
: K PROGRAMMERS
• REFERENCE

Part No. 061-3207-00
Product Group 07

4400 SERIES
C LANGUAGE

TEK PROGRAMMERS
REFERENCE

First Printing MAR 1986

Part No. 061-3207-00
Product Group 07

4400 SERIES
C LANGUAGE

Please Check at the
Rear of this Manual
forNOTES and
CHANGE INFORMATION

Copyright 1986 by Tektronix ,Inc., Beaverton, Oregon. Printed in the
United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc ..

Smalltalk-80 is a trademark of Xerox Corp.

UniFLEX is a registered trademark of Technical Systems Consultants,
Inc.

Portions of this manual are reprinted with permission of the copyright
holder. Technical Systems Consultants, Inc., of Chapel Hill, North
Carolina.

The operating system software copyright information is embedded in
the code. It can be read via the "info" utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when used
properly in the specified operating environment, for a period of three (3) months from the date of shipment, or
if the program is installed by Tektronix, for a period of three (3) months from the date of installation. If this
software product does not conform as warranted, Tektronix will provide the remedial services specified
below. Tektronix does not warrant that the functions contained in this software product will meet
Customer's requirements or that operation of this software product will be uninterrupted or error-free or
that all errors will be corrected.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the
expiration of the warranty period and make suitable arrangements for such service in accordance with the
instructions received from Tektronix. If Tektronix is unable, within a reasonable time after receipt of such
notice, to provide the remedial services specified below, Customer may terminate the license for the software
product and return this software product and any associated materials to Tektronix for credit or refund.

This warranty shall not apply to any software product that has been modified or altered by Customer. Tektronix
shall not be obligated to furnish service under this warranty with respect to any software product a) that is
used in an operating environment other than that specified or in a manner inconsistent with the Users
Manual and documentation or b) when the software product has been integrated with other software if the
result of such integration increases the time or difficulty of analyzing or servicing the software product or the
problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN
SPECIFIED, REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND
EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX
WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

PLEASE FORWARP ALL MAIL TO;

Artificial Intelligence Machines
Tektronix, Inc.
P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES C LANGUAGE PROGRAMMERS REFERENCE

This manual supports the following versions of this product: 4404 Version 1.5, 4405 Version 1.1, and
4406 Version 1.1.

REV DATE DESCRIPTION

MAR 1986 Original Issue

4400 PROGRAMMERS REFERENCE

Section Table of Contents

SECTION 1 Introduction
About This Manual 1-1
Where to find Information 1-1
Manual Syntax Conventions .. 1-2
Invoking the C Compiler ... 1-2
The Command Line 1-3

The a Option .. 1-5
The c Option .. 1-5
The D Option ... 1-5
The f Option ... 1-5
The i Option 1-6
The I Option 1-6
The 1 Option 1-6
The L Option ... 1-7
The m Option ... 1-7
The M Option .. 1-7
The n Option 1-7
The N Option ... 1-7
The 0 Option .. 1-7
The a Option 1-8
The q Option 1-8
The r Option 1-9
The R option 1-9
The t Option 1-9
The U Option 1-9
The v Option 1-9
The w Option ... 1-10
The x Option .. 1-10

Examples 1-11
Description of the Language .. 1-12

Object Sizes 1-12
Register Variables 1-12

SECTION 2 Kernighan and Ritchie Variations
Introduction 2-1
Identifiers (Names), page 179 .. 2-1

Character Constants, page 180 2-1
Enumeration Constants, new section 2-1

Hardware Characteristics, page 181 2-1
What's in a Name?, page 182 .. 2-2

Characters and Integers, page 183 ... 2-2
Void, new section .. 2-2
Type Specifiers, page 193 .. 2-2
Structure, Union, and Enumeration Declarations, page 196 ... 2-3
Inclusion of an Information Field, new section 2-4
Structures and Unions, page 209 ... 2-4
Explicit Pointer Conversions, page 210 .. 2-4
Portability Considerations, page 211 ... 2-4
Anachronisms, page 212 2-4

Table of Content~-l

SECTION 3 System Calls and Functions

SECTION 4 Graphics Library Concepts
The Graphics Library 4-1

About This Section .. , 4-1
Using the Graphics Library in C Programs ... 4-1
Using the Graphics Library in Assembly Language Programs ... 4-2

Graphics Environment and Structures ... 4-3
Entering and Exiting Graphics Mode .. 4-3
Environmental Settings 4-4

Saving and Restoring the Display State 4-4
DISPSTATE .. 4-4
Panning 4-5
Mouse Bounds ... 4-5
Viewport .. 4-5
Cursors and Halftones 4-5
Screen Size Constants 4-6 .

Graphics Structures 4-6
POINT .. 4-6
RECT ... 4-6
FORM .. 4-7
FONT ... 4-8
MENU .. 4-8

Bitblt Graphics ... 4-8
The BBCOM Structure .. 4-9
How the BitBlt Operation Works .. 4-12
Drawing a Box on the Screen 4-14

Initializing Graphics Mode .. 4-15
Setting Up the BitBlt Structure .. 4-15
Drawing the Box 4-16

An Interesting Example Program 4-16
Graphics Error Messages 4-19
Creating Images In Forms 4-19
System Fonts .. 4-20

Font Styles and Layout .. 4-20
Graphical Text 4-24

Menus .. 4-25
Pop-Up Menus ... 4-25
Text Menus 4-25
Icon Menus 4-27

Event Processes 4-28

SECTION 5 Graphics Library Reference
Graphics and Events Library 5-1
About This Section 5-1

List of Functions 5-2

Figures

4-1. A 16by 16 Bit Form .. 4-7

Table of Contents-2

4-2. The BBeOM Data Structure. 4-9
4-3. The BitBlt Operation. . .. 4-12
4-4. Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serit). 4-21
4-5. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1. .. 4-22
4-6. Tektronix Monospaced Fonts (Pellucid a Typewriter) Part 2. 4-23
4-7. Event Queue Processing. 4-28

Tables

1-1 Variable Sizes .. 1-12
4-1 Statebits definitions ... 4-5
5-1 Symbolic Arguments ... 5-2

Table of Conlents-3

Section 1

Introduction
About This Manual
This manual is the primary programmer's reference to the 4400 Series C language. This manual
contains manual pages for C language functions and system calls as well as graphics library
functions. The 4400 Users Manual contains a complete list of the other manuals available for the
4400 Series.

This manual has these sections:

Section 1 Introduction. Tells you about this manual and also tells you how to invoke the C
compiler, and the options that are available for the command string.

Section 2 Kernigan and Ritchie Variations. Provides you with information about how the
4400 Series C language implementation is different from the implementation described in
Kernigan and Ritchie's The C Programming Language.

Section 3 Functions and System Calls. A description of the C language function and
system calls available on the 4400 Series.

Section 4 Graphics Library Concepts. An introduction to graphics, fonts, and event
processes on the 4400 Series AIM systems. BitBlt graphics concepts are discussed in some detail.

Section 5 Graphics Library Reference. A description of the C and assembly language
callable graphics library functions on the 4400 Series systems.

Where to find Information
You have several important sources of information on the 4400:

• This manual, the 4400 Series C Language Reference manual, contains reference manual
pages for C language function and system calls as well as graphics library functions.

• The 4400 Series Operating System Reference manual contains the syntax and details of
commands and utilities. This manual also contains details about a text editor and a remote
terminal emulator.

• The 4400 Series Assembly Language Programmers Reference manual contains the details
of the assembler and linking loader.

• The 4400 Users manual contains basic information on system installation, startup,
installing software, and the other "how to put commands together" discussions. See the
index of the User's manual to find how to perform particular tasks.

• The on-line help utility contains a brief description of the syntax of user commands.

• The Introduction to Smalltalk-80{tm} manual contains details and a short tutorial on the
Smalltalk-80 programming language.

4400 Series C Reference 1-1

Introduction

• The reference manuals for the optional languages for the 4400 product family are also
availabe.

Manual Syntax Conventions
Throughout this manual, the 4400 User's manual, and in the on-line help files, the following
syntax conventions apply:

1. Words standing alone on the command line are keywords. They are the words recognized
by the system and should be typed exactly as shown.

2. Words enclosed by angle brackets « and » enclose descriptions that are replaced with a
specific argument. If an expression is enclosed only in angle brackets, it is an essential part
of the command line. For example, in the line:

adduser <user name>

you must specify the name of the user in place of the expression <user_name>.

3. Words or expressions surrounded by square brackets ([and]) are optional. You may omit
these words or expressions if you wish.

4. If the word list appears as part of a term, that term consists of one or more elements of the
type described in the term, separated by spaces. For example:

<file name list>

consists of a series (one or more) of file names separated by spaces.

Invoking the C Compiler
The cc command is the program that drives the C compiler. By default, cc calls the two passes of
the C compiler - the relocating assembler, and the linking-loader. In addition, if you specify
the 0 option, cc calls the assembly language optimizer. Numerous options let you pass
information to the programs called by cc and to control their execution. The cc command
produces code that does not check the availability of stack space before trying to obtain space on
the stack.

The driver program accepts as input C source files, relocatable modules, or both. When you
specify either the r or R option, you may also use assembly language files as input. The name of
a C source file must end in .c; of an assembly language file, in .a; of a relocatable module, in .r;
of a preprocessor file in .p.

1-2

Introduction

By default, the cc command produces an output file named accordingly:

• If the user specifies only one file on the command line and that file is a file named
<filename>.c containing C source code, the output file is named <filename>.

• Otherwise, the output file is named <output>.

You may override this naming procedure by using the 0 option to cc to specify the name of the
output file. In any case, if a file with the same name already exists, it is deleted with no warning.

The cc command can produce as output one or more files containing intermediate language (from
the first pass of the C compiler), assembly language (from the second pass of the C compiler),
relocatable binary code, or executable binary code. You can obtain a listing of the C source code
by specifying the L or N option to cc. This listing is written to standard output.

Whether or not the cc command produces code that checks the availability of stack space before
trying to obtain space on the stack depends on the type of system being used. If it does, each time
the program needs space on the stack, it calls a run-time routine, which ensures that space is
available by adding to the stack if necessary. The cc command automatically produces the
correct code for a given system, but the user may override the default for a particular system by
using the s or S option. Code that does not check the availability of stack space is both smaller
and faster than code that does.

Compilation errors are always sent to standard output with the offending line of code and the line
number.

The Command Line
The syntax for invoking the C compiler is:

cc </ile_name_list> [+acDfillLmMnNoOqrRtUvwxj

where <file_name _list> is a list of the names of the files to compile, assemble, and link. The
items in brackets are options that can be used in the command line. Brief descriptions of the
options that are available are given here. These options are discussed in more detail later in this
section.

a

c

D< symbol> [=defJ

f

4400 Series C Reference

Stop when the second pass of the C compiler is complete.

Put the comments generated by the C compiler into the assembly
language file.

Define the specified symbol.

Produce an output module suitable for firmware.

1-3

Introduction

i=<dir name>

I

l=<lib name>

L

m

M

n

N

0= <filename >

o
q

r

R

t

U

v

w

Specifies a directory to search for #include files.

Stop when the first pass of the C compiler is complete.

Specifies the name of a library to pass to the linking-loader.

Send to standard output a listing of those files containing C source code.
Expand #include files.

Tell the linking-loader to produce load and module maps.

Tell the linking-loader to produce as output one relocatable file. The
name of this file is output.r.

Call only the first pass of the C compiler. Do not produce any code.

Send to standard output a listing of thos:~ files containing C source code.
Do not expand #include files.

Specifies the name of the executable (or if the M option is in effect, the
relocatable) output file.

Call the assembly language optimizer.

Produce code that does calculations on char and short variables without
first converting to into

Tell the assembler to produce a relocatable module from each input file,
but do not call the linking-loader. The r option leaves the user with one
relocatable module for each input file.

Tell the assembler to produce a relocatable module from each input file.
Then call the linking-loader, but do not delete the relocatable modules.

Produce as output a shared-text, executable module.

Produce a line-feed character ($OA) for \n rather than the default of a
carriage return ($OD).

Use verbose mode. When this option is in effect, the cc command sends
messages to standard error describing its activities.

Wam about duplicate #define statements.

x=<ldr_option> Pass the information following the equal sign to the linking-loader.
With this option the user can pass any option to the linking-loader.

Detailed descriptions of these options follow.

1-4

Introduction

The a Option
The a option instructs the cc command to stop when the second pass of the C compiler is
complete. The name of each output file is the same as the name of the corresponding C source
file provided on the command line except that the extension .a replaces the extension .c. The
output files contain assembly language code. This option may not be used in conjunction with
the 0 option.

The c Option
The c option tells the cc command to insert the comments generated by the C compiler during
code generation into the assembly language file. The C compiler generates a comment at the
beginning of each expression. It also generates comments for each variable declared in any given
block. This type of comment contains the name of the variable and the value of its offset. The c
option should only be used in conjunction with the a option.

The 0 Option
The D option allows the user to define symbols on the command line as if they were defined in
every one of the C source files with the preprocessor command #define. The syntax for this
option is

D=< symbol> [=defl

where <symbol> is the name of a symbol defined for the C preprocessor, which is replaced by def
in the source code. If the user provides no definition, the value of <symbol> is 1. The definition
is valid for all source files on the command line. The symbol is redefined at the beginning of
each source file. A user who does not wish to include a definition in a particular source file can
exclude it by using the preprocessor command #undef in that file. The D option may be used
repeatedly on the command line.

The f Option
When the f option is in effect, the cc command produces an output module suitable for firmware.
In such a case the compiler does not allow any globally initialized data. It places all code and
strings in the text segment and all global variables in the bss segment.

4400 Series C Reference 1-5

Introduction

The i Option
The i option specifies a directory to search for #include files. The syntax for this option is:

i=< dirname>

where <dirname> is the name of a directory to search. The i option may be used repeatedly on
the command line. The directories specified with the i option are searched in the order in which
they appear on the command line.

The overall search for #include files proceeds as follows:

1. Search the directory containing the source file.

2. Search the current working directory.

3. Search the directories specified by the i option.

4. Search the directory include in the working directory.

5. Search the directory !lib/include.

If the user encloses the file name used as an argument to the #include command in angle brackets,
, <' and '>', the compiler does not search the directory containing the source file. If the file name
specified begins with a slash character, T, the compiler does not search any directories, but
rather uses the file so specified as the #include file.

The I Option
The I option instructs the cc command to stop when the first pass of the C compiler is complete.
The name of each output file is the same as the name of the corresponding C source file provided
on the command line except that the extension .i replaces the extension .c. The output files
contain intermediate language, which cannot be read by the c compiler.

The I Option

By default, the cc command passes to the linking-loader the names of the C libraries that contain
standard I/O and math functions (/lib/clibs or !lib/clib or both, depending on the hardware). The
linking-loader searches these files when it tries to resolve external references. By invoking the 1
option, the user can specify the name of a library to search before searching these standard
libraries. The syntax for this option is:

1=< lib name>

where <lib name> is the name of a library to search. The 1 option may be used a maximum of
11 times on the command line. The libraries are searched in the order that the user specifies
them.

1-6

Introduction

The L Option
The L option instructs the compiler to send to standard output a listing of each file specified on
the command line that contains C source code. These listings, which contain line numbers,
include listings of any #include files (see the N option for more details).

The m Option
The In option tells the compiler to print the load and module maps from the linking-loader to
standard output. These maps are explained in detail in the 4400 Assembly Language Reference
manual.

The M Option
The M option instructs the compiler to compile, assemble, and link the source files specified on
the command line and to produce as output one relocatable module. By default, the name of this
file is output.r.

The n Option
The n option instructs the cc command to stop when the first pass of the C compiler is complete.
Pass 1 performs a syntactical check of the C source code in the files specified on the command
line but generates no code.

The N Option
The N option instructs the compiler to send to standard output a listing of each file specified on
the command line which contains C source code. These listings, which contain line numbers, do
not include listings of any #include files (see the L option for more details).

The 0 Option
The 0 option specifies the name of the file containing the executable (or if the M option is in
effect, the relocatable) output file. The syntax for this option is:,

o=<jilename>

The 0 option cannot be used in conjunction with the r or the a option.

4400 Series C Reference 1-7

Introduction

The 0 Option
The 0 option instructs the cc command to call the assembly language optimizer. Because it
makes certain assumptions about the source files it reads and because it replaces these files with
its optimized code, the optimizer should not be used on files containing hand-written assembly
language source code. For these reasons, even if the user specifies the 0 option, the cc command
does not run the optimizer on assembly language source files specified on the command line.

The q Option
The C language requires that all items of type char and short be converted to int before any
operations are performed on them. The q option bypasses this rule, allowing the generation of
better code in many instances. In general, the code generated with the q option is smaller but
equivalent to the code generated without the q option. For example, the statement

chI = ch2 « 3;

where chI and ch2 are of type char, generates code following these steps:

1. Convert ch2 to type int (sign extend).

2. Shift the result of the conversion left 3 places.

3. Convert the result of the shift to type char.

4. Assign the result of step 3 to chI.

In this example the conversions have no meaning. Because the C language ignores overflow, the
code generated without the conversions has exactly the same effect.

The user should, however, be careful not to use the q option when overflow is expected to occur
and is necessary to the operation being performed because the resulting code is not equivalent to
that generated without the q option. For example, if the previous statement is changed to read

intI = ch2 « 3;

where intI is of type int, use of the q option could cause the compiler to generate code that does
not perform as expected, depending on what the user intended and what the value of ch2 is. If the
q option is in effect, the variable ch2 is not converted to type int before the shift operation takes
place. Any overflow from ch2 is lost. If the q option is not in effect, ch2 is converted to int
before the shift operation takes place. Any overflow is retained for assignment to intI. An
explicit cast of ch2 into type int solves this problem.

In practice, using the q option does make the code smaller and faster, but it should be used
cautiously. You should thoroughly debug a program before attempting to compile it with the q
option. After compiling a program with the q option, the user should again check it thoroughly.

1-8

Introduction

The r Option
The r option instructs the compiler to produce a relocatable module for each input :file, but not to
call the linking-loader. The name of each output file is the same as the name of the
corresponding file provided on the command line except that the extension .r replaces the
extension .c or .a. The output files contain relocatable object code. This option may not be used
with the 0 option.

The R option
The R option tells the compiler to produce a relocatable module from each input file, to call the
linking-loader to produce one executable output module, but not to delete the individual
relocatable modules. The name of each relocatable module is the same as the name of the
corresponding file provided on the command line except that the extension .r replaces the
extension .c or .a.

The t Option

The t option tells the compiler to produce as output a shared-text, executable module. This
option is merely passed to the linking-loader. Shared-text files are discussed in detail in the 4400
Series Assembly Language Reference manual.

The U Option
The U option instructs the compiler to produce a line-feed character ($OA) for the C character
constant \n rather than the default of a carriage return ($OD).

The v Option
The v option tells the cc command to send messages to standard error describing its activities.
The messages show the command currently being executed, complete with the arguments and
options sent to it.

4400 Series C Reference 1-9

Introduction

The w Option
The w option instructs the C preprocessor to warn the user about duplicate #define statements.
Redefining a preprocessor variable is allowed, but it can make the debugging process very
difficult.

The x Option

The x option passes options directly to the linking-loader, load. The syntax for the x option is:

where ddr _option> is some valid option to the load command. No plus sign, +, is allowed in
front of < ldr _option>. For example, this use of the x option

+x=F=lIib/nonstd env

specifies a file of options to the load command. As another example,

specifies the executable task to be 8 Mbytes in size.

1-10

Introduction

Examples
These examples illustrate some of the uses of the cc command:

cc test.c

This example compiles, assembles, and links the file test.c, producing as output the executable
module test.

cc math.c float.c driver.c +o=testmath +Owsq

This example compiles the code in the three files specified on the command line, calls the
assembly language optimizer, assembles the code, and calls the linking-loader. The output is the
single executable module named testmath. The code generated by this command performs
operations on variables of type short and char without converting them to integers. It does not
check the availability of stack space before trying to obtain space on the stack. The compiler
warns the user about duplicate definitions.

cc list.c +Ln

This example compiles the file list.c but generates no code. A listing of the C source file is sent
to standard output.

cc games.c help.c +DDBG=l +o=play +I=gamelib +t

This example compiles, assembles, and links the files games.c and help.c, producing as output
the shared-text executable module play. The D option defines the variable DBG. The I option
tells the linking-loader to search the library gamelib before it searches the standard C libraries.

cc prog.c +NSvqca

This example compiles the file prog.c and produces as output the assembly language file prog.a,
which includes the comments generated by the compiler. A listing of the C source code is sent to
standard output. This listing does not include the #include files. The code generated by this
command performs operations on variables of type short and char without converting them to
integers. It checks the availability of stack space before trying to obtain space on the stack.
Because verbose mode is turned on, the command sends messages to standard error describing its
activities.

4400 Series C Reference 1-11

Introduction

Description of the Language
Advanced features implemented by this version of the C language include the passing, returning,
and assigning of structures and unions; enumeration types; and bit fields. The compiler supports
the types unsigned char, unsigned short, and unsigned long.

Object Sizes
Each variable defined in a C program requires some specific amount of space. Table 1-1 shows
the sizes of the basic types of variables.

Table 1-1
Variable Sizes

car
short 2
float 4
int 4
long 4
pointers 4
double 8

The qualifier unsigned, which can be applied to variables of type char, short, int, or long, does
not affect the size of the variable. Short implies short int; long implies long int; and unsigned
implies unsigned into

The types float and double conform to IEEE Task P754 proposed floating point standard for
single and double precision formats respectively.

Register Variables
A user on any system may apply the storage class register to variables of all basic types except
float and double. Users whose hardware includes the MC68881 floating-point coprocessor may
apply the storage class register to variables of all basic types. The compiler can honor the
declarations of up to four pointer variables and five data variables (and, if applicable, five
floating-point registers) as register variables per function. It changes the storage class of an
invalid register declaration to auto.

1-12

Section 2

Kernighan and Ritchie Variations
Introduction
This section describes the differences between Technical Systems Consultant's C compiler,
which is modeled after the UNIX System V C Compiler, and the language described by
Kernighan and Ritchie in Appendix A: C Reference Manual of The C Programming Language
(Kernighan and Ritchie, 1978). The numbers of the following sections and the accompanying
page numbers correspond to the numbers appearing in that appendix.

Identifiers (Names), page 179
External identifiers, which are used by the assembler and linking-loader, are restricted to:

59 characters, 2 cases

Character Constants, page 180
An additional escape sequence is allowed for vertical tab.

vertical tab VT \v

Enumeration Constants, new section
Names declared as enumerators are constants of the corresponding enumeration type and behave
like integer constants.

Hardware Characteristics, page 181
The hardware characteristics are:

4400 Series C Reference

char
int
short
long
float
double
float range
double range

8 bits
32 bits
16 bits
32 bits
32 bits
64 bits
10E38

10E 308

2-1

Kernighan and Ritchie Variations

What's in a Name?, page 182
Each enumeration is conceptually a separate type with its own set of named constants. The
properties of an enumeration type (enum) are identical to those of type into The type enum is
classified as an integral type.

The type void is used to specify an empty set of values. Its primary use is to define the type of a
function that does not return a value.

The word unsigned may be used as an adjective to modify the types char, short, int, and long.
Used by itself, unsigned is equivalent to unsigned into

Characters and Integers, page 183
Variables of type char range in value from -128 to 127 inclusive. Variables of the more explicit
type, unsigned char, range in value from 0 to 255 inclusive.

Void, new section
Objects declared to be type void may not be used in any way. Because a void expression denotes
a nonexistent value, such an expression may only be used as an expression statement or as the
left-hand operand of a comma expression. Expressions may be cast to type void in order, for
example, to make explicit the discarding of the value of a function call used as an expression
statement.

Type Specifiers, page 193
The compiler supports two additional type specifiers:

"void"
enumeration specifier

The following three combinations are also supported:

2-2

unsigned char
unsigned short
unsigned long

Kernighan and Ritchie Variations

Structure, Union, and Enumeration Declarations,
page 196
Fields are assigned from right to left. Fields are not signed, have only integral values, and should
be declared unsigned although int is accepted ..

Enumerations are unique types with named constants. The compiler treats enumeration variables
and constants as being of type into The syntax for the declaration of an enumeration type follows.
Keywords are enclosed in quotation marks. Other words are descriptors that the user must
replace with a specific example of the thing described.

enum specifier:
"enum" { enum-list }
"enum" identifier { enum-list }
"enum" identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enumeration list are declared as constants and may appear wherever
constants are allowed or required. The values of the corresponding constants begin at ° and
increase by I as the declaration is read from left to right. These values can be altered by using an
equals sign, , =', after an identifier-in which case the value of the constant is that specified after
the equals sign. Subsequent identifiers continue the progression from the assigned value.

The names of all enumerators in the same scope must be distinct from each other. The role of the
identifier in the enum-specifier is entirely analogous to that of the structure tag in a struct
specifier. It names a particular enumeration. For example:

enum color { red, white, blue=10, orange }i

enum color *colptr, colval;
colval = white;
colptr = &colvali
if (*colptr == orange) ...

This piece of code makes color the enumeration tag of a type describing various colors. The
declarations declare colval as an object of that type and colptr as a pointer to an object of that
type. The possible values are taken from the set {O,I,IO,It}.

4400 Series C Reference 2-3

Kernighan and Ritchie Variations

Inclusion of an Information Field, new section
For operating systems such as UniPLEX, which support information fields in binary files, the
preprocessor allows this command:

#info information-line

The information-line may be any text. All of the text, including the trailing carriage return, is
placed in the information field of the binary file. This feature may not appear in all versions of
the compiler because its usefulness is operating-system dependent.

Structures and Unions, page 209
Structures and unions may be assigned, passed as arguments to functions, and returned by
functions. Only identical structure and union types may be assigned.

Explicit Pointer Conversions, page 210
The pointer representation for a 68000-based machine corresponds to a 32-bit integer and
measures bytes. Variables of type char have no alignment requirements; variables of other types
have even addresses. All aggregates, except arrays of characters, are also aligned on even
addresses.

Portability Considerations, page 211
The order of evaluation of the arguments to a function is not specified by the language. This
compiler evaluates the arguments from right to left. Because character constants are really
objects of type int, multi character constants are permitted. Up to four characters may be present
in one constant.

Anachronisms, page 212
A structure or union reference is a chain of member references (qualifications) prefixed either by
a pointer to a structure or a union or by the name of a structure or a union. Because each
qualification implies the addition of an offset within an address computation, older compilers
(which failed to check for membership in the appropriate structure or union) allowed omission of
those qualifications with an offset of O. This compiler requires complete qualification.

2-4

Section 3

System Calls and Functions
This section contains manual pages for each C library system call and function. To make the
manual pages easier to locate, they are listed in this section alphabetically and summarized
below:

abort

abs

access

acct

acos

addmount

alarm

asctime

asin

atan

atan2

atof

atoh

atoi

atol

atoo

atos

basename

brk

calloc

cdata

ceil

chdir

chmod

chown

chtim

clearerr

close

closedir

4400 Series C Reference

Send a task-abort signal to the current task, causing the task to stop
immediately.

Absolute value function.

Check the accessibility of a file.

Begin or end system accounting.

Arc-cosine function.

Add an entry to the system mount table.

Set the alarm clock of the task.

Generate a time stamp.

Arc-sine function.

Arc-tangent function.

Arc-tangent function.

Convert a floating-point digit-string to a double.

Convert a hexadecimal digit-string to a long.

Convert a decimal digit-string to an int

Convert a string of decimal characters to an integer.

Convert an octal digit-string to a long.

Convert a decimal digit-string to a short.

Extract the simple filename from a pathname.

Change the task's data segment memory allocation.

Allocate memory.

Change the task's data segment memory allocation.

Calculate the smallest integer not less than a certain specified value.

Change the working directory.

Change the access permissions of a file.

Change the owner-ID of a file.

Change the modification date and time of a file.

Clear the stream's error-indicators.

Close an open file.

Close a directory-stream.

3-1

System Calls and Functions

control_pty

cos

cosh

creat

createyty

_crypt

ctime

daylight

dirname

dup

dup2

ecvt

edata

end

endpwent

errno

etext

execl

execle

execlp

execv

execve

execvp

exit

exit

exp

fabs

fclose

fcntl

fevt

fdopen

feof

ferror

3-2

Control a pseudo-terminal channel

Calculate the cosine of an angle.

Calculate the hyperbolic cosine of a value.

Create a new file or truncate an existing file.

Create a pseudo-terminal channel

Encrypt a character-string.

Generate a time stamp.

Daylight savings time flag.

Extract the directory prefix from a pathname.

Duplicate a file descriptor.

Duplicate a file descriptor onto a specific file descriptor.

Convert a floating-point value to a character-string.

End-of-memory address of initialized data.

End-of-memory address of uninitialized data.

End password-file handling.

The system error code of the most recent system error.

End-of-memory address of program text.

Execute a program found in an executable binary file.

Execute a program found in an executable binary file.

Execute a program found in an executable binary file.

Execute a program found in an executable binary file.

Execute a program found in an executable binary file.

Execute a program found in an executable binary file.

Exit the program.

Exit the program.

Calculate the exponential of a value.

Absolute value function.

Close a stream.

Control the behavior of a file

Convert a floating-point value to a character-string.

Attach an open file to a stream.

Test the end-of-file indicator of a stream.

Test the error-indicator of a stream.

mush

fgetc

fgets

fileno

finite

floor

fmod

fopen

fork

fprintf

fputc

fputs

fread

free

freopen

frexp

fscanf

fseek

fstat

ftell

ftime

ftoa

ftw

fullname

fwrite

gcvt

getc

getchar

getcwd

getenv

get_FPU_control

get _ FPU _exception

4400 Series C Reference

System Calls and Functions

Flush a stream opened for write access.

Read a character from a stream.

Read a character-string from a stream.

Get a file descriptor for the file attached to a stream.

Determine if a double precision floating point number is not an
infinity.

Calculate the largest integer not greater than a value.

Floating-point remainder function.

Open a file and attach it to a standard I/O stream.

Create a new task.

Write formatted data to a stream.

Write a character to a stream.

Write a character-string to a stream.

Read data from a stream.

Free a block of allocated memory.

Reopen an open stream.

Separate the exponent from the mantissa of a floating-point value.

Read and interpret formatted data from a stream.

Reposition a stream.

Get the status of an open file.

Get the current position of a stream.

Get the current time statistics for the operating system.

Convert a floating-point value to a character-string.

Descend the specified directory structure.

Generate the full pathname.

Write data to a stream.

Convert a floating-point value to a character-string.

Read a character from a stream.

Read a character from the standard input stream.

Get the pathname of the working directory.

Get information from the environment list.

Return the contents of the MC68881 control and status registers

Access MC68881 coprocessor exception-infornlation

3-3

System Calls and Functions

geteuid

getpass

getpid

getppid

getpw

getpwent

getpwnam

getpwuid

gets

getuid

getw

gmtime

gUy

idfd

_ierrmsg

index

isalnum

isalpha

isascii

isatty

iscntrl

isdigit

isgraph

islower

isnan

isprint

ispunct

isspace

isupper

isxdigit

3-4

Get the effective user-ID number of the current task.

Get a password using a prompt.

Get task -ID number of the current task.

Get the task -ID number of the parent of the current task.

Get a password-file entry based on a user-ID.

Get and decode the next entry in the system password file.

Get and decode the next entry in the system password file containing
the given user-name.

Get and decode the next entry in the system password file containing
the given user-ID number.

Read a character-string from the standard input stream.

Get the user-ID number of the current task. login file that has
specific <ut_line> value.

Read a word from a standard 110 stream.

Break down a system-time value into units in the Greenwich Mean
Time zone.

Get the characteristics of an open character-device.

Return the last file descriptor which signalled "INPUT READY"

Initialize < sys _ errlist> and < sys _ nerr >.

Find the first occurrence of a character in a character-string.

Determine if a value is an alphabetic character or a decimal digit.

Determine if a value is an alphabetic character.

Determine if a value is an ASCII character.

Determine if a file descriptor references a character-special

Determine if a value is a control character.

Determine if a value is a decimal digit.

Determine if a value is a graphics character.

Determine if a value is a lower-case alphabetic character.

Determine if a double precision floating point number is not-a
number.

Determine if a value is a printable character.

Determine if a value is a punctuation character.

Determine if a value is a white-space character.

Determine if a value is an upper-case alphabetic character.

Determine if a value is a hexadecimal digit.

itostr

kill

12tos

13tol

14tol

Idexp

link

localtime

lock

log

loglO

longjmp

Irec

I seek

ltol3

Itol4

Itostr

make realtime

malloc

matherr

memccpy

memchr

memcmp

memcpy

memman

memset

mknod

mktemp

modf

mount

nice

open

4400 Series C Reference

System Calls and Functions

Convert an int to a character-string.

Send a signal to a task.

Convert two-byte integers to short integers.

Convert three-byte integers to long integers.

Convert four-byte integers to long integers.

Generate a floating-point value from a mantissa and an exponent.

Create a link to a file.

Break down a system-time value into units in the local time zone.

Lock a task in memory or unlock a locked task.

Calculate the natural logarithm of a value.

Calculate the base-lO logarithm of a value.

Perform a non-local goto.

Add an entry to the lock table of the operating system.

Change the current file position of an open file.

Convert long integers to three-byte integers.

Convert long integers to four-byte integers.

Convert a long to a character-string.

Declare the task to be a real-time task.

Allocate memory.

Floating-point error-handling function for built-ins.

Copy memory.

Find a value in a block of memory.

Compare two blocks of memory.

Copy memory.

Perform a memory management operation.

Set a block of memory.

Add an entry to the file-system that is a directory, a character-special
file, or a block-special file.

Generate a unique pathname from a template.

Separate a floating-point value into its integral and fractional parts.

Mount a block-special file onto the file-system.

Change the scheduling priority of a task.

Open an existing file.

3-5

System Calls and Functions

opendir

pause

pclose

perror

pffinit

phys

pipe

popen

pow

printf

profil

putc

putchar

putenv

put_ FPU _control

put _ FPU _exception

putpwent

puts

putw

qsort

rand

read

readdir

realloc

rewind

rewinddir

rindex

rmvmount

rrand

rump_create

rump_dequeue

3-6

Open a directory.

Suspend the current task.

Close a stream connected to a pipe.

Write a message explaining the error code in errno.

Guarantee that the cc command loads the versions of standard I/O
functions that contain floating-point conversions.

Access or release a system resource.

Create a pipe.

Open a pipe and attach it to a standard I/O stream.

Raise a value to a power.

Write formatted data to stdout.

Start or stop monitoring the current task.

Write a character to a stream.

Write a character to stdout.

Modify or add an environment-variable definition to the
environment list.

Change the contents of the MC68881 control and status registers

Update MC68881 coprocessor exception-information

Format and write a system password-file record.

Write a character-string to stdout.

Write a word to a stream.

Sort data.

Generate a random number.

Read data from an open file.

Read the next entry in an open directory.

Reallocate an allocated block of data.

Rewind a stream.

Rewind a directory-stream.

Find the last occurrence of a character in a character-string.

Remove an entry from the system mount table.

Set the seed of the random number generator to a value generated
from the current system-time value.

Create a new managed resource.

Relinquish access to a named resource.

rump_destroy

rump_enqueue

sbrk

scanf

seekdir

set ftm

set_high _address_mask

setbuf

setjmp

setpwent

setuid

signal

sin

sinh

sleep

sprintf

sqrt

srand

sscanf

stack

stat

stderr

stdin

stdout

stime

stol2

strcat

strchr

strcmp

strcmpci

strcpy

strcspn

4400 Series C Reference

System Calls and Functions

Destroy a managed resource.

Obtain exclusive access to a named resource.

Change the memory allocation of the data segment.

Read and interpret formatted dNa from stdin.

Change the current position of a directory-stream.

Change the last-modification time of a file.

Set the hardware high address mask register

Set buffering attributes of a stream.

Setup for a non-local goto.

Reset password-file handling.

Change both the user-ID and the effective user-ID.

Change the signal-handling address for a specific signal in the
current task.

Calculate the sine of an angle.

Calculate the hyperbolic sine of a value.

Suspend execution for an interval.

Generate a character-string containing formatted data.

Calculate the square root of a value.

Set the seed of the random number generator.

Interpret formatted data from a character-string.

Check and expand memory allocated to the stack segment of the
task.

Get the status of a file.

Standard error stream for standard I/O.

Standard input stream for standard I/O.

Standard output stream for standard I/O.

Set the system-time value.

Convert short integers to two-byte integers.

Concatenate one character-string onto another.

Find the first occurrence of a character in a character-string.

Compare two character-strings.

Compare two character-strings (case insensitive).

Copy a character-string.

Determine the unlike character-count.

3-7

System Calls and Functions

strerror

strlen

strncat

strncmp

strncmpci

strncpy

strpbrk

strrchr

strspn

strstr

strstrci

strtoi

strtok

strtol

stty

sync

sys _ errlist

system

time

times

timezone

toascii

tolower

_toupper

truncf

ttyname

ttyslot

tzname

tzset

umask

3-8

Return a pointer to a message describing the specified error number.

Determine the length of a character-string.

Concatenate one character-string onto another.

Compare two character-strings.

Compare two character-strings (case insensitive).

Copy a character-string.

Find the first occurrence of any of a list of characters in a character
string.

Find the last occurrence of a character in a character-string.

Determine the like character-count.

Find a substring with a character-string.

Find a substring within a character-string (case insensitive).

Convert the digits in a character-string to an into

Extract the next token from a character-string.

Convert the digits in a character-string to a long.

Set the characteristics of an open character-device.

Update the file-system.

This is a global table containing references to messages describing
system error codes.

The number of system error messages referenced by the global table
sys _ errlist.

Issue a shell command.

Get the current system-time value.

Get the CPU-usage information for the current task.

Current time zone value.

Generate a value that is within the range of valid ASCII characters.

Convert an upper-case character to a lower-case character.

Convert a lower-case character to an upper-case character.

Set the size of an open file.

Generate the pathname for a terminal.

Get the terminal number of the controlling terminal for the task.

Time-zone name abbreviations.

Initialize external variables containing time parameters.

Change the file-creation permissions mask for the task.

umount

ungete

unlink

uree

uti me

vfork

wait

write

4400 Series C Reference

System Calls and Functions

Unmount a mounted device.

Push a character onto an input stream.

Remove a link to a file.

Remove an entry from the operating system lock table.

Change the last-modification time for a file.

Create a new task.

Suspend the task until a child task terminates.

Write data to an open file.

3-9

abort

abort
Send a task-abort signal to the current task, causing the task to stop immediately.

SYNOPSIS
void abort();

Arguments
None

Returns
Never

DESCRIPTION
Abort sends a task-abort signal, #<n>, to the current task, which causes the task to terminate
immediately. The task-abort signal cannot be caught or ignored. The function never returns to
the caller.

The system signals can be found in the kill() manual page.

ERRORS REPORTED
None

NOTES
The termination status received by the parent of the current task contains an exit code of zero, a
termination code indicating that the task terminated because of a task-abort signal, and a flag that
indicates if a core-image file was produced.

SEE ALSO
System Call: signaI(), wait()

Command: int

4400 Series C Reference A-I

abs

abs
Absolute value function.

SYNOPSIS
int abs(i)

int i;

Arguments
< i> The number whose absolute value is to be calculated

Returns
The absolute value of the argument < i>

DESCRIPTION
Abs calculates the absolute value of the argument <i>. It returns the calculated value as its
result.

NOTES
If <i> is the largest negative number, absO returns that value as its result.

A-2

access

access
Check the accessibility of a file.

SYNOPSIS
#include <errno.h>
int access(path, perms)

char *path;
int perms;

Arguments
<path> The <path> argument is a character-string that specifies the directory location of the

file. Access locates the file to be checked by following the specified path.

<perms> A value indicating the type of access to check

Returns

This function returns a zero if access is permitted, otherwise the function returns a -1 with
<errno> set to the system error code (this indicates the reason for denying access).

DESCRIPTION
The access function checks the permissions of the file reached by the pathname in the character
string referenced by <path>. The value <perms> specifies the type of permission to check. If
the file exists, the function returns zero and grants the requested access. Otherwise, this function
returns -1 with <errno> to indicate the reason the access is denied.

A -1 returned value indicates the path could not be followed, a part of the path is not a directory,
the pathname does not reach a file, or the file does not grant the effective user the requested
access permissions.

The value <perms> is a bit-string that tells the access function the types of permissions to check.
<Perms> may be any combination of these values:

OxOl Read
Ox02 Write
Ox04 Execute (search)

A <perms> value of zero tells the function to check the path to the file to see if the file exists.

4400 Series C Reference A-3

access

Errors Reported
EACCES The file pennissions do not grant the requested access type

EMS DR Cannot follow the path to the file

ENOEP The pathname does not reach a file

ENOTDIR A part of the path is not a directory

NOTES
If the current effective user is the owner of the specified file, the access function checks the file
permissions for its owner. Otherwise, it examines the permissions granted for users other than its
owner.

SEE ALSO
System Call: chmod{), stat{)

A-4

acct

acct
Begin or end system accounting.

SYNOPSIS
#include <errno.h>
#include <sys/acct.h>
int acct(path)

char *path;

Arguments

<path> The address of a character-string that contains a pathname for the file where to write
accounting records, or (char *) NULL

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
If <path> is not (char *) NUll" the acct function begins system accounting. While system
accounting is active, every time a task terminates the system writes a system accounting record
(described later) to the file reached by the pathname referenced by <path> . The referenced file
must already exist. If <path> is (char *) NULL, the acct function ends active system accounting,
if any.

This function returns zero if it successfully performs its function, otherwise it returns -1 with
<errno> set to the system error code. This function requires that the current effective user-ID be
that of the system manager.

The function fails if <path> is not (char *) NUll, and the path in the pathname can not be
followed, a part of the path is not a directory, the pathname does not reach a file, or system
accounting is already active. The function also fails if the current effective user is not the system
manager.

4400 Series C Reference A-5

acct

The following structure describes the record written by the system to the specified file each time
a task terminates.

struct acct
{

short ac uid; -long ac strt;
long ac end;
char ac_syst[3];
char ac usrt[3];
unsigned int ac stat; -
char ac_tty;
char ac _mem;
unsigned int aC_blks;
char ac_spare[2];
char ac name[8];

} ;

The ac _ uid entry contains the user-ID number associated with the task.

ac _strt contains the system-time at the start of the task.

ac_end contains the system-time at the end of the task.

ac _syst (a three-byte integer) contains the number of CPU-seconds used by the system on behalf
of the task.

ac _usrt (a three-byte integer) contains the number of CPU-seconds used by the task.

ac stat contains task's termination status.

ac _tty contains the task's controlling terminal number.

ac _ mem contains the maximum number of 1028-byte blocks of memory ever allocated to the task
at one time.

ac _ biks contains the number of I/O units used by the task.

ac _spare is currently unused.

ac _name contains the first eight characters of the command that initiated the task.

ERRORS REPORTED
EACCES The current effective user is not the system manager

EEXIST System accounting is already active

EMSDR Could not follow the path to the file

ENOEP The pathname does not reach a file

ENOTDIR A part of the path is not a directory

A-6

acct

NOTES
The acct function does not report an error if the <path> is (char *) NULL and system accounting
is not currently active.

The operating system writes accounting records to the end of the specified file.

SEE ALSO
Command: / etc! sysact

4400 Series C Reference A-7

acos
Arc-cosine function.

SYNOPSIS
#include <math.h>
double acos(x)

double x;

Arguments
<x> The cosine value to use to compute an angle

Returns

The angle, in radians, that has the cosine <x>

DESCRIPTION

acos

The acos function calculates the angle in radians between 0.0 and pi that has as its cosine the
value <x>.

The function expects <x> to be between -1.0 and 1.0 inclusive. Values outside of that range
cause a domain error. If the function detects a domain error, it calls matherrO, passing to it the
address of a filled <struct> exception structure. It sets the <type> element of the structure to
DOMAIN, <name> to the address of the character-string acos, and <argl> to <x>.

If matherrO returns 0, the function writes the message

acos() error: Argument is out of range

to the standard I/O stream <stderr> and sets <erma> to EDOM. If matherrO returns
something other than 0, it returns the value retval in the < struct> exception structure as its result.

SEE ALSO
C Library: asin(}, atan(}, cosO, matherr()

A-8

atldmount

addmount
Add an entry to the system mount table.

SYNOPSIS
void *addmount(device, path)

char *device;
char *path;

Arguments

<device> The address of a character-string containing the pathname of the device which is
mounted

<path> The address of a character-string containing the pathname of the directory on which
the device is mounted

Returns
Void

DESCRIPTION
This function adds an entry to the system's mount-table file. The entry is composed of the
pathname of the device, the pathname of the directory, the actual user-ID of the current task, and
the current time.

If there already is an entry in the system's mount-table file with the same device pathname, that
entry is overwritten; otherwise, a new entry is created.

NOTES
The addmountO function does not perfonn an actual mount of the device on the directory; it
only manipulates the system's mount-table file.

No error is reported if the system's mount-table file does not exist.

If the device pathname does not begin with a '1', the string Idevl is prepended to the specified
pathname before the system's mount-table file is searched.

4400 Series C Reference A-9

SEE ALSO
C Library: rmvmount()

System Call: mount{), umount{)

Command: fetc/mount, fetcfunmount

A-tO

iUJdiiiount

alarm

alarm
Set the alarm clock of the task.

SYNOPSIS
unsigned int alarm(sec)

unsigned int sec;

Arguments
<sec> The number of seconds to elapse before sending an alarm signal to the current task

Returns
The number of seconds remaining from a previous alarm clock request (zero if none)

DESCRIPTION
If <sec> is not zero, the alarm function arms the alarm clock of the task so the system sends an
alarm signal to the current task after the specified number of seconds has elapsed. If the alarm
clock was already armed, the alarm function cancels the previous alarm clock request. If <sec>
is zero, the alarm function cancels the previous alarm clock request.

This function returns as its result the number of seconds remaining on a previous alarm clock
request, or zero if there was no previous request.

ERRORS REPORTED
None

4400 Series C Reference A-II

alarm

NOTES
An alarm signal causes the current task to terminate unless it explicitly catches or ignores alarm
signals.

The actual amount of time that elapses before the system sends the alarm signal may be slightly
less than the requested time, since the system tics occur on one-second intervals.

SEE ALSO
C Library: sleep()

System Call: pause(), signal(), wait()

Command: sleep

A-12

asctime

asctime
Generate an ASCII time stamp.

SYNOPSIS
*include <time.h>
char *asctime(dttm)

struct tm *dttm;

Arguments
<dttm> The address of a structure containing date and time information

Returns
The address of the generated ASCII time stamp

DESCRIPTION
The asctime function generates an ASCII time stamp that represents the date and time
information in the structure referenced by <dttm>. It returns the address of the time stamp as its
result.

A time stamp is a 26-character string of characters (including the terminating null-character) that
represents:

• the day of the week

• the month of the year

• the day of the month

• thehour

• minute

• second

• year

The time stamp is generated by the sprintf() format:

"%3s %3s %2.2d %2.2d:%2.2d:%2.2d %4.4d\n"

4400 Series C Reference A-I3

asctime

NOTES
The character-string referenced by the result of this function is in static memory and is
overwritten by subsequent calls to this function and ctimeO.

SEE ALSO
C Library: ctime(), gmtime(), localtime(), sprintjO

System Call: time ()

Command: date

A-14

asin

asin
Arc-sine function.

SYNOPSIS
#include <math.h>
double asin(x)

double x;

Arguments
<x> The sine value used to compute an angle

Returns
The angle, in radians, that has the sine <x>

DESCRIPTION
The asin function calculates the angle in radians between -piJ2 and piJ2 that has a sine value of
<x>. It returns that angle as its result.

The asin function expects the value <x> to be between -1.0 and 1.0 inclusive. Values outside of
that range cause a domain error. If the function detects a domain error, it calls matherrO,
passing to it the address of a filled <struct> exception structure. It sets the <type> element of
the structure to DOMAIN, <name> to the address of the character-string asin, and < arg 1> to
<x>.

If matherrO returns 0, the function writes the message

asin() error: Argument is out of range

to the standard I/O stream <stderr> and sets <ermo> to EDOM. If matherrO returns
something other than zero, it returns the value retval in the < struct> exception structure as its
result.

SEE ALSO
C Library: acos(), atanO, matherr(), sinO

4400 Series C Reference A-IS

atan
Arc-tangent function.

SYNOPSIS
#include <math.h>
double atan(x)

double x;

Arguments
<x> The tangent value used to compute an angle

Returns

The angle, in radians, that has the tangent <x>

DESCRIPTION

atan

The atan function calculates the angle in radians between -pil2 and pil2 that has as its tangent the
value <x>. Atan returns that angle as its result.

SEE ALSO
C Library: acos(), asin(), atan2(), tan{}

A-16

atan2

atan2
Arc-tangent function.

SYNOPSIS
#include <math.h>
double atan2(x, y)

double x;
double y;

Arguments
<x> The dividend of the tangent value used to compute an angle

<y> The divisor of the tangent value used to compute an angle

Returns
The angle, in radians, that has the tangent <x>l<y>

DESCRIPTION
The atan2 function calculates the angle (in radians) between -pi and pi that has as its tangent the
value <x>l<y>. Atan2 returns that angle as its result. This function has twice the range of the
atan(} function because it takes into account the signs of values defining the tangent of the angle.
It also handles a divisor <y> of zero so that no zero division error occurs.

This function permits <x> and <y> to be any value, as long as they are not both 0.0. Having
both arguments 0.0 causes a singularity error. If the function detects a singularity error, it calls
matherrO, passing to it the address of a filled <struct> exception structure. Atan2 sets the
<type> element of the structure to SING, <name> to the address of the character-string atan2,
<argJ> to <x>, and <arg2> to <y>.

4400 Series C Reference A-I7

ata1i2

If matherrO returns 0, the function writes the message

atan2() error: Both arguments are 0.0

to the standard I/O stream <stderr> and sets <ernw> to EDOM. If matherrO returns
something other than zero, it returns the value retval in the < struct> exception structure as its
result.

SEE ALSO
C library: acos(), asin(}, atan(}, matherr(), tan(}

A-I8

alO]

atof
Convert a floating-point digit-string to a double.

SYNOPSIS
double atof(str)

char *str;

Arguments
<str> The address of the character-string to convert

Returns
The floating-point value generated

DESCRIPTION
The atof function generates a double from the character-string referenced by < str>. It returns the
generated value as its result.

The atof function expects the character-string to contain optional whitespace (see isspace()),
which it ignores, followed by an optional signed string of decimal digits (see isdigit()) containing
an optional decimal point, followed by an optional exponent. The exponent consists of an 'E' or
'e' character followed by an optional sign followed a string of optional decimal digits. It
continues converting until it reaches the end of the string or it finds an inappropriate character.

NOTES
The function returns the properly signed maximum value if the character-string represents a value
whose magnitude is larger than can be represented by a double.

SEE ALSO
C Library: _atoh(), atoi(), _atoo(), atol(}, _atos(}, ecvt(},Jcvt(), Jtoa(), gcvt()

4400 Series C Reference A-19

atoh

atoh
Convert a hexadecimal digit-string to a long.

SYNOPSIS
long _atoh(str)

char *str;

Arguments

<str> The address of the character-string to convert

Returns

The integer generated from the character-string referenced by < str>

DESCRIPTION
The _atoh function generates a long from the character-string referenced by <str>. It returns that
value as its result.

The function expects the character-string to contain optional whites pace (see isspace()), which is
ignored, followed by an optional sign, followed by a optional ('0') and an ('x') or ('X'), which
are ignored, followed by a string of hexadecimal digits (see isxdigit()). _ Atoh continues
converting until it reaches the end of the string or it finds inappropriate character.

NOTES
The function ignores overflow errors.

The conversion is performed by:

strtol (str, (char **) NULL, 16)

SEE ALSO
C Library: atoJ(}, atoi(), _atoo(), atol(), _atos(), strtol()

A-20

atoi

atai
Convert a decimal digit-string to an into

SYNOPSIS
int atoi (str)

char *str;

Arguments
<str> The address of the character-string to convert

Returns
The integer generated from the character-string referenced by < str>

DESCRIPTION
The atoi function generates an int from the character-string referenced by <str>. Atoi returns the
generated value as its result.

The atoi function expects the character-string to contain optional whitespace (see isspace()),
which is ignored, followed by an optionally signed string of decimal digits (see isdigit()). Atoi
continues converting until it reaches the end of the string or it finds an inappropriate character.

NOTES
Overflow errors are ignored.

The conversion is performed by:

(int) strtol(str, (char **) NULL, 10)

SEE ALSO
C Library: atoJO, _ atoh(), _ atoo(), atol(), _ atos(), strtol()

4400 Series C Reference A-21

atol

atol
Convert a string of decimal characters to an integer.

SYNOPSIS
l(str)

char *str;

Arguments
<str> The address of the character-string to convert

Returns
The integer generated from the character-string referenced by <str>

DESCRIPTION
This atol function generates a long from the character-string referenced by <str>. It returns that
value as its result. The atol function expects the character-string to contain optional whitespace
(see isspace()), which is ignored, followed by a string of decimal digits (see isdigitO). The
function converts until it reaches the end of the string or it detects an inappropriate character.

NOTES
Overflow errors are ignored. The conversion is performed by

strtol(str, (char **) NULL, 10)

SEE ALSO
C Library: _atoh(), atoi(), _atoo(), _atos(), strtol()

A-22

atoo

atoo
Convert an octal digit-string to a long.

SYNOPSIS
long _atoo(str)

char *str;

Arguments

<str> The address of the character-string to convert

Returns

The integer generated from the character-string referenced by < str>

DESCRIPTION
The _atoo function generates a long from the character-string referenced by <str>. Atoo
returns that value as its result.

The _atoo function expects the character-string to contain optional whitespace (see isspace()),
which is ignored, followed by an optional sign, followed by a string of octal digits (digits 0
through 7). The function continues until it reaches the end of the string or it finds an
inappropriate character.

NOTES
Overflow errors are ignored.

The conversion is performed by

strtol(str, (char **) NULL, 8)

SEE ALSO
C Library: ato!(}, _atoh(), atoi(), ato[(}, _atos(), strtol()

4400 Series C Reference A-23

alos

atos
Convert a decimal digit-string to a short.

SYNOPSIS
short _atos (str)

char *str;

Arguments

<str> The address of the character-string to convert

Returns
The integer generated from the character-string referenced by <str>

DESCRIPTION
The _atos function generates a short from the character-string referenced by <str>. It returns
that value as its result.

The _ atos function expects the character-string to contain optional whitespace (see isspace()),
which is ignored, followed by an optionally signed string of decimal digits (see isdigit()). The
function converts until it reaches the end of the string or it finds an inappropriate character.

NOTES
Overflow errors are ignored.

The conversion is performed by

(short) strtol(str, (char **) NULL, 10)

SEE ALSO
C Library: ato/O, _atoh(), atoi(), atolO, _atoo(), strtolO

A-24

basename

basename
Extract the simple filename from a pathname.

SYNOPSIS
char *basename(path, suffix)

char *path;
char *suffix;

Arguments
<path> The address of a character-string containing a pathname

<suffix> The address of a character-string containing a filename < SUfflX> or (char *) NULL if
none

Returns
The address of a character-string containing the simple filename

DESCRIPTION
The basename function removes the directory prefix, if any, from the pathname in the character
string referenced by <path>. If <suffix> is not (char *) NULL, the basename function also
removes the characters in the character-string referenced by <suffix> from the end of the
pathname, if the pathname ends in those characters. The basename function returns as its result
the address of a character-string containing the extracted simple filename.

NOTES
The result of the basename function is in static memory and is overwritten by subsequent calls to
this function.

Basename does not check the validity of the <path>. Nor does it verify that the <path> exists
on the filesystem.

SEE ALSO
C Library: dirname(),fullname()

Command: basename

4400 Series C Reference B-1

brk
Change the task's data segment memory allocation.

SYNOPSIS
#include <errno.h>
int brk(addr)

char *addr;

Arguments
<addr> The requested end-of-segment address for the data segment

Returns
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION

bTk

The brk function changes the amount of memory allocated to the data segment so that the end
of-segment address of the data segment is <addr>. If the function succeeds, it returns zero as its
result. Otherwise, it returns -1 with <ermo> set to the system error code describing the reason
for the failure of the function

The function fails if the address specified in addr is less than the lowest address in the data
segment, or if it could not allocate enough memory to satisfy the request.

If the requested end-of-segment address is higher than the current end-of-segment address of the
data segment, the brk function allocates memory to the segment. If the requested end-of
segment address is lower than the current end-of-segment address of the data segment, the brk
function releases memory from the segment.

B-2

irk

ERRORS REPORTED
ENOMEM Not enough memory is available

NOTES
The end-of-segment address of a segment is the lowest logical address that is higher than the
highest logical address of memory allocated to the segment.

SEE ALSO
C Library: calloc{), EDATA,freeO, mallocO, reallocO

System Call: cdataO, sbrkO

4400 Series C Reference B-3

calloc

calloc
Allocate memory.

SYNOPSIS
char *calloc(num, size)

unsigned num;
unsigned size;

Arguments
<num>

<size>

Returns

The number of units to allocate

The size of a unit

The address of the allocated block of memory or (char *) NULL if no memory is available.

DESCRIPTION
The eaBoe function allocates <num> times <size> bytes of memory from the area of available
memory. Calloe returns the address of the first byte of the allocated memory or (char *) NULL if
no memory is available.

The first byte of the allocated memory is aligned for any use.

NOTES
Return allocated memory to the arena of available memory by using freeO.

SEE ALSO
C Library:!ree(), malloc(), realloc()

System Call: brk(), cdata(), sbrk()

4400 Series C Reference C-l

cdata
Change the task's data segment memory allocation.

SYNOPSIS
#include <errno.h>
int cdata (addr)

char *addr;

Arguments

<addr> The requested end-of-segment address for the data segment

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

cdilta

The cdata function changes the amount of memory allocated to the data segment so the end-of
segment address is <addr>. If cdata allocates memory to the data segment, it allocates memory
that is physically contiguous to the last page of memory allocated to that segment. If cdata
succeeds, it returns zero as its result. Otherwise, cdata returns -1 with <errno> set to the system
error code describing the reason for failure.

Cdata fails if the address <addr> is less than the lowest address in the data segment, or if it
could not allocate enough contiguous memory to satisfy the request.

If the requested end-of-segment address is higher than the current end-of-segment address, cdata
allocates memory to the segment that is physically contiguous to the last page of the segment. If
the requested end-of-segment address is lower than the current end-of-segment address, the
function releases memory from the segment.

ERRORS REPORTED
ENOMEM Not enough memory is available

C-2

cdiJtfJ

NOTES
The end-of-segment address is the lowest logical address that is higher than the highest logical
address of memory allocated to the segment.

On virtual memory systems, cdata is functionally equivalent to the brkO function.

SEE ALSO
C Library: calloc(), EDATA,free(), malloc(), reallocO

System Call: brk{), sbrk{)

4400 Series C Reference C-3

ceil
Calculate the smallest integer not less than a specified value.

SYNOPSIS
#include <math.h>
double ceil(x)

double x;

Arguments
<x> The floating-point argument to the function

Returns
The smallest integer that is not less than <x>

DESCRIPTION

ceil

The ceil function calculates the smallest integer that is not less than the value <x>. As a result,
ceil returns that value represented as a double.

SEE ALSO
C Library: floorO

C-4

chdir

chdir
Change the working directory.

SYNOPSIS
#include <errno.h>
int chdir(path)

char *path;

Arguments

<path> The address of a character-string containing a pathname to the new working
directory

Returns
Zero if successful, otherwise -1 with < erma> set to the system error code.

DESCRIPTION
The chdir function changes the working directory to the directory reached by the pathname in the
character-string referenced by <path>. Chdir returns zero as its result if it successfully changes
the working directory to the specified directory. Otherwise, chdir returns -1 with <erma> set to
the system error code.

The chdir function fails if the pathname could not be followed or a part of the pathname is not a
directory.

ERRORS REPORTED
could not follow the path to this file EMSDR

ENOTDIR A part of the path is not a directory or the file reached by the pathname is not a
directory

SEE ALSO
C Library: getcwd()

Command: chd

4400 Series C Reference C-5

chmod
Change the access permissions of a file.

SYNOPSIS
*include <errno.h>
*include <sys/modes.h>
int chmod(path, perms}

char *path;
int perms;

Arguments

chmod

<path> The address of a character-string containing a pathname to the file whose access
permissions you want to change

<penns> A bit-string describing the permissions to set on the file

Returns
Zero if successful, otherwise -1 with < errno> set to the system error code.

DESCRIPTION
The chmod function changes the access permissions of the file reached by the pathname in the
character-string referenced by <path> to those described by the bit-string <perms>. The chmod
function requires that the current effective user be the owner of the file or the system manager.
Chmod returns zero as its result if it successfully changes the access permissions of the file.
Otherwise, chmod returns -1 with <errno> set to the system error code.

Chmod fails it could not follow the path, a file in the path is not a directory, the pathname does
not reach a file, or the current effective user is not the owner of the file or the system manager.

The value <perms> is a bit-string describing the permissions to set on the file. The include-file
syslmodes.h defines these constants that describe the meanings of each bit used by the function in
the bit-string:

S I READ OxOl
S IWRITE Ox02
S IEXEC Ox04
S IOREAD Ox08
S IOWRITE OxlO
S IOEXEC Ox20
S ISUID Ox40

C-6

chmod

S _ IREAD grants reading pennission to the owner, S _ IWRITE grants writing permission to the
owner, and S _ IEXEC grants searching permission to the owner (if this is a directory; otherwise
S_IEXEC grants execution pennission). S_IOREAD grants reading pennission to users other
than the owner of the file, S IOWRITE grants writing permission to others, and S IOEXEC
grants searching pennission to others if this is a directory, or execution pennission if this is a file.
S_ISUID causes the effective user-ID to change to the owner of the file when the program in the
file is executed. The results of chmod are undefined if bits other than those defined above are set
in the bit-string <perms>.

ERRORS REPORTED
EACCES

EMSDR

ENOENT

ENOTDIR

The current effective user is not the system manager or file owner

could not follow the path to this file

The pathname does not reach a file

A part of the path is not a directory

SEE ALSO
System Call: chownO,fstat(), statO

Command: dir, perms

4400 Series C Reference C-7

chown
Change the owner-ID of a file.

