of II. Therefore, the car of II should be the
same as **, and the car of III the same as ***.
o If the evaluation of + produces an error, then I, II, and III are left
untouched; they are updated before top-Ievel:*print* is called.

The top-level command set is extensible-the user may add new commands to
the list of known commands. This allows the user to further customize the
top-level environment.

A top-level alias is a user defined top-level command, which is invoked
the same as built-in top-level commands. The difference between built-in com
mands and aliases, is aliases can be removed, one at a time or all at once.

top-Ievel:alias {name I (name [option ...])} arglist body [Macro]

• This is how top-level aliases are defined. The form of top-Ievel:alias
is similar to defun, and body can be anything acceptable as the body of a
lambda expression. name is the name of the top-level alias, which must

5.12
Adding new

top-level
commands

Tektronix, Inc.
5-22 Top level

be a string. If the (name [option ... J) form is used, the options are (either
or both may be specified) :case-sensitive and abbr-index. If the :case
sensitive option is chosen the arguments will be read in case-sensitive
mode without regard to the current reader mode. This option is appropri
ate when the argument is a filename. Case-sensitivity is fully describe in
§3.1. abbr-index must be an integer which is the index into the string
name which defines the shortest possible abbreviation. Note that string
indexing is zero-based. For example, ("load" 1) would specify that 10 and
loa are valid abbreviations for load, while ("load" 0) would specify I as
well. arglist is the list of formal parameters to the alias function, and has
the same form as the formal list to a lambda expression.

top-Ievel:remove-alias &rest names [Function]

• This will remove the alias commands known by names, or all user
defined aliases if the argument is :all. Built-in top-level commands may
not be removed with this function. If abbreviations were specified for
names, then all abbreviations are also removed from the command set.

top-Ievel:do-command name &rest arguments [Function]

• This function allows the execution of top-level commands from pro
grams. It hides the method of dispatch for top-level commands, and
should be the sole means of accessing top-level commands outside typing
them to the top-level read-eval-print loop.
D name must be a string and the name of a top-level command, otherwise
an error occurs.

<cl> (top-level:alias "ff" ('rest args)
"my alias for the :find command"
(apply #'top-level:do-command "find" argos»

<cl> (defun test (x) (break "testing ... "»
test
<cl> (test nil)

Break: testing ...
[Ic] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop t ...)
(break "testing ... ")
(block test ...)
(funcall (lambda * ...) ...)
(eval (test nil»
(lisp::read-eval-print-loop nil ...)

D-<ll-02C2-1:

Tek COMMON liSp
Top level 5-23

(start-reborn-lisp)

[lc] <cl> :ff b10ck
Evaluation stack:

(lisp::read-eval-print-loop t ...)
(break "testing ... ")

->(block test ...)
(funcall (lambda # ...) ...)
(eval (test nil»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

As described earlier in this chapter, if a file exists in the user's home directory
(or in his working directory), it is loaded when LISP starts up. This provides a
method for customizing your LISP environment The sample initialization file
below sets several top-level variables, defines AX as an exit character, and
defines a new top-level command :shell (which can be abbreviated down to
:sh) that executes a shell command.

I I

II common lisp initialization file

(format *terminal-io* "-&; Loading home init file.")

(setq
top-level:*prompt* "<cl -d> "
top-level:*history* 50
top-level:*print-level* 20
top-level:*print-length* 20
top-level:*zoom-print-level* 3
top-level:*zoom-print-length* 3
top-level:*zoom-display* 7
top-level:*exit-on-eof* t
top-level:*command-char* #\?
top-level:*auto-zoom* nil)

;; exit when a control-X is typed to the top level
(defun exit-char-mac (stream char) (exit 0»
;; the ~X in the next expression is the single
;; character control-X
(set-macro-character #\~X #'exit-char-mac)

(top-level:alias ("shell" 1 :case-sensitive) (&rest args)

5.13
A sample

initial ization
file

Tektronix, Inc.
5-24 Top level

it':sh args' will execute the shell command in 'args'"
(let «cmd

(apply t'concatenate 'simple-string
(mapcar t' (lambda (x)

(concatenate 'simple-string
(write-to-string x) it it»

args))))
(prinl (shell cmd»»

O.QI.Q2(2

6 Flavors

The object-oriented programming style used in the Smalltalk and Actor
families of languages is available in Tek COMMON LISp. Its purpose is to per
fonn generic operations on objects. Part of its implementation is simply a con
vention in procedure-calling style; part is a powerful language feature, called
Flavors, for defining abstract objects. This chapter explains the principles of
object-oriented programming and message passing, and the use of Flavors in
implementing these in Tek CONIMON LISp. It assumes no prior knowledge of
any other languages.

The implementation of Flavors distributed by Franz Incorporated with Tek
CONIMON LISp is new, proprietary code which employs special interpreter and
compiler hooks for very efficient execution. The code shares some com
ponents with the Franz Inc. native implementation of Flavors distributed with
FRANz LISp. Except where the underlying LISp dialects require fundamental
differences (for example, in variable scoping) the two Flavors systems are
functionally identical. The Tek CONIMON LISp implementation of Flavors is
also quite similar to that in Symbolics LISP, l although a few details and exten
sions differ. Most code should port easily between the two. Unless otherwise
indicated, all the symbols defined in this chapter are exported from the flavors
package. Users must either use the qualifier flavors: or execute

(use-package 'flavors)

before using flavors code.
The text of this chapter is a heavily-edited version of Chapter 20 from the

MIT LISP Machine Manual, as made available through MIT's Project Athena.
It has been subsequently edited by the staff of Franz Inc. for inclusion in the
Tek CONIMON LISP manual.

When writing a program, it is often convenient to model what the program
does in terms of objects, conceptual entities that can be likened to real-world
things. Choosing what objects to provide in a program is very important to the
proper organization of the program. In an object-oriented design, specifying
what objects exist is the first task in designing the system. In a text editor, the
objects might be pieces of text, pointers into text, and display windows. In an
electrical design system, the objects might be resistors, capacitors, transistors,

1 That is, 'Genera 6' FLavors. The newest Symbolics 'Genera 7' Flavors differs substantially.

6.1
Objects

6-1

Tektronix, Inc.
6-2 Flavors

wires, and display windows. After specifying what objects there are, the next
task of the design is to figure out what operations can be perfonned on each
object. In the text editor example, operations on pieces of text might include
inserting text and deleting text; operations on pointers into text might include
moving forward and backward; and operations on display windows might
include redisplaying the window and changing which piece of text the window
is associated with.

In this model, we think of the program as being built around a set of
objects, each of which has a set of operations that can be perfonned on it.
More rigorously, the program defines several types of object (the editor above
has three types), and it can create many instances of each type (that is, there
can be many pieces of text, many pointers into text, and many windows). The
program defines a set of types of object and, for each type, a set of operations
that can be perfonned on any object of the type.

The new type abstractions may exist only in the programmer's mind. The
mapping into a concrete representation may be done without the aid of any pro
gramming features. For example, it is possible to think of an atom's property
list as an implementation of an abstract data type on which certain operations
are defined, implemented in tenns of the LIsp get function. There are other
property lists (association lists of pairs) which are, however, not stored in the
global structure of an atom, such as are implemented in tenns of the COMMON
LISP getf function. Such a property list is just a list with an even number of
items. This type can be instantiated with any function that creates a list; for
example, the fonn (list 'a 23) creates a new property list with a single key/value
pair. The fact that property lists are really implemented as lists, indistinguish
able from any other lists, does not invalidate this point of view. However, such
conceptual data types cannot be distinguished automatically by the system; one
cannot ask: is this object a disembodied property list, as opposed to an ordi
nary list?

Use of defstruct is another mechanism for creating new data types. This
is reviewed in the next section, where a data type for Ship is used as an exam
ple. defstruct automatically defines some operations on the objects: the opera
tions to access its elements. We could define other functions that did useful
computation with ships, such as computing their speed, angle of travel,
momentum, or velocity, stopping them, moving them elsewhere, and so on.

In both cases, we represent our conceptual object by one LISP object. The
LISP object we use for the representation has structure and refers to other LISP
objects. In the case of a property list, the LISp object is a list of pairs; in the
ship case, the LISP object is an array or vector whose details are taken care of
by defstruct. In both cases, we can say that the object keeps track of an inter
nal state, which can be examined and altered by the operations available for
that type of object. getf examines the state of a property list, and setf of getf
alters it; ship-x-position examines the state of a ship, and (setf (ship-x-position
Ship) 5.0) alters it.

0-01-02(26-:

\-86)

Tek COMMON Lisp
Flavors 6-3

This is the essence of object-oriented programming. A conceptual object
is modeled by a single LISp object, which bundles up some state information.
For every type of object, there is a set of operations that can be performed to
examine or alter the state of the object

An important benefit of the object-oriented style is that it lends itself to a par
ticularly simple and lucid kind of modularity. If you have modular program
ming constructs and techniques available, they help and encourage you to write
programs that are easy to read and understand, and so are more reliable and
maintainable. Object-oriented programming lets a programmer implement a
useful facility that presents the caller with a set of external interfaces, without
requiring the caller to understand how the internal details of the implementa
tion work. In other words, a program that calls this facility can treat the facility
as a black box; the calling program has an implicit contract with the facility
guaranteeing the external interfaces, and that is all it knows.

For example, a program that uses disembodied property lists never needs
to know that the property list is being maintained as a list of alternating indica
tors and values; the program simply performs the operations, passing them
inputs and getting back outputs. The program depends only on the external
definition of these operations: it knows that if it stores a property by doing a
setf of a getf, and doesn't remf it (or setf over it), then it can use getf to be
sure of getting back the same thing which was put in. This hiding of the details
of the implementation means that someone reading a program that uses disem
bodied property lists need not concern himself with how they are implemented;
he need only understand what abstract operations are represented. This lets the
programmer concentrate his energies on building a higher-level program rather
than understanding the implementation of the support programs. This hiding of
implementation means that the representation of property lists could be
changed and the higher-level program would continue to work. For example,
instead of a list of alternating elements, the property list could be implemented
as an association list or a hash table. Nothing in the calling program would
change at all.

The same is true of _the ship example. The caller is presented with a col
lection of operations, such as ship-x-position, ship-y-position, ship-speed,
and ship-direction; it simply calls these and looks at their answers, without
caring how they did what they did. In our example above, ship-x-position and
ship-y-position would be accessor functions, defined automatically by defs
truct, while ship-speed and ship-direction would be functions defined by the
implementor of the ship type. The code might look like this:

6.2
Modularity

Tektronix, Inc.
6-4 Flavors

(defstruct ship
x-position
y-position
x-velocity
y-velocity
mass)

{defun ship-speed (ship)
{sqrt {+ {expt (ship-x-velocity ship) 2)

{expt (ship-y-velocity ship) 2))))

{defun ship-direction (ship)
(atan (ship-y-velocity ship)

(ship-x-velocity ship)))

The caller need not know that the fIrst two functions were structure acces
sors and that the second two were written by hand and perform arithmetic.
Those facts would not be considered part of the black-box characteristics of the
implementation of the ship type. The ship type does not guarantee which func
tions will be implemented in which ways; such aspects are not part of the con
tract between ship and its callers. In fact, ship could have been written this
way instead:

(defstruct ship
x-position
y-position
speed
direction
mass)

(defun ship-x-velocity (ship)
{* (ship-speed ship) (cos (ship-direction ship))))

{defun ship-y-velocity (ship)
{* (ship-speed Ship) (sin (ship-direction Ship»)))

In this second implementation of the ship type, we have decided to store
the velocity in polar coordinates instead of rectangular coordinates. This is
purely an implementation decision. The caller has no idea which of the two
ways the implementation uses; he just performs the operations on the object by
calling the appropriate functions.

We have now created our own types of objects, whose implementations
are hidden from the programs that use them. Such types are usually referred to
as abstract types. The object-oriented style of programming can be used to
create abstract types by hiding the implementation of the operations and simply
documenting what the operations are defIned to do.

D-Ol·02(2&

11·86)

Tek COMMON Lisp
Flavors 6-5

Some more tenninology: the quantities being held by the elements of the
ship structure are referred to as instance variables. Each instance of a type has
the same operations defined on it; what distinguishes one instance from another
(besides eqness) is the values that reside in its instance variables. The example
above illustrates that a caller of operations does not know what the instance
variables are; our two ways of writing the ship operations have different
instance variables, but from the outside they have exactly the same operations.

One might ask: but what if the caller evaluates (svref ship 2) and notices
that he gets back the x-velocity rather than the speed? Then he can tell which
of the two implementations were used. This is true; if the caller were to do that,
he could tell. However, when a facility is implemented in the object-oriented
style, only certain functions are documented and advertised, the functions that
are considered to be operations on the type of object. The contract from ship to
its callers only speaks about what happens if the caller calls these functions.
The contract makes no guarantees at all about what would happen if the caller
were to start poking around on his own using svref. A caller who does so is in
error. He is depending on the concrete implementation of the abstraction:
something that is not specified in the contract. No guarantees were ever made
about the results of such action, and so anything may happen; indeed, if ship
were reimplemented, the code that does the svref might have a different effect
entirely and probably stop working. This example shows why the concept of a
contract between a callee and a caller is important: the contract specifies the
interface between the two modules.

Unlike some other languages that provide abstract types, Tek COMMON
LISp makes no attempt to have the language automatically forbid constructs
that circumvent the contract. This is intentional. One reason for this is that
LISP is an interactive system, and so it is important to be able to examine and
alter internal state interactively (usually from a debugger). Furthermore, there
is no strong distinction between the system and the user portions of the Tek
COMMON LISP system; users are allowed to get into nearly any part of the
language system and change what they want to change.

In summary: by defining a set of operations and making only a specific set
of external entry-points available to the caller, the programmer can create his
own abstract types. These types can be useful facilities for other programs and
programmers. Since the implementation of the type is hidden from the callers,
modularity is maintained and the implementation can be changed easily.

We have hidden the implementation of an abstract type by making its
operations into functions which the user may call. The importance of the con
cept is not that they are functions-in LISp everything is done with functions.
The important point is that we have defined a new conceptual operation and
given it a name, rather than requiring each user who wants to do the operation
to write it out step-by-step. Thus we say (ship-x-velocity s) rather than (aref s
2).

Often a few abstract operation functions are simple enough that it is desir
able to compile special code for them rather than really calling the function.

Tektronix, Inc.
6-6 Flavors

6.3
Generic
operations

(Compiling special code like this is often called open-coding.) The compiler is
directed to do this through use of macros for example. defstruct arranges for
this kind of special compilation for the functions that get the instance variables
of a structure.

When we use this optimization, the implementation of the abstract type is
only hidden in a certain sense. It does not appear in the LISP code written by
the user, but does appear in the compiled code. The reason is that there may be
some compiled functions that use the macros (or other concrete manifestation
of the implementation). Even if you change the definition of the macro, the
existing compiled code will continue to use the old definition. Thus, if the
implementation of a module is changed, programs that use it may need to be
recompiled. This sacrifice of compatibility between interpreted and compiled
code is usually quite acceptable for the sake of efficiency in debugged code.

In the Tek COMM:ON LISP implementation of Flavors that is discussed
below, there is never any such incorporation of nonmodular knowledge into a
program by either the interpreter or the compiler, except when the :ordered
instance-variables feature is used (described below). If you don't use the
:ordered-instance-variables feature, you don't have to worry about incompa
tibilities.

Consider the rest of the program that uses the ship abstraction. It may want to
deal with other objects that are like ships in that they are movable objects with
mass, but unlike ships in other ways. A more advanced model of a ship might
include the concept of the ship's engine power, the number of passengers on
board, and its name. An object representing a meteor probably would not have
any of these, but might have another attribute such as how much iron is in it.

However, all kinds of movable objects have positions, velocities, and
masses, and the system will contain some programs that deal with these quanti
ties in a uniform way, regardless of what kind of object is being modeled. For
example, a piece of the system that calculates every object's orbit in space
need not worry about the other, more peripheral attributes of various types of
objects; it works the same way for all objects. Unfortunately, a program that
tries to calculate the orbit of a ship needs to know the ship's attributes, and
must therefore call ship-x-position and ship-y-velocity and so on. The prob
lem is that these functions won't work for meteors. There would have to be a
second program to calculate orbits for meteors that would be exactly the same,
except that where the first one calls ship-x-position, the second one would call
meteor-x-position, and so on. This would be very bad; a great deal of code
would have to exist in multiple copies, all of it would have to be maintained in
parallel, and it would take up space for no good reason.

What is needed is an operation that can be performed on objects of several
different types. For each type, it should do the thing appropriate for that type.
Such operations are called generic operations. The classic example of generic
operations is the arithmetic functions in many programming languages,

D-OI-02(21

Tek COMMON LISP
Flavors 6-7

including Tek COMMON LIsp. The + function accepts integers, floats or big
nums and performs an appropriate kind of addition based on the data types of
the objects being manipulated. In MACSYMA, a large algebraic manipulation
system implemented in LISP, the + operation works for matrices, polynomials,
rational functions, and arbitrary algebraic expression trees. In our example, we
need a generic x-position operation that can be performed on either ships,
meteors, or any other kind of mobile object represented in the system. This
way, we can write a single program to calculate orbits. When it wants to know
the x position of the object it is dealing with, it simply invokes the generic x
position operation on the object, and whatever type of object it has, the correct
operation is performed, and the x position is returned.

In the following discussion we use another idiom adopted from the
Smalltalk language: performing a generic operation is called sending a
message. The message consists of an operation name (a symbol) and argu
ments. One can imagine objects in the program as 'little people' who accept
messages and respond to them with answers (returned values). In the example
above, an object is sent an x-position message, to which it responds with its x
position.

Sending a message is a way of invoking a function without specifying
which function is to be called. Instead, the data determines the function to use.
The caller specifies an operation name and an object; that is, it said what opera
tion to perform, and what object to perform it on. The function to invoke is
found from this information.

The two data used to figure out which function to call are the type of the
object, and the name of the operation. The same set of functions are used for
all instances of a given type, so the type is the only attribute of the object used
to figure out which function to call. The rest of the message besides the opera
tion is data which are passed as arguments to the function, so the operation is
the only part of the message used to find the function. Such a function is called
a method. For example, if we send an x-position message to an object of type
ship, then the function we find is the ship type's x-position method. A method
is a function that handles a specific operation on a specific kind of object; this
method handles messages named x-position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x position
of the object it is working on by sending that object a message consisting of the
operation x-position and no arguments. The returned value of the message is
the x position of the object. If the object was of type ship, then the ship type's
x-position method was invoked; if it was of type meteor, then the meteor
type's x-position method was invoked. The orbit-calculating program just
sends the message, and the right function is invoked based on the type of the
object. We now have true generic functions, in the form of message passing:
the same operation can mean different things depending on the type of the
object.

Tektronix, Inc.
6-8 Flavors

6.4
Generic
operations in
LiSp

How do we implement message passing in LISP? Our convention is that
objects that receive messages are always functional objects (that is, you can
apply them to arguments). A message is sent to an object by calling that object
as a function, passing the operation name as the first argument and the argu
ments of the message as the rest of the arguments. Operation names are
represented by symbols; normally these symbols are in the keyword package,
since messages may normally be passed between objects defined in different
packages. So if we have a variable my-ship whose value is an object of type
ship, and we want to know its x position, we send it a message as follows:

(send my-ship :x-position)

To set the ship's x position to 3.0, we send it a message like this:

(send my-ship :set-x-position 3.0)

A variation supported in some Flavor systems would allow

(send my-ship :set :x-position 3.0)
;;; not supported

but this is now deprecated and not provided in Tek COMMON LIsp.
It should be stressed that no new features are added to LISp for message

sending; we simply define a convention on the way objects take arguments.
The convention says that an object accepts messages by always interpreting its
first argument as an operation name. The object must consider this operation
name, find the function which is the method for that operation, and invoke that
function.

To emphasize the relationship between well-known features and the new
object-oriented version, we define the two basic functions for message passing
as follows:

send object message &rest arguments [Function}

• This function is equivalent to funcall; however, send may be more
efficient in some implementations because funcall must determine the
type of object it is passed, whereas send can assume that object is a flavor
instance. In any case, the function send is preferable to funcall when a
message is being sent, since it documents that Flavors and message send
ing are being used.
o Conceptually, this sends object a message with operation and argu
ments as specified.
o In some implementations of Flavors, the semantics of send may differ
from funcall in those cases where object is a symbol, list, number, or
other object that does not normally handle messages.

0-01-02(26-

Tek COMMON liSP
Flavors 6-9

lexpr-send object message arguments* list-ot-arguments [Macro]

• This function is equivalent to apply; see the notes above for send.
The last argument should be a list.

How does this all work? The object must somehow find the right method for
the message it is sent. Furthermore, the object now has to be callable as a func
tion. However, an ordinary function will not do: we need a data structure that
can store the instance variables (the internal state) of the object. Of the Tek
COMMON LISP features available, the most appropriate is the closure. A
message-receiving object could be implemented as a closure over a set of
instance variables. The function inside the closure would have a big case form
to dispatch on its fIrst argument.

While using closures would work, it has several problems. The main
problem is that in order to add a new operation to a system, it is necessary to
modify code in more than one place: you have to find all the types that under
stand that operation, and add a new clause to the case. The problem with this
is that you cannot textually separate the implementation of your new operation
from the rest of the system: the methods must be interleaved with the other
operations for the type. Adding a new operation should only require adding
LISp code; it should not require modifying LISP code.

For example, the conventional way of making generic operations for arith
metic on various new mathematical objects is to have a procedure for each
operation (+, *, etc), which has a big case for all the types; this means you
have to modify code in generic-plus, generic-times, ... to add a type. This is
inconvenient and error-prone.

The flavor mechanism is a streamlined, more convenient, and time-tested
system for creating message-receiving objects. With flavors, you can add a
new method simply by adding code, without modifying existing code. Further
more, many common and useful things are very easy to do with flavors. The
rest of this chapter describes flavors.

A flavor, in its simplest form, is a definition of an abstract type. New flavors
are created with the defflavor special form, and methods of the flavor are
created with the defmethod special form. New instances of a flavor are
created with the make-instance function. This section explains simple uses of
these forms.

For an example of a simple use of flavors, here is how the ship example
above would be implemented.

6.5
Simple use

of flavors

Tektronix, Inc.
6-10 Flavors

(deftlavor ship (x-position
y-position
x-velocity
y-ve/ocity
mass)

()
:gettable-instance-variables)

(defmethod (ship :speed) 0
(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2))))

(defmethod (ship :direction) 0
(atan y-velocity x-velocity»

The code above creates a new flavor. The fIrst subfonn of the deff/avor
is ship, which is the name of the new flavor. Next is the list of instance vari
ables; they are the five that should be familiar by now. The next subfonn is
something we will get to later. The rest of the sub forms are the body of the
defflavor, and each one specifies an option about this flavor. In our example,
there is only one option, namely :gettable-instance-variables. This means
that for each instance variable, a method should automatically be generated to
return the value of that instance variable. The name of the operation is a sym
bol with the same name as the instance variable, but interned in the keyword
package. Thus, methods are created to handle the operations :x-position, :y
position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first
one adds a handler to the flavor ship for the operation :speed. The second
subform is the lambda-list, and the rest is the body of the function that handles
the :speed operation. The body can refer to or set any instance variables of
the flavor, just like variables bound by a containing let. When any instance of
the ship flavor is invoked with a first argument of :direction, the body of the
second defmethod is evaluated in an environment in which the instance vari
ables of ship refer to the instance variables of this instance (the one to which
the message was sent). So the arguments passed to atan are the the velocity
components of this particular ship. The result of atan becomes the value
returned by the :direction operation.

Now we have seen how to create a new abstract type: a new flavor. Every
instance of this flavor has the five instance variables named in the defflavor
fonn, and the seven methods we have seen (five that were automatically
generated because of the :gettable-instance-variables option, and two that
we wrote ourselves). The way to create an instance of our new flavor is with
the make-instance function. Here is how it could be used:

(setq my-ship (make-instance 'ship»

O-OI.Q2(26-

1-86)

Tek COMMON liSP
Flavors 6-11

This returns an object whose printed representation is something like
#<ship 13731210>. (The details of the print form will vary; it is an object
which cannot be read back in from this default short-hand printed representa
tion.) The argument to make-instance is the name of the flavor to be instan
tiated. Additional arguments, not used here, are init options, that is, commands
to the flavor of which we are making an instance, selecting optional features.
This will be discussed more in a moment.

Examination of the flavor we have defined shows that it is quite useless as
it stands, since there is no way to set any of the parameters. We can fix this up
easily by putting the :settable-instance-variables option into the defflavor
form. This option tells defflavor to generate methods for operations :set-x
position, :set-y-position, and so on. Each such method takes one argument
and sets the corresponding instance variable to that value.

Another option we can add to the defflavor is :initable-instance
variables, (alternative spelling for compatibility is :inittable-instance
variables) which allows us to initialize the values of the instance variables
when an instance is first created. :initable-instance-variables does not create
any methods; instead, it makes initialization keywords named :x-position, :y
position, etc., that can be used as init-option arguments to make-instance to
initialize the corresponding instance variables. The list of init options is some
times called the init-plist because it is like a property list.

Here is the improved defflavor:

(defflavor ship (x-position
y-position
x-velocity
y-velocity
mass)
o
:gettable-instance-variables
:settab le- instance-variables
:initable-instance-variables)

All we have to do is evaluate this new defflavor, and the existing flavor
definition is updated and now includes the new methods and initialization
options. In fact, the instance we generated a while ago now accepts the new
operations! We can set the mass of the ship we created by evaluating:

(send my-ship :set-mass 3.0)

and the mass instance variable of my-ship is properly set to 3.0.
If you want to play around with flavors, it is useful to know that describe

of an instance tells you the flavor of the instance and the values of its instance
variables. If we were to evaluate (describe my-ship) at this point, the following
would be printed:

Tektronix, Inc.
6-12 Flavors

#<ship 3214320>, an object of flavor ship,
has instance variable values:

x-position: nil
y-position: nil
x-velocity: nil
y-velocity: nil
mass: 3.0

Now that the instance variables are initable, we can create another ship
and initialize some of the instance variables using the init-plist. Let's do that
and describe the result:

<cl> {setq her-ship
(make-instance 'ship

:x-position 0.0
:y-position 2.0
:mass 3.5»

#<ship 3242340>

<cl> (describe her-ship)
#<ship 3242340>, an object of flavor ship,
has instance variable

x-position:
y-position:
x-velocity:
y-velocity:
mass:

values:
0.0
2.0
nil
nil
3.5

A flavor can also establish default initial values for instance variables.
These default values are used when a new instance is created if the values are
not initialized any other way. The syntax for specifying a default initial value
is to replace the name of the instance variable by a list, whose first element is
the name and whose second is a form to evaluate to produce the default initial
value. For example when read in the definitions:

(defvar *default-x-velocity* 2.0)
(defvar *default-y-velocity* 3.0)

(defflavor ship ((x-position 0.0)
(y-position 0.0)
(x-velocity *default-x-velocity*)
(y-velocity *default-y-velocity*)
mass)

o
:gettable-instance-variables
:settable-instance-variables

1-861

Tek COMMON Lisp
Flavors 6-13

:initable-instance-variables)

Then the results are as follows:

<cl> (setq another-ship
(make-instance 'ship :x-position 3.4»

#<ship 2342340>
<cl> (describe another-ship)
#<ship 2342340>
an object of flavor ship,
has instance variable values:

x-position: 3.4
y-position: 0.0
x-velocity:
y-velocity:
mass:

2.0
3.0
nil

The value of x-position was initialized explicitly, so the default was
ignored. The value of y-position was initialized from the default value, which
was 0.0. The two velocity instance variables were initialized from their default
values, which came from two global variables. The value of mass was not
explicitly initialized and did not have a default initialization, so it was left as
nil. Some flavor implementations set an uninitialized instance variable to
unbound rather than nil.

