
TE K PROGRAMMERS
REFERENCE

4404P30
LISP

Part No. 070-5607-00
Product Group 18

TEK PROGRAMMERS
REFERENCE

First Printing JAN 1985

Part No. 070-5607-00
Product Group 18

4404P30
liSP

Please Check for
CHANGE INFORMATION
at the Rear of This Manual

COMMITTED TO EXCELlENCE

Reprinted with permission from Franz Inc. Printed in the United
States of America.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Portions © 1980, 1981, 1983 by the Regents of the University of
California. Additions © 1984, Franz Inc., Berkeley, California.

All rights reserved.

This revision incorporates minor corrections and changes to the
University of California text, and describes the particular version of
FRANZ LISP implemented by Tektronix.

MANUAL REVISION STATUS

PRODUCT: 4400P30 Franz Lisp Programming Language

This manual supports the following versions of this product: Version 41

REV DATE DESCRIPTION

JAN 1985 Original Issue

,

4404P30 LISP PROGRAMMERS

Contents

Part I

1. FRANZ LISP
Introduction to FRANZ LISP, details of data types, and description of notation

2. Data Structure Access
Functions for the creation, destruction and manipulation of lisp data objects.

3. Arithmetic Functions
Functions to perform arithmetic operations.

4. Special Functions
Functions for altering flow of control. Functions for mapping other functions over
lists.

5. 110 Functions
Functions for reading and writing from ports. Functions for the modification of the
reader's syntax.

6. System Functions
Functions for storage management, debugging, and for the reading and setting of glo
bal Lisp status variables. Functions for doing operating system-specific tasks such as
process control.

Part II

7. The Reader
A description of the syntax codes used by the reader. An explanation of character
macros.

8. Functions, FcJosures, and Macros
A description of various types offunctional oqjects. An example of the use offoreign
functions.

9. Arrays and Vectors
A detailed description of the parts of an array and of Maclisp compatible arrays.

10. Exception Handling
A description of the error handling sequence and of autoloading.

4404P30 LISP PROGRAMMERS ii

iii

Part III

11. The Lister Trace Package
A description of a very useful debugging aid.

12. Liszt, the Lisp Compiler
A description of the operation of the compiler and hints for making functions compil
able.

13.The Top Level
A description of FRANZ LISP's top level which includes access to debugging tools, a
history mechanism, and single stepper.

14 Miscellaneous Topics
Keyword arguments, hash tables, multiple values, the sharp sign macro, and/loating
point vector ./itnctions.

15 The Lisp Stepper and Fixit
Programs which permits you to single-step through a Lisp program, and also examine
and modifY the evaluation stack: .fix bugs on the /iy.

16 Lisp Editor
A structure editor for interactive modification of FRANZ Lisp code.

Part IV

Appendix A - Function Index
Appendix B - List of Special Symbols
Appendix C - The Garbage Collector

4404P30 LISP PROGRAMMERS

FRANZ LISP INSTALLATION INSTRUCTIONS

INSTALLATION
Perform the following procedure to install and verify your Franz Lisp files.

1. Log in as the system manager by typing:

login system

at the system prompt "++".
2. Make sure that you are in the root directory by typing:

ehd /

3. Invoke the restore utility to copy the Franz Lisp system from the floppy diskettes to
system disk. At the system prompt, type:

restore +1

4. Insert the distribution floppy diskettes, in sequence, as the restore utility prompts
you for them.

5. After you have finished with the restore utility, you should run diskrepair to verify
that the system disk structure is correct. At the system prompt, type:

diskrepair /dev/disk

You are now finished with the installation of Franz Lisp.

FRANZ LISP FILES
The following files are distributed with Franz Lisp version 41.10.

LISP EXECUTABLE FILES

The followings files are found in /bin:

lisp Lisp interpreter.

liszt Lisp compiler.

Ixref Lisp cross reference program.

4404P30 LISP PROGRAMMERS ADD, FEB 1985 iv

LISP HELP FILES

Three help files are accessible through the 4404 help command. These files are found in
/gen/help:

lisp
liszt
Ixref

LISP LIBRARY FILES

Files ending in the extension .1 are human-readable Lisp source code. Files ending in the
extension .0 are compiled Lisp object code. The following files are found in flispllib:

System Files

arun

as

arrayJ, array.o

autoload J, autoload.o

buildlispJ, buildlisp.o

charmacl, charmac.o

cmueditl, cmuedit.o

commonO), commonO.o
commonl J, commonl.o
common2J, common2.o
common3J, common3.o
common4 J, common4.o

describeJ, describe.o

filepJ, filep.o

fixJ, fix.o

format J, format.o

machacksJ, machacks.o

macros J, macros.o

ppJ,pp.o

prof J, prof.o

v

Used to generate autorun files.

Assembler for liszt files.

Array package. Loaded into the standard Lisp interpreter.

Manages autoload of functions. Loaded into the standard
Lisp interpreter.

U sed to build the Lisp system from the C kernel.

Backquote and sharp sign macros. Loaded into the standard
Lisp interpreter.

Code for an interactive structure editor. Loaded when edit
functions are called.

Most Lisp-coded Lisp functions are in common files. These
are loaded into the standard Lisp interpreter.

Functions to describe any Lisp object, including flavors.

File package that interfaces with the tpl top level. Loaded
into the standard Lisp interpreter.

Fix package that is autoloaded when the function debug is
invoked.

String formatting, compatible with Zetalisp.

Maclisp compatibility package. Autoloaded when the +m
option is specified for liszt.

Common macros for Franz Lisp. Loaded into the standard
Lisp interpreter.

Pretty printer. Loaded when the function pp is invoked.

Dynamic profiler for Lisp.

ADD. FJ;:B 1985 4404P30LISP PROGRAMMERS

recordl, record.o

stepl, step.o

syntaxl, syntax.o

tplJ, tpl.o

trace l, trace.o

vector l, vector.o

versionl, version.o

Additional Files

Record package.

Stepping package. Loaded when function step invoked.

Contains setsyntax function. Loaded into the standard Lisp
interpreter.

Franz Lisp top level. Loaded into the standard Lisp
interpreter. '

Trace package. Loaded when trace function invoked.

Vector handling functions. Loaded into the standard Lisp
interpreter.

Franz Lisp version info. Loaded into the standard Lisp
interpreter.

These files are distributed as a service to Lisp users. They are not supported by
Tektronix.

cmuenv l, cmuenv.o

cmufncsl, cmufncs.o

cmumaesl, emumacs.o

emutpll, cmutpl.o

flavorm l, flavorm.o

flavors 1, flavors.o

Imhaeksl,lmhaeks.o

loopl, loop.o

struet 1, struct.o

structinil

ucidol, ucido.o

ucifncl, ucifnc.o

vanillal, vanilla.o

4404P30 LISP PROGRAMMERS

Loads cmumacs, cmufncs, cmutop, and cmufile for a emu
environment.

Functions required by the cmu macros.

Macros required for compiling other cmu files, also useful at
runtime.

Cmu top level.

Support macros needed by the flavor system.
(Copyright 1983 by Massachusetts Institute of Technology.)

Flavor system, object definition and creation.
(Copyright 1982 by Massachusetts Institute of Technology.)

Miscellaneous functions compatible with Zetalisp.
(Copyright 1982 by Massachusetts Institute of Technology.)

Loop macro.
(Copyright 1980, 1981 by Massachusetts Institute of
Technology .)

Structure package.
(Copyright 1980 by Massachusetts Institute of Technology.)

Macros necessary for compiling the structure package.

VCI Lisp do loop.

VCI Lisp compatibility package.

Definition of vanilla flavors and methods.
(Copyright 1982 by Massachusetts Institute of Technology.)

ADD, FEB 1985 vi

CHAPTER 1

FRANZ LISP

1.1. FRANZ LISP was created as a tool to further research in symbolic and algebraic manipu
lation, artificial intelligence, and programming languages at the University of California
at Berkeley. Its roots are in a PDP-ll Lisp system, which originally came from Harvard
University. As it grew, it adopted features of Maclisp and Lisp Machine Lisp. Substan
tial compatibility with other Lisp dialects (Interlisp, UClLisp, CMULisp) is achieved by
means of support packages and compiler switches. The heart of FRANZ LISP is written
almost entirely in the programming language C. Of course, it has been greatly extended
by additions written in Lisp. A small part is written in the assembly language for the
various host machines. Because FRANz LISP is written in C, it is relatively portable and
thus is in use on a wide variety of machines.

FRANZ LISP is capable of running large lisp programs in a timesharing environment,
has facilities for arrays and user-defined structures, has a user-controlled reader with
character and word macro capabilities, and can interact directly with compiled Lisp, C,
Fortran, and Pascal code.

This document is a reference manual for the FRANZ LISP system for the Tektronix
4404 implementation. It is not a Lisp primer or introduction to the language. A recom
mended text for learning Lisp, with specific reference to FRANZ LISP is Lispcra/t by
Robert Wilensky, published by W. W. Norton (1984).

This document is divided into four Movements. The first Movement describes the
language of FRANZ LISP precisely and completely. The second Movement describes the
reader, function types, arrays, and exception handling. The third Movement describes
several large support packages, namely, the trace package, compiler, fixit and stepping
package, written to help you use FRANZ LISP Finally the fourth movement contains an
index into the other movements. The rest of this chapter examines the data types of
FRANZ LISP. The conventions used in the description of the FRANZ LISP functions are
given in §1.3 -- it is very important that these conventions are understood.

1.2. Data Types FRANZ LISP has fourteen data types. This section looks in detail at each
type, and, if a type is divisible, the insides are examined. There is a Lisp function type
that returns the type name of a lisp object. This is the official FRANZ LISP name for that
type and this name and this name only is used in the manual to avoid confusing you.
The types are listed in terms of importance rather than alphabetically.

f. 1.2.0. lispval This is the name used to describe any Lisp object. The function type
never returns 'lispval'.

4404P30 LISP PROGRAMMERS 1-1

FRANZ LISP,

1-2

1.2.1. symbol This object corresponds to a variable in most other programming
languages. It may have a value or may be 'unbound'. A symbol may be lambda
bound meaning that its current vlj,lue is stored away somewhere and the symbol is
given a new value for the duration of a certain context. When the Lisp processor
leaves that context, the symbol's current value is thrown away and its old value is
restored.

A symbol may also have a junction binding. This function binding is static; it cannot
be lambd~ bound. Whenever the symbol is used in the functional position of a Lisp
expression the function binding of the symbol is examined. See Chapter 4 for more
details on evaluation. .

A symbol may also have a property lis~ another static data structure. The property list
consists of a list of an even number of elements, considered to be grouped as pairs.
The first element of the pair is the indicator, the second, the value of that indicator.

Each symbol has a print name (pname), which is how this symbol is accessed from
input and referred to on (printed) output.

A symbol also has a hashlink used to link symbols together in the oblist. (This field is
inaccessible to you.)

Symbols are created by the reader and by the functions conca~ maknam, and their
derivatives. Most symbols live on FRANZ LISP's sole oblis~ and therefore two sym
bols with the same print name are usually the exact same object; they are eq. Sym
bols that are not on the oblist are said to be uninterned. The function maknam creates
uninterned symbols while concatcreates interned ones.

Subpart name Get value Set value Type

value eval set lispval
setq

property plist setplist list or nil
list get putprop

defprop
function getd putd array, binary, list
binding def or nil

print name get J>name string
hash link

1.2.2. list A list cell has two parts, called the car and cdr. List cells are created by the
function cons.

Subpart name Get value Set value Type

car car rplaca lispval
cdr cdr rplacd lispval

4404P30 LISP PROGRAMMERS

FRANZ LISP

1.2.3. binary This type acts as a function header for machine coded functions. It has
two parts: a pointer to the start of the function and a symbol whose print name
describes the argument discipline The discipline (if lambda, macro, or nlambda)
determines whether the arguments to this function are evaluated by the caller before
this function is called. If the discipline is a string (specifically "subroutine', "function',
" integer-junction', "real-function', "c-function', "double-c-function', or "vector-c-function')
then this function is a foreign subroutine or function. (See §8.S for more details on
this.) Although the type of the entry field of a binary type object is usually string or
other, the object pointed to is actually a sequence of machine instructions.

Objects of type binary are created by mfunction, cfasl, and getaddress.

Subpart name Get value Set value Type

entry getentry string or tixnum
discipline getdisc putdisc symbol or fixnum

1.2.4. flxnum A fixnum is an integer constant in the range _2 31 to 231_1. Small
fixnums (-1024 to 1023) are stored in a special table so they needn't be allocated each
time one is needed. In principle, the range for fixnums is machine dependent,
although all current implementations for FRANZ LISP have this range.

1.2.5. Bonum A flonum is a double precision real number.

1.2.6. bignum A bignum is an integer of potentially unbounded size. When integer
arithmetic exceeds the limits of fixnums mentioned above, the calculation is automat
ically done with bignums. If calculation with bignums gives a result that can be
represented as a fixnum, then the fixnum representation is used t. This contraction is
known as integer normalization Many Lisp functions assume that integers are normal
ized. Bignums are composed of a sequence of list cells and a cell known as an sdot.
You should consider a bignum structure indivisible and use functions such as haipart
and bignum-le/tshift to extract parts of it.

1.2.7. string A string is a null terminated sequence of characters. Most functions of
symbols that operate on the symbol's print name also work on strings. The default
reader syntax is set so that a sequence of characters surrounded by double quotes is a
string.

iThe current algorithms for integer arithmetic operations return (in certain cases) a result between ±230 and 231
as a bignum although this could be represented as a fixnum.

4404P30 LISP PROGRAMMERS 1-3

FRANZ LISP

1-4

.(. 1.2.8. port A port is a structure that the system I/O routines can reference to transfer
data between the Lisp system and external media. Unlike other Lisp objects there are
a very limited number of ports (20). Ports are allocated by itdile and out/ile and deal
located by close and resetia The print function prints a port as a percent sign followed
by the name of the file it is connected to (if the port was opened by jiieopen. irr/ile. or
out/ile). During initialization, FRANZ LISP binds the symbol plport to a port attached
to the standard input stream. This port prints as %$stdin. There are ports connected
to the standard output and error streams, which print as %$stdout and %$stderr. This
is discussed in more detail at the beginning of Chapter 5.

1.2.9. vector Vectors are indexed sequences of data. They can be used to implement a
notion of user-defined types via their associated property list. They make hunks (see
below) logically unnecessary, although hunks are very efficiently garbage-collected.
There is a second kind of vector, called an immediate-vector, that stores binary data.
The name that the function type returns for immediate-vectors is vector!. For exam
ple, immediate-vectors can be used to implement strings and block-flonum arrays.
Vectors are discussed in chapter 9. The functions new-vector and vectol can be used
to create vectors.

Subpart name Get value Set value Type

datumU vref vset lispval
property vprop vsetprop lispval

vputprop
size vsize - fixnum

1.2.10. 8l'l'ay Arrays are rather complicated types and are fully described in Chapter 9.
An array consists of a block of contiguous data, a function to access that data, and
auxiliary fields for use by the accessing function. Since an array's accessing function
is created by you, you can create the array to have any form you choose (e.g. n
dimensional, triangular, or hash table).

Arrays are created by the function marray.

Subpart name Get value Set value Type

access function getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lispval
length getlength putlength fixnum
delta getdelta putdelta fixnum

4404P30 LISP PROGRAMMERS

FRANZ LISP

1.2.11. value A value cell contains a pointer to a lispval. This type is used mainly by
arrays of general lisp objects. Value cells are created with the ptr function. A value
cell containing a pointer to the symbol 'foo' is printed as '(ptr to)[oo'.

1.2.12. hunk A hunk is a vector of from 1 to 128 lispvals. Once a hunk is created (by
hunk or makhunld it cannot grow or shrink. The access time for an element of a
hunk is slower than a list cell element but faster than an array. Hunks are really only
allocated in sizes that are powers of two, but can appear to you to be any size in the 1
to 128 range. You must realize that (not (atom '!ispvalJ) returns true if !ispvai is a
hunk. Most lisp systems do not have a direct test for a list cell, and, instead, use the
above test and assume that a true result means !ispval is a list cell. In FRANZ LISP,
you can use dtpr to check for a list cell. Although hunks are not list cells, you can
still access the first two hunk elements with cdr and car, and you can access any hunk
element with cxl You can set the value of the first two elements of a hunk with
rp/acd and rpiaca and you can set the value of any element of the hunk with rp/acx. A
hunk is printed by printing its contents surrounded by { and}. However, a hunk can
not be read in this way in the standard lisp system. It is easy to write a reader macro
to do this if desired.

1.2.13. other Occasionally, you can obtain a pointer to storage not allocated by the lisp
system. One example of this is the entry field of those FRANZ LISP functions written
in C. Such objects are classified as of type other. Foreign functions, which call mal
loc to allocate their own space, may also inadvertently create such objects. The gar
bage collector ignores such objects.

1.3. Documentation The conventions used in the following chapters are designed to give
a great deal of information in a brief space. The first line of a function description con
tains the function name in bold face and then lists the arguments, if there are any. The
arguments all have names that begin with a letter or letters and an underscore. The
letter or letters give the allowable type or types for that argument according to this table.

1):n a hunk, the function cdr references the first element and car the second.

4404P30 LISP PROGRAMMERS 1-5

FRANZ LISP

1-6

Letter Allowable type (s)

g any type
s symbol (although nil may not be allowed)
t string
I list (although nil may be allowed)
n number (fixnum, flonum, bignum)
i integer (fixnum, bignum)
x fixnum
b bignum
f flonum
u function type (either binary or lambda body)
y binary
v vector
V vectori
a array
e value
p port (or nil)
h hunk

In the first line of a function description, those arguments preceded by a quote mark are
evaluated (usually before the function is called). The quoting convention is used to give
a name to the result of evaluating the argument and to describe the allowable types. If
an argument is not quoted, it does not mean that that argument is not evaluated, but
rather that if it is evaluated, the time at which it is evaluated is specifically mentioned in
the function description. Optional arguments are surrounded by square brackets. An
ellipsis C ..) means zero or more occurrences of an argument of the directly preceding
type.

4404P30 LISP PROGRAMMERS

CHAPTER 2

Data Structure Access

The following functions allow you to create and manipulate the various types of lisp data
structures. Refer to §1.2 for the details of the data structures known to FRANZ LISP.

2.1. Lists

The following functions exist for the creation and manipulation of lists. Lists are
composed of a linked list of objects. Various authors call these either 'list cells', 'cons
cells' or 'dtpr cells'. Lists are normally terminated with the special symbol nil. nil is
both a symbol and a representation for the empty list O.

2.1.1. list creation

(cons 'g_argl 'g_arg2)

RETURNS: A new list cell whose car is g_argl and whose cdr is g_arg2.

(xcons 'g_argl 'g_arg2)

EQUIVALENT TO: (eons 'g_ arg2 'g_ argl)

(ncons 'g_arg)

EQUIVALENT TO: (eons 'g_arg nit)

(list [' g_ arg 1 ...])

RETURNS: A list whose elements are the g_ arg 1

(append 'l_argl 'l_arg2)

RETURNS: A list containing the elements of l_argl followed by l_arg2.

NOTE: To generate the result, the top level list cells of l_argl are duplicated and the cdr of
the last list cell is set to point to l_arg2. Thus this is an expensive operation if
I argl is large. See the descriptions of neone and leone for cheaper ways of doing
the append if the list I arg 1 can be altered.

4404P30 LISP PROGRAMMERS 2-1

DATA STRUCTURE ACCESS

(appendl 'l_argl 'g_arg2)

RETURNS: A list like l_argl with g_arg2 as the last element.

NOTE: This is equivalent to (append'l_argl (tist 'g_arg2».

; A common mistake is using append to add one element to the end of a list
- > (append '(a bed) 'e)
(a b cd. e)
; The user intended to say:
- > (append '(a bed) '(e))
(a bed e)
.. better is append]
-> (append] '(a bed) 'e)
(a bed e)

(quote! [g_qform~ ... [! 'g_eform~... [I! 'lJorm~ .. .>

2-2

RETURNS: The list resulting from the splicing and insertion process described below.

NOTE: quote! is the complement of the list function. list forms a list by evaluating each
form in the argument list; evaluation is suppressed if the form is quotled. In
quote!, each form is implicitly quotred. To be evaluated, a form must be preceded
by one of the evaluate operations ! or !!. ! g eform evaluates g form and the value
is inserted in the place of the call; !! I form evaluates I form and the value is
spliced into the place of the call. - -

'Splicing in' means that the parentheses surrounding the list are removed as the
example below shows. Use of the evaluate operators can occur at any level in a
form argument.

Another way to get the effect of the quote! function is to use the backquote charac
ter macro (see § 8.3.3).

(quote! cons! (cons] 2) 3) - (cons (J . 2) 3)
(quote! 1 II (list 2 3 4) 5) - (J 2 3 4 5)
(sefl/ quoted 'evaled)(quote! ! (([am ! quoted))) =- (([am evaled))
(quote! try ! '(this! one)) - (try (this! one))

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

(blgnum-to-llst 'b_arg)

RETURNS: A list of the fixnums which are used to represent the bignum.

NOTE: The inverse of this function is Iist-to-bignum.

Oist-to-bignum'ljnts)

WHERE: ljnts is a list of fixnums.

RETURNS: A bignum constructed of the given fixnums.

NOTE: The inverse of this function is bignum-to-Iist.

2.1.2. list predicates

(dtpr 'g_ arg)

RETURNS: t if g_arg is a list cell.

NOTE: (dtpr '0) is nil. The name dtpr is a contraction for "dotted pair".

Oistp 'g_ arg)

RETURNS: t if g_arg is a list object or nil.

(tailp 'l_x 'Iy)

RETURNS: I_x, if a list cell eq to I_x is found by cdring down ly zero or more times, nil
otherwise.

- > (setq x '(a b c dJ y (cddr x))
(c d)
- > (and (dtpr x) ([istp x)) ; x and y are dtprs and lists
t
- > (dtpr '0) ; 0 is the same as nil and is not a dtpr
nil
- > ([Istp 'OJ ; however it is a list
t
-> (fIlilpyx)
(c d)

(length'l_arg)

RETURNS: The number of elements in the top level of list I_arg.

4404P30 LISP PROGRAMMERS 2-3

DATA STRUCTURE ACCESS

2.1.3, list accessing

(car 'I arg)
(cdr 'C arg)

RETURNS: The appropriate part of conscell. (car (cons x y» is always x, (cdr (cons x y» is
always y. In FRANZ LISP, the cdr portion is located first in memory. This is
hardly noticeable, and we mention it primarily as a curiosity.

(coor 'lh_arg)

WHERE: The .. represents any positive number of a's and d's.

RETURNS: The result of accessing the list structure in the way determined by the function
name. The a's and d's are read from right to left, a d directing the access down
the cdr part of the list cell and an a down the car part.

NOTE: Ih arg may also be nil, and it is guaranteed that the car and cdr of nil is nil. If
lh -arg is a hunk, then (car 'lh arg) is the same as (exr 1 'lh arg) and (cdr'lh arg)
is the same as (cxr 0 'lh_arg). - --
It is generally hard to read and understand the context of functions with large
strings of a's and d's, but these functions are supported by rapid accessing and
open-compiling (see Chapter 12).

{nth 'xjndex '!Jist>
RETURNS: The nth element of I list, assuming zero-based index. Thus (nth 0 1 list) is the

same as (car I list). -nth is both a function and a compiler macro so- that more
efficient code might be generated than for nthelem (described below).

NOTE: If x_argl is non-positive or greater than the length of the list, nil is returned.

{nthcdr 'xjndex '!Jist>

RETURNS: The result of cdling down the list !Jist xjndex times.

NOTE: If xjndex is less than 0, then (cons nil 'Uist) is returned.

(nthelem 'x_argl 'l_arg2)

RETURNS: The x_argl' stelement of the list l_arg2.

NOTE: This somewhat non-standard name of this function comes from the PDP-ll Lisp
system.

(last 'l_arg)

2-4

RETURNS: The last list cell in the list l_arg.

EXAMPLE: last does NOT return the last element of a list!
(fast '(a b)) = (b)

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

(Idiff 'l_x 'ly)

RETURNS: A list of all elements in I_x but not in ly , Le., the list difference of I_x and
ly.

NOTE: Iy must be a tail of I_x, Le., eq to the result of applying some number of cdrs to
I_x. Note that the value of Idi/fis always a new list structure unless Iy is nil, in
which case (Jdi/f Lx nit) is I_x itself. If ly is not a tail of I_x, Idi/fgenerates an
error.

EXAMPLE: (Jdi/f'Lx (member 'gJoo 'Lx)) gives all elements in I_x up to the first gJoo.

2.1.4. list manipulation

(rplaca 'Ih_argl 'g_arg2)

RETURNS: The modified Ih_argl.

SIDE EFFECT: The car of Ih argl is set to g arg2. If Ih_argl is a hunk then the second
element of the hunk is set to g=arg2.

(rplacd 'lh_argl 'g_arg2)

RETURNS: The modified Ih_argl.

SIDE EFFECT: The cdr of Ih arg2 is set to g arg2. If Ih_argl is a hunk then the first ele
ment of the hunk is set to g_arg2.

(attach 'LX 'lJ)

RETURNS: I 1 whose car is now g x, whose cadr is the original (car I t), and whose cddr is
the original (cdr U). - -

NOTE: What happens is that g x is added to the beginning of list 1 I yet maintaining the
same list cell at the beghming of the list. -

(delete 'g_val 'lJist ['x_count])

RETURNS: The result of splicing Lval from the top level of ljist no more than x_count
times.

NOTE: x_count defaults to a very large number, thus if x_count is not given, all
occurrences of g val are removed from the top level of 1 list. g val is compared
with successive cars of I list using the function equal - -

SIDE EFFECT: I Jist is modified using rplacd, no new list cells are used.

(delq 'g val '1 list ['x count])
(dremoVe 'g_val 'lJist ['x_count])

RETURNS: The result of splicing g_val from the top level of ljist no more than x_count
times.

NOTE: delq (and dremove) are the same as delete except that eq is used for comparison
instead of equal

4404P30 LISP PROGRAMMERS 2-5

DATA STRUCTURE ACCESS

; note that you should use the value returned by deleteor de/q
; and not assume that g val will always show the deletions.
; For example -

- > (setq test '(a be a de))
(a b cad e)
- > (delete 'a test)
(b c d e) ; the value returned is what we would expect
-> test
(a bed e) ; but test still has the first a in the list!

(remq 'g_x 'lJ ['x_count])
(remove 'g_x 'lJ)

RETURNS: A copy of U with all top level elements equal to g_x removed. remq uses eq
instead of equal for comparisons.

NOTE: remove does not modify its arguments like delete and delq do.

(insert 'g_object 'lJist 'u_comparefn 'g_nodups)

RETURNS: A list consisting of lJist with g_object destructively inserted in a place deter
mined by the ordering function u _ comparefn.

NOTE: (compare!n 'g_x 'gy) should return something non-nil, if g_x can precede gy in
sorted order; nil, if gy must precede g_x. If u_comparefn is nil, alphabetical order
is used. If g_nodups is non-nil, an element is not inserted, if an equal element is
already in the list. insert does a binary search to determine where to insert the new
element.

(merge 'I_datal 'l_data2 'u_comparefn)

RETURNS: The merged list of the two input sorted lists I datal and I datal using binary
comparison function u comparefn. . - -

NOTE: (compare!n 'g_x 'gy) should return something non-nil, if g_x can precede gy in
sorted order; nil, if gy must precede g_x. If u_comparefn is nil, alphabetical order
is used. u comparefn should be thought of as "less than or equal to". merge
changes both of its data arguments.

(subst 'g_x 'gy 'l_s)
(dsubst 'g_x 'gy 'l_s)

2-6

RETURNS: The result of substituting g_x for all equal occurrences of gy at all levels in
I s.

NOTE: If gy is a symbol, eq is used for comparisons. The function subst does not modify
l_s but the function dsubst (destructive substitution) does.

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

Osubst 'l_x 'gy 'I_s)

RETURNS: A copy of I_s with I_x spliced in for every occurrence of gy at all levels. Splic
ing in means that the parentheses surrounding the list I_x are removed as the
example below shows.

- > (subst '(a b c) 'x '(x y z (x y z) (x y z)))
«a b c) y z «a b c) y z) «a b c) y z»
- > Osubst '(a b c) 'x '(x y z (x y z) (x y z)))
(a b c y z (a bey z) (a b c y z»

(subpair 'I_old 'I_new 'I_expr)

WHERE: There are the same number of elements in 1 old as 1 new. - -
RETURNS: The list l_expr with all occurrences of an object in I_old replaced by the

corresponding one in I_new. When a substitution is made, a copy of the value
to substitute in is not made.

EXAMPLE: (subpair '(a c)' (x y) '(a b cd)) = (x by d)

(neone 'I_argl 'l_arg2 ['1_arg3 ... J)

RETURNS: A list consisting of the elements of l_argl followed by the elements of l_arg2
followed by l_arg3 and so on.

NOTE: The cdr of the last list cell of 1_ arg i is changed to point to 1_ arg i + 1.

; nconc is faster than append because it doesn't allocate new list cells.
- > (setq lis} '(a b c))
(a b c)
- > (setq Iis2 '(d e fl)
(d e f)
- > (append lis] Iis2)
(a bed e f)
- > lis}
(a b c) ; note that lis! has not been changed by append
- > (nconc lis} Iis2)
(a b c d e f) ; nconc returns the same value as append
-> lis}
(a b c d e f) ; but in doing so alters lis!

4404P30 LISP PROGRAMMERS 2-7

DATA STRUCTURE ACCESS

(reverse 'I arg)
(nreverse 1_ arg)

RETURNS: The list l_arg with the elements at the top level in reverse order.

NOTE: The function nreverse does the reversal in place; that is, the list structure is
modified.

(nreconc 'l_arg 'g_arg)

EQUIVALENT TO: (nconc (nreverse 'Larg) 'g_arg)

2.2. Predicates
The following functions test for properties of data objects. When the result of the

test is either 'false' or 'true', then nil is returned for 'false' and something other than
nil (often t) is returned for 'true'.

(arrayp 'g_arg)

RETURNS: t if g_arg is of type array.

(atom 'g_arg)

RETURNS: t if g_arg is not a list or hunk object.

NOTE: (atom '0) returns t.

(bcdp 'g_ arg)

RETURNS:t if g_arg is a data object of type binary.

NOTE: This function name is a throwback to the PDP-11 Lisp system. It stands for binary
code predicate.

(bigp 'g_ arg)

RETURNS: t if g_arg is a bignum.

(dtpr 'g_arg)

RETURNS: t if g_arg is a list cell.
NOTE: (dtpr' 0) is nil.

(hunkp 'g_arg)

RETURNS: t if g_ arg is a hunk.

(Ustp 'g_arg)

RETURNS: t if g_arg is a list object or nil.

2-8 4404P30 LISP PIWGRAMMERS

(stringp 'g_ arg)

RETURN~: t if g_arg is a string.

(symbolp 'g_arg)

RETURNS: t if g_arg is a symbol.

(valuep 'g_arg)

RETURNS: t if g_arg is a value cell

(vectorp 'v _vector)

RETURNS: t if the argument is a vector.

(vectorip 'v_vector)

RETURNS: t if the argument is an immediate-vector.

(type 'g_arg)
(typep 'g_arg)

RETURNS: A symbol whose pname describes the type of g_arg.

(signp s_test 'g_val)

DATA STRUCTURE ACCESS

RETURNS: t if g_val is a number and the given test s_test on g_val returns true.

NOTE: The fact that signp simply returns nil if g_ val is not a number, is probably the most
important reason that signp is used. The permitted values for s_test and what they
mean are given in this table.

s test tested

I g_val < 0
Ie g val ~ 0
e g -val = 0
n g -val ;zt 0
ge g-val ~ 0
g g-val>O

(eq 'g_argl 'g_arg2)

RETURNS: t if g_argl and g_arg2 are the exact same lisp object.

NOTE: Eq simply tests if g_argl and g_arg2 are located in exactly the same place in
memory. Lisp objects that print the same are not necessarily eq. The only objects
guaranteed to be eq are interned symbols with the same print name. Unless a sym
bol is created in a special way (such as with uconcator makna,w it is interned.

4404P30 LISP PROGRAMMERS 2-9

DATA STRUCTURE ACCESS

(neq 'g_x 'gy)

RETURNS: t if g_x is not eq to gy, otherwise nil.

(equal 'g_argl 'g_arg2)
(eqstr 'g_argl 'g_arg2)

RETURNS: t if g_argl and g_arg2 have the same structure as described below.

NOTE: g_arg and g_arg2 are equalif

(1) They are eq.

(2) They are both fixnums with the same value

(3) They are both flonums with the same value

(4) They are both bignums with the same value

(5) They are both strings and are identical.

(6) They are both lists and their cars and cdrs are equal

; eq is much faster than equa~ especially in compiled code.
; However, you cannot use eq to test for equality of numbers outside
; of the range -1024 to 1023. equal always works.
- > (eq 1023 1023)
t
- > (eq 1024 1024)
nil
- > (equal 1024 1024)
t

(not 'g_arg)
(null 'g_arg)

RETURNS: t if g_arg is nil.

(member 'g_argl 'l_arg2)
(memq 'g_argl 'l_arg2)

RETURNS: That part of the I arg2 beginning with the first occurrence of g argI. If g_argl
is not in the top level of l_arg2, nil is returned. -

NOTE: member tests for equality with equa~ memq tests for equality with eq.

2.3. Symbols and Strings

2-10

In many of the following functions, the distinction between symbols and strings is
somewhat blurred. For FRANZ LISP, a string is a null terminated sequence of characters,
stored as compactly as possible. Strings are used as constants in FRANZ LISP. They eval
to themselves. A symbol has additional structure: a value, property list, function bind
ing, as well as its external representation (or print-name). If a symbol is given to one of
the string manipulation functions below, its print name is used as the string.

Another popular way to represent strings in Lisp is as a list of fixnums which
represent characters. The suffix 'n' to a string manipulation function indicates that it
returns a string in this form.

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

2.3.1. symbol and string creation

(concat ['stn argl ...])
(uconcat ['stn_argl ...])

RETURNS: A symbol whose print name is the result of concatenating the print names,
string characters, or numerical representations of the sn_argi

NOTE: If no arguments are given, a symbol with a null pname is returned. concat places
the symbol created on the oblist; the function uconcatdoes the same thing but does
not place the new symbol on the oblist.

EXAMPLE: (concat 'abc (add 3 4) "de!) = abc7def

(concatl 'l_arg)

EQUIVALENT TO: (apply 'concat 'Larg)

<implode 'l_arg)
(maknam'l_arg)

WHERE: l_arg is a list of symbols, strings and small fixnums.

RETURNS: The symbol whose print name is the result of concatenating the first characters
of the print names of the symbols and strings in the list. Any fixnums are con
verted to the equivalent ASCII character. In order to concatenate entire strings
or print names, use the function concat

NOTE: implode interns the symbol it creates, maknam does not.

(gensym [' s Jeader])

RETURNS: A new un interned atom beginning with the first character of sJeader's pname,
or beginning with g if sJeader is not given.

NOTE: The symbol looks like xOnnnnn where x is sJeader's first character and nnnnn is
the number of times you have called gensym.

(copysymbol 's_arg 'gyred)

RETURNS: An uninterned symbol with the same print name as s_arg. If gyred is non nil,
then the value, function binding, and property list of the new symbol are made
eq to those of s _ argo

(ascii 'x_charnum)

WHERE: x charnum is between 0 and 255.

RETURNS: A symbol whose print name is the single character whose fixnum representation
is x charnum.

4404P30 LISP PROGRAMMERS 2-11

DATA STRUCTURE ACCESS

(intern 's_arg)

RETURNS: s_arg

SIDE EFFECT: s_arg is put on the oblist if it is not already there.

(remob 's_symbot)

RETURNS: s_symbol
SIDE EFFECT: . s_symbol is removed from the oblist.

(rematom 's_arg)

RETURNS: t if s_arg is indeed an atom.
SIDE EFFECT: s_arg is put on the free atoms list, effectively reclaiming an atom cell.

NOTE: This function does not check to see if s arg is on the oblist or is referenced any
where. While rematom enables you to reclaim a small amount of storage, and can
be used effectively with gensym'd atoms, you must be extremely cautious. If you
use it on an interned atom which is referenced by some s-expression,-.ou may be
find that one or more different atoms are synonymous. This can lead to errors
which are very difficult to detect. This function should be used only when storage
optimization is important and you are creating many atoms which rapidly outlive
their usefulness. . ..

..

2.3.2. string and symbol predicates

(boundp's_name)

RETURNS: Nil if s_name is unbound; that is, it has never been given a value. If x_name
has the value g_ val, then (nil . g_ vat) is returned. See also malunbound

(alphalessp 'st_argl 'st_arg2)

RETURNS: t if the 'name' of st af~ is alphabetically less than the name of st arg2. If
st_arg is a symbol, then its 'name' is its print name. If st_arg is a string, then
its 'name' is the string itself.

2.3.3. symbol and string accessing

(symeval 's _ arg)

2-12

RETURNS: The value of symbol s_arg.

NOTE: It is illegal to ask for the value of an unbound symbol. This function has the same
effect as eva(but compiles into much more efficient code.

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

(get Jmame 's _ arg)

RETURNS: The string that is the print name of s_arg.

(plist 's_arg)

RETURNS: The property list of s_arg.

(getd 's _ arg)

RETURNS: The function definition of s_arg or nil if there is no function definition.

NOTE: The function definition may turn out to be an array header.

(getchar 's_arg 'xjndex)
(nthchar 's arg 'x index)
(getcharn 's_arg 'xjndex)

RETURNS: The x index th character of the print name of s arg or nil if x index is less than
1 or greater than the length of s arg's print name. -

NOTE: getchar and nthchar return a symbol with a single character print name; getcharn
. returns the fixnum representation of the character.

(substring 'st_string 'xjndex ['xJength])
(substringn 'st_string 'xjndex ['x_length])

RETURNS: A string of length at most xJength starting at xJndexthcharacter in the string.

NOTE: If xJength is not given, all of the characters for x_index to the end of the string
are returned. If x index is negative, the string begins at the x indexth character
from the end. If x=index is out of bounds, nil is returned. -

NOTE: substring returns a list of symbols; substringn returns a list of fixnums. If substringn
is given a 0 xJength argument, then a single fixnum, which is the xJndexth char
acter, is returned.

2.3.4. symbol and string manipulation

(set 's_argl 'g_arg2)

RETURNS: g_arg2.

SIDE EFFECT: The value of s_argl is set to g_arg2.

(setq s_atml 'g_vall [s_atm2 'g_vaI2 ,])

WHERE: The arguments are pairs of atom names and expressions.

RETURNS: The last g_ val i
SIDE EFFECT: Each s_atmiis set to have the value g_vali

NOTE: set evaluates all of its arguments; setqdoes not evaluate the s_atmi

4404P30 LISP PROGRAMMERS 2-13

DATA STRUCTURE ACCESS

(desetq slyattern1 'g_exp1 [. D
RETURNS: g_expn
SIDE EFFECT: This acts just like setq if all the slyatterni are symbols. If slyatterniis a

list, then it is a template which should have the same structure as g_expi.
The symbols in slyattern are assigned to the corresponding parts of g_exp.
(See also seif)

EXAMPLE: (desetq (a b (c . d)) '(J 2 (3 4 5)))
sets' a to 1, b to 2, c to 3, and d to (4 5).

(setplist 's_atm 'lylist)
RETURNS: I ylist.
SIDE EFFECT: The property list of s_atm is set to lylist.

(makunbound's arg)
RETURNS: s_arg
SIDE EFFECT: The value of s arg is made 'unbound'. If the interpreter attempts to evalu

ate s_arg before it is again given a value, an unbound variable error occurs.

(aexplode's_arg)
(explode 'g arg)
(aexplodec's_arg)
(explodec 'g arg)
(aexploden 's _ arg)
(exploden 'g_arg)

2-14

RETURNS: A list of the characters used to print out s_arg or g_arg.

NOTE: The functions beginning with 'a'· are internal functions that are limited to symbol
arguments. The functions aexp/ode and explode return a list of characters that print
would use to print the argument. These characters include all necessary escape
characters. The functions aexp/odec and exp/odec return a list of characters that
patom would use to print the argument (that is, no escape characters). The func
tions aexp/oden and exp/oden are similar to aexp/odec and exp/odec except that a list
of fixnum equivalents of characters are returned.

- > (setq x lquote this \1 ok iV
kIuote this \lok?1
- > (explode x)
(q u 0 t e ~ ~ II t his ~ \111 ~ \1 M ~ \1110 k ?)
; note that ~ \\just means the single character: backslash.
; and M just means the single character: vertical bar
; and II means the single character: space

- > (explodec x)
(q u 0 tell t his II N II 0 k ?)
- > (exploden x)
(113 117 111 116 101 32 116 104 105 115 32 124 32 111 107 63)

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

2.4. Vectors

See Chapter 9 for a discussion of vectors. They are slightly less efficient that hunks
but more efficient than arrays.