SYNOPSIS
#include <errno.h>
int chown(path, uid)

char *path;
int uid;

Arguments

chown

<path> The address of a character-string containing a pathname to the file whose owner-ID
you want to change

<uid> The user-ID to be the new owner-ID of the file

Returns

Zero if successful, otherwise -1 with < ermo> set to the system error code.

DESCRIPTION
The chown function changes the owner-ID of the file reached by the pathname in the character
string referenced by <path> to the value <uid>. The owner-ID of a file is the user-ID of the user
that is the owner of the file. The chown function requires that the current effective user be the
system manager. Chown returns zero as its result if it successfully changes the owner-ID of the
specified file. Otherwise, it returns -1 with <ermo> set to the system error code.

Chown fails if it could not follow the path, the path contains a file that is not a directory, the path
does not reach a file, or the current effective user is not the system manager.

ERRORS REPORTED
EACCES

EMSDR

ENOENT

ENOTDIR

c-s

the current effective user is not the system manager

could not follow the path to this file

the pathname does not reach a file

A part of the path is not a directory

chown

NOTES
The user-ID uid does not have to be in the system password file.

SEE ALSO
System Call: chmod{},fstat{}, stat{}

Command: dir, owner

4400 Series C Reference C-9

chtim
Change the modification date and time of a file.

SYNOPSIS
#include <errno.h>
int chtim(path, time)

char *path;
long time;

Arguments

chtim

<path> The address of a character-string that contains a pathname to the file whose date and
time you want to to change

<time> The system-time value to set as the new date and time for the file

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The chtim function changes the modification date and time of the file reached by the pathname in
the character-string referenced by <path> to the system-time value <time>. The chtim function
can not change the modification date and time of a file that is currently open by another task.
Chtim also expects the current effective user to be the system manager. The function returns
zero as its result if it successfully changes modification date and time of the specified file.
Otherwise, chtim returns -1 with <errno> set to the system error code.

The chtim function fails if it could not follow the path, the path contains a file that is not a
directory, the path does not reach a file, the file is currently open by another task, or the current
effective user is not the system-manager.

ERRORS REPORTED
EACCES
EBSY

EMSDR
ENOENT
ENOTDIR

C-IO

The effective current user is not the system manager

The specified file is currently open by another task

Could not follow the path to this file

The pathname does not reach a file

A part of the path is not a directory

chtim

NOTES
The chtim function does not demand that < time> be between the creation date of the file and the
current time-of-day.

The system represents time as the number of seconds that has elapsed since the epoch. The
system defines the epoch as 00:00 (midnight), January 1, 1980, Greenwich Mean Time.

Other functions which change a file's modification date and time are chmodO, chownO, creatO,
linkO, openO, and unlinkO.

SEE ALSO
System Call: chmod(), chown(), creat{), link(), open(), unlink()

Command: touch

4400 Series C Reference C-ll

clearerr
Clear the stream's error-indicators.

SYNOPSIS
#include <stdio.h>
int clearerr(stream)

FILE *stream;

Arguments
<stream> The standard IJO stream

Returns
Undefined

DESCRIPTION

clearerr

The c1earerr function clears (resets) the error-indicator and the end-of-file indicator on the
standard IJO stream referenced by <stream>.

NOTES
The c1earerr function is implemented as a macro. Macro side-effects are not possible since the
macro references its argument only once.

The ferrorO function tests the error-indicator of a stream.

The feofO function tests the end-of-file indicator of a stream.

SEE ALSO
C Library:jdopen(},feoj(),ferror(),fopen(}, stderr, stdin, stdout

C-12

close

close
Close an open file.

SYNOPSIS
#include <errno.h>
int close(fildes)

int fildes;

Arguments
<tildes> A tile descriptor for the file to close

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The close function closes the file referenced by the file descriptor <Iildes>. The close function
returns zero as its result if it successfully closes the file, otherwise it returns -1 with <errno> set
to the system error code.

Close fails if </ildes> is out of range or does not reference an open file.

ERRORS REPORTED
EBADF The file descriptor does not reference an open file or the file is not open in the

proper mode.

EINV AL An argument to the function is invalid.

4400 Series C Reference C-13

close

NOTES
When a task terminates, the system automatically closes all files that the task has open.

SEE ALSO
C Library: JcloseO,fopenO

System Call: creat{), dup(), dup20, openO,pipe()

C-14

closedii'

closedir
Close a directory-stream.

SYNOPSIS
#include <sys/dir.h>
void closedir(pdir)

DIR *pdir;

Arguments

<pdir> A reference to a directory-stream

Returns
Void

DESCRIPTION
The c10sedir function closes the directory-stream referenced by pdir. Closedir closes the
directory attached to the directory-stream and releases all of the resources allocated to that
directory stream.

NOTES
The include-file sys/dir.h contains definitions for the data types, structures, constants, and
functions needed to read directories.

SEE ALSO
C Library: opendir{), readdir{), rewinddir{), seekdir{), telldir{)

4400 Series C Reference C-15

Control a pseudo-terminal channel

SYNOPSIS
*inelude <errno.h>
*inelude <sys/pty.h>

controlyty

int eontrol-pty(fd, fen, eval)
int fd;
int fen;
int eval;

Arguments
<fd>

<fcn>

<cva!>

A file descriptor for master mode access of a pseudo-terminal

A function code

A control value

Returns

The current state of the pseudo-terminal if successful, otherwise -1 with <errno> set to the
system error code

DESCRIPTION
The controlyty function is used to control the behavior of a pseudo-terminal channel. All
functions return the state of the channel as described for the PTY_INQUlRYfunction.

The PTY INQUIRY function is used to return the state of the channel. For this function, cval is
ignored. The value returned is a combination of bits which describe the state of the channel. The
bits are:

PrY PACKET MODE - -

PrY REMOTE MODE - -

C-16

Reads on the master side return two bytes of status in:
addition to any data written by the slave. If any slave data
is available, the status bytes are zero. If no data is present,
the status bytes are the same as those returned by
PTY_INQUIRY.

If this bit is set, data written by the master is sent as is to the
slave side with no editing.

control yly

PrY READ WAIT - -

PrY HANDSHAKE MODE - -

PrY SLA VE HOLD - -

PlY EOF

PrY_OUTPUT_QUEUED

If this bit is set, a read on the master side is blocked until
slave data is available.

If this bit is set, a write on the master side is not complete
until the slave consumes the data.

If this bit is set, the slave is prohibited from writing any
more data to the channel.

All slave accesses to the channel have been closed.

The slave side has written data to the channel that has not
yet been consumed by the master.

The master has written data to the slave side that has not yet
been consumed by the slave.

PTY_SET_MODE is used to change the control mode for the pseudo-terminal channel. The value
<cval> contains the new mode and should be some combination of the bits described in the
previous section. The new control mode is exactly what is in <cval> so to perform an
incremental change, the current value must be obtained using PTY _ INQIDRY.

PTY _FLUSH_READ purges any data written by the master side to the slave input queue.

PTY_FLUSH_WRITE purges any data written by the slave side that has not yet been consumed
by the master side.

PTY_STOP _OUTPUT prevents the slave side from writing any more data to the master side.
This condition is reflected in the status bitPTY SLAVE HOW. - -

PTY_START_OUTPUTallows the slave side to continue writing data to the master side.

ERRORS REPORTED
EIO

EINVAL

The file descriptor corresponds to slave mode access to the pseudo-terminal.

An argument to the function is invalid

NOTES
The file descriptor must correspond to master mode access to the pseudo-terminal.

SEE ALSO
C Library: create yty(), read()

4400 Series C Reference C-17

cos
Calculate the cosine of an angle.

SYNOPSIS
#include <math.h>
double cos(r)

double r;

Arguments
<r> The angle to use to compute the cosine

Returns
The cosine of the angle <:r>

DESCRIPTION
The cos function calculates the cosine of the angle <:r>. Cos returns that value as its result.

cos

The cos function interprets the value <:r> as an angle expressed in radians, and returns a result
between -1.0 and 1.0 inclusive.

SEE ALSO
C Library: acosO, sinO, tanO

C-18

cosh

cosh
Calculate the hyperbolic cosine of a value.

SYNOPSIS
#include <math.h>
double cosh(x)

double x;

Arguments
<x> The value to use to compute the hyperbolic cosine

Returns
The hyperbolic cosine of the argument <x>

DESCRIPTION
The cosh function calculates the hyperbolic cosine of the value <x>. The hyperbolic cosine of
<x> is defined as (exp(x) + exp(-x))/2. Cosh returns that value as its result.

The cosh function detects a range error if the magnitude of the hyperbolic cosine of x is larger
than can be represented by the data type double. If cosh detects a range error, it calls matherrO,
passing to it the address of a filled struct exception structure. Cosh sets the <type> element of
the structure to OVERFLOW, <name> to the address of the character-string <cosh>, and
<argl> to <x>.

If matherrO returns 0, the function sets <errno> to ERANGE. The return value, which is
system-dependent, is given in the tables in Section 3. If matherrO returns something other than
0, the function returns the value retval found in the struct exception structure as its result.

SEE ALSO
C Library: expO, matherr()

4400 Series C Reference C-19

creat
Create a new file or truncate an existing file.

SYNOPSIS
#include <errno.h>
#include <sys/modes.h>
int creat(path, perms)

char *path;
int perms;

Arguments

creat

<path> The address of a character-string that contains a pathname to the file you want to
create or truncate

<perms> A bit-string describing the access permissions to set on the created file

Returns
If successful, creat returns a file descriptor for the created or truncated file, otherwise creat
returns -1 with <ermo> set to the system error code

DESCRIPTION
If no file is reached by the pathname in the character-string referenced by the argument <path>,
the creat function:

1. creates an empty file

2. assigns the current effective user-ID as the owner-ID of the file

3. assigns the access permissions to the file (described by anding the bit-string <perms> with
the one' s-complement of the current file-creation mask)

4. links the specified pathname to the file

The creat function then opens the file for writing access, ignoring the access permissions of the
file, and sets the current file position to the beginning of the file.

If the pathname in the character-string referenced by <path> reaches a file, creat truncates the
file to a length of zero and opens the file for writing access, setting the current file position to the
beginning of the file. It does not change the access permissions or owner-ID of the file.

C-20

creal

If creat succeeds, it returns a file descriptor for the opened file. Otherwise, creat returns -1 with
<ermo> set to the system error code. Creat fails if it could not follow the path, the path contains
a file that is not a directory, no more files can be created on the device to contain the file, or no
more files can be opened by the task. Creat also fails if the pathname does not reach a file and
the directory reached by the path does not grant the current effective user writing permission, or
the pathname reaches a file that does not grant the current effective user writing permission.

<Perms> is a bit-string that describes the permissions to set on the file. The include-file
syslmodes.h defines constants that describe the meanings of each bit used by creat in the bit
string. These constants are:

S IREAD OXOI
S IWRITE OX02
S IEXEC Ox04
S IOREAD OX08
S IOWRITE OXIO
S IOEXEC Ox20
S ISUID OX40

S JREAD grants read permission to the owner of the file, S _ IWRITE grants write permission to
the owner, and S_IEXEC grants search permission to the owner if a directory, or S_IEXEC
grants execution permission if a file. S_IOREAD grants read permission to users other than the
owner of the file, S_IOWRITE grants write permission to others, and S_IOEXEC grants search
permission to others if a directory, or S_IOEXEC grants execution permission if a file.
S_ISIDD causes the effective user-ID to change to the owner of the file when the program in the
file is executed. The results of creat are undefined if bits other than those defined above are set
in <perms>.

ERRORS REPORTED
EACCES

EMFILE

EMSDR

ENOSPC

ENOTDIR

4400 Series C Reference

The existing file or the directory to contain the link to the new file does not
grant the user writing permission

the maximum number of files are open

could not follow the path to this file

The are no available file description nodes on the device that was to contain
the specified file

A part of the path is not a directory

C-21

creal

NOTES
The creat function opens the created file for writing, even if the access pennissions assigned to
the file do not grant write pennission to the current effective user.

If the task has the maximum number of files open and the specified file does not exist, the creat
function creates the file, but does not open it.

SEE ALSO
C Library: !creat(),jopenO

System Call: chmod(), chown(}, openO, wnask()

Command: create

C-22

create"pty

Create a pseudo-terminal channel

SYNOPSIS
#include <errno.h>
#include <sYS/pty.h>
int create-pty(fds)

int (*fds) [2]

Arguments
dds> A pointer to an array of two file descriptors

Returns

Zero if successful, otherwise -1 with < errno> set to the system error code

DESCRIPTION
The create yty function creates a new pseudo-terminal channel. The file descriptor for slave
access is returned in <fd{OJ >. The file descriptor for master access is returned in <id[JJ >.

Pseudo-terminals must exist as real devices in the device directory named IdevlptyOO, IdevlptyOI,
etc. These devices may be created using the makdev utility using the command:

makdev Idev/ptyxx p 1 xx

where xx is a decimal number with a possible leading zero.

The create yty function returns access to the first unused pseudo-terminal channel in the system.
As these channels are closed, they are reused in numerical order. That is, createyty always
returns the lowest numbered pseudo-terminal channel not currently in use.

Once the channel has been opened using createyty, additional slave accesses may be obtained
using open for the appropriate device.

For slave access, this channel is exactly the same as a normal terminal. For master access,
writing to the channel is seen as input on the slave side and reading from the channel reads
characters output from the slave side.

The ofstatO function may be applied to a pseudo-terminal. The only difference from a normal
terminal is that the the mode is S_SLAVE_PTY or S_MASTER_PTY.

4400 Series C Reference C-23

createyty

ERRORS REPORTED
All pseudo-terminal devices are currently open. ENOSPC

EBADF The device name /dev/ptyxx does not correspond to a pseudo-terminal.

NOTES
None

SEE ALSO
C Library: cont~olyty(), mknod(), o/stat(), ttyname()

C-24

Encrypt a character-string.

SYNOPSIS
void _crypt (crypw, pw)

char *crypw;
char *pw;

Arguments
<crypw> The address of the target buffer to get the encrypted string

<pw> The address of the character-string to encrypt

Returns
Void

DESCRIPTION
The _crypt function encrypts the first eight characters of the character-string (referenced by
<pw» using the standard encryption algorithm. This generates a character-string containing
sixteen characters. _Crypt copies the generated character-string to the the target buffer
referenced by <crypw>.

If <pw> references a null-string, it copies a null-string to the target buffer referenced by
<crypw>.

NOTES
The _crypt function produces unpredictable results if the length of the character-string is greater
than eight characters.

SEE ALSO
Command: password

4400 Series C Reference C-25

ctime
Generate an ASCII time stamp.

SYNOPSIS
#include <time.h>
char *ctime(pclock)

long *pclock;

Arguments
<pclock> The address of the system-time value

Returns

The address of the generated ASCII time stamp

DESCRIPTION

clime

The ctime function generates a time stamp from the system time value referenced by <pclock>
that represents the date and time in the local time zone. Ctime returns the address of the
generated time stamp.

A time stamp is a 26-character string (including the terminating null-character) consisting of:

• the day of the week

• the month of the year

• the day of the month

• the hour

• minute

• second

• year

The time stamp is generated by the sprintfO format:

"%3s %3s %2.2d %2.2d:%2.2d:%2.2d %4.4d\n"

C-26

ctime

NOTES
The result of the ctime function is in static memory. Subsequent calls to ctimeO or asctimeO
overwrite that memory.

The ctime function calls tzsetO, which sets up daylight, timezone, and tzname.

A system time value is a long containing the number of seconds since the epoch. The epoch is
00:00 GMT (midnight) on January 1, 1980.

If the system time value referenced by <pclock> is less than <timezone>, ctimeO generates a
time stamp for 00:00 on January 1, 1980, locally.

SEE ALSO
C Library: asctime(), daylight, gmtime(), localtime(), sprint/O, timezone, tzname, tzset()

System Call: time

Command: date

4400 Series C Reference C-27

daylight

daylight
Daylight savings time flag.

SYNOPSIS
#include <time.h>
extern int daylight;

DESCRIPTION
The <daylight> variable is non-zero if and only if United States standard daylight savings time is
being observed. The <daylight> variable should be applied to all conversions of time expressed
in the local time zone. Otherwise, <daylight> is zero.

The <daylight> variable is initialized automatically by localtimeO and ctimeO and may be
started explicitly by tzsetO. The value of the <daylight> variable is zero before initialization.

SEE ALSO
C Library: ctime(), localtime(}, timezone, tzname, tzset(}

System Call: ftime()

4400 Series C Reference D-I

dirname

dirname
Extract the directory prefix from a pathname.

SYNOPSIS
char *dirname(path)

char *path;

Arguments

<path> The address of a character-string containing the pathname

RETURNS

The address of a character-string containing the directory prefix

DESCRIPTION
The dirname function extracts the directory prefix from the pathname in the character-string
referenced by <path>. Dirname returns the address of a character-string containing the directory
prefix.

If the pathname contains a 'J' (slash) character, the dirname function copies all of the characters
up to, but not including, the last '/' to the static result buffer of the function. If the result is a
null-string, the dirname function copies "!" into the buffer. If the pathname contains no T
character, the dirname function copies"." into the buffer. The result of this function references
the static result buffer.

NOTES
The character-string referenced by the result of the dirname function is in static memory and is
overwritten by subsequent calls to this function.

The dirname function does not verify the pathname in the character-string referenced by <path>.

SEE ALSO
C Library: basenameO,fullnameO

Command: dirname

D-2

dup

dup
Duplicate a file descriptor.

SYNOPSIS
#include <errno.h>
int dup (fildes)

int fildes;

Arguments
<tildes> The tile descriptor to duplicate

RETURNS

If successful, dup returns the duplicate file descriptor. Otherwise, dup returns -1 with <errno>
set to the system error code.

DESCRIPTION
The dup function duplicates the file descriptor <jildes>. The effect is of again opening the file
referenced by <jildes>, using the same open-mode, and positioning to the current file position. If
the dup function successfully duplicates the file descriptor <jildes>, dup returns the duplicate
file descriptor. Otherwise, dup returns -1 with <errno> set to the system error code.

The dup function fails if the task can not open any more files, the file descriptor is out of range,
or the file descriptor does not reference an open file.

ERRORS REPORTED
EBADF

EINVAL

EMFILE

4400 Series C Reference

The file descriptor does not reference an open file or the file is not open in the
proper mode.

An argument to the function is invalid.

The maximum number of files are open.

D-3

dup

NOTES
The function always uses the lowest numbered available file descriptor.

SEE ALSO
System Call: close(), creat{), dup20, openO, pipeO

D-4

dup2

dup2
Duplicate a file descriptor onto a specific file descriptor.

SYNOPSIS
#include <errno.h>
int dup2(src, dest)

int src;
int dest;

Arguments
<src>

<dest>

The file descriptor to duplicate

The target file descriptor

RETURNS

If successful, dup2 returns the duplicate file descriptor <dest>. Otherwise, dup2 returns -1 with
<errno> set to the system error code.

DESCRIPTION
If the file descriptor <dest> references an open file, the dup2 function closes that file. Dup2
then duplicates the file descriptor <src> onto the specified file descriptor <dest>. The effect is
that of again opening the file referenced by < src>, using the same open-mode, and positioning to
the current file position. If dup2 successfully duplicates the file descriptor < src> onto the file
descriptor <dest> , dup2 returns the file descriptor <dest>. Otherwise, dup2 returns -1 with
<errno> set to the system error code.

The dup2 function fails if either of the file descriptors are out of range or the file descriptor
< src> does not reference an open file.

4400 Series C Reference D-5

ERRORS REPORTED
EBADF

EINVAL

NOTES

The file descriptor <src> does not reference an open file.

One or both of the file descriptors <src> and <dest> are out of range.

dup2

If <src> and <dest> are the same file descriptor, dup2 returns <dest> without checking either
. file descriptor for validity.

If <dest> references an open file, dup2 does not close that file if the function fails.

SEE ALSO
System Call: close(), creat{}, dup(), open(},pipeO

D-6

ecvt

ecvt
Convert a floating-point value to a character-string.

SYNOPSIS
char *ecvt(fp,

double
count, pexp, psign)
fp;

int count;
int *pexp;
int *psign;

Arguments

<fp>

<count>

<pexp>

<psign>

Returns

The floating-point value to convert

The number of digits to produce

The address of the value to receive the decimal exponent

The address of the value to receive the sign indicator

The address of the generated character-string.

DESCRIPTION
The ecvt function breaks the floating-point value <if» into a sign, a positive fractional part
greater than or equal to 0.0 and less than 1.0, and a decimal exponent. Ecvt stores the decimal
exponent through <pexp>. If the sign of <fp> is positive, ecvt stores 0 through <psign> ,
otherwise ecvt stores a non-zero value through <psign>. The ecvt function generates a
character-string that contains the first <count> significant digits of the fractional PaIt, with the
last digit rounded, and returns as a result the address of that character-string.

4400 Series C Reference E-l

ecvt

NOTES
If <jp> is not 0.0, the first digit of the character-string referenced by the result is not '0'.
Otherwise, ecvt generates a character-string containing <count> '0' -characters, and it stores a
through <pexp> and <psign>.

The ecvt function rounds the last digit generated, depending on what the next digit would have
been had it been generated. Ecvt rounds up if the next digit would have been 5, 6, 7, 8, or 9.
Otherwise, ecvt does not round up the last digit.

The character-string referenced by the result of ecvt is in static memory and is overwritten by
subsequent cal1s to ecvt.

SEE ALSO
C Library:jcvt(),fprintf(}, Jtoa(), gcvt()

E-2

edata

edata
End-of-memory address of initialized data.

SYNOPSIS
extern int edata;

DESCRIPTION
The edata external label references the first byte of memory that is beyond (above) the last byte
of the program's initialized data. There mayor may not be addressable memory at that location.
Since it is the value of the label that is interesting, this variable should only be referenced as

&edata

NOTES
The result of storing into edata is unpredictable.

SEE ALSO
C Library: end, etext

4400 Series C Reference E-3

end

end
End-of-memory address of un initialized data.

SYNOPSIS
extern int end;

DESCRIPTION
The end external label references the first byte of memory that is beyond (above) the last byte of
the uninitialized data of the program before the program begins executing. The address of the
first byte beyond the uninitialized data is also known as the break address of the program. (so,
the value of end is the initial break address of the program). There mayor may not be
addressable memory at the location referenced by end. Since it is the value of the label that is
interesting, this variable should only be referenced as

&end

NOTES
The result of storing into end is unpredictable.

The break address of the program can change during the execution of the program. The functions
malIocO, callocO, realIocO, and freeO all have the potential of changing the break address, as do
the system calls sbrkO and brkO. The function call

sbrk(O)

returns the current break address without changing the current memory allocation of the program.

SEE ALSO
C Library: calloc(), edata, etext,free(), malloc()

System Call: brk(), sbrk()

E-4

endpwent

endpwent
End password-file handling.

SYNOPSIS
#include <pwd.h>
void endpwent();

Arguments
None

Returns
Void

DESCRIPTION
The endpwent function ends password-file handling initiated by getpwentO, getpwnamO, or
getpwuidO. Endpwent frees the resources allocated to those routines, and closes files opened by
those routines. The endpwent function does nothing if getpwentO, getpwnamO, or getpwuidO
has not been called, or endpwentO has been called since the last call to one of these functions.

SEE ALSO
C Library: getpwent(), getpwnam(), getpwuid(), setpwent()

4400 Series C Reference E-5

errno

errno
The system error code of the most recent system error.

SYNOPSIS
extern int errno;

DESCRIPTION
The errno external variable contains the error number of the most recent system error. Some C
builtins also assign error codes to this variable.

NOTES
The errno external variable is defined in the include-file stdio.h. C programs that include that
file need not explicitly define this variable.

SEE ALSO
C Library: perror(), sys _errlist, sys _nerr

E-6

etext

etext
End-of-memory address of program text.

SYNOPSIS
extern int etext;

DESCRIPTION
The etext external label references the first byte of memory that is beyond (above) the last byte of
the text of the program. There mayor may not be addressable memory at that location. Since it
is the value of the label that is interesting, this variable should only be referenced as

&etext

NOTES
A text segment of a program contains the executable code and other constant data.

The result of storing into etext is unpredictable.

SEE ALSO
C Library: edata, end

4400 Series C Reference E-7

execl

execl
Execute a program found in an executable binary file.

SYNOPSIS
#include <errno.h>
int execl (path, [argO, [argl, ... , [argn, III nullp)

char *path;
char *argO, *argl, ... , argn;
char *nullp;

Arguments
<path> The address of the character-string that contains a pathname of the executable file

containing the program.

<argO> The address of the character-string that contains the argument zero to the new
program (by convention this is the name of the new program).

<arg1>

<argn>

The address of the character-string that contains argument one to the new program.

The address of the character-string that contains the last argument to the new
program.

<nullp> A null-address «(char *) NULL) that ends the array of addresses of character-strings
that contain arguments to the new program.

Returns
No returns if successful. Otherwise, -1 with <ermo> set to the system error code.

DESCRIPTION
The execl function requests that:

E-8

• the operating system replace the program currently executing with the program found in
the executable binary file (the new program) reached by the pathname in the character
string referenced by <path>

• that it pass as arguments to the new program the character-strings referenced by the values
passed to this function following the argument <path> (through but not including the
argument < nullp», if any

• and that it begin executing the new program at its transfer address

execl

When the new program begins, it inherits these attributes and resources from the calling program:

• task priority

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an armed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID unless the file has the set-user-ID mode-bit set. If
the set-user-ID mode-bit is set, the new program gets as its effecti ve user-ID that of the owner-ID
of the file. The operating system sets up the signal-handling mechanism of the new program like
that of the calling program, except that all signals caught by the calling program are set up so that
they cause their default action. The operating system disables profiling in the new program.

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by <argO> through <argn», and character-strings defining its
environment (as defined by the environment list referenced by the external variable <environ».
Both the argument list and the environment list are variable length arrays of addresses, terminated
by the null-address ((char *) NULL).

The execl function only returns to the caller if the operating system reports an error. If the
operating system reports an error, the execl function returns -1 with <erma> set to the system
error code.

Execl fails if the path could not be followed, the path contains a file that is not a directory, the
pathname does not reach a file, the file is a directory, or the file access permissions do not grant
the current effective user execution permission. Execl also fails if the arguments to the program
take up too much space (the maximum is system dependent but is always at least 2048 bytes) or
the program in the file is too large.

4400 Series C Reference E-9

ERRORS REPORTED
E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

NOTES

Too many arguments are specified.

The permissions of the file do not grant the requested access type.

The executable file is too large.

The file is a directory.

Could not follow the path to the file.

The pathname does not reach a file.

This file is not executable.

A part of the path is not a directory.

execl

The execl function does not flush or close standard I/O streams opened in the calling program
before requesting that the new program be executed. All buffered data is lost.

All C programs set themselves up so that the function maine) has three parameters. The first
parameter, defined as int, is the number of arguments passed to the program. The second
parameter, defined as char *[J, is the address of the array of addresses, terminated by «(char *)
NULL), which references character-strings containing the arguments to the program. The third
parameter, defined as char * [J, is the address of the array of addresses, terminated by ((char *)
NULL), which references character-strings containing the environmental information of the
program. The extemal value environ is also set to this value.

Most C programmers observe the convention that the first argument to a program is the name of
that program.

SEE ALSO
C Library: environ, system()

System Call: execle(), exec/p(), execv(), execve(), execvp(},fork(}, profil(), signal(), vfork{)

Commands: shell

E-lO

exec1e

execle
Execute a program found in an executable binary file.

SYNOPSIS
#include <errno.h>
int execle(path, [argO, [argl, ... ,[argn,]]] nullp, envp)

char *path;
char *argO, *argl, ... , argn;
char *nullp;
char *envp[];

Arguments
<path>

<argO>

<argi>

<argn>

<nuUp>

<envp>

Returns

The address of the character-string that contains a pathname for the file containing
the program to execute.

The address of the character-string that cQntains the argument to the new program
that is referenced as argument zero (by convention this is the name of the command).

The address of the character-string that contains argument one to the new program.

The address of the character-string that contains the last argument to the new
program.

A null-address ((char *) NULL) that ends the array of addresses of character-strings
containing arguments to the new program.

The address of an environment list defining the environment to pass to the new
program.

Nothing is returned if execle is successful. Otherwise, execle returns -1 with <ermo> set to the
system error code.

4400 Series C Reference E-ll

execle

DESCRIPTION
The execle function requests that:

• the operating system replace the program currently executing with the program found in
the executable binary file (the new program) reached by the pathname in the character
string referenced by <path>

• that execle passes as arguments to the new program the character-strings referenced by the
values passed to this function following the argument <path> through but not including
the argument < nullp >, if any,

• that <execIe> passes as environment variables those found in the environment list
referenced by <envp>

• and that execle begins executing the new program at its transfer address.

The argument <envp> references an environment list defining the environment variables to pass
to the new program. An environment list is a variable length array of addresses of character
strings containing the definitions of the environment variables. This array is terminated by the
null-address ((char *) NULL).

When the new program begins, it inherits these attributes and resources from the calling program:

• task Pl10rity

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an am1ed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID unless the file has the set-user-ID mode-bit set. If
the set-user-ID mode-bit is set, the new program gets as its effective user-ID that of the owner-ID
of the file. The operating system sets up the signal-handling mechanism of the new program like
that of the calling program, except that all signals caught by the calling program are set up so that
they cause their default action. The operating system disables profiling in the new program.

E-12

exec Ie

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by <argO> through < argn», and character-strings defining its
environment (as defined by the environment list referenced by <envp». Both the argument list
and the environment list are variable length arrays of addresses, terminated by the null-address
«(char *) NULL).

The execle function only returns to the caller if the operating system reports an error. If the
operating system reports an error, execle returns -1 with <ermo> set to the system error code.

The execle function fails if the path could not be followed, the path contains a file that is not a
directory, the pathname does not reach a file, the file is a directOlY, or the access pem1issions of
the file do not grant the current effective user execution permission. Execle also fails if the
arguments to the program take up too much space (the maximum is system dependent but is
always at least 2048 bytes) or the program in the file is too large.

ERRORS REPORTED
E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

NOTES

Too many arguments are specified.

The permissions of the file do not grant the requested access type.

The executable file is too large.

The file is a directory.

Could not follow the path to the file.

The pathname does not reach a file.

This file is not executable.

A part of the path is not a directory.

The execle function does not flush or close standard I/O streams opened in the calling program
before requesting that the new program be executed. All buffered data is lost.

Most C programmers observe the convention that the first argument to a program is the name of
that program.

SEE ALSO
C Library: environ, system()

System Call: execl(), execlpO, execv(), execve(), execvp(),jork(), projil(), signal(), vjork()

Commands: shell

4400 Series C Reference E-13

execlp

execlp
Execute a program found in an executable binary file.

SYNOPSIS
#include <errno.h>
int execlp(file, [argO, [argl, ... ,[argn,]]] nullp)

char *path;
char *argO, *argl, ... , argn;
char *nullp;

Arguments

<file> The address of the character-string containing the filename of the file containing the
program to execute.

<argO>

<argb

<argn>

<nullp>

Returns

The address of the character-string that contains the argument to the new program,
which is referenced as argument zero (by convention this is the name of the
command).

The address of the character-string containing argument one to the new program.

The address of the character-string containing the last argument to the new program.

A null-address «(char *) NUlL) that ends the array of addresses of character-strings
containing arguments to the new program.

Nothing is returned if execIp is successful. Otherwise, execIp returns -1 with <errno> set to the
system error code.

DESCRIPTION
The execlp function requests that:

• the operating system replace the program currently executing with the program found in
the executable binary file (the new program) found by using the filename in the character
string referenced by <file>

• that it pass as arguments to the new program the character-strings referenced by the values
passed to this function following the argument file through but not including the argument
<nullp>, if any

• and that it begin executing the new program at its transfer address.

E-14

execlp

If the filename referenced by <file> contains a slash-character en, the execlp function uses that
name as the pathname to a file containing the program to execute. Otherwise, execlp follows the
search rules specified by the <path> environment variable in the environment list referenced by
the external variable <environ>.

When the new program begins, it inherits the following attributes and resources from the calling
program:

• task priority

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an armed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID unless the file has the set-user-ID mode-bit set. If
the set-user-ID mode-bit is set the new program gets as its effective user-ID that of the owner-ID
of the file. The operating system sets up the signal-handling mechanism of the new program like
that of the calling program, except that all signals caught by the calling program are set up so that
they cause their default action. The operating system disables profiling in the new program.

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by <argO> through <argn», and character-strings defining its
environment (as defined by the environment list referenced by the external variable < environ>).
Both the argument list and the environment list are variable length arrays of addresses, terminated
by the null-address ((char *) NULL).

The execlp function only returns to the caller if the operating system reports an error. If the
operating system reports an error, execlp returns -I with <errno> set to the system error code.

Execlp fails if the path could not be followed, the path contains a file that is not a directory, the
pathname does not reach a file, the file is a directory, or the access permissions of the file do not
grant the current effective user execution permission. Execlp also fails if the arguments to the
program take up too much space (the maximum is system dependent but is always at least 2048
bytes) or the program in the file is too large.

4400 Series C Reference E-15

ERRORS REPORTED
E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

NOTES

Too many arguments are specified.

The permissions of the file do not grant the requested access type.

The executable file is too large.

The file is a directory.

Could not follow the path to the file.

The pathname does not reach a file.

This file is not executable.

A part of the path is not a directory.

execip

The execlp function does not flush or close standard 1/0 streams opened in the calling program
before requesting that the new program be executed. All buffered data is lost.

All C programs set themselves up so that the function maine) has three parameters. The first
parameter, defined as int, is the number of arguments passed to the program. The second
parameter, defined as char *[], is the address of the array of addresses, terminated by ((char *)
NULL), which references character-strings containing the arguments to the program. The third
parameter, defined as char * [], is the address of the array of addresses, terminated by ((char *)
NULL), which references character-strings containing the environmental information of the
program. The external value <environ> is also set to this value.

Most C programmers observe the convention that the first argument to a program is the name of
that program.

SEE ALSO
C Library: environ, system()

System Call: execl(), execle(), execv(), execve(), execvp(),jork() , projil(), signal(), vfork()

Commands: setpath, shell

E-16

execv

execv
Execute a program found in an executable binary file.

SYNOPSIS
#include <errno.h>
int execv(path, argv)

char *path;
char *argv[];

Arguments
<path> The address of a character-string that contains a pathname of the file that contains the

program to execute

<argv> The address of the argument list to pass to the new program

Returns

Nothing is returned if execv is successful. Otherwise, execv returns -1 with errna set to the
system error code.

DESCRIPTION
The exec v function requests that the operating system replace the program currently executing
with the new program found in the executable binary file. The new program is reached by the
pathname in the character-string referenced by <path>. The operating system should then pass
as arguments to the new program those found in the argument list referenced by <argv>, and
begin executing the new program at its transfer address.

The argument <argv> references an argument list that defines the arguments to pass to the new
program. An argument list is a variable length array of addresses to character-strings containing
the arguments to pass. The array of addresses is ternlinated by the null-address ((char *) NULL.

4400 Series C Reference E-17

exec v

When the new program begins, it inherits these attributes and resources from the calling program:

• task priority

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an armed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID, unless the file has the set-user-ID mode-bit set.
If the set-user-ID mode-bit is set, the new program gets as its effective user-ID the owner-ID of
the file. The operating system sets up the signal handling mechanism of the new program like
that of the calling program, except that all signals caught by the calling program are set up so that
they cause their default action. The operating system disables profiling in the new program.

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by the argument list referenced by <argv», and character-strings
defining its environment (as defined by the environment list referenced by the external variable
<environ». Both the argument list and the environment list are variable length arrays of
addresses, terminated by the null-address ((char *) NULL).

The execv function only returns to the caller if the operating system reports an error. If the
operating system reports an error, execv returns -1 with < ermo> set to the system error code.

The exec v function fails it could not follow the path, the path contains a file that is not a
directory, the pathname does not reach a file, the file is a directory, or the access permissions of
the file do not grant the current effective user execution pennission. Execv also fails if the
arguments to the program take up too much space (the maximum is system dependent but is
always at least 2048 bytes) or the program in the file is too large.

E-18

execv

ERRORS REPORTED
E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

NOTES

Too many arguments are specified.

The pernlissions of the file do not grant the requested access type.

The executable file is too large.

The file is a directory.

Could not follow the path to the file.

The pathname does not reach a file.

This file is not executable.

A part of the path is not a directory.

The execv function does not flush or close standard I/O streams opened in the calling program
before requesting that the new program be executed. All buffered data is lost.

All C programs set themselves up so that the function maine) has three parameters. The first
parameter, defined as int, is the number of arguments passed to the program. The second
parameter, defined as char * [], is the address of the array of addresses, ternlinated by ((char *)
NULL), which references character-strings containing the arguments to the program. The third
parameter, defined as char *{}, is the address of the array of addresses, terminated by ((char *)
NULL), which references character-strings containing environmental infonnation of the program.
The external value environ is also set to this value.

Most C programmers observe the convention that the first argument to a program is the name of
that program.

SEE ALSO
C Library: environ, system()

System Call: execl(), execle(), execlp(), execve(), execvp(),jork(), projil() , signal(), vjorkO

Commands: shell

4400 Series C Reference E-19

execve

execve
Execute a program found in an executable binary file.

SYNOPSIS
#include <errno.h>
int execve(path, argv, envp)

char *path;
char *argv[];
char *envp[];

Arguments
<path> The address of a character-string that contains a pathname of the file that contains the

program to execute

<argv>

<envp>

Returns

The address of the argument list to pass to the new program

The address of an environment list defining the environment variables to pass to the
new program

Nothing is returned if execve is successful. Otherwise, execve returns -1 with <ermo> set to the
system error code.

DESCRIPTION
The execve function requests that the operating system replace the program currently executing
with the new program found in the executable binary file. The new program is reached by the
pathname in the character-string referenced by <path>. The operating system should then pass
as arguments to the new program those found in the argument list referenced by <argv>, and
begin executing the new program at its transfer address.

The argument <argv> references an argument list defining the arguments to pass to the new
program. An argument list is a variable length array of addresses to character-strings containing
the definitions of the environment variables to pass. The array of addresses is terminated by the
null-address.

E-20

execve

The argument <envp> references an environment list that defines the environment to pass to the
new program. An environment list is a variable length array of addresses to character-strings
containing the arguments to pass. The array of addresses is terminated by the null-address
«(char *) NULL.

When the new program begins, it inherits these attributes and resources from the calling program:

• task priority

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an armed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID unless the file has the set-user-ID mode-bit set. If
the set-user-ID mode-bit is set, the new program gets as its effective user-ID the owner-ID of the
file. The operating system sets up the new program's signal handling mechanism like that of the
calling program, except that all signals caught by the calling program are set up so that they cause
their default action. The operating system disables profiling in the new program.

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by the argument list referenced by <argv», and character-strings
defining its environment (as defined by the environment list referenced by <envp». Both the
argument list and the environment list are variable length arrays of addresses, terminated by the
null-address ((char *) NULL).

The execve function only returns to the caller if the operating system· reports an error. If execve
reports an error, it returns -1 with <ermo> set to the system error code.

Execve fails if it could not follow the path, the path contains a file that is not a directory, the
pathname does not reach a file, the file is a directory, or the access permissions of the file do not
grant the current effective user execution permission. Execve also fails if the arguments to the
program take up too much space (the maximum is system dependent but is always at least 2048
bytes) or the program in the file is too large.

4400 Series C Reference E-21

---.----~--------------

ERRORS REPORTED
E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

NOTES

Too many arguments are specified.

The permissions of the file do not grant the requested access type.

The executable file is too large.

The file is a directory.

Could not follow the path to the file.

The pathname does not reach a file.

This file is not executable.

A part of the path is not a directory.

execve

The execve function does not flush or close standard I/O streams opened in the calling program
before requesting that the new program be executed. All buffered data is lost.

All C programs set themselves up so that the function mainO has three parameters. The first
parameter, defined as int, is the number of arguments passed to the program. The second
parameter, defined as char *[J, is the address of the list of addresses, terminated by «(char *)
NULL), which references character-strings containing the arguments to the program. The third
parameter, defined as char *[J, is the address of the list of addresses, terminated by «(char *)
NULL), which references character-strings containing the program's environmental information.
The external value <environ> is also set to this value.

Most C programmers observe the convention that the first argument to a program is the name of
that program.

SEE ALSO
C Library: environ, system()

System Call: execl(), execleO, execlpO, execv(), execvp(),jork(), projil(), signal(), vjorkO

Commands: shell

E-22

)

execvp

execvp
Execute a program found in an executable binary file.

SYNOPSIS
#include <errno.h>
int execvp(file, argv)

char *file;
char *argv[];

Arguments

<file> The address of a character-string that contains a pathname for the file containing the
program to execute

<argv> The address of an argument list defining the arguments to pass to the new program

Returns

Nothing is returned if execvp is successful. Otherwise, execvp returns -1 with <ermo> set to the
system error code.

DESCRIPTION
The execvp function requests that the operating system replace the program currently executing
with the new program found in the executable binary file. The new program is reached by using
the filename the character-string referenced by <file>. The operating system should then pass as
arguments to the new program those found in the argument list referenced by <argv>, and begin
executing the new program at its transfer address.

If the filename referenced by <file> contains a slash-character ('r), execvp uses that name as the
pathname to a file containing the program to execute. Otherwise, execvp follows the search rules
specified by the PATH environment variable in the environment list referenced by the external
variable <environ>.

4400 Series C Reference E-23

execvp

When the new program starts, it inherits these attributes and resources from the calling program:

• task priority

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an armed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID unless the file has the set-user-ID mode-bit set. If
the set-user-ID mode-bit is set, the new program gets as its effective user-ID that of the owner-ID
of the file. The operating system sets up the signal-handling mechanism of the new program like
that of the calling program, except that all signals caught by the calling program are set up so that
they cause their default action. The operating system disables profiling in the new program.

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by <argO> through <argn», and character-strings defining its
environment (as defined by the environment list referenced by the external variable <environ».
Both the argument list and the environment list are variable length arrays of addresses, terminated
by the null-address ((char *) NULL).

The execvp function only returns to the caller if the operating system reports an error. If execvp
reports an error, it returns -1 with <ermo> set to the system error code.

Execvp fails if it could not follow the path, the path contains a file that is not a directory, the
pathname does not reach a file, the file is a directory, or the access permissions of the file do not
grant the current effective user execution permission. Execvp also fails if the arguments to the
program take up too much space (the maximum is system dependent but is always at least 2048
bytes) or the program in the file is too large.

E-24

execvp

The argument <argv> references an argument list defining the arguments to pass to the new
program. An argument list is a variable length array of addresses to character-strings containing
the arguments to pass. The array of addresses is terminated by the null-address «(char *) NULL.

When the new program begins, it inherits these attributes and resources from the calling program:

• task priority

• task-ID number

• parent task-ID number

• user-ID number

• controlling terminal number

• file-creation permissions-mask

• time remaining on an armed alarm-clock

• working directory

• all open files

• system and user time information

The new program inherits the effective user-ID unless the file has the set-user-ID mode-bit set. If
the set-user-ID mode-bit is set, the new program gets as its effective user-ID the owner-ID of the
file. The operating system sets up the signal of the new program handling mechanism like that of
the calling program, except that all signals caught by the calling program are set up so that they
cause their default action. The operating system disables profiling in the new program.

The operating system sets up the stack of the new program so it contains the number of
arguments to the new program, its argument list, its environment list, character-strings containing
its arguments (as defined by the argument list referenced by <argv», and character-strings
defining its environment (as defined by the environment list referenced by the external variable
<environ». Both the argument list and the environment list are variable length arrays of
addresses, terminated by the null-address «(char *) NULL).

The execvp function only returns to the caller if the operating system reports an error. If the
operating system reports an error, execvp returns -1 with <errno> set to the system error code.

The execvp function fails if it could not follow the path, the path contains a file that is not a
directory, the pathname does not reach a file, the file is a directory, or the access pern1issions of
the file do not grant the current effective user execution permission. Execvp also fails if the
arguments to the program take up too much space (the maximum is system dependent but is
always at least 2048 bytes) or the program in the file is too large.

4400 Series C Reference E-25

ERRORS REPORTED
E2BIG

EACCES

EBBIG

EISDR

EMS DR

ENOENT

ENOEXEC

ENOTDIR

NOTES

Too many arguments are specified.

The permissions of the file do not grant the requested access type.

The executable file is too large.

The file is a directory.

Could not follow the path to the file.

The pathname does not reach a file.

This file is not executable.

A part of the path is not a directory.

execvp

The execvp function does not flush or close standard I/O streams opened in the calling program
before requesting that the new program be executed. All buffered data is lost.

All C programs set themselves up so that the function mainO has three parameters. The first
parameter, defined as int, is the number of arguments passed to the program. The second
parameter, defined as char *[}, is the address of the array of addresses, terminated by ((char *)
NULL), which references character-strings containing the arguments to the program. The third
parameter, defined as char *[}, is the address of the array of addresses, terminated by ((char *)
NULL), which references character-strings containing environmental information of the program.
The external value <environ> is also set to this value.

Most C programmers observe the convention that the first argument to a program is the name of
that program.

SEE ALSO
C Library: environ, system()

System Call: execl(), execle(), execlp(), execv(), execve(),fork(),projil(), signal(), vjork{}

Commands: sctenv, shell

E-26

exit

exit
Exit the program.

SYNOPSIS
void exit (code)

int code;

Arguments
<code> The task-tennination code

Returns
Void

DESCRIPTION
The exit function flushes, then closes, all of the standard I/O streams currently open. Then, exit
ends execution of the program by tenninating the task, giving <code> to the operating system to
use as the task-tennination code.

NOTES
Exit does not return to the caller.

To avoid flushing standard 1/0 streams, end the program using _exitO.

SEE ALSO
C Library: _exit()

System Call: fork(), wait()

4400 Series C Reference E-27

exit
Exit the program.

SYNOPSIS
void _exit (code)

int code;

Arguments

<code> The task-termination code

Returns
Void

DESCRIPTION

exit

The _exit function ends execution of the program by terminating the task, and giving <code> to
the operating system to use as the task-termination code.

NOTES
The exit function does not return to the caller.

The _exit function closes all of the files attached to standard I/O streams in the program.
However, exit does not flush data in buffered streams to the attached file prior to closing the
file. To flUSh these buffers, exit the program using exitO.

SEE ALSO
C Library: exitO

System Call: fork(), wait()

E-28

exp

exp
Calculate the exponential of a value.

SYNOPSIS
#include <math.h>
double exp(x)

double x;

Arguments
<x> The value to use to compute the exponential

Returns
The exponential of the argument <x>

DESCRIPTION
The exp function calculates the exponential of the value <x>. The exponential of <x> is defined
as e (2.718281828459 ...) raised to the <x> power. Exp returns the calculated value as its
result.

Exp detects a range error if the exponential of <x> is larger than can be represented by the data
type double. If exp detects a range error, it calls matherrO, passing to it the address of a filled
<struct> exception structure. Exp sets the <type> element of the structure to OVERFLOW,
<name> to the address of the character-string <exp> , and <arg] > to <x>.

If matherrO returns 0, the function sets <ermo> to ERANGE. If matherrO returns something
other than zero, exp returns the value retval in the < struct> exception structure as its result.

SEE ALSO
C Library: logO, matherrO

4400 Series C Reference E-29

Jabs

fabs
Absolute value function.

SYNOPSIS
double fabs (x)

double x;

Arguments
<x> Value whose absolute value to calculate

Returns
The absolute value of the argument <x>

DESCRIPTION
The fabs function calculates the absolute value of the argument <x>. Fabs returns the calculated
value as its result.

4400 Series C Reference F-l

fclose
Close a stream.

SYNOPSIS
#include <stdio.h>
int fclose(stream)

FILE *stream;

Arguments

<stream> The standard I/O stream to close

Returns
Zero if successful, EOF otherwise

DESCRIPTION

Jclose

The fclose function closes the standard I/O stream <stream> and frees any resources which were
automatically allocated to the stream. If the stream is opened for writing and is buffered, fclose
flushes any buffered data to the associated file.

Fclose returns EOP if it encounters an error while closing the stream, otherwise it returns zero.

SEE ALSO
C Library:jdopenO,ffiush(),freopenO,fopenO, stderr, stdin, stdout

System Call: c!ose(), openO

F-2

JentZ

fentl
Control the behavior of a file

SYNOPSIS
#include <errno.h>
#include <sys/fcntl.h>
int fcntl(fd, function)

int fd;
int function;

Arguments
<fd> A file descriptor

<function> A function code (described below)

Returns
The current state of the file, otherwise -1 with < errno> set to the system error code.

DESCRIPTION
The fcntl function is used to change or interrogate the behavior of a file in the system. Various
behaviors may be modified on a file-by-file, task-by-task basis. Each behavior may be set/reset
by using a specific function to the fcntlO function.

The function returns a mask that indicates the state of the modify able behaviors.

Currently, the functions available are:

FNOBLOCK Subsequent read operations on this file descriptor do not cause the task to be
suspended if no data is available. In this mode, the ENOINPUT error is
returned if no data is available and the signal "INPUT READY" is sent to the
task when data becomes available.

FBLOCK Returns the file descriptor to normal blocking mode.

The value returned is a combination of these state bits:

F NOBLOCK Reads from the file will not cause the task to be suspended. Also, the INPUT
READY signal is sent when input becomes available.

4400 Series C Reference F-3

Jentl

ERRORS REPORTED
ENOINPUT

EBADF

EEXIST

NOTES

The file has been set for non-blocking reads and no data is available.

The file descriptor does not reference an open file, or the file is not open in the
proper mode.

The pathname already references a file

The INPUT READY signal is only sent to a task after the appropriate file I has been placed in
NOBLOCK mode AND a read request from the file was unsuccessful because of insufficient
data.

SEE ALSO
C Library: idfdO

F-4

fcvt

fcvt
Convert a floating-point value to a character-string.

SYNOPSIS
char *fcvt(fp, pas, pexp, psign)

double fp;
int pas;
int *pexp;
int *psign;

Arguments

<pos>

<pexp>

<psign>

Returns

The floating-point value to convert

The digit position to produce digits to

The address of the value to receive the decimal exponent

The address of the value to receive the sign indicator

The address of the generated character-string

DESCRIPTION
The fevt function generates a character-string containing digits from the absolute value of <jp>
until it generates the <pos> digit to the right of the decimal point if <pos> is positive, or the
-<pos> digit to the left of the decimal point if <pos> is negative. The fevt function rounds the
last digit depending on the next digit that it would have generated. If the sign of <jp> is positive,
fevt stores 0 through <psign>, otherwise it stores a non-zero value through <psign>. The fcvt
function determines what the decimal exponent is if the decimal point were placed in front of the
generated digits and returns that value through <pexp>. The fevt function returns the address of
the generated character-string as its result.

4400 Series C Reference F-5

levt

NOTES
The revt function generates a null-string if <fp> is 0.0 or its magnitude is not large enough to
have any significant digits at or to the left of the digit position specified by <pos>.

The first character generated by revt is never a O.

Fevt rounds the last digit depending on what the next digit would have been if the function had
generated it. It rounds the last digit up if the next digit is 5, 6, 7, 8, or 9, otherwise it does not
round up.

The character-string referenced by the result of fevt is in static memory. Subsequent calls to revt
overwrites this string.

SEE ALSO
C Library: ecvt(),fprintj(}, Jtoa(), gcvt()

F-6

Jdopen

fdopen
Attach an open file to a stream.

SYNOPSIS
#include <stdio.h>
FILE *fdopen(fildes, mode)

int fildes;
char *mode;

Arguments
<fildes> A file descriptor for the file to attach

<mode> The address of a character-string describing the requested open mode

Returns
The standard 110 stream where the open file is attached, or (FILE *) NUU if fdopen detected an
error.

DESCRIPTION
The fdopen function attaches the file referenced by the file descriptor <jildes> to a standard I/O
stream. An open file descriptor is returned by the system-call functions creatO, dupO, dup20,
open() , and pipeO. Valid open modes are r, W, a, r+, W+, and a+, which stand for read, write
and append with the + implying open for update (reading and writing). Read and write access
begins at the current position in the file, and append access begins at the end of the file. The
fdopen function is typically used to permit standard I/O functions on a file opened by some
means other than the standard 110 function fopen().

The fdopen function returns the standard 110 stream to which the file has been attached, or (FILE
*) NULL if there is an error. Possible errors include a bad file descriptor <jildes> , an unknown
open mode, or attempting to exceed the maximum open-stream limit.

4400 Series C Reference F-7

fdOpen

NOTES
The access mode is supposed to match the open mode of the file. This is not currently checked
since there is no way to coax the open mode from the operating system given an open file
number.

Files attached to streams using this routine should be closed using fclose(} to ensure that the
resources automatically allocated to the stream are released to the system and that any data gets
flushed.

When a file is opened for update (reading and writing), both input and output may be performed
on the resulting stream. An input operation may not be performed immediately following an
output operation without an intervening fseek. An output operation may not be performed
immediately following an input operation without an interveningfseek unless the input operation
encounters an end of file condition.

When a file is opened for append (that is, open modes a or a+), it is impossible to overwrite
information already in the file. When output is written to the stream, the current file pointer is
disregarded and repositioned to the end of the file.

SEE ALSO
C Library: fclose(}, freopenO ,fopenO ,fseek()

System Call: close(}, dup(}, dup2(}, openO, pipe()

F-8

leoJ

fecf
Test the end-of-file indicator of a stream.

SYNOPSIS
#include <stdio.h>
int feof(stream)

FILE *stream;

Arguments
<stream> The standard I/O stream

Returns
Non-zero if the end-of-file indicator on the stream is set (on), zero otherwise

DESCRIPTION
The feof function tests the end-of-file indicator on the standard I/O stream <stream>. The feof
returns a non-zero value if the indicator is set, otherwise it returns zero.

A standard 1/0 function sets the end-of-file indicator of a stream when the function attempts to
read data from the stream produce no data and no errors.

NOTES
The feof function is implemented as a macro. Macro side-effects are not possible since the macro
references its argument only once.

SEE ALSO
C Library:JdopenO,ferrorO,fopenO, stderr, stdin, stdout

4400 Series C Reference F-9

ferror
Test the error-indicator of a stream.

SYNOPSIS
#include <stdio.h>
int ferror(stream)

FILE *stream;

Arguments
<stream> The standard 110 stream

Returns
Non-zero if the error-indicator on the stream is set (on), zero otherwise

DESCRIPTION

ferror

The ferror function tests the error-indicator on the standard 110 stream <stream>. Ferror
returns a non-zero value if the indicator is set, otherwise it returns zero.

A standard 110 function sets the error-indicator of a stream if the function attempts to perfonn 110
on the stream and the operating system reports an error. The function c1earerr() clears the error
indicator of a stream.

NOTES
The ferror function is implemented as a macro. Macro side-effects are not possible since the
macro references its argument only once.

SEE ALSO
C Library: clearerr(),feo!(},fdopen(},fopenO, stderr, stdin, stdout

F-IO

/Jlush

fflush
Flush a stream opened for write access.

SYNOPSIS
#include <stdio.h>
int fflush(stream)

FILE *stream;

Arguments

<stream> The standard I/O stream to flush

Returns
Zero if successful, EOF otherwise

DESCRIPTION
The fflush function flushes any buffered data written to the standard I/O stream <stream>. The
stream must be opened for write or append access. The mush function returns EOF if it
encounters an error flushing the stream, otherwise it returns zero.

SEE ALSO
C Lihrary:Jclose(),Jdopen(},jreopen(},fopen(}, stderr, stdin, stdout

4400 Series C Reference F-ll

fgetc
Read a character from a stream.

SYNOPSIS
#include <stdio.h>
int fgetc(stream)
FILE *stream;

Arguments
<stream> The standard I/O stream to read from

Returns
The character read if successful, otherwise BOF

DESCRIPTION

fgetc

The fgetc function reads the next character from the standard I/O stream <stream>. If fgetc
succeeded, it returns that character as its result, cast into an int with no sign extension, otherwise
it returns BOF.

NOTES
The character read is considered to be an unsigned char so there is no sign extension when
converting the character to an integer value for returning.

SEE ALSO
C Library: JdopenO ,fopenO ,fputc() ,fread(), getc(), getchar(), stdin

F-12

fgets

fgets
Read a character-string from a stream.

SYNOPSIS
#include <stdio.h>
char *fgets(ptr, count, stream)

char *ptr;
int count;
FILE *stream;

Arguments
<ptr> The address of the target buffer

<count> The size of the target buffer

<stream> The standard I/O stream to read from

Returns
The <ptr> argument if successful, (char *) NULL otherwise.

DESCRIPTION
The fgets function reads characters from the standard I/O stream <stream> until it reads
<count>-l characters, it reads an end-of-line character, or it reaches the end of the file. Fgets
writes these characters to the buffer with the address <ptr>. Fgets appends a null-character ('\0')
onto the characters read, making a character-string, then returns <ptr> as its result.

If Fgets detects an error, it returns (char *) NULL and does not alter the target buffer.

SEE ALSO
C Library: jdopen(},fgetc(),fopen(},fputs() , gets(), stdin

4400 Series C Reference F-13

fileno
Get a file descriptor for the file attached to a stream.

SYNOPSIS
#include <stdio.h>
int fileno(stream)

FILE *stream;

Arguments
<stream> A standard I/O stream

Returns
A file descriptor for the file attached to the stream

DESCRIPTION

]ileno

The fileno function returns a file descriptor for the fIle attached to the stream <stream>. This
file descriptor can be used by various system-call functions, such as readO, and writeO.

NOTES
Results of fileno are undefined if <stream> does not reference an open stream.

The fileno function is implemented as a macro by the include-file <stdio.h>.

SEE ALSO
C Library:JdopenO,fopenO, stderr, stdin, stdout

System Call: dup(), dup2(), openO, read(), write()

F-14

finite

finite
Detennine if a double precision floating point number is not an infinity.

SYNOPSIS
include <math.h>

int finite (x)
double x;

Arguments
None

Returns
The value to examine Non-zero if the value is not an infinity, zero otherwise.

DESCRIPTION
This function determines if the value <x> is finite. Infinity is represented as an exponent of 2047
(maximum value), a zero fraction and a sign bit.

NOTES
Not-a-number returns non-zero, so the function isnan(} should be called before finiteO.

SEE ALSO
C.Library: isnan(}, matherr()

4400 Series C Reference F-15

floor
Calculate the largest integer not greater than a value.

SYNOPSIS
#include <rnath.h>
double floor(x)

double x;

Arguments
<x> The floating-point argument to the function

Returns
The largest integer not greater than <x>

DESCRIPTION

floor

The floor function calculates the largest integer that is not greater than the value <x>. It returns
that value, represented as a double, as its result.

SEE ALSO
C Library: ceil()

F-16

Jmod

fmod
Floating-point remainder function.

SYNOPSIS
double fmod(x, y)

double x;
double y;

Arguments
<x> The dividend

<y> The divisor

Returns

The remainder resulting from dividing <x> by <y>

DESCRIPTION
The fmod function calculates the remainder resulting from the division of <x> by <y>. The
remainder of <x> divided by <y> is defined as <x> if <y> is 0.0, otherwise some value <z> that
has the same sign as <x> such that <x> = <i>*<y> + <z> for some integer value <i> and
fabs(z} < fabsCy). Fmod returns the calculated value as its result.

SEE ALSO
C Library:fabsO

4400 Series C Reference F-17

!open

fopen
Open a file and attach it to a standard I/O stream.

SYNOPSIS
#include <stdio.h>
FILE *fopen(pathnam, mode)

char *pathnam;
char *mode;

Arguments
<pathnam> The address of a character-string containing a pathname to the file to open

<mode> The address of a character-string containing the open mode

Returns

If fopen is successful, the stream where the open file is attached is returned, otherwise (FILE *)
NULL returns.

DESCRIPTION
The fopen function opens the file reached by the pathname in the character-string referenced by
<pathnam>. The character-string referenced by <mode> describes to fopen the access type
desired by the program. Fopen then attaches the open file to a standard I/O stream.

If fopen succeeds, it returns the standard I/O stream as its result Otherwise, it returns (FILE *)
NULL. The fopen function fails if the operating system reports an error, the program has the
maximum number of streams open, or the open mode is not valid. If the operating system reports
an error, < ermo> contains the system error code.

The open mode describes the type of access requested for the file. Valid open modes are r, W, a,
N, W+, and a+, which stand for read, write and append with the + implying open for update
(reading and writing).

If the open mode is r, fopen opens the file for reading. If the file already exists, it sets the current
position at the beginning of the file. If <pathnam> does not reach a file, the function fails.

If the open mode is w, fopen opens the file for writing. If the file already exists, fopen truncates
the file to a length of zero. Otherwise, fopen creates a file with a length of zero. Fopen sets the
current position at the beginning of the file.

F-18

fopen

If the open mode is a, fopen opens the file for writing. If the file does not exist, fopen creates a
file with a length of zero. Fopen sets the current position at the end of the file.

If the open mode is r+, fopen opens the file for reading and writing. If the file already exists,
fopen sets the current position at the beginning of the file. If <pathnam> does not reach a file,
fopen fails.

If the open mode is W+, fopen opens the file for reading and writing. If the file already exists,
fopen truncates the file to a length of zero. Otherwise, fopen creates a file with a length of zero.
Fopen sets the current position at the beginning of the file.

If the open mode is a+, fopen opens the file for reading and writing. If the file does not exist,
fopen function creates a file with a length of zero. Fopen sets the current position at the end of
the file.

NOTES
The include-file < stdio.h> defines the data type FILE. This data type is a structure containing all
of the information about an open stream.

For brevity, this and other manual pages discuss a pointer to the data type FILE as simply a
<stream>, instead of calling it a pointer to a structure defining the characteristics of a stream.

When a file is opened for update (reading and writing), both input and output may be performed
on the resulting stream. An input operation may not be performed immediately following an
output operation without an intervening fseek. An output operation may not be performed
immediately following an input operation without an intervening fseek unless the input operation
encounters an end of file condition.