There are many other options that can be used in defflavor, and the init
options can be used more flexibly than just to initialize instance variables; full
details are given later in this chapter. But even with the small set of features
we have seen so far, it is easy to write object-oriented programs.

Now we have a system for defining message-receiving objects so that we can
have generic operations. If we want to create a new type called meteor that
would accept the same generic operations as ship, we could simply write
another defflavor and two more defmethods that looked just like those of
ship, and then meteors and ships would both accept the same operations.
Objects of type ship would have some more instance variables for holding attri
butes specific to ships and some more methods for operations that are not
generic, but are only defined for ships; the same would be true of meteor.

However, this would be a a wasteful thing to do. The same code has to be
repeated in several places, and several instance variables have to be repeated.
The code now needs to be maintained in many places, which is always undesir
able. The power of flavors (and the name flavors) comes from the ability to
mix several flavors and get a new flavor. Since the functionality of ship and
meteor partially overlap, we can take the common functionality and move it
into its own flavor, which might be called moving-object. We would define
moving-object the same way as we defined Ship in the previous section. Then,
ship and meteor could be defined like this:

6.6
Mixing
flavors

Tektronix, Inc.
6-14 Flavors

(defflavor ship (engine-power
number-of-passengers
name)

(moving-olr1ject)
:gettable-instance-variables)

(defflavor meteor (percent-iron)
(moving-object)
:initable-instance-variables)

These defflavor forms use the second subform, for which we previously
used O. The second subform is a list of flavors to be combined to form the new
flavor; such flavors are called components. Concentrating on ship for a
moment (analogous statements are true of meteor), we see that it has exactly
one component flavor: moving-object. It also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it
shares with meteor. By incorporating moving-object, the ship flavor acquires
all of its instance variables, and so need not name them again. It also acquires
all of moving-objects methods, too. So with the new definition, ship instances
still implement the :x-velocify and :speed operations, with the same meaning
as before. However, the :engine-power operation is also understood (and
returns the value of the engine-power instance variable).

What we have done here is to take an abstract type, moving-object, and
build two more specialized and powerful abstract types on top of it. Any ship
or meteor can do anything a moving object can do, and each also has its own
specific abilities. This kind of building can continue; we could define a flavor
called ship-with-passenger that was built on top of ship, and it would inherit all
of moving-objects instance variables and methods as well as ships instance
variables and methods. Furthermore, the second subform of deffJavor can be a
list of several components, meaning that the new flavor should combine all the
instance variables and methods of all the flavors in the list, as well as the ones
those flavors are built on, and so on. All the components taken together form a
big tree of flavors. A flavor is built from its components, its components' com
ponents, and so on. We sometimes use the term components to mean the
immediate components (the ones listed in the deffJavor), and sometimes to
mean all the components (including the components of the immediate com
ponents and so on). (Actually, it is not strictly a tree, since some flavors might
be components through more than one path. It is really a directed graph; it can
even be cyclic.)

The order in which the components are combined to form a flavor is
important. The tree of flavors is turned into an ordered list by performing a
top-down, depth-first walk of the tree, including non-terminal nodes before the
subtrees they head, ignoring any flavor that has been encountered previously
somewhere else in the tree. For example, if fJavor-1 s immediate components
are flavor-2 and flavor-3, and flavor-2s components are flavor-4 and flavor-5,

11.86)

Tek COMMON LiSp
Flavors 6-15

and flavor-3s component was flavor-4, then the complete list of components of
flavor-1 would be: (flavor-1, flavor-2, flavor-4, flavor-5, flavor-3). The flavors
earlier in this list are the more specific, less basic ones; in our example, ship
with-passengers would be first in the list, followed by ship, followed by
moving-object. A flavor is always the fITst in the list of its own components.
Notice that flavor-4 does not appear twice in this list. Only the first occurrence
of a flavor appears; duplicates are removed. (The elimination of duplicates is
done during the walk; a cycle in the directed graph does not cause a non
terminating computation.)

The set of instance variables for the new flavor is the union of all the sets
of instance variables in all the component flavors. If both flavor-2 and flavor-3
have instance variables named foo, then flavor-1 has an instance variable
named foo, and all methods that refer to foo refer to this same instance vari
able. Thus different components of a flavor can communicate with one another
using shared instance variables. (Often, only one component ever sets the vari
able; the others only look at it.) The default initial value for an instance vari
able comes from the fITst component flavor to specify one.

The way the methods of the components are combined is the heart of the
flavor system. When a flavor is defined, a single function, called a combined
method, is constructed for each operation supported by the flavor. This func
tion is constructed out of all the methods for that operation from all the com
ponents of the flavor. There are many different ways that methods can be com
bined; these can be selected by the user when a flavor is defined. The user can
also create new forms of combination.

There are several kinds of methods, but so far, the only kinds of methods
we have seen are primary methods. The default way primary methods are
combined is that all but the earliest one provided are ignored. In other words,
the combined method is simply the primary method of the fITst flavor to pro
vide a primary method. What this means is that if you are starting with a flavor
foo and building a flavor bar on top of it, then you can override foos method for
an operation by providing your own method. Your method will be called, and
foo's will never be called.

Simple overriding is often useful; for example, if you want to make a new
flavor bar that is just like foo except that it reacts completely differently to a
few operations. However, often you don't want to completely override the
base flavor's (foo's) method; sometimes you want to add some extra things to
be done. This is where combination of methods is used.

The usual way methods are combined is that one flavor provides a
primary method, and other flavors provide daemon methods. The idea is that
the primary method is in charge of the main business of handling the operation,
but other flavors just want to keep informed that the message was sent, or just
want to do the part of the operation associated with their own area of responsi
bility .

daemon methods come in two kinds, before and after. There is a special
syntax in defmethod for defining such methods. Here is an example of the

Tektronix, Inc.
6-16 Flavors

syntax. To give the ship flavor an after-daemon method for the :speed opera
tion, the following syntax would be used:

(defmethod (ship :after :speed) (body))

Now, when a message is sent, it is handled by a new function called the
combined method. The combined method fIrst calls all of the before daemons,
then the primary method, then all the after daemons. Each method is passed
the same arguments that the combined method was given. The returned values
from the combined method are the values returned by the primary method; any
values returned from the daemons are ignored. Before-daemons are called in
the order that flavors are combined, while after-daemons are called in the
reverse order. In other words, if you build bar on top of foo, then bar's
before-daemons run before any of those in foo, and bars after-daemons run
after any of those in foo.

The reason for this order is to keep the modularity order correct. If we
create flavor-1 built on flavor-2, then the components of flavor-2 should not
matter. Our new before-daemons go before all methods of flavor-2, and our
new after-daemons go after all methods of flavor-2. Note that if you have no
daemons, this reduces to the form of combination described above. The most
recently added component flavor is the highest level of abstraction; you build a
higher-level object on top of a lower-level object by adding new components to
the front. The syntax for defining daemon methods can be found in the
description of defmethod below.

To make this a bit more clear, let's consider a simple example that is easy
to play with: the :print-self method. The LISP printer (i.e. the print function)
prints instances of flavors by sending them :print-self messages. The first
argument to the :print-self operation is a port (we can ignore the others for
now), and the receiver of the message is supposed to print its printed represen
tation on the port. In the ship example above, the reason that instances of the
ship flavor printed the way they did is because the ship flavor was actually
built on top of a very basic flavor called vanilla-flavor; this component is pro
vided automatically by defflavor. It was vanilla-flavor's :print-se/f method
that was doing the printing. Now, if we give Ship its own primary method for
the :print-self operation, then that method completely takes over the job of
printing: vanilla-flavors method will not be called at all. However, if we give
ship a before-daemon method for the :print-self operation, then it will get
invoked before the vanilla-flavor method, and so whatever it prints will appear
before what vanilla-flavor prints. So we can use before-daemons to add pre
fixes to a printed representation; similarly, after-daemons can add suffixes.

There are other ways to combine methods besides daemons, but this way
is the most common. The more advanced ways of combining methods are
explained in a later section. The details of vanilla-flavor and what it does for
you are also explained later.

D-Ol-02(26·1

1.86)

Tek COMMON LISp
Flavors 6-1 7

We've been using the following special form informally:

defflavor flavor-name (vars*) (flavors*) options* [Macro]

• WHERE flavor-name is a symbol which serves to name this flavor.
D The vars are the names of the instance-variables containing the local
state for this flavor. A list of two elements: the name of an instance
variable and a default initialization form is also acceptable; the initializa
tion form is evaluated when an instance of the flavor is created if no other
initial value for the variable is obtained. If no initialization is specified,
the variable has value nil.
o The flavors are the names of the component flavors out of which this
flavor is built. The features of those flavors are inherited as described pre
viously.
D Each of the options may be either a keyword symbol or a list of a key
word symbol and arguments. The options to defflavor are described
under §6.8, Defflavor options, below.
D type-of applied to an instance returns the symbol which is the name of
its flavor.
• SIDE EFFECT: The symbol flavor-name is given a flavor property which
is the internal data-structure containing the details of the flavor.
• NOTE: In Tek COMMON LISP objects which are instances of flavors are
implemented by a hidden internal data type, actually a kind of vector. The
svref function can access the slots of an instance. The zeroth slot points
to the internal descriptor for that flavor; successive slots hold the instance
variables.

all-flavor-names [Variable]

• A special variable containing a list of the names of all flavors that have
ever been defflavored .

..
defmethod (flavor-name [method-type] operation) lambda-list [Macro]

forms*

• WHERE flavor-name is a symbol which is the name of the flavor which
is to receive the method. operation is a keyword symbol which names the
operation to be handled. method-type is a keyword symbol for the type of
method; it is omitted when you are defining a primary method. For some
method-types, additional information is expected. It comes after opera
tion.
• SIDE EFFECT: defmethod defines a method, that is, a function to han
dle a particular operation for instances of a particular flavor. The meaning
of method-type depends on what style of method combination is declared
for this operation. For instance, if :daemon combination (the default
style) is in use, method types :before and :after are allowed. See §6.11

6.7
Flavor

functions

Tektronix, Inc.
6-18 Flavors

below on Method combination for a complete description of the way
methods are combined.
o lambda-list describes the arguments and &aux variables of the func
tion. The first argument to the method, which is the operation name itself,
is automatically handled and so is not included in lambda-list. Note that
methods may not have un evaluated arguments; that is, they must be func
tions, not macros or special forms. The forms are the function body; the
value of the last form is returned when the method is applied. Some
methods can return multiple values, depending on the style of method
combination used.
o The variant form

(defmethod (flavor-name operation) function)

where function is a symbol, says that flavor-names method for operation is
function, a symbol which names a function. When function is called, self
and any special instance variables will be bound. The function must take
appropriate arguments; the first argument is the operation. Various flavor
implementations have different conventions for automatically-supplied
arguments to method functions; these should be conditionalized if code
must be transportable.

If you redefine a method that is already defined, the new definition replaces the
old one. Given a flavor, an operation name, and a method type, there can only
be one function (with the exception of :case methods), so if you define a
:before daemon method for the foo flavor to handle the :bar operation, then
you replace the previous before-daemon; however, you do not affect the
primary method or methods of any other type, operation or flavor.

Along with other things, defmethod causes a function to be defuned.
The function name is formed by concatenating the hyphen-separated print
names of all the symbols in the first defmethod subform, then suffixing
-method; this name is interned in the same package as the flavor name. For
example, (defmethod (foo :before :bar) ...) defines a function named foo
before-bar-method. This is useful to know if you want to trace a method, or if
you want to poke around at the method function itself.

make-instance flavor-name {init-option value}* [Function}

• RETURNS an instance of the specified flavor which has just been
created.
o Arguments after the first are alternating init-option keywords and argu
ments to those keywords. These options are used to initialize instance
variables and to select arbitrary options, as described above. An :init
message is sent to the newly-created object with one argument, the init
plist. This is a property-list containing the init-options specified and those
defaulted from the flavor's :default-init-plist (however, init keywords

0.01-02(26-11

1.'6)

Tek COMMON Lisp
Flavors 6-19

that simply initialize instance variables, and the corresponding values,
may be absent when the :init methods are called). make-instance is an
easy-to-call interface to instantiate-flavor, below.

instantiate-flavor flavor-name init-plist &optional send-init- [Function]
message-p return-unhandled-keywords area

• RETURNS a new instance of flavor flavor-name .
• NOTE: This is an extended version of make-instance, giving you more
features. Note that it takes the init-plist as an individual argument, rather
than taking a &resf argument of init options and values.

This property list can be modified; the properties from the default init-plist are
added on if not already present, and some :init methods may do explicit (setf
(getf ...)) onto the init-plist.

In the event that :init methods remprop properties already on the init-plist,
as opposed to simply doing (setf (getf ...)), then the init-plist is rplacded. This
means that the actual supplied list of options is modified, so this list should not
be one contained inside a body of code. This would permanently modify the
calling code. Therefore for each call of instantiate-flavor the caller should
recreate or otherwise copy (e.g. with append) the list to be passed as the init
plist argument.

Do not use nil as the init-plist argument. This would mean to use the pro
perties of the symbol nil as the init options. If your goal is to have no init
options, you must provide a property list containing no properties, such as the
list (nil), which can be created by evaluating the form (list nil).

Here is the sequence of actions by which instantiate-flavor creates a new
instance:

1 The specified flavor's instantiation flavor function, if it exists, is called to
determine which flavor should actually be instantiated. If there is no
instantiation flavor function, the specified flavor is instantiated.
If the flavor's method hash-table and other internal information have not
been computed or are not up to date, they are computed. This may take a
substantial amount of time, but it happens only once for each time you
define or redefine a particular flavor.

2 The instance itself is created. The area argument is ignored by Tek COM
MON LISp and refers to consing in specified areas, a feature used in some
LISp machines.

3 Initial values of the instance variables are computed. If an instance vari
able is declared initable, and a keyword with the same spelling as its name
appears in init-plist, the property for that keyword is used as the initial
value.
Otherwise, if the default init-plist specifies such a property, the value form
is evaluated and the result used. Otherwise, if the flavor definition speci
fies a default initialization form, it is evaluated and that result is used. In

Tektronix, Inc.
6-20 Flavors

either case, the initialization forms may not refer to any instance variables,
nor will they find the variable self be bound to the new instance. The
value forms are evaluated before the instance is actually allocated.
If an instance variable does not get initialized either of these ways it is left
nil; an :init method may initialize it (see below).
All remaining keywords and values specified in the :default-init-plist
option to defflavor, that do not initialize instance variables and are not
overridden by anything explicitly specified in init-plist are then merged
into init-plist using setf of getf. The default init plist of the instantiated
flavor is considered first, followed by those of all the component flavors
in the standard order.

4 Keywords appearing in the init-plist but not defined with the :init
keywords option or the :initable-instance-variables option for some
component flavor are collected. If the :allow-other-keys option is speci
fied with a non-nil value (either in the original init-plist argument or by
some default init pHst) then these unhandled keywords are ignored. If the
return-unhand led-keywords argument is non-nil, a list of these keywords
is returned as the second value of instantiate-flavor. Otherwise, an error
is signaled if any unrecognized init keywords are present.

5 If the send-init-message-p argument is supplied and non-nil, an :init
message is sent to the newly-created instance, with one argument, the init
plist. getf can be used to extract options from this property-list. Each fla
vor that needs initialization can contribute an :init method by defining a
daemon.

The :init methods should not look on the init-plist for keywords that simply ini
tialize instance variables (that is, keywords defined with :initable-instance
variables rather than :init-keywords). The corresponding instance variables
are already set up when the :init methods are called, and sometimes the key
words and their values may actually be missing from the init-plist if it is more
efficient not to put them on. To avoid problems, always refer to the instance
variables themselves rather than looking for the init keywords that initialize
them.

:init init-plist [Message]

• This operation is implemented on all flavor instances .
• SIDE EFFECT: This function examines the init keywords and perform
whatever initializations are appropriate. init-plist is the argument that was
given to instantiate-flavor, and may be passed directly to getf to examine
the value of any particular init option.
o The default definition of this operation does nothing. However, many
flavors add :before and :after daemons to it.

0·01·02(26-

1·86)

excl:instancep object

• RETURNS t if object is an instance of a flavor.

defwrapper (flavor-name operation) lambda-list &body body

Tek COMMON LISP
Flavors 6-21

[Function]

[Macro]

• NOTE: This feature is complex and you may not be able to understand
it completely until you have gained some experience with flavors. It can
safely be skipped meanwhile.
o Sometimes the way the flavor system combines the methods of dif
ferent flavors (the daemon system) is not powerful enough. In that case
defwrapper can be used to define a macro that expands into code that is
wrapped around the invocation of the methods. This is best explained by
an example; suppose you needed a lock locked during the processing of
the :foo operation on flavor bar, which takes two arguments, and you
have a lock-frobboz special-form that knows how to lock the lock
(presumably it generates an unwind-protect). lock-frobboz needs to see
the fIrst argument to the operation; perhaps that tells it what sort of opera
tion is going to be performed (read or write).

(defwrapper (bar :foo) ((arg1 arg2) . body)
'(Iock-frobboz (self arg1)

. ,body))

The use of the body macro-argument prevents the macro defIned by
defwrapper from knowing the exact implementation and allows several
defwrappers from different flavors to be combined properly.

Note that the argument variables, arg1 and arg2, are not referenced
with commas before them. These may look like defmacro argument vari
ables, but they are not. Those variables are not bound at the time the
defwrapper-defined macro is expanded and the back-quoting is done;
rather, the result of that macro-expansion and back-quoting is code which,
when a message is sent, will bind those variables to the arguments in the
message as local variables of the combined method.

Consider another example. Suppose you thought you wanted a
:before daemon, but found that if the argument was nil you needed to
return from processing the message immediately, without executing the
primary method. You could write a wrapper such as:

(defwrapper (bar :foo) ((arg1) . body)
'(cond ((null arg1))

(t (print "About to do :FOO")
. ,body)))

Suppose you need a variable for communication among the daemons for a
particular operation; perhaps the :after daemons need to know what the
primary method did, and it is something that cannot be easily deduced
from just the arguments. You might use an instance variable for this, or

Tektronix, Inc.
6-22 Flavors

you might create· a special variable which is bound during the processing
of the operation and used free by the methods.

(defvar *communication *)
(defwrapper (bar :foo) (ignore. body)

'(let «*communication* nil))
. ,body))

Similarly you might want a wrapper that puts a catch around the pro
cessing of an operation so that anyone of the methods could throw out in
the event of an unexpected condition.

Like daemon methods, wrappers work in outside-in order; when you
add a defwrapper to a flavor built on other flavors, the new wrapper is
placed outside any wrappers of the component flavors. However, all
wrappers happen before any daemons happen. When the combined
method is built, the calls to the before-daemon methods, primary methods,
and after-daemon methods are all placed together, and then the wrappers
are wrapped around them. Thus, if a component flavor defines a wrapper,
methods added by new flavors execute within that wrapper's context.

Be careful about inserting the body into an internal lambda
expression within the wrapper's code. Doing so interacts with the inter
nals of the flavor system and requires knowledge of things not docu
mented in the manual in order to work properly.

defwhopper (flavor-name operation) lambda-list &body body [Macro]

• NOTE: Whoppers are a feature of some flavor implementations which
do many of the same things as wrappers. They will be documented when
they are implemented in Tek COMMON LISp.

undefmethod flavor [type] operation [suboperation] [Macro]

• Removes a method: (undefmethod (flavor :before :operation)) removes
the method created by (defmethod (flavor :before :operation) ...). To
remove a wrapper, use undefmethod with :wrapper as the method type.

undefflavor flavor [Function]

self

• Undefines flavor flavor. All methods of the flavor are lost. flavor and
all flavors that depend on it are no longer valid to instantiate. If instances
of the discarded definition exist, they continue to use that definition.

[Variable]

• When a message is sent to an object, the variable self is automatically
bound to that object for the benefit of methods which want to manipulate
the object itself (as opposed to its instance variables). self is a lexical
variable, that is, its scope of is local to the method body.

0-01-02(26-1

~11-86)

send instance message [argument ...]
funcall instance message &rest arguments

Tek COMMON Lisp
Flavors 6-23

[Macro]
[Function]

• NOTE: This is the way a message is passed to an instance of a flavor.
send and funcall operate in essentially the s~e manner. send is poten
tially slightly more efficient because the evaluator can infer that the func
tional argument is an instance, whereas funcall must determine the type
of its first argument.

send-self message arguments*
funcall-self message arguments*
lexpr-send-self message arguments* list-af-arguments
lexpr-funcall-self message arguments* list-af-arguments

[Macro]
[Macro]
[Macro]
[Macro]

• funcall-self is nearly equivalent to funcall with self as the first argu
ment, but may be a little faster. The others are analogous.

recompile-flavor flavor-name &optional single-ap use-old- [Function]
combined-methods do-dependents

• Updates the internal data of the flavor and any flavors that depend on
it. If single-ap is supplied non-nil, only the methods for that operation are
changed. The system does this when you define a new method that did
not previously exist. If use-old-combined-methods is t, then the existing
combined method functions are used if possible. New ones are generated
only if the set of methods to be called has changed. If use-old-combined
methods is nil, automatically-generated functions to call multiple methods
or to contain code generated by wrappers are regenerated unconditionally.
The default value of use-old-combined-methads is t. If do-dependents is
nil, only the specific flavor you specified is recompiled. Normally all fla
vors that depend on it are also recompiled, i.e. the default value of da
dependents is t.
o recompile-flavor affects only flavors that have already been compiled.
Typically this means it affects flavors that have been instantiated, but does
not bother with mixins.

compile-flavor-methods flavor-names* [Macro]

• The form (compile-flavor-methods flavor-name-1 flavor-name-2 ...),
placed in a file to be compiled, directs the compiler to perform flavor
combination far the named flavors, forcing the generation and compilation
of automatically-generated combined methods at compile time. Further
more, the internal data structures needed to instantiate the flavor will be
computed at load time, rather than waiting for the first attempt to instan
tiate the flavor.
o You should only use compile-flavor-methods on a flavor that is going
to be instantiated. For a flavor that is never going to be instantiated (that

Tektronix, Inc.
6-24 Flavors

is, a flavor that only serves to be a component of other flavors that actu
ally do get instantiated), it is a complete waste of time, except in the
unusual case where those other flavors can inherit the combined methods
of this flavor instead of each one having its own copy of the combined
method which happens to identical to the others. In this unusual case, you
should use the :abstract-flavor option to defflavor.
o compile-flavor-methods forms should be compiled after all of the
other information needed to create the combined methods is available.
You should put them after all the definitions of all relevant flavors,
wrappers, and methods of all components of the argument flavors.
o When a compile-flavor-methods form is seen by the interpreter, the
internal data structures are generated and the combined methods are
defined.

get-handler-for object operation [Function]

• Given an object and an operation, this returns the object's method for
that operation, or nil if it has none. When object is an instance of a flavor,
this function can be useful to find which of that flavor's components sup
plies the method.
o This is equivalent to the :get-handler-for message provided by
si :vanilla-flavor.

flavor-allows-init-keyword-p flavor-name keyword [Function]

• RETURNS non-nil if the flavor named flavor-name allows keyword in
the init options when it is instantiated, or nil if it does not. The non-nil
value is the name of the component flavor that contributes the support of
that keyword.

si :flavor-allowed-i n it-keywords flavor-name [Function]

• RETURNS a list of all the init keywords that may be used in instantiat
ing flavor-name.

symeval-in-instance instance symbol &optional no-error-p [Function]

• RETURNS the value of the instance variable symbol inside instance. If
there is no such instance variable, an error is signaled, unless no-error-p is
non-nil, in which case nil is returned.

set-in-instance instance symbol value [Function}

• SIDE EFFECT: Sets the value of the instance variable symbol inside
instance to value. If there is no such instance variable, an error is sig
naled.

11-86)

Tek COMMON LiSp
Flavors 6-25

describe-flavor flavor-name [Function]

• SIDE EFFECT: Prints descriptive information about a flavor; it is self
explanatory. An important thing it tells you that can be hard to figure out
yourself is the combined list of component flavors; this list is what is
printed after the phrase 'and directly or indirectly depends on.'

There are quite a few options to defflavor. They are all described here,
although some are for very specialized purposes and not of interest to most
users. A few options take additional arguments, and these are listed and
described with the option.

Several of these options declare things about instance variables. These
options can be given with arguments which are instance variables, or without
any arguments in which case they refer to all of the instance variables listed at
the top of the defflavor. This is not necessarily all the instance variables of the
combined flavor, just the ones mentioned in this flavor's defflavor. When
arguments are given, they must be instance variables that were listed at the top
of the defflavor; otherwise they are assumed to be misspelled and an error is
signaled. It is legal to declare things about instance variables inherited from a
component flavor, but to do so you must list these instance variables explicitly
in the instance variable list at the top of the defflavor, or mention them in a
required-instance-variable option.

:geftable-instance-variables [Defflavor option]

• Enables automatic generation of methods for getting the values of
instance variables. The operation name is the name of the variable, in the
keyword package (i.e. it has a colon in front of it).
o Note that there is nothing special about these methods; you could
easily define them yourself. This option generates them automatically to
save you the trouble of writing out a lot of very simple method definitions.
(The same is true of methods defined by the :settable-instance-variables
option.) If you define a method for the same operation name as one of the
automatically generated methods, the explicit definition overrides the
automatic one.

:settable-instance-variables [Defflavor option]

• Enables automatic generation of methods for setting the values of
instance variables. The operation name is :set- followed by the name of
the variable. All settable instance variables are also automatically made
gettable and initable. (See the note in the description of the :gettable
instance-variables option, above.)

6.8
Defflavor

options

Tektronix, Inc.
6-26 Flavors

:initable-instance-variables [Defflavor option]

• The instance variables listed as arguments, or all instance variables
listed in this defflavor if the keyword is given alone, are made initable.
This means that they can be initialized through use of a keyword (a colon
followed by the name of the variable) as an init-option argument to make
instance. For compatibility with certain other implementations, the spel
ling :iniffable-insfance-variables is also accepted.

:special-insfance-variables [Defflavor option]

• NOTE: Special instance variables are not implemented Tek COMMON
LISP. Instance variables are scoped lexically inside a method in both com
piled and interpreted code. Special instance variables are unimplement
able in COMMON LISP for the same reasons that it is impossible to close
over a normal special variable. In any case, they are deleterious to proper
code modularity; the original designers of Flavors now deprecate them as
a misfeature except for very obscure (or historical) purposes. The Tek
COMMON LISp implementation ignores the :special-instance-variable
specification other than issuing a warning message, but the resulting code
will be unlikely to do the right thing if the instance variables were
declared special for some particular purpose.

:inif-keywords [Defflavor option]

• The arguments are declared to be valid keywords to use in
instantiate-flavor when creating an instance of this flavor (or any flavor
containing it). The system uses this for error-checking: before the system
sends the :init message, it makes sure that all the keywords in the init-plist
are either initable instance variables or elements of this list. If any is not
recognized, an error is signaled. When you write a :inif method that
accepts some keywords, they should be listed in the :init-keywords
option of the flavor. If :allow-other-keys is used as an init keyword with
a non-nil value, this error check is suppressed. Then unrecognized key
words are simply ignored.

:default-init-plist [Defflavor option]

• The arguments are alternating keywords and value forms, like a pro
perty list. When the flavor is instantiated, these properties and values are
put into the init-plist unless already present. This allows one component
flavor to default an option to another component flavor. The value forms
are only evaluated when and if they are used. For example,

(:default-init-plist :frob-array
(make-array 100»

1-86)

Tek COMMON Lisp
Flavors 6-27

would provide a default/rob array for any instance for which the user did
not provide one explicitly. The following specification prevents errors for
unhandled init keywords in all instantiations of this flavor and other fla
vors that depend on it.

(:default-init-plist :allow-other-keys t)

:required-inif-keywords [Defflavor option]

• The arguments are init keywords which are to be required each time
this flavor (or any flavor containing it) is instantiated. An error is signaled
if any required init keyword is missing.