2.4.1. vector creation

(new-vector 'x_size ['g)ill ['gyrop]])

RETURNS: A vector of length x size. Each data entry is initialized to g fill, or to nil, if the
argument g_fill is not present. The vector's property is set to gyrop, or to nil,
by default.

(new-vectori-byte 'x_size ['g_fill ['gyrop]))
(new-vectori-word 'x_size ['g_ fill ['gyrop)))
(new-vectori-Iong 'x_size ['g_fill ['gyrop]])

RETURNS: A vectori with x size elements in it. The actual memory requirement is two
long words + x size*(n bytes), where n is 1 for new-vector-byte, 2 for new
vector-word, or 4" for new-vectori-Iong. Each data entry is initialized to g fill, or
to zero, if the argument g_ fill is not present. The vector's property is-set to
gyrop, or nil, by default.

Vectors may be created by specifying multiple initial values:

(vector ['g_ valO 'g_ vall ...])

RETURNS: A vector with as many data elements as there are arguments. It is quite possi
ble to have a vector with no data elements. The vector's property is a null list.

(vectori-byte ['x valO 'x val2 ... J)
(vectori-word ['x valO 'x val2 ...])
(vectori-Iong ['x valO 'x val2 ... J) - -

RETURNS: A vectori with as many data elements as there are arguments. The arguments
are required to be fixnums. Only the low order byte or word is used in the case
of vectori-byte and vectori-word. The vector's property is null.

2.4.2. vector reference

(vref'v vect 'x index)
{vrefl-byte'V _vect 'x_bindex>
(vrefl-word 'V vect 'x windex)
(vrefl-Iong 'V veet 'x lindex) - -

RETURNS: The desired data element from a vector. The indices must be fixnums. Index
ing is zero-based. The vrefi functions sign extend the data.

4404P30 LISP PROGRAMMERS 2-15

DATA STRUCTURE ACCESS

(vprop 'Vv _ vect)

RETURNS: The Lisp property associated with a vector.

(vget 'V v _ vect 'gjnd)

RETURNS: The value stored under gjnd if the Lisp property associated with 'Vv _ vect is a
disembodied property list.

(vsize 'Vv vect)
(vslze-byte'V vect)
(vsize-word 'V_ vect)

RETURNS: The number of data elements in the vector. For immediate-vectors, the func
tions vsize-byte and vsize-word return the number of data elements, if you
think of the binary data as being comprosed of bytes or words.

2.4.3. vector modfication

(vset 'v vect 'x index 'g val)
(vsetl-byte 'V _vect 'x_bindex 'x_val)
(vseti-word 'V vect 'x windex 'x van
(vseti-Iong 'Vyect 'x]index 'x_van

RETURNS: The datum.

SIDE EFFECT: The indexed element of the vector is set to the value. As noted above, for
vseti-word and vseti-byte, the index is construed as the number of the data
element within the vector. It is not a byte address. Also, for those two
functions, the low order byte or word of x_val is what is stored.

(vsetprop 'V v _ vect 'g_ value)

RETURNS: g_ value. This should be either a symbol or a disembodied property list whose
car is a symbol identifying the type of the vector.

SIDE EFFECT: The property list of Vv _ vect is set to L value.

(vputprop 'Vv _ vect 'g_ value 'gjnd)

RETURNS: g_ value.

SIDE EFFECT: If the vector property of Vv _ vect is a disembodied property list, then
vputprop adds the value g value under the indicator g indo Otherwise, the
old vector property is made the first element of the list~

2.S. Arrays

2-16

See Chapter 9 for a complete description of arrays. Some of these functions are
part of a Maclisp array compatibility package representing only one simple way of using
the array structure of FRANZ LISP.

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

2.5.1. array creation

(marray 'g_data 's_access 'g_aux 'xJength 'x_delta)

RETURNS: An array type with the fields set up from the above arguments in the obvious
way (see § 1.2.10).

(·array 's_name 's_type 'x_diml ... 'x_dimnl
(array s_name s_type x_dim! ... x_dimnl

WHERE: s_type may be one of t, nil, fixnum, flonum, fixnum-block, or flonum-block.

RETURNS: An array of type s_type with n dimensions of extents given by the x_dimi

SIDE EFFECT: If s_name is non nil, the function definition of s_name is set to the array
structure returned.

NOTE: These functions create a Maclisp compatible array. In FRANZ LISP arrays of type t,
nil, fixnum, and flonum are equivalent and the elements of these arrays can be any
type of lisp object. Fixnum-block and flonum-block arrays are restricted to fixnums
and flonums respectively and are used mainly to communicate with foreign func
tions (see §8.5).

NOTE: "'array evaluates its arguments, array does not.

2.5.2. array predicate

(arrayp 'g_arg)

RETURNS: t if g_arg is of type array.

2.5.3. array accessors

(getaccess 'a array)
(getaux 'a array)
(getdelta '3: array)
(getdata 'a array)
(getlength -, a _array)

RETURNS: The field of the array object a_array given by the function name.

4404P30 LISP PROGRAMMERS 2-17

DATA STRUCTURE ACCESS

(arrayref 'a_name 'xjnd)

RETURNS: The xJnd th element of the array object a_name. x ind of zero accesses the first
element.

NOTE: arrayre!uses the data, length, and delta fields of a_name to determine which object
to return.

(arraycall s_type'as_array 'xJndl ...)

RETURNS: The element selected by the indices from the array a_array of type s_type.

NOTE: If as_array is a symbol, then the function binding of this symbol should contain an
array object.
s_type is ignored by arraycallbut is included for compatibility with Maclisp.

(arraydims 's_name)

RETURNS: A list of the type and bounds of the array s_name.

Oistarray 'sa_array ['x_elements])

RETURNS: A list of all of the elements in array sa array. If x_elements is given, then only
the first x elements are returned. -

2-18

; This creates a 3 by 4 array of general lisp objects.
- > (array ernie t 3 4)
array 112]

; The array header is stored in the function definition slot of the
; symbol ernie.
- > (arrayp (getd 'ernie))
t
- > (arraydims (getd 'ernie))
(t 3 4)

; Store in ernie [2] [2] the list (test list).
- > (store (ernie 2 2) '(test list))
(test list)

; Check to see if it is there.
- > (ernie 2 2)
(test list)

; Now use the low level function arrayrefto find the same element.
; Arrays are 0 based and row-major (the last subscript varies the fastest);
; thus, element [2] [2] is the 10th element, starting at O.
- > (arrayref (getd 'ernie) 10)
(ptr to)(test list) ; The result is a value cell (thus the (ptr to».

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

2.5.4. array manipulation

(putaccess 'a array 'su fune)
(putaux 'a array 'g aux)
(putdata '~array 'g-_arg)
(putdelta 'a array 'x delta)
(putlength 'a array 'x length) - -

RETURNS: The second argument to the function.

SIDE EFFECT: The field of the array object given by the function name is replaced by the
second argument to the function.

(store 'l_arexp 'g_ val)

WHERE: l_arexp is an expression that references an array element.

RETURNS: g_ val

SIDE EFFECT: The array location that contains the element that l_arexp references is
changed to contain g_ val.

(fillarray 's_array 'Utms)

RETURNS: s _array

SIDE EFFECT: The array s array is filled with elements from I itms. If there are not
enough elements in I itms to fill the entire array, then the last element of
I itms is used to fill the remaining parts of the array.

2.6. Hunks

Hunks are vector-like objects whose size can range from 1 to 128 elements. Inter
nally, hunks are allocated in sizes that are powers of 2. In order to create hunks of a
given size, a hunk with at least that many elements is allocated, and a distinguished sym
bol EMPTY is placed in those elements not requested. Most hunk functions respect those
distinguished symbols, but there are two (*makhunk and *rpla~ that overwrite the dis
tinguished symbol.

2.6.1. hunk creation

(hunk 'g_vall ['g_vaI2 ... 'g_valnD

RETURNS: A hunk of length n whose elements are initialized to the g_val£

NOTE: The maximum size of a hunk is 128.

EXAMPLE: (hunk 4 'sharp 'keys) = {4 sharp keys}

4404P30 LISP PROGRAMMERS 2-19

DATA STRUCTURE ACCESS

(makhunk 'xl_arg)

RETURNS: A hunk of length xl_arg initialized to all nils if xl_arg is a fixnum. If xl_arg is a
list, then a hunk of size (length 'xL arg) is returned, initialized to the elements
in xl_argo

NOTE: 6nakhunk '(a b c)) is equivalent to (hunk 'a 'b 'c).

EXAMPLE: (makhunk 4) = {nilnil nil nih

(*makhunk 'x_arg)

RETURNS: A hunk of size 2x_arg initialized to EMPTY.

NOTE: This is only to be used by such functions as hunk and makhunk, which create and
initialize hunks for users.

2.6.2. hunk aceessor

{en 'xjnd 'h_hunk>

RETURNS: Element xjnd (starting at 0) of hunk h_hunk.

{hunk-to-llst 'h_hunk>

RETURNS: A list consisting of the elements of h_hunk.

2.6.3. hunk manipulators

(rplaex 'xjnd 'h_hunk 'g_ val)
(*rplaex 'xjnd 'h_hunk 'g_val)

RETURNS: h_hunk

SIDE EFFECT: Element xjnd (starting at 0) of h_hunk is set to g_val.

NOTE: rplacx does not modify one of the distinguished (EMPTY) elements whereas
·rplacx does.

(hunksize 'h_arg)

RETURNS: The size of the hunk h_arg.

EXAMPLE: (hunksize (hunk 1 23)) = 3

2.7. Beds

2-20

A bcd object contains a pointer to compiled code and to the type of function object
the compiled code represents.

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

(getdisc 'y _bcd)
(getentry 'y _ bcd)

RETURNS: The field of the bcd object given by the function name.

(putdisc 'y Junc 's_discipline)

RETURNS: s_discipline

SIDE EFFECT: Sets the discipline field of y Junc to s_discipline.

2.8. Structures

There are three common structures constructed out of list cells: the assoc list, the
property list, and the tconc list. The functions below manipulate these structures.

2.8.1. assoc list

An 'assoc list' (or alisO is a common lisp data structure. It has the form
«key1 . valueD (key2 . value2) (key3 . value3) ... (keyn. valuen»

(assoc 'g arg1 '1 arg2)
(assq 'g_arg1 '1_arg2)

RETURNS: The first top level element of 1 arg2 whose car is equal (with assoc) or eq (with
assq) to g_ arg 1. -

NOTE: Usually 1_arg2 has an a-list structure and g_arg1 acts as key.

(sassoc 'g_arg1 '1_arg2 'slJunc)

RETURNS: The result of (cond ((assoc 'g_arg 'Larg2) (apply 'sLfunc nil)))

NOTE: sassoc is written as a macro.

(sassq 'g_arg1 '1_arg2 'slJunc)

RETURNS: the result of (cond ((assq 'g_arg 'Larg2) (apply 'sLfunc nil)))

NOTE: sassq is written as a macro.

4404P30 LISP PROGRAMMERS 2-21

DATA STRUCTURE ACCESS

; assoc or assq is given a key and an assoc list and returns
; the key and value item if it exists. They differ only in how they test
; for equality of the keys.

- > (setq alist '((alpha. a) ((complex key) . b} (junk. x)}}
«alpha. a) «complex key) . b) Gunk. x»

; You should use assq when the key is an atom;
- > (assq 'alpha alisO
(alpha. a)

; but it may not work when the key is a list.
- > (assq '(complex key) alist}
nil

; However, assoc always works.
- > (assoc '(complex key) alist}
«complex key) . b)

(sublis 'l_alst 'l_exp)

WHERE: I alst is an a-list

RETURNS: The list l_exp with every occurrence of key ireplaced by vaH

NOTE: A new list structure is returned to prevent modification of l_exp. When a substitu
tion is made, a copy of the value to substitute in, is not made.

2.8.2. property list

A property list consists of an alternating sequence of keys and values. Normally
a property list is stored on a symbol. A list is a 'disembodied' property list if it con
tains an odd number of elements, the first of which is ignored.

(plist 's_name)

RETURNS: The property list of s_name.

(setplist 's_atm 'lylist)

RETURNS: lylist.

SIDE EFFECT: the property list of s_atm is set to lylist.

2-22 4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

(get 'Is_name 'gjmJ.)

RETURNS: The value under indicator gjnd in Is_name's property list if Is_name is a sym
bol.

NOTE: If there is no indicator g ind in Is name's property list, nil is returned. If Is name
is a list of an odd number of elements, then it is a disembodied property list. get
searches a disembodied property list by starting at its cdr and comparing every other
element with gjnd, using eq.

(getl 'Is_name 'Undicators)
RETURNS: The property list Is name beginning at the first indicator that is a member of the

list Undicators, or nil, if none of the indicators in Undicators are on Is_name's .
property list.

NOTE: If Is_name is a list, then it is assumed to be a disembodied property list.

(putprop 'Is_name 'g_val 'gjnd)
(defprop Is_name g_ val gjnd)

RETURNS: g_val.

SIDE EFFECT: Adds to the property list of Is_name the value g_val under the indicator
g indo

NOTE: putprop evaluates its arguments; dejjJrop does not. Is_name may be a disembodied
property list. See get

(remprop 'ls'pame 'gjnd)
RETURNS: The portion of Is name's property list beginning with the property under the

indicator gjnd. If there is no gjnd indicator in Is_name's plist, nil is returned.
SIDE EFFECT: The value under indicator gjnd and gjnd itself is removed from the pro

perty list of Is_name.
NOTE: Is_name may be a disembodied property list. See get

- > (putprop 'xlate 'a 'alpha)
a
- > (putprop 'xlate 'b 'beta)
b
- > (plist 'xlate)
(alpha a beta b)
- > (get 'x/ate 'alpha)
a
; You can use a disembodied property list this way:
- > (get '(nil/ateman rjfsklower klsjoderarojkj) 'sklower)
kls

4404P30 LISP PROGRAMMERS 2-23

DATA STRUCTURE ACCESS

2.8.3. tconc structure

A tconc structure is a special type of list, designed to make it easy to add objects
to the end. It consists of a list cell whose car points to a list of the elements added
with teone or leone and whose cdr points to the last list cell of the list pointed to by
the car.

<tconc 'lytr 'Lx)
WHERE: lytr'is a tconc structure.

RETURNS: lytr with g_x added to the end.

Oconc 'lytr 'I_x)

2-24

WHERE: lytr is a tconc structure.

RETURNS: lytr with the list I_x spliced in at the end.

; A tconc structure can be initialized in two ways.
; Nil can be given to fcone, in which case fcone generates
; a tconc structure.

- > (sefi/. foo (fconc nil 1))
((1) 1)

; Since fconc destructively adds to
; the list, you can now add to foo without using sefi/. again.

- > (tconc foo 2)
((1 2) 2)
->foo
((1 2) 2)

; Another way to create a null tcone structure
; is to use (neons nil).

- > (sefi/. foo (neons nilJ)
(ni!)
- > {(conc foo 1)
«(1) 1)

; Now see what leone can do:
- > ([cone foo nil)
«(1) 1) ;There is no change.
- > ([cone foo '(2 3 4))
((1 2 3 4) 4)

2.8.4. fclosures

An fclosure is a functional object that admits some data manipulations. They
are discussed in §8.4. Internally, they are constructed from vectors.

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

(fclosure '1_ vars 'gjunobj)

WHERE: I vars is a list of variables; g funobj is any object that can be funcalled (includ-
ing, fclosures). -

RETURNS: A vector that is the fclosure.

(fclosure-alist 'v jclosure)
RETURNS: An association list representing the variables in the fclosure. This is a snapshot

of the current state of the fclosure. If the bindings in the fclosure are changed,
any previously calculated results of fclosure-alist do not change.

(fclosure-function 'v jclosure)

RETURNS: The functional object part of the fclosure.

(fclosurep 'v jclosure)

RETURNS: t if the argument is an fclosure.

{symeval-in-fclosure 'v jclosure 's_symboO

RETURNS: The current binding of a particular symbol in an fclosure.

(set-in-fclosure 'v _fclosure 's_symbol 'g_newvalue)

RETURNS: g_newvalue.

SIDE EFFECT: The variable s_symbol is bound in the fclosure to g_newvalue.

2.9. Random functions

The following functions do not fall into any of the classifications above.

(bcdad'sjuncname)

RETURNS: A fixnum that is the address in memory where the function s funcname begins.
If sjuncname is not a machine coded function (binary), then -bcdadreturns nil.

(copy 'g_arg)

RETURNS: A structure equa/to g_arg but with new list cells.

(copyint* 'x_arg)

RETURNS: A fixnum with the same value as x_arg but in a freshly allocated cell.

(cpy! 'xvt_arg)

RETURNS: A new cell of the same type as xvt_arg with the same value as xvt_arg.

4404P30 LISP PROGRAMMERS 2-25

DATA STRUCTURE ACCESS

(getaddress 's_entry1 's_binder1 'st_discipline1 L D
RETURNS: The binary object that s_binder1's function field is set to.
NOTE: This looks in the running lisp's symbol table for a symbol with the same name as

sentry i It then creates a binary object whose entry field points to s entry I and
whose discipline is st discipline i This binary object is stored in the function field
of s_binderi If st_disciplinel is nil, then "subroutine" is used by default. This is
especially useful for cfaslusers.

(macroexpand 'gJorm>
RETURNS: gJorm after all macros in it are expanded.
NOTE: This function only macroexpands expressions that could be evaluated, and it does

not know about the special nlambdas such as cond and do, thus, it misses many
macro expansions.

(ptr 'g_arg) .

RETURNS: A value cell initialized to point to g_arg.

(quote g_ arg)

RETURNS: g_arg.
NOTE: The reader allows you to abbreviate (quote foo) as 'foo.

(kwote 'g_arg)
RETURNS: ([1st (quote quote) g arg).

(replace 'g_arg1 'g_arg2)

2-26

WHERE: g_arg1 and g_arg2 must be the same type of lispval and not symbols or hunks.
RETURNS: g_arg2.

SIDE EFFECT: The effect of replace dependents on the type of the g arg ~ although you
may notice a similarity in the effects. To understand what replace does to
fixnum and flonum arguments, you must first understand that such
numbers are 'boxed' in FRANZ LISP. This means that if the symbol x has a
value 32412, then, in memory, the value element of x's symbol structure
contains the address of another word of memory (called a box) with 32412
in it.

Thus, there are two ways of changing the value of x. The first way is to
change the value element of x's symbol structure to point to a word of
memory with a different value. The second way is to change the value in
the box that x points to. The former method is used almost all of the time;
the latter is used very rarely and may cause great confusion. The function
replace allows you to do the latter, i.e., to actually change the value in the
box.

You should watch out for these situations. If you do (setq y x), then both x
and y point to the same box. If you now (replace x 12345), then y also has
the value 12345. And, in fact, there may be many other pointers to that
box.

Another problem with replacing fixnums is that some boxes are read-only.
The fixnums between -1024 and 1023 are stored in a read-only area and
attempts to replace them result in an "Illegal memory reference" error. See

4404P30 LISP PROGRAMMERS

DATA STRUCTURE ACCESS

the description of copyint" for a way around this problem.

For the other valid types, the effect of replace is easy to understand. The
fields of g vall's structure are made eq to the corresponding fields of
g val2's structure. For example, if x and y have lists as values then the
effect of (replace x y) is the same as (rplaca x (car y)) and (rplacd x (cdr y)).

(scons 'x_arg 'bsJest)

WHERE: bSJest is a bignum or nil.

RETURNS: A bignum whose first bigit (digit in the bignum base) is x_arg and whose higher
order bigits are bSJest.

(setf gJefexpr 'g_ value)

NOTE: seif is a generalization of setq. Information may be stored by binding variables,
replacing entries of arrays, and vectors, or by being put on property lists, among
others. Setf allows you to store data into some location by mentioning the opera
tion used to refer to the location. Thus, the first argument may be partially
evaluated, but only to the extent needed to calculate a reference. selj'returns
g_ value. (Compare to desetq)

(setfx 3) = (setq x 3)
(setf (car x) 3) = (rplaca x 3)
(setf (get foo 'bar) 3) = (putprop foo 3 'bar)
(setf (vref vector index) value) = (vset vector index value)

(sort 'I_data 'u_comparefn)

RETURNS: A list of the elements of I_data ordered by the comparison function
u_compardn.

SIDE EFFECT: The list I_data is modified rather than allocated in new sbrage.

NOTE: (compare!n 'g_x 'gy) should return something non-nil, if g_x can precede gy in
sorted order; nil, if gy must precede g_x. If u_comparefn is nil, alphabetical order
is used.

(sortcar 'Uist 'u _ comparefn)

RETURNS: A list of the elements of I list with the COl'S ordered by the sort function
u_comparefn.

SIDE EFFECT: The list Uist is modified rather than copied.

NOTE: Like sor~ if u_comparefn is nil, alphabetical order is used.

4404P30 LISP PROGRAMMERS 2-27

CHAPTER 3

Arithmetic Functions

This chapter describes FRANZ LISP's functions for doing arithmetic. Often the same func
tion is known by many names. For example, add is also plus and sum This is caused by our
desire to be compatible with other Lisps. However, you should avoid using functions with
names such as + and * unless their arguments are fixnums. The Lisp compiler takes advantage
of these implicit declarations.

An attempt to divide or to generate a floating point result outside of the range of floating
point numbers causes a floating exception signal from the operating system. You can catch and
process this interrupt if desired. See the description of the signal function.

3.1. Simple Arithmetic Functions

(add ['n argl ...])
(plus ['n argl ... J)
(sum ['n -argl ... J)
(+ ['x_argl ... J)

RETURNS: The sum of the arguments. If no arguments are given, 0 is returned.

NOTE: If the size of the partial sum exceeds the limit of a fixnum, the partial sum is con
verted to a bignum. If any of the arguments are flonums, the partial sum is con
verted to a flonum when that argument is processed and the result is thus a
flonum. Currently, if, in the process of doing the addition, a bignum must be con
verted into a flonum, an error message results.

(addl 'n arg)
(1 + 'x_arg)

RETURNS: Its argument plus 1.

(diff ['n argl ...])
(difference ['n argl ... J)
(- ['x_argl ... 1)

RETURNS: The result of subtracting from n_argl all subsequent arguments. If no argu
ments are given, 0 is returned.

NOTE: See the description of add for details on data type conversions and restrictions.

4404P30 LISP PROGRAMMERS 3-1

ARITHMETIC FUNCTIONS

(subl 'n arg)
(1- 'x_arg)

RETURNS: Its argument minus 1.

(minus 'n_arg)

RETURNS: Zero minus n_arg.

(product ['n_argl .,.])
<tImes ['n argl ...])
(. ['x_argl ...])

RETURNS: The product of all of its arguments. It returns 1 if there are no arguments.

NOTE: See the description of the function add for details and restrictions to the automatic
data type coercion.

(quotient ['n argl ... J)
(f ['x_argl ..])

RETURNS: The result of dividing the first argument by succeeding ones.

NOTE: If there are no arguments, 1 is returned. See the description of the function add
for the details and restrictions of data type coercion. A divide by zero causes a
floating exception interrupt. See the description of the signal function.

(*quo 'i_x 'iy)

RETURNS: The integer part of i_x / iy.

<Divide 'i_dividend 'i_divisor>

RETURNS: A list whose car is the quotient and whose cadr is the remainder of the division
of i_dividend by i_divisor.

NOTE: This is restricted to integer division.

(Emuldlv 'xjactl 'xjact2 'x_addn 'x_divisor)

RETURNS: A list of the quotient and remainder of this operation:
«xjactl * xjact2) + (sign extended) x_addn) / x_divisor.

NOTE: This is useful for creating a bignum arithmetic package in Lisp.

3.2. predicates

(numberp 'g_arg)

(numbp 'g_arg)

RETURNS: T iff g_arg is a number: fixnum, flonum, or bignum.

3-2 4404P30 LISP PROGRAMMERS

(fixp 'g_ arg)

RETURNS: T iff g_arg is a fixnum or bignum.

(Boatp 'g_ arg)

RETURNS: Tiff g_arg is a flonum.

(evenp 'x_arg)

RETURNS: Tiff x_arg is even.

(oddp 'x_arg)

RETURNS: T iff x _ arg is odd.

(zerop 'g_arg)

RETURNS:T iff g_arg is a number equal to O.

(onep 'g_arg)

RETURNS: T iff g_arg is a number equal to 1.

(plusp 'n_arg)

RETURNS: Tiff n_arg is greater than zero.

(minusp 'g_arg)

RETURNS: Tiff g_arg is a negative number.

(greaterp ['n argl ... J)
(> 'fx argl 'fx arg2)
(>& 'x argl 'x-arg2) - -

RETURNS: T iff the arguments are in a strictly decreasing order.

ARITHMETIC FUNCTIONS

NOTE: In the functions greaterp and >, the function difference is used to compare adjacent
values. If any of the arguments are non-numbers, the error message comes from
the difference function. The arguments to > must be fixnums or both flonums.
The arguments to > & must both be fixnums.

(lessp ['n argl ... J)
« 'fx argl 'fx arg2)
«& 'x_argl 'x=arg2)

RETURNS: T iff the arguments are in a strictly increa~ing order.

NOTE: In functions iessp and < the function difference is used to compare adjacent values.
If any of the arguments are non numbers, the error message comes from the
difference function. The arguments to < may be either fixnums or flonums but
must be the same type. The arguments to < & must be fixnums.

4404P30 LISP PROGRAMMERS 3-3

ARITHMETIC FUNCTIONS

(- 'fx_argl 'fx_arg2)

(-& 'x_argl 'x_arg2)

RETURNS: T iff the arguments have the same value. The arguments to = must be the
either both fixnums or both flonums. The arguments to =& must be fixnums.

3.3. Trignometric Functions

Some of these functions are taken from the host math library, and we take no
further responsibility for their accuracy.

(cos 'fx_angle)

RETURNS: The (flonum) cosine of fx_angle (which is assumed to be in radians).

(sin 'fx_angle)

RETURNS: The sine of fx_angle (which is assumed to be in radians).

(acos 'fx_arg)

RETURNS: The (flonum) arc cosine of fx arg in the range 0 to 1f'.

(asin 'fx_arg)

RETURNS: The (flonum) arc sine of fx_arg in the range -1f'/2 torr/2.

(atan 'fx_argl 'fx_arg2)

RETURNS: The (flonum) arc tangent of fx_argl/fx_arg2 in the range -1f' to 1f'.

3.4. Bignum/Fixnum Manipulation

(haipart bx_number x_bits)

RETURNS: A fixnum (or bignum) that contains the x_bits high bits of (abs bx_number) if
x bits is positive; otherwise, it returns the (abs x bits) low bits of
rabs bx_ number}. -

(haulong bx_numbed

3-4

RETURNS: The number of significant bits in bx_number.

NOTE: The result is equal to the least integer greater than or equal to the base two loga
rithm of one plus the absolute value of bx_number.

4404P30 LISP PROGRAMMERS

ARITHMETIC FUNCTIONS

(bignum-Ieftshift bx_arg x_amount>
RETURNS: bx_arg shifted left by x_amount. If x_amount is negative, bx_arg is shifted

right by the magnitude of x_amount.

NOTE: If bx_arg is shifted right, it will be rounded to the nearest even number.

(sticky-bignum-Ieftshift 'bx _ arg 'x_amount)

RETURNS: bx_arg shifted left by x_amount. If x_amount is negative, bx_arg will be shifted
right by the magnitude of x_amount and rounded.

NOTE: Sticky rounding is done this way: after shifting, the low order bit is changed to 1 if
any 1 's were shifted off to the right.

3.5. Bit Manipulation

{boo Ie 'x_key 'x_vI 'x_v2 .. J
RETURNS: The result of the bitwise boolean operation as described in the following table.

NOTE: If there are more than 3 arguments, then evaluation proceeds left to right with each
partial result becoming the new value of x _v 1. That is,

(boole 'key 'vi 'v2 'v3) = (boole 'key (boole 'key 'vi 'v2) 'v3).
In the following table, * represents bitwise and + represents bitwise, or e
represents bitwise xor and .., represents bitwise negation and is the highest pre
cedence operator.

(boole 'key 'x 'y)

key 0 1 2 3 4 5 6 7
result 0 X'y "'x·y y x·..,y x xEDy x+y

common
names and bitclear xor or

key 8 9 10 11 12 13 14 15
result .., (x + y) "'(x ED y) "'x "'x+y ..,y x+ y x+ y -1

common
names nor equiv implies nand

Ush 'x_val 'x_amt>

RETURNS: x val shifted left by x amt if x amt is positive. If x amt is negative, then Ish
returns x_val shifted right by the magnitude if x_amt. -

NOTE: This always returns a fixnum even for those numbers whose magnitude is so large
that they would normally be represented as a bignum; i.e., shifter bits are lost. For
more general bit shifters, see bignum-Ie/tshift and sticky-bignum-Ieftshift.

4404P30 LISP PROGRAMMERS
3-5

ARITHMETIC FUNCTIONS

(rot 'x_val 'x_amt>

RETURNS: x_val rotated left by x_amt if x_amt is positive. If x_amt is negative, then x_val
is rotated right by the magnitude of x_amt.

3.6. Other Functions

As noted above, some of the following functions are inherited from the host math
library.

(abs 'n arg)
(absvaf'n_arg)

RETURNS: The absolute value of n_arg.

(exp 'fx_arg)

RETURNS: eraised to the fx_arg power (flonum).

(expt 'n_base 'n...p0wer)

RETURNS: n _base raised to the n "'power power.

NOTE: If either of the arguments are flonums, the calculation is done using log and expo

(fact 'x_arg)

RETURNS: x_arg factorial -- fixnum or bignum.

(fix 'n _arg)

RETURNS: A fixnum as close as we can get to n _ argo

NOTE: fix rounds down. Currently, if n_arg is a flonum larger than the size of a fixnum,
this fails.

(fioat 'n_arg)

RETURNS: A flonum as close as we can get to n_arg.

NOTE: If n_arg is a bignum larger than the maximum size of a flonum, then a floating
exception occurs.

(log 'fx_arg)

RETURNS: The natural logarithm of fx_arg.

(max 'n_argl ...)

RETURNS: The maximum value in the list of arguments.

3-6 4404P30 LISP PROGRAMMERS

(min 'n_argl ...)

RETURNS: The minimum value in the list of arguments.

(mod 'i dividend 'i divisor>
(remainder 'i_dividend 'i_divisor>

RETURNS: The remainder when tdividend is divided by i_divisor.

NOTE: The sign of the result has the same sign as i_dividend.

(·mod 'x_dividend 'x_divisor>

ARITHMETIC FUNCTIONS

RETURNS: The balanced representation of x_dividend modulo x_divisor.

NOTE: The range of the balanced representation is abs(x_divisor)/2 to (abs(x_divisor)/2)
- x_divisor + 1.

(random ['xJimit])

RETURNS: A fixnum between 0 and x limit - 1 if x limit is given. If xJimit is not given,
any fixnum, positive or negative, might be returned.

(sqrt 'fx_arg)

RETURNS: The square root of fx_arg.

4404P30 LISP PROGRAMMERS 3-7

CHAPTER 4

Special Functions

This chapter describes the special functions, or forms of FRANZ LISP. While lisp is gen
erally thought of as very simple, in fact system-building in lisp requires the inclusion of a fair
selection of these special forms.
(and [g_argl ... J)

RETURNS: The value of the last argument if all arguments evaluate to a non-nil value; oth
erwise, andreturns nil. It returns t if there are no arguments.

NOTE: The arguments are evaluated left to right and evaluation ceases with the first nil
encountered.

(apply 'uJunc 'l_args)

RETURNS: The result of applying function uJunc to the arguments in the list l_args.
NOTE: If ujunc is a lambda, then the (length Largs) should equal the number of formal

parameters for the ujunc. If ujunc is a nlambda or macro, then l_args is bound
to the single formal parameter.

; add1 is a lambda of 1 argument
- > (apply 'add1 '(3))
4

; You can define plus1 as a macro that is equivalent to
add1.
- > (de/plus] (macro (arg) (list 'add1 (cadr arg))))
plusl
- > (Plus13)
4

; Now if you apply a macro, you obtain the form it changes to.
- > (apply 'plus1 '(plus1 3))
(addl 3)

; If you funcal/a macro ,however, the result
of the macro is evaed
; before it is returned.
- > (jUncal/ 'plus1 '(plus13))
4

; For this particular macro, the car of the argis not checked
; so that this too works.
- > (apply 'plus1 '(faa 3))
(addl 3)

4404P30 LISP PROGRAMMERS 4-1

SPECIAL FUNCTIONS

(arg ['x_numb])

RETURNS: If x numb is specified, then the x numb' th argument to the enclosing lexpr. If
x_numb is not specified, then this returns the number of arguments to the
enclosing lexpr.

NOTE: It is an error to the interpreter if x_numb is given and out of range.

(break [g_message ['gyred]])

WHERE: If g':" message is not given, it is assumed to be the null string, and if gyred is
not given, it is assumed to be t.

RETURNS: The value of (*break 'gyred 'g_message)

(*break 'gyred 'g_message)

RETURNS: nil immediately if gyred is nil; otherwise, the value of the next (return 'value)
expression typed in at top level.

SIDE EFFECT: If the predicate, gyred, evaluates to non-null, the Lisp system stops and
prints out 'Break' followed by g message. It then enters a break loop that
allows you to interactively debug a program. To continue execution from a
break, you can use the return function. To return to top level or another
break level, you can use retbrk or reset

(caseq 'g_key-form I_clause! .. J

4-2

WHERE: I clausei is a list of the form (g comparator ['g formi ... D. The comparators
may be symbols, small fixnums, a-list of small fixflums or symbols.

NOTE: The way caseq works is that it evaluates Lkey-form, yielding a value called the
selector. Each clause is examined until the selector is found consistent with the
comparator. For a symbol, or a fixnum, this means the two must be eq. For a list,
this means that the selector must be eq to some element of the list.

The comparator consisting of the symbol t has special semantics: it matches any
thing and, consequently, should be the last comparator.

In any case, having chosen a clause, caseq evaluates each form within that clause
and returns the value of the last form

RETURNS: The value of the last form as indicated above. If no comparators are matched,
caseq returns nil.

4404P30 LISP PROGRAMMERS

Here are two ways of defining the same function:

- > (defunfate (personna)

fate

(caseq personna
(cow 'Oumped over the moon))
(cat '(played nero))
((dish spoon) '(ran away with each other))
(t '(tived happily ever after))))

- > (defun fate (personna)
(cond

fate

((eq personna 'cow) 'Oumped over the moon))
((eq personna 'cat) '(played nero))
((memq personna '(dish spoon)) '(ran away with each other))
(t '(tived happily ever after))))

(catch g_exp [Is_tag])

WHERE: If Is_tag is not given, it is assumed to be nil.

RETURNS: The result of (·catch 'Is_tag g_exp)

NOTE: Catch is defined as a macro.

(·catch 'Is_tag g_exp)

WHERE: Is_tag is either a symbol or a list of symbols.

SPECIAL FUNCTIONS

RETURNS: The result of evaluating g_exp or, if the 'throw' pseudo-function is invoked
with the argument Is_tag within the execution of g_exp, the value given by
throw. (see throw, *throw) The *catch and throw or *throw construction is used
for a non-local return of a value, and is typically used in an error return or
some kind of break in the normal modularization of a program.

SIDE EFFECT: This proceeds as follows: *catch first sets up a 'catch frame' on the Lisp
runtime stack. Then it begins to evaluate g expo If g exp evaluates nor
mally, its value is returned. If, however, a value is -thrown during the
evaluation of g_exp, then this *catch returns with that value if one of these
cases is true:

(1) The tag thrown to is Is_tag.

(2) Is_tag is a list and the tag thrown to is a member of this list.
(3) Is_tag is nil.

NOTE: Errors are implemented as a special kind of throw. A catch with no tag does not
catch an error, but a catch whose tag is the error type catches that type of error.
See Chapter 10 for more information.

4404P30 LISP PROGRAMMERS 4-3

SPECIAL FUNCTIONS

(comment [g_arg ... J)

RETURNS: The symbol comment.

NOTE: This does absolutely nothing.

(cond [I_clause 1 ... J)

RETURNS: The last value evaluated in the first clause satisfied. If no clauses are satisfied,
then nil is returned.

NOTE: This is the basic conditional 'statement' in Lisp. The clauses are processed from
left to right. The first element of a clause is evaluated. If it evaluates to a non-null
value, then that clause is satisfied and all following elements of that clause are
evaluated. The last value computed is returned as the value of the condo If there
is just one element in the clause, then its value is returned. If the first element of
a clause evaluates to nil, then the other elements of that clause are not evaluated
and the system moves to the next clause.

(cvttointlisp)

SIDE EFFEct: The reader is modified to conform with the Interlisp syntax. The character
% is made the escape character and special meanings for comma,
backquote, and backslash are removed. Also the reader is told to convert
upper case to lower case.

(cvttofranzllsp)

SIDE EFFECT: FRANZ LISP's default syntax is reinstated. You should run this function
after having run any of the other cvtto- functions. Backslash is made the
escape character, super-brackets work again, and the reader distinguishes
between upper and lower case.

(cvttomacllsp)

SIDE EFFECT: The reader is modified to conform with Maclisp syntax. The character I is
made the escape character, and the special meanings for backslash, left and
right bracket are removed. The reader is made case-insensitive.

(cvttoucllisp)

SIDE EFFECT: The reader is modified to conform with UCI Lisp syntax. The character I
is made the escape character; tilde is made the comment character; excla
mation point takes on the unquote function normally held by comma, and
backslash, comma, and semicolon become normal characters. Here too, the
reader is made case-insensitive.

(debug s _ msg)

4-4

SIDE EFFECT: Enter the Fixit package described in Chapter 15. This package allows you
to examine the evaluation stack in detail. To leave the Fixit package type
'ok'.

4404P30 LISP PROGRAMMERS

SPECIAL FUNCTIONS

(debugging 'g_ arg)

SIDE EFFECT: If g arg is non-null, FRANZ LISP unlinks the transfer tables, does a (*rset t}
to turn on evaluation monitoring and sets the all-error catcher (ER%all) to
be debug-err-handler. If g_ arg is nil, all of the earlier changes are undone.

(declare [g_arg ... J)

RETURNS: nil

NOTE: This is a no-op to the evaluator. It has special meaning to the compiler (see
Chapter 12).

{def s_name (s_type l_argl g_expl ... »
WHERE: s_type is one of lambda, nlambda, macro or lexpr.

RETURNS: s_name

SIDE EFFECT: This defines the function s_name to the Lisp system. If s_type is nlambda
or macro then the argument list l_argl must contain exactly one non-nil
symbol.

{defmacro s name 1 arg g expl .. J
{defcmacro s_name targ g_expl .. J

RETURNS: s_name

SIDE EFFECT: This defines the macro s name. defmacro makes it easy to write macros
since it makes the syntax Just like dejUn Further information on de/macro
is in §8.3.2. defcmacro defines compiler-only macros, or cmacros. A cmacro
is stored on the property list of a symbol under the indicator cmacro. Thus
a function can have a normal definition and a cmacro definition. For an
example of the use of cmacros, you can examine the definitions of nthcdr
and nth in llisp/lib/common2.1

(defun s_name [s_mtype] ls_argl g_expl ...)

WHERE: s_mtype is one of fexpr, expr, args or macro.

RETURNS: s_name

SIDE EFFECT: This defines the function s_name.

NOTE: This exists for Maclisp compatibility. It is just a macro that changes the defun form
to the def form. If you are familiar with Maclisp, an s_mtype of fexpr is converted
to nlambda and the Maclisp expr is simply our lambda. Macro remains the same. If
Is argl is a non-nil symbol, then the type is assumed to be lexpr and Is argl is the
symbol that is bound to the number of args when the function is entered.
For compatibility with the Lisp Machine Lisp, there are three types of optional
parameters that can occur in ls_argl: &optional declares that the following symbols
are optional, and mayor may not appear in the argument list to the function; &rest
symbol declares that all forms in the function call that are not accounted for by pre
vious lambda bindings are to be assigned to symbo~ and &aux forml ... formn
declares that the formi are either symbols, in which case they are lambda bound to
nil, or lists, in which case the first element of the list is lambda bound to the
second, evaluated element.

4404P30 LISP PROGRAMMERS 4-5

SPECIAL FUNCTIONS

; de/and defun here are used to define identical
functions.
; You can decide for yourself which is easier to use.
- > (de/ append1 (lambda (lis extra) (append lis (list extra))))
appendl

- > (defun append1 (lis extra) (append lis (list extra)))
appendl

; Using the & forms ...
- > (defun test (a b cloptional e claux (retvaIO) clrest z)

(if e them (msg" Optional arg presenf N
"e is" eN))

(msg"restis" zN
"retval is" retval N))

test
- > (test 1 2 3 4)
Optional arg present
cis 3
rest is (4)
retval is 0

(defvar s_variable ['gjnit])
RETURNS: s_ variable.
NOTE: This form is put at the top level in files, like dejUn

SIDE EFFECT: This declares s variable to be special. If g init is present and s variable is
unbound when-the file is read in, s_variable is set to the value of gjnit.
An advantage of '(defvar foo)' over' (declare (special foo»' is that if a file
containing defvars is loaded (or fasl'ed) in during compilation, the variables
mentioned in the defvar's are declared special. The only way to have that
effect with' (declare (special foo»' is to include the file.