When a file is opened for append (that is, open modes a or a+) it is impossible to overwrite
information already in the file. When output is written to the stream, the current file pointer is
disregarded and repositioned to the end of the file.

SEE ALSO
C Library: closer),jdopen(),fgetc(),fgets(),fputc(),fputs(),fread{),jreopen{),fseek{),fwrite{)

System Call: close{}, openO

4400 Series C Reference F-19

fork
Create a new task.

SYNOPSIS
#include <errno.h>
int fork ()

Arguments
None

Returns

fork

Nothing is returned if fork is successful, the child's task-ID to the parent (calling) task and zero
to the child (created) task, otherwise fork returns -1 with <errno> set to the system error code.

DESCRIPTION
The fork function creates a new task (the child task) that is an exact copy of the current task (the
parent task). If fork succeeds, it returns the child task's task-ID to the parent task and returns
zero to the child task. Otherwise, it returns -1 with <errno> set to the system error code.

The child task is identical to the parent task in that it has the same task priority, user-ID, effective
user-ID, controlling terminal information, file-creation permissions-mask, working directory,
signal handling set-up, and profiling information.

The child task differs from the parent task in that its task-ID is different, its parent task-ID is the
task-ID of the parent task, the data in its memory is an exact copy of that in the parent task's
memory, its file descriptors are exact copies of those in the parent task, and its system and user
CPU times are reset to zero.

A task-ID is a non-negative integer. Flushing or closing streams opened for write or append
access at the forkO call may result in data being duplicated onto the file attached to the stream
since buffers are copied to the child task by forkO.

SEE ALSO
C Library: exit(), _exit() execl(), execlp(), execv(), execvp(), vfork(), wait{)

F-20

fpriniJ

fprintf
Write formatted data to a stream.

SYNOPSIS
#include <stdio.h>
int fprintf(stream, format [,arglist])

FILE *stream;
char *format;

Arguments
<stream> The standard 110 stream to use to write formatted data

<format> The address of a character-string containing a format description

Returns
The number of characters written to the stream, or EOF if an error occurred.

DESCRIPTION
The fprintf function generates characters from the format description in the character-string
referenced by <format> and the arguments in the argument-list <arglist>, if any, and writes
these characters to the standard 110 stream <stream>. Fprintf returns as its result the number of
characters written to the stream.

The format description in the character-string referenced by <format> contains literal characters
and field descriptions. The fprintf function writes literal characters to the stream with no
interpretation. The fprintf function interprets field descriptions to determine what characters it
generates, what type of argument it consumes, if any, from the argument list <arglist>, and the
type of conversion it performs. The number of arguments and the type of the arguments in the
argument list <arglist> depends on the format description. The argument list can be omitted.

The field description describes to the fprintf function the various attributes of the field. The
syntax of a field description is:

% [<flags>] [<width>] [. [<precn>]] [<alt>] <type>

4400 Series C Reference F-21

Jprini/

The % character introduces a field description. The <flags> part modifies slightly the function's
definition of the different conversion types, and consists of +, -, and #. The <width> part
describes the field's width, and is indicated by a string of decimal digits or the * (asterisk)
character. The <precn> part describes the number of digits to produce from the associated
argument. It must follow a . (period) character and is indicated by a string of decimal digits or an
asterisk. The <alt> part contains the alternate data-size indicator, which is the I (letter ell)
character. The <type> part is the type of the field, and is one of the characters in this string:
cdeEfgGosuxX%. The <type> part ends a field description. The fprintf function lets the flags,
the width, the precision, and the alternate data-size indicator to be omitted from the field
description. Fprintf requires that a field description contain a type. Examples of valid field
descriptions are %d, %-+#7.41x, % %, and %8d.

The <flags> part of the field description contains flags which alter the function's interpretation
the field as described by its other parts. The field description may contain any, all, or none of
these flags:

+ This flag tells the function to generate a leading sign if the conversion is a signed
conversion. Normally, the function omits the leading sign if the value is positive.

, "

This flag tells the function to pad the generated characters on the right if the field's width is
larger than the number of characters generated. Normally, the function pads the generated
characters on the left.

This flag tells the function to generate a leading space if the conversion is a signed
conversion and the value is positive. The fprintf function ignores this flag if the field also
contains the + flag.

This flag tells fprintf to convert the value using an alternate conversion method. The
individual field types define the alternate conversion methods.

The <width> part controls the field's width, which describes the minimum number of characters
in the field. If fprintf generates fewer than that number of characters from the argument, it
prefixes spaces to fill the field. If the field contains the ' - ' flag, it appends spaces to fill the field.
If the width is indicated by the '*' character, fprintf treats the next argument in the argument list
as an int and uses the value of that argument as the width of the field. Fprintf expands the width
of the field if it generates more than that number of characters. If the field contains no width,
fprintf sets the width to the number of characters it generates.

The <precn> part describes the precision of the field, which controls the number of characters
generated from the argument. If the precision is indicated by the '*' character, fprintf treats the
next argument in the argument list as an int and uses the value of that argument as the precision
of the field. The fprintf function treats a null digit string in the precision specification as zero. If
the field contains no precision, the value of the argument for that field determines the precision of
the field.

The <alt> part contains the alternate data-size indicator, which tells fprintf to consume an
argument that is not the standard size for the type of field.

F-22

/pn'1ii/

The <type> part is the type of the field, which indicates the size of the argument expected, if any,
and the kind of conversion performed, if any. This list describes the types, their function, and
their interpretation of the field's flags, width, precision, and alternate data-size indicator:

c The fprintf function treats the next argument as an into The fprintf function generates a
character by casting that value into a char If the width is greater than 1, fprintf pads that
character with blanks. The function ignores the precision, alternate data-size indicator, and
the ' +', ' " and '#' flags on this type offield.

d The fprintf function treats the next argument as an int unless the field contains the
alternate data-size indicator 1', in which case the fprintf function treats the argument as a
long. The fprintf function generates a string of decimal digits representing the absolute
value of the argument. If the field contains an explicit precision and the function generates
fewer digits than specified by the precision of the field, fprintf prefixes '0' characters until
it generates the requested number of digits. If the value of the argument is negative, fprinf
prefixes a '-' character to the digits. Otherwise, if the field contains the ' +' flag, fprinf
prefixes a ' +' character, or if the field contains the ' , flag, fprinf prefixes a ' , character. If
fprinf generates fewer characters than specified by the width of the field, it pads with
blanks to fill the field. The fprintffunction ignores the '#' flag on this type offield.

e The fprintf function treats the next argument as a double. The function generates a string
of decimal digits containing a decimal point, representing the magnitude of the mantissa of
the argument. The magnitude of the mantissa is always greater than or equal to 1.0 and
less than 10.0, unless the value is 0.0, in which case the mantissa is 0.0. If the field
contains an explicit precision, fprintf generates exactly that many digits to the right of the
decimal point. If the explicit precision is zero, fprintf omits the decimal point unless the
field contains the alternate method flag 'I'. The fprinf function assumes a precision of 6 if
the field does not contain an explicit precision. If the value of the argument is negative,
fprintf prefixes a '-' character to the generated characters. Otherwise, if the field contains
the ' +' flag, it prefixes a ' +' character, or if the field contains the ' , flag, it prefixes a ' ,
character. The fprinf function then generates a string of decimal digits containing at least
two digits, representing the magnitude of the decimal exponent. If the exponent is
negative, fprinf prefixes a ' -' character to the digits, otherwise it prefixes a ' +' character.
It then appends an 'e' character to the mantissa string followed by the exponent string. If
fprintf generates fewer characters than specified by the field's width, it pads with blanks to
fill the field. The fprinf function ignores the alternate data-size indicator on this type of
field.

E This type is exactly like the ' e' field type except. that the fprinf function uses the character
'E'to introduce the exponent instead of the character 'e'.

f The tprint function treats the next argument as a double. The fprinf function generates a
string of decimal digits containing a decimal point that represents the magnitude of the
argument. If the field contains an explicit precision, the function generates exactly that
many digits to the right of the decimal point. If the explicit precision is zero, the fprinf
function omits the decimal point unless the field contains the alternate method flag 'I'.
The tprintf function assumes a precision of 6 if the field does not contain an explicit
precision. If the value of the argument is negative, the function prefixes a '-' character to
the generated characters. Otherwise, if the field contains the ' +' flag, fprintf prefixes a ' +'
character, or if the field contains the ' , flag, fprintf prefixes a ' , character. If fprintf
generates fewer characters than specified by the field's width, fprintf pads with blanks to
fill the field. The function ignores the alternate data-size indicator on this type of field.

4400 Series C Reference F-23

Jpriiztf

g The fprintf function treats the next argument as a double. If the decimal exponent of the
argument is less than -4, or greater than or equal to the specified precision, the fprintf
function generates characters as described by the 'e' type, except that unless the field
contains the alternate method flag '#', it omits all trailing zeros from the digits representing
the mantissa and the decimal point if it omits all of the digits to the right of the decimal
point. If the decimal exponent falls within that range fprintf generates characters as
described by the T type, with the same exception. The fprintf function ignores the
alternate data-size indicator on this type of field.

G This type is exactly like the ' g' field type except that if the function generates an exponent,
uses the character 'E' to introduce the exponent instead of the character 'e'.

o The fprintf function treats the next argument as an unsigned int unless the field contains
the alternate data-size indicator 1', in which case the function treats the argument as an
unsigned long. The fprintf function generates a string of octal digits representing the value
of the argument. If the field contains an explicit precision and the function generates fewer
digits than specified by the field's precision, it prefixes '0' characters until it generates the
requested number of digits. If the field contains the '#' flag, fprintfprefixes a '0' character
to the digits. If fprintf generates fewer characters than specified by the field's width, it
pads with blanks to fill the field. The fprintf function ignores the ' , and ' +' flags on this
type of field.

s The fprintf function treats the next argument as a char * and assumes that the argument
references a character-string (a string of characters terminated by a null-character). If the
field contains a precision and the length of the character-string is greater than the precision,
the function uses the number of characters specified by the precision. Otherwise, fprintf
uses all of the characters from the string. If the number of characters used is less than the
field's width, fprintf pads with blanks to fill the field. The function ignores the ' +', ' "
and '#' flags and the alternate data-size indicator on this type of field.

u The fprintf function treats the next argument as an unsigned int unless the field contains
the alternate data-size indicator 1', in which case the function treats the argument as a
unsigned long. The fprintf function generates a string of decimal digits representing the
value of the argument. If the field contains an explicit precision and the function generates
fewer digits than specified by the field's precision, it prefixes '0' characters until it
generates the requested number of digits. If fprintf generates fewer characters than
specified by the field's width, it pads with blanks to fill the field. The fprintf function
ignores the ' +', ' " and '#' flags on this type of field.

x The fprintf function treats the next argument as an unsigned int unless the field contains
the alternate data-size indicator '1', in which case the function treats the argument as an
unsigned long. The function generates a string of hexadecimal digits representing the value
of the argument. The function uses in sequence the characters 'a', 0', 'c', 'd', 'e', and T
to represent the hexadecimal digits larger than '9'. If the field contains an explicit
precision and the function generates fewer digits than specified by the precision of the
field, fprintf prefixes '0' characters until it generates the requested number of digits. If the
field contains the '#' flag, fprintf prefixes the characters "Ox" to the digits. If fprintf
generates fewer characters than specified by the width of the field, it pads with blanks to
fill the field. The fprintf function ignores the ' , and' +' flags on this type of field.

F-24

fprinfj

X This type is exactly like the 'x' field type except that the fprintf function uses in sequence
the characters 'A', 'B', 'C', 'D', 'E', and 'F" to represent the hexadecimal digits larger than
'9', and it prefixes the characters "OX" if the field contains the '#' flag.

% The fprintf function generates a single '%' character. The function ignores the field's
flags, width, precision, and alternate data-size indicator.

NOTES
The fprintf function consumes the variable width and precision values in the argument list before
determining the type of the field.

The fprintf function writes characters to the stream using fputeO. If the stream is buffered,
standard I/O does not write characters to the file attached to the stream until it fills the stream's
buffer or closes the stream. If the stream is line-buffered (buffered and attached to a file that is a
terminal), standard 110 does not write characters to the file attached to the stream until it fills the
stream's buffer, closes the stream, writes an end-of-line character (EOL) to the stream, or reads
data from a terminal.

The results of the fprintf function are undefined if the number of arguments in the argument list
<arglist> is less than the number required by the format description.

The fprintf function ignores the extra arguments in the argument list if that list contains more
arguments than required by the format description.

The fprintf function produces undefined results from an incorrectly constructed field description.

The fprintf function produces no digits from a zero value for a field that contains an explicit
precision of zero for the field types 'd', '0', 's', 'u', 'x', and 'X'.

The fprintf function ignores the explicit width and precision of a field description if either is
specified by the '*' character and the value obtained from the argument list is less than zero.

The include-file < stdio.h> defines the functions and constants available in standard I/O. This file
must be included in the C source before the first reference to this function.

The C library contains two versions of this function: one that contains floating-point conversions
and one that contains no floating-point conversions. The ee command loads the version
containing floating-point con~ersions only if the C source contains references to the one of the
floating-point data types or a call to the function pffinitO. Otherwise, it loads the version which
contains no floating-point conversions.

SEE ALSO
C Library: ecvt(), jcvt(), jdopenO, jopenO, /pute(), jscanjO, gcvt(), pffinit(), print/O, seanjO,
springr),sseanJr),stderr,stdout

Command: ee

4400 Series C Reference F-25

fpute
Write a character to a stream.

SYNOPSIS
#include <stdio.h>
int fputc(c, stream)

char Ci

FILE *streami

Arguments
<c> The character to write

<stream> The standard I/O stream to write to

Returns·
The value written if successful, EOP otherwise.

DESCRIPTION

/pute

The fputc function writes the character <c> to the standard I/O stream <stream>. Fputc returns
the character written as its result if it successfully writes the character to the stream, otherwise, it
returns EOP.

NOTES
If the stream is buffered but not line-buffered, standard I/O does not write the character to the
attached file until the buffer of the stream is full or the stream is closed.

If the stream is line-buffered, standard I/O does not write the character to the attached file until an
end-of-line character (EOL) is written to the stream, a standard I/O function attempts to read data
from a terminal, the stream's buffer is full, or the stream is closed.

If the fputc function succeeds, it returns the value of the char argument <c> converted to int as
though <c> were an unsigned char.

SEE ALSO
C Library: jdopenO, jgetc() ,jopenO ,fputs(), putc(), putchar()

F-26

fpuls

fputs
Write a character-string to a stream.

SYNOPSIS
#include <stdio.h>
int fputs(s, stream)

char *s;
FILE *stream;

Arguments
<s> The address of the character-string to write to the stream

<stream> The standard I/O stream to write to

Returns

Zero if successful, EOF otherwise

DESCRIPTION
The fputs function writes the characters in character-string referenced by < s> to the standard I/O
stream <stream>. The fputs function returns zero as its result if it successfully writes the
characters to the stream, otherwise it returns EOF.

NOTES
The fputs function does not write to the stream the null-character terminating the character
string.

If the stream is buffered but not line-buffered, standard I/O does not write the characters to the
attached file until it fills the buffer of the stream or closes the stream.

If the stream is line-buffered, standard I/O does not write the character to the attached file until it
writes an end-of-line character (EOL) to the stream, attempts to read data from a terminal, fills
the buffer of the stream, or closes the stream.

SEE ALSO
C Library:!dopen(},fgets(),!openO,fputc(), puts()

4400 Series C Reference F-27

fread
Read data from a stream.

SYNOPSIS
#include <stdio.h>
int fread(ptr, size, count, stream)

char *ptr;
int
int
FILE

Arguments

size;
count;

*stream;

<ptr> Address of the buffer to contain the data read

<size> The size of an item to read

<count> The maximum number of items to read

<stream> The standard I/O stream

Returns
The number of complete items read, if any

DESCRIPTION

Jread

The fread function reads at most <count> items of <size> bytes from the I/O stream <stream>,
placing the data read into the buffer whose address is <ptr>. The fread function reads data until
it reads the requested number of data items, reaches the end of the file, or detects an error on the
input stream. The function returns the number of complete items read from the stream.

F-28

JreCUl

NOTES
If the fread function reaches the end of the file or encounters an error while reading a data item,
it writes that partial item to the target buffer but does not count that partially read item in the
count of items read, which it returns as its result.

The target buffer needs no special boundary alignment.

If <count> is less than or equal to zero, the function does not attempt to read any data and returns
zero as its result.

SEE ALSO
C Library:jdopenO,jopenO,jwrite()

System Call: read(), write()

4400 Series C Reference F-29

free

free
Free a block of allocated memory.

SYNOPSIS
void free(ptr)

char *ptr;

Arguments
<ptr> The address of the block of memory to free

Returns
Void

DESCRIPTION
The free function returns the block of memory with the address <ptr> to the arena of available
memory. The block of memory must have been allocated by rnalIocO, callocO, orreaIIocO.

NOTES
If the argument <ptr> is the address of a block that has already been freed, or is some value other
than one returned by rnallocO, callocO, or reallocO, the function corrupts the arena of available
memory and makes subsequent calls to rnallocO, caIIocO, reallocO, and freeO behave
unpredictably.

SEE ALSO
C Library: calloc{}, malloc(), realloc{}

System Call: brk{}, cdata(), sbrk()

F-30

/reopen

freopen
Reopen an open stream.

SYNOPSIS
#include <stdio.h>
FILE *freopen(pathnam, mode, stream)

char *pathnam;
char *mode;
FILE *stream;

Arguments

<pathnam> The address of a character-string containing a pathname to the file to open and attach
to the stream

<mode> The address of a character-string containing the open mode

<stream> The standard I/O stream to reopen

Returns

The argument <stream> if successful, (FILE *) NULL otherwise

DESCRIPTION
The freopen function closes the standard I/O stream <stream>, opens the file reached by the
pathname in the character string referenced by <pathnam>, with the open mode specified by the
character-string referenced by <mode>, and attaches the newly opened file to the stream.

If freopen succeeds, it returns the standard I/O stream <stream> as its result. Otherwise, it
returns (FILE *) NULL. The freopen function fails if the operating system reports an error, the
stream is not open, the program has the maximum number of streams open, or the open mode is
not valid. If the operating system reports an error, < errno> contains the system error code.

The open mode describes the type of access requested for the file. Valid open modes are r, W, a,
r+, W+, and a+, which stand for read, write and append with the + implying open for update
(reading and writing).

If the open mode is r, freopen opens the file for reading if the file already exists, setting the
current position at the beginning of the file. If the pathname <pathnam> does not reach a file,
freopen fails.

4400 Series C Reference F-31

jreopen

If the open mode is w, freopen opens the file for writing. If the file already exists, freopen
truncates the file to a length of zero. Otherwise, freopen creates a file with a length of zero. The
freopen function sets the current position at the beginning of the file.

If the open mode is a, freopen opens the file for writing. If the file does not exist, freopen
creates a file with a length of zero. The freopen function sets the current position at the end of
the file.

If the open mode is r+, freopen opens the file for reading and writing. If the file already exists,
freopen sets the current position at the beginning of the file. If the pathname pathnam does not
reach a file, freopen fails.

If the open mode is W+, freopen opens the file for reading and writing. If the file already exists,
freopen truncates the file to a length of zero. Otherwise, it creates a file with a length of zero.
The freopen function sets the current position at the beginning of the file.

If the open mode is a+, freopen opens the file for reading and writing. If the file does not exist,
freopen creates a file with a length of zero. The freopen function sets the current position at the
end of the file.

NOTES
The freopen function is typically used to attach files to automatically opened streams, such as
stdin, stdout, and stderr.

The file originally attached to <stream> is closed without regard to the eventual outcome of the
function call.

When a file is opened for update (reading and writing), both input and output may be performed
on the resulting stream. An input operation may not be performed immediately following an
output operation without an intervening fseek. An output operation may not be performed
immediately following an input operation without an intervening fseek unless the input operation
encounters an end of file condition.

When a file is opened for append (that is, open modes a or a+) it is impossible to overwrite
information already in the file. When output is written to the stream, the current file pointer is
disregarded and repositioned to the end of the file.

SEE ALSO
C Library:jclose(),jdopen(},fopen(},fseek(), stderr, stdin, stdout

System Call: close(), open(}

F-32

Jrexp

frexp
Separate the exponent from the mantissa of a floating-point value.

SYNOPSIS
double frexp(fp, iptr)

double fp;
int *iptr;

Arguments
<fp>

<iptr>

Returns

The floating-point value to separate

The address of an integer to receive the exponent of the floating-point value.

The mantissa of the floating-point value <jp>

DESCRIPTION
The frexp function splits the floating-point value <jp> into its mantissa and its exponent. It
stores the exponent through dptr> and returns the mantissa as its result.

All floating-point values are represented by a mantissa and an exponent. A non-zero value is
represented by a mantissa with an absolute value is greater than or equal to 0.5 and less than 1.0
and an exponent that is a signed integer. The floating-point value represented by the mantissa
and exponent is 2 raised to the power indicated by the exponent which is then multiplied by the
mantissa. For example, the floating-point value 1.0 is represented by a mantissa of 0.5 and an
exponent of 1. A floating-point 0.0 is represented by a mantissa of 0.0 and an exponent of O.

SEE ALSO
C Library: Idexp(), modf()

4400 Series C Reference F-33

/scan]

fscanf
Read and interpret formatted data from a stream.

SYNOPSIS
#include <stdio.h>
int fscanf(stream, format [, addrlist])

FILE *stream;
char *format;

Arguments
<stream> The standard I/O stream to read from

<format> The address of a character-string containing a format description

Returns
The number of items in the address-list <addrlist> that fscanf successfully assigns or EOF if an
error occurs before it assigns any data.

DESCRIPTION
The fscanf function reads and interprets data from the standard I/O stream < stream< according
to the format description in the character-string referenced by <format>. Following the argument
<format> in the argument list, fscanf expects a list of addresses of variables to receive the values
it generates from the data it reads from the stream, if any. The fscanffunction returns as its result
the number of assignments it makes, or EOF if it encounters an error before making the first
assignment

The argument <format> is a character-string containing a format description, which describes the
format of the data read from the stream. The format description consists of literal characters,
white-space characters, and field descriptions, in any sequence.

Literal characters are all characters which are not White-space characters (as defined by
isspace()), and not pan of field descriptions. A literal character tells the function to match that
character with the next character read from the stream. If it does not match exactly , fscanf ends.

F-34

/scaii/

White-space characters are the space (' '), end-of-line (,n'), horizontal-tab ('\t'), fonn-feed (,f'),
and carriage-return ("\r') characters. A white-space character tells the function to read and
consume characters from the input stream until it reaches a character which is not a white-space
character or it reaches the end of the data. The next character available from the stream is the
next character which is not a white-space character. The function does nothing with a white
space character in the format description if the next character from the stream is not a white-space
character.

A field description tells fscanf how to interpret the next character or characters read from the
stream. The field description tells the function the maximum number of characters to read, the
fonn of the characters read, the type of value to assign any result to, and whether to perfonn an
assignment. A field description has this syntax:

%[*] [<width>] [<flags>] <type>

The '%' character introduces the field description. The '*' character tells fscanf to suppress
assigning the interpreted value to a variable. The <width> part tells fscanf the maximum number
of characters to read to satisfy the field (excluding leading white-space characters, if the field
type skips leading White-space characters). The <flags> part alters the type of assignment made
by the function, and may be either the 'h' or the T character. The <type> part defines the type of
the field and may be anyone of the characters in this string: cdeEfFgGosux%L

The <type> part of the field description defines the type of the field. It indicates the expected
fonn of the data and the data type to receive the interpreted characters, if any. This list describes
the types, the expected fonn of the interpreted characters, and the expected data type:

c This field type tells fscanf to expect a single character or a field of characters. If the field
has no explicit width <width>, the fscanf function consumes the next character of data.
Unless the field contains the '*' flag, fscanf assigns the consumed character through the
next address in the address list as though that address references a char. If the field has an
explicit width, the fscanf function consumes at most <width> characters. Unless the field
contains the '*' flag, fscanf assigns the consumed characters through the next address in
the address list as though that address references an array of char. The fscanf function
ignores the 'h' and T flags in this type of field description.

d This field type tells fscanf to expect a field of decimal digits. The function skips leading
spaces and pennits a sign immediately preceding the decimal digits. It consumes
characters as decimal digits, generating an integer, until it reaches a character which is not
a decimal digit, reaches the end of the data, or it consumes the number of characters
specified by the field's explicit maximum width <width>, if any. Unless the field contains
the '*' flag, fscanf assigns the integer generated from the decimal digits to the value
referenced by the next address in the address list. If the field contains the 'h' flag, it
assigns the value as though the address references a short. If the field contains the T flag,
it assigns the value as though the address references a long. Otherwise, it assigns the value
as though the address references an into

4400 Series C Reference F-35

/scanf

e This field type tells fscanf to expect a field containing characters representing a floating
point value. The fscanf function skips leading spaces, then consumes an optionally signed
string of decimal digits, possibly containing a decimal point, optionally followed by an
exponent field, which contains an 'E' or an 'e' character, optionally followed by a sign,
optionally followed by a string of decimal digits. The fscanf function assumes that the
exponent is zero if the decimal digits are omitted. Fscanf consumes characters until is
reaches an inappropriate character, reaches the end of the data, or it consumes the
maximum number of characters specified by the field's maximum width <width>, if any.
It generates a floating-point value by multiplying the value represented by the the first
string of digits by 10 raised to the power as expressed by the exponent field. Unless the
field contains the '*' flag, fscanf assigns the resulting floating-point value. If the field
contains the T flag, it assigns the value through the next address in the address list as
though that address references a double. Otherwise, it assigns the value through the
address as though it references afloat. The fscanffunction ignores the fl' flag on this field
type.

E This field type tells fscanf to expect a field containing characters representing a floating
point value. The function behaves as though the field were an 'e' field except that it
assigns the value through the next address in the address list as though that address
references a double unless the field contains the 'h' flag, in which case it assigns the value
as though the address references a float. The fscanf function ignores the '1' flag on this
field type.

f This field type tells fscanf to expect a field containing characters representing a floating
point value. The fscanffunction behaves as though the field were an 'e' type field.

F This field type tells fscanf to expect a field containing characters representing a floating
point value. The fscanf function behaves as though the field were an 'E' type field.

g This field type tells the fscanf function to expect a field containing characters representing
a floating-point value. The fscanf function behaves as though the field were an 'e' type
field.

G This field type tells the fscanf function to expect a field containing characters representing
a floating-point value. The fscanf function behaves as though the field were an 'E' type
field.

o This field type tells the fscanf function to expect a field of octal digits. Octal digits are the
decimal digits '0' through '7' inclusive. The fscanf function skips leading spaces and
permits a sign immediately preceding the octal digits. The fscanf function consumes
characters as octal digits, generating an integer, until it reaches a character which is not a
octal digit, reaches the end of the data, or it consumes the number of characters specified
by the explicit maximum width <width> of this field, if any. Unless the field contains the
'*' flag, fscanf assigns the integer generated from the octal digits to the value referenced
by the next address in the address list. If the field contains the 'h' flag, it assigns the value
as though the address references a short. If the field contains the '1' flag, fscanf assigns the
value as though the address references a long. Otherwise, it assigns the value as though the
address references an into

F-36

JscanJ

s This field type tells the fscanf function to expect a field of characters. The fscanf function
skips leading spaces, then consumes characters until it reaches the end of the data, a space,
or it consumes the number of characters specified by the maximum width <width> of the
field, if any. Unless the field contains the '*' flag, it assigns the consumed characters,
followed by a null-character, through the next address in the address list as though the
address references an array of char. The fscanf function ignores 11' and T flags on this
field type.

u This field type tells the fscanf function to expect a field of decimal digits. The fscanf
function skips leading spaces then consumes characters as decimal digits, generating an
integer, until it reaches a character which is not a decimal digit, the end of the data, or it
consumes the number of characters specified by the field's explicit maximum width
<width>, if any. Unless the field contains the '*' flag, fscanf assigns the integer generated
from the decimal digits to the value referenced by the next address in the address list. If
the field contains the 11' flag, it assigns the value as though the address references an
unsigned short. If the field contains the T flag, it assigns the value as though the address
references an unsigned long. Otherwise, it assigns the value as though the address
references an unsigned into

x This field type tells the fscanf function to expect a field of hexadecimal digits.
Hexadecimal digits are the decimal digits with the addition of the characters A, B, C, D, E,
and F, in order, representing the six hexadecimal digits greater than 9. The fscanf function
accepts a, b, c, d, e, and f for their equivalent upper-case character. The fscanf function
skips leading spaces and permits a sign immediately preceding the hexadecimal digits. It
consumes characters as hexadecimal digits, generating an integer, until it reaches a
character that is not a hexadecimal digit, reaches the end of the data, or consumes the
number of characters specified by the explicit maximum width <width> of the field, if any.
Unless the field contains the '*' flag, fscanf assigns the integer generated from the
hexadecimal digits to the value referenced by the next address in the address list. If the
field contains the 11' flag, it assigns the value as though the address references a short. If
the field contains the T flag, it assigns the value as though the address references a long.
Otherwise, it assigns the value as though the address references an into

% This field type tells the fscanf function to expect a single '%' character. The function does
not skip any leading spaces, it makes no assignment and it ignores the <width> part of the
field along with the field's '*', 11', and T flags.

[This field type tells the function to expect a field of characters consisting of a particular set
of printable, ASCII characters. The set of characters, called a scanset, is defined by a
scanset description that immediately follows the field description. The scanset description
begins with the first character following the field description and ends with the next T
character, unless that character immediately follows the field description or immediately
follows a 'A' character that immediately follows the field description, in which case the
scanset description ends with next ']' character. (This is so the ']' character can explicitly
be part of the scanset.)

4400 Series C Reference F-37

fscanl

The scanset contains all of the characters in the scanset description up to but not including
the tenninating T character, with two exceptions. The first exception is a ,~, character
beginning the description, which indicates that the scanset contains all of the printable
ASCII characters that are not in the scanset description. The second exception is a '-'
character preceded by a character that is lexicographically less than the character that
follows the '-' character, in which case the function substitutes for the '-' character all of
the characters between the preceding and following character. The fscanf function
consumes characters until it reaches a character that is not in the scanset, reaches the end of
the data, or it consumes the number of characters specified by the field's maximum width
<width>, if any. Unless the field contains the '*' flag, it assigns the consumed characters,
followed by a null-character, through the next address in the address list as though the
address references an array of char. The function ignores 'h' and '1' flags on this field
type.

NOTES
Data satisfies a field's description for d, e,f, g, 0, U, and x field types if fscanf consumes at least
one digit. The field type determines the list of acceptable digits.

Any character consumed satisfies a c type field.

Data satisfies a s type field if fscanf consumes at least one character that is not a space.

Data satisfies a [type field if fscanf consumes at least one character that fits in the scanset of the
field.

The fscanf function treats an I/O error and an end-of-file error as though it reached the end of the
data. Standard I/O sets the error flag on the stream if an error occurs and it sets the end-of-file
flag if it reaches the end of the file.

There is no direct way to determine success or failure of fscanf of matching literal characters or
of interpreting fields which do not produce an assignment.

Trailing White-space characters are not read by fscanf unless explicitly told to do so by the fonnat
description.

The most common mistake made when using fscanf is passing to the function the values of the
variables to receive the results of this function, instead of the addresses of those variables.

The include-file <stdio.h> defines this function, other functions, macros, and constants used by
standard I/O.

The C library contains two versions of this function: one that contains floating-point conversions
and one that contains no floating-point conversions. The cc command loads the version
containing floating-point conversions only if the C source contains references to the one of the
floating-point data types or a call to the function pffinit(). Otherwise, it loads the version which
contains no floating-point conversions.

F-38

/scaiif

SEE ALSO
C Library: jdopenO, jopenO, /print/O, jscanjO, isdigit(), isspace(), isxdigit(), pffinitO, print/O,
scanjO, sprint/O, sscanjO, stdin, strtol()

Command: cc

4400 Series C Reference F-39

fseek

fseek
Reposition a stream.

SYNOPSIS
#include <stdio.h>
int fseek(stream, offset, type)

FILE *stream;
long offset;
int type;

Arguments
<stream> The standard I/O stream to reposition

<offset> A value indicating the desired position, in bytes

<type> A value indicating type of positioning

Returns
Zero if the positioning was successful, EOF otherwise

DESCRIPTION
The fseek function changes the current offset into the stream referenced by <stream>. If <type>
is 0, the value <offset> is a byte offset from the beginning of the stream. If <type> is 1, the
value <offset> is a byte offset from the current position in the stream. If <type> is 2, the value
<offset> is a byte offset from the end of the stream.

The fseek function returns zero if it successfully repositioned the stream, otherwise it returns
EOF.

F-40

Iseek

NOTES
If the fseek function is not successful, < errno> contains the error code.

A file may be extended by requesting a seek relative to the end of the file with a positive offset.

A file may not be positioned before its beginning.

Calling this function undoes any effect of ungetcO.

A stream attached to terminal may not be repositioned.

SEE ALSO
C Library:jdopen(},fopen(},ftell(), rewind()

System Call: lseek{)

4400 Series C Reference F-41

fstat
Get the status of an open file.

SYNOPSIS
#include <errno.h>
#include <sys/stat.h>
int fstat(fildes, bufad)

int fildes;
struct stat *bufad;

Arguments
<fildes> A file descriptor for the open file to examine

<bufad> The address of the structure to contain the status of the file

Returns
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION

lstat

The fstat function examines the file referenced by the file descriptor <jildes> and writes
information describing the status of that file into the structure whose address is < bufad>. The
function returns zero as its result if it successfully gets the status of the open file. Otherwise,
fstat returns -1 with <ermo> set to the system error code.

The function fails if the file descriptor <jildes> is out of range or does not reference an open file.

F-42

Istat

The following structure is defined in the include-file syslstat.h and defines the fonnat of the data
describing the status of the open file:

struct stat
{

short st dev; -
short st ina; -
char st filler; -
char st _mode;
char styerm;
char st nlink; -
short st _uid;
long st size:
long st _mtime;
long st _spr;

} ;

The value st dev is the device number of the device containing the file. st ino is the file
descriptor number (FDN) on the device describing the file. st Jiller is an unused byte. st _mode
is a bit-string describing the type of the file, described below. st yerm is a bit-string describing
the permissions of the file, described below. st _ nlink is the number of links to the file (as a single
character field, this limits the link count for a file a maximum of 127). st uid is the owner-ID of
the file. st _size is the size of the file, in bytes. st _ mtime is the last modification date and time for
the file, in system-time. st _spr is unused.

These constants, defined in the include-files syslstat.h and syslmodes.h, define the data in the bit
string st _mode that describe the type of file:

S IFMT Ox4F
S -IFREG OxO 1
S-IFBLK Ox03
S - IFCHR OxOS
S IFPTY Ox07
S IFDIR Ox09
S-IFPIPE Ox41

The constant S IFMT is a mask that when anded with the value st mode yields the file type.
After anding with the constant S JFMT, st _mode produces S _ IFREG if the file is a regular file,
S IFBLK if the file is a block-special file (block device), S IFCHR if the file is a character
special file (character device), S _ IFPTY if the file is a pseudo-tty device, S _ IFDIR if the file is a
directory, or S_IFPIPE if the file is a pipe.

4400 Series C Reference F-43

JSlat

These constants, also defined in the include-files syslstat.h and syslmodes.h, define the data in the
bit-string st yerm that describe the access pennissions of the file:

S IREAD OxOl
S IWRITE Ox02
S IEXEC Ox04
S IOREAD Ox08
S IOWRITE OxlO
S IOEXEC Ox20
S ISUID Ox40
S SLAVE PTY Ox07 - -
S MASTER PTY Ox87

S _ IREAD grants reading pennission to the owner of the file, S _ IWRITE grants wntmg
pennission to the owner, and S IEXEC grants searching pennission to the owner if the file is a
directory, otherwise it grants execution pennission. S_IOREAD grants reading pennission to
users other than the owner of the file, S IOWRITE grants writing pennission to others, and
S_IOEXEC grants searching pennission to others if the file is a directory, otherwise it grants
execution pennission. S_ISUID causes the effective user-ID change to that of the owner of the
file whenever the program contained in the file is executed. S _ SLA VE _ PTY indicates a pseudo
tty device slave and S _MASTER _ PTY indicates a pseudo tty device master.

ERRORS REPORTED
EDADF

EINVAL

NOTES

The file descriptor does not reference an open file or the file is not open in the
proper mode.

An argument to the function is invalid.

The include-file <syslmodes.h> need not be included if the include-file <syslstat.h> is included
since <syslstat.h> includes <syslmodes.h>.

SEE ALSO
System Call: creat{}, dup(}, dup2(), link(}, open(},pipe(), stat{}, utime()

Command: dir

F-44

lIeU

ftell
Get the current position of a stream.

SYNOPSIS
#include <stdio.h>
long ftell(stream)

FILE *stream;

Arguments
<stream> A standard I/O stream

Returns
The current position of the stream, in bytes

DESCRIPTION
The ftell function examines the standard I/O stream <stream>, determines its current position
relative to the beginning of the stream, and returns a value indicating that position.

If the stream is opened for read access, the current position contains the next character to read. If
the stream is opened for write or append access, the current position is where the next character is
written.

NOTES
The ftell function is not affected by a character pushed onto the stream by ungetcO.

The ftell function takes into account I/O buffering, which means it may return a different position
than the system call1seekO.

SEE ALSO
C Library: Jdopen{} , JopenO ,jseek{}, rewind{}

System Call: Iseek{}

4400 Series C Reference F-45

ftime
Get the current time statistics for the operating system.

SYNOPSIS
*include <sys/timeb.h>
int ftime(tbufaddr)

struct timeb *tbufaddr;

Arguments

/time

<tbufaddr> The address of a structure to get the current time information of the operating system

Returns
Zero

DESCRIPTION
The ftime function writes the current time statistics for the operating system into the structure
whose address is <tbufaddr>. The function always returns zero as its result.

The following structure definition describes the data written to the structure whose address is
<tbufaddr>:

struct timeb
{

};

long
char
char
short

time;
tm_tik;
dstflag;
timezone;

The value <time> is the current system-time. <tm_tik> is the number of ticks (hundredths of a
second) that have passed since the last change in the system-time. <dstflag> is non-zero if
converting to time coordinates of the local time zone requires the U. S. A. Standard Daylight
Savings Time conversion, zero otherwise. If timezone is positive, it is the number of seconds the
local time zone is west of Greenwich Mean Time (GMT), otherwise its absolute value is the
number of minutes east of GMT. The include-file sysltimeb contains definitions defining this
structure.

F-46

/time

ERRORS REPORTED
None

NOTES
The system represents time in system-time, which is the number of seconds that has elapsed since
the epoch. The system defines the epoch as 00:00 (midnight) on January 1, 1980, Greenwich
Mean Time (GMr).

SEE ALSO
C Library: gmtime{), localtime{), tzset{)

System Call: stime{), time{)

Command: date

4400 Series C Reference F-47

Jtoa

ftoa
Convert a floating-point value to a character-string.

SYNOPSIS
char *_ftoa(fp)

double fp;

Arguments
<fp> The floating-point value to convert

Returns
The address of the generated character-string

DESCRIPTION
The ftoa function generates a character-string representing the floating-point value <fp>. Ftoa
returns as its result the address of that character-string.

The function generates a character-string containing 21 characters. (This count does not include
the null-character which tenninates the character-string.) It generates a sign (+ or -) representing
the sign of the value, followed by 14 decimal-digits with a decimal point following the first digit
which represents the mantissa, followed by an E character, followed by a sign representing the
sign of the exponent, followed by three decimal-digits representing the magnitude of the
exponent.

NOTES
The character-string referenced by the result of ftoa is in static memory and is overwritten by
subsequent calls to this function.

SEE ALSO
C Library: atofO,fprintf(), sprintJO

F-48

/tw

ftw
Descend the specified directory structure.

SYNOPSIS
#include <sys/stat.h>
#include <ftw.h>
int ftw(path,fun,num fd)

char *path;
int (*fun) ();
int num_fd;

Arguments
<path> The address of a character-string containing the pathname of the directory in which

to begin the directory descent

<fun> The address of a function called for each file in the directory descent.

<num fd> The maximum number of file descriptors to use during the directory descent.

Returns
Zero if the directory structure is exhausted, -1 if it detects an error, or whatever non-zero value
was returned by a call to <fun>.

DESCRIPTION
This function recursively descends the directory structure starting at the directory <path>.

For each file in the structure, it calls the user specified function, <fun> passing to it, the address
of a character-string containing the name of the current file, the address of a struct stat structure,
containing information about the file, and an integer flag. The possible values of the flag are
defined in the include-file ftw.h and are FTW _F for a file, FTW _D for a directory, FTW _DNR
for a directory that cannot be searched, and FTW _NS for a file on which a stat could not be
performed.

The directory descent continues until all entries in the directory structure have been processed,
the user defined function <fun> returns a non-zero value or some error is detected within ftw. If
all entries have been processed, ftw returns zero. If <fun> returns a non-zero value, ftw
terminates, returning whatever value <fun> returned. If ftw detects an error, it returns -1, with
errno set to the correct error type.

The <numJd> argument limits the number of file descriptors used but not the depth of the
directory search. Ftw uses one file descriptor for each level in the directory structure. Ftw will
consume as many file descriptors as it needs to perform the directory descent. It is therefore
possible that ftw will consume all available file descriptors, leaving none for user functions. The

4400 Series C Reference F-49

/tw

user should estimate the maximum number of file descriptors he will need for his own purposes
and limit ftw to a number which will ensure that this many will always be available. If ftw runs
out of file descriptors, it will close upper levels of the directory structure to free file descriptors
and reopen them when it needs to access the given level again.

NOTES
Ftw does a depth-first search of the directory structure.

The argument < num Jd> should not be less than one and any number greater than the maximum
number of open files per task will be taken as the maximum. The maximum number of open files
per task is system dependent.

Ftw uses malloc to allocate storage during its operation.

SEE ALSO
C Library: mallocO

System Call: stat{)

F·50

JuUname

fullname
Generate the full pathname.

SYNOPSIS
char *fullname(path)

char *path;

Arguments

<path> The address of a character-string containing a pathname

Returns
The address of a character-string containing the full pathname or
(char *) NULL if unsuccessful

DESCRIPTION
The fullname function generates the fully-qualified pathname equivalent of the pathname in the
character-string referenced by <path>. If fullname is successful, it returns the address of a
character-string containing the fully-qualified pathname.

The function returns (char *) NULL if it could not determine the fully-qualified pathname
equivalent of the pathname in the character-string referenced by <path>. Fullname fails if it
could not determine the directory prefix in the given pathname or it could not change directories
to the directory in the prefix.

NOTES
The character-string referenced by the result of this function is in static memory and is
overwritten by subsequent calls to fullname.

A fully-qualified pathname is the shortest pathname from the root directory of the root device of
the filesystem.

SEE ALSO
C Library: basename(}, dirname(}, getcwd(}

4400 Series C Reference F-Sl

fwrite
Write data to a stream.

SYNOPSIS
#include <stdio.h>
int fwrite(ptr, size, count, stream)

char *ptr;
int
int
FILE

Arguments

size;
count;

*stream;

<pH> The address of the buffer containing the data to write

<size> The size of an item to write

<count> The number of items to write

<stream> The standard 110 stream to write data to

Returns

The number of complete items written, if any

DESCRIPTION

Jwrite

The fwrite function writes <count> items of <size> bytes from the buffer whose address is
<ptr> to the standard 110 stream <stream>. The function writes data until it writes the requested
number of data items, or it detects an 110 error.

The function returns as its result the number of complete items written to the stream.

F-52

/Write

NOTES
The data buffer whose address is <ptr> needs no special boundary alignment.

If <count> is less than or equal to zero, fwrite does not try to write any data and returns zero as
its result.

If the stream is buffered, but not line-buffered, standard 110 does not write the character to the
attached file until the stream's buffer is full or the stream is closed.

If the stream is line-buffered, standard I/O does not write the character to the attached file until an
end-of-line character (EOL) is written to the stream, a standard I/O function attempts to read data
from a terminal, the stream's buffer is full, or the stream is closed.

SEE ALSO
C Library: Jdopen(},fopenO,fread()

System Call: read(), write()

4400 Series C Reference F-53

gevt

gcvt
Convert a floating-point value to a character-string.

SYNOPSIS
ehar *gevt(fp, preen, buf}

double fPi
int
ehar

preeni
*bufi

Arguments
<fp>

<precn>

<bub

Returns

The floating-point value to convert

The maximum number of digits to produce

The address of a buffer to contain the resulting character-string

The address of the buffer containing the resulting character-string if successful, or (ehar *) NULL
otherwise.

DESCRIPTION
The gcvt function generates a character-string representing the floating-point value <fp>. The
format of the character-string it generates depends on the floating-point value and the requested
maximum number of significant digits <preen>. The function places the resulting character
string in the array of char referenced by <bu/>. If gcvt succeeds, it returns the address of the
target buffer < bu/>. If gcvt fails, it returns (char *) NULL.

The gcvt function fails if the requested maximum number of significant digits is less than or
equal to 0 or is greater than the maximum number of significant digits permitted by the function
ecvtO.

The format of the character-string generated depends on both the value of <fp> and the requested
number of significant digits preen. If the decimal exponent of </p> is less than -4, or greater
than or equal to preen, gcvt generates the character-string using an 'e'-type format (described by
fprintf()). If the decimal exponent is greater than or equal to -4 and is less than <precn>, gcvt
generates the character-string using an T-type format (also described by fprintf()). In both
cases, gcvt removes all trailing zeros from the generated character-string, and it removes the
decimal point if there are no digits following the decimal point.

4400 Series C Reference 0-1

gcvt

NOTES
The maximum precision permitted by ecvtO is always more than twice the decimal precision of
the of the most accurate floating-point data type.

The gvct function rounds the last digit depending on what the next digit would have been if the
function had generated it. It rounds the last digit up if the next digit is 5, 6, 7, 8, or 9, otherwise it
does not round up.

SEE ALSO
C Library: ecvt(),jcvt(),jprintjO, Jtoa()

G-2

getc

gete
Read a character from a stream.

SYNOPSIS
*include <stdio.h>
int getc(stream)

FILE *stream;

Arguments
<stream> The standard I/O stream to read from

Returns
The character read if successful, otherwise BOF

DESCRIPTION
The getc function reads the next character from the standard I/O stream <stream>. If getc
succeeded, it returns that character as its result, cast into an int with no sign extension, otherwise
it returns BOF.

NOTES
The character read is considered to be an unsigned char, so there is no sign extension when
converting the character to an integer value for returning.

The getc function is exactly like fgetcO and is included for compatibility with other systems.

SEE ALSO
C Library: jdopenO,fgetc(),jopenO,jputc(),jread(), getchar(), stdin

4400 Series C Reference G-3

getchar
Read a character from the standard input stream.

SYNOPSIS
#include <stdio.h>
int get char ()

Arguments

None

Returns

The character read if successful, otherwise EOF

DESCRIPTION

getchar

The getchar function reads the next character from the standard I/O stream <stdin>. If getchar
succeeded, it returns that character as its result, cast into an int with no sign extension, otherwise
it returns EOF.

NOTES
The character read is considered to be an unsigned char so there is no sign extension when
converting the character to an integer value for returning.

SEE ALSO
C Library: Jdopen(} ,fgetcO ,lopenO ,fputc() ,freadO, getc(), stdin

G-4

getcwd

getcwd
Get the pathname of the working directory.

SYNOPSIS
char *getcwd(ptr, size)

char *ptr;
int size;

Arguments
<ptr> The address of the buffer to receive the pathname of the working directory, or

(char *) NULL

<size> Size, in bytes, of the target buffer

Returns

The address of the character-string that contains the pathname to the working directory

DESCRIPTION
The getcwd function generates a character-string contammg the complete pathname of the
working directory. If the length of that string is greater than <size>, getcwd returns (char *)
NULL. If <ptr> is equal to (char *) NULL, getcwd allocates a buffer using mallocO, copies the
generated character-string into the allocated buffer, and returns as its result the address of the
allocated buffer. Otherwise, it copies the generated character-string into the buffer whose address
is <ptr> and returns <ptr> as its result.

4400 Series C Reference G-5

getcwd

NOTES
The getcwd function returns (char *) NULL if <ptr> is (char *) NULL and malIocO is unable to
allocate <size> bytes of memory.

If <ptr> is (char *) NULL, the buffer allocated by getcwdO may be freed using freeO.

SEE ALSO
C Library: malloc{),freeO

System Call: chdir{)

Command: path

G-6

getenv

getenv
Get information from the environment list.

SYNOPSIS
char *getenv(ptr)

char *ptr;

Arguments

<ptr> The address of the character-string containing the name to search for 111 the
environment list

Returns
The address of a character-string containing the value in the environment list associated with the
specified name, or «char *) NULL ifthe name was not found in the list

DESCRIPTION
This function searches the environment list for the variable-name found in the character-string
referenced by <name>, and returns the address of a character-string containing the definition of
that variable. If that variable is not defined in the environment list, the function returns the null
address «char *) NULL).

NOTES
The environment list is a variable-length array of addresses tern1inated by the null-address. Each
address references a character-string defining a variable of the current environment. Each
character-string is of the form < name> =<value> where < name> is the name of the environment
variable and <value> is the definition of that variable.

The character-string referenced by the result of this function is the actual definition of the
environment variable within the environment list. Altering this character-string alters the
definition of the environment list.

SEE ALSO
C Library: environ, putenv()

4400 Series C Reference G-7

get_FPU_control
Return the contents of the MC68881 control and status registers

SYNOPSIS
#include <float_interrupt.h>
void get_FPU_control(buffer)

struct FPU control *buffer;

Arguments
<buffer> The address of the structure to contain the contents of the MC68881 registers

Returns

None

DESCRIPTION
The get FPU control function returns the contents of the MC68881 control and status registers
(FPCR and FPSR, respectively). The user may inspect and modify the contents of these registers.

This function expects <buffer> to be the address of a structure that is defined as:

0-8

struct FPU_control {

} ;

struct control_register fpcr;
struct status_register fpsr;

/* control register */
/* status register */

The organization of the individual registers is defined by these structures:

struct control _register
unsigned : 4; /* unused */
unsigned rnd : 2; /* rounding mode */
unsigned prec : 2; /* rounding precision */
unsigned inex1 : 1; /* inexact decimal input */
unsigned inex2 : 1; /* inexact operation */
unsigned dz : 1; /* divide by zero */
unsigned unfl : 1; /* underflow */
unsigned ovfl : 1; /* overflow */
unsigned operr : 1; /* operand error */
unsigned snan : 1; /* signaling NAN */
unsigned bsun : 1; /* branch/set on unordered */
unsigned :16; /* unused */

} ;

struct status _register {

unsigned : 3; /* unused */
unsigned inex : 1; /* accrued inexact */
unsigned adz : 1; /* accrued divide-by-zero */
unsigned aunfl : 1; /* accrued underflow */
unsigned aovfl : 1; /* accrued overflow */
unsigned iop : 1; /* invalid operation */
unsigned inex1 : 1; /* inexact decimal input */
unsigned inex2 : 1; /* inexact operation */
unsigned dz : 1; /* divide by zero */
unsigned unfl : 1; /* underflow */
unsigned ovfl : 1; /* overflow */
unsigned operr : 1; /* operand error */
unsigned snan : 1; /* signaling NAN */
unsigned bsun : 1; /* branch/set on unordered */
unsigned quotient : 7 ; /* 7 least significant bits of
unsigned s : 1; /* sign of quotient */
unsigned nan : 1; /* not a number or unordered
unsigned i : 1; /* infinity */
unsigned z : 1; /* zero */
unsigned n : 1; /* negative */
unsigned : 4; /* unused */

} ;

For a description of the fields in the control and status registers, refer to the MC68881 hardware
manual.

4400 Series C Reference G-9

*/

quotient -I<

NOTES
The include-file <float_interrupt.h> contains the definitions of the above structures.

SEE ALSO
C Library: put_FPU _control()

System Call: FPUJesume(), get_FPU_exception(},put...!'PU_exception(}

G-lO

\

Access MC68881 coprocessor exception-information

SYNOPSIS
#include <errno.h>
#include <float_interrupt.h>
int get_FPU_exception(buffer)

struct FPU_interrupt_data *buffer;

Arguments
<buffer> The address of a buffer which will receive the MC68881 coprocessor exception

information

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The get_FPU_exception function accesses the exception information provided by the MC68881
coprocessor when it detects an error for which it is generating interrupts. This function is
intended for use in an interrupt-handling routine when attempting to recover from errors detected
by the MC68881 coprocessor.

The get FPU exception function retums zero if it successfully accesses the exception
information, otherwise, it retums -1 with <errno> set to the system error code.

The get _ FPU _exception function expects < buffer> to be the address of a structure defined as:

struct FPU_interrupt_data {

} ;

4400 Series C Reference

struct state frame FPU frame; /* - -
struct control_register fpcr; /*
struct status_register fpsr; /*
short *fpiar; /*
fpreg fp[8]; /*
long CPU_data_register[8]; /*
long CPU_address_register[8]; /*
struct exception_frame CPU_frame;

FPU state frame */
control register */
status register */
instruction address register ~

floating-point data registers
CPU "D" registers */
CPU "A" registers */

/* CPU exception frame */

0-11

The individual components of this structure are defined as:

G-12

struct exception_frame {

} ;

unsigned short sr;
short *CPUyc;
short frame_t¥pe;
short *pc;

unsigned short ir;
unsigned short operation;

short *address;

struct control _register
unsigned : 4; /*
unsigned rnd : 2; /*
unsigned prec : 2; /*
unsigned inexl : 1; /*
unsigned inex2 : 1; /*
unsigned dz : 1; /*
unsigned unfl : 1; /*
unsigned ovfl : 1; /*
unsigned operr : 1; /*
unsigned snan : 1; /*
unsigned bsun : 1; /*
unsigned :16; /*

} ;

/* CPU status register */
/* CPU program counter */
/* exception frame type */
/* program counter */
/* internal register */
/* operation word */
/* effective address */

unused */
rounding mode */
rounding precision */
inexact decimal input */
inexact operation */
divide by zero */
underflow */
overflow */
operand error */
signaling NAN */
branch/set on unordered */
unused */

struct status _register {

unsigned : 3; /* unused */
unsigned inex : 1; /* accrued inexact */
unsigned adz : 1; 1* accrued divide-by-zero *1
unsigned aunf1 : 1; /* accrued underflow */
unsigned aovfl : 1; /* accrued overflow *1
unsigned iop : 1; /* invalid operation *1
unsigned inex1 :1; /* inexact decimal input */
unsigned inex2 : 1; 1* inexact operation *1
unsigned dz : 1; /* divide by zero */
unsigned unfl : 1; /* underflow */
unsigned ovfl : 1; 1* overflow *1
unsigned operr : 1; /* operand error *1
unsigned snan : 1; 1* signaling NAN */
unsigned bsun : 1; 1* branchlset on unordered *1
unsigned quotient : 7 ; /* 7 least significant bits of quotient
unsigned s : 1; /* sign of quotient */
unsigned nan : 1; 1* not a number or unordered *1
unsigned i : 1; /* infinity */
unsigned z : 1; 1* zero *1
unsigned n : 1; /* negative */
unsigned : 4; /* unused */

} ;

typedef unsigned char fpreg[12]; /* one floating point register */

struct exception_frame {
unsigned short sr;

short *CPU_pc;
short frame _type;
short *pc;

unsigned short ir;
unsigned short operation;

short *address;
} ;

1* CPU status register *1
/* CPU program counter *1
/* exception frame type *1
/* program counter *1
/* internal register *1
/* operation word */
/* effective address *1

The contents of these structures reflect the contents of the CPU and coprocessor registers at the
time that the exception interrupt was generated. For interpretation of the information contained
in these structures, consult the appropriate hardware manuals.

ERRORS REPORTED
EBDCL The CPU cannot support the MC68881 coprocessor

ENOFPUDAT A There is no exception information to be accessed

4400 Series C Reference G-13

?

NOTES
Exception infonnation is available only after the MC68881 interrupts the CPU. The user must
have previously enabled these interrupts by setting the appropriate bits in the MC68881 control
register.

The user must call the routine FPU resunteO to resume execution of the interrupted MC68881
instruction and exit the interrupt-handling routine. Attempting to exit the interrupt-handling
routine by using the return statement may lead to unpredictable results because the program
counter stored on the stack may not be correct.

The include-file </loat_interrupt.h> contains the above structure definitions.

SEE ALSO
C Library: get FPU control(), put FPU controZ()

- - --
System Calls: FPU Jesume(), put_FPU _exception{}

G-14

geteuld

geteuid
Get the effective user-ID number of the current task.

SYNOPSIS
int geteuid ()

Arguments
None

Returns
The effective user-ID number of the current task

DESCRIPTION
The geteuid function gets the effective user-ID number of the current task and returns that value
as its result.

ERRORS REPORTED
None

SEE ALSO
System Call: getuid(), setuid()

4400 Series C Reference G-15

getpass

getpass
Get a password using a prompt.

SYNOPSIS
char *getpass(prompt)

char *prompt;

Arguments
<prompt> The address of the character-string containing the prompt

Returns
The address of a character-string containing the password read, or (char *) NULL if there was an
error

DESCRIPTION
The getpass function writes the characters in the character-string referenced by <prompt> to the
standard I/O output stream <stderr>. Getpass clears the echo attribute on the terminal
associated with the standard I/O input stream <stdin>, then reads cpara.cters from <stdin> up to
the first end-of-line character (EOL) or to the end of the file; saving the first eight characters in a
static buffer, discarding the remaining characters if any and the end-of-line character, if any.

Getpass restores the echo attribute on the terminal to its original state, terminates the characters
saved with a null-character, completing the character-string, then returns the address of that
character-string as its result.

If getpass encounters an error, it restores the terminal to its original state and returns (char *)
NULL as its result.

G-16

get pass

NOTES
The getpass function uses standard I/O and may enlarge a program more than expected.

Nothing is written to < stderr> if <prompt> is (char *) NULL.

The getpass function catches keyboard, quit, alarm, and hang-up signals. If it catches a signal, it
resets the terminal to its original configuration then resignals the signal so the calling program
can handle that signal.

If getpass returns indicating an error, <ermo> contains the system error code.

The character-string referenced by the result of getpass is in static memory and is overwritten by
subsequent get pass calls.

The standard I/O output stream < stderr> must be attached to a terminal unless <prompt> is
(char *) NULL. Otherwise, getpass returns (char *) NULL with <ermo> set to ENOTTY.

The standard I/O input stream < stdin> must be attached to a terminal or getpass returns (char *)
NULL with <ermo> set to ENOTTY.

SEE ALSO
C Library:!puts(), gets(), stderr, stdin

4400 Series C Reference G-17

getpid

getpid
Get task-ID number of the current task.

SYNOPSIS
int getpid ()

Arguments

None

Returns

The task-ID number of the current task

DESCRIPTION
The getpid function gets the task-ID number of the current task and returns that value as its
result.

ERRORS REPORTED
None

SEE ALSO
System Call: exec(), fork()

Command: status

G-18

/

getppl'd

getppid
Get the task-ID number of the parent of the current task.

SYNOPSIS
int getppid ()

Arguments
None

Returns
The task-ID number of the parent of the current task

DESCRIPTION
This function gets the task-ID number of the parent of the current task and returns that value as its
result.

ERRORS REPORTED

SEE ALSO
System Call: exec{},fork{}, getpid{}

Command: status

4400 Series C Reference G-19

getpw

getpw
Get a password-file entry based on a user-ID.

SYNOPSIS
int getpw(uid, ptr)

int uid;
char *ptr;

Arguments
<uid> The user-ID number to search for

<ptr> The buffer to contain the record found

Returns
Zero if a record was successfully found, EOF otherwise

DESCRIPTION
The getpw function searches the password-file of the system for the first correctly formatted
record with a user-ID field equivalent to <uid>. If one is found, it copies that.record, including
the terminating end-of-line character (EOL), into the buffer with the address <ptr> and returns
zero as its result. Otherwise, getpw leaves the buffer whose address is <ptr> unchanged and
returns EOF as its result.

G-20

\
I

J

getpw

NOTES
The getpw function is obsolete but is included for compatibility with older systems. New
applications should use getpwuidO.

The caller is responsible for ensuring that the buffer with the address <ptr> is large enough to
hold the data. .

The getpw function uses standard I/O and may make the calling program larger than expected.

The password file of the system is Jete/log/password.

SEE ALSO
C Library: getpwent(), getpwuid()

Command: password

4400 Series C Reference G-21

getpwent

getpwent
Get and decode the next entry in the system password file.

SYNOPSIS
#include <pwd.h>
struct passwd *getpwent();

Arguments
None

Returns
The address of the structure containing information from the record. read. or (struct
passwd *) NULL if no record was read

DESCRIPTION
The getpwent function reads and decodes the next correctly formatted entry in the system
password file. The information is saved in a static structure (defined below) and the address of
that structure is returned as the its result. If getpwent could not read a record from the system
password file, it returns (struct passwd *) NUU as its result.

If no previous getpwentO. getpwnamO, or getpwuidO has been successfully attempted. or
endpwent() has been called since the last call to getpwentO. getpwnamO. or getpwuidO this
function opens the system password file and positions it to the first record. in the file. After
getpwent function completes. the system password file remains open and is positioned to the
record immediately following the record read. or to the end of the file if no re~rd. was
successfully read.

The endpwentO function closes the system password file. Task termination also closes the file.
The function setpwentO rewinds the system password file, positioning it to the first record of the
file.

G-22

getpwent

The include-file <pwd.h> defines structures and constants used when manipulating the data in
the system password file. The format of the struct passwd structure referenced by the result of
this function is:

struct passwd
{

} ;

char
char
int
char
char

*pw_name;
*pw_passwd;
pw_uid;

*pw_dir;
*pw_shell;

The entry pw _name is the address of a character-string containing the user-name. pw yasswd is
the address of a character-string containing the encrypted password. pw _ uid contains the user's
identifying number (user-ID). pw _ dir is the address of a character-string containing the user's
home directory. pw _shell is the address of a character-string containing the shell-command for
the first program to run after logging on. An encrypted password address of (char *) NULL
indicates there is no password. A shell-command address of (char *) NULL indicates the initial
program is the standard shell.