:required-instance-variables [Defflavor option]

• Declares that any flavor incorporating this one that is instantiated into
an object must contain the specified instance variables. An error occurs if
there is an attempt to instantiate a flavor that incorporates this one if it
does not have these in its set of instance variables. Note that this option is
not one of those that checks the spelling of its arguments in the way
described at the start of this section (if it did, it would be useless).
D Required instance variables may be freely accessed by methods just
like normal instance variables. The difference between listing instance
variables here and listing them at the front of the defflavor is that the
latter declares that this flavor owns those variables and accepts responsi
bility for initializing them, while the former declares that this flavor
depends on those variables but that some other flavor must be provided to
manage them and whatever features they imply.

:required-methods [Defflavor option]

• The arguments are names of operations that any flavor incorporating
this one must handle. An error occurs if there is an attempt to instantiate
such a flavor and it is lacking a method for one of these operations. Typi
cally this option appears in the defflavor for a base flavor. Usually this is
used when a base flavor does a (send self ...) to send itself a message that
is not handled by the base flavor itself; the idea is that the base flavor will
not be instantiated alone, but only with other components (mixins) that do
handle the message. This keyword allows the error of having no handler
for the message to be detected when the flavor instantiated or when
compile-flavor-methods is done, rather than when the missing operation
is used.

Tektronix, Inc.
6-28 Flavors

:required-flavors {Defflavor option]

• The arguments are names of flavors that any flavor incorporating this
one must include as components, directly or indirectly. The difference
between declaring flavors as required and listing them directly as com
ponents at the top of the defflavor is that declaring flavors to be required
does not make any commitments about where those flavors will appear in
the ordered list of components; that is left up to whoever does specify
them as components. Declaring a flavor to be required only provides error
checking: an attempt to instantiate a flavor that does not include the
required flavors as components signals an error. Compare this with
:required-methods and :required-instance-variables.

For an example of the use of required flavors, consider the sh ip example given
earlier, and suppose we want to define a relativity-mixin which increases the
mass dependent on the speed. We might write,

(defflavor relativity-mixin 0 (moving-object))
(defmethod (relativity-mixin :mass) 0

(/ mass (sqrt (- 1
(expt (/ (send self :speed)

speed-of-light)
2)))))

but this would lose because any flavor that had relativity-mixin as a component
would get moving-object right after it in its component list. As a base flavor,
moving-object should be last in the list of components so that other components
mixed in can replace its methods and so that daemon methods combine in the
right order. relativity-mixin has no business changing the order in which flavors
are combined, which should be under the control of its caller. For example,

(defflavor starship 0 (relativity-mixin
long-distance-mixin
ship))

puts moving-object last (inheriting it from ship). So instead of the definition
above we write,

(defflavor relativity-mixin 0
o
(:required-flavors
moving-object))

which allows relativity-mixins methods to access moving-object instance vari
ables such as mass (the rest mass), but does not specify any place for moving
object in the list of components.

It is very common to specify the base flavor of a mixin with the
:required-flavors option in this way.

D-OI·02(26-1

:included-flavors

Tek COMMON liS P
Flavors 6-29

[Defflavor option]

• The arguments are names of flavors to be included in this flavor. The
difference between declaring flavors here and declaring them at the top of
the defflavor is that when component flavors are combined, if an included
flavor is not specified as a normal component, it is inserted into the list of
components immediately after the last component to include it. Thus
included flavors act like defaults. The important thing is that if an
included flavor is specified as a component, its position in the list of com
ponents is completely controlled by that specification, independently of
where the flavor that includes it appears in the list.

:included-flavors and :required-flavors are used in similar ways; it would
have been reasonable to use :included-flavors in the relativity-mixin example
above. The difference is that when a flavor is required but not given as a nor
mal component, an error is signaled, but when a flavor is included but not
given as a normal component, it is automatically inserted into the list of com
ponents at a reasonable place.

:no-vanilla-flavor [Defflavor option]

• Normally when a flavor is instantiated, the special flavor si:vanilla
flavor is included automatically at the end of its list of components. The
vanilla flavor provides some default methods for the standard operations
which all objects are supposed to understand. These include :prinf-self,
:describe, :which-operations, and several other operations.
o If any component of a flavor specifies the :no-vanilla-flavor option,
then si:vanilla-flavor is not included in that flavor. This option should not
be used casually.

:defau/f-handler [Defflavor option]

• The argument is the name of a function that is to be called to handle
any operation for which there is no method. Its arguments are the argu
ments of the send which invoked the operation, including the operation
name as the first argument. Whatever values the default handler returns
are the values of the operation.
o Default handlers can be inherited from component flavors. If a flavor
has no other default handler, one is provided which signals an error if a
message is sent for which there is no handler.

:ordered-insfance-variables [Defflavor option]

• This option is mostly for esoteric internal system uses. The arguments
are names of instance variables which must appear first (and in this order)
in all instances of this flavor, or any flavor depending on this flavor. This
is used for instance variables that are specially known about by other code

Tektronix, Inc.
6-30 Flavors

(e.g. non-LISP) and also in connection with the :outside-accessible
instance-variables option. If the keyword is given alone, the arguments
default to the list of instance variables given at the top of this defflavor.
D Any number of flavors to be combined together can specify this option.
The longest ordered variable list applies, and an error is signaled if any of
the other lists do not match its initial elements.
D Removing any of the :ordered-instance-variables, or changing their
positions in the list, requires that you recompile all methods that use any
of the affected instance variables.

:outside-accessible-instance-variables [Defflavor option]

• The arguments are instance variables which are to be accessible from
outside of this flavor's methods. A macro is defined which takes an
object of this flavor as an argument and returns the value of the instance
variable; setf may be used to set the value of the instance variable. The
name of the macro is the name of the flavor concatenated with a hyphen
and the name of the instance variable. These macros are similar to the
accessors created by defstruct.
D This feature works in two different ways, depending on whether or not
the instance variable has been declared to have a fixed slot in all instances,
via the :ordered-instance-variables option.
D If the variable is not ordered, the position of its value cell in the
instance must be computed at run time. This takes noticeable time, possi
bly more or less than actually sending a message would take. An error is
signaled if the argument to the accessor macro is not an instance or is an
instance that does not have an instance variable with the appropriate
name. However, there is no error check that the flavor of the instance is
the flavor the accessor macro was defined for, or a flavor built upon that
flavor. This error check would be too expensive.
D If the variable is ordered, the compiler compiles a call to the accessor
macro into a primitive (actually a svref) which simply accesses that
variable's assigned slot by number. No error-checking is performed to
make sure that the argument is really an instance, much less that it is of
the appropriate type.
D setf works on these accessor macros to modify the instance variable.

:accessor-prefix [Defflavor option]

• Normally the accessor macro created by the :outside-accessible
instance-variables option to access the flavor f's instance variable v is
named t-v. This option allows something other than the flavor name to be
used for the first part of the macro name. Specifying (:accessor-prefix
get$) causes it to be named get$v instead.

D-Ol-C2[.!£> 11

061

:alias-flavor

Tek COMMON Lisp
Flavors 6-31

{Defflavor option]

• NOTE: :alias-flavor is presently unimplemented in Tek COMMON
LISp.

• Marks this flavor as being an alias for another flavor. This flavor
should have only one component, which is the flavor it is an alias for, and
no instance variables or other options. No methods should be defined for
it.
o The effect of the :alias-flavor option is that an attempt to instantiate
this flavor actually produces an instance of the other flavor. Without this
option, it would make an instance of this flavor, which might behave
identically to an instance of the other flavor. :alias-flavor eliminates the
need for separate mapping tables, method tables, etc. for this flavor,
which becomes truly just another name for its component flavor.
o The alias flavor and its base flavor are also equivalent when used as an
argument of subtypep or as the second argument of typep; however, if
the alias status of a flavor is changed, you must recompile any code which
uses it as the second argument to typep in order for such code to function.
o :alias-flavor is mainly useful for changing a flavor's name gracefully.

:abstract-flavor {Defflavor option]

• This option marks the flavor as one that is not supposed to be instan
tiated (that is, is supposed to be used only as a component of other fla
vors). An attempt to instantiate the flavor signals an error.
o It is sometimes useful to do compile-flavor-methods on a flavor that
is not going to be instantiated, if the combined methods for this flavor will
be inherited and shared by many others. :abstract-f/avor tells compile
flavor-methods not to complain about missing required flavors, methods
or instance variables. Presumably the flavors that depend on this one and
actually are instantiated will supply what is lacking.
• NOTE: :abstract-flavor is accepted but currently ignored in Tek COM
MON LISP.

:method-combination [Defflavor option]

• Specifies the method combination style to be used for certain opera
tions. Each argument to this option is a list (style order operation1 opera
tion2 ...). operation1, operation2, etc. are names of operations whose
methods are to be combined in the declared fashion. style is a keyword
that specifies a style of combination. order is a keyword whose interpreta
tion is up to style; typically it is either :base-flavor-first or :base
flavor-last.
o Any component of a flavor may specify the type of method combina
tion to be used for a particular operation. If no component specifies a
style of method combination, then the default style is used, namely

Tektronix, Inc.
6-32 Flavors

:daemon.
If more than one component of a flavor specifies the combination style
for a given operation, then they must agree on the specification, or else an
error is signaled.

:run-time-alfernatives defflavor
:mixfure defflavor

[Defflavor option}
[Defflavor option}

• A run-time-alternative flavor defines a collection of similar flavors, all
built on the same base flavor but having various mixins as well. Instantia
tion chooses a flavor of the collection at run time based on the init key
words specified, using an automatically generated instantiation flavor
function.
o A simple example would be

(defflavor foo 0 (basic-foo)
(:run-time-alternatives
(:big big-foo-mixin»
(:init-keywords :big»

o Then (make-instance 'foo :big t) makes an instance of a flavor whose
components are big-foo-mixin as well as foo. But (make~instance 'foo) or
(make-instance 'foo :big nil) makes an instance of foo itself. The clause
(:big big-foo-mixin) in the :run-fime-alfernatives says to incorporate big
foo-mixin if :big's value is t, but not if it is nil.
o There may be several clauses in the :run-fime-alfernatives. Each one
is processed independently. Thus, two keywords :big and :wide could
independently control two mixins, giving four possibilities.

(defflavor foo 0 (basic-foo)
(:run-time-alternatives (:big big-foo-mixin)

(:wide wide-foo-mixin))
(:init-keywords :big»

o It is possible to test for values other than t and nil. The clause:

(:size (:big big-foo-mixin)
(:small small-foo-mixin)
(nil nil»

allows the value for the keyword :size to be :big, :small or nil (or omit
ted). If it is nil or omitted, no mixin is used (that's what the second nil
means). If it is :big or :small, an appropriate mixin is used. This kind of
clause is distinguished from the simpler kind by having a list as its second
element. The values to check for can be anything, but eq is used to com
pare them.
o The value of one keyword can control the interpretation of others by
nesting clauses within clauses. If an alternative has more than two

D-OI.(I2(25-11

-86)

Tek COMMON LiSp
Flavors 6-33

elements, the additional elements are subclauses which are considered
only if that alternative is selected. For example, the clause:

(:ethereal (t ethereal-mixin)
(nil nil

(:size (:big big-foo-mixin)
(:small small-foo-mixin)
(nil nil))))

says to consider the :size keyword only if :ethereal is nil.
o :mixture is synonymous with :run-time-alternatives. It exists for
compatibility with Symbolics LISP or other LISP Machine systems.

:documentation [Defflavor option]

• Specifies the documentation string for the flavor definition. This docu
mentation can be viewed with the describe-flavor function.

The following organization conventions are recommended for programs that
use flavors.

A base flavor is a flavor that defines a whole family of related flavors, all
of which have that base flavor as a component. Typically the base flavor
includes things relevant to the whole family, such as instance variables,
:required-methods and :required-instance-variables declarations, default
methods for certain operations, :method-combination declarations, and docu
mentation on the general protocols and conventions of the family. Some base
flavors are complete and can be instantiated, but most cannot be instantiated
themselves. They serve as a base upon which to build other flavors. The base
flavor for the foo family is often named basic-foo.

A mixin flavor is a flavor that defines one particular feature of an object.
A mixin cannot be instantiated, because it is not a complete description. Each
module or feature of a program is defined as a separate mixin; a usable flavor
can be constructed by choosing the mixins for the desired characteristics and
combining them, along with the appropriate base flavor. By organizing your
flavors this way, you keep separate features in separate flavors, and you can
pick and choose among them. Sometimes the order of combining mixins does
not matter, but often it does, because the order of flavor combination controls
the order in which daemons are invoked and wrappers are wrapped. Such order
dependencies should be documented as part of the conventions of the appropri
ate family of flavors. A mixin flavor that provides the mumble feature is often
named mumble-mixin.

If you are writing a program that uses someone else's facility, using that
facility's flavors and methods, your program may still define its own flavors, in
a simple way. The facility provides a base flavor and a set of mixins: the caller
can combine these in various ways depending on exactly what it wants, since

6.9
Flavor

families

Tektronix, Inc.
6-34 Flavors

the facility probably does not provide all possible useful combinations. Even if
your private flavor has exactly the same components as a pre-existing flavor, it
can still be useful since you can use its :default-inif-plisf to select options of
its component flavors and you can define one or two methods to customize it
just a little.

6.10 The operations described in this section are a standard protocol, which all
Vanilla flavor message-receiving objects are assumed to understand. The standard methods

that implement this protocol are automatically supplied by the flavor system
unless the user specifically tells it not to do so. These methods are associated
with the flavor si:vanilla-flavor:

si:vanilla-flavor [Flavor]

• NOTE: For source code compatibility with other implementations, Tek
COMMON LISP defines si: as an alias for the system: package.
• Unless you specify otherwise (with the :no-vanilla-flavor option to
defflavor), every flavor includes the vanilla flavor, which has no instance
variables but provides some basic useful methods.

:prinf-self stream prindepth escape-p [Message]

• The object should output its printed-representation to a stream. The
printer sends this message when it encounters an instance or an entity.
The arguments are the stream, the current depth in list-structure (for com
parison with *print-Ievel*), and whether escaping is enabled (a copy of
the value of *print-escape*). si:vanilla-flavor ignores the last two argu
ments and prints something like #<flavor-name octal-address>. The
flavor-name tells you what type of object it is and the octal-address
allows you to tell different objects apart.

:describe [Message]

• The object should describe itself, printing a description onto the stan
dard output stream. The describe function sends this message when it
encounters an instance. si:vanilla-flavor outputs in a reasonable format the
object, the name of its flavor, and the names and values of its instance
variables. The instance variables are printed in their order within the
instance.

:which-operations [Message]

• The object should return a list of the operations it can handle.
si:vanilla-flavor generates the list once per flavor and remembers it,
minimizing consing and compute-time. If the set of operations handled is
changed, this list is regenerated the next time someone asks for it.

0-01-02(26-11.

86)

Tek COMMON Lisp
Flavors 6-35

:operation-handled-p operation [Message]

• operation is an operation name. The object should return t if it has a
handler for the specified operation, nil if it does not.

:get-handler-for operation [Message]

• operation is an operation name. The object should return the method it
uses to handle operation. If it has no handler for that operation, it should
return nil. This is like the get-handler-for function.

:send-if-handles operation arguments* [Message]

• operation is an operation name and arguments is a list of arguments for
the operation. If the object handles the operation, it should send itself a
message with that operation and arguments, and return whatever values
that message returns. If it doesn't handle the operation it should just
return nil.

:eva/-inside-yourself form [Message]

• The argument is a form that is evaluated in an environment in which
special variables with the names of the instance variables are bound to the
values of the instance variables. It works to setq one of these special
variables; the instance variable is modified. This is intended to be used
mainly for debugging.

:funcall-inside-yourself function &rest args [Message]

• function is applied to args in an environment in which special variables
with the names of the instance variables are bound to the values of the
instance variables. It works to setq one of these special variables; the
instance variable is modified. This is a way of allowing callers to provide
actions to be performed in an environment set up by the instance.

:break [Message]

• break is called in an environment in which special variables with the
names of the instance variables are bound to the values of the instance
variables.

When a flavor has or inherits more than one method for an operation, they must
be called in a specific sequence. The flavor system creates a function called a
combined method which calls all the user-specified methods in the proper
order. Invocation of the operation actually calls the combined method, which
is responsible for calling the others.

6.11
Method

combination

Tektronix, Inc.
6-36 Flavors

For example, if the flavor too has components and methods as follows:

(defflavor too 0 (foo-mixin foo-base»
(defflavor foo-mixin 0 (bar-mixin»

(defmethod (foo :before :hack) ...)
(defmethod (foo :after :hack) ...)

(defmethod (foo-mixin :before :hack) ...)
(defmethod (foo-mixin :after :hack) ...)

(defmethod (bar-mixin :before :hack) ...)
(defmethod (bar-mixin :hack) ...)

(defmethod (foo-base :hack) ...)
(defmethod (foo-base :after :hack) ...)

then the combined method generated looks like this (ignoring many details not
related to this issue):

(defmethod (foo :combined :hack) (&rest args)
(apply #'(:method foo :before :hack) args)
(apply #'(:method foo-mixin :before :hack) args)
(apply #'(:method bar-mixin :before :hack) args)
(multiple-value-prog 1

(apply #'(:method bar-mixin :hack) args)
(apply #'(:method foo-base :after :hack) args)
(apply #'(:method foo-mixin :after :hack) args)
(apply #'(:method foo :after :hack) args)))

This example shows the default style of method combination, the one described
in the introductory parts of this chapter, called :daemon combination. Each
style of method combination defines which method types it allows, and what
they mean. :daemon combination accepts method types :before and :after,
in addition to untyped methods; then it creates a combined method which calls
all the :before methods, only one of the untyped methods, and then all the
:after methods, returning the value of the untyped method. The combined
method is constructed by a function much like a macro's expander function,
and the precise technique used to create the combined method is what gives
:before and :after their meaning.

Note that the :before methods are called in the order foo, foo-mixin, bar
mixin and foo-base. (foo-base does not have a :before method, but if it had
one that one would be last.) This is the standard ordering of the components of
the flavor foo; since it puts the base flavor last, it is called :base-flavor-Iast
ordering. The :after methods are called in the opposite order, in which the
base flavor comes first. This is called :base-flavor-first ordering.

1).01.(12(26-11

Tek COMMON LiSp
Flavors 6-37

Only one of the untyped methods is used; it is the one that comes fIrst in
:base-flavor-/ast ordering. An untyped method used in this way is called a
primary method.

Other styles of method combination defIne their own method types and
have their own ways of combining them. Use of another style of method com
bination is requested with the :method-combination option to defflavor.
Here is an example which uses :list method combination, a style of combina
tion that allows :list methods and untyped methods:

(defflavor foo 0 (foo-mixin faa-base))
(defflavor foo-mixin 0 (bar-mixin))
(defflavor faa-base 0 0

(:method-combination (:Iist :base-flavor-Iast :win)))

(defmethod (faa :list :win) ...)
(defmethod (faa :win) ...)

(defmethod (foo-mixin :Iist :win) ...)

(defmethod (bar-mixin :Iist :win) ...)
(defmethod (bar-mixin :win) ...)

(defmethod (faa-base :win) ...)

;; yielding this combined method

(defmethod (faa :combined :win) (&rest args)
(list (apply #'(:method foo :list :win) args)

(apply #'(:method foo-mixin :list :win) args)
(apply #'(:method bar-mixin :list :win) args)
(apply #'(:method faa :win) args)
(apply #'(:method bar-mixin :win) args)
(apply #'(:method faa-base :win) args)))

The :method-combination option in the defflavor for faa-base causes :list
method combination to be used for the :win operation on all flavors that have
faa-base as a component, including faa. The result is a combined method
which calls all the methods, including all the untyped methods rather than just
one, and makes a list of the values they return. All the :list methods are called
first, followed by all the untyped methods; and within each type, the :base
flavor-last ordering is used as specifIed. If the :method-combination option
said :base-flavor-first, the relative order of the :Iist methods would be
reversed, and so would the untyped methods, but the :list methods would still
be called before the untyped ones. :base-flavor-/ast is more often right, since
it means that faa's own methods are called first and si:vanilla-flavor's methods
(if it has any) are called last.

Tektronix, Inc.
6-38 Flavors

One method type, :default, has a standard meaning independent of the
style of method combination, and can be used with any style.

Here are the standardly defined method combination styles:

:daemon [Method-combination type]

• The default style of method combination. All the :before methods are
called, then the primary (untyped) method for the outermost flavor that
has one is called, then all the :after methods are called. The value
returned is the value of the primary method.

:daemon-with-or [Method-combination type]

• Like the :daemon method combination style, except that the primary
method is wrapped in an :or special form with all :or methods. Multiple
values can be returned from the primary method, but not from the :or
methods (as in the or special form). This produces combined methods
like the following:

(progn
(foo-before-method)
(multiple-value-prog 1

(or (foo-or-method)
(foo-primary-method))

(foo-after -method)))

This is useful primarily for flavors in which a mixin introduces an alterna
tive to the primary method. Each :or method gets a chance to run before
the primary method and to decide whether the primary method should be
run or not; if any :or method returns a non-nil value, the primary method
is notrun (nor are the rest of the :or methods). Note that the ordering of
the combination of the :or methods is controlled by the order keyword in
the :method-combination option.

:daemon-with-and [Method-combination type]

• Like :daemon-with-or except that it combines :and methods in an
and special form. The primary method is run only if all of the :and
methods return non-nil values.

:daemon-with-override [Method-combination type]

• Like the :daemon method combination style, except an or special
form is wrapped around the entire combined method with all :override
typed methods before the combined method. This differs from :daemon
with-or in that the :before and :after daemons are run only if none of the
:override methods returns non-nil. The combined method looks some
thing like this:

D-OI-=6-II·

86)

(or (foo-override-method)
(progn

(foo-before-method)
(multiple-value-prog 1

(foo-primary-method)
(foo-after-method))))

Tek COMMON liSp
Flavors 6-39

:progn [Method-combination type]

:or

• Calls all the methods inside a progn special form. Only untyped and
:progn methods are allowed. The combined method calls all the :progn
methods and then all the untyped methods. The result of the combined
method is whatever the last of the methods returns.

[Method-combination type]

• Calls all the methods inside an or special form. This means that each
of the methods is called in turn. Only untyped methods and :or methods
are allowed; the :or methods are called fIrst. If a method returns a non-nil
value, that value is returned and none of the rest of the methods are called;
otherwise, the next method is called. In other words, each method is
given a chance to handle the message; if it doesn't want to handle the
message, it can return nil, and the next method gets a chance to try.

:and [Method-combination type]

• Calls all the methods inside an and special form. Only untyped
methods and :and methods are allowed. The basic idea is much like :or;
see above.

:append [Method-combination type]

• Calls all the methods and appends the values together. Only untyped
methods and :append methods are allowed; the :append methods are
called fIrst.

:nconc [Method-combination type]

:list

• Calls all the methods and ncones the values together. Only untyped
methods and :nconc methods are allowed, etc.

[Method-combination type]

• Calls all the methods and returns a list of their returned values. Only
untyped methods and :list methods are allowed, etc.

Tektronix, Inc.
6-40 Flavors

:inverse-list [Method-combination type]

• Calls each method with one argument; these arguments are successive
elements of the list that is the sole argument to the operation. Returns no
particular value. Only untyped methods and :inverse-list methods are
allowed, etc.
o If the result of a :list-combined operation is sent back with an
:inverse-list -combined operation, with the same ordering and with
corresponding method definitions, each component flavor receives the
value that came from that flavor.

:pass-on [Method-combination type]

• NOTE: :pass-on method combination is not yet implemented in Tek
COMMON LISP.

• Calls each method on the values returned by the preceding one. The
values returned by the combined method are those of the outermost call.
The format of the declaration in the defflavor is:

(:method-combination
(:pass-on (ordering. arglist)

operation-names»

where ordering is :base-flavor-first or :base-flavor-Iast. argljst may
include the &aux and &optional keywords.
o Only untyped methods and :pass-on methods are allowed. The
:pass-on methods are called first.

:case [Method-combination type]

• With :case method combination, the combined method automatically
does a caseq dispatch on the first argument of the operation, known as
the suboperation. Methods of type :case can be used, and each one
specifies one suboperation that it applies to. If no :case method matches
the suboperation, the primary method, if any, is called.

(defflavor foo (a b) 0
(:method-combination (:case :base-flavor-Iast :win)))

(defmethod (foo :case :win :a) 0
;; This method handles (send a-foo :win :a):
a)

(defmethod (foo :case :win :a*b) 0
;; This method handles (send a-foo :win :a*b):
(* a b»

(defmethod (foo :win) (suboperation)

-86)

;; This method handles
;; (send a-foo :win :something-else):
(list 'something-random suboperation))

Tek COMMON LIsp
Flavors 6-41

:case methods are unusual in that one flavor can have many :case
methods for the same operation, as long as they are for different subopera
tions.
o The suboperations :which-operations, :operation-handled-p,
:send-if-handles and :get-handler-for are all handled automatically
based on the collection of :case methods that are present.
• NOTE: :send-if-handles and :get-handler-for are presently unimple
mented in Tek COMMON LIsp.
o Methods of type :or are also allowed. They are called just before the
primary method, and if one of them returns a non-nil value, that is the
value of the operation, and no more methods are called.

Here is a list of all the method types recognized by the standard styles of
method combination:

no method type [Method type]

• If no type is given to defmethod, a primary method is created.
This is the most common type of method.

:before
:after

[Method type]
[Method type]

• These are used for the before-daemon and after-daemon methods
used by :daemon method combination.

:default [Method type].

:or

• If there are no untyped methods among any of the flavors being
combined, then the :default methods (if any) are treated as if they
were untyped. If there are any untyped methods, the :default
methods are ignored.
o Typically a base-flavor defines some default methods for certain
of the operations understood by its family. When using the default
kind of method combination these default methods are suppressed if
another component provides a primary method.

:and
[Method type]
[Method type]

• These are used for :daemon-with-or and :daemon-with-and
method combination. The :or methods are wrapped in an or, or the
:and methods are wrapped in an and, together with the primary

Tektronix, Inc.
6-42 Flavors

method, between the :before and :after methods.

:override [Method type]

:or

• Allows the features of :or method combination to be used
together with daemons. If you specify :daemon-with-override
method combination, you may use :override methods. The :over
ride methods are executed fIrst, until one of them returns non-nil. If
this happens, that method's value(s) are returned and no more
methods are used. If all the :override methods return nil, the
:before, primary and :after methods are executed as usual. .
o In typical usages of this feature, the :override method usually
returns nil and does nothing, but in exceptional circumstances it takes
over the handling of the operation.

:and
[Method type]
[Method type]
[Method type]
[Method type]
[Method type]
[Method type]
[Method type]
[Method type]

:progn
:list
:inverse-list
:pass-on
:append
:nconc

• Each of these methods types is allowed in the method combina
tion style of the same name. In those method combination styles,
these typed methods work just like untyped ones, but all the typed
methods are called before all the untyped ones. These method types
can be used with any method combination style; they have standard
meanings independent of the method combination style being used.

:wrapper [Method type]

• This is used internally by defwrapper.

:combined [Method type]

• This is used internally for automatically-generated combined
methods.

The most common form of combination is :daemon. One thing may not be
clear: when do you use a :before daemon and when do you use an :after
daemon? In some cases the primary method performs a clearly-defIned action
and the choice is obvious: :before :Iaunch-rocket puts in the fuel, and :after
:Iaunch-rocket turns on the radar tracking.

In other cases the choice can be less obvious. Consider the :init message,
which is sent to a newly-created object. To decide what kind of daemon to use,

D.Ql.(l2(2t\.1

'6)

Tek COMMON LISp
Flavors 6-43

we observe the order in which daemon methods are called. First the :before
daemon of the instantiated flavor is called, then :before daemons of succes
sively more basic flavors are called, and finally the :before daemon (if any) of
the base flavor is called. Then the primary method is called. After that, the
:after daemon for the base flavor is called, followed by the :after daemons at
successively less basic flavors.