(do l_vrbs Ctest Lexpl .. J

4-6

RETURNS: The last form in the cdr of Uest evaluated, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the basic iteration form for FRANZ LISP. I vrbs is a list of zero or more
var-init-repeat forms. A var-init-repeat form looks like:

(s name [g init [g repeat)))
There are three cases depending -on what is present in the form. If just s_name is
present, this means that when the do is entered, s_name is lambda-bound to nil
and is never modified by the system (though the program is certainly free to
modify its value). If the form is (s name 'g init) then the only difference is that
s name is lambda-bound to the vahle of g init instead of nil. If g repeat is also
present then s name is lambda-bound to g 1nit when the loop is entered and after
each pass through the do body s name is bound to the value of g repeat.
I test is either nil or has the form of a cond clause. If it is nil then the do body is
evaluated only once and the do returns nil. Otherwise, before the do body is
evaluated the car of Uest is evaluated, and, if the result is non-null, this signals an
end to the looping. Then the rest of the forms in I_test are evaluated and the value
of the last one is returned as the value of the do. If the cdr of Uest is nil, then nil
is returned. Thus, this is not exactly like a cond clause.

4404P30 LISP PROGRAMMERS

SPECIAL FUNCTIONS

g_expl and those forms that follow constitute the do body. A do body is like a
prog body and, thus, may have labels. You can use the functions go and return.
The sequence of evaluations is this:

(1) The init forms are evaluated left to right and stored in temporary locations.
(2) Simultaneously, all do variables are lambda bound to the value of their init forms or

to nil.

(3) If I test is non-null, then the car is evaluated, and, if it is non-null, the rest of the
forms in I_test are evaluated, and the last value is returned as the value of the do.

(4) The forms in the do body are evaluated left to right.
(5) If I test is nil the do function returns with the value nil.
(6) The repeat forms are evaluated and saved in temporary locations.
(7) The variables with repeat forms are simultaneously bound to the values of those

forms.
(8) Go to step 3.

NOTE: There is an alternate form of do that can be used when there is only one do vari
able. It is described next.

; This is a simple function that numbers the elements of a list.
; It uses a do function with two local variables.
- > (defun printem (lis)

printem

(do ((xx lis (cdr xx))
(; 10+ ;)))

((null.xx) (patom" all done') (terpr))
(print ;)
(patom": ,,)
(print (car xx))
(terpr)))

- > (printem '(a bed))
1: a
2: b
3: c
4:d
all done
nil
->

(do s_name gjnit gJepeat g_test g_expl .. J
NOTE: This is another, less general, form of do. It is evaluated by:
(I) Evaluating gjnit.

(2) Lambda binding s_name to value of gjnit.
(3) g_test is evaluated, and, if it is not nil, the do function returns with nil.
(4) The do body is evaluated beginning at g_expl.
(5) The repeat form is evaluated and stored in s_name.
(6) Go to step 3.
RETURNS: Nil.

4404P30 LISP PROGRAMMERS 4-7

SPECIAL FUNCTIONS

(environment [I whenll what11 when2 I what2 ... n
(environment-nlaclisp [I-whenl I what1l-when2 I what2 ... n
(environment-Imllsp l1_whenll_what1l_when2 l_what2 ... n

WHERE: The when's are a subset of (eval compile load), and the symbols have the same
meaning as they do in 'eval-when'.

The what's may be:
(files file 1 file2 ... fileN)

which insure that the named files are loaded. To see if file i is loaded, these
functions look for a 'version' property under filets property list. In order to
make this work to prevent multiple loading, you should put

(putprop 'myfile t 'version),
at the end of myfile.1.

Another acceptable form for a what is
(syntax type)
Where type is either maclisp, intlisp, ucilisp, or franzlisp.

SIDE EFFECT: environment-maclisp sets the environment to what 'liszt +m' generates.

environment-Imlisp sets up the Lisp machine environment. This is like
maclisp but it has additional macros.

For these specialized environments, only the files clauses are useful.
(environment-maclisp (compile evat) (files foo bar»

RETURNS: The last list of files requested.

(err ['s_value [nil]])

RETURNS: Nothing (it never returns).

SIDE EFFECT: This causes an error, and, if this error is caught by an errsetthen that errset
returns s_value instead of nil. If the second arg is given, then it must be
nil (for MAClisp compatibility).

(error ['s_messagel ['s_message2]]),

RETURNS: Nothing (it never returns).

SIDE EFFECT: s_messagel and s_message2 are patoned if they are given and then err is
called (with no arguments), which causes an error.

(errset g expt [s flag]) - -
RETURNS: A list of one element that is the value resulting from evaluating g expr. If an

error occurs during the evaluation of g expr, then the locus of control returns
to the errset, which then returns nil (unless the error was caused by a call to err
with a non-null argument).

SIDE EFFECT: S_flag is evaluated before g_expr is evaluated. If sJlag is not given, then it
is assumed to be t. If an error occurs during the evaluation of g expr, and
s_flag was evaluated to a non-null value, then the error message -associated
with the error is printed before control returns to the errset.

4-8 4404P30 LISP PROGRAMMERS

SPECIAL FUNCTIONS

(eva} 'g_val ['x_bind-pointer])

RETURNS: The result of evaluating g_ val.

NOTE: The evaluator evaluates L val in the following way:
If g_ val is a symbol, then the evaluator returns its value. If g_ val had never been
assigned a value, then this causes an 'Unbound Variable' error. If x_bind-pointer
is given, then the variable is evaluated with respect to that pointer. See evalframe
for details on bind-pointers.

If g_ val is of type value, then its value is returned. If g_ val is of any other type
than list, g_ val is returned.

If g val is a list object, then g val is either a function call or array reference. Let
g car be the first element of g -val. g car is continually evaluated until it results in
a - symbol with a non-null function -binding or a non-symbol. Call the result:
gjunc.

G junc must be one of three types: list, binary, or array. If it is a list, then the
first element of the list, which is called gjunctype, must be either lambda,
nlambda, macro, or lexpr. If gjunc is a binary, then its discipline, which is called
g functype, is either lambda, nlambda, macro, or a string. If g func is an array,
then this form is evaluated specially. See Chapter 9 on arrays. I(gjunc is a list or
binary, then g functype determines how the arguments to this function, the cdr of
g val, are processed. If g functype is a string, then this is a foreign function call.
See §8.5 for more details. -

If g functype is lambda or lexpr, the arguments are evaluated (by calling evafrecur
sively) and stacked. If gjunctype is nlambda, then the argument list is stacked. If
gjunctype is macro, then the entire form, g_ val, is stacked.

Next, the formal variables are lambda bound. The formal variables are the cadr of
gjunc. If gjunctype is nlambda, lexpr, or macro, there should only be one for
mal variable. The values on the stack are lambda bound to the formal variables
except in the case of a lexpr, where the number of actual arguments is bound to
the formal variable.

After the binding is done, the function is invoked, either by jumping to the entry
point in the case of a binary or by evaluating the list of forms beginning at cddr
gjunc. The result of this function invocation is returned as the value of the call to
eval.

(evalframe 'xydlpointer)

RETURNS: An evalframe descriptor for the evaluation frame just before xydlpointer. If
xydlpointer is nil, it returns the evaluation frame of the frame just before the
current call to evalframe

NOTE: An evalframe descriptor describes a call to eva~ apply, or juncall The form of the
descriptor is
(type pdf-pointer expression bind-pointer np-index fbot-index),
where type is 'eval' if this describes a call to evalor 'apply' if this is a call to apply
or juncall pdl-pointer is a number that describes this context. It can be passed to
evalframe to obtain the next descriptor and can be passed to fretum to cause a
return from this context. bind-pointer is the size of variable binding stack when
this evaluation began. The bind-pointer can be given as a second argument to eval
in order to evaluate variables in the same context as this evaluation. If type is
'eval', then expression has the form (jUnction-name argi ...). If type is 'apply',

4404P30 LISP PROGRAMMERS 4-9

SPECIAL FUNCTIONS

then expression has the form (function-name (argl .. .)). np-index and lbot-index
are pointers into the argument stack (also known as the namestack array) at the
time of call. lbot-index points to the first argument; np-index points one beyond
the last argument.
In order for there to be enough information for eva(frame to return, you must call
('*rset t).

EXAMPLE: (progn (eva (frame nit))
returns (evaI2147478600 (progn (eva(frame nit)) 1 8 7)

(evalhook 'gJorm 'su_evalfunc ['suJuncallfunc»
RETURNS: The result of evaluating gJorm after lambda binding 'evalhook' to su_evalfunc,

and, if it is given, lambda binding 'funcallhook' to suJuncallhook.

NOTE: As explained in §14.4, the function evalmay pass the job of evaluating a form to a
user 'hook' function when various switches are set. The hook function normally
prints the form to be evaluated on the terminal and then evaluates it by calling
evalhook Eva/hook does the lambda binding mentioned earlier and then calls eval
to evaluate the form after setting an internal switch to tell evalnot to call the user's
hook function just this one time. This allows the evaluation process to advance
one step and yet insure that further calls to eval cause traps to the hook function (if
su_evalfunc is non-null).
In order for evalhook to work, ('*rset t) and (sstatus evalhook t) must have been
done previously.

(exec s_argl .. J
RETURNS: the result of forking and executing the command named by concatenating the

s_arg itogether with spaces in between.

(exece 'sJname ['l_args ['I_envirJD

RETURNS: The error code from the system if it was unable to execute the command
sJname with arguments l_args and with the environment set up as specified in
l_envir. If this function is successful, it is not returned, instead the Lisp system
is overlaided by the new command.

(freturn 'xydl-pointer 'gJetval)

RETURNS: gJetval from the context given by xydl-pointer.

NOTE: A pdt-pointer denotes a certain expression currently being evaluated. The pdl
pointer for a given expression can be obtained from eva(frame

(frexp 'f_arg)

4-10

RETURNS: A list cell (exponent. mantissa) that represents the given flonum.

NOTE: The exponent is a fixnum; the mantissa a 56 bit bignum. If you think of the the
binary point occurring right after the high order bit of mantissa, then
Carg = 2exponent * mantissa.

4404P30 LISP PROGRAMMERS

SPECIAL FUNCTIONS

(funcall 'u func ['g argl ...]) - -
RETURNS: the value of applying function ujunc to the arguments g_argiand then evaluat

ing that result if ujunc is a macro.

NOTE: If u func is a macro or nlambda, then there should be only one g argo /uncall is
the function that the evaluator uses to evaluate lists. If foo is a lambda, lexpr, or
array, then (jUncall '/00 'a 'b 'c) is equivalent to (foo 'a 'b'c). If foo is an nlambda,
then (jUncall '/00 '(a b c)) is equivalent to (foo a b c). Finally, if /00 is a macro,
then (jUncall '/00 '(foo a b cJ) is equivalent to (foo a b c).

(funcallhook 'ljorm 'sujuncallfunc ['su_evalfunc])

RETURNS: the result of the following sequence of actions. First, it lambda-binds 'fun
callhook' to sujuncallfunc and, if it is given, lambda binds 'evalhook' to
su_evalhook. Then it proceeds to /uncall the (car lJormJ on the already
evaluated arguments in the (cdr lJormJ

NOTE: This function is designed to continue the evaluation process with as little work as
possible after a funcallhook trap has occurred. It is for this reason that the form of
I form is unorthodox: its car is the name of the function to call and its cdr are a list
of arguments to stack (without evaluating again) before calling the given function.
After stacking the arguments but before calling /uncall, an internal switch is set to
prevent /uncall from passing the job of funcalling to su juncallfunc. If /uncall is
called recursively in funcalling I form and if su funcallfunc is non-null, then the
arguments to /uncall are actually given to su funcallfunc (a lexpr) to be funcalled.
In order for evalhook to work, ("'rset t) and (sstatus evalhook t) must have been
done previously. A more detailed description of evalhook and /uncallhook is given
in Chapter 14.

(function u june)

RETURNS: The function binding of ujunc if it is a symbol with a function binding; other
wise, ujunc is returned.

(getdisc 'y Junc)

RETURNS: The discipline of the machine coded function -- lambda, nlambda, or macro.

(go g_labexp)

WHERE: gJabexp is either a symbol or an expression.

SIDE EFFECT: If gJabexp is an expression, that expression is evaluated and should result
in a symbol. The locus of control moves to just following the symbol
gJabexp in the current prog or do body.

NOTE: This is only valid in the context of a prog or do body. The interpreter and compiler
allow non-local gels, although the compiler does not allow a go to leave a function
body. The compiler does not allow gJabexp to be an expression.

4404P30 LISP PROGRAMMERS 4-11

SPECIAL FUNCTIONS

Of 'g a 'g b)
Of 'g -a 'g - b 'g c .. ,)
Of 'g=a then 'g_b L..] [elself 'g_c then 'g_d ...] [else 'g_e L..D
Of 'g_a then 'g_b L . .1 [elseif 'g_c thenret] [else 'g_d L .. D

NOTE: The various forms of ifare intended to be easily readable conditional statements -
to be used in place of cond There are two varieties of if. with and without key
words. The keyword-less variety is inherited from common Maclisp usage. A
keyword-less, two argument ifis equivalent to a one-clause cond, i.e., {cond (a b».
Any other keyword-less ifmust have at least three arguments. The first two argu
mentsare the first clause of the equivalent cond, and all remaining arguments are
shoved into a second clause beginning with t. Thus, the second form of if is
equivalent to

{cond (a b) (t c ... ».
The keyword variety has the following grouping of arguments: a predicate, a then
clause, and an optional else-clause. The predicate is evaluated, and if the result is
non-nil, the then-clause is performed, in the sense described later. Otherwise, that
is, the result of the predicate evaluation was precisely nil, the else-clause is per
formed.

Then-clauses are either consist entirely of the single keyword thenret, or start with
the keyword then, and followed by at least one general expression. (These general
expressions must not be one of the keywords.) To actuate a thenret means to cease
further evaluation of the ifand to return the value of the predicate just calculated.
The performance of the longer clause means to evaluate each general expression in
turn and then return the last value calculated.

The else-clause may begin with the keyword else and be followed by at least one
general expression. The rendition of this clause is just like that of a then-clause.
An else-clause may begin alternatively with the keyword elself and be followed
(recursively) by a predicate, then-clause, and optional else-clause. Evaluation of
this clause, is just evaluation of an jfform, with the same predicate, then- and
else-clauses.

(I-throw-err 'I_token)

4-12

WHERE: I_token is the cdr of the value returned from a ·catch with the tag ER %unwind-
protect.

RETURNS: Nothing (never returns in the current context).

SIDE EFFECT: The error or throw denoted by Uoken is continued.

NOTE: This function is used to implement unWind-protect which allows the processing of a
transfer of control though a certain context to be interrupted, a user function to be
executed, and then the transfer of control to continue. The form of I_token is
either
(t tag value) for a throw or
(nil type message valret contuab uniqueid [arg .. .1) for an error.
This function is not to be used for implementing throws or errors and is only docu
mented here for completeness.

4404P30 LISP PROGRAMMERS

SPECIAL FUNCTIONS

(Iet I_args g_expl ... g_exprn)

RETURNS: The result of evaluating g_exprn within the bindings given by l_args.

NOTE: I args is either nil (in which case let is just like progm or it is a list of binding
o-bjects. A binding object is a list (symbol expression). When a let is entered, all of
the expressions are evaluated and then simultaneously lambda-bound to the
corresponding symbols. In effect, a let expression is just like a lambda expression
except that the symbols and their initial values are next to each other, making the
expression easier to understand. There are some added features to the let expres
sion: A binding object can just be a symbol, in which case the expression
corresponding to that symbol is 'nil'. If a binding object is a list and the first ele
ment of that list is another list, then that list is assumed to be a binding template
and let does a desetq on it.

(Iet· l_args Lexpl ... g_expn)

RETURNS: The result of eva.luating g_exprn within the bindings given by l_args.

NOTE: This is identical to let except the expressions in the binding list l_args are evaluated
and bound sequentially instead of in parallel.

(Iexpr-funcall 'gJunction ['g_argl .. J 'I_argn)

NOTE: This is a cross between funcall and apply. The last argument must be a list (possi
bly empty). The elements of list arg are stacked and then the function is funcalled.

EXAMPLE: (Iexpr-funcall 'list 'a '(b c d» is the same as
(funcall 'list 'a 'b 'c 'd)

Oistify 'x_count>

RETURNS: A list of x count of the arguments to the current function (which must be a
lexpr). -

NOTE: Normally arguments 1 through x count are returned. If x count is negative then a
list of last abs(x_count) arguments are returned. -

(map 'uJunc 'l_argl .. J
RETURNS: 1_ arg 1

NOTE: The function uJunc is applied to successive sublists of the l_argi All sublists
should have the same length.

(mapc 'uJunc 'l_argl .. J
RETURNS: 1_ arg 1.

NOTE: The function uJunc is applied to successive elements of the argument lists. All of
the lists should have the same length.

4404P30 LISP PROGRAMMERS 4-13

SPECIAL FUNCTIONS

(mapcan 'uJunc 'l_argl ...)

RETURNS: oconc applied to the results of the functional evaluations.

NOTE: The function u Junc is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapear 'uJunc 'l_argl .. J
RETURNS: A list of the values returned from the functional application.

NOTE: The function uJunc is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapeon 'uJunc 'l_argl .. J
RETURNS: nconc applied to the results of the functional evaluation.

NOTE: The function u_func is applied to successive sublists of the argument lists. All sub
lists should have the same length.

(maplist 'uJunc 'l_argl .. J
RETURNS: A list of the results of the functional evaluations.

NOTE: The function u Junc is applied to successive sublists of the arguments lists. All
sublists should have the same length.

You may find the following summary table useful in remembering the differences
between the six mapping functions:

Value returned is

Argument to func- l_argl list of results nconc of results
tional is

elements of list mapc mapcar mapcan

sublists map maplist mapcon

(mfunction t_entry 's_disc)

RETURNS: A Lisp object of type binary composed of t_entry and s_disc.

NOTE: t entry is a pointer to the machine code for a function, and s disc is the discipline
(e.g., lambda). -

(oblist>
RETURNS: A list of all symbols on the oblist.

4-14 4404P30 LISP PROGRAMMERS

SPECIAL FUNCTIONS

(or [g_argl ... J)

RETURNS: The value of the first non-null argument or nil if all arguments evaluate to nil.

NOTE: Evaluation proceeds left to right and stops as soon as one of the arguments evalu
ates to a non-null value.

(prog l_vrbls g_expl .. ,)

RETURNS: The value explicitly given in a return form or else nil if no return is done by the
time the last g_ exp iis evaluated.

NOTE: The local variables are lambda-bound to nil, then the g exp i are evaluated from left
to right. This is a prog body (obviously) and this means that any symbols seen are
not evaluated, but are treated as labels. This also means that return's and go's are
allowed.

(progl 'g_expl ['g_exp2 ... D
RETURNS: g_expl

(prog2 'g_expl 'g_exp2 ['g_exp3 ... J)

RETURNS: g_exp2

NOTE: The forms are evaluated from left to right and the value of g_exp2 is returned.

(progn 'g_expl ['g_exp2 ... J)

RETURNS: The last g_expi

(progv '}Jocv 'Unitv g_expl .. J
WHERE: }Jocv is a list of symbols and Unitv is a list of expressions.

RETURNS: The value of the last g_expievaluated.

NOTE: The expressions in Unitv are evaluated from left to right and then lambda-bound
to the symbols in }Jocv. If there are too few expressions in Unitv, then the miss
ing values are assumed to be nil. If there are too many expressions in I initv, then
the extra ones are ignored (although they are evaluated). Then the -g expi are
evaluated left to right. The body of a progv is like the body of a progn, it is not a
prog body. (C.f. let)

(purcopy'Lexp)

RETURNS: A copy of g_exp with new pure cells allocated wherever possible.

NOTE: Pure space is never swept up by the garbage collector, so this should only be done
on expressions that are not likely to become garbage in the future. In certain
cases, data objects in pure space become read-only after a dumplisp, and then an
attempt to modify the object results in an illegal memory reference.

4404P30 LISP PROGRAMMERS 4-15

SPECIAL FUNCTIONS

(purep 'g_exp)

RETURNS: t iff the object g_exp is in pure space.

(putd 's_name 'uJunc)

RETURNS: uJunc

SIDE EFFECT: This sets the function binding of symbol s_name to uJunc.

<return ['g_ vam

RETURNS: g_val (or nil if g_val is not present) from the enclosing prog or do body.

NOTE: This form is only valid in the context of a prog or do body.

(selectq 'g_key-form [I_clausel ... J)

NOTE: This function is just like caseq (see earlier), except that the symbol otherwise has
the same semantics as the symbol t, when used as a comparator.

(setarg 'x_argnum 'g_vat)

WHERE: x_argnum is greater than zero and less than or equal to the number of argu-
ments to the lexpr.

RETURNS: g_ val

SIDE EFFECT: The lexpr's x_argnum'th argument is set to g-val.

NOTE: This can only be used within the body of a lexpr.

(throw 'g_val [s_tagJ)

WHERE: If s_tag is not given, it is assumed to be nil.

RETURNS: The value of (*throw 's_tag 'g_valJ.

(*throw 's_tag 'g_vat)

RETURNS: g val from the first enclosing catch with the tag s tag or with no tag at all.
Thus the value is accompanied by a change in controC

NOTE: This is used in conjunction with *catch to cause a clean jump to an enclosing con
text.

(unwind-protect gyrotected [g_cleanupl ... J)

RETURNS: The result of evaluating gyrotected.

4-16

NOTE: Normally gyrotected is evaluated and its value remembered, then the g_cleanupi
are evaluated, and, finally, the saved value of gyrotected is returned. If some
thing should happen when evaluating gyrotected which causes control to pass
through gyrotected, and, thus, through the call to the unwind-protect, then the
g_ cleanup iis still evaluated. This is useful if gyrotected does something sensitive
which must be cleaned up whether or not gyrotected completes itself. Programs
which 'temporarily' mess up a structure and then straighten the structure can use
this scheme to protect the straightening-up process from being cut off by a key
board interrupt.

4404P30 LISP PROGRAMMERS

CHAPTER 5

Input/Output

The following functions are used to read from and write to external devices (e.g. files)
and programs through pipes. All 110 goes through the Lisp data type called the port. A port
may be open for either reading or writing but usually not both simultaneously (see fileopen).
There are only a limited number of ports (20) and they are not reclaimed unless they are
c1osro. All ports are reclaimed by a resetio call, but this drastic action is not necessary if the
program closes ports that it uses.

If a port argument is not supplied to a function that requires one, or if a bad port argu
ment (such as nil) is given, then FRANZ LISP uses the default port according to this scheme: if
input is being done, then the default port is the value of the symbol piport and, if output is
being done, then the default port is the value of the symbol poport. Furthermore, if the value
of piport or po port is not a valid port, then the standard input or standard output is used,
respectively.

The standard input and standard output are usually the keyboard and terminal display
unless your job is running in the background and its input or output is connected to a pipe. All
output that goes to the standard output also goes to the port ptport, if it is a valid port. Output
destined for the standard output does not reach the standard output if the symbol AW is non-nil,
although it still goes to ptport if ptport is a valid port.

(cfasl 'st_file 'st_entry 'stjuncname [,st_disc PstJibrary]])

RETURNS:T

SIDE EFFECT: This is used to load in a foreign function (see §8.4). The object file st file
is loaded into the Lisp system. St_entry should be an entry point in the-file
just loaded. The function binding of the symbol s funcname is set to point
to st_entry so that, when the Lisp function sjuncname is called, st_entry is
run. st_disc is the discipline to be given to sjuncname. st_disc defaults to
"subroutine" if it is not given or if it is given as nil. If st library is non
null, then after st_file is loaded, the libraries given in- stJibrary are
searched to resolve external references. The form of st library should be
something like "+ llibname". The C library (" + lclib ") is always searched
so that when loading in a C file, you probably will not need to specify a
library.

NOTE: This function may be used to load the output of the assembler, C compiler, Fortran
compiler, and Pascal compiler but NOT the Lisp compiler. Use fasl for that. If a
file has more than one entry point, then use getaddress to locate and setup other
foreign functions.
It is an error to load in a file that has a global entry point of the same name as a
global entry point in the running Lisp. As soon as you load in a file with cfas~ its
global entry points become part of the Lisp's entry points. Thus, you cannot cfasl
in the same file twice unless you use removeaddress to change certain global entry
points to local entry points.

4404P30 LISP PROGRAMMERS 5-1

1/0 FUNCTIONS

(close 'p yort)

RETURNS:T

SIDE EFFECT: The specified port is drained and closed, releasing the port.

NOTE: The standard defaults are not used in this case since you probably never want to
close the standard output or standard input.

(cprlntf 'stJormat 'xfst_val ['pyortD

RETURNS: xfst_ val

SIDE EFFECT: The operating system formatted output function printf is called with argu
ments stJormat and xfst_val. If xfst_val is a symbol, then its print name is
passed to printf. The format string may contain characters that are printed
literally, and it may contain special formatting commands preceded by a
percent sign. The complete set of formatting characters is described in the
operating system manual. Some useful ones are %d for printing a fixnum
in decimal, %f or %e for printing a flonum, and %s for printing a character
string (or print name of a symbol).

EXAMPLE: (cprin(f'Pi equals %/ 3.14159) prints 'Pi equals 3.14159'

(drain ['p yort1)

RETURNS: nil

SIDE EFFECT: If this is an output port, then the characters in the output buffer are all sent
to the device. If this is an input port, then all pending characters are
flushed. The default port for this function is the default output port.

(fasl 'st_name ['st_mapf ['g_warn]])

5-2

WHERE: st_mapf and g_warn default to nil.

RETURNS: T if the function succeeded, nil otherwise.

SIDE EFFECT: This function is designed to load in an object file generated by the Lisp
compiler Liszt. File names for object files usually end in '.0', so fasl
append '.0' to st name, if it is not already present. If st mapf is non-nil,
then it is the name of the map file to create. Faslwrites in the map file the
names and addresses of the functions it loads and defines. Normally, the
map file is created (i.e. truncated if it exists), but if (sstatus appendmap t) is
done, then the map file is appended. If g warn is non-nil and if a function
is loaded from the file that is already defined, then a warning message is
printed.

NOTE: faslonly looks in the current directory for the file to load. The function load looks
through a user-supplied search path and calls faslif it finds a file with the same root
name and a '.0' extension. In most cases, you should use the function load rather
than calling fasl directly.

4404P30 LISP PROGRAMMERS

1/0 FUNCTIONS

(ftlepos 'pyort ['xyos])

RETURNS: The current position in the file if xyos is not given or else xyos if xyos is
given.

SIDE EFFECT: If xyos is given, the next byte to be read or written to the port is at posi
tion xyos.

(ftlestat ' st _filename)
RETURNS: A vector containing various numbers that the operating system assigns to files.

If the file does not exist, an error is invoked. Use probe/to determine if the file
exists.

NOTE: The individual entries can be accessed by mnemonic functions of the form
filestat:fie/~ where field may be any of: dev, ino, mode, mtime, nlink, size, type, or
uid. See the operating system programmers manual for a more detailed description
of these quantities.

(ftate 'gJorm ['x_max])
RETURNS: The number of characters required to print gJorm using patom If x_max is

given and, if flatc determines that it returns a value greater than x_max, then it
gives up and returns the current value it has computed. This is useful if you
just want to see if an expression is larger than a certain size.

(ftatstze 'gJorm ['x_max])
RETURNS: The number of characters required to print g form using print The meaning of

x max is the same as for flatc. -
NOTE: Currently this just explodes gJorm and checks its length.

(fseek 'pyort 'x_offset 'x_flag)

RETURNS: The position in the file after the function is performed.
SIDE EFFECT: this function positions the read/write pointer before a certain byte in the

file. If x flag is 0 then the pointer is set to x offset bytes from the begin
ning of the file. If x flag is 1 then the pointer is set to x offset bytes from
the current location in the file. If x flag is 2 then the-pointer is set to
x_offset bytes from the end of the file.-

<toftle 's_ filename)
RETURNS: A port ready to read s_filename.
SIDE EFFECT: This tries to open s_filename, and, if it cannot or if there are no ports avail

able, it gives an error message.
NOTE: To allow your program to continue on a file-not-found error, you can use some

thing like:
(cond ((null (setq myport (car (errset (;11/ile name) nilJ)))

(patom "couldn't open the file')))
which sets my port to the port to read from if the file exists or prints a message if it
could not open it and also sets myport to nil. To simply determine if a file exists,
use probe]

4404P30 LISP PROGRAMMERS 5-3

I/O FUNCTIONS

Ooad 'sJilename Pst_map ['g_warn]])

RETURNS:T

NOTE: The function of load has changed since previous releases of FRANZ LISP and the
following description should be read carefully.

SIDE EFFECT: load now serves the function of both lasl and the old load Load searches a
user-defined search path for a Lisp source or object file with the filename
s filename (with the extension .1 or .0 added as appropriate). The search
path that load uses is the value of (status load-search-path). The default is
<ll/lisp/lib), which means: look in the current directory first and then
llib/lisp. The file that load looks for depends on the last two characters of
s filename. If s filename ends with ".1", then load only looks for a file
name s filename-and assumes that this is a FRANZ LISP source file. If
s filename ends with ".0 ", then load only looks for a file named s filename
and assumes that this is a FRANZ LISP object file to be lased in. Otherwise,
load first looks for s filename. 0, then s filename.l, and. finally, s filename
itself. If it finds s filename.o, it assumes that this is an object fife; other
wise, it assumes that it is a source file. An object file is loaded using lasl
and a source file is loaded by reading and evaluating each form in the file.
The optional arguments st_map and g_warn are passed to laslshould laslbe
called.

NOTE: load requires a port to open the file s_filename. It then lambda binds the symbol
piport to this port and reads and evaluates the forms.

(makereadtable ['S JlagJ)

WHERE: If sJIag is not present it is assumed to be nil.

RETURNS: A readtable equal to the original readtable if sJlag is non-null, or else equal to
the current readtable. See Chapter 7 for a description of readtables and their
uses.

(msg [I_option .. .1 ['g_msg ... J)

5-4

NOTE: This function is intended for printing short messages. Any of the arguments or
options presented can be used any number of times in any order. The messages
themselves (g msg) are evaluated, and then they are transmitted to patom Typi
cally, they are-strings, which evaluate to themselves. The options are interpreted
specially:

4404P30 LISP PROGRAMMERS

msg Option Summary

(P p JlOrtname)

D

(nwritn ['p yort])

Causes subsequent output to go to the port p yortname;
port should be opened previously.

Print a single blank.

Evaluate n_b and print that many blanks.

Print a single newline by calling rerpr.

Evaluate n_n and transmit
that many newlines to the stream.

drain the current port.

1/0 FUNCTIONS

RETURNS: The number of characters in the buffer of the given port but not yet written out
to the file or device. The buffer is flushed automatically when filled or when
terpr is called.

(outflle 's_ filename ['st_typeD

RETURNS: A port or nil

SIDE EFFECT: This opens a port to write s filename. If st type is given and if it is a sym
bol or string whose name begins with 'a', then the file is opened in append
mode; that is, the current contents are not lost, and the next data is written
at the end of the file. Otherwise, the file opened is truncated by out/ile if it
existed beforehand. If there are no free ports, outfile returns nil. If one
cannot write on s_filename, an error is signalled.

(patom 'g_exp ['pyortD

RETURNS: g_exp

SIDE EFFECT: g exp is printed to the given port or the default port. If g exp is a symbol
or string, the print name is printed without any escape characters around
special characters in the print name. If g_exp is a list, then patom has the
same effect as print

(pntlen 'xfs_arg)

RETURNS: The number of characters needed to print xfs_arg.

4404P30 LISP PROGRAMMERS 5-5

110 FUNCTIONS

(portp 'g_arg)

RETURNS: T iff g_ arg is a port.

(pp [I_option] s_namel .. J
RETURNS:T

SIDE EFFECT: If s_nameihas a function binding, it is pretty-printed; otherwise, if s_namei
has a value, then that is pretty-printed. Normally, the output of the
pretty-printer goes to the standard output port po port. The options allow
you to redirect it.

PP Option Summary

(F sJilename)

(P pyortname)

(E g_ expression)

Direct future printing to sJilename.

Causes output to go to the port pyortname;
port should be opened previously.

Evaluate g_expression and do not print.

(prine 'g~arg ['p yort)

EQUIVALENT TO: patom.

(print 'g_arg ['pyortD

RETURNS: Nil

SIDE EFFECT: Prints g_arg on the port p yort or the default port.

(probef ' st Jile)
RETURNS: T iff the file st file exists.

NOTE: Just because it exists doesn't mean you can read it.

(pp-form 'gJorm ['pyort])

RETURNS:T

SIDE EFFECT: gJorm is pretty-printed to the port pyort (or po port if pyort is not
given). This is the function that pp uses. pp-form does not look for func
tion definitions or values of variables, it just prints out the form it is given.

NOTE: This is useful as a top-level-printer. See top-levelin Chapter 6.

5-6 4404P30 LISP PROGRAMMERS

110 FUNCTIONS

(ratom ['pyort ['g_eof]])

RETURNS: The next atom read from the given or default port. On end of file, g_eof
(default nit) is returned.

(read ['pyort ['g_eof]])

RETURNS: The next Lisp expression read from the given or default port. On end of file,
g_eof (default nil) is returned.

NOTE: An error occurs if the reader is given an ill formed expression. The most common
error is too many right parentheses. (Note that this is not considered an error in
Maclisp).

beadc ['pyort ['g_eof]])

RETURNS: The next character read from the given or default port. On end of file, g_eof
(default nil) is returned.

(readlist 'l_arg)

RETURNS: The Lisp expression read from the list of characters in l_arg.

(removeaddress 's_namel ['s_name2 ... n
RETURNS: Nil

SIDE EFFECT: The entries for the s name i in the Lisp symbol table are removed. This is
useful if you wish to-c/asl in a file twice, since it is illegal for a symbol in
the file you are loading to already exist in the Lisp symbol table.

(resetio)

RETURNS: Nil

SIDE EFFECT: All ports except the standard input, output, and error are closed.

(setsyntax 's_symbol 's_synclass ['lsJunc1)

RETURNS:T

SIDE EFFECT: This sets the code for s_symbol to sx_code in the current readtable. If
s_synclass is macro or splicing, then IsJunc is the associated function. See
Chapter 7 on the reader for more details.

(sload 'sJile)

SIDE EFFECT: The file s_file (in the current directory) is opened for reading, and each
form is read, printed, and evaluated. If the form is recognizable as a func
tion definition, only its name is printed; otherwise, the whole form is
printed.

NOTE: This function is useful when a file refuses to load because of a syntax error and you
would like to determine where the error is.

4404P30 LISP PROGRAMMERS 5-7

I/O FUNCTIONS

<tab 'x_col ['pyort))

SIDE EFFECT: Enough spaces are printed to put the cursor on column x col. If the cursor
is beyond x_col to start with, a terpris done first. -

(terpr ['p yard)

RETURNS: Nil

SIDE EFFECT: A terminate line character sequence is sent to the given port or the default
port. This also drains the port.

<terpri ['p yard)

EQUIVALENT TO: terpr.

(tyf ['p yort1)

RETURNS: The fixnum representation of the next character read. On end of file, -1 is
returned.

<tyfpeek ['p yort))

RETURNS: The fixnum representation of the next character to be read.

NOTE: This does not cause an official 'read' of the character, it just peeks at it and returns
the value which would be returned if it were read. (It 'peeks'.)

(tyo 'x_char ['pyort])

RETURNS: x_char.

SIDE EFFECT: The character whose fixnum representation is x_code is printed as a charac
ter on the given output port or the default output port.

(untyl 'x3har ['p yort])

SIDE EFFECT: x char is put back in the input buffer so a subsequent tyi or read reads it
fust.

NOTE: A maximum of one character may be put back.

(zapline)

RETURNS: nil

5-8

SIDE EFFECT: All characters up to and including the line termination character are read
and discarded from the last port used for input.

NOTE: This is used as the macro function for the semicolon character when it acts as a
comment character.

4404P30 LISP PROGRAMMERS

CHAPTER 6

System Functions

This chapter describes the functions used to interact with internal components of the Lisp
system and operating system.

(allocate 's_type 'xyages)

WHERE: s type is one of the FRANZ LISP data types described in §1.3.

RETURNS: xyages.

SIDE EFFECT: FRANZ LISP attempts to allocate xyag~s of type s_type. If there aren't
xyages of memory left, no space is allocated and an error occurs. The
storage that is allocated is not given to the caller, instead it is added to the
free storage list of s _type. The functions segment and small-segment allocate
blocks of storage and return it to the caller.

(argv 'x_argnumb)

RETURNS: A symbol whose pname is the x argnumbth argument (starting at 0) on the
command line that invoked the current Lisp.

NOTE: If x argnumb is less than zero, a fixnum whose value is the number of arguments
on the command line is returned. (argv 0) returns the name of the Lisp you are
running.

(baktrace)

RETURNS: nil

SIDE EFFECT: The Lisp runtime stack is examined and the name of (most) of the func
tions currently in execution are printed, most active first.

NOTE: This occasionally misses the names of compiled Lisp functions due to incomplete
information on the stack. If you are tracing compiled code, then baktrace is not
able to interpret the stack unless (sstatus translink nil) was done. See the function
showstack for another way of printing the Lisp runtime stack. This misspelling is
from Maclisp.

(chdir 'syath)

RETURNS: t iff the system call succeeds.

SIDE EFFECT: The current directory is set to syath. Among other things, this affects the
default location where the input/output functions look for and create files.

NOTE: chdir follows the standard operating system conventions. If syath does not begin
with a slash, the default path is changed to the current path with syath appended.

4404P30 LISP PROGRAMMERS 6-1

SYSTEM FUNCTIONS

(command-line-args)

RETURNS: A list of the arguments typed on the command line either to the Lisp inter
preter, or saved Lisp dump, or application compiled with the autorun option
(liszt +r).

(deref 'x_addr)

RETURNS: The contents of x_addr, when thought of as a longword memory location.

NOTE: This may be useful in constructing arguments to C functions out of 'dangerous'
areas of memory.

(dumplisp s _name)

RETURNS: nil

SIDE EFFECT: The current Lisp is dumped to the named file. When s .. name is executed,
you are in a Lisp in the same state as when the dump lisp was done.

NOTE: dumplisp fails if you try to write over the current running file. The operating sys
tem does not allow you to modify the file you are running.

{eval-when Uime g_exp1 .. J
SIDE EFFECT: Uime may contain any combination of the symbols load, eva~ and compile

The effects of load and compile are discussed in § 12. 3.2.1 on the compiler.
If eval is present, however, this simply means that the expressions g_exp1,
and so on, are evaluated from left to right. If eva! is not present, the forms
are not evaluated.

(exit ['x_code])

RETURNS: Nothing (it never returns a lisp value).

SIDE EFFECT: The Lisp system dies with exit code x_code or 0 if x_code is not specified.

(fake 'x_addr)

RETURNS: The Lisp object at address x_addr.

NOTE: This is intended to be used by people debugging the Lisp system.

(fork)

RETURNS: nil to the child process and the process number of the child to the parent.

SIDE EFFECT: A copy of the current Lisp system is made in memory, and both Lisp sys
tems now begin to run. This function can be used interactively to tem
porarily save the state of Lisp (as shown later), but you must be careful
that only one of the Lisp's interacts with the terminal after the fork. The
wait function is useful for this.

6-2 4404P30 LISP PROGRAMMERS

(gc)

- > (setq /00 'bar)
bar
- > (cond ((jork)(wait)))
nil
-> /00

bar
- > (setq /00 'OOz)
baz
-> /00

baz
-> (exit)
(5274. 0)
-> /00

bar

RETURNS: nil

;; Set a variable.

;; Duplicate the Lisp system and
;; make the parent wait.
;; Check the value of the variable.

;; Give it a new value.

;; Make sure it worked.

;; Exit the child.
;; The wait function returns this.
;; Check to make sure parent was
;; not modified.

SIDE EFFECT: This causes a garbage collection.

SYSTEM FUNCTIONS

NOTE: The function gcafter is not called automatically after this function finishes. Nor
mally, the user does not have to call gc since garbage collection occurs automati
cally whenever internal free lists are exhausted.

(gcafter s_type)

WHERE: s_type is one of the FRANZ LISP data types listed in §1.3.

NOTE: This function is called by the garbage collector after a garbage collection that was
caused by running out of data type s_type. This function should determine if more
space need be allocated, and, if so, should allocate it. There is a default gcafter
function, but if you want control over space allocation, you can define your own.
However, be sure that it is an nlambda.