NOTES
The structure referenced by the result of this function and the character-strings referenced by the
values in that structure are in static memory and are ovelwritten by subsequent calls to
getpwentO, getpwnamO, and getpwuidO.

The getpwent function ignores improperly formatted records in the system password file.

The getpwent function uses standard I/O and enlarges more than expected a program not
otherwise using standard I/O.

The getpwent function returns (struct passwd *) NULL if the user does not have permission to
access the password file, the current position on the system password file is end-of-file, or the
user has the maximum number of standard I/O streams open and can not open another.

The system password file is /etC/log/password.

SEE ALSO
C Library: endpwent(), getpw(), getpwnam(), getpwuid(), putpwent(), setpwerlt()

Command: password

4400 Series C Reference G-23

getpwnam

getpwnam
Get and decode the next entry in the system password file containing the given user-name.

SYNOPSIS
#include <pwd.h>
struct passwd *getpwnam(name)

char *name;

Arguments

<name> The address of a character-string containing the user-name

Returns

The address of the structure contammg the information in the record read, or (struct
passwd *) NULL if no record was read

DESCRIPTION
The getpwnam function reads and decodes the next correctly formatted entry in the system
password file that contains a user-name matching that in the character-string referenced by the
argument <name>. The information is saved in a static structure (defined below) and the address
of that structure is returned as the its result. If getpwnam could not find a record in the system
password file containing the specified user-name, getpwnarn returns (struct passwd *) NULL as
its result.

If no previous getpwentO, getpwnarnO, or getpwuidO has been successfully attempted, or
endpwentO has been called since the last call to getpwentO, getpwnamO, or getpwuidO, the
getpwnam function opens the system password file and positions it to the first record in the file:':
After the getpwnam function completes, the system password file remains open and is positioned
to the record immediately following the record read, or to the end of the file if no record was
successfully read.

The endpwentO function closes the system password file. Termination of the task also closes the
password file. The setpwentO function rewinds the system password file.

G-24

getpwnam

The include-file <pwd.h> defines constants and structures used when manipulating entries in the
system password file. The format of the struct passwd structure referenced by the result of this
function is:

struct passwd
{

} ;

char
char
int
char
char

*pw_name:
*pwJasswd;
pw_uid;

*pw_dir;
*pw_shell;

The pw _name entry is the address of a character-string containing the user-name. pw yasswd is
the address of a character-string containing the encrypted password. pw _uid contains the user's
identifying number (user-ID), pw _dir is the address of a character-string containing the user's
initial home-directory. and pw _shell is the address of a character-string containing the shell
command for the first program to run after logging on. An encrypted password address of
(char *) NUll., indicates that there is no password. A shell-command address of (char *) NULL
indicates that the initial program is the standard shell.

NOTES
The structure referenced by the result of the getpwnam function and the character-strings
referenced by the values in that structure are in static memory and are overwritten by subsequent
calls to getpwentO, getpwnamO, and getpwuidO.

The getpwnam function ignores improperly formatted records.

The getpwnam function uses standard 110 and enlarges more than expected a program not
otherwise using standard 110. The getpwnam function returns (struct passwd *) NULL if
permissions deny access the password file, the turrent position on the system password file is
end-of-file, or there is the maximum number of standard 110 streams open.

The system password file is fetcllogfpassword.

SEE ALSO
C Library: endpwent(), getpw(), getpwent(), getpwuid(), putpwent(), setpwent()

Command: password

4400 Series C Reference G-25

getpwuid

getpwuid
Get and decode the next entry in the system password file containing the given user-ID number.

SYNOPSIS
#include <pwd.h>
struct passwd *getpwuid(uid)

int uid;

Arguments
<uid> The user-ID number to search for

Returns
The address of the structure contammg the information in the record read, or (struct
passwd *) NULL) if no record was read

DESCRIPTION
The getpwuid function reads and decodes the next correctly formatted entry in the system
password file that contains a user-ID number matching the user-ID number <uid>. The
information is saved in a static structure (defined later) and the address of that structure is
returned as the result. If getpwuid could not find a record in the system password file containing
the specified user-ID number, getpwuid returns (struct passwd *) NULL as its result.

If no previous getpwentO, getpwnam(), or getpwuid() has been successfully attempted, or
endpwentO has been called since the last call to getpwentO, getpwnamO, or getpwuidO, the
getpwuid function opens the system password file and positions it to the first record in the file.
After getpwuid completes, the system password file remains open and is positioned to the record
immediately following the record read, or to the end of the file if no record was successfully read.

The endpwentO function closes the system password file. Task termination also closes the file.
The setpwentO function rewinds the system password file, positioning it to the beginning of the
first record in the file.

G-26

getpwuid

The include-file <pwd.h> defines structures and constants used when reading and manipulating
entries in the system password file. The format of the struct passwd structure referenced by the
result of this function is:

struct passwd
{

} ;

char
char
int
char
char

*pw_name;
*pw_passwd;
pw_uid;

*pw_dir;
*pw_shell;

The pw _name entry is the address of a character-string containing the user-name. pw yasswd is
the address of a character-string containing the encrypted password. pw _ uid contains the user's
identifying number (user-ID). pw _ dir is the address of a character-string containing the user's
initial home-directory. pw shell is the address a character-string containing the shell-command
for the first program to run after logging on. An encrypted password address of (char *) NULL
indicates there is no password. A shell-command address of (char *) NULL indicates that the
initial program is the standard shell.

NOTES
The structure referenced by the result of getpwuid and the character-strings referenced by the
values in that structure are in static memory and are overwritten by subsequent calls to
getpwentO, getpwnamO, and getpwuidO.

Improperly formatted records in the system password file are ignored.

The getpwuid function uses standard I/O and enlarges more than expected a program not
otherwise using standard I/O.

The getpwuid function returns (struct passwd *) NULL if the user does not have permission to
access the password file, the current position on the system password file is end-of-file, or the
user has the maximum number of standard I/O streams open and can not open another.

The system password file is fete/log/password.

SEE ALSO
C Library: endpwent(), getpw(), getpwent(), getpwnam(), putpwent(), setpwent()

Command: password

4400 Series C Reference G-27

gets
Read a character-string from the standard input stream.

SYNOPSIS
#include <stdio.h>
char *gets(ptr)

char *ptr;

Arguments
<ptr> The address of the target buffer

Returns
The <ptr> argument if successful, (char *) NULL otherwise

DESCRIPTION

gets

The gets function reads characters from the standard I/O input stream < stdin> until it reads an
end-of-line character, or reaches the end of the file. It places the characters in the buffer with the
address <ptr>. If the last character read was an end-of-line character, gets replaces that character
with a null-character, otherwise, it appends a null-character onto the characters read, making a
character-string.

If gets is successful, meaning it read at least one character, it returns <ptr> as its result, otherwise.
it returns (char *) NULL as its result and does not alter the target buffer.

SEE ALSO
I.

C Library:jdopenO,fgets(), getc(), puts(), stdin

G-28

getut'd

getuid
Get the user-ID number of the current task.

SYNOPSIS
int get uid ()

Arguments
None

Returns
The user-ID number of the current task

DESCRIPTION
The getuid function gets the user-ID number of the current task and returns that value.

ERRORS REPORTED
None

SEE ALSO
System Call: geteuid(), setuid()

4400 Series C Reference G-29

getw

getw
Read a word from a standard I/O stream.

SYNOPSIS
int getw(stream)

FILE *stream;

Arguments

<stream> The standard 110 stream to read from

Returns

The value read if successful, EOF otherwise

DESCRIPTION
The getw function reads the next sizeoJ(int} bytes from the stream <stream>, assigns them to an
int and returns that value as its result. If getw detects an error or reaches the end of the stream, it
returns EOF.

NOTES
The value EOF is a valid value to read, so the functions ferrorO and feofO should be used to
check for error and end-of-file conditions on the stream.

The getw function ignores odd bytes at the end of the stream.

The getw function has no boundary alignment requirements.

SEE ALSO
C Library:jdopen(},fopenO, getc(), putw()

G-30

gmtime

gmtime
Break down a system-time value into units in the Greenwich Mean Time zone.

SYNOPSIS
#include <time.h>
struct tm *gmtime(pclock)

long *pclock;

Arguments
<pc1ock> The address of a system-time value

Returns
The address of the structure describing the system-time value

DESCRIPTION
The gmtime function takes the system-time value referenced by the argument <pclock> and
breaks it down into the year, month of the year(O-ll), day of the month 0-31), day of the week
(0-6, Sunday is 0), day of the year (0-365), hour (0-23), minute (0-59), and second (0-59).
Gmtime saves that information in a structure and returns as its result the address of that structure.

The include-file <time.h> defines the structure referenced by the result of this function. That
structure is:

struct tm
{

int tm sec;
int tm~min;
int tm hour;
int tm_mday;
int tm mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm isdst;

} ;

4400 Series C Reference G-31

---- ------------------------- gmtime

The tm _sec entry is the number of seconds into the minute and ranges from 0 to 59. tm _min is the
number of minutes into the hour and ranges from 0 to 59. tm _hour is the number of hours into the
day and ranges from 0 to 23. tm mday is the day of the month and ranges from 1 to 31. tm mon
is the month of the year and ranges from 0 to 11. The tm year entry is the number of years since
1900, tm _ wday is the number of days into the week and ranges from 0 to 6, tm yday is the
number of days into the year and ranges from 0 to 365, and tm _isdst is always zero.

NOTES
The system-time value is expressed in seconds since the epoch. The operating system defines the
epoch as 00:00 (midnight) GMT, January 1, 1980.

The structure referenced by the result of this function is in static memory and is modified by
subsequent calls to ctimeO, gmtimeO, or localtimeO.

SEE ALSO
C Library: asctime(}, crime(), localtime()

System Call: time()

Command: date

G-32

gtty

gtty
Get the characteristics of an open character-device.

SYNOPSIS
#include <errno.h>
#include <sys/sgtty.h>
int gtty(fildes, buf)

int fildes;
struct sgttyb *buf;

Arguments

<fildes>

<buf>

Returns

The file descriptor of the open character-device to examine

The address of the structure to contain the characteristics of the character-device

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The gUy function obtains the current characteristics of the open character-device referenced by
the file descriptor </ildes> and writes information describing those characteristics into the
structure referenced by <bu/>. The gtty function returns zero as its result if it successfully
obtains the characteristics of the open character-device. Otherwise, it returns -1 with < errno> set
to the system error code.

The gUy function fails if the file descriptor is out of range, does not reference an open file, or
does not reference an open character-device. The include-file < sys/sg tty. h> contains the
structure and data definitions for gtty.

4400 Series C Reference 0-33

The gtty function call expects <buf> to be the address of a structure that is defined as:

struct sgttyb
{

} ;

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

sg_flag;
sg_delay;
sg_kill;
sg_erase;
sg_speed;
sg_prot;

gtty

The bit-string sgJlag describes the current mode of the terminal. The values in the bit-string are:

RAW OxOl
ECHO Ox02
XTABS Ox04
LCASE Ox08
CRMOD OxlO
SCOPE Ox20
CBREAK Ox40
CNTRL Ox80

If RAW is set, the operating system considers the character-device to be in raw mode. In raw
mode, the operating system suspends all processing of input and output. If clear, the operating
system considers the character-device to be in non-raw mode (sometimes called cooked mode).
In this mode, the operating system processes characters dependent upon the setting of the other
bits in the bit-string.

If ECHO is set, the operating system echoes characters read to the character-device. If clear, the
operating system does not echo characters to the device. If XT ABS is set, the operating system
expands tab-characters to spaces during output operations so that the next character written to the
device is written to a column number that is an even multiple of eight. If XT ABS is clear, the
operating system writes tab-characters to the character-device with no expansion. Tab-characters
are defined by the system to be Ox09 and are defined by the C compiler as It'.

If LCASE is set, the operating system changes all upper-case characters to lower-case characters
during input operations and changes all lower-case characters to upper-case characters during
output operations. If LCASE is clear, the operating system disables this feature. If LCASE mode
is ignored, the LCASE function is replaced by the CAPS key on the keyboard. If CRMOD is set,
the operating system writes a line-feed character to the character-device after every carriage
return character written. IfCRMOD is clear, the operating system disables this feature.

If SCOPE is set, the operating system writes a backspace-character (Ox08) followed by a space
character followed by another backspace-character to the character-device whenever a character
cancel character is read from the character-device. If SCOPE is clear, the operating system
disables this feature. If CBREAK is set, the operating system considers the terminal to be in
single-character mode. In this mode, the operating system reads data from the device one
character at a time, passing each character to the calling task. If CBREAK is clear, the operating

G-34

gtty

system considers the terminal to be in line mode, where it reads data from the device one line at a
time, passing data to the calling task whenever a terminator is read.

If CNTRL is set, the operating system ignores all characters read from the character-device that
are outside of the range Ox20 through Ox7E inclusive, except for the line-terminator character
(carriage return), the keyboard-interrupt character (control-'c'), the quit-interrupt character
(control-Y), the character-cancel character, the line-cancel character, and the output-stop and
output-start characters if any.

The bit-mask s8_delay indicates which characters, if written to the character-device, cause the
operating system to pause before writing another character to the character-device. The values in
that bit string are:

DELNL
DELCR
DELTB
DELVT
DELFF

Ox03
OxOC
OxlO
Ox20
Ox20

These modes are ignored on the 4400 Series.

The sg_ kill value defines line-cancel character for the character-device. The operating system
treats this character like any other character if the character-device is in single-character or raw
mode. The default line-cancel character is CTRL-u (OxI5).

The s8_erase value defines the character-cancel character for the character-device. The operating
system treats this character like any other character if the character-device is in single-character
or raw mode. The default character-cancel character is the backspace-character (control-h, Ox08).

The bit-mask s8_speed contains configuration information for the character-device. Not all
hardware supports the dynamic changing of the configuration. The values for the various
configurations are:

D7S2EVEN OxOO 7 data bits, 2 stop bits, even parity
D7S20DD Ox04 7 data bits, 2 stop bits, odd parity
D7S1EVEN Ox08 7 data bits, 1 stop bit, even parity
D7Sl0DD OxOC 7 data bits, 1 stop bit, odd parity
D8S2NONE OxlO 8 data bits, 2 stop bits, no parity
D8S1NONE Ox14 8 data bits, 1 stop bit, no parity
D8S1EVEN Ox18 8 data bits, 1 stop bit, even parity
D8Sl0DD OxlC 8 data bits, 1 stop bit, odd parity
CONFIG OxlC mask for extracting configuration information

The field sgyrot defines the type of start-stop protocol expected by the operating system for the
character-device, and contains the baud rate used by the character-device. The values defined in
that bit-string defining the protocol are:

4400 Series C Reference 0-35

gtty

ESC Ox80
OXON Ox40
ANY Ox20
TRANS Oxl0
IXON OX08
BAUD RATE OxOF

If ESC is set, the operating system stops writing to the character-device when it reads an escape
character (OxlB) from the device. The operating system resumes writing to the character-device
when it reads another escape-character from the device. If aXON is set, the operating system
stops writing to the character-device when it reads an xoff-character (Ox13). The operating
system resumes writing to the character-device when it reads an xon-character (Ox1l). If ANY is
set, the operating system uses any character read from the character-device as a substitute for the
xon-character.

If TRANS is set, the operating system xon-xoff is transparent for raw mode (see the earlier
discussion of the bit-string sg-flag). The 4400 Series ignores the IXON mode.

The baud rates are defined in the field as:

BAUD RATE
B75
BII0
B134
B150
B200
B300
B600
B1200
B1800
B2400
B3600
B4800
B7200
B9600
B19200

OxOF
OxOl
Ox02
Ox03
Ox04
OxOS
Ox06
Ox07
Ox08
Ox09
OxOA
OxOB
OxOC
OxOD
OxOE
OxOF

baud-rate mask
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
3600 baud
4800 baud
7200 baud
9600 baud
19200 baud

Not all hardware supports all of these baud rates and not all hardware allows the dynamic
changing of baud rates.

ERRORS REPORTED
EBADF

EINVAL

0-36

The file descriptor does not reference an open file or the file is not open in the
proper mode.

An argument to the function is invalid.

gtty

ENOITY The file is not a character device.

SEE ALSO
System Call: creat(), dup(), dup2(), open(J, pipe(), stty()

Command: commset, conset

4400 Series C Reference G-37

idfd

idfd
Return the last file descriptor that signaled INPUT READY

SYNOPSIS section
#include <errno.h>
int idfd()

Arguments
None

Returns
The file descriptor of the last file that sent the INPUT READY signal to the task or -1 if no file
has sent the signal.

DESCRIPTION
The idfd function is used to interrogate the system to find out which file (file descriptor) caused
the INPUT READY signal to be sent.

The INPUT READY signal can only be sent to a task for a file that has had the NOBLOCK mode
set using the fentiO function. The signal is only sent after a read from the file (nonnally a
device) is unsuccessful because no data is available.

ERRORS REPORTED
None

NOTES
None

SEE ALSO
C Library:!cntl()

4400 Series C Reference 1-1

)errmsg

_ierrmsg

SYNOPSIS
void _ ierrmsg ()

Arguments
None

Returns
Void

DESCRIPTIONS
The ierrmsg function initializes the global variable < sys _ nerr> and the global table
< sys _ errlist> if they have not already been initialized.

SEE ALSO
C Library: errno, perror(), sys _ errlist, sys _ nerr

1-2

index

index
Find the first occurrence of a character in a character-string.

SYNOPSIS
char *index(s, c)

char *s;
char c;

Arguments
<s> The address of the character-string to search

<c> The search character

RETURNS
The address of the first occurrence of the character in the string, or
(char *) NULL if the string does not contain the character

DESCRIPTION
The index function searches the character-string referenced by < s> for the first occurrence of the
character <c>. If the string contains the character, the function returns as its result the address of
the first occurrence of the character in the character-string. Otherwise, it returns (char *) NULL.

NOTES
The index function is obsolete. It is only included for compatibility with older C libraries. New
applications should use strchrO.

SEE ALSO
C Library: rindex(}, strchr(}, strrchrO

4400 Series C Reference 1-3

isalnum
Detennine if a value is an alphabetic character or a decimal digit.

SYNOPSIS
#include <ctype.h>
int isalnum(c)

int c;

Arguments
<c> The value to examine

RETURNS
Non-zero if the value is an alphabetic character or a decimal digit, zero otherwise

DESCRIPTION

isalnum

The isalnum function examines the value <c> and detennines if it an alphabetic character or a
decimal digit. Alphabetic characters are the characters (' A' -'Z ') and ('a' - 'z ') inclusive. Decimal
digits are the characters <,0'-'9') inclusive. If <c> is an alphabetic character or a decimal digit,
the function returns a non-zero value, otherwise it returns zero.

NOTES
The isalnum function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOF.

The argument < c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), isiower{), isprint(), ispunct(),
isspaceO, isupper{), isxdigitO, toascii(), tolower{), _tolower(), toupper{), _toupper{)

1-4

)

isalplUi

isalpha
Detennine if a value is an alphabetic character.

SYNOPSIS
#include <ctype.h>
int isalpha(c)

int c;

Arguments
<c> The value to examine

RETURNS
Non-zero if the value is an alphabetic chara~ter, zero otherwise

DESCRIPTION
The ·JsaJpha function examines the value <c> and detennines if it an alphabetic character.
Alphab6Uc characters are the characters (A through Z) and (a through z) inclusive. If <c> is an
alphabetic character, isaJpha returns a non-zero value, otherwise it returns zero.

NOTES
The isalpha function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOF.

The < c> argument is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum{), isascii{), iscntrl{), isdigit{), isgraph{), islower{), isprint(), ispunct(),
isspaceO, isupper{), isxdigit{), toascii{), tolower(), _tolower{), toupper(), _toupper()

4400 Series C Reference 1-5

isascii
Determine if a value is an ASCII chamcter.

SYNOPSIS
#include <ctype.h>
int isascii(c)

int c;

Arguments

<c> The value to examine

RETURNS

The isascii function returns 1 if <c> is a valid ASCII character, otherwise isascii returns 0

DESCRIPTION

isascii

The isascii function examines the value <c> and determines if it a valid ASCII chamcter. Valid
ASCII characters are the values between OxOO and Ox7F (decimal values 0 through 127)
inclusive. If <c> is a valid ASCII character, isascii returns 1, otherwise it returns O.

NOTES
The isascii function is implemented as a macro. However, it has no side-effects and produces a
valid result for all values in the range of an into

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnumO, isalphaO, iscntrlO, isdigitO, isgraphO, islowerO, isprintO, ispunctO,
isspaceO, isupperO, isxdigitO, toasciiO, tolower(), _tolower(), toupper(), _toupper()

1-6

isatty

isatty
Detennine if a file descriptor references a character-special file.

SYNOPSIS
int isatty(fildes)

int fildes:

Arguments
<fildes> The file descriptor of an open file

Returns
1 if the open file is a character-special file, otherwise 0

DESCRIPTION
This function examines the characteristics of the file referenced by the file descriptor <Ii/des>. If
that file is a character-special file, this function returns 1 as its result. Otherwise it returns O.

NOTES
The function filenoO returns the file descriptor of an open stream.

A file descriptor is an index into the operating system's open file table. The system functions
creatO, dupO, dup20, openO, and pipeO return a file descriptor as their result.

SEE ALSO
C Library:jileno(), ttyname()

System Call: creat(), dup(), dup2(), open(}, pipe(), ttys[ot()

4400 Series C Reference 1-7

iscntrl
Determine if a value is a control character.

SYNOPSIS
#include <ctype.h>
int iscntrl(c)

int c;

Arguments
<c> The value to examine

RETURNS

Non-zero if the value is a control character, zero otherwise

DESCRIPTION

hentrl

The iscntrl function examines <c> and determines if it a control character. Control characters
are the values OxOO through OxlF inclusive and Ox7F. If <c> is a control character, iscntrl
returns a non-zero value, otherwise it returns zero.

NOTES
The iscntrl function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or BOF.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), isdigit(), isgraph(), islower(), isprint{), ispunct{),
isspace(), isupper(), isxdigit{), toascii(), tolower(), _tolower(), toupper(), _toupper()

1-8

isdigit

isdigit
Detennine if a value is a decimal digit.

SYNOPSIS
#include <ctype.h>
int isdigit(c)

int c;

Arguments

<c> The value to examine

RETURNS
Non-zero if the value is a decimal digit, zero otherwise

DESCRIPTION
The isdigit function examines <c> and determines if it a decimal digit. Decimal digits are the
characters ('0'-'9') inclusive. If <c> is a decimal digit, isdigit returns a non-zero value,
otherwise it returns zero.

NOTES
The isdigit function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOF.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isainum(), isaipha(), isascii(), iscntrl() , isgraph(), isiower(), isprint(), ispunct() ,
isspace(), isupper(), isxdigit(), toascii(), toiower(), _toiower(), toupper(), _toupper()

4400 Series C Reference 1-9

isgraph
Detennine if a value is a graphics character.

SYNOPSIS
#include <ctype.h>
int isgraph(c)

int c;

Arguments

<c> The value to examine

RETURNS
Non-zero if the value is a graphics character, zero otherwise

DESCRIPTION

isgraph

The isgraph function examines <c> and determines if it a graphics character. Graphic characters
are alphabetic characters, decimal digits, and punctuation characters which are not white-space
characters. If <c> is a graphics character, isgraph returns a non-zero value, otherwise it returns
zero.

NOTES
The isgraph function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOF.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigitO, islower(), isprint(), ispunctO,
isspace(), isupper(), isxdigit(), toascii(), tolower(), _tolower(), toupper(), _toupper()

1-10

islower

islower
Detennine if a value is a lower-case alphabetic character.

SYNOPSIS
#include <ctype.h>
int islower(c)

int c;

Arguments
<c> The value to examine

RETURNS
Non-zero if the value is a lower-case alphabetic character, zero otherwise

DESCRIPTION
The islower function examines <c> and detennines if it a lower-case alphabetic character.
Lower-case alphabetic characters are the characters ('a'-'z') inclusive. If <c> is a lower-case
alphabetic character, islower returns a non-zero value, otherwise it returns zero.

NOTES
The islower function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOF.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(), tolowerO, _tolower(), toupper(), _toupper()

4400 Series C Reference 1-11

isnan

isnan
Detennine if a double precision floating point number is not-a-number.

SYNOPSIS
include <math.h>

int isnan (x) double x;

Arguments
None

Returns
The value to examine Non-zero if the value is not-a-number, zero otherwise.

DESCRIPTION
This function examines the value <x> and detennines if it is not-a-number. Not-a-number is
defined as a floating point number with an exponent of 2047 (maximum value) and any nonzero
fraction.

SEE ALSO
C Library:!inite(), matherr{)

1-12

isprint

isprint
Determine if a value is a printable character.

SYNOPSIS
#include <ctype.h>
int isprint(c)

int c;

Arguments

<c> The value to examine

RETURNS
Non-zero if the value is a printable character, zero otherwise

DESCRIPTION
The isprint function examines the value <c> and detennines if it a printable character. Printable
characters are alphabetic characters, decimal digits, and punctuation characters. If <c> is a
printable character, isprint returns a non-zero value, otherwise it returns zero.

NOTES
The isprint function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOP.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(), tolower(), _tolower(), toupper(), _toupper()

4400 Series C Reference 1-13

ispunct
Detennine if a value is a punctuation character.

SYNOPSIS
#include <ctype.h>
int ispunct(c)

int c;

Arguments
<c> The value to examine

RETURNS

Non-zero if the value is a punctuation character, zero otherwise

DESCRIPTION

ispunct

The ispunct function examines the value <c> and determines if it a punctuation character.
Punctuation characters are all characters that are not alphabetic characters, decimal digits, white
space characters, or control characters. If <c> is a punctuation character, the function returns a
non-zero value, otherwise it returns zero.

NOTES
The ispunct function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if < c> is not a valid ASCII character or EOP.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
isspace(), isupper(), isxdigit(), toascii(), tolower(), _tolower(), toupper(), _toupper()

1-14

isspace

isspace
Detennine if a value is a white-space character.

SYNOPSIS
#include <ctype.h>
int isspace(c)

int c;

Arguments

<c> The value to examine

RETURNS

Non-zero if the value is a White-space character, zero otherwise

DESCRIPTION
The isspace function examines <c> and determines if it a white-space character. White-space
characters are the space-character the horizontal-tab character ('\t'), the end-of-line character
(EOL, '\r', '\n'), and the line-feed character (OxOA). If <c> is a White-space character, isspace
returns a non-zero value, otherwise it returns zero.

NOTES
The isspace function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOP.

The argument < c> is cast into an int if it is not already of that type.

The C compiler translates the character '\n' to the line-feed character if the cc command is called
with the +U option.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isupper(), isxdigit(), toascii(), tolower(), _tolower(), toupper(), _toupper()

Command: cc

4400 Series C Reference 1-15

isupper
Determine if a value is an upper-case alphabetic character.

SYNOPSIS
*include <ctype.h>
int isupper(c)

int c;

Arguments
<c> The value to examine

RETURNS
Non-zero if the value is an upper-case alphabetic character, zero otherwise

DESCRIPTION

isupper

The isupper function examines the value <c> and determines if it an upper-case alphabetic
character. Upper-case alphabetic characters are the characters (A through Z) inclusive. If <c> is
an upper-case alphabetic character, isupper returns a non-zero value, otherwise it returns zero.

NOTES
The isupper function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOF.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isxdigit(), toascii(), tolower(), _tolower(), toupper(), _toupper()

1-16

isxdigit

isxdigit
Determine if a value is a hexadecimal digit.

SYNOPSIS
#include <ctype.h>
int isxdigit(c)

int Ci

Arguments
<c> The value to examine

RETURNS
Non-zero if the value is a hexadecimal digit, zero otherwise

DESCRIPTION
The isxdigit function examines the value <c> and determines if it a hexadecimal digit.
Hexadecimal digits are the characters (0 through 9), (a through f), and (A through F) inclusive. If
<c> is a hexadecimal digit, isxdigit returns a non-zero value, otherwise it returns zero.

NOTES
The isxdigit function is implemented as a macro. It has no side-effects but its behavior is
unpredictable if <c> is not a valid ASCII character or EOP.

The argument <c> is cast into an int if it is not already of that type.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), toascii(), tolower(), _tolower(), toupper(), _toupper()

4400 Series C Reference 1-17

itostr

itostr
Convert an int to a character-string.

SYNOPSIS
char *_itostr(i, base, digits, psign)

int i;
int base;
char *digits;
int *psign;

Arguments
<i> The value to convert

<base> The base to use while converting

<digits> The digits to use while converting

<psign> The address of a flag to set to indicate the sign of the value or (int *) NULL if none

RETURNS
The address of the generated character-string

DESCRIPTION
The Jtostr function converts the int value d> to its value represented in the base <base> using
the digits in the character-string whose address is <digits>. If <psign> is (int *) NULL, the
conversion is an unsigned conversion. Otherwise, the value referenced by <psign> is set to zero
if i is equal to or greater than zero, non-zero otherwise.

The itostr function returns as its result the address of the character-string it generated, or
(char-*) NULL if itostr detects an error. Possible errors are a <base> less than or equal to one,
or not enough digits in the character-string referenced by digits for the base.

1-18

itostr

NOTES
The character-string referenced by the result is in static memory and is overwritten by subsequent
calls to this or other conversion functions.

The longest character-string this function can generate is 32 characters.

SEE ALSO
C Library: atoi(), _ltostrO

4400 Series C Reference 1-19

kill

kill
Send a signal to a task.

SYNOPSIS
#include <errno.h>
#include <sys/signal.h>
int kill(taskid, signum)

int taskid:
int signum;

Arguments
<taskid> The task-ID number of the task to receive the signal

<signum> The signal to send the task

RETURNS
Zero if successful, otherwise -1 with < errno> set to the system error code

DESCRIPTION
The kill function sends the signal numbered <signum> to the task whose task-ID number is
<taskid>. A task may send a signal to another task only if its effective user is the system
manager or it matches that of the specified task. The kill function returns zero if it successfully
sent the task the specified signal, otherwise, it returns -1 with <errno> set to the system error
code.

The kill function fails if the signal number <signum> is out of range, there is no task with a
task-ID number <taskid>, or the effective user of this task is not the system manager or does not
match that of the specified task.

4400 Series C Reference K-I

The include-file <sys/signal.h> defines these constants and their meaning:

K-2

SIGHUP
SIGINT
SIGQUIT
SIGEMT
SIGKILL
SIGPIPE
SIGTRACE
SIGTIME
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMT2
SIGTRAP1
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGExEC
SIGBND
SIGUSR1
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP
SIGVEN14
SIGVEN15

1
2
3
4
5
6
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
62
63

Hang-up
Keyboard
Quit
EMT OxA??? trap
Task kill
Broken pipe
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction
EMT OxF??? emulation
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6 instruction
Parity error
Illegal instruction
Division by zero
Privileged instruction
Addressing error
A child task has died
Write to read-only memory
Execute from stack or data space
Segmentation violation
User defined signal #1
User defined signal #2
User defined signal #3
Program abort
Spooler signal
Input is ready
Take memory dump
Millisecond alarm
Mouse/keyboard event interrupt

kiU

c

kill

ERRORS REPORTED
EACCES The current effective user is not the system manager or the it does not match

that of the specified task

EINVAL

ESRCH

The signal number is out of range

Invalid task number

SEE ALSO
System Call: signal()

Command: int

4400 Series C Reference K-3

12tos

1210s
Convert two-byte integers to short integers.

SYNOPSIS
void _12tos(sp, cp, n)

short *SPi
char *CPi
int ni

Arguments
<sp> The address of the buffer to contain the short integers

<cp> The address of the buffer containing the two-byte integers

<n> The number of values to convert

Returns
Void

DESCRIPTION
The J2tos function converts <n> two-byte integers packed in the array of char referenced by
<cp>, saving the converted values in the array of short referenced by <sp>. The J2tos function
returns no result.

NOTES
The J2tos function is typically used to avoid addressing problems resulting from misaligned
addresses.

SEE ALSO
C Library: 13tol(}, _14tol(}, !tol3(}, _ltoI4(}, _stoI2()

4400 Series C Reference L-l

13tol

13tol
Convert three-byte integers to long integers.

SYNOPSIS
void l3tol(lp, cp, n)

long *lp;
char *cp;
int n;

Arguments
<1p> The address of the buffer to contain the long integers

<cp> The address of the buffer containing the three-byte integers

<n> The number of values to convert

Returns
Void

DESCRIPTION
The 13tol function converts < n> three-byte integers packed in the array of char referenced by
<cp>, saving the converted values in the array of long referenced by dp>. The 13tol function
returns no result.

NOTES
The 13tol function is typically used to avoid addressing problems resulting from misaligned
addresses.

SEE ALSO
C Library: _12tos(), _14tol(), ItoI3(), _lto14(), _sto12()

L-2

14tol

14tol
Convert four-byte integers to long integers.

SYNOPSIS
void _14tol(lp, cp, n)

long *lp;
char *cp;
int n;

Arguments
<lp> The address of the buffer to contain the long integers

<cp> The address of the buffer containing the four-byte integers

<n> The number of values to convert

Returns
Void

DESCRIPTION
The 14tol function converts <n> four-byte integers packed in the array of char referenced by
<cp>, saving the converted values in the array of long referenced by <lp>. The 14tol function
returns no result.

NOTES
The 14tol function is typically used to avoid addressing problems resulting from misaligned
addresses.

SEE ALSO
C Library: _12tosO, l3toW, ltol30, _ltol40, _stoI2()

4400 Series C Reference L-3

Idexp
Generate a floating-point value from a mantissa and an exponent.

SYNOPSIS
double ldexp(fp, exp)

double fp;
int exp;

Arguments

<fp>

<exp>

Returns

The mantissa

The exponent

The floating-point value represented by the exponent and the mantissa

DESCRIPTION

ldexp

The Idexp function generates a floating-point value by applying the exponent <exp> to the
mantissa <jp>. The result is calculated by multiplying the mantissa <jp> by the result of raising
2 to the power indicated by <exp>. Ldexp returns the generated value as its result.

All floating-point values are represented by a mantissa and an exponent. A non-zero value is
represented by a mantissa with an absolute value greater than or equal to 0.5 and less than 1.0 and
an exponent that is a signed integer. The floating-point value represented by the mantissa and
exponent is 2 raised to the power indicated by the exponent which is then multiplied by the
mantissa. For example, the floating-point value 1.0 is represented by a mantissa of 0.5 and an
exponent of 1. A floating-point 0.0 is represented by a mantissa of 0.0 and an exponent of O.

SEE ALSO
CLibrary:!rexp(),r.nodjr)

L-4

Unk

link
Create a link to a file.

SYNOPSIS
#include <errno.h>
int link(path, newlink)

char *path;
char *newlink;

Arguments
<path> The address of a character-string containing a pathname for an existing file

<newlink> The address of a character-string containing the pathname of the link to create

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The link function establishes a link to the file reached by the pathname in the character-string
referenced by <path> called by the pathname in the character-string referenced by <newlink>.
The patbname <path> must exist and the file it reaches cannot be a directory. The <newlink>
patbname must not exist The device for <newlink> must be the same as that for <path>. The
directory for <newlink> must give the current effective user writing permission. The maximum
number of links allowed is 127.

The link function returns zero as its result if it successfully establishes the link. Otherwise, link
returns -1 with <errno> set to the system error code. The link function fails if:

• the path in <path> or < newlink> can not be followed or contains a file that is not a
directory

• the patbname <path> does not exist

• the patbname < newlink> already exists

• the file reached by <path> is a directory

• the directory for <newlink> does not grant the current effective user writing permission

• the link crosses devices

4400 Series C Reference L-5

link

ERRORS REPORTED
EACCES

EEXIST

EISDR

EMSDR

ENOENT

ENOTDIR

EXDEV

NOTES

The directory for <newlink> does not give the current effective user writing
permission

The pathname < newlink> already exists

The file reached by <path> is a directory and the current effective user is not
the system manager

The path can not be followed for either <path> or < newlink>

The pathname <path> does not exist

The path in either <path> or <newlink> contains a file that is not a directory

Attempting to link across devices

Linking to a file changes the last-access time of that file.

SEE ALSO
System Call: JstatO, stat{), unlinkO

Command: link, remove, rename

L-6

IOcaltime

localtime
Break down a system-time value into units in the local time zone.

SYNOPSIS
#include <time.h>
struct tm *localtime(pclock)

long *pclock;

Arguments
<pclock> The address of a system-time value

Returns
The address of the structure describing the system-time value

DESCRIPTION
The localtime function takes the system-time value referenced by the argument <pclock> and
breaks it down into the year, month of the year(O-l1), day of the month (1-31), day of the week
(0-6, Sunday is 0), day of the year (0-365), hour (0-23), minute (0-59), and second (0-59) in the
current time zone, applying the standard U. S. A. daylight-savings time conversion if necessary.
The localtime function saves that information in a structure and returns as its result the address of
that structure.

The include-file <time.h> defines the structure referred to by the result of this function. That
definition is:

struct tm
{

int tm sec;
int tm_min;
int tm_houri
int tm_mdaYi
int tm_moni
int tm_yeari
int tm_wdaYi
int tm_ydaYi
int tm_isdsti

} i

4400 Series C Reference L-7

localtime

The tm_sec entry is the number of seconds into the minute and ranges from 0 to 59. tm_mm IS

the number of minutes into the hour and ranges from 0 to 59. tm _hour is the number of hours
into the day and ranges from 0 to 23. tm _ mday is the day of the month and ranges from 1 to 31.
tm_mon is the month of the year and ranges from 0 to 11. The tmyear entry is the number of
years since 1900. tm _ wday is the number of days into the week and ranges from 0 to 6. tm yday
is the number of days into the year and ranges from 0 to 365. tm _isdst is one if the standard
U. S. A. daylight-savings time conversion was applied, zero otherwise.

NOTES
The system time value is expressed in seconds since the epoch. The operating system defines the
epoch as 00:00 (midnight) GMT, January 1, 1980.

The structure referenced by the result of this function is in static memory and is modified by
subsequent calls to ctimeO, gmtimeO, or localtimeO.

The localtime function applies the standard U. S. A. daylight-savings time conversion only if the
current system configuration indicates that daylight-savings time is in effect. If standard U. S. A.
daylight-savings time is in effect, localtime adds an hour to the time if the time falls between
02:00 AM on the last Sunday in April and 01:00 AM on the last Sunday in October.

The localtime function calls tzsetO if necessary, setting the global variables daylight, timezone,
and tzname.

SEE ALSO
C Library: asctime(), ctime{), daylight, gmtime(}, timezone, tzname, tzset()

System Call: time(}

Command: date

L-8

lOck

lock
Lock a task in memory or unlock a locked task.

SYNOPSIS
#include <errno.h>
int lock (flag)

int flag;

Arguments
<flag> A flag that indicates lock or unlock

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
If the value <flag> is not zero, the lock function locks the current task in memory, preventing the
operating system from swapping the task to the system swap space. Otherwise, lock unlocks the
current task, permitting the operating system to swap the task to the system swap space if
necessary. The current effective user must be the system manager.

The lock function returns zero if it succeeds, otherwise, it returns -1 with <errno> set to the
system error code. The lock function fails if the current effective user is not the system manager.

ERRORS REPORTED
EACCES The current effective user is not the system manager

NOTES
Unlocking a task that is not locked is not an error.

SEE ALSO
System Call: memman(J

4400 Series C Reference L-9

log
Calculate the natural logarithm of a value.

SYNOPSIS
#include <math.h>
double log (x)

double Xi

Arguments
<x> The value with the natural logarithm to be computed

Returns

The natural logarithm of the argument <x>

DESCRIPTION

log

The log function calculates the natural logarithm of <x>. The natural logarithm of <x> is
defined as the value that e (2.718281828459 ...) must be raised to generate the value <x>. The
log function returns the calculated value as its result.

The log function demands that <x> be a value greater than 0.0. Values less than or equal to 0.0
cause a domain error. If the function detects a domain error, it calls matherrO, passing to it the
address of a filled < struct> exception structure. It sets the <type> element of the structure to the
constant DOMAIN, <name> to the address of the character-string <log>, and <argl> to <x>.

If matherr() returns 0, the function writes the message

log() error: Non-positive argument

to the standard error va stream < stderr> and sets < errno> to EDaM. The return value, which is
system-dependent, is given in the manual page for the kill command. If matherrO returns
something other than zero, it returns the value retval in the < struct> exception structure as its
result.

SEE ALSO
C Library: exp(), logJO(), matherr()

L-IO

IOg10

log10
Calculate the base-IO logarithm of a value.

SYNOPSIS
#include <math.h>
double loglO(x)

double x;

Arguments
<x> The value whose base-lO logarithm is to be computed

Returns
The base-lO logarithm of the argument <x>

DESCRIPTION
The loglO function calculates the base-IO logarithm of <x>. The base-IO logarithm of <x> is
defined as the value that 10.0 must be raised to generate <x>. The loglO function returns the
calculated value as its result.

The loglO function demands that <x> be greater than 0.0. Values less than or equal to 0.0 cause
a domain error. If loglO detects a domain error, it calls matherrO, passing to it the address of a
filled <struct> exception structure. Matherr sets the <type> element of the structure to
DOMAIN, <name> to the address of the character-string logiO, and <argi> to <x>.

If matherrO returns 0, the loglO function writes the message

loglO() error: Non-positive argument

to the standard error I/O stream <stderr> and sets <erma> to EDOM. The return value, which is
system-dependent, is given in the manual page for the kill command. If matherrO returns
something other it returns the value retval in the < struct> exception structure as its result.

SEE ALSO
C Library: expO, logO, matherrO

4400 Series C Reference L-ll

longjmp
Perform a non-local goto.

SYNOPSIS
#include <setjmp.h>
void longjmp(env, val)

jmp_buf enVi
int vali

Arguments
<env> Contains environmental information about the target of the non-local goto

IOngjmp

<val> The value to return as the apparent result of the setjrnpO associated with <env>

Returns
Never

DESCRIPTION
The longjrnp function restores the program execution environment to that described by the
argument <env>. The effect is that of a goto to the setjrnpO call, which saved the environmental
information in the argument <env>, if <val> is not zero or 1 otherwise as the apparent result of
the setjrnpO call.

NOTES
Statements following the call to longjrnp are never executed.

The scope containing the setjrnpO call that set up the <env> argument must not have executed a
return or the result of this function is unpredictable.

All variables allocated to a register are restored to their vaiue at the setjrnpO call.

SEE ALSO
C Library: setjmpO

L-12

wee

Irec
Add an entry to the lock table of the operating system.

SYNOPSIS
iinclude <errno.h>
int lrec(fildes, count)

int fildes;
int count;

Arguments
<fildes> The file descriptor for the file containing the record to lock

<count> The number of bytes to lock from the current file position

Returns

Zero if successful, otherwise -1 with < errno> set to the system error code

DESCRIPTION
The Iree function adds an entry to the operating system's lock table for the open file referenced
by the file descriptor <Jildes> , locking a record beginning at the current file position containing
<count> bytes. If the current task has an existing entry in the lock table for the same file
descriptor, Iree removes that entry. The lree function returns zero as its result if it successfully
locks the record, otherwise it returns -1 with <errno> set to the system error code.

The Iree function fails if the lock table of the operating system contains an entry made by another
task for the file referenced by Jildes and the record locked by that entry contains all or part of the
record this function is trying to lock, or lock table is full. The lree function also fails if the file
descriptor <Jildes> is out of range, does not reference an open file, or references a file that is not
a regular file.

ERRORS REPORTED
EBADF

EINVAL

ELOCK

The file descriptor does not reference an open file, or references a pipe,
character-special file (character-device), or a block-special file (block-device).

An argument to the function is invalid.

The record specified could not be locked because there already exists a lock on
all or part of that record, or the operating system's lock table is full.

4400 Series C Reference L-13

lrec

NOTES
Locking a record only prevents others from locking it. This and other tasks may read or modify
the record and may alter the file containing the record.

The lrec function removes any existing lock table entry made by the current task for the specified
file without regard to the eventual outcome of the function.

The lrec function only permits one entry in the system lock table for each file a task has open.

The operating system removes all lock table entries made by a task when that task terminates.

SEE ALSO
System Call: creat(), dup(), dup2(), openO, pipe(), urec()

L-14

lieek

Iseek
Change the current file position of an open file.

SYNOPSIS
#include <errno.h>
long lseek(fildes, offset, type)

int fildes;
long offset;
int type;

Arguments
<fildes> The file descriptor of the file to reposition

<offset> A count describing the offset of the new position

<type> A value describing the offset type

Returns
The new offset from the beginning of the file if successful, otherwise -1 with <erma> set to the
system error code

DESCRIPTION
The Iseek function changes the current file position in the file descriptor <jildes>, dependent
upon the <offset> and <type> values. If <type> is 0, Iseek interprets <offset> as an absolute
byte-count from the beginning of the file. If <type> is 1, Iseek interprets <offset> as a byte
count relative to the current file position. If <type> is 2, Iseek interprets <offset> as a byte-count
relative to the end of the file. If Iseek successfully changes the current file pointer, Iseek returns
the new file position, which is the offset relative to the beginning of the file. Otherwise, Iseek
returns -1 with <ermo> set to the system error code.

The lseek function fails if the file descriptor </ildes> is out of range, does not reference an open
file, or references a file that can not be repositioned, such as a pipe or a character-special file.
Lseek also fails if the requested position is before the beginning of the file or the value < type> is
not valid.

4400 Series C Reference L-15

ISeek

ERRORS REPORTED
EBADF

EINVAL

ESEEK

NOTES

The file descriptor does not reference and open file or the file is not open in the
proper mode.

The value <type> is not valid or the </ildes> descriptor is out of range .

The requested file position is before the beginning of the file or the fildes file
descriptor references a file that can not be repositioned.

The function calliseek(<fi Ides > ,(long)O,l) returns as its result the current position of the file.

The lseek function does not change the current position of the file if the function reports an error.

If the new position is beyond the current end of the file, the Iseek function creates a gap in the file
that contains zeros if read. The lseek function does not allocate any new blocks of media if the
file resides on a block-device.

SEE ALSO
C Library:/seek()

System Call: creat(), dup(), dup2(), open(), pipe()

L-16

11013

Itol3
Convert long integers to three-byte integers.

SYNOPSIS
void Ito13(cp, Ip, n)

char *cp;
long *lp;
int n;

Arguments
<cp> The address of the buffer to contain the three-byte integers

<lp> The address of the buffer containing the long integers

<n> The number of values to convert

Returns
Void

DESCRIPTION
The ltol3 function converts <n> long integers in the array referenced by <lp> to three-byte
integers, saving the converted values packed into the array of char referenced by <cp>. The
ltol3 function returns no result.

NOTES
The ltol3 function is typically used to avoid addressing problems resulting from misaligned
addresses.

SEE ALSO
C Library: _12tos(), 13tol(), _14tol(), _ltoI4(), stol2()

4400 Series C Reference L-17

ItoU

Itol4
Convert long integers to four-byte integers.

SYNOPSIS
d _lto14(cp, Ip, n)

int n;

Arguments
<cp> The address of the buffer to contain the four-byte integers

<1p> The address of the buffer containing the long integers

<n> The number of values to convert

Returns
Void

DESCRIPTION
The Jto14 function converts <n> long integers in the array referenced by <1p> to four-byte
integers, saving the converted values packed into the array of char referenced by <cp>. The
function returns no result

NOTES
This function is typically used to avoid addressing problems resulting from misaligned addresses.

SEE ALSO
C Library: _sto12(), _12tos(), 13tol(), _14tol(), Itol3(), stol2()

1.-18

ltostr

Itostr
Convert a long to a character-string.

SYNOPSIS
char *_ltostr(i, base, digits, psign)

long i;
int base;
char *digits;
int *psign;

Arguments

d> The value to convert

<base> The base to use while converting

<digits> The digits to use while converting

<psign> The address of a flag to set to indicate the sign or (int *) NULL

Returns
The address of the generated character-string

DESCRIPTION
The Jtostr function converts the long value <i> to its value represented in the base <base>
using the digits in the character-string referenced by <digits>. If <psign> is (int *) NULL, the
conversion is an unsigned conversion. Otherwise, the value referenced by <psign> is set to zero
if i is equal to or greater than zero, non-zero otherwise.

The Itostr function returns as its result the address of the character-string it generated, or
(char-*) NULL if ltostr detected an error. Possible errors are a <base> less than or equal to
one, or not enoughdigits in the character-string referenced by <digits> for the base <base>.

4400 Series C Reference L-19

ltostr

NOTES
The character-string referenced by the result is in static memory and is overwritten by subsequent
calls to this or other conversion functions.

The longest character-string _Itostr can generate is 32 characters.

SEE ALSO
C Library: atol{), _itostrO

L-20

1IJIl.ke realtime

make realtime
Declare the task to be a real-time task.

SYNOPSIS
#include <errno.h>
int make_realtime(incr)

int incr;

Arguments
<inCf> The value to add to the task's priority

Returns
Zero if successful, otherwise -1 with < errno> set to the system error code

DESCRIPTION
When called with a nonzero increment <incr>, the make realtime function makes the task a
real-time task. A real-time task has priority over all non-real-time tasks. The makeJealtime
function changes the scheduling priority of the task by adding the signed increment to the value
representing its priority. The modified priority is used by the system scheduler when scheduling
the CPU among several real-time tasks. When called with an increment of zero, this function
makes the task a non-real-time task. The function returns zero if it successfully makes the task a
real-time or non-real-time task, otherwise it returns -1 with <errno> set to the system error code.

The make Jealtime function fails if the current effective user is not the system manager.

This function may not be available on all versions of the operating system.

ERRORS REPORTED
EACCES The current effective user is not the system manager

EBDCL The real-time feature is not available

4400 Series C Reference M-l

make realtime

NOTES
The function does not change the scheduling priority if the increment <incr> causes the priority
to exceed the maximum or to be less than the minimum.

The higher the value representing the priority of the task, the lower the priority of the task.

SEE ALSO
Commands: make realtime

M-2

malloe

malloe
Allocate memory.

SYNOPSIS
char *malloc(nbytes)

unsigned nbytes;

Arguments
<nbytes> The number of bytes to allocate

Returns
The address of the allocated block of memory or (char *) NULL if none was available

DESCRIPTION
The maUoe function allocates <nbytes> bytes of memory from the arena of available memory.
Malloe returns the address of the first byte of the allocated memory or (char *) NULL if none
was available.

The first byte of the allocated memory is properly aligned for any use.

NOTES
The malloe function freeO returns allocated memory to the arena of available memory.

SEE ALSO
C Library: calloc(),!ree(), realloc()

System Call: brk{), cdata(), sbrk{)

4400 Series C Reference M-3

matherr
Floating-point error-handling function for built-ins.

SYNOPSIS
*include <math.h>
int matherr(ptr)

struct exception *ptr;

Arguments

matherr

<ptr> The address of a structure contammg information about the function and the
arguments to the function that detected the error

Returns

Zero if the function detecting the error is to perform its standard function, non-zero if the function
is to proceed using as its the return value specified in the structure passed to this function

DESCRIPTION
The matherr function provides the programmer with a method of intercepting errors and
exceptional conditions detected by a floating-point builtin before the builtin reports the error. All
builtins call matherr immediately before reporting an error. If the matherr function returns
zero, the calling function handles the error normally. Otherwise, the calling function uses the
return value found in the structure referenced by <ptr> as its result and proceeds as if the error
had not occurred.

If no matherrO function is provided by the programmer, the builtin library provides this default
function:

int matherr(x)
struct exception *x;

{
return(O);

M-4

rnatherr

This causes all of the floating-point builtins to handle errors normally. By including their own
version of this function, the user can intercept all floating-point errors detected by floating-point
builtins, determine what function detected the error, examine the arguments that caused the error,
and alter the behavior of the builtin, including the value returned by the function. For example,
the following version changes the way powO reports an error so that a singularity error returns
zero but does not write a message. It instructs the builtins to handle all other errors normally.

int matherr(x)
struct exception *x;

if «strcmp(x->name, "pow")
(x->type == SING»

x->retval = 0.0;
return (1) ;

return(O);

The structure referenced by <ptr> is defined as:

struct exception
{

int type;
char *name;
double arg1;
double arg2;
double retval;

0) &&

The element <type> describes the type of error, <name> is the address of a character-string
containing the name of the function reporting the error, <argl> is the first argument to that
function, <arg2> is the second argument to that function, if any, and retval is the value to use as
the result of that function if matherr returns something other than zero. The include-file
<math.h> defines this structure.

4400 Series C Reference M-5

matherr

The <type> element in the above structure describes the type of error. The include-file
<math.h> also defines these constants. The <type> element is one of these values:

DOMAIN A DOMAIN error indicates that the functions arguments are out of the domain
of the function.

OVERFLOW An OVERFLOW error indicates that the result of the function is larger than
can be represented by a double.

PLOSS A PLOSS error indicates that the result of the function reflects a partial loss of
significance.

SING A SING error indicates that the particular argument or arguments presented to
the function are not permitted by the function.

TLOSS A TLOSS error indicates that the result of the function reflects a total loss of
significance.

UNDERFLOW An UNDERFLOW error indicates that the magnitude of the result of the
function is smaller than can be represented by a double.

SEE ALSO
C Library: acos() asin(}, atan2(), exp(), log(), logJO(), pow(), sqrt(), tan(}

M-6

memccpy

memccpy
Copy memory.

SYNOPSIS
#include <memory.h>
char *memccpy(ptrl, ptr2, c, n)

char *ptrl;
char *ptr2;
int c;
int n;

Arguments

<ptrl>

<ptr2>

<c>

<n>

Returns

The target buffer address

The source buffer address

The stop-value

The maximum number of bytes to copy

The address of the byte following the copy of the stop-value <c> in the target buffer, or (char *)
NUU if <c> was not found

DESCRIPTION
The memccpy function copies bytes from the buffer with the address <ptr2> to the buffer with
the address <ptr1> until either the value <c> is copied or the requested number of bytes has been
copied, whichever comes first Memccpy returns the address of the byte following the copy of
the value <c> in the target buffer, or (char *) NUU if that value was not found.

4400 Series C Reference M-7

memccpy

NOTES
The behavior of overlapping copy operations is not defined and may behave differently on
different systems.

If < n> is less than or equal to zero, the function copies no data and returns (char *) NULL as its
result.

The include-file <memory .h> defines this and other block memory functions.

SEE ALSO
C Library: memchr(), memcmp(), memcpy(), memset()

M-8

memchr

memchr
Find a value in a block of memory.

SYNOPSIS
iinclude <memory.h>
char *memchr(ptr, c, n}

char *ptr;
int c;
int n;

Arguments
<ptr> The address of the buffer to search

<c> The value to search for

<n> The maximum number of bytes to search

Returns
The address of the first byte with the value <c>, or (char *) NULL if <c> was not found

DESCRIPTION
The memchr function searches the first <n>bytes in the buffer with the address <ptr> for the
value <c>. If the value is found, memchr returns the address of that value as its result
Otherwise, it returns (char *) NUlL.

NOTES
If n is less than or equal to zero, memchr always returns (char *) NULL.

The include-file <memory.h> defines this and other block memory functions.

SEE ALSO
C Library: memccpy(), memcmp(), memcpy(), memset{)

4400 Series C Reference M-9

memcmp
Compare two blocks of memory.

SYNOPSIS
#include <memory.h>
int memcmp(ptrl, ptr2, n)

char *ptrl;
char *ptr2;
int n;

Arguments
<ptrl>

<ptr2>

<n>

Returns

The address of the first buffer to compare

The address of the second buffer to compare

The maximum number of bytes to compare

memcmp

A value less than, equal to, or greater than zero, if the buffer referenced by <ptr] > is
lexicographically less than, equal to, or greater than the buffer referenced by <ptr2>.

DESCRIPTION
The memcmp function lexicographically compares the buffer referenced by <ptr] > with the
buffer referenced by <ptr2> and returns as its result a value which indicates the result of that
comparison. That value is less than, equal to, or greater than zero, indicating that the buffer
referenced by <ptr] > is lexicographically less than, equal to, or greater than the buffer referenced
by <ptr2>.

M-IO

memcmp

NOTES
If < n> is less than or equal to zero, the result of this function is always zero.

A non-zero result is the result of subtracting the differing character in the buffer referenced by
<ptr2> from the differing character in the buffer referenced by <ptrl >.

The include-file <memory.h> defines this and other block memory functions.

SEE ALSO
C Library: memccpy(), memchr(), memcpy(), memset()

4400 Series C Reference M-ll

memcpy
Copy memory.

SYNOPSIS
#include <memory.h>
char *memcpy(ptrl, ptr2, n)

char *ptrl;
char *ptr2;
int n;

Arguments
<ptrl>

<ptr2>

<n>

Returns
<ptr1>

The target buffer address

The source buffer address

The number of bytes to copy

DESCRIPTION

memcpy

The memcpy function copies bytes from the buffer with the address <ptr2> to the buffer with the
address <ptr1> until the requested number of bytes has been copied. Memcpy returns as its
result the address of the target buffer <ptr1 >.

NOTES
The behavior of overlapping copy operations is not defined and may behave differently on
different systems.

If < n> is less than or equal to zero, the function copies no data.

The include-file <memory.h> defines this and other block memory functions.

SEE ALSO
C Library: memccpy{), memchr{), memcmp{), memset{)

M-12

memman

memman
Perform a memory management operation.

SYNOPSIS
#include <errno.h>
int memman(fcn, loaddr, hiaddr)

int fcn;
char *loaddr;
char *hiaddr;

Arguments

<fen> A value indicating the memory management function to perform

<loaddr> The lowest address of memory to affect by the function

<hiaddr> The highest address of memory to affect by the function

Returns

The memman function returns zero if successful, otherwise memman returns -1 with <ermo>
set to the system error code

DESCRIPTION
The memman function performs a memory management operation on the region of memory
whose lowest address is <loaddr> and whose highest address is <hiaddr>. The value <fen>
selects which operation the function performs. The operations performed by this function are
machine-dependent and may be different for the various implementations of the operating
system. The memman function expects the current effective user to be the system manager.
Memman returns zero if it successfully performs the memory management function on the
specified region of memory. Otherwise, memman returns -1 with <ermo> set to the system
error code.

The memman function fails if the function code <fen> is out of range, if the high memory
address <hiaddr> is lower than the low memory address <loaddr>, or the curr~nt effective user
is not the system manager. The memman function may also fail for reasons peculiar to the
machine-dependent implementation of the function.

4400 Series C Reference M-13

memman

The memman function has the following operations:

o Clear the region's dirty-bit
1 Lock the region in memory
2 Unlock the region
3 Set write-protection on the region
4 Remove write-protection from the region
5 Release the memory allocated to the region

ERRORS REPORTED
EACCES
EINVAL

EVFORK

M-14

The current effective user is not the system manager

The function type is invalid or the starting address < loaddr> is higher than the
ending address <hiaddr>

The task shares its memory with its parent and may not call this function

memset

memset
Set a block of memory.

SYNOPSIS
#include <memory.h>
char *memset(ptr, c, n)

char *ptr;
int c;
int n;

Arguments
<ptI'> The address of the buffer to set

<c> The value to set

<n> The number of bytes to set

Returns
<ptr>

DESCRIPTION
The memset function sets <n> bytes of memory beginning at the address <ptr> to the value
<c>. It returns as its result its argument <ptr>.

NOTES
If < n> is less than or equal to zero, memset modifies no memory.

The include-file <memory.h> defines this and other block memory functions.

SEE ALSO
C Library: memccpy(), memchr(), memcmp(), memcpy()

4400 Series C Reference M-15

mknod

mknod
Add an entry to the file-system that is a directory, a character-special file, or a block-special file.

SYNOPSIS
*include <errno.h>
int mknod(path, desc, devnum)

char *path;
short desc;
short devnum;

Arguments
<path> The address of a character-string containing a pathname to the entry to create

<desc> A bit-string describing the type of entry to create and the access permissions to
assign to it

<devnum> The major and minor device numbers to assign to the character-special or block
special file

Returns
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION
The mknod function adds an entry to the file-system that is a directory, a character-special file,
or a block-special file. It gives the new entry the name found in the character-string referenced
by <path>. The mknod function determines the type of entry it creates from the bit-string
<desc>. Mknod assigns to that entry the access permissions described by the bit-string <desc>,
and if the entry is a character-special or block-special file, mknod assigns to it the major and
minor device numbers defined in the value <devnum>. The function ignores the argument
<devnum> if it is creating a directory. Mknod requires that the current effective user be the
system manager. Mknod returns zero if it successfully creates the entry in the file-system.
Ot.~erwise, it returns -1 wiu~ <errno> set to the system error code.

The mknod function fails if the pathname already exists, the path can not be followed, the path
contains a file which is not a directory, or the disk is full. The mknod function also fails if either
the desc or <devnum> arguments are invalid, or the current effective user is not the system
manager.

M-16

mbiod

The bit-string <desc> describes the file type of the new entry and its access permissions. The
<desc> bit-string is defined as:

OxOOOl
Ox0002
Ox0004

Ox0008
Ox0010
Ox0020

Ox0040

Ox0200
Ox0400
Ox0800

Grant reading permission to the file's owner
Grant writing permission to the file's owner
Grant execution (or searching) permission to
the file's owner
Grant reading permission to other users
Grant writing permission to other users
Grant execution (or searching) permission
to other users
Give the task executing the file the access
permissions of the owner of the file
Make the file a block-special file
Make the file a character-special file
Make the file a directory

The mknod function requires that the bit-string <desc> contain exactly one of the bit-values
describing the type of file, a directory, a character-special file, or a block-special file. Mknod
allows the bit-string to contain any of the bit-values defining the pennissions, in any
combination.

The <devnum> argument contains the major and minor device numbers to assign to the
character-special or block-special file. The most-significant byte contains the major device
number, the least-significant byte contains the minor device number. This argument is ignored if
the function creates a directory.

ERRORS REPORTED
EACCES

EEXIST

EINVAL

EMSDR

ENOSPC

ENOTDIR

The current effective user is not the system manager

The pathname already references a file

The file description <desc> or the device number <devno> is not valid

The function could not follow the path to the file

The device is full

A part of the path is not a directory

4400 Series C Reference M-17

mknod

NOTES
A character-special file is usually attached to a character-oriented device. Likewise, a block
special file is usually attached to a block-oriented device.

