
TEK HOST PROGRAMMERS 
MANUAL 

First Printing AUG 1983 
Revised JAN 1984 

" ." 

Part No. 070-4664-00 
Product Group 16 

4110 SERIES 
HOST 
PROGRAMMERS 

Please Check for 
CHANGE INFORMATION 
at the Rear of This Manual 

OOMMITTED m EXCEliENCE 



" , 
! 

.. 

WARNING I 
This equipment generates, uses, and can radiate radio frequency 
energy and if not installed and used in accordance with the 
instruction manual, may cause interference to radio 
communications. It has been tested to comply with the limits for 
Class A computing devices pursuant to Subpart J or Part 15 of FCC 
Rules, which are designed to provide reasonable protection against 
such interference when operated in a commercial environment. 
Operation of this equipment in a residential area is likely to cause 
interference in which case the users at thier own expense will be 
required to take whatever measures may be required to correct the 
interference. 

Copyright © 198:3 by Tektronix, Inc., Beaverton, Oregon. Printed in 
the United States of America. All rights reserved. Contents of this 
publication may not be reproduced in any form without permission 
of Tektronix, Inc. 

This instrument, in whole or in part, may be protected by one or 
more U.S. or foreign patents or patent applications. Information 
provided upon request by Tektronix, Inc., P.O. Box 500, Beaverton, 
Oregon'97077. . 

TEKTRONIX is a registered trademark of Tektronix, Inc . 

( 



MANUAL REVISION STATUS 

PRODUCT: 4110 Series Computer Display Terminals 

This manual supports the following versions of this product: Serial Numbers 8010100 and up. 

REV DATE DESCRIPTION 

AUG 1983 Original Issue. This manual replaces the 4112 Host Programmers Manual (061-2565-01), the 4113 Host 
Programmers Manual (061-2616-01), and the 4114 Host Programmers Manual 
(061-2564-01). 

NOV 1983 Revised: pages 4-7, 4-11,10-4,10-6. 

JAN 1984 Revised: page 10-4. 

4110 SERIES HOST REV, JAN 1984 



(',- . 
. ' 

i( 

.. ~,~~-----------"~ ~~ 



CONTENTS 

Section 1 ABOUT THIS MANUAL Page 
Who Should Read This Manual and Why ...................... 1-1 

WhatThis Manual Is ...................................... 1-1 
What This Manual Is Not .................................. 1-1 

What's in This Manual ....................................... 1-1 
Instruments This Manual Covers ........................... 1-1 
Topics this Manual Covers ................................. 1-1 

4110 Series Manuals and What's in Them ..................... 1-2 
Common Manuals ..................................... 1-2 
Terminal Specific Manuals .............................. 1-3 

How to Put It All Together .................................... 1-3 
Whereto Find Information ................................. 1-3 
Command Syntax Conventions ............................ 1-3 
Pseudocode Syntax ...................................... 1-3 
Syntax of Examples ...................................... 1-3 

Literal Portions of Commands ........................... 1-3 
How to Learn the Terminal ................................... 1-4 

Using Setup Mode ....................................... 1-4 
Using Vector and Marker Modes From the Keyboard ......... 1-4 

Section 2 AN OVERVIEW OF 4110 SERIES TERMINALS 
Preview .................................................... 2-1 
4110 Series Terminal Architecture ............................ 2-1 

Communications Systems ................................ 2-1 
Display Systems ......................................... 2-1 

DVST Display ......................................... 2-3 
Raster Displays ....................................... 2-3 

The 4110 Series Terminals ................................... 2-3 

Section 3 COMMUNICATIONS 
Introduction ................................................ 3-1 
Standard Mode Communications ............................. 3-1 

Preview ................................................. 3-1 
Concepts And Definitions ................................. 3-3 

Setting Communications Parameters .................... 3-3 
Bypass Mode ......................................... 3-4 
Prompt Mode ......................................... 3-4 
Handshaking ......................................... 3-5 
Full- and Half-Duplex .................................. 3-5 

Block Mode Communications ................................ 3-6 
Preview ................................................. 3-6 
Concepts and Definitions ................................. 3-6 

Overview of Block Mode Communications ................ 3-6 
Using Block Mode in Host Programs .................... 3-6 

Block Mode Parameters .................................. 3-7 
Notes on Block Mode Parameters ....................... 3-7 

Arming for Block Mode .................................... 3-7 
Block Format ............................................ 3-7 

The Block Header ..................................... 3-7 
Block Data ............................................ 3-7 
The Block-End and Block-Continue Characters ........... 3-8 
The Block-Master and Non-Transmittable Characters ...... 3-8 
The Block-Control Characters ........................... 3-8 
Block Mode Algorithms ................................ 3-13 

4110 SERIES HOST ii 



( 
Section 4 USING 4110 SERIES TERMINALS Page 

Introduction ................................................ 4-1 
Terminal Commands, Reports, and Parameters ................ 4-1 

Preview ................................................. 4-1 
Terminal Commands ..................................... 4-1 

Initializing the Terminal and Sending Commands .......... 4-2 
Command Parameters .................................... 4-3 

int Parameters ........................................ 4-3 
Packing an int Parameter .............................. 4-3 
xy Parameters ........................................ 4-3 
Packing xy Parameters ................................ 4-3 
char Parameters ...................................... 4-3 
Complex Parameters .................................. 4-4 
Packing Complex Parameters .......................... 4-4 

Terminal Reports ......................................... 4-4 
Parsing an int or intc Report ............................ 4-5 
Parsing an xy Report. .................................. 4-5 
Parsing Array Reports ................................. 4-5 

Troubleshooting Hints .................................... 4-5 
Macros and Macro Expansion ................................ 4-6 

Preview ................................................. 4-6 
Concepts and Definitions ................................. 4-6 

Host Macros .......................................... 4-6 
Byte Macros .......................................... 4-6 
Key Macros ........................................... 4-6 
Making the Terminal Execute a Key Macro ................ 4-6 
Expanding Macros .................... , ............... 4-6 

Terminal Parsers ............................................ 4-7 
Preview ................................................. 4-7 
Overview ................................................ 4-7 
Snoopy Mode ............................................ 4-7 

The Tek Parser ............................................. 4-7 
The Implicit Command Modes ............................. 4-10 

Alpha Mode ........................................... 4-10 
Vector Mode .......................................... 4-10 
Marker Mode ......................................... 4-10 

Explicit Command States ................................. 4-10 
LCE-T State .......................................... 4-11 
20C State ............................................ 4-11 

Parameter Parsing States ................................. 4-11 
int Parsing States ..................................... 4-11 
xy Parsing States ...................................... 4-11 

Modes That Affect Parsing ................................... 4-12 
Ignore Deletes Mode ...................... '" ............ 4-12 

Entering Ignore Deletes Mode .......................... 4-12 
Leaving Ignore Deletes Mode ........................... 4-12 
Effects of Ignore Deletes Mode .......................... 4-12 

4115 Coordinate Modes ................................... 4-12 
Changing Coordinate Modes ........................... 4-12 
12-Bit Coordinate Mode. . . . . . . . . . . . . . . . . . . . . . . . . .. . ... 4-12 
32-Bit Coordinate Mode ................................ 4-12 

The ANSI Parser ............................................ 4-12 
ANSI Alpha Mode ........................................ 4-12 
LCE-A State ............................................. 4-12 .. (.-
CSI State ................................................ 4-12 

iii 4110 SERIES HOST 



Section 5 THE OPERATOR INTERFACE Page 
Introduction ................................................ 5-1 

Preview ................................................. 5-1 
The Dialog Area ............................................ 5-1 

Preview ................................................. 5-1 
Concepts and Definitions ............................... 5-1 
Controlling the Dialog Area ............................. 5-1 
Dialog Area Parameters ................................ 5-2 

ANSI Mode ................................................. 5-2 
Introduction ............................................. 5-2 
Preview ................................................. 5-2 
Concepts and Definitions ................................. 5-3 

Screen Editors ........................................ 5-3 
Cursor Positioning ..................................... 5-3 
Tabulation Commands ................................. 5-3 
Editing Commands .................................... 5-4 
Display Control Commands ............................. 5-4 
Terminal Control Commands ............................ 5-4 
Communications ...................................... 5-4 
ANSI Sub-Modes ...................................... 5-4 

The Keyboard .............................................. 5-5 
The Display ................................................ 5-5 
Display Control ............................................. 5-5 

Controlling Terminal Responses ........................... 5-5 
CRLF ................................................ 5-5 
LFCR ................................................ 5-5 
SET-MARGINS ........................................ 5-5 
SET-PAGE-FULL-ACTION .............................. 5-6 
SET-ECHO ........................................... 5-6 
SET-ERROR-THRESHOLD ............................. 5-6 

Section 6 GRAPHICS PRIMITIVES 
Introduction ................................................ 6-1 

Graphics Primitives and Primitive Commands ............... 6-1 
Concepts and Definitions ................................. 6-1 

Explicit and Implicit Commands ......................... 6-1 
Vectors .................................................... 6-2 

Preview ................................................. 6-2 
Concepts and Definitions ................................. 6-2 

Line Attributes ........................................ 6-2 
Explicit MOVE and DRAW Commands ................... 6-3 
Implicit MOVE and DRAW Commands ................... 6-3 
Leaving Vector Mode .................................. 6-3 

Hint .................................................... 6-3 
Markers ................................................... 6-3 

Preview ................................................. 6-3 
Concepts and Definitions ................................. 6-3 

Markers .............................................. 6-3 
Marker Types ......................................... 6-3 

The Explicit DRAW-MARKER Command .................... 6-3 
The Implicit DRAW-MARKER Command .................... 6-4 
Uses of Markers ......................................... 6-4 
Hints ................................................... 6-4 

4110 SERIES HOST iv 



( 
Section 6 (cont) Page 

Text in the Graphics Area .................................... 6-4 
Preview ................................................. 6·4 
Concepts and Definitions ................................. 6-4 

Alphatext ........................ .' .................... 6-4 
Alphatext Attributes .................................... 6-4 
Graphtext ............................................ 6-5 
Graphtext Precision ................................... 6-5 
String Precision Graphtext ............................. 6-5 
Stroke Precision Graphtext ............................. 6-5 

Defining a Graphtext Font ................................. 6-5 
Initialization ........................................... 6-5 
Graphtext Character Definition .......................... 6-6 

Hints ................................................... 6-6 
Eliminating Character Definition Display ................. 6-6 
Saving a Graphtext Font on Disk ........................ 6-6 

Panels ........................................ ' ............ 6-6 
Preview ................................................. 6-6 
Concepts and Definitions ................................. 6-6 

Panels ............................................... 6-6 
'Panel Boundary ....................................... 6-7 
Rectangle Boundaries ................................. 6-8 
Panel Attributes ....................................... 6-8 

Section 7 SEGMENTS 
Introduction ................................................ 7-1 
An Introduction To Segments ................................. 7-1 

Preview ................................................. 7·1 
( 

Concepts and Definitions ................................. 7-1 
What Is a Segment? ................................... 7-1 
Retained and Non Retained Segments ................... 7-1 
Segment Numbering ................................... 7-2 

Segment Attributes ....................................... 7-2 
The Pivot Point and the Segment Origin .................. 7-2 
Dynamic Segment Attributes ........................... 7-3 

Use of Segments ......................................... 7-4 
Building Segments .......................................... 7-5 

Preview ................................................. 7-5 
The Segment Definition ................................... 7-5 

Setting Attributes for Future Segments ................... 7-5 
Opening,the Segment Definition ........................ 7-6 
Closing the Segment Definition ......................... 7-7 
Appearance of the Display When Defining a Segment ..... 7·7 
Commands That Are Not Part of a Segment Definition ..... 7-7 

Segment Classes and Matching Classes ...................... 7-7 
Preview ................................................. 7-7 
Concepts and Definitions ................................. 7-7 

Segment Class Field ................................... 7-7 
Current Matching Class ................................ 7-8 

An Example Using Segment Classes ....................... 7-9 
The Scenario ......................................... 7-9 
Defining the Segment Class Subfields ................... 7-9 
Setting the Segment Class Field ........................ 7-9 
Using the Current Matching Class ....................... 7-10 () 

v 4110 SERIES HOST 



Section 8 Raster Display Graphics Page 
Introduction ................................................ 8-1 
The Raster Display .......................................... 8-1 

Introduction ............................................. 8-1 
Concepts and Definitions ................................. 8-1 

Raster Memory Buffer ................................. 8-3 
Color Indices .......................................... 8-4 

Surfaces ................................................... 8-6 
Preview ................................................. 8-6 
Concepts and Definitions ................................. 8-6 

Writing on a Surface ................................... 8-6 
Defining a Surface ..................................... 8-6 
Displaying Surfaces ................................... 8-6 
Surface Priority ....................................... 8-8 
Using Surfaces ........................................ 8-8 
Surfaces and the Dialog Area ........................... 8-9 
Number of Surfaces ................................... 8-9 
The Super Surface .................................... 8-9 

Color ...................................................... 8-10 
Preview ................................................. 8-10 
Introduction ............................................. 8-10 
Concepts and Definitions ................................. 8-10 

Color Indices ........................................... 8-10 
Color Map ............................................ 8-10 
Selecting Color Coordinate Systems ..................... 8-10 
Background Colors .................................... 8-16 
Background Indices ................................... 8-16 
Hint. ................................................. 8-16 

Pixels ..................................................... 8-16 
Preview ................................................. 8-16 
Concepts and Definitions ................................. 8-16 

Pixel Operations ...................................... 8-16 
Pixel Viewport and Pixel Beam Position .................. 8-16 
The RASTER-WRITE Command ........................ 8-16 
The RUN LENGTH-WRITE Command .................... 8-17 
ALU Modes ........................................... 8-18 
The RECTANGLE-FILL Command ....................... 8-18 
The PIXEL-COPY Command ........................... 8-18 

User-Defined Fill Patterns ................................. 8-18 
The BEGIN-FILL-PATTERN Command ................... 8-18 
The END-FILL-PATTERN Command ..................... 8-18 
An Example of a User-Defined Fill Pattern ................ 8-19 

Views ..................................................... 8-19 
Preview ................................................. 8-19 
Concepts and Definitions ................................. 8-20 

Space ................................................ 8-20 
Views ................................................ 8-20 
Window .............................................. 8-21 
Viewport ............................................. 8-22 

Creating and Selecting Views .............................. 8-23 
Using Views .......................................... 8-23 
The Terminal Viewing Keys ............................. 8-23 
The Overview and Home Position in 4115 Terminals ....... 8-23 
Fixup Level ........................................... 8-23 
Hint. ................................................. 8-23 
View Display Cluster ................................... 8-23 

4110 SERIES HOST vi 



( 
Section 9 GRAPHICS INPUT Page 

Introduction ................................................ 9-1 
Preview .................................................... 9-1 
Concepts and Definitions .................................... 9-1 

GIN Functions ........................................... 9-2 
Locate Function ....................................... 9-2 
Pick Function ......................................... 9-2 
Stroke Function ....................................... 9-2 
GIN Space ............................................ 9-2 
GIN Windows and Areas ............................... 9-4 
GIN Function Reports .................................. 9-5 
Parsing GIN Function Reports .......................... 9-5 

GIN Commands .......................................... 9-5 
Enabling and Disabling GIN ............................ 9-5 
Setting GIN Parameters ................................ 9-6 

Hints and Examples ...................................... 9-6 
Picking and Dragging .................................. 9-6 

Section 10 THE TERMINAL FILE SYSTEM 
Introduction ................................................ 10-1 
The Terminal File System .................................... 10-1 

Preview ................................................. 10-1 
Concepts and Definitions ................................. 10-1 

Devices and Device Names ............................. 10-2 
Types of Devices ...................................... 10-2 
File Names ........................................... 10-2 
General File Transfer Operations ........................ 10-2 

Devices and Commands in the Standard Terminal. ........... 10-2 
( 

Standard Terminal Devices ............................. 10-2 
Standard Terminal Commands .......................... 10-2 

Hints ................................................... 10-3 
Local Disk Storage .......................................... 10-4 

Preview ................................................. 10-4 
Disk Devices and Commands .............................. 10-4 

Devices and Device Names ............................. 10-4 
Disk Commands ...................................... 10-4 

Three-Port Peripheral Interface (3PPI) ......................... 10-5 
Preview ................................................. 10-5 
Devices and Commands .................................. 10-5 

3PPI Commands ...................................... 10-5 
The Color Hard Copier ...................................... 10-6 

Preview ................................................. 10-6 
Commands and Devices .................................. 10-6 

SC: .................................................. 10-6 
HC: .................................................. 10-6 

Hints ................................................... 10-6 
The DMA Interface .......................................... 10-6 

Preview ................................................. 10-6 
Commands and Devices .................................. 10-6 
Using DMA From the Host Program ........................ 10-6 

Section 11 SOFTWARE COMPATIBILITY 
Using 4010 Programs With 4110 Series Terminals .............. 11-1 

( 

vii 4110 SERIES HOST 



4110 SEFUES HOST 

Appendix A ASCII CHART 

Appendix B INT PARAMETERS 

Appendix C CODE EXAMPLES 

Appendix D COLOR COORDINATE SYSTEMS Page 
Color ...................................................... 0-1 
The HLS Color Cone ........................................ 0-2 
RGB and CMY - the Color Cube ............................. 0-8 

Appendix E CHARACTER INTERPRETATION BY TEK AND ANSI PARSERS 

Tables 

2-1 

3-1 
5-1 
8-1 
B-1 
E-1 

INDEX 

TABLES 

Description Page 

4110 Series Terminals Display Type 
and Address Space ............................................... 2-3 
Meaning of Bits 1 & 2 in Control Byte 1 .............................. 3-9 
Function Key Codes .............................................. 5-5 
Pixel Space for Various Terminals .................................. 8-20 
Representing Numbers as INT Parameters ......................... B-2 
Character Interpretation by TEK and ANSI Parsers ................... E-1 

viii 



ix 

ILLUSTRATIONS 

Figures Description Page 
2-1 4110 Series Terminal Subsystems .................................. 2-2 
3-1 4110 Series Communications System ............................... 3-2 
3-2 Error-Free Block Transmission ..................................... 3-10 
3-3 Occasional Errors in Block Mode ................................... 3-11 
3-4 
4-1 
4-2 
6-1 
6-2 
6-3 
7-1 
7-2 
7-3 
8-1 
8-2 
8-3 
8-4 
8-5 
8-6 
8-7 
8-8 
8-9 
8-10 
8-11 
8-12 
8-13 
8-14 
8-15 
8-16 
9-1 
9-2 
0-1 
0-2 
0-3 
0-4 
0-5 
0-6 

Multiple Errors in Block Mode ...................................... 3-12 
Implicit Command Modes and Explicit Command States .............. 4-8 
Explicit Command States .......................................... 4-9 
Line Styles ....................................................... 6-2 
Inside of Panels Filled With a Pattern ................................ 6-7 
Rectangles Drawn Inside and Outside a Panel Definition .............. 6-8 
Interchanging the Display Priority of Two Segments .................. 7-4 
The First 15 Bits ofthe Segment Class Field ......................... 7-9 
The Segment Class Field for Segment 43 ............................ 7-9 
Magnified View of Pixels in a Line ................................... 8-1 
An Electron Gun Generating a Raster ............................... 8-2 
Screen Pixels and Raster Memory .................................. 8-3 
Block Diagram of a Monochrome Raster System ..................... 8-4 
Block Diagram of a Color Raster System ............................ 8-5 
Graphics Drawn on Two Surfaces ................................... 8-7 
Surface Priorities ................................................. 8-8 
The Super Surface ................................................ 8-9 
The Effect of Changing the Color Map ............................... 8-11 
The H LS System Color Cone ....................................... 8-12 
The RGB Color Cube .............................................. 8-13 
The CMY Color Cube ............................................. 8-14 
Interaction of Colors on Different Surfaces ........................... 8-15 
A User-Defined Fill Pattern ......................................... 8-19 
Windows in Terminal Space ........................................ 8-21 
Two Viewports Mapped to Two Windows ............................. 8-22 
GIN Devices Mapped into GIN Space ............................... 9-3 
GIN Areas Mapped on GIN Windows ................................ 9-4 
Colors Arranged in a Wheel. ....................................... 0-2 
A Color Wheel With Saturation ..................................... 0-3 
Adding a Gray Scale to the Color Wheel. ............................ 0-4 
The HLS Color Cone .............................................. 0-5 
The RGB and CMY Color Coordinates .............................. 0-9 
The Combined RGB and CMY Color Cube ........................... 0-8 

0-7 Gray Scale in a Cutaway Color Cube ................................ 0-10 

(1 

( 

4110 SERIES HOST 



Section 1 

ABOUT THIS MANUAL 

Welcome aboard. You are about to explore a unique new 
world of graphics. Opening this manual was the first step. 
The remainder of this section gives you an overview of what 
is to come. 

WHO SHOULD READ THIS MANUAL 
AND WHY 

If you are a working programmer writing programs for 
TEKTRONIX 411 OB Series Computer Display Terminals 
(henceforth referred to as the 4110 Series), this manual is 
designed for you. If you are not a programmer, but hope to 
learn something about the 4110 Series and general graphics 
concepts, this manual should help; however, you need 
some knowledge of programming theory and practice to 
benefit from the examples in this manual. 

WHAT THIS MANUAL IS 

This manual, the 4110 Series Host Programmer's Manual, 
contains information on graphics concepts and the com
mands to implement them on 4110 Series terminals. This 
manual contains informal discussions on various commands 
and how they interrelate. In addition this manual contains 
examples which illustrate how to put terminal commands 
together to accomplish various tasks. 

WHAT THIS MANUAL IS NOT 

This manual is not a text on programming theory or prac
tice. Examples given in this manual are usually the simplest 
possible sequences that will accomplish a given task. Be 
cautious in attempting to use these examples in working 
programs, as the code is intended to convey concepts, not 
to work in an actual implementation. Use the examples as a 
guide in writing your own programs. 

4110 SERIES HOST 

This manual is not complete by itself; it does not cover the 
detailed syntax of commands and their parameters. In
formation on syntax and parameters is covered in the 4110 
Series Command Reference Manual. You must have a copy 
of the 4110 Series Command Reference Manual to use this 
manual. 

WHAT'S IN THIS MANUAL 

INSTRUMENTS THIS MANUAL COVERS 

This manual supports the following Tektronix terminals: 

• 4112B 

• 4113B 

• 41148 

• 4115B 

• 4116B 

Although many of the discussions in this manual apply to 
Tektronix terminals designed before the 411 OB Series, this 
manual does not attempt to cover earlier terminals. You can 
use this manual with earlier TEKTRONIX 4110 Series termi
nals, however, some commands may operate differently. 

TOPICS THIS MANUAL COVERS 

Section 2, An Overview of 4110 Series Terminals, covers 
4110 Series terminal architecture, a general discussion of 
communications and display subsystems, and a comparison 
of 4110 Series terminal features. 

Section 3, Communications, covers standard and Block 
mode communications. It discusses how to set communica
tions parameters and contains a set of algorithms illustrat
ing how to use Block mode. 

1-1 



THIS MANUAL 

Section 4, Using 4110 Series Terminals, discusses terminal 
commands and reports and command parameters. This 
section includes a set of algorithms that show how to issue 
commands, parse terminal reports, and pack and issue pa
rameters from your host program. 

Section 4 also contains discussions on macros: how to de
fine them and how to use them. 

The most complex discussion in Section 4 is the discussion 
of the TEK and ANSI command parsers and how they work. 
This discussion will be of greatest value while trying to de
bug a program. Going along with the discussion ofTEK and 
ANSI parsers in Section 4, Appendix E contains a table that 
details how the TEK and ANSI parsers interpret characters 
from the host. 

Section 5, The Operator Interface, covers how to control the 
terminal features with which the operator interacts. This 
section discusses controlling the dialog area and the display 
as well as programming and controlling the keyboard. It also 
covers the ANSI mode commands available on raster dis
play terminals. 

Section 6, Graphics Primitives, covers the simplest graphics 
operations the terminal can perform. It covers vectors and 
Vector mode, markers and Marker mode, text in the Graph
ics Area, and panels. 

Section 7, Segments, discusses what segments are and how 
to define and use them. It also discusses grouping seg
ments into segment classes and using matching classes. 

Section 8, Raster Display Graphics, discusses those fea
tures available only on raster display terminals. It includes 
discussions on raster display hardware, surfaces, color and 
gray scales, pixel operations, terminal spaces, and views 
and view clusters. 

Section 9, Graphics Input, discusses how to use graphics 
input devices from your host program. It discusses the 
types of devices, the functions available, and the reports 
returned from the terminal. 

Section 10, The Terminal File System, discusses the termi
nal's internal file system - how it operates and how you 
use it. This section covers using local disk storage, the 
three-port peripheral interface, the color hard-copy inter
face, and the DMA interface. 

1-2 

Section 11, Software Compatibility, describes software 
packages designed to use 4110 Series terminals to full 
advantage. 

This section also discusses how to emulate 4010 Series 
terminals with a 4110 Series terminals. As 4110 Series ter
mina�s have retained older terminal features, you can (with 
some modification) use existing software that was written 
for 4110 Series terminals. 

The appendices to this manual contain material for quick 
reference. They are: 

• Appendix A contains an ASCII chart. 

• Appendix B contains a list of int values (encoded inte
gers) and a method for converting between numbers and 
ints. 

• Appendix C contains code implementations of some 
pseudocode algorithms. 

• Appendix D contains a discussion of color and color 
systems. 

• Appendix E contains a chart showing how the TEK and 
ANSI parsers interpret characters in various modes and 
states. 

4110 SERIES MANUALS AND 
WHAT'S IN THEM 

Each 4110 Series terminal has a number of manuals, some 
specific to the particular terminal and some common to the 
entire series. 

Common Manuals 

In addition to this manual, two others are common to the 
entire 4110 Series; you should obtain both before attempt
ing to write programs for a 4110 Series terminal: 

• The 4110 Series Command Reference Manual is the pri-
. mary reference for command syntax. Whenever you are 
in doubt as to.the exact syntax of a command or its 
parameters, refer to the 4110 Series Command Reference 
Manual. 

• The 4110 Series Reference Guide is a pocket size sum
mary of 4110 Series commands and parameters. 

4110 SERIES HOST 

c 

( 

( 



Terminal Specific Manuals 

Each terminal has a series of manuals that are specific to it 
alone. These are: 

• An Introduction Brochure. /V 12 e,d 
• An Operators Manual. -;V ed 
• A Service Manual. 

You should have the Introduction Brochure and the Oper
ator's Manual for each terminal that your program will drive. 
The Introduction Brochure contains exercises that quickly 
familiarize you with the terminal. The Operators Manual 
contains operating information not covered in this manual. 

The service manual for each terminal details the hardware of 
that terminal. Unless you are an engineer or technician, the 
service manual is of limited value. 

HOW TO PUT IT ALL TOGETHER 

WHERE TO FIND INFORMATION 

Refer to this manual when you need information about 
graphics concepts, command sequences, how the terminal 
interprets information, or how to sequence commands to 
perform a task. 

For information about the specific syntax of a command or 
the parameters for a command, refer to the 4110 Series 
Command Reference Manual. 

For operating information, such as how to use Setup mode 
or reset the terminal, refer to the Operators manual for the 
specific terminal. 

4110 SERIES HOST 

THIS MANUAL 

COMMAND SYNTAX CONVENTIONS 

Command syntax in this manual follows the conventions 
used in the 4110 Series Command Reference Manual; see 
that manual for details. 

In all 4110 Series manuals, nonprinting characters are rep
resented in their 2-character mnemonic form; for example, 
the character escape is represented by EC. This manual re
fers to commands by name rather than by their escape 
sequence. 