(hashtabstat>

RETURNS: A list of fixnums representing the number of symbols in each 'bucket' of the
oblist.

NOTE: The oblist is organized as a hash table of linked lists (the buckets). An ideal distri
bution of identifiers would place about the same number of symbols in each
bucket. A very poor distribution would make reading slow.

(include s _filename)

RETURNS: nil

SIDE EFFECT: The given filename is loaced into the Lisp system.

NOTE: This is similar to load except that the argument is not evaluated. Include means
something special to the compiler.

4404P30 LISP PROGRAMMERS 6-3

SYSTEM FUNCTIONS

Onclude-if ' gyredicate s _filename)

RETURNS: nil

SIDE EFFECT: This has the same effect as include but is only actuated if the predicate is
non-nil.

Oncludef's_filename)
RETURNS: nil

SIDE EFFECT: This is the same as include except that the argument is evaluated.

Oncludef-if 'gyredicate s_filename)

RETURNS: nil

SIDE EFFECT: This has the same effect as includef but is only actuated if the predicate is
non-nil.

(maknum 'g_arg)

RETURNS: The address of its argument converted into a fixnum.

(opval's_arg ['g_newvalJ)

RETURNS: The value associated with s_arg before the call.

SIDE EFFECT: If g_newval is specified, the value associated with s_arg is changed to
g_newval.

NOTE: opvalkeeps track of storage allocation. If s_arg is one of the data types, then opval
returns a list of three fixnurns representing the number of items of that type in
use, the number of pages allocated, and the number of items of that type per page.
You should never try to change the value that opval associates with a data type
using opval
If s_arg is pagelimit, then opval returns (and sets if g_newval is given) the max
imum amount of Lisp data pages it allocates. 'This limit should remain small unless
you know your program requires lots of space because this limit catches programs
in infinite loops, which gobble up memory.

(·process 'st_command['gJeadp ['g_writep]])

6-4

RETURNS: Either a fixnum if one argument is given, or a list of two ports and a fixnum if
two or three arguments are given.

NOTE: ·processstarts another process by passing st_command to the shell. (fbin/shell). If
only one argument is given to ·process, ·process waits for the new process to die
and then returns the exit code of the new process. If more than two or three argu
ments are given, ·process starts the process and then returns a list which, depending
on the value of gJeadp and g_writep, may contain i/o ports for communcating with
the new process. If g_writep is non-null, then a port is created that the Lisp pro
gram can use to send characters to the new process. If g readp is non-null, then a
port is created that the Lisp program can u,e to read characters from the new pro
cess. The value returned by ·process is (readport writeport pid) , where readport
and writeport are either nil or a port based on the value of gJeadp and g_writep.
Pid is the process id of the new process. Since it is hard to remember the order of
gJeadp and g_ writep, the functions ·process-send and ·process-receive are written to
perform the common functions.

4404P30 LISP PROGRAMMERS

(*process-receive'st_command)
RETURNS: A port that can be read.

SYSTEM FUNCTIONS

SIDE EFFECT: The command st command is given to the shell, and it is started running in
the background. -The output of that command is available for reading via
the port returned. The input of the command process is set to /dev/null.

(*process-send'st_command)
RETURNS: A port that can be written to.
SIDE EFFECT: The command st command is given to the shell, and it is started runing in

the background. -The Lisp program can provide input for that command by
sending characters to the port returned by this function. The output of the
command process is set to /dev/null.

(process sygrm [sJrompipe s_topipe])
RETURNS: If the optional arguments are not present, a fixnum that is the exit code when

syrgm dies. If the optional arguments are present, it returns a fixnum that is
the process id of the child.

NOTE: This command is obsolete. New programs should use one of the ·process com
mands given earlier.

SIDE EFFECT: If s frompipe and s topipe are given, they are bound to ports that are pipes
that direct characters from FRANZ LISP to the new process and to FRANZ
LISP from the new process respectively. Process forks a process named
syrgm and waits for it to die if and only if there are no pipe arguments
given.

(ptime)

RETURNS: A list of two elements. The first is the amount of processor time used by the
Lisp system so far, and the second is the amount of time used by the garbage
collector so far.

NOTE: The time is measured in those units used by the times(2) system call, usually 60 tis
of a second. The first number includes the second number. The amount of time
used by garbage collection is not recorded until the first call to ptime. This is done
to prevent overhead when the user is not interested in garbage collection times.

(reset>
SIDE EFFECT: The Lisp runtime stack is cleared and the system restarts at the top level.

4404P30 LISP PROGRAMMERS 6-5

SYSTEM FUNCTIONS

(*rset 'gJlag)

RETURNS: gJ1ag

SIDE EFFECT: If gJlag is non-nil, then the Lisp system maintains extra information about
calls to eval and juncall This record keeping slows down the evaluation,
but this is required for the functions evalhook, juncal/hook, and eva/frame
to work. To debug compiled Lisp code, the transfer tables should be
unlinked: (sstatus translink nilJ

(segment 's_type 'x_size)

WHERE: s type is one of the data types given in §1.3.

RETURNS: A segment of contiguous lispvals of type s_type.

NOTE: In reality, segment returns a new data cell of type s type and allocates space for
x size - 1 more s type's beyond the one returned. -Segment always allocates new
space and does so in 512 byte chunks. If you ask for 2 fixnums, segment actually
allocates 128 of them, thus, wasting 126 fixnums. The function small-segment is a
smarter space allocator and should be used whenever possible.

(shell)

RETURNS: The exit code of the shell when it dies.

SIDE EFFECT: This forks a new shell and returns when the shell dies.

(showstack)

RETURNS: nil

SIDE EFFECT: All forms currently in evaluation are printed, beginning with the most
recent. For compiled code, showstack reveals only the function name, and
it may miss some functions which you might expect from interpreted code.

(signal 'x_signum 's_name)

RETURNS: nil if no previous call to signal has been made, if a previous call has occurred, it
will return the previously installed s_name ..

SIDE EFFECT: This identifies the function named s name to handle the signal number
x_signum. If s_name is nil, the signal is ignored. Presently, only four
operating system signals are caught. They and their numbers are: Inter
rupt(2), Floating exception(8), Alarm(14), and Hang-up(1).

(sizeof 'g_ arg)

RETURNS: The number of bytes required to store one object of type g arg, encoded as a
fixnum. -

(small-segment 's_type 'x_cells)

6-6

WHERE: s_type is one of fixnum, flonum, and value.

RETURNS: A segment of x_cells data objects of type s_type.

SIDE EFFECT: This may call segment to allocate new space, or it may be able to fill the
request on a page already allocated. The value returned by small-segment is
usually stored in the data subpart of an array object.

4404P30 LISP PROGRAMMERS

(sstatus g_type g_ va])

RETURNS: g_ val

SYSTEM FUNCTIONS

SIDE EFFECT: If g type is not one of the special sstatus codes described in the next few
pages, this simply sets g_ val as the value of status type g_type in the system
status property list.

(sstatus appendmap g_ val)

RETURNS: g_ val

SIDE EFFECT: If g val is non-null, when fasl is told to create a load map, it appends to the
file name given in the fasl command rather than creating a new map file.
The initial value is nil.

(sstatus automatic-reset g_ va])

RETURNS: g_ val

SIDE EFFECT: If g val is non-null when an error occurs that no one wants to handle, a
reset is done instead of entering a primitive internal break loop. The initial
value is t.

(sstatus chainatom g_ val)

RETURNS: g_ val

SIDE EFFECT: If g val is non-nil and a car or cdr of a symbol is done, then nil is returned
instead of an error being signaled. This only affects the interpreter not the
compiler. The initial value is nil.

(sstatus dumpcore g_ van

RETURNS: g_ val

SIDE EFFECT: If g val is nil, FRANZ LISP tells the operating system that a segmentation
violation or bus error should cause a core dump. If g val is non-nil then
FRANZ LISP catches those errors and prints a message advising the user to
reset.

NOTE: The initial value for this flag is nil, and only those knowledgeable of the inner
characteristics of the Lisp system should ever set this flag non-nil.

(sstatus evalhook g_ val)

RETURNS: g_ val

SIDE EFFECT: When g val is non-nil, this enables the evalhook and funcallhook traps in
the evaluator. See §14.4 for more details.

(sstatus feature g_ va])

RETURNS: g_ val

SIDE EFFECT: g val is added to the (status features) list.

4404P30 LISP PROGRAMMERS 6-7

SYSTEM FUNCTIONS

(sstatus ignoreeof g_ vat>

RETURNS: g_ val

SIDE EFFECT: If g val is non-null when an end of file (CNTL-D on the operating system)
is typed to the standard top-level interpreter, it is ignored rather than cause
the Lisp system to exit. If the the standard input is a file or pipe, then this
has no effect. An EOP always causes Lisp to exit. The initial value is nil.

(sstatus nofeature ,g_ vat>

RETURNS: g_ val

SIDE EFFECT: g_ val is removed from the status features list if it is present.

(sstatus translink g_ vat>

RETURNS: g_ val

SIDE EFFECT: If g_ val is nil, then all transfer tables are cleared and further calls through
the transfer table do not cause the fast links to be set up. If g val is the
symbol on, then all possible transfer table entries are linked and the flag is
set to cause fast links to be set up dynamically. Otherwise, all that is done
is to set the flag to cause fast links to be set up dynamically. The initial
value is nil.

NOTE: Por a discussion of transfer tables, see §12.8.

(sstatus udolc g_ vat>

RETURNS: g_ val

SIDE EFFECT: If g_ val is not nil, then all unescaped capital letters in symbols read by the
readeris converted to lower case.

NOTE: This allows FRANZ LISP to be compatible with single case Lisp systems (e.g.
Maclisp, Interlisp and UCILisp).

(status L code)

RETURNS: The value associated with the status code g_code if g_code is not one of the spe
cial cases given later

(status dime)
RETURNS: A symbol whose print name is the current time and date.

EXAMPLE: (status ctime) = !Sun Jun 29 16:51:26 19801
NOTE: This has been made obsolete by time-string, described later.

(status feature g_ val)

RETURNS: T iff g_ val is in the status features list.

6-8 4404P30 LISP PROGRAMMERS

SYSTEM FUNCTIONS

(status features)

RETURNS: The value of the features code, which is a list of features that are present in this
system. You add to this list with (sstatus feature 'g_ valJ and test if feature g.leat
is present with (status feature 'gJeat).

(status isatty)

RETURNS: T iff the standard input is a terminal.

(status localtime)

RETURNS: A list of fixnums representing the current time.

EXAMPLE: (status localtime) = (3 51 13 31 681 5 211 1)
means 3rd second, 51st minute, 13th hour (l p.m), 31st day, month 6
(0 = January), year 81 (0 = 1900), day of the week 5 (0 = Sunday), 211 th
day of the year with daylight savings time in effect.

(status syntax s_char)

NOTE: This function should not be used. See the description of get syntax, in Chapter 7,
for a replacement.

(status undeffunC>
RETURNS: A list of all functions that transfer table entries point to but that are not defined

at this point.

NOTE: Some of the undefined functions listed could be arrays which are not yet created.

(status version)

RETURNS: A string that is the current Lisp version name.

EXAMPLE: (status version) = "Franz Lisp, Opus 41.10"

(sys:access 'st filename 'x mode)
(sys:chmod 'sCfilename 'x-=.mode)
(sys:getpid)
(sys:link 'st_oldfilename 'st_newfilename)
(sys:time)
(sys:unlink 'st_filename)

NOTE: The actual system call numbers may vary among different operating systems. If
you are concerned about portability, you may wish to use this group of functions.
Another advantage is that tilde-expansion is performed on all filename arguments.
These functions do what is described in the system call section of your operating
system manual.

sys:getpwnam returns a vector of four entries from the password file. These entries
are: the user name, user id, group id, and home directory.

4404P30 LISP PROGRAMMERS 6-9

SYSTEM FUNCTIONS

(time-string ['x seconds])

RETURNS: An ASCII string giving the time and date that was x_seconds after operating
system's idea of creation (Midnight, Jan 1, 1970 GMT). If no argument is
given, time-string returns the current date. This supplants (status ctime), and
may be used to make the results of filestat more intelligible.

(top-level)
RETURNS: Nothing (it never returns)

NOTE: This function is the top-level read-eval-print loop. It never returns any value. Its
main use is that if you redefine it and do a (reset), then the redefined (top-level) is
then invoked. The default top-level for FRANZ LISP allows you to specify your own
printer or reader by binding the symbols top-level-printer and top-level-reader.
You can let the default top-level do most of the drudgery in catching resefs, and
reading in .1isprc files by binding the symbol user-top-Ievel to a routine that con
cerns itself only with the read-eval-print loop.

(wait)

RETURNS: A dotted pair (processid. status) when the next child process dies.

6-10 4404P30 LISP PROGRAMMERS

CHAPTER 7

The Lisp Reader

7.1. Introduction

The read function is responsible for converting a stream of characters into a Lisp
expression. Read is table driven and the table it uses is called a readtable. The print
function does the inverse of read, it converts a Lisp expression into a stream of charac
ters. Typically, the conversion is done in such a way that if a stream of characters is read
by read, the result is an expression equal to the one print is given. Print must also refer
to the readtable in order to determine how to format its output. The explode function,
which returns a list of characters rather than printing them, must also refer to the readt
able.

A readtable is created with the makereadtable function, modified with the setsyntax
function and interrogated with the getsyntax function. The structure of a readtable is
hidden from the user -- a readtable should only be manipulated with the three functions
mentioned earlier.

There is one distinguished readtable called the current readtable whose value deter
mines what read, prin~ and explode do. The current readtable is the value of the symbol
readtable Thus, it is possible to rapidly change the current syntax by lambda-binding a
different readtable to the symbol readtable. When the binding is undone, the syntax
reverts to its old form.

7.2. Syntax Classes

The readtable describes how each of the 128 ASCII characters should be treated by
the reader and printer. Each character belongs to a syntax class, which has three proper
ties:

character class -
Tells what the reader should do when it sees this character. There are a large
number of character classes. They are described later.

separator -
Most types of tokens the reader constructs are one character long. Four token
types have an arbitrary length: number (1234), symbol print name (franz), escaped
symbol print name <lrranzD, and string ("franz"). The reader can easily determine
when it has come to the end of one of the last two types: it just looks for the
matching delimiter (lor "). When the reader is reading a number or symbol print
name, it stops reading when it comes to a character with the separator property.
The separator character is pushed back into the input stream and is the first charac
terread when the reader is called again.

escape -
Tells the printer when to put escapes in front of, or around, a symbol whose print
name contains this character. There are three possibilities: (1) always escape a
symbol with this character in it, (2) only escape a symbol if this is the only

4404P30 LISP PROGRAMMERS 7-1

THE READER

character in the symbol, and (3) only escape a symbol if this is the first character in
the symbol. (Note that the printer always escapes a symbol which, if printed out,
looks like a valid number.)

When the Lisp system is built, Lisp code is added to a C-coded kernel and the
result becomes the standard Lisp system. The readtable present in the C-coded kernel,
called the raw readtable, contains the bare necessities for reading in Lisp code. During
the construction of the complete Lisp system, a copy is made of the raw readtable and
then the copy is modified by adding macro characters. The result is what is called the
standard readtable When a new read table is created with makereadtab1e, a copy is made
of either the raw readtable or the current readtable, which is likely to be the standard
readtable.

7.3. Reader Operations

The reader has a very simple algorithm. It is either scanning for a token, collecting
a token, or processing a token. Scanning involves reading characters and throwing away
those that do not start tokens, such as blanks and tabs. Collecting means gathering the
characters that make up a token into a buffer. Processing may involve creating symbols,
strings, lists, fixnums, bignums, or flonums; or calling a user written function called a
character macro.

The components of the syntax class determine when the reader switches between
the scanning, collecting, and processing states. The reader continues scanning as long as
the character class of the characters it reads is cseparator. When it reads a character
whose character class is not cseparator, it stores that character in its buffer and begins the
collecting phase.

If the character class of that first character is ccharacter, cnumber, cperiotf, or csign,
then it continues collecting until it runs into a character whose syntax class has the
separator property. (That last character is pushed back into the input buffer and is the
first character read next time.) Now, the reader goes into the processing phase, checking
to see if the token it reads is a number or symbol. It is important to note that after the
first character is collected the component of the syntax class that tells the reader to stop
collecting is the separator property, not the character class.

If the character class of the character that stopped the scanning is not ccharacter,
cnumber, cperiod, or csign, then the reader processes that character immediately. The
character classes csingle-macro, cs;ngle-splicing-macro, and cs;ngle-;l'Ifix-macro acts like
ccharacter if the following token is not a separator. The processing that is done for a
given character class is described in detail in the next section.

7.4. Character Classes

ccharacter raw readtable:A-Z a-z AH !#$%&*,/:;< =>?@A '0-
standard readtable:A-Z a-z AH !$%&*':; < = > ?@AJt

A normal character.

cnumber raw readtable:O-9

7-2

standard readtable:O-9
This type is a digit. The syntax for an integer (fixnum or bignum) is a string of cnumber
characters optionally followed by a cperiod. If the digits are not followed by a cper;od,

4404P30 LISP PROGRAMMERS

THE READER

then they are interpreted in base ibase, which must be eight or ten. The syntax for a
floating point number is either zero or more cnumbers followed by a cperiod and then
followed by one or more cnumbers. A floating point number may also be an integer or
floating point number followed by 'e' or 'd', an optional' +' or '-' , and then zero or
more cnumbers.

csign raw readtable:+-
standard readtable: + -

A leading sign for a number. No other characters should be given this class.

cleft-paren

A left parenthesis. Tells the reader to begin forming a list.

raw readtable:(
standard readtable: (

cright-paren raw readtable:)
standard readtable:)

A right parenthesis. Tells the reader that it has reached the end of a list.

cleft-bracket raw readtable: [
standard readtable:[

A left bracket. Tells the reader that it should begin forming a list. See the description
of cright-bracketfor the difference between cleft-bracket and cleft-paren.

cright-bracket raw readtable:]
standard readtable:]

A right bracket. A cright-bracket finishes the formation of the current list and all enclos
ing lists until it finds one that begins with a cleft-bracket or until it reaches the top level
list.

cperiod raw readtable:.
standard readtable:.

The period is used to separate element of a cons cell; that is, (a . (b . nil) is the same as
(a b). cperiodis also used in numbers as described earlier.

cseparator raw readtable:~I-~M esc space
standard readtable:~I-~M esc space

Separates tokens. When the reader is scanning, these character are passed over. Note:
there is a difference between the cseparator character class and the separator property of a
syntax class.

csingle-quote raw readtable:'
standard readtable:'

This causes read to be called recursively and the list (quote <value read» to be
returned.

csymbol-delimiter raw readtable:1

4404P30 LISP PROGRAMMERS 7-3

mE READER

standard readtable:1
This causes the reader to begin collecting characters and to . stop only when another
identical csymbol-delimiter is seen. The only way to escape a csymbol-delimiter within a
symbol name is with a cescape character. The collected characters are converted into a
string which becomes the print name of a symbol. If a symbol with an identical print
name already exists, then the allocation is not done, rather the existing symbol is used.

cescape raw readtable:\
standard readtable:\

This causes the next character that is read in to be treated as a vcharacter. A character
whose syntax class is vcharacter has a character class ccharacter and does not have the
separator property so it does not separate symbols.

cstring-delimiter raw readtable:"
standard readtable:"

This is the same as csymbol-delimiter except that the result is returned as a string instead
of a symbol.

csingle-character-symbol raw readtable:none
standard readtable:none

This returns a symbol whose print name is the the single character that has been col
lected.

cmacro raw readtable:none
standard readtable:' ,

The reader calls the macro function associated with this character and the current readt
able, passing it no arguments. The result of the macro is added to the structure the
reader is building, just as if that form were directly read by the reader. More details on
macros are provided later.

csplicing-macro raw readtable:none
standard readtable:#;

A csplicing-macro differs from a cmacro in the way the result is incorporated in the struc
ture the reader is building. A csplicing-macro must return a list of forms (possibly
empty). The reader acts as if it read each element of the list itself without the surround
ing parenthesis.

csingle-macro raw readtable:none
standard readtable:none

This causes the reader to check the next character. If it is a cseparator, then this acts like
a cmacro. Otherwise, it acts like a ccharacter.

csingle-splicing-macro raw readtable:none

7-4

standard readtable:none
This is triggered like a csingle-macro. However, the result is spliced in like a csplicing
macro.

4404P30 LISP PROGRAMMERS

THE READER

cirlfix-macro raw readtable:none
standard readtable:none

This differs from a cmacro in that the macro function is passed a form representing what
the reader has read so far. The result of the macro replaces what the reader had read so
far.

csingle-ir!fix-macro raw readtable:none
standard readtable:none

This differs from the cirlfix-macro in that the macro is only triggered if the character fol
lowing the csingle-ir!fix-macro character is a cseparator.

cillegal raw readtable:"@-"O"N-"Z"\-" rubout
standard readtable:"@-"0 "N-"Z"\-"=rubout

The characters cause the reader to signal an error if read.

7.5. Syntax Classes

The read table maps each character into a syntax class. The syntax class contains
three pieces of information: the character class, whether this is a separator, and the
escape properties. The first two properties are used by the reader, the last by the printer
(and explode). The initial Lisp system has the following syntax classes defined. You may
add syntax classes with add-syntax-class. For each syntax class, the properties of the class
and which characters have this syntax class by default are listed. More information about
each syntax class can be found under the description of the syntax class's character class.

vcharacter
ccharacter

vnumber
cnumber

vsign
csign

vleft-paren
cleft-paren
escape-always
separator

vright-paren
cright-paren
escape-always
separator

vleft-bracket
cleft-bracket
escape-always
separator

4404P30 LISP PROGRAMMERS

raw readtable:A-Z a-z "H !#$%&. ,I:; < = > ?@" '0-
standard readtable:A-Z a-z "H !$%&./:; < = > ?@" n-

raw readtable:O-9
standard readtable:O-9

raw readtable: +
standard readtable: +-

raw readtable:(
standard readtable: (

raw readtable:)
standard readtable:)

raw readtable: [
standard readtable: [

7-5

THE READER

vright-bracket
cright-bracket
escape-always
separator

vperlod
cperiod
escape-when-unique

vseparator
cseparator
escape-always
separator

vsingle-quote
csingle-quote
escape-always
separator

vsymbol-delimiter
csingle-delimiter
escape-always

vescape
cescape
escape:'always

vstrlng-delimlter
cstring-delimiter
escape-always

vsingle-character-symbol
csingle-character-symbol
separator

vmacro
cmacro
escape-always
separator

vsplicing-macro
csplicing-macro
escape-always
separator

vsingle-macro
csingle-macro

7-6

raw readtable:]
standard readtable:]

raw readtable:.
standard readtable:.

raw readtable:AI-AM esc space
standard readtable:AI-AM esc space

raw readtable:'
standard readtable:'

raw readtable:1
standard readtable:1

raw readtable:\
standard readtable:\

raw readtable:"
standard readtable:"

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:',

raw readtable:none
standard readtable:#;

raw readtable:none
standard readtable:none

4404P30 LISP PROGRAMMERS

escape-when-unique

vsingle-spllcing-macro
csingle-splicing-macro
escape-when-unique

vinflx-macro
ciflfix-macro
escape-always
separator

vsingle-inftx-macro
csingle-iflfix-macro
escape-when-unique

villegal
cillegal
escape-always
separator

7 .6. Character Macros

THE READER

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:"@-"G "N-"Z"\-" rubout
standard readtable:"@-"G"N-"Z"\-"=rubout

Character macros are user-written functions that are executed during the reading
process. The value returned by a character macro mayor may not be used by the reader,
depending on the type of macro and the value returned. Character macros are always
attached to a single character with the setsyntax function.

7.6.1. Types There are three types of character macros: normal, splicing, and infix.
These types differ in the arguments they are given or ill what is done with the result
they return.

7.6.1.1. Normal

A normal macro is passed no arguments. The value returned by a normal
macro is simply used by the reader as if it had read the value itself. Here is an
example of a macro that returns the abbreviation for a given state.

4404P30 LISP PROGRAMMERS 7-7

mE READER

- > (de/un stateabbrev nil
(cdr (assq (read) '((california. caY (pennsylvania. paY))))

stateabbrev
- > (setsyntax \! 'vmacro 'stateabbrev)
t
- > '(! california / wyoming 1 pennsylvania)
(ca nil pa)

Notice what happened to !wyoming. Since it was not in the table, the associated function
returned nil. The creator of the macro may have wanted to leave the list alone, in such a case,
but could not with this type of reader macro. The splicing macro, described next, allows a char
acter macro function to return a value that is ignored.

7-8

7.6.1.2. Splicing
The value returned from a splicing macro must be a list or nil. If the value

is nil, then the value is ignored; otherwise, the reader acts as if it read each object
in the list. Usually, the list only contains one element. If the reader is reading at
the top level (that is, not collecting elements of list), then it is illegal for a splicing
macro to return more than one element in the list. The major advantage of a
splicing macro over a normal macro is the ability of the splicing macro to return
nothing. The comment character (usually;) is a splicing macro bound to a func
tion which reads to the end of the line and always returns nil. Here is the previ
ous example written as a splicing macro

- > (de/un stateabbrev nil
({[ambda (value)

(cond (value (list value))
(t niO))

(cdr (assq (read) '((california. caY (pennsylvania. paY)))))
- > (setsyntax 'I 'vsplicing-macro 'stateabbrev)
- > '(!pennsylvania! 100 Icalifornia)
(pa ca)
- > '/foo !bar !pennsylvania
pa
->

7.6.1.3. Infix
Infix macros are passed a cone structure representing what has been read so

far. Briefly, a tconc structure is a single list cell whose car points to a list and
whose cdr points to the last list cell in that list. The interpretation by the reader
of the value returned by an infix macro depends on whether the macro is called
while the reader is constructing a list or whether it is called at the top level of the

4404P30 LISP PROGRAMMERS

THE READER

reader. If the macro is called while a list is being constructed, then the value
returned should be a tconc structure. The car of that structure replaces the list of
elements that the reader has been collecting. If the macro is called at top level,
then it is passed the value nil, and the value it returns should either be nil or a
tconc structure. If the macro returns nil, then the value is ignored and the reader
continues to read. If the macro returns a tconc structure of one element, that is,
whose car is a list of one element, then that single element is returned as the
value of read. If the macro returns a tconc structure of more than one element,
then that list of elements is returned as the value of read.

- > (de/un plusop (x)
(eond ((null x) ((Cone nil \ +))

(t (leone nil (/ist 'plus (caar x) (read))))))

plusop
- > (setsyntax \ + 'villfix-macro 'plusop)
t
-> '(a + b)
(plus a b)
-> '+
1+1
->

7.6.2. Invocations

There are three different circumstances in which you would like a macro func
tion to be triggered.

Always -
Whenever the macro character is seen, the macro should be invoked. This is
accomplished by using the character classes cmacro, csplicing-macro, or cin/ix
macro and by using the separator property. The syntax classes vmacro,
vspliclng-macro, and vsingle-macro are defined this way.

When first -
The macro should only be triggered when the macro character is the first char
acter found after the scanning process. A syntax class for a when first macro is
defined using cmacro, csplicing-macro, or cin/ix-macro but not including the
separator property.

When unique -
The macro should only be triggered when the macro character is the only char
acter collected in the token collection phase of the reader; that is, the macro
character is preceded by zero or more cseparatOfs and followed by a separator. A
syntax class for a when unique macro is defined using csingle-macro, csingle
spliCing-macro, or csingle-in/ix-macro but not including the separator property.
The syntax classes so defined are vsingle-macro, vsingle-splicing-macro, and
vsingle-inftx-macro.

4404P30 LISP PROGRAMMERS 7-9

THE READER

7.7. Functions

(setsyntax 's_symbol 's_synclass ['lsJunc])

WHERE: IsJunc is the name of a function or a lambda body.

RETURNS:t

SIDE EFFECT: S symbol should be a symbol whose print name is only one character. The
syntax class for that character is set to s synclass in the current readtable .

. If s_synclass is a class that requires a character macro, then IsJunc must be
supplied.

NOTE: The symbolic syntax codes are new to this version of FRANz LISP. For compatibil
ity, s_synclass can be one of the fixnum syntax codes that appeared in older ver
sions of the FRANZ LISP Manual. This compatibility is only temporary: existing
code which uses the fixnum syntax codes should be converted.

(getsyntax's_symboO

RETURNS: The syntax class of the first character of s symbol's print name. s_symbol's
print name must be exactly one character long.

NOTE: This function is new to this version of FRANZ LISP. It supersedes (status syntax)
that no longer exists.

(add-syntax-e}ass 's_synclass 'lyroperties)

RETURNS: s_synclass

7-10

SIDE EFFECT: Defines the syntax class s_synclass to have properties lyroperties. The list
lyroperties should contain a character class mentioned earlier. lyroperties
may contain one of the escape properties: escape-always, escape-when
unique, or escape-when-first lyroperties may contain the separator property.
After a syntax class has' been defined with add-syntax-class, the setsyntax
function can be used to give characters that syntax class.

; Define a non-separating macro character.
; This type of macro character is used in UCI-Lisp, and
; it corresponds to a FIRST MACRO in Interlisp.

- > (add-syntax-c1ass 'vuci-macro '(cmacro escape-when-first))
vuci-macro
->

4404P30 LISP PROGRAMMERS

CHAPTER 8

Functions, Fclosures, and Macros

8.1. ~alid function objects
There are many different objects that can occupy the function field of a symbol

object. Table 8.1 shows all of the possibilities, how to recognize them, and where to
look for documentation.

8.2. functions
The basic Lisp function is the lambda function. When a lambda function is called,

the actual arguments are evaluated from left to right and are lambda-bound to the formal
parameters of the lambda function.

An nlambda function is usually used for functions that are invoked at top level:
Some built-in functions which evaluate their arguments in special ways are also nlambdas
(for example cond, do, and or). When an nlambda function is called, the list of
unevaluated arguments is lambda bound to the single formal parameter of the nlambda
function.

In this case, some programmers use an nlambda function when they are not sure
how many arguments will be passed. Then, the first thing the nlambda function does is
map evalover the list of unevaluated arguments it has been passed. This is usually the
wrong thing to do because it does not work compiled if any of the arguments are local
variables. The solution is to use a lexpr. When a lexpr function is called, the arguments
are evaluated and a fixnum, whose value is the number of arguments, is lambda-bound
to the single formal parameter of the lexpr function. The lexpr can then access the argu
ments using the arg function.

When a function is compiled, special declarations may be needed to preserve its
behavior. An argument is not lambda-bound to the name of the corresponding formal
parameter unless that formal parameter has been declared specia/(see §12.3.2.2).

Lambda and lexpr functions both compile into a binary object with a discipline of
lambda. However, a compiled lexpr still acts like an interpreted lexpr.

8.3. macros
An important feature of Lisp is its ability to manipulate programs as data. As a

result of this, most Lisp implementations have very powerful macro facilities. The Lisp
language's macro facility can be used to incorporate popular features of the other
languages into Lisp. For example, there are macro packages that allow you to create

4404P30 LISP PROGRAMMERS 8-1

FUNCTIONS, FCLOSURES, AND MACROS

8-2

informal name object type documentation
interpreted list with car 8.2

lambda function eqto lambda
interpreted list with car 8.2

nlambda function eq to nlambda
-interpreted list with car 8.2

lexpr function eqto lexpr
interpreted list with car 8.3

macro eqto macro
fc10sure vector with vprop 8.4

eq to fclosure
compiled binary with discipline 8.2

lambda or lexpr eqto lambda
function
compiled binary with discipline 8.2

nlambda function eq to nlambda
compiled binary with discipline 8.3

macro eqto macro
foreign binary with discipline 8.5

subroutine of "subroutine"
foreign binary with discipline 8.5

function of "function"
foreign binary with discipline 8.5

integer function of "integer-function"
foreign binary with discipline 8.5

real function of "real-function"
foreign binary with discipline 8.5

C function of "c-function"
foreign binary with discipline 8.5

double function of "double-c-function"
foreign binary with discipline 8.5

structure function of "vector-c-function"
array array object 9

Table 8.1

records (as in Pascal) and refer to elements of those records by the field names. The
struct package imported from Maclisp does this. Another popular use for macros is to
create more readable control structures which expand into conti, or, and and One such
example is the If macro. It allows you to write

at (equal numb 0) then (print 'zero) (terpr)
elseif (equal numb 1) then (print 'one) (terpr)
else (print 11 give UlvY

which expands to

(cond
((equal numb 0) (print 'zero) (terpr))
((equal numb 1) (print 'one) (terpr))
(t (print 11 give uIV))

4404P30 LISP PROGRAMMERS

FUNCTIONS, FCLOSURES, AND MACROS

8.3.1. macro forms

A macro is a function that accepts a Lisp expression as input and returns
another Lisp expression. The action the macro takes is called macro expansion. Here
is a simple example:

- > (de/first (macro (x) (cons 'car (cdr x))))
first
- > (first '(a b c))
a
- > (apply './irst '(first '(a b c)))
(car '(a b C»)

The first input line defines a macro called first Notice that the macro has one formal
parameter, x On the second input line, you ask the interpreter to evaluate
(first '(a b c)). Eval sees that first has a function definition of type macro, so it evalu- _
ates firsls definition, passing to firs4 as an argument, the form eval itself was trying
to evaluate: (first '(a b c)). The first macro discards the car of the argument with cdr,
cons' a carat the beginning of the list and returns (car '(a b c)), which evalevaluates.
The value a is returned as the value of (first '(a b c)). Thus, whenever eval tries to
evaluate a list whose car has a macro definition, it ends up doing (at least) two opera
tions: the first of which is a call to the macro to let it macro expand the form, and the
second of which is the evaluation of the result of the macro. The result of the macro
may be yet another call to a macro, so eval may have to do even more evaluations
until it can finally determine the value of an expression. One way to see how a
macro expands is to use apply as shown on the third input line earlier.

8.3.2. defmacro

The macro de/macro makes it easier to define macros because it allows you to
name the arguments to the macro call. For example, suppose you find yourself often
writing code like (setq stack (cons newelt stack). You could define a macro named
push to do this. One way to define it is:

-> (de/push
(macro (x) (list 'setq (caddr x) (list 'cons (cadr x) (caddr x)))))

push

then (push newelt stack) expands to the form mentioned earlier. The same macro
written using defmacro would be:

- > (de/macro push (value stack)
(Jist 'setq ,stack (Jist 'cons, value ,stack)))

push

Defmacro allows you to name the arguments of the macro call and makes the macro
definition look more like a function definition.

8.3.3. the backquote character macro

The default syntax for FRANZ LISP has four characters with associated character
macros. One is semicolon for comments. Two others are the backquote and comma,
which are used by the backquote character macro. The fourth is the sharp sign macro

4404P30 LISP PROGRAMMERS 8-3

FUNCTIONS, FCLOSURES, AND MACROS

8-4

described in the next section.

The backquote macro is used to create lists where many of the elements are
fixed (quoted). This makes it very useful for creating macro definitions. In the sim
plest case, a backquote acts just like a single quote:

- > '(a b c de)
(a bed e)

If a comma precedes an element of a backquoted list, then that element is evaluated
and its value is put in the list.

- > (setq d '(xy z))
(x y z)
- > '(a b c ,d e)
(a b c (x y z) e)

If a comma, followed by an at sign, precedes an element in a backquoted list, then
that element is evaluated and spliced into the list with append

->'(abc,@de)
(a b c x y z e)

Once a list begins with a backquote, the commas may appear anywhere in the list as
this example shows:

- > '(a b (c d ,(cdr d)) (ej(g h,@ (cddr d) ,@d)))
(a b (c d (y z» (e f (g h z x y z»)

It is also possible, and sometimes even useful, to use the backquote macro within
itself. As a final demonstration of the backquote macro, define the first and push
macros using all the power at your disposal: defmacro and the backquote macro.

- > (dejmacro first (Jist) '(car ,list))
first
- > (dejmacro push (value stack) '(setq ,stack (cons, value ,stack)))
stack

8.3.4. sharp sign character macro

The sharp sign macro can perform a number of different functions at read
time. The character directly following the sharp sign determines which function is
done, and the following Lisp s-expressions may serve as arguments. A full list of
sharp sign macro capabilities can be found in Chapter 14.

8.3.4.1. conditional inclusion

If you plan to run one source file in more than one environment, then you may
want some pieces of code to be included or not included depending on the
environment. The C language uses "#ifdef" and "#ifndef" for this purpose, and
Lisp uses "#+" and "#-". The environment that the sharp sign macro checks
is the (status jeatures) list, which is initialized when the Lisp system is built and
which may be altered by (sstatusjeaturejoo) and (sstatus nojeature bar). The

4404P30 LISP PROGRAMMERS

FUNCTIONS, FCLOSURES, AND MACROS

form of conditional inclusion is
+ when what

where when is either a symbol or an expression involving symbols and the func
tions and, or, and not The meaning is that what is only read in if when is true. A
symbol in when is true only if it appears in the (status features) list.

; Suppose you want to write a program that references a file
; and that can run at ucb, ucsd, and cmu where the file naming conventions
; are different.

- > (dejun howold (name)
(terpr)
(load # + (or ucb ucsd) "lusrllibllisp/ages. r

The form

+cmu"lusrllispldoclages.r)
(patom name)
(patom" is")
(print (cdr (assoc name agrifile)))
(patom "years old')
(terpr))

#-when what
is equivalent to

+ (not when) what

8.3.4.2. fixnum character equivalents
When you work with fixnum equivalents of characters, it is often hard to
remember the number corresponding to a character. The form

#/c
is equivalent to the fixnum representation of character c.

; A function that returns t if the user types y else it returns nil.

- > (dejun yesorno nil
(progn (ans)

(setq ans (ty;))
(cond ((equal ans #Iy) tJ

(t nil))))

8.3.4.3. read time evaluation
Occasionally you want to express a constant as a Lisp expression, yet you do not
want to pay the penalty of evaluating this expression each time it is referenced.
The form

4404P30 LISP PROGRAMMERS 8-5

FUNCTIONS, FCLOSURES, AND MACROS

. expression
evaluates the expression at read time and returns its value.

; Here is a function to test if any of bits 1, 3 or 12 are set in a fixnum.

'- > (defun testit (num)
(cond ((zemp (boole 1 num#.(+ (Ish 11) (Ish 1 3) (Ish 112))))

nit)
(t t)))

8.4. fclosures

Fclosures are a type of functional object. Their purpose is to remember the values
of some variables between invocations of the functional object and to protect this data
from being inadvertently overwritten by other Lisp functions. Fortran programs often
exhibit this kind of memory, although some versions of Fortran (correctly) require such
permanent storage to be in COMMON. Using this remembered data it is easy to write a
linear congruent random number generator in Fortran merely by keeping the seed as a
variable within the function. It is much more risky to do so in Lisp, since any special
variable you pick might be used by some other function. Fclosures are an attempt to
provide most of the same functionality as closures in Lisp Machine Lisp to users of
FRANZ LISP. Fclosures are related to closures in this way:
(fclosure ' (a b) 'foo} < = = >

(let «a a) (b b» (closure' (a b) 'foo»

8.4.1. an example

++ lisp
Franz Lisp, Opus 40.03
- > (defun code (me count)

(print Oist 'in x»
(setq x (+ 1 x»
(cond «greaterp count 1) {funcall me me (subl count»»
(print (list 'out x)))

code
- > (de fun tester (object count)

(funcall object object count) (terpri»
tester
->(setq x 0)
o
- > (setq z (fclosure '(x) 'code»
fclosure [8]
- > <tester z 3)
(in O)(in 1) (in 2)(out 3)(out 3)(out 3)
nil
->x
o

8-6 4404P30 LISP PROGRAMMERS

FUNCTIONS, FCLOSURES, AND MACROS

The function /closure creates a new object that is called an fclosure, although it
is actually a vector. The fclosure contains a functional object, and a set of symbols
and values for the symbols. In the earlier example, the fclosure functional object is
the function code. The set of symbols and values just contains the symbol 'x' and
zero, the value of 'x' when the fclosure was created.

When an fclosure is funcall'ed:
1) The Lisp system lambda binds the symbols in the fclosure to their values in the

fclosure.

2) It continues the funcall on the functional object of the fclosure.

3) Finally, it un-lambda binds the symbols in the fclosure and at the same time
stores the current values of the symbols in the fclosure.

Notice that the fclosure is saving the value of the symbol 'x'. Each time a fclo
sure is created, new space is allocated for saving the values of the symbols. Thus, if
you execute fclosure again, over the same function, you can have two independent
counters:

- > (setq zz (fclosure '(x) 'code»
fclosure III
- > <tester ZI 2)
(in O)(in 1)(out 2)(out 2)
- > (tester ZI 2)
(in 2) Gn 3)(out 4)(out 4)
- > <tester Z 3)
(in 3)(in 4)(in S)(out 6)(out 6)(out 6)

8.4.2. useful functions
Here are some quick summaries of functions dealing with closures. They are

formally defined in §2.8.4. To recap, fclosures are made by ({closure '1 vars
'gJimcobj). l_vars is a list of symbols (not containing niI); gJuncobj is any object
that can be funcalled. (Objects that can be funcalled include compiled Lisp functions,
lambda expressions, symbols, foreign functions, etc.) In general, if you want a com
piled function to be closed over a variable, you must declare the variable to be special
within the function. Another example is:

(fclosure ' (a b) #' (lambda (x) (plus x a»)

Here, the #' construction makes the compiler compile the lambda expression.