Now, if there is no interaction among all these methods, if their actions
are completely independent, then it doesn't matter whether you use a :before
daemon or an :after daemon. There is a difference if there is some interaction.
The interaction we are talking about is usually done through instance variables;
in general, instance variables are how the methods of different component fla
vors communicate with each other. In the case of the :init operation, the init
plist can be used as well. The important thing to remember is that no method
knows beforehand which other flavors have been mixed in to form this flavor;
a method cannot make any assumptions about how this flavor has been com
bined, and in what order the various components are mixed.

This means that when a :before daemon has run, it must assume that none
of the methods for this operation have run yet. But the :after daemon knows
that the :before daemon for each of the other flavors has run. So if one flavor
wants to convey information to the other, the fIrst one should transmit the
information in a :before daemon, and the second one should receive it in an
:after daemon. So while the :before daemons are run, information is transmit
ted; that is, instance variables get set up. Then, when the :after daemons are
run, they can look at the instance variables and act on their values.

In the case of the :init method, the :before daemons typically set up
instance variables of the object based on the init-plist, while the :after daemons
actually do things, relying on the fact that all of the instance variables have
been initialized by the time they are called.

The problems become most difficult when you are creating a network of
instances of various flavors that are supposed to point to each other. For exam
ple, suppose you have flavors for buffers and stre.ams, and each buffer should
be accompanied by a stream. If you create the stream in the :before :init
method for buffers, you can inform the stream of its corresponding buffer with
an init keyword, but the stream may try sending messages back to the buffer,
which is not yet ready to be used. If you create the stream in the :after :init
method for buffers, there will be no problem with stream creation, but some
other :after :inif methods of other mixins may have run and made the assump
tion that there is to be no stream. The only way to guarantee success is to
create the stream in a :before method and inform it of its associated buffer by
sending it a message from the buffer's :after :init method. This scheme
creating associated objects in :before methods but linking them up in :after
methods--often avoids problems, because all the various associated objects
used by various mixins at least exist when it is time to make other objects point
to them.

Tektronix, Inc.
6-44 Flavors

6.12
Implementing
flavors

Since flavors are not hierarchically organized, the notion of levels of
abstraction is not rigidly applicable. However, it remains a useful way of
thinking about systems.

An object that is an instance of a flavor is implemented as a hidden data type
similar to a simple vector. The zeroth slot points to a flavor descriptor, and
successive slots of the vector store the instance variables. Sometimes, for
debugging, it is useful to know that svref is legal on an instance. However, it is
of course a violation of the implicit contract with a flavor to use this fact in real
code.

Aflavor descriptor is a defstruct of type flavors::flavor. It is also stored on
the flavors::flavor property of the flavor name. It contains, among other things,
the name of the flavor, the size of an instance, the table of methods for han
dling operations, and information for accessing the instance variables. The
function (describe-flavor flavor-name) will print much of this information in
readable format. deftlavor creates aflavor-descriptor for each flavor and links
them together according to the dependency relationships between flavors.
Much of the information stored there, of course, is not computed until flavor
combination time.

A message is sent to an instance simply by calling it as a function, with
the fIrst argument being the operation. The evaluator looks up the operation in
the dispatch hash table stored in the flavor descriptor for that flavor and obtains
a handler function and a mapping table. It then binds self to the object,
si::self-mapping-table to the mapping table. Finally, the handler function is
called. If there is only one method to be invoked, the handler function is that
method; otherwise it is an automatically-generated function, called the com
bined method, which calls the component methods appropriately. If there are
wrappers, they are incorporated into the combined method.

The code body of each method function knows only about the instance
variables declared for .its flavor, and this set of instance variables is known
when the defming defmethod is evaluated. However, the location of these
instance variables within an instance of an arbitrary flavor containing that fla
vor is not known until flavor-combination time. The mapping table is used by
a method to map the set of instance variables it knows about into slot offsets
within self. If all the component methods invoked by the combined method
derive from a single flavor, the mapping table obtained from the method
dispatch hash table is a simple vector of slot numbers. If methods from more
than one component flavor are invoked from the combined method, then the
mapping table is an alist mapping each component flavor to its appropriate
component mapping table, and the combined method takes care of binding
si:self-mapping-table appropriately before calling each component.

For both interpreted and compiled methods in Tek COMMON LISP all
instance variables are lexical scoped within the body of the method. (This is
different from the FRANZ LISP implementation, in which the interpreter cannot

D-OI.QZ(26-1l

Tek COMMON LiSp
Flavors 6-45

implement lexical scoping.)

There is a certain amount of freedom to the order in which you do defflavors,
defmethods, and defwrappers. This freedom is designed to make it easy to
load programs containing complex flavor structures without having to do
things in a certain order. It is considered important that not all the methods for
a flavor need be defined in the same file. Thus the partitioning of a program
into files can be along modular lines.

The rules for the order of definition are as follows.
Before a method can be defined (with defmethod or defwrapper) its fla

vor must have been defined (with defflavor). This makes sense because the
system has to have a place to remember the method, and because it has to know
the instance-variables of the flavor if the method is to be compiled.

When a flavor is defined (with defflavor) it is not necessary that all of its
component flavors be defined already. This is to allow defflavors to be spread
between files according to the modularity of a program, and to provide for
mutually-dependent flavors. Methods can be defined for a flavor some of
whose component flavors are not yet defined; however, compilation of a
method which refers to instance variables inherited from a flavor not yet
defined, and not mentioned in a :required-instance-variable clause, will pro
duce a compiler warning that the variable was declared special (because the
system did not realize it was an instance variable). If this happens, you should
fix the problem and recompile. It may be sufficient just to change the order in
which the flavors are defined, but considerations of modularity, clarity, and self
documentation make it far preferable to insert :required-instance-variable
clauses.

The methods automatically generated by the :gettable-instance
variables, :settable-instance-variables, and :outside-accessible
instance-variables defflavor options are generated at the time the defflavor
is done.

The first time a flavor is instantiated, or when compile-flavor-methods is
done, the system looks through all of the component flavors and gathers vari
ous information. At this point an error is signaled if not all of the components
have been defflavored. This is also the time at which certain other errors are
detected, such as the lack of a required instance-variable (see the :required
instance-variables option to defflavor). The ordered set of instance variables
is determined and their slots assigned within an instance. The combined
methods are generated unless they already exist and are correct. The flavor
system tries very hard never to redefun a combined method unless its contents
actually must change.

After a flavor has been instantiated, it is possible to make changes to it.
Such changes affect all existing instances if possible. This is described more
fully immediately below.

6.12.1
Order of

definition

Tektronix, Inc.
6-46 Flavors

6.12.2
Changing a
flavor

6.13
Property list
operations

You can change anything about a flavor at any time. You can change the
flavor's general attributes by doing another defflavor with the same name.
You can add or modify methods by doing defmethods. If you do a def
method with the same flavor-name, operation (and sub operation if any), and
(optional) method-type as an existing method, that method is replaced by the
new definition.

These changes always propagate to all flavors that depend upon the
changed flavor. Normally the system propagates the changes to all existing
instances of the changed flavor and its dependent flavors. However, this is not
possible when the flavor has been changed in such a way that the old instances
would not work properly with the new flavor. This happens if you change the
number of instance variables, which changes the size of an instance. It also
happens if you change the order of the instance variables (and hence the
storage layout of an instance), or if you change the component flavors (which
can change several subtle aspects of an instance). The system does not keep a
list of all the instances of each flavor, so it cannot find the instances and
modify them to conform to the new flavor definition. Instead it gives you a
warning message to the effect that the flavor was changed incompatibly and the
old instances will not get the new version. The system leaves the old flavor
data-structure intact (the old instances continue to point at it) and makes a new
one to contain the new version of the flavor. If a less drastic change is made,
the system modifies the original flavor data-structure, thus affecting the old
instances that point at it. However, if you redefine methods in such a way that
they only work for the new version of the flavor, then trying to use those
methods with the old instances won't work.

It is often useful to associate a property list with an abstract object, for the
same reasons that it is useful to have a property list associated with a symbol.
This section describes a rnixin flavor, si:property-list-mixin, that can be used as
a component of any new flavor in order to provide that new flavor with a pro
perty list. For more details and examples, see the general discussion of pro
perty lists. The usual property list functionalities (get, putprop, etc.) are
obtained by sending the instance the corresponding message. The contents of
the property list can be initialized by providing a :property-Iist init option on
the init-plist given to instantiate-flavor.

si :property-Iist-m ixin [Flavor]

• This mixin flavor provides the basic operations on property lists.

:get property-name [Message]

• Looks up the object's property-name property.

86)

Tek COMMON LiSp
Flavors 6-47

:getl property-name-list [Message]

• Like the :get operation, except that the argument is a list of property
names. The :getl operation searches down the property list until it finds a
property whose property name is one of the elements of property-name
list. It returns the portion of the property list beginning with the fIrst such
property that it found. If it doesn't find any, it returns nil.

:putprop value property-name [Message]

• Gives the object a property-name property of value.

:remprop property-name [Message]

• Removes the object's property-name property, by splicing it out of the
property list. It returns one of the cells spliced out, whose car is the
former value of the property that was just removed. If there was no such
property to begin with, the value is nil.

:push-properlyvalueproperly-name [Message]

• The property-name property of the object should be a list (note that nil
is a list and an absent property is nil). This operation sets the property
name property of the object to a list whose car is value and whose cdr is
the former property-name property of the list This is analogous to doing

(push value (get object property-name»

:properly-list [Message]

• RETURNS the list of alternating property names and values that imple
ments the property list.

. :set-properly-Iist list [Message]

• Sets the list of alternating property names and values that implements
the property list to list.

There are no built-in techniques to copy instances because there are too many
questions raised about what should be copied. These include:

• Do you or do you not send an :init message to the new instance? If you
do, what init-plist options do you supply?

• If the instance has a property list, you should copy the property list (e.g.
with copylist) so that putprop or remprop on one of the instances does
not affect the properties of the other instance.

• If the instance is a port connected to a network, some of the instance vari
ables represent an agent in another host elsewhere in the network. Should

6.14
Copying

instances

Tektronix, Inc.
6-48 Flavors

the copy talk to the same agent, or should a new agent be constructed for
it?

• If the instance is a port connected to a fIle, should copying the stream
make a copy of the file or should it make another stream open to the same
fIle? Should the choice depend on whether the fIle is open for input or for
output?

In general, you can see that in order to copy an instance one must understand a
lot about the instance. One must know what the instance variables mean so
that the values of the instance variables can be copied if necessary. One must
understand what relations to the external environment the instance has so that
new relations can be established for the new instance. One must even under
stand what the general concept 'copy' means in the context of this particular
instance, and whether it means anything at all.

Copying is a generic operation, whose implementation for a particular
instance depends on detailed knowledge relating to that instance. Modularity
dictates that this knowledge be contained in the instance's flavor, not in a
general copying function. Thus the way to copy an instance is to send it a
message, as in (send object :copy). It is up to you to implement the operation
in a suitable fashion, such as

(defflavor foo (a b c) 0
(:initable-instance-variables a b»

(defmethod (foo :copy) 0
(make-instance 'foo :a a :b b»

The flavor system chooses not to provide any default method for copying
an instance, and does not even suggest a standard name for the copying
message, because copying involves so many semantic issues.

If a flavor supports the :reconstruction-init-plist operation, a suitable
copy can be made by invoking this operation and passing the result to make
instance along with the flavor name. This is because the definition of what
the :reconstruction-init-plisf operation should do requires it to address all the
problems listed above. Implementing this operation is up to you, and so is
making sure that the flavor implements sufficient init keywords to transmit any
information that is to be copied.

7 Profiling

7 Profiling

In order to speed up a large LISP program it is first necessary to determine the
parts of the program where most of the time is being spent. Tek COMMON LISP
automatically counts the number of times each function is called. This infor
mation, along with the programmer's knowledge of which functions are large
and/or time consuming, will pinpoint the parts of the program that should be
optimized.

The code for recording function call counts is very small and fast (just one
machine instruction per function call) thus for most applications it makes sense
to permit function call counting to occur. However for certain time critical
highly recursive functions, it may be desireable to instruct the compiler to omit
the the function call counting code for certain functions. This can be done by
setting the variable compiler:*do-call-counts* to nil before compiling the func
tion. Or the variable compiler:generate-call-count-switch can be modified so
call counts are generated depending on user settings of speed and safety. See
§2.4.2, Declarations and optimizations under The compiler. The code which
does the counting is compiled into the compiled functions and thus can be
turned on or off on a function by function basis. The system code always does
call counting. All the profiling functions are exported from excl package. (See
Chapter 9.)

excl :function-call-report &optional number-to-report [Function]

• For all interned symbols with compiled function definitions, gather
information on the number of times they have been called since the last
function call report, and clear the call counts at the same time. Then sort
the functions in descending order of number of times called and print the
function call information on the most called functions. The optional argu
ment, number-to-report, determines how many functions are printed.
number-to-report defaults to 50. Functions which are anonymous (not
associated with any interned symbol) will be omitted from this list.

excl:function-call-list [Function]

• This function returns a list of all the functions which were called at
least once and their call counts, and it clears the call counts. The form of
each list entry is (number-ot-calls . function-name). The list is sorted in
descending order of number-of-calls.

7-1

Tektronix, Inc.
7-2 Profiling

excl :function-call-clear [Function]

• Clear the call counts for all functions.

excl :function-call-count function [Function]

• Return the number of times function has been called. function can
either be a compiled function object or a symbol with a compiled function
object as its function definition.

excl :get-and-zero-call-count function [Function]

• Return the number of times the function has been called and zero the
call count. function can either be a compiled function object or a symbol
with a compiled function object as its function definition.

compiler:*do-call-counts* [Variable]

• If non-nil, then when the compiler compiles a function it will add code
to maintain a call count.

8 Foreign functions

8.1 Loading foreign code 8-2
8.1.1 The loader 8-2
8.1.2 Loading library functions 8-3

8.2 Load errors 8-3
8.3 Defining a foreign function to lisp 8-5
8.4 Conventions for passing arguments 8-9
8.5 Passing arrays of strings from lisp to C 8-12
8.6 Defining and calling LIsp functions from foreign code 8-14
8.7 How foreign-called lisp functions get arguments 8-17
8.8 C structures 8-20

8.8.1 Accessing slots 8-22
8.8.2 Storage allocation for cstructs 8-22
8.8.3 Allocating and freeing cstructs 8-23
8.8.4 Pointers, embedded structures, and arrays 8-24
8.8.5 Portability issues 8-26

8.9 Argument-passing synopsis 8-26

8 Foreign functions

The foreign-function interface allows one to dynamically load compiled
foreign code into a running LiSp. Foreign code is defined to be code written in
C The foreign-function interface allows users to load compiled code written in
a foreign language into a running LIsP, execute it from within LISP, call LiSp
functions from within the foreign code, return to LiSp and pass data back and
forth between LiSp and the foreign code.

This mechanism is very powerful, as programs need not be recoded into
LISP to use them. Another advantage arises during program development. For
example, a large graphics library can be loaded into LiSp and all the functions
will be accessible interactively. This enables rapid prototyping of systems that
use the library functions, since the powerful LISP debugging and development
environment is now available.

The foreign code may be in either relocatable object (.r) files or in
libraries made with the libgen command. Anyone such file may contain many
foreign functions or procedures. This chapter describes all aspects of the
foreign-function interface. Sections 8.1 and 8.2 document the dynamic loader
that adds foreign code into a running LiSp. Sections 8.3 through 8.5 describe
how to call foreign functions from within LISP. Section 8.6 explains how to
handle signals in C code called by LISP. Sections 8.7 and 8.8 describe how to
call back to LiSp functions from foreign code. Section 8.9 documents the
cstructs facility for defining C structures in LiSp.

The interface currently supports only C. The foreign-function interface in
LiSp is in the package foreign-functions, nicknamed ff. (Note that you must
either use the package qualifier ff: before foreign-function interface symbols, or
'use' the package

(use-package 'ff)

before using the interface.
It is important to note that the foreign-function interface was designed for

the C compilers on the system at the time of the release of this version of Tek
COMMON LISP. New versions of the C compilers may, for purposes of using
the foreign-function interface, be incompatible with the version current when
the interface was written. In that case, it is possible that already written and
compiled LiSp code may cease to work, and that, for a time, the interface may
fail altogether. Tektronix will maintain the foreign-function interface, and
make it compatible with each new release of the system compilers. We cannot
guarantee, however, that already compiled code will continue to work in the

8-1

Tektronix, Inc.
8-2 Foreign functions

8.1
Loading
foreign code

R1.1
The loader

presence of changes in the C compilers.

LISp uses the operating system loader to load files containing compiled foreign
code and/or libraries. Anyone file may contain many foreign functions or pro
cedures. Once a piece of foreign code has been loaded into the running LISp
process, it need never be loaded again.

Foreign code is loaded in by the function load. If there is only one file to be
loaded with a .r extension, then you use load in the same way it is used to load
LISP files. There are two added keywords for multiple files or for libraries.

load filename &key :foreign-files :system-Iibraries [Function}

• If load succeeds, the return value is t. If load fails, the return value is
nil. Reasons for the loader to fail include an incorrect file name, or an
external reference multiply defined in one or more of the files and in the
LISP symbol table. Loader error messages are output to standard output.

:foreign-files (extra-file+) [Keyword}

• This keyword specifies a list of names of additional files. The
filename argument to the load function and each extra-file are han
dled slightly differently (for unavoidable system reasons). The -
filename argument is converted to a pathname, and merged with each
element of the search list system:*/oad-search-Iist* until a file is
located. This is identical to what the load function does with LISP
files. However, each extra-file specified with the :foreign-files key
word is not handled this way--each name is passed on to the loader
verbatim. The loader executes in the current directory, therefore
each extra-file will be interpreted relative to the current directory
(which need not be in the load search list).
o If there are several files, they can all be included in the list speci
fied by the :foreign-files keyword, but then the initial argument to
load must be the empty string ''''.

:system-Iibraries (Iibrary+) [Keyword}

• This keyword specifies the system libraries. By default this list of
libraries always contains the C run-time library, so do not specify this
library. Loaders usually use an abbreviation for system libraries; you
must use the same abbreviation. See the ld command in the Unix
User's Manual for an explanation of the system libraries and their
abbreviations. For example, the abbreviation for the math library is

0-0102(::-1

Tek COMMON LiSp
Foreign functions 8-3

mathlib so to include this library, you include m in the library list.
o For example, if you have two files lusrlmymod2.r and mymodl.r,
which use a graphics library, mylib and the system math library, load
this foreign code into LISp using:

(load "mymod1.r II

:foreign-files '("/usr/mymod2.r" n+lmylib")
:system-libraries '("mathlib"))

o Note that mylib will be searched for unresolved entry points
before the math library. The loader searches the libraries for
unresolved external references found in the .r files and does not load
any other code from the libraries.

To load a library function, one need only make a .r file with the function refer
ence and load it. Here is an example.

Say you wish to load the system function cryptO, found in the standard C
library. Create a C file (say cnames.c) containing the following.

dummy ()

{

/* The dummy function does not */
/* do anything except contain */
/* the reference to the C library */
/* function crypt */

crypt () ; /* refer to crypt */

Compile it to cnames.r and load this file into LISp using

(load "cnames.o")

Since the C run-time library is searched automatically, it is not specified. (See
the Unix User's Manual for the functions available in the C run-time library).

The most common load error arises when the foreign code has an entry point
name duplicating one already present in LISp. The entry point name must be
removed before the foreign code will successfully load. ~ While each foreign
function name corresponds to an entry point name, a foreign function with the
same name as a LISp function name causes no name conflict.

Entry point names are usually system dependent variations on the name of
the function in the foreign source code. On the Tektronix, C externals and func
tion names are turned into entry point names by prepending an underscore. the
following function produces the correct entry point name.

8.1.2
Loading

library
functions

8.2
Load errors

Tektronix, Inc.
8-4 Foreign functions

ff:convert-to-Iang string &key :Ianguage [Function]

• This function takes the string arguments and returns a string of the
correct form for the system. The keyword :Ianguage is either :c or :'or
fran, with the default being :c.

Remove name conflicts between foreign entry points and LISp internal
entry points with the utility function

ff:remove-entry-point name-of-entry-point [Function]

• This function removes the entry point name in a running LISP. It
returns t if it successfully finds and removes the entry point name, other
wise it returns nil.

For example, suppose you have a foreign function named curpgmname. As it
happens, a C function named curpgmname is loaded with the initial LISp sys
tem. All references to that curpgmname in already loaded code have already
been resolved into absolute addresses, so removing the entry point will not
affect that code. (Code loaded after removing the entry point will not, how
ever, find the original curpgmname.) Prior to loading in your foreign code,
give the command:

(remove-entry-point {convert-to-Iang "curpgmname"m

and then load your code. You can find out whether an entry point is present in
LISP without going through the load step by using the function

ff:get-entry-points name-list address-list &optional print [Function]

• This function takes a vector of names, each a string, and finds the
memory address of each name inside the running LISp process. The
address of the ith name is put in the ith position of address-list, which
must be of type {simple-array (unsigned-byte 32) (*)). If a name is not
found, the address is filled with value sys::*impossible-Ioad-address*.
The function returns the number of unmatched names in the name-list.
The print argument is a Boolean variable (default nil), which, if t, will
print useful information to the standard output.

If you need to wipe out all the entry-point names for all previously loaded
foreign code and start afresh, you should use the function

ff:reset-entry-point-table [Function]

• This function has no arguments and restores the list of all entry-point
names to be the same as when the LISp process started. All foreign code
is still present and any LISp functions already defined for that foreign code
will still work.

0.01-0'2(2-L

Tek COMMON LiSp
Foreign functions 8-5

Once the foreign code is loaded, the calling convention to invoke the foreign
function must be specified to LISP. This includes specifying:

1 The name of the function in LISP;
2 The name (or entry point) of the function in the compiled foreign code (if

not specified, a default name depending on the LISP name and the foreign
language is used);

3 The arguments that the foreign function expects, the passing convention
for each argument, and whether argument checking should be turned on or
off;

4 The type of the return value of the foreign function;

Foreign functions that are called by other foreign functions but not by LISP
need not be specified to LiSp.

Defining a foreign function to LIsp is the job of the LISp function
ff:defforeign. Before showing it in its full generality, we give an example.
Say we have the following C function:

int add2(x, y)
int x, y;

return x+y;

compiled in the file Then the following LISP session loads and runs this func
tion, returning the sum.

<cl> (l.oad "add2.rn)

;; load the foreign code into LISP
T
<cl> (defforeign 'add2 :arquments ' (fixnum fixnum)

:return-type :inteqer}
;; return a LISP integer

T

<cl> (add2 3 5)
;; invoke the foreign function

8

(The LISp type [unum is used instead of integer in specifying the arguments
since a LIsp integer can be a bignum, which can be larger than the biggest pos
sible C integer.) In this example there are many default values in the function
ff:defforeign. For example, no argument checking was specified and it
defaulted to t. Function ff:defforeign is next presented in full generality.

8.3
Defining a

foreign
function to

LiSp

Tektronix, Inc.
8-6 Foreign functions

ff:defforeign lisp-name &key :entry-point :arguments :pass- [Function]
type :arg-checking :return-type :Ianguage :print
:converf-symbol :address :remember-address

• This function defines the calling convention which allows LISp to call
a foreign function correctly, passing arguments of the correct type, and
interpreting the returned value correctly. lisp-name is the name by which
LISP will refer to the foreign function.
o The following are the keyword arguments to ff:defforeign.

:entry-point foreign-name [Keyword]

• This keyword's value foreign-name is the name of the entry point
as found in the compiled foreign code. In general, this will be lisp
name converted to follow the conventions of the language and the
system, so this defaults to

(convert-symbol lisp-name)

where convert-symbol is the conversion function given in the key
word argument :convert-symbol described below.

:arguments (argument-type+) [Keyword]

• This specifies the arguments that will be passed to the forreign
function. Its value must be a list of valid LISP types (e.g. the expres
sions integer, string, (simple-array double-float), etc.), or t, which
converts arguments according to their type, whatever they are, or nil,
which means no arguments. Valid types are given in Tables 8.1 and
8.2 at the end of this chapter. Defaults to t.

:pass-type (passing-convention+) [Keyword]

• This keyword specifies the passing convention of each argument.
The choices are pass by address (FORTRAN style) and pass by value
(C style). The default is the style of the language specified, so users
will rarely have to use this keyword. If the C code passes arguments
by address, however, then this keyword should be used and its value
should be a list of the same length as the argument list with elements
:by-value if the corresponding argument is passed by value and :by
address if it is passed by address.

:arg-checking boolean [Keyword]

• This argument defaults to t, in which case LISP will check that the
arguments passed through to the foreign function are of the types
specified in :arguments. Ignored if :arguments is t.

D·OI-02(2 12·1

: return-type return-type

Tek COMMON LiSp
Foreign functions 8-7

[Keyword]

• The value of return-type must be one of the keywords :integer,
:fixnum, :single-float, :double-float, :characfer, :void, which
indicates no value is returned, or :lisp, which indicates a lisp value is
returned (normally used only if a C program returns a value accessed
by the C library routine lisp_value()). Defaults to :integer.

:Ianguage language-name [Keyword]

• This keyword is included to facilitate possible extensions to
languages other than C. The only allowable value is keyword :c.
which is also the default. Ignored if :enfry-point is specified.

:print boolean [Keyword]

• If t, information useful for debugging will be printed to
terminal-io. Defaults to nil.

:convert-symbol conversion-function [Keyword]

• This keyword's value conversion-function is the name of the func
tion that does the conversion of the lisp name to an entry-point name.
The function must take as arguments a symbol and the keyword
:Ianguage, and must return a string recognizable to the operating
system as an entry-point name. Default is ff:convert-to-Iang defined
above.

:address entry-point-address [Keyword]

• The entry-point-address may be supplied as the in-memory
address of the entry point instead of the entry-point name. Normally
not used and ignored if :entry-point is specified. This argument
must be of type (simple-array (unsigned-byte 32) (1)) (a one-element
simple array of 32-bit integers) containing the in-memory address of
the entry-point.

:remember-address boolean [Keyword]

• If set to t, the in-core memory address of the foreign function is
saved on the property list of lisp-name as the value of property
ff::foreign-addr. Default is nil.

Function ff:defforeign returns a function lisp-name, which passes its argu
ments through to the foreign code and returns the return-value of the foreign
function to LISp. The passing convention depends on the type of argument and
the language. For example, C normally expects its arguments to be passed by
value, FORTRAN expects arguments to be passed by address. Tables 8.1 and

Tektronix, Inc.
8-8 Foreign functions

8.2 describe exactly how arguments are passed.
Identifying a foreign function involves a very slow library function. To

avoid this wait when defining many foreign functions, the LISP function
defforeign-list is provided. This takes as one argument a list of lists of the
arguments normally passed to ff:defforeign and returns the number of unsuc
cessfully defined foreign functions.

ff:defforeign-list (arg-list+)

• This function is equivalent to (but faster than) the LISP form:

(do «list list-of-arg-Iists (cdr list)))
«null list»

(apply #'defforeign (car list)))

[Macro]

We give some examples. Consider a C function that adds three numbers and
returns a double.

#include <stdio.h>
double t_double(x, y, z)

double x;

{

float y;
int z;

double w;
w = x + y + z;
return w;

Say this is in a compiled C file test.r. Here is that test.r being loaded into LISP.