PSEUDOCODE SYNTAX 

This manual presents algorithms as pseudocode rather than 
as an actual computer language. The body of a loop is 
marked by indentation. When an indent ends it marks the 
end of the loop. 

Code examples in Appendix C approximate the pseudocode 
algorithms, although they do not follow them exactly. 

SYNTAX OF EXAMPLES 

Literal Portions of Commands 

Whenever an escape sequence is one that the terminal will 
accept (either from the host or in Setup mode) the command 
sequence is shown in bold type. For example, the escape 
sequence for the command END-SEGMENT, which takes 
no parameters, is: 

EC SC 

The command is three characters long. It is the character EC 

followed by an uppercase S followed by an uppercase C. 
Any necessary spaces in the command are represented as 
sp. 

1-3 



THIS MANUAL 

HOW TO LEARN THE TERMINAL 

As a host programmer, you need to learn the terminal's ca
pabilities an limitations. To use these terminals to full advan
tage, you need to be familiar with their operation. 

Although you can experiment with a terminal by writing sim
ple host programs, some people prefer to experiment from 
the terminal keyboard in Setup and Local mode. If you pre
fer this method, start by reading the remainder of this sec
tion, then work the exercises in the Introduction Brochure. 

USING SETUP MODE 

Remember that Setup mode syntax differs from the host 
syntax in several ways. When you work with the terminal in 
Setup mode, the escape sequence form of Setup mode 
commands is closer to the host syntax you will use from 
your host program. 

In Setup mode the terminal automatically performs data 
packing on command parameters. You can enter param
eters directly from the keyboard. 

The escape sequence form of a Setup mode command is 
the EC character immediately followed by the same one- or 
two-letter sequence as that command given from the host. If 
that command requires parameters, you must follow it with 
aSp. 

Parameters for some Setup mode commands must be en
tered as a name. When a command requires this type of a 
parameter, enter the string as shown in the 4110 Series 
Command Reference Manual. 

Numeric parameters require delimiters if more than one 
must be entered. They may be separated either by a sp or a, 
(comma). For example, to draw a line from point (100,100) 
to point (500,600) in Setup mode, use the sequence: 

EcLFSp100,100 
EcLGsp500,600 

MOVE to point (100,100) 
DRAW to point (500,600) 

When you send an array parameter from the host, the first 
item of the array is always a count. In Setup mode this 
count is done for you, so do not give a count before the 
array data. If a command takes more than one array, en
close each array in the characters < >. Type the < char
acter before the beginning of the array and the > character 
after the end of the array. 

1-4 

In Setup mode, real numbers consist of two numbers. The 
first is the mantissa, or multiplicand portion, and the second 
is the power of two, which multiplies the mantissa. For ex
ample, to send the value 1.5 as a real number, send the 
sequence 3,-1 which means 3 x 2-1• 

You must enclose Setup mode strings in delimiters. In most 
cases, a backslash (\) at the beginning and end of the string 
is a suitable delimiter. 

USING VECTOR AND MARKER MODES 
FROM THE KEYBOARD 

You cannot enter Vector or Marker mode from Setup mode. 
To experiment with these modes from the keyboard, put the 
terminal in Local mode. 

In Local mode, the terminal responds to characters from the 
keyboard as though they had been sent from the host; you 
must encode parameters before sending them. The se
quence of characters must be exactly that which the host 
will send. To send xy parameters for a Vector or Marker 
mode command, you must encode the values into the HiY. 
Extra, LoY, HiX, LoX format. 

For example, to enter Vector mode and draw a triangle, put 
the terminal into Local mode, type the character Gs, encode 
the vertices of the triangle as xy coordinates, and type 
them. You will not see any feedback on the screen, so enter 
the characters with caution. 

You are ready to begin the introductory exercises if you 
have not already done so. You'll find that 4110 Series termi
nals can do much more than this manual covers. Experi
ment - try the commands and how they work. You'll find 
that a 4100 Series terminal is a capable and versatile 
partner. 

4110 SERIES HOST 

(: 

( 

( 



Section 2 

AN OVERVIEW OF 4110 SERIES TERMINALS 

PREVIEW 

This section covers the similarities and differences between 
4110 Series terminals. You will find the following 
discussions: 

• 411 0 Series terminal architecture 

• Communications subsystems 

• Display subsystems 

• A comparison of 4110 Series terminal features 

4110 SERIES TERMINAL 
ARCHITECTURE 

Each member of the 4110 Series terminals is a composite of 
many subsystems. These include a communications sys
tem, command parsers, and a display system. Differences 
between the individual terminals are due to differences in 
these subsystems. 

Figure 2-1 shows how the subsystems of a 4110 Series 
terminal interrelate. The arrows show how commands and 
data flow between the subsystems of the terminal. Each 
subsystem shows the sections where it is discussed. 

COMMUNICATIONS SYSTEMS 

All 4110 Series terminals handle communications in much 
the same way. The terminal contains a full-duplex, RS-232C 
port for communicating with the host system. A terminal file 
system,driven by a microprocessor, controls the flow of in
formation within the terminal and to and from the host port. 
Information and commands from the host computer are 
placed in an input queue, then executed or displayed. 

4110 SERIES HOST 

The terminal accepts information and commands from an 
operator via a keyboard that contains several programma
ble function keys, several command keys, a set of 
thumbwheels, and a full ASCII keyboard (most keys can be 
reprogrammed). The terminal sends information to the oper
ator by passing graphic and alphanumeric information to the 
display system for the operator to view. 

An optional interface adds three additional RS-232C ports 
(under control of the terminal file system) so that the termi
nal can control local peripherals such as printers or plotters. 
Another optional interface allows direct memory access be
tween the terminal's memory and a host computer for ex
tremely high speed data transfer. Interfaces for hard copy 
units allow the operator to save screen images. 

Optional disk interfaces allow the terminal to store files on 
hard disk or floppy disks. The terminal file system includes 
utility commands that allow either the terminal operator or 
the host to create, delete, copy, or rename local disk files. 

DISPLAY SYSTEMS 

Each 4110 Series terminal contains a display system that 
takes primitive graphics commands and converts them to a 
display on the terminal screen. 4110 Series terminals in
clude two types of display system: DVST and raster display. 
Each 4110 Series terminal responds, as nearly as possible, 
to the same command with the same display. Thus, a com
mand that causes a DVST terminal to draw a diagonal line 
from the lower left corner to the upper right corner of the 
screen, causes a raster display terminal to draw a similar 
line. 

In addition, the display system for each terminal can accept 
and transform commands that use the terminal specific fea
tures. Section 8 Raster Display Graphics discusses the fea
tures available on raster display terminals. 

2-1 



OVERVIEW OF 4110 SERIES 

( 

Figure 2-1. 4110 Series Terminal Subsystems. 

2-2 4110 SERIES HOST 

-- --- --------- -- --------------------------- --~--------- - --- - ----------------------------------- ------ -



All terminal display systems support the use of segments, 
graphics constructs that the terminal stores for later use. By 
using segments, raster terminals can pan and zoom. Both 
raster and DVST terminals can redraw screens without re
peating the commands used to originally draw the display. 
Section 7 discusses segments in greater detail. 

DVST Display 

A DVST display is a very high resolution display. Informa
tion that is drawn on the screen may be either stored (writ
ten until the screen is erased) or refreshed (dynamically 
drawn and maintained). 

You can write any amount .of stored information on the 
screen. Stored information cannot be changed without eras
ing and redrawing the entire screen. The only limit to the 
amount of stored information on the screen is the viewer's 
ability to visually distinguish individual lines. 

Refreshed information is displayed on the screen, but must 
be rapidly redrawn by the terminal to remain visible. Re
freshed graphics are easily changed, but take terminal pro
cessor time to maintain. The limit for refresh graphics is not 
absolute, but generally is reached when the terminal cannot 
redraw the information fast enough to avoid a perceptible 
flicker on the display. 

The display system for a DVST display controls how the 
terminal draws graphics on the screen. It controls whether 
the image will be stored or refreshed, and maintains re
freshed displays. 

Raster Displays 

A raster display is much like a television picture. The termi-
nal synchronizes a counter (not accessible to the user) that -J>. 
addresses raster memory locations with a spot of light on ' 

4110 SERIES HOST 

OVERVIEW OF 4110 SERIES 

the display screen. This spot sweeps horizontally across the 
screen as the memory counter increments. When the spot 
reaches the edge of the screen it returns to the other side 
one line down. When it reaches the bottom of the screen, it 
returns to the top and repeats the process. 

Each location on the display screen is paired with a particu
lar memory location. The spot of light is controlled by the 
contents of the memory location paired with it. Thus, a pic
ture on the screen is a visual copy of a set of memory. 

The display system for a raster display terminal computes 
and stores the necessary information in the raster memory 
so that the display hardware will show the desired graphics. 

You can access raster memory through pixel operations. 
Section 8, Raster Display Graphics examines the raster dis
play and its features in more detail. 

THE 4110 SERIES TERMINALS 

The following table summarizes the display type and ad
dress space of the 4110 Series terminals. 

Terminal 

4112 

4113 

4114 

4115 

4116 

Table 2-1 
4110 SERIES TERMINALS DISPLAY TYPE 

AND ADDRESS SPACE 

Display Address Space 

13" 640 x 480 Monochrome 4096 x 4096 

19" 640 x 480 Color 4096 x 4096 

19" 4096 x 4096 DVST 4096 x 4096 

19" 1280 x 1024 Color 232 x 232 

25" 4096 x 4096 DVST 4096 x 4096 

2-3 



( 



Section 3 

COMMUNICATIONS 

INTRODUCTION 

4110 Series terminals provide an extensive set of communi
cations features that allow them to interface with a wide 
variety of host computers. Nearly every communications pa
rameter for 4110 Series terminals is programmable. Usually, 
only a limited number of combinations of settings will work 
in a particular application. Once you configure the terminal 
to communicate with the host, leave the parameters set; 
4110 Series terminals retain their communications param
eters in nonvolatile memory. 

~ 
The host computer has control of the terminal com
munications parameters. It can inadvertently repro
gram the terminal so that it can no longer commu
nicate, and thus lose control. If this happens. the 
operator must reprogram the terminal in SETUP 
mode. 

4110 Series terminals communicate in two major modes, 
Standard mode and Block mode. This section first covers 
Standard Mode Communications and then covers Block 
Mode Communications. Figure 3-1 illustrates the 4110 Se
ries communications system. 

If you need to use current-loop communications, you must 
have Option 02. If you need to use one of the half-duplex 
communications protocols or Block mode, you must have 
Option 01. 

4110 SERIES HOST 

STANDARD MODE 
COMMUNICATIONS 

PREVIEW 
• 4110 Series terminals support RS-232C serial communi

cations protocol through programmable communications 
parameters and various options. 

• The standard communications interface is a full-duplex 
RS-232C port. 

• Option 01 supports half-duplex and Block mode 
communications. 

• Option 02 supports current-loop communications. 

• Terminal commands set the following communications 
parameters: 

• Baud rate 

• Parity 

• Stop bits 

• Echo (local or remote) 

• Transmit rate limit 

• Transmit delay 

• EOl string 

• EOF string 

• EOM characters 

• Break time 

• Input queue size 

• Prompt string 

3-1 



to) 

N 

::: .... 
o 
en 
m 
~ 
m en 
I 
o en 
-I 

~ 

Figure 3-1. 4110 Series Communications System. 

~ ~ 
---' 

(") 
o s:: 
s:: 
c: 
z 
Ci » 
-I o 
z en 



• Bypass mode causes the terminal to ignore characters 
echoed by the host. 

• In Prompt mode, the terminal waits for a host prompt 
before transmitting data. 

• You can choose from several types of flagging or 
handshaking: 

• Character flagging (D1/D3) 

• RS-232C signal flagging (DTR/CTS) 

• Message flagging (wait for report from status request) 

CONCEPTS AND DEFINITIONS 

The standard communications interface on 4110 Series ter
mina�s is an RS-232C full-duplex port. 4110 Series terminals 
communicate using the ASCII 7 -bit or 8-bit character set. 

Setting Communications Parameters 

The communications parameters are retained in the termi
nal's non-volatile memory. You (or the operator) will nor
mally set the necessary parameters once, and then leave 
them. 

Critical Communications Parameters. Several communi
cations parameters cause the terminal to reset portions of 
the communications system. These commands must be 
parsed, passed onto the command processor, and then im
plemented. Until the communications system has made the 
changes, incoming characters in the new format cannot be 
recognized. If you must change a critical communications 
setting from the host program, follow each change with a 
delay (1/4 second is usually sufficient). You can delay by 
simply not sending any characters from the host for 1/4 sec
ond or, if that is not possible, send no-op characters such as 
NL or SN for 1/4 second. 

The critical settings are: 

• Prompt mode 

• Prompt string 

• Parity 

• Stop bits 

• EOF string 

• Baud rate 

4110 SERIES HOST 

COMMUNICATIONS 

Setting Baud Rates. You control the terminals sending and 
receiving baud rates with the SET-BAUD-RATES com
mand. To issue this command from the host, you must be in 
communication with the terminal. Unless you can change 
the host's baud rate to correspond, you will lose communi
cation with the terminal after changing the terminal baud 
rate. 

In addition, should you use this command, do not send the 
terminal any characters immediately following this com
mand. The terminal can scramble characters sent to it at the 
wrong baud rate. 

4110 Series terminals can operate at baud rates from 50 to 
38.4 kilobaud. With high baud rates you may have to use 
flagging or other handshake methods to prevent the termi
nal input queue from overflowing. 

Setting the Transmit Rate Limit. You can control the aver
age transmitting speed of the terminal with the SET
TRANSMIT-RATE-L1MIT command. If your host is unable 
to accept characters back-to-back at high baud rates, use 
this command to reduce the effective baud rate. The termi
nal will send the individual characters at the high baud rate, 
then pause between characters long enough to reduce the 
average baud rate to the value you specify. 

Parity. You can use the SET-PARITY command to config
ure the terminal for your environment. 

Number of Stop-Bits. The SET-STOP-BITS command al
lows you to send either one or two stop-bits, as needed by 
the host. (The terminal can receive characters with either 
one or two stop-bits regardless of this setting.) 

EOL String. The SET-EOl-STRING command sets the 
string that the terminal sends to the host at the end of each 
line of a report or Block mode block. This is usually CR. 

EOF String. The SET-EOF-STRING command sets the 
string used to define the end of a file sent from the terminal 
to the host and from the host to the terminal. You should set 
the EOF string to empty except when actually transferring 
files. 

Break Signal Duration. The SET-BREAK-TIME command 
sets the duration of a BREAK signal sent to the host by the 
terminal. 200 milliseconds is standard for most systems. 

3-3 



COMMUNICATIONS 

Input Queue Size. The SET-QUEUE-SIZE command sets 
the size of the terminal's input queue from 1 to 65535 char
acters. (The terminal actually allocates memory in 54 byte 
chunks.) In addition to the programmable input queue, the 
terminal has a small buffer for holding characters until they 
can be put in the input queue. When both this buffer and the 
input queue are filled, the terminal ignores further incoming 
characters. 

With a large input queue, the terminal is less likely to need 
handshaking. However, the memory allocated to the input 
queue is not available for other uses. The default input 
queue size of 300 characters is adequate for most 
applications. 

Controlling Report length. The SET-REPORT-MAX-lINE
lENGTH command sets the number of characters the re
port system will send before seilding an EOl string. This is 
useful if the host system can accept only a limited length 
line. For example, if your program uses a FORTRAN read 
with an 80 character array to input reports, set the report
max-line-length to 80. 

Bypass Mode 

Sometimes you want the terminal to ignore characters com
ing from the host. For example, when the terminal sends a 
report to the host, if the host echoes these characters, the 
terminal could print them as alphatext or interpret them as 
xy parameters, depending upon terminal mode. 

When the terminal is in Bypass mode, it ignores all charac
ters until it encounters the bypass-cancel character. When 
the terminal receives the bypass-cancel character, it exits 
from Bypass mode and discards the character. 

If the bypass-cancel character is not NL, the terminal auto
matically enters Bypass mode when it sends a report. Since 
the terminal is in Bypass mode, even though the host ech
oes the report to the terminal, the terminal does not display 
the report. If the bypass-cancel character is NL, the terminal 
cannot enter Bypass mode. 

You can also explicitly enter Bypass mode with the ENTER
BYPASS-MODE command. (You might want to enter By
pass mode to suppress echoing a password being typed on 
a terminal.) Due to command processing overhead, the ter
minal enters Bypass mode a few milliseconds after receiving 
this command. 

3-4 

Choosing the Bypass-Cancel Character. Use the SET
BYPASS-CANCEL-CHARACTER command to determine 
which character will bring the terminal out of Bypass mode. 
Set the bypass-cancel character to be the last character the 
host echoes when the terminal sends it a report. For exam
ple, if the host echoes CRLF when it receives a cR, set the 
bypass-cancel character to LF• However, if the host echoes 
only cR set the bypass cancel character to CR. If the host 
does not echo at all, set the bypass-cancel character to NL 

Prompt Mode 

Some hosts will not accept input from the terminal until they 
have sent a prompt. Other hosts may work better if your 
program simulates prompting. Prompt mode operates by 
opening or closing the terminal's communications output 
gate. When the output gate is open, the terminal transmits 
to the host; when the output gate is closed it cannot. 

The following actions close the terminal's communications 
output gate: 

• The terminal receives the PROMPT-MODE command 
with a parameter of 2 (turn Prompt mode on 
immediately). 

• While in Prompt mode and not in Block mode, the termi
nal sends an EOM character. 

• The terminal sends an EOl string - either after a report 
or, while in Block mode, after a block line. 

Any of the following actions open the terminal communica
tions transmit gate: 

• The terminal receives the PROMPT-MODE command 
with a parameter of 0 (turn Prompt mode off). 

• The hostsends the prompt string, and sends no more 
characters for a period of time called the transmit delay. 
The characters in Prompt mode must not be separated 
by more than the transmit delay time. 

Controlling Prompt Mode from the Host. The PROMPT
MODE command puts the terminal into or out of Prompt 
mode. A parameter of 0 disables Prompt mode and opens 
the output gate, 1 enables Prompt mode but leaves the out
put gate open, and 2 enables Prompt mode and closes the 
output gate immediately. 

4110 SERIES HOST 

{ 

( 

( 



Setting the Prompt String. The SET-PROMPT-STRING 
command sets the prompt string. The terminal will recognize 
that string as the prompt from the host when the following 
three conditions are met: 

1. The terminal is in Prompt mode. 

2. The output gate is closed. 

3. The characters in the prompt string are not separated by 
more than the transmit delay time. 

4. No characters follow the prompt string for the transmit 
delay time. 

If you set the prompt string as a zero length (empty) string, 
it will always be recognized immediately, effectively dis
abling Prompt mode. This technique is not recommended. 

HANDSHAKING 

To prevent the host from sending too much data to the ter
minal and overflowing the input queue, you should use some 
form of handshaking. Block mode, discussed elsewhere in 
this section, automatically provides handshaking. Automatic 
flagging and frequent reports also provide handshaking. The 
method you should use depends on your environment. 

Character Flagging. You can use the °1/°3 protocol to flag 
messages. With °1/°3 flagging, the receiving device sends 
the °3 character when it wants the transmitting device to 
pause. You can enable °1/°3 flagging from the terminal, from 
the host, or bidirectionally. °1/°3 flagging is practical only if 
your host automatically uses this system. 

DTR/CTS Flagging. DTR/CTS flagging is hardware-depen
dent flagging that uses the DTR (data terminal ready), CTS 
(clear to send), and RTS (ready to send) and signal lines in 
the RS-232C interface. This flagging mode is practical only 
when the host is directly connected to the terminal. When 
the terminal is connected to the host via a modem, the 
modem controls the control signal lines and you must use 
°1/°3 or message flagging. 

Enabling Flagging. Use the SET-FLAGGING-MODE com
mand to select °1/°3 or DTR/CTS flagging. The parameters 
you give with the command select the type and direction of 
flagging. 

4110 SERIES HOST 

COMMUNICATIONS 

Frequent Reports. Some terminal operations take a rela
tively long time compared to the commands necessary to 
cause them. For example, if you command the terminal to 
load a file from its disk, the terminal will be unable to re
spond to host commands until the transfer is complete. 

When you suspect that the terminal will be tied up for a 
while by a command of this type, follow the command with a 
report command such as REPORT-TERMINAL-STATUS or 
REPORT-4010-STATUS. The command will remain in the 
terminal's input queue until the operation is complete, then 
the terminal will send the report. When the host receives the 
report, you can once again send data. 

You can also use this technique to prevent overrunning the 
terminal during normal communications by keeping track of 
the number of characters the host sends the terminal. After 
the host sends enough characters to nearly fill the input 
buffer, command a report and wait for the reply before send
ing more characters. 

Full- and Half-Duplex 

Full-Duplex means that communication is bidirectional. The 
host and terminal can simultaneously transmit to each 
other. Half-Duplex means that only one or the other can 
transmit at one time, so the host and terminal must take 
turns transmitting. 

On a terminal without options, you can use only full-duplex. 
If you have Option 01 installed, you can select one of three 
half-duplex modes with the SET-DUPLEX-MODE com
mand. The three half-duplex modes are described in the 
4110 Series Command Reference Manual. All other communi
cations and terminal feature operate the same in half-duplex 
as in full duplex. Your host program should never set the 
duplex mode, since this could disconnect the terminal from 
its modem. 

3-5 



COMMUNICATIONS 

BLOCK MODE COMMUNICATIONS 

PREVIEW 
• You must have Option 01 to use Block mode. 

• Block mode is a formal communication protocol located 
between the standard communications system and the 
terminal's input and output queues. 

• Block mode includes error detection and automatic re
transmission of messages on receiving an error. 

• Block mode allows the terminal to communicate with a 
host system that cannot support the full ASCII character 
set. 

• Block mode features automatic handshaking of mes
sages to prevent input buffer overrun. 

CONCEPTS AND DEFINITIONS 

Overview of Block Mode Communications 

Block mode is a nearly symmetrical system of communica
tion between the host and a terminal. The host packs com
mands, text, and control information into a block, then 
sends it to the terminal. For each block the host sends the 
terminal, the terminal sends a similar block to the host, 
packed with keyboard data and reports if requested. 

A count (odd or even) and checksum are packed within each 
block. The host and terminal use the checksum and 
odd/even count to check the block contents for errors and 
signal correct or incorrect transmission. 

The host program examines the return block from the termi
nal to see if the block it sent was received correctly. If the 
terminal block has the same odd/even count as the block 
the host sent, and the checksum is correct, the host pro
gram assumes that its block was received correctly and that 
it can send the next block. 

If the terminal block does not have the same odd/even count 
as the block the host sent, or if the checksum does not 
match, it shows that either the terminal did not receive the 
host block correctly, or that the host did not receive the 
terminal block correctly. When the host receives a non
matching block it transmits its block again. 

The host controls whether or not the terminal transmits data 
in the return block. Even if the terminal has date to send to 
the host (such as a report or keyboard data), the terminal 
will send data only when the host requests it. 

3-6 

--------~------.. ---- .. 

Block data is packed by a method that enables any host to 
receive and transmit the full 7 -bit or a-bit ASCII character 
set in blocks, even if the host is normally limited to a subset 
of the ASCII set. 

Using Block Mode in Host Programs 

To use Block mode, your host program must perform these 
functions: 

• Set the terminal's Block mode parameters 

• Arm the terminal for Block mode 

• Handle block transactions 

For each block transaction, your program must: 

• Send the host block 

• Input the terminal block 

• Determine whether the terminal block was an acknowl
edge; if not, repeat the transaction. 

In order to send the host block, your program must: 

• Compute the host block control bytes 

• Pack the block data 

• Substitute the non-transmittable characters 

• Send the block lines 

In order to input the terminal block, the host must: 

• Input the block lines 

• Translate the master character pairs 

• Unpack the block data 

• Compute the checksum 

Your program should also keep count of retransmissions of 
bad blocks. If your program made an error in computing a 
checksum, for example, you would be in an infinite loop. The 
host would transmit the block, the terminal would not ac
knowledge it, and the host would transmit the same block 
again. 

4110 SERIES HOST 

c 

( 



BLOCK MODE PARAMETERS 

You can use Block mode with full- or half-duplex communi
cations. You can also use Block mode with or without 
Prompt mode. 

You must set the following Block mode parameters before 
you arm the terminal for Block mode. The terminal stores 
these parameters in non-volatile RAM. 

The following commands set the terminal's Block mode 
parameters: 

• SET-BLOCK-CONTINUE-CHARS 

• SET-BLOCK-END-CHARS 

• SET-BLOCK-NON-XMT-CHARS 

• SET-BLOCK-MASTER-CHARS 

• SET-BLOCK-HEADERS 

• SET-BLOCK-LENGTH 

• SET-BLOCK-PACKING 

• SET-BLOCK-TIMEOUT 

Notes on Block Mode Parameters 

Block Headers. Transmit and receive block headers may be 
up to 10 characters long. 

Block Length. The maximum block length for unpacked 
data (including the four block control bytes) is set by the 
SET-BLOCK-LENGTH command. You should set block 
lengths to four bytes less than your input and output buffer 
sizes; you must allow for the for block control bytes. 

Block Packing. The SET-BLOCK-PACKING command de
termines how characters will be packed before being sent 
as packed data. The default 7,6,7,7 works well for most 
uses. If you need to transfer files with 8-bit bytes, such as to 
or from a pseudo device or color hard copy device, you can 
use 8,6,8,7 packing. 

Block Timeout. Block timeout is the number of seconds the 
terminal waits for an ACK block from the host. If this time 
limit is exceeded, the terminal retransmits its last block. This 
will help the block exchange to automatically restart if some 
critical character is lost, such as a block-end character or 
part of a block header. The block timeout should be longer 
than the maximum expected host response time. 

4110 SERIES HOST 

COMMUNICATIONS 

ARMING FOR BLOCK MODE 

To use Block mode from your host, issue the ARM-FOR
BLOCK-MODE command and wait for the command to take 
effect (REPORT-TERMINAL-SETTINGS for ARM-FOR
BLOCK-MODE is best). 

When the terminal is armed for Block mode, it examines 
incoming data for the special sequence of characters that 
identifies the beginning of a block. The terminal actually en
ters Block mode when it recognizes the first block from the 
host. 

BLOCK FORMAT 

Each block consists of one or more lines. Each line begins 
with an identifier, or block header, that signals that the fol
lowing data is a block, continues with the packed block 
data, and ends with either a block-continue character to in
dicate that the block is continued on another line, or a block
end 'character to signal that the block is complete. 

The Block Header 

The block header is a special sequence of characters that 
identifies the following character sequence as a block. The 
terminal, as shipped from the factory, has the block headers 
preset: the block header for blocks sent by the terminal to 
the host is the string "HEADTX", the block header for 
blocks sent from the host to the terminal is the string 
"HEADRX". 

You can alter these strings with the SET-BLaCK-HEAD
ERS command. 

Block Data 

The packed data contained in a block is in two parts: the 
first part is the actual data for the block, the second part is 
four block-control bytes appended to the data. When block 
data is contained on more than one line, the embedded 
block header characters and block-continue characters are 
simply ignored when unpacking data. 

Block Control Bytes. The last four bytes of the packed data 
are block control bytes, appended to the block by the 
sender. These four bytes are used for error detection and 
control. The contents and use of the block control bytes are 
discussed later in this section. 

3-7 



COMMUNICATIONS 

The Block-End and Block-Continue 
Characters 

Each line of a block is terminated by either a block-continue 
character, a character that informs the receiver that the line 
will be followed by more lines, or a block-end character, a 
character that informs the receiver of the block that the 
block has ended. You can alter these characters with the 
commands: SET-BLOCK-CONTINUE-CHARS and 
SET-BLOCK-END-CHARS. 