The third argument devnum should be specified as zero if <desc> indicates that the new entry is a
directory.

SEE ALSO
System Call: creat()

Command: crdir, makdev

M-18

mktemp

mktemp
Generate a unique pathname from a template.

SYNOPSIS
char *mktemp(template)

char *template;

Arguments

<template> The address of the character-string containing the template for the temporary
pathname

Returns

The argument <template> if mktemp successfully generates a unique pathname, (char *) NULL
otherwise

DESCRIPTION
The mktemp function generates a unique pathname from the template pathname in the
character-string referenced by <template>. A unique pathname is one that does not reach a file
but contains a path that can be followed. Mktemp returns <template> if it successfully
generated a pathname for a file that does not exist, or (char *) NULL otherwise.

If the template pathname ends in six x characters, it replaces those characters with an A followed
by the five-character representation of the current process-ID. It then checks the filesystem for
that pathname. If that pathname does not exist, mktemp returns <template>. If that pathname
already exists, it changes the A to a Band retrys, continuing until it generates a pathname that
does not reference an existing file or it exhausts the upper- and lower-case alphabet.

If the template pathname does not end in x or X characters, mktemp returns <template> if the
pathname is unique, or (char *) NULL if it is not.

4400 Series C Reference M-19

mktemp

NOTES
If mktemp cannot follow the path in the template pathname, or contains a file that is not a
directory, the function returns (char *) NULL.

If mktemp returns (char *) NULL, the variable < errno> contains the system error code
describing the error.

SEE ALSO
System Call: getpid(), read()

M-20

modI

modf
Separate a floating-point value into its integral and fractional parts.

SYNOPSIS
double modf(fp, dptr)

double fp;
double *dptr;

Arguments
The floating-point value to separate <fp>

<dptr> The address of the double to receive the integral part of the floating-point value <fp>
exponent

Returns
The fractional part of the floating-point value <jp>

DESCRIPTION
The modf function separates the fractional part of the floating-point value <jp> from its integral
part. The modf function stores the integral part through <dptr> and returns the fractional part as
its result.

If the absolute value of <fp> is less than 1.0, modf stores 0.0 through <dptr> and returns <jp>.
If <fp> contains no fractional part, the function stores <fp> through <dptr> and returns 0.0.

SEE ALSO
C Library:jrexpO,ldexpO

4400 Series C Reference M-21

mount

mount
Mount a block-special file onto the file-system.

SYNOPSIS
#include <errno.h>
int mount (spcnam, dirnam, rwflag)

char *spcnam;
char *dirnam;
int rwflag;

Arguments
<spcnam> The address of a character-string containing a pathname to the block-special file to

mount

<dirnam> The address of a character-string containing a pathname to the directory to mount the
block-special file

<rwflag> A value indicating the type of accessing to permit

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The mount function mounts the block-special file reached by the pathname in the character
string referenced by < spcnam> onto the directory reached by the pathname in the character-string
referenced by <dirnam>. If the value <rwflag> is 0, mount mounts the file, permitting reading
and writing access. If rwflag is not 0, mount mounts the file so that it does not permit writing
access. The mount function returns zero if it successfully mounts the specified block-special file
onto the specified directory. Otherwise, it returns -1 with <errno> set to the system error code.

M-22

mount

The mount function fails if it can not follow the path in <spcnam> or <dirnam>, the path in
<spcnam> or <dirnam> contains a file which is not a directory, or either <spcnam> or
<dirname> do not exist. Mount also fails if:

• the file reached by <spcnam> is not a block-special file

• the file reached by < dirnam> is not a directory

• the block-special file reached by < spcnam> is already mounted

• the directory reached by <dirnam> already has a block-special file mounted onto it

• the mount table of the operating system is full

• the current effective user is not the system manager

The mount function also fails if the media associated with the block-special file was unmounted
incorrectly, the media can not be read, the disk does not appear to be a Tektronix 4400 disk, or
<rwJlag> is zero and the disk is write protected.

There is a block device associated with a block-special file. After mounting the block-special
file, references to the directory where the file has been mounted now reference the root-directory
of the media contained within that block device. If the file is being mounted permitting reading
and writing access, mount sets an indicator on the media in the device associated with the file,
indicating that the media is currently mounted. The umountO function clears this indicator.

ERRORS REPORTED
EACCES

EBUSY

EDIRTY

EEXIST

EIO

EMSDR

ENOENT

ENOTDIR

ENOTBLK

EWRITPROT

The current effective user is not the system manager

The operating system's mount table is full or a device is already mounted on the
specified directory < dirnam>

The specified file < spcnam> was not properly unmounted and could be corrupt

The specified file < spcnam> is already mounted

The operating-system can not read the data on the device associated with the
block-special file specified by <spcnam>

The path can not be followed for < spcnam> or < dirnam>

There is no entry in the file-system for <spcnam> or <dirnam>

The specified file <dirnam> is not a directory or the paths in spcnam or
<dirnam> contain a file that is not a directory

The specified file < spcnam> is not a block-special file

The specified file < spcnam> is write protected

4400 Series C Reference M-23

mount

NOTES
If this function reports EIO or EDIRTY errors, use /etc/diskrepair to try to salvage the data on the
media that could not be mounted.

The mount function reports an EIO error if there is no media in the device associated with the
block-special file, or if that media is not formatted correctly.

Diskettes written by the backup command can not be mounted.

SEE ALSO
C Library: addmount{), rmvmount{)

System Call: mknod{), umount()

Command: backup, letc/diskrepair, letc/mount, letc/unmount

M-24

nice

nice
Change the scheduling priority of a task.

SYNOPSIS
#include <errno.h>
int nice(incr)

int incr;

Arguments
<incf> The value to add to the task's priority

Returns
Zero if successful. otherwise -1 with <errno> set to the system error code

DESCRIPTION
The nice function changes the scheduling priority of a task by adding the signed increment incr
to the value representing the its priority. The nice function pennits the increment <incr> to be
negative if the current effective user is the system manager. The nice function returns zero if it
successfully changes the scheduling priority of the task. otherwise it returns -1 with <errno> set
to the system error code.

The nice function fails if the increment <incr> is negative and the current effective user is not
the system manager.

ERRORS REPORTED
EACCES The increment <incr> is negative and the current effective user is not the

system manager

4400 Series C Reference N-l

nice

NOTES
The nice function sets the scheduling priority of the task to the maximum priority if the .<incr>
increment causes the priority to exceed the maximum. Likewise, nice sets the priority to the
minimum priority if the increment causes the it to be less than the minimum.

The higher the value representing the task's priority. the lower the task's priority.

SEE ALSO
Command: nice

N-2

open

open
Open an existing file.

SYNOPSIS
#include <errno.h>
#include <sys/fcntl.h>
int open(pathnam, mode)

char *pathnam;
int mode;

Arguments
<pathnam> The address of a character-string containing a pathname to the file to open

<mode> A value describing the requested access permissions

Returns
If successful, the file descriptor of the opened file, otherwise -1 with <errno> set to the system
error code

DESCRIPTION
The open function opens the file reached by the pathname in the character-string referenced by
<pathnam>, sets up access permissions described by the value <mode>, and sets the current file
position to the beginning of the file. If open succeeds, it returns a file descriptor that references
the open file. Other functions use this descriptor to reference the file opened by this function,
such as readO, writeO, Irec(), and fstatO, which manipulate open files and their data. If open
fails, it returns -1 with <errno> set to the system error code.

The open function fails if the pathname can not be followed, the path contains a file that is not a
directory, the pathname does not exist, the file does not grant the requested access permission to
the current effective user, the task has the maximum number of files open, or the requested access
permissions are invalid.

The <mode> value describes to open the requested access permissions. If <mode> is
O_ROONLY, the open function opens the file for reading access. If <mode> is O_WRONLY,
the open function opens the file for writing access. If <mode> is 0_ RDWR, the open function
opens the file for both reading and writing access. The include-file <syslfcntl.h> contains
definitions for the constants 0_ RDONL Y, 0_ WRONL Y, and 0 _RDWR.

4400 Series C Reference 0-1

ERRORS REPORTED
EACCES

EINVAL

EMFILE

EMSDR

ENOENT

ENOTDIR

NOTES

The permissions of the file do not grant the requested access type

The mode value is invalid

The maximum number of files are open

The function could not follow the path to the file

The pathname does not reach a file

A part of the path is not a directory

open

A file descriptor is a non-negative integer that the operating system uses to reference an open file.
It is an index into the open file table of the operating system.

SEE ALSO
C Library:fclose(),jdopen(),fopen(),freopen()

System Call: close(), dup(), dup2(),fstat(), lrec(), pipe(), read(), write()

0-2

opendiT

opendir
Open a directory.

SYNOPSIS
#include <sys/dir.h>
DIR *opendir(path)

char *path;

Arguments
The address of a character-string containing the pathname of the directory to open

Returns
If successful, the address of a directory-stream descriptor to the opened directory, otherwise
(DIR *)NUlL

DESCRIPTION
The opendir function opens for reading the directory reached by the pathname <path>, then it
attaches the opened directory to a directory-stream. If opendir succeeds, it returns a reference to
the directory-stream where it has attached the open directory.

If opendir fails, it returns (DIR *) NUlL. The opendir function fails if the operating system
reports an error. The global variable <errno> contains the system error code.

NOTES
The include-file <sys/dir.h> contains definitions for the data types, structures, constants, and
functions needed to read directories.

SEE ALSO
C Library: closedir{}, readdir{}, rewinddir{}, seekdir{}, telldir{}

4400 Series C Reference 0-3

pause

pause
Suspend the current task.

SYNOPSIS
#include <errno.h>
int pause ()

Arguments
None

Returns
The pause function always returns -1 with <ermo> set to the errorcode EINTR.

DESCRIPTION
The pause function suspends the current task indefinitely. This function returns only if the task
receives a signal, catches that signal and returns from the function handling that signal, either
explicitly using the return statement or implicitly by falling off the end of the function. Pause
does not return if the task receives a signal that causes the task to terminate. Signals that the task
ignores do not affect this function.

If pause returns, it always returns -1 as its result with <ermo> set to the system error code
EINTR.

ERRORS REPORTED
EINTR The task received a signal, causing it to resume execution

SEE ALSO
C Library: sleep()

System Call: alarm(), kill(), signalO, sleep()

Command: wait

4400 Series C Reference P-l

pclose
Close a stream connected to a pipe.

SYNOPSIS
#include <stdio.h>
int pclose(stream)

FILE *streami

Arguments
<stream> The standard I/O stream to close

Returns
The termination status of the task at the other end of the pipe if successful, ·1 otherwise

DESCRIPTION

pclose

This function closes the standard I/O stream <stream> and frees any resources which were
automatically allocated to the stream. If the stream is opened for writing and is buffered, it
flushes any buffered data to the associated pipe. After closing the stream, the function waits for
the task at the other end of the pipe to terminate.

The function returns ·1 if it encounters an error while closing the stream or the stream was not
created by the popen function, otherwise it returns the termination status of the task at the other
end of the pipe.

NOTES
This function returns a ·1 if the task at the other end of the pipe does not exist.

This function waits for the specific task at the other end of the pipe. If it receives the termination
status for a different task, it discards the status and waits again for the proper task.

SEE ALSO
C Library: !flush() , popen(),

System Call: close(), pipe()

P-2

perror

perror
Write a message explaining the error code in <errno>.

SYNOPSIS
void perror{ptr)

char *ptr;

Arguments
<ptr> The address of a character-string to write before writing the message describing the

error code in <errno>, or (char *) NULL if none

Returns
Void

DESCRIPTION
If <ptr> is not (char *) NUU, the perror function writes the character-string referenced by
<ptr> to the standard error I/O stream <stderr>, followed by a ':' and a ' '. The perror function
then writes the error message associated with the value in the variable <errno> to <stderr> ,
followed by an end-of-line character.

If < ermo> is greater than or equal to zero but less than 512, perror gets the error message from
the Igenlerrorslsystem file. If <errno> is greater than or equal to 512 but less than 1024, it gets
the message from the Igenlerrorsllocal file using (ermo % 512) as the error number. If <errno>
is greater than or equal to 1024, perror gets the error message from a file with a name in the form
Igenlerrors/errorfiie%4.4u, where %4.4u is replaced by «<errno>-1024) / 256), using
«ermo> % 256) as the error number.

4400 Series C Reference P-3

perror

NOTES
The perror function writes the message

No message for errno

followed by the value of <errno> if it could not find a message for the current value of <errno>.

The perror function initializes the global variable sys_nerr and the global table <sys_errlist>.

SEE ALSO
C Library: errno, _ierrmsg(), sys_errlist, sys_nerr

P-4

pffinit

pffinit
Guarantee that the cc command loads the versions of standard I/O functions that contain
floating-point conversions.

SYNOPSIS
void pffinit();

Arguments
None

Returns
Void

DESCRIPTION
The pffinit function guarantees that the cc command loads the versions of fprintfO. fscanfO.
printfO. scanf(). sprintfO. and sscanfC) that contain floating-point conversions.

The cc command loads the versions of these functions that contain floating-point conversions
only if the C source contains a reference to a floating-point data type. Otherwise, it loads the
version of these functions that contains no floating-point conversions.

Symbol name clashes can occur when a user builds libraries containing floating-point data types
or references to pffinitO and references these routines from a program which contains neither
floating-point data types nor a call to pffinitO. A user who wishes to print floating-point data
types from a program that contains no references to floating-point data types should call pffinitO
to avoid having the loader bring in both sets of entry points.

SEE ALSO
C Library:fprintf(},fscanf(}, printf(}, scanf(}, sprintf(}, sscanf(}

Command: cc

4400 Series C Reference P-5

phys
Access or release a system resource.

SYNOPSIS
#include <errno.h>
char *phys(code)

int code;

Arguments
<code> A value identifying the resource

Returns

phys

If successful in accessing a resource, phys returns the logical address of the memory associated
with the resource; if successful in releasing a resource, phys returns (char *) -I; otherwise it
returns (char *) NULL

DESCRIPTION
If the value <code> is greater than zero, the phys function accesses the resource identified by
that value. If phys successfully accesses the requested resource, it returns the logical address of
the memory mapped for that resource as its result. Otherwise, phys returns (char *) NULL as its
result.

If the value <code> is less than zero, the phys function releases the resource identified by the
absolute value of < code> and returns as its result (char *) -I.

If the value <code> is zero, phys releases all of the resources allocated by the current task and
returns (char *) -I.

The resources that phys makes available depend on the particular implementation of the
operating system, so the meaning of the value <code> differs from implementation to
implementation. The following table describes the meaning of the absolute value of <code> for
the Tektronix 4404 Series:

1 The 128K bit-map
2 The first shared 4K page
3 The second shared 4K page
4 The time-of-day clock

P-6

ph,s

ERRORS REPORTED
EINVAL The value <code> is out of range

NOTES
The phys function ignores requests to release resources that have not been allocated to the task.
Likewise, phys ignores requests to allocate resources that are already allocated by the task.

4400 Series C Reference P-7

pipe
Create a pipe.

SYNOPSIS
#include <errno.h>
int pipe (fds)

int (*fds) [2];

Arguments

pipe

<fds> The address of a two-element array of integers to receive the pipe's input and output
file descriptors

Returns
Zero if successful, otherwise -1 with < errno> set to the system error code

DESCRIPTION
The pipe function creates a pipe, which is a first-in, first-out I/O mechanism typically used to
send data from one task to another. It saves the pipe's input file descriptor in the first element of
the array referenced by <Ids> and it saves the pipe's output file descriptor in the second element
of that array. The function returns zero if it successfully creates a pipe, otherwise pipe returns -1
with <errno> set to the system error code.

The pipe function fails if the task has more than two less than the maximum number of files the
system permits a task to have open.

Reading from a pipe whose buffers are not full and whose input file descriptor has not been
closed suspends the task until the pipe is filled or the pipe's output file descriptor is closed.
Writing to a pipe whose buffers are full suspends the task until all of the data written to the pipe
has been read.

Reading from a pipe whose buffers contain no data and whose output file descriptor is closed
causes the function attempting to read data from the pipe to report an end-of-fiie error. Writing to
a pipe whose input file descriptor has been closed causes the function attempting to write the data
to the pipe to report a broken pipe error.

Typically, a task creates a pipe using this function, the task then executes a forkO, duplicating the
pipe's input and output file descriptors for the child (created) task. The sending task (the task that
is to send data through the pipe) closes the input file descriptor of the pipe and writes data to the
output file descriptor of the pipe. The receiving task (the task that receives data from the pipe)
closes the output file descriptor of the pipe and reads data from the input file descriptor of the
pipe.

P-8

\

pipe

ERRORS REPORTED
EMFILE The task has too many files open to create a pipe

NOTES
Undefined behavior results if a task attempts to use both the input file descriptor and the output
file descriptor.

SEE ALSO
System Call: close(),/stat(), openO, read(), write()

Command: shell

4400 Series C Reference P-9

popen

popen
Open a pipe and attach it to a standard 1/0 stream.

SYNOPSIS
#include <stdio.h>
FILE *popen(command, mode)

char *command;
char *modei

Arguments
<command> The address of a character-string containing a command to which the pipe is

connected

<mode> The address of a character-string containing the open mode

Returns
If successful, the stream to which the pipe has been attached, otherwise (FILE *) NULL

DESCRIPTION
This function opens a pipe between the calling program and the command in the character-string
referenced by <pathnam>. The character-string referenced by <mode> describes to the function
the access type desired by the calling program. The function then attaches the pipe to a standard
I/O stream.

If the function succeeds, it returns the standard I/O stream as its result. Otherwise, it returns
(FILE *) NULL. The function fails if the operating system reports an error, the program has the
maximum number of streams open, the calling program cannot create a task to execute the
command, or the open mode is not valid. If the operating system reports an error, errno will
contain the system error code.

The open mode describes the type of access requested for the pipe by the calling program. Valid
open modes are r, and w, for read, or write access, respectively.

If the open mode is r, the function opens the stream for reading. The pipe is connected to the
standard output descriptor of the command.

If the open mode is w, the function opens the stream for writing. The pipe is connected to the
standard input descriptor of the command.

P-IO

popen

NOTES
The include-file < stdio.h> defines the data type FILE. This data type is a structure containing
all of the infonnation about an open stream.

For brevity, this and other manual pages discuss a pointer to the data type FILE as simply a
stream, instead of calling it a pointer to a structure defining the characteristics of a stream.

A stream created by the popen function should be closed by the pelose function.

The calling program will receive an end-or-file response if it should read the stream after the
command has tenninated or closed the pi pe.

If the calling program should write to the stream after the command has closed the pipe or
tenninated, then the calling program will receive a broken pipe signal.
pr, the piece of junk, is losing the
The following .in -0 is an attempt to remind it
to do the indentation correctly.

SEE ALSO
C Library: !getc(),fgets() ,fputc(),fputs{) ,fread(), fwrite{) , pc/ose()

System Call: close(), pipeO, signalO

4400 Series C Reference P-ll

pow
Raise a value to a power.

SYNOPSIS
iinclude <math.h>
double pow (x, y)'

double x;
double y;

Arguments
<x> The value to raise

<y> The powerto raise <x> to

Returns

The value <x> raised to the power <y>

DESCRIPTION

pow

The pow function calculates the value of <x> raised to the power <y>. Pow returns the
calculated value as the result.

If <x> is greater than zero, pow permits any value of <y>. If <x> is zero, pow permits <y> to
be any non-zero value, otherwise it reports a singularity error. If <x> is less than zero, pow
permits <y> to be value that is an integer, otherwise it reports a domain error. If the magnitude
of the result is larger than that what can be represented by a double, the pow function reports an
overflow error.

If pow detects a singularity error, it calls matherrO passing to it the address of a filled <struct>
exception structure. It sets the element <type> to SING, <name> to the address of the character
string <pow>, <argl> to <x>, and <arg2> to <y>. If matherrO returns 0, pow writes the
message

pow() error: Both arguments are 0.0

to the standard errorI/O stream <stderr> and sets <errno> to EDOM. The return value, which is
system-dependent, can be found in the manual page for killO. If matherrO returns a value other
than 0, pow returns as its result the value retval found in the < struct> exception structure whose
address was passed to matherrO.

Ifpow detects a domain error, it calls matherrO passing to it the address of a filled <struct>
exception structure. It sets the element <type> to DOMAIN, <name> to the address of the
character string <pow>, <argl> to <x>, and <arg2> to <y>. If matherrO returns 0, pow

P-12

pow

writes the message

pow() error: Negative base with non-integer power

to the standard error I/O stream < stderr>, sets <erma> to EDOM, and returns 0.0 as its result.
Otherwise, pow returns the value retval found in the < struct> exception structure whose address
was passed to matherrO.

If pow detects a overflow error it calls matherrO, passing to it the address of a filled < struct>
exception structure. It sets the element <type> to OVERFLOW, <name> to the address of the
character string <pow>, <argl> to <x>, and <arg2> to <y>. If matherrO returns 0, pow sets
<errno> to ERANGE and returns a value whose magnitude is the largest value representable by
the data type double (HUGE), signed as the result would have been signed had it not been larger
than can be represented by that data type. Otherwise, it returns as its result the value retval found
in the < struct> exception structure whose address was passed to matherrO.

SEE ALSO
C Library: matherr()

4400 Series C Reference P-13

printf

printf
Write formatted data to stdout.

SYNOPSIS
*include <stdio.h>
int printf(format [,arglist])

char *format;

Arguments
<format> The address of a character-string containing a format description

Returns
The number of characters written to < stdout> or EOF if an error occurred

DESCRIPTION
The printf function generates characters from the format description in the character-string
referenced by <format> and the arguments in the argument-list <arglist>, if any, and writes
these characters to the standard 110 output stream < stdout>. It returns as its result the number of
characters written to <stdout>.

The format description in the character-string referenced by <format> contains literal characters
and field descriptions. The printf function writes literal characters to <stdout> with no
interpretation. The printf function interprets field descriptions to determine what characters it
generates, what type of argument it consumes, if any, from the argument list <arglist>, and the
type of conversion it performs. The number of arguments and the type of the arguments in the
argument list <arglist> depends on the format description. The argument list can be omitted.

For a complete description of the <format> argument, see the manual page for fprintfO.

P-14

prini/

NOTES
The printf function writes characters to <stdout> using fputeO. If <stdout> is buffered,
standard 110 does not write characters to the file attached to the stream until it fills the stream's
buffer or closes the stream. If <stdout> is line-buffered (buffered and attached to a file that is a
terminal), standard I/O does not write characters to the file attached to the stream until it fills the
stream's buffer, closes the stream, writes an end-of-line character (EOL) to the stream, or reads
data from a terminal.

The include-file <stdio.h> defines the functions and constants available in standard 110. This file
must be included in the C source before the first reference to this function.

The C library contains two versions of the fprintfO function: one that contains floating-point
conversions and one that contains no floating-point conversions. The ec command loads the
version containing floating-point conversions only if the C source contains references to the one
of the floating-point data types or a call to the function pffinitO. Otherwise, it loads the version
which contains no floating-point conversions.

SEE ALSO
C Library: ecvt(), jcvt(), jdopenO, jopenO, jprintjO, jputc(), J~canjO, gcvt(), pjfinit() , scanjO,
sprintf(), sscanj(), stdout

Command: cc

4400 Series C Reference P-15

proJU

profil
Start or stop monitoring the current task.

SYNOPSIS
int profil(bufad, bufsiz, lowpc, scale)

char *bufad;
int bufsiz;
int lowpc;
int scale;

Arguments
<bufad> The address of the buffer to contain monitoring information

<bufsiz> The number of bytes in the buffer whose address is <bufad>

<scale> A value indicating the monitoring granularity

<lowpc> The lowest address to monitor in the task

Returns
Zero

DESCRIPTION
If <scale> is not 0 or 1, the profil function requests that the operating system begin monitoring
the current task, using the buffer whose address is <bujad> and contains <bujsiz> bytes, as the
monitor buffer, beginning at the program address dowpc>, with a granularity of <scale>. If
< scale> is 0 or 1, profil requests that the operating system stop monitoring the current task. The
profil function always returns zero as its result.

While monitoring a task, the operating system examines the task at each tick on the system clock,
which occurs every tenth of a second. It takes the current program counter of the task, subtracts
from it the value <lowpc>, divides the result by <scale>, then multiplies the quotient by two. If
the product is less than the value <bujsiz> , it adds tJ'1e product to the address of the buffer
<bujad>, then increments the word at that resulting address by one.

ERRORS REPORTED
None

P-16

profil

NOTES
The buffer containing the values incremented at each clock tick must begin at an even address.

The operating system's monitoring mechanism only uses the least-significant byte of the <scale>
argument. After checking for 0 or 1, if <scale> is not a power of 2, it rounds the value up to the
next power of 2 and uses that value as the scaling factor.

The argument dowpc> is an address that has been cast into an into

The operating system automatically stops monitoring a task when that task calls the execO
function.

The operating system does not automatically stop monitoring a task when that task calls the
jork() function.

SEE ALSO
C Library: monitor{)

System Call: exec(),jork()

Command: cc

4400 Series C Reference P-17

pute
Write a character to a stream.

SYNOPSIS
#include <stdio.h>
int putc(c, stream)

char Ci

FILE *streami

Arguments
<c> The character to write

<stream> The standard I/O stream to write to

Returns
The value written if successful, EOF otherwise

DESCRIPTION

pute

The pute function writes the character <c> to the standard I/O stream <stream>. The pute
function returns the character written as its result if it successfully writes the character to the
stream, otherwise it returns EOF.

NOTES
If the stream is buffered, standard I/O flushes the buffered data whenever the buffer fills or the
stream closes.

If the stream is line-buffered (buffered and attached to a character-special device), standard 110
flushes the buffered data whenever the buffer fills, the stream closes, a standard I/O function
writes an EOL character to the stream, or a standard I/O function reads data from a character
special device (a terminal).

SEE ALSO
C Library:jdopenO./openO./putc(), getc(}, putchar()

P-18

\
\

/

putchar

putchar
Write a characterto <stdout>.

SYNOPSIS
finclude <stdio.h>
int putchar(c)

char c;

Arguments
c The character to write

Returns
The value written if successful, EOF otherwise.

DESCRIPTION
The putchar function writes the character <c> to the standard I/O standard output stream
<stdout>. The putchar function returns the character written as its result if it successfully wrote
the character to <stdout>, otherwise, it returns EOF.

NOTES
If the stream is buffered, standard 110 flushes the buffered data whenever the buffer fills or the
stream closes.

If the stream is line-buffered (buffered and attached to a character-special device), standard 1/0
flushes the buffered data whenever the buffer fills, the stream closes, a standard 110 function
writes an EOL character to the stream, or a standard 110 function reads data from a character
special device (a terminal).

SEE ALSO
C Library:jdopen(}.jopen(},fpute(), getehar(), pute(), stdout

4400 Series C Reference P-19

putenv

putenv
Modify or add an environment-variable definition to the environment list.

SYNOPSIS
int putenv(ptr)

char *ptr;

Arguments
<ptr> The address of a character-string containing the environment-variable definition

Returns
Zero if the function was unable to obtain enough memory (using malloc()) to relocate the
environment list, non-zero otherwise «char *) NULL if the name was not found in the list

DESCRIPTION
This function changes an existing environment-variable definition or adds a new definition to the
environment list. If the definition in the character-string referenced by <ptr> defines a variable
that already exists in the environment list, this function changes the definition of that
environment variable. Otherwise, it expands the environment list by appending the definition
found in the character-string referenced by <ptr>. If expanding the environment list requires that
the list be moved, this function updates the external variable environ so that it references the
expanded list.

If the function is unable to obtain enough main memory for the expanded environment list, it
returns zero as its result, otherwise it returns a non-zero value.

NOTES
The environment list is a variable-length array of addresses terminated by the null-address. Each
address references a character-string defining a valiabie of the current environment. Each
character-string is of the form <name>=<va/ue> where <name> is the name of the environment
variable and <value> is the definition of that variable. The function does nothing if the
character-string referenced by <ptr> is not of the fonn < name> =<value>.

The updated environment list will contain a reference to the character-string referenced by <ptr>.
Modifying that string after calling this function will result in redefinition of the environment list.

The character-string referenced by <ptr> should be in static memory because the definition of the
environment variable may exist after the scope which called this function is exited.

P-20

putenv

Under no circumstances does this function modify the third argument to the main procedure
mainO.

SEE ALSO
C Library: environ, getenv()

4400 Series C Reference P-21

Change the contents of the MC68881 control and status registers

SYNOPSIS
#include <float_interrupt.h>
void put_FPU_control(buffer)

struct FPU control *buffer;

Arguments
<buffer> The address of the structure which contains the updated contents of the MC68881

registers

Returns
None

DESCRIPTION
The put_FPU_control function changes the contents of the MC68881 control and status registers
(FPCR and FPSR, respectively).

This function expects <buffer> to be the address of a structure defined as:

P-22

struct FPU_control {

} ;

struct control_register fpcr;
struct status_register fpsr;

/* control register */
/* status register */

The organization of the individual registers is defined by these structures:

struct control_register

} ;

unsigned : 4;
unsigned rnd :2;
unsigned prec :2;
unsigned inex1 :1;
unsigned inex2 :1;
unsigned dz :1;
unsigned unfl :1;
unsigned ovfl :1;
unsigned operr :1;
unsigned snan :1;
unsigned bsun :1;
unsigned :16;

struct status_register {
unsigned : 3;
unsigned inex :1;
unsigned adz :1;
unsigned aunfl :1;
unsigned aovfl :1;
unsigned iop :1;
unsigned inex1 :1;
unsigned inex2 :1;
unsigned dz :1;
unsigned unfl :1;
unsigned ovfl :1;
unsigned operr :1;
unsigned snan :1;
unsigned bsun :1;
unsigned quotient :7;
unsigned s :1;
unsigned nan :1;
unsigned i :1;
unsigned z :1;
unsigned n :1;
unsigned :4;

} ;

/* unused */
/* rounding mode */
/* rounding precision */
/* inexact decimal input */
/* inexact operation */
/* divide by zero */
/* underflow */
/* overflow */
/* operand error */
/* signaling NAN */
/* branch/set on unordered */
/* unused */

/* unused */
/* accrued inexact */
/* accrued divide-by-zero */
/* accrued underflow */
/* accrued overflow */
/* invalid operation */
/* inexact decimal input */
/* inexact operation */
/* divide by zero */
/* underflow */
/* overflow */
/* operand error */
/* signaling NAN */
/* branch/set on unordered */
/* 7 least significant bits of quotient
/* sign of quotient */
/* not a number or unordered */
/* infinity */
/* zero */
/* negative */
/* unused */

For a description of the fields in the control and status registers, refer to the MC68881 hardware
manual.

4400 Series C Reference P-23

NOTES
The include-file <f/oat_interrupt.h> contains the definitions of the above structures.

SEE ALSO
C Library: get_FPU _control()

System Call: FPU Jesume(), get_FPU _exception(}. put_FPU _exceptionO

P-24

put_FPU _exception
Update MC68881 coprocessor exception-infonnation

SYNOPSIS
#include <errno.h>
#include <float_interrupt.h>
int put_FPU_exception(buffer)

struct FPU_interrupt_data *buffer;

Arguments
<buffer> The address of a buffer that contains the updated MC68881 coprocessor exception

infonnation

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The put_FPU_exception function updates the exception inforn1ation provided by the MC68881
coprocessor when it detected an error for which it is generating interrupts. This function is
intended for use in an interrupt-handling routine when attempting to recover from errors detected
by the MC68881 coprocessor. The user may modify selected portions of the exception
infonnation in an attempt to recover from the error. After making the desired modifications, the
user calls this function to transfer the changes to the CPU and MC68881 exception stack frames.

The put_FPU_exception function returns zero if it successfully updates the exception stack
frames, otherwise, it returns -1 with <errno> set to the system error code.

4400 Series C Reference P-25

This function expects <buffer> to be the address of a structure that is defined as:

struct FPU_interrupt_data {
struct state frame FPU frame; /* - -
struct control_register fpcr; /*
struct status_register fpsr; /*
short *fpiar; /*
fpreg fp[8]; /*
long CPU data register [8] ; /*
long CPU=address_register[8]; /*
struct exception_frame CPU_frame;

} ;

FPU state frame */
control register */
status register */
instruction address regist
floating-point data regist,
CPU "D" registers */
CPU "A" registers */

/* CPU exception frame */

The individual components of this structure are defined as:

P-26

struct exception_frame {
unsigned short sr;

short *CPUyc;
short frame _type;
short *pc;

unsigned short ir;
unsigned short operation;

short *address;
} ;

struct control _register
unsigned : 4; /*
unsigned rnd : 2; /*
unsigned prec :2; /*
unsigned inex1 : 1; /*
unsigned inex2 : 1; /*
unsigned dz : 1; /*
unsigned unfl : 1; /*
unsigned ovfl : 1; /*
unsigned operr : 1; /*
unsigned snan : 1; /*
unsigned bsun : 1;

,.
/ 7<

unsigned :16; /*
} ;

/* CPU status register */
/* CPU program counter */
/* exception frame type */
/* program counter */
/* internal register */
/* operation word */
/* effective address */

unused */
rounding mode */
rounding precision */
inexact decimal input */
inexact operation */
divide by zero */
underflow */
overflow */
operand error */
signaling NAN */
branch/set on unordered */
unused */

struct status _register {

unsigned :3; /* unused */
unsigned inex : 1; /* accrued inexact */
unsigned adz : 1; /* accrued divide-by-zero */
unsigned aunfl : 1; /* accrued underflow */
unsigned aovfl : 1; /* accrued overflow */
unsigned iop : 1; /* invalid operation */
unsigned inex1 : 1; /* inexact decimal input */
unsigned inex2 : 1; /* inexact operation */
unsigned dz : 1; /* divide by zero */
unsigned unfl : 1; /* underflow */
unsigned ovfl : 1; /* overflow */
unsigned operr : 1; /* operand error */
unsigned snan : 1; /* signaling NAN */
unsigned bsun : 1; /* branch/set on unordered */
unsigned quotient : 7 ; /* 7 least significant bits of quotient
unsigned s : 1; /* sign of quotient */
unsigned nan : 1; /* not a number or unordered */
unsigned i : 1; /* infinity */
unsigned z : 1; /* zero */
unsigned n : 1; /* negative */
unsigned : 4; /* unused */

} ;

typedef unsigned char fpreg[12]; /* one floating point register */

struct exception_frame {
unsigned short sr;

short *CPUyc;
short frame _type;
short *pc;

unsigned short ir;
unsigned short operation;

short *address;
} ;

/* CPU status register */
/* CPU program counter */
/* exception frame type */
/* program counter */
/* internal register */
/* operation word */
/* effective address */

The user may not modify the state Jrame and exception Jrame structures. The contents of the
other structures are copied into the CPU and coprocessor stack frames. For interpretation of the
infonnation contained in these structures, consult the appropriate hardware manuals.

4400 Series C Reference P-27

,

put FPU. exception

ERRORS REPORTED
...

EBDCL The CPU cannot support the MC68881 coprocessor

ENOFPUDATA There is no exception information to be updated

NOTES
Exception information is available only after the MC68881 interrupts the CPU. The user must
have previously enabled these interrupts by setting the appropriate bits in the MC68881 control
register.

The user must call the FPU JesumeO routine to resume execution of the interrupted MC68881
instruction and exit the interrupt-handling routine. Attempting to exit the interrupt-handling
routine by using the return statement may lead to unpredictable results because the program
counter stored on the stack may not be correct.

The include-file <f/oat_interrupt.h> contains the above structure definitions.

SEE ALSO
C Library: get _FPU _ control() , put _FPU _control()

System Calls: FPU Jesume(), get_FPU _exception(}

P-28

pulpwenl

putpwent
Format and write a system password-file record.

SYNOPSIS
#include <pwd.h>
int putpwent(ptr, stream)

struct passwd *ptr;
FILE *stream;

Arguments
<ptf> Address of a structure containing the information to write

<stream> The standard I/O stream to write to

Returns
Zero if the record was successfully written, EOF otherwise.

DESCRIPTION
The putpwent function generates a character-string from the information in the structure
referenced by <ptr> and writes that character-suing to the swndard I/O output stream <stream>.
It generates the character-string in the format required by the system-password file. The
putpwent function returns zero as its result if it successfully formats and writes the record,
otherwise it returns EOF.

The function generates the character-string using the following sprintfO format-string:

"%s:%s:%d:%s:%s\n"

The format of the structure referenced by the result of this function is defined by the include-file
<pwd.h> and is defined as:

struct passwd
{

} ;

4400 Series C Reference

char
char
int
char
char

*pw_name;
*pw_passwd;
pw_uid;

*pw_dir;
*pw_shell;

P-29

pulpwenl

The pw _name entry is the address of a character-string containing the user-name. pw yasswd is
the address of a character-string containing the encrypted password. pw _uid contains the user's
identifying number (user-ID). pw _ dir is the address of a character-string containing the user's
initial home-directory. pw _shell is the address of a character-string containing containing the
shell-command for the first program to run after logging on.

NOTES
The putpwent function uses standard I/O and enlarges more than expected a program not
otherwise using standard I/O.

The pw yasswd and pw _shell entries in the structure referenced by <ptr> may be (char *) NULL
or they may reference a null-string. In either case, putpwent uses a null-string when generating
the system password record.

SEE ALSO
C Library: endpwent(), getpw(), getpwent(), getpwnam(), getpwuid(), setpwent()

Command: password

P-30

puts

puts
Write a character-string to stdout.

SYNOPSIS
#include <stdio.h>
int puts (s)

char * Si

Arguments
<s> The address of the character-string to write

Returns
Zero if successful, EOF otherwise.

DESCRIPTION
The puts function writes the character-string referenced by < s>, followed by an end-of-line
character (EOL), to the standard VO standard output stream <stdout>. The puts function returns
zero if it successfully writes the character-string to < stdout>, otherwise, it returns EOF.

NOTES
The puts function does not write the null-character ternlinating the character-string to <stdout>.

SEE ALSO
C Library:!dopen(},!open(},!puts(), gets(), putchar(), stdout

4400 Series C Reference P-31

putw

putw
Write a word to a stream.

SYNOPSIS
int putw(wd, stream)

int wd;
FILE *stream;

Arguments

<wd> The value to write

<stream> The standard I/O stream

Returns
The value written if successful, EOF otherwise

DESCRIPTION
The putw function casts the int argument <wd> into a short then writes that short to the standard
I/O output stream referenced by <stream>. It writes the high-order byte first, then the low-order
byte. It then casts the short written into an int and returns that value as its result. If it detects an
error, it returns EOF as its result.

NOTES
The value EOF is a valid value to write, so the functions ferrorO and feor(} should be used to
check for error and end-of-file conditions for the stream.

There are no boundary alignment requirements for writing a word to the stream.

SEE ALSO
C Library:jdopen(},fopen(}. getw(). pUle()

P-32

qsort

qsort
Sort data.

SYNOPSIS
int qsort(base, nr, width, compar)

char *base;
unsigned int
unsigned int
int

Arguments

nr;
width;

(*compar) () ;

<base> The address of the data to sort

<llf> The number of records in the data

<width> The number of bytes in a record of data

<compar> The address of a function to use to compare two records

Returns
The qsort function returns 0 ifit successfully sorted the data, otherwise qsort returns -1.

DESCRIPTION
The qsort function sorts in place the data at the address <base>. The data contain <nr> records
with each record <width> in length. The qsort function uses the function whose address is
<compar> to compare two records of data. Qsort returns 0 as its result if it successfully sorted
the data, otherwise it returns -1 as its result.

The function whose address is <compar> is a function returning an int with two arguments, both
addresses of records of data. The qsort function returns a value less than, equal to, or greater
than zero if the record referenced by the first argument is less than, equal to, or greater than the
record referenced by the second argument.

4400 Series C Reference Q-l

qsort

NOTES
The only possible condition resulting in a result of -1 is a record size <width> larger than the
maximum. The maximum is currently 256 bytes.

The base argument should be a pointer-to-element cast into a (char *).

SEE ALSO
None

Q-2

rand

rand
Generate a random number.

SYNOPSIS
int rand();

Arguments

None

Returns
A random number

DESCRIPTION
The rand function generates a random number and returns that value as its result. The number is
between 0 and 32767 inclusive. This function is a pseudo-random number generator, generating
the next number in a sequence. The previous number in the sequence is the seed set
automatically at the start of the program, the seed set explicitly by the rrandO or srandO
functions, or the previously generated random number.

NOTES
The sequence of numbers generated by this function from a particular seed is always
reproducible.

SEE ALSO
C Library: rrand(), srand()

4400 Series C Reference R-l

read
Read data from an open file.

SYNOPSIS
#include <errno.h>
int read(fildes, bufad, nbytes)

int fildes;
char
int

Arguments

*bufad;
nbytes;

<fildes> A file descriptor for the open file from which to read data

<bufad> The address of a buffer to contain the data read

<nbytes> The maximum number of byte to read

Returns

read

The number of bytes read if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION
The read function reads data from the open file referenced by the file descriptor <Ji/des> ,
beginning at the current file position, reading a maximum of < nbytes> bytes, writing the data
read into the buffer with the address < buJad>. The function reads data until it reads the
maximum number of bytes, it reaches the end of the associated file, or, if the associated file is a
character-special file (terminal), read reads an end-of-line character. If the associated file is one
that can be repositioned, the function changes the current file position to that of the data
immediately following the last byte read.

If the read function successfully reads data, it returns the number of bytes it read as its result. If
read encounters the end of the file before reading any data, it returns zero as its result.
Otherwise, read returns -1 as its result and sets <ermo> to the system error code describing t..~e
error.

The read function fails if the file descriptor <Ji/des> is out of range, does not reference an open
file, or references an open file that is not open for reading. It also fails if an 110 error occurs
while reading data or the requested count <nbytes> is negative. The read function also fails if
the task receives and catches a signal while reading data from a slow device, such as a terminal.

R-2

read

ERRORS REPORTED
The specified file is not opened for reading EACCES

EBADF The file descriptor does not reference an open file or the file is not open in the
proper mode

EINTR The task received an caught a signal while the function was reading from a slow
device

The operating system reports an I/O error EIO

EINVAL The value <nbytes> is not valid or the file descriptor <fildes> is out of range

NOTES
The data in the buffer may change if the function reports an I/O error.

SEE ALSO
C Library:!read()

System Call: creatO, dup(), dup2(), open(}, pipe(), writeO

4400 Series C Reference R-3

readdir

readdir
Read the next entry in an open directory.

SYNOPSIS
#inc~de <sys/dir.h>
struct direct *readdir(pdir)

DIR *pdir;

Arguments

<pdir> A reference to the directory-stream to read from

Returns

If readdir is successful, it returns the address of a structure containing the information in the next
entry of the directory, otherwise readdir returns (struct direct *) NULL

DESCRIPTION
The readdir function attempts to read the next entry from the directory attached to the directory
stream referenced by <pdir>. If it succeeds, it decodes the information in that entry, places the
decoded information in a structure, and returns as its result the address of that structure.

If readdir fails, it returns as its result (struct direct) NULL. The readdir function fails if the
directory-stream reference is not valid or there are no more entries in the directory attached to the
directory-stream.

The structure referenced by the result of this function is defined as:

struct direct
{

short
short
char

d ino;
d namlen;
d_name[MAXNAMLEN+l];

The d_ino element is the file descriptor number in the directory entry. d_namlen is the length of
the filename in the directory entry. d _name is an array containing the null-terminated filename in
the directory-entry. The constant MAXNAMLEN is the maximum length of a filename (an
element of a pathname).

R-4

reQddir

NOTES
The include-file <sys/dir.h> contains definitions for the data types, structures, constants, and
functions needed to read directories.

The readdir function skips empty directory entries.

SEE ALSO
C Library: closedirO, opendirO, rewinddir(), seekdirO, telldirO

4400 Series C Reference R-5

realloc
Reallocate an allocated block of data.

SYNOPSIS
char *realloc(buf, size)

char *buf;
unsigned int size;

Arguments
<bub

<size>

Returns

The address of the allocated buffer to reallocate

The requested new size of the buffer, in bytes

The address of the reallocated buffer

DESCRIPTION

realloc

The realloc function changes the size of the allocated buffer with the address <buj> to the
< size> bytes. If the space allocated to the buffer is large enough to accommodate <size> bytes,
realloc returns from the buffer as much space as possible to the arena of available memory and
returns <but> as its result. Otherwise, realloc returns <but> to the arena of available memory
and allocates a buffer of <size> bytes. If successful, realloc copies the data in the original buffer
to the newly allocated buffer and returns the address of the allocated buffer as its result.
Otherwise, realloc returns (char *) NULL as its result.

NOTES
The original block is destroyed if the function returns (char *) NULL.

SEE ALSO
C Library: calloc{},free{}, malloc{}{

System Call: brk{}, cdata(}, sbrk{}

R-6

rewind
Rewind a stream.

SYNOPSIS
#include <stdio.h>
int rewind (stream)

FILE *streami

Arguments
<stream> The standard I/O stream to rewind

Returns
Void

DESCRIPTION
The rewind function rewinds the stream referenced by <stream>. Rewinding a stream positions
the stream to the beginning of its attached file.

NOTES
Rewind undoes the effect of an ungetcO function.

Rewind does not rewind a stream that is opened in append mode.

Rewind does not rewind a stream that is attached to a character-special file (terminal).

SEE ALSO
C Library: jdopenO ,fopen(}, jseekO ,ftellO

System Call: [seek()

4400 Series C Reference R-7

rewinddir
Rewind a directory-stream.

SYNOPSIS
#include <sys/dir.h>
void rewinddir(pdir)

DIR *pdir;

Arguments
<pdir> A reference to a directory-stream

Returns
Void

DESCRIPTION

rewinddir

The rewinddir function rewinds the directory-stream referenced by <pdir>. The next read
operation requested on the directory-stream <pdir> reads the first entry in the directory.

NOTES
The include-file < sys/dir.h> contains definitions for the data types, structures, constants, and
functions needed to read directories.

SEE ALSO
C Library: closedir(), opendir(), readdir(), seekdir(), telldirO

R-8

rindex

rindex
Find the last occurrence of a character in a character-string.

SYNOPSIS
char *rindex(s, c)

char *s;
char c;

Arguments
<s> The address of the character-string to search

<c> The character to search for

Returns
The address of the last occurrence of the character in the string, or (char *) NULL if the string
does not contain the character

DESCRIPTION
The rindex function searches the character-string with the address <s> for the last occurrence of
the character <c>. If the string contains the character, rindex returns as its result the address of
the last occurrence of the character. Otherwise, it returns (char *) NULL.

NOTES
The rindex function is obsolete. It is only included for compatibility with older C libraries. New
applications should use strrchrO.

SEE ALSO
C Library: index(), strchr(), strrchrO

4400 Series C Reference R-9

rmvmount

rmvmount
Remove an entry from the system mount table.

SYNOPSIS
void *addmount(device)

char *device;

Arguments
<device> The address of a character-string containing the pathname of the device which is

mounted

Returns
Void

DESCRIPTION
This function removes an entry from the system's mount-table file.

NOTES
The rrnvrnountO function does not perform an actual unmount of the device on the directory; it
only manipulates the system's mount-table file.

SEE ALSO
C Library: addmount()

System Call: mount{), umount()

Command: lete/mount, lete/unmount

R-lO

rrand

rrand
Set the seed of the random number generator to a value generated from the current system-time
value.

SYNOPSIS
void rrand(seed);

Arguments
None

Returns
Void

DESCRIPTION
The rrand function sets the seed of the pseudo-random number generator to a value generated
from current system-time value. The value generated is that of the low 15 bits of the system-time
value.

NOTES
The system-time value is the current time expressed in the number of seconds since the epoch.
The system defines the epoch as 00:00 (midnight) on January 1, 1980, Greenwich Mean Time.

The seed is the value from which the next random number is generated.

The random number generating function randO always generates the same sequence of random
numbers from a particular seed.

SEE ALSO
C Library: rand(), srand()

System Call: time()

4400 Series C Reference R-ll

rump_create
Create a new managed resource.

SYNOPSIS
#include <errno.h>
int rump_create(resource}

char *resource

Arguments
<resource> The name of the resource

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The rump_create function creates a new named resource. The purpose of such resources is to
provide a mechanism for controlling access to physical resources such as I/O devices or special
shared memory. There are four operations that may be applied to a named resource. These are:

create - create the resource

destroy - remove the resource from the system

enqueue - obtain exclusive access to the resource

dequeue - relinquish access to the resource.

If the rump create function succeeds, a new named resource is created with the name given by
the argument <resource>. This must be a NULL terminated character string of 16 or fewer
characters (including the NULL). Otherwise, rump_create returns -1 with <errno> set to the
system error code.

The create function does not give access of the resource to to the creator.

R-12

ERRORS REPORTED
EEXIST

ENOSPC

NOTES

The named resource already exists

The maximum number of resources already exists

A resource name is a NULL terminated string of no more than 16 characters.

SEE ALSO
C Library: rump _ destroy(), rump _enqueue(), rump _dequeueO

4400 Series C Reference R-13

relinquish access to a named resource.

SYNOPSIS
#include <errno.h>
int rump_enqueue (resource)

char *resource

Arguments
<resource> The name of the resource

Returns
Zero if successful, otherwise -1 with < erma> set to the system error code

DESCRIPTION
The rump_dequeue function releases access to the named resource.

If the rump_dequeue function succeeds, access to the named resource with the name given by
the argument <resource> is given up. Otherwise, rump_dequeue returns -1 with <errno> set to
the system error code.

If any other tasks are currently waiting for access to the resource, then the first such task is given
access to the resource.

ERRORS REPORTED
ENOENT

EBADF

NOTES

The named resource does not exist

The task does not currently have access to the resource

A resource name is a NULL terminated string of no more than 16 characters.

R-14

SEE ALSO
C Library: rump _ create(), rump _ destroy(), rump _ enqueue()

4400 Series C Reference R-15

Destroy a managed resource.

SYNOPSIS
#include <errno.h>
int rump_destroy (resource)

char *resource

Argument

<resource> The name of the resource

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The rump_destroy function destroys a named resource. If the function succeeds, the named
resource with the name given by the argument <resource> is destroyed. Otherwise,
rump_destroy returns -1 with <errno> set to the system error code.

Only an idle resource can be destroyed. If any task currently has access to the resource, the
destroy function is not permitted.

ERRORS REPORTED
ENOENT

EBUSY

NOTES

The named resource does not exist

The resource is currently busy

A resource name is a NULL terminated string of no more than 16 characters.

SEE ALSO
C Library: rump _create(), rump _enqueueO, rump _dequeueO

R-16

/

rump_enqueue
Obtain exclusive access to a named resource.

SYNOPSIS
*include <errno.h>
int rump_enqueue (resource)

char *resource

Arguments
<resource> The name of the resource

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The rump_enqueue function obtains exclusive access to the named resource for the task.

If the function succeeds, access to the named resource with the name given by the argument
<resource> is granted. Otherwise, rump_enqueue returns -1 with <errno> set to the system
error code.

If any other task currently has access to the resource, the calling task waits until the resource
becomes free. This waiting is done in a first-inlfirst-out fashion to guarantee equal access to all
tasks.

ERRORS REPORTED
ENOENT

EINTR

The named resource does not exist

The task caught a signal, and that caused this function to abnormally end

4400 Series C Reference R-17

NOTES
A resource name is a NULL terminated string of no more than 16 characters.

SEE ALSO
C Library: rump _create(), rump _ destroy() , rump _ dequeue()

R-18

sbrk

sbrk
Change the memory allocation of the data segment.

SYNOPSIS
#include <errno.h>
char *sbrk(incr)

int incr;

Arguments
dncr> The number of bytes to enlarge or shrink the data segment

Returns
If successful, the end-of-segment address of the data segment before it was enlarged or shrunk,
otherwise (char *) -1 with < errno> set to the system error code

DESCRIPTION
The sbrk function enlarges or shrinks the memory allocation of the data segment of the current
task by <incr> bytes. If <incr> is positive, it enlarges the segment. If <incr> is negative, it
shrinks the segment. If <incr> is zero, it does not change memory allocation of the segment. If
sbrk succeeds, it returns the end-of-segment address for the data segment before the function
changed the memory allocation of the segment. If <incr> is positive, this is the address of the
first byte of newly allocated memory. If <incr> is negative, this address is meaningless, since it
references memory that is out of the address space of the task. If <incr> is zero, this address is
the current end-of-segment address of the data segment. Otherwise, sbrk returns (char *) -1 with
<errno> set to the system error code indicating the error.

The sbrk function fails if it could not allocate enough memory to make the data segment larger
by <incr> bytes. Sbrk also fails if <incr> is negative and the absolute value of <incr> is larger
than the number of bytes allocated to the data segment.

4400 Series C Reference S-l

sbrk

ERRORS REPORTED
ENOMEM The function can not allocate enough memory to enlarge the data segment by

< incr> bytes, or there is not enough memory allocated to the segment to shrink
it by the requested number of bytes

NOTES
The sbrk function does not change the memory allocation of the data segment if it reports an
error.

The end-of-segment address is the lowest address that is higher than the highest address of
memory allocated to the segment.

The function returns the current end-of-segment address without changing the segment's memory
allocation if <incr> is zero.

SEE ALSO
C Library: calloc(}, EDATA,free(), malloc(), realloc(}

System Call: brk(), cdata()

S-2

scan!

scanf
Read and interpret fonnatted data from stdin.

SYNOPSIS
#include <stdio.h>
int scanf(format [, addrlist)

char *format;

Arguments
<fonnat> The address of a character-string containing a fonnat description

Returns
The number of items in the address-list <addrlist> that it successfully assigns or EOF if an error
occurs before it assigns any data

DESCRIPTION
The scanf function reads and interprets data from the standard I/O stream < stdin>, according to
the fonnat description in the character-string referenced by <format>. Following the argument
<format> in the argument list, scanf expects a list of address of variables to receive the values it
generates from the data it reads from <stdin>, if any. The function returns as its result the
number of assignments is makes, or EOF if it encounters an error before making the first
assignment.

The <format> argument is a character-string containing a fonnat description, which describes the
fonnat of the data read from <stdin>. The fonnat description consists of literal characters,
white-space characters, and field descriptions, in any sequence.

Literal characters are all characters that are not white-space characters (as defined by isspace()),
and not part of field descriptions. A literal character tells scanf to match that character with the
next character read from < stdin>. If it does not match exactly, scanf ends.

White-space characters are the space (' '), end-of-line (,n'), horizontal-tab (,t'), fonn-feed (,f'),
and carriage-return (\r) characters. A white-space character tells scanf to read and consume
characters from < stdin> until it reaches a character which is not a white-space character or it
reaches the end of the data. The next character available from <stdin> is the next character
which is not a white-space character. The scanf function does nothing with a white-space
character in the fonnat description if the next character from < stdin> is not a white-space
character.

4400 Series C Reference S-3

scailf

A field description tells scanf how to interpret the next character or characters read from < stdin>.
The field description tells scanf the maximum number of characters to read, the form of the
characters read, the type of value to assign any result to, and whether to perform an assignment.
A field description has this syntax:

%[*] [<width>] [<flags>] <type>

The '%' character introduces the field description. The '*' character tells scanf to suppress
assigning the interpreted value to a variable. The <width> part tells scanf the maximum number
of characters to read to satisfy the field (including leading white-space characters, if the field type
skips leading white-space characters). The <flags> part alters the type of assignment made by
scanf, and may be the 'h' or the l' character. The <type> part defines the type of the field and
may be anyone of the characters in the string: cdefgosux%L

For a complete description of the field types of scanf, see the manual pages for the standard I/O
function fscanfO.

NOTES
The most common mistake made when using scanf is passing to the function the values of the
variables to receive the results of this function, instead of the addresses of those variables.

The include-file <stdio.h> defines this function, other functions, macros, and constants used by
standard I/O.

The C library contains two versions of the fscanf() function, which is used to implement this
function: one that contains floating-point conversions and one that contains no floating-point
conversions. The cc command loads the version containing floating-point conversions only if the
C source contains references to the one of the floating-point data types or a call to the function
pffinitO. Otherwise, it loads the version which contains no floating-point conversions.

SEE ALSO
C Library:jdopenO,fopenO,fprint/O,fscanjO, pffinitO, print/O, sprint/O, sscanjO, stdin

Commands: cc

S-4

seekdir

seekdir
Change the current position of a directory-stream.

SYNOPSIS
*include <sys/dir.h>
void seekdir(pdir, pos)

DIR *pdir;
long pos;

Arguments
<pdir>

<pos>

Returns
Void

A reference to a directory-stream

The new position for the directory-stream

DESCRIPTION
The seekdir function changes the current position of the directory-stream referenced by <pdir>
to the position <pos>. The next read-operation requested on the directory-stream <pdir> reads
the directory entry at the offset <pos> from the beginning of the directory.

NOTES
The include-file <sys/dir.h> contains definitions for the data types, structures, constants, and
functions needed to read directories.

The seekdir function does not perform any validity checks on the specified position.

SEE ALSO
C Library: closedir(), opendir(), readdir(), rewinddir(), telldir()

4400 Series C Reference S-5

setJtm

set ftm
Change the last-modification time of a file.

SYNOPSIS
#include <errno.h>
int set_ftm(pathnam, ptime)

char *pathnam;
long *ptime;

Arguments
<pathnam> The address of a character-string containing a pathname for the file whose

modification time is to change

<ptime> The address of the value to set as the modification time for the file

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The set_ftm function changes the last-modification time for the file reached by the pathname in
the character-string referenced by <pathnam> to the system-time value referenced by <ptime>.
The function requires that the current effective user be the system manager. The set ftm
function returns zero if it successfully changes the modification time of the file, otherwise
set_ ftm returns ·1 with <errno> set to the system error code.

The set ftm function fails if the path in <pathnam> can not be followed or contains a file that is
not a directory. It also fails if the pathname does not exist, the file reached by the pathname is
currently open, or the current effective user is not the system manager.

S-6

setJIm

ERRORS REPORTED
The current effective user is not the system manager EACCES

EBADF The file descriptor does not reference an open file or the file is not open in the
proper mode

EBUSY

ENOENT

EINVAL

ENOTDIR

NOTES

The specified file is not currently open

The pathname does not reach a file

An argument to the function is invalid

A part of the path is not a directory

The set_ftm function is obsolete and is included only for compatibility with older versions of the
C Language. New applications should use utimeO.

The operating system measures time as a count of seconds since the epoch. It defines the epoch
as 00:00 (midnight) on January I, 1980, Greenwich Mean Time.

The set ftm function does not compare the new modification time with the creation time or the
current time, so it is possible to set the modification time of the file to before its creation date or
to some time in the future.

SEE ALSO
System Call: !stat(), stat{), utime()

Commands: dir

4400 Series C Reference S-7

set_high_address_mask
Set the hardware high address mask register

SYNOPSIS
#include <errno.h>
int set_high_address_mask(mask_value)

Arguments
int mask value

Returns
If successful zero, otherwise -1 with <errno> set to the system error code

DESCRIPTION
The set_high_address_mask function sets the hardware high address mask register for the task.
Each task has its own value used for this register, which defaults to OxFFFFFFFF. This value
corresponds to 32 significant address bits. If a task needs fewer than 32 bits, this function may be
used to set a mask that indicates the number of significant bits. For example, the value
OxOOFFFFFF indicates only 24 address bits are significant.

ERRORS REPORTED
None

S-8

NOTES
Setting this register may cause some invalid addresses to be treated as valid since some upper bits
are being ignored.

Only bits 24-31 are significant in the mask value. Bits 0-23 are forced to be OxOOFFFFFF by the
system.

SEE ALSO
None

4400 Series C Reference S-9

setbuf

setbuf
Set buffering attributes of a stream.

SYNOPSIS
#include <stdio.h>
void setbuf(stream, buf)

FILE *stream;
char *buf;

Arguments
<stream> The standard I/O stream whose buffer characteristics are being set

<bui> The address of the buffer to use as the stream's buffer, or (char *) NULL if the
stream is to be unbuffered

Returns
Void

DESCRIPTION
The setbuf function sets the buffering characteristics for the standard I/O stream referenced by
<stream>. If <buj> is (char *) NULL, the stream is set for unbuffered I/O. Otherwise, the
stream is set for buffered I/O with < buj> set as address of the buffer to use for the buffered I/O.

NOTES
The buffer whose address is <buj> is assumed to contain at least BUFSIZ bytes. The include-file
< stdio.h> contains this and other definitions for standard I/O.

The setbuf function should only be used before any I/O is performed on the stream. If I/O has
been performed on the stream, the current buffering is lost.

SEE ALSO
C Library:jdopenO,jopenO

S-10

setjmp

setjmp
Setup for a non-local goto.

SYNOPSIS
#include <setjmp.h>
int setjmp(env)

jmp_buf env;

Arguments
<env> The value to receive the current environmental information

Returns
Zero when returning from setjmpO, non-zero when the result of a longjmpO

DESCRIPTION
The setjmp function saves the current environmental information in the argument <env> so that
a subsequent call to longjmpO with <env> as its argument results with execution continuing as
though the setjmpO call had returned. The effect of a longjmpO using <env> as its argument is
that of a goto from the longjrnpO call to the setjrnpO call.

A 0 result indicates that setjrnpO is returning after setting the argument <env> with the current
environmental information. A non-zero result indicates that longjrnpO was called with an
argument <env>.

4400 Series C Reference S-ll

setjmp

NOTES
The scope calling the setjrnp function must not have returned by the time longjrnpO is called
with the argument <env> or the result of the longjrnpO call is unpredictable.

Values residing in registers (those defined as register variables that have had registers assigned to
them) revert to their value at the time of the setjrnpO call when longjrnpO is called with the
argument < env>.

The argument <env> is actually the address of a structure for the current environmental
information. The include-file < setjmp.h> contains the typedef for jmp _ buf and other information
used by setjrnpO and longjrnpO.

SEE ALSO
C Library: longjmpO

S-12

setpwent

setpwent
Reset password-file handling.

SYNOPSIS
#include <pwd.h>
void setpwent();

Arguments
None

Returns
Void

DESCRIPTION
The setpwent function resets password-file handling initiated by getpwentO, getpwnamO, or
getpwuidO. The setpwent function reinitializes the resources allocated by and rewinds the files
opened by those routines.