There are times when you want to share variables between fclosures. This can
be done if the fclosures are created at the same time using ./Closure-list.

4404P30 LISP PROGRAMMERS 8-7

FUNCTIONS, FCLOSURES, AND MACROS

(fclosure-list lJist uJunction L..D
RETURNS: A list of the fclosures of the functions over the just previous list of variables.

NOTE: Any number of list-function pairs may be given. An fclosure of each u function is
created with respect to the values in I list, which should be a list of variables. All
the variables specified in a I list are closed in the subsequent function. If the same
symbol appears in more than one lJist, all its occurrences are treated as references
to the same variable. A list of the fclosures of each function is returned.

The function fclosure-alist returns an as soc list giving the symbols and values in the
fclosure. The predicate fclosurep returns t if and only if its argument is an fclosure.
Other functions imported from Lisp Machine Lisp are symeval-in-/closure, let-fclosed,
and set-in-fclosure. Finally, the function fclosure-function returns the function argu
ment.

8.4.3. internal structure

Currently, closures are implemented as vectors with property being the symbol
fclosure. The functional object is the first entry. The remaining entries are struc
tures that point to the symbols and values for the closure, with a reference count to
determine if a recursive closure is active. This particular implementation is subject to
change in the interests of efficiency and generality.

8.5. Foreign subroutines and functions

FRANZ LISP has the ability to dynamically load object files produced by other com
pilers and to call functions defined in those files to the extent that the other language
processors abide by the same operating system standards for function calls.

Most implementations of FRANZ LISP co-exist with a C compiler, a Fortran com
piler, and a Pascal compiler. (These may be available only as optional languages).

This section deals with defining and using these so-called foreign functions There
are seven types of foreign functions. They are characterized by the type of the result
each returns and by differences in the interpretation of their arguments. They come
from two families: a group suited for languages that pass arguments by reference (e.g.,
Fortran), and a group suited for languages which pass arguments by value (e.g., C).

There are four types in the first group:

subroutine
This does not return anything. The Lisp system always returns t after calling a sub
routine.

function
This returns whatever the function returns. This must be a valid Lisp object or it
may cause the Lisp system to fail.

integer-function
This returns an integer that the Lisp system makes into a fixnum and returns.

real-function
This returns a double precision real number that the Lisp system makes into a

*This topic is also discussed in Report PAM-124 of the Center for Pure and Applied Mathematics, UC Berkeley,
entitled "Parlez-Vous Franz? An Informal Introduction to Interfacing Foreign Functions to Franz LISP", by James R.

8-8 4404P30 LISP PROGRAMMERS

Larus

FUNCTIONS, FCLOSURES, AND MACROS

flonum and returns.

There are three types in the second group:

c-fundion
This is like an integer function except for its different interpretation of arguments.

double-c-fundion
This is like a real-function.

vector-c-function
This is for C functions that return a structure. The first argument to such func
tions must be a vector, of type vectori, into which the result is stored. The second
Lisp argument becomes the first argument to the C function, and so on.

A foreign function is accessed through a binary object just like a compiled Lisp function.
The difference is that the discipline field of a binary object for a foreign function is a
string whose first character is given in the following table:

letter type
s subroutine
f function
i integer-function
r real-function.
c c-function
v vector-c-function
d double-c-function

Two functions are provided for setting-up foreign functions. etas/loads an object file
into the Lisp system and sets up one foreign function binary object. If there is more
than one function in an object file, getaddress can be used to set up additional foreign
function objects.

Foreign functions are called just like other functions, for example,
(fimname arg1 arg2). When a function in the Fortran group is called, the arguments are
evaluated and then examined. List, hunk, and symbol arguments are passed unchanged
to the foreign function. Fixnum and flonum arguments are copied into a temporary loca
tion and a pointer to the value is passed. (This is because Fortran uses call by reference
and it is dangerous to modify the contents of a fixnum or flonum which something else
might point to.) If the argument is an array object, the data field of the array object is
passed to the foreign function. (This is the easiest way to send large amounts of data to,
and receive large amounts of data from, a foreign function.) If a binary object is an argu
ment, the entry field of that object is passed to the foreign function. (The entry field is
the address of a function, so this amounts to passing a function as an argument).

When a function in the C group is called, fixnum and flownum arguments are
passed by value. For almost all other arguments, the address is merely provided to the C
routine. The only exception arises when you want to invoke a C routine that expects a
"structure" argument. Recall that a (rarely used) feature of the C language is the ability
to pass structures by value. This copies the structure onto the stack. Since FRANZ LISP'S
nearest equivalent to a C structure is a vector, you are provided an escape clause to copy
the contents of an immediate-type vector by value. If the property field of a vectori
argument is the symbol "value-structure-argument", then the binary data of this
immediate-type vector is copied into the argument list of the C routine.

The method a foreign function uses to access the arguments provided by Lisp is
dependent on the language of the foreign function. The following scripts demonstrate

4404P30 LISP PROGRAMMERS 8-9

FUNCTIONS, FCLOSURES, AND MACROS

how Lisp can interact with three languages: C, Pascal, and Fortran. C and Pascal have
pointer types and the first script shows how to use pointers to extract information from
Lisp objects. There are two functions defined for each language. The first (cfoo in C,
pfoo in Pascal) is given four arguments: a fixnum, a flonum-block array, a hunk of at
least two fixnums, and a list of at least two fixnums. To demonstrate that the values
were passed, each ?foo function prints its arguments (or parts of them). The ?foo func
tion then modifies the second element of the flonum-block array and returns a 3 to Lisp.
The second function (cmemq in C, pmemq in Pascal) acts just like the Lisp memq func
tion except that it does not work for fixnums whereas the Lisp memq does work for small
fixnums. In the script, typed input is in bold, computer output is in roman, and com
ments are in italic.

These are the C coded junctions
+ + list chS.uIc.c
'" demonstration of c coded foreign integer-function "'

1* The following is used to extract fixnums out of a list of fixnums "'
struct listoffixnumscell
{ struct listoffixnumscell "cdr;

int "fixnum;
};

struct listcell
{ struct listcell "cdr;

int car;
};

- cfoo(a,b,c,d)
int "a;
double b[];
int "c[];
struct listoffixnumscell "d;
{

printf("a: %d, b[O): %f, bU): %fO, "a, b(0), bUD;
printf(" c (first): %d c (second): %dO,

"dO), "cU));
printf(" (%d %d ...) ", "(d->fixnum), "(d->cdr->fixnum»;
b(1) ... 3.1415926;
return(3);

struct listcell *
- cmemq (element, list)

int element;
struct listcell "list;
{

for(; list && element != Iist->car; list = list->cdr);
return (list);

These are the Pascal coded junctions
+ + list cbS.UIp.p
type pinteger == "integer;

8-10

realarray ., array [0 .. 10) of real;
pintarray == array[0 .. 10) of pinteger;
listoffixnumscell = record

end;
plistcell == "listcell;

cdr : "listoffixnumscell;
fixnum : pinteger;

4404P30 LISP PROGRAMMERS

FUNCTIONS, FCLOSURES, AND MACROS

Iistcell = record
cdr : plistcell;
car : integer;

end;

function pfoo (var a : integer;
var b : realarray;
var c : pintarray;
var d : IistoffixnumscelO : integer;

begin
writeln(' a:',a, 'blO]:', bIO], ' bl1]:', bOD;
writeln(' c (first):', clor; c (second):', clW);
writeln(' (" d.fixnum-, d.cdr-.fixnum-, ' .. .) ');
bIll := 3.1415926;
pfoo := 3

end;

{ The function, pmemq, looks for the Lisp pointer given as the first argument
in the list pointed to by the second argument.

}

Note that you should declare" a : integer" instead of .. var a : integer" since
you are interested in the pointer value instead of what it points to, which
could be any Lisp object.

function pmemq (a : integer; list: plistcelO : plistcel1;
begin
while (list < > niI) and (lisf.car < > a) do list: = Iisf.cdr;
pmemq : = list;

end;

The files are compiled
+ + cc +r cb8auxc.c
+ + pc +r cb8auxp.p

++ lisp
Franz Lisp, Opus 41.10
First the files are loaded, and one foreign jUnction binary is set up. There are two jitnctions in each file so you must choose one
to tell cfasl about. The choice is arbitrary.
- > (dasl 'ch8auxc.r' doo 'doo "Integer-function")
#63000-"integer-function"
- > (dasl 'ch8auxp.r 'J)foo 'pfoo "integer-function" "+ lpc")
#63200-"integer-function"
Here YOIl set up the other joreignjUnction binary objects
- > (getaddress '_c:memq 'cmemq "function" 'J)memq 'pmemq "function")
#6306c-"function II
Suppose you want to create and initialize an array to pass to the cfoo jUnction. In this case, you create an unnamed array and
store it in the value cell of testarr. When you create an array to pass to the Pascal program, you can use a named array just to
demonstrate the different way that named and unnamed arrays are created and accessed.
- > (setq testarr (array nil f1onum-block 2»
array 12]
- > (store (funeall testarr 0) 1.234)
1.234
- > (store «uncall testarr 1) 5.678)
5.678
- > (doo 385 testarr (bunk 10 1113 14) '(15 16 17))
a: 385, bIO]: 1.234000, bll]: 5.678000
c (first): 10 c (second): 11
(1516 ...)
3
Note that cfoo has returned 3 as it should. It also had the side tdfect of changing the second value of the array to 3.1415926
which check next.
- > (funeall testarr 1)
3.1415926

In preparation for calling pfoo, you create an array.

4404P30 LISP PROGRAMMERS 8-11

FUNCTIONS, FCLOSURES, AND MACROS

- > (array test flonum-block 2)
array [2]
- > (store <test 0) 1.234)
1.234
- > (store <test 1) 5.678)
5.678
- > (ptoo 385 (getd'test> (hunk 10 1113 14) '(1516 17))
a: 385 b[O]: 1.23400000000000E+00 b[1]: 5.67800000000000E+00
c (first): 10 c (second): 11
(15 16 .. .)

3
-> <test 1)
3.l415926

Now to test out the memq's
-> (cmemq 'a '(b cad e f»
(a d ef)
-> (pmemq 'e '(a d f g a x»
nil

The Fortran example is much shorter since in Fortran you cannot follow pointers
as you can in other languages. The Fortran function, ffoo, is given three arguments: a
fixnum, a fixnum-block array, and a flonum. These arguments are printed out to verify
that they made it, and, then, the first value of the array is modified. The function
returns a double precision value, which is converted to a flonum by Lisp and printed.

+ + list ch8auxU
double precision function ffoo(a,b,c)
integer a,bOO)
double precision c
print 2,a,b(l),b(2),c

2 format(, a=',i4,', bO)=',i5,', b(2)=',i5,' c=',f6.4)
b(l) = 22
ffoo = 1.23456
return
end

+ + fortran +r ch8auxf.f
ch8auxf.f:

ffoo:
++ lisp
Franz Lisp, Opus 40.03
- > (dasl 'ch8auxf.o' ffoo 'ffoo "real-function" "-1177 -IF77")
#6307c-"real-function" - -

- > (array test ftxnum-block 2)
array [2]
- > (store (test 0) 10)
10
- > (store <test 1) 11)
11
- > (ffoo 385 (getd 'test) 5.678)
a= 385, b(l)= 10, b(2)= 11 c=5.6780

1.234559893608093
- > <test 0)
22

8-12 4404P30 LISP PROGRAMMERS

CHAPTER 9

Arrays and Vectors

Arrays and vectors are two means of expressing aggregate data objects in FRANZ LISP.
Vectors may be thought of as sequences of data. They are intended as a vehicle for user
defined data types. This use of vectors is still experimental and subject to revision. As a sim
ple data structure, they are similar to hunks and strings. Vectors are used to implement clo
sures and are useful to communicate with foreign functions. Both of these topics were dis
cussed in Chapter 8. Later in this chapter, the current implementation of vectors is described
and you are advised what is most likely to change.

Arrays in FRANZ LISP provide a programmable data structure access mechanism. One
possible use for FRANZ LISP arrays is to implement Maclisp style arrays, which are simple vec
tors of fixnums, flonums, or general Lisp values. This is described in more detail in §9.3, but
first how array references are handled by the Lisp system is described.

The structure of an array object is given in §1.3.10 and reproduced here. lisp values.

Subpart name Get value Set value Type

access function getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lispval
length getlength putlength fixnum
delta getdelta putdelta fixnum

9.1. general arrays Suppose the evaluator is told to evaluate (foo a b) and the function
cell of the symbol foo contains an array object, which is called foo_arr_obj. First. the
evaluator evaluates and stacks the values of a and b. Next, it stacks the array object
foo arr obj. Finally, it calls the access function of foo arr obj. The access function
sho~ld be a lexpr t or a symbol whose function cell contai~s a lexpr. The access function
is responsible for locating and returning a value from the array. The array access func
tion is free to interpret the arguments as it wishes. The Maclisp compatible array access
function, which is provided in the standard FRANZ LISP system, interprets the arguments
as subscripts in the same way as languages like Fortran and Pascal.

The array access function also is called upon to store elements in the array. For
example, (store (foo a b) c) automatically expands to (foo c a b), and, when the evaluator
is called to evaluate this, it evaluates the arguments C, b, and a. Then it stacks the array
object, which is stored in the function cell of foo, and calls the array access function with
(now) four arguments. The array access function must be able to tell this is a store
operation, which it can do by checking the number of arguments it has been given. (A
lexpr can do this very easily.)

t A lexpr is a function that accepts any number of arguments, which are evaluated before the function is called.

4404P30 LISP PROGRAMMERS 9-1

ARRAYS AND VECTORS

9-2

9.2. subparts of an array object An array is created by allocating an array object with mar
ray and filling in the fields. Certain Lisp functions interpret the values of the subparts
of the array object in special ways as described in the following text. Placing illegal
values in these subparts may cause the Lisp system to fail.

9.2.1. access function The purpose of the access function has been described earlier.
The contents of the access function should be a lexpr: either a binary (compiled func
tion) or a list (interpreted function). It may also be a symbol whose function cell
contains a function definition. This subpart is used by eva~ .funca/~ and apply when
evaluating array references.

9.2.2. auxiliary This can be used for any purpose. If it is a list and the first element of
that list is the symbol unmarked_array, then the data subpart is not marked by the
garbage collector. Note that this is used in the Maclisp compatible array package and
has the potential for causing strange errors if used incorrectly.

9.2.3. data This is either nil or points to a block of data space allocated by segment or
small-segment.

9.2.4. length This is a fixnum whose value is the number of elements in the data
block. This is used by the garbage collector and by arrayrej to determine if your
index is in bounds.

9.2.5. delta This is a fixnum whose value is the number of bytes in each element of
the data block. This is four for an array of fixnums or value cells and eight for an
array of flonums. This is used by the garbage collector and arrayrejas well.

9.3. The Maclisp compatible array package

A Maclisp style array is similar to what is known as an array structure in other
languages: a block of homogeneous data elements that is indexed by one or more
integers called subscripts. The data elements can be all fixnums, flonums, or general
Lisp objects. An array is created by a call to the function array or *array. The only
difference is that *array evaluates its arguments. This call: (array joo t 3 5) sets up an
array called foo of dimensions 3 by 5. The subscripts are zero based. The first element is
(foo 0 0), the next is (foo 0 1) and so on up to (foo 2 4). The t indicates a general Lisp
object array, which means each element of foo can be any type. Each element can be
any type since all that is stored in the array is a pointer to a Lisp object, not the object
itself. Array does this by allocating an array object with marrayand then allocating a seg
ment of 15 consecutive value cells with small-segment and storing a pointer to that seg
ment in the data subpart of the array object. The length and delta subpart of the array
object are filled in (with 15 and 4 respectively) and the access function subpart is set to
point to the appropriate array access function. In this case, there is a special access

4404P30 LISP PROGRAMMERS

ARRAYS AND VECTORS

function for two dimensional value cell arrays called arrac-twoD, and this access function
is used. The auxiliary subpart is set to (t 3 5) which describes the type of array and the
bounds of the subscripts. Finally, this array object is placed in the function cell of the
symbol foo. Now when (foo 1 3) is evaluated, the array access function is invoked with
three arguments: 1, 3, and the array object. From the auxiliary field of the array object it
gets a description of the particular array. It then determines which element (too 1 3)
refers to and uses arrayref to extract that element.

Since this is an array of value cells, what arrayref returns is a value cell whose value is
what is wanted, so the value cell is evaluated and it is returned as the value of (foo 1 3).

In Maclisp, the call (array /00 fixnum 25) returns an array whose data object is a
block of 25 memory words. When fixnums are stored in this array, the actual numbers
are stored instead of pointers to the numbers as is done in general Lisp object arrays.
This is efficient under Maclisp but inefficient in FRANZ LISP since every time a value was
referenced from an array it had to be copied and a pointer to the copy returned to
prevent aliasing t. Thus t, fixnum, and flonum arrays are all implemented in the same
manner. This should not affect the compatibility of Maclisp and FRANZ LISP. If there is
an application where a block of fixnums or flonums is required, then exactly the same
effect of fixnum and flonum arrays in Maclisp can be achieved by using fixnum-block
and flonum-block arrays. Such arrays are required if you want to pass a large number of
arguments to a Fortran or C coded function and then get answers back.

The Maclisp compatible array package is just one example of how a general array
scheme can be implemented. Another type of array you can implement is the hashed
array. The subscript can be anything, not just a number. The access function hashes the
subscript and uses the result to select an array element. With the generality of arrays
also comes extra cost; if you just want a simple aggregate of less than 128 general Lisp
objects, you would be wise to look into using hunks.

9.4. vectors Vectors were invented to fix two shortcomings of hunks. They can be longer
than 128 elements. They also have a tag associated with them, which is intended to say,
for example, "Think of me as a Blobit" Thus, a vector is an arbitrarily sized hunk with a
property list.

Continuing the example, the Lisp kernel may not know how to print out or evalu
ate blobits, but this is information that is common to all blobits. On the other hand, for
each individual blobit, there are particulars that are likely to change: height, weight, or
eye-color. This is the part that would previously have been stored in the individual
entries in the hunk and are stored in the data slots of the vector. Here is a summary of
the structure of a vector in tabular form:

t Aliasing happens when two variables share the same storage location. For example, if the copying mentioned
were not done, then, after (sefl/. x (foo 2)) was done, the value of x and (foo 2) would share the same location. Then
should the value of (foo 2) change, x's value would change as well. This is considered dangerous and, as a result,
pointers are never returned into the data space of arrays.

4404P30 LISP PROGRAMMERS 9-3

ARRAYS AND VECTORS

Subpart name Get value Set value Type

datumU vref vset lispval
property vprop vsetprop lispval

vputprop
size vsize - fixnum

Vectors are created specifying size and optional fill value using the function (new-vector
'x_size ['g_fi11 ['gyrop]]) or by initial values: (vector ['g_val ... n.

9.5. anatomy of vectors There are some technical details about vectors that you should
know:

9.5.1. size You are not free to alter this. It is noted when the vector is created and is
used by the garbage collector. The garbage collector coalesces two free vectors, which
are neighbors in the heap. Internally, this is kept as the number of bytes of data.
Thus, a vector created by (vector 'foo) has a size of 4.

9.5.2. property Currently, you expect the property to be either a symbol or a list
whose first entry is a symbol. The symbols fclosure and structure-value-argument
are reserved for special system uses
and their effect is described in Chapter 8. If the property is a non-null symbol, the

vector is printed out as <symbol> [<size>]. Another case is if the property is actu
ally a (disembodied) property-list, which contains a value for the indicator print. The
value is taken to be a Lisp function, which the printer invokes with two arguments:
the vector and the current output port. Otherwise, the vector is printed as
vector[< size>].

9.5.3. internal order In memory, vectors start with a longword containing the size,
which is immediate data within the vector. The next cell contains a pointer to the
property. Any remaining cells, if any, are for data. Vectors are handled differently
from any other object in FRANZ LISP in that a pointer to a vector is a pointer to the
first data cell, that is, a pointer to the third longword of the structure. This was done
for efficiency in compiled code and for uniformity in referencing immediate-vectors
(described later). You should never return a pointer to any other part of a vector
because this may cause the garbage collector to follow an invalid pointer.

9.6. immediate-vectors Immediate-vectors are similar to vectors. However, they differ in
that binary data are stored in space directly within the vector. Thus, the garbage collec
tor preserves the vector itself, if used, and only traverses the property cell. The data
may be referenced as longwords, shortwords, or even bytes. Shorts and bytes are
returned sign-extended. The compiler open-codes such references, and avoids boxing
the resulting integer data, where possible. Thus, immediate vectors may be used for
efficiently processing character data. They are also useful in storing results from func
tions written in other languages.

9-4 4404P30 LISP PROGRAMMERS

ARRAYS AND VECTORS

Subpart name Get value Set value Type

datumld vrefi-byte vseti-byte fixnum
vrefi-word vseti-word fixnum
vrefi-Iong vseti-Iong fixnum

property vprop vsetprop lispval
vputprop

size vsize - fixnum
vsize-byte fixnum
vsize-word fixnum

To create immediate vectors specifying size and fill data, you can use the functions new
vectori-byte, new-vectori-word, or new-vectori-Iong. You can also use the functions vectori
byte, vectori-word, or vectori-Iong. All of these functions are described in Chapter 2.

4404P30 LISP PROGRAMMERS 9-5

CHAPTER 10

Exception Handling

10.1. Errset and Error Handler Functions
FRANZ LISP allows you to handle in a number of ways the errors that arise during

computation. One way is through the use of the errset function. If an error occurs dur
ing the evaluation of the errsels first argument, then the locus of control returns to the
errset which returns nil (except in special cases, such as err). The other method of error
handling is through an error handler function. When an error occurs, the error handler
is called and is given as an argument a description of the error that just occurred. The
error handler may take one of the following actions:

(1) It could take some drastic action like a reset or a throw.
(2) It could, if that the error is continuable, return to the function that noticed the

error. The error handler indicates that it wants to return a value from the error by
returning a list whose car is the value it wants to return.

(3) It could decide not to handle the error and return a non-list to indicate this fact.

10.2. The Anatomy of an error
Each error is described by a list of these items:

(1) Error type - This is a symbol that indicates the general classification of the error.
This classification may determine which function handles this error.

(2) fixnum id - a fixnum identifying the error. In the future each error will have a
unique number.

(3) Continuable - If this is non-nil, then this error is continuable.

(4) Message string - This is a symbol whose print name is a message describing the
error.

(5) Data - There may be from zero to three Lisp values that help describe this particu
lar error. For example, the unbound variable error contains one datum value, the
symbol whose value is unbound. The list describing that error might look like:

(ER%misc 0 t IUnbound Variable:1 foobar)

10.3. Error handling algorithm

This is the sequence of operations when an error occurs:

(1) If the symbol ER%all has a non-nil value, then this value is the name of an error
handler function. That function is called with a description of the error. If that
function returns (and, of course, it may choose not to) and the value is a list and
this error is continuable, then the car of the list to the function which called the
error is returned. Presumably, the function uses this value to retry the operation.

4404P30 LISP PROGRAMMERS 10-1

EXCEPTION HANDLING

On the other hand, if the error handler returns a non-list, then it has chosen not to
handle this error, which leads to step (2). Something special happens before the
EROfoall error handler is called, which does not happen in any of the other cases
described later. To help insure that infinitely recursive errors do not occur, if
EROfoall is set to a bad value, the value of EROfoall is set to nil before the handler is
called. Thus, it is the responsibility of the EROfoall handler to 'reenable' itself by
storing its name in EROfoall.

(2) Next, the specific error handler for the type of error that just occurred is called, if
one exlsts, to see if it wants to handle the error. The names of the handlers for
the specific types of errors are stored as the values of the symbols whose names are
the types. For example, the handler for miscellaneous errors is stored as the value
of EROfomisc. Of course, if EROfomisc has a value of nil, then there is no error
handler for this type of error. Appendix B contains a list of all error types. The
process of classifying the errors is not complete, and, thus, most errors are lumped
into the EROfomisc category. Just as in step (0, the error handler function may
choose not to handle the error by returning a non-list, which leads to step (3).

(3) Next, a check is made to see if there is an errset surrounding this error. If so the
second argument to the errset call is examined. If the second argument was not
given or is non-nil then the error message associated with this error is printed.
Finally, the stack is popped to the context of the errset and then the errset returns
nil. If there was no errset step (4) is executed.

(4) If the symbol EROfotpl has a value, then it is the name of an error handler that is
called in a manner similar to that discussed earlier. If it chooses not to handle the
error, step (5) is executed.

(5) At this point, it has been determined that you do not want to handle this error.
Thus, the error message is printed out and a reset is done to send the flow of con
trol to the top-level.
To summarize the error handling system: When an error occurs, you have two

chances to handle it before the search for an errset is done. Then, if there is no errse4
you have one more chance to handle the error before control jumps to the top level.
Every error handler works in the same way: It is given a description of the error (as
described in the previous section). It mayor may not return. If it returns, then it
returns either a list or a non-list. If it returns a list and the error is continuable, then the
car of the list is returned to the function that noticed the error. Otherwise, the error
handler has decided not to handle the error.

10.4. Default aids
There are two standard error handlers that probably handle the needs of most

users. One of these is the Lisp-coded function break-err-hand1er, which is the default
value of ER Ofotpl. Thus, when all other handlers have ignored an error, break-err-handler
takes over. It prints out the error message and goes into a read-eval-print loop. The
other standard error handler is debug-err-handler. This handler is designed to be con
nected to EROfoall and is useful if your program uses errset and you want to look at the
error before it is thrown up to the errset

10.5. Autoloading

10-2

When eva~ apply, or jUncall are told to call an undefined function, an EROfoundef
error is signaled. The default handler for this error is undef-jUnc-handler. This function
checks the property list of the undefined function for the indicator, autoload. If it is

4404P30 LISP PROGRAMMERS

EXCEPTION HANDLING

present, the value of that indicator should be the name of the file that contains the
definition of the undefined function. Undef-func-handler loads the file and check if it has
defined the function which caused the error. If it has, the error handler returns and the
computation continues as if the error did not occur. This provides a way for you to tell
the Lisp system about the location of commonly used functions. The trace package sets
up an autoload property to point to llisp/lib/trace.

10.6. Interrupt processing

The operating system provides one user-interrupt character that defaults to ~C. t
You may select a Lisp function to run when an interrupt occurs. Since this interrupt
could occur at any time and, in particular, could occur at a time when the internal stack
pointers are in an inconsistent state, the processing of the interrupt may be delayed until
a safe time. When the first ~C is typed, the Lisp system sets a flag that an interrupt has
been requested. This flag is checked at safe places within the interpreter and in the
qlinker function. If the Lisp system does not respond to the first AC, another ~C should
be typed. This causes all of the transfer tables to be cleared, forcing all calls from com
piled code to go through the qlinker function where the interrupt flag is checked. If the
Lisp system still doesn't respond, a third ~C causes an immediate interrupt. This inter
rupt is not necessarily in a safe place, so the user should reset the Lisp system as soon as
possible.

tActually there are two but the lisp system does not allow you to catch the QUIT interrupt.

4404P30 LISP PROGRAMMERS 10-3

CHAPTER 11

The Lister Trace Package

The Lister Trace package is an important tool for the interactive debugging of a Lisp pro
gram. It allows you to examine selected calls to a function or functions, and optionally to stop
execution of the Lisp program to examine the values of variables.

The trace package is a set of Lisp programs located in the Lisp program library (usually in
the file llisp/lib/trace.O. Although not normally loaded in the Lisp system, the package is
loaded when the first call to trace is made.

(trace [ls_arg 1 ... J)

WHERE: The form of the Is_argiis described later.

RETURNS: A list of the function sucessfully modified for tracing. If no arguments are
given to trace, a list of all functions currently being traced is returned.

SIDE EFFECT: The definitions of the functions indicated in the argument list are (usually
temporarily) modified.

The Is_argican have one of the following forms:

foo - When foo is entered and exited, the trace information is printed.

(foo break) - When foo is entered and exited, the trace information is printed. Also, just
after the trace information for foo is printed upon entry, you are put in a special
break loop. The prompt is 'T{l}' and you may type any Lisp expression and see its
value printed. The th argument to the function just called can be accessed as
(arg D.

To leave the trace loop, just type ?ret and execution continues.

(foo if expression) - When foo is entered and the expression evaluates to non-nil, then the
trace information is printed for both exit and entry. If expression evaluates to nil, then
no trace information is printed.

(foo ifnot expression) - When foo is entered and the expression evaluates to nil, then the trace
information is printed for both entry and exit. If both if and ifnot are specified, then the
if expression must evaluate to non nil AND the ifnot expression must evaluate to nil for
the trace information to be printed out.

(foo evalin expression) - When foo is entered and after the entry trace information is printed,
expression is evaluated. Exit trace information is printed when foo exits.

(foo evalout expression) - When foo is entered, entry trace information is printed. When foo
exits, and before the exit trace information is printed, expression is evaluated.

4404P30 LISP PROGRAMMERS 11-1

THE LISTER TRACE PACKAGE

(foo evalinout expression) - This has the same effect as (trace (foo evalin expression evalout
expression» .

(foo lprint> - This tells trace to use the level printer when printing the arguments to and the
result of a call to foo. The level printer prints only the top levels of list structure. Any
structure below three levels is printed as an &. This allows you to trace functions with
massive arguments or results.

11-2

Ordinarily the output from the trace package is printed with prinlevel bound to
trace-prinlevel (default 4) and prinlength bound to trace-prinlength (default 5). Prinlevel
and prinlength, which are useful in cutting off verbose or infinite (cyclical) structures, are
described in Appendix B. If you wish to always print full lists then setting trace-prinlevel
and trace-prinlength each to nil, will accomplish this.

The following trace options permit you to have greater control over each action that
takes place when a function is traced. These options are only meant to be used by pro
grammers who need special hooks into the trace package. Most programmers should skip
reading this section.

(foo traeeenter tefune> - This tells trace that the function to be called when foo is entered
is tefunc. tefunc should be a lambda of two arguments. The first argument is
bound to the name of the function being traced, foo in this case. The second argu
ment is bound to the list of arguments to which foo should be applied. The func
tion tefunc should print some sort of "entering foo" message. It should not apply
foo to the arguments, however. That is done later on.

(foo traeeexlt tdune> - This tells trace that the function to be called when foo is exited is
txfunc. txfunc should be a lambda of two arguments. The first argument is bound
to the name of the function being traced, foo in this case. The second argument is
bound to the result of the call to foo. The function txfunc should print some sort
of "exiting foo" message.

(foo evfen evfune> - This tells trace that the form evfunc should be evaluated to get the
value of foo applied to its arguments. This option is a bit different from the other
special options since evfunc is usually an expression, not just the name of a func
tion, and that expression is specific to the evaluation of function foo. The argu
ment list to be applied is available as T -arglist.

(foo printaqs pdune> - This tells trace to use prfunc to print the arguments to be applied
to the function foo. prfunc should be a lambda of one argument. You may want
to use this option if you want a print function which can handle circular lists. This
option works only if you do not specify your own traceenter function. Specifying
the option Iprint is just a simple way of changing the printargs function to the level
printer.

(foo printres pdune> - This tells trace to use prfunc to print the result of evaluating foo.
prfunc should be a lambda of one argument. This option works only if you do not
specify your own traeeexit function. Specifying the option lprint changes printres
to the level printer.

4404P30 LISP PROGRAMMERS

THE LISTER TRACE PACKAGE

You may specify more than one option for each function traced. For example:

(trace ([00 if (eq 3 (arg 1)) break /print) (bar evalin (print xyzzy)))

This tells trace to trace two more functions, foo and bar. Should foo be called with the
first argument eq to 3, then the entering foo message is printed with the level printer.
Next it enters a trace break loop, allowing you to evaluate any lisp expressions. When
you exit the trace break loop, foo is applied to its arguments and the resulting value is
printed, again using the level printer. Bar is also traced, and each time bar is entered, an
entering bar message is printed and then the value of xyzzy is printed. Next bar is applied
to its arguments and the result is printed. If you tell trace to trace a function that is
already traced, it first un traces it. Thus, if you want to specify more than one trace option
for a function, you must do it all at once. The following is notequivalent to the preceding
call to trace for foo:

(trace ([00 if (eq 3 (arg 1))) ([00 break) ([00 /print))

In this example, only the last option, lprint, is in effect.

If the symbol Stracemute is given a non nil value, printing of the function name and
arguments on entry and exit is surpressed. This is particularly useful if the function you
are tracing fails after many calls to it. In this case, you would tell trace to trace the func
tion, set Stracemute to t, and begin the computation. When an error occurs, you can use
tracedump to print out the current trace frames.

Generally, the trace package has its own internal names for the Lisp functions it
uses, so that you can feel free to trace system functions like cond and not worry about
adverse interaction with the actions of the trace package. You can trace any type of func
tion: lambda, nlambda, lexpr, or macro, whether compiled or interpreted, and you can
even trace array references. However, you should not attempt to store in an array that has
been traced.

When you are tracing compiled code, keep in mind that many function calls are
translated directly to machine language or other equivalent function calls. A full list of
open-coded functions is listed at the beginning of the Liszt compiler source. Trace does a
(sstatus trans/ink nil) to insure that the new traced definitions it defines are called instead
of the old untraced ones. You may notice that compiled code runs slower after this is
done.

<traceargs s func [x levelJ) - -
WHERE: If xJevel is missing, it is assumed to be l.
RETURNS: The arguments to the xJevel th call to traced function sjunc are returned.

<tracedump)
SIDE EFFECT: The currently active trace frames are printed on the terminal. It returns a

list of functions untraced.

4404P30 LISP PROGRAMMERS 11-3

THE LISTER TRACE PACKA>GE

(untrace [s_argl ...])

11-4

RETURNS: A list of the functions that were untraced.

NOTE: If no arguments are given, all functions are untraced.

SIDE EFFECT: The old function definitions of all traced functions are restored except in
the case where it appears that the current definition of a function was not
created by trace.

4404P30 LISP PROGRAMMERS

CHAPTER 12

Liszt - the Lisp compiler

12.1. General strategy of the compiler

The purpose of the Lisp compiler, Liszt, is to create an object module that, when
brought into the Lisp system using fas~ has the same effect as bringing in the
corresponding Lisp-coded source module with load with one important exception: func
tions are defined as sequences of machine language instructions instead of Lisp S
expressions. Liszt is not a function compiler; it is a .file compiler. Such a file can contain
more than function definitions; it can contain other Lisp S-expressions, which are
evaluated at load time. These other S-expressions are also stored in the object module
produced by Liszt and are evaluated at fasl time.

As is almost universally true of Lisp compilers, the main pass of Liszt is written in
Lisp.

12.2. Running the compiler

The compiler is normally run in this manner:
+ + liszt foo
This compiles the file foo.l or foo. (The preferred way to'indicate a Lisp source file is to
end the file name with '.I'.) The result of the compilation is placed in the file foo.o, if no
fatal errors were detected. All messages that Liszt generates go to the standard output.
Normally each function name is printed before it is compiled. (However, the +q option
suppresses this.)

12.3. Special forms

Liszt makes one pass over the source file. It processes each form in this way:

12.3.1. macro expansion

If the form is a macro invocation (that is, it is a list whose car is a symbol
whose function binding is a macro), then that macro invocation is expanded. This is
repeated until the top level form is not a macro invocation. When Liszt begins, there
are already some macros defined, in fact some functions, such as defun, are actually
macros. You may define your own macros as well. For a macro to be used, it must
be defined in the Lisp system in which Liszt runs.

4404P30 LISP PROGRAMMERS 12-1

LISZT, THE LISP COMPILER

12-2

12.3.2. classlflcation
After all macro expansion is done, the form is classified according to its car. If

the form is not a list, then it is classified as an other.)

12.3.2.1. eval-when
The form of eval-when is

(eval-when (timel time2 .. J forml form2 .. J
where the time i are one of eva(compile, or load The compiler examines the
form i in sequence and the action taken depends on what is in the time list. If
compile is in the list then the compiler invokes evalon each form i as it examines
it. If load is in the list, then the compile recursively calls itself to compile each
form i as it examines it. Note that if compile and load are in the time list, then the
compiler both evaluates and compiles each form. This is useful if you need a
function to be defined in the compiler at both compile time, perhaps to aid macro
expansion, and at run time after the file is lasM in.

12.3.2.2. declare
Declare is used to provide information about functions and variables to the

compiler. It is (almost) equivalent to

(eval-when (compile) .. J.
You may declare functions to be one of three types: lambda (*expr), nlambda
(*fexpr), or lexpr (*Iexpr). The names in parenthesis are the Maclisp names and
are accepted by the compiler as well, and not just when the compiler is in Maclisp
mode. Functions are assumed to be lambdas until they are declared otherwise or
are defined differently. The compiler treats calls to lambdas and lexprs
equivalently, so you need not worry about declaring lexprs either. It is important
to declare nlambdas or define them before calling them. Another attribute you
can declare for a function is localf, which makes the function 'local'. A local
function's name is known only to the functions defined within the file itself. The
advantage of a local function is that is can be entered and exited very quickly and
it can have the same name as a function in another file and there will be no name
conflict.

Variables may be declared special or unspecial. When a special variable is
lambda bound, either in a lambda, prog, or do expression, its old value is stored
away on a stack for the duration of the lambda, prog, or do expression. This takes
time and is often not necessary. Therefore, the default classification for variables
is unspecial. Space for unspecial variables is dynamically allocated on a stack. An
unspecial variable can only be accessed from within the function where it is
created by its presence in a lambda, prog, or do expression variable list. It is pos
sible to declare that all variables are special as will be shown later.

You may declare any number of things in each declare statement. A sample
declaration is
(declare

(lambda funcI func2)
('*/expr fund)
(*Iexpr func4)
Oocalffunc5)
(special varl var2 varl)

4404P30 LISP PROGRAMMERS

LISZT, THE LISP COMPILER

(unspecial var4))

You may also declare all variables to be special with (declare (specials t)).
You may declare that macro definitions should be compiled as well as evaluated at
compile time by (declare (macros t)). In fact, as was mentioned earlier, declare is
much like (eval-when (compile) .. J Thus, if the compiler sees (declare (faa bar))
and foo is defined, then it evaluates (faa barJ. If foo is not defined, then an
undefined declare attribute warning is issued.

12.3.2.3. (progn 'compile forml form2 ... formn)

When the compiler sees this it simply compiles forml through formn as if
they too were seen at top level. One use for this is to allow a macro at top-level
to expand into more than one function definition for the compiler to compile.

12.3.2.4. include/includef

Include and include/cause another file to be read and compiled by the com
piler. The result is the same as if the included file were textually inserted into the
original file. The only difference between include and include/is that include does
not evaluate its argument and includef does. Nested includes are allowed.

12.3.2.5. def
A def form is used to define a function. The macros dejun and dejmacro

expand to a def form. If the function being defined is a lambda, nlambda, or
lexpr, then the compiler converts the Lisp definition to a sequence of machine
language instructions. If the function being defined is a macro, then the compiler
evaluates the definition -- thus defining the macro within the running Lisp com
piler. Furthermore, if the variable macros is set to a non-nil value, then the
macro definition also is translated to machine language and, thus, is defined when
the object file is fasled in. The variable macrosis set to t by (declare (macros t)).

When a function or macro definition is compiled, macro expansion is done
whenever possible. If the compiler can determine that a form would be evaluated
if this function were interpreted, then it macro-expands it. It does not macro
expand arguments to an nlambda unless the characteristics of the nlambda are
known, as is the case with condo The map functions (map, mape, mapcar, and so
on) are expanded to a do statement. This allows the first argument to the map
function to be a lambda expression that references local variables of the function
being defined.

12.3.2.6. other forms

All other forms are simply stored in the object file and are evaluated when
the file is lased in.

4404P30 LISP PROGRAMMERS 12-3

LISZT, THE LISP COMPILER

12.4. Using the compiler

The previous section describes exactly what the compiler does with its input. Gen
erally, you do not have to worry about all that detail because files that work interpreted,
work compiled. The following is a list of steps you should follow to insure that a file
compiles correctly.

[1] Make sure all macro definitions precede their use in functions or other macro
definitions. If you want the macros to be around when you fasl in the object file,
you should include this statement at the beginning of the file: (declare (macros t))

[2] Make sure all nlambdas are defined or declared before they are used. If the com
piler comes across a call to a function that has not been defined in the current file,
that does not currently have a function binding, and whose type has not been
declared, then it assumes that the function needs its arguments evaluated. That is,
it is a lambda or lexpr and generates code accordingly. This means that you do not
have to declare nlambda functions like status since they have an nlambda function
binding.