The Block-Master and Non-Transmittable 
Characters 

Any character that has another meaning cannot appear in 
the packed block data. These include the block-continue, 
block-end, and block-master characters as well as any other 
characters absorbed by the communications system, such 
as °1 and °3 when character flagging is in use. Any character 
that your host cannot input as a normal character, such.as 
cR, EC, or NL must also be excluded from the packed blocK 
data. 

To exclude characters, include them in a SET-BLOCK-NON
XMT-CHARS command. When the excluded characters ap
pear in your packed block data, replace them with a pair of 
characters - the block-master character and substitute 
character. 

The substitute character to use for any non-transmittable 
character depends upon the position of the non-transmitta
ble character in the parameter of the SET-BLOCK-NON
XMT-CHARS command; the first non-transmittable 
character substitute is A, the second B, and so forth. 

For example: if the block-master character were "#", the 
block-end char were "$", and the block-continue character 
were "&"; you would set these three characters as non
transmittable characters by including them, in order, as pa
rameters to the SET-BLOCK-NON-XMT-CHARS command. 
Pack the data and check it for the forbidden characters. ·If 
you find the character "#" in the packed data, replace it with 
"#A" , replace "$" with "#B", and "&" with "#C." 

3-8 

You can reduce the number of non-transmittable characters 
by packing the block data into 6-bit format, which uses only 
generally transmittable characters: sp through "_".V 

The Block-Control Characters 

Your program must compute and include four block-control 
characters at the end of the unpacked data in each block. 
After your program receives a block from the terminal, it 
must interpret the final four characters after unpacking the 
data. 

If the unpacked byte size (as set by the SET-BLOCK-PACK
ING command) is seven, then each block-control character 
is seven bits long. If the unpacked byte size is eight, then 
each block-control character is eight bits long, with the most 
significant bit set to O. 

Block-Control Character 1. The bits of the first block-con
trol character (with Bit 1 as least significant) have the follow
ing meaning: 

• Bits 1 and 2 

• Bits 3,4,5 
• Bit 6 

• Bit 7 

• Bit 8 

Block count and end protocol 

Reserved (always 0) 

End of File 

End of Message 

Not present (7 bits) or 0 (8 bits) 

Bit 1 is the block count bit if bit 2 is O. 

If bit 2 is 1, the terminal will exit block mode; the terminal will 
transmit an acknowledge block if bit 1 is zero, but not if bit 1 
is one. 

The four possible meanings for Bits 1 and 2 are summarized 
in Table 3-1. The terminal expects the first block it receives 
after armingfor Block mode to have both bit 1 and bit 2 set 
to zero. 

Bit 6, the ,EOF bit, is set to 1 at the end of a file transfer. 
This bit is analogous to the EOF string used when the termi
nal is not in Block mode. This bit can be set when there is 
data in the block. This data will considered to be the last 
data in the file. 

4110 SERIES HOST 

( 

( 

( 



Bit 7, the EOM bit has different meaning in host blocks and 
terminal blocks. You should set the EOM bit to 0, to indicate 
that the terminal should send an ACK block immediately, 
whether or not it has data to pack into the block. (This ACK 
block will consist of only the four block-control bytes) When 
you set this bit to 1, the terminal will not send a block until it 
has a block full of characters or encounters an EOM charac
ter or EOM indicator. You must set this bit to 1 to input 
reports, files, or keyboard data. 

Table 3-1 

MEANING OF BITS 1 & 2 IN CONTROL BYTE 1 

Bit 2 Bit 1 Meaning 

0 0 This is an even block and the terminal will re-
main in Block mode 

0 1 This is an odd block and the terminal will re-
main in Block mode 

1 0 From host to terminal - Exit from Block 
mode. 

From terminal to host - Acknowledge com-
mand to leave Block mode. 

1 1 From host to terminal - Exit Block mode im-
mediately, do not send ACK to host. 

Terminal to host - Not allowed 

4110 SERIES HOST 

COMMUNICATIONS 

In blocks sent from the terminal to the host, bit 7 is set to 1 
when the terminal encounters an EOM character or an EOM 
indicator in the unpacked data. This bit is 0 when the maxi
mum block length is reached or another block follows con
taining more of the message. In general, you program can 
ignore this bit in the block sent from the terminal. 

Block-Control Character 2. All the bits of block-control 
character 2 are unused. The terminal sends a NL for this 
character, and your program can do the same. 

Block-Control Characters 3 & 4. These two characters are 
the checksum, which is computed by the following 
algorithm: 

1. Initialize (max-byte), (c-char3), and (c-char4) to have each 
bit a one. (7-bit characters to a value of 127, a-bit characters 
to a value of 255) 

2. For each character, (char), up to block-contro.1 character 2: 

(c-char3) = (c-char3) + (char) 
If (c-char3) > (max-byte) 

(c-char3) = (c-char3) - (max-byte) 
(c-char4) = (c-char4) + (c-char3) 
If (c-char4) > (max-byte) 

(c-char4) = (c-char4) - (max-byte) 

3. (c-char3) = (max-byte) - (c-char3) - (c-char4) 
If c-char3 < = 0 

(c-char3) = (c-char3) + (max-byte) 

3-9 



COMMUNICATIONS 

Figure 3-2 illustrates how the host and terminal communi
cate in Block mode with no errors. The host transmits three 
blocks, the terminal acknowledges each and communica
tions are unhindered. 

Figure 3-3 shows the effect of an occasional error in block 
mode transmission. In this case the host simply retransmits 
the block that the terminal failed to acknowledge and re
ceives an acknowledgement on the second try. 

Figure 3-2. Error-Free Block Transmission. 

3-10 4110 SERIES HOST 

-----~~-----------~~-

( 

( 

( 



COMMUNICATIONS 

Figure 3-3. Occasional Errors in Block Mode. 

4110 SERIES HOST 
3-11 



COMMUNICATIONS 

Figure 3-4 shows the effect of multiple errors in Block mode. 
The terminal and host simply exchange blocks until they 
achieve an error-free exchange. 

Figure 3-4. Multiple Errors in Block Mode. 

3-12 

( 

( 

( 

4110 SERIES HOST 



Block Mode Algorithms 

The following algorithms illustrate how to communicate with 
the terminal in Block mode. 

Procedure Start-block-protocol: 
global-reference: (armed-for-block-mode), 
(block-count-bits), 

(host-eom-bit),(host-eof-bit),(host-unpacked-bits), 
(host-packed-bits),(term-unpacked-bits), 
(term-packed-bits), 
(host-master-char),(host-continue-char),(host-end-char), 
(term-master-char),(term-continue-char),(term-end-char), 
(host-number-of-non-xmts),(host-non-xmts), 
(term-non-xmts), 
( c hars-i n-i n put-buffe r),( chars-i n -output-buffer) 

send-2-op-code-command: (O),(B) 
send-packed-integer: (1) 
send-2-op-code-command: (I),(Q) 
send-character: (0) 
send-character: (B) 
input-character: (char) 
input-character: (char) 
input-integer: (armed-for-block-mode) 
if (armed-for-block-mode) = 1 

(block-count-bits)= 1 
(host-eom-bit) = 0 
(host-eof-bit) = 0 
(host-unpacked-bits) = 7 
(host-packed-bits) = 6 
(term-unpacked-bits) = 7 
(term-packed-bits) = 6 
(host-master-char) = ( #) 
(host-continue-char) = (&) 
(host-end-char) = ($) 
(term-master-char) = (#) 
(term-continue-char) = (&) 
(term-end-char) = ($) 
(host-number-of-non-xmts)=3 
(host-non-xmts)= «#),(&),($» 
(term-non-xmts)= «#),(&),($» 
(chars-in-input-buffer) = 0 
(chars-in-output-buffer) = 0 

Procedure End-block-protocol: 
global-reference: (armed-for-block-mode), 
(block -count-bits) 
if (armed-for-block-mode) = 1 

(block-count-bits) = 2 
block-transaction: 
(armed-for-block-mode) =0 
send-2-op-code-command: (0), )B) 

4110 SERIES HOST 

COMMUNICATIONS 

Procedure Send-character: (char) 
global-reference: (chars-in-output-buffer),(output-buffer), 

(armed-for-block-mode) 
if (armed-for-block-mode) = 1 

if (char) < 0 or (chars-in-output-buffer) = 256 
block-transaction: 

else 
increment (chars-in-output-buffer) 
(output-buffer( chars-in-output-buffer» = (char) 

else 
send-char-to-TTY: (char) 

Procedure Input-character: (char) 
global-reference: (chars-in-input-buffer),(input-buffer), 
(host-eom-bit), 

(armed-for-block-mode) 
if (armed-for-block-mode) = 1 

if (chars-in-input-buffer) = 0 
(host-eom-bit) = 1 
block-transaction: 
(host-eom-bit) = 0 
(front-of-input-buffer) = 0 

if (chars-in-input-buffer) > 0 
increment (front-of-input-buffer) 
(char) = (input-buffer(front-of-input-buffer» 
decrement (chars-in-input-buffer) 

else 
(char)=(SP) 

else 
input-char-from-TTY: (char) 

Procedure Block-transaction: 
global-reference: (armed-for-block-mode), 
(block-count-bits), 

( cha rs-in-output -buffer),( output-buffer), 
(chars-in-input-buffer), 
(input-buffer) 
if (armed-for-block-mode) = 1 

(repeat-counter) = 0 
(nack)=O 
until (repeat-counter) = 4 or (nack) = 0 

block-send: (chars-in-output-buffer), 
(output-buffer) 
increment (repeat-counter) 
if (block-count-bits) < 3 

block-input: (chars-in-input-buffer), 
(input-buffer),(nack) 

if (nack) = 0 
(block-count-bits)= 1-(block-count-bits) 

(chars-in-output-buffer) = 0 

3-13 



COMMUNICATIONS 

Procedure Block-send: (chars-in-output-buffer), 
( output-buffer) 

global-reference: (line-Iength),(max-line-Iength),(register). 
(bits-in-register),( offset),( max-byte), 
(host-unpacked-bits), 
(host-pack ed-bits ),(host-end-char),( check1 ),( check2) 

(register) =0 
(bits-in-register) = 0 
(offset) =0 
if (host-packed-bits) = 6 

(offset) = 32 
(max-byte)=2* *(host-unpacked-bits)-1 
(check1) = (max-byte) 
(check2) = (max-byte) 
(line-length) = 0 
increment (chars-in-output-buffer) 
(output-buffer( char-in-output-buffer» = 
(block-count-bits) + 

32* (block-host-eof-bit) + 64 * (block-host-eom-bit) 
increment (chars-in-output-buffer) 
(output-buffer( char-in-output-buffer» = 0 
for (counter) = 1 to (chars-in-output-buffer) 

pack-and-send-block-char: (output-buffer(counter» 
checksum: (out-buffer(counter» 

(char) = (max-byte)-(check1)-(check2) 
if (char) < = 0 

increment (char) by (max-byte) 
(char2) = (check2) 
pack-and-send-block-char: (char) 
pack-and-send-block-char: (char2) 
if (bits-in-register) > 0 

shift (register) left (host-packed-bits)-(bits-in-register) 
increment (register) by (offset) 
send-char-to-TTY: (register) 

send-char-to-TTY: (host-end-char) 

Procedure Pack-and-send-block-char: (char) 
global-reference: (register),(bits-in-register),(offset), 
(max-byte), 

(host-unpacked-bits),(host-packed-bits), 
(host-number-of-non-xmts), 
(host-non-xmts) 

shift (register) left (host-unpacked-bits) 
increment (register) by (char) 
increment (bits-in-register) by (host-unpacked-bits) 
while (bits-in-register) = > (host-packed-bits) 

(out-char) = (register) modulo 2**(host-packed-bits) 
shift (register) right (host-packed-bits) 
decrement (bits-in-register) by (host-packed-bits) 
increment (out-char) by (offset) 
(sub-pointer) = (host-number-of-non-xmts) 
until (sub-pointer) = 0 or (out-char) = 
(host-non-xmts(sub-pointer» 

decrement (sub-pointer) 
if (sub-pointer) = 0 

send-block-char: (out-char) 
else 

3-14 

send-block-char: (host-master-char) 
send-block-char: (sub-pointer)+64 

Procedure Send-block-char: (char) 
global-reference: (host-header-Iength),(host-header), 
(line-length), 

(host-continue-char),(max-line-Iength) 
if (line-length) = (max-line-length)-1 

send-char-to-TTY: (host-continue-char) 
(line-length) =0 

if (line-length) = 0 
for (counter) = 1 to (host-header-Iength) 

send-char-to-TTY: (host-header( counter» 
(line-length) = (host-header-Iength) 

send-char-to-TTY: (char) 
increment (line-length) 

Procedure Block-input: (chars-in-input-buffer), 
(input-buffer),(nack) 

global-reference: (register),(bits-in-register),(offset), 
(max-byte), 

(term-unpacked-bits ), 
(term-packed-bits),(check1),(check2), 
(end-of-data),(term-eof-bit),(term-eom-bit), 
(in-block),(end-of-block) 

(register) = 0 
(bits-in-register) = 0 
(offset) =0 
if (term-packed-bits) = 6 

(offset)=32 
(max-byte) = 2 * * (term-unpacked-bits)-1 
(check1)=(max-byte) 
(check2)=(max-byte) 
(in-block)=O 
(end-of-block)=O 
(end-of-data)=O 
until (end-of-data) = 1 

input-and-unpack-block-char: (char) 
if (end-of-data) = 0 

checksum: (char) 
increment (chars-in-input-buffer) 
(input-buffer( chars-in-input-buffer» = (char) 

(control-bit-char) = (input-buffer( (chars-in-input-buffer)-3» 
decrement (chars-in-input-buffer) by 4 
(term-count-bits)=(control-bit-char) modulo 4 
(term-eof-bit) = (control-bit-char)/32 modulo 2 
(term-eom-bit)= (control-bit-char)/64 
if (check1) = (max-byte) and (check2) = (maxbyte) 
and (term-count-bits) = (block-count-bits) 

(nack)=O 
else 

(nack)=1 

4110 SERIES HOST 

(\ 

( 

( 



Procedure Input-and-unpack-block-char: (char) 
global-reference: (register),(bits-in-register),(offset), 
(max-byte), 

(term-unpacked-bits),(term-packed-bits), 
(term-non-xmts),(end-of-data), 
( end-of-block) 

if (end-of-block) = 0 
until (bits-in-register) = > (term-unpacked-bits) 

input-block-char: (in-char) 
if (end-of-block) = 0 

if (in-char) = (term-master-char) 
input-block-char: (in-char) 
(in-char) = (term-non-xmts( (in-char)-64» 

decrement (in-char) by (offset) 
shift (register) left (term-packed-bits) 
increment (bits-in-register) by (term-packed-bits) 
increment (register) by (in-char) 

else 
if (bits-in-register) = 0 

(end-of-data) = 1 
shift (register) left (term-unpacked-bits)
(bits-in-register) 
(bits-in-register) = (term-unpacked-bits) 

(char)=(register) modulo 2* *(term-unpacked-bits) 
shift (register) right (term-unpacked-bits) 
decrement (bits-in-register) by (term-unpacked-bits) 

else 
(end-of-data) = 1 

4110 SERIES HOST 

COMMUNICATIONS 

Procedure Input-block-char: (char) 
global-reference: (term-header-Iength), 
(term-header),(term-continue-char), 

(term-e nd-char),( in-block), ( end -of-block) 
if (in-block) = 1 

input-char-from-TTY: (char) 
if (char) = (term-end-char) 

(end-of-block) = 1 
elseif (char) = (term-continue-char): 

(in-block)=O 
if (in-block) = 0 

(header-pointer) =0 
until (header-pointer) = (term-header-Iength) 

increment (header-pointer) 
input-char-from-TTY: (char) 
if (char) < > (term-header(header-pointer)) 

(header-pointer) = 0 
(in-block) = 1 
input-char-from-TTY: (char) 

Procedure Checksum: (char) 
global-reference: (max-byte ),( check1 ),(check2) 
increment (check1) by (char) 
if (check1) > (max-byte) 

decrement (check1) by (maxbyte) 
increment (check2) by (check1) 
if (check2) > (max-byte) 

decrement (check2) by (max-byte) 

3-15 



(I 

( 

( 



Section 4 

USING 4110 SERIES TERMINALS 

INTRODUCTION 

To drive a 4110 Series terminal from a host, your host pro
gram must send commands to the terminal and parse re
ports that the terminal sends to the host. You must pack 
command parameters and parse the parameters that the 
terminal returns. This section contains discussions on: 

• Terminal commands, reports, and parameters 

• Macros and macro expansion 

• The TEK and ANSI command parsers 

TERMINAL COMMANDS, REPORTS, 
AND PARAMETERS 

PREVIEW 

• Terminal ,commands 

• Initializing the terminal and general procedures for send-
ing commands 

• Command parameters 

• Packing and sending simple parameters 

• Packing and sending complex parameters 

• Terminal reports 

• Parsing simple reports 

• Parsing complex reports 

4110 SERIES HOST 

TERMINAL COMMANDS 

4110 Series terminals respond to commands from the host 
or, if the terminal is in Setup mode or Local mode, to the 
terminal keyboard. Commands presented in this discussion 
are commands from the host to the terminal. 

A 4110 Series command is one of the following: 

• A single-character command - such as a printable char
acter in Alpha mode (implied PRINT-THIS-CHARACTER 
command), the Alpha-cursor positioning control charac
ters (CR, LF, BS, VT, and HT), special-purpose control char
acters (BL, SI, and So), and the mOde-controlling 
characters (Us, Gs, and Fs). 

• A two-character sequence beginning with the character 
EC followed by a single character. These two-character 
escape sequences are also called one op-code com
mands. The one-op-code commands are: 

EcSB = ENABLE-4010-GIN 
EcCN = ENTER-BYPASS-MODE 
ECFF = PAGE 
ECEQ = REPORT-4010-STATUS 
ECSI or ECSO = SET-ALPHATEXT-FONT 
Ecchar = SET-4014-LlNE-STYLE 
ECEB = 4010-HARD-COPY 

• A three-character sequence beginning with the character 
EC followed by parameters if the command takes them. 
These three-character escape sequences are also called 
two op-code commands. Most 4110 Series commands 
are these three-character escape sequences. See the 
4110 Series Command Reference Manual for an alpha
betic listing of all 4110 Series commands. 

4-1 



USING 4110 SERIES TERMINALS 

Initializing the Terminal and Sending 
Commands 

The following algorithms illustrate how to initialize the termi
nal and send two-op-code commands. 

Procedure Initialize-system: (terminal-model) 
global-reference: (implicit-mode), (abs-xy), 
(terminal), (last-HiV), (last-exLoV), (last-LoV), (last-HiX), 
(home-x), (home-y) 
(implicit-mode) =-1 
send-enter-alpha-mode-command: 
send-set-coordinate-mode-command: 0, 3-
send-arm-for-block-mode-command: 0 
(terminal)=(terminal-model) 
(last-HiV) = 0 
(last-exLoV)=O 
(Iast-Lo V) = 0 
(last-HiX) = 0 
(home-x)=O 
(home-y) = 3071 
if (terminal)=4115 

(home-y)=3190 
send-page-command 

Procedure Send-enter-alpha-mode-command: 
global-reference: (implicit-mode) 
if (implicit-mode) <> 1 

send-character: (US) 
(implicit-mode) = 1 

Procedure Send-enter-vector-mode-command: 
global-reference: (implicit-mode), (move-draw-flag) 
if (implicit-mode) = 0 

send-character: (US) 
send-character: (GS) 
(implicit-mode) = 2 
(move-draw-flag) = 0 

Procedure Send-enter-marker-mode-command: 
global-reference: (implicit-mode) 
if (implicit-mode) <> 0 

send-character: (FS) 
(implicit-mode) = 0 

4-2 

Procedure Send-set-coordiriate-mode-command: (c-mode), 
(r-Iength) 

global-reference: (coord-mode),(report-Iength) 
send-2-op-code-command: (U),(X) 
send-packed-integer: (c-mode) 
send-packed-integer: (r-Iength) 
(coord-mode) = (c-mode) 
(report-length) = (r-Iength) 

Procedure Send-2-op-code-command: (char1),(char2) 
Send-character: (ESC) 
Send-character: (char1) 
Send-character: (char2) 

Procedure Send-page-command: 
global-reference: (implicit-mode),( d-a-enable), 
(beam-x),(beam-y), 

(home-x),(home-y),(4010-GIN-on) 
send-character: (ESC) 
send-character: (FF) 
if (d-a-enable) = 0 

(implicit-mode) = 1 
(beam-x)=(home-x) 
(beam-y) = (home-y) 
(4010-GIN-on)=0 

Procedure Send-draw-command: 
global-reference: (implicit-mode), (move-draw-flag) 
if (implicit-mode) <> 2 

send-enter-vector-mode-command: 
if (move-draw-flag) = 0 

send-character: <BL> 
send-xv: (x), (y) 

Procedure Send-move-command: (x), (y) 
send-enter-vector-mode-command: 
send-xv: (x), (y) 

Procedure Send-marker-command: (x), (y) 
send-enter-marker-mode-command: 
send-xv: (x), (y) 

4110 SERIES HOST 

() 

c 



COMMAND PARAMETERS 

4110 Series command parameters are of three basic types: 
int, xy or char. Other parameter types are made up of com
binations of these basic types. 

int Parameters 

int parameters are a sequence of ASCII characters from sp 

through DL that represent an integer value. The packing 
scheme used places the sign of the integer in the final char
acter (called the La! character) and the values whose abso
lute value exceeds 15 in other characters (called Hi! 
characters). Appendix B gives examples of int parameters 
and a method of converting between integers and int pa
rameters. The following general-purpose algorithm shows 
how to pack int parameters. 

Packing an int Parameter 

Procedure Send-packed-integer: (int) 
initialize (stack) 
(abs-int)=absolute value of (int) 
(Ioi)=(abs-int) modulo 16 + 48 
if (int) < 0 

decrement (Ioi) by 16 
push (Ioi) onto (stack) 
shift (abs-int) right 4 bits 
while (abs-int) > 0 

push (abs-int) modulo 64 + 64 onto (stack) 
shift (abs-int) right 6 bits 

until (stack) is empty 
pop (stack) into (ADE-char) 
send-character: (ADE-char) 

xy Parameters 

xy parameters are a sequence of ASCII characters from sp 

through DL that represent a coordinate in 12-bit terminal 
space. The packing scheme is the same as that used on 
TEKTRONIX 4010 Series terminals. The 4115 can use a 
pair of integers to represent xy parameters in its larger ad
dress space. The following algorithms illustrate how to pack 
xys including 32-bit xys for the 4115. 

Hint. If you would like to reduce communications overhead 
and don't mind slightly reduced resolution, you can omit the 
Extra-LoY character in the 12-bit xy parameter. This gives 
10-bit instead of 12-bit resolution and can reduce the num
ber of characters transmitted per xy by up to 33%. 
Tektronix 4006, 4010 and 4012 terminals use the 10 bit 
format. 

4110 SERIES HOST 

USING 4110 SERIES TERMINALS 

Packing xy Parameters 

Procedure Send-xv: (x),(y) 
global-reference: (coord-mode),(last-x),(last-y),(abs-xy) 
if (coord-mode) = 0 

send-12-bit-xy: (x),(y) 
else 

if (abs-xy) = 1 
(x-sent)=(x) 
(y-sent)=(y) 

else 
(x-sent) = (x)-(Iast-x) 
(y-sent) = (y)-(Iast-y) 

send-packed-integer: (x-sent) 
send-packed-integer: (y-sent) 

(last-x) = (x) 
(Iast-y) = (y) 

Procedure Send·12-bit-xy: (x),(y) 
global-reference: (last-hiy),(last-exloY),(last-loY),(last-hix) 
global-reference: (margin-control-bit) 
(new-hiy)=(y)/128+32 
(new-exloy)=«y) modulo 4)*4+«x) modulo 4)+ 
(margin-control-bit) *16 + 96 
(new-loy)=«y)/128 modulo 32)+96 
(new-hix)=(x)/128+32 
(new-lox)=«x)/128 modulo 32)+64 
if (new-hiy) <> (Iast-hiy) 

send-character: (new-hiy) 
(Iast-hiy) = (new-hiy) 

if (new-exloy) <> (Iast-exloy) 
send-character: (new-exloy) 
(Iast-exloy) = (new-exloy) 

if (new-loy) <> (last-loy) 
or (new-exloy) <> (Iast-exloy) 
or (new-hix) <> (Iast-hix) 

send-character: (new-loy) 
(last-loy) = (new-loy) 

if (new-hix) <> (Iast-hix) 
send-character: (new-hix) 
(Iast-hix) = (new-hix) 

send-character: (new-lox) 

char Parameters 

A char parameter is a single ASCII character from sp 

through ~ . Char parameters have ASCII decimal equivalents 
from 32 through 126. 

4-3 



USING 4110 SERIES TERMINALS 

Complex Parameters 

Other parameters are made up from the simple parameter 
types. These are: 

• array parameters. An array is a series of one of the basic 
parameter types preceded by its count in an int. 4110 
Series arrays are: 

int-array -a series of ints preceded by a count into 

xy-array -a series of xys preceded by a count int 

char-array - a series of chars preceded by a count int 
or string 

• real parameters. A real parameter is a pair of int param
eters: a mantissa and an exponent where the exponent 
is a power of two. 

• 32-bit xy parameters. A 32-bit xy parameter is a pair of 
ints, one x-value and one y-value. 

The following general-purpose algorithms show how to 
pack real, int-array, char-array, and xy-array parameters. 

Packing Complex Parameters 

Procedure Send-packed-real: (real) 
(exponent)=O 
(abs-real)=absolute value of (real) 
(mantissa)=integer part of (abs-real) 
while (mantissa) < 2"15 
and absolute value of «abs-real)-(mantissa)) > 2"*-15 

(abs-real) = (abs-real)" 2 
(exponent) = (exponent)-1 
(mantissa)=integer part of (abs-real) 

if (real) < 0 
(mantissa) = -(mantissa) 

send-packed-integer: (mantissa) 
send-packed-integer: (exponent) 

Procedure Send-integer-array: (Iength),(int-array) 
send-packed-integer: (length) 
(count)=O 
while (count) < (length) 

4-4 

increment (count) 
send-packed-integer: (int-array(count)) 

Procedure Send-char-array: (Iength),(char-array) 
send-packed-integer: (length) 
(count)=O 
while (count) < (length) 

increment (count) 
send-character: (char-array(count» 

Procedure Send-xv-array: (Iength),(x-array),(y-array) 
send-packed-integer: (length) 
(count)=O 
while (count) < (length) 

increment (count) 
send-xv: (x-array(count)),(y-array(count)) 

TERMINAL REPORTS 

In addition to packing and sending parameters, your pro
grams must receive and parse reports. Terminal reports are 
analogous to, but differ from the various types of param
eters: i.e. each type of parameter has a corresponding type 
of report. 

You can cause a terminal to report by using one of the fol
lowing commands: 

• REPORT-COLORHARDCOPY-STATUS 

• REPORT-DEVICE-STATUS 

• REPORT-ERRORS 

• REPORT-GIN-POINT 

• REPORT-PORT-STATUS 

• REPORT-SEGMENT-STATUS 

• REPORT-TERMINAL-SETTINGS 

The syntax of these commands and the reports they return 
are detailed in the 4110 Series Command Reference Manual. 

~ 
Be careful using the REPORT-TERMINAL
SETTINGS command. Some commands return no 
parameter reports, while others return reports with 
differentvalues than those that were last set. See the 
4110 Series Command Reference Manual for de
tails on each command for which you need a report. 

The following algorithms illustrate how to parse the various 
reports returned by the terminal. 