NOTES
The setpwent function does nothing if getpwentO, getpwnamO, or getpwuidO has not been
called or endpwentO has been called since the last call to one of those routines.

SEE ALSO
C Library: endpwent(}, getpwent{), getpwnam(), getpwuid()

4400 Series C Reference S-13

setuid
Change both the user-IO and the effective user-IO.

SYNOPSIS
#include <errno.h>
int setuid (uid)

int uid;

Arguments
<uid> The user-IO of the new user and effective user

Returns
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION

setuid

The setuid function changes the current user-IO and the current effective user-ID of the task to
<uid>. The setuid function expects either the current user or the current effective user to be the
system manager. The function returns zero as its result if it successfully changes the user-IO and
effective user-ID of the task. Otherwise, setuid returns -1 with <ermo> set to the system error
code.

The setuid function fails if neither the current user nor the current effective user is the system
manager.

ERRORS REPORTED
EACCES Neither the current user nor the current effective user is the system manager

SEE ALSO
System Call: geteuid(), getuid()

Commands: login

S-14

signal

signal
Change the signal-handling address for a specific signal in the current task.

SYNOPSIS
#include <errno.h>
#include <sys/signal.h>
int (*signal(signum, handler)) ()

int signum;
int (*handler) () ;

Arguments
<signum> The signal number for the signal handling being changed

<handler> The new signal-handling address for the specified signal

Returns
The previous signal-handling address for the specified signal if successful, otherwise (int (*)()) -1
with <errno> set to the system error code

DESCRIPTION
The signal function changes the signal-handling address for the specified signal <signum> in the
current task to the function with the address <handler>. If signal succeeds, it returns as its result
the previous signal-handling address for the specified function. If signal fails, it returns as its
result Ont (*)()) -1 with < errno> set to the system error code.

The value SIG_IGN is a special signal-handling address which, if passed to this function as the
signal-handling address <handler>, tells the signal function that the task is to ignore the
specified signal. If signal returns this value, the task was ignoring the specified signal. The
value SIG _ DFL is a special signal-handling address which, if passed to signal as the signal
handling address <handler>, tells the function that the task is to take default action if it receives
the specified signal. For all signals except SIGDUMP, this action is task termination. If signal
returns this value, the task would have terminated if it received the specified signal. The
include-file <sys/signal.h> contains the definitions forSIG_IGN and SIG_DFL.

4400 Series C Reference S-15

signal

That include-file also defines constants for each of the sixty-three signals defined by the
operating system. These constants are:

S-16

SIGHUP
SIGINT
SIGQUIT
SIGEMT
SIGKILL
SIGPIPE
SIGSWAP
SIGTRACE
SIGTIME
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMT2
SIGTRAPl
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSRl
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP
SIGVEN14
SIGVEN15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
62
63

Hang-up
Keyboard
Quit
A-line ($Axxx) emulation trap
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction
F-line ($Fxxx) emulation trap
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
Division by 0
Privileged instruction
Address error
A child task terminated
Write to read-only memory
Execute from stack or data space
Segmentation violation
User-defined signal #1
User-defined signal #2
User-defined signal #3
Program abort
Spooler signal
Input is ready
Take memory dump
Millisecond Alarm
Mouse/keyboard event interrupt

signal

ERRORS REPORTED
EINVAL The <signum> value is not a valid signal number

NOTES
The signal() function is a function returning a pointer to a function returning an into

The <handler> argument is a pointer to a function returning an into

The signal function·does not verify the argument <handler> to ensure that no memory-violation
or bus-error occurs if the specified signal is caught.

The signals SIGTIME and SIGINPUT are not currently implemented.

The operating system produces a core image in a file called core in the working directory if the
default action (termination) is taken by a task on receipt of certain signals and other conditions
are met. Those certain signals are: SIGABORT, SIGADDR, SIGBND, SIGCHK, SIGDUMP,
SIGEMT, SIGEMT2, SIGDIV, SIGDUMP, SIGEXEC, SIGILL, SIGQUIT, SIGPAR, SIGPRIV,
SIGTIME, SIGTRAPl, SIGTRAP2, SIGTRAP3, SIGTRAP4, SIGTRAP5, SIGTRAP6,
SIGTRAPV, and SIGWRIT. The operating system generates a core image file only if there is an
existing file in the working directory called core that gives the current effective user writing
permission or the working directory gives the current effective user writing permission.

The default action for the SIGDUMP signal is to create a dump file and return control to the task.
The task is not terminated.

The operating system does not permit any task to catch either a SIGABORT or a SIGKILL
signal. '

The operating system does not permit tasks to ignore some signals. Those signals are:
SIGABORT, SIGADDR, SIGBND, SIGEXEC, SIGILL, SIGKILL, SIGPAR, SIGPRIV,
SIGSW AP, SIGTIME, SIGWRIT.

The operating system sets the initial state of one signal to SIG_IGN. That signal is SIGDEAD.

The operating system does not reset either the SIGDEAD or the SIGTRACE interrupt when it
occurs.

SEE ALSO
System Call: kill()

Commands: int

4400 Series C Reference S-17

sin
Calculate the sine of an angle.

SYNOPSIS
#include <math.h>
double sin(r)

double r;

Arguments
<r> The angle whose sine is to be computed

Returns
The sine of the angle <r>

DESCRIPTION
The sin function calculates the sine of the angle <r>. It returns that value as its result.

sin

The sin function interprets the value <r> as an angle expressed in radians. and the function
returns a result between -1.0 and 1.0 inclusive.

SEE ALSO
C Library: asinO. cosO. tanO

S-18

sinh

sinh
Calculate the hyperbolic sine of a value.

SYNOPSIS
#include <math.h>
double sinh(x)

double x;

Arguments
<x> The value whose hyperbolic sine is to be computed

Returns
The hyperbolic sine of the argument <x>

DESCRIPTION
The sinh function calculates the hyperbolic sine of the value x. The hyperbolic sine of <x> is
defined as (exp(x) - exp(-x))/2. It returns that value as its result.

The sinh function detects a range error if the magnitude of the hyperbolic sine of <x> is larger
than can be represented by the data type double. If sinh detects a range error, it calls matherrO,
passing to it the address of a filled < struct> exception structure. It sets the <type> element of
the structure to OVERFLOW, <name> to the address of the character-string <sinh>, and
<argl> to <x>.

If matherrO returns 0, sinh sets <ermo> to ERANGE. The return value, which is system
dependent, is given in the manual page for killO. If matherrO returns something other than 0,
the sinh function returns the value retval found in the <struct> exception structure as its result.

SEE ALSO
C Library: expO, matherr()

4400 Series C Reference S-19

sleep
Suspend execution for an interval.

SYNOPSIS
unsigned int sleep (time)

unsigned int time;

Arguments
<time> The maximum number of seconds to suspend execution

Returns
The number of seconds remaining in the requested interval

DESCRIPTION

sleep

The sleep function requests that the execution of the current task be suspended for the number of
seconds specified by the <time> argument. The sleep function returns after the requested
interval passes or an alarm-, hangup-, keyboard-, or quit-interrupt is caught. It returns as its result
the number of seconds remaining in the requested sleep interval.

The sleep function is implemented using the alarm system call. Sleep requests that an alarm
interrupt be sent to the current task in < time> seconds, then pauses using the pauseO function,
waiting for a signal. The function knows about an alarm-interrupt request armed before the
function is called. If the armed alarm-interrupt request is scheduled to take place during the sleep
interval, the function pauses for time remaining on the armed alarm-interrupt request. Then, if
that interval passes completely, it resignals the alarm-interrupt so the user can handle it.
Otherwise (or if the armed alarm-interrupt request is scheduled to take place after the sleep
interval is complete), upon return from the pauseO function, sleep rearms the alarm-interrupt for
the time remaining. Sleep then restores the signaling information for the alarm-interrupt to the
state before sleep was called.

S-20

sleep

NOTES
Requesting a sleep interval <time> of a results in the task pausing until the next signal.

SEE ALSO
System Call: alarm(}, signal(), wait()

Commands: sleep

4400 Series C Reference S-21

sprintj

sprintf
Generate a character-string containing formatted data.

SYNOPSIS
tinclude <stdio.h>
int sprintf(string, format [,arglist]}

char *string;
char *format;

Arguments
<string> The address of a buffer to contain the generated string

<format> The address of a character-string containing a format description

Returns
The number of characters written to <string> or EOF if an error occurred

DESCRIPTION
The sprintf function generates characters from the format description in the character-string
referenced by <format> and the arguments in the argument-list <arglist>, if any, writes these
characters into the buffer with the address <string>, then appends a null-character onto those
generated characters in that buffer. The sprintf function returns as its result the length of the
generated character-string.

The format description in the character-string referenced by <format> contains literal characters
and field descriptions. The sprintf function copies literal characters to character-string with no
interpretation. The function interprets field descriptions to determine what characters it
generates, what type of argument it consumes, if any, from the argument list <arglist>, and the
type of conversion it performs. The number of arguments and the type of the arguments in the
argument list <arglist> depends on the format description. The argument list can be omitted.

For a complete description of the <format> argument, see the manual page for fprintf().

S-22

sprinif

NOTES
The sprintf function assumes that the buffer whose address is <string> is large enough to hold
the character-string it generates.

The include-file < stdio.h> defines this function and other functions and constants available in
standard I/O. This file must be included in the C source before the first reference to this function.

The C library contains two versions of this function: one that contains floating-point conversions
and one that contains no floating-point conversions. The cc command loads the version
containing floating-point conversions only if the C source contains references to the one of the
floating-point data types or a call to the pfflnitO function. Otherwise, sprintf loads the version
that contains no floating-point conversions.

SEE ALSO
C Library: ecvt{), /cvt{), fdopen(}, lopenO, fprintf(), /putc(), /scan/O, gcvt(), pffinit(), print/O,
scan/O, sprint/O, sscan/(}, stdout

Commands: cc

4400 Series C Reference S-23

sqrt
Calculate the square root of a value.

SYNOPSIS
#include <math.h>
double sqrt(x)

double x;

Arguments
<x> The value whose square root is to be computed

Returns
The square root of the argument <x>

DESCRIPTION

sqrt

The sqrt function calculates the square root of the value <x>. It returns the calculated value as
its result.

The sqrt function demands that the argument <x> be greater than or equal to zero. If <x> is less
than zero, sqrt detects a domain error and calls rnatherrO, passing to it the address of a filled
<struct> exception structure. Sqrt sets the <type> element of the structure to DOMAIN,
<name> to the address of the character-string <sqrt>, and <argl> to <x>.

If rnatherrO returns 0, sqrt writes the message

sqrt() error: Negative argument

to the standard error 110 stream <stderr> and sets <errno> to EDOM. The return value, which is
system-dependent, is given in the manual page for killO. If rnatherrO returns something other
than 0, the sqrt function returns the value retval in the < struct> exception structure as its result.

SEE ALSO
C Library: matherr{)

S-24

srand

srand
Set the seed of the random number generator.

SYNOPSIS
void srand(seed)

int seed;

Arguments
<seed> The seed for the random number generator

Returns
Void

DESCRIPTION
The srand function sets the seed of the pseudo-random number generator to a value generated
from the argument <seed>. The value generated is that of the low 15 bits of the argument.

NOTES
The seed is the value used to generate the next random number.

The random number generating function ran dO always generates the same sequence of random
numbers from a particular seed.

SEE ALSO
C Library: rand(), rrand()

4400 Series C Reference S-25

sscanj

sscanf
Interpret formatted data from a character-string.

SYNOPSIS
#include <stdio.h>
int sscanf(string, format [, addrlist)

char *string;
char *format;

Arguments
<string> The string containing data to interpret

<format> The address of a character-string containing a format description

Returns
The number of items in the address-list <addrlist> that it successfully assigns or EOF if an error
occurs before it assigns any data

DESCRIPTION
The sscanf function interprets data from the character-string referenced by the argument
<string>, according to the format description in the character-string referenced by <format>.
Following the argument <format> in the argument list, sscanf expects a list of addresses of
variables to receive the values it generates from the characters in the data character-string, if any.
The sscanf function returns as its result the number of assignments is makes, orEOF if it
encounters an error before making the first assignment.

The argument <format> is a character-string containing a format description, which describes the
format of the characters in the data character-string. The format description consists of literal
characters, white-space characters, and field descriptions, in any sequence.

Literal characters are all characters that are not white-space characters (as defined by isspace()),
and not part of field descriptions. A literal character tells the function to match that character
wit.l-t the next character in the data character-string. If it does not match exactly, the function
ends.

S-26

sscanJ

White-space characters are the space (' '), end-of-line ('\n'), horizontal-tab ('\t'), fonn-feed (,\f'),
and carriage-return ('\r) characters. A white-space character tells sscanf to skip characters in the
data character-string until it reaches a character that is not a white-space character or it reaches
the end of the data. The next character available from the data character-string is the next
character that is not a white-space character. The sscanf function does nothing with a white
space character in the fonnat description if the next character from the data character-string not a
white-space character.

A field description tells sscanf how to interpret the next character or characters from the data
character-string. It tells the function the maximum number of characters to get, the fonn of those
characters, the type of value to assign any result to, and whether to perfonn an assignment. A
field description has this syntax:

%[*] [<width>] [<flags>]<type>

The '%' character introduces the field description. The '*' character tells sscanf to suppress
assigning the interpreted value to a variable. The <width> part tells sscanf the maximum
number of characters to get to satisfy the field (including leading white-space characters, if the
field type skips leading white-space characters). The <jlags> part alters the type of assignment
made by the function, and may be either the 'h' or the T character. The <type> part defines the
type of the field and may be anyone of the characters in this string: cdefgosux%L

For a complete description of the field types of the sscanf function, see the manual pages for the
standard I/O function fscanfO.

NOTES
The most common mistake made when using sscanf is passing to the function the values of the
variables to receive the results of sscanf, instead of the addresses of those variables.

The include-file <stdio.h> defines sscanf, other functions, macros, and constants used by
standard I/O.

The C library contains two versions of the sscanf function: one that contains floating-point
conversions and one that contains no floating-point conversions. The cc command loads the
version containing floating-point conversions only if the C source contains references to the one
of the floating-point data types or a call to the pffinitO function. Otherwise, cc loads the version
that contains no floating-point conversions.

SEE ALSO
C Library:jdopenO,fopenO,jprintj(},fscanj(}, pffinitO, printj(}, scanjO, sprintjO, stdin

Commands: cc

4400 Series C Reference S-27

stack
Check and expand memory allocated to the stack segment of the task.

SYNOPSIS
#include <errno.h>
int stack (nbytes)

int nbytes;

Arguments
<nbytes> The number of bytes that the stack is expected to grow

Returns

stack

Zero if the stack segment has enough space to contain a program stack enlarged by <nbytes>
bytes, othelWise -1 with <errno> set to the system error code

DESCRIPTION
The stack function guarantees that the the task has enough memory allocated to its stack segment
so that the program stack can expand by < nbytes> bytes. If the segment is not large enough,
stack allocates enough memory to the segment so that the stack can expand by the specified
amount.

The stack function returns zero if the stack segment has enough space allocated to it to contain a
program stack enlarged by <nbytes> bytes. OthelWise, stack returns -1 with <ermo> set to the
system error code.

The stack function fails if can not allocate more memory to the stack segment of the task.

ERRORS REPORTED
ESTOF

EVFORK

S-28

The stack segment of the task is as large as it can get

The task shares its memory with its pary an may not call this function.

stack

NOTES
The C-compiler automatically generates code that ensures stack integrity.

SEE ALSO
Commands: cc

4400 Series C Reference S-29

stat
Get the status of a file.

SYNOPSIS
#include <errno.h>
#include <sys/stat.h>
int stat(pathnam, bufad)

char *pathnam;
struct stat *bufad;

Arguments
<pathnam> The address of a character-string containing a pathname for the file to examine

<bufad> The address of the structure to contain the file's status

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

stat

The stat function examines the file reached by the pathname in the character-string referenced by
<pathnam> and writes information describing the status of that file into the structure whose
address is < bufad>. The stat function returns zero as its result if it successfully gets the status of
the file. Otherwise, it returns -1 with < errno> set to the system error code.

The stat function fails if the path in <pathnam> cannot be followed or if it contains a file that is
not a directory. Stat also fails if the pathname does not reach a file.

S-30

stat

The following structure is defined in the include-file < sys/stat.h> and defines the format of the
data describing the status of the file:

struct stat
{

short st dev;
short st ina; -
char st filler; -
char st mode;
char st _perm;
char st nlink; -
short st uid; -
long st size; -
long st mtime;
long st _spr;

} ;

The st_dev value is the device number of the device containing the file. st_ino is the file
descriptor number (FDN) on the device describing the file. st Jiller is an unused byte. st _mode
is a bit-string describing the type of the file, (described below). st yerm is a bit-string describing
the permissions of the file, (described below). st nlink is the number of links to the file (since the
maximum number that may be stored in a character field is 127, the maximu link coum is 127).
st _uid is the owner-ID of the file. st _size is the size of the file, in bytes. st _ mtime is the last
modification date and time for the file, in system-time. st_spr is unused.

The following constants, defined in the include-files <sys/stat.h> and <syslmodes.h>, define the
data in the bit-string st_mode (which describes the type of file):

S IFMT Ox4F
S IFREG OxOl
S IFBLK Ox03
S IFCHR Ox05
S IFPTY Ox07
S IFDIR Ox09
S IFPIPE Ox41

The constant S_IFMT is a mask that, when anded with the value st_mode, yields the file type.
After anding with the constant S_IFMT, st_mode produces S_IFREG if the file is a regular file,
S_IFBLK if the file is a block-special file (block device), S_IFPTY if the file is a pseudo tty
device, S _IFCHR if the file is a character-special file (character device), S _IFDIR if the file is a
directory, or S _ IFPIPE if the file is a pi pe.

4400 Series C Reference S-31

stat

The following constants, also defined in the include-files <syslstat.h> and <syslmodes.h>, define
the data in the bit-string styerm (which describes the access permissions of the file):

S IREAD OxOl
S IWRITE Ox02
S IEXEC Ox04
S IOREAD Ox08
S IOWRITE OxlO
S IOEXEC Ox20
S ISUID Ox40

The value S_IREAD grants reading permission to the owner of the file. S_IWRITE grants
writing permission to the owner. S _ IEXEC grants searching permission to the owner if the file is
a directory, otherwise S_IEXEC grants execution permission. The value S_IOREAD grants
reading permission to users other than the owner of the file. S_IOWRITE grants writing
permission to others. S_IOEXEC grants searching permission to others if the file is a directory,
otherwise S_IOEXEC grants execution permission. The value S_ISUID causes the effective
user-ID to be changed to that of the owner of the file when the program contained in the file is
executed.

ERRORS REPORTED
EMSDR

ENOENT

ENOTDIR

NOTES

Could not follow the path to the file

The pathname does not reach a file

A part of the path is not a directory

The <syslmodes.h> include-file does not need to be included if the <syslstat.h> include-file is
included, since < sysl stat.h> contains < syslmodes .h>.

SEE ALSO
System Call: creat{}, dup(), dup2{},jstat{}, linkO, open(}, pipe(), utime{}

Commands: dir

S-32

slderr

stderr
Standard error stream for standard 110.

SYNOPSIS
#include <stdio.h>
FILE *stderr;

DESCRIPTION
The stderr value references the standard error stream for standard I/O. The stderr value may be
used anywhere a FILE * is required.

The stderr value must not be defined explicitly, since it is defined by the <stdio.h> include-file.
Stderr may not be modified. Unless explicitly changed by the setbufO function, this stream is an
unbuffered output stream. The stream may be detached from the original standard error file and
attached to another file by using the freopenO function.

NOTES
Closing this stream, along with < stdin> and < stdout>, cause the current program to detach from
its controlling terminal.

SEE ALSO
C Library:jclose(),jreopen(},perror(), stdin, stdout

4400 Series C Reference S-33

stdin
Standard input stream for standard 110.

SYNOPSIS
#include <stdio.h>
FILE *stdin;

DESCRIPTION

stdin

The stdin value references the standard input stream for standard I/O. The stdin value may be
used anywhere a FILE * is required.

The stdin value must not be defined explicitly, since it is defined by the include-file <stdio.h>.
Sldin may not be modified. Unless explicitly changed by the setbufO function, this stream is
buffered. The stream may be detached from the original standard input file and attached to
another file by using the freopenO function.

NOTES
Closing this stream, along with <stderr> and <stdout>, cause the current program to detach from
its controlling terminal.

SEE ALSO
C Library:/close(),jreopen(}, getchar(), gets(), scan/O, stderr, stdout

S-34

stdOut

stdout
Standard output stream for standard I/O.

SYNOPSIS
#include <stdio.h>
FILE *stdout;

DESCRIPTION
The stdout value references the standard output stream for standard 1/0. Stdout may be used
anywhere a FILE * is required.

The stdout value must not be defined explicitly, since it is defined by the include-file <stdio.h>.
The stdout value may not be modified. Unless explicitly changed by the setbufO function, this
stream is buffered. The stream may be detached from the original standard output file and
attached to another file by using the freopenO function.

NOTES
Closing this stream, along with <stderr> and <stdin>, causes the current program to detach from
its controlling terminal.

SEE ALSO
C Library: Jclose(), Jreopen(}, printJO, putchar(), puts(), stderr, stdin

4400 Series C Reference S-35

stime
Set the system-time value.

SYNOPSIS
#include <errno.h>
int stime(ptime)

long *ptime;

Arguments
<ptime> The address of the value to set as the new system-time value

Returns
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION

stime

The stime function changes the system-time value of the operating system (the current time-of
day) to the value referenced by <ptime>. The stime function requires that the current effective
user be the system manager. The function returns zero as its result if it successfully sets the
system-time value. Otherwise, it returns -1 with <ermo> set to the system error code.

The stime function fails if the current effective user is not the system manager.

ERRORS REPORTED
EACCES The current effective user is not the system manager

S-36

stime

NOTES
The operating system represents the time of day as the number of seconds that has elapsed since
the epoch. It defines the epoch as 00:00 (midnight) on January I, 1980, Greenwich Mean Time.

SEE ALSO
System Call: timeO, timesO

Command: date

4400 Series C Reference S-37

sto12

stol2
Convert short integers to two-byte integers.

SYNOPSIS
void _sto12(cp, sp, n)

char *cp;
short *sp;
int n;

Arguments

<cp> The address of the buffer to contain the two-byte integers

<sp> The address of the buffer containing the short integers

<n> The number of values to convert

Returns
Void

DESCRIPTION
The _stol2 function converts <n> short integers in the array referenced by <sp> to two-byte
integers, saving the converted values packed into the array of <char> referenced by <cp>. The
_ stol2 function returns no result.

NOTES
The _stol2 function is typically used to avoid addressing problems resulting from misaligned
addresses.

SEE ALSO
C Library: _12tosO, 13tolO, _14toIO, ltol30, _ltol4()

S-38

strcat

strcat
Concatenate one character-string onto another.

SYNOPSIS
#include <8tring.h>
char *8trcat(81, 82)

char *81;
char *82;

Arguments
<s 1> The address of the target character-string

<s2> The address of the character-string to concatenate onto < sl >

Returns

<sl>

DESCRIPTION
The strcat function appends a copy of the character-string referenced by < s2> onto the
character-string referenced by <sl >. The strcat function returns <sl> as its result.

NOTES
The resulting character-string is always tenninated with a null-character.

The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strncat()

4400 Series C Reference S-39

strchr
Find the first occurrence of a character in a character-string.

SYNOPSIS
#include <string.h>
char *strchr(s, c)

char *s;
char c;

Arguments
<s> The address of the character-string to search

<c> The character to search for

Returns

strchr

The address of the first occurrence of the character in the string, or (char *) NULL if the string
does not contain the character

DESCRIPTION
The strchr function searches the character-string with the address <s> for the first occurrence of
the character <c>. If the string contains the character, strchr returns as its result the address of
the first occurrence of the character. Otherwise, strchr returns (char *) NULL.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: index{), strrchr{)

S-40

strcmp

strcmp
Compare two character-strings.

SYNOPSIS
#include <string.h>
int strcmp(sl, s2)

char *sl;
char *s2;

Arguments
<s1> The address of the first string to compare

<s2> The address of the second string to compare

Returns
A value less than, equal to, or greater than zero, if the character-string referenced by < s1 > is
lexicographically less than, equal to, or greater than the character-string referenced by <s2>

DESCRIPTION
The strcrnp function lexicographically compares the character-string referenced by < s1 > with
the character-string referenced by < s2> and returns as its result a value that indicates the result of
that comparison. That value is less than, equal to, or greater than zero, indicating that the
character-string referenced by < s1 > is lexicographically less than, equal to, or greater than the
character-string referenced by <s2>.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strncmp()

4400 Series C Reference S-41

strcmpci
Compare two character-strings (case insensitive).

SYNOPSIS
#include <string.h>
int strcmpci(sl, s2)

char *sl;
char *s2;

Arguments
<s1> The address of the first string to compare

<s2> The address of the second string to compare

Returns

strcmpci

A value less than, equal to, or greater than zero, if the character-string referenced by <s1> is
lexicographically less than, equal to, or greater than the character-string referenced by < s2>

DESCRIPTION
This function lexicographically compares the character-string referenced by <s1> with the
character-string referenced by <s2> using case insensitive comparisons and returns as its result a
value which indicates the result of that comparison. That value is less than, equal to, or greater
than zero, indicating that the character-string referenced by < s 1> is lexicographically less than,
equal to, or greater than the character-string referenced by <s2>.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

This is not a standard System V library function.

SEE ALSO
C Library: strcmp(), strncmp(), strncmpci()

S-42

strcpy

strcpy
Copy a character-string.

SYNOPSIS
#include <5tring.h>
char *5trcPY(51, 52)

char *51;
char *52;

Arguments
<s 1 > The address of the target buffer

<s2> The address of the character-string to copy

Returns

DESCRIPTION
The strcpy function copies the character-string referenced by < s2> into the buffer with the
address < sl >. The strcpy function returns the address of the target buffer as its result. .

NOTES
The result of the strcpy function is always a null-terminated character-string.

The standard C library does not define the behavior of overlapping data movement, so using
overlapping data movement may result in differing behavior on different systems.

The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strncpy()

4400 Series C Reference S-43

strcspn
Detennine the unlike character-count.

SYNOPSIS
#include <string.h>
int strcspn(sl, s2)

char *sl;
char *s2;

Arguments
<s1> The address of the character-string to examine

<s2> The address of the character-string containing the characters to search for

Returns

strcspn

The length of the initial segment of <s1 > containing none of the characters found in <s2>

DESCRIPTION
The strcspn function examines the character-stri~g with the address < s1 > and detennines the
length of the initial character segment containing none of the characters found in the character
string with the address <s2>. The strcspn function returns this count as its result.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strspn()

S-44

strerror

strerror
Return a pointer to a message describing the specified error number.

SYNOPSIS
char *strerror(e num)

int e=num:

Arguments
<e _ num> The error number whose associated error message should be returned.

A pointer to the error message associated with <e _ num>.

DESCRIPTION
If < e _ num> is greater than or equal to zero but less than 512, the function gets the error message
from the file Igen/errors/system.

If <e_num> is greater than or equal to 512 but less than 1024, it gets the message from the file
Igenlerrorsllocal using ke_num> % 512) as the error number. If <e_num> is greater than or
equal to 1024, the function gets the error message from a file whose name is of the form
Igenlerrorslerrorfile%4.4u where "%4.4u" is replaced by «<e_num>-1024) / 256), using
ke_num> % 256) as the error number.

NOTES
This function returns a pointer to the message
No message for error number =

followed by the value of <e_num> if it could not find a message for the current value of
<e num>.

This function initializes the global variable sys _ nerr and the global table sys _ errlist.

This is an ANSI standard library function.

SEE ALSO
C Library: errno, _ierrmsg(), perror(), sys _ errlist, sys _ nerr

4400 Series C Reference S-45

strlen
Determine the length of a character-string.

SYNOPSIS
#include <string.h>
int strlen(s)

char *s;

Arguments
<s> The address of a character-string

Returns
The number of characters in the character-string

DESCRIPTION

strlen

The strlen function determines the length of character-string referenced by < s> and returns that
value as its result.

The strlen function determines the length of the character-string by counting the number of
characters that are not null-characters, beginning at the address < S>, and continuing until a null
character is found.

NOTES
A null-string (",') has a length of zero.

The include-file <string.h> defines the string-handling functions in the C library.

S-46

strncat

strncat
Concatenate one character-string onto another.

SYNOPSIS
#include <string.h>

int n;

Arguments
<s 1> The address of the target character-string

<s2> The address of the character-string to concatenate onto <s 1 >

<n> The maximum number of characters to concatenate

Returns
<s1>

DESCRIPTION
The strncat function appends at most < n> characters from the character-string referenced by
<s2> onto the character-string referenced by <sl >. It returns as its result <sl >.

NOTES
The function always appends a null-character onto the characters appended onto < sl > from
<s2>. The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strcat()

4400 Series C Reference S-47

strncmp
Compare two character-strings.

SYNOPSIS
#include <string.h>
int strncmp(sl, s2, n)

char *sl;
char *s2;
int n;

Arguments
<s1> The address of the first string to compare

<s2> The address of the second string to compare

<n> The maximum number of characters to compare

Returns

strncmp

A value less than, equal to, or greater than zero, if the first <n> characters in the character-string
referenced by <sI> is lexicographically less than, equal to, or greater than the first <n>
characters in the character-string referenced by < s2>

DESCRIPTION
The strncmp function lexicographically compares a maximum of <n> characters from the
character-string referenced by < sI > with a maximum of < n> characters of the character-string
referenced by < s2>. The strncmp function returns as its result a value that indicates the result of
that comparison. That value is less than, equal to, or greater than zero, indicating that the first
< n> characters of the character-string referenced by < s I> is lexicographically less than, equal to,
or greater than the fist < n> characters of the character-string referenced by < s2>.

S-48

strncmp

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strcmp()

4400 Series C Reference S-49

strncmpci

strncmpci
Compare two character-strings (case insensitive).

SYNOPSIS
#include <8tring.h>
int 8trncmpci(81, 82, n)

char *81;
char *82;
int n;

Arguments
<s1> The address of the first string to compare

<s1> The address of the second string to compare

<n> The maximum number of characters to compare

Returns

A value less than, equal to, or greater than zero, if the first < n> characters in the character-string
referenced by < sl > is lexicographically less than, equal to, or greater than the first < n>
characters in the character-string referenced by < s2>

DESCRIPTION
This function lexicographically compares a maximum of < n> characters from the character
string referenced by < sl > with a maximum of < n> characters of the character-string referenced
by <s2> and returns as its result a value which indicates the result of that comparison. The
comparison is done ignoring the case of all letters. That value is less than, equal to, or greater
than zero, indicating that the first < n> characters of the character-string referenced by <sl> is
lexicographically less than, equal to, or greater than the fist < n> characters of the character-string
referenced by <s2>.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

This is not a standard System V library function.

S-50

strncmpci

SEE ALSO
C Library: strcmp(), strcmpci(), strncmp()

4400 Series C Reference S-51

strncpy

strncpy
Copy a character-string.

SYNOPSIS
#include <string.h>

int n;

Arguments
<s 1 > The address of the target buffer

<s2> The address of the character-string to copy

<n> The maximum number of characters to copy

Returns

<s1>

DESCRIPTION
The strncpy function copies characters from the character-string referenced by <s2> into the
buffer whose address is < sl > until < n> characters have been copied. If a null is found in < s2>
before < n> has been copied, then it will place nulls at the destination. Strncpy returns the
address of the target buffer as its result.

NOTES
The strncpy function does not append a null-character to the copied characters. The standard C
library does not define the behavior of overlapping data movement, so using overlapping data
movement may result in differing behavior on different systems. The include-file <string.h>
defines the string-handling functions in the C library.

SEE ALSO
C Library: strcpy()

S-52

strpbrk

strpbrk
Find the first occurrence of any of a list of characters in a character-string.

SYNOPSIS
#include <string.h>
char *strpbrk(sl, s2)

char *sl;
char *s2;

Arguments
<s 1 > The address of the character-string to search

<s2> The address of the character-string containing the list of characters to search for

Returns

The address of the first occurrence of any of the characters in <s2> found in <sl>, or (char *)
NULL if none of the characters in < s2> were found in < s2>

DESCRIPTION
The strpbrk function searches the character-string with the address < sl > for the first occurrence
of any character in the character-string with the address < s2> and returns as its result the address
of that character in < sl >. If the function fails to find any of the characters in < s2> in the
character-string <sl>, it returns (char *) NULL as its result.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strchrO

4400 Series C Reference S-53

strrchr
Find the last occurrence of a character in a character-string.

SYNOPSIS
#include <string.h>
char *strrchr(s, c)

char *s;
char c;

Arguments
<s> The address of the character-string to search

<c> The character to search for

Returns

strrckr

The address of the last occurrence of the character in the string, or (char *) NULL if the string
does not contain the character

DESCRIPTION
The strrchr function searches the character-string with the address < s> for the last occurrence of
the character <c>. If the string contains the character, the strrchr function returns as its result
the address of the last occurrence of the character. Otherwise, the function returns (char *)
NULL.

NOTES
The include-file < string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: rindex(), strchrO

S-54

strspn

strspn
Detennine the like character-count.

SYNOPSIS
tinclude <string.h>
int strspn(sl, s2)

char *sl;
char *s2;

Arguments
<s1> The address of the character-string to examine

<s2> The address of the character-string containing the characters to search for

Returns
The length of the initial segment of < s1 > containing only characters found in < s2>

DESCRIPTION
The strspn function examines the character-string with the address <s1> and detennines the
length of the initial character segment containing only characters found in the character-string
with the address <s2>. The strspn function returns this count as its result.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strcspn()

4400 Series C Reference S-55

strstr
Find a substring within a character-string.

SYNOPSIS
#include <string.h>
char *strstr(sl, s2)

char *sl;
char *s2;

Arguments

<s 1 > The address of the string in which to search

<s2> The address of the substring to search for

Returns

The address of the substring < s2> in <sf> if found, or (char *) NULL if none

DESCRIPTION

.tr.tr

This function searches for the substring <s2> in the string <sf>. It returns as its result the
address of the substring if found,or (char *) NULL if not.

NOTES
The include-file <string .h> defines the string-handling functions in the C library.

This is an ANSI standard library function.

SEE ALSO
C Library: strspn(}, strstrci(), strtok()

S-56

strstrci

strstrci
Find a substring within a character-string (case insensitive).

SYNOPSIS
#include <string.h>
char *strstrci(s1, s2)

char *s1;
char *s2;

Arguments
<s 1> The address of the string in which to search

<s21> The address of the substring to search for
The address of the substring < s2> in < sl > if found, or (char *) NULL if none

DESCRIPTION
This function searches for the substring < s2> in the string < sl > using case insensitive compares.
Upper case letters will match lower case letters. It returns as its result the address of the substring
if found, or (char *) NULL if not.

NOTES
The include-file <string.h> defines the string-handling functions in the C library.

This is not a standard System V library function.

SEE ALSO
C Library: strspn(}, strstr(), strtok()

4400 Series C Reference S-57

strtoi

strtoi
Convert the digits in a character-string to an into

SYNOPSIS
int _strtoi(str, ptr, base)

char *stri
char **ptri
int basei

Arguments

<str> The address of the character-string to convert to an integer

<ptr> The address of the char * to contain the address of the character which terminates the
conversion, or (char **) NULL if none

<base> The base of the digits

Returns
The value generated from the character-string

DESCRIPTION
The strtoi function converts the character-string referenced by < str> to an into The strtoi
function considers the digits to be in the base specified by <base> and assigns the address-of the
character ending the conversion to the char * referenced by <ptr>. The character that ends the
conversion is either the null-character terminating the string or the first character that was
inconsistent with the base. If <ptr> is (char **) NULL, the _strtoi function does not make this
assignment.

If the argument <base> is greater than 0 and less than or equal to 36, that value is the base of the
digits in the character-string. (For bases between 11 and 36, the alphabetic characters A through
Z inclusive, in lexicographic order, are the digits of the base. The _strtoi function considers
lower-case characters to be the same as upper-case characters.) If the base is 0, the function
examines the character-string to determine the base. If Ox or Ox follows the optional white-space
and sign, the base is assumed to be 16. Otherwise, if 0 follows the optional white-space and sign,
the base is assumed to be 8. Otherwise, the base is assumed to be 10. If the base is less than 0 or
greater than 36, the base is assumed to be to.

S-58

strtoi

NOTES
The _strtoi function ignores overflow conditions.

SEE ALSO
C Library: atoh(), atoi(), atoW, atoo() , atos(), strtol() - --

4400 Series C Reference S-59

strtok
Extract the next token from a character-string.

SYNOPSIS
#include <string.h>
char *strtok(81, 82)

char *81;
char *82;

Arguments
<s 1 > The address of the character-string to search, or (char *) NULL

<s2> The address of the character-string containing the token separators

Returns
The address of the first character of the next token, or (char *) NULL if none

DESCRIPTION

strtok

If the argument < sl > is not (char *) NULL, the strtok function begins scanning with the first
character in the character-string with the address < sl > for the first character that is not in the
token-separator character-string with the address <s2>. Otherwise, the strtok function begins
scanning at the continuation-address set by a previous call, if any. If the strtok function finds no
characters that are not token-separators, the function sets the continuation-address to (char *)
NULL and returns (char *) NULL as its result. Otherwise, it remembers the address of that
character as the value the strtok function returns as its result and continues scanning, looking for
the next character that is a token-separator.

If strtok finds a token-separator, it changes that character to a null-character ('\0'), and sets the
continuation-address to that of the character following that token-separator. Otherwise, strtok
sets the continuation-address to (char *) NULL. The function then returns the remembered
address, the address of the token, as its result.

S-60

s/rtok

NOTES
The strtok function always returns (char *) NULL if it is called with the first argument (char *)
NULL and there is no continuation-address. There is no continuation address if the function has
not been called with the first argument something other than (char *) NULL or the function
returned (char *) NULL the last time it was called.

The separator string referenced by <s2> does not have to be the same string from one call to this
function to another.

If the function returns as its result something other than (char *) NULL, that result always
references a character-string (a null-terminated string of characters).

The include-file <string.h> defines the string-handling functions in the C library.

SEE ALSO
C Library: strchr(), strpbrk(), strrchr()

4400 Series C Reference S-61

strtol

strtol
Convert the digits in a character-string to a long.

SYNOPSIS
long strtol(str, ptr, base)

char *str;
char **ptr;
int base;

Arguments
<str> The address of the character-string to convert to an integer

<ptr> The address of the char * to contain the address of the character that terminates the
conversion, or (char **) NULL if none

<base> The base of the digits

Returns
The value generated from the character-string

DESCRIPTION
The strtol function converts the character-string referenced by <str> to a long. The strtol
function considers the digits to be in the base specified by <base> and assigns the address of the
character ending the conversion to the char * referenced by <ptr>. The character that ends the
conversion is either the null-character terminating the string or the first character that was
inconsistent with the base. If <ptr> is (char **) NULL, the strtol function does not make the
assignment.

If the argument <base> is greater than 0 and less than or equal to 36, that value is the base of the
digits in the character-string. (For bases between 11 and 36, the alphabetic characters A through
Z inclusive, in lexicographic order, are the digits of the base. The strtol function considers
lower-case characters to be the same as upper-case characters') If the base is 0, the function
examines the character-string to determine the base. If Ox or Ox follows the optional white-space
and sign, the base is assumed to be 16. If 0 follows the optional white-space and sign, the base is
assumed to be 8. Otherwise, the base is assumed to be 10. If the base is less than ° or greater
than 36, the base is assumed to be 10.

S-62

strtol

NOTES
The strtol function ignores overflow conditions.

SEE ALSO
C Library: atoh(), atoi(), atol(), atoo() , atos() , strtoi() - - - -

4400 Series C Reference S-63

stty
Set the characteristics of an open character-device.

SYNOPSIS
#include <errno.h>
#include <sys/sgtty.h>
int stty(fildes, buf)

int fildes;
struct sgttyb *buf;

Arguments
<fildes> A file descriptor for the open character-device

<buf> The address of the structure to contain the new characteristics

Returns
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION

stty

The sUy function changes the characteristics of the open character-device referenced by the file
descriptor </ildes> and to those described by the data in the structure referenced by <bu/>. The
sUy function returns zero as its result if it successfully changes the characteristics of the open
character-device. Otherwise, it returns -1 with <ermo> set to the system error code.

The sUy function fails if the file descriptor is out of range, does not reference an open file, or
does not reference an open character-device.

The function call expects <bu/> to be the address of a structure that is defined as:

S-64

struct sgttyb
{

} ;

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

sg_flag;
sg_delay;
sg_kill;
sg_erase;
sg_speed;
sg_prot;

stty

The sgJlag bit-string describes the current mode of the terminal. The values in the bit-string are:

RAW
ECHO
XTABS
LCASE
CRMOD
SCOPE
CBREAK
CNTRL

OxOl
Ox02
Ox04
Ox08
OxlO
Ox20
Ox40
Ox80

If RAW is set, the operating system considers the character-device to be in raw mode. In raw
mode, the operating system suspends all processing of input and output. If RA W is clear,
the operating system considers the character-device to be in non-raw mode (sometimes
called cooked mode). In cooked mode, the operating system processes characters
dependent upon the setting of the other bits in the bit-string.

If ECHO is set, the operating system echoes characters read to the character-device. If ECHO is
clear, the operating system does not echo characters to the device.

If XTABS is set, the operating system expands tab-characters to spaces during output operations
so that the next character written to the device is written to a column number that is an
even multiple of eight. If XTABS is clear, the operating system writes tab-characters to the
character-device with no expansion. Tab-characters are defined by the system as Ox09 and
are defined by the C compiler as '\t'.

The LCASE mode is ignored, and is replaced by the CAPS key on the keyboard.

If CRMOD is set, the operating system writes a line-feed character to the character-device after
every carriage-return character written. If CRMOD is clear, the operating system disables
this feature.

If SCOPE is set, the operating system writes a backspace-character (Ox08), followed by a space
character, followed by another backspace-character to the character-device when a
character-cancel' character is read from the character-device. If SCOPE is clear, the
operating system disables this feature.

If CBREAK is set, the operating system considers the terminal to be in single-character mode. In
this mode, the operating system reads data from the device one character at a time, passing
each character to the calling task. If CBREAK is clear, the operating system considers the.
terminal to be in line mode, where it reads data from the device one line at a time, passing
data to the calling task when a terminator is read.

If CNTRL is set, the operating system ignores all characters read from the character-device that
are outside of the range Ox20 through Ox7E inclusive, except for the line-terminator
character (carriage return), the keyboard-interrupt character (control-'c'), the quit-interrupt
character (control-'\'), the character-cancel character, the line-cancel character, and the
output-stop and output-start characters if any.

4400 Series C Reference S-65

stty

The sg_ delay bit-mask indicates which characters, if written to the character-device, cause the
operating system to pause before writing another character to the character-device. The values in
the sg_ delay bit string are:

DELNL
DELCR
DELTB
DELVT
DELFF

Ox03
OxOC
OxlO
Ox20
Ox20

All of these modes are ignored on the 4400 Series.

The sg_ kill value defines line-cancel character for the character-device. The operating system
treats this character like any other character if the character-device is in single-character or raw
mode. The default line-cancel character is control-'x' (OxI8).

The sg_erase value defines the character-cancel character for the character-device. The operating
system treats this character like any other character if the character-device is in single-character
or raw mode. The default character-cancel character is the backspace character (control- 'h',
Ox08).

The sg_speed bit-mask contains configuration infonnation for the character-device. Not all
hardware supports the dynamic changing of the configuration. The values in sg_speed for the
various configurations are:

DSystem Call
DSystem Call
DC Library
DC Library
DSystem Call
DC Library
DC Library
DC Library
CONFIG

EVEN
ODD
EVEN
ODD
NONE
NONE
EVEN
ODD

OxOO
Ox04
Ox08
OxOC
OxlO
Ox14
OxI8
OxIC
OxIC

7 data bits, 2 stop bits, even parity
7 data bits, 2 stop bits, odd parity
7 data bits, 1 stop bit, even parity
7 data bits, 1 stop bit, odd parity
8 data bits, 2 stop bits, no parity
8 data bits, 1 stop bit, no parity
8 data bits, I stop bit, even parity
8 data bits, I stop bit, odd parity
mask for extracting configuration infonnation

The sgyrot field defines the type of start-stop protocol expected by the operating system for the
character-device, and contains the baud rate used by the character-device. The values defined in
that bit-string defining the protocol are:

ESC Ox80
aXON Ox40
ANY Ox20
TRA~NS " 1 " VAJ...V

IXON Ox08

S-66

stty

If ESC is set, the operating system stops writing to the character-device when it reads an escape
character (OxIB) from the device. The operating system resumes writing to the character
device when it reads another escape-character from the device.

If aXON is set, the operating system stops writing to the character-device when it reads an xoff
character (Ox13). The operating system resumes writing to the character-device when it
reads an xon-character (Oxll).

If ANY is set, the operating system uses any character read from the character-device as a
substitute for the xon-character.

If TRANS is set, the operating system xon-xoff is transparent for raw mode (see the bit-string
sgJIag discussion).

The IXON mode is ignored on the 4400 Series.

The baud rates are defined in the field as:

BAUD RATE OxOF baud-rate mask
B75 Ox01 75 baud
B110 Ox02 110 baud
B134 Ox03 134.5 baud
B150 Ox04 150 baud
B200 Ox05 200 baud
B300 Ox06 300 baud
B600 Ox07 600 baud
B1200 Ox08 1200 baud
B1800 Ox09 1800 baud
B2400 OxOA 2400 baud
B3600 OxOB 3600 baud
B4800 OxOC 4800 baud
B7200 OxOD 7200 baud
B9600 OxOE 9600 baud
B19200 OxOF 19200 baud

Not all hardware supports all of these baud rates and not all hardware allows the dynamic
changing of baud rates.

The include-file < sys/sgtty.h> contains the stlUcture and data definitions described above.

4400 Series C Reference 5-67

stty

ERRORS REPORTED
EBADF The file descriptor does not reference an open file or the file is not open in the

proper mode

EINVAL

ENOTTY

An argument to the function is invalid

The file is not a character device

SEE ALSO
System Call: creat(), dup(), dup20, gtty(}, open(}, pipeO

Command: conset

S-68

sync

sync
Update the file-system.

SYNOPSIS
int sync ()

Arguments
None

Returns
Zero

DESCRIPTION
The sync function updates the file-system so that the media match the internal description of the
file-system. The sync function always returns zero as its result.

ERRORS REPORTED
None

SEE ALSO
Command: update

4400 Series C Reference S-69

This is a global table containing references to messages describing system error codes.

SYNOPSIS
extern char *sys_errlist[];

DESCRIPTION
The sys _ errlist table contains references to character-strings describing the meaning of system
error code values.

NOTES
Before using a system error code as an index into this table, compare it against the global variable
sys _ nerr. If it is greater than or equal to that variable, do not use it as an index into the table.
Sometimes system error codes get added to the system before the list of error messages gets
updated.

The character-strings are not terminated by an end-of-line character. Naturally, since they are
character-strings, the characters in the strings are terminated by a null-character.

SEE ALSO
C Library: erma, _ierrmsgO, perrarO, sys _ nerr

5-70

The number of system error messages referenced by the global table" sys _ errlist".

SYNOPSIS
extern int sys_nerr;

DESCRIPTION
The sys_nerr external variable contains the the number of system error messages referenced by
the global table sys errlist. Before using an error code as an index into that table, it should be
checked against this variable as error codes may be added to the system before the associated
message is added to the global table.

NOTES
This variable is -1 if the system error message table has not been initialized by _ierrmsgO.

SEE ALSO
C Library: errno, perror(), sys _ errlist

4400 Series C Reference S-71

system

system
Issue a shell command.

SYNOPSIS
int system(string)

char *string;

Arguments
<string> The address of a character-string containing a shell command

The target buffer address

Returns
Exit status of /bin/shell, or -1 with errno set to the system error code

DESCRIPTION
This function causes <string> to be passed to /bin/shell as input, as if the string had been typed
as a command at a terminal. The process waits until the shell has completed, then returns the exit
status of the shell.

NOTES
None

SEE ALSO
System Call: vfork{}, execl{}

Command: shell

S-72

tan

tan
Calculate the tangent of an angle.

SYNOPSIS
#include <math.h>
double tan(r)

double r;

Arguments

<r> The angle whose tangent is to be computed. The tangent of the angle <r>.

Returns
Zero

DESCRIPTION
This function calculates the tangent of the angle <r>. The function interprets the value <r> as an
angle expressed in radians. It returns the calculated value as its result.

The function detects an overflow error if the result is beyond the range of the data type .LG
double. If the function detects an overflow error, it calls "rnatherrO", passing to it the address of
a filled .LG struct exception structure. It sets the "type" entry to OVERFLOW, "name" to the
address of the character-string "tan", and" argl" to <r>.

If "matherrO" returns 0, the function sets "ermo" to ERANGE. The return value, which is
system-dependent, is given in the tables in Section 3. If "matherrO" returns something other than
0, the function returns as its result the "retval" entry in the structure whose address was passed to
" th rr()" rna e .

ERRORS REPORTED
None

SEE ALSO
System Call: atanO, atan2{), cos{), matherr{), sinO

4400 Series C Reference T-l

tanh
Calculate the hyperbolic tangent of an angle.

SYNOPSIS
#include <math.h>
double tanh(x)

double x;

Arguments

tanh

<x> The angle whose hyperbolic tangent is to be computed. The tangent of the angle
<x>.

Returns
Zero

DESCRIPTION
This function calculates the hyperbolic tangent of the value <x>. The hyperbolic tangent of <x>
is defined as sinh(<x>)/coshC<x». It returns that value as its result.

ERRORS REPORTED
None

SEE ALSO
System Call: cosh(}, expO, matherr(}, sinhO

T-2

time

time
Get the current system-time value.

SYNOPSIS
long time (ptime)

long *ptime;

Arguments
<ptime> The address of the long to receive the system-time value or (long *) NULL

Returns
The current system-time value.

DESCRIPTION
The time function gets the current system-time value (the current time-of-day) from the operating
system and returns that value as its result. If <ptime> is not (long *) NULL, the time function
stores the system-time value at the location referenced by <ptime>.

ERRORS REPORTED
None

NOTES
The operating system represents time as the number of seconds that has elapsed since the epoch.
It defines the epoch as 00:00 (midnight) January 1, 1980 Greenwich Mean Time.

SEE ALSO
System Call: stime(), times ()

Command: date

4400 Series C Reference T-3

times
Get the CPU-usage infonnation for the current task.

SYNOPSIS
#include <sys/times.h>
int times (ptimes)

struct tms *ptimes;

Arguments

times

<ptimes> The address of the structure to receive the task's current CPU-usage information

Returns
Zero

DESCRIPTION
The times function gets the current task's CPU-usage infonnation and places that infonnation in
the structure with the address <ptimes>. The CPU-usage infonnation includes measurements of
the Central Processing Unit (CPU) use for the task, the operating system CPU use on behalf of
the task, the total CPU use of the children of the task, and total operating system CPU -use on
behalf of the children of the task. The system measures CPU use in hundredths of a second. The
times function always returns zero as its result.

The times function expects <ptimes> to be the address of a structure that is defined as:

struct tms
{

} ;

long
long
long
long

tms utime;
tms stime;
tms cutime;
tms cstime;

The tms_utime value contains CPU-time used by the current task. tms_stime contains the CPU
time used by the operating system in behalf of the current task. tms _ cutime contains the total
CPU-time used by all of the descendants of the task that have terminated. tms_cstime contains
the total CPU-time used by the operating system in behalf of all of the descendants of the task
that have tenninated. The include-file < sysltimes.h> defines this structure.

T-4

times

ERRORS REPORTED
None

NOTES
The operating system updates the CPU-usage information of the task for its descendants when a
direct descendant task terminates. The operating system continuously updates the task's CPU
usage information for itself.

SEE ALSO
System Call: fork{), time {), vfork{)

Command: shell

4400 Series C Reference T-5

timezone
Current time zone value.

SYNOPSIS
#include <time.h>
\xtern long timezone;

DESCRIPTION

timezone

The timezone variable contains the current time zone value that is the number of seconds the
zone is west of (behind) Greenwich Mean Time (Universal Coordinated Time).

This variable is initialized automatically by localtimeO and ctimeO and may be initialized
explicitly by tzsetO. Before initialization, the value is zero.

NOTES
The include-file <time.h> defines this external variable along with other external variables and
functions.

SEE ALSO
C Library: ctime(), daylight, localtime(), tzname, tzset()

T-6

toascii

toascii
Generate a value that is within the range of valid ASCII characters.

SYNOPSIS
#include <ctype.h>
int toascii(c)
int c;

Arguments

<c> The value to be examined

Returns

<c> & Ox7F

DESCRIPTION
The toascii function generates from the value <c> a value that is in the range of ASCII characters
and returns that value as its result. It does this by anding <c> with the bit-string Ox7F (127).
The result is a value between OxOO and Ox7F inclusive, which is the range of ASCII characters.

NOTES
The argument <c> is cast into an int if it is not already of that type. The include-file <ctype.h>
defines this function and other functions that test and manipulate characters. The include-file
<ctype.h> must be included in the C source before the first reference to the toascii function.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower() , isprim() ,
ispunct(), isspace(), isupper(), isxdigit(), tolower(), _to!ower(), toupper(), _toupper()

4400 Series C Reference T-7

tolower
Convert an upper-case character to a lower-case character.

SYNOPSIS
#include <ctype.h>
int _tolower(c)
int c;

Arguments
<c> The value to convert

Returns
The converted value

DESCRIPTION

tolower

The tolower function converts an uppercase alphabetic ASCII character to its equivalent
lowercase alphabetic character and returns that value as its result.

NOTES
This function is implemented as a macro. It has no side-effects but the result of the function is
defined only for values of <c> that are upper-case alphabetic ASCII characters. The argument
<c> is cast into an int if it is not already of that type. The include-file <ctype.h> defines this
function and other functions that test and manipulate characters. It must be included in the C
source program before the first reference to this function.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), ispunct{),
isspace(), isupperO, isxdigit(), toascii(), tolower(}, toupper(), _toupper()

T-8

_toupper

_toupper
Convert a lower-case character to an upper-case character.

SYNOPSIS
*include <ctype.h>
int _toupper(c)
int Ci

Arguments
<c> The value to convert

Returns
The converted value

DESCRIPTION
The _ toupper function converts a lowercase alphabetic ASCII character to its equivalent
uppercase alphabetic character and returns that value as its result.

NOTES
The _toupper function is implemented as a macro. It has no side-effects but its result is only
defined for values of <c> that are lowercase alphabetic ASCII characters. The argument <c> is
cast into an int if it is not already of that type. The include-file <ctype.h> defines this function
and other functions that test and manipulate characters. The include-file <ctype.h> must be
included in the C source before the first reference to the _toupper function.

SEE ALSO
C Library: isalnum(), isalpha(), isascii(), iscntrl(), isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(), tolower(}, _tolower(), toupper()

4400 Series C Reference T-9

truncf
Set the size of an open file.

SYNOPSIS
#include <errno.h>
int truncf(fildes)

int fildes;

Arguments
<fildes> A file descriptor for the file whose size is to change

Returns
Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

truncI

The truncf function sets the size of the open file referenced by the file descriptor <Jildes> so that
its end-of-file is the current file position. If that position is before the existing end-of-file, truncf
truncates the file. If that position is beyond the existing end-of-file, truncf extends the file. The
function returns zero as its result if it successfully sets the size of the specified file. Otherwise, it
returns -1 with <errno> set to the system error code.

The trunci function fails if the file descriptor <Jildes> is not a valid file descriptor, does not
reference an open file, or does not reference a file that has been opened for writing.

ERRORS REPORTED
EACCES

EBADF

EINVAL

T-IO

The file descriptor references a file that is not open for writing

The file descriptor does not reference an open file or the file is not open in the
proper mode

An argument to the function is invalid

trunci

NOTES
If the truncf function truncates the file, all data beyond the new end-of-file is lost.

If the truncf function extends the file, it does so without allocating to the file any blocks of the
medium where the file resides. Functions reading from the extended space read zeros.

SEE ALSO
System Call: creat(), dup(), dup2(), openO, pipe()

4400 Series C Reference T-ll

ttyname

ttyname
Generate the pathname for a terminal.

SYNOPSIS
int fildes;

Arguments
<fildes> A file descriptor for the terminal

Returns
The address of a character-string containing a pathname for the terminal or (char *) NULL if
<Ii/des> is not a file descriptor for a terminal residing in the directory Idev.

DESCRIPTION
The ttyname function determines if the file referenced by <Ii/des> is a character-special file (a
terminaI), and is reached by a pathname that is the directory Idev. If the file satisfies these
conditions, ttyname generates a complete pathname for the file and returns as its result the
address of a character-string containing that complete pathname. Otherwise, ttyname returns as
its result (char *) NULL.

NOTES
The character-string addressed by the result of the ttyname function is in static memory and is
overwritten by subsequent calls to ttyname. A file descriptor is an index into the open file table
of the operating system. The system functions creatO, dupO, dup20, openO, and pipeO return a
file descriptor as their result. The filenoO function determines the file descriptor of a stream.

SEE ALSO
C Library:jileno(), isatty()

System Call: creat(), dup(), dup2(), open(}, pipe(), ttyslot()

T-12

ttyslot

ttyslot
Get the terminal number of the controlling terminal for the task.

SYNOPSIS
int ttyslot ()

Arguments
None

Returns

The terminal number of the controlling terminal for the task or zero if none

DESCRIPTION
The ttyslot function gets the terminal number of the controlling terminal for the task and returns
that value as its result. If the task has no controlling terminal, ttyslot returns zero as its result.

ERRORS REPORTED
None

NOTES
The operating system detaches a task from its controlling terminal if the task has its standard
input file, its standard output file, and its standard error file closed simultaneously.

SEE ALSO
C Library: ttyname()

4400 Series C Reference T-13

tzname
Time-zone name abbreviations.

SYNOPSIS
#include <time.h>
\xtern char *tzname[2];

DESCRIPTION

tzname

The tzname external variable is two-element array of references to character-strings. The first
element references the three-character abbreviated name of the standard-time time zone,
contained in a character-string. The second references the three-character abbreviated name of
the daylight-time time zone, contained in a character-string. A (char *) NULL value indicates
that tzname has not been initialized. A null-string indicates that the abbreviated name is not
known.

The list is initialized automatically by localtimeO and ctimeO and may be initialized explicitly
by tzsetO. The values in the list are (char *) NULL before initialization.

SEE ALSO
C Library: ctime(), daylight, localtime(), timezone, tzset()

T-14

tzset

tzset
Initialize external variables containing time parameters.

SYNOPSIS
void tzset ()

Arguments
None

Returns
Void

DESCRIPTION
The tzset function initializes the global variables daylight, timezone, and tzname according to
the current system configuration.

The daylight variable is non-zero if the standard U.S.A. daylight-savings time conversion is
applied to all time conversions from system time or Greenwich Mean Time (GMT) to the time in
the local time zone, otherwise it is zero. The timezone variable contains the number of seconds
the current time zone is west of GMT. The tzname array contains two elements, the first is the
address of a character-string containing the abbreviation for the current standard time-zone name,
the second is the address of a character-string containing the abbreviation for the current daylight
time-zone name. If one or the other is not known, the strings are null-strings.

NOTES
The tzset function is called automatically by localtimeO and ctimeO.

SEE ALSO
C Library: ctime(), daylight, localtime(}, timezone, tzname

4400 Series C Reference T-15

umask

umask
Change the file-creation permissions mask for the task.

SYNOPSIS
int umask(perms)

int perms;

Arguments
<perms> A bit-string containing the new file-creation permissions mask

RETURNS

The previous value of the file-creation permissions mask

DESCRIPTION
The umask function changes the file-creation permissions mask for the task to the low-order six
bits of the bit-string <perms>. The umask function returns as its result the previous value of the
file-creation permissions mask for the task.

The file-creation permissions mask describes the permissions that may not be applied to a created
file. The file-creation function, creatO, ands the one's-complement of the file-creation
permissions mask of the task with the bit-string describing the permissions for the file being
created, and applies the resulting permissions bit-string to the created file.

ERRORS REPORTED
None

4400 Series C Reference U-I

umask

NOTES
A task inherits its file-creation permissions mask from its parent.

SEE ALSO
System Call: creat{) ,fork() ,fstatO, stat{), vjork()

U-2

umount

umount
Unmount a mounted device.

SYNOPSIS
#include <errno.h>
int umount(pathnam)

char *pathnam;

Arguments

<pathnam> A character-string containing a pathname to the device to unmount

RETURNS

Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION
The umount function unmounts the mounted device reached by the pathname in the character
string referenced by <pathnam>. The function returns zero if it successfully unmounts the
device, Otherwise, it returns -1 with <ermo> set to the system error code.

The umount function fails if the path in <pathnam> cannot be followed or contains a file which
is not a directory. The umount function also fails the pathname does not reach a file, the file it
reaches is not a device, the device is not mounted, or the device is busy.

ERRORS REPORTED
EBDEV

EBUSY

EMSDR

ENMNT

ENOENT

<pathnam> reaches something other than a device

The device is busy

The path in <pathnam> cannot be followed

The specified device is not mounted

pathnam does not reach a device

4400 Series C Reference U-3

umount

NOTES
A device that was mounted for read and write access but was not unmounted correctly cannot be
mounted again until it is repaired by /etcldiskrepair.

A device-busy error (EBUSY) usually indicates that a file on the specified device is currently
open or that a task has as its working directory a directory on the device.

SEE ALSO
C Library: addmount(), rmvmount()

System Call: mount{)

Command: /ete/diskrepair, fete/mount, /etclunmount

U-4

ungetc

ungetc
Push a character onto an input stream.

SYNOPSIS
int ungetc(c, stream)
int c;
LE *stream;

Arguments
<c> The character to push onto the stream

<stream> The stream to get the character

Returns
The argument <c> or EOF

DESCRIPTION
If <c> does not equal BOF, the ungetc function pushes (char) <c> onto the standard I/O input
stream <stream>. Ifungetc succeeds, it returns its argument <c>, otherwise it returns EOF.