[3] Locate all variables that are used for communicating values between functions.
These variables must be declared special at the beginning of a file. In most cases,
there aren't many special declarations, but, if you fail to declare a variable special
that should be declared, references to those variables which are used 'free' will not
access the expected values. Examining the compiler listing will provide indications
of variables used 'free' but not declared 'special'. You may eliminate all such mes
sages by adding declarations. Unusual constructions calling interpreted code with
'free' variables can still fail if called from compiled code in which those variables
are not declared 'special'. Here is an example. Assume that a file contains just
these three lines:

(def aaa (lambda (glob loc) (bbb loc)))
(def bbb (lambda (myloc) (add glob myloc)))
(defccc (lambda (glob loc) (bbb loc)))

You can see that if you load in these two definitions, then (aaa 3 4) is the same as
(add 3 4) and gives us 7. Suppose you compile the file containing these definitions.
When Liszt compiles aaa, it assumes that both glob and loc are local variables and
allocates space on the temporary stack for their values when aaa is called. Thus,
the values of the local variables glob and loc do not affect the values of the sym
bols glob and loc in the Lisp system. Now, Liszt moves on to function bbb. Myloc
is assumed to be local. When it sees the add statement, it finds a reference to a
variable called glob. This variable is not a local variable to this function, and,
therefore, glob must refer to the value of the symbol glob. Liszt automatically
declares glob to be special, and it prints a warning to that effect. Thus, subsequent
uses of glob always refer to the symbol glob. Next, Liszt compiles ccc and treats
glob as a special and loc as a local. When the object file is fasted in and (ccc 3 4)
is evaluated, the symbol glob is lambda-bound to 3, bbb is called and returns 7.
However, (aaa 3 4) fails since when bbb is called, glob is unbound. What should
be done here is to put (declare (special glob) at the beginning of the file.

[4] Make sure that all calls to arg are within the lexpr whose arguments they reference.
If foo is a compiled lexpr and it calls bar, then bar cannot use arg to get at foo's
arguments. If both foo and bar are interpreted, this works however. The macro lis
lilY can be used to put all or some of
a lexpr's arguments in a list, which can then be passed to other functions.

12-4 4404P30 LISP PROGRAMMERS

LISZT, THE LISP COMPILER

12.S. ComplIer options
The compiler recognizes a number of options that are described later. The options

are typed anywhere on the command line preceded by a plus sign. The entire command
line is scanned and all options recorded before any action is taken. Thus
+ + liszt +mx foo
+ + liszt +m +x foo
+ + liszt foo +mx
are all equivalent. The meanings of the options are:

C The assembler language output of the compiler is commented. This is useful when
debugging the compiler and is not normally done since it slows down compilation.

I The next command line argument is taken as a filename and loaded prior to compi
lation.

e Evaluate the next argument on the command line before starting compilation. For
example,
@ liszt +e '(setq foobar "foo string")' foo
evaluates the earlier s-expression. Note that the shell requires that the arguments
be surrounded by single quotes.

m Compile this program in Maclisp mode. The reader syntax is changed to the
Maclisp syntax and a file of macro definitions is loaded in,· usually named
llisp/lib/machacks. However FRANZ LISP cannot guarantee that this switch allows
you to compile any given program without some change.

o Select a different object or assembler language file name. For example,
+ + liszt foo +0 xxx.o
compiles foo and into xxx.o instead of the default foo.o, and
+ + liszt bar +S +0 xxx.s
compiles to assembler language into xxx.s instead of bar.s.

q Run in quiet mode. The names of functions being compiled and various "Note"'s
are not printed.

Q Print compilation statistics and warn of strange constructs. This is the inverse of
the q switch and is the default.

r Place bootstrap code at the beginning of the object file, which, when the object file
is executed, causes a Lisp system to be invoked and the object file lased in. This is
known as 'autorun' and is described later.

S Create an assembler language file only.
+ + liszt +S foo
Creates the assembler language file foo.s but does not attempt to assemble it. If
this option is not specified, the assembler language file is put in the temporary disk
area under an automatically generated name based on the Lisp compiler's process
id. Then, if there are no compilation errors, the assembler is invoked to assemble
the file.

T Print the assembler language output on the standard output file. This is useful
when debugging the compiler.

u Run in VCI-Lisp mode. The character syntax is changed to that of VCI-Lisp and a
VCI-Lisp compatibility package of macros is read in.

w Suppress warning messages.

x Create a cross reference file.
+ + liszt +x foo
not only compiles foo into foo.o but also generates the file foo.x. The file foo.x is
Lisp-readable and lists for each function all functions which that function could
call. The program lxref reads one or more of these ".x" files and produces a
human-readable cross reference listing.

4404P30 LISP PROGRAMMERS 12-5

LISZT, THE LISP COMPILER

12.6. autorun

12-6

The object file that Liszt writes does not contain all the functions necessary to run
the Lisp program, which was compiled. In order to use the object file, a Lisp system
must be started and the object file lased in. When the +r switch is given to Liszt, the
object file created contains a small piece of bootstrap code at the beginning, and the
object file is made executable. Now, when the name of the object file is given to the
operating system command interpreter (shell) to run, the bootstrap code at the beginning
of the object file causes a Lisp system to be started. The first action the Lisp system
takes is to laslin the object file that started it. In effect, the object file has created an
environment in which it can run.

Autorun is an alternative to dumplisp. The advantage of autorun is that the object
file that starts the whole process is typically small, whereas the minimum dumplis~d file
is very large -- one half megabyte. The disadvantage of autorun is that the file must be
lased into a Lisp system each time it is used, whereas the file which dumplisp creates can
be run as is. Liszt itself is a dumplis~d file since it is used so often and is large enough
that too much time is spent lasing it in each time it is used. The Lisp cross reference
program, lxref, uses autorun, since it is a small and rarely used program.

In order to have the program lased in, begin execution (rather than starting a Lisp
top level); the value of the symbol user-top-Ievel should be set to the name of the func
tion to get control. An example of this is shown next.

4404P30 LISP PROGRAMMERS

Suppose you want to replace the operating system
date program with one written in Lisp.

+ + cat lispdate.l
(defun mydate nil

(patom 'The date is ,,)
(patom (status ctime»
(terpr)
(exit 0»

(setq user-top-Ievel 'mydate)

+ + liszt +r lispdate
Compilation begins with Lisp Compiler 5.2
source: Iispdate.l, result: Iispdate.o
mydate
%Note: Iispdate.l: Compilation complete
%Note: Iispdate.l: Time: Real: 0:3, CPU: 0:0.28, GC: 0:0.00 for 0 gcs
%Note: Iispdate.l: Assembly begins
%Note: Iispdate.l: Assembly completed successfully

This changes the name to remove the" .d', (this isn't necessary).
+ + move lispdate.o lispdate

This tests it out
+ + lispdate
The date is Sat Aug 1 16:58:33 1984
++

12.7. pure literals

LISZT, THE LISP COMPILER

Normally, the quoted lisp objects (literals) that appear in functions are treated as
constants. Consider this function:

(de//oo
(lambda nil (cond ((not (eq 'a (car (setq x '(a b)))))

(print 'impossible!!))
(t (rplaca x'd)))))

At first glance it seems that the first cond clause is never true, since the car of (a b)
should always be a. However, if you run this function twice, it prints 'impossible!!' the
second time. This is because the following clause modifies the 'constant' list (a b) with
the rplaca function. Such modification of literal Lisp objects can cause programs to
behave strangely as the earlier example shows, but, more importantly, it can cause gar
bage collection problems if done to compiled code. When a file is lased in, if the sym
bol $purcopylits is non-nil, the literal Lisp data is put in 'pure' space; that is, it is put in
space that need not be looked at by the garbage collector. This reduces the work the gar
bage collector must do, but it is dangerous, since if the literals are modified to point to
non-pure objects, the marker may not mark the non-pure objects. If the symbol Spur
copylits is nil, then the literal Lisp data is put in impure space and the compiled code acts
like the interpreted code when literal data is modified. The default value for $purcopylits
is t.

4404P30 LISP PROGRAMMERS 12-7

LISZT, THE LISP COMPILER

12.8. transfer tables

A transfer table is setup by /asl when the object file is loaded in. There is one
entry in the transfer table for each function that is called in that object file. The entry
for a call to the function /00 has two parts whose contents are:
[1] Function address - This initially points to the internal function qlinker. It may

some time in the future point to the function /00, if certain conditions are satisfied.
(See later for more on this.)

[2] Function name - This is a pointer to the symbol/oo. This is used by qlinker.

When a call is made to the function /00, the call actually is made to the address in the
transfer table entry and ends up in the qlinker function. Qlinker determines that /00 is
the function being called by locating the function name entry in the transfer table t. If
the function being called is not compiled, then qlinker just calls juncall to perform the
function call. If /00 is compiled and if (status translink) is non-nil, then qlinker modifies
the function address part of the transfer table to point directly to the function /00.

Finally, qlinker calls /00 directly. The next time a call is made to /00 the call goes
directly to /00 and not through qlinker. This results in a substantial speedup in compiled
code to compiled code transfers. A disadvantage is that no debugging information is left
on the stack, so showstack and baktrace are useless. Another disadvantage is that if you
redefine a compiled function either through loading in a new version, or interactively
defining it, then the old version may still be called from compiled code, if the fast link
ing described earlier has already been done. The solution to these problems is to use
(sstatus translink value). If value is

nil All transfer tables are cleared. That is, all function addresses are set to point to
qlinker. This means that the next time a function is called qlinker is called and
looks at the current definition. Also, no fast links are set up since (status translink)
is nil. The result is that showstack and baktrace work and the function definition at
the time of call is always used.

on This causes the Lisp system to go through all transfer tables and set up fast links
wherever possible. This is normally used after you have lased in all of your files.
Furthermore, since (status translink) is not nil, qlinker makes new fast links if the
situation arises, which is not likely unless you /aslin another file.

t This or any other value not previously mentioned just makes (status translink) be
non-nil and, as a result, fast links is made by qlinker if the called function is com
piled.

12.9. Fbnum functions

The compiler generates inline arithmetic code for fixnum only functions. Such
functions include +, -, ., /, \, 1 + and 1-. The code generated is much faster than
using add, difference, etc. However it only works if the arguments to and results of the
functions are fixnums. No type checking is done.

t Qlinker does this by tracing back the call stack until it finds the calls machine instruction that called it. The ad
dress field of the calls contains the address of the transfer table entry.

12-8 4404P30 LISP PROGRAMMERS

CHAPTER 13

TPL: the Top-Level Listener

13.1. Introduction

Tpl is the default top-level "listener" for FRANZ LISP. This program reads input
from the keyboard, evaluates the input, and prints the value(s) returned by the evalua
tion. While it is possible for a Lisp system to provide just this bare "read-eval-print
loop" and be quite useful, most users prefer a more "user-friendly" top level.

Part of the attraction of Lisp is that this or any other top-level interface to the user
is easy to change for special uses. In many cases, serious application programs replace tpl
with a different top level. Several widely-used programs replace it with an algebraic infix
parser; others use a natural language (English) parser, or a database command language.
Since the source text for tpl is available in the lisp library as tp1.l, the code can be used
by programmers as a basis for other top-level "listeners".

13.2. A top-level for debugging Lisp programs

The particular goal of this top-level listener is to provide a natural link to FRANZ
LISP debugging facilities, and support the programmer with various mechanisms to keep
track of command histories, simplify the setting and examination of debugging flags, etc.
Tpl provides enhanced debugging facilities, history command substitution, a file package,
frame evaluation, and lisp stack manipulating functions.

13.3. How to use tpl

If you start up the FRANZ LISP system as delivered, tpl is the program which reads
your keyboard input and determines what is done with it. Tpl prints a prompt" = > ".

Any input that is valid use at any level in FRANZ LISP will have exactly the same
meaning to tpl, with the exception that new lines beginning with a question mark (?) are
interpreted as special commands to tpl, and not passed immediately to Lisp for evalua
tion.

In the description of the tpl commands, the notation Ll indicates optional argu
ments, and the notation [a I b] means 'a' or 'b' or neither.
?help [topic]

prints the help text associated with a particular command within tpl. 'topic' can be
selected from one of the tpl keywords; if no argument is given, a list of the key
words and a brief summary of their meanings is printed. For example:

= > ?help history
prints an explanation of what you get when you type" ?history".
=> ?help?
similarly, prints an explanation of "??"

4404P30 LISP PROGRAMMERS REV, FEB 1985 13-1

13-2

?? [location-specifier]
finds a particular previous command line identified by the location-specifier, and
re-executes it as if it were retyped to tpl directly. If the location-specifier is a non
numeric ymbol, tpl scans backward through the commands to find an expression
whose 'car' is equal to the symbol. For example, "?? print" will repeat the last
command beginning (print). It is not necessary to type the whole symbol: you
can type an asterisk to match "the rest of the atom". For example, "?? pr *" will
also find (print .. .) unless some more recent command also begins with (pr).
If the location-specifier is a positive integer, the command line with that number is
re-executed. If location-specifier is a negative number (-N) then the Nth previous
command is redone. If location-specifier is not given, then the last command is
redone. Thus "??" is equivalent to "?? -1".

?his[tory] [r]
prints the history list of recent Lisp commands. You may set the variable tpl
history-show to alter the number of the most recent commands which are
displayed. Invoking the 'r' option will display the results of those commands.

?re[set]
is equivalent to typing the Lisp command (reset).

?tr [fn1 fn2 .. .1
traces 'fn1 fn2 .. .'. While this will usually be a simple enumeration of functions to
be traced, more options can be passed to the trace function by using (name
option-list) expressions as in the normal trace package (e.g. "?tr (foo break)").

?untr [fn1 fn2 .. .1
untraces the specified functions, or if given no argument, will untrace all traced
functions.

?step [t I fn1 fn2 .. .1

?soff

initiates a mode of single-step execution of Lisp, If 't' is the argument, this is done
immediately. Otherwise stepping is initiated upon entry to any of the functions fn1
fn2,.... The next two commands control this mode.

turns stepping off.

?sc [n]
(step counter) steps 'n' times, then enters a Lisp (break). 'n' defaults to one. if
'n' is the symbol 'inr then steps forever without breaking. When in stepping
mode, typing a < return> is equivalent to ?sc 1.

?state [sym1 vall .. .1
prints/changes the state of tpl flags and variables. The variables listed by '?state'
are the only ones which can be changed via this command. Sym1 is set to vall,
etc.

?prt 'pop and retry': does a ?pop, followed by a retry of the command which caused the
last break to be entered. This is one of the most commonly useful tpl commands,
since it resumes computation, probably after a fix-up, from the last error.

?ld [file1 file2 ...]
loads the given files, or re-Ioads the just previously loaded file if no arguments are
supplied.

?fast sets up Lisp for fast execution, by: turning off debugging mode (?debug off), set
ting translink to 'on', and setting displace-macros to t. Debugging information will
be lost when this mode is entered. These settings generally would be used during
the running of compiled programs which are known to be correct and in which
high-speed execution is important.

REV, FEB 1985 4404P30 LISP PROGRAMMERS

?pop pops up one break level. If at the top level, it has no effect.
?ret [val]

returns 'val' from this break level. If the argument is missing, nil is returned. The
value is returned to the function which produced the error, allowing it to continue.
The break must have originated from invoking the break function or from the sig
nalling of a continuable error. The argument 'val' is evaluated.

?zo views (Zooms) a portion of the Lisp stack. You may use ?up and ?dn to move the
pointer to the current stack frame. Prior to using this you should execute the tpl
command ?debug so that sufficient information is stored on the stack.

?dn [n]
without arguments, moves the current frame pointer down one level and executes
a ?zo. If n is given, it moves that number of frames down. The stack grows
upward, so the oldest frames are on the bottom.

?up [n]
is the same as ?dn, except the current frame pointer is moved in the up direction.

?ev symbol
determines the value of symbol in the context of the current stack frame, as if the
frames above the current one had not yet been created.

?pp "pretty prints" the current frame with neat indentation and without ellipsis. Ordi
narily this would be used after ?zo is used to locate a frame of interest.

<eof>
(a single character, without a '?' prefix) pops up one break level if it is typed to tpl
from a keyboard input stream. Depending upon the catching of signals, if it is
typed on the top level, may be used to exit from lisp. Lisp.

13.4. Tpl special symbols

The following are special symbols:

user-top-Ievel
may be bound to a function (Le. a lambda-expression, or more likely a symbol
which is the name of a defined function), which will be evaluated instead of (tpl)
as the read-eval-print loop.

top-level-prompt
if bound to a non-nil S-expression, will be used as the top-level prompt.

top-Ievel-init
if bound to a function, will be used to initialize tpl. Normally, the lisprc file is
read, and the copyright notice and version number are printed.

top-level-print
if bound to a function, will be used to print values returned by the read-eval part of
the read-eval-print loop.

tpl-number-prompt
if t, will cause tpl to print an index number with the' = >' prompt.

tpl-prinlevel
the maximum nesting level to print lists. Beyond that point, lists are abbreviated to
&.

tpl-prinlength
the maximum length to print a list. Beyond that point, lists are abbreviated to &.

tpl-history-show
the number of history items to show with the ?history command.

4404P30 LISP PROGRAMMERS REV, FEB 1985 13-3

displace-macros
if t, then displace macros with their expansion. This will speed execution, occupy
more space, and possibly interfere with debugging by replacing macro calls by pos
sibly obscure expansions.

13.5. A sample session with TPL

13-4

; first we load in a factorial function:
=> ?ld fact
[load fact.I1
(fact)
; we 'prettyprint' the fact function
=> (pp fact)
(def fact

(lambda (n)
(cond «= nO) (bug» «times n (fact (sub! n»»»)

t
; we somehow fail to notice that there is a bug in when n equals 0
; so we try it out:
=> (fact 10)
Error: eval: Undefined function bug
Form: (fact 10)
; we could use showstack or backtrace to find out what is wrong, but
; for this example we decide that we want to use the more powerful
; ?zo (zoom) function. In order to use ?zo, we have to be in debugging
; mode before the error occurs. Since we aren't, we decide to turn
; on debugging and run the function again so it gets an error
c{1} ?debug
Debug is on
t
; the ?prt function pops up a break level and retries the function that
; caused the error. The line just below which says '=> (fact 10)' was
; printed by tpl. It was not typed by the user. tpl is showing the
; function it is retrying.
c{1} ?prt
= > (fact 10)
Error: eval: Undefined function bug
Form: (fact 10)
; the error occurred again. Now that we are in debug mode, we can do
; a zoom
c{1} ?zo
Should I re-calc the stack (yIn) :y
....... top •••
II current \
(bug)
(cond « = n 0) (bug» «times n &»)
(fact (subl n»
(times n (fact (subl n»)
nil
; it shows that the current frame is the top frame and that is the
; evaluation of (bug).
; We can ask what the value of n is at this point:
c{1} ?ev n

REV, FEB 1985 4404P30 LISP PROGRAMMERS

o
; it is pretty clear that the problem is that the bug function is
; undefined. Before we correct it, we show a bit more of tpl. Here
; we go down five frames:
c{1} ?dn 5
(cond « = n 0) (bug» «times n &»)
(fact (subl n»
(times n (fact (subl n»)
(cond « = n 0) (bug» «times n &»)
/ / current \
(fact (subl n»
(times n (fact (sub1 n»)
(cond « = n 0) (bug» «times n &»)
(fact (sub1 n»
nil
; now we inquire as to n's value at this point in the execution:
c{1} ?ev n
2
; Now let us fix the bug. The function fact could be edited by using
; editf (see chapter 16), or we can define (bug) as returning 1.
c{1} (defun bug () 1)
bug
; Now we pop and retry. Notice that we didn't have to move the
; current frame to the top.
c{1} ?prt
=> (fact 10)
3628800
; this time it works.
=>
,
; sample session 2.
; things work slightly differently when fact is compiled
,
=> ?1d fact
[fasl fact.o]
(fact)
; we turn on debugging since we know that an error will occur
=> ?debug .
Debug is on
t
=> (fact 10)
Error: Undefined function called from compiled code bug
Form: (fact 10)
; look at the stack
c{1} ?zo
Should I re-calc the stack(y/n):y
*** top ***
/ / current \
a:(fact (0»
a:(fact (1)
a: (fact (2»
a:(fact (3»
nil
; The call to (bug) isn't visible on the stack, since undefined functions
; are detected in compiled code in a different manner.

4404P30 LISP PROGRAMMERS REV, FEB 1985 13-5

; Notice that the frames are preceded by 'a:' and the arguments look
; unusual. This is an 'apply' form, which you may think of as a shorthand for
; (apply 'fact '(2». This is how frames showing calls from compiled
; code look.
c{1} (defun bug 0 1)
bug
; again we fix the bug and retry
c{1} ?prt
=> (fact 10)
3628800
; and it works.
=>

13.6. The File Subsystem

13-6

The FRANZ LISP file package helps support the residential environmental style of
lisp programming in which most or all program editing is done within lisp itself, probably
using ediif, editv, editp to create and debug programs. Although ordinary data files are
used by the file package to store the programmer's alterations to the function definitions
and other data that persist between runnings of programs, management of those files is
controlled by the FRANZ LISP system.

As an interactive session proceeds, the file package (in cooperation with the top
level) . tracks the changes the user makes to the lisp environment. Those changes are of
three types: function (or macro) definitions, values of variables (symbols) altered, and
properties of symbols altered. At any point the user can find out what has been changed
by typing ?changed to the top level, which will print the information out in a table form.

Each item (function, value or property) may be associated with a file. The list
printed by '?changed' will show the associated file for each changed item. In order to
save a change, the user must request that the associated file be written out (using
'?fileout', described below). If an item doesn't have an associated file, then one can be
declared using' ?add-function', '?add-var' or '?add-prop', depending on the type of item.

Command Summary for the File Package

?filein [name 1 name2 .. .1
loads the named files using a read-eval loop, printing the names (not the values)
being loaded. The files being read should have been written with ?fileout. If no
files are named as arguments, a list of all previously loaded files is returned. The
command

?fileout [name 1 name2 .. .1
writes the given files if any of the items in the file have changed. With no argu
ments, all files that need updating are rewritten.

?changed
reports on those data items which have changed but not stored on files, and the
names of associated files.

?add-function filen fcnl [fcn2 .. .1
adds 'fcnl', 'fcn2', etc. to the list of functions associated with the the file 'filen'.
The file 'filen' should either not exist or should be the name of a file which has
been loaded with ?filein.

?add-var filen varl [var2 .. .1
adds the given symbols 'varl', 'var2', etc. to the list of symbols stored in the file

REV, FEB 1985 4404P30 LISP PROGRAMMERS

'filen'. The file 'filen' should either not exist or should be the name of a file which
has been loaded with ?filein.

?add-prop
adds symi's indi property to the list of properties stored in the file 'filen'. The file
'filen' should either not exist or should be the name of a file which has been
loaded with ?filein.

?rem-function filen fcnl [fcn2 .. .1
?rem-var filen varl [var2 .. .1
?rem-prop filen (syml indl) [(sym2 ind2) .. .1

remove the named items from filen. They do this by deleting the association of the
item from the file. When the file is next written with '?fileout', the items will not
be written out.

?whichfile fcn I var I (symbol ind) ...
for each item (which can be a function, variable or (symbol ind», prints the asso
ciated filename, if there is one. If a symbol is both a function and a variable (in
different files), both associated files are printed.

?filestatus [filenl filen2 .. .1
prints the names of the items in each file listed. If no filenames are given, prints a
summary status report of all files.

Backup Variables in the File Package

There are several variables which the user might wish to alter to assist in backup
maintenance:
file: backup-prepend

is a string (or symbol) to prepend to the filename to generate a backup filename
during a '?fileout'

file:backup-append
is a string (or symbol) to append to the filename to generate a backup filename
during a '?fileout'

13.7. File subsystem implementation notes

The file package maintains a database of knowledge about files. For each file it
keeps track of the items stored in that file. The file package also maintains a list of items
which have changed, called the changed-list.

Filein notes:

Filein recognizes three types of items: functions, variables and properties.

A junction item has this form: (kwd functionname anything .. .) where kwd is an
element of the list which is the value of file:function-modifiers. The initial value of
file:function-modifiers is (defun def defmacro). The user may wish to add something to
this list to read in a file not created by '?fileout'. The' ?fileout' function-printing func
tion will only use the 'deC form, which provides a superset of the capabilities of the
other forms.

A variable item has this form: (kwd variablename anything .. .) where kwd is an ele
ment of the list which is the value of file:variable-modifiers. The initial value of
file:variable-modifiers is (setq).

A property item has this form: (kwd symbol anything indicator) where kwd is an
element of the list which is the value of file:property-modifiers. The initial value of

4404P30 LISP PROGRAMMERS ADD, FEB 1985 13-7

13-8

file:property-modifiers is (defprop). Note that the symbol and indicator are not
evaluated before they are added to the list of items, so 'putprop' is not a valid kwd to be
added to file:property-modifiers.

Fileout notes:

Files created by ?fileout contain only a few types of forms (def, setq and defprop).
If the file is edited externally from the lisp system and other forms are inserted (such as
declares or comments), and then the file is filed in-and-out, the other forms will be lost.
It is also important to keep forms syntactically correct (e.g. with parentheses balanced),
because then forms following the error will not be read in to the lisp system. It is gen
erally safe to edit or merge files to add, delete or alter syntactically proper definitions of
the forms already known to the file package.

?fileout performs the following sequence of operations: it opens up a file in /tmp
and writes all items in the file. As each item is written, it is also removed from the glo
bal changed-list if it was on that list. If a file with the same name as the one being writ
ten exists then ?fileout will preserve the previous file by changing its name, if the user
has set one or both of the variables file:backup-prepend and file:backup-append. If both
of these variables are nil, then a backup will not be done. If file:backup-prepend is non
nil, then its value should be a symbol or string which will be prepended to the filename
in order to create the backup name. Likewise file:backup-append will be appended to the
filename to create the backup name. If both variables are non-nil, then both will be
used. Finally, the file in Itmp is renamed to the name of the file being filed out.

A caution is appropriate: suppose you start lisp and define the function 'solveit'.
You would like to add this function to the file 'eqn.1' which you created earlier and
which already contains a number of functions. Your first thought may be to type:
?add-function eqn.l solveit
Since the file 'eqn.1' exists on the disk but hasn't been loaded yet, the file package is
ignorant of any functions other than 'solveit' associated with 'eqn.1'. Executing
?fileout eqn.1
would cause the contents of 'eqn.1' to be replaced with the definition of the single func
tion 'solveit'. As a guard against this situation, the file package asks you if you want to
abort the ?add-function operation when you mention an existing file which however has
not been read-in. It is best to type 'yes' at this point, then
?filein eqn.1
and then
?add-function eqn.1 solveit

ADD, FEB 1985 4404P30 LISP PROGRAMMERS

CHAPTER 14

Miscellaneous Topics

14.1. Keyword Arguments

FRANZ LISP new offers an alternative function calling convention: keyword argu
ments. This feature is borrowed from Common Lisp and is completely compatible with
Common Lisp keywords.

Keyword arguments are used in functions which are largely given as an interface to
the user to some package which has a large number of selectable parameters. When cal
ling a function of this type, it would be hard to remember the ordering of arguments,
since this ordering is possibly random. Keyword arguments offer the ability to tag the
parameters to a function so they can be given in any order and so they are easy to
remember.

In Common Lisp, any symbol which contains a colon (:) as the first character is
called a keyword, and is then treated very specially: keywords evaluate to themselves.
This means :foo evaluates to :foo, where normal symbols would need a quote (') in front
of them to evaluate this way. Currently, in FRANZ LISP, keywords do not exist, and they
need the preceding quote to make them evaluate to themselves. In the near future this
limitation will be lifted with the implementation of the packages facility.

A keyword is a tag for an argument to a function, and keyword-argument
sequences come in pairs, in that order. To illustrate the use of keywords to tag argu
ments, consider the function make-hash-table (explained below) which takes up to four
arguments. A possible invocation might be (make-hash-table ':size 100). The :size key
word tags the argument 100 as the size parameter to the function make-hash-table. Also,
note that the following forms (make-hash-table ':size 10 ':test 'equal) and (make-hash-table
':test 'equal ':size 10) are equivalent.

Whenever a keyword appears in a function definition in this manual, it will be
named without the quote, and it is implied that the user must supply the quote until the
packages facility has been installed.

14.2. Hash Tables

A hash table is an object that can efficiently map one object to another. Each hash
table is a collection of entries, each of which associates a unique key with a value There
are functions to add, delete, and find entries based on a particular key. Finding a value
in a hash table is relatively fast compared to looking up values in, for example, an assoc
list or property list.

The hash table is not a true data type, but rather a type which is constructed from
objects of the type vector. Because of this, the vector predicate returns a non- nil value
when handed a hash table. It should be noted that using vset to set a element of the
hash table will yield unpredictable results.

© 1984 by Franz Inc.

4404P30 LISP PROGRAMMERS 14-1

MISCELLANEOUS TOPICS

Adding a key to a hash table modifies the hash table, and is therefore a destructive
operation.

There are two different kinds of hash tables: those that use the function equal for
the comparing of keys, and those that use eq, the default. When a hash table is created,
the type of comparator is set. If "eq" is chosen as the comparator, and a lookup of a key
is being performed, then the given key is compared to the keys in the table using "eq".

Hashing provides an efficient basis for the construction of the packages facility and
for various sorts of data retrieval techniques.

This hash table package is completely compatible with the one in Common Lisp.

14.2.1. Functions

(makeht 'x_size ['s_test])

RETURNS: A hash table with x_size hash buckets. If present, s_test is used as the test to
compare keys in the hash table, the default being eq. Other valid values for
s_test are equalor nil (to use the the default comparator eq).

NOTE: This function in not present in Common Lisp.

(make-hash-table :size :test :rehash-size :rehash-threshold)

RETURNS: A hash table object of some number of buckets, given by the :size argument. If
the function to compare hash table keys is be something other than eq, then the
:test argument should be used to set this (the choices are eq, equa~ or nn).

NOTE: The :rehash-size and :rehash-threshold keywords are ignored at this time, and no
rehashing is done. Please see the Keywords section in this chapter for an explana
tion of the colon.

(hash-table-p 'H_arg)

RETURNS: t if H_arg is a hash table.

NOTE: Hash tables are really vectors with the car of the their property list equal to hash
table

(gethash 'g_key 'H_htab ['g_defval])

14-2

RETURNS: two values, first, the value associated with the key g key in hash table H htab,
or nll if the key was not in the table, and then a -Boolean value to indicate
whether or not there was a match. If g defval is given and there is no entry in
the hash table, then g_ defval is returned-:-

NOTE: set/may be used to set the value associated with a key.

4404P30 LISP PROGRAMMERS

MISCELLANEOUS TOPICS

(addhash 'g_key 'H_htab 'g_vat)

RETURNS: g_ key, after adding it with its value g_ val to the hash table.

(remhash 'g_key 'H_htab)

RETURNS: t if there was an entry for g key in the hash table H htab, nil otherwise. In the
case of a match, the entry-and associated object are removed from the hash
table.

(maphash 'ujun 'H_htab)

RETURNS: nil.

NOTE: The function u fun is applied to every element in the hash table H htab. The
function should- expect two arguments: the key and value of an element. The
mapped function should not add or delete objects from the table because the
results would be unpredictable.

(clrhash 'H_htab)

RETURNS: the hash table cleared of all entries.

(hash-table-count 'H_htab)

RETURNS: the number of entries in H_htab. Given a hash table with no entries, this func
tion returns zero.

4404P30 LISP PROGRAMMERS 14-3

MISCELLANEOUS TOPICS

14-4

; make a vanilla hash table using "eq" to compare items ...
- > (setq black-box (makeht 20»
hash-table [26]
- > (hash-table-p black-box)
t
- > (hash-table-count black-box)
o
- > (setf (gethash 'anykey black-box) '(this list is the value»
anykey
- > (gethash 'anykey black-box)
(this list is the value)
- > (hash-table-count black-box)
1
- > (addhash 'composer black-box 'franz)
composer
- > (gethash 'composer black-box)
franz
- > (maphash '(lambda (key va)) (msg "key =" key ",value =" value N»
black-box)
key=composer,value=franz
key = anykey, value = (this list is the value)
nil
- > (clrhash black-box)
hash-table [26]
- > (hash-table-count black-box)
o
- > (maphash '(lambda (key va)) (msg "key =" key ",value =" value N»
black-box)
nil

; here is an example using "equal" as the comparator
- > (setq ht (makeht 10 'equal»
hash-table [16]
- > (setf (gethash '(this is a key) ht) '(and this is the value»
(this is a key)
- > (gethash '(this is a key) ht)
(and this is the value)
; the reader makes a new list each time you type it. ..
- > (setq x '(this is a key»
(this is a key)
- > (setq y '(this is a key»
(this is a key)
; these two lists are really different lists
; they are "equal" but not "eq"
- > (equal x y)
t
-> (eqxy)
nil
; since we are using "equal" to compare keys, we are OK. ..
- > (gethash x ht)
(and this is the value)
- > (gethash y ht)
(and this is the value)

4404P30 LISP PROGRAMMERS

MISCELLANEOUS TOPICS

14.3. Multiple Value Returns

Sometimes a function logically needs to return more than one value. A function
returning a complex number might return the real and imaginary parts separately, using
multiple value returns. Only those functions which expect multiple values can receive
them, and thus the default is to return a single value. The mechanism for using multiple
values is explained below.

There are special functions which must be used to produce and receive multiple
value. If a called function produces multiple values and the calling function does not
request them, then all but the first value are discarded. If no values are produced, then
the caller receives nil for a value. The maximum number of multiple values which can
be returned by a functions is bound to the global variable multiple-values-limit.

The multiple value facility is completely compatible with the one in Common Lisp.

Here are the functions to produce and receive multiple values:

(values ['Largl '" 'g_argnD

RETURNS:g argl, or nil if given no arguments. The g argi are returned as multiple
values, needing one of the special forms below tO'receive them.

(values-list 'l_arg)

RETURNS: the car of I arg, and the elements in the list I arg as multiple values. This form
is equivalent to (apply 'values 'l_arg). -

(multiple-value-call 'uJun 'gJorml ['gJorm2 ... D

RETURNS: the result of calling uJun with the results of all gJormi as arguments.

(multiple-value-list 'gJorm)

RETURNS: a list of the multiple values returned by g form. This form is equivalent to
(multiple-value-call #'list 'gJorm). -

(multiple-value-progl 'gJorml ['gJorm2 ... D

RETURNS: the values produced by gJorml, after evaluating all gJormi.

(multiple-value-setq '1_ varlist 'gJorm)

RETURNS: the first value returned by g form after setting each variable in I varlist to the
corresponding value returned by gJorm (the first variable gets the first value,
and so on).

NOTE: If there are more variables than returned values, then the remaining variables are
given the value of nil.

(multiple-value-bind 'l_varlist 'g_values-form 'gJorml ['gJorm2 ... D

RETURNS: the result of evaluating gJormi. The variables in l_varlist are bound to the

4404P30 LISP PROGRAMMERS 14-5

MISCELLANEOUS TOPICS

values returned by g_ values-form, and then all the gJormi are evaluated.

14.4. Miscellaneous Functions

(map-over-oblist 'uJun)

RETURNS: nil. .

NOTE: uJun is applied to every element in the oblist. When packages are implemented,
this function will disappear, and map hash will work on the oblist.

(dolist (s_var IJorm gJesultform) gJorrn)

RETURNS: if present, gJesultform, nil otherwise. Dolist provides a mechanism to iterate
over the elements of the list IJorm, successively binding the elements to s_var,
while executing the body of the loop gJorm.

(dotimes (s_var i_countform gJesultform) gJorm)

RETURNS: if present, g_resultform, nil otherwise. Dotimes provides a mechanism to
iterate over a sequence of integers. First, i countform is evaluated to produce
an integer, and then evaluates g form once for each integer from zero
(inclusive) to i_countform (exclusive), in order, binding s_var to this integer.

(do 1_ vrbs I_test g_expl ...)

RETURNS: the value of the last form in the cdr of I_test, or a value explicitly given by a
return evaluated within the do body.

NOTE: A feature has been added for Common Lisp compatibility. Each var-init-repeat
form may be an atom, in which case it is bound to nil. Thus 'foo' may be regarded
as an abbreviation for the var-init-form '(foo nil)'.

(do· l_vrbs Uest g_expl ...)

RETURNS: the value of the last form in the cdr of I_test, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the Common Lisp do· form. It is very similar to do except that: (1) The
var-init-repeat forms are evaluated sequentially rather than simultaneously. (2)
There is no analogue of the old-style maclisp do. In particular, I vrbs must be a list
of var-init-repeat forms. -

(with-keywords 'I_keys 'l_keydefs 'gJorml ['gJorm2 ...])
NOTE: Please see the Keywords section in this chapter.

14-6

RETURNS: The result of evaluating the g formi. The elements of the list I keys represent
the calling parameters to a function using keyword arguments as tags, and takes
the form of (keyword} value} keyword2 value2 .. .J. This is a list of the argu
ments given to a function. The l_keydefs define which keywords are valid, what
variable the value will be bound to, and what the default value is is the
keyword-value pair does not exist in I keys. The g form are forms which are
evaluated after binding the variable in the l_keydefs list.

4404P30 LISP PROGRAMMERS

MISCELLANEOUS TOPICS

- > (setq x 100)
100
- > (do list (x '(a bed e f g) 'result) (msg x " ,,»
abc d e f g result
->x
100
- > (dotimes (x 10) (msg x","»
O,1,2,3,4,5,6,7,8,9,nil
->x
100

;; here is the definition of make-hash-table using
;; with-keywords:

(defun make-hash-table (&rest keys)
(with-keywords keys «:test test 'eq)

(:size size 20)
(:rehash-size dummy nil) .. a no-op
(:rehash-threshold dummy nil) .. a no-op

(makeht size test»)

(make-vector-float 'x_size)

RETURNS: a vector for storing x_size float values to be passed to C routines.

(net-float 'v_vec 'xjndex 'Cvalue)

RETURNS: f value, after setting the x index'th element of v vec to f value. v _vec should
have been created by make:vector-float - -

(vref-float 'v _ vec 'xjndex)

RETURNS: the x index'th element of v vec. v _vec should have been created by make-
vector:jloat -

14.S. Sharp Sign Macro Syntax

The sharp sign macro (using the # character) in a part of the standard lisp reader.
Among it's uses, are to have the reader evaluate expressions short hand notations, and
reading numbers in other than the standard radix.

Sharp sign macros are invoked by a two character sequence, consisting of the sharp
(or pound) sign (#), followed by an additional character, which will be discussed shortly.
Here are the macros, listed by the two character sequences:

#' This is an abbreviation of junction # '/00 is read as (fUnction /00).

#(read the following forms, up to a right parenthesis, into a lisp vector.

#,
#. The following form is evaluated before being returned from the read.

#\ If the form after the #\ is a one of newline, space, rubout, page, tab, backspace,
return, line/eed, vert, sharp, then the character code for the above is read. And

4404P30 LISP PROGRAMMERS 14-7

MISCELLANEOUS TOPICS

14-8

otherwise, the form must be a single character, and the form read is the character
code for that character.

#! The characters read between this marker and the characters 1# are discarded. This
form does nest, so "#1 #11# 1#" is valid.

#+
#- The following form is read (or not read) depending on whether (or not) the follow

ing form is on the (status features) list. This is how read-time conditionalization is
done.

#0
#0 read the following form as an octal number.

#x
#X read the following form as a hexidecimal number.

4404P30 LISP PROGRAMMERS

CHAPTER 15

The Lisp Stepper and FIXIT

Several handy debugging tools are described in detail in this chapter.

1S.1. Simple Use Of Stepping

(step s _ arg 1..,)

NOTE: The Lisp "stepping" package is intended to give the Lisp programmer a facility
analogous to the Instruction Step mode of running a machine language program.
The user interface is through the function (fexpr) step, which sets switches to put
the Lisp interpreter in and out of "stepping" mode. The most common step invo
cations follow. These invocations are usually typed at the top-level, and will take
effect immediately (i.e. the next S-expression typed in will be evaluated in stepping
mode). The facilities of this package are similar to those in the 'tpl' system, but
can be used separately. The capabilities of the two systems will be unified and
expanded in the future.

(step t) ; Turn on stepping mode.
(step nit) ; Turn off stepping mode.

SIDE EFFECT: In stepping mode, the Lisp evaluator will print out each S-exp to be
evaluated before evaluation, and the returned value after evaluation, calling
itself recursively to display the stepped evaluation of each argument, if the
S-exp is a function call. In stepping mode, the evaluator will wait after
displaying each S-exp before evaluation for a command character from the
console.

4404P30 LISP PROGRAMMERS 15-1

THE LISP STEPPER AND FIXIT

STEP COMMAND SUMMARY
<return>

c

e

g

n <number>

p

b

q

d

Continue stepping recursively.

Show returned value from this level
only, and continue stepping upward.

Only step interpreted code.

Turn otT stepping mode. (but continue
evaluation without stepping).