4110 SERIES HOST 

( 

( 

c 



Parsing an int or intc Report 

Procedure Input-integer: (int) 
input-character: (char1) 
input-character: (char2) 
input-character: (char3) 
(int)=«char1)-32)*1024 + «char2)-32)*16 + (char3) 
modulo 16 
if (char3) < 48 

negate (int) 

Procedure Input-integer-c: (int) 
global-reference: (report-length) 
(int)=O 
for (counter) = 1 to (report-length)-1 

input-character: (char) 
(int)=(int)*64 + (char)-32 

input-character: (char) 
(int)=(int)*16 + (char) modulo 16 
if (char) < 48 

negate (int) 

Parsing an xy Report 

Procedure Input-xy: (x),(y),(type) 
global-reference: (coord-mode) 
if (coord-mode) = 0 

input-character: (char1) 
input-character: (char2) 
input-character: (char3) 
input-character: (char4) 
if (type) = 1 !4110 12-bit type! 

input-character: (charS) 
(x)=«char4)-32)*128 + «charS)-32)*4 

+ (char2) modulo 4 
(y)=«char1)-32)*128 + «char3)-32)*4 

+ (char2)/2 modulo 4 
if (type) = 2 !4010 10-bit type I 

(x)=«char1)-32)*128 + «char2)-32)*4 
(y)=«char3)-32)*128 + «char4)-32)*4 

else 
input-integer-c: (x) 
input-integer-c: (y) 

Parsing Array Reports 

Procedure Input-integer-array: (Iength),(int-array) 
input-integer: (length) 
(count)=O 
while (count) < (length) 

increment (count) 
input-integer: (int-array(count» 

4110 SERIES HOST 

USING 4110 SERIES TERMINALS 

Procedure Input-xy-array: (Iength),(x-array),(y-array) 
input-integer: (length) 
(count)=O 
while (count) < (length) 

increment (count) 
input-xv: (x-array(count»),(y-array(count» 

Procedure Input-char-array: (Iength),(char-array) 
input-integer: (length) 
(count)=O 
while (count) < (length) 

increment (count) 
input-character: (char-array( count» 

TROUBLESHOOTING HINTS 

Whenever you are having trouble getting the terminal to re
spond as you think it should, you should have a checklist of 
common problems and their causes. The following list is by 
no means complete, but should serve as a beginning for 
your own. The most baffling problems are often the most 
obvious. 

• Input queue size - If the input queue overflows, it can 
cause baffling failures. Try setting the queue larger. 

• EOM-frequency - Set to frequent: less frequent can 
cause puzzling problems with GIN 

• Segment-writing mode - If you set to XOR, it 
overstrikes existing graphics. Alphatext over existing 
graphics can cause quite a few problems. 

• Pixel operations - Remember that the BEGIN-PIXEL
OPERATIONS command sets a lot of parameters. If you 
need anything but the defaults, set them with this 
command. 

• EOF-string - If you set this to a character that is used in 
xy parameters, it can look like the line is picking up noise. 

• Dialog scroll buffer - If you set the scroll buffer smaller 
than the number of dialog area lines, the display moves 
strangely. 

• Invisible text and graphics - Are they a visible color? 
Are they the background color? 

• Silly as it may seem - Is the terminal plugged in, con
nected, with the communications set right? 

4-5 



USING 4110 SERIES TERMINALS 

MACROS AND MACRO EXPANSION 

PREVIEW 
• Host macros 

• Byte macros 

• Key macros 

• The key-execute character 

CONCEPTS AND DEFINITIONS 

A macro is a single instruction that stands for a sequence of 
instructions. 4110 Series terminals support three types of 
macros: host, byte, and key. 

To define or delete macros, use the DEFINE-MACRO com
mand. 4110 Series terminal macro types differ only in (1) the 
range of macro numbers they occupy and (2) how the termi
nal expands them. 

Host Macros 

A host macro is a macro that can be expanded by the EX
PAND-MACRO command. Since all 4110 Series macros 
can be expanded by the EXPAND-MACRO command (in
cluding byte and key macros) all macros are host macros. 

Byte Macros 

A byte macro is a macro that the terminal expands when it 
encounters that character in the terminal's input queue. You 
can think of a byte macro as a character which carries an 
implicit EXPAND-MACRO command. Byte macros occupy 
numbers -32768 through -32742, -32740 through 
-32737, and -32608 through -32513. To get the ADE 
value of the character which is interpreted as containing an 
EXPAND-MACRO command, add 32768 to the macro 
number. 

Key Macros 

A Key macro is a macro that the terminal expands when the 
operator presses the keyboard key (or key combination) 
that corresponds to that macro number. The key number is 
the ADE (ASCII Decimal Equivalent) generated by the key
board. You program the terminal's function keys by defining 
key macros. 

4-6 

Key macros are numbers 0 through 143. Numbers 0 through 
127 are the 7 -bit ASCII character set; numbers 128 through 
143 are the keyboard function keys. Section 5, The Operator 
Interface, discusses the keyboard and the ADEs generated 
by the function keys. 

Making the Terminal Execute a Key Macro 

When the terminal expands a key macro, it normally places 
the resulting character stream in the output queue for trans
mission to the host. If you want .to program a function key to 
give a command to the terminal rather than a character 
stream to the host, you must use the key-execute-character 
to toggle the output of the macro expander from the termi
nal output buffer into the terminal's input buffer. You can 
send a cR to the host at the end of the key macro to indicate 
the end of the macro. 

The key-execute character toggles the output of a key 
macro between normal expansion and responding to the 
macro as though its contents were sent by the host. 

Expanding Macros 

When the terminal expands a macro, several actions take 
place: 

1. The terminal's macro expander marks the macro as be
ing expanded, and if it is a byte macro, removes the byte 
from the input queue. 

2. The macro expander places the macro content into the 
input queue for processing by whatever parser is cur
rently selected. 

3. Nesting macros is allowed; the macro contents may in
clude commands to expand other macros. However, if a 
macro is marked as being expanded, the command to 
expand it is ignored, and if it is a byte macro, the charac
ter is passed on unchanged. 

5. When the terminal completes the macro expansion, it re
moves the mark from the macro; the macro expander 
can then expand the macro if it should encounter the 
macro again. 

4110 SERIES HOST 

( 

( 



TERMINAL PARSERS 

PREVIEW 

• Overview 

• Snoopy mode 

• The TEK parser 
• Implicit Command Modes (Alpha, Vector, and Marker) 
• Command parsing states 
• Parameter parsing states 

• Modes that affect parsing 

• The ANSI parser 

OVERVIEW 

4110 Series terminals contain either two or three parsers to 
interpret host and terminal commands. DVST terminals con
tain two parsers: a TEK parser to interpret host commands 
and a Setup mode parser to interpret commands from the 
keyboard in Setup mode. Raster display terminals contain 
three parsers: the TEK and Setup parsers and an ANSI 
parser to respond to a subset of the ANSI X3.64 com
mands. You choose between the TEK and ANSI parsers 
with the SELECT-CODE command. 

This section contains a description of the TEK and ANSI 
parsers. The operators manual for your terminal contains 
information on Setup mode. 

Appendix E contains a table that shows how the TEK and 
ANSI parsers interpret incoming characters in various 
modes and states. You can use this table to trace the termi
nal through its various states for debugging terminal driving 
programs. 

SNOOPY MODE 

Snoopy mode intercepts characters from the input buffer 
before they are routed to the parsers. The terminal displays 
non-printing ASCII characters as 2-character mnemonic 
equivalents in one character cell; I.E. the character "escape" 
becomes EC in Snoopy mode. The terminal does not execute 
any commands except the character cR , which is both dis
played and executed as CRLF. 

USING 4110 SERIES TERMINALS 

You can put the terminal into Snoopy mode from the host 
with the SET-SNOOPY-MODE command or from Setup 
mode with the command SNOOPY YES. 

You can only remove the terminal from Snoopy mode from 
the terminal keyboard. You can use the Setup command 
SNOOPY NO or press the CANCEL key to bring the termi
nal out of Snoopy mode. 

~ 
The host programmer should use Snoopy mode for 
debugging programs. It allows you to see just what 
the host is sending. It is inadvisable for your program 
to put the terminal into Snoopy mode, as it must 
depend on the terminal operator to get it out. 

THE TEK PARSER 

The Tek parser is a flag and table driven state machine that 
interprets characters as commands to the terminal. The 
parser uses flags to remember the parser mode or state. 
Most flags are binary and represent a yes-no condition for a 
particular state. One flag, the implicit mode flag, is trinary. 
Another, the parameter parsing flag is multi-valued to indi
cate what kind of parameter is being parsed. 

The three implicit command modes - Alpha, Vector, and 
Marker - are available. Each mode implies a different com
mand as implicit to that mode: in Alpha mode the implicit 
command is PRINT-CHARACTER, in Vector mode the im
plicit command is either MOVE or DRAW, depending on the 
move/draw flag, and in Marker mode the implicit command 
is DRAW-MARKER. In each of these modes, each charac
ter received by the parser is interpreted as a parameter to 
the current implicit command. 

The TEK parser is always in one (and only one) of the im
plicit command modes, even when it is in one of the explicit 
command states. While an explicit command is being 
parsed, the implicit command mode is inactive but remem
bered. The parser reenters the implicit command mode after 
it terminates the explicit command. 

4110 SERIES HOST REV, NOV 1983 4-7 



USING 4110 SERIES TERMINALS 

Figure 4-1 illustrates the relationship between the implicit 
command modes and the explicit command states of the 
TEK parser. Figure 4-2 gives a simplified state diagram of 

IMPLICIT COMMAND MODES 

how the TEK parser moves between the explicit command 
states while parsing a command. 

EXPLICIT COMMAND STATES 

Figure 4·1. Implicit Command Modes and Explicit Command States. 

4-8 4110 SERIES HOST 

( 

c 

( 



4110 SERIES HOST 

IMPLICIT 
COMMAND 

MODE 

Figure 4-2. Explicit Command States. 

USING 4110 SERIES TERMINALS 

4-9 



USING 4110 SERIES TERMINALS 

THE IMPLICIT COMMAND MODES 

Alpha Mode 

Entering Alpha Mode. You enter Alpha mode with the com
mand ENTER-ALPH'A-MODE. This command is the single 
character us. This character is available on the keyboard as 
·control-_" or ·control-shift-o". 

Alpha mode is the default mode from a reset, and CANCEL 
key or command. The terminal will also enter Alpha mode 
after a PAGE or eR with the dialog area disabled. The termi
nal will also enter Alpha mode after leaving one of the 4010 
GIN emulation modes. 

Leaving Alpha Mode. You can leave Alpha mode by enter
ing either Vector mode or Marker mode. 

Effects of Alpha Mode. In Alpha mode, the terminal inter
prets each printable ASCII character as an implicit com
mand to print that character as alphatext. 

Alpha mode is the default operating mode. When the termi
nal is in Alpha mode, you can give graphics primitives as 
explicit commands. 

Vector Mode 

Entering Vector Mode. To enter Vector mode, send the 
command ENTER-VECTOR-MODE. This command is the 
single character Gs (available from the keyboard as "control
[" or "control-shift-m"). You can enter Vector mode from 
Alpha mode only. 

Leaving Vector Mode. You can leave Vector mode by en
tering either Alpha mode or Marker mode. 

Effects of Vector Mode. Vector mode is used for efficient 
communication of graphics information. When the terminal 
is in Vector Mode, it interprets incoming characters other 
than control characters as encoded xy coordinates. Vector 
mode ignores control characters other than Bl , Ee, FS , Gs or 
us. 

4-10 

As each complete coordinate is assembled, the terminal ex
ecutes the implied MOVE or DRAW to that coordinate. 

The terminal interprets the first xy coordinate after Gs (the 
ENTER-VECTOR-MODE command) as a move to that posi
tion. If you follow Gs with Bl , the Bt.. causes the terminal bell 
to ring and the terminal to interpret each subsequent xy 
coordinate as a DRAW to that position. As in explicit 
MOVEs and DRAWs, the graphics beam is left where the 
MOVE or DRAW ends. 

Marker Mode 

Entering Marker Mode. You can enter Marker mode with 
the command ENTER-MARKER-MODE. This command is 
the single character FS and is available from the keyboard as 
control-\ or control-shift-L. 

Leaving Marker Mode. The only way to leave Marker mode 
is to enter Alpha mode. 

Effects of Marker Mode. Marker mode is a mode to effi
ciently draw a number of markers. When the terminal is in 
Marker mode, it interprets incoming characters other than 
control characters as encoded xy coordinates. Marker 
mode ignores control characters other than Bl , Ee, FS , Gs or 
us. 

As soon as the coordinate is complete, the terminal exe
cutes the implied DRAW-MARKER command and draws a 
marker of the current type at that coordinate. 

EXPLICIT COMMAND STATES 

When the TEK parser receives an explicit command, it first 
enters LCE-T state. From LCE-T state, the parser moves to 
either do a single op-code command, or to 20C state if the 
command is a two op-code command. The parser enters the 
parameter parsing state prior to doing the command for any 
command that takes parameters. 

Commands can be terminated early by one of the terminator 
characters: Ee, Gs, us, or FS. When a command that takes 
parameters is terminated early, the terminal assigns default 
values to those parameters. 

4110 SERIES HOST 

c 

c 



LCE-T State 

The TEK parser enters LCE-T State whenever it receives 
the EC character. 

The parser leaves LCE-T State immediately after it receives 
a character other than NL, cR, LF, or DT. The terminal ignores 
those four characters and remains in LCE-T state. If the 
character is an upper-case alphabetic character from I 
through Z, the parser enters 20C state. Any other character 
completes a one op-code command (many are no-ops). 

20C State 

20C (two op-code) state is the state the TEK parser enters 
from LCE-T state after receiving a character in the range 
from I to Z, such as the "L" in EcLE. 

The parser leaves 20C state when it receives a character it 
does not ignore. The parser ignores control characters other 
than terminators in 20C state. 

In 20C state, the terminal has received the first character 
after the EC of a two op-code command. It is waiting for the 
second character to complete the command. After the com
mand is complete, the terminal executes those commands 
that take no parameters, or goes into one of the parameter 
parsing states to complete the command. The terminal uses 
a table to determine what parameters must be parsed. 

Commands that require parameters are completed when 
the terminal either receives all the parameters, or receives a 
terminator character. 

PARAMETER PARSING STATES 

4110 Series terminals parse three main types of param
eters: xy, int, and char. Arrays are composed of a series of 
xys, intS, or chars preceded by an int count. Real param
eters are expressed as two ints. 

int Parsing State 

The TEK parser moves into int parsing state when a com
mand requires an int parameter and out when the param
eter is complete. When the parser parses complex 
parameters, it may actually enter this state several times. 

USING 4110 SERIES TERMINALS 

While in int Parsing state, the terminal interprets all charac
ters except control characters as parts of int parameters. It 
ignores control characters other than terminators. 

When the parser encounters a character whose ADE is from 
64 to 127, it interprets this character as a Hil value and 
remains in int parsing state. When the parser encounters a 
character whose ADE is from 32 to 63, the parser interprets 
this as a Lol value and completes the int parameter it is 
currently parsing. 

xy Parsing State 

The TEK parser moves into xy Parsing state when a com
mand requires an xy parameter and out when the parameter 
is complete. It ignores control characters other than termi
nators. In parsing an xy-array the parser actually enters this 
state once for each xy value in the array. 

When the parser encounters characters whose ADE is from 
32 through 63, it interprets these characters as HiX or HiY 
values and remains in xy parsing state. When the parser 
encounters characters whose ADE is from 96 through 127, 
it interprets these characters as Loy or ExLoy values and 
remains in xy parsing state. When the parser encounters 
characters whose ADE is from 64 through 95, it interprets 
these characters as LoX values and completes the xy pa
rameter it is currently parsing. 

char Parsing State 

Entering and Leaving char ParSing State 

The TEK parser enters char parsing state when a command 
is expecting a char parameter and leaves when the param
eter is complete. In parsing a char-array or string, the termi
nal actually enters this state for each char. 

In char Parsing state, the parser ignores control characters 
other than terminators. It interprets characters with ADE 
values from 32 through 127 as the characters themselves. 

4110 SERIES HOST REV, NOV 1983 4-11 



USING 4110 SERIES TERMINALS 

MODES THAT AFFECT PARSING 

Some modes alter the way the TEK parser interprets incom
ing characters. Ignore Deletes mode changes the interpreta
tion of the DL character and the 4115 coordinate modes 
choose whether a 4115 will parse coordinates as xys or 
ints. 

IGNORE DELETES MODE 

Entering Ignore Deletes Mode 

You enter Ignore Deletes mode by issuing the command 
IGNORE-DELETES with a parameter of 1. 

Leaving Ignore Deletes Mode 

You can leave Ignore Deletes mode by issuing the command 
IGNORE-DELETES with a parameter of O. 

Effects of Ignore Deletes Mode 

In Ignore Deletes mode, the parser ignores any DL 

(RUBOUT) characters sent by the host. When you must 
send a significant DL as in an int or xy, substitute the se
quence EC? for each DL• 

4115 COORDINATE MODES 

Changing Coordinate Modes 

You switch between 12-bit and 32-bit coordinate modes 
with the SET-COORDINATE-MODE command. The param
eter to the command selects the terminal coordinate mode. 

12-Bit Coordinate Mode 

12-bit Coordinate mode is common to all 4110 Series termi
nals. When in 12-Bit Coordinate mode, xy parameters are 
sent as 12-bit xys and xy-reports are returned as 12-bit xy
reports; 401O-xy-reports are returned in their 10-bit format. 

32-Bit Coordinate Mode 

When the terminal is in 32-bit Coordinate mode, xy coordi
nates are expressed in 32-bit xy format. All xy-reports, in
cluding 401O-xy-reports are sent as a pair of int-reports. 

4-12 

THE ANSI PARSER 

Only raster display terminals contain an ANSI parser. The 
ANSI parser allows a 4110 Series raster display terminal to 
respond to a subset of the ANSI X3.64 command set. Sec
tion 5, The Operator Interface, contains a discussion of the 
commands supported by the ANSI parser. 

The ANSI parser modes are all automatically entered and 
left by the parser as it receives characters. 

ANSI ALPHA MODE 

Alpha mode is the implicit mode for the ANSI parser. When 
not parsing a command, the ANSI parser is in Alpha mode. 
When it has finished parSing a command it returns to Alpha 
mode. 

In Alpha mode, the ANSI parser interprets incoming print
able characters as the characters themselves. It ignores 
control characters other than BL, BS, HT, LF, VT, FF, CR, so, SI, or 
Ec. 

LCE.-A STATE 

The ANSI parser enters LCE-A (last character escape ANSI) 
state after receiving an EC character. It leaves after the next 
character. The ANSI parser exits to Alpha mode if the char
acter completes a command, or enters CSI state if the sec
ond character completes the control sequence identifier. 

In LCE-A state, the parser is waiting for the next character 
in a command. 

CSISTATE 

The ANSI parser enters CSI state from LCE-A state when 
the next character is [. The parser leaves CSI state when it 
receives a terminator character. 

In CSI state, the ANSI parser parses characters as param
eters, separators, or terminators. When the command is ter
minated, the parser returns to Alpha mode. 

Parameter characters include the digits (ADE 48 through 57) 
and the characters: <, =, >, and? (ADE 60 through 63). 
The only separator character is : (ADE 58). The terminators 
are: @ through N (ADE through 126). 

4110 SERIES HOST 

( 

( 



Section 5 

THE OPERATOR INTERFACE 

INTRODUCTION 

4110 Series terminals are efficient and easy for an operator 
to use. The individual operator's manuals for each terminal 
detail the features available to the operator. This section 
contains information for the host programmer who is writing 
programs that communicate with the operator. 

PREVIEW 

This section contains discussions on: 

• The dialog area 

• ANSI mode 

• The keyboard 

• The display 

THE DIALOG AREA 

PREVIEW CONCEPTS AND DEFINITIONS 

4110 Series terminals are designed for two main uses: al
phanumeric communication with a host and displaying 
graphics to the operator. In many cases, these two uses are 
incompatible, dialog from the host might interfere with or be 
obscured by the graphics on the terminal screen. In order to 
solve this problem, 4110 series terminals feature a dialog 
area, programmable in size and location, to display host 
messages and the operator responses. 

In DVST terminals, the dialog area is displayed in refresh, 
the image is not stored on the display screen. In raster dis
play terminals, the dialog area is placed on a surface (dis
cussed in Section 8, Raster Display Graphics). In the 4112 
and 4113, the dialog area can be on any of the surfaces, 
including those used for graphics. In the 4115, the dialog 
area is assigned to a surface, but occupies a different hard
ware overlay. The result is: the dialog area on the 4115 can 

4110 SERIES HOST 

be assigned to any surface but does not interfere with 
graphics on that surface. If you are programming for a 4112 
or 4113 and have enough bit planes, you should put the 
dialog area on a separate surface. 

Text sent to the dialog area is stored in the dialog scroll, a 
buffer whose size you can set from the host. The terminal 
operator can use the vertical terminal thumbwheel to scroll 
through the contents of the dialog scroll buffer. 

The dialog area parameters, including visibility and presence 
are retained in nonvolatile memory. On power-up the termi
nal comes up with the dialog area in the same condition in 
which it was turned off. 

The terminal allocates memory for the scroll buffer when it is 
first made visible. When you change dialog area parameters, 
the changes are not made until the dialog area is next made 
visible. 

Controlling the Dialog Area 

ENABLE-DIALOG-AREA. A parameter of 1 with this com
mand directs alphatext to the dialog area scroll buffer. A 
parameter of 0 directs alphatext to the graphics area (useful 
for emulating 4010 Series terminals). This command does 
not affect the dialog area visibility. 

SET-DIALOG-AREA-VISIBILITY. You can use this com
mand to make the dialog area visible or invisible. A param
eter of 0 makes the dialog area invisible, a parameter of 1 
makes it visible. The terminal operator can change the dia
log area visibility from the keyboard by pressing the DIA
LOG key. This command does not affect the destination of 
alphatext. 

CLEAR-DIALOG-SCROLL. Use this command to erase the 
scroll buffer. The terminal operator can also clear the scroll 
buffer with the CLEAR key. 

5-1 



OPERATOR INTERFACE 

Dialog Area Parameters 

The following commands change the various parameters of 
the dialog area. 

SET-ALPHATEXT-SIZE. This command is valid on DVST 
terminals and the 4115 only. It allows you to specify the size 
of characters on DVST terminals or choose between two 
sizes of alphatext on the 4115. 

SET-4014-ALPHATEXT-SIZE. This command is valid on 
the 4115 (where it selects between two character sizes) and 
DVST terminals. 

SET -DIALOG-AREA-CHARS. Set the number of characters 
displayed on each line of the dialog area with this command. 
This command changes the width of the dialog area to cor
respond to the number of characters you will display. This 
command also reduces the width of the lines stored in the 
scroll butter. You can reduce the memory needed by the 
scroll butter by reducing the number of characters per line. 

SET -DIALOG-AREA-LiNES. Use this command to set the 
number of lines to display in the dialog area. 

SET -DIALOG-AREA-BUFFER-SIZE. You can set the num
ber of lines saved in the scroll butter from 2 to 32767 with 
this command. 

SET -DIALOG-AREA-POSITION. This command moves the 
lower left corner of the dialog area as close as possible to 
the specified position without reducing the number of dialog 
area lines or characters. 

SET-DIALOG-AREA-WRITING-MODE. This command de
termines whether or not characters written over existing 
characters will overstrike or replace existing characters. The 
4115 has limited overstrike capability, you can overstrike 
only with the underscore or blank characters. 

SET -DIALOG-AREA-SURFACE. This command is valid on 
raster display terminals only. On.the 4115, this command 
specifies which surface's color map to use on the dialog 
area. 

SET -DIALOG-AREA-INDEX. This command is valid on ras
ter display terminals only. Use this command to set the color 
index for the characters, the color index for the background, 
and the wipe index, the color index used to erase the dialog 
area. (On the 4115, the wipe index is always 0.) 

5-2 

ANSI MODE 

INTRODUCTION 

4110 Series raster display terminals can be used for screen 
editing by placing them in ANSI mode. In ANSI mode, termi
nal's ANSI parser responds to a subset of the ANSI X3.64 
command set; the terminal no longer recognizes the 4110 
Series command set. DVST terminals do not contain an 
ANSI parser. 

You can put a 4110 Series raster terminal into ANSI mode 
from TEK mode or TEK mode from ANSI mode with the 
SELECT-CODE command. You specify the mode to enter 
by the parameter; 0 specifies TEK mode, and 1 specifies 
ANSI mode. 

Most screen editors include a terminal initialization file. The 
terminal initialization file should include the TEK mode com
mands to make the dialog area visible and set the dialog 
area buffer to the correct size to work with your screen 
editor. It is not necessary to enable the dialog area, Since 
the ANSI parser automatically directs all commands, includ
ing alphatext, to the dialog area. 

PREVIEW 

This discussion includes: 

• Screen editor basics 

• Cursor positioning commands 

• Tabulation commands 

• Editing commands 

• Inserting 

• Deleting 

• Erasing 
• Display control 

• Terminal control 

• Communication 

• ANSI sub-modes 

4110 SERIES HOST 

c 

c 

( 



CONCEPTS AND DEFINITIONS 

Screen Editors 

A screen editor is a host program that displays a copy of the 
text that the operator is working on. The operator has the 
illusion of directly entering and editing the text. Most screen 
editors do not totally redraw the display each time the oper
ator changes something. Instead, they maintain a copy of 
the terminal display in a buffer which they update in the 
same way the terminal updates its display in response to 
the operator. The only communication between the host and 
the terminal is the transmission of the commands and char
acters that are changed. 

4110 Series terminals implement a large enough subset of 
the ANSI X3.64 standard commands to allow the use of 
most purchased screen editors. 

Cursor Positioning 

The cursor is the marker used by the terminal to show where 
the next editing command will take place. The cursor posi
tion is the line and column number that define the position of 
the cursor where (0,0) is the upper left corner of the dialog 
area. 

The cursor positioning commands are: 

• CURSOR-FORWARD (CUF) - move the cursor n col
umns to the right on the current line 

• CURSOR-BACKWARD (CUB) - move the cursor n col
umns to the left on the current line 

• CURSOR-UP (CUU) - move the cursor up the specified 
number of lines 

• CURSOR-DOWN (CUD) - move the cursor down the 
specified number of lines 

• CURSOR-POSITION (CUP) - move the cursor to the 
specified line and column 

• HORIZONTAL-AND-VERTICAL-POSITION (HVP) -
nearly identical to CURSOR-POSITION 

• NEXT-LINE (NEL) - move the cursor to the beginning of 
the next line 

4110 SERIES HOST 

OPERATOR INTERFACE 

• INDEX (IND) move the cursor down one line and keep the 
current column position 

• REVERSE-INDEX (RI) - move the cursor up one line 
and keep the current column position 

• cR character - obeys the CRLF setting 

• FF character - nearly identical to INDEX 

• LF character - obeys the LFCR setting 

• vT character - nearly identical to INDEX 

• HT character - move the cursor to the next horizontal 
tab stop no wrap-around 

• CURSOR-BACKWARD-TAB (CBT) - moves the cursor 
backward n tab stops on current line with no wrap
around 

• CURSOR-HORIZONTAL-TAB (CHT) - moves the 
cursor forward n tab stops with no wrap around 

Tabulation Commands 

Tabulation commands move the cursor between tab stops 
and allow you to set and delete tab stops. 4110 Series ter
mina�s support only horizontal tabs. 