NOTES
A stream may only have one character pushed onto it at a time. Attempting an ungetcO on a
stream that already has a character pushed onto it results in losing the previously pushed
character. The function returns EOF of the stream referenced by <stream> is not an input
stream. The fseekO and rewindO functions undo the effects of this function. The result of ftellO
does not reflect any character pushed onto the stream.

SEE ALSO
C Library:jdopenO,fgetc(),fopenO,jseek(), getc(), rewind()

4400 Series C Reference U-5

unlink
Remove a link to a file.

SYNOPSIS
#include <errno.h>
int unlink (pathnam)

char *pathnam;

Arguments

unlink

<pathnam> The address of a character-string containing the pathname of the link to be removed

RETURNS
Zero if successful, otherwise -1 with <erma> set to the system error code

DESCRIPTION
The unlink function removes the pathname in the character-string referenced by <pathnam>. If
that pathname is the last that reaches the associated file, the operating system deletes the file.
The unlink function returns zero as its result if it successfully removes the pathname. Otherwise,
it returns -1 with <erma> set to the system error code.

The unlink function fails if the path in <pathnam> cannot be followed or it contains a file which
is not a directory. The unlink function also fails if the pathname does not exist, or the directory
containing the pathname does not grant the current effective user writing permission.

ERRORS REPORTED
EACCES

EMSDR

ENOENT

ENOTDIR

U-6

The directory containing the specified file does not grant writing permission to
the current effective user

Could not follow the path to the file

The pathname does not reach a file

A part of the path is not a directory

unlink

NOTES
The unlink function can remove any entry in any directory that grants writing permission to the
current effective user. That entry can be a directory that is not empty and can be the directories.
and •..

lf the unlink function removes the pathname to an open file, the operating system postpones
deleting that file until it is closed.

SEE ALSO
System Call: creat(), link()

Command: create, link, remove, rename

4400 Series C Reference U-7

urec
Remove an entry from the operating system lock table.

SYNOPSIS
*include <errno.h>
int urec(fildes)

int fildes;

Arguments

<fildes> The file descriptor with the lock table entry the urec function is to remove

RETURNS

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

uree

The urec function removes from the operating system lock table the task's entry for the file
referenced by </ildes>. The function returns zero if it successfully removes the entry, otherwise
-1 with <errno> set to the system error code.

The urec function fails if <fi/des> is not a valid file descriptor or does not reference an open file.

ERRORS REPORTED
EBADF

EINVAL

U-8

The file descriptor does not reference an open file or the file is not open in the
proper mode

An argument to the function is invalid

urec

NOTES
The urec function rebJrns zero as its result if there is no entry in the operating system lock table
for the specified file descriptor.

The operating system permits only one lock per file descriptor for each task.

Placing a lock on a portion of a file stops other tasks from placing a lock on the same portion of
that file. It does not stop reading from and writing to that portion of the file.

SEE ALSO
System Call: lrec{}, read{}, write{}

4400 Series C Reference U-9

utime
Change the last-modification time for a file.

SYNOPSIS
#include <errno.h>
#include <types.h>
int utime(pathnam, ptime)

char *pathnam;
struct *utime;

Arguments

utime

<pathnam> The address of a character-string containing a pathname for the file whose
modification time is to change

<ptime> The address of the the value to set as the file's modification time

RETURNS
Zero if successful, otherwise -1 with <ermo> set to the system error code

DESCRIPTION
The utime function changes the last-modification time for the file reached by <pathnam> to the
system-time value referenced by <ptime>. The utime function requires that the current effective
user be the system manager. The function returns zero if it successfully changes the file's
modification time, otherwise the function returns -1 with <ermo> set to the system error code.

The utime function fails if <pathnam> cannot be followed or <pathnam> contains a file that is
not a directory. The utime function also fails if the pathname does not exist, the file reached by
the pathname is currently open, or the current effective user is not the system manager.

ERRORS REPORTED
EACCES

EBADF

EBUSY

EINVAL

ENOENT

U-IO

The current effective user is not the system manager

The file descriptor does not reference an open file or the file is not open in the
proper mode

The specified file is currently open

An argument to the function is invalid"

The pathname does not reach a file

utime

NOTES
The operating system measures time as a count of seconds since the epoch. It defines the epoch
as 00:00 (midnight) on January 1, 1980, Greenwich Mean Time.

The utime function does not compare the new modification time with the creation time or the
current time, so it is possible to set the modification time of the file to before it's creation date or
to some time in the future.

SEE ALSO
System Call:jstat{), setJtm(), stat{)

Command: dir

4400 Series C Reference U-ll

vJork

vfork
Create a new task.

SYNOPSIS
iinclude <errno.h>
int vfork ()

Arguments
None

Returns
If successful, the child's task-ID to the parent (calling) task and zero to the child (created) task,
otherwise -1 with <ermo> set to the system error code

DESCRIPTION
The vfork function creates a new task (the child task) that is an exact copy of the current task (the
parent task). If the function succeeds, it returns the task-ID of the child to the parent task and
returns zero to the child task. Otherwise, it returns -1 with <ermo> set to the system error code.

The vfork function fails if the current user can not allocate another task, the system task table is
full, or if the current task may not call this function.

The vfork function differs from the forkO function call in that it generates the new task more
efficiently on a virtual memory system. Instead of making a copy of the data in the parents
memory, the child task inherits the memory allocated to the parent task. The child task is not
allowed to call the f~rkO, memmanO, or vforkO functions or any function that may change the
memory configuration such as sbrkO or stackO until after it executes a program using the
execlO, execlpO, execvO, or execvpO functions. The vfork function does not return to the parent
task until the child task terminates or executes a program.

The child task is identical to the parent task in that it has the same task priority, user-ID, effective
user-ID, controlling terminal information, file-creation permissions mask, working directory,
signal handling set-up, profiling information, and allocated memory.

The child task differs from the parent task in that its task-ID is different, its parent task-ID is the
task-ID of the parent task, its file descriptors are exact copies of those in the parent task, and its
system and user CPU times are reset to zero.

4400 Series C Reference V-I

vJork

ERRORS REPORTED
EAGAIN The maximum number of tasks for the user are active or there are no available

entries in the system task table

EVFORK The task shares its memory with its parent and may not call this function

NOTES
A task-ID is a non-negative integer.

This function is the same function as forkO on systems that are not virtual memory systems.

The child task shares its stack with its parent so it should not return from the scope which calls
the vforkO function.

The scope that calls the vforkO function must not have any register variables defined in it.

SEE ALSO
C Library: exit{), _exit()

System Call: execl(), exec/pO, execv(), execvp(},jork(), memman(}, wait(}

V-2

wait

wait
Suspend the task until a child task termhlates.

SYNOPSIS
#include <errno.h>
int wait(ptaskid)

int *ptaskid;

Arguments
<ptaskid> The address of the int to get the termination status of the child task that terminated or

(int *)NULL

Returns
The task-ID of the terminated task or -1 with <errno> set to the system error code

DESCRIPTION
The wait function suspends the current task until a child task terminates. When a child task
terminates, if <ptaskid> is not (int *) NULL, the wait function puts the termination status of the
terminated child into the value referenced by <ptaskid> and returns as its result the task-ID of the
terminated child task.

If the function returns -1, it did not wait for a child task to terminate. The function returns
without a child task terminating if there are no active child tasks or the task catches a signal.

The termination status contains the child task's exit code, the signal number that caused its
termination, and a flag that indicates that it produced a core image file (a core dump). Anding the
termination status with OxFFOO extracts from it the child task's exit code. This is the high-order
8-bits of the argument to exitO (or _ exit()) that terminated the task and typically indicates an
error if it is not zero. Anding the termination status with Ox007F extracts from it the signal
number that caused its termination. This is only non-zero if the child task did not terminate using
the exitO or exitO functions. Anding the termination status with Ox0080 extracts from it the
core-image flag. If the flag is not zero, the child task produced a core image file when it
terminated. Otherwise, it did not produce a core image file.

4400 Series C Reference W-l

ERRORS REPORTED
ECHILD

EINTR

There are no child tasks active

The task caught a signal and that caused this function to end abnonnally

SEE ALSO
C Library: sleep()

System Call: alarm{},fork{}, kill(), pause(), signal()

Command: iot, wait

W-2

wait

write

write
Write data to an open file.

SYNOPSIS
#include <errno.h>
int write(fildes, bufad, nbytes)

int fildes;
char
int

Arguments

*bufad;
nbytes;

<fildes> A file descriptor for the open file where the data is to be written

<bufad> The address of the buffer containing the data to write

<nbytes> The number of bytes of data to write

Returns
The number of bytes of data written to the file or -1 if none with <errno> set to the system error
code

DESCRIPTION
The write function writes data to the file referenced by <jildes>. The write function writes data
to the file from the buffer whose address is <bujad> and it writes at most <nbytes> bytes of data.
If the write function successfully writes the data, it returns as its result the number of bytes of
data that it wrote. Otherwise, it returns -1 with <errno> set to the system error code.

The write function fails if the file descriptor is out of range, references a file that is not open for
writing, or references a broken pipe. The function also fails if the disk is full or the operating
system reports an I/O error while writing the data to the media. The write function may write
less data than requested if it is writing to a slow device such as a terminal and the task catches. a
signal.

4400 Series C Reference W-3

write

ERRORS REPORTED
The file descriptor references a file that is not open for writing EACCES

EBADF The file descriptor does not reference an open file or the file is not open in the
proper mode

EINTR

EINVAL

EIO

ENOSPC

EPIPE

NOTES

The task caught a signal and that caused this function to end abnonnaUy

An argument to the function is invalid

The operating system reports an I/O error

The device is full

Attempting to write to a broken pipe

This operation is most efficient when <bufad> and <nbytes> are evenly divisible by 512.

A broken pipe is one that has been closed for reading.

SEE ALSO
C Library:jWrite()

System Call: creat(), dup(), dup2(), open(},pipe(), read()

W-4

Section 4

Graphics Library Concepts
The Graphics Library
The graphics library is a library of C and assembly language callable functions. With these
functions, you can easily display images on the 4400 Series machines' displays. In addition to
this, the library includes functions that allow you to use the mouse and keyboard as input devices
in an application program. You can also clear the screen, tum the cursor and joydisk on and off,
enter and exit the terminal emulator, save and restore the display "environment", enable and
disable event processing in the operating system, and so forth. In short, in the graphics library,
you have what you need to build sophisticated, graphics-oriented programs in C and assembly
language using the graphics "building blocks" functions in the graphics library.

The presentation in this section concentrates on using the graphics library in C language
programs. However, you will also find a discussion of how to call the library functions in
assembly language, and, in addition, you will find one example of a simple assembly language
program using library functions. Be sure to refer to the 4400 Series Assembly Language
Programming E.eference Manual for more information about assembly language programming in
general.

About This Section
The graphics library documentation has two basic parts:

• Section 4. A concept-oriented section, in which BitBlt graphics, the graphics environment,
and operating system event processes are described as they relate to the graphics library.

• Section 5. A reference section, in which each function in the library is described succinctly
for easy reference.

If you are acquainted with BitBlt graphics, you can safely skim Section 4 and use Section 5 as
you need to during programming. On the other hand, if you have not done any graphics
programming, you should take a closer look at Section 4. In Section 4, you will find a
presentation of the concepts that lie behind the graphics functions. This will give you a good
start on what you need to know to develop C graphics programs on a 4400 Series machine.

Using the Graphics Library in C Programs
Your access to the graphics library is through two files: /lib/graphics and /lib/graphics.h. The
/lib/graphics file is a library file that contains all the graphics functions documented here. To
use this graphics library, you must, of course, tell the 4400 Series C Language compiler, cc,
where to look for the graphics library. You can do this by typing this command at the operating
system prompt:

CC <application-file-name>.c +1=/lib/graphics

("<application-file-name>" stands for the name of your application program.)

The /lib/graphics.h file in the llib directory is a C language "include" file. This contains #define
statements and structure declarations for the graphics data structures. You should always include
the /lib/graphics.h file in your application programs. Here is an example:

4400 Series C Reference 4-1

Graphics Library Concepts

/*
* box.c - Draw a box in the middle of the screen with an "x"
* through the center.
*/

#include "graphics.h"
#define SIZE 50

main(argc,argv)
int argc;
char * argv[];
{

C language declarations and statements

}

Using the Graphics Library in Assembly Language
Programs
Your access to the graphics library is through the file /lib/graphics. To use the graphics library,
you must tell the 4400 series loader, invoked with the load command, where to look for the
graphics library. You can do this by typing the following command at the operating system
prompt:

load <program-file-name>.r /lib/Cwrapper.r+l=/lib/graphics +l=/lib/clibs
(" <program-file-name>" stands for the name of your assembly language program.)

Each of the graphics library functions can be called from an assembly language program by
adding an underscore in front of the function name to indicate that it is a library function call.
For example, RectDrawX is referenced as _RectDrawX in an assembly language program. Also,
you need to declare each graphics library function you use as external, using the extern directive
before it is referenced.

Parameters should be pushed onto the stack in reverse of the order indicated in the arguments list.
For example, the library function RectDrawX expects two arguments: rect and bbcom. You need
to first push the address of the bbcom structure onto the stack, then the address for the rect
structure before you do a jsr _ RectDrawX to call the RectDrawX function. The return code is
always in dO and the condition codes are also set.

Here is an example:

4-2

Graphics Library Concepts

*
* rect.a - draws a rectangle with upper left corner at (200,50),
* width = 150, and height = 100.
*

name rect.a
text
extern _BbcommDefault
extern _RectDrawX

global _main

pea bbcom
jsr _BbcommDefault

lea rect,aO
move.w #200,(aO)
move.w #50,(aO)
move.w #150(aO)
move.w #100,(aO)

pea bbcom
pea rect
jsr _RectDrawX

sys term

data
rect ds.w 4
bbcom ds.w 17

end

; BbcommDefault(&bbcom)

; rect.x = 200
; rect.y = 50
; rect.w = 150
; rect.h = 100

; RectDrawX(&rect, &bbcom)

; terminate task

Graphics Environment and Structures

Entering and Exiting Graphics Mode
The 4400 Series machines are similar to many graphics terminals on the market in the sense that
the 4400 machines have a terminal mode and a graphics mode. Ordinarily, when you power up a
4400 machine, you load in the operating system which includes a terminal emulation module.
You, as the user, issue commands to the operating system by means of the terminal emulator.

When you write graphics programs, you need to enter graphics mode. When you do this, you are
actually mapping the bit-mapped display memory into the address space of the calling process in
addition to putting the display into graphics mode. This is accomplished by calling the

4400 Series C Reference 4-3

Graphics Library Concepts

InitGraphics function. With InitGraphics, you have the option of automatically invoking a
number of additional modes or attributes over and above graphics mode. Some of these are:
joydisk panning, clearing the screen, reversing the video, and so forth. You must, of course,
invoke InitGraphics somewhere in the program before you start sending output to the display.

When you are done with the program and want to return the user to the operating system, you
should invoke the ExitGraphics function to map the bitmapped display memory out of the
process address space. Any graphics modes that have been enabled are unchanged by calling
ExitGraph ics.

Environmental Settings
Under Entering and Exiting Graphics Mode, you learned about how to get into and out of
graphics mode. But for a "cleanly" functioning graphics application program, this is not enough.
As you are probably aware, at any given time, the 4400 Series display has a set of attributes
associated with it - attributes such as whether joydisk and mouse action pan the display over the
4400 Series bitmap region, whether the mouse cursor is constrained to a certain portion of the
display, whether the viewport itself is constrained to a certain portion of the display, whether the
display is in normal video (black characters on white) or reverse video, and so forth. See the
discussion below about DISPSTATE for more information.

Saving and Restoring the Display State
You may decide as part of the programming functionality of your graphics application program
that you want to save and restore these display attributes. You can do this with the
SaveDisplayState and RestoreDisplayState functions. SaveDisplayState saves the current
settings of many of the display attributes stored in the DISPSTATE structure. Invoking
RestoreDisplayState restores the display attributes stored in a DISPSTATE structure by a
previous invocation of save DisplayState.

It is good programming practice to invoke these functions in the following order:

Save DisplayState
InitGraphics
«graphics code»
ExitGraphics
RestoreDisplayState

Of course, after you have some acquaintance with these functions, you may choose to omit some
of them. But, in the beginning, you will probably "decrease your learning curve time" by
following the recommendation above.

DISPSTATE
The DISPSTATE (display state) structure stores in one place all important attributes that affect
the current environment of the display. These display attributes are saved and restored via the
o ISPST ATE structure. Most of the attributes are easily understood by reading the comments in
graphics.h.

4-4

Graphics Library Concepts

statebits is a long (32-bit) integer, each bit of which denotes one attribute that has one of two
states - on or off. See the table for the definitions of each bit of statebits.

Bit
0
1
2
3
4

5 thru 7
8
9
10
11

12 thru 15
16

17 thru 31

Panning

Table 4-1
Statebits definitions

Definition and Values
l=display enabled, O=dlsabled
l=screen attribute saving is enabled, O=disabled
l=video normal, O=video inverse
l=terminal emulator enabled, O=disabled
l=caps lock led on, O=off
reserved
l=cursor visible enabled, O=disabled
l=cursor tracks mouse, O=no tracking
l=cursor panning enabled, O=disabled
l=joydisk panning enabled, O=disabled
reserved
l=keyboard generates event codes, O=not
reserved

The PanDiskEnable and PanCursorEnable functions are simple functions that enable and
disable joydisk panning and panning with the mouse (arrow) cursor.

Mouse Bounds
The mouse cursor may be restricted to a certain part of the screen. You can specify the limits of
motion with the SetMBounds function. You can also return the limits to your program with the
GetMBounds function.

Viewport
Sometimes you may want the 4400 Series screen to pan within a portion of the total screen
bitmap in graphics memory. The (0,0) position of the display - the upper left corner pixel - is
normally set to the (0,0) position in the graphics memory bitmap. You can alter this with the
SetViewport function. You can also retrieve the current position of the upper left comer by
invoking the GetViewport function.

Cursors and Halftones
A selection of cursor forms and halftone forms are provided by the graphics and events Library.
Cursors and halftones are special forms (see FORMS below) which are exactly 16 by 16 bits
(pixels). Cursors may have a "hotspot" defined by the value of the offset fields. The standard
cursors include NormalCursor, OriginCursor, CornerCursor, WaitCursor, and

4400 Series C Reference 4-5

Graphics Library Concepts

CrosshairCursor. To set a particular cursor, use the SetCursor function.

SetCursor(&CornerCursor);

The standard halftone fOTIns include WhiteMask, VeryLightGrayMask, LightGrayMask,
GrayMask, DarkGrayMask, and BlackMask. A halftone fOTIn may be used as an option with
BitBlt operations. (See BitBlt Graphics below).

Screen Size Constants
When you use the function InitGraphics, the following values are set: ScrWidth, ScrHeight,
ViewWidth, and ViewHeight. In order to write code that is portable across the 4400 Series, you
should use these "extems" into display size storage rather than "hard" constants like 640 or 1024.
Just remember to initialize graphics before referencing these variables - otherwise all are equal to
zero.

Graphics Structures
A number of C language structures have been defined that the graphics library functions use.
These definitions are found in the file /lib/include/graphics and they are described here 11S an
introduction to the BitBlt discussion later.

POINT

POINT is a simple structure consisting of two short integers x and y. x is an x-axis value of the
screen; and, thus, valid values are in the range of the 4400 Series machine screen bitmap. For the
4404 machine, this is 0 to 639. For other 4400 Series machines, this range may be larger. y is an
y-axis value of the screen; and, thus, valid values are in the range of the 4400 Series machine
bitmap. For the 4404 machine, this is 0 to 479. For other 4400 Series machines, this range may
be larger.

Here is the POINT declaration from graphics.h:

struct POINT {
short x, y;

};

RECT
RECT, like POINT, is a simple structure. It consists of two short integers, x and y, and two
other short integers, wand h. x and y denote the upper left comer point of a rectangular array of
bits in a bitmap. w stands for the width in bits of a rectangular array of bits and h stands for the
height in bits of a rectangular array of bits.

Here is the RECT declaration from graphics.h:

4-6

struct RECT {
short x, y;
short w, h;

};

FORM

Graphics Library Concepts

The FORM structure is used to locate and retrieve images intended for manipulation or display
on the 4400 Series machine screen. These images reside in graphics memory. See Figure 4-1, A
16 by 16 Bit Form.

addr _~--w-_~

offsetw = offseth = 0
Inc = 2

(inc = number of bytes in one row)

Figure 4-1. A 16 by 16 Bit Form.

A FORM structure consists of four short integer declarations:

• addr

·wandh

• offsetw and offseth

• inc
addr is a pointer that refers to the location in the graphics memory where the byte holding the
upper left bit of a form is. A form is a rectangular array of bits that refers to a particular location
in graphics memory. Forms are the objects that the BitBlt operation manipulates.

wand h are the short integers that represent the width and height in bits of a form.

4400 Series C Reference 4-7

Graphics Library Concepts

offsetw and offseth are the short negative integers that may be specified if you desire to operate
on a point within a form. These variables have been used with special forms called cursor forms
to represent the active point within the interior of a cursor form. For example, the tip of the
arrow cursor in the Smalltalk system is within a 16 by 16 pixel (bit) sized cursor form. The tip of
the arrow is the active point (selection point) and the tip location in the form is denoted by the
offsetw and offseth variables. In the graphics library, these variables are used by all functions
related to cursor/mouse position.

inc is a short integer that denotes the number of bytes (always even) in one row of a form. This is
a requirement for efficient use of graphics memory. The actual image width and height (wand h)
in a form is possibly less than the number of bits, reserved in the number of even bytes specified
by inc. Thus, inc reserves enough room in graphics memory for an image specified by
appropriate w and h values.

Here is the FORM declaration from graphics.h:

struct FORM {
short *addr;
short w, h;

};

short offsetw, offseth;
short inc;

FONT

/* memory address of first bit of bitmap *1
/* width and height of form *1
/* initialized to zero, not used by library *1
/* byte increment from one line to next,
must be even *1 .

The structure used for font information is called FontHeader. You must include the include file
font. h with your program if you work with fonts.

A broad selection of standard system fonts is stored in the directory Ifonts. (See Graphical Text
later for more information.)

MENU

The MENU structure is used for information about pop~up menus. This includes information
necessary to display the menu and return a menu selection. (See Menus later for more
information.)

Bitblt Graphics
The graphics functions in the graphics library are built upon the BitBlt notion of doing computer
graphics. The term "BitBlt" was coined by the creators of the Smalltalk language and
environment. (The 4400 Series Artificial Intelligence Machines implement the version of this
language and environment released in 1980.) The Small talk creators saw that a wide range of
images could be efficiently displayed and updated on a raster scan display by defining and
manipulating two rectangular matrices of bits called the source and destination forms. By letting
a 1 bit be equivalent to a dark pixel on the screen and a 0 bit be equivalent to a light pixel, it is
possible to build up a com.plex image in a rectangular source "form". If you define the
destination form to be that part of system memory dedicated to the screen, then performing a

4-8

Graphics Library Concepts

BitBlt operation, which transfers images from the source to the destination form, is equivalent to
writing directly to the screen. This makes for fast update of images on the display.

Using two forms'fthe source and destination forms, allows you to manipulate the image during
the process of transferring it from the source to the destination form. A third form, called the
halftone form, is sometimes combined with the source form before the source is transferred to the
destination form. Halftoning accomplishes the "coloring" of the entire source form image with a
(usually uniform) masking form, the halftone form.

When the source form is transferred to the destination form, a specific combination rule is used.
There are sixteen possible rules, only one of which is used at a time. These rules are applied to
the corresponding bits in the source and destination forms. For example, the corresponding bits
of each form may be ANDed, or they may be XORed, or they may be ORed, etc.

Sometimes the entire source form image may not be needed on the display. In this case, a
clipping rectangle is defined which effectively cuts off the unwanted portion of the source form
image from being transferred to the destination form. The parts of the source form image
positioned outside the clipping rectangle are not, of course, transferred to the destination form.

Thus, there are three basic ways to manipulate the source form image:

halftoning The source form is masked by a secondary "tinting" or
"coloring" pattern. .

combination rule

cli pping rectangle

The source form corresponding image bits are combined
one at a time with one of sixteen logical bit operations - for
example, make the destination bits all ones, make the
destination bits all zeros, AND the source and destination
bits, XOR the source and destination bits, etc.

This device provides a way to selectively display portions
of the source form image.

The BBCOM Structure
BBCOM stands for "BitBlt Command". BBCOM is a structure that stores or points to all of the
data that the BitBlt operation needs to copy bits from one place to another, with possible
manipulation of bit values during the copy operation. See Figure 4-2, The BBCOM Data
Structure.

4400 Series C Reference 4-9

Graphics Library Concepts

srcform Bitmaps

I - addr - .. - -
w h

offsetw offseth

inc

destform B· it maps

I - .. addr - ..
-I -

w h
offsetw offseth

srcpolnt inc

x I y I
destrect

halftoneform Bitmaps

I addr -- -
w h

offsetw offseth
inc

I rule I

Figure 4-2. The BBCOM Data Structure.

Here is what the BBCOM structure consists of:

• sreform

• destform

• srepoint

• de street

• elipreet

• halftoneform

• rule
Note that some previously defined structures are used to define the BBCOM structure. In fact, of
course, the RECT and FORM structures were defined primarily for the purpose of defining
BBCOM in a conceptually straightforward way.

4-10

Here is the BBCOM declaration from graphics.h:

struct BBCOM {

} ;

struct FORM *srcform;
struct FORM *destform;
struct POINT srcpoint;
struct RECT destrect;
struct RECT cliprect;
struct FORM *halftoneform;
short rule;

/* Bitblt combination rules */
#define bbZero
#define bbSandD
#define bbSandDn
#define bbS
#define bbSnandD
#define bbD
#define bbSxorD
#define bbSorD
#define bbnSorD
#define bbnSxorD
#define bbDn
#define bbnD
#define bbSorDn
#define bbSn
#define bbnS
#define bbSnorD
#define bbnSandD
#define bbOnes

Graphics Library Concepts

/* defines source form, NULL if not needed */
/* defines dest form */
/* source coord, 0,0 is top left */
/* rectangle for use in dest bitmap */
/* clipping rectangle * /
/* form for half toning, NULL if not needed */
/* combination rule (defined below) */

a /* = zeros */
1 /* = source and dest * /
2 /* = source and desf */
3/* = source */
4/* = source' and dest */
5/*=dest*/
6/* = source xor dest */
7 /* = source or dest */
8 /* = (source or dest)' */
9 /* = (source xor dest)' */
10 /* = des!' */
10 /* = dest' */
11 /* = source or dest' * /
12/* = source' */
12/* = source' */
13/* = source' or dest */
14/* = (source and dest)' */
15/* = ones */

srcform is a pointer to a FORM structure. So, srcform points to a rectangular array of bits in
graphics memory. The "source form" contains a predefined pattern of bits forming an image of
some sort. This image may exist in main memory or as a file on disk. You can create a source
form within the same program that reads it, or you may have created a form within another C
graphics program that stored the image in a disk file. (See later in this section about how to
create an image in the Small talk system and then write it to a file on disk.) Remember that the
srcform has an addr, width and height, possibly an offsetw and offseth, and an inc. See under
FORM above for the definitions of these variables.

destform is a pointer to a FORM structure. A destform may be a FORM defined to be in
graphics memory only or it may be identified with the 4400 Series display screen. As its name
implies, the destform becomes the destination form when the BitBlt operation is performed on
the source form, which usually contains the image of interest.

srcpoint is a POINT structure that refers to a point within the source form array of bits. This
point is the location of the upper left bit in the source form where the transfer (or copy) operation
that is the BitBlt operation, begins. You can, of course, specify srcpoint to be (0,0) in which
case you obtain a copy of all the bits in the source form to the destination form. Or, you can
specify that srcpoint be an "embedded" point in which case you obtain a partial copy of the bits
in source form.

4400 Series C Reference 4-11

Graphics Library Concepts

destrect means "destination rectangle". Note that this is a RECT structure and not a FORM
structure, and, as such, it has no connection with graphics memory; that is, it has no addr pointer.
destrec is used to specify two parameters:

• Where in the destination form the BitBlt copy operation is to start copying bits. This may
be at (O,O) or any other point in the destination form. This is specified by the x and y
variables in the RECT structure.

• How much of the source form is copied to the source form. This is specified by the wand
h variables in the RECT structure.

cliprect is another RECT structure and denotes the clipping rectangle. You can think of cliprect
as a rectangular array of bits embedded in the destination form. The purpose of cliprect is to
(possibly) exclude part of the destination form image from being displayed on the 4400 Series
screen. Only those bits falling inside the clipping rectangle are displayed on the 4400 Series
screen. If you do not desire any clipping to occur, then you simply define the clipping rectangle
to have the same dimensions as the destination form or the 4400 Series screen.

halftoneform is a pointer to a special FORM structure that provides a way to "color" or "tint" the
destination form as the source form is copied into it during the BitBlt operation. The 16 by 16 bit
halftone form is a (usually) uniformly patterned array of bits meant to function as a mask or
"halftone" .

rule is a short integer that denotes one of sixteen different combination rules. These rules are
based upon the logical connectives: and, or, xor, negation, etc. The combination rule operates on
the corresponding bits in the source and destination forms during the BitBlt operation. Thus, for
example, bit (x=16, y=33) in the source form is ANDed with bit (x=16, y=33) in the destination
form. See the #define statements in the BBCOM above, for which integer to use for a particular
combination rule. Some of the more useful rules are: bbZero, bbOnes, bbSxorD, bbSandD,
bbSorD, bbS, and bbD. bbSxorD is especially useful since you can recover the original image
by two applications of the rule, one immediately after the other. See later for the use of some of
the other rules.

How the BitBlt Operation Works
When your program calls the BitBlt function, it goes through a process something like the
following. (Refer to Figure 4-3, The BitBlt Operation.) BitBlt first looks for a source form and a
halftone form. If it finds both, it does an AND operation on the corresponding bits of the source
form and the halftone form. Note that, as the figure indicates, the halftone form is actually a 16
by 16 bit square form. This means that the halftone is repeatedly ANDed with the source form
until the entire source form has been ANDed with the appropriate number of halftone forms. If
the halftone fonn is null, this part of BitBlt is not performed.

4-12

(X,Y)

Graphics Library Concepts

destform
(=cliprect)

w=1024

srcform ANOed with
halftoneform

Screen

Notes: The halftoneform mayor may not be defined.
The combination rule is always required.

w=50

The destform is always required and is often the display.
The srcform is not mandatory for certain operations, such as

clearing or filling a rectangular region.
The diprect is always required and may be set to the dimensions

of the destform if no Clipping is to be done (as in this illustration).
x, y, w, and h are in pixels.

Figure 4-3. The BitBlt Operation.

o o
-.t
N
o ,...
II

..r:=

Next, BitBlt looks for the destination form that you have specified. (Many times this is identified
with the special screen form.) Now the combination rule you have specified is applied to every
corresponding source form bit and destination form bit. (When the destination form has been
identified with the screen form, bits are equivalent to screen pixels.)

Also during this time, BitBlt looks for a clipping rectangle and destination rectangle you may
have specified. If you have specified a clipping rectangle, Bit Bit cuts off all those parts of the
image that fall outside it in the destination form. And, if you have specified a destination
rectangle, BitBlt starts copying bits beginning at the upper left corner of the destination rectangle.
(You have most probably specified that the upper left corner of the destination rectangle be

4400 Series C Reference 4-13

Graphics Library Concepts

somewhere within the destination/orm. See Figure 4-3, The BitBlt Operation.)

As you can see, the BitBlt function has a lot of functionality which you control by a careful
selection of the variables within the source form, destination form, combination rule, clipping
rectangle, destination rectangle, and halftone form. Let's look at a simple example of the use of
BitBlt.

Drawing a Box on the Screen
This program uses the PaintLine function from the graphics library. PaintLine calls the BitBlt
function internally, and, thus, uses the BBCOM data structure of BitBIt. However, PaintLine
makes the drawing of lines on the screen more straightforward than BitBIt. That is why it is used
here. See also LineDraw and LineDrawX for even simpler drawing of lines.

(BitBlt itself is used in other programs in the /samples directory. You may want to take a look at
those as you read through this discussion.)

First, run the example program by typing at the system prompt:

/samples/box
You should see the screen clear and a box with two intersecting lines drawn through the center of
the box. The program returns you to the operating system. Now, refer to the following text of the
program while you read through the discussion.

/*
* box.c - Draw a box in the middle of the screen with an "x"
* through the center.
*/

#include "graphics.h"
#define SIZE 50

main{ argc,argv)
int argc;
char *argv[];
{

struct FORM *screen;
struct BBCOM bbcom;
struct POINT p;

screen = InitGraphics{FALSE);
bbcom.destform = screen; /* destination is screen */
bbcom.srcform = {struct FORM *)NULL; /* no source */
bbcom.destiect.w = 1; r one pixel wide line to draw with */
bbcom.destrect.h = 1; /* one pixel wide line to draw with */
bbcom.srcpoint.x = bbcom.srcpoint.y = 0;
bbcom.cliprect.x = bbcom.cliprect.y = 0;
bbcom.cliprect.w = ScrWidth; /* clip to virtual screen */
bbcom.cliprect.h = ScrHeight;
bbcom.halftoneform = {struct FORM *)NULL;/* no halftone */
bbcom.rule = bbOnes; /* black lines if video=normal */

4-14

Graphics Library Concepts

r now draw the box * /

bbcom.destrect.x = bbcom.destrect.y = 50; r beginning pOint */
p.x = 50; p.y = 430; r set up the point PaintLine draws to */

}

PaintLine(&bbcom, &p); r draw the line */
bbcom.destrect.x = 50; bbcom.destrect.y = 430;
p.x = 590; p.y = 430;
PaintLine(&bbcom, &p);
bbcom.destrect.x = 590; bbcom.destrect.y = 430;
p.x = 590; p.y = 50;
PaintLine(&bbcom, &p);
bbcom.destrect.x = 590; bbcom.destrect.y = 50;
p.x = 50; p.y = 50;
PaintLine(&bbcom, &p);

r draw the intersecting lines inside the box * /

bbcom.destrect.x = bbcom.destrect.y = 50;
p.x = 590; p.y = 430;
PaintLine(&bbcom, &p);
bbcom.destrect.x = 590; bbcom.desrrect.y = 50;
p.x = 50; p.y = 430;
PaintLine(&bbcom, &p);

Every program that uses the graphics library functions must include the graphics.h include file.
Be sure to always "include" it.

Initializing Graphics Mode
Note especially the struct FORM *screen declaration. This declaration sets up a FORM
structure that becomes the screen bitmap. This happens via the line screen =
InitGraphics(TRUE). InitGraphics not only puts the system into graphics mode but also returns
a pointer to a form that defines the screen bitmap. The very next line, bbcom.destform =
screen, assigns the screen to the destination form of the BitBlt data structure. This means, of
course, that any changes made to the destination form are made directly on the 4400 Series
machine screen.

Setting Up the BitBlt Structure
In this application, the source form is not used, so it is assigned a NULL value. That is, there is
no pre-existing form to be manipulated by BitBlt operations. You could have created this form
within the application program or you could have had the program read in a previously created
image that existed as a file on disk. See later in this section for a way to read in an image file
created within the Smalltalk-80 system and then stored on disk.

The next two lines (bbcom.destrect.w = 1 and bbcom.destrect.h = 1) may not be easily
figured out. These lines fix the width and height of the destination rectangle to a 1 by 1
rectangle, that is, a single pixel written into the destination form. So, the destination rectangle,

4400 Series C Reference 4-15

Graphics Library Concepts

when it is repeatedly written into the destination form, appears as a connected series of pixels on
the screen. This gives you the line that you want to draw the lines of the box. (An interesting
exercise is to vary the size ofw and h. Try bbcom.destrect.w = 5 and bbcom.destrect.h = 5.
You get "fatter" lines.)

The source points bbcom.srcpoint.x and bbcom.srcpoint.y are both set to zero here since you
are not using the source form.

The clipping rectangle x and y values are set to zero. This means that the upper left comer of the
clipping rectangle is coincident with the upper left comer of the destination form, which in this
case is the screen bitmap. To see if there will be any clipping of the destination form image, look
at the values for the clipping rectangle width and height - bbcom.cliprect.w and
bbcom.c1iprect.h. Look carefully at what the width and height are set to in this example. The
clipping rectangle width and height are set to two graphics.h file variables that are declared as
extern short integers; these are ScrWidth and ScrHeight. Thus, these variables, which are in
effect constants, get their values outside the graphics.h file. But where? The answer is:
ScrWidth and ScrHeight have their values set when you call the InitGraphics function. This is
one of the reasons you should call InitGraphics early in your program. So, you have set the
clipping rectangle to be the width and height of the screen bitmap. This implies that there is no
clipping of the image in the destination form in this program.

The halftone form is not used, so it is set to NULL.

The combination rule here is set to bbOnes. If you have set the video to normal (black on a
white background), then bbOnes gives you black lines when the box is drawn. With the
combination rule, you have finally set all the values of the BitBlt structure. Note that even if a
variable in the structure is not used, it is still set to a definite value - NULL or zero. This is good
programming practice and helps prevent unexpected effects.

Drawing the Box
The box with the x through it is drawn by specifying two points and then drawing a line between
them. This is done six times - one for each line.

The PaintLine function needs two points. One of the points is the upper left comer of the
destination rectangle in the BitBlt structure and the other point is defined for the Paintline
function. This is point p.x, p.y. The point p takes values within the destination form, which in
this program is confined to the screen bitmap. Note that the destination rectangle point is the
beginning endpoint for Paintline and p is the ending endpoint. So, the action of Paintline is to
start at . the beginning endpoint and repeatedly call the BitBlt operation, which displays a
sequence of adjacent pixels until it reaches the ending endpoint p. (Remember that the
destination rectangle has been "collapsed" into a single pixel in this program since
bbcnm rlestrot"t \AI - hh"'''m d"'""."ect h - of) _II .~ ""'".'iy - ..,...,""" • v~1.1 • -- I.

An Interesting Example Program
In the /samples directory, you will find a C graphics demonstration program by the name of
tvcam.c. This is a simple program that still manages to show you the power of BitBlt.

Before you run the program, though, make sure that you have some text or other output on the
screen. You can do this by· running the vecdemo demonstration program also found in the

4-16

Graphics Library Concepts

Isamples directory. vecde mo runs through a sequence of vector demonstration images and then
exits back to the operating system. You can either let vecdemo run to completion or control-c
out of an interesting part of the sequence. The point is simply to leave an image of some sort on
the screen so that the tvcam program has something to work on. Run vecdemo by typing this at
the operating system prompt:

Isampleslvecdemo

Now you can run tvcam to see how it works. Type this at the system prompt:

Isamples/tvcam

Move the mouse rapidly around the screen and observe the center of the screen. You see that
what appears in the "window" in the center of the screen is directly related to the position of the
mouse arrow cursor. Specifically, imagine that the arrow cursor tip is the lower right comer of a
square 100 by 100 pixels in size. Now watch the central "window" as this imaginary square
moves over the screen, tracking with the arrow cursor. Whatever appears in the imaginary square
is copied via BitBlt to the central "window". Watch especially what happens when you place the
imaginary square near the central "window"!

Now look at the tvcam.c program show below. Note as always that graphics.h must be
"included" .

/*
* tvcam.c - copy a rectangle from the mouse to a fixed place on the screen.
* This has some great opportunities for video feedback.
*1

#include "graphics.h"
#define SIZE 100

main(argc,argv)
int argc;
char * argvD;
{

struct FORM *screen;
struct BBCOM bbcom;
struct POINT cur;
register int i, j, ret;

screen = InitGraphics(FALSE);
1* set up the bitblt command structure *1
bbcom.srcform = bbcom.destform = screen; /* source and dest are screen *1
bbcom.destrect.x = bbcom.destrect.y = 200;1* output position *1
bbcom.destrect.w = bbcom.destrect.h = SIZE;
bbcom.cliprect.x = bbcom.cliprect.y = 0; 1* clip to virtual screen *1
bbcom.cliprect.w = ScrWidth;
bbcom.cliprect.h = ScrHeight;

bbcom.halftoneform = (struct FORM *)NULL;/* no halftone *1
bbcom.rule = bbS; /* rule Dest=Source *1

1* now turn on cursor and link it to mouse *1
CursorVisible(TRUE);

4400 Series C Reference 4-17

Graphics Library Concepts

CursorTrack(TRUE);

1* now the loop * /
for (i = 0; i < 1000; i++) {

GetCPosition(&cur);
cur.x -= SIZE;
cur.y -= SIZE;
bbcom.srcpoint = cur;
ret = BitBlt(&bbcom);
if (ret != 0) {

1* copy point structure into bb command * /
/* copy from mouse to dest rect * /

printf("BitBlt failed, returned %dO, ret);

}

}
for U = 0; j < 5000; j++)

}

1* turn off and clean up * /
ClearScreenO;
cur.x = cur.y =0;
SetCPosition(&cur);
CursorTrack(FALSE);
CursorVisible(FALSE);

A FORM structure is declared called screen and a POINT structure, called cur (cursor), is also
declared. The next line of interest is screen = InitGraphics(FALSE). This line says to leave the
display environment alone and especially to not clear the display. Also, it says to assign the
pointer to the bitmap screen memory to the variable screen. Note carefully the next line. Here
screen, bbcom.srcform, AND bbcom.destform are all assigned to the bitmap screen memory.
So, in this program, when BitBlt operates, it copies pixels from one part of bitmap screen
memory to another part of bitmap screen memory.

Next the destination rectangle is set up in the approximate middle of the screen and is made 100
by 100 pixels in size. The clipping rectangle is safely set the size of the bitmap screen memory,
and, thus, has no effect here. The halftone form plays no part in this program is set to the NULL
form. However, look at what the combination rule is set to. bbS means that the destination form
pixels become whatever the corresponding source form pixels are.

The cursor is important in this program, so it is made visible and it is made to track with the
mouse - CursorVisible(TRUE) and CursorTrack(TRUE). The program has two for loops -
one inside the other. The inner loop is executed 5000 times and the outer loop 1000 times. The
program then clears the screen, sets the cursor position to (0,0) - the upper left comer of the
screen, tums off cursor tracking, and finally makes the arrow cursor invisible.

So what happens inside the loops? First, the current position of the cursor is returned in cur, then
SIZE(=100) is subtracted from the x and y components of the point. Next, the cur point is made
the source point in the source form. You will probably remember that the source point is the
point at which the BitBlt operation starts its copy operation. Since the destination rectangle is
100 by 100 pixels in size, it appears as if BitBlt is copying from a 100 by 100 pixel-sized region
in the source form, which here is the bitmap display memory, that is, the screen. And, thus, the
mouse cursor appears to be at the lower left comer of an imaginary 100 by 100 pixel square.

4-18

Graphics Library Concepts

Finally, the BitBlt function is called and operates on the bbcom structure defined for it. Note the
use of the register variable, ret to provide an error report if BitBlt fails.

Graphics Error Messages
Functions of Graphics and Events Library detect errors, but leave it up to the application program
as to how an error should be handled. When an error is encountered, special values are returned,
and a special variable called errno is set to an error code. Functions which normally return a
pointer to a structure, return NULL if there has been an error. All other functions return a
negative value (usually -1) to signify an error condition.

If you would like to print out a descriptive message, you can use the standard C function perror,
as shown in the following program excerpt.

if (GetCursor(NULL) < 0) perror("Error in GetCursor");

The argument to GetCursor must be a pointer to a 16 by 16 bit form. This code segment would
result in the following message directed to standard out.

Error in GetCursor: Invalid (NULL) structure pointer

You can also do more sophisticated error handling based on the value of the error code stored in
errno. If you want to handle errors based on the value of errno, you must include the include file
errno.h with your program.

Creating Images In Forms
The Smalltalk bit editor may be used to create a form that can be read and used for graphics in C
programs. (The following brief discussion shows you how to create a form in the Smalltalk-80
system that you got as a standard part of your 4400 Series machine. You should already have
gone through the manual Introduction to the Smalltalk-80 System before you attempt to create the
form in Smalltalk.)

To create the form newcursorJorm, perform these steps:

1. At the operating system prompt, invoke small talk:

smalltalk standard Image

2. Open up a workspace with the middle button menu when the cursor is on the background.

3. Enter the following smalltalk statements in the workspace.

aForm +- Form new extent: 16@16.
aForm +- aForm bitEdit.

4. Select these statements with the right mouse button and then select a "do it" from the
middle button menu to execute the statements.

5. Use the Bit Editor to create the cursor form you want.

4400 Series C Reference 4-19

_Graphics Library Concepts

6. Use the middle mouse button to "accept" the fonn when you are done with it.

7. Enter this following smalltalk statement in the workspace:

aForm writeOn: 'newcursor.form'.

8. Select the statement and then" do it". This should create the file newcursor.form.

9. Now exit small talk with the middle button menu.

You can use the graphics library to read newcursor.form and lise the form as a new cursor form.
The following C program excerpt reads the new cursor from a file and installs it as the graphics
cursor.

struct FORM *cursor;
cursor = ReadForm("newcursor.form");
SetCursor(cu rsor);

System Fonts

Font Styles and Layout
The 4405 and 4406 AIM systems support two types of fonts in the directory /fonts:

• Proportional fonts, in which character cells vary in height and width for each character.

• Monospaced fonts, in which character cells are the same height and width for each
character.

The proportional fonts come in two faces (Serif and Sans-Serit) and four styles (bold, italic, bold
italic, and regular) in a variety of point sizes (8, 10, 12, 14, 18, 24, and 36). Each proportional
font is either Pellucida1 Serif or Pellucida Sans-Serif. The character set for any proportional font
is listed in Figure 4-4, Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serif).

The monospaced fonts are named Pellucida Typewriter and come in four sizes (10, 12, 16, and 18
point) and two styles (bold and regular). The character set for Pellucida Typewriter is listed in
Figure 4-5, Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1 and Figure 4-6, Tektronix .
Monospaced Fonts (Pellucida Typewriter) Part 2.

A few notes on interpreting the font tables will be helpful in contructing an application. The
spaces in the table that are blank do not have a printing character for the corresponding character
code. The characters for ASCII 32 u'rrough ASCII 127 are present in bother the monospaced and
proportional fonts. The proportional fonts contain additional characters in ASCII 1 through
ASCII 31. Many of these characters are compatible with those originally supplied by Xerox in
the original Smalltalk image.

1. Pellucida is a registered trademark of Bigelow and Holmes

4-20

Graphics Library Concepts

"m space" is a blank character which is the height and width of the letter m. "n space" is a blank
character which is the height and width of the letter n. "em" and "en" are dashes the width of the
character "m" and "n", respectively.

Smalltalk StrikeFont class has methods for reading and writing Tektronix font files. Note that
whenever Smalltalk reads a Tektronix font file, it switches the character position of the uparrow
character (i) and left arrow (~) with the caret n and underscore C) characters. Thus, if you
ask, for instance, the character i what its asciiValue is, you get 94.

The method to write a Strike Font takes care to switch the positions of the i, ~, A, and
characters if the type of the strike font is either 1 (Tektronix monos paced) or 2 (Tektronix
proportionally spaced). This ensures that the proportional or monos paced fonts written by
Smalltalk have consistent character ordering.

4400 Series C Reference 4-21

Graphics Library Concepts

00 01 02 03 04 05 06 07

0 space 0 @ p , p -
1 v ffi ! 1 A Q a q

2 . ffl " 2 B R b r ~

3 ~ em # 3 C S c S

4 .. 1i $ 4 D T d t

5 " 11 010 5 E U e u

6 ff en & 6 F V f v

7 , v , 7 G W 9 w

8 i - (8 H X h x

9 n) 9 I V i Y space

10 00 * · J Z j z ·
11 '" t + · K [k { ,

12 ~ , < L \ I I
13 . - - M] m } -

- - N 1\ 14 > n -.
15 m 0 / ? 0 0 I space · -

Figure 4·4. Tektronix Proportional Fonts (PellucidaSerlf and PellucidaSans·Serlf).

4-22

Graphics Library Concepts

00 01 02 03 04 05 06 07

0 space 0 @ p ,
P

1 I . 1 A Q a q

2 " 2 B R b r

3 # 3 C S c S

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7
, 7 G W 9 w

8 (8 H X h x

9 n) 9 I V i Y space

10 t * · · J Z j z

11 + · K [k { ~ ,

12 , < L \ I I
13 - - M] m } -
14 > N A n -•

15 m / ? 0 0 • space -

Figure 4·5. Tektronix Monospaced Fonts (Pelluclda Typewriter) Part 1.

4400 Series C Reference 4·23

Graphics Library Concepts

88 8786 10 10 10 1 10 110 11 11 11
B5 00 0 1 0 1 1 0 0 1 10 11

BITS

B4 83 B2 B1

NU DL Sp 0 - • EJ - N 0 0 0 0
128 144 160 176 192 l208 224 240

SH OJ ¢ -
12251 B 0 0 0 1 A 1 n

129 114..'> 161 177 193 1209 1241

Sx D.2 a 2 I 6 HT 2~ 0 o 1 0 I
11.'¥! 146 162 178 194 210 226

0 0 1 1 EX D3 A 3
19J

i FF ~~ 131 147 163 179 ~11 1227

0 1 0 0 ET DA A 4 D ex CR []
132 148 164 180 196 ~12 228 244

o 1 0 1 EQ NK IE 5 • a LF BJ
133 149 165 181 197 213 1229 245

0 1 1 0 AK Sy c:e 6 • 't 0 ~~ 134 150 11';'; 182 198 214 230

BL EB
,

II ± @ o 1 1 1 a 7 p
135 151 167 183 199 215 231 ~47

1 0 0 0 Bs CN C 8 6 f.1 NL ED
136 152 168 184 200 216 1232 248

HT EM ,
9 A. L VT S 1 0 0 1 e

137 153 169 18.1} 12()1 217 233 1249
LF SB , ,

n EJ ~ 1 0 1 0 e u
138 154 170 186 1218 234 30

1 0 1 1 VT EC 0 P !It 6J 7t
139 155 171 187 219 235 251

FF Fs ..
(;) • 23~ :¢: 1 1 0 0 0

140 156 172 188 220 252

1 1 0 1 CR GS s)'J + 123~ £
141 157 173 189 1221 1253

So RS
..

l238m U § = • 1 1 1 0 -,
142 158 174 !19O 206 1222 1254

SI Us .. •• r IlJ Dr 1 1 1 1 U ex
143 159 175 1191 12()7 223 1255

Figure 4-6. Tektronix Monospaced Fonts (PeUucida Typewriter) Part 2.

4-24

Graphics Library Concepts

Graphical Text
Functions are provided which allow you to display text on the screen, or on any form, using any
of the various fonts provided in Ifonts. Simpler functions use the default font, extended versions
of these functions allow you to specify a particular font.

Before a font is used it must be initialized, for example:

struct FontHeader *afont;
afont = FontOpen("/fonts/Pellucida12B.font");

This example loads the Pellucida Roman 12-point Bold font into afont. You can get a copy of
the default font by passing Fontlnit a NULL argument.

afont = FontOpen(NULL);

When a font is no longer needed, use FontClose to release the associated storage.

You can use the function StringDraw to display text on the screen. The arguments to
String Draw are the string and the location at which to start displaying the string.

struct POINT pt;
pt.x = pt.y = 100;
StringDraw("Hello World",&pt);

A single character can be displayed using CharD raw. This function takes an ASCII character
code and a pointer to a POINT structure as its arguments.

The extended versions of these functions, called String DrawX and CharDrawX, require
additional arguments. One additional argument is a pointer to a BBCOM structure which defines
the destination form, destination rectangle (text bounding box), clipping rectangle and
combination rule. Within the text bounding box, text is scrolled, if necessary, as it is displayed.
Default behaviors for embedded tab and newline characters are also supported. The other
additional argument specifies the font.

4400 Series C Reference 4-25

Graphics Library Concepts

Menus

Pop-Up Menus
The graphics and events library provides two types of menus: text menus with string items and
icon menus with form items. Menu creation functions - MenuCreate, MenuCreateX,
IconMenuCreate, Icon Men uCreateX - return a pointer to an initialized MENU structure. The
selection function, MenuSelect, is passed a pointer to a MENU structure and returns the array
index (zero-based) of the item selected. If no selection is made, then the number of menu items
(one plus the last legal item index) is returned. A negative returned value signals an error. The
MenuDestroy function takes a pointer to a MENU structure as its argument and releases the
storage associated with a menu.

Text Menus
The following C program creates a simple menu, displays it on the screen, waits for the user to
select a menu item, and prints the returned value.

#include <graphics.h>
#include <tont.h>

char *item[5] = {"zero","one","two","three","tour"};

mainO
{

}

struct MENU *menu;
short choice;

menu = MenuCreate(5,menujtem);

choice = MenuSelect(menu);
printf("choice: %dO,choice);

MenuDestroy(menu);

The next example uses the MenuCreateX function. This function requires additional arguments
which specify menu options, the initial highlighted item, and the font for displaying menu items.
Menu options are defined by an array of flags. Currently supported options include
MENU_liNE (a line is drawn below the item) and MENU_NOSELECT - the item cannot be
selected.

Menus remember the item selected the last time the menu was used; the mouse is positioned over
this item.

4-26

#include <graphics.h>
#include <math.h>
#include <tont.h>

char *items[6] = {"quit","line","rect","box","circle","clear"};

Graphics Library Concepts

int flags[6] = {MENU_LlNE,O,O,O,MENU_LlNE,O}; /* menu includes two lines *j

struct RECT rect1 = {50,1 00,500, 180};
struct RECT rect2 = {250,50,1 00,200};
struct POINT pt1 = {400,240};
struct POINT pt2 = {0,200};
struct POINT pt3 = {640,200};

mainO
{

}

struct MENU *menu;
struct FontHeader *font;
short choice;

font = FontOpen(NULL); /* returns default font *j
menu = MenuCreateX(6,items,flags,0,font);
InitGraphics(1);
printf("press any button for menuO);

while (TRUE) { /* loop for menu options *j

}

if (GetButtons()) {
choice = MenuSelect(menu);
if (choice == 0) break; /* terminate if "quit" selected *j
else switch (choice) {

}

case 1: LineDraw(&pt2,&pt3); break;
case 2: RectDraw(&rect2); break;
case 3: RectBoxDraw(&rect1 ,3); break;
case 4: CircleDraw(&pt1, 100); break;
case 5: ClearScreenO; break;
}

ClearScreenO;
ExitGraphicsO;
MenuDestroy(menu);

4400 Series C Reference 4-27

Graphics Library Concepts

Icon Menus
The following C program demonstrates the creation and use of an icon menu. In this program, a
menu is created from the standard cursor forms. Each time the user selects from the menu, the
cursor is changed. When the program terminates, the previous display state (including cursor) is
restored.

#include <graphics.h>
#include <font.h>

mainO
{

}

struct MENU *menu;
struct FORM *items[5], oldcursor;
struct DISPSTATE ds;
short choice;

items[O] = &NormaICursor; /* initialize menu items and menu */
items[1] = &WaitCursor;
items[2] = &CrosshairCursor;
items[3] = &OriginCursor;
items[4] = &CornerCursor;
menu = IconMenuCreate(5,items);

SaveDisplayState(&ds); /* initialize display */
InitGraphics(1) ;
printf("press any button for menuO);
printf("release button out of menu to exitO);

while (TRUE) { r loop changing cursors */
if (GetButtons()) {

}
}

choice = MenuSelect(menu);
if (choice == 5) break; /* terminate if no item selected */
else SetCursor(items[choice]);

ClearScreenO; r clean up display */
ExitGraph iCsO;
Restore DisplayState(&ds);
MenuDestroy(menu);

4-28

Graphics Library Concepts

Event Processes
The graphics library includes support for event management. An event may be a key press,
mouse button press, or time value. Smalltalk uses the event mechanism for management of all
interactive input.

As an event is generated, it is inserted in the event queue. Functions are provided for turning
event processing on and off, for accessing the next (oldest) event, and for returning the number of
events in the queue. Figure 4-7, Event Queue Processing, shows how events are generated and
processed.

It is possible to process mouse events only, leaving the keyboard generating ASCII key codes.
The following C program excerpt turns on events, then sets the keyboard to ASCII, which leaves
only mouse events to be placed in the queue.

EventEnable(1) ;
SetKBCode(1);

The function EGetNextO is used to return the next value in the event queue. Since some events
require one value and some require three values, this is either a complete event, an event header,
or half of a long time event parameter. The event type is an integer in the range -1 to 5, inclusive.
A negative value signals an error. Here are the event type definitions from
Ilib/inciude/graphics.h:

#define E_DELTATIME 0
#define E_XMOUSE 1
#define E YMOUSE 2
#define (=PRESS 3
#define E_RELEASE 4
#define E_ABSTIME 5

Type values 1 through 4 indicate that the event parameter is embedded in the event value. Type
values 0 and 5 indicate that the parameter is given by the next two values in the event queue.

4400 Series C Reference 4-29

Graphics Library Concepts

Keyboard Mouse

I 10
.11

Event Manager
Clock

Keyboard I
C(Vertical Module

Retrace 1-40-
Module

Event
Queue ~1 E2

E~ E\'4-
r--i 1
E7 E4

E6 5
~ O~eratlng - ystem

Ir
Application Program

Is queue Get Turn on Other
empty? event events event

functions

Figure 4-7. Event Queue Processing.

4-30

Section 5

Graphics Library Reference
Graphics and Events Library
The graphics library provides access to the bit-mapped display and to the event manager. It uses
the mechanisms added to the 4400 Series operating system which support Smalltalk's use of the
bit-mapped display the keyboard, and the mouse. The graphics library allows applications to use
the "BitBlt" graphics primitive, change the cursor, detect button presses, and perform simple
graphics operations such as draw lines and boxes, as well as other related abilities.

The library itself exists in the file named !liblgraphics, with C header files which define the
various structures in Iliblincludelgraphics.h and Iliblincludelfont.h.

In the description of the graphics library functions, the following conditions apply:

• All arguments are of the type int, unless otherwise specified.

• In all the following descriptions, the C language definitions of true and false are valid.

• For true/false, arguments are interpreted by the functions as true <> ° and false == 0.

• The values returned from the library functions should be interpreted as true> 0, false == 0,
and error condition < 0.

• All functions without explicit return values will return success/failure indications as
success == 0, failure (error condition) < O.

• Any function which returns an error condition will also set the global variable errno to an
appropriate error code.

About This Section
This section is made up of manual page descriptions for each graphics library function. The
functions are alphabetically arranged. In addition to the manual pages for each function, you will
find at the head of the manual pages an alphabetical list of all the functions. This list includes
each function's name, a symbolic listing of its arguments, and a short description of its operation,
The symbolic arguments list shows the number and type of each argument. See Table 5-1,
Symbolic Arguments, for the meanings of the symbolic arguments.

4400 Series C Reference 5-1

Graphics Library Reference

List of Functions

BbcomDefault(b)

BbcomPrint(b)

BitBlt(b)

CharDraw(c,p)

CharDrawRawX(c,p,bfh)

CharDrawX(c ,p,bfh)

CharWidth(cfh)

CircleDraw(p ,i)

CircleDraw X(p,i ,i ,b)

ClearScreenO

CursorTrack(i)

Cursor Visible(i)

5-2

Symbol
b
c
d
f
fa
fh
i
ip
I

m
p
pa
q
r
s
sa

Table 5-1
Symbolic Arguments

Meaning
struct BBCOM *b;

charc;
struct DISPST ATE *d;

struct FORM *f;
struct FORM **fa; (array of fonns)

struct FontHeader *f;
int i;

int *ip; (pointer to int)
unsigned long I;

struct MENU *m;
struct POINT *p;

struct POINT *pa; (array of points)
struct QUADRECT *q;

struct RECT *r;
char *s; (string)

char **sa; (array of strings)

Initializes a BBCOM structure.

Prints values in a BBCOM structure.

Performs the BitBlt operation with a specified BBCOM
structure.

Draws a character on the display.

Draws a character using the specified arguments exclusive
of the destination rectangle.

Draws a character using the specified arguments including
the destination rectangle (text bounding box).

Returns the width in pixels required to draw a character
";'II,th 'lI C'o'l"\..o.,..;h,o,rl +"'"
Yl' J.LU. " ~p'-''''.lJ.l'''''U lUlU.

Draws a circle on the display.

Draws a circle using the specified BBCOM structure.

Blanks(or "clears") the display.

Makes the cursor track with the mouse.

Makes the cursor visible.

DisplayVisible(i)

EClear AlarmO

EGetCountO

EGetNewCountO

EGetNextO

EGetTimeO

ESetAlarm(i)

ESetSignalO

EventDisable(~

EventEnableO

ExitGraphicsO

FontClose(jh)

FontOpen(s)

FormCopy(f J)

FormCreate(i,i)

FormDestroy(f)

FormFromUserO

FormGetPointif,p)

FormPrint(f)

FormRead(s)

FormSetPointif,p ,i)

FormWrite(s)

GetButtonsO

GetCPosition(p)

GetCursor(f)

GetMachineTypeO

GetMBounds(p,p)

GetMPosition(p)

GetRealMachineTypeO

GetTermEmRC(ip,ip)

4400 Series C Reference

Graphics Library Reference

Makes the display visible.

Clears any pending alarms that a process has requested.

Returns event values from the event buffer.

Returns event values from the event buffer since the
previous call to EGetNewCount.

Returns the next value in the event buffer.

Returns the system time.

Requests a signal after the specified time has elapsed.

Requests signals when events occur.

Disables event processing.

Enables event processing.

Terminates use of graphics mode.

Releases font storage memory to the system.

Initializes a font from a font file.

Copies one form into another form.

Allocates and initializes a FORM structure and bitmap.

Deallocates a FORM structure and bitmap.

Returns a form from the display.

Returns the value of a specified pixel in a form.

Prints the values in a specified FORM structure.

Reads a specified file and returns the form in it.

Sets the value of a specified pixel in a form.

Writes the specified form to a fik

Returns a value encoding the current state of the mouse
buttons.

Returns the current cursor position in a point.

Copies the current cursor information to a form.

Returns the 4400 Series model number as it is set at
. machine initialization time or by SetMachineType.