<cl> (use-packaqe 'ff)

T
<cl>

;; use foreign function package

; Foreign loading /a/cl-ff/test.r.
T
<cl> (defforeiqn

't-doubl.e

T

:entry-point (convert-to-l.anq
"t doubl.e"
: l.anquaqe : c)

:return-type :doubl.e-fl.oat
:arquments ' (doubl.e-fl.oat sinql.e-fl.oat

fixnum))

<cl> (t-doubl.e 2.5dO 4.5 3)
lO.OdO

D·0l·O:'~·12

Tek COMMON LiSp
Foreign functions 8-9

If you want to live dangerously and speed up the calling procedure, set :arg
checking to nil in the ff:defforeign form. Then, no argument checking is
done and the call to t_doubleO is faster. But, if there are errors passing argu
ments, the LISP process may fail mysteriously and unreproducibly. For exam
ple, with :arg-checking set to nil, the call

(t-double 0 4.5 3)

is likely to result in a bus error or a memory fault, causing a LISP error.
To illustrate the use of the :converf-symbol keyword, you could define

the above function t-double by using:

(defun dash-to-underscore
(symbol &key (language :c»

(let ((str (convert-to-Iang
symbol :Ianguage language)))

(dotimes (n (length str»
(if (eql (aref str n) #\-)

(setf (aref str n) #'0»
str»

followed by:

(defforeign 't-double
:return-type :double-float
:arguments '(double-float single-float

fixnum)
:convert-symbol 'dash-to-underscore)

This takes the symbol t-double and converts it to the entry-point name
corresponding to the function call in C given as t_doubleO.

Arguments to function calls can be passed in two ways, by value and by
address. When an argument is passed by value, a copy of the value is placed
somewhere (typically on the stack) where the function can access it. When an
argument is passed by address, a pointer to its actual location is given to the
function. Arguments in C are usually (but not always) passed by value.

When an argument is passed by address in C and the called function
changes the value of the argument, the argument will stay changed even after
control returns from the called function. The actual stored value of the argu
ment will have been permanently modified. This is expected behavior and is
generally what is intended and desired. Users therefore should be warned that
in many cases, when LISp code calls a foreign function that modifies one of the
arguments passed by address, the LISp value of that argument will be
unchanged. The reason is that LISP represents objects differently from C and,

8.4
Conventions

for passing
arguments

Tektronix, Inc.
8-10 Foreign functions

therefore, cannot pass the actual address of the LISP object to the foreign code,
since the foreign code would not correctly interpret the value pointed to.
Instead, LISP makes a copy of the LISp object, changing the representation
appropriately, and passes the address of the copy. Although this copied value
is modified by the foreign code, LISP ignores the copied value after the func
tion returns, looking only at the unmodified LISP object.

To repeat the above warning: functions which receive their values by
address do not always affect the value of a LISp object when this is passed to
the function. The following example illustrates this behavior. Say we have the
C file cnames.c containing the function itimes2{).

itimes2(x)
int *x;
{

x = 2(*x);
return (*x);

which appears to double the C integer value stored in the location x. If we
compile and load this file into LISP, then run this function, as in the following
session:

<cl> (load "cnames.r lf)

T
<cl> (defforeign 'itimes2 :arquments '(fixnum)

:pass-type : by-address)
;; send in a fixnum, but pass by address

T
<cl> (setq x 19)
19
<cl> (itimes2 x)

" gives 38 as expected
38
<cl> x

" but x is unchanged
19

The problem is that a LISp [unum is not the same as a C integer, and thus the
foreign-function interface must convert it. It copies the LISp fixnum, converts
it to a C integer, and then passes the address of the converted copy to the func
tion. The expected behavior can be achieved by passing an array instead of a
fixnum.

D-01·02(2-1

<cl> (defforeiqn
'itimes2

T

:arguments ' «simp1e-array fixnum (1»)
:pass-type :by-va1ue)

<cl> (setq x (make-array 1

4/: (19)

:e1ement-type 'fixnum
:initia1-e1ement 19»

<cl> (itimes2 x)

38
<cl> x

(38)

gives 38 as expected

as does x

Tek COMMON Lisp
Foreign functions 8-11

So some LISP objects cannot be changed by passing them to foreign functions,
and some can.

Another difficulty arising out of differing Lisp and non-Lisp representa
tions of values is illustrated by the example just given. The argument passed to
the foreign function was a[unum, not an integer. Integers can be bignums or
[unums. C integers may be larger than all possible LiSp fixnums and smaller
than most but not all bignums. If a [unum is passed to foreign code, it is
always correctly represented, but a bignum can be represented only if it is small
enough. The foreign-function interface will truncate any bignum that does not
fit into the foreign integer representation without warning. Users can avoid this
by not using :argument integer (and thus not passing bignums) except when
the argument value was generated by foreign code. The return value from
foreign code defaults to type integer, and since some foreign integers are too
big to be fixnums, they may be bignums. But, since they came from foreign
code, they will be correctly represented as foreign integers when passed back to
foreign code. In that case only is :argument integer recommended.

An example illustrates the use of arrays. Say there is a compiled C file
myreverse.r:

int myreverse(n,x)
double *x; /* pointer to array of doubles */
int n; /* array length */

int i;
double d;
for (i=O; i <= n/2; i++)

d = xli];
xli] = x[n-1-i];
x[n-1-i] = d;

return n;

Tektronix, Inc.
8-12 Foreign functions

8.5
Passing
arrays of
strings from
LiSp to C

}

in LISP you might define (after loading myreverse.r) this function as follows:

<cl> (defforei.qn
'myreverse
: arguments ' (fi.xnum

(array doub~e-f~oat»
T
<cl> (setq x· (make-array

3
:e~ement-type 'doub~e-float

:i.ni.ti.a~-contents ' (l.OdO

#(1.0dO 2.0dO 3.0dO)
<cl> (myreverse (length x) x)
3
<cl> x
#(3.0dO 2.0dO 1.0dO)

2.0dO
3.0dO»)

A common usage in C is typified by the following program fragment:

#define NULL 0
char *z[] = {"stringsl", "string2", NULL};

handle_strings(z);

handle_strings (argv)
char **argv;

{

}

while (*argv != NULL){
handler_for_string(*argv) ;
argv = argv + 1;

Similar usage is also common with the array size included:

char *z[] = {"stringsl", "string2", "string3"};

handle_strings(3,z);

handle_strings (argc, argv)
char **argv;
int argc;

}

Tek COMMON LiSp
Foreign functions 8-13

The variable argv is an array with each element pointing to a C string in both
cases. (Note. however. that in the first case a NULL pointer terminates the
array.) One would like to call handle_strings() from Lisp (after doing a
ff:defforeign) by something like the following:

or:

(handle_strings (make-array 3 :initial-contents
'("string1" "string2" 0)))

(handle_strings 3 (make-array 3 :initial-contents
'("string 1 " "string2" "string3")))

depending on the definition of handle_strings() above. However. the
foreign-function interface does not normally convert the individual elements of
a LIsp array.

The conversion will be done if the foreign function has the appropriate
argument declared to be of type (simple-array Simple-string (*)). While this is
not implemented as a distinct data type in Tek COMMON LISP. the foreign
function interface will recognize this declaration and convert the array
appropriately for C. This is a slow function call as the interface must allocate
space to do the conversion. So to get the desired behavior (e.g. for the second
of the above two possibilities for handle_strings(}) you should use:

(defforeign 'handle_strings :arguments
'(fixnum (simple-array simple-string (*))))

Note that if you do not declare arguments--e.g. if you use:

(defforeign 'handle_strings :arguments t)

the array will not be converted correctly on the call to handle_strings(). Note
that this is not typical; the interface normally converts arguments according to
their LISP data type whether or not they are declared.

If you do make this declaration and pass in an arbitrary LISP array. all bets
are off. Only 0 and array elements of type simple-string are guaranteed to be
correctly converted.

Tektronix, Inc.
8-14 Foreign functions

8.6
Defining and
calling LISP
functions
from foreign
code

This section describes the Tek COMMON LISP facility that permits C functions
to call LISP. The C functions must have been loaded into LISP and have been
called from LISP.

Because some LISP objects move in memory when a garbage collection
occurs, calling out to LISP must be used with great care on the part of the C
programmer. As an example, if an array is passed to a C function which calls
out to a LISP function and a garbage collection occurs, then after the C function
returns, the pointer to the array will point to nothing; the array data will have
moved somewhere else. So if a C function accesses a LISP value and calls out
to LISP, then it is recommended that the LISP value be registered and accessed
as described next.

To give a particular example, let us say:

1 You register a LISP object (e.g. an array). (This is detailed below.)
2 You use ff:defforeign to define a C function with return type :/isp.
3 In the C program you retrieve and use the registered LISP value.
4 You callout to a LISP function and a garbage collection occurs-the LISP

value in C is no longer valid.
5 The C function returns the LISP value it retrieved earlier.
6 Then on the next garbage collection LISP dies because of an illegal object

reference: the LISP value returned by the C function no longer points to
valid data.

The problem only occurs if a garbage collection happens during the call to the
LISP function. What you should do is to make sure that any LISP value you
return to LISP or work with within a C function is retrieved only after there is
no possibility of calling out to a LISP function where a garbage collection may
occur. To fix the example above so it is safe, you should add another step after
step 4:

4a Retrieve the registered LIsp value again.

Other scenarios can be played out, for example where C changes array data
using an invalid array pointer-LISP never sees the changes.

For purposes of allowing call-backs from foreign code, Tek COMMON
LISP maintains two tables of LISP objects: one is the function table and the
other is the value table. The LISP program can 'register' functions or values by
requesting that they be stored in the respective table. The size of the value
table will grow dynamically, but the size of the function table is fixed to the
value of comp::foreign-callback-table-size. This cannot be changed, and is set
to 1000 in this release.

In LISp, there are the following functions (in the foreign-function package,
nicknamed ff).

O-Ol-02r2-1

ff:register-value value &opfional index

Tek COMMON LiSp
Foreign functions 8-15

[Function]

• The value is stored in the table of foreign values at the requested index,
if index is given; or in a free slot if index is not given. Two, values are
returned: the index and the previous value at that index (or nil if there was
no previous index).

ff:register-function symbol-or-compiled-function-object [Function]
&optional index

• The symbol-or-compiled-function-object is stored in the table of foreign
functions at the requested index, if the index is given, or in a free slot if
the index is not given. Three values are returned:

1 An integer which can be passed to C and used to directly call to this
function using the (*f)(arg1, arg2, ... , argn) syntax given below.

2 The index in the table used where this function is stored. This index
can be used in the Iisp_caliO function.

3 The previous value at this slot (or nil if there was no previous value).

Once a value is registered, the C program can obtain the value from the value
table with the C function:

long lisp_value(index)
int index;

where index is the index of the registered value in the value table in LISp. This
C function will always return the current value at the index index even after a
garbage collection has occurred. The result value from lisp_valueO will be a
LISP object and macros are provided to help C analyze the LiSp object and con
vert it to something meaningful. These macros are found in the C header file
lisp.h, usually distributed in the lib/mise directory with Tek COMMON LISp.

The C program can request that the function in the function table be
evaluted inside LISP by using the C function Iisp_caIiO. The form is

long Iisp_call(index,arg1 ,arg2, ... ,argn)
int index;

where index is the index of the registered function in the function table. The C
arguments need to be turned into LISP arguments so that the LISp function can
use them. There is no type information in C, so you must declare these argu
ments when you define the LiSp function. This is done with the macro defun
c-callable, which acts like defun, but defines the function as one called by C
(details and an example given a little later). Iisp_caliO returns the return value
of the called LISp function. The returned value is not converted to be a C style
value, and nor is the returned value of lisp_valueO.

The following LIsp function may be useful for debugging code. It simu
lates the C function Iisp_valueO , but may be called from within LISp at any
time.

Tektronix, Inc.
8-16 Foreign functions

ff:lisp-value index [Function]

• This returns the value in the table at the given index.

Function code is never garbage-collected and thus does not move in Tek COM
MON LISP, so a C program can also call a LISP function using the syntax
(*f)(arg1, arg2, ... , argn), where the value of f is an integer determined by the
LISP function register-function.

For example, say we have loaded the compiled C file:

void c_calls_lisp(fun, index)
long (*fun) ();

}

(*fun) ():
/* direct call to LISP function */
lisp_call(index);
/* call to LISP function using index */

and had the following session in LISP:

<cl> (setq ca~~ed 0)
o
<cl> (defun-c-cal~ab~e lisp-ta~ks ()

(format t "This is Lisp ca~~ed for the -:r
time. -%"

(setq ca~~ed (1+ cal~ed»»)
LISP-TALKS
<cl> (mu~tip~e-v~ue-bind (ptr index prev-ptr)

(register-function '~isp-ta~ks)
(~ist ptr index prev-ptr»

(1404302 0 NIL)
" ptr is 1404302, index 0 in
;; function table, previous
;; function none
<cl> (defforeign

T

'c-ca~ls-~isp

:entry-point (convert-to-~ang

"c_ca~ls_~isp")

:arguments ' (integer fixnum)
:return-type : void)

<cl> (c-calls-lisp ptr index)
This is Lisp called for the first time.
This is Lisp called for the second time.

0·0}-02(2-12

Tek COMMON LISp
Foreign functions 8-17

The C representation and the LISp representation of data types are not
necessarily the same. When a C function calls a LISP function, The LISP func
tion needs to have its arguments declared so that it 'knows' what the C argu
ments were and how to convert them. This declaration scheme is wrapped in a
macro defun-c-callable.

ff:defun-c-callable lisp-function-name { { arg I (arg type) }*) body- [Macro]
form+

• Each arg is an argument which C passes to LISp. This macro does not
allow &rest or &optional arguments in the argument list. Each argument
is either a symbol (as in the usual function definition), or it is a list of
length two, a symbol and its type. If a symbol only is present, then it has a
default type. The type corresponds to the type of a C argument and is
currently limited to be one of the following:

:signed-byte 8 bits

:unsigned-byte 8 bits

:signed-word 16 bits

:unsigned-word 16 bits

:fixnum 29 bits

:signed-Iong 32 bits (the default)

:unsigned-Iong 32 bits

:Iisp (Assumes that C passes an
actual LISP value.)

o If the type is not present, it defaults to Signed-long.

We give an example: say that we define the following C function, compile it
and load it into LISP:

void add (x, y, index)
int x, y, index;

lisp_call (index, x, y);

Then the following LISP session could take place:

8.7
How

foreign
called Lisp

functions get
arguments

Tektronix, Inc.
8-18 Foreign functions

<c1> (deffore.ign , add

T

:arquments I (.integer .integer f.ixnum)
:return-type :vo.id)

<c1> (defun-e-eallable add-two-e-args
«x :s.igned-long) (y :s.igned-long»

(setq xy C+ x y»)
;; set a global variable
;; to the sum of x and y

ADD-TWO-C-ARGS
<c1> (setq .index

1

Cedar (mult.iple-value-l.ist
(reg.ister-funet.ion
'add-two-e-args»»

<c1> (add 4 5 .index)

NIL
<c1>

9

.. , ,

xy .. , ,
, ,

call to the foreign function

test the value of the
global variable xy

Note that in the example above, we get exactly the same result by omitting the
type declarations for the function add-two-c-args (i.e. we could have defined
it as:

{defun-c-callable add-two-c-args (x y)
{setq xy (+ x y)))

since the default is to assume the arguments are signed-longs.
Some more detail on exactly how a LISP function gets C arguments fol

lows. The defun-c-callable macro expands into something defined in terms of
the following.

Really, exactly one argument is passed from C to LISP-a descriptor that
tells LISP how to access the C arguments and tum them into LIsp objects.
(This 'descriptor' is actually a pointer at the memory position where the C
function stacked its arguments). The LISP function foreign-argument uses
this 'descriptor' to access the C arguments.

ff:foreign-argument descriptor arg-number &key :type :skip- [Function}
bytes

• This returns the argument numbered arg-number (first argument counts
as arg-number 0) from the list of arguments passed from C to LISp. The
:type tells LISP how to convert the C argument to a LIsp type and can be
one of:

D-Ol-OZ(2·1

:signed-byte

:l,Insigned-byte

:signed-word

:unsigned-word

:fixnum

:signed-Iong

:unsigned-Iong

:lisp

8 bits

8 bits

16 bits

16 bits

29 bits

32 bits (typical)

32 bits

(Assumes that C passes
actual LISP value.)

an

Tek COMMON LiSp
Foreign functions 8-19

o The arg-number can only be used to find the correct argument if all
arguments are the same size (four bytes). If this isn't the case, if for
example a structure or double float is passed, then the calculation will be
wrong. Thus the :skip-bytes value is used to skip a number of bytes of
arguments (default zero).

For example, suppose a LISP function called-from-c is defined and registered
in the following LISP session:

<cl> (defun ca11ed-from-c (dese)
(format t "Second C arq is -s"
(foreiqn-argument desc 0

:type :siqned-1onq
: skip-bytes 8)}}

;; This skips 8 bytes (the size of a double)
;; and then gets the zeroth argument.

CALLED-FROM-C
<cl> (reqister-function 'ca11ed-from-c 23)
1404302

23

NIL

the in-memory address C calls to
invoke CALLED-FROM-C

the slot number of the function table

the previous function in this slot
(nil means none)

When a C function makes the call

Iisp_call(23, f, j)

Tektronix, Inc.
8-20 Foreign functions

8.8
C structures

where f is a double and j is an integer, the LISP function called-from-c will be
called and output the value of j.

Functions coded in C often use struct (structure) data types and pointers to such
data as arguments and returned values. Tek COMMON LISp has an interface
called cstructs to facilitate operations on foreign-language data types.
Although the cstruct interface closely parallels C data typing, the facility is
straightforwardly useful with other foreign languages.

Consider the following example of the use of the struct data type in C.
Most UNIX and UNIX-like operating systems feature a statO system call that
returns complete information about a file based on the per-file information kept
on disk. The following model of the statO system call does not correspond
exactly to any particular system, but something similar to these C data defini
tions will be found in the operating system documentation.

struct device {
char major;
char minor;
};

struct stat {
struct device sCdev;
short inode;
short st_mode;
short scnlink;
short sCuid;
short st-.Qid;
struct device scrdev;
long scsize;
long scatime;
long st_mtime;
long scctime;
};

struct stat *stat(path, but);
char *path;
struct stat *but;

The statO function is called with two arguments, the pathname of the file to be
examined and the address of a stat C structure into which the file data will be
placed.

Three problems must be solved for a LISp program to use statO: the func
tion itself must be made available via the foreign-function interface; LISP must
have some way to allocate an appropriate object to serve as the second argu
ment to statO; and LISP must have accessor mechanisms for the slots of the

Tek COMMON LiSp
Foreign functions 8-21

structure. The first is accomplished with the ff:defforeign function. The
remaining two are satisfied using the ff:defcstruct macro. The C structure stat
from the C example above could be defined for LISP using ff:defcstruct as fol
lows:

(ff:defcstruct device
(major :char)
(minor :char))

(ff:defcstruct stat
(dev device)
(inode :short)
(mode :short)
(nlink :short)
(uid :short)
(gid :short)
(rdev device)
(size :Iong)
(atime :Iong)
(mtime :Iong)
(ctime :Iong))

(ff:defforeign 'stat)

ff:defcstruct name slot [slot ...] [Macro]

• This macro defines a C structure to LISP by defining appropriate acces
sor and creator functions. The creator function is named make-name.
The accessor function names for each slot are the hyphen-separated con
catenation of the cstruct name and the slot name. The creator and acces
sor functions are described in greater detail below.

. 0 Argument name is either the name of this cstruct or a list. In the latter
case the first element of the list is the name of the cstruct and the remain
ing elements are options described below.
o Each slot is a list. The first item on the list is a symbol naming the slot,
and the rest of the list is a data type. A data type takes one of the follow
ing forms:
o A single keyword, which is one of the following: :char, :byte,

:short, :Iong, :unsigned-byte, :unsigned-shorl, :unsigned-Iong,
:short-float, or :Iong-float. This will provide space for the specified
atomic C data type to be placed in that slot.

o A symbol, which must name of a previously defined cstruct.
o * data-type where data-type is any valid data type. As in C, the *

indicates that the slot will contain a pointer to an object of the speci
fied type. Also, as in C, if data-type is a symbol, the requirement is

Tektronix, Inc.
8-22 Foreign functions

8.8.1
Accessing
slots

8.8.2
Storage
allocation for
cstructs

relaxed that a structure of that name must already be defined.
o integer [integer ...] data-type Again, data-type is any valid (possibly

compound) data type, which may include the pointer *. The integers
denote an array of the indicated dimensions. The accessor
function(s) will accept appropriate subscript argument(s).

o slot [slot ...] estruets may include other estruets. Here slot is recur
sively defined as another list. This is similar to including another
estruets by name.

The slots of a estruet are accessed by functions defined by the expansion of the
ff:defcstruct macro. Accessor functions are named by concatenating the
estruet name with the slot names, separated by hyphens. The accessor function
name for a compound slot-that is, a slot which contains another named estruet
or whose data type is a list of named slots-is the hyphen-separated concatena
tion of all its estruet and slot names. For example, the i-node number is
accessed by the function stat-inode, and the device upon which that i-node
resides is accessed by the function stat-dey-major.

All accessor functions take a estruet as argument, and return the value in
th.at slot. Slot accessor functions are understood by sett. The compiler
expands estruet accessors and sett forms inline.

If the name of the estruet being defined is name, the creator function is named
make-name. This function creates an object in which the slot data can be
stored. In the above example the creator function will be make-stat, which
will create a LISP object of type (simple-array (unsigned~byte 32) (8)). The
ff:defcstruct facility provides two distinct types of C structures distinguished
by how and where their storage is allocated. A estruet can be allocated in regu
lar LISP heap space (the part of memory that is garbage-collected by the LISP
system) or else it can be allocated in C space. The difference between the two
allocation methods is that C space is not garbage-collected, and therefore the
data is never moved by the garbage collector. LISP heap space is regularly
freed up by the garbage collector. Objects that are still active are moved when
a garbage collection occurs. Structures allocated in C space, whether by LISP,
by being declared at compile time in a foreign subroutine, or by the C function
maliocO, are not affected by the garbage collector. Although the usage is the
same, the internals of the accessor functions for structures located in LISP heap
space are necessarily different from those located in C space. Therefore, the
difference must be specified when the estruet is defined, with the ff:defcstruct
macro.

There are two reasons why it may be necessary to define a estruet to be in
C space. In some cases LISp needs to access storage allocated by C routines,
which obviously will be in C space. In others cases the C code may retain a
pointer to a estruet passed to it when LISP resumes control. The garbage

Tek COMMON LISp
Foreign functions 8-23

collector may be invoked any time that LISP is run, and pointers from foreign
space to a cstruct will not be forwarded by the garbage collector. Therefore
such a cstruct cannot be in LISP space.

By default ff:defcstruct defines a structure which will occupy LISp space.
To define a structure which will occupy C space the keyword :malloc must be
given as a ff:defcstruct option in the first subform. Such cstructs are called
malloc-style cstructs. LISP represents a pointer to an instance of a malloc-style
cstruct as an integer, which is its memory address. This is reminiscent of C
pointers.

In the above example, a stat structure was allocated in Lisp space and
passed to the statO C function to be filled in. What follows is an example
using a malloc-style cstruct. Most UNIX systems provide a standard
input/output facility called the Standard I/O Library, or stdio. Functions that
open a stream return a pointer to a FILE structure that represents the stream.
The stdio facility maintains storage for FILE objects in C space, so a LISp pro
gram that (for whatever reason) wanted to use stdio would have to use a
malloc-style cstruct. The following code describes one implementation of a
FILE structure in C.

extern strucCiobuf {
unsigned char * J)tr;
int _cnt;

};

unsigned char *_base;
short _flags;
char _tHeno;

Then the following LISp code will define an 'equivalent' cstruct to LISP:

(ff:defcstruct (iobuf :malloc)
(ptr * :char)
(cnt :int)
(base * :char)
(flags :short)
(fileno :char»

Note the use of pointer data types, indicated by *. Note too that the C name
conventions have been made LISP-like by eliminating underscores.

The expansion of ff:defcstruct defines a creator function make-name. Two
other creator functions exist that take a cstruct name as an argument, but other
wise have the same effect as make-name.

8.8.3
Allocating

and freeing
cstructs

Tektronix, Inc.
8-24 Foreign functions

8.8.4
Pointers,
embedded
structures,
and arrays

make-cstruct name [Function]

• This function returns a new instance of the cstruct named name, which
must have already have been defined with the ff:defcstruct macro. Both
ordinary and maUoc-style cstructs may be created with this function.

malloc-cstruct name [Function]

• This function creates a maUoc-style cstruct. The cstruct named by
name, which must already have been defined with the ff:defcstruct
macro as a maUoc-style cstruct. This function is slightly faster than
make-cstruct.

Since maUoc-style cstructs are not garbage-collected, the user has the responsi
bility of freeing their storage when they are no longer needed. The following
function deallocates space for malloc-style cstructs.

free-cstruct cstruct-instance [Function]

• This function frees space allocated to the maUoc-style cstruct cstruct
instance.

The initial content of a cstructs slot defined by ff:defcstruct is undefined and
the creator functions just described make no provision for initialization. Initial
slot contents are unpredictable. Even trying to print a slot's contents, for
example, may result in an error. LISP code can initialize a slot only by a setf
of the slot accessor function.

As shown abive, C structure slots are often compound. A pointer to any data
type may be specified with a *, as in the iobuf example above: A cstruct slot
may contain an embedded substructure instead of an atomic data type. Such an
embedded structure is specified by providing as its data type either the (non
keyword) name of a previously-defined cstruct or a list of named slots.
Further, the cstructs package permits arbitrary levels of array specification by
prefixing any simple or compound data type with integer dimension values.
Here are some examples showing arrays and embedded substructures. In C, we
have:

struct ftCbuC 1 d {
struct {float real, imag;} point[1024];
};

struct ftCbuC2d {
struct { float real, imag; } point[64][64];
};

The equivalent cstruct definitions in LISp are

{ff:defcstruct fft-buf-1 d
{point 1024 (real :short-float) (imag :short-float)))

{ff:defcstruct fft-buf-2d
(point 64 64 (real :short-float) (imag :short-float)))

Tek COMMON LiSp
Foreign functions 8-25

In addition to the usual first argument which is the object itself, accessor func
tions for dimensioned data take one additional subscript argument for each
dimension. Subscript arguments must evaluate to integers, but do not undergo
range checking.

As a guide for translating C declarations into LISP, it should also be clear
by now that structure slot definitions in C and LIsp employ approximately
reversed component orderings. In C the slot name follows the data type, in
LISp it precedes. The pointer indicator * follows the data type in C and pre
cedes it in LISp. However, array dimensions follow their slot names in both
languages, and the subscript ordering in both C and LISp places the most
rapidly varying subscripts last. Consider the following example:

struct foo {char a[3][5]; } my_foo;

The structure contains three strings of length five. One accesses the fourth
character of the second string with

my _foo.a[1][3]

In LISP, the cstruct is defined and created by

(ff:defcstruct foo (a 3 5 :char))
{setq my-foo (make-foo))

and the fourth character of the second string is accessed by

(foo-a my-foo 1 3)

Although it makes sense in C to operate on an embedded substructure or
part of an array (i.e., to take its address, pass it as an argument, or test it for
equality with another) it does not make sense in LISp to define accessors for
non-atomic components because there are no corresponding I data types. Com
pound slots may be dimensioned, however, and the subscript arguments will be
inherited by the accessor functions of all contained slots. For example:

{ff:defcstruct two-fft-bufs-2d (buf 2 fft-buf-2d))
{setq fft-bufs (make-two-fft-bufs-2d))
(two-fft-bufs-2d-point-real fft-bufs 1 8 7)

The last expression accesses the real component of element [8][7] in the second
of two two-dimension fft buffers.