• HORIZONTAL-TAB-SET (HTS) - set a tab stop at the 
current cursor position 

• TABULATION-CLEAR (TBC) - clear tab stops accord
ing to the parameter setting: 1 - clear the tab stop at 
current position 2 - clear all tab stops in the active line 
(same as 3) 3 - same as 2 

• HT character - move the cursor to the next tab stop in 
current line 

• CURSOR-BACKWARD-TAB (CBT) - moves the cursor 
backward n tab stops on current line with no wrap
around 

• CURSOR-HORIZONTAL-TAB (CHT) --'- moves the 
cursor forward n tab stops no wrap around 

5-3 



OPERATOR INTERFACE 

Editing Commands 

Editing commands are of three types: insertion, deletion, 
and erase. Insertion commands, as their name implies insert 
blanks at and to the right of the cursor. Text after the cursor 
is moved to give room for the insertion. Deletion commands 
remove text from the vicinity of the cursor, and remaining 
text is pulled in to close the gap. Erasing commands are 
similar to deletion commands, but the gap is not closed. 
Erased text is replaced by blanks. 

The 4110 ANSI mode editing commands are: 

• INSERT-CHARACTER (ICH) - shifts characters at and 
to the right of the cursor n positions to the right 

• INSERT-LINE - inserts n blank lines at the cursor 
position 

• DELETE-CHARACTER (DCH) - deletes n characters 
from the line to the right of the cursor 

• DELETE-LINE (DL) - deletes n lines beginning at the 
cursor 

• ERASE-CHARACTER (ECH) - erase n characters leav
ing blanks does not move text wraps to next line 

• ERASE-IN-DISPLAY (ED) - deletes characters accord
ing to the parameter: 

0- from cursor through end of scroll, including cursor 

1 - from beginning through and including cursor 

2 - erases entire scroll buffer 

Display Control Commands 

• SAVE-CURSOR (TEKSC)...,- terminal saves current 
cursor position and graphic rendition, or text style 

• RESTORE-CURSOR (TEKRC) - Restores cursor posi
tion and graphic rendition saved with SAVE-CURSOR 
command 

• SCROLL-DOWN (SD) - moves scroll buffer down n 
lines within dialog area does not move cursor - cursor 
may move out of view 

• SCROLL-UP (SU) - moves scroll buffer up n lines within 
dialog area does not move cursor - cursor may move 
out of view 

• SELECT-CHARACTER-SET (SCS) - no-op, included 
for compatibility with other terminals 

• SELECT-GRAPHIC-RENDITION (SGR) - selects the 
style(s) for displaying text characters 

5-4 

Terminal Control Commands 

• ANSI/VT52-MODE (TECKANM) - 4110 Series termi
nals do not include this mode. The command is a no-op 
for compatibility with some editors. 

• DISABLE-MANUAL-INPUT (DMI) - locks the terminal 
keyboard and prevents operator from sending any 
characters 

• ENABLE-MANUAL-INPUT (EMI) - unlocks terminal 
keyboard 

• SET-MODE (SM) - sets the terminal mode selected by 
the parameter(s) 

• RESET-MODE (RM) - resets the terminal mode se
lected by the parameter(s) 

• RESET-TO-INITIAL-STATE (RIS) - causes terminal to 
perform a power-up reset. The effect is the same as 
pressing the MASTER RESET key or issuing the T4100 
RESET command. 

Communications 

• DEVICE-STATUS-REPORT (DSR) - causes the termi
nal to send a device status report of the current cursor 
position 

ANSI Sub-Modes 

The various ANSI sub-modes are set and reset by the 
commands: 

• SET-MODE (SM) - sets the terminal mode selected by 
the parameter(s) 

• RESET-MODE (RM) - resets the terminal mode se
lected by the parameter(s) 

The modes affected by the SET-MODE and RESET-MODE 
commands are: 

• Keyboard action 
• Insertion/Replacement 

• Send/Receive 

• Linefeed/Newline 

• Overstrike/Replace 

• Auto-wrap 

• Auto-repeat 

4110 SERIES HOST 

(\ 

(, 



THE KEYBOARD 

The terminal keyboard generates the full 128 character 
ASCII codes, ADE 0 through 127. In addition, the terminal 
has eight programmable function keys that generate sixteen 
(eight unshifted and eight shifted) codes from 128 through 
143. Table 5-1 lists the codes generated by the unshifted 
and shifted function keys. 

You can program these function keys, or most of the key
board keys, by defining a Key macro for the ADE of that 
key. Section 4, Using 4110 Series Terminals discusses mac
ros and macro expansion. 

Table 5-1 
FUNCTION KEY CODES 

Function Shifted 
Code Key Code Function Key 

128 F1 136 S1 (SHIFT-F1) 

129 F2 137 S2 (SHIFT-F2) 

130 F3 138 S3 (SHIFT-F3) 

131 F4 139 S4 (SHIFT-F4) 

132 F5 140 S5 (SHIFT-F5) 

133 F6 141 S6 (SHIFT-F6) 

134 F7 142 S7 (SHIFT-F7) 

135 F8 143 S8 (SHIFT-F8) 

THE DISPLAY 

Many commands control the display from the host. Some 
commands cause an immediate effect on the display, while 
others control how the terminal reacts to future conditions 
- such as filling the page screen with text, or reporting 
errors. 

4110 SERIES HOST 

OPERATOR INTERFACE 

DISPLAY CONTROL 

The following commands directly control the terminal 
display: 

• PAGE 
• RENEW-VIEW 

• HARDCOPY 

• 4010-HARDCOPY 

CONTROLLING TERMINAL RESPONSES 

The following commands change the terminal's response to 
situations that may occur later. The immediate effect is usu
ally not visible. 

CRLF 

Some host systems send only a carriage return at the end of 
a line. If you need the terminal to generate a LF with each cR, 

you can cause it to generate one with this command. 

LFCR 

If you need the terminal to assume a cR for each LF it re
ceives, you can cause it to do so with this command. 

SET -MARGINS 

DVST display terminals can set margins within the display 
area in order to display more than the normal number of 
lines of alphatext. This command has no affect on raster 
display terminals. See Section 6, Graphics Primitives, for an 
explanation of alphatext. 

5-5 



OPERATOR INTERFACE 

SET ·PAGE·FULL-ACTION 

When the terminal tries to write beyond the last character 
position on the screen, it is in a page-full condition. You can 
determine what action the terminal will take when this oc
curs with the parameter you send with this command. A list 
of the parameters and their action is contained in the 4110 
Series Command Reference Manual under the discussion of 
this command. 

SET·ECHO 

This command determines whether characters typed on the 
terminal keyboard appear on the terminal screen. In many 
environments, the host or modem, not the terminal, echoes 
characters the terminal sends. 

5-6 

SET -ERROR-THRESHOLD 

You can control when the terminal displays error messages 
with this command. When you are communicating with an 
operator, you should set the error threshold very high, so as 
not to confuse the operator with the error messages. When 
you are developing a program from the terminal, set the 
error threshold at a level that causes the terminal to display 
errors you want to see. 

This command does not affect the terminal's error reporting 
system. All errors are stored in the terminal's error queue 
and reported when you give the REPORT-ERRORS 
command. 

4110 SERIES HOST 

( 

(/ 



Section 6 

GRAPHICS PRIMITIVES 

INTRODUCTION 

Graphics primitives are the graphics elements that the termi
nal displays in response to a graphics primitive command. In 
addition to a general discussion of graphics primitives and 
graphics primitive commands, this section discusses the 
following: 

• Vectors and Vector Mode (MOVE and DRAW) 

• Markers and Marker Mode (DRAW-MARKER) 

• Text in the Graphics Area (alphatext and graphtext) 

• Panels (raster display terminals only) 

GRAPHICS PRIMITIVES AND 
PRIMITIVE COMMANDS 

CONCEPTS AND DEFINITIONS 

Graphics primitives are the fundamental units of a display. A 
graphics primitive is drawn in response to a graphics primi
tive command. You can combine a series of graphics 
primitives (or more precisely graphics primitive commands) 
into a secondary construct called a segment, which you can 
manipulate as a unit. For example, you can combine a series 
of MOVEs and DRAWs into a rectangle that, as a segment, 
you can later reposition, scale, and rotate without repeating 
the primitive commands that first drew it. This section dis
cusses graphics primitives and how to use them; Section 7 
discusses segments. 

4110 SERIES HOST 

You can control the appearance of a graphics primitive by 
selecting its attributes. For example you can choose a vec
tor's color, width, and style (solid, dotted, dashed, etc.). 

The graphics beam position is the position a terminal uses as 
a starting point when executing· a graphics primitive 
command. 

Explicit and Implicit Commands 

An explicit command is one that you send using the com
plete escape sequence and parameters of the command. All 
commands except alphatext are available as explicit com
mands. In addition, certain commands may be sent as im
plicit commands; not directly stated but implied by the 
terminal mode when you send only the parameters of the 
command. 

4110 Series terminals have three implicit command modes: 
Alpha, Vector and Marker. Each of these modes allows you 
to send a different implicit command. In Alpha mode the 
terminal interprets characters as alphatext, while in Vector 
and Marker mode the terminal interprets the characters 
(from sp through DT only) as encoded xy coordinates. 

When you put the terminal into Vector or Marker mode, 
each complete coordinate implies an associated command; 
in Vector mode each coordinate implies a MOVE or DRAW 
command, while in Marker mode each coordinate implies a 
DRAW-MARKER command. By freeing you of the necessity 
of explicitly sending the escape sequence form or these 
commands, Vector and Marker modes reduce communica
tion traffic from the host to the terminal. 

6-1 



GRAPHICS PRIMITIVES 

VECTORS 

PREVIEW 

• The explicit commands MOVE and DRAW position the 
graphic beam and draw vectors. 

• In Vector mode, the terminal interprets characters as im
plied MOVE and DRAW commands. 

• A vector or a series of vectors draws a line. 

• Lines have a number of attributes: 

• Line style is an attribute that specifies one of eight 
dotted and dashed line patterns. 

• Line index is an attribute used in raster display termi
nals to specify line color or shade of gray. 

• Line width is an attribute used by DVST terminals to 
specify one of two different line widths. 

CONCEPTS AND DEFINITIONS 

A vector is a straight line drawn between two points; it is a 
graphics primitive. The position of the graphics beam de
fines the starting point of the vector; the position sent as the 
parameter of the DRAW command forms the end point. 

To display a vector on the terminal screen, move the graph
ics beam to the starting point with a MOVE Cbmmand, then 
draw a vector with a DRAW command. To display a com
plete drawing, give the terminal a sequence of MOVEs and 
DRAWs. You can draw curves with a series of short straight 
lines. 

Line Attributes 

Prior to drawing vectors, select the line attributes to draw 
the exact type of line you want. Line attributes remain set 
until you change them; however, on DVST terminals,if the 
dialog area is disabled, sending a PAGE command, the cR 

character, or pressing the PAGE key resets the line-style to 
solid and the line-wid~h to narrow. 

6-2 

Line Style. Line style is the attribute that determines the 
pattern (solid, dashed, dotted, etc.) in which the terminal will 
draw vectors. You can choose one of eight different line 
styles with the SET-LINE-STYLE command. Figure 6-1 
shows the line styles available. 

Line Index. Line index is the color index in which a raster 
display terminal draws vectors and markers. You can set 
the line index with the SET-LINE-INDEX command. You can 
also set the index of the dash gap (the space between dots 
or dashes within dashed lines) with SET-BACKGROUND
INDICES command. The background index also affects the 
background behind alphatext or string precision graphtext 
in the graphics area. 

Line Width. Line width is an attribute used in DVST termi
nals only. You may choose one of two widths in which to 
draw subsequent vectors. Set the line width with the SET
LINE-WIDTH command. 

Figure 6-1. Line Styles. 

4110 SERIES HOST 

( 

(, 

() 



Explicit MOVE and DRAW Commands 

The explicit MOVE and DRAW commands are escape se
~ue~~e commands that do not depend on or change the 
Implicit command modes. The explicit MOVE command is 
EclF xy; the explicit DRAW command is EclG xy. 

Since the explicit form of these commands takes additional 
overhead, you should use this form only if your system has 
trouble sending the Gs or Us characters, or if the additional 
overhead does not matter. 

Implicit MOVE and DRAW Commands 

You can place the terminal in Vector mode by sending the 
command ENTER-VECTOR-MODE (the single character 
Gs). In Vector mode, the first xy coordinate following the Gs 
character is an implicit MOVE to that location (unless it is 
preceded by a BL). Subsequent coordinates are implicit 
DRAWs. 

If you want the first implicit command after the ENTER
VECTOR-MODE command to be a DRAW rather than a 
MOVE, send the sequence GSBL. The terminal bell will ring, 
and the following xy coordinate will be an implicit DRAW. 

The terminal must be in Alpha or Vector mode in order to 
enter Vector mode. If the terminal is in Marker mode, it ig
nores the Gs character. 

Leaving Vector Mode 

You can leave Vector mode by entering either Alpha or 
Marker mode. There are other ways to leave Vector mode· 
see the hint that follows. ' 

HINT 

When you use implicit commands, your software must keep 
track of the implicit command mode of the terminal. Several 
commands other than ENTER-ALPHA-MODE (Us) can put 
the terminal into Alpha mode: PAGE, cR, ENABlE-4010-
GIN, and ENABLE-4953-GIN, as well as pressing the PAGE 
key, all put the terminal in Alpha mode if the dialog area is 
disabled; RESET will put the terminal into Alpha mode at 
any time. 

4110 SERIES HOST 

GRAPHICS PRIMITIVES 

MARKERS 

PREVIEW 

eA marker is a character-like symbol used to identify a 
point in a drawing. 

• The DRAW-MARKER command is the explicit graphics 
primitive command that locates and draws markers. 

• In Marker mode, an xy coordinate is the implicit DRAW
MARKER command. 

• Terminals have eleven different marker types. 

• A marker's index is the same as the current line index. 

CONCEPTS AND DEFINITIONS 

Markers 

A marker is a character-like symbol drawn at a given coordi
nate. Markers are usually used to mark important pOints on 
a drawing; for example, you can use markers to identify 
data pOints on a graph or cities on a map. 

The terminal always draws markers with solid lines, and the 
size of the marker on the screen is independent of the cur
rent window. A marker will not change size when you zoom 
the display. 

Marker Types 

Use the SET-MARKER-TYPE command to choose one of 
11 marker types. The command uses only one parameter -
an integer from 0 through 10, which identifies the marker 
type. The 4110 Series Command Reference Manual contains 
an illustration of the marker types. 

THE EXPLICIT DRAW-MARKER COMMAND 

The explicit DRAW-MARKER command is an escape se
quence that does not depend on or change the implicit com
mand modes. The explicit DRAW-MARKER command is 
EclH xy. 

6-3 



GRAPHICS PRIMITIVES 

THE IMPLICIT DRAW-MARKER COMMAND 

You can place the terminal in Marker mode by sending the 
command ENTER-MARKER-MODE (the single character 
FS). In Marker mode, each xy coordinate following the FS 

character is an implicit DRAW-MARKER command. 

USES OF MARKERS 

You can use markers anywhere in a drawing that you need 
to accurately identify an important point. Some examples of 
use are: 

• Identifying towns on a map 

• Identifying important pOints on a graph 

• Registration points on graphics overlays 

HINTS 

Markers are more efficient than combinations of MOVEs 
and DRAWs, but they cannot be scaled or rotated in 
segments. 

In early 4112 and 4113 terminals, the SET-GRAPHICS
WRITING-MODE setting of REPLACE caused markers to 
wipe an area beneath them with the current text-back
ground-index; to avoid this, use the OVERSTRIKE writing 
mode. 

TEXT IN THE GRAPHICS AREA 

PREVIEW 

• Text in the graphics area is a graphics primitive. 

• Two types of text are available, alphatext and graphtext. 

• Alphatext is a graphics primitive only if the dialog area is 
disabled. 

• There are two types of graphtext: string precision and 
stroke precision. 

• String precision graphtext is similar to alphatext; it uses 
alphatext attributes. 

6-4 

• Stroke precision graphtext is generated (and stored in a 
segment) as a series of MOVEs and DRAWs. 

• Multiple p~edefined stroke graphtext fonts are available. 

• You can define your own stroke graphtext fonts. 

CONCEPTS AND DEFINITIONS 

Alphatext 

In Alpha mode, with the dialog area disabled, the terminal 
interprets each printable ASCII character it receives as an 
implicit command to draw that character in the graphics 
area. This type of text display is called alphatext. 

NOTE 

Alphatext is similar to the text display used in the 
Tektronix 4010 Series terminals. 4110 series termi
nals interpret alphatext similar to the way that 4010 
Series terminals interpret text. 

Alphatext Attributes 

Keyboard Option Attribute. Terminals with Option 4E have 
an APL font as well as the standard ASCII font (APL is not 
available on the 4115). You should select the font with the 
command SET-ALPHATEXT-FONT before using alphatext 
on these terminals. (Other Option 4 keyboards automatically 
select the font to match the keyboard; the Katakana key
board is controlled by SI/SO.) 

DVST Alphatext Attributes. DVST alphatext attributes in
clude character size, character spacing, and line spacing. 
You can set these attributes with the commands: SET
ALPHATEXT-SIZE, SET-4010-ALPHATEXT-SIZE, and 
SET -ALPHATEXT -SIZE-GROU P. 

Raster Alphatext Attributes. Raster display alphatext 
attributes include the text foreground index, the text back
ground index, and the graphics area writing mode. The 
graphics area writing mode determines whether characters 
either overstrike or replace the pixels under them. You can 
set these attributes with the commands: SET-TEXT-INDEX, 
SET-BACKGROUND-INDICES, and SET-GRAPHICS
AREA-WRITING-MODE. 

4110 SERIES HOST 

( 

( 



Graphtext 

When alphatext is not suitable for your display, or you have 
the dialog area enabled, you can use graph text. To display 
graphtext, send the GRAPHIC-TEXT command followed by 
your text as the string parameter. (String precision 
graphtext looks like alphatext, but is sent with the explicit 
GRAPHIC-TEXT command.) 

Graphtext Precision 

Graphtext has an attribute called precision which controls 
the type of graphtext. With the command SET
GRAPHTEXT-PRECISION, you choose either string preci
sion (alphatext-like) or stroke precision (generated by 
MOVEs and DRAWs) graphtext. 

String Precision Graphtext 

String precision graphtext uses the same attributes as 
alphatext. You cannot scale, slant, or rotate string precision 
graphtext. 

Stroke Precision Graphtext 

Stroke precision graphtext is generated one vector at a 
time. Stroke precision graphtext has the following 
attributes: 

• Font - select with SET-GRAPHTEXT-FONT 

• Text index - select with SET-TEXT-INDEX 

• Size - select with SET-GRAPHTEXT-SIZE 

• Slant - select with SET-GRAPHTEXT-SLANT 

• Rotation - select with SET-GRAPHTEXT-ROTATION 

Graphtext Fonts. You can choose one of several predefined 
or user defined fonts. You will find a discussion on how to 
define graphtext fonts later in this section. 

Graphtext Size, Slant and Rotation. When the terminal 
draws graphtext it first scales the text, then slants it and 
finally rotates it. 

4110 SERIES HOST 

GRAPHICS PRIMITIVES 

DEFINING A GRAPHTEXT FONT 

You can define your own fonts for stroke precision 
graphtext. The process of defining a font consists of initial
ization, opening a character definition, defining the charac
ter, closing the character definition, opening another 
character definition and so forth until the font is complete. 

You need not define all the characters in a graphtext font; 
those that you do not explicitly define use the default font. 
To define a font with only one special symbol, you need to 
define only that symbol. 

Initialization 

You should first delete the font number that you intend to 
define. (The terminal gives a level 1 error for deleting a 
nonexistent font, but gives a level 2 error if you attempt to 
open a definition for a font that already exists.) To delete a 
font, use the command DELETE-GRAPHTEXT
CHARACTER for character number -1 of that font. 

To initialize the terminal for defining an graphtext font, you 
must then issue two commands: SET-GRAPHTEXT-FONT
GRID, and SET-PIVOT-POINT. 

SET -GRAPHTEXT -FONT-GRID. This command opens the 
graphtext font definition, and sets up the graph text font grid. 
The graph text font grid is a rectangle extending above and 
to the right of the pivot point. The graphtext font grid 
defines the character cell the terminal uses when drawing 
graphtext. You can use the graphtext font grid as a 
reference when you define your characters, but you need 
not draw the character within it. 

SET-PIVOT-POINT. This command sets the origin (lower 
left corner of the graphtext font grid) for the graphtext 
character. The terminal saves all coordinates used when 
you define your graphtext characters as offsets from the 
pivot point. The pivot point is discussed further in Section 7, 
Segments. 

6-5 



GRAPHICS PRIMITIVES 

Graphtext Character Definition 

Open each character definition with the command BEGIN
GRAPHTEXT-CHARACTER. Use a sequence of MOVEs 
and DRAWs to draw the character. You can extend vectors 
beyond the bounds of the cell, such as descenders on lower 
case characters. 

When your character is complete, give the command END
GRAPHTEXT-CHARACTER to close the character defini
tion. 

To delete either a single character or an entire graphtext 
font, use the DELETE-GRAPHTEXT-CHARACTER com
mand. 

HINTS 

Eliminating Character Definition Display 

When you are defining a character, it appears on the screen 
as you are defining it. If you want to eliminate this display, 
two methods are: 

1. Define the character or font inside an invisible segment. 

a. Set the segment visibility for segment -2 to invisible. 

b. Open a segment definition. 

c. Define the character or font. 

d. Close the segment definition. 

e. Delete the segment. 

2. Position the cell and definition vectors outside the visible 
area. By keeping the y-coordinates of the pivot point and 
all definition vectors greater than 3200, the definition will 
remain off the screen. 

Saving a Graphtext Font on Disk 

If you want to save a graphtext font on disk: 

1. Define an EOF string. 

2. Send the command COPY HO: TO font-filename. 

3. Define the font normally. 

4. Send the EOF string. 

5. Reset the EOF string to the empty string. 

Once the disk file with the font has been created, you can 
load the font from the disk by issuing the LOAD command 
from your program. 

6-6 

PANELS 

PREVIEW 

• A panel is a graphics primitive. 

• Panels are available on raster display terminals only. 

• A panel is a closed figure bounded by one or more panel 
boundaries. 

• You can fill panels with a solid color or pattern. 

• You can key patterns to the panel, view, or screen. 

• Panels can replace or overstrike other graphics on the 
screen. 

• You can use the predefined patterns or define your own. 

• The 4115 can draw and fill rectangles, a special type of 
panel, very quickly. 

CONCEPTS AND DEFINITIONS 

Panels 

( 

A Panel is the set of pixels on a surface which lies inside a ( 
closed Panel Boundary. A panel definition is a series of 
MOVEs and DRAWs which form a panel boundary. You de- . 
fine a panel by first opening the panel definition, then draw-
ing the panel boundary, and finally closing the panel 
definition. As soon as you close the panel definition, the 
terminal fills the panel with a solid color or pattern selected 
by the SET-PANEL-FILLING-MODE command. 

The 4115 can also define and fill rectangles, a special case of 
panels. You specify rectangles by giving an array of pairs of 
xy coordinates as the parameters of the DRAW-RECTAN
GLE command. Each pair of coordinates defines a rectangu
lar panel. 

4110 SERIES HOST 

( 



Panel Boundary 

A Panel Boundary is the closed set of lines defined after the 
terminal receives the BEGIN-PANEL-BOUNDARY com
mand and before it receives the END-PANEL command. 
You need not completely close the panel boundary because 
the terminal closes the remaining gap when you close the 
panel definition. You must choose to draw or not draw the 
panel boundary when you issue the BEGIN-PANEL
BOUNDARY command. 

GRAPHICS PRIMITIVES 

A point or pixel on the picture plane is defined as inside a 
panel if an imaginary line drawn from that point to any point 
outside the terminal space crosses an odd number of panel 
boundaries. If the line crosses an even number of panel 
boundaries or no panel boundaries, the point is outside the 
panel. You can use multiple boundaries to define a panel, 
and you can create panels in any shape. 

Figure 6-2 illustrates several panels with the inside of each 
panel filled with a pattern. 

Figure 6-2. Inside of Panels Filled With a Pattern. 

4110 SERIES HOST 6-7 



GRAPHICS PRIMITIVES 

Rectangle Boundaries 

When you define rectangles on the 4115 with the DRAW
RECTANGLE command, the terminal supplies the vectors 
that define the panel boundary of a rectangle. Each pair of 
coordinates closes the previous rectangle definition and 
opens a new one. Overlapping rectangles appear as one on 
top of the other. 

When you define a rectangle inside a panel definition, the 
DRAW-RECTANGLE command closes the current panel 
boundary before beginning the first rectangle boundary, but 
does not close the last rectangle boundary. As a result, 
overlapping rectangles have a different appearance when 
drawn outside a panel definition than when drawn inside a 
panel definition. Figure 6-3 shows rectangles drawn outside 
and inside a panel definition. 

Panel Attributes 

The panel attributes are: 

• Overstrike/replace - set by SET-PANEL-FILLlNG-
MODE 

• Boundary cover - set by SET-PANEL-FILLING-MODE 

• Pattern keying - set by SET-PANEL-FILLING-MODE 

• Panel boundary visibility - set by BEGIN-PANEL
BOUNDARY 

• Rectangle boundary visibility - set by SET-DRAW
BOUNDARY-MODE 

• Panel fill-pattern - set by SELECT-FILL-PATTERN 

I 
L I j 

I 
I 

I 
I 
I 

I 

Figure 6-3. Rectangles Drawn Inside and Outside a Panel Definition. 

6-8 4110 SERIES HOST 



Section 7 

SEGMENTS 

INTRODUCTION 

One of the most powerful features of the TEKTRONIX 4110 
Series graphics terminals is the ability to define and use 
segments. This section explains what a segment is, some 
uses for segments, and how to define a segment. In this 
section you will find the following discussions: 

• An introduction to segments 

• How to build segments 

• Segment classes and matching classes 

AN INTRODUCTION TO SEGMENTS 

PREVIEW 

• A segment is a reusable collection of graphics primitives 
and primitive attributes stored in the terminal's memory. 

• The terminal can manipulate a segment as a single 
object. 

• Using segments reduces communications time with the 
host. 

• Segments are named by integers from 1 through 32767. 

• Segment numbers 0, -1, -2, and -3 each have a spe
cial purpose. 

• Segment attributes affect how the terminal draws the 
segment. 

• You can change a segment's dynamic attributes after the 
segment has been defined. 

• A segment's static attribute (the pivot point) cannot be 
changed after the segment definition has begun. 

4110 SERIES HOST 

CONCEPTS AND DEFINITIONS 

What Is a Segment? 

A segment is a collection of graphics primitives and their 
attributes that the terminal a treats as a single object. A 
segment can contain nothing, as little as a single graphics 
primitive, or as much as an entire display. The terminal can 
draw, translate, rotate, or scale segments. 

The terminal stores segments in its memory as a list of 
graphics primitives and changes to the primitive attributes. 
Once a segment is defined, you cannot change the graphics 
primitives or their attributes. 

You will find a discussion on how to define segments later in 
this section. 

Retained and Non Retained Segments 

When you define a segment, the terminal stores the graph
ics primitives in a segment definition as a retained segment 
- or more simply, a segment. The terminal displays these 
graphics primitives as you send them, unless you use the 
fixup level or segment visibility to suppress the display. 

The terminal also displays the graphics primitives that you 
send outside of a segment definition. Once these primitives 
are executed, however, the terminal can no longer access 
them. These sequences of graphics primitives that are not 
part of a segment are sometimes called non retained seg
ments. In this manual, whenever the term segment is used, it 
means a retained segment: one that is stored in the termi
nal's memory and is accessible to the terminal. 