Returns the current mouse bounds.

Returns the current mouse position.

Returns the 4400 Series model number as set at machine
initialization time.

Returns the current size of the terminal emulator.

5-3

Graphics Library Reference

Get Viewport(p)

IconMenuCreate(ifa)

IconMenuCreateX(ifa,ip,i)

InitGraphics(i)

LineDraw(p,p)

LineDrawX(p,p,i,i,b)

MenuCreate(i ,sa)

MenuCreateX(i,sa,ip,ifh)

MenuDestroy(m)

MenuPrint(m)

MenuSelect(m)

PaintLine(b,p)

PanCursorEnable(i)

PanDiskEnable(z)

PointDistance(p,p)

PointFromUser(p)

PointMax(p,p,p)

PointMidpoint(p,p,p)

PointMin(p,p,p)

PointPrint(p)

PointsToRect(p,p ,r)

PointToRC(ip ,ip,p)

PolygonDraw(i,pa)

PolygonDrawX(i,pa,b)

PolyLineDraw(i,pa)

PolyLineDrawX(i,pa,i,i,b)

5-4

Returns in a point the upper left comer of the viewport.

Initializes a MENU structure with items being FORM
structures.

Initializes a MENU structure with arguments additional to
IconMenuCreate.

Maps the bit-mapped display into the calling process's
space and otherwise initializes graphics mode.

Draws a line from one specified point to another.

Draws a line from one specified point to another with
variable width and a specified BBCOM structure.

Initializes a MENU structure with items being strings.

Initializes a MENU structure with arguments additional to
MenuCreate.

Releases storage used for a MENU structure.

Prints the values in the fields of a MENU structure.

Pops up the menu and allows the user to select an option.

Draws a line on the display. See LineDraw.

Turns cursor panning on or off.

Turns joydiskpanning on or off.

Returns the distance between two points.

Returns a display location selected by the user with a mouse
click.

Returns the lower right comer of a rectangle defined by two
points.

Returns the midpoint of a line.

Returns the upper left corner of a rectangle defined by two
points.

Prints the address and values of a point.

Returns the smallest rectangle containing two specified
points.

Given a point on the display. returns the character celi that
point is in.

Draws a filled-in polygon.

Draws a filled-in polygon using the specified BBCOM
structure.

Draws an unfilled-in polygon.

Draws an unfilled-in polygon using the specified BBCOM
structure.

ProtectCursor(r,r)

QuadrectPrint(q)

RCToRect(r,ip ,ip)

RectAreasDiffering(r,r,q)

RectAreasOutside(r ,r,q)

RectBoxDraw(r,i)

RectBoxDrawX(r,i,b)

RectContainsPoint(r,p)

RectContainsRect(r,r)

RectDraw(r)

RectDrawX(r,b)

RectFromUser(r)

RectFromUserX(pf,r)

RectIntersect(r,r,r)

RectIntersects(r,r)

RectMerge(r,r,r)

RectPrint(r)

ReleaseCursorO

RestoreDisplayState(d)

SaveDisplayState(d)

ScreenSaverEnable(i)

SetCPosition(p)

SetCursor(f)

4400 Series C Reference

Graphics Library Reference

Removes the cursor from either of two specified display
rectangles.

Prints the address and values in the specified QUADRECT
structure.

Converts row and column indices to a rectangle defining a
character cell.

Returns the non-intersecting portions of two specified
rectangles.

Returns the non-intersecting portion of one of two specified
rectangles.

Draws a box around a specified rectangle.

Draws a box around a specified rectangle with the specified
BBCOM structure.

Returns true if a rectangle contains the specified point.

Returns true if a rectangle contains another specified
rectangle.

Draws a solid rectangle.

Draws a solid rectangle with the specified BBCOM
structure.

Returns a rectangular region specified on the display by a
user.

Returns a rectangular region specified by a user with
arguments additional to RectFromUser.

Returns the intersection rectangle of two specified
rectangles.

Returns true if two rectangles intersect.

Returns the smallest rectangle that can be drawn around two
rectangles.

Prints the address and values in a RECT structure.

Restores a cursor protected by a call to ProtectCursor.

Restores the state of the display saved by a call to
SaveDisplayState.

Stores the various display state variables in a DISPST ATE
structure.

Sets the mode to blank or not blank the display after ten
minutes of no keyboard activity.

Sets the cursor position to a specified point.

Installs a new cursor.

5-5

Graphics Library Reference

SetKBCode(i)

SetMachineType(i)

SetMBounds(p,p)

SetMPosition(p)

SetViewport(p)

StringDraw(s,p)

StringDrawRawX(s,p,bJh)

StringDrawX(s,p,bfh)

StringWidth(sJh)

TerminaIEnable(i)

VideoNormal(i)

5-6

Selects either ANSI (ASCII character) mode or event
processing mode forkeyboard activity reports.

Sets the value of the 4400 Series model number.

Sets the boundary of the region that contains the cursor.

Sets the mouse location.

Specifies where the upper left comer of the viewport is to
be.

Draws a string on the display.

Draws a string on the display without specifying a
destination rectangle.

Draws a string on the display with the destination rectangle
(text bounding box) and other arguments specified.

Computes and returns the width in pixel required to draw
string with a specified font.

Enables or disables the terminal emulator.

Sets the display to normal (black on white) or reverse video.

BbcomDe/ault

BbcomDefault

SYNOPSIS
#include <graphics.h>
BbcornDefault(bbcom)

struct BBCOM *bbcom;

Arguments

<bbcom> A pointer to a BBeOM structure.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Initializes a BBeOM structure to the following default values:

source form

destination form

NULL

Screen

source point 0,0

destination rectangle O,O,ScrWidth,ScrHeight

clipping rectangle O,O'scrWidth,ScrHeight

halftone form NULL

combination rule bbSorD

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference B-1

BbcomPrint

SYNOPSIS
#include <graphics.h>
BbcomPrint(bbcom)

struct BBCOM *bbcom;

Arguments

<bbcom> A pointer to a BBCOM structure.

Returns
Nothing is returned.

DESCRIPTION

BbcomPrint

Prints the address (in hexadecimal) and the values of the fields in decimal of the structure pointed
to by the bbcom argument.

ERRORS REPORTED

No errors are reported.

B-2

BitD

BitBlt

SYNOPSIS
#include <graphics.h>
BitBlt(bitbltComPtr)

struct BBCOM *bitbltComPtr;

Arguments

<bitbltComPtr>

Returns

A pointer to a BBCOM structure.

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Perform the BitBlt command described in the record pointed to by the parameter. The record
contains the source and destination rectangles, clipping regions, halftone mask, and combination
rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Invalid parameter in structure.

4400 Series C Reference B-3

ClUlrDraw

CharDraw

SYNOPSIS
#include <font.h>
#include <graphics.h>
CharDraw(ch,loc)

char ch;
struct POINT *loc;

Arguments

<char>

<loc>

Returns

An ASCII code for a character.

The location at which the character is to be displayed.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draws ch using the default font onto the screen starting at the point Ioc. The text bounding box
(and clipping rectangle) is defined by the current viewport. The bbS combination rule is used.
The value of Ioc is updated to reflect the end of the displayed character.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference C-l

CharDrawRawX

SYNOPSIS
#include <font.h>
#include <graphics.h>
CharDrawRawX (ch, loc,bbcom, font)

char ch;
struct POINT *loc;
struct BBCOM *bbcom;
struct FontHeader *font;

Arguments

An ASCII code for a character.

The location at which the character is to be displayed.

CharDrawRawX

<char>

<loc>

<bbcom> A structure that should define the destination form, clipping rectangle,
halftone form, and combination rule.

 The font to use for displaying the character.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draws ch, using jont, onto a form starting at the point loco The bbcom argument should include
the destination form, clipping rectangle, halftoneform (optional) and combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

SEE ALSO

CharDrawX

C-2

CharDrawX

CharDrawX

SYNOPSIS
#include <font.h>
#include <graphics.h>
CharDrawX(ch,loc,bbcom,font)

char ch;
struct POINT *loc;
struct BBCOM *bbcom;
struct FontHeader *font;

Arguments

An ASCII code for a character.

The location at which the character is to be displayed.

<char>

doc>

<bbcom> A structure that should define the destination form, destination rectangle,
clipping rectangle, halftone form, and combination rule.

 The font to use for displaying the character.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draws eh, using font, onto a form starting at the point Ioe. The bbeom argument should include
the destination form, destination rectangle (text bounding box), clipping rectangle, halftoneform
(optional) and combination rule. The value of Ioe is updated to reflect the end of the displayed
character.

ERRORS REPORTED

Invalid (NULL) structure pointer.

SEE ALSO

CharDrawRawX

4400 Series C Reference C-3

CharWidth

SYNOPSIS

#include <font.h>
#include <graphics.h>
int CharWidth(ch,font)

char cli;
struct FontHeader *font;

Arguments

<ch>

Returns

The ASCII code for a character.

The font to be used for accessing the character width.

CharWidth

Returns zero or positive if successful; otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero or positive, this value is the number of pixels required to
display the specified character.

DESCRIPTION
Returns the width in pixels required to draw ch with/onto

ERRORS REPORTED

Invalid (NULL) structure pointer.

C-4

CircleDraw

CircleDraw

SYNOPSIS
#include <math.h>
#include <graphics.h>
CircleDraw(center,radius)

struct POINT *center;
int radius;

Arguments

<center>

<radius>

Returns

The center point of the circle.

The radius of the circle.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draw a circle defined by center and radius on the screen form using the bbSorD combination
rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference C-5

CircleDrawX

SYNOPSIS
#include <math.h>
#include <graphics.h>
CircleDrawX(center,radius,width,bb)

struct POINT *center;
int radius, width;
struct BBCOM *bb;

Arguments
The center point of the circle.

The radius of the circle.

The width for drawing the circle.

CirclenrawX

<center>

<radius>

<width>

<bb> A structure that should define the destination fonn, clipping rectangle, and
combination rule.

Returns
Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Draw a circle defined by center and radius onto a fonn. The circle is drawn with a line of width
pixels. The bb argument should specify the destination fonn, clipping rectangle and combination
rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

NOTES
When a value greater than one is specified for width, extra pixels are added below and to the
right.

C-6

ClearScreen

ClearScreen

SYNOPSIS
#include <graphics.h>
ClearScreen ()

Arguments

None.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Set the full screen bitmap to zeros. If the screen is set to normal video, this will result in a white
screen. The terminal emulator is not affected by this call, i.e., the terminal emulator's idea of
where to place its next character is unchanged.

ERRORS REPORTED

Graphics not initialized.

NOTES

Graphics must be previously initilized. InitGraphics

4400 Series C Reference C-7

CursorTrack

SYNOPSIS
#include <graphics.h>
int CursorTrack(mode)

int mode;

Arguments

cu,.so,.l,.ack

<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

Returns
Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION
If the mode argument is TRUE, the cursor is made to track the mouse. If FALSE, the cursor is
totally independent of mouse motion. In either case, the previous setting is returned.

ERRORS REPORTED
Display primitive failure.

C-8

CursorVisible

CursorVisible

SYNOPSIS

#include <graphics.h>
int CursorVisible(mode)

int mode;

Arguments

<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

Returns

Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION

If the mode argument is TRUE, then the cursor is made visible. If FALSE, the cursor is made
invisible. In both cases the previous state of the cursor is returned.

ERRORS REPORTED

Display primitive failure.

4400 Series C Reference C-9

DisptayVisible

DisplayVisible

SYNOPSIS
#include <graphics.h>
int DisplayVisible(mode)

int mode;

ARGUMENTS

<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

RETURNS
Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION

If the mode argument is TRUE, then the display is made visible. If FALSE, the display is
blanked. In both cases the previous state of the display is returned.

ERRORS REPORTED

Display primitive failure.

4400 Series C Reference D-l

EClearAIQ.rm

EClearAlarm

SYNOPSIS

#include <graphics.h>
EClearAlarm () ;

Arguments

There are no arguments.

Returns

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Clears any pending alarms that the process has requested.

ERRORS REPORTED

Event primitive failed.

4400 Series C Reference E-l

EGetCount

SYNOPSIS
#include <graphics.h>
int EGetCount();

Arguments
There are no arguments.

Returns

EGetcount

Returns zero or positive if successful, otherwise -1 with ermo set to the system or graphics error
code.

DESCRIPTION

Returns the number of event values in the event buffer waiting to be processed. Return of a
negative number indicates an error.

ERRORS REPORTED

Event primitive failed.

E-2

EGetNeWCount

EGetNewCount

SYNOPSIS
+include <graphics.h>
int EGetNewCount()

Arguments

There are no arguments.

Returns
Returns zero or positive if successful, otherwise -1 with ermo set to the system or graphics error
code.

DESCRIPTION
Returns the number of event values in the event buffer which have occurred since the previous
call to this function.

ERRORS REPORTED

Event primitive failed.

4400 Series C Reference E-3

EGetNext

SYNOPSIS

#include <graphics.h>
union EVENTUNION EGetNext()

Arguments

There are no arguments.

Returns

EGetNext

Returns an EVENTUNION which is a complete event, an event header, or half of a long time
event parameter.

DESCRIPTION

EGetNext returns the next value in the event buffer. Since some events require one value and
some require three values, this is either a complete event, an event header, or half of a long time
event parameter. The event type is an integer in the range -1 to 5, inclusive. A negative value
signals an error. Type values 1,2, 3, and 4 indicate that the event parameter is embedded in the
event value. Otherwise, (type 0 and 5) the embedded parameter field is ignored, and the
parameter is represented by the next two values in the event buffer. The definition of the union
EVENTUNION and the values for each event type are specified in /lib/include/graphics.h.

ERRORS REPORTED
Event primitive failed.

E-4

EGetTime

EGetTime

SYNOPSIS

#include <graphics.h>
unsigned long EGetTime()

Arguments

There are no arguments.

Returns

Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code.

DESCRIPTION

Returns the time, in milliseconds, since the system was powered up. A return time of 0 indicates
an error.

ERRORS REPORTED

Event primitive failed.

4400 Series C Reference E-5

ESetAlarm

SYNOPSIS
#include <graphics.h>
ESetAlarm(time)

unsigned long time;

Arguments

<time> A millisecond time value.

Returns

Nothing is returned.

DESCRIPTION

ESeiAliirm

Requests a signal when the specified time (relative to system tum on), in milliseconds, is reached.

ERRORS REPORTED

Display primitive failure.

ESetSignal

ESetSignal

SYNOPSIS
#include <graphics.h>
ESetSignal ()

Arguments

There are no arguments.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Request the event manager to signal the current process when events occur. The event signal is
disabled after being issued.

ERRORS REPORTED

Event primitive failed.

4400 Series C Reference E-7

EventDisable

SYNOPSIS
#include <graphics.h>
EventDisable()

Arguments
There are no arguments.

Returns

EventDisable

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Disables event processing, i.e., turns off the event manager. Keyboard input through the
"console" device and terminal emulator is re-enabled.

ERRORS REPORTED

Event primitive failed.

E-8

EventEnable

EventEnable

SYNOPSIS
#include <graphics.h>
EventEnable()

Arguments

There are no arguments.

Returns
Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Enables event processing, Le., turns on the event manager. Any subsequent user input action will
cause event values to be created. Keyboard input through the "console" device and terminal
emulator is disabled.

ERRORS REPORTED

Event primitive failed.

4400 Series C Reference E-9

ExitGraphics

SYNOPSIS
#include <graphics.h>
ExitGraphics ()

Arguments

There are no arguments.

Returns
Nothing is returned.

DESCRIPTION

ExUGraphics

Terminates use of graphics mode. The screen is mapped out of the user's address space.

ERRORS REPORTED

Display primitive failure.

E-IO

FontclOse

FontClose

SYNOPSIS
#include <font.h>
#include <graphics.h>
FontClose(font)

struct FontHeader *font;

Arguments

 A structure used for font infonnation.

Returns

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION
Releases the storage used for the storage of the specified font.

ERRORS REPORTED
Invalid (NULL) structure pointer.

4400 Series C Reference F-l

FontOpen

SYNOPSIS
#include <font.h>
#include <graphics.h>
struct FontHeader *
FontOpen(filename)

char *filename;

Arguments

FontOpen

<filename> A string designating the name (and location) of a file defining a font.

Returns
Returns a pointer to a FontHeader structure if successful; otherwise, NULL with ermo set to the
system of graphics error code.

DESCRIPTION
Initializes a font from a font file. Returns a pointer to the font header.

ERRORS REPORTED
Invalid file type or file 110 error.

Invalid (NULL) structure pointer.

F-2

FormCopy

FormCopy

SYNOPSIS
iinclude <graphics.h>
FormCopy(forml,form2)

struct FORM *forml,*form2;

Arguments

<form!>

<form2>

Returns

The source form.

The destination form.

Returns zero if successful, otherwise -1 with erma set to the system of graphics error code.

DESCRIPTION
Copies the bitmap and offsets from forml to form2. Both fonns must have the same height and
width.

ERRORS REPORTED
Invalid (NULL) structure parameter.

Invalid parameter in structure.

4400 Series C Reference F-3

FormCreate

SYNOPSIS
#include <graphics.h>
struct FORM *
FormCreate(width,height)

short int width, height;

Arguments

FormCreate

<width>

<height>

A short integer specifying the width in bits of the fonn bitmap.

A short integer specifying the height in bits of the fonn bitmap.

Returns
This function returns a pointer to the allocated and filled-in fonn structure. NULL (zero) is
returned if the memory allocation fails or if width or height are not positive.

DESCRIPTION
Given width and height, allocates and creates a struct FORM with the correct values in it. Width
and height are specified in number of bits.

ERRORS REPORTED
Memory allocation failure.

F-4

FormDestroy

FormDestroy

SYNOPSIS
#include <graphics.h>
FormDestroy(form)

struct FORM *form;

Arguments

<fonn> A pointer to a fonn structure previously created by FonnCreate.

Returns
Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Deletes and deallocates a fonn and its associated bitmap.

ERRORS REPORTED

Invalid (NULL) structure argument.

NOTES
The screen fonn, returned by the InitGraphics call, cannot be destroyed.

4400 Series C Reference F-5

Form From User

SYNOPSIS
#include <graphics.h>
struct FORM *
FormFromUser()

Arguments

Returns

FormFromUser

Returns a fonn copied from a region of the screen if successful, otherwise NULL with errno set to
the system or graphics error code.

DESCRIPTION

A FORM is returned which is a copy of a region selected from the screen by the user.
RectFromUserX is called with BlackMask so that the selected region is inverted during the
selection process. The maximum region selectable is detennined by the current mouse bounds.

ERRORS REPORTED

Memory allocation failure.

SEE ALSO
RectFromUserX

F-6

FormGetPoint

FormGetPoint

SYNOPSIS
#include <graphics.h>
int FormGetPoint(form,point)

struct FORM *form;
struct POINT *point

Arguments

<form>

<point>

Returns

A pointer to a FORM structure.

An x,y pair designating one pixel in the form.

The value of the specified pixel (zero or one) if successful; otherwise, -1 with errno set to the
system or graphics error code.

DESCRIPTION
Returns the value of a particular pixel in a form.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference F-7

FormPrint

SYNOPSIS
#include <graphics.h>
FormPrint(form)

struct FORM *form;

Arguments
<form> A pointer to a FORM structure.

Returns
Nothing is returned.

DESCRIPTION

FormPrint

Prints the address (in hexadecimal) and the values of the fields (in decimal) of the structure
pointed to by the form argument.

ERRORS REPORTED

No errors are reported.

F-8

FormReild

FormRead

SYNOPSIS
#include <graphics.h>
struct FORM *
FormRead(filename)

char *filename;

Arguments

<filename> A string designating the name (and location) of a file defining a form.

Returns
Returns a pointer to a FORM structure if successful, otherwise NULL with errno set to the system
or graphics error code.

DESCRIPTION
If successful, a new form is read from the specified file and returned. Smalltalk form file format
is expected, which is a sequence of 16 bit values followed by the form. The initial values are 1
(indicating a form file), width, height, offset width and offset height. These values are followed
by the rows of the form, from top to bottom.

ERRORS REPORTED

Memory allocation failure.

File type mismatch or file I/O error.

4400 Series C Reference F-9

FormSetPoint

SYNOPSIS
#include <graphics.h>
FormSetPoint(form,point,value)

struct FORM *form;
struct POINT *point;
int value;

Arguments
<form>

<point>

<value>

Returns

A pointer to a FORM structure.

An x,y position in the form.

A value (zero or one) to set the specified pixel.

FormsetPoint

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Set the value of one pixel in a form.

ERRORS REPORTED

Invalide (NULL) structure pointer.

F-IO

FormWrite

FormWrite

SYNOPSIS
#include <graphics.h>
FormWrite(form,filename)

struct FORM *form;
char *filename;

Arguments

<fonn>

<filename>

Returns

A pointer to a FORM structure.

A string designating the name (and location) of the output file.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
The specified fonn is written to the specified file. Small talk fonn file fonnat is used. (See
FormRead.)

ERRORS REPORTED

Invalid file type or file I/O error.

Invalid (NULL) structure pointer.

SEE ALSO

FormRead

4400 Series C Reference F-l1

GetButtons

GetButtons

SYNOPSIS
W#include <graphics.h>

int GetBut tons ()

Arguments
None.

Returns
If the value returned is zero or positive, it encodes the current state of the mouse buttons.
Otherwise -1 is returned with errno set to the system or graphics error code.

DESCRIPTION
The returned value encodes the state of the mouse buttons with the low three bits corresponding
to the three mouse buttons. Bit 2 corresponds to the left button, bit 1 to the middle, and bit 0 (the
lsb) to the right button. If the value of the bit is a one, then the mouse button is depressed, if a
zero it is released.

ERRORS REPORTED
Display primitive failed.

4400 Series C Reference 0-1

GetCPosition
Gets location of cursor.

SYNOPSIS
#include <graphics.h>
GetCPosition(point)

struct POINT *point;

Arguments

GetcPosition

<point> A pointer to a POINT structure to be filled in with the cun:ent cursor
location.

Returns
Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION
Sets the x and y fields of point to the current cursor location.

ERRORS REPORTED
Invalid (NULL) structure pointer.

Display primitive failure.

NOTES
If CursorTrack mode is enabled, this is the same as GetMPosition.

Cursor location ("hot spot") is defined by the position (upper left comer) where the cursor is
displayed, plus the offsets defined in the cursor form.

G-2

Getcursor

GetCursor

SYNOPSIS
#include <graphics.h>
GetCursor(curp)

struct FORM *curp;

Arguments

<curp> A pointer to a FORM structure which must define a 16x16 array of bits
which will be filled with the current cursor.

Returns
Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION
The bitmap and offsets of the current cursor are copied into the form pointed to by curp.

ERRORS REPORTED
Invalid (NULL) structure argument.

Invalid parameter in structure.

Display primitive failure.

4400 Series C Reference G-3

GetMachineType

SYNOPSIS
#include <graphics.h>
int GetMachineType();

Arguments

There are no arguments.

Returns

GetMachineType

Returns a hexadecimal value of the form Ox440xOOOO if successful, otherwise -1 with errno set
to the system or graphics error code.

DESCRIPTION

Returns the 4400 Series model number as set at machine initialization or by SetMachineType.
The lower word of the returned value is reserved for future use.

ERRORS REPORTED

Display primitive failure.

SEE ALSO
GetRealMachineType, SetMachineType

G-4

GetMBounds

GetMBounds

SYNOPSIS
#include <graphics.h>
GetMBounds(ulpoint,lrpoint)

struct POINT *ulpoint,*lrpoint;

Arguments
<ulpoint> A pointer to a POINT structure in which the current x and y coordinates of

the upper left corner of the mouse motion bounding box will be placed.

drpoint> A pointer to a POINT structure in which the current x and y coordinates of
the lower right corner of the mouse motion bounding box will be placed.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Gets current mouse bounds.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Display primitive failure.

4400 Series C Reference 0-5

GetMPosition

SYNOPSIS

#include <graphics.h>
GetMPosition(point)

struct POINT *point;

Arguments

GetMPosition

<point> A pointer to a POINT structure to be filled in with the current x and y
screen coordinates of the mouse position.

Returns

Returns zero if successful, otherwise -1 with erma set to the system or graphics error code.

DESCRIPTION
Gets current mouse locations.

ERRORS REPORTED
Invalid (NULL) structure pointer.

Display primitive failure.

NOTES

If CursarTrack mode is enabled, this is the same as GetCPosition.

Cursor location ("hot spot") is defined by the position (upper left comer) where the cursor is
displayed, plus the offsets defined in the cursor form.

0-6

GetRealMachineType

GetRealMachineType

SYNOPSIS
#include <graphics.h>
int GetRealMachineType(};

Arguments

There are no arguments.

Returns
Returns a hexadecimal value of the form Ox440xOOOO if successful, otherwise -1 with errno set to
the system or graphics error code.

DESCRIPTION
Returns the actual 4400 Series model number determined by consulting the internal ROM
memory. The lower word of the returned value is reserved for future use.

ERRORS REPORTED
Display primitive failure.

SEE ALSO
GetMachineType, SetMachineType

4400 Series C Reference G-7

GetTermEmRC

SYNOPSIS
#include <graphics.h>
GetTermEmRC(row, col)

int *row, *col;

Arguments

<row> A pointer to an integer to receive the number of rows.

<col> A pointer to an integer to receive the number of columns.

Returns
Returns the current size (number of rows and columns) of the terminal emulator.

DESCRIPTION
Returns the current size of the terminal emulator.

ERRORS REPORTED
Display primitive failure.

0-8

GetTermEmRC

GetViewport

GetViewport

SYNOPSIS
#include <graphics.h>
GetViewport(point)

struct POINT *point;

Arguments
<point> A pointer to a POINT structure to be filled in with the current x and y

screen coordinates of the upper left comer of the viewport.

Returns
Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Sets the x and y fields of point to the coordinates of the point of the virtual screen which is
currently displayed in the upper left comer of the viewport.

ERRORS REPORTED
Invalid (NULL) structure pointer.

Display primitive failure.

4400 Series C Reference G-9

IconMenuCreate

IconMenuCreate

SYNOPSIS
#include <graphics.h>
struct MENU *
IconMenuCreate(count,item)

int count;
struct FORM **item;

Arguments

<count>

dtem>

Returns

The number of menu items, an integer.

An array of pointers to FORM structures.

Returns the address of a MENU structure if successful, otherwise NULL with errno set to the
system or graphics error code.

DESCRIPTION

Initializes a MENU structure and returns a pointer to it. The count argument is the number of
items in the menu. The item argument is an array of pointers to FORM structures that define the
actual menu items. A line is drawn between each pair of menu items.

ERRORS REPORTED
Invalid (NULL) structure pointer.

MemoI)' allocation failure.

4400 Series C Reference 1-1

IconMenuCreateX

IconMenuCreateX

SYNOPSIS
#include <graphics.h>
struct MENU *IconMenuCreateX(count,items,flags,previtem)

int count, *flags, previtem;
struct FORM **items;

Arguments

<count>

<items>

<flags>

<previtem>

Returns

The number of items in the menu.

An array of pointers to FORM structures.

An optional array of flags for each item.

The item where the mouse should be positioned initially.

The address of a MENU structure if successful, otherwise -1 with errno set to the system or
graphics error code.

DESCRIPTION

Initializes and returns a pointer to a MENU structure. The count argument is the number of items
in the menu. The items argument is an array of pointers to FORM structures which define the
actual menu items. The positioning of each item is determined by the size of the item and the
values of its offsets.

The flags array is used for specifying information about menu items. Flags which may be
specified include MENU_LINE (draw a line after the item), MENU _ NOSELECT (the menu item
is not selectable), MENU _LEFT (left-justify the item), and MENU_RIGHT (right-justify the
item). Items are centered by default.

ERRORS REPORTED
Invalid (NULL) structure pointer.

Memory allocation failure.

SEE ALSO
MenuSelect, MenuDestroy

1-2

IniiGraphics

InitGraphics

SYNOPSIS
#include <graphics.h>
struct FORM *
InitGraphics(mode)

int mode;

Arguments
<mode> An integer which should be either TRUE (positive) or FALSE (zero).

Returns
Returns a pointer to the FORM structure which defines the screen bitmap. A NULL (zero) is
returned if the initialization fails.

DESCRIPTION
If the mode argument is FALSE, the bit-mapped display is mapped into the calling process's
address space. If the argument is TRUE, this mapping is done and then the display is cleared,
made visible and set to normal video (black on white) with both mouse and joydisk panning
enabled and the cursor position tracking the mouse.

ERRORS REPORTED

Graphics initialization failure.

4400 Series C Reference 1-3

LineDraw

LineDraw

SYNOPSIS
#include <graphics.h>
LineDraw(*pointl,*point2)

struct POINT *pointl,*point2;

Arguments

<pointl>

<point2>

Returns

Starting point for line.

Ending point for line.

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Draw a one-pixel-wide line from pointl to point2 on the screen form using the bbSorD
combination rule. Both endpoints are drawn.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference L-l

LineDrawX

SYNOPSIS
#include <graphics.h>
LineDrawX (pointl,point2, width, drawlast, bbcom)

struct POINT *pointl,*point2;
int width,drawlast;
struct BBCOM *bbcom;

Arguments
Starting point for the line.

Ending point for the line.

The width in pixels for the line.

Value of zero or one - detennines if the last point is drawn.

LineDrawX

<point!>

<point2>

<width>

<drawlast>

<bbcom> Defines the destination fonn, the clipping rectangle, and the combination
rule.

Returns

Returns zero if successful, otherwise -1 with errno set to system or graphics error code.

DESCRIPTION

Draw a line of width pixels from pointl to point2 onto a fonn. The bbcom argument should
specify the destination fonn, clipping rectangle, and combination rule.

If drawlast is zero and width is one, then the final point (point2) is not drawn.

ERRORS REPORTED

Invalid (NULL) structure pointer.

L-2

MenuCreate

MenuCreate

SYNOPSIS
*include <font.h>
*include <graphics.h>
struct MENU *
MenuCreate(count,item)

int count;
char **item;

Arguments

<count>

<item>

Returns

The number of menu items.

An array of string items.

Returns zero if successful, otherwise NUU with ermo set to the system or graphics error code.

DESCRIPTION
Initializes a MENU structure and returns a pointer to it. The count argument is the number of
items in the menu. The item argument is an array of strings that define the actual menu items.
The default font is used to paint the items onto the menu form.

ERRORS REPORTED
Invalid (NULL) array pointer.

4400 Series C Reference M-l

MenuCreateX

SYNOPSIS
#include <font.h>
#include <graphics.h>

MenuCreateX

struct MENU *MenuCreateX(count,items,flags,previtem,font)
int count, *flags, previtem;
char **items;
struct FontHeader *font;

Arguments

<count>

<items>

<flags

<previtem>

Returns

The number of items in the menu.

An array of pointers to strings.

An optional array of flags for each item.

The item where the mouse should be positioned initially.

The font to use for displaying menu items.

The. address of a MENU structure if successful, otherwise -1 with errno set to the system or
graphics error code.

DESCRIPTION

Initializes and returns a pointer to a MENU structure. The count argument is the number of items
in the menu. The items argument is an array of pointers to the strings which define the actual
menu items.

The flags array is used for specifying infonnation about menu items. Flags which may be
specified include MENU _LINE (draw a line after the item), MENU _NOSELECT (the menu item
is not selectable), MENU_LEFT (left-justify the item), and MENU_RIGHT (right-justify the
item). Items are centered by default.

ERRORS REPORTED
Invalid (NULL) array pointer.

M-2

MenuCreateX

SEE ALSO
MenuSelect, MenuDestroy

4400 Series C Reference M-3

MenuDestroy

SYNOPSIS
#include <graphics.h>
MenuDestroy(menu)

struct MENU *menu;

Arguments

<menu> A pointer to a MENU structure.

Returns

MenuDestroy

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Releases the storage used for a MENU structure. (This storage is allocated by MenuCreate,
MenuCreateX, IconMenuCreate, or IconMenuCreateX.)

ERRORS REPORTED

Invalid (NULL) structure pointer.

M-4

MenuPrint

MenuPrint

SYNOPSIS
#include <graphics.h>
MenuPrint(menu)

struct MENU *menuj

Arguments
<menu> A pointer to a MENU structure.

Returns

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Prints the address (in hexadecimal) and the values of the fields (in decimal) of the structure
pointed to by the menu argument.

ERRORS REPORTED
Event primitive failed.

4400 Series C Reference M-5

MenuSelect

SYNOPSIS
#include <graphics.h>
MenuSelect(menu)

struct MENU *menu;

Arguments

<menu> A pointer to a MENU structure.

Returns

MenuSelect

Returns the. array index (zero or positive) of the item selected or the number of items in the menu
if no selection was made. If an error has occurred, then -1 is returned, and ermo is set to the
system or graphics error code.

DESCRIPTION
Pops up the specified menu and waits for click (or release) of any mouse button. Returns the
number of the item selected, or the number of item in the menu for no selection. The menu is
displayed at the current mouse location, possibly adjusted to be within the current mouse bounds.

ERRORS REPORTED
Invalid (NULL) structure pointer.

M-6

PaintLine

PaintLine

SYNOPSIS
#include <graphics.h>
PaintLine(bbcom,point)

struct BBeOM *bbcom;
struct POINT *point;

Arguments

<bbcom> A pointer to a BBeOM structure that defines the source form, destination
form, the clipping rectangle, the combination rule, etc.

<point> An x,y pair specifying the beginning point of the line drawn.

Returns
Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Paint a line on the display. A sequence of BitBlt operations is performed while stepping a pixel
at a time from point to the point specified by the x and y values of the bbcom destination
rectangle. The width and height values of the bbcom destination rectangle determine the size of
the "brush" used for drawing the line.

ERRORS REPORTED
Invalid (NULL) structure pointer.

NOTES
If the one of the exclusive OR rules is specified, and the source is NUU (ones), the response will
instead be as if the line was drawn by the above stepping method to a hidden bitmap and then that
hidden bitmap was combined with the destination bitmap according to the specified rule.

4400 Series C Reference P-l

PanCursorEnable

SYNOPSIS
#include <graphics.h>
int PanCursorEnable(mode)

int mode;

Arguments

PanCursorEnable

<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

Returns
Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled. if positive the
mode was TRUE or enabled.

DESCRIPTION
If the mode argument is TRUE, then the cursor is set to pan the viewport when it runs into the
edges. If the argument is FALSE, the panning with the cursor is disabled. In either case, the
previous setting is returned.

ERRORS REPORTED
Display primitive failure.

P-2

PanDiskEnable

PanDiskEnable

SYNOPSIS
#include <graphics.h>
int PanDiskEnable(mode)

int mode;

Arguments
<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

Returns
Returns zero or positive if successful, otherwise -1 with ermo set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION
If the mode argument is TRUE, then panning of the viewport when the joydisk is pressed is
enabled. If the argument is FALSE, the panning with the joydisk is disabled. In either case, the
previous setting is returned.

ERRORS REPORTED

Display primitive failure.

4400 Series C Reference P-3

PointDistance

SYNOPSIS
#include <math.h>
#include <graphics.h>
int PointDistance(pointl,point2)

struct POINT *pointl;
struct POINT *point2;

Arguments

<point!>

<point2>

Returns

A pointer to the starting point of a line.

A pointer to the ending point of a line.

Point Distance

Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code.

DESCRIPTION

Returns the distance between pointl and point2.

ERRORS REPORTED

Invalid (NULL) structure pointer.

P-4

PointFromUser

PointFrom User

SYNOPSIS
#include <graphics.h>
PointFromUser(point)

struct POINT *point;

Arguments

<point> A pointer to a PO [NT structure to be used for the result.

Returns

Returns zero if successful, othelWise -1 with errno set to the system or graphics error code.

DESCRIPTION

Returns a screen location selected by the user. The cursor is changed to CrosshairCursor. When
any button is clicked (or released), the position of the cursor is copied into point. Selectable
points are determined by the current mouse bounds. Cursor visibility and tracking are enabled for
the operation, and the previous cursor, cursor visibility, and tracking modes are restored when the
operation is complete.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference P-5

PointMax

SYNOPSIS
#include <graphics.h>
PointMax(pointl,point2,point3)

struct POINT *pointl,*point2,*point3;

Arguments

A pointer to one of two points defining a rectangle.

A pointer to the other of two points defining a rectangle.

PointMax

<point!>

<point2>

<point3> A pointer to a point (the lower right comer of the rectangle defined by
point1 and point2) to be used for the result.

Returns

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

Returns in pointJ the lower right corner of the rectangle defined by pointl and point2.

ERRORS REPORTED

Invalid (NULL) structure pointer.

P-6

PointMidpoint

POintMidpoint

SYNOPSIS
#include <graphics.h>
PointMidpoint(pointl,point2,point3)

struct POINT *pointl,*point2,*point3;

Arguments

A pointer to one endpoint of a line.

A pointer to the other endpoint of a line.

<point!>

<point2>

<point3> A pointer to a point (the point half way between the two endpoints of a
line) to be used for the result.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Returns in point3 the midpoint of the line defined by pointl and point2.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference P-7

PointMin

SYNOPSIS

*include <graphics.h>
PointMin(pointl,point2,point3)

struct POINT *pointl,*point2,*point3;

Arguments

A pointer to one of two points defining a rectangle.

A pointer to the other of two points defining a rectangle.

PointMin

<point 1 >

<point2>

<point3> A pointer to a point (the upper left comer of the rectangle defined by
pointl and point2) to be used for the result.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Returns in point3 the upper left comer of the rectangle defined by pointl and point2.

ERRORS REPORTED

Invalid (NULL) structure pointer.

P-8

PointPrint

PointPrint

SYNOPSIS

#include <graphics.h>
PointPrint(point)

struct POINT *point;

Arguments

<point> A pointer to a POINT structure.

Returns
Nothing is returned.

DESCRIPTION

Prints the address (in hexadecimal) and the values of the fields (in decimal) of the structure
pointed to by the point argument.

ERRORS REPORTED

No errors are reported.

4400 Series C Reference P-9

PointsToRect

SYNOPSIS
#include <graphics.h>
PointsToRect(pointl,point2,rect)

struct POINT *pointl,*point2;
struct RECT *rect;

Arguments

A pointer to one of two points that define a rectangle.

A pointer to the other of two points that define a rectangle.

PointsToRect

<pointl>

<point2>

<rect> A pointer to a RECT structure (the minimum-sized rectangle containing
pointl and point2) to be used for the result.

Returns
Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Returns in reet the minimum rectangle which contains bothpointl andpoint2.

ERRORS REPORTED
Invalid (NULL) structure pointer.

P-IO

PointToRC

PointToRC

SYNOPSIS
#include <graphics.h>
PointToRC(row,col,point)

int *row,*col;
struct POINT *point;

Arguments

<row> A pointer to an integer to receive the returned row index of the specified
coordinate.

<col>

<point>

Returns

A pointer to an integer to receive the returned column index of the
specified coordinate.

A pointer to a POINT structure which specifies an x and y screen
coordinate.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Given a screen coordinate, returns the row and column indices of the character cell which that
coordinate is in. (Rowand column indices start with upper left of 1,1.)

ERRORS REPORTED
Invalid (NULL) structure pointer.

4400 Series C Reference P-ll

PolygonDraw

SYNOPSIS
#include <math.h>
#include <graphics.h>
PolygonDraw(count,point)

int count;
struct POINT *point;

Arguments
<count>

<point>

Returns

The number of vertices (or edges) in the polygon.

An array of point structures.

PolygonDraw

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Draws a filled-in polygon defined by the point array onto the screen using the bbSorD
combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

P-12

PolygonDrawX

PolygonDrawX

SYNOPSIS
#include <math.h>
#include <graphics.h>
PolygonDrawX (count,point, bbcom)

int count;
struct POINT *point;
struct BBCOM *bbcom;

Arguments
The number of vertices (or edges) in the polygon.

An array of point structures.

<count>

<point>

<bbcom> Should specify destination form, clipping rectangle halftone form and
combination rule.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Draws a filled-in polygon defined by the point array. The bbcom argument should specify the
destination form, clipping rectangle, halftoneform and combination rule.

ERRORS REPORTED
Invalid (NULL) structure pointer.

Invalid parameter in structure.

4400 Series C Reference P-13

PolyLine Draw

SYNOPSIS
tinclude <graphics.h>
PolyLineDraw(count,point}

int count;
struct POINT *point;

Arguments

<count>

<point>

Returns

The number of vertices (or edges) in the polygon.

An array of point structures.

PolyLineDraw

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Lines from point! OJ to pointll J to ... point! count-l J to point! 0 J are drawn onto the screen using
the bbSorD combination rule. Lines are drawn one pixel wide.

ERRORS REPORTED
Invalid (NULL) structure pointer.

P-14

PolyLineDrawX

PolyLineDrawX

SYNOPSIS

#include <graphics.h>
PolyLineDrawX (count,point ,width,closed,bbcom)

int count,width,closed;
struct POINT *point;
struct BBCOM *bbcom;

Arguments

The number of vertices (or edges) in the polygon.

An array of point structures.

The width in pixels for drawing each edge.

Determines if last point is connected to the first point.

<count>

<point>

<width>

<closed>

<bbcom> Should specify destination form, clipping rectangle halftone form and
combination rule.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Lines from point[O} to point[J} to ... point[count-J] are drawn onto a form. Lines are drawn
width pixels wide. If the value of closed is not 0, then an additional line is drawn from
point[count-J] to point[O}. The last endpoint is not drawn. The bbcom argument should specify .
the destination form, clipping rectangle and combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Invalid parameter in structure.

4400 Series C Reference P-15

ProtectCursor

SYNOPSIS
#include <graphics.h>
ProtectCursor(rl,r2)

struct RECT *rl,*r2;

Arguments

<rl>

<r2>

Returns

A pointer to a RECT structure.

A pointer to a RECT structure.

ProteciCursor

Returns zero if successful, otherwise -I with errno set to the system or graphics error code.

DESCRIPTION
Tell the operating system that graphics operations will be occurring in one or both of the screen
areas defined by the two rectangles (either rectangle pointer may be null). The operating system
will respond by removing the cursor from the screen if it is in either of the two areas. This
instruction and its release (ReleaseCursor) should be used if the user is writing or reading
directly from the screen. This cursor protection is already included in the routines of this library
which draw on the screen.

ERRORS REPORTED
Invalid (NULL) structure pointer.

P-16

QuadrectPrint

QuadrectPrint

SYNOPSIS
#include <graphics.h>
QuadrectPrint(quadrect)

struct QUADRECT *quadrect;

Arguments

<quadrect> A pointer to a QUADRECTstructure.

Returns
Nothing is returned.

DESCRIPTION
The address (in hexadecimal) and the values of the fields (in decimal) of the structure pointed to
by the quadrect argument are printed.

ERRORS REPORTED
No errors are reported.

4400 Series C Reference Q-l

RCToRect

RCToRect

SYNOPSIS
finclude <graphics.h>
RCToRect(rect,row,col)

struct RECT *rect;
int row,col;

Arguments

<reet> A pointer to a RECf structure to receive the x and y screen coordinate of
the upper left corner of the specified character cell and the width and
height of that cell.

<row>

<col>

Returns

An integer specifying a row index of a character cell.

An integer specifying a column index of a character cell.

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION
Convert row, column indices to a rectangle defining the character cell.

ERRORS REPORTED
Invalid (NULL) structure pointer.

4400 Series C Reference R-l

RectAreasDiffering

SYNOPSIS
#include <graphics.h>
RectAreasDiffering(rectl,rect2,quadrect)

struct RECT *rectl,*rect2;
struct QUADRECT *quadrect;

Arguments

<rectI>, <rect2>

<quadrect>

Returns

Pointers to RECT structures.

A pointer to a QUADRECT structure.

ReciAreasDifJering

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION
The regions of recti which are outside of rect2, and the regions of rect2 which are outside of
recti are returned in quadrect.

ERRORS REPORTED
Invalid (NULL) structure pointer.

R-2

RectAreasOutside

RectAreasOutside

SYNOPSIS
#include <graphics.h>
RectAreasOutside(rectl,rect2,quadrect)

struct RECT *rectl,*rect2;
struct QUADRECT *quadrect;

Arguments

<rectI>, <rect2>

<quadrect>

Returns

Pointers to RECT structures.

A pointer to a QUADRECT structure.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
The regions of reet] which are outside of reet2 are returned in quadreet.

ERRORS REPORTED
Invalid (NULL) structure pointer.

4400 Series C Reference R-3

RectBoxDraw

SYNOPSIS
#include <graphics.h>
RectBoxDraw(rect,width)

struct RECT *rect;
int width;

Arguments

<rect> A pointer to a RECT structure.

<width> The width in pixels of the line used to draw the box.

Returns

RectBoxDraw

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION
Draw a box width pixels wide on the screen form around reet using the bbSorD combination rule.

ERRORS REPORTED
Invalid (NULL) structure pointer.

R-4

RectBoxDrawX

RectBoxDrawX

SYNOPSIS
#include <graphics.h>
RectBoxDrawX(rect,width,bbcom)

struct RECT *rect;
int width;
struct BBCOM *bbcom;

Arguments

<rect> A pointer to a RECT structure.

The width in pixels of the line used to draw the box. <width>

<bbcom> Defines the destination form, the clipping rectangle, halftone form and the
combination rule.

Returns
Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draw a box width pixels wide onto a form around recto The bb argument should specify the
destination form, clipping rectangle, halftone form, and combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference R-5

RectContainsPoint

SYNOPSIS
#include <graphics.h>
int RectContainsPoint(rect,point)

struct RECT *rect;
struct POINT *point;

Arguments

<rect>

<point>

Returns

A pointer to a RECT structure.

A pointer to a point structure.

RectConlilinsPoint

Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code.

DESCRIPTION
Returns 1 if reet contains point, otherwise O.

ERRORS REPORTED
Invalid (NULL) structure pointer.

R-6

RectContainsRect

RectContainsRect

SYNOPSIS

#include <graphics.h>
int RectContainsRect(rectl,rect2)

struct RECT *rectl,*rect2;

Arguments

<rect1>, <rect2> Pointers to RECT structures.

Returns

Returns zero or positive if successful, otherwise -1 with ermo set to the system or graphics error
code.

DESCRIPTION

Returns 1 if rectI contains reet2, otherwise O.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference R-7

RectDraw

SYNOPSIS
#include <graphics.h>
RectDraw(rect)

struct RECT *rect;

Arguments

<rect> A pointer to a RECT structure.

Returns

RectDraw

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draw a solid rectangle on the screen form using the bbS combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

R-8

RectDrawX

RectDrawX

SYNOPSIS
#include <graphics.h>
RectDrawX(rect,bbcom)

struct RECT *rect;
struct BBCOM *bbcom;

Arguments

A pointer to a RECT structure. <rect>

<bbcom> Defines the distination form, clipping rectangle, halftone form, and
combination rule.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draw a rectangle onto a form. The bb argument should specify the destination form, clipping
rectangle, halftone form and combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference R-9

RectFromUser

SYNOPSIS
#include <graphics.h>
RectFromUser(rect)

struct RECT *recti

Arguments

<rect> A pointer to a RECT structure to be used for the result.

Returns

RectFromUser

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

A region selected by the user is returned in the reet argument. The cursor is changed to
OriginCursor. When the left mouse button is pressed, the upper left corner of the region is fixed,
and the cursor is changed to CornerCursor. GrayMask is used as the halftoneform to indicate the
selected region. Releasing the mouse button fixes the lower right corner of the region. The
current mouse bounds define the maximum region that may be selected. Cursor visibility and
tracking are enabled for the operation, and the previous cursor, cursor visibility, and tracking
modes are restored when the operation is complete.

ERRORS REPORTED

Invalid (NULL) structure pointer.

R-lO

RectFromUserX

RectFrom UserX

SYNOPSIS
#include <graphics.h>
RectFromUserX(minsize,mask,rect)

struct POINT *minsize;
struct FORM *mask;
struct RECT *rect;

Arguments
<minsize>

<mask>

<rect>

Returns

The minimum height and width.

The halftone form to use for highlighting the selected region.

A pointer to a structure to use for the result.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

A region selected by the user is returned in the reet argument. The cursor is changed to
OriginCursor. When the left mouse button is pressed, the upper left comer of the region is fixed,
and the cursor is changed to CornerCursor. The mask argument, which should be a 16 by 16 bit
form, is used as the halftoneform to indicate the selected region. After the upper left comer is
fixed, the region is initialized to the size indicated with the minsize argument, and constrained to
be no smaller. Releasing the mouse button fixes the lower right comer of the region. The current
mouse bounds define the maximum region that may be selected. Cursor visibility and tracking
are enabled for the operation, and the previous cursor, cursor visibility, and tracking modes are
restored when the operation is complete.

ERRORS REPORTED
Invalid (NULL) structure pointer.

4400 Series C Reference R-ll

Rectlntersect

SYNOPSIS
#include <graphics.h>
Rectlntersect(rectl,rect2,rect3)

struct RECT *rectl,*rect2,*rect3;

Arguments

<rectI>, <rect2>

<rect3>

Returns

The two RECT structures to be compared.

A structure to hold the result.

RectI ntersect

Returns zero if successful, otherwise -1 with efrno set to the system or graphics error code.

DESCRIPTION

Returns in reet3 the intersection of rectI and reet2.

ERRORS REPORTED

Invalid (NULL) structure pointer.

R-12

RectI ntersects

Rectlntersects

SYNOPSIS
#include <graphics.h>
int Rectlntersects(rectl,rect2)

struct RECT *rectl,*rect2;

Arguments

<rectI>, <rect2> The two RECT structures to be compared.

Returns

Returns zero or positive if successful, otherwise -1 with erma set to the system or graphics error
code.

DESCRIPTION

Returns 1 if reetI and reet2 intersect, otherwise O.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference R-13

RectMerge

SYNOPSIS
#include <graphics.h>
RectMerge(rectl,rect2,rect3)

struct RECT *rectl,*rect2,*rect3;

Arguments

<rectI>, <rect2>

<rect3>

Returns

The two RECT structures to be compared.

A structure to hold the result.

RectMerge

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Returns in reet3 the minimum rectangle which contains both reetl and reet2.

ERRORS REPORTED
Invalid (NULL) structure pointer.

R-14

RectPrint

RectPrint

SYNOPSIS
#include <graphics.h>
RectPrint(rect)

struct RECT *rect;

Arguments

<rect> A pointer to a RECT structure.

Returns
Nothing is returned.

DESCRIPTION
Prints the address (in hexadecimal) and the values of the fields (in decimal) of the structure
pointed to by the reet argument.

ERRORS REPORTED

No errors are reported.

4400 Series C Reference R-15

ReleaseCursor

SYNOPSIS
#include <graphics.h>
ReleaseCursor()

Arguments
There are no arguments.

Returns
Nothing is returned.

DESCRIPTION

ReleaseCursor

Tells the operating system to restore the cursor if it was removed due to a ProtectCursor call.
This call should be used to match every ProtectCursor call.

ERRORS REPORTED

No errors are reported.

R-16

RestoreDisplayState

RestoreDisplayState

SYNOPSIS
#include <graphics.h>
RestoreDisplayState(state)

struct DISPSTATE *state;

Arguments

<state> A pointer to a DISPST ATE structure which defines the display state to be
restored.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code. If
the returned value is zero, then the mode was previously false or disabled, if positive the mode
was true or enabled.

DESCRIPTION
The state of the display is set to match the state which was previously stored in the state structure.
This structure is not designed to be set up by hand, but rather to be filled in by a
SaveDisplayState call.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference R-17

SaveDisplQ.yState

SaveDisplayState

SYNOPSIS
#include <graphics.h>
SaveDisplayState(state)

struct DISPSTATE *state;

Arguments

<state> Pointer to a DISPST ATE structure in which the current state of the display
will be stored.

Returns

Returns zero if successful, otherwise -1 with ermo set to the system or graphics error code.

DESCRIPTION

See the discussion of DISPSTATE in the conceptual introduction to the graphics library earlier in
this manual.

ERRORS REPORTED

Invalid (NULL) structure pointer.

4400 Series C Reference S-1

ScreenSaverEnable

SYNOPSIS
#include <graphics.h>
ScreenSaverEnable(mode)

int mode;

Arguments

ScreensaverEnable

<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

Returns
Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION
The screen saver is the function that blanks the screen after 10 minutes of keyboard inactivity. If
the mode argument is TRUE, then the screen saver function is enabled. If FALSE, the screen
saver is disabled. In either case, the previous setting is returned.

ERRORS REPORTED

Display primitive failure.

S-2

SetcPosition

SetCPosition

SYNOPSIS
#include <graphics.h>
SetCPosition(point)

struct POINT *point;

Arguments

<point> A pointer to a POINT struct which contains the x and y screen coordinates
to be used as the upper left comer of the cursor.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Displays the cursor at the x,y screen location defined by point.

ERRORS REPORTED
Invalid (NULL) structure pointer

Graphics not initialized.

x or y outside range of screen.

Display primitive failure.

NOTES

If the CursorTrack mode is enabled, this is the same as SetMPosition.

If CursorTrack mode is enabled, this is the same as GetMPosition.

Cursor location ("hot spot") is defined by the position (upper left comer) where the cursor is
displayed, plus the offsets defined in the cursor form.

4400 Series C Reference S-3

SetCursor

SYNOPSIS

#include <graphics.h>
SetCursor(curp)

struct FORM *curp;

Arguments

SetCursor

<curp> A pointer to a fonn structure which must define a 16 by 16 array of bits to
be used as the cursor image. If this pointer is null, the default cursor image
will be used.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Installs a new cursor. The bitmap and offsets of the 16 by 16 bit fonn defined by curp are copied
into the system cursor fonn.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Invalid parameter in structure.

Display primitive failure.

S-4

SetKBCoiIe

SetKBCode

SYNOPSIS
iinclude <graphics.h>
SetKBCode(val)

int val;

Arguments

<val> An integer specifying the desired keyboard code. A zero specifies the
event mechanism, while a one specifies ANSI mode.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

If set to ANSI mode, all keyboard activity is reported via ANSI strings of ASCII characters. If
set to event mode, the ANSI terminal emulator is disabled and activity is reported only via the
event mechanism. The event mechanism must be previously enabled or an error is returned.

ERRORS REPORTED
Event mechanism not enabled.

Event primitive failure.

NOTES
Turning on the event mechanism via the EventEnable call automatically sets the keyboard code
to "event".

4400 Series C Reference S-5

SetMachineType

SYNOPSIS
#include <graphics.h>
SetMachineType(value)

int value;

Arguments

<value> A hexadecimal value of the fonn Ox440xOOOO.

Returns

SetMachineType

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Sets the value (indicating a 4400 Series model number) to be returned by subsequent calls to
GetMachineType.

ERRORS REPORTED
Display primitive failure.

SEE ALSO
GetMachineType, GetRealMachineType

S-6

SetMBou1UlS

SetMBounds

SYNOPSIS
#include <graphics.h>
SetMBounds(ulpoint,lrpoint)

struct POINT *ulpoint;
struct POINT *lrpoint;

Arguments

<ulpoint> A pointer to a POINT structure which contains the x and y coordinates of
the point to be used as the upper left corner of the mouse motion bounding
box.

<lrpoint> A pointer to a POINT structure which contains the x and y coordinates of
the point to be used as the lower right corner of the mouse motion
bounding box.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Sets the boundary of the region that contains the cursor.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Display primitive failure.

NOTES

Both x andy must be in the range -32768 to 32767, inclusive.

If CursorTrack mode is enabled, this is the same as GetMPosition.

Cursor location ("hot spot") is defined by the position (upper left corner) where the cursor is
displayed, plus the offsets defined in the cursor form.

4400 Series C Reference S-7

SetMPosition

SYNOPSIS
#include <graphics.h>
SetMPosition(point)

struct POINT *point;

Arguments

SetMPosition

point A pointer to a POINT struct which contains the x and y screen coordinates
to be used as the mouse position.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Set mouse location to x,y.

ERRORS REPORTED
Invalid (NULL) structure pointer.

Graphics haven't been initialized.

X or y outside range of screen.

Display primitive failure.

NOTES

If CursorTrack mode is enabled, this is the same as SetCPosition.

If CursorTrack mode is enabled, this is the same as GetMPosition.

Cursor location ("hot spot") is defined by the position (upper left comer) where the cursor is
displayed, plus the offsets defined in the cursor form.

S-8

SetViewport

SetViewport

SYNOPSIS
#include <graphics.h>
SetViewport(point)

struct POINT *point:

Arguments

<point> This is a pointer to a pair of short ints which define the x and y screen
coordinates to be used as the upper left comer of the visible viewport.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Sets hardware to display with x, y of point as upper left comer.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Graphics haven't been initialized.

X or y outside range of screen.

Display primitive failure.

4400 Series C Reference S-9

StringDraw

SYNOPSIS
#include <graphics.h>
#include <font.h>
StringDraw(string,loc)

char *string;
struct POINT *loc;

Arguments

<string>

doc>

Returns

A NULL tenninated array of characters.

The location to start drawing.

StringDraw

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Draws string using the default font onto the screen starting at the point loco The text bounding
box (and clipping rectangle) is defined by the current viewport. The bbS combination rule is
used. The value of loc is updated to reflect the end of the displayed text.

ERRORS REPORTED

Invalid (NULL) structure pointer.

S-IO

StringDI'awRawX

StringDrawRawX

SYNOPSIS
#include <graphics.h>
#include <font.h>
StringDrawRawX (string, loc,bbcom, font)

char *string;
struct POINT *loc;
struct BBCOM *bbcom;
struct FontHeader *font;

Arguments

A NULL tenninated array of characters.

The location to start drawing.

<string>

doc>

<bbcom> Defines destination fonn, clipping rectangle, halftone fonn, and
combination rule.

 Font to use for displaying characters.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION

Draws string, using font onto a fonn starting at the point loco The bbcom argument should
include the destination fonn, clipping rectangle, halftone fonn (optional) and combination rule.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Invalid parameter in structure.

SEE ALSO
StringDrawX

4400 Series C Reference S-l1

StringDrawX

SYNOPSIS
#include <graphics.h>
#include <font.h>
StringDrawX(string,loc,bbcom,font)

char *string;
struct POINT *loc;
struct BBCOM *bbcom;
struct FontHeader *font;

Arguments

A NULL teIminated array of characters.

The location to start drawing.

StringDrawX

<string>

<loc>

<bbcom> Defines destination fOIm, destination rectangle, clipping rectangle,
halftone fOIm, and combination rule.

 Font to use for displaying characters.

Returns

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Draws string, using font onto a fOIm starting at the point loe. The bbeom argument should
include the destination fOIm, destination rectangle (text bounding box), clipping rectangle,
halftone fOIm (optional) and combination rule. Line breaks, tabs, and scrolling within the text
bounding box are managed automatically. The value of loe is updated to reflect the end of the
displayed text.

ERRORS REPORTED

Invalid (NULL) structure pointer.

Invalid parameter in structure.

SEE ALSO

StringDrawRawX

S-12

StringWidth

StringWidth

SYNOPSIS
#include <graphics.h>
include <font.h>
StringWidth(string,font);

char *string;
struct FontHeader *font;

Arguments

<string>

Returns

A NULL terminated array of characters.

Font to use for width calculation.

Returns zero if successful, otherwise -1 with errno set to the system or graphics error code.

DESCRIPTION
Computes and returns the width in pixels required to draw string with/onto This width is defined
as the sum of the widths of the printable characters in string.

ERRORS REPORTED
Invalid (NULL) structure pointer.

4400 Series C Reference S-13

TerminalEnable

TerminalEnable

SYNOPSIS
#include <graphics.h>
int TerminalEnable(mode)

int mode;

Arguments

<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

Returns

Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION
If the mode argument is TRUE, then the tenninal emulator is enabled and allowed to write
characters on the screen. If FALSE, the tenninal emulator is disabled. In either case, the
previous setting is returned.

ERRORS REPORTED

Display primitive failure.

4400 Series C Reference T-l

AppendixU
4400 Series ~C~ Reference Update

The following infonnation was not available at printing of your 4400 Series 'c' Reference
Manual. Please add the following discussions.

cc
The 'c' compiler, CC, takes the additional option +Q.

Additional Options
+Q -Suppress quad word alignment on 68020 code generation*

*68020 only

Explanation Of Options
The 68020 'c' compiler, by default, aligns data structures on quad word (words consisting of
four eight-bit bytes) boundaries. This, while allowing the 68020 to load and execute faster,
causes "holes" in the data structures. The +Q option lets you suppress this alignment to allow
close packing of data structures or compatilbility with data structures generated with non quad
aligned compilers, such as 68000 or 68010 compilers.

Floating Point Processor Signals
The floating point processor can generate signals or interrupts when it finds exceptional
conditions. By default, the operating system ignores these signals. If you want or need to use the
floating point processor signals, it is your responsibility to code the signal handling routines.

The operating system examines ajloating-point signal bit in the binary header of executable files
to enable or disable floating point signal processing. This bit is set (or by default left unset) by
the loader. To compile code that will do floating point signal processing, you must either enable
floating point processing after compilation by using headset, or pass the loader option +q to load
during compilation and loading.

4400 Series 'c' Reference Update U-l

4400 Series 'C'Reference Update

To enable floating point processing after compilation, type:
++ headset +1
++

To compile a program, test.c, with floating point signals enabled,
type:

U-2

++ cc test.c +x=q
++

CAUTION

When you use mixed-mode arithmetic (floating point and
integer) you may loose precision in your results. If you
are using a 68020 based machine, the details of the
floating point coprocessor operation can be found in the
MC68881 Floating-Point Coprocessor User's Manual
published by the Motorola Corp.

Update

VideoNormal

Video Normal

SYNOPSIS
#include <graphics.h>
int VideoNormal(mode)

int mode;

ARGUMENTS
<mode> An integer which should be either TRUE (non-zero) or FALSE (zero).

RETURNS

Returns zero or positive if successful, otherwise -1 with errno set to the system or graphics error
code. If the returned value is zero, then the mode was previously false or disabled, if positive the
mode was true or enabled.

DESCRIPTION
If the mode argument is TRUE, then the display is set to normal video (black on white). If the
argument is FALSE, the display is set to inverse video (white on black). In either case, the
previous setting is returned.

ERRORS REPORTED
Display primitive failure.

4400 Series C Reference V-I