Tektronix, Inc.
8-26 Foreign functions

8.8.5
Portab ility
issues

8.9
Argument
passing
synopsis

liSP type

fixnum

single-float

double-float

character

array

string

C compilers differ radically in the alignment and size of data types. Obviously,
any use of the cstruct facility makes a COMMON LISP program non-portable.
However it might sometimes be appropriate to use similar foreign function rou
tines on different target machines. A programmer writing a sophisticated inter
face between LISP and C code using ff:defcstruct is encouraged to check
agreement between the languages by comparing the expansion of the
ff:defcstruct macro with code produced by the particular C compiler. The
cstruct facility attempts to generate accessors that are correct for the local
machine, but these accessors will not necessarily be correct on a different type
of machine, and sometimes the data alignment behavior ofa particular C com
piler will change between releases.

Existing C compilers differ in these ways: slots of type :Iong, pointers,
and floating data, are aligned on either 2 or 4 byte boundaries; and the overall
size of a outermost C structure is padded to 4 bytes instead of 2 in some imple
mentations.

The following two tables summarize information on argument-passing between
LISP and C. Table 8.1 shows how the principal LISP data types are passed by
value to C. Table 8.2 shows how these data types are passed by reference to C.

Procedure

converted to machine integer

converted to machine single-float

converted to machine double-float

converted to C character after font and other
attributes have been removed

pointer to array is passed; for displaced arrays, a
pointer to the data at the displacement offset is
passed; arrays of funums behave as expected,
fixnums being stored in arrays as machine
integers; for bit arrays that are displaced to other
bit arrays, a pointer is passed to the data byte
addressed by the displacement divided by eight
(rounded down); LISP array elements can be
changed by C

a special case of arrays: they are always NUL
terminated

Declaration

int arg;

float arg;

double arg;

char arg;

int *arg;
float *arg;
(etc.)

char *arg;

(vector
simple-string)

bignum

other types

LISP type

fixnum

single-float

double-float

character

array

string

(vector
simple-string)

Tek COMMON LiSp
Foreign functions 8-27

if declared, a new vector is allocated and each
slot filled with a pointer to the actual string; this
new array is passed in the usual way; if not
declared, no conversion is perfonned, and a
pointer to an array of LISP objects is passed

truncated to a machine integer

unimplemented; strange things will happen

Table 8.1. By-value passing conventions to C.

Procedure

copy is made of the [unum, converted to machine
integer, and pointer to converted copy is passed;
LISp value is not changed

pointer to that part of the LISP object containing a
machine single float is passed; LISP value may be
changed by C or FORTRAN

pointer to that part of the LISp object containing a
machine double float is passed; LISP value may
be changed by C or FORTRAN

copy is made, converted to a C character, and a
pointer to the converted copy is passed; LISP
value is not changed

pointer to array is passed; for displaced arrays, a
pointer to the data at the displacement offset is
passed; arrays of [unums behave as expected,
fixnums being stored in arrays as machine
integers; for bit arrays that are displaced to other
bit arrays, a pointer is passed to the data byte
addressed by the displacement divided by eight
(rounded down); LISP array elements can be
changed by C; (this procedure is identical to that
for passing arrays 'by value')

a special case of arrays: they are always NUL
terminated

char **arg;

int arg;

C Declaration

int *arg;

float *arg;

double *arg;

char *arg;

int *arg;
float *arg;
(etc.)

char *arg;

Tektronix, Inc.
8-28 Foreign functions

bignum

other types

if declared, a new vector is allocated and each
slot filled with a pointer to the actual string; this
new array is passed in the usual way; if not
declared, no conversion is perfonned, and a
pointer to an array of LISP objects is passed; (this
procedure is identical to that for passing arrays
'by value')

unimplemented; strange things will happen

unimplemented; strange things will happen

Table 8.2. By-reference passing conventions to C.

char **arg;

0·01 02(1 I:

9 Packages

9.1 Packages in Tek COMMON Lisp 9-1
9.2 Symbols in the excl package 9-2

9 Packages

Tek COMMON LISp allows the use of packages to keep different parts of an
application separate, permitting multiple use of symbol names and independent
development of different parts of a large program. See chapter 11 of Common
Lisp for further details. Tek COMMON LISP comprises several packages, and
users should be aware of what packages are available, which should be used by
the user, and which should, in general, be avoided.

The following packages used by Tek COMMON LISP are of direct importance to
the user:

lisp standard COMMON LISP

exel extensions to COMMON LISP

system relating to operating-system
user user environment

flavors object-oriented environment

When you start up Tek COMMON LISP, you are in the user package. At
the start, there are no symbols in the user package, but the lisp and the exel
packages are inherited by default, so external symbols from those packages are
available to the user package. The lisp package contains only those symbols
specified in Common Lisp. Some of the capabilities of standard COMMON LISP

functions have extended, "but they can all be used in the way specified in Com
mon Lisp. At the moment, only load has been extended (to allow loading of
foreign code.) It is possible that further functions, particularly compiler func
tions, will also be extended in the future. Users who want the most portable
code should not use these extensions, which will be described in the Release
Notes. Therefore, if you use the lisp package only, you will have portable code
which can with greatest ease be ported to COMMON LISP systems other than
Tek COMMON LISp. (But see the comments about portability in the introduc
tion.) The exel package contains the COMMON LiSp environment and many of
the simple extensions. A list of external symbols in the Tek COMMON LISP

package is given at the end of the chapter. In exel, the user gets access to the
top level, the profiler, and so on. The system package should not be used since
the user may inadvertently modify system variables, which may have strange
and disastrous consequences. The flavors package contains the flavors system

9.1
Packages in

Tek
COMMON

LISP

9-1

Tektronix, Inc.
9-2 Packages

9.2
Symbols in
the excl
package

described in chapter 6 of this manual.
Chapter 11 of Common Lisp describes packages and their use. The user should
refer to that chapter for the description of how to create, use or exclude pack
ages.

The following table lists the symbols exported from the exel package.

Symbol Type

arglist function
bignump function
compile-file-if-needed function
dumplisp function
errorset function
exit function
ignore-if-unused declare specifier
instancep function
file-older-p function
fixnump function
function-call-report function
function-call-run function
gc function
if* macro
pp macro
putprop function
ratiop function
set-case-mode function
shell function
single-float-p function
uncompile function
geprint variable
eompiler-paekage variable
exel-paekage variable
franz-paekage variable
keyword-paekage variable
lisp-paekage variable
system-paekage variable
user-paekage variable

Table 9.1. List of symbols exported from exel pack
age

A Summary of symbols

'6)

Summary of symbols

+ ... 5-20
++ ... 5-20
+++ ... 5-20
- ... 5-21
* ... 5-21
** ... 5-21
*** ... 5-21
I ... 5-21
II ... 5-21
III ... 5-21
:abstract-f/avor ... 6-31
:accessor-prefix ... 6-30
:address entry-point-address ... 8-7
:after ... 6-41
top-Ievel:alias {name I (name [option ... J)} arglist body ... 5-21
:aliases ... 5-9
:alias-flavor ... 6-31
all-flavor-names ... 6-17
:and ... 6-39,6-41,6-42
:append ... 6-39,6-42
:arg-checking boolean ... 8-6
:arguments (argument-type+) ... 8-6
top-Ievel:*auto-zoom* ... 5-19
bbcomp v ... 5-4
bb-d ... $-5
bb-d-or-not-s ... $-5
bb-not-d ... $-5
bb-not-s ... $-5
bb-not-s-and-d ... $-5
bb-not-s-and-not-d ... $-5
bb-not-s-or-not-d ... $-5
bb-not-s-xor-d ... $-5
bb-one ... $-5
bb-s ... $-5
bb-s-and-d ... $-5
bb-s-and-not-d ... $-5

A-1

Tektronix, Inc. _
A-2 Summary of symbols

bb-s-or-d ... S-5
bb-s-or-not-d ... S-5
bb-s-xor-d ... S-5
bb-zero ... S-5
:before ... 6-41
excl:bignump object ... 3-9
bit-bit bbcom ... S-6
black-halftone ... S-19
: bottom ... 5-7
:break ... 6-35
: break-after val ... 5-11
: break-all val '" 5-11
: break-before val ... 5-11
:brief ... 5-6
:call ... 3-7
:case ... 6-40
:cf file* ... 5-9
char-draw char point ... S-6
char-draw-raw-x char point bbcom font ... S-6
char-draw-x char point bbcom font ... S-7
char-width char font ... S-7
excl:chdir pathname &key simple . .. 4-3
circle-draw center radius ... S-7
circle-draw-x center radius width bbcom ... S-7
clear-screen ... S-7
:combined ... 6-42
top-Ievel:*command-char* ... 5-19
system:command-line-argument n ... 4-3
system:command-line-argument-count ... 4-3
system:command-line-arguments ... 4-3
excl:compile-file-if-needed filename &key :output-file :force-compile ... 3-10
compile-flavor-methods flavor-names* ... 6-23
compiler:declared-fixnums-remain-fixnums-switch ... 2-5
compiler:*do-call-counts* ... 7-2
compiler:generate-call-count-code-switch ... 2-5
compiler:generate-interrupt-check-switch ... 2-5
compiler:trust-declarations-switch ... 2-6
compiler:verify-argument-count-switch '" 2-6
compiler:verify-car-cdr-switch ... 2-6
compiler:verify-non-generic-switch ... 2-6
compiler:verify-symbol-value-is-bound-switch ... 2-6
:condition expr ... 5-11
:continue ... 5-5
:convert-symbol conversion-function ... 8-7
ff:convert-to-Iang string &key:language ... 8-4

D-OHl2(Z-12-

:current ... 5-7
excl:*current-case-mode* ... 3-2
excl:current-directory ... 4-3
cursor-track trackp ... 5-7
cursor-visible visiblep ... 5-7
:daemon ... 6-38
:daemon-with-and ... 6-38
:daemon-with-or ... 6-38
:daemon-with-override ... 6-38
dark-grey-halftone ... 5-19
compiler:declared-fixnums-remain-fixnums-switch ... 2-5
:default ... 6-41
:default-handler ... 6-29
:default-init-plist ... 6-26
ff:defcstruct name slot [slot ...] ... 8-21
defflavor flavor-name (vars*) (flavors*) options* ... 6-17
ff:defforeign-list (arg-list+) ... 8-8

Tek COMMON Lisp
Summary of symbols A-3

defmethod (flavor-name [method-type] operation) lambda-list forms* ... 6-17
ff:defun-c-callable lisp-function-name ({ arg I (arg type) }*) body-form+ ... 8-17
defwhopper (flavor-name operation) lambda-list &body body ... 6-22
defwrapper (flavor-name operation) lambda-list &body body ... 6-21
:describe ... 6-34
describe-flavor flavor-name ... 6-25
display-state-p v ... 5-4
display-visible visiblep ... 5-7
:dn ... 5-7
:dn [n] ... 5-7
compiler:*do-call-counts* ... 7-2
load filename &key :foreign-files ... 7-2
top-Ievel:do-command name &rest arguments ... 5-22
:documentation ... 6-33
excl:dumplisp &key :name :restart-function :read-init-file [else else-form+] ... 3-10
:entry-point foreign-name ... 8-6
:error ... 5-5
excl:errorset form [announcep] ... 3-4
top-Ievel:*eval* ... 5-20
:eval-inside-yourself form ... 6-35
event-clear-alarm ... 5-8
event-disable ... 5-8
event-enable ... 5-8
event-get-count ... 5-8
event-get-new-count ... 5-8
event-get-next ... 5-8
event-get-time ... 5-9
event-set-alarm time ... 5-9

Tektronix, Inc.
A-4 Summary of symbols

event-set-mouse-intervaJ interval ... S-9
event-set-signal '" S-9
excl:bignump object ... 3-9
excl:chdir pathname &key simple . .. 4-3
excl:compile-file-if-needed filename &key :output-file :force-compile ... 3-10
excl:*current-case-mode* ... 3-2
excl:current-directory ... 4-3
excl:dumplisp &key :name :restarl-function :read-init-file ... 4-4
excl:errorset form [announcep] ... 3-4
excl :exit &optional val '" 4-4
excl :file-older-p file-1 file-2 ... 3-10
excl:fixnump object ... 3-9
excl:function-call-clear ... 7-2
excl:function-call-count function ... 7-2
excl:function-call-list '" 7-1
excl:function-call-report &optional number-to-report ... 7-1
excl:gc ... 2-2
excl:*gcprint* ... 2-2
excl :generate-Iibrary-pathnames library-root-directory ... 3-11
excl:get-and-zero-call-count function ... 7-2
excl:*ignore-package-name-case* ... 3-2
excl:instancep object ... 6-21
excl::*library-code-cl-pathname* ... 3-9
excl::*library-code-fasl-pathname* .. , 3-9
excl :pp name .. , 3-10
excl :ratiop object ... 3-9
excl:set-case-mode new-mode ... 3-2
excl:shell &optional command ... 4-3
excl:single-floatp object ... 3-9
excl:*trace-output* ... 5-11
excl:*trace-print-Iength* ... 5-11
excl:*trace-print-Ievel* ... 5-11
excl:uncompile function-name ... 3-9
excl:username-to-home-directory name ... 4-4
excl :exit &optional val ... 4-4
:exit [val] ... 5-10
exit-graphics '" S-9
top-Ievel:*exit-on-eof* ... 5-19
lisp:export ... 3-11
ff:convert-to-Iang string &key:/anguage ... 8-4
ff:defcstruct name slot [slot ...] ... 8-21
ff:defforeign-list (arg-list+) ... 8-8
ff:defun-c-cal/able lisp-function-name ({ arg I (arg type) }*) body-form+ ... 8-17
ff:foreign-argument descriptor arg-number &key :type :skip-bytes ... 8-18
ff:get-entry-points name-list address-list &optional print ... 8-4

ff:lisp-value index ... 8-16

Tek COMMON LiSp
Summary of symbols A-5

ff:register-function symbol-or-compiled-function-object &optional index ... 8-15
ff:register-value value &optional index ... 8-15
ff:remove-entry-point name-of-entry-point ... 8-4
ff:reset-entry-point-table ... 8-4
top-Ievel:*file-ignore-case* ... 5-20
excl :file-older-p file-1 file-2 ... 3-10
:find func options* ... 5-7
lisp:find-symbol ... 3-11
:first ... 3-6
excl:fixnump object .,. 3-9
si:flavor-allowed-init-keywords flavor-name ... 6-24
flavor-allows-init-keyword-p flavor-name keyword ... 6-24
font-close font ... S-9
font-open font-file ... S-9
ff:foreign-argument descriptor arg-number &key :type :skip-bytes ... 8-18
:foreign-files (extra-file+) ... 8-2
form-create w h ... S-2, S-9
form-draw form .. , S-9
form-get-point form &optional point ... S-lO
form-h f .' .. S-2
formp v .,. S-3
form-refld file-name ... S-10
form-set-point form point value .. , S-lO
form-w f ... S-2
form-write form file-name ... S-lO
free-cstruct cstruct-instance ... 8-24
funcal! instance message &rest arguments ... 6-23
:funcall-inside-yourself function &rest args ... 6-35
funcall-self message arguments* ... 6-23
excl:function-call-clear '" 7-2
excl:function-call-count function ... 7-2
excl:function-call-list ... 7-1
excl:function-call-report &optional number-to-report ... 7-1
excl:gc ... 2-2
excl:*gcprint* ... 2-2
compiler:generate-call-count-code-switch ... 2-5
compiler:generate-interrupt-check-switch ... 2-5
excl :generate-library-pathnames library-root-directory ... 3-11
:get property-name ... 6-46
excl:get-and-zero-call-count function ... 7-2
get-buttons ... S-10
get-cursor &optional form ... S-10
get-cursor-position &optional point ... S-10
ff:get-entry-points name-list address-list &optional print ... 8-4

Tektronix, Inc.
A-6 Summary of symbols

system :getenv string ... 4-4
get-handler-for object operation ... 6-24
:get-handler-for operation ... 6-35
:getl property-name-llst ... 6-47
get-machine-type ... S-lO
get-mouse-bounds &optional pOint1 point2 .. , S-11
get-mouse-position &optional point ... S-11
get-real-machine-type ... S-ll
:gettable-instance-variables ... 6-25
get-term-em-rc ... S-ll
get-viewport &optional point ... S-ll
grey-halftone ... S-19
:help [command-name] ... 5-2
top-Ievel:*history* ... 5-19
:history [:reverse] [n] ... 5-3
icon-menu-create icon-vector ... S-4, S-11
icon-menu-create-x icon-vector flag-vector previous :if-error-output-exists '" 4-1
excl:*ignore-package-name-case* ... 3-2
lisp:import ... 3-11
:included-flavors ... 6-29
:init init-plist " . 6-20
:initable-instance-variables ... 6-26
init-graphics &optional set-full-graphics-mode-p .. , S-12
initialize-tek-graphics .,. S-12
:init-keywords ... 6-26
:inside func ... 5-11
:inspect '" 5-15
:inspect * ... 5-15
:inspect? ... 5-15
:inspect - ... 5-16
:inspect index ... 5-15
:inspect name ... 5-15
inspect object ... 5-15
:inspect print max ... 5-16
:inspect q ... 5-16
:inspect set index form ... 5-16
:inspect set name form ... 5-16
:inspect skip n ... 5-16
:inspect tree ... 5-17
excl:instancep object ... 6-21
instantiate-flavor flavor-name init-plist &optional send-init-message-p return-unhand/ed-

keywords area ... 6-19
lisp:intern ... 3-11
:inverse-list ... 6-40, 6-42
: language language-name :Ianguage :print :convert-symbol :address :remember-address

D-01-02(2-12 ~

... 8-6
:Id file* ... 5-10
top-level:*ld-options* ... 5-19

Tek COMMON liSp
Summary of symbols A-7

lexpr-funcall-self message arguments* Iist-of-arguments ... 6-23
recompile-flavor flavor-name &optional single-op ... 6-23
lexpr-send object message arguments* list-of-arguments ... 6-9
lexpr-send-self message arguments* Iist-of-arguments ... 6-23
excl::*library-code-cl-pathname* ... 3-9
excl::*library-code-fasl-pathname* .,. 3-9
Iight-grey-halftone ... S-19
line-draw point-1 point-2 ... S-12
line-draw-x point-1 point-2 width draw-Iast-p bbcom ... S-12
Iisp:export ... 3-11
Iisp:find-symbol ... 3-11
Iisp:import ... 3-11
lisp:intern ... 3-11
Iisp:shadow ... 3-11
lisp:shadowing-import ... 3-11
lisp:unexport '" 3-11
Iisp:unintern ... 3-11
lisp:unuse-package ... 3-11
lisp:use-package '" 3-11
ff:lisp-value index ... 8-16
:list ... 6-39, 6-42
system:*load-search-list* ... 3-8
:Iocal name ... 5-8
make-bbcom &key :srcform :destform :srcpoint :destrect :cliprect :halftoneform :rule

... S-3
make-cstruct name ... 8-24
make-display-state ... S-4
make-halftoneform &optional pattern list ... S-19
make-instance flavor-name {init-option value}* ... 6-18
make-point x y ... S-l
make-rect x y w h ... S-2
malloc-cstruct name ... 8-24
menu-create vector-of-strings ... S-4, S-12
menu-create-x vector-of-strings flag-vector previous font ... S-4, S-12
menu-destroy menu ... S-5, S-12
menu-left ... S-5
menu-nose/ect ... S-5
menu-right ... S-5
menu-select menu ... S-13
:method-combination ... 6-31
:mixture defflavor ... 6-32
: moderate ... 5-6

Tektronix, Inc.
A-a Summary of symbols

:nconc ... 6-39, 6-42
:newest ... 3-6
:newest-ask-compile ... 3-6
:newest-do-compile ... 3-6
no method type ... 6-41
:no-vanilla-flavor ... 6-29
:[+I-]number [?] ... 5-3
:operation-handled-p operation ... 6-35
:or ... 6-39, 6-41, 6-42
:ordered-instance-variables .,. 6-29
system :os-wait ... 4-1
excl :run-shell-command command &key :input ... 4-1
:outside-accessible-instance-variables ... 6-30
:override ... 6-42
paint-line bbcom point ... S-13
pan-cursor-enable enablep ... S-13
pan-disk-enable enablep ... S-13
:pass-on ... 6-40, 6-42
:pass-type (passing-convention+) ... 8-6
::pattern [? I +J ... 5-3
point-distance point-1 point-2 ... S-13
point-from-user point . .. S-13
point-max point-1 point-2 ... S-13
point-midpoint poinH point-2 ... S-13
point-min point-1 point-2 ... S-14
pOintp p ... S-2
pOints-to-rect point-1 point-2 ... S-14
pOint-to-row-column point ... S-14
point-x p ... S-l
point-y p ... S-l
polygon-draw point-vector ... S-14
polygon-draw-x point-vector bbcom ... S-14
polyline-draw point-vector ... S-14
polyline-draw-x point-vector width closed bbcom ... S-14
:pop [n] .,. 5-5
excl:pp name ... 3-10
excl:if* test-form then then-form+ ... 3-10
top-Ievel:*print* ... 5-20
: print boolean ... 8-7
:print-after expr ... 5-11
:print-all expr ... 5-11
: print-before expr ... 5-11
top-Ievel:*print-Iength* ... 5-20
top-Ievel:*print-Ievel* ... 5-20
:print-self stream prindepth escape-p ... 6-34

:progn ... 6-39, 6-42
top-Ievel:*prompt* ... 5-19
:property-lisf ... 6-47
si:properly-lisf-mixin ... 6-46
protect-cursor rect1 &optional rect2 ... S-15
:prt ... 5-5
:push-properlyvalueproperly-name ... 6-47
:putprop value property-name ... 6-47
excl :ratiop object ... 3-9
top-Ievel:*read* ... 5-20
rect-areas-differing rectangle-1 rectangle-2 ... S-15
rect-areas-outside rectangle-1 rectangle-2 ... S-15
rect-box-draw rectangle width ... S-15
rect-box-draw-x rectangle width bbcom ... S-15
rect-contains-point rectangle point ... S-15
rect-contains-rect rectangle-1 rectangle-2 ... S-15
rect-draw rectangle ... S-16
rect-draw-x rectangle bbcom ... S-16
rect-from-user &optional rectangle ... S-16

Tek COMMON lisp
Summary of symbols A-9

rect-from-user-x minimum-size form &optional rectangle ... S-16
rect-h r ... S-2
rect-intersect rectangle-1 rectangle-2 &optional rectangle-3 .,. S-16
rect-intersects rectangle-1 rectangle-2 ... S-16
rect-merge rectangle-1 rectangle-2 &optional rectangle-3 ... S-16
rectp v ... S-2
rect-w r ... S-2
rect-x r ... S-2
rect-y r ... S-2
ff:register-function symbol-or-compiled-function-object &optional index ... 8-15
ff:register-value value &optional index ... 8-15
release-cursor ... S-17
:remember-address boolean ... 8-7
top-Ievel:remove-alias &rest names ... 5-22
ff:remove-entry-point name-of-entry-point ... 8-4
:remprop property-name ... 6-47
:required-flavors ... 6-28
:required-init-keywords ... 6-27
:required-instance-variables ... 6-27
:required-methods ... 6-27
system:*require-search-list* ... 3-9
:reset ... 5-4
ff:reset-entry-point-table ... 8-4
ff:defforeign lisp-name &key :entry-point ... 8-4
top-Ievel:*reset-hook* ... 5-20
restore-display-state display-state ... S-17

Tektronix, Inc.
A-10 Summary of symbols

:return-type return-type '" 8-7
row-column-to-rect row column &optional rect ... S-17
:run-time-alternatives deftlavor ... 6-32
save-display-state &optional display-state ... S-17
:scont [n] ... 5-14
screen-height ... S-5
screen-saver-enable enablep ... S-17
screen-width ... S-5
self ... 6-22
send instance message [argument ...] ... 6-23
send object message &rest arguments .. , 6-8
:send-if-handles operation arguments* ... 6-35
send-self message arguments* .. , 6-23
excl:set-case-mode new-mode ... 3-2
set-cursor form ... S-17
set-cursor-position pOint ... S-17
set-in-instance instance symbol value ... 6-24
set-key board-code val ... S-17
set-machine-type value ... S-18
set-mouse-bounds point1 point2 '" S-18
set-mouse-position point ... S-18
:set-property-list list ... 6-47
:settable-instance-variables ... 6-25
set-viewport point ... S-18
lisp:shadow ... 3-11
lisp:shadowing-import ... 3-11
excl:shell &optional command ... 4-3
si :flavor-allowed-init-keywords flavor-name ... 6-24
excl:single-floatp object ... 3-9
si:property-list-mixin ... 6-46
si:vanilla-flavor ... 6-34
:skip n ... 5-7
source-file-type ... 3-11
:sover ... 5-14
:specia/-instance-variables ... 6-26
:step [t I nil I function-list] ... 5-13
step-print-Iength ... 5-14
step-print-Ievel ... 5-14
string-draw string point ... S-18
string-draw-raw-x string point bbcom font ... S-18
string-draw-x string point bbcom font ... S-18
string-width string font ... S-18
symeval-in-instance instance symbol &optiona/ no-error-p ... 6-24
system:command-line-argument n ... 4-3
system:command-line-argument-count ... 4-3

D.01-02(2-1::

system:command-line-arguments ... 4-3
system:getenv string :system-libraries ... 8-2
:system-libraries (library+) ... 8-2
system:*load-search-list* ... 3-8
system :os-wait ... 4-1
system:*require-search-list* ... 3-9
terminal-enable enablep ... S-19
:top ... 5-7
top-Ievel:alias {name I (name [option ...])} arglist body ... 5-21
top-Ievel:*auto-zoom* ... 5-19
top-Ievel:*command-char* ... 5-19
top-Ievel:do-command name &rest arguments ... 5-22
top-Ievel:*eval* ... 5-20
top-Ievel:*exit-on-eof* ... 5-19
top-Ievel:*file-ignore-case* ... 5-20
top-Ievel:*history* ... 5-19
top-level:*ld-options* ... 5-19
top-Ievel:*print* ... 5-20
top-Ievel:*print-Iength* ... 5-20
top-Ievel:*print-Ievel* ... 5-20
top-Ievel:*prompt* ... 5-19
top-Ievel:*read* ... 5-20
top-Ievel:remove-alias &resf names ... 5-22
top-Ievel:*reset-hook* .. , 5-20
top-Ievel:*zoom-display* ... 5-8
top-Ievel:*zoom-print-Iength* ... 5-8
top-Ievel:*zoom-print-Ievel* ... 5-8
:trace function-or-option-list* ... 5-10
excl:*trace-output* ... 5-11
excl:*trace-print-Iength* ... 5-11
excl:*trace-print-Ievel* ... 5-11
compiler:trust-declarations-switch ... 2-6
excl:uncompile function-name ... 3-9
undefflavor flavor ... 6-22
undefmethod flavor [type] operation [suboperation] ... 6-22
lisp:unexport ... 3-11
lisp:unintern ... 3-11
:untrace [function-list] ... 5-11
lisp:unuse-package ... 3-11
:up ... 5-7
:up [n] use-old-combined-methods do-dependents ... 6-23
lisp:use-package ... 3-11
excl:username-to-home-directory name ... 4-4
si:vanilla-f1avor ... 6-34
:verbose ... 5-6

Tek COMMON LISp
Summary of symbols A-11

Tektronix, Inc.
A-12 Summary of symbols

compiler:verify-argument-count-switch ... 2-6
compiler:verify-car-cdr-switch ... 2-6
compiJer:verify-non-generic-switch .,. 2-6
compiler:verify-symbol-value-is-bound-switch .. , 2-6
very-light-grey-halftone ... S-19
video-normal normalp ... S-19
view-height ... S-5
view-width ... S-5
:which-operations ... 6-34
*white-halftone** ... S-19
:wrapper ... 6-42
:zoom arguments* ... 5-6
top-Ievel:*zoom-display* ... 5-8
top-Ievel:*zoom-print-Iength* ... 5-8
top-Ievel:*zoom-print-Ievel* ... 5-8

Tektronix 4400 graphics library

1 Introduction S-l
2 Data structures S-l

2.1 Points S-l
2.2 Rectangles S-2
2.3 Forms S-2
2.4 8bcoms S-3
2.5 Display states S-4
2.6 Menus S-4

3 Rules for bit· bIt S-5
4 Variables S-5
5 Functions S-6
6 Halftone forms S-19

Tektronix 4400 graphics library

The LiSp tek4400-graphics (nicknamed gr) package permits LISP users to
directly call functions in the graphics library on the 4400 series machines. The
LiSp interface is nearly identical to the C interface. Please refer to the Graph
ics Library documentation in the Workstation Reference Manual for informa
tion on what each graphics routine does. Listed below are the LiSp function
names and the reference to the C graphics name in the 4400 Series C Refer
ence.