7-1 



SEGMENTS 

Segment Numbering 

Each segment must have a unique name, an integer from 1 
through 32767. All segment commands require a segment 
number to identify the segment. Three segment commands 
(BEGIN HIGHER SEGMENT, BEGIN LOWER SEGMENT, 
and END SEGMENT) use an implicit segment number from, 
or calculated from, an ongoing segment definition. The re
maining segment commands require an explicit segment 
number. This segment number can be a normal segment 
number, or in the case of some commands, a special seg
ment number. 

Segment numbers 0, -1, -2, and -3 have special mean
ing and can be used as parameters for some segment com
mands. You should check the 4110 Series Command 
Reference Manual to see if a special segment number is an 
allowed parameter for a particular command. The meaning 
of each special segment number is as follows: 

• Segment 0 is the crosshair graphics input cursor. The 
crosshair cursor is generated by circuitry inside the termi
nal. You cannot manipulate it in all the ways that you can 
manipulate other segments. You can only position it, set 
its visibility, or report on it. 

For example, although you can move the crosshair 
cursor position by using the SET-SEGMENT-POSITION 
command, you cannot scale or rotate the crosshair 
cursor. This means that segment number 0 is not allowed 
as a parameter in the SET-SEGMENT-IMAGE-TRANS
FORM command. 

• Segment -1 means "all segments currently defined." 
This includes defined segments from 1 through 32767. 
Segment 0 is not included in Segment -1. 

Segment -1 can be used in commands that change the 
dynamic segment attributes. For example, if you want to 
make all currently defined segments invisible, you can 
use -1 as the segment number in the SET-SEGMENT
VISIBILITY command. 

• Segment -2 means "all future segments." For example, if 
you do not want to see segments as they are being de
fined, make Segment -2 invisible. (You must make indi
vidual segments visible before the terminal will display 
them.) 

7-2 

• Segment -3 means "all segments, from Segment 1 
through Segment 32767, that match the current segment 
matching class." Using -3 as a segment number allows 
you to manipulate a class of segments simultaneously. A 
discussion on segment classes and matching classes is 
included later in this section. 

SEGMENT ATTRIBUTES 

A retained segment has a large number of attributes: defin
able characteristics that affect the visible display of the seg
ment. One attribute is set before you define the segment 
and cannot be changed. Other attributes can be altered to 
change the appearance of the segment. 

The Pivot Point and the Segment Origin 

The pivot point is the coordinate specified by the SET
PIVOT-POINT command. In an untransformed segment, the 
pivot point is the origin of the segment. When you define a 
segment, the graphics primitive commands are stored rela
tive to the segment's pivot point. If you transform a seg
ment, the rotation is about the segment origin and scaling is 
centered on it. 

If you define segments after changing the location of future 
segments by issuing the SET-SEGMENT-POSITION or 
SET-SEGMENT-IMAGE-TRAN8FORM commands for Seg
ment -2 (all future segments), the origin of newly defined 
segments is defined as though you had moved the pivot 
point with the SET-PIVOT-POINT command. The pivot 
pOint, however, remains at the coordinates set by the SET
PIVOT-POINT command. 

When you move a segment, the terminal moves the seg
ment origin to the location you specify; then redraws the 
segment by relative MOVEs and DRAWs about that loca
tion. Thus, each time the terminal draws a segment, the 
terminal begins with an absolute MOVE to the segment lo
cation, then draws the segment relative to that location. 

4110 SERIES HOST 

( 



Dynamic Segment Attributes 

A segment's dynamic attributes are those attributes that can 
be changed after the segment is defined. These attributes 
are: 

• Position 

• Scaling 

• Rotation 

• Visibility 

• Writing mode 

• Highlighting 

• Detectability 

• Display priority 

• Segment class 

Position, Scaling, and Rotation. The command SET-SEG
MENT-POSITION changes the location of the segment's or
igin in terminal space. On raster display terminals, you may 
not see a change in the display after moving a segment, 
depending on the fixup level. On DVST terminals, you will 
see segments - that are displayed in Storage mode -
displayed in their new position, while the old image remains 
on the screen. 

In addition to simply positioning a segment, you might want 
to change the size or rotation of a segment. You can scale, 
rotate, and position a segment with the SET-SEGMENT
IMAGE-TRANSFORM command. 

On a raster display terminal you can make segments visible 
or invisible with the SET-SEGMENT-VISIBILITY command. 
A visible segment is retained and displayed; an invisible seg
ment is retained but not displayed. 

The SET-SEGMENT-WRITING-MODE command deter
mines just how a terminal draws a segment on the display 
screen. This command affects raster display and DVST ter
minals differently. 

When a raster display terminal displays a segment, it writes 
a pattern into the raster memory. All raster terminals can 
draw the segment in one of two ways: Set mode and XOR 
mode. The 4115, in addition, can draw in AND mode and OR 
mode. 

4110 SERIES HOST 

SEGMENTS 

In Set mode, the terminal writes the color index for each 
pixel in the segment into the raster memory. 

In XOR mode, the terminal writes in raster memory the re
sult of a bit-by-bit exclusive OR between the index in the 
raster memory cell and the color index of the affected pixel. 
The terminal can erase a segment by redrawing it in XOR 
mode. 

A disadvantage of XOR mode is that segment overlaps can 
be drawn in the color index that is the result of the XOR 
between the two color indices. When it is important that the 
segment look correct at an overlap, you should either use 
Set mode, or set the color map such that the XORed index 
will be a color you want. When you want to be able to re
move the segment by redrawing it, you should use XOR 
mode. 

The 4115 AND and OR modes are bit-by-bit logical AND or 
OR operations between the color index of the pixel and the 
raster memory cell of the affected pixel. 

When a DVST terminal displays a segment, it displays in 
either storage or refresh mode. Storage mode allows you to 
write the segment to the screen, where it remains until the 
screen is erased. Refresh mode allows you to delete a seg
ment from the display without eraSing the screen. (Erasing 
the screen uses terminal processor time.) 

You can highlight - that is, cause a segment to blink be
tween invisible and visible - with the SET-SEGMENT
HIGHLIGHTING command. DVST terminals display 
highlighted segments in refresh and alternately make them 
visible and invisible. 

The detectability of a segment determines whether or not 
the segment can be picked by the GIN Pick function. You 
can set the segment detectability with the command SET
SEGMENT-DETECTABILITY. For more information see 
Section 9, Graphics Input. 

The display priority of a segment determines the order in 
which the terminal draws segments on the display screen 
and the order in which the terminal scans segments during a 
GIN Pick. You can change the segment display priority with 
the SET-SEGMENT-DISPLAY-PRIORITY command. The 
display priority for a segment may be any integer from 
-32768 through +32767. 

7-3 



SEGMENTS 

When a raster display terminal redraws segments, it draws 
those segments with a higher display priority later than 
those with a lower display priority. If segments overlap, the 
segments drawn later appear to be closer to the viewer. 
Figure 7-1 shows how you can change the appearance of a 
picture by interchanging the display priority of two 
segments. 

When the terminal is doing a GIN Pick, it examines seg
ments in priority order. Thus, if parts of several segments 
fall in the pick aperture, the highest priority segment is 
picked. See Section 9, Graphics Input for details on the Pick 
function. 

Segment Class. Each segment contains a 64-bit segment 
class field. The contents of this field can be changed after 
the segment is defined. You will find a discussion on seg
ment classes later in this section. 

SEGMENT 1 

SEGMENT 1 DRAWN 
BEFORE SEGMENT 2 

USE OF SEGMENTS 

The primary reason to use segments is to reduce communi
cation with the host computer. You do not have to send the 
entire group of graphics primitives to draw your display each 
time you change it. Rather, the terminal remembers and re
draws the visible segments to form the display. When the 
terminal does a pan or zoom, it draws the new display from 
the segments which define the old display. 

You can also use segments to replicate images on the dis
play, or use a segment as a GIN cursor. 

SEGMENT 2 

Figure 7-1. Interchanging the Display Priority of Two Segments. 

7-4 4110 SERIES HOST 

( 

( 

( 



BUILDING SEGMENTS 

PREVIEW 

• You build a segment by: 

1. Setting the attributes for future segments 

2. Opening a segment definition 

3. Sending the graphics primitives and primitive 
attributes 

4. Closing the segment definition 

• You set attributes for future segments by using - 2 as 
the segment-number parameter 

• You can open a segment definition with the commands: 

BEGIN-SEGMENT 
BEGIN-NEW-SEGM ENT 
BEGIN-HIGHER-SEGMENT 
BEGIN-LOWER-SEGMENT 

• The body of a segment is one or more graphics primitives 
and associated primitive attributes. 

• You can include the segment body of an existing seg
ment in a new segment definition. 

• You can close a segment definition with the commands: 

END-SEGMENT 
BEGIN-NEW-SEGMENT 
BEGIN-HIGHER-SEGMENT 
BEGIN-LOWER-SEGMENT 

• You can delete segments with the command DELETE
SEGMENT 

4110 SERIES HOST 

SEGMENTS 

THE SEGMENT DEFINITION 

Setting Attributes for Future Segments 

To set the attributes for the segments that have not yet 
been defined (that is, future segments), set the various seg
ment attributes using -2 for the segment-number param
eter. These attributes take effect when the segment 
definition is opened, with the exception of segment high
lighting, segment detectability, and segment class. The lat
ter attributes require the segment to be defined and the 
segment definition closed before they take effect. 

You do not need to send a complete set of future segment 
attributes each time you open a segment definition. Each 
time you set the future-segment attributes, these attributes 
remain in effect until you change them. On power up, the 
terminal sets each attribute to a default value. 

Set the future segment's origin with the command SET
PIVOT-POINT before you open the segment definition. (You 
can also use the commands SET-SEGMENT-POSITION or 
SET-SEGMENT-IMAGE-TRANSFORM for Segment -2.) 
Once the segment definition is opened, the origin cannot be 
changed. 

Set the dynamic segment attributes you want to change 
with the commands: 

• SET-SEGMENT-POSITION 

• SET-SEGMENT-IMAGE-TRANSFORM 

• SET-SEGMENT-VISIBILITY 

• SET-SEGMENT-WRITING-MODE 

• SET-SEGMENT-HIGHLIGHTING 

• SET-SEGMENT-DETECTABILITY 

• SET-SEGMENT-DISPLAY-PRIORITY 

• SET-SEGMENT-CLASS 

7-5 



SEGMENTS 

Opening the Segment Definition 

The commands that you can use to open a segment defini
tion are: 

• BEGIN-SEGMENT 

• BEGIN-NEW-SEGMENT 

• BEGIN-HIGHER-SEGMENT 

• BEGIN-LOWER-SEGMENT 

When you define a single segment or the first segment in 
a sequence of segments, use the BEGIN-SEGMENT or 
BEGIN-NEW-SEGMENT command. The other two segment 
opening commands require you to have a currently open 
segment definition. 

When you are defining a series of segments, use the com
mands BEGIN-HIGHER-SEGMENT and BEGIN-LOWER
SEGMENT. These commands close the current segment 
and open the next one, which saves communications time 
and host overhead. 

The commands BEGIN-SEGMENT and BEGIN-NEW
SEGMENT must have an explicit segment number as a pa
rameter. 

The commands BEGIN-HIGHER-SEGMENT and BEGIN
LOWER-SEGMENT open segments implicitly numbered ei
ther one higher or one lower than the segment number of 
the currently open segment definition. 

7-6 

NOTE 

The commands BEGIN-NEW-SEGMENT. BEGIN
HIGHER-SEGMENT. and BEGIN-LOWER
SEGMENT all create segments whose origin is at 
the current graphics beam position. Use these com
mands for segments that will remain in the same po
sition. Use the BEGIN-SEGMENT command for 
defining segments that you will move and transform. 

Contents of a Segment Definition. Segments can contain 
any graphics primitives and their associated attributes such 
as: 

• Vectors 

• Markers 

• Text 
• Panels (raster display terminals only) 

Including an Existing Segment in a Segment Definition. 
When you are defining a segment, you can include a copy of 
the contents of a currently defined segment with the 
INCLUDE-COPY-OF-SEGMENT command. This command 
causes an image of the specified segment's contents to be 
duplicated in the new segment definition. The primitive 
attributes are copied from the old segment as well as the 
graphics primitives. After the copy, the terminal's graphic 
beam position and primitive attributes return to the values 
they had before the copy. 

How the Terminal Stores a Segment Definition. When the 
terminal builds a segment definition, it constructs a data 
structure as follows: 

1 . The terminal reserves a number of internal memory 
blocks when it opens a segment definition, then builds a 
segment header based on the future-segment 
attributes. The terminal adds an absolute move to the 
segment origin, then adds graphics primitives as it re
ceives them. 

2. The terminal translates the absolute xy coordinates 
from the graphics primitives it receives into coordinates 
relative to its pivot point. (This simplifies later transfor
mations about the pivot point, mapping the pivot point 
onto address points, or mapping the pivot point onto 
the GIN cursor.) 

3. When the terminal closes a segment definition, it puts 
an end-of-segment mark on the final block of memory 
that it used and frees the remaining unused memory. 

4110 SERIES HOST 

( 



Closing the Segment Definition 

Close the segment definition with one of the following 
commands: 

• END-SEGMENT 

• BEGIN-NEW-SEGMENT 

• BEGIN-HIGHER-SEGMENT 

• BEGIN-LOWER-SEGMENT 

Use the END-SEGMENT command to close a single seg
ment or the last segment in a sequence of segments. Use 
one of the other commands if you are defining more seg
ments in a series. 

Appearance of the Display When Defining a 
Segment 

A raster display terminal will, depending on the fixup level, 
display graphics primitives as it receives them. If the future 
segment transform is other than either a scale of 1 or a 
rotation of 0, or if the future segment position is other than 
the pivot pOint, the terminal transforms the segments as it 
receives them and displays the transformed segments. (A 
discussion on the fixup level can be found in Section 8, Ras
ter Graphics.) 

In DVST terminals, graphics primitives are displayed only if 
they are not transformed or moved. If the future segment is 
transformed or moved, the segment will be transformed, 
moved, and displayed when the segment is closed. 

Commands That Are Not Part of a Segment 
Definition 

If the terminal receives commands that are not part of a 
segment definition (such as pixel commands) while a seg
ment definition is open, the terminal simply executes these 
commands. You can change future segment attributes while 
a segment definition is open, but these future segment 
attributes will not affect the segment currently being 
defined. 

4110 SERIES HOST 

SEGMENTS 

SEGMENT CLASSES 
AND MATCHING CLASSES 

PREVIEW 

• You can manipulate entire classes of segments with 
commands that allow -3 as the segment-number 
parameter. 

• Each segment contains a 64-bit segment class field. 

• The terminal examines the segment class field to deter
mine whether the segment matches the current matching 
class. 

• You can control the matching operation by setting the 
segment class field and the segment's current matching
class. 

CONCEPTS AND DEFINITIONS 

In some applications, you might want to manipulate groups 
of segments with a single command. For example, in a com
plex picture you might want to highlight all segments that 
have some feature in common. Or you might want to have 
some means of selecting a segment or group of segments 
out of a large collection of segments without knowing each 
segment number. 

In this discussion you will find some examples of how to use 
segment classes and matching classes. The choice of seg
ment class meanings in these examples is not meant to be 
representative of a real application, but to illustrate how to 
manipulate segment classes and matching classes. 

Segment Class Field 

Within each segment definition is a 64-bit field called the 
segment class field. An individual bit of the segment class 
field is sometimes called a segment class and referenced by 
its bit number. By storing 1 's and O's in this field, you can 
create up to 264 different bit patterns. By defining subfields 
in the 64-bit segment class field, you can express many dif
ferent relationships between segments. 

7-7 



SEGMENTS 

You store values in the segment class field using the SET
SEGMENT-CLASS command. The SET-SEGMENT
CLASS command takes three parameters: the segment 
being acted upon, a removal array, and an addition array. 

The Removal Array. The removal array is the second pa
rameter of the SET-SEGMENT-CLASS command. This pa
rameter is an array of integers between 1 and 64 or an array 
consisting of the single integer -1. Each integer stands for 
a bit position in the segment class field. If you put an integer 
between 1 and 64 in the removal array, you set that bit of 
the segment class field to O. If you put the integer -1 in the 
removal array, you set all bits in the segment class field to O. 

The Addition Array. The addition array is the third param
eter of the SET-SEGMENT-CLASS command. As with the 
removal array, this parameter is an array of integers be
tween 1 and 64 or an array consisting of the single integer 
-1. Each positive integer between 1 and 64 that you in
clude in the addition array sets that bit in the segment class 
field to 1. If you put the integer -1 in the addition array, you 
set all bits in the segment class field to 1. 

A Simple Example. Assume that you will be drawing a me
chanical assembly with a lot of parts. You can use some of 
the bits in the segment class field to indicate part types and 
others to indicate membership in a subassembly. If you use 
Bits 1 through 10 for a a part-type subfield, you can have 
1024 different part types. If you use Bits 11 through 15 as a 
subassembly subfield, you can have 32 different 
subassemblies. The other bits of the segment class field are 
available for other uses. 

Assume that you have defined Segment 50 as a component 
in your drawing. You should first set the segment class field· 
to all O's (use -1 in the removal array). Then calculate 
which bits in the addition array should be set to 1. Assuming 
Part Number 27 and Subassembly Number 12, your addition 
array would include 5, 4, 2, and 1 (for 27) and 14 and 13 (for 
12) The entire addition array would then be: 

14,13,5,4,2,1 

7-8 

Current Matching Class 

Definition. The current matching class is defined by a pair of 
64-bit terminal registers, the inclusion class register and the 
exclusion class register. These registers are defined by two 
arrays sent as parameters to the SET-CURRENT-MATCH
lNG-CLASS command. When you use -3 as the segment
number parameter in a segment manipulation command, the 
terminal compares every segment's segment class field with 
the inclusion and exclusion class registers. Each segment 
that passes the matching operation is acted upon by the 
segment command. By defining the matching class registers 
properly, you can cause a segment manipulation command 
to affect any group of segments. 

The Inclusion Array. This parameter of the SET-CUR
RENT-MATCH lNG-CLASS command is an array of integers 
between 1 and 64 or the single integer -1. Bits in the inclu
sion class register are set to 1 if that integer is included in 
the array and to 0 if that integer is not included in the array. 
If the array consists of the single integer -1, all bits in the 
inclusion class register are set to 1. To set bits 13 and 14 
(Subassembly 12 from our earlier example) in the inclusion 
class register to 1, your inclusion array should be: 

14,13 

The Exclusion Array. This parameter of the SET-CUR
RENT-MATCH lNG-CLASS command is an array of integers 
between 1 and 64 or the single integer -1. Bits in the exclu
sion class register are set to 1 if that integer is included in 
the array and to 0 if that integer is not included in the array. 
If the array consists of the single integer -1, all bits in the 
exclusion class register are set to 1. If you want to set Bits 
1, 2, 4, and 5 (Part Number 27 in our previous example) to 1, 
your exclusion array should be: 

5,4,2,1 

The Matching Operation. When you have a segment num
ber of -3 for a segment command, the terminal performs a 
bitwise comparison between the segment class field of each 
segment and the inclusion and exclusion class registers in 
the terminal. If the result of this comparison is true, the op
eration is performed for that segment. 

4110 SERIES HOST 

( 

( 

( 



The comparison is true when each bit of the segment class 
field ANDed with the inclusion class register yields the inclu
sion class register and each bit of the segment class field 
ANDed with the exclusion class register yields a field of ze
ros. If SCF is a bit in the segment class field, ICR is a bit in 
the inclusion class register, and ECR is a bit in the exclusion 
class register, the comparison is true when, for each SCF, 
ICR, and ECR, the following expression is true: 

(SCF AND ICR = ICR) AND (SCF AND ECR = 0) 

AN EXAMPLE USING SEGMENT CLASSES 

The following example uses an encoding method chosen to 
illustrate the use of both inclusion and exclusion arrays. 

The Scenario 

You have a program that draws widgets. Each widget may 
be one of 45 colors. Widgets may be made of glass, plastic, 
copper, or tin. Widgets are made by companies A, B, and C 
in Great Britain; by company Land M in Sri Lanka; and 
companies V, W, X, and Y in the United States. 

Defining the Segment Class Subfields 

First, partition the segment class field into subfields to rep
resent the country of origin, the manufacturer, the color, the 
material, and the product. 

SEGMENTS 

You could assign bit positions to the subfields like this: 

• Country - Bits 1 and 2 
• Manufacturer - Bits 3 through 6 

• Color - Bits 7 through 12 

• Material - Bits 13 and 14 

• Widget - Bit 15 

Figure 7-2 shows how, in this example, the first 15 bits of 
the segment class field are grouped into subfields. 

Setting the Segment Class Field 

You must set the segment class field for each widget. As
suming that Segment 43 is a blue tin widget made in Sri 
Lanka by company L we might have the following 
conditions: 

• Sri Lanka is Country Number 3 

• Company L is Company Number 4 

• Blue is Color Number 12 

• Tin is Material Number 1 

• Segment 43 is a widget 

In this case, the first 15 bits of the segment class field for 
Segment 43 should look like Figure 7-3. 

To set the segment class field to this pattern, use the SET
SEGMENT-CLASS command and send the addition array: 

15,14,10,9,4,1,2 

Figure 7-2. The First 15 Bits of the Segment Class Field. 

Figure 7-3 . The Segment Class Field for Segment 43. 

4110 SERIES HOST 7-9 



SEGMENTS 

Using the Current Matching Class 

After you have set the segment class fields for several seg
ments, you can manipulate groups of segments using the 
current matching class and a segment number of -3. If you 
want to see only the widgets from Sri Lanka, first make all 
segments invisible: 

SET-SEGMENT-VISIBILITY -1,0 

Then make just the widgets from Sri Lanka visible. 

SET-CURRENT-MATCHING-CLASS (1,2,15)0 

SET-SEGMENT-VISIBILITY -3,1 

7-10 

In this case you need only specify the bits you want to find 
as set in the segment class field by putting the bit number in 
the inclusion array. To check that a bit is 0, put its number in 
the exclusion array. For example, if you want to show all 
segments from Sri Lanka that are not widgets, make all the 
segments invisible, then set the current matching class to 
exclude Bit 15, the widget subfield: 

SET-CURRENT-MATCHING-CLASS (1,2)(15) 

SET-SEGMENT-VISIBILITY -3,1 

Remember, the comparison is a bitwise comparison. You 
could inadvertently include or exclude undesired segments if 
you are not cautious in allocating your subfields. For exam
ple, if Great Britain were country 1 (Bit 2 set) excluding 
Great Britain would also exclude Sri Lanka, which has both 
Bits 1 and 2 set. 

4110 SERIES HOST 

() 

( 



Section 8 

RASTER DISPLAY GRAPHICS 

INTRODUCTION 

Tektronix raster display graphics terminals combine most 
DVST terminal capabilities with raster technology. This sec
tion discusses raster functions and how to use them. You 
will find discussions on: 

• Raster display hardware. 

• Surfaces 
• Color and gray scales 

• Pixel operations 

• Terminal spaces 

• Views and view clusters 

THE RASTER DISPLAY 

INTRODUCTION 

Monochrome and color raster display terminals share simi
lar display hardware. The following discussion gives a sim
plified overview of raster display terminal hardware. 

CONCEPTS AND DEFINITIONS 

The smallest screen element that a terminal can address is 
called a pixel. The terminal draws each individual pixel as a 
uniform color. When you look at a raster display, your eyes 
blend pixels and give the illusion of a continuous form. For 
example, pixels arranged as in Figure 8-1 give the illusion of 
a straight diagonal line. 

Figure 8-1. Magnified View of Pixels in a Line. 

4110 SERIES HOST 8-1 



RASTER GRAPHICS 

A raster display is similar to a television picture. The terminal 
repeatedly covers the screen with lines drawn by a beam of 
electrons. The mechanism inside the CRT that generates 
the electron beam is called an electron gun. When the elec
trons impact the screen they cause the screen to give off 
light. By changing the intensity of the electron gun, the 
terminal can cause a spot to glow more, or less, brightly. 
Figure 8-2 illustrates the electron gun tracing the raster. 

A color raster display consists of a special screen and three 
electron guns. Although we may speak of a single electron 
beam in a color display, the beam is actually made up of 
three independent beams that move together. Each gun 

emits an electron beam that hits one screen color red, 
green, or blue. By independently controlling the intensity of 
these three colors, the terminal controls the color and 
brightness of a single pixel. Your eye blends the three colors 
in the pixel into a single color. 

As the three-part electron beam moves across the screen, it 
varies in intensity. Each time the beam reaches a new pixel 
on the screen, the terminal adjusts the intensity of the three 
electron beams to color that pixel. By refreshing the entire 
screen 60 times each second, the terminal gives the illusion 
of a continuously illuminated screen. (In areas of the world 
using 50 Hz current, the screen is refreshed at 50 Hz.) 

••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• 

8-2 

/' 
/' 

/' 
/' 

/' 

Figure 8-2. An Electron Gun Generating a Raster. 

4110 SERIES HOST 

c' 

( 

( 



Raster Memory Buffer 

Each pixel on the screen is paired with a memory location in 
a special memory area called the raster memory buffer, or 
frame buffer, or simply raster memory. As the terminal scans 
across the raster memory buffer, it reads the number stored 
in that location and uses the number as an index into a table 
called the color map. The terminal converts the values 
stored in the color map to gun intensities which, in turn, 
control the electron guns. The intensity of the electron guns 
then determine the brightness of the corresponding pixel on 
the screen. Thus, the screen display is a visual copy of the 
contents of the raster memory buffer. 

RASTER GRAPHICS 

You can visualize the raster memory buffer as a three-di
mensional array of bits. The height and width of this array 
correspond to the dimensions of the screen in pixels. The 
depth of the screen in bits is the number of bit planes 
present in the terminal. The discussion on surfaces, which 
follows this discussion, shows how you can use groups of 
bit planes. Figure 8-3 shows how screen pixels correspond 
to the raster memory array. 

Figure 8-3. Screen Pixels and Raster Memory. 

4110 SERIES HOST 8-3 



RASTER GRAPHICS 

Color Indices 

The number stored for each pixel in the raster memory 
buffer is called a color index; an index into the color map. 
The terminal reads color indices from raster memory, looks 
in the color map for the entry corresponding to that index, 
and displays the pixel with the color mix stored in the color 
map. 

You can change the image on the screen by changing the 
contents of either raster memory (via pixel operations) or 
the contents of the color map, or both. 

Figure 8-4 shows a simplified block diagram of a 
monochrome raster display system and Figure 8-5 shows a 
simplified block diagram of a color raster display system. 

COLOR-tNDEX BRIGHTNESS 

'" '" '" '" 
'" '" '" 1 
'" '" 1 '" 
'" '" 1 1 

'" 1 '" '" 
'" 1 '" 1 
'" 1 1 '" 
'" 1 1 1 

1 '" '" '" 
'" '" 1 
'" 1 '" 
'" 1 1 

1 '" '" 
1 '" 1 
1 1 '" 
1 1 1 

Figure 8·4. Block Diagram of a Monochrome Raster System. 

8-4 4110 SERIES HOST 

( 

( 



9-8 

SOIHd"~~ ~3.lS"~ 

"WotlsAS JotlSel;l JOIOO e 10 weJ6e!c >1:)018 "S-8 otJn6!.:I 

Ii! 

Ii! 

Ii! Ii! 

Ii! 

Ii! Ii! 

Ii! Ii! 

Ii! Ii! Ii! ~ 

Ii! 

Ii! ~ Ii! 

Ii! Ii! 

Ii! Ii! Ii! 

~ ~ Ii! Ii! 

Ii! ~ Ii! Ii! 

~ Ii! Ii! Ii! 

Ii! Ii! Ii! Ii! 

xaONI"IIOl00 

.lSOH S31t!3S 0 ~ ~ 17 



RASTER ·GRAPHICS 

SURFACES 

PREVIEW 

• 4110 Series raster graphics are drawn on a surface, a 
group of bit planes. 