Step through <number> evaluations without
stopping

Redisplay current form in full
(i.e. rebind prinlevel and prinlength to nil)

Get breakpoint

Quit

Call debug

15.2. Advanced Features

15-2

15.2.1. Selectively Turning On Stepping

If
(step fool fo02 .. .)

is typed at top level, stepping will not commence immediately, but rather when the
evaluator first encounters an S-expression whose car is one of fool, fo02, etc. This
form will then display at the console, and the evaluator will be in stepping mode wait
ing for a command character .

. Normally the stepper intercepts calls to juneall and eva! When juneall is inter
cepted, the arguments to the function have already been evaluated but when eva! is
intercepted, the arguments have not been evaluated. To differentiate the two cases,
when printing the form in evaluation, the stepper prints intercepted calls to juneall
with "f:". Calls to juneall are normally caused by compiled Lisp code calling other
functions, whereas calls to eva! usually occur when Lisp code is interpreted. To step
through only calls to eval, use: (step e)

15.2.2. Stepping With Breakpoints

Step is turned off for the duration of error breaks, but not by explicit use of the
break function. Executing (step nilJ inside a error loop will turn off stepping globally,

4404P30 LISP PROGRAMMERS

THE LISP STEPPER AND FIXIT

i.e. within the error loop, and after return the return from the break loop.

15.3. Overhead of Stepping

If stepping mode has been turned off by (step niiJ, there is no execution overhead
for having the stepping packing in your Lisp. If one stops stepping by typing "g", every
call to eval incurs a small overhead--several machine instructions, corresponding to the
compiled code for a simple cond and one function pushdown. Running with (step /001
/002 .. J can be more expensive, since a 'member' computation of the car of the current
form into the list (foo1/002 .. J is required at each call to eval.

15.4. Evalhook and Funcallhook

For 'step' and potentially other user-written functions to gain control of the evalua
tion process, hooks were installed in the FRANZ LISP interpreter. In fact there are two
hooks and they have been strategically placed in the two key functions in the interpreter:
eval (which controls execution of interpreted code) and /uncall (which controls compiled
code if (sstatus translink nil) has been executed). The hook in eval is compatible with
MacLisp, but there is no MacLisp equivalent of the hook in /uncall

To arm the hooks two forms must be evaluated: ("'rset t) and (sstatus evalhook t).
Once that is done, eval and /uncall do a special check when they are invoked.

If eval is given a form to evaluate, say (foo bar), and the symbol 'evalhook' is
non-nil, say its value is 'ehook', then eval will lambda-bind the symbols 'evalhook' and
'funcallhook' to nil and will call ehook, passing (foo bar) as the argument. It is ehook's
responsibility to evaluate (foo bar) and return its value. Typically ehook will call the
function 'evalhook' to evaluate (foo bar). Note that 'evalhook' is a symbol whose func
tion binding is a system function described in Chapter 4, and whose value binding, if
non-nil, is the name of a user written function (or a lambda expression, or a binary
object) which will gain control whenever eval is called. 'evalhook' is also the name of
the status tag which must be set for all of this to work.

If /uncall is called on a function, say foo, and a set of already evaluated arguments,
say barv and bazv, and if the symbol 'funcallhook' has a non nil value, say 'fhook', then
/uncallwilliambda-bind 'evalhook' and 'funcallhook' to nil and will call fhook with argu
ments barv, bazv and foo. Thus fhook must be a lexpr since it may be given any
number of arguments. The function to call, foo in this case, will be the last of the argu
ments given to fhook. It is fhook's responsibility to do the function call and return the
value. Typically fhook will call the function /uncallhook to do the funcall. This is an
example of a funcallhook function which just prints the arguments on each entry to fun
call and the return value.

4404P30 LISP PROGRAMMERS 15-3

mE LISP STEPPER AND FIXIT

-> (dejUnjhook n Oet (form (cons (arg nJ Oistify (1- nJ)))
(retvaO)

!book

(patom" calling ")(print/orm)(terpr)
(setq retval (ftmcallhook/orm './hook))
(patom" returns ")(print retvaO(terpr)
retvalJ)

-> (*rset tJ (ssfiltus evalhook tJ (ssfiltus translink niO
-> (setq jUncallhook './hook)
calling (print !book) ;; now all compiled code is traced
!bookfeturns nil
calling (terpr)

returns nil
calling (patom "- > ,,)
-> returns "-> "
calling (read nil QOOOOO)
(array /00 t 10) ;; to test it, we see what happens when
returns (array foo t 10) ;; we make an array
calling (eval (array foo t 10))
calling (append (10) nil)
returns (10)
calling (Iessp 1 1)
returns nil
calling (apply times (10))
returns 10
calling (small-segment value 10)
calling (hoole 4 137 127)
returns 128
... there is plenty more ...

15.5. The FIXIT Debugger

15-4

FIXIT is a debugging environment for FRANZ LISP written and documented by
David S. Touretzky of Carnegie-Mellon University for MacLisp, and adapted to FRANZ
LISP by Mitch Marcus of Bell Labs. One of FIXIT's goals is to get a program being
tested running again as quickly as possible. The user is assisted in making changes to his
functions "on the fly", i.e. in the midst of execution, and then computation is resumed.

To enter the debugger type (debug). The debugger goes into its own read-eval
print loop. Like the top-level, the debugger understands certain special commands. One
of these is help, which prints a list of the available commands. The basic idea is that you
are somewhere in a stack of calls to eva!. The command "bka" is probably the most
appropriate for looking at the stack. There are commands to move up and down. If you
want to know the value of "x" as of some place in the stack, move to that place and
type "x" (or (cdr x) or anything else that you might want to evaluate). All evaluation is
done as of the current stack position. You can fix the problem by changing the values of
variables, editing functions or expressions in the stack etc. Then you can continue from
the current stack position (or anywhere else) with the "redo" command. Or you can
simply return the right answer with the "return" command.

When it is not immediately obvious why an error has occurred or how the program
got itself into its current state, FIXIT comes to the rescue by providing a powerful

4404P30 LISP PROGRAMMERS

THE LISP STEPPER AND FIXIT

debugging loop in which the user can:

- examine the stack

- evaluate expressions in context

- enter stepping mode

- restart the computation at any point

The result is that program errors can be located and fixed more rapidly.

The debugger can only work effectively when extra information is kept about forms
in evaluation by the Lisp system. Evaluating ("rset t) tells the Lisp system to maintain
this information. If you are debugging compiled code you should also be sure that the
execute (sstatus translink nit).

(debug [s _ msg])

NOTE: Within a program, you may enter a debug loop directly by putting in a call to debug
where you would normally put a call to break. Also, within a break loop you may
enter FIXIT by typing debug. If an argument is given to debug, it is treated as a
message to be printed before the debug loop is entered. Thus you can put (debug
l;ust before tooIV into a program to indicate what part of the program is being
debugged.

4404P30 LISP PROGRAMMERS 15-5

THE LISP STEPPER AND FIXIT

15-6

F/XIT Command Summary

TOP
BOT
P
PP
WHERE
HELP

U
Un
Uf
Unf
UP
UPn

OK
REDO

REDOf

STEP

RETURN e

BK..

.. F ..

.. A ..

.. V ..

.. E ..

.. C ..

BK .. n

BK .. f
BK .. nf

go to top of stack (latest expression)
go to bottom of stack (first expression)
show current expression (with ellipsis)
show current expression in full

. give current stack position
types the abbreviated command summary found
in /lisp/lib/fixit.ref. Hand? work too.
go up one stack frame
go up n stack frames
go up to the next occurrence of function f
go up n occurrences of function f
go up to the next user-written function
go up n user-written functions
... the DN and DNFN commands are similar, but go down
... instead of up.
resume processing; continue after an error or debug loop
restart the computation with the current stack frame.
The OK command is equivalent to TOP followed by REDO.
restart the computation with the last call to function f.
(The stack is searched downward from the current position.)
restart the computation at the current stack frame,
but first turn on stepping mode. (Assumes the stepper is loaded.)
return from the current position in the computation
with the value of expression e.
print a backtrace. There are many back trace commands,
formed by adding suffixes to the BK command. "BK" gives
a backtrace showing only user-written functions, and uses
ellipsis. The BK command may be suffixed by one or more
of the following modifiers:
show function names instead of expressions
show all functions/ expressions, not just user-written ones
show variable bindings as well as functions/expressions
show everything in the expression, i.e. don't use ellipsis
go no further than the current position on the stack
Some of the more useful combinations are BKFV, BKF A,
and BKFAV.
show only n levels of the stack (starting at the top).
(BK n counts only user functions; BKA n counts all functions.)
show stack down to first call of function f
show stack down to nth call of function f

15.5.1. Interaction with trace FIXIT knows about the standard Franz trace package,
and tries to make tracing invisible while in the debug loop. However, because of the
way trace works, it may sometimes be the case that the functions on the stack are
really un intened atoms that have the same name as a traced function. (This only
happens when a function is traced WHEREIN another one.) FIXIT will call attention
to trace's hackery by printing an appropriate tag next to these stack entries.

4404P30 LISP PROGRAMMERS

THE LISP STEPPER AND FIXIT

15.5.2. Interaction with step The step function may be invoked from within FIXIT via
the STEP command. FIXIT initially turns off stepping when the debug loop is
entered. If you step through a function and get an error, FIXIT will still be invoked
normally. At any time during stepping, you may explicitly enter FIXIT via the "D"
(debug) command.

15.5.3. Multiple error levels FIXIT will evaluate arbitrary Lisp expressions in its
debug loop. The evaluation is not done within an errset, so, if an error occurs,
another invocation of the debugger can be made. When there are multiple errors on
the stack, FIXIT displays a barrier symbol between each level that looks something
like <------------UDF-->. The UDF in this case stands for UnDefined Function.
Thus, the upper level debug loop was invoked by an undefined function error that
occurred while in the lower loop.

4404P30 LISP PROGRAMMERS 15-7

CHAPTER 16

The Lisp Editor

16.1. Introduction
Many people use standard text editors to edit their Lisp programs. However there

are also Lisp "structure-oriented" embedded editors which are particularly handy for the
editing of Lisp programs and data. These operate in a rather different fashion, namely
within a Lisp environment. Such an editor is handy for rapid fixes and re-evaluating of
tests without exiting from the Lisp system. For example, you can fix a bug and then con
tinue your computation from a break-point. The editor has its own command structure
which includes the ability to evaluate arbitrary Lisp expressions.

The Lisp editor "editr' and its related components in FRANZ LISP differ from
file/text editors in that editor commands directly change the internal structure of Lisp
expressions rather than an external character representation. In particular, it is not possi
ble for the Lisp editor to create an expression with unbalanced parentheses because such
expressions cannot occur in the internal representation of a Lisp object. This editor
modifies the structure of existing Lisp objects but does not automatically update any
copies of the objects on files. See, for example, the function "pp" in chapter 5, for writ
ing functions to files.

This editor is based on the InterLisp editor and has an almost identical command syntax.

16.2. Tutorial

Suppose that we wish to define a function foo which adds five to its argument if it is a
number, and returns nil otherwise. We might type the following (incorrect) expression
into the interpreter:

-> (defun foo (x) ; incorrect

foo

«numberp x) (plus x 5)}
(t nil)}

Executing foo will cause an error because the conditional function condhas been left out.
We can correct it by editing the function foo:

-> (editf foo)
edit

We are now in edit mode, with the attention of the editor focused on the expression
which defines /00. To print the expression on the screen, type:

#p

4404P30 LISP PROGRAMMERS 16-1

LISP EDITOR

16-2

(lambda (x) (& &) (t nit)

This is not exactly what was typed in. defun is really a macro which expands into some
thing involving def and lambda, so that is why the lambda is there. The comment has
been omitted and the spacing is different. The reason for these differences is that we are
editing a Lisp object, and not the characters which were typed to define the Lisp object.
The symbol "&" is just a shorthand for a more complicated subexpression. To see the
full expression, type:

#?
(lambda (x) «numberp x) (plus x 5» (t nil»

This is the current expression being edited. To insert cond before the third expression
in the current expression, type:

#(-3 cond)
(lambda (x) cond (& &) (t nit)

Now we need a pair of parentheses. The editor requires that they be entered as a pair. To
insert a left parenthesis before the third element of the current expression and a match
ing right parenthesis at the end, type:

#(li 3)
(lambda (x) (cond & & & &»

The expression appears even more abbreviated as the default print function only shows
parenthesis nesting up to a level of two. For the full expression, type:

#?
(lambda (x) (cond «numberp x) (plus x 5» (t nit))

This definition for foo will work, so we can save the change and return to Lisp by typing:

#ok
foo
-> (foo 20)
25
-> (foo 'not-a-number)
nil
->

Now suppose that we wish to change foo so that it adds ten instead of adding five. We
reenter the editor:

-> (editf foo)
edit
#?
(lambda (x) (cond «numberp x) (plus x 5» (t nil))

The current expression only has three elements and "5" is not one of them, so we can
not change "5" directly. Typing "3" causes the editor to focus attention on the third
element, and to consider that to be the current expression.

#3
(cond «numberp x) (plus x 5» (t nit)
#2
«numberp x) (plus x 5»
#2
(plus x 5)

The following command replaces the third element with a 10.
#(3 10)
(plus x 10)

Typing "0" (zero) takes us to a higher level:

4404P30 LISP PROGRAMMERS

#0
«numberp x) (plus x 10»
#0
(cond «numberp x) (plus x 10» (t nil»
#0
(lambda (x) (cond «numberp x) (plus x 10» (t niI))

LISP EDITOR

Suppose that we wish to change /00 so that it returns "not-a-number" if the argument is
not a number. A quick way to find nilin the current expression is to type:

#fnil
The current expression is a valid Lisp object, but it is called the "tail" of an expression
because a left parenthesis would be misleading. The following commands replace ni(
check the result, and exit the editor.

#(1 'not-a-number)
#A
(lambda (x) (cond & & & &»
#?
(lambda (x) (cond «numberp x) (plus x 10» (t 'not-a-number»)
#ok
->

Variable values and property lists can also be edited. The following example illustrates
assigning a value and a property list to a variable, and then using the editor to make
modifications.

-> (setq foo ' (this is a chair»
(this is a chair)
-> (putprop 'foo 'blue 'color)
color
-> foo
(this is a chair)
-> (get 'foo 'color)
blue
-> (editv fool
edit
#p
(this is a chair)
#(4 pillow)
pillow
#p
(this is a pillow)
#ok
foo
-> (editp fool
edit
#p
(color blue)
#(2 red)
(color red)
#ok
foo
-> (get 'foo 'color)
red

While within the editor, you can reverse the most recent change, type the command
undo. The command lundo undoes all changes made during the editing session.

4404P30 LISP PROGRAMMERS 16-3

LISP EDITOR

16.3. Editor Functions

(editf s_xl .. J
SIDE EFFECT: Edits a function with the name s_xl. Any additional arguments are

optional commands to the editor.

RETURNS: s_xl.

NOTE: If s_xl is not an editable function, editf generates a "fn not editable" error.

(editv s _ var [g_ com 1 ...])

SIDE EFFECT: Edits values in a manner similar to the way editf edits functions. The value
of the variable can be changed by subsequent editing commands.

RETURNS: the name of the variable whose value was edited.

(editp s_x)

SIDE EFFECT: Edits property lists.

RETURNS: the atom whose property list was edited.

(editfns s_x [g_comsl ...])

SIDE EFFECT: Performs the same editing operations on several functions. The symbol s_x
is the function or list of functions, and the following arguments are the
editing commands. Evaluation of editfns will map down the list of func
tions, print the name of each function, and call the editor (via editf) on
each function.

RETURNS: nil.

EXAMPLE: {editfns foofns (r fie fum» will change every fie to fum in each of the func
tions in the list called foofns.

NOTE: The call to the editor is errset protected, so that if the editing of one function
causes an error, editfns will proceed to the next function. In the above example,
if one of the functions did not contain a fie, the r command would cause an error,
but editing would continue with the next function.

(editracefn s _com)

16-4

NOTE: This is available to help the user debug complex edit macros, or subroutine calls to
the editor. It is initially an undefined function, to be defined by the user. When
ever the value of editracefn is non-nil, the editor calls the function editracefn
before executing each command (at any level), giving it that command as its argu
ment.

4404P30 LISP PROGRAMMERS

LISP EDITOR

(editflndp x pat nil)

NOTE: Allows a program to use the editor find command as a pure predicate from outside
the editor. It searches for the pattern pat in the expression x.

RETURNS: t if the editor command !pat would succeed, nil otherwise.

16.3.1. The Edit Chain The edit-chain is a list of which the first element is the
expression you are now editing ("current expression"), the next element is what
would become the current expression if you were to type a 0, etc., until the last ele
ment which is the expression that was passed to the editor.

EDIT CHAIN COMMAND SUMMAR Y

mark. Adds the current edit chain to the front of the list marklst.

. Makes the new edit chain be (car marklst).

l pattern). Ascends the edit chain looking for a link which matches pattern.

_. A double underscore is similar to a single underscore (J but also erases the mark.

/. Makes the edit chain be the value of unfind. Unfind is set to the current edit chain by each command that makes a
"big jump", i.e., a command that usually performs more than a single ascent or descent, namely', _, _, !nx, all com
mands that involve a search, e.g., f, Ie, ii, below, et al and / and /p themselves. If the user types f cond, and then f
car, / would take him back to the condo Another / would take him back to the car, etc.

/p. Restores the edit chain to its state as of the last print operation. If the edit chain has not changed since the last
printing, /p restores it to its state as of the printing before that one. If the user types p followed by 3 2 1 p, /p will
return to the first p, i.e., would be equivalent to 000. Another /p would then take him back to the second p.

(\# g_coml .. J
RETURNS: what the current expression would be after executing the edit commands coml

... starting from the present edit chain, generating an error if any of comi
cause errors. The current edit chain is never changed.

EXAMPLE: (j r (quote x) (\# (cons .. z») replaces all x's in the current expression by the
first cons containing a z.

16.4. Printing Commands

PRINTING COMMAND SUMMARY

p Prints current expression in abbreviated form. (p m) prints mth element of current expression in abbreviated form.
(p m n) prints mth element of current expression as though printlev were given a depth of n. (p 0 nJ prints the
current expression as though printlev were given a depth of n. (p 100) will search for the first occurrence of 100 and
then print it.

4404P30 LISP PROGRAMMERS 16-5

LISP EDITOR

? prints the current expression as though printlev were given a depth of 100.

pp. pretty-prints the current expression.

pp~ is like pp, but forces comments to be shown.

16.5. Scope of Attention

Attention-changing commands allow you to look at a different part of a Lisp expression
you are editing. The sub-structure upon which the editor's attention is centered is called
"the current expression". Changing the current expression means shifting attention
and not actually modifying any structure.

SCOPE OF ATTENTION COMMAND SUMMARY

n (n> 0) . Makes the nth element of the current expression be the new current expression.

-n (n> 0). Makes the nth element from the end of the current expression be the new current expression.

a Makes the next higher expression be the new correct expression. If the intention is to go back to the next
higher left parenthesis, use the command !O.

up. Unless the current expression is a tail, up changes the current expression to the one which has the previous
current expression as its first element. Tails are unchanged. (A tail is an expression which starts with " ... " when
printed with the p command.)

fO. Goes back to the next higher left parenthesis.

'. Makes the top level expression be the current expression.

/IX. Makes the current expression be the next expression. It wi1\ not go through an unmatched right parenthesis, so it
generates an error if the current expression is the last

(m: n) n> o equivalent to n consecutive /IX commands.

!/IX. Makes current expression be the next expression at a higher level. Goes through any number of right
parentheses to get to the next expression. It always gives a different result from /IX.

bk. Makes the current expression be the previous expression in the next higher expression.

(nth n) n> O. Makes the list starting with the nth element of the current expression be the current expression.

(nth $) . This generalized nth command locates $, and then backs up to the current level, where the new current
expression is the tail whose first element contains, however deeply, the expression that was the terminus of the loca
tion operation.

!! , as in (pattern !! . $). Searches for an expression or tail which starts with pattern and ends with $. For example,
(cond !! return) finds a cond that contains a return, at any depth.

(below com x) . This ascends to higher levels searching for com and then changes the current expression to the one
which is x levels below com. The default value of x is 1. For example (below cond) will cause the cond clause contain
ing the current expression to become the new current expression.

(nex x). same as (below x) followed by nx. For example, if you are deep inside of a selectq clause, you can advance to
the next clause with (nex selectq).

16-6 4404P30 LISP PROGRAMMERS

LISP EDITOR

nex. The atomic form of nex is useful if you will be performing repeated executions of (nex x). By simply
marking the chain corresponding to x, you can use nex to step through the sublists.

16.6. Pattern and Search Commands

In many of the editor commands it is possible to specify a pattern to direct an
operation to a subexpression or change the attention of the editor. This section describes
the types of patterns and searches.

PATTERN SPECIFICATION SUMMARY

A pattern pat matches with x if:

- patis eq to x. In this case, x may not be a tail, so (a b) will not match ... a b).

- x is a list, (car pan matches (car x), and (cdr pai) matches (cdr x).

- patis &.

- patis a number and equal to x.

- (car pai) is the atom *any~ (cdr pai) is a list of patterns, and one of those patterns matches x.

- palis a literal atom or string, and (nthchar pat-I) is @, then pat matches with any literal atom or string which has the
same initial characters as pa~ e.g. ver@ matches with verylongatom, as well as "verylongstring".

- if (car pan is the atom --, pat matches x if (a) (cdr pat) = nil, i.e. pat= (--), e.g., (a --) matches (a) (a b c) and (a. b)
in other words, -- can match any tail of a list. (b) (cdr pai) matches with some tail of x, e.g. (a -- (&» will match with
(a b c (d», but not (a b c d), or (a b c (d) e). however, note that (a -- (&) --) will match with (a b c (d) e). in other
words, -- will match any interior segment of a list.

- if (car pan is the atom = =, pat matches x if and only if (cdr pat) is eq to x. (This pattern is for use by programs that
call the editor as a subroutine, since any non-atomic expression in a command typed in by the user obviously cannot be
eq to existing structure.)

- pat has !!! for its car, and either its cdr matches with x or x is a tail which would match if it had a left parenthesis.
For example, searching for a match with (!!! b c) will succeed on (a (b c» as well as on (a b C).

SEARCH COMMAND SUMMARY

f pattern. Finds the next instance of pattern. If no pattern is given then the last pattern is used.

(f pattern nJ. Finds the next instance of pattern. (Here, n stands for next, and not an integer.)

(f pattern tJ. Similar to f pattern, except, for example, if the current expression is (cond .J, f cond will look for the
next cond, but (f cond t) will not.

(f pattern n) n> a Finds the nth place that pattern matches. If the current expression is (fool fo02 fo03), (f foo@ 3)
will find foo3.

4404P30 LISP PROGRAMMERS 16-7

LISP EDITOR

if pattern) or if pattern nit). only matches with elements at the top level of the current expression. If the current
expression is (prog nil (setq x (cond & &)) (cond &) .. J f (cond --) will find the cond inside the setq, whereas (f (cond
--)) will find the top level cond, i.e., the second one.

(fs pattern1 ... patternn). Is equivalent to I pattern1 followed by I pattern2 ... followed by I patternn, so that if a search
fails, the edit chain is left at the place where the previous pattern matched.

if- expression x). Searches for a structure eq to expression.

(0r/pattern1 ... patternn). Searches for an expression that is matched by either pattern10r ... patternn.

blpattern. This backwards find searches for the first previous occurrence of the pattern. If the current expression is the
top-level expression, then the entire expression is searched in reverse print order. For example, if the current expres
sion is (prog nil (setq x (setq y (list z))) (print x)) , then I list followed by bl setq will change the current expression to
(setq y (fist z)), as will Iprintfollowed by blsetq.

(bl pattern (). This is similar to the above backwards find. Search always includes current expression, i.e., starts at end
of current expression and works backward, then ascends and backs up, etc.

16.7. Location Specifications

Many editor commands use a method of specifying position called a location
specification. The meta-symbol $ is used to denote a location specification. $ is a list of
commands interpreted as described above. $ can also be atomic, in which case it is inter
preted as (list $). A location specification is a list of edit commands that are executed in
the normal fashion with the following exception. All commands not recognized by the
editor are interpreted as though they had been preceded by f The location specification
(cond 2 3) specifies the third element in the first clause of the next condo

The if command and the \# function provide a way of using in location
specifications arbitrary predicates applied to elements in the current expression.

LOCATION COMMAND SUMMARY

.$ In descriptions of the editor, the meta-symbol $ is used to denote a location specification. $ is a list of commands
interpreted as described above. $ can also be atomic.

Oe . $). Provides a way of explicitly invoking the location operation. (lc cond 2 3) will perform a search for a cond
clause and then change the current expression to the third element of the cond clause.

Oel . $). Same as Ie except search is confined to current expression. To find a cond containing a return, one might
use the location specification (cond (IcI return) /) where the / would reverse the effects of the lei command, and make
the final current expression be the condo

(second. $). same as (Ie. $) folJowed by another (Ic. $) except that if the first succeeds and second fails, no change
is made to the edit chain.

(third. $). Similar to second.

16-8 4404P30 LISP PROGRAMMERS

LISP EDITOR

16.8. Structure Modification Commands

All structure modification commands are undoable. See section 16.11 for a descrip
tion of undoing commands.

In insert, delete, replace and change, if $ is nil (empty), the corresponding opera
tion is performed on the current edit chain, Le. (replace with (car x» is equivalent to (!
(car x». For added readability, here is also permitted, e.g., {insert (print x) before
here) will insert (print x) before the current expression (but not change the edit chain).
It is perfectly legal to ascend to insert, replace, or delete. For example {insert (returrd
after A prog -1) will go to the top, find the first prog, and insert a (returrd at its end, and
not change the current edit chain.

The a, b, and! commands all make special checks in el thru em for expressions of the
form C\# . corns). In this case, the expression used for inserting or replacing is a copy
of the current expression after executing corns, a list of edit commands. (insert C\# f
cond -1 -1) after3} will make a copy of the last form in the last clause of the next cond,
and insert it after the third element of the current expression.

STRUCTURE MODIFICATION COMMAND SUMMAR Y

(nJ n> 1 deletes the corresponding element from the current expression.

(n el ... emJ n,m> I, replaces the nth element in the current expression with el ... em.

(-n el ... emJ n,m > 1 inserts el ... em before the n element in the current expression.

(n el ... emJ (the letter "n" for "next" or "nconc", not a number) m> 1 attaches el ... em at the end of the current
expression.

(a el ... emJ. inserts el ... em after the current expression (or after its first element if it is a taiO.

(b el ... emJ. inserts e 1 ... em before the current expression. To insert foo before the last element in the current
expression, perform -I and then (b foo).

(J el ... emJ. replaces the current expression by el ... em. If the current expression is a tail then replace its first ele
ment.

(r x y) replaces each occurrence of x with y in the current expression. The term x can be an atom, a list, or a location
specification.

(sw n m) switches the nth and mth elements of the current expression. For example, if the current expression is (list
(cons (car x) (car y» (cons (cdr y))), (sw 2 3) will modify it to be (list (cons (cdr x) (cdr y» (cons (car x) (car
y»). (sw car cdr) would produce the same result.

delete or (!) . deletes the current expression, or if the current expression is a tail, deletes its first element.

(delete. $). does a (Ic. $) followed by delete. current edit chain is not changed.

(insert el ... em be/ore. $). similar to (Ic. $) followed by (b el ... em).

(insert el .. , em after. $). similar to insert before except uses a instead of b.

(insert el ... em/or. $). similar to insert before except uses! for b.

(replace $ with el ... emJ. here $ is the segment of the command between replace and with.

(change $ to el ... emJ. same as replace with.

4404P30 LISP PROGRAMMERS 16-9

LISP EDITOR

EXTRACTION AND EMBEDDING COMMAND SUMMAR Y

(xtr. $). Replaces the original current expression with the expression that is current after performing (lcl . $).

(mbd x). If x is a list, substitutes the current expression for all instances of the atom • in x, and replaces the current
expression with the result of that substitution. If x is atomic, (mbd x) is the same as (mbd (x .».
(extract $1 from $2). This is an editor command which replaces the current expression with one of its subexpressions
(from any depth). ($1 is the segment between extract and from.) For example, if the current expression is (print
(cond «null x) y) (t z))) then following (extract y from cond), the current expression will be (print y). (extract 2 -1
from cond) , (extract y from 2), (extract 2 -1 from 2) will all produce the same result.

(embed $ in . x). Replaces the current expression with a new expression which contains it as a subexpression. ($ is the
segment between embed and in.) Some examples: (embed print in setq x), (embed 3 2 in return), (embed cond 3 I
in (or • (null x))).

MOVE AND COpy COMMAND SUMMARY

(move $1 to com. $2). ($1 is the segment between move and to.) where com is before, after, or the name of a list
command, e.g., :, n, etc. If $2 is nil, or (here), the current position specifies where the operation is to take place. If $1
is nil, the move command allows the user to specify some place the current expression is to be moved to. If the
current expression is (a b d c), (move 2 to after 4) will make the new current expression be (a c db).

(mv com. $). is the same as (move here to com. $).

(copy $1 to com. $2) is like move except that the source expression is not deleted.

(cp com. $). is like mv except that the source expression is not deleted.

16.9. Parentheses Moving Commands The commands presented in this section permit
modification of the list structure itself, as opposed to modifying components. Their
effect can be described as inserting or removing a single left or right parenthesis, or pair
of left and right parentheses. Some people find that use of only 'bi' and 'bo' to be less
confusing and quite adequate for use instead of the 4 additional commands.

PARENTHESES MOVING COMMAND SUMMARY

(bi n mY. This "both in" command inserts parentheses before the nth element and after the mth element in the
current expression. example: if the current expression is (a b (c d e) f g), then (bi 2 4) will modify it to be (a (b (c d
e) f) g). (bi n) : same as (bi n n). example: if the current expression is (a b (c d e) f g), then (bi -2) will modify it
to be (a b (c d e) (f) g).

(00 n). This "both out" command removes both parentheses from the nth element. example: if the current expres
sion is (a b (c d e) f g}, then (bo d) will modify it to be (a b c d e f g).

(Ii n). This "left in" command inserts a left parenthesis before the nth element (and a matching right parenthesis at

16-10 4404P30 LISP PROGRAMMERS

LISP EDITOR

the end of the current expression). example: if the current expression is (a b (c d e) f g), then (Ii 2) will modify it to
be (a (b (c d e) fg».

(to n). This "left out" command removes a left parenthesis from the nth element. all elements following the nth
element are deleted. example: if the current expression is (a b (c d e) f g), then (Io 3) will modify it to be (a b cd
e).

(rj n m). This "right in" command moves the right parenthesis at the end of the nth element in to after the mth
element. inserts a right parenthesis after the mth element of the nth element. The rest of the nth element is
brought up to the level of the current expression. example: if the current expression is (a (b c d e) f g), (ri 2 2) will
modify it to be (a (b c) de f g).

(,0 n). This "right out" command moves the right parenthesis at the end of the nth element out to the end of the
current expression. removes the right parenthesis from the nth element, moving it to the end of the current expres
sion. all elements following the nth element are moved inside of the nth element. example: if the current expres
sion is (a b (c d e) f g), (ro 3) will modify it to .be (a b (c d e f g».

Certain commands can be made to made to operate on several contiguous elements of a list by
using the to or thru command in their respective location specifications. These commands are
to, thru, extract, embed, delete, replace, and move. to and thru can also be used directly with xtr
(which takes after a location specification), as in (xtr (2 thru 4)) (from the current expression).

TO AND THRU COMMAND SUMMARY

($1 to $2) . same as thru except last element not included.

($1 to). same as ($1 thru -1)

($1 thru $2) . If the current expression is (a (b (c d) (e) (f g h) j) j k), following (c thru g), the current expression
will be «c d) (e) (f g h». If both $1 and $2 are numbers, and $2 is greater than $1, then $2 counts from the begin
ning of the current expression, the same as $1. in other words, if the current expression is (a b 'd e f g), (3 thru 4)
means (c thru d), not (c thru f). in this case, the corresponding bi command is (bi 1 $2-$1 + 1).

($1 thru). same as ($1 thru -1).

16.10. Undoing Commands Each command that causes structure modification automati
cally adds an entry to the front of a list called undolst. The undo command undoes the
most recent such command based on information in undolst.

UNDO COMMAND SUMMARY

undo. the undo command undoes most recent, structure modification command that has not yet been undone, and
prints the name of that command, e.g., mbd undone. The edit chain is then exactly what it was before the 'undone'
command had been performed.

!undo. undoes all modifications performed during this editing session, i.e., this call to the editor.

unblock. removes an undo-block. If executed at a non-blocked state, i.e., if undo or !undo could operate, types not
blocked.

4404P30 LISP PROGRAMMERS 16-11

LISP EDITOR

test adds an undo-block at the front of undolst. Note that By using test together with !undo, the user can perform a
number of changes, and then undo all of them with a single lunda command.

?? prints the entries on undo 1st. The entries are listed most recent entry first.

16.11. Commands that Evaluate

These commands allow you to execute arbitrary Lisp expressions, perhaps including
calling a function you are editing! All the changes you have made are "in place" in the
interpreted version of the function under edit.

EVALUATION COMMAND SUMMARY

e. when typed in as a single atomic command, passes the next s-expression to the Lisp reader and evaluates and prints
it. Other uses of the symbol 'e' are unaffected: (j.e., (insert d before e) will treat e as a pattern) (e x) evaluates x and
prints the result. (e x t) is the same as (e x) but does not print.

(i c xl ... xn) same as (c yl... yn) where yi = (eval xi). example: (i 3 (cdr foo» will replace the 3rd element of the
current expression with the cdr of the value of foo. (j n foo (car fie» will attach the value of foo and car of the value
of fie to the end of the current expression. (j f= foo 1) will search for an expression eq to the value of foo. If c is not
an atom, it is evaluated as well. (The corns and comsq commands below provide more general ways of computing
commands.)

(cams xl ... xn). Each xi is evaluated and its value executed as a command. For example, (corns (cond (x (list I
x»» will replace the first element of the current expression with the value of x if non-nil, otherwise do nothing. (Note
that nil as a command does nothing.)

(comsq coml ... comn). Executes coml ... comn and used mainly useful in conjunction with the corns command.
For example, suppose the user wishes to compute an entire list of commands for evaluation, as opposed to computing
each command one at a time as does the corns command. He would then write (corns (cons 'comsq x» where x com
puted the list of commands, e.g., (corns (cons 'comsq (get foo 'commands»)

16.12. Commands that Test

TESTlNG COMMAND SUMMARY

((Ix) Generates an error unless the value of (eval x) is non-nil. Thus an error is generated if either (eval x) causes an
error or if (eval x) is nil.

(ifx comsJ) Evaluates x and if it is non-nil, executes corns!. Otherwise, generates an error.

(ifx comsl coms2) Evaluates x and if it is non-nil, executes corns!. If (eval x) causes an error or is equal to nil, coms2
is executed.

(Ip . cams). repeatedly executes corns, a list of commands, until an error occurs. (Ip f print (n t)) will attach a t
at the end of every print expression. (Jp f print (if C\# 3) nil «n 1»))) will attach a t at the end of each print expres
sion which does notalready have a second argument. (j.e. the form (\# 3) will cause an error if the edit command 3
causes an error, thereby selecting «n t» as the list of commands to be executed. The if could also be written as (if

16-12 4404P30 LISP PROGRAMMERS

LISP EDITOR

(cddr (\#)) nil «n 1))).).

(Ipq . corns) same as Ip but does not print n occurrences.

(orr corns} ... comsn). orr begins by executing comsl, a list of commands. If no error occurs, orr is finished. other
wise, orr restores the edit chain to its original value, and continues by executing coms2, etc. If none of the com
mand lists execute without errors, i.e., the orr "drops off the end", orr generates an error. Otherwise, the edit chain
is left as of the completion of the first command list which executes without error.

16.13. Editor Macros

Many of the more sophisticated branching commands in the editor, such as orr, if, etc.,
are most often used in conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor's repertoire. (However,
built in commands always take precedence over macros, i.e., the editor's repertoire
can be expanded, but not modified.) Macros are defined by using the m command. If a
macro is redefined, its new definition replaces its old.

(m c . corns) defines c as an atomic command, where c is an atom and corns is a list.
Executing c is then the same as executing the list of commands corns. see the next
paragraph for an example. Macros can also define list commands, i.e., commands that
take arguments. (m (c) (arg [1] ... arg [nD . corns) c an atom. m defines c as a list com
mand. Executing (c el ... en) is then performed by substituting el for arg[1l, ...
en for arg[n] throughout corns, and then executing corns. a list command can be
defined via a macro so as to take a fixed or indefinite number of 'arguments'. The
form given above specified a macro with a fixed number of arguments, as indicated by its
argument list. If the of arguments. (m (c) args . corns) c, args both atoms, defines
c as a list command. executing (c el ... en) is performed by substituting (e1 ... en),
i.e., cdr of the command, for args throughout corns, and then executing corns.

(m bp bk up p) will define bp as an atomic command which does three things, a bk,
an up, and a p. note that macros can use commands defined by macros as well as built in
commands in their definitions. For example, suppose z is defined by (m z -1 (if
(null (\#» nil (p)), i.e. z does a -1, and then if the current expression is not nil, a p.
now we can define zz by (m zz -1 z), and zzz by (m zzz -1 -1 z) or (m zzz -1 zz). We
could define a more general bp by (m (bp) (n) (bk n) up p). (bp 3) would perform
(bk 3), followed by an up, followed by a p. The command second can be defined as
a macro by (m (2nd) x (orr «(Ic. x) (Ie. x»».

Note that for all editor commands, 'built in' commands as well as commands defined
by macros, atomic definitions and list definitions are completely independent. In
other words, the existence of an atomic definition for c in no way affects the treatment
of c when it appears as car of a list command, and the existence of a list definition for c
in no way affects the treatment of c when it appears as an atom. In particular, c can be
used as the name of either an atomic command, or a list command, or both. In the latter
case, two entirely different definitions can be used. Note also that once c is defined as
an atomic command via a macro definition, it will not be searched for when used in a
location specification, unless c is preceded by an f. (insert -- before bp) would not
search for bp, but instead perform a bk, an up, and a p, and then do the insertion. The
corresponding also holds true for list commands.

4404P30 LISP PROGRAMMERS 16-13

LISP EDITOR

(bind. corns) This is an edit command which is useful mainly in macros. It binds three
dummy variables #1, #2, #3, (initialized to nil), and then executes the edit com
mands corns. Note that these bindings are only in effect while the commands are being
executed, and that bind can be used recursively; it will rebind #1, #2, and #3 each
time it is invoked.

usermacros is a Lisp variable which contains a list of the user-defined editing macros
with their definitions. These macros remain in effect from one editing session to
another. you can save your macros for another Lisp session by saving usermacros on a
disk file.

editcomsl is a Lisp variable which contains a list of the "list commands" recognized by
the editor. (These are the commands such as Ii whose execution takes the form (com
mand argl arg2 ...).)

16.14; Miscellaneous Editor Commands

This section contains a descriptions of those editing functions which can be called from
the lisp top level. These include functions for merely entering the editor as well as some
which perform some editing tasks and return to the top level.

MISCELLANEOUS EDITOR COMMAND SUMMARY

ok. Exits from the editor.

nil. Unless preceded by for bf, is always a null operation.

tty . Calls the editor recursively. The user can then type in commands, and have them executed. The tty com
mand is completed when the user exits from the lower editor (with ok or stop). The tty command is extremely
useful. It enables the user to set up a complex operation, and perform interactive attention-changing commands
part way through it. For example the command (move 3 to after cond 3 p tty) allows the user to interact, in effect,
within the move command. He can verify for himself that the correct location has been found, or complete the
specification "by hand". In effect, tty says "I'll tell you what you should do when you get there."

stop. Exits from the editor with an error. This is mainly for use in conjunction with tty commands that the user
wants to abort. Since all of the commands in the editor are errset protected, the user must exit from the editor via a
command. The stop command provides a way of distinguishing between a successful and unsuccessful (from the
user's standpoint) editing session.

ti. Calls (top-Ieven. To return to the editor just use the return top-level command.

repack. Permits the 'editing' of an atom or string.

(repack $) Does (Ie . $) followed by repack, e.g. (repack this@).

(,nakefn form args n mY n,m > O. Makes (car form) an expr with the nth through mth elements of the current
expression with each occurrence of an element of (cdr form) replaced by the corresponding element of args. The
nth through mth elements are replaced by form.

(makefnform args n). Same as (makefn form args n n).

(s var). Sets var (using setq) to the current expression. If the current expression is a tail, the appropriate left
parenthesis is generated.

(s var. $). Performs the location command (Ic . $) and then sets var to the new current expression. For example, (s
foo -I 1) will set foo to the first element in the last element of the current expression.