The tek4400-graphics module can be loaded automatically with COMMON

LiSp require function as in (require 'tek-graph). Once loaded, the graphics
mode must be initialized by calling the function initialize-tek-graphics which
sets the *screen* vrujable. *screen* is the form representing the display bit
map.

A point is a special data type which internally consists of two 16-bit signed
integers.

make-point x y

• Returns a point. x and y are integers.

point-x p
point-y p

• Accesses point p's x and y coordinates respectively.

[Function}

[Function}
[Function}

o To modify the x and y coordinates of a point p, use setf as in (setf
(point-x p) x2), where x2 is an integer.

1
Introduction

2
Data

structures

2.1
Points

S-1

Tektronix, Inc.
8-2 Tektronix 4400 graphics library

2.2
Rectangles

2.3
Forms

pointp p [Function}

• Returns t if and only if p is a point.

A rectangle is a special data type internally represented as four 16-bit signed
integers.

make-rect x y w h

• Returns a rectangle. x, y, w, and h are each integers.

rect-x r
rect-y r
rect-w r
rect-h r

[Function}

[Function}
[Function}
[Function}
[Function}

• Accesses rectangle r's x, y, w, and h corrdinates respectively.
o To modify these coordinates of rectangle r, use setf as in (setf (rect-x r)
x2), where x2 is an integer.

rectp v [Function}

• Returns t if and only if v is a rectangle.

A form is a bitmap. The contents of a form should only be manipulated with
such functions as bit-bit or paint-line; the fields should never be modified in
any other way by a user program! Doing so may cause the low level bit-bit
primitive to overwrite adjacent LISP objects and cause LISp to crash. Forms
created by the form-create function contain the bitmap in the form (thus unless
you set *print-array* to nil or set *print-Iength* to a small value you will not
want 'print' to ever print a form value). The form returned by init-graphics
points to the screen form (which is not in the form itself but which is pointed to
by theform). Eachform begins with a 'magic' number to aid type checking.

form-create w h [Function}

• Creates and returns a form. This function is described in the 'Func
tions' section below.
o See the C function FormCreate in §5 of the 4400 Series C Reference.

form-w f
form-h f

[Function}
[Function}

• Accessesform f 's w (width) and h (height) dimensions respectively.

0-02-03 O:Cb 1 i >!

(,.11_&6)

Tek COMMON LISp
Tektronix 4400 graphics library 8-3

formp v [Function]

• Returns t if and only if v is aform.

A bbcom is a bit-bit command vector. The user constructs the command vector
and then passes it to such functions as bit-bit or paint-line. The contents of the
bbcom may be modified, but only with legal values. Fields are:

srcform aform or nil
destform a form

srcpoint a point

destrect a rect

cliprect a rect

halftoneform aform or nil
rule a fixn um

make-bbcom &key :srcform :destform :srcpoint :destrect
:cliprect :halftoneform :rule

• Returns a bbcom. The default values are

srcform nil
destform *screen*
halftoneform nil
srcpoint (0,0)

[Function]

destrect (0,0, *screen-width*, *screen-height*)
cliprect (0,0, *screen-width*, *screen-height*)
rule bb-s if srcform is non-nil or

bb-one if srcform is nil.

screen names the form for the screen. *screen-width* and *screen
height* name the pixel width and height of the screen respectively.
D For each of the fields X, there is a bbcom-X function to access that
field.
o To modify a field X, one can use setf for each X as in (setf (bbcom
halftoneform form) r2) where form is aform, and r2 is a bbcom rule.
D This function replaces the BbcomDefault function in the C graphics
library.

2.4
Bbcoms

Tektronix, Inc.
8-4 Tektronix 4400 graphics library

2.5
Display
states

2.6
Menus

bbcomp v [Function}

• Returns t if and only if v is a bbcom.

A display state holds the complete state of the display (except the screen bit
map).

make-display-state [Function}

• Returns a display state.

display-state-p v [Function}

• Returns t if and only if v is a display state.

A menu is a structure containing forms, a bbcom and several other fields.

icon-menu-create icon-vector [Function}

• Initializes and returns a menu. This function is described in the 'Func
tions' section below.
o See the C function IconMenuCreate in §5 of the 4400 Series C Refer
ence.

icon-menu-create-x icon-vector flag-vector previous [Function}

• Initializes and returns a menu. This function is described in the 'Func
tions' section below.
o See the C function IconMenuCreateX in §5 of the 4400 Series C
Reference.

menu-create vector-of-strings [Function}

• Initializes and returns a menu. This function is described in the 'Func
tions' section below.
o See the C function MenuCreate in §5 of the 4400 Series C Reference.

menu-create-x vector-ot-strings flag-vector previous font [Function}

• Initializes and returns a menu. This function is described in the 'Func
tions' section below.
o See the C function MenuCreateX in §5 of the 4400 Series C Refer
ence.

Tek COMMON LISp
Tektronix 4400 graphics library 8-5

menu-destroy menu [Function]

• Deallocates a menu. This function is described in the 'Functions' sec
tion below.
o See the C function MenuDestroy in §5 of the 4400 Series C Reference.

menu-left
menu-nose/ect
menu-right

• Constants for the flag vectors of menu structures.

bb-zero
bb-s-and-d
bb-s-and-not-d
bb-s
bb-not-s-and-d
bb-d
bb-s-xor-d
bb-s-or-d
bb-not-s-and-not-d
bb-not-s-xor-d
bb-not-d
bb-s-or-not-d
bb-not-s
bb-d-or-not-s
bb-not-s-or-not-d
bb-one

[Constant]
[Constant]
[Constant]

[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]

• These LISP constants are the rules passed to bit-bit and correspond to
the C constants defined in /lib/include/graphics.h.

screen-height
screen-width

[Variable]
[Variable]

• These variables contain the size in pixels, as height and width, of the
screen bitmap.

view-height
view-width

[Variable]
[Variable]

• These variables contain the size in pixels, as height and width, of the
visible portion of the screen bitmap.

3
Rules for-

bit-bit

4
Variables

Tektronix, Inc.
8-6 Tektronix 4400 graphics library

5
Functions

The documentation for these functions can be found in §5, 'Graphics Library
Reference,' of the 4400 Series C Reference. The order that the functions are
listed below is the same order as they appear in that section of the manual, i.e.
in alphabetieal order. Note that some of the functions have been described
above, and that some functions in the C library have no counterpart in LISp.
Functions that have no counterpart are functions such as BbcomDefault and
FormCopy that manifest the unique programming paradigm of C. In the case
of BbcomDefault, the LISp counterpart is make-bbcom, which both allocates
and initializes a bbcom object. In C a bbcom would be created by declaring a
struct BBCOM structure, whereas in LISp a bbcom object must be allocated. In
the case of FormCopy, the generic LIsp function copy-seq subsumes the
data-specific C function.

In general the LISp function's name is generated by a simple transforma
tion of the C function name. The C function name is divided just before each
embedded capital letter, the letter is converted to lower case, and a hyphen is
inserted at each such division. For example, the C library function Clear
Screen becomes the LISP function clear-screen. In some cases the LISp func
tion expands abbreviated components in C function names, e.g. the C function
GetCPosition becomes the LISP function get-cursor-position.

Certain conventions are observed in describing the arguments to these
functions. Arguments ending with ''p'' are predicates. The value nil means
'false' and anything else means 'true'. Some of the functions that return struc
tures take optional arguments (e.g. get-viewport). If the argument is passed to
the function, then the result value will be stored in that argument, otherwise the
function will allocate a new structure and return it.

N.B. All functions check for errors from the library and signal an error if
an error is detected. Thus functions don't return if there was an error. If there
was no error, the functions return the value returned by the C library function,
converted to an appropriate LISP data type.

bit-bit bbcom [Function]

• Performs the bit-bit command described in the bbcom record.
o See the C function BitBIt in §5 of the 4400 Series C Reference.

char-draw char point [Function]

• Draws the character char at point point.
o See the C function CharDraw in §5 of the 4400 Series C Reference.

char-draw-raw-x char pOint bbcom font [Function}

• Draws the character char in font font at point point using the parame
ters of the bbcom.
o See the C function CharDrawRawX in §5 of the 4400 Series C Refer
ence.

D·D::! 03 ·m(26 11

Udl-S6)

char-draw-x char point bbcom font

Tek COMMON Lisp
Tektronix 4400 graphics library 8-7

[Function}

• Draws the character char in font font at point point using the parame
ters of the bbcom. The value of point is updated to location at the end of
the character.
o See the C function CharDrawX in §5 of the 4400 Series C Reference.

char-width char font [Function}

• Returns the width in pixels required to draw character char in font font.
o See the C function CharFont in §5 of the 4400 Series C Reference.

circle-draw center radius [Function}

• Draws a circle centered at point center of the specified fixnum radius.
o See the C function CircieDraw in §5 of the 4400 Series C Reference.

circle-draw-x center radius width bbcom [Function}

• Draws a circle centered at point center of the specified fixnum radius
using a line offixnum width onto the form specified by bbcom.
o See the C function CircleDrawX in §5 of the 4400 Series C Reference.

clear-screen [Function}

• Clear the screen.
o See the C function ClearScreen in §5 of the 4400 Series C Reference.

cursor-track trackp [Function}

• Force cursor to track the mouse if trackp is true.
o See the C function CursorTrack in §5 of the 4400 Series C Reference.

cursor-visible visiblep [Function}

• Make cursor visible or invisible based on visiblep
o See the C function CursorVisible in §5 of the 4400 Series C Refer
ence.

display-visible visiblep [Function}

• Make the display visible or invisible based on visiblep.
o See the C function DisplayVisible in §5 of the 4400 Series C Refer
ence.

Tektronix, Inc.
8-8 Tektronix 4400 graphics library

event-clear-alarm [Function]

• Clears any pending alarms that the process has requested.
o See the C function EClearAlarm in §5 of the 4400 Series C Reference.

event-disable [Function]

• Disables event processing.
o See the C function EventDisable in §5 of the 4400 Series C Reference.

event-enable [Function]

• Enables event processing.
o See the C function EventEnable in §5 of the 4400 Series C Reference.

event-get-count [Function]

• Returns the number of event vvalues in the event buffer waiting to be
processed.
o See the C function EGetCount in §5 of the 4400 Series C Reference.

event-get-new-count [Function]

• Returns the number of event values in the event buffer which have
occurred since the previous call to this function.
o See the C function EGetNewCount in §5 of the 4400 Series C Refer
ence.

event-get-next [Function]

• Returns two values: an event-type code and an event value. The
event-type codes are shown below.

0 delta time

1 mouse x location

2 mouse y location

3 key or button pressed

4 key or button released

5 absolute time

o Whenever the keyboard or mouse changes state, a time event is
generated (either a type 0 or type 5 event) that reports the time of the
event. This is accompanied by an event value that specifies the actual
change that occurred.
o See the C function EGetNext in §5.of the 4400 Series C Reference.

0-02·03 m(.!6 11

;·11·86)

event-get-time

Tek COMMON LiSp
Tektronix 4400 graphics library 8-9

[Function]

• Returns the time, in milliseconds, since the system was powered up.
o See the C function EGetTime in §5 of the 4400 Series C Reference.

event-set-mouse-interval interval [Function]

• Specifies how frequently mouse motion events are to be created if the
mouse is continuously moving. interval is afixnum.
o See the C function ESetMlnterval in §5 of the 4400 Series C Refer
ence.

event-set-alarm time [Function]

• Requests a signal when the specified time, in milliseconds, is reached.
o See the C function ESetAlarm in §5 of the 4400 Series C Reference.

event-set-signal [Function]

• Requests the event manager to signal the current process when events
occur.
o See the C function ESetSignal in §5 of the 4400 Series C Reference.

exit-graphics [Function]

• Exit graphics mode.
o See the C function ExitGraphics in §5 of the 4400 Series C Reference.

font-close font [Function]

• Releases storage used for the specified font font.
o See the C function FontClose in §5 of the 4400 Series C Reference.

font-open font-file [Function]

• Initializes a font from the font file font-file.
o See the C function FontOpen in §5 of the 4400 Series C Reference.

form-draw form [Function]

• Displays the form form.

form-create w h [Function]

• Creates and returns aform with width wand height h.
o See the C function FormCreate in §5 of the 4400 Series C Reference.

Tektronix, Inc.
S-10 Tektronix 4400 graphics library

form-get-point form &opfional point [Function}

• Returns the value of a particular point (default (0,0) in a form.
D See the C function FormGetPoint in §5 of the 4400 Series C Refer
ence.

form-read file-name [Function}

• Reads a file in Smalltalk 'form' format from disk and returns a form
object initialized from the file.
D See the C function FormRead in §5 of the 4400 Series C Reference.

form-set-point form point value [Function}

• Sets the value of a single point in form to value.
D See the C function FormSetPoint in §5 of the 4400 Series C Refer
ence.

form-write form file-name [Function}

• Writes the form form to the file file-name in Smalltalk format.
D See the C function FormWrite in§5 of the 4400 Series C Reference.

get-buttons [Function}

• This returns an integer whose lower three bits are the mouse button
values (1 == down).
D See the C function GetButtons in §5 of the 4400 Series C Reference.

get-cursor &optional form [Function}

• Returns the cursor image bitmap. The image will be stored in form if
provided.
D See the C function GetCursor in §5 of the 4400 Series C Reference.

get-curs~r-position &opfional point [Function}

• Get the position where the cursor is currently displayed.
D See the C function GetCPosition in §5 of the 4400 Series C Reference.

get-machine-type [Function}

• Returns the 4400-series model number as set at machine initialization
time or by the function set-machine-type.
D See the C function GetMachineType in §5 of the 4400 Series C Refer
ence.

D-0203 02a61l-'

1F •. '1.1iIr"

get-real-machine-type

Tek COMMON LiSp
Tektronix 4400 graphics library 8-11

[Function]

• Returns the 4400-series model number stored in internal ROM.
o See the C function GetRealMachineType in §5 of the 4400 Series C
Reference.

get-mouse-bounds &optional point1 point2 [Function]

• Get the limits on mouse motion. The points will be stored in point1
and point2 if provided.
o See the C function GetMBounds in §5 of the 4400 Series C Reference.

get-mouse-position &optional point [Function]

• Get the position where the mouse is currently pointing. The point will
be stored in point if provided.
o See the C function GetMPosition in §5 of the 4400 Series C Refer
ence.

get-term-em-rc [Function]

• Returns two fixnum values, the number of rows and columns, of the
terminal emulator.
o See the C function GetTermEmRC in §5 of the 4400 Series C Refer
ence.

get-viewport &optional point [Function]

• Get the position which .the panning hardware is displaying as the upper
left-hand comer of the display.
o See the C function GetViewport in §5 of the 4400 Series C Reference.

icon-menu-create icon-vector [Function]

• Initializes and returns a menu. The argument icon-vector is a vector of
pointers toforms or nil.
o See the C function IconMenuCreate in §5 of the 4400 Series C Refer
ence.

icon-menu-create-x icon-vector flag-vector previous [Function]

• Initializes and returns a menu. The argument icon-vector is a vector of
pointers to forms or nil. The argument flag-vector must be an array of
(signed-byte 32) elements of the same length as icon-vector. The fixnum
parameter previous specifies the initial mouse position.
o See the C function IconMenuCreateX in §5 of the 4400 Series C
Reference.

Tektronix, Inc.
8-12 Tektronix 4400 graphics library

init-graphics &optional set-tull-graphics-mode-p [Function}

• Initialize display for graphics.
o See the C function InitGraphics in §5 of the 4400 Series C Reference.

initialize-tek-graphics {Function}

• This function sets the *screen* variable and must be called before
doing any graphics operations.
o This function is equivalent to {setq *screen* (in it-graphics nil)).

line-draw·point-1 point-2 {Function}

• Draws a one-pixel wide line between the points point-1 and point-2.
Both endpoints are drawn.
o See the C function LineDraw in §5 of the 4400 Series C Reference.

line-draw-x point-1 point-2 width draw-Iast-p bbcom [Function}

• Draws a line of width width pixels between the points point-1 and
point-2 onto the form specified by bbcom. Both endpoints are drawn
unless draw-Iast-p is nil and width is 1.
o See the C function LineDrawX in §5 of the 4400 Series C Reference.

menu-create vector-ot-strings [Function}

• Initializes and returns a menu. The argument vector-of-strings must be
of type (simple-array (simple-string *) (*)).
o See the C function MenuCreate in §5 of the 4400 Series C Reference.

menu-create-x vector-ot-strings flag-vector previous font {Function}

• Initializes and returns a menu. The argument vector-of-strings must be
of type (simple-array (simple-string *) (*)). The argument flag-vector
must be of type (array (signed-byte 32)) and of the same length as vector
of-strings. The fixnum argument previous specifies the initial mouse posi
tion. Menu items are displayed infont font.
o See the C function MenuCreateX in §5 of the 4400 Series C Refer
ence.

menu-destroy menu [Function}

• The menu menu is deallocated.
o See the C function MenuDestroy in §5 of the 4400 Series C Reference.

D·02-03-02(26-11

Tek COMMON lisp
Tektronix 4400 graphics library 8-13

menu-select menu [Function]

• Opens the specified menu and waits for a mouse click or release.
D See the C function MenuSelect in §5 of the 4400 Series C Reference.

paint-line bbcom point [Function]

• Paints a line on the display.
D See the C function PaintLine in §5 of the 4400 Series C Reference.

pan-cursor-enable enablep [Function]

• Enable screen panning using the cursor if enablep is true.
D See the C function PanCursorEnable in §5 of the 4400 Series C
Reference.

pan-disk-enable enablep {Function]

• Enable screen panning using the joy disk if enablep is true.
D See the C function PanDiskEnable in §5 of the 4400 Series C Refer
ence.

point-distance point-1 point-2 {Function]

• Returns the distance between the two points.
D See the C function PointDistance in §5 of the 4400 Series C Refer
ence.

point-from-user point {Function]

• Returns a point selected by the user.
D See the C function PointFromUser in §5 of the 4400 Series C Refer
ence.

point-max point-1 point-2 {Function]

• Returns the lower right comer of the rectangle defined the the two
points.
D See the C function PointMax in §5 of the 4400 Series C Reference.

point-midpoint point-1 point-2 {Function]

• Returns the midpoint of the line defined by the two points.
D See the C function PointMidpoint in §5 of the 4400 Series C Refer
ence.

Tektronix, Inc.
8-14 Tektronix 4400 graphics library

point-min point-1 point-2 [Function}

• Returns the upper left comer of the rectangle defined by the two points.
o See the C function PointMin in §5 of the 4400 Series C Reference.

point-to-row-eolumn point [Function}

• Converts a screen coordinate to the row, column indices which define
the terminal emulator character cell which contains that point. Returns
two values: the row and column.
o See the C function PointToRC in §5 of the 4400 Series C Reference.

points-to-reet point-1 point-2 [Function}

• Returns the minimum rectangle that contains both points.
o See the C function PointsToReet in §5 of the 4400 Series C Refer
ence.

polygon-draw point-vector [Function}

• Draws a filled-in polygon defined by the points in the simple-vector
point-vector.
o See the C function PolygonDraw in §5 of the 4400 Series C Refer
ence.

polygon-draw-x point-vector bbcom [Function]

• Draws a filled-in polygon defined by the points in the simple-vector
point-vector onto the destination form specified by bbcom.
o See the C function PolygonDrawX in §5 of the 4400 Series C Refer
ence.

polyline-draw point-vector [Function}

• Draws a series of line segments connecting the points of the simple
vector point-vector using the bbSorD combination rule. The line segments
are one-pixel wide.
o See the C function PolyLineDraw in §5 of the 4400 Series C Refer
ence.

polyline-draw-x point-vector width closed bbcom [Function}

• Draws a series of line segments connecting the points of the simple
vector point-vector, each line of width width pixels onto the form specified
by bbcom. If the fixnum closed is not zero, then a closing line segment is
drawn from the last to the first point in the vector. The last endpoint is not
drawn.

26-11-86)

Tek COMMON LiSp
Tektronix 4400 graphics library 8-15

D See the C function PolyLineDrawX in §5 of the 4400 Series C Refer
ence.

protect-cursor rect1 &optional rect2 [Function]

• Tell the operating system to respond by removing the cursor from the
screen if it is in either rect1 or (optionally) rect2.
D See the C function ProtectCursor in §5 of the 4400 Series C Refer
ence.

rect-areas-differing rectangle-1 rectangle-2 [Function]

• Returns the regions of rectangle-1 that are outside of rectangle-2, and
the regions of rectangle-2 that are outside of rectangle-1.
D See the C function RectAreasDiffering in §5 of the 4400 Series C
Reference.

rect-areas-outside rectangle-1 rectangle-2 [Function]

• Returns the regions of rectangle-1 that are outside of rectangle-2.
D See the C function RectAreasOutside in §5 of the 4400 Series C
Reference.

rect-box-draw rectangle width [Function]

• Draws a box of fixnum width pixels around rectangle using the bbSorD
combination rule.
D See the C function RectBoxDraw in §5 of the 4400 Series C Refer
ence.

rect-box-draw-x rectangle width bbcom [Function]

• Draws a box of fixnum width pixels around rectangle onto the form
specified by bbcom.
D See the C function RectBoxDrawX in §5 of the 4400 Series C Refer
ence.

rect-contains-point rectangle point [Function]

• Returns nil if rectangle does not contain point, otherwise it returns t.
D See the C function RectContainsPoint in §5 of the 4400 Series C
Reference.

rect-contains-rect rectangle-1 rectangle-2 [Function]

• Returns nil unless rectangle-1 contains rectangle-2, in which case it
returns t.

Tektronix, Inc.
8-16 Tektronix 4400 graphics library

D See the C function ReetContainsReet in §5 of the 4400 Series C
Reference.

reet-draw rectangle [Function]

• Draws a solid rectangle using the bbS combination rule.
D See the C function ReetDraw in §5 of the 4400 Series C Reference.

reet-draw-x rectangle bbcom [Function]

• Draws a solid rectangle onto the form specified by bbcom.
D See the C function ReetDrawX in §5 of the 4400 Series C Reference.

reet-from-user &optional rectangle [Function]

• The region selected by the user is returned.
D See the C function ReetFromUser in §5 of the 4400 Series C Refer
ence.

reet-from-user-x minimum-size form &optional rectangle [Function]

• The region selected by the user is returned. The minimum-size argu
ment specifies. the minimum size of the region. The form argument speci
fies a half-tone form to highlight the selected region.
D See the C function ReetFromUserX in §5 of the 4400 Series C Refer-.
ence.

reet-interseet rectangle-1 rectangle-2 &optional rectangle-3 [Function]

• Returns (in rectangle-3 if given) the intersection of rectangle-1 and
rectangle-2. If the rectanges don't intersect it returns nil.
D See the C function Reetlnterseet in §5 of the 4400 Series C Reference.

reet-interseets rectangle-1 rectangle-2 [Function]

• Returns t if the rectangles intersect, otherwise nil.
D See the C function Reetlnterseets in §5 of the 4400 Series C Refer
ence.

reet-merge rectangle-1 rectangle-2 &optional rectangle-3 [Function]

• Returns (in rectangle-3 if given) the minimum rectangle that contains
both rectangle-1 and rectangle-2.
D See the C function ReetMerge in §5 of the 4400 Series C Reference.

0-02-03-02(26-"-:

release-cursor

Tek COMMON liSp
Tektronix 4400 graphics library 8-17

[Function]

• Tell the operating system to restore the cursor if it was removed due to
a call to protect-cursor.
D See the C function ReleaseCursor in §5 of the 4400 Series C Refer
ence.

restore-display-state display-state [Function]

• Re-establish the state defined by display-state.
D See the C function RestoreDisplayState in §5 of the 4400 Series C
Reference.

row-column-to-rect row column &optional rect [Function]

• Returns rectange which describes the terminal emulator character cell
given by row and column. The rectangle will be returned in rect if pro
vided.
D See the C function RCToRect in §5 of the 4400 Series C Reference.

save-display-state &optional display-state [Function]

• Return the display-state of the current display state. The display-state
will be stored in display-state if provided.
D See the C function SaveDisplayState in §5 of the 4400 Series C
Reference.

screen-saver-enable enablep [Function]

• Enable the screen saver timeout, which causes the screen to be blanked
after 10 minutes of keyboard or mouse inactivity.
D See the C function ScreenSaverEnable in §5 of the 4400 Series C
Reference.

set-cursor form [Function]

• Install a new cursor. form must be a 16x16 bitform.
D See the C function SetCursor in §5 of the 4400 Series C Reference.

set-cursor-position point [Function]

• Display the cursor at the specified position.
D See the C function SetCPosition in §5 of the 4400 Series C Reference.

set-key board-code val [Function]

• Tells the keyboard to output either event codes, if val is 0, or ANSI
character strings, if val is 1.

Tektronix, Inc.
8-18 Tektronix 4400 graphics library

o See the C function SetKBCode in §5 of the 4400 Series C Reference.

set-machine-type value [Function]

• Sets the machine type to the fixnum value.
o See the C function SetMachineType in §5 of the 4400 Series C Refer
ence.

set-mouse-bounds point1 point2 [Function]

• Set the limits on mouse motion to be the rectangle defined by the upper
left point point1 and the lower right point point2.
o See the C function SetMBounds in §5 of the 4400 Series C Reference.

set-mouse-position point [Function]

• Position the mouse at the specified position.
o See the C function SetMPosition in §5 of the 4400 Series C Reference.

set-viewport point [Function]

• Set the panning hardware to display the upper left-hand comer of the
display at the specified point.
o See the C function SetViewport in §5 of the 4400 Series C Reference.

string-draw string point [Function]

• Draws the simple-string string using the default font starting at the
specified point.
o See the C function String Draw in §5 of the 4400 Series C Reference.

string-draw-raw-x string point bbcom font [Function]

• Draws the simple-string string using font font starting at the specified
point onto the form specified by bbcom.
o See the C function StringDrawRawX in §5 of the 4400 Series C Refer
ence.

string-draw-x string point bbcom font [Function]

• Draws the simple-string string using font font starting at the specified
point onto the form specified by bbcom.
o See the C function StringDrawX in §5 of the 4400 Series C Reference.

string-width string font [Function]

• Returns the width in pixels of the simple-string string infont font.
o See the C function StringWidth in §5 of the 4400 Series C Reference.

D.(J2.(»).(J2Q&I1·

Tek COMMON LISp
Tektronix 4400 graphics library 8-19

terminal-enable enablep [Function]

• Enable the terminal emulator if enablep is true. The previous mode is
returned (t for enabled, nil for disabled).
o See the C function TerminalEnable in §5 of the 4400 Series C Refer
ence.

video-normal normalp [Function]

• Set display to white on black if normalp is nil, and to black on white
otherwise.
o See the C function VideoNormal in §5 of the 4400 Series C Reference.

Tek COMMON LISp includes a function for creating halftone forms, and several
variables that represent common halftone forms.

make-halftoneform &opfional patternlist [Function]

• Make a halftone which has the given pattern in it. patternlist is nor
mally a list of sixteen 16-bit signed integers. If patternlist has fewer than
sixteen integers, then the whole pattern is repeated as many times as is
necessary to get sixteen integers.

black-halftone
dark-grey-halftone
grey-halftone
Iight-grey-halftone
very-light-grey-halftone
*wh ite-halftone * *

• Various common halftone forms.