• You can think of a surface as a transparent display 
screen. 

• The display is a composite picture that combines all the 
visible surfaces over a background. 

• Each surface is independent. You can include or exclude 
it from the composite picture without affecting other 
surfaces. 

• The number of available surfaces depends on the number 
of bit planes in the terminal. (Each bit plane can be in only 
one surface at a time.) 

• Each additional bit plane allocated to a surface doubles 
the number of color indices available on the surface. 

• You can write to all defined surfaces, by writing to the 
super surface. 

CONCEPTS AND DEFINITIONS 

Raster memory is a three dimensional bit array, made up of 
one or more two dimensional bit arrays called bit planes. 
Each bit in a bit plane maps to a single pixel on the display. 

A surface is a subset of raster memory; it is a group of zero 
or more contiguous bit planes treated as a unit. A cell is the 
group of bits on a surface that all address the same pixel. 

Think of a surface as a transparent sheet the size and 
shape of your display screen, on which you will draw 
pictures. 

8-6 

Writing on a Surface 

When you write in terminal space, the terminal transforms 
the information from terminal space into pixel space and 
stores index numbers into the cells of the surface. (You can 
also address each cell on a surface directly with pixel opera
tions, described later in this section.) 

Defining a Surface 

The terminal defines one surface containing all available bit 
planes at power-up. You can define other surfaces by allo
cating available bit planes to surface numbers with the SET
SURFACE-DEFINITIONS command. You can define 
multiple surfaces and draw different pictures on each. When 
you define a surface, you can allocate from zero to the num
ber of bit planes in the terminal to that surface. You cannot 
use a bit plane on more than one surface. 

Displaying Surfaces 

You can make surfaces visible or invisible, or make them 
blink with the SET-SURFACE-VISIBILITY command. A visi
ble surface is displayed on the screen, an invisible surface is 
totally transparent, and a blinking surface is alternately visi
ble and invisible; Your view of the screen is a composite 
picture made of all visible surfaces (see Figure 8-6). Making 
a surface visible or invisible does not alter the contents of it, 
other surfaces, or the background. 

Making a surface visible is similar to adding an overlay to a 
composite picture. Making a surface invisible is like remov
ing one overlay from the composite picture. 

4110 SERIES HOST 

( 

( 



RASTER GRAPHICS 

Figure 8·6. Graphics Drawn on Two Surfaces. 

4110 SERIES HOST 8·7 



RASTER GRAPHICS 

Surface Priority 

Surface priority determines two things: First, it determines 
the order in which the terminal displays surfaces and, sec
ond, it determines how the terminal displays colors when 
different colors overlap on different surfaces. This discus
sion is limited to the order in which the terminal displays 
surfaces. The discussion on color overlap is in this section 
under the discussion of color. 

By default, the terminal displays visible surfaces as though 
the lowest numbered surface were nearest the viewer. The 
lowest numbered surface therefore has the highest surface 
priority. Surface priority is analogous to the order in which 
overlays are laid down in a composite picture. 

You can redefine surface priority by using the SET-SUR
FACE-PRIORITY command. Figure 8-7 shows the result of 
reordering surface priorities. 

SURFACE 1 

SURFACE PRIORITY 
321 

SURFACE 2 

USING SURFACES 

Surfaces are particularly useful for applications such as 
cartography or circuit board design, where you combine 
several overlays to form a composite picture. By grouping 
related graphics information on a surface you can let the 
operator select individual surfaces or combinations of sur
faces appropriate to the task at hand. By allowing the oper
ator to zero-in on the level of detail for a task, you can help 
the operator achieve greater accuracy and productivity. 

As an example, you might have a program that designs floor 
plans for a building. It would create a display of the floor 
plan of each floor on separate surfaces. Your program can 
make these surfaces visible or invisible under program con
trol, or by programmed function keys. The operator can 
then make a single surface visible to arrange the layout of a 
single office, or view a combination of surfaces to check the 
layout of elevator shafts. 

SURFACE 3 

SURFACE PRIORITY 
123 

Figure 8-7. Surface Priorities. 

8-8 4110 SERIES HOST 

(, 

( 

(, 



You can also use surfaces for double buffering, a technique 
in which you create several independent screens of informa
tion on separate surfaces. You can then make these sur
faces visible or invisible under program control. 

Surfaces and the Dialog Area 

In the 4112 and 4113, the dialog area is drawn on one of the 
terminal's surfaces. The 4115, however, has a separate dia
log area surface. This separation of the dialog and graphics 
areas allows the dialog area to be superimposed on the 
graphics and scrolled or removed without disturbing the 
graphics on the other surfaces. Therefore, if you are work
ing with a 4112 or 4113, you should use separate surfaces 
for graphics and the dialog area if you have enough bit 
planes. 

Number of Surfaces 

The number of displayable surfaces possible on a terminal 
depends upon the number of bit planes in the terminal's 
raster memory. 

Although you can define surfaces with no bit planes as
signed to them, you are limited in the number of surfaces 
that you can define on each terminal. A terminal can define 
only as many surfaces as it can contain bit planes. 

If you define a surface with zero bit planes, you can use it 
like any other surface. You will not be able to display any
thing on this surface, however, until you allocate some bit 
planes to it. 

For example, with a 4113 containing 4 bit planes, you can 
define one to four surfaces with from 0 to 4 bit planes on 
each. Note that defining a surface with 0 bit planes is not the 
same as not defining that surface. 

4110 SERIES HOST 

RASTER GRAPHICS 

The Super Surface 

The super surface is Surface -1. Some terminal commands 
allow a surface number of -1 as a parameter. Surface -1 
means all bit planes in the terminal are treated as a single 
surface. When you write to the super surface, cells in all 
surfaces are affected. 

For example, consider a 4113 with four bit planes arranged 
in two surfaces of two bit planes each. A particular screen 
pixel will map to one cell, two bits deep, on each of these 
two surfaces. This same screen pixel will map to the same 
four bits arranged as a cell four bits deep on the super sur
face. The color index of the super surface is then made up 
of the color indices of the individual surfaces. If S.urface 1 
has a color index of 2 (binary 10) and Surface 2 has a color 
index of 1 (binary 01), the super surface has a color index of 
9 (binary 1001). Figure 8-8 shows how the super surface is 
related to two surfaces in such a case. Appendix D of the 
41/0 Series Command Reference Manual contains more in
formation on the super surface. 

Figure 8·8. The Super Surface. 

8·9 



RASTER GRAPHICS 

COLOR 

PREVIEW 

• Color indices control line, text, and fill pattern color. 

• The background color is controlled separately. 

• The terminal stores color index numbers in the segment 
definition. 

• The terminal assigns colors to color indices through the 
color map. You can dynamically change this mapping, 
thereby changing the appearance of the display. 

• The number of bit planes in the raster memory deter
mines the maximum number of color indices the terminal 
can display. 

• The terminal can define colors in three color systems: 
HLS, RGB, or CMY. 

• The 4115 has an additional color system, Machine RGB. 
Machine RGB allows you to define over 16 million differ
ent colors. 

• You can set color interaction between overlayed surfaces 
to Opaque, Additive, or Subtractive. 

INTRODUCTION 

Raster display terminals can display several colors simulta
neously. (On monochrome display terminals these colors 
are different shades of gray.) You can specify the color of a 
graphics primitive or of dialog text by using color indices in 
conjunction with a color map. 

When you draw a picture, you specify the index for lines, 
text, and fill patterns by index numbers. Each index is used 
as a pointer into a color map that the terminal uses to trans
late an index into a color. Color indices, not the displayable 
colors, are stored as part of the segment definition. You can 
remap different colors to the individual index numbers and 
dynamically alter the appearance of the picture. 

8-10 

CONCEPTS AND DEFINITIONS 

Color Indices 

Tektronix 4110 Series raster display terminals can display a 
large number of colors. This potential color range is greater 
than the number of colors that a terminal can display simul
taneously. For maximum compatibility between 4110 Series 
terminals, and for maximum flexibility in the use of colors, 
colors are not directly specified. They are, instead, refer
enced by numbers called color indices. These index numbers 
are attributes of the graphics primitives and stored as part 
of the segment definition. 

Color Map 

Each color index is a pOinter into the color map, a table used 
by the terminal to control the display. You can change the 
color map with the SET-SURFACE-COLOR-MAP and the 
SET-SURFACE-GRAY-LEVELS commands. Figure 8-9 
shows how you can control the appearance of a display by 
changing the color map. 

The Erase Index. Index 0 is predefined as the erase index. 
You can think of the erase index as a transparent invisible 
color. Graphics drawn in index 0 allow the background or 
graphics on other surfaces to show through unaltered. (The 
SET-SURFACE-COLOR-MAP command cannot define In
dex 0, it uses that entry to specify the background color.) 

Maximum Number of Indices. The maximum number of 
unique color indices that can be used on a given surface 
depends on the number of bit planes assigned to the sur
face. When n is the number of bit planes assigned to the 
surface, there are 2n-1 unique indices including the erase 
index available. When you use an index number that is 
larger than 2n -1, the terminal uses the index 2n -1. For 
example, if you specify Index 15 on a surface with 2 bit 
planes, the terminal will use Index 3. 

Selecting Color Coordinate Systems 

A color raster display terminal generates colors on the dis
play screen by mixing the three additive primaries: red, 
green, and blue. However, the terminal allows the user to 
specify colors in one of three systems: HLS (hue, lightness, 
saturation), RGB (red, green, blue), or CMY (cyan, magenta, 
yellow). In addition, the 4115 can specify a greater range of 
colors with Machine RGB. You choose the color coordinate 
system with the SET-COLOR-MODE command. 

4110 SERIES HOST 

c 

( 

( 



RASTER GRAPHICS 

Figure 8·9. The Effect of Changing the Color Map. 

4110 SERIES HOST 8·11 



RASTER GRAPHICS 

The HLS System. You can visualize the HLS system by 
looking at the color cone in Appendix D. A particular color is 
a point in the volume of the cone defined by hue, lightness, 
and saturation. Figure 8-10 illustrates the HLS system color 
cone. 

Hue is the angle formed by rotating a vector around the axis 
of the double ended cone with blue as the reference. Hue is 
the basic sensation we think of as color. A hue of 0° (or 
360°) corresponds to blue, 120° to red and 240° to green, 

with intermediate shades corresponding to intermediate ro
tations. You specify hue as an integer in the range -32768 
to +32767 degrees. Integers less than 0 or more than 359 
are converted to the range 0 to 359 by a modulo function. 

Lightness is the position of a vector along the axis of the 
cone. Lightness is how bright or dull a color appears; it is 
how much light is emitted by the color. A lightness of 0% is 
black and a lightness of 100% is white. (At lightness 0% or 
100%, saturation and hue are irrelevant.) You specify light
ness by an integer percentage in the range 0 to 100%. 

Figure 8-10. The HLS System Color Cone. 

8-12 4110 SERIES HOST 

() 

(\ 



Saturation is the radial distance of the vector from the cone 
axis. Saturation is the intensity of a color. A saturated color 
is very intense, while a less saturated color is one that ap
pears grayed or muted. A saturation of 0% is simply a shade 
of gray, while a saturation of 100% gives the most intense 
possible color having that hue and brightness. You specify 
saturation as an integer percentage in the range 0 to 100%. 

The H LS system is the default system for the 411 0 Series 
color raster display terminals. The HLS system gives a good 
intuitive "feel" for a programmer or operator when attempt
ing to specify colors. HLS allows you to specify approxi
mately 3,600,000 colors. 

The RGB System. The RGB system, also called the additive 
color system, defines colors as mixtures of the three additive 
color primaries: red, green, and blue. You specify colors in 
the RGB system as integer percentages from 0 to 100%. 

" " 

RASTER GRAPHICS 

For example, you can define various shades of yellow by 
mixing equal amounts of red and green with a smaller 
amount of (or no) blue. You control the overall brightness of 
the color with the brightness of the primaries you use. 

More specifically, a yellow with the proportions (90,90,0) is 
much brighter than a (30,30,0) yellow, while a (100,100,20) 
yellow is a still brighter washed-out light yellow. 

In additive color mixing, adding equal amounts of the three 
primaries gives a gray. (50,50,50) is a medium gray, 
(20,20,20) a dark gray, (100,100,100) is white, and (0,0,0) is 
black. 

You can visualize the color space defined by the RGB sys
tem as a cube. The three axes are the three primaries, while 
the origin is black. Each color is a volume within the RGB 
color cube. Figure 8-11 shows the RGB color cube. 

, 1---, -, ---I 
MAGENTA-r--
(100,0,100) I I 

I _~~~I 
I~ I GREEN I ~O,100,0) 

I~" 
1 " 
I " 
I 
I 

Figure 8-11. The RGB Color Cube. 

4110 SERIES HOST 8-13 



RASTER GRAPHICS 

Machine RGB in the 4115. The 4115 terminal is capable of 
256 intensities for each color gun. To specify all the colors 
that the terminal can display, you can use Machine RGB as 
the color-specifying mode. Machine RGB allows you to 
specify 2563 (over 16 million) different colors. 

The CMY System. The CMY system, also called the sub
tractive color system, defines colors as a mixture of the three 
subtractive primaries: cyan, magenta, and yellow. As in the 
RGB system, you specify colors with an integral percent 
(from 0 to 100) of the three primaries. 

In the CMY system, adding a greater percentage of a pri
mary reduces the lightness of the displayed color. The gray 
scale in CMY is the range of equal mixtures from (0,0,0) to 
(100,100,100) for white to black. Figure 8-12 shows a color 
cube for the CMY system analogous to the RGB color cube. 

, , 

Gray Levels. The number of different shades of gray that a 
terminal can display is limited by the terminal hardware. The 
4112, for example, can display 15 distinct levels of gray, 
while the 4113 can display 16 levels and the 4115 can dis
play 256. 

You can cause a color terminal to operate only in gray levels 
with the third parameter of the SET-COLOR-MODE com
mand. When you are operating only with gray levels, it is 
more efficient to use the shorter gray-level commands to 
define color indices and background levels. 

Color Interaction on Overlaying Surfaces. When you have 
colors from different surfaces that overlap on the screen, 
you can control the color of the area where they overlay. 
You can choose the color mix of that area to be opaque, 
additive, or subtractive. 

, 1---, ...--
, ----I 

GREEN -y---
(100,0,100)1 

1/t::Jct-"~ I 
C':J.~t- 1 I I MAGENTA 

1 ~,(0,100,0) 

1"""---" " 
1 " 

1 " 
1 

1 

Figure 8-12. The CMY Color Cube. 

8-14 4110 SERIES HOST 

( 

( 

c 



If you define the color mix between different surfaces as 
opaque, a colored area on a surface with a higher surface 
display priority completely replaces any area on a surface 
with a lower surface display priority that intersects it. 

If you define the intersurface color mix as additive, 
overlayed colored areas from different surfaces will mix by 
addition, as in the RGB system. 

If you define the intersurface color mix as subtractive, the 
intersection of colored areas from different surfaces will mix 
by subtraction, as in the CMY system. 

When you define colors as either additive or subtractive, the 
intersection of two overlayed colors may result in a color 
that is not in the color map because the mixture is per-

RASTER GRAPHICS 

formed by the hardware between the color map and the 
display guns. 

For example, Figure 8-13A shows two figures with the inter
section shaded. Shape A is red, (100,0,0) in RGB. Shape B 
is green, (0,100,0) in RGB. Shape A is on Surface 1 with 
surface display priority 1 and Shape B is on Surface 2 with 
surface display priority 2. 

Figure 8-13B shows that, with opaque color interaction, 
Shape A obscures a portion of Shape B. 

Figure 8-13C shows that, with additive color interaction, the 
intersection of the shapes becomes yellow. 

Figure 8-13D shows that, with subtractive color interaction, 
the intersection of the shapes becomes black. 

Figure 8-13. Interaction of Colors on Different Surfaces. 

4110 SERIES HOST 8-15 



RASTER GRAPHICS 

Background Colors 

Although Index 0 is the erase index, you use it with the SET
SURFACE-COLOR-MAP command to set the background 
index. 

Two other commands also control the background 
color: SET-BACKGROUND-GRAY-LEVEL and SET
BACKGROUND-COLOR. These commands do not set a 
color index, you specify them in the current color system 
parameters. 

Background Indices 

You can specify the background index for text in the graph
ics area and the color of line gaps in dotted and dashed lines 
with the SET-BACKGROUND-INDICES command. 

Hint 

If you are using a black and white Hard Copy Unit, such as 
the TEKTRONIX 4632, with a color terminal, you can pre
view the hard copy in black and white by using the SET
COLOR-MODE command. 

PIXELS 

PREVIEW 

• Pixel operations set the color index of pixels on a raster 
display terminal. 

• Pixel operations are not graphics primitives and cannot 
be included in a segment definition. (The terminal will ac
cept and execute them while a segment is open, but will 
not save them.) 

• Pixel operations are used to define fill patterns for 
panels. 

8-16 

CONCEPTS AND DEFINITIONS 

Pixel Operations 

You can control the content of raster memory cells by using 
pixel operations. Unlike graphics primitives, you work di
rectly with raster memory; you specify which cells are af
fected and what their contents will be. You can perform 
pixel operations on a single surface, or on the super surface. 

The BEGIN-PIXEL-OPERATIONS command sets the sur
face number for future pixel operations, the ALU (arithmetic 
logic unit) mode, and the bits-per-pixel value. The ALU 
mode controls just how the pixels you write affect the dis
play; you use the bits-per-pixel value with the RASTER
WRITE and RUNLENGTH-WRITE commands. 

Pixel Viewport and Pixel Beam Position 

RASTER-WRITE and RUNLENGTH-WRITE operate within 
a pixel viewport, which is a rectangular area of the screen 
addressed in pixel units. 

The pixel beam position is the position in the pixel viewport 
at which the RASTER-WRITE and RUNLENGTH-WRITE 
operations will begin. You control the placement of the pixel 
beam with the command SET-PIXEL-BEAM-POSITION. 
The pixel beam position is relative to the pixel viewport. The 
same coordinates will address a different pixel if the lower
left corner of the pixel viewport is moved. 

The RASTER-WRITE Command 

When you want to directly enter index numbers into pixels, 
you can use the RASTER-WRITE command. This command 
takes two parameters: (1) the number of pixels that you are 
encoding, and (2) a string of ASCII characters into which 
you have encoded the index values of the pixels. 

When the terminal executes the RASTER-WRITE com
mand, it begins at the current pixel beam position, fills that 
pixel, advances to the right one pixel, fills that pixel, and 
repeats until it reaches the the end of the list of indices. 
When the terminal reaches the right edge of the pixel 
viewport, it wraps to the left edge of the pixel viewport one 
pixel down. If the terminal has reached the bottom of the 
pixel viewport, it wraps back around to the top. 

4110 SERIES HOST 

(/ 

( 

( 



If the special character" , " (left single quote, or accent 
grave) is in the ASCII string, the terminal fills the rest of the 
current pixel line with index O. The terminal then wraps back 
around just as if it had normally filled that line. 

On the 4115 the command SET-PIXEL-WRITING-FAC
TORS controls how many actual pixels the terminal writes 
for each pixel sent, and the direction the pixel beam moves. 

Encoding The RASTER-WRITE character-array. The en
coding for the RASTER-WRITE character-array is called bit 
packing. The bit packing used for this command is the same 
basic algorithm used in Block mode bit packing. The follow
ing algorithm shows how to send a complete RASTER
WRITE command. This algorithm supports any positive 
number of bits-per-pixel, but does not include the use of" , " 
(accent grave). 

Procedure Send-raster-write: (number-of-pixels),(index-array) 
global-reference: (bits-per-pixel) 
send-character: (ESC) 
send-character: (R) 
send-character: (P) 
send-packed-integer: (number-of-pixels) 
(number-of-characters)=integer of 
«number-of-pixels)" (bits-per-pixel) + 5)/6 
send-packed-integer: (number-of-characters) 
(index-pointer) = 0 
(register) =0 
(bits-in-register) = 0 
until (index-pointer) = (number-of-pixels): 

increment (index-pointer) 
(index) = (index-array(index-pointer)) 
shift (register) left (bits-per-pixel) 
increment (register) by (index) modulo (bits-per-pixel) 
increment (bits-in-register) by (bits-per-pixel) 
while (bits-in-register) = > 6: 

send-character: «register) modulo 64)+32 
shift (register) right 6 
decrement (bits-in-register) by 6 

if (bits-in-register) > 0: 
shift (register) left 6-(bits-in-register) 
send-character: (register)+32 

4110 SERIES HOST 

RASTER GRAPHICS 

The RUNLENGTH-WRITE Command 

The RUNLENGTH-WRITE command is similar to the 
RASTER-WRITE command. Use it in preference to the 
RASTER-WRITE command when many pixels in a row have 
the same index. When most of the pixels on a line will be set 
to the same index, the RUNLENGTH-WRITE command re
duces the number of characters you need to specify the 
pixel data. The parameter of the RUNLENGTH-WRITE com
mand is an array of runcodes (single integers). Packed into 
each runcode are two numbers: the run length and the pixel 
index. The runcode is an integer computed as follows: 

Where N is the number of bits-per-pixel from the BEGIN
PIXEL-OPERATIONS or BEGIN-FILL-PATTERN com
mand, L is the length of the contiguous run of identical 
pixels, and I is the gray or color index, the runcode R is 
given by: 

R = 2N'L+1 

Encoding a RUN LENGTH-WRITE Command. The following 
sequence shows how to encode the RUNLENGTH-WRITE 
runcodes. 
Procedure Send-runlength-write: (number-of-pixels), 
(index-array) 

global-reference: (bits-per-pixel),(terminal-model) 
local-array: (code-array) 
send-character: (ESC) 
send-character: (R) 
send-character: (L) 
(code-count) = 0 
(index-pointer) = 1 
(multiplier) = 2" "(bits-per-pixel) 
(index) =(index-array(1)) 
(index-count)= 1 
(max-index-count) = integer of 65535/(multiplier) 
if (terminal-model) = 4115 

(max-index-count)=integer of 2147483647/(multiplier) 
until (index-pointer) = (number-of-pixels) 

increment (index-pointer) 
if (index) <> (index-array(index-pointer)) 
or (index-count) = (max-index-count) 

increment (code-count) 
if (index) = > (multiplier) 
(index) = (multiplier)-1 
(code-array( code-count)) = (multiplier)" 
(index-count) + (index) 
(index) = (index-array(index-pointer)) 
(index-count) = 1 

else 
increment (index-count) 

send-packed-integer: (code-count) 
for (counter) = 1 to (code-count) 

send-packed-integer: (code-array( counter)) 

8-17 



RASTER GRAPHICS 

ALU Modes 

The ALU mode parameter determines how the terminal will 
modify raster memory when it writes color indices into the 
pixel cells of raster memory. Refer to the 4100 Series Com
mand Reference Manual for details of the ALU modes. 

The RECTANGLE-FILL Command 

If you want to fill a rectangular area of the screen with a 
single color index, you can use the RECTANGLE-FILL com
mand. This command works on the current surface, but 
need not be within the pixel viewport. 

The PIXEL-COPY Command 

If you want to copy a rectangular area of raster space onto 
another rectangular area of raster space, use the command 
PIXEL-COPY. You can also copy the screen to a disk file to 
save an image and copy from the disk file to the screen to 
restore it. 

USER-DEFINED FILL PATTERNS 

You can define your own fill patterns for panel filling. The fill 
pattern definition uses the RASTER-WRITE and 
RUNLENGTH-WRITE commands. 

The BEGIN-FILL-PATTERN Command 

To open a fill pattern definition, use the command BEGIN
FILL-PATTERN. This command opens a numbered fill pat
tern, defines the height and width of the fill pattern, and 
establishes the bits-per-pixel value used by the RASTER~ 
WRITE and RUNLENGTH-WRITE commands. 

The number for your fill pattern can be the same as the 
number of a predefined fill pattern; You can delete your fill 
pattern by defining it to have 0 height. 

8-18 

The fill pattern is a rectangular array of color indices. The 
height of the fill pattern can be any value from 0 to the 
maximum Y -dimension of the screen in pixels. If you specify 
a height of 0, you will delete the fill pattern definition. 

The width of the fill pattern is also defined in pixels, and 
should be 1, 2,4, 8, 16, or 32 pixels for the 4112 or 4113 
(the 4115 allows a fill pattern to extend across the entire 
screen.) Other widths in this range will not give a terminal 
error, but the terminal always generates the fill pattern width 
as a power of 2. If you give a width that is not a power of 2, 
the terminal will complete the fill pattern with Index 0 to the 
next larger power of 2. 

The parameter that gives the number of bits per pixel con
trols the number of color indices you can transmit in the 
pixel encoding commands RUNLENGTH-WRITE and RAS
TER-WRITE. The number of bits per pixel determines the 
number of color indices you can use in your fill pattern just 
as the number of bit planes on a surface determines the 
number of color indices you can define. For example, with 
one bit per pixel, you can only define one color index; with 
three bits per pixel, you can define seven color indices. Us
ing six bits per pixel is often convenient as this number fits 
each color index in a RASTER-WRITE command into one 
ASCII character. 

If you want to open a fill pattern definition for Pattern 32 and 
give it a width of four pixels, a height of four pixels, and six 
bits per pixel for encoding, use the sequence: 

EcMD 32,4,4,6 

The END-FILL-PATTERN Command 

The command END-FILL-PATTERN closes the fill pattern 
definition. If you have filled the entire fill pattern, you do not 
need to use this command. If you have not completely filled 
the pattern, the END-FILL-PATTERN command writes the 
remaining cells of the fill pattern with Index O. 

4110 SERIES HOST 

c 

c 



An Example of a User-Defined Fill Pattern 

As a simple example of a user-defined fill pattern, let us 
define the pattern shown in Figure 8-14. You can fill a panel 
with a uniform mixture of two colors if you arrange two indi
ces as shown. 

Choosing Pattern number 32 for our fill pattern, and Indices 
1 and 2 for colors, the pattern is two pixels high and two 
pixels wide. Using six bits per pixel to encode the indices, 
we begin the fill pattern definition. 

1. Open the pattern definition with the sequence: 

EcMD 32 2 2 6 

2. Encode the pixel indices for the RASTER-WRITE 
command: 

Index 1 encodes to the ASCII character "1" 

Index 2 encodes to the ASCII character "2" 

4. Send four pixel definitions with the RASTER-WRITE 
command: 

EcRP 4,4,1,2,2,1 

5. Ending the fill pattern definition with the END-FILL-PAT
TERN command is not necessary, since we have filled 
the entire fill pattern. 

Figure 8-14 . A User-Defined Fill Pattern. 

4110 SERIES HOST 

RASTER GRAPHICS 

VIEWS 

PREVIEW 

• Terminals work in many spaces. These include: 

• Terminal space (12-bit space) 

• Extended terminal space (32-bit space) 

• Pixel space (terminal dependent) 

• Normalized screen space (12-bit space) 

• GIN space (12-bit space) 

• A view is a collection of attributes, identified by an integer 
from 1 to 64, that define a transformation from a terminal 
space window to a viewport. 

• Each view has its own set of independent attributes. 

• A terminal can remember up to 64 views and can switch 
from one to another. 

• You can address only one view at a time. 

• You can manipulate a group of views as a view cluster. 

• You can select the circumstances under which the termi
nal renews the display by setting the fixup level. 

8-19 



RASTER GRAPHICS 

CONCEPTS AND DEFINITIONS 

Space 

A space is a coordinate system used by the terminal for a 
graphics operation. Each space has a coordinate system 
that bounds the maximum and minimum values that you can 
pass to the terminal's graphics commands. 