16-14 4404P30 LISP PROGRAMMERS

APPENDIX A

Index to FRANZ LISP Functions

(\# g com1 ...) .. , .. 16-5
(*array's name's type 'x dim1 ... 'x dimn) .. 2-17
(*break 'gyred 'g'=-message) ~ .. 4-2
(*catch 'Is tag g exp) ... 4- 3
(*makhunk 'x arg) .. 2-20
(*mod 'x dividend 'x divisor) .. 3-7
(*process-'st command ['g readp ['g writep]]) .. 6-4
(*process-receive 'st command) ~ .. 6-5
(*process-send 'st command) .. 6-5
(* ,. ,.) - 3 2 quo I_X 13 ... -
(*rplacx 'x ind 'h hunk 'g vaO ... 2-20
(*rset 'g fug) -: -: .. 6-6
(*throw's tag 'g vaO ... 4-16
(/ ['x arg1-... J) .. -:. ... 3-2

~~ ~ ,:-:::1 :::::::::: :::::::::::::::::::::::::::::: ::::: ::::: :::::::::::::: ::::::::::::::::::::: :::::::::::::::: :::::::::::::::::::::::::::::::t~
« 'fx=.arg1 'fx_arg2) ... 3-3
«& 'x arg1 'x arg2) ... 3-3
(> 'fx arg1 'fx -arg2) ... 3-3
(>& 'x arg1 'x-arg2) ... 3-3
(Divide'i dividend 'i divisor) .. 3-2
(Emuldiv'x fact! 'x fact2 'x addn 'x divisor) ... 3-2
(I-throw-err-'I token) -: :-:-.. 4-12
(. ['x arg1 ... fj .. 3-2
(- 'fx argl 'fx arg2) .. 3-4
(-& 'x arg1 'x - arg2) .. 3-4
(- ['x !irg1 ... D ... 3-1
(+ ['x -arg1 ... J) .. 3-1
(abs 'n arg) '" ... 3-6
(absval-'n arg) .. 3-6
(acos 'fx irg) .. 3-4
(add ['n argl ... J) ... 3-1
(add-syntax-class 's_synclass 'Iyroperties) ... 7-10
(addl 'n arg) .. 3-1
(addhash 'g key'H htab 'g vaO .. l4-3
(aexplode 's=arg) ... :-:-........... ~ .. 2-14
(aexplodec 's arg) ... 2-14
(aexploden 's-arg) .. 2-14
(allocate 's_type 'xyages) .. 6-1
(alphalessp 'st argl 'st arg2) ... 2-12
(and [g argl .. J) -:. ... 4-1
(append'i argl 'I arg2) .. 2-1
(appendl 'i argl ;g arg2) ... 2-2
(apply 'u func '1 args) ... 4- 1
(arg ['x numb]) .-: .. 4-2
(argv 'x-argnumb) .. 6-1
(array s=name s_type x_diml ... x_dimn> .. 2-17

~

4404P30 LISP PROGRAMMERS A-I

FUNCTION INDEX

(arraycall s type 'as array'x indl ...) .. 2-18
{arraydims 's name) ~ .. 2-18

~:::;: ::_ :~:~ :: :: ~~ ~ 7
(arrayref ~ name 'x ind) .. 2-18
(ascii 'x charnum) .. ~ ... 2-11
(asin 'fx-arg) .. 3-4
(assoc 'g-argl'l arg2) .. 2-21
(assq 'g argl '1 arg2) ... 2-21
(atan 'fx argl 'fx arg2) .. 3-4

l=~~~tq~:~:::·::11
(bcdad 's funcname) ... 2-25
(bcdp 'g arg) ... 2-8
(bignum-=leftshift bx arg x amount) .. 3-5
(bignum-to-list 'b arg) -:: .. 2-3
(blgp 'g arg) -:. ... 2-8
(boole 'x key 'x vI 'x v2 .. J ... 3-5
(boundp 's_name) ~ ... 2-12
(break [g_message ['gyred]]) .. 4- 2

~~~: :l~ar~g.~.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~: 
(caseq 'g key-form 1 clausel .. .) .................................................................................................... 4-2 
(catch g exp [Is tag]) .................................................................................. "' .................................. 4-3 
(cdr 'l_arg) ....... ~ ...................................................... , ...................................................................... 2-4 
(dasl'st file 'st entry 'st funcname ['st disc ['st library))) ......................................................... 5-1 
(chdir 'syath) .-:: ............. ~ ...................... ~ ............ ~ ........................................................................ 6-1 
(close 'pyort) ................................................................................................................................. 5-2 
(clrhash 'H htab) ........................................................................................................................... 14-3 
(command-llne-args) ...................................................................................................................... 6-2 
(comment [g arg ... J) ...................................................................................................................... 4-4 
(concat I'stn-argl ... ]) ................................................................................................................... 2-11 
(concatl '1 arg) ............................................................................................................................... 2-11 
(cond [l clausel ... J) ....................................................................................................................... 4-4 
(cons 'g-argl 'g arg2) ..................................................................................................................... 2-1 
(copy 'g-arg) .... ~ ............................................................................................................................. 2-25 
(copyintiii 'x arg) ............................................................................................................................ 2-25 
(copysymbol' s _ arg 'gyred) ........................................................................................................... 2-11 
(cos 'fx angle) ................................................................................................................................ 3-4 
(cprintf'stJormat 'xfst_val ['pyort]) ........................................................................................... 5-2 
{cpy1 'xvt arg) ................................................................................................................................ 2-25 
(cvttofranzlisp) ............................................................................................................................... 4-4 
(cvttointUsp) .................................................................................................................................. 4-4 
(cvttomaclisp) ................................................................................................................................ 4-4 
(cvUoucillsp) .................................................................................................................................. 4-4 
(cxr 'x_ind 'h_hunk) ...................................................................................................................... 2-20 
(debug [s msg ]) ............................................................................................................................ 15- 5 
(debug s msg) ................................................................................................................................. 4-4 
(debugging 'g arg) .......................................................................................................................... 4-5 
(declare [g arg ... ]) ......................................................................................................................... 4-5 
{def s name (s type 1 argl g expl ... )) .......................................................................................... .4-5 
(defcmacro s name I arg g exp 1 .. .) .............................................................................................. .4-5 
(defmacro s name 1 arg g exp 1 .. .) ............................................................................................... .4-5 
(defprop Is name g val g ind) ........................................................................................................ 2-23 - --

A-2 4404P30 LISP PROGRAMMERS 



FUNCTION INDEX 

(defun s name [s mtype] Is argl g exp1 ... ) ................................................................................. 4-5 
(defvar S variable-['g init)) -:-: ........ ~ ................................................................................................ 4-6 
(delete 'g- val '1 list [;;; count]) ...................................................................................................... 2-5 ' 
(delq 'g_VaI 'I_list ['x_count)) ........................................................................................................ 2-5 
(deref'x addr) ................................................................................................................................ 6-2 
(desetq slyattern1 'g_exp1 L ..... )) ................................................................................................ 2-14 
(diff ['n arg1 ... )) ........................................................................................................................... 3-1 
(difference ['n argl ... ]) ................................................................................................................ 3-1 
(do 1 vrbs 1 test g expl ... ) ........................................................................................................... 14-6 
(do I-vrbs I-test g -expl .. .) ............................................................................................................. 4-6 
(do s-name -g init g repeat g test g expl .. .) ................................................................................ .4- 7 
(do· 1 vrbs 1 test g exp1 ... )~ ........ ~ ............................................................................................... 14-6 . 
(dollst (s var 1 form g resultform) g form) .................................................................................. 14-6 
(dotimes (s var i countform g resultform) g formL .................................................................... 14-6 
(drain ['pyort]) -:-: ................... ~ ..................... -:-: ............................................................................... 5-2 
(dremove 'g val '1 list ['x count]) .................................................................................................. 2-5 
(dsubst 'g_x-'gy 'i_s) ..... -: .............................................................................................................. 2-6 
(dtpr 'g_arg) .................................................................................................................................... 2-3 
(dtpr 'g_arg) .................................................................................................................................... 2-8 
(dumplisp s name) ......................................................................................................................... 6-2 
(editf s xl .~) ................................................................................................................................. 16-4 
(editflndp x pat nil) ........................................................................................................................ 16-5 
(editfns s x [g corns 1 ... )) ........................................................................................................... 16-4 
(editp s x) ....... ~ .............................................................................................................................. 16-4 
(editracefn scorn) ....................................................................... " .................................................. 16-4 
(editv s var r g com 1 ... )) ............................................................................................................ .16-4 
(environment [I whenl 1 what! 1 when2 1 what2 ... )) .................................................................. 4- 8 
(environment-lmlisp U_whenl I_what! l_when21_what2 ... D ...................................................... .4-8 
(environment-maclisp U_whenl1_whatl1_when2 l_what2 ... ]) .................................................... .4-8 
(eq 'g argl 'g arg2) ........................................................................................................................ 2-9 
(eqstr-'g argl-'g arg2) .................................................................................................................... 2-10 
(equal 'g- argl 'g-arg2) ................................................................................................................... 2-10 
(err ['S value [niil)) ........................................................................................................................ 4-8 
(error Ps message 1 ['s message2]]) ............................................................................................... 4-8 
(errset g expr [s flag])~ ................................................................................ , ................................. 4-8· 
(eval 'g val ['x bind-pointer)) ........................................................................................................ 4-'9 
(eval-when 1 time g expl .. .) ......................................................................................................... 6-2 
(evalframe 'xydlpofnter) ............................................................................................................... 4-9 
(evalhook 'g form 'su evalfunc ['su funcallfuncD ........................................................................ 4-10 
(evenp 'x_arg) ............ ~ ..................... -: ............................................................................................. 3-3 -
(exec s argl ... ) ............................................................................................................................... 4-10 
(exece's fname ['1 args ['1 envir))) ............................................................................................... 4-10 
(exit ['x code]) ..... ~ ........... -:-: ........................................................................................................... 6-2 . 
(exp 'fx"=-arg) ................................................................................................................................... 3-6 
(explode 'g_arg) ................... ' ........................................................................................................... 2-14 
(explodec 'g arg) ............................................................................................................................ 2-14 
(exploden 'g-=,arg) ............................................................................................................................ 2-14 
(expt 'n_base 'nyower) ................................................................................................................. 3-6 
(fact 'x arg) .................................................................................................................................... 3-6 
(fake 'x addr) ................................................................................................................................. 6-2 
(fasl 'st -name ['st mapf ['g warn]]) .............................................................................................. 5-2 
(fclosure'l vars 'g-funobj).~ .......................................................................................................... 2-25 
(fclosure-allst 'v fclosure) ............................................................................................................. 2-25 
(fclosure-function 'v fclosure) ....................................................................................................... 2-25 
(fclosure-list I_list u]unction L .. ]) ......................................... " ..................................................... 8-8 

4404P30 LISP PROGRAMMERS A-3 



FUNCTION INDEX 

(fclosurep 'v fclosure) .................................................................................................................... 2-25 
(fllepos 'pYOrt ['xyos]) ................................................................................................................ 5-3 
(fllestat 'st filename) ...................................................................................................................... 5-3 
(flllarray 's array '1 itms) .............................................................................................................. 2-19 
(flx 'n arg) :-:-........... ~ ....................................................................................................................... J-6 
(flxp 'g_arg) .................................................................................................................................... 3-3 
(flatc 'g form ['x max)) ................................................................................................................. 5-3 
(flatsize-'g form I'x max]) ............................................................................................................ 5-3 
(float 'n arg) ........... ~ ...................................................................................................................... 3-6 
(floatp 'g_arg) ................................................................................................................................. 3-3 
(fork) .............................................................................................................................................. 6-2 
(freturn 'xydl-pointer 'g_retval) ................................................................................................... 4-10 
(frexp 'f_arg) .................................................................................................................................. 4-10 
(fseek 'pyort 'x_offset 'x_flag) ...................................................................................................... 5-3 
(funcall 'u func ['g arg1 ... )) ......................................................................................................... 4-11 
(funcallhook '1 fonn 'su funcallfunc ['su evalfuncD ................................................................... .4-11 
(function u func) .......... :-:-......................... ~ .................................................................................... 4-11 
(gc) ........... ~ .................................................................................................................................... 6-3 . 
(gafter s_type) ............................................................................................................................... 6-3 
(gensym [' s leader]) ....................................................................................................................... 2-11 
(get 'Is name 'g ind) ...................................................................................................................... 2-23 
(get-poame 's arg) ......................................................................................................................... 2-13 
(getaccess 'a array) ..................................................................................... : ................................... 2-17 
(getaddress 's entry 1 's binder! 'st discipline 1 L. ....... )) ............................................................ 2-26 
(getaux 'a array) .......... ~ ................. ~ .............................................................................................. 2-17 
(getchar 's arg 'x index) ................................................................................................................ 2-13 
(getcharn ;g arg 'x index) .............................................................................................................. 2-13 
(getd 's arg)~ ......... ~ ........................................................................................................................ 2-13 
(getdata 'a_array) ............................................................................................................................ 2-17 
(getdelta ' a array) ........................................................................................................................... 2-17 
(getdisc 'y _bcd) .............................................................................................................................. 2-21 
(getdisc 'y _func) ............................................................................................................................. 4-11 
(getentry 'y bed) ............................................................................................................................ 2-21 
(gethash '8 -key 'H htab [ 'g defval ]) .......................................................................................... .14-2 
(getl 'Is name '1 indicators) .-.-........................ ~ ................................................................................ 2-23 
(getlenith 'a_array) ........................................................................................................................ 2-17 
(getsyntax 's syn.bol) .................................................................................................................... 7-10 
(go g labexp)~ ................................................................................................................................. 4-11 
(greaterp ['n_arg1 ... ]) .................................................................................................................... 3-3 
(haipart bx_number x_bits) ........................................................................................................... 3-4 
(hash-table-count 'H htab) ............................................................................................................ 14-3 
(hash-table-p 'H_argf. .................................................................................................................... 14-2 
(hashtabstat) .................................................................................................................................. 6-3 
(haulong bx number) ..................................................................................................................... 3-4 
(hunk 'g vall ['g va12 ... 'g vaIn)) ................................................................................................ 2-19 
(hunk-to:Ust 'h hunk) ....... :-:-.......................................................................................................... 2-20 
(hunkp 'g_arg).~ ............................................................................................................................. 2-8 
(hunksize 'h arg) ........................................................................................................................... 2-20 
(if 'g a 'g b ;g c .. ,) ....................................................................................................................... 4-12 
(if 'g -a 'g -b) .. :-:-............................................................................................................................... 4-12 
Of 'g -a then 'g b L..1 [elseif '8 c then 'g d .. .1 [else '8 e L..)) ................................................... 4-12 
(If 'g-a then 'g-b L .. ] [elseif 'g-c thenretT [else 'g d L~D .......................................................... 4-12 
(impiOde 'l_arg)~ ........................ ~ ............................ ~ ..................................................................... 2-11 
(include s filename) ....................................................................................................................... 6-3 
(include-if'gyredicate s_filename) ............................................................................................... 6-4 

A-4 4404P30 LISP PROGRAMMERS 



FUNCTION INDEX 

{includef's filename) ..................................................................................................................... 6-4 
{inc1udef-if'gyredicate s_filename) .............................................................................................. 6-4 
(infile 's filename) ......................................................................................................................... 5-3 
{insert 'g object '1 list 'u comparefn 'g nodups) .......................................................................... 2-6 

~::~ ~~f.:!:: ::~::::: ~::::::::: :::::::::::::::::: :::::::::::::::::::: :::: ::::::::::::::::::: :H~ 
(lconc'iytr 'I_x) ............................................................................................................................ 2-24 
(ldiff 'I_x 'Iy) ................................................................................................................................ 2-5 
(length 'I arg) ................................................................................................................................. 2-3 
(lessp ['n-argl ... ]) ......................................................................................................................... 3-3 
(let 1 args-g expl ... g exprn) ........................................................................................................ 4-13 
(let·l args g exp 1 ... g expn) ....................................................................................................... .4-13 
(Iexpr=-funcall 'g functiOn ['g argl .. .1 '1 argn) ............................................................................. 4-13 
(Ust ['g arg1 ... n .................. -:: ............... -:-: ...................................................................................... 2-1 . 
(list-to-bignum '1 ints) ................................................................................................................... 2-3 
(Iistarray 'sa array ['x elements]) ................................................................................................. 2-18 
(listify 'x count) ........ -:: .................................................................................................................. 4-13 

~~!:!: ::-:~:~ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~~ . 
(load's -filename ['st map ['g warn]]) ........................................................................................... 5-4 

8:~ :~x~a:Ig~~··~~t)·::~::::::::::::~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::t~ 
(lsubst-'I_x 'gy 'I_s) ...................................................................................................................... 2-7 
(macroexpand 'g form) .................................................................................................................. 2-26 
(make-hash-table :size :test :rehash-size :rehash-threshold) ......................................................... 14-2 
(make-vector-ftoat 'x size) ............................................................................................................. 14-7 
(makeht 'x size [ 's test ]) ............................................................................................................ 14-2 
(makereadtable ['s flag]) ............................................................................................................... 5-4 
(makhunk 'xl arg)-: ........................................................................................................................ 2-20 

~::~::: :~_aI:~)::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~! 1 

(makunbound 's arg) ..................................................................................................................... 2-14 
(map 'u func '1 arg1 .. ,) ................................................................................................................. 4-13 
(map-over-oblist 'u fun) ................................................................................................................ 14-6 
(mapc 'u func '1 arg1 ... ) ............................................................................................................... 4-13 
(mapcan 'u func-'I arg1 ... ) ........................................................................................................... 4-14 
(mapcar 'u -func 'I-argl .. ,) ............................................................................................................ 4-14-
(mapcon 'u-:'func 'I-:'arg1 .. ,) ........................................................................................................... 4-14 
(maphash 'u fun 'H htab) ............................................................................................................. 14-3 
(maplist 'u func '1 arg1 .. ,) ........................................................................................................... 4-14 
(marray 'g -data's access 'g aux 'x length 'x deltaL ................................................................... 2-17 
(max 'n arg1 ... ).-:-: ............. ::-.......... -:-: .............. -:-: .............................................................................. 3-6 
(member'g arg1 '1 arg2) ................................................................................................................ 2-10 
(memq 'g arg1 '1 arg2) ................................................................................................................... 2-10 
(merge '1 -datal '1 data2 'u comparefn) .......................................................................................... 2-6 
(mfunction t entry's disc) ............................................................................................................ 4-14 

!:E::;~~;~;)::~:.::::::::::::::::::::::::::::::::::::::::::::::::::·::::::::::::::::::::::H 
(mod'i dividend 'i divisor) ............................................................................................................ 3-1 
(msg [I-option ... ] Pg msg .. .1) ...................................................................................................... 5-4 
(multiple-value-bind'i_varlist 'g_values-form 'gJorml [ 'gJorm2 ... ]) ..................................... 14-5 
(multiple-value-call 'uJun 'gJorml [ 'gJorm2 ... ]) .................................................................. 14-5 
(multiple-value-list 'g_form) ......................................................................................................... 14-5 

4404P30 LISP PROGRAMMERS A-5 



FUNCTION INDEX 

(multiple-value-progl 'g forml ['g form2 ... J) .......................................................................... .14-5 
(multiple-value-setq 'I_varlist 'g_form) ......................................................................................... 14-5 
(neone 'I argl 'I arg2 ['I arg3 ... J) ................................................................................................. 2-7 

~:=~~~!~~~)::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~~O 
(new-vector 'x_size ['gJill ['gyrop]D ........................................................................................... 2-15 
(new-vectori-byte 'x_size ['gJill ['gyrop]]) .................................................................................. 2-15 
(new-veetori-Iong 'x_size ['gJill ['gyrop]]) .................................................................................. 2-15 
(new-veetori-word 'x_size ['gJill ['gyrop]]) ................................................................................. 2-15 
(not 'g arg) ..................................................................................................................................... 2-10 
(nreeone 'I arg 'g arg) .................................................................................................................... 2-8 
(nreverse 'I arg) .-:-........................................................................................................................... 2-8 
(nth 'x index 'I list) ....................................................................................................................... 2-4 
(nthedr-'x index'l list) .................................................................................................................. 2-4 
(nthehar '8 arg 'x index) ............................................................................................................... 2-13 
(nthelem 'x- argl 1 arg2) ............................................................................................................... 2-4 
(null 'g argf .......... -:-........................................................................................................................ 2-10 
(numberp 'g_arg) ............................................................................................................................ 3-2 
(numbp 'g arg) ............................................................................................................................... 3-2 
(nwritn ['pyortD ........................................................................................................................... 5-5 
(obllst) ............................................................................................................................................ 4-14 
{oddp 'x_arg) ................................................................................................................................... 3-3 
(onep 'g arg) ................................................................................................................................... 3-3 
(opva} 's arg ['g newvalD .............................................................................................................. 6-4 
(or [g argl ... ]) -:-: ............................................................................................................................ 4-15 
(outfiie 's filename ['st typeD ........................................................................................................ 5-5 
(patom 'g=exp ['pyort!) ................................................................................................................ 5-5 
(plist 's_arg) ................................................................................................................................... 2-13 
(plist 's_name) ............................................................................................................................... 2-22 
(plus ['n argl ... ]) .......................................................................................................................... 3-1 
(plusp 'n-arg) ................................................................................................................................. 3-3 
(pntlen 'xfs arg) ............................................................................................................................. 5-5 
(portp 'g arg) ................................................................................................................. : ................ 5-6 
(pp [I option] s namel .. .) ............................................................................................................. 5-6 
(pp-form 'g_form ['pyortl) ........................................................................................................... 5-6 
(prine 'g_arg ['pyortD ................................................................................................................... 5-6 
(print 'g_arg ['pyortl) ................................................................................................................... 5-6 
(probef 'st file) ............................................................................................................................... 5-6 
(process sygrm [s_frompipe s_topipe]) ......................................................................................... 6-5 
(product ['n argl ... ]) .................................................................................................................... 3-2 
(prog I vrbls g expl .. .) .................................................................................................................. 4-15 
(progl'g expl-['g exp2 ... ]) .......................................................................................................... 4-15 
(prog2 'g -expl 'g exp2 ['g exp3 ... n ............................................................................................. 4-15 
(progn 'g-expl ['g exp2 .. .]) .......................................................................................................... 4-15 
(progv 'lloev'l initv g expl .. .) .................................................................................................... 4-15 
(ptime) .~ .......... ~ .......... ~ ................................................................................................................. 6-5 
(ptr 'g arg) ..................................................................................................................................... 2-26 
{purcopy 'g_exp) ............................................................................................................................. 4-14 
(purep 'g_exp) ................................................................................................................................ 4-16 
(putaceess 'a array'su fune) ......................................................................................................... 2-19 
(putaux 'a array'g aux) ................................................................................................................ 2-19 
(putd's name'u fune) .................................................................................................................. 4-16 
(putdata'a arraY'g arg) ................................................................................................................ 2-19 
(putdelta 'a array 'x delta) ............................................................................................................. 2-19 
(putdlsc 'y_fune 's_d"iscipline) ............................................................... , ........................................ 2-21 

A-6 4404P30 LISP PROGRAMMERS 



FUNCTION INDEX 

(putlength 'a array 'x length) ........................................................................................................ 2-19 
(putprop 'Is name 'g val 'g ind) .................................................................................................... 2-23 
(quote g arg) ............ ~ ........ ~ ........................................................................................................... 2-26 
(quote! rg qforml1 ... [! 'g eformI1 ... [!!'l forma .. .) ................................................................... 2-2 
(quotient ['n argl ... n .... ~ ......................... ~ ................................................................................... 3-2 
(random ['x limit1) ........................................................................................................................ 3-7 
(ratom ['pYart ['g_eof]]) ............................................................................................................... 5-7 
(read ['pyort ['g_eof]]) ........................................... , ..................................................................... 5-7 
(readc ['pyort ['g_eofl]) ................................................................................................................ 5-7 
(readlist '1 arg) ............................................................................................................................... 5-7 
(remainder'i dividend 'i divisor) .................................................................................................. 3-7 
(rematom's arg) ............ ~ .............................................................................................................. 2-12 
(remhash 'g -key 'R htab) .............................................................................................................. 14-3 
(remob's symbol) .. ~ ...................................................................................................................... 2-12 
(remove 'g x '1 l) ........................................................................................................................... 2-6 
(removeaddress's namel ['s name2 ... ]) ...................................................................................... 5-7 
(remprop'ls name'g ind) ... ~ ............. , .......................................................................................... 2-23 
(remq 'g x '11 ['x countn ............................................................................................................. 2-6 
(replace 'g argl 'g-arg2) ................................................................................................................ 2-26 
(reset) ...... -: ........... ~ ......................................................................................................................... 6-5 
(resetio) .......................................................................................................................................... 5-7 

~;:!~~:e [:f~~;\]:.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::i~~6 
(rot 'x vaC'x amt) .......................................................................................................................... 3-6 
(rplaca'lh argl 'g arg2) ................................................................................................................. 2-5 
(rplacd 'lh -'argl 'g - arg2) ................................................................................................................. 2-5 
(rplacx 'x 1nd 'h hunk 'g val) ....................................................................................................... 2-20 
(sassoc 'g -argl 'C arg2 'sl-func) ..................................................................................................... 2-21 
(sassq 'g argl '1 arg2 'sl func) ...................................................................................................... 2-21 
(scons 'x-arg 'bs rest) ... ~ ............................................................................................................... 2-27 
(segment-'s type 'x size) ............................................................................................................... 6-6 
(selectq 'g key-form [I clausel ... n ............................................................................................... 4-16 
(set's argl 'g arg2) ... ~ .................................................................................................................. 2-13 
{set-in:fclosure 'v fclosure 's symbol 'g newvalueL .................................................................... 2-25 
(setarg 'x argnum'g val) ...... ~ ............... ~ ...................................................................................... 4-16 
(setf g refexpr 'g value) ................................................................................................................. 2-27 
(setpHst 's atm '1 plis!) .................................................................................................................. 2-14 
(setplist 's=atm 'lylist) .................................................................................................................. 2-22 
(setqs_atml 'g_vall [s_atm2 'g_va12 ...... ]) ................................................................................ 2-13 
(setsyntax 's symbol's synclass['ls fune]) ................................................................................... 7-10 
(setsyntax ' s -symbol's - synclass ['Is funcl) .................................................................................. 5-7 
(shell) .......... -: ............... ~ ................... ~ ............................................................................................ 6-6 
(showstack) .................................................................................................................................... 6-6 
(signal 'x signum's name) ........................................................................................................... 6-6 
(signp s test 'g vat) ~ ...................................................................................................................... 2-9 
(sin 'fx-=-angle) ~ .............................................................................................................................. 3-4 

~::::~f,~g-fu~1).:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::t~ 
{small-segment 's type 'x cells} .................................................................................................... 6-6 
(sort 'I_data 'u_comparefn) ............................................................................................................ 2-27 
(sortcar '1 list 'u comparefn) ......................................................................................................... 2-27 
(sqrt 'fx arg) ..... -: ............................................................................................................................ 3-7 
(sstatus appendmap g val) ............................................................................................................ 6-7 
(sstatus automatic-reset g_ val) ...................................................................................................... 6-7 

4404P30 LISP PROGRAMMERS A-7 



FUNCTION INDEX 

(sstatus chain atom g val) .............................................................................................................. 6-7 
(sstatus dumpcore g val) ............................................................................................................... 6-7 
(sstatus evalhook g val) ................................................................................................................ 6-7 
(sstatus feature g val) .................................................................................................................... 6-7 
(sstatus ignoreeof-g val) ................................................................................................................ 6-8 
(sstatus nofeature g-val) ................................................................................................................ 6-8 
(sstatus translink g - val) ................................................................................................................ 6-8 
{sstatus uctolc g vaD ..................................................................................................................... 6-8 
(sstatus g type g- val) ..................................................................................................................... 6-7 
(status ctime) .... ~ ........................................................................................................................... 6-8 
(status feature g val) ..................................................................................................................... 6-8 
{status features)~ ............................................................................................................................ 6-9 
(status isatty) ................................................................................................................................. 6-9 
(status localtime) ........................................................................................................................... 6-9 
<status syntax s char) .................................................................................................................... 6-9 
(status undeifunc) .......................................................................................................................... 6-9 
(status version) .............................................................................................................................. 6-9 
(status g code) ......................................................................................................................... ; ..... 6-8 
(step s argl ... ) ................................................................................................................................ 15-1 
(sticky-=bignum-Ieftshift 'bx arg 'x amount) ................................................................................ 3-5 
(store 'I arexp 'g val) .......... :-:-......... ~ .............................................................................................. 2-19 
(stringp-'g arg) .. ~ ........................................................................................................................... 2-9 
(subl 'n arg) .................................................................................................................................. 3-2 
(subUs 'I alst '1 exp) ..................................................................................... : ................................ 2-22 
(sub pair 'i old 1 new 'I expr) ....................................................................................................... 2-7 
(subst 'g_x-'gy 1_s) .... :-:-................................................................................................................ 2-6 
(substring 'st_string 'xJndex ['xJengthD ..................................................................................... 2-13 
{substringn 'st_string 'xJndex ['xJengthJ) ................................................................................... 2-13 
(sum ['n argl ... J) .......................................................................................................................... 3-1 
(symbolp-'g arg) ............................................................................................................................. 2-9 
(symeval 's -arg) ............................................................................................................................. 2-12 
(symeval-in-:'fclosure 'v fclosure 's symbol) .................................................................................. 2-25 
(sys:access 'st filename-'x mode) :-:--............................................................................................... 6-9 
(sys:chmod 'st- filename 'x-mode) ................................................................................................. 6-9 
(sys:getpid) .... :-:-.................. -:. ........................................................................................................... 6-9 
(sys:link 'st oldfilename 'st newfilename) .................................................................................... 6-9 
(sys:time) ... ~ ........................ ~ .......................................................................................................... 6-9 
(sys:unlink 'st filename) ............................................................................................................... 6-9 
(tab 'x_col ['pyort]) ...................................................................................................................... 5-8 
(tailp 'l_x 'ly) ............................................................................................................................... 2-3 
(tcone 'Iytr 'g_x) ........................................................................................................................... 2-24 
(terpr ['pyort]) .............................................................................................................................. 5-8 
(terpri ['pyort]) ............................................................................................................................. 5-8 
(throw'g val [s tag]) ..................................................................................................................... 4-16 
{time-string ['x -seconds]) .............................................................................................................. 6-10 
(tImes ['n argl -:-.. ]) ....................................................................................................................... 3-2 
(top-Ieven-: ...................................................................................................................................... 6-10 
(trace [Is argl ... J) .......................................................................................................................... 11-1 
{traceargs s func [x levelJ) ............................................................................................................ 11-3 
(tracedump) ............ -:. ...................................................................................................................... 11-3 
(tyf ['pyort]) ................................................................................................................................. 5-8 
(tyipeek ['pyort]) .......................................................................................................................... 5-8 
(tyo 'x_char ['pyort]) .................................................................................................................... 5-8 

~!;::~~{:!~j.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:~ 

A-8 4404P30 LISP PROGRAMMERS 



FUNCTION INDEX 

(uconcat [' stn arg 1 ... ]) ................................................................................................................. 2-11 
(untrace [s arg1 ... ]) ....................................................................................................................... 11-4 
(untyi 'x_char ['pyort]) ................................................................................................................ 5-8 
(unwind-protect gyroteeted [g_ cleanup 1 .. .1) ............................................................................... .4-16 
(valuep 'g arg) ................................................................................................................................ 2-9 
(values ['i arg1 ... 'g argnJ) .......................................................................................................... 14-5 
(values-list'l arg) .... ~ .................................................................................................................... 14-5 
(vector ['g valO 'g vall ... ]) ............................................................................................................ 2-15 
(vectori-bYte ['x vaW 'x val2 ... J) .................................................................................................. 2-15 
(vectori-Iong ['x-valO 'x - val2 ... J) .................................................................................................. 2-15 
(vectori-word ['x- vaW 'x- val2 ... J) ................................................................................................. 2-15 
(vectorip'v vector) ....... ::-............................................................................................................... 2-9 
(vectorp 'v vector) ......................................................................................................................... 2-9 
(vget 'Vv veet 'g ind) .................................................................................................................... 2-16 
(vprop 'Vv _ veet) ::- ........................................................................................................................... 2-16 
(vputprop'Vv veet 'g value 'g ind) ... _ .......................................................................................... 2-16 
{vref'v veet 'x index) ............ ::-..................................................................................................... 2-15 
(vref-float'v vee 'x index) ............................................................................................................ 14-7 
(vrefi.-byte 'V veet 'x bindex) ........................................................................................................ 2-15 
(vrefi.-Iong 'V-veet 'x-lindex) ........................................................................................................ 2-15 
(vrefi.-word 'V- veet 'x windex) ...................................................................................................... 2-15 
{vset 'v veet 'x index'g vat) ......................................................................................................... 2-16 
(vset-float'v vee 'x index 'f value) .............................................................................................. 14-7 
{vseti-byte 'V veet ;;; bindex'x vaO ............. : ............................................................................... 2-16 
(vseti-Iong 'V-veet 'x-lindex 'x -val) ............................................................................................. 2-16 
(vseti-word 'V- veet 'x- windex 'x vat) ........................................................................................... 2-16 
(vsetprop 'Vv veet 'g value) ....... -:-: ................................................................................................. 2-16 
(vsize 'Vv vect) ........ :-: .................................................................................................................... 2-16 
(vsize-byte'V veet) ........................................................................................................................ 2-16 
(vsize-word 'V veet) ...................................................................................................................... 2-16 
(wait) ............. ::-............................................................................................................................... 6-10 
(with-keywords 'I keys 'I keydefs 'g form1 ['g form2 ... ] ) ....................................................... 14-6 
(xcons 'g arg1 'g arg2) .... -: ................ ::-................ ::-.......................................................................... 2-1 
(zapline) -: ........... :-: ........................................................................................................................... 5-8 
(zerop 'g_arg) .................................................................................................................................. 3-3 

4404P30 LISP PROGRAMMERS A-9 





APPENDIX B 

Special Symbols 

The values of these symbols have a predefined meaning. Some values are counters, while 
others are simply flags whose value the user can change to affect the operation of the Lisp sys
tem. In all cases, only the value cell of the symbol is important; the function cell is not. The 
value of some of the symbols (like ER %misc) are functions. What this means is that the value 
cell of those symbols either contains a lambda expression, a binary object, or symbol with a 
function binding. 

The values of the special symbols are: 

$gccountS - The number of garbage collections which have occurred. 

Sgcprint - If bound to a non nil value, then, after each garbage collection and subsequent 
storage allocation, a summary of storage allocation is printed. 

$ldprint - If bound to a non nil value, then, during each fasl or cfas~ a diagnostic message is 
printed. 

ER%all - The function that is the error handler for all errors. (See Chapter §10) 

ER%brk - The function that is the handler for the error signal generated by the evaluation of 
the break function. (See Chapter §10). 

ER%err - The function that is the handler for the error signal generated by the evaluation of 
the err function. (See Chapter §10). 

ER%misc - The function that is the handler of the error signal generated by one of the 
unclassified errors. (See Chapter §10). Most errors are unclassified at this point. 

ER%tpl - The function that is the handler to be called when an error has occurred which has 
not been handled. (See Chapter §10). 

ER%undef - The function that is the handler for the error signal generated when a call to an 
undefined function is made. 

"w - When it is bound to a non-nil value, this prevents output to the standard output port 
(poport) from reaching the standard output (usually a terminal). Note that "w is a two 
character symbol and should not be confused with "w which is how control-w is 
denoted. The value of "w is checked when the standard output buffer is flushed, which 
occurs after a terpr, drain, or when the buffer overflows. This is most useful in con
junction with ptport described later. System error handlers rebind "w to nil when they 
are invoked to ensure that error messages are not lost. (This was introduced for 
Maclisp compatibility.) 

defmacro-for-compiling - This has an effect during compilation. If it is non-nil, it causes mac
ros defined by defmacro to be compiled and included in the object file. 

environment - The operating system environment in assoc list form. 

4404P30 LISP PROGRAMMERS B-1 



LIST OF SPECIAL SYMBOLS 

errlist - When a reset is done, the value of errlist is saved away and control is thrown to the 
top level. . Eval is then mapped over the saved away value of this list. 

errport - This port is initially bound to the standard error file. 

evalhook - The value of this symbol, if bound, is the name of a function to handle evalhook 
traps (see §14.4) 

ftoat-format - The' value of this symbol is a string that is the format to be used by print to 
print flonums. See the documentation on the operating system function printf for a list 
of allowable formats. 

funcallhook - The value of this symbol, if bound, is the name of a function to handle fun
callhook traps. (See Chapter §14.4). 

gcdisable - If it is non-nil, then garbage collections are not done automatically when a collect
able data type runs out. 

ibase - This is the input radix used by the Lisp reader. It may be either eight or ten. 
Numbers followed by a decimal point are assumed to be decimal regardless of what 
ibase is. 

linel - The line length used by the pretty printer, pp. This should be used by print but it is 
not at this time. 

multiple-values-limit - The maximum number of multiple values that can be returned. This 
is a read-only variable. 

nil - This symbol represents the null list and, thus, can be written O. Its value is always nil. 
Any attempt to change the value results in an error. 

piport - Initially bound to the standard input (usually the keyboard). A read with no argu
ments reads from piport. 

poport - Initially bound to the standard output (usually the terminal console). A print with no 
second argument writes to poport. See also: AW and ptport. 

prinlength - If this is a positive fixnum, then the print function prints no more than prinlength 
elements of a list or hunk and further elements abbreviated as ' ... '. The initial value of 
prinlength· is nil. 

prinlevel - If this is a positive fixnum, then the print function prints only prinlevel levels of 
nested lists or hunks. Lists below this level are abbreviated by '&' and hunks below 
this level are abbreviated by a '%'. The initial value of prinlevel is nil. 

ptport - Initially bound to nil. If bound to a port, then all output sent to the standard output 
is also sent to this port as long as this port is not also the standard output since this 
would cause a loop. Note that ptport does not get a copy of whatever is sent to poport 
if poport is not bound to the standard output. 

readtable - The value of this is the current readtable. It is an array, but you should NOT try 
to change the value of the elements of the array using the array functions. This is 
because the readtable is an array of bytes and the smallest unit the array functions work 
with is a full word (4 bytes). You can use setsyntax to change the values and (status 
syntax .. .J to read the values. 

B-2 4404P30 LISP PROGRAMMERS 



LIST OF SPECIAL SYMBOLS 

t - This symbol always has the value t. It is possible to change the value of this symbol for 
short periods of time, but you are strongly advised against it. 

top-level - In a Lisp system without /lisp/libltpl.l loaded, after a reset is done, the Lisp system 
jimcall's the value of top-level if it is non-nil. This provides a way for you to introduce 
your own top level interpreter. When /lisp/libltpl.l is loaded, it sets top-level to tpl and 
changes the reset function so that once tpl starts, it cannot be replaced by changing 
top-level. tpl does provide a way of changing the top level however, and that is 
through user-top-Ievel. 

user-top-Ievel - If this is bound, then after a reset the top level function jimcall's the value of 
this symbol rather than going through a read eval print loop. 

4404P30 LISP PROGRAMMERS B-3 





APPENDIX C 

The Garbage Collector 

The FRANZ LISP storage management "garbage collector" is invoked automatically when
ever a collectable data type's current allocation is exhausted. All data types are collectable 
except for strings. After a garbage collection finishes, the collector calls the function gca/ter, 
which should be a lambda of one argument. The argument passed to gca/ter is the name of the 
data type that ran out and which caused the garbage collection. It is gcajters responsibility to 
allocate more pages of free space. The default gca/ter makes its decision based on the percen
tage of space still in use after the garbage collection. If there is a large percentage of space still 
in use, gca/ter allocates a larger amount of free space than if only a small percentage of space is 
still in use. The default gca/ter also prints a summary of the space in use if the variable $gcprint 
is non-nil. The summary always includes the state of the list and fixnum space, and includes an 
additional type if that type caused the garbage collection. The type that provoked the garbage 
collection is preceded by an asterisk. 

4404P30 LISP PROGRAMMERS C-l 





Tektron~ 
COMMITTED TO EXCELLENCE 

MANUAL CHANGE INFORMATION 

PRODUCT ___ 4.:....:4~0..:::..OP:...::3:..,:0~LI:..:S:...:.P_P:...::R..:.::0;,.::G.:..;,;RA..:.:.M~M;.=.E:....:..:RS:;...-:..:R.::..E F;,...;E:.;,..R;.=.E;,.;..N C~E=-_ CHANGE REFERENCE _....::C~1.J..../::::..:28:::..::5::.....-_ 

MANUAL PART NO. --.-.:.0..:.-7.:..0-....:5:..:6:...:.0..:.-7_-O.:..O~ __________ _ DATE _____ --=2:,...-..:..1--.:8:..,:5:....-_ 

TEXT CHANGES 

This is a page replacement package. 

Remove the appropriate pages from your manual and insert the attached 
pages. Keep this cover sheet in the Change Information section at the 
very back of this manual for a permanent record. 

REVISED: Pages 13-1 through 13-6. 

ADDED: Pages iv. v, vi, 13-7, and 13-8. 