[Variable]
[Variable]
[Variable]
[Variable]
[Variable]
[Variable]

6
Halftone

forms

Index

-86)

+ variable 5-20
++ variable 5-20
+++ variable 5-20
- variable 5-21
/ variable 5-21
II variable 5-21
III variable 5-21
* variable 5-21
** variable 5-21
*** variable 5-21

:abstract-flavor defflavor option 6-31
Accessing slots (§8.8.1) 8-22
:accessor-prefix defflavor option 6-30
Adding new top-level commands (§5.12) 5-21
: address keyword 8-7
:after method type 6-41
top-Ievel:alias macro 5-21
:aliases top-level command 5-9
:alias-f1avor defflavor option 6-31
all-flavor-names variable 6-17
Allocating and freeing cstructs (§8.8.3) 8-23
:and method type 6-41,6-42
:and method-combination type 6-39
:append method type 6-42
:append method-combination type 6-39
:arg-checking keyword 8-6
Argument-passing synopsis (§8.9) 8-26
: arguments keyword 8-6
Arrays (§2.2) r-2
Autoloading (§3.4) 3-9
top-Ievel:*auto-zoom* variable 5-19

bbcomp function 5-4
Bbcoms (§2.4) 5-3
bb-d constant 5-5
bb-d-or-not-s constant 5-5
bb-not-d constant 5-5

Index

bb-not-s constant 5-5
bb-not-s-and-d constant 5-5
bb-not-s-and-not-d constant 5-5
bb-not-s-or-not-d constant 5-5
bb-not-s-xor-d constant 5-5
bb-one constant 5-5
bb-s constant 5-5
bb-s-and-d constant 5-5
bb-s-and-not-d constant 5-5
bb-s-or-d constant 5-5
bb-s-or-not-d constant 5-5
bb-s-xor-d constant 5-5
bb-zero constant 5-5
:before method type 6-41
excl:bignump function 3-9
bit-bit function 5-6
black-halftone variable 5-19
: bottom keyword 5-7
Break levels (§5.5) 5-4
:break message 6-35
: break-after keyword 5-11
:break-all keyword 5-11
:break-before keyword 5-11
: brief keyword 5-6

C structures (§8.8) 8-20
:call search-list keyword 3-7
:case method-combination type 6-40

:after method type 6-41
:and method type 6-41, 6-42
:append method type 6-42
:before method type 6-41
:combined method type 6-42
:default method type 6-41
:inverse-/isf method type 6-42
:list method type 6-42
:nconc method type 6-42
no method type method type 6-41
:or method type 6-41,6-42

1-1

Tektronix, Inc.
1-2 Index

:ove"ide method type 6-42
:pass-on method type 6-42
:progn method type 6-42
:wrapper method type 6-42

Case preference (§3.1.3) 3-3
Case sensitivity of input (§5.2.1) 5-2
:cf top-level command 5-9
Changing a flavor (§6.12.2) 6-46
Changing case modes (§3.1.1) 3-3
char-draw function S-6
char-draw-raw-x function S-6
char-draw-x function S-7
char-width function S-7
excl:chdir function 4-3
circle-draw function S-7
circle-draw-x function S-7
clear-screen function S-7
Closures (§2.1) r-2
:eombined method type 6-42
Command and expression history (§5.4) 5-3
top-Ievel:*command-char* variable 5-19
system:command-Une-argument function 4-3
system :command-line-argument-count function

4-3
system :command-line-arguments function 4-3
Commands and expressions (§5.2.2) 5-2
Comments and suggestions (§3) p-2
Compatibility (§3.1.2) 3-3
Compiled code (§3.1.4) 3-4
exel :compile-file-if-needed function 3-10
compile-flavor-methods macro 6-23
The compiler (§2.4) 2-4
compiler:declared-fixnums-remain-fixnums-switch

variable 2-5
compiler:*do-calJ-counts* variable 7-2
compiler:generate-call-count-code-switch variable

2-5
compiler:generate-interrupt-check-switch variable

2-5
compiler:trust-declarations-switch variable 2-6
compiler:verify-argument-count-switch variable

2-6
compiler:verify-car-cdr-switch variable 2-6
compiler:verify-non-generic-switch variable 2-6
compiler:verify-symbol-value-is-bound-switch vari-

able 2-6
:eondition keyword 5-11
:continue top-level command 5-5

Conventions for passing arguments (§8.4) 8-9
:eonvert-symbol keyword 8-7
ff:convert-to-Iang function 8-4
Copying instances (§6.14) 6-47
:current top-level command 5-7
excl:*current-case-mode* variable 3-2
excl:current-directory function 4-3
cursor-track function S-7
cursor-visible function S-7

:daemon method-combination type 6-38
:daemon-with-and method-combination type

6-38
:daemon-with-or method-combination type 6-38
:daemon-with-ove"ide method-combination type

6-38
dark-grey-halftone variable S-19
Data structures (§2) S-l
Data types (§2.1) 2-1
Declarations and optimizations (§2.4.2) 2-5
compiler:declared-fixnums-remain-fixnums-switch

variable 2-5
:default method type 6-41
:default-handler defflavor option. 6-29
:default-init-plist defflavor option 6-26
ff:defcstruct macro 8-21
defflavor macro 6-17
Defflavor options (§6.8) 6-25
ff:defforeign function 8-6

:address keyword 8-7
:arg-ehecking keyword 8-6
:arguments keyword 8-6
:eonvert-symbol keyword 8-7
:entry-point keyword 8-6
: language keyword 8-7
:pass-type keyword 8-6
:print keyword 8-7
: remember-address keyword 8-7
: return-type keyword 8-7

ff:defforeign-list macro 8-8
Defining a foreign function to LISP (§8.3) 8-5
Defining and calling LISP functions from foreign

code (§8.6) 8-14
defmethod macro 6-17
ff:defun-c-ca"able macro 8-17
defwhopper macro 6-22
defwrapper macro 6-21

D·01·02(2·12 ,

:describe message 6-34
describe-flavor function 6-25
Display states (§2.5) S-4
display-state-p function S-4
display-visible function S-7
:dn keyword 5-7
:dn top-level command 5-7
compiler:*do-call-counts* variable 7-2
top-Ievel:do-command function 5-22
:documentation defflavor option 6-33
excl:dumplisp function 4-4

:entry-point keyword 8-6
Environment functions (§4.2) 4-3
:error top-level command 5-5
Errors (§3.2) 3-4
excl:errorset macro 3-4
top-Ievel:*eval* variable 5-20
:eval-inside-yourself message 6-35
event-clear-alarm function S-8
event-disable function S-8
event-enable function S-8
event-get-count function S-8
event-get-new-count function S-8
event-get-next function S-8
event-get-time function S-9
event-set-alarm function S-9
event-set-mouse-interval function S-9
event-set-signal function S-9
Example (§3.3.2) 3-7
excl:bignump function 3-9
excl:chdir function 4-3
excl :compile-file-if-needed function 3-10
excl:*current-case-mode* variable 3-2
excl:current-directory function 4-3
excl:dumplisp function 4-4
excl:errorset macro 3-4
excl:exit function 4-4
excl :file-older-p function 3-10
excl:fixnump function 3-9
excl :function-call-clear function 7-2
excl:function-call-count function 7-2
excl:function-call-list function 7-1
excl:function-call-report function 7-1
excl :gc function 2-2
excl:*gcprint* variable 2-2
excl :generate-library-pathnames function 3-11

Tek COMMON LisPS·
Index 1-3 - :

excl :get-and-zero-call-count function 7-2
excl:if* macro 3-10
excl:*ignore-package-name-case* variable 3-2
excl:instancep function 6-21
excl::*library-code-cl-pathname* variable 3-9
excl::*library-code-fasl-pathname* variable 3-9
excl :pp macro 3-10
excl:ratiop function 3-9
excl :run-sheJl-command function 4-1
excl:set-case-mode function 3-2
excl:shell function 4-3
excl:single-floatp function 3-9
excl:*trace-output* variable 5-11
excl:*trace-print-Iength* variable 5-11
excl:*trace-print-Ievel* variable 5-11
excl:uncompile function 3-9
excl:username-to-home-directory function 4-4
excl:exit function 4-4
:exit top-level command 5-10
exit-graphics function S-9
top-Ievel:*exit-on-eof* variable 5-19
lisp :export function 3-11
Extensions (Chapter 3) 3-1

ff:convert-to-Iang function 8-4
ff:defcstruct macro 8-21
ff:defforeign function 8-6

:address keyword 8-7
:arg-checking keyword 8-6
:arguments keyword 8-6
:convert-symbol keyword 8-7
:entry-point keyword 8-6
: language keyword 8-7
: pass-type keyword 8-6
:print keyword 8-7
: remember-address keyword 8-7
: return-type keyword 8-7

ff:defforeign-list macro 8-8
ff:defun-c-callable macro 8-17
ff:foreign-argument function 8-18
ff:get-entry-points function 8-4
ff:lisp-value function 8-16
ff:register-function function 8-15
ff:register-value function 8-15
ff:remove-entry-point function 8-4
ff:reset-entry-point-table function 8-4
File types (§2.4.1) 2-4

Tektronix, Inc.
1-4 Index

top-Ievel:*file-ignore-case* variable 5-20
excl :file-older-p function 3-10
:find top-level command 5-7

:dn keyword 5-7
:skip keyword 5-7
:up keyword 5-7

Jisp:find-symbol function 3-11
:first search-list keyword 3-6
excl:fixnump function 3-9
Flavor families (§6.9) 6-33
Flavor functions (§6.7) 6-17
si:flavor-allowed-init-keywords function 6-24
f1avor-allows-init-keyword-p function 6-24
Flavors (Chapter 6) 6-1
font-close function S-9
font-open function S-9
Foreign functions (Chapter 8) 8-1
ff:foreign-argument function 8.-18
:foreign-files keyword 8-2
Format of the manual (§1.1) 1-1
form-create function S-2, S-9
form-draw function S-9
form-get-point function S-lO
form-h function S-2
formp function S-3
form-read function S-10
Forms (§2.3) S-2
form-set-point function S-10
form-w function S-2
form-write function S-10
free-cstruct function 8-24
funcal! function 6-23
:funcall-inside-yourself message 6-35
funcall-self macro 6-23
Functionality (§2) r-2
excl:function-call-clear function 7-2
excl:function-call-count function 7-2
excl :function-call-list function 7-1
excl:function-call-report function 7-1
Functions (§5) S-6

excl:gc function 2-2
excf:*gcprint* variable 2-2
compiler:generate-cafl-count-code-switch variable

2-5
compiler:generate-interrupt-check-switch variable

2-5

excl :generate-Iibrary-pathnames function 3-11
Generic operations (§6.3) 6-6
Generic operations in LISP (§6.4) 6-8
:get message 6-46
excl:get-and-zero-call-count function 7-2
get-buttons function S-10
get-cursor function S-10
get-cursor-position function S-10
ff:get-entry-points function 8-4
system:getenv function 4-4
get-handler-for function 6-24
:get-handler-for message 6-35
:get/ message 6-47
get-machine-type function S-10
get-mouse-bounds function S-11
get-mouse-position function S-11
get-real-machine-type function S-11
:geftable-instance-variables defflavor option

6-25
get-term-em-rc function S-11
Getting help (§5.3) 5-2
get-viewport function S-11

grey-halftone variable S-19

Halftone forms (§6) S-19
:help top-level command 5-2
History (§2) p-l
:history top-level command 5-3
top-Ievel:*history* variable 5-19
How foreign-called Lisp functions get arguments

(§8.7) 8-17
How to compile functions (§ 1.6) 1-4
How to exit Lisp (§ 1.5) 1-3
How to run Lisp (§1.4) 1-3

icon-menu-create function S-11, S-4
icon-menu-create-x function S-11, S-4

excl:if* macro 3-10
excl:*ignore-package-name-case* variable 3-2
Image functions (§4.3) 4-4
Implementation (Chapter 2) 2-1
Implementing flavors (§6.12) 6-44
Iisp:import function 3-11
:included-f/avors defflavor option 6-29
:init message 6-20

:initable-instance-variables defflavor option
6-26

init-graphics function S-12
Initialization (§5.1) 5-1
initialize-tek-graphics function S-12
:init-keywords defflavor option 6-26
Input/output (§2.3) r-2
: inside keyword 5-11
inspect function 5-15
:inspect top-level command 5..,15,5-16,5-17
The inspector (§5.1O) 5-14
excl:instancep function 6-21
instantiate-flavor function 6-19
Interaction (§5.2) 5-1
lisp:intern function 3-11
Internal functions (§2.5) 2-7
Introduction (§ 1) S-l

(Chapter 1) 1-1
:inverse-/ist method type 6-42
:inverse-/ist method-combination type 6-40

Keeping abreast (§5) p-4

The language (§l) p-l
: language keyword 8-7
:Id top-level command 5-10
top-level:*ld-options* variable 5-19
lexpr-funcall-self macro 6-23
lexpr-send macro 6-9
lexpr-send-self macro 6-23
excl::*library-code-cl-pathname* variable 3-9
excl::*library-code-fasl-pathname* variable 3-9
light-grey-halftone variable S-19
line-draw function S-12
line-draw-x function S-12
lisp :export function 3-11
lisp:find-symbol function 3-11
lisp :import function 3-11
lisp :intern function 3-11
lisp:shadow function 3-11
lisp :shadowing-import function 3-11
lisp :unexport function 3-11
lisp:unintern function 3-11
lisp:unuse-package function 3-11
lisp:use-package function 3-11
ff:lisp-value function 8-16

Tek COMMON LISP'> .
Index 1-5

:list method type 6-42
:list method-combination type 6-39
Load errors (§8.2) 8-3
load function 8-2

:foreign-files keyword 8-2
:system-libraries keyword 8-2

The loader (§8.1.1) 8-2
Loading foreign code (§8.1) 8-2
Loading library functions (§8.1.2) 8-3
system:*load-search-list* variable 3-8
:Iocal top-level command 5-8

make-bbcom function 5-3
make-cstruct function 8-24
make-display-state function 5-4
make-halftoni:!form function 5-19
make-instance function 6-18
make-point function S-l
make-rect function S-2
malloc-cstruct function 8-24
menu-create function 5-12, 5-4
menu-create-x function S-12, S-4
menu-destroy function S-12, S-5
menu-left constant S-5
menu-nose/eet constant S-5
menu-right constant 5-5
Menus (§2.6) S-4
menu-select function S-13
Merging pathnames (§2.3.2) 2-3
Method combination (§6.11) 6-35
:method-combination defflavor option 6-31
Miscellaneous commands (§5.7) 5-9
Miscellaneous features (§3) r-2
Miscellaneous functions and symbols (§3.5) 3-9
Mixing flavors (§6.6) 6-13
:mixture defflavor option 6-32
:moderate keyword 5-6
Modularity (§6.2) 6-3

:nconc method type 6-42
:nconc method-combination type 6-39
New features in this release (§ 1) r-1
:newest search-list keyword 3-6
:newest-ask-compile search-list keyword 3-6
:newest-do-compile search-list keyword 3-6
no method type method type 6-41

I eKtronix, Inc.
I-Slndex

A note on portability (§2.6) 2-8
:no-vanilla-flavor defflavor option 6-29
:[+I-]number top-level command 5-3

Objects (§6.1) 6-1
Operating-system interface (Chapter 4) 4-1
:operation-handled-p message 6-35
:or method type 6-41, 6-42
:or method-combination type 6-39
Order of definition (§6.12.1) 6-45
:ordered-instance-variables defflavor option

6-29
system :os-wait function 4-1
Other documents (§ 1.3) 1-2
An outline of the manual (§1.2) 1-2
:outside-accessible-instance-variables defflavor

option 6-30
:override method type 6-42

Packages (Chapter 9) 9-1
Packages in Tek COMMON LIsp (§9.1) 9-1
paint-line function S-13
pan-cursor-enable function S-13
pan-disk-enable function S-13
Parsing pathnames (§2.3.1) 2-2
Passing arrays of strings from LIsp to C (§8.5)

8-12
:pass-on method type 6-42
:pass-on method-combination type 6-40
: pass-type keyword 8-6
Pathnames (§2.3) 2-2
::pattern top-level command 5-3
point-distance function S-13
[Pointers, embedded structures, and arrays (§8.8.4)

8-24
pOint-from-user function S-13
point-max function S-13
point-midpoint function S-13
point-min function S-14
pOintp function S-2
Points (§2.1) S-l
points-to-rect function S-14
point-to-row-column function S-14
point-x function S-l
point-y function S-l
polygon-draw function S-14

polygon-draw-x function S-14
polyline-draw function S-14
polyline-draw-x function S-14
:pop top-level command 5-5
Portability issues (§8.8.5) 8-26
excl :pp macro 3-10
Preface (Prependix p) p-l
:print keyword 8-7
top-Ievel:*print* variable 5-20
: print-after keyword 5-11
:print-all keyword 5-11
:print-before keyword 5-11
top-Ievel:*print-Iength* variable 5-20
top-Ievel:*print-Ievel* variable 5-20
:print-self message 6-34
Profiling (Chapter 7) 7-1
:progn method type 6-42
:progn method-combination type 6-39
top-level:*prompt* variable 5-19
Property list operations (§6.13) 6-46
:properly-/ist message 6-47
si:properly-/ist-mixin flavor 6-46
protect-cursor function S-15
:prt top-level command 5-5
:push-properlyproperly-name message 6-47
:putprop message 6-47

excl:ratiop function 3-9
top-Ievel:*read* variable 5-20
Reader case modes (§3.1) 3-1
recompile-flavor function 6-23
Rectangles (§2.2) S-2
rect-areas-differing function S-15
rect-areas-outside function S-15
rect-box-draw function S-15
rect-box-draw-x function S-15
rect-contains-point function S-15
rect-contains-rect function S-15
rect-draw function S-16
rect-draw-x function S-16
rect-from-user function S-16
rect-from-user-x function S-16
rect-h function S-2
rect-intersect function S-16
rect-intersects function S-16
rect-merge function S-16
rectp function S-2

D·01-0'2(':! 12-&6)

'6)

rect-w function S-2
rect-x function S-2
rect-y function S-2
ff:register-function function 8-15
ff:register-value function 8-15
Release 1.4 notes for Tektronix Workstations

(Prependix r) r-l
release-cursor function S-17
: remember-address keyword 8-7
top-Ievel:remove-alias function 5-22
ff:remove-entry-point function 8-4
:remprop message 6-47
Reporting bugs (§4) p-2
:required-flavors deffiavor option 6-28
:required-init-keywords defflavor option 6-27
:required-instance-variables defflavor option

6-27
:required-methods defflavor option 6-27
system:*require-search-list* variable 3-9
:reset top-level command 5-4
ff:reset-entry-point-table function 8-4
top-Ievel:*reset-hook* variable 5-20
restore-display-state function S-17
: return-type keyword 8-7
row-column-to-rect function S-17
Rules for bit-bit (§3) S-5
excl:run-shell-command function 4-1
:run-time-alternatives defflavor option 6-32

A sample initialization file (§5.l3) 5-23
save-display-state function S-17
:scont top-level command 5-14
screen-height variable S-5
screen-saver-enable function S-17
screen-width variable S-5
Search lists (§3.3) 3-5
self variable 6-22
send function 6-8
send macro 6-23
:send-if-handles message 6-35
send-self macro 6-23
excl:set-case-mode function 3-2
set-cursor function S-17
set-curs~r-position function S-17
set-in-instance function 6-24
set-keyboard-code function S-17
set-machine-type function S-18

Tek COMMON LlS<~~-~
Index 1-7 0 - 1

set-mouse-bounds function S-18
set-mouse-position function S-18
:sef-properly-/ist message 6-47
:settable-;nstance-variables defflavor option

6-25
set-viewport function S-18
lisp:shadow function 3-11
lisp :shadowing-import function 3-11
excl:shell function 4-3
si:flavor-allowed-init-keywords function 6-24
Simple use of flavors (§6.5) 6-9
excl:single-f1oatp function 3-9
s;:properly-/isf-mixin flavor 6-46
si:vanilla-flavor flavor 6-34
:skip keyword 5-7
source-file-type variable 3-11
:sover top-level command 5-14
:special-instance-variables defflavor option

6-26
Stack commands (§5.6) 5-6
:step top-level command 5-13
The stepper (§5.9) 5-13
step-print-Iength variable 5-14
step-print-Ievel variable 5-14
Storage allocation (§2.2) 2-2
Storage allocation for cstructs (§8.8.2) 8-22
string-draw function S-18
string-draw-raw-x function S-18
string-draw-x function S-18
string-width function S-18
Structure (§3.3.1) 3-5
Subprocess functions (§4.1) 4-1
Symbols in the exc/ package (§9.2) 9-2
symeval-in-instance function 6-24

" ,.

system :command-line-argument function 4-3"<:
system :command-line-argument-count function

4-3
system:command-line-arguments function 4-3,
system :getenv function 4-4
:system-libraries keyword 8-2
system:*load-search·list* variable 3-8
system:os-wait function 4-1 <~

system:*require-search-list* variable 3-9

Tektronix 4400 graphics library (Supplement S)q
S-1 q

terminal-enable function S-19

Tektronix, Inc.
1-8 Index

:top keyword 5-7
Top level (Chapter 5) 5-1
Top-level fonns (§2.4.3) 2-7
Top-level variables (§5.11) 5-19
top-Ievel:alias macro 5-21
top-level:*auto-zoom* variable 5-19
top-level:*command-char* variable 5-19
top-Ievel:do-command function 5-22
top-Jevel:*eval* variable 5-20
top-Ievel:*exit-on-eof* variable 5-19
top-Ievel:*file-ignore-case* variable 5-20
top-level:*history* variable 5-19
top-level:*ld-options* variable 5-19
top-level:*print* variable 5-20
top-Ievel:*prinf-length* variable 5-20
top-level:*print-level* variable 5-20
top-level:*prompt* variable 5-19
top-level:*read* variable 5-20
top-Ievel:remove-alias function 5-22
top-Ievel:*reset-hook* variable 5-20
top-Ievel:*zoom-display* variable 5-8
top-level:*zoom-print-length* variable 5-8
top-Ievel:*zoom-print-Jevel* variable 5-8
:trace top-level command 5-10

:break-after keyword 5-11
:break-a/l keyword 5-11
:break-before keyword 5-11
:condition keyword 5-11
: inside keyword 5-11
:print-after keyword 5-11
:print-all keyword 5-11
:print-before keyword 5-11

excl:*trace-output* variable 5-11
excl:*trace-print-length* variable 5-11
excl:*trace-print-level* variable 5-11
The tracer (§5.8) 5-10
compiler:trust -declarations-switch variable 2-6

excl:uncompile function 3-9
undefflavor function 6-22
undefmethod macro 6-22
lisp:unexport function 3-11
lisp:unintern function 3-11
:untrace top-level command 5-11
lisp :unuse-package function 3-11
:up keyword 5-7
:up top-level command 5-7

lisp :use-package function 3-11
excl:username-to-home-directory function 4-4

Vanilla flavor (§6.10) 6-34
si:vani/la-flavor flavor 6-34
Variables (§3.3.3) 3-8

(§4) S-5
;verbose keyword 5-6
compiler:verify-argument-count-switch variable

2-6
compiler:verify-car-cdr-switch variable 2-6
compiler:verify-non-generic-switch variable 2-6
compiler:verify-symbol-value-is-bound-switch vari-

able 2-6
very-light-grey-halftone variable S-19
video-normal function S-19
view-height variable S-5
view-width variable S-5

:which-operations message 6-34
*white-halftone** variable S-19
:wrapper method type 6-42

:zoom top-level command 5-6
: bottom keyword 5-7
:brief keyword 5-6
:moderate keyword 5-6
:top keyword 5-7
:verbose keyword 5-6

top-level:*zoom-display* variable 5-8
top-Ievel:*zoom-print-Iength* variable 5-8
top-Ievel:*zoom-print-level* variable 5-8

D·O]·O'2(:' 12 iii

•

':'mJi6,
"': i 8-(

,~, ~

.\,/1

, .J'!

The Tek COMMON LISp User Guide was printed on an Apple Laserwriter laser printer driven by , ,,;;c

Adobe Systems' Postscript. The manual was typeset using the Unix device-independent ditroff ;0:

program, with tables preprocessed by dtbl, equations by deqn, and diagrams by pic, The Index, I:':
Contents, and Summary of symbols were generated automatically, The text is set in Times Roman::

and Helvetica. Examples are set in Courier.,.~,

•

"i;':

qu:

Release 1.4 notes for Tektronix Workstations

1 New features in this release r-l
2 Functionality r-2

2.1 Closures r-2
2.2 Arrays r-2
2.3 Input/output r-2

3 Miscellaneous features r-2

Release 1.4 notes for Tektronix Workstations

This chapter describes release 1.4 of Tek COMMON LISp for the Tektronix
Workstations. The information provided here pertains specifically to this
release-general information on the topics discussed here may be found in the
Tek COMMON liSp User Guide and in Common Lisp: The Language.

An extension to COMMON LISP, the foreign-function interface, is included in
this release. The interface allows LIsp to call C functions, and allows C func
tions to call back to LISp. A C structures package is part of the foreign func
tion interface. Also included is a file which provides macros for C code to
correctly convert LISP objects to C data formats is also included. It is called
lisp68k.h and is located in the lib/mise directory on the distribution tape. This
directory will usually have absolute name /eommon-lisp/lib. You should con
sult your system manager for the exact location on your system. The foreign
function interface is documented in Chapter 8 of Tek COMMON LISp User
Guide.

Other new functions for interfacing with the operating system have been
added. The most powerful is run-shell-command. All are documented in
Chapter 4.

Various new functions and macros have been added to fill in some gaps in
the COMMON LISP specification. Additions include tests for more data types
and a 'keyword-style' if construct. All are documented in Chapter 3.

Other new features include:
1 In order to make explicit the difference between pure COMMON LIsp code

(as specified in Common Lisp) and the extensions found in Tek COMM:ON
LISP, the location of many symbols has been changed. Chapter 9 of Tek
COMMON lisp User Guide describes this change in detail. Please note
that files compiled under earlier versions of Tek COMMON LISP must be
recompiled with this version.

2 There is now an inspector accessable through the The inspector is
described in Chapter 5 of Tek COMMON liSp User Guide.

3 The compiler optimizations can be better controlled by the user. See sec
tion 1.5 of Tek COMMON LISP User Guide for details.

1
New

features in
this release

r-1

Tekt~onix, -lnc.
r":2 . J~'~lease 1.4 notes for Tektronix Workstations

2
F;ync~i()nality

2.1
Closures

2.2
Arrays

2.3
Input/output

3.
Miscellaneous
features

Certain limitations on the functionality of L are noted here.

It is not possible to compile functional objects (closures) created by interpre
tive evaluation of the function special form. For example, the functional value
of symbol closure-sym below cannot be compiled in this release, and an error
will be signalled by the compile function.

<cl> (sett (symbo~-functi.on 'c~osure-sym)

(~et «~oca~-var 0»
(functi.on

(lambda (bound-var)
(+ bound-var ~ocal-var»»)

<cl> (compi.~e 'c~osure-sym)

The functions bit, sbit, char and schar are treated just like aref in that no
effort is made to ensure that the ftrst argument is of the correct type. It is an
error, although it is not signalled, to provide a sequence argument of the wrong
type.

Because of limitations of the operating system, the functions read-char-no
hang and listen may hang, so they should be avoided.

When the Tek COMMON LISP image is invoked, it will initially attempt to allo
cate the maximum heap space for which it was configured (see the 'Installation
guide' for details). If, however, it is unable to allocate the requested amount of
heap space, it will attempt to allocate 256 kbytes less. The image will repeat
edly at~empt to allocate space, each time asking for 256 kbytes less space, until
the amount of space requested is allocatable or until the rnimimum request of 3
Mbytes is reached. If the miminum of 3 Mbytes cannot be allocated, the image
terminates with an error message.

D·04.nl-01C26·11-8.