Terminal Space. Terminal space, also called world or win
dow-coordinate space, is an imaginary plane bounded by 
the terminal's addressing limits. The concept of terminal 
space originated with DVST terminals where graphics are 
drawn directly on the face of the viewing screen. DVST ter
minals can typically address the display with a resolution of 
4096 x 4096 pOints, thus the X and V coordinates can range 
from 0 to 4095. As this is the resolution that can be ex
pressed in a twelve bit binary number, terminal space is also 
referred to as I2-bit space. 

Extended Terminal Space. The 4115 can address a much 
larger terminal space than 4096 by 4096; its coordinates 
can range from _231 to 231 -ion each axis. This extended 
terminal space is also referred to as 32-bit space. 

Pixel Space. Pixel space is the addressable space on the 
display screen. The terms pixel space, raster memory space, 
and raster space interchangeable. The size of pixel space 
depends upon the terminal. Table 8-1 summarizes the pixel 
space on 4110 Series terminals. 

Table 8-1 

PIXEL SPACE FOR VARIOUS TERMINALS 

Terminal X-Axis Address V-Axis Address 
Range Range 

4112 0-639 0-479 

4113 0- 639 0-479 

4115 0-1279 0-1023 

8-20 

Normalized Screen Space. Normalized screen space is the 
coordinate set of terminal space mapped onto pixel space. 
When you use normalized screen space, you are operating 
in pixel space, but giving the coordinates in terms of 12-bit 
terminal space. The terminal performs the conversion from 
12-bit to pixel coordinates. 

Normalized screen space is 4096 x 4096. Using normalized 
screen space allows you to address areas on the viewing 
screen without needing to convert to actual pixel numbers 
for different terminals. 

GIN Space. Terminals perform GIN ( graphics input) func
tions in a 12-bit space similar to terminal space. See Section 
9, GIN, for more information. The 4115 also performs GIN in 
32-bit space. 

Views 

A view is a set of attributes that define a transformation from 
terminal space to pixel space. The terminal stores the set of 
attributes that defines the view. This stored information 
includes: 

• view number: an integer from 1 to 64 

c' 

• window: a rectangular area in terminal space ( 

• viewport: a rectangular area in normalized screen space 

• view surface: the surface that will store the results of the 
transform 

• wipe index: the color index the viewport will be set to 
when the view is renewed before the window contents 
are displayed 

• border index: the color index of the border when it Is 
visible 

• Border visibility: an attribute that determines whether or 
not the border is visible. 

4110 SERIES HOST 

- --------------- ---.. ---.~-

( 



Window 

A window is a rectangular area in terminal space that you 
define with the SET-WINDOW command. A window can 
cover all or part of terminal space. Graphics primitives, 
whether or not they are part of segments, that lie partially or 
wholly within the bounds of the window are mapped into the 
viewport by the window-viewport transform. 

The window-viewport transform scales and clips graphics 
primitives within the window, then writes the result into pixel 
space. When the terminal displays a graphics primitive that 
it maps into the viewport, the affected pixels on the view's 
surface are changed to the primitive's color index. 

RASTER GRAPHICS 

Your program can zoom and pan on segment graphics by 
moving the size and location of the window. You can scale 
or distort the image in the viewport by changing the aspect 
ratio of the window. However, if you set either the height or 
the width of the window to zero, the terminal will automati
cally set the aspect ratio of the window equal to the aspect 
ratio of the viewport. Figure 8-15 shows several windows in 
terminal space. 

1-------------------, 

4110 SERIES HOST 

I I 
I I 
I I 
I I 

I 
I 
I 
I 

r--I--------
I I 
! I L_

1 
_____________ _ 

I 
I 
I 

---, 
I 
I 
I 

I 
I 
I 
I 

: I - - --1--- - --,--, 
I I 0 

: I I 
--------:---- -I--.J 

i 1 

: I 
~ ___________ J I 

----~ 

Figure 8-15. Windows in Terminal Space. 

8-21 



RASTER GRAPHICS 

Viewport 

A viewport is a rectangular area of a surface that can occupy 
either all or part of that surface. 

The SET-VIEWPORT command defines a viewport. Al
though viewports exist in pixel space, you don't give the 
viewport coordinates in pixel space coordinates, but rather 
as normalized screen space coordinates. The terminal cre
ates the viewport on the current view's surface. 

If you want several views on the screen at one time, allot 
each one a portion of the screen with the SET-VIEWPORT 
command. 

/ 

/ 
/ 

~~------:-!/ /_' _----.J 

VIEWPORT 1 A 
VIEWPORT 2 

NOTE 

You can define overlapping viewports on the same 
surface, but when the terminal renews one view, it 
will destroy graphics on any other view where they 
overlap. 

You can create a view on any defined surface. If a surface is 
visible, all views on that surface are visible in the composite 
display. 

Figure 8-16 shows two viewports on the screen mapped to 
different windows in terminal space. 

, 
/ 

?HICS 

Figure 8-16. TWQ ViewPQrts Mapped tQ TWQ WindQws. 

8-22 4110 SERIES HOST 

( 



CREATING AND SELECTING VIEWS 

You create or select views with the SELECT-VIEW com
mand. When you select a view that does not exist, that view 
is created with all the attributes of the current view. To 
change the attributes of a new view you must use the SET
WINDOW, SET-VIEWPORT, and SET-VIEW-ATTRIBUTES 
commands. 

Using Views 

You can use views wherever you need multiple drawing ar
eas on the screen. For example, you might find views useful 
for presenting separate perspectives of the same picture, 
such as different rotations of a mechanical insert or a large 
overview map and a detailed insert. 

The Terminal Viewing Keys 

The operator can change some view attributes and select 
views with the terminal viewing keys. See the terminal's op
erators manual for details on these keys and how they 
operate. 

You can prevent the operator from changing views or view 
attributes by issuing the LOCK-VIEWING-KEYS command. 

The Overview and Home Position in 4115 
Terminals 

The 4115 overview, the overall display of terminal space, 
differs from other raster display terminals. The other raster 
display terminals display normalized screen coordinate 
space in response to pressing the OVERVIEW key and dis
play all of terminal space in response to pressing the CTRL
OVERVIEW key. The 4115, since it can cover a much 
greater range of sizes, allows you to set an overview window 
with the SET-OVERVIEW-WINDOW command. 

The 4115 overview window is a rectangular area of terminal 
space just like any other window in terminal space, and is 
analogous to terminal space in other raster display termi
nals. When you define an overview window, you also define 
a partialview window. The partialview window is approxi
mately the lower four-fifths of the overview window. It has 
the same relationship the overview window as normalized 
screen space has to terminal space in other raster display 
terminals. 

4110 SERIES HOST 

RASTER GRAPHICS 

When the 4115 operator presses the CTRL-OVERVIEW 
key, the terminal displays the overview window in the cur
rent screen viewport. When the operator presses the 
OVERVIEW key, the terminal displays the partialview win
dow in the current viewport. 

In addition to modifying the action of the OVERVIEW key, 
when you change the size of the overview window, you 
change the coordinates of the cursor HOME position. The 
4115 HOM E position for the cursor is always the upper left 
corner of the partialview window. 

Fixup Level 

The Jixup level determines whether graphics primitives are 
displayed as they are received, and whether a segment's 
image is removed when it is deleted or repositioned. The 
fixup levels are thresholds, any level exceeding a given 
threshold will cause action at that fixup level action below to 
take place. 

Hint 

If you have a large segment and want to delete it quickly, 
set the fixup level to 0, delete the segment, restore the fixup 
level to its original value, and finally give the RENEW-VIEW 
command. 

View Display Cluster 

A view display cluster is a group of views, which are defined 
by the SET-VIEW-DISPLAY-CLUSTER command. When 
you change a window or renew a view on any member of a 
view display cluster, the operation is performed on all mem
bers of the cluster. 

To allow the operator to ZOOM and PAN a display that is 
made up of several overlayed views, you should make every 
view in the display a member of the view display cluster. 
Zoom and pan operations then affect the entire cluster and 
not just a single view on a single surface. 

A view can belong to only one view display cluster. It must 
be explicitly set as a member of a view display cluster by the 
SET-VIEW-DISPLAY-CLUSTER command. You can assign 
views that have not yet been created to view display clus
ters, these views will then be members of the cluster as 
soon as you create them. 

8-23 



c' 



Section 9 

GRAPHICS INPUT 

INTRODUCTION 

In many graphics applications, a terminal operator must en
ter graphics coordinates for the host program. Graphics In
put (GIN) is a means for an operator to quickly enter 
graphics data without typing in numeric coordinates. 

Using GIN from a host program is quite simple. Your pro
gram must enable GIN for the device and function you want 
the operator to use. The operator performs the GIN func
tions and the terminal returns GIN function reports to the 
host. The host program then parses the GIN function re
ports and uses that information. 

This section discusses the various types of GIN available on 
the 4110 series terminals, how to enable them from the 
host, and how to parse the returned GIN function reports. 

PREVIEW 

• Gin translates operator action to xy coordinates that the 
terminal transmits to the host in a GIN function report. 

• The terminal supports three different GIN devices: 

• The pair of keyboard thumbwheels, which is the stan
dard GIN device. 

• A graphics tablet, which is an optional GIN device. 

• A TEKTRONIX 4662 or 4663 Plotter connected to an 
optional 3PPI port, which can serve as a GIN device. 

• The terminal supports three GIN functions: Locate, Pick, 
and Stroke. 

• You choose the GIN device and GIN function with a de
vice-Junction-code when you enable GIN. 

• You can parse all three GIN function reports with the 
same algorithm. 

• You can enable all GIN devices at the same time. 

4110 SERIES HOST 

• You can select signature characters to identify the re
ports from each device and function you use. 

• You can provide visible feedback to the operator by se
lecting inking, rubberbanding, or a user defined cursor as 
the GIN cursor. 

• You can control the possible GIN locations by using 
gridding. 

• You can map areas on GIN devices to windows in termi
nal space. 

CONCEPTS AND DEFINITIONS 

A GIN-Event is an action that causes the terminal to send a 
GIN-Report. To cause a GIN event from a terminal, the op
erator presses a keyboard key; from a tablet, the operator 
presses the pen to the tablet or a key on the puck; from a 
plotter, the operator presses a plotter button. You can 
cause a GIN-event from the host with the REPORT-GIN
POINT command. 

A GIN device is a physical device that can be used to gener
ate graphics input to the terminal. The standard GIN device 
is a pair of thumbwheels located on the terminal keyboard. 
The operator uses the thumbwheels to move the GIN cursor 
on the display screen and then presses a key to cause a 
GIN event, which sends a GIN report to the host. 

An optional GIN device is a graphics tablet connected to the 
terminal. While the operator moves a puck or pen around 
the surface of the graphics tablet, the terminal continuously 
monitors the position of the puck or pen and updates the 
graphics cursor on the screen. With Locate and Pick func
tions, one GIN event occurs each time the operator presses 
the puck button or presses the pen against the tablet. With 
the Stroke function, GIN events occur as long as the pen or 
puck button is held down, at a ·rate determined by the cur
rent time and distance filters. 

9-1 



GIN 

Although it is not as convenient as a tablet or the 
thumbwheels, you can use a TEKTRONIX 4662 or 4663 
Plotter as a GIN device. Using the plotter's joystick, the 
operator moves the plotter stylUS to the desired position 
and presses a button on the plotter. The plotter sends a 
plotter GIN report to the terminal, which the terminal trans
lates into 4110 format and transmits to the host. The termi
nal's GIN cursor moves only when the plotter sends a GIN 
report, since it does not track the plotter stylus motion. 

GIN FUNCTIONS 

4110 Series terminals support three different types of GIN: 
Locate, Pick, and Stroke. When you enable GIN with the 
command ENABLE-GIN, you choose (1) a number of GIN
events and (2) a GIN device and a GIN function. You specify 
the GIN device and function with a device-function-code. 

Locate Function 

The GIN Locate function is, as the name suggests, used for 
locating individual pOints. The operator moves the GIN de
vice, then signals a GIN event. In response, the terminal 
sends a GIN Locate report to the host that contains the xy 
location of the GIN cursor and the code for the key that was 
pressed to signal the GIN event. You can use Locate func
tion from any GIN device. 

Pick Function 

The GIN Pick function is used to select a segment. The ter
minal sends a GIN Pick report in response to a GIN event. In 
addition to the xy location of the GIN cursor and key code, 
the GIN Pick report contains the segment number and pick 
ID number of the part of the first detectable segment that is 
near the graphics cursor. 

By adjusting the size of the pick aperture, you can control 
how near the graphics cursor must be to a segment to pick 
it. The pick aperture is a programmable-size square in nor
malized screen space centered at the location of the graph
ics cursor. 

9-2 

Before a segment can be Picked, several conditions must be 
met. 

• The segment must be detectable 

• The segment must be visible 

• The segment must be in the current view 

• A portion of the segment must be inside the pick aperture 

• The operator must cause a GIN event 

You can use any GIN device with the Pick function. 

Stroke Function 

The GIN Stroke function sends a stream of GIN Stroke re
ports to the host as the operator moves the puck or pen 
over the graphics tablet. You can use the stroke function for 
such things as tracing hand-drawn graphics for computer 
entry. 

Each movement of the puck or pen can cause a large num
ber of GIN Stroke reports. You can filter Stroke function 
GIN by time, distance, or both to reduce the number of GIN 
Stroke reports the terminal sends. A time filter suppresses 
GIN Stroke reports until a certain amount of time has 
elapsed. A distance filter suppresses GIN Stroke reports 
until the pen or puck has moved a minimum distance. 

You cannot enable the GIN Stroke function on the terminal 
thumbwheels or on a plotter, you can use the GIN Stroke 
function only on a graphics tablet. 

GIN Space 

Each GIN device maps into a virtual 12-bit (4096 x 4096) 
GIN space. GIN devices that do not have a square working 
area map their working area into the lower portion of GIN 
space. Figure 9-1 shows how a graphics tablet, a plotter, 
and a terminal's thumbwheels map into GIN space. The po
sition of the GIN device is always defined in terms of GIN 
space. 

GIN location is the point in terminal space that corresponds 
to the location of the GIN device. It is this xy coordinate that 
is returned by a GIN function report. This report is given in 
12-bit format, 10-bit format, or 32-bit format depending on 
the terminal mode. 

4110 SERIES HOST 

( 



\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Figure 9-1. GIN Devices Mapped into GIN Space. 

4110 SERIES HOST 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

GIN 

9-3 



GIN 

GIN Windows and Areas 

You can control the mapping of GIN space into terminal 
space with the two commands SET-GIN-WINDOW and 
SET-GIN-AREA. The command SET-GIN-WINDOW estab
lishes a rectangular GIN window (similar to a window for a 
view) in terminal space. The command SET-GIN-AREA es
tablishes a rectangular area (similar to a viewport) in GIN 
space and links it to a GIN window. The terminal maps 
pOints from the GIN area into either the GIN window or the 

window associated with the viewport specified in the SET
GIN-AREA command. The terminal sends GIN reports to 
the host in terms of terminal space. 

You can define multiple GIN areas on tablets and plotters. 
The terminal retains GIN areas until you completely cover 
them with a new GIN area. GIN that is not within a GIN area 
is mapped into the default 4095 x 4095 GIN window. Figure 
9-2 shows how several GIN areas map into windows in ter
minal space. 

Figure 9-2. GIN Areas Mapped on GIN Windows. 

9-4 4110 SERIES HOST 

( 

( 



When the operator causes a GIN event, the terminal com
pares the GIN device location with all active GIN areas for 
that device and function and translates it into terminal space 
accordingly. If GIN areas overlap, the terminal uses the 
most recently defined GIN area for the transformation into 
terminal space. The terminal then updates the GIN cursor, 
and sends a GIN function report. 

GIN Function Reports 

Each GIN event causes the terminal to send a GIN function 
report to the host. The format of all three GIN function re
ports is very similar. The GIN-Locate-report and GIN Stroke 
report have the same format, while the GIN-Pick-report also 
returns the segment number and Pick ID of the Picked seg
ment. GIN function reports include: 

1. The Signature-character (if used) for that device and 
function 

2. The key-character (the ASCII code for the key pressed or 
button pushed) 

3. The GIN location as an xy-report 

4. The segment number that was picked as an int-report 
(GIN-Pick-report only) 

5. The pick ID of the picked segment as an int-report (GIN
Pick-report only) 

6. The EOM indicator (if used) 

This sequence is sent for each GIN function report until the 
number of events for which you enabled GIN has been 
reached, or the device~function is disabled with a DISABLE
GIN command, CANCEL command, or CANCEL keystroke. 
The final GIN function report sends a normal GIN report and 
appends: 

7. The terminal-signature-character (if used) 

8. The EOM indicator 

4110 SERIES HOST 

GIN 

Parsing GIN Function Reports 

You can use the same algorithm for parsing all three GIN 
function reports. A general-purpose algorithm is: 

Input-character: (key-char) 
Input-xy: (x),(y) 
If (function) is (pick) 

Input-int: (segment) 
Input-int: (pickID) 

(function) may be an input argument to this procedure or could 
be determined from the signature-character 

GIN COMMANDS 

The names of most GIN commands suggest their action. 
The following list of GIN commands includes notes on when 
and how you might use these commands. See the 4100 Se
ries Command Reference Manual for the syntax and another 
discussion of these commands. 

Enabling and Disabling GIN 

ENABLE-GIN. This command turns on GIN. The parameters 
of this command (1) enable GIN for a number of GIN-Events 
and (2) enable a particular device for a single function. While 
you can enable each device for only one function at a time, 
you can enable more than one device at one time. 

DISABLE-GIN. This command disables GIN. You can dis
able a specific device and function with a device-function 
code, or you can disable all GIN with a parameter of -1. 
When you disable a GIN device, it always sends a terminat
ing-GIN report. 

REPORT-GIN-POINT. This command forces the terminal to 
return a GIN report. If you want the current graphics beam 
position rather than the current GIN position, you can use a 
device-function-code of -2. If the device-function is not en
abled, the device will send a terminating-GIN report. 

Emulating Earlier Terminals. The commands that allow 
you to emulate a 4010 Series terminal with a 4110 series 
terminal are: 

• ENABLE-4010-GIN 
• ENABLE-4953-TABLET-GIN 

• DISABLE-4953-TABLET-GIN 

9-5 



GIN 

Setting GIN Parameters 

SET -GIN-AREA. This command establishes a mapping 
from GIN space to terminal space for a device function. 
Many such mappings for each device function can be de
fined at the same time. A mapping is deleted when its GIN 
area is totally covered by a new GIN area. All mappings are 
deleted when you set the GIN area to full GIN space. 

A GIN area is associated with a GIN window (not associated 
with any viewport and set by the SET-GIN-WINDOW com
mand), or associated with a window that in turn is associ
ated with a viewport that you specify as a parameter to the 
SET-GIN-AREA command. 

SET-GIN-WINDOW. This command establishes a rectangu
lar area in terminal space as the GIN window. You can use 
this window with the SET-GIN-AREA command. 

SET -GIN-CURSOR. This command selects a segment for 
use as the graphics cursor for a particular device-function
code. You may want to choose different shaped segments 
for each device and function you use to help the operator 
differentiate between the device functions. 

SET -GIN-GRIDDING. When you want to restrict the set of 
possible GIN positions for Locate or Pick functions, you can 
use GIN-gridding. You specify the spacing of an invisible 
grid in terminal space. The GIN device location is always 
translated to the next smaller intersection of the permissible 
GIN grid positions. 

SET -GIN-INKING. You can use inking in Locate or Stroke 
functions so the operator can see where the GIN device has 
moved. When the operator causes a GIN event, the terminal 
draws a line from the location of the last GIN event to the 
current GIN location. You can start inking after the first point 
is entered if you enable inking with a parameter of 1 , or start 
inking immediately from the GIN-Display-Start-Point if you 
enable inking with a parameter of 2. 

SET -GIN-RUBBERBANDING. You can use rubberbanding 
with the Locate function to draw an elastic line between the 
current cursor position and the location of the GIN-Display
Start-Point or last GIN event. As with inking, you can control 
rubberbanding with parameters to the command. The termi
nal draws the elastic line in the current line index and style. 
Raster display terminals draw the elastic line in XOR mode 
while DVST terminals draw it in refresh mode. 

SET-GIN-DISPLAY-START-POINT. Use this command to 
set an initial pOint for GIN inking or GIN rubberbanding. 

9·6 

SET-GIN-STROKE~FILTERING. When you are using Stroke 
function with a graphics tablet, you might want to restrict 
the volume of GIN Stroke reports that the terminal gener
ates. You can specify (1) the minimum distance the tablet 
device moves before sending a report with a distance filter 
and (2) the minimum time between reports with a time filter. 
The two filters act as thresholds and must both be ex
ceeded before the terminal will send a GIN Stroke report. 

SET ·PICK-APERTURE. This command sets the size of the 
aperture, or acceptance area around the graphics cursor. 
The pick aperture is a square in normalized screen space 
centered on the GIN location. To pick a segment, the pick 
aperture (nust cover at least a portion of the segment you 
want to pick. 

Hint. You can make the pick aperture visible to the operator 
by defining a GIN cursor segment as a box the same size as 
the pick aperture, although the segment image can change 
size if the terminal zooms. If a pick aperture of approxi
mately 40 units on a side is usable, you can use a marker 
(box shape), as the graphics cursor. Markers do not change 
size when zoomed. 

HINTS AND EXAMPLES 

Picking and Dragging 

You can let an operator choose a shape from a menu and 
move it to a desired location by following this sequence: 

1. Prepare a menu of segment shapes for the operator to 
select. Be sure that the segments are detectable when 
you define them. 

2. Give the command ENABLE-GIN for one pick function 
from the thumbwheels. Instruct the operator to move the 
graphics cursor to point to the selection and press a key. 

4. When the operator causes the GIN event, make the se
lected segment the graphics cursor. Instruct the operator 
to move the shape to the desired location. 

5. The operator can now move the shape with the 
thumbwheels. When the shape is in position and the op
erator causes a GIN event, leave the segment there. 
Your program then could copy the segment and return 
the shape to its position in the menu. 

Hint. Don't set the pick aperture too small. If the aperture is 
too small, the operator will find it almost impossible to put 
the aperture on a a segment. 

Hint. Keep segments fairly simple if you plan to pick and 
drag them. If they get too complex, segments take too long 
to redraw. 

4110 SERIES HOST 

( 

( 

(~ 



Section 10 

THE TERMINAL FILE SYSTEM 

INTRODUCTION 

4110 Series terminals use a file transfer system to move 
data between various ports and devices connected to the 
terminal. This section discusses the terminal file system and 
how to use it from the host program. This section discusses 
the following: 

• The terminal file system and the devices and commands 
available on a standard terminal. 

• Local disk storage (Options 42, 43, and 45). 

• Option 10, the three port peripheral interface (3PPI). 

• The color copier interface (Option 09). 

• The Direct Memory Access interface (Option 03) 

THE TERMINAL FILE SYSTEM 

PREVIEW 

• The terminal file system transfers files between devices. 

• Devices are identified by a device name in the format 
XX:, followed by a parameter. 

• Device name parameters can be an empty string, a file 
name, a string, or an integer, depending on the device. 

• File name parameters in the format FILENAME.EXT 
identify files on file-structured devices. 

• The full identification of a file on a file-structured device is 
its file name appended to the device in the format 
XX:FILENAME.EXT. 

• The standard terminal device is HO:, the host communi
cation port. 

4110 SERIES HOST 

• The standard terminal file commands are: 

• COpy 

• SPOOL 

• STOP-SPOOLING 

• SAVE 

• LOAD 

• REPORT-DEVICE-STATUS 

CONCEPTS AND DEFINITIONS 

The terminal file system transfers files between the host 
computer, the terminal, and options attached to the termi
nal. These files may contain terminal commands, alphanu
meric data, or binary images. 

Devices and Device Names 

Devices. A device (identified by a device name and param
eter) is a source or destination for files. 

Device Names. A device name is a three character se
quence, two alphanumeric characters followed by a colon, 
which uniquely identifies a device. For example: 

• HO: identifies the host port 

• FO: identifies disk drive 0 

• P1: identifies port one on the three port peripheral 
interface. 

If a device name is not given with a file name parameter, the 
default device FO: is assumed. Thus, MYFILE.DAT identifies 
a file on device FO: and is equivalent to FO:MYFILE.DAT. 

10-1 



FILE SYSTEM 

Device Parameters. A device parameter is a string or integer 
following the device name. The permissible device param
eters depend on the particular device in use. In general, file
structured devices take a file name as a parameter, while 
format-dependent devices take an integer as a parameter. 

Types of Devices 

Physical Devices. A physical device has a tangible mecha
nism associated with it. An example of a physical device is a 
disk drive. 

Physical devices can be port devices such as HO:, or file
structured devices such as FO:. Only file-structured devices 
use file names; for example, you could use FO:AB.DAT, but 
not HO:AB.DAT. 

Pseudo Devices. A pseudo device has no tangible mecha
nism associated with it. For example, in a terminal equipped 
with the DMA interface, the pseudo device SG: is the seg
ment list. Some pseudo devices take a parameter after the 
device name to specify a particular data type. For example, 
the pseudo device DM:, which is the DMA interface, allows 
a parameter of 0 or 1 to indicate the type of data transfer. 

Source and Destination Devices. Some devices originate 
data only, some receive data only, and some transfer data in 
either direction. You should know whether a particular de
vice can function as a source or destination or both. 

File Names 

On file-structured devices, each file is identified by a unique 
file name. A file name is a sequence of up to eight charac
ters followed by an optional extension. The extension, if 
present, consists of a period (.) followed by up to three char
acters. Characters allowed in file names are printable ASCII 
characters from! to N, excluding: sp, ., ., :, ;, <, =, >, ?, [, 
], and_. 

File names appear in the format FILENAME.EXT. When you 
want to specify a file on a particular device, append the file 
name to the device name. For example, to specify a file 
called MYFILE.SEG on Drive 1, you would use 
F1 :MYFILE.SEG. 

10-2 

General File Transfer Operations 

The terminal begins a file transfer operation by opening the 
source and destination devices. The terminal reads the 
source device into an internal file block, then writes the con
tents of that block to the destination device, and repeats the 
process until it encounters an end-of-file mark. The terminal 
then closes both the source and destination devices. 

The terminal operator can abort any file transfer operation 
(except a SPOOL) by pressing the CANCEL key. 

Your program cannot abort a file transfer (except a SPOOL) 
because all data from the host is placed in the input queue 
and examined only after the transfer is complete. You can 
abort a SPOOL with the STOP-SPOOLING command. 

DEVICES AND COMMANDS IN THE 
STANDARD TERMINAL 

Standard Terminal Devices 

The only device on a standard terminal is HO:, the host 
communication port. HO: is a physical device that can both 
send and receive data. HO: is a port structured device and 
takes no parameters during file transfers. The communica
tions parameters that control HO: are discussed in Section 
3, Communications. 

Standard Terminal Commands 

The following commands are normally used with terminal 
options. These commands are available to the operator in 
Setup mode, or to the host programmer as escape 
sequences. 

COPY. Use this command to transfer a file from one device 
to another. You can copy an entire disk to another by speci
fying only the device names such as COpy FO: TO F1:. 

SPOOL. Use this command to move a file from one device 
to another without visibly affecting the operation of the ter
minal. The data transfer is carried on in the background of 
normal terminal operation. You can only do one spool oper
ation at a time. 

4110 SERIES HOST 

( 

( 



STOP-SPOOLING. Abort a spooling operation with this 
command. 

SAVE. Use this command to save data from the terminal's 
memory to a device. You can save each of the following: 

• One or more macro definitions 

• One or more segments 

• Pixels from the current pixel viewport (raster display ter
minals only) 

LOAD. This command transfers a file from a device to the 
terminal command processor, so that all commands in the 
file are executed as if they had come from the host. Al
though you can load a file from HO:, it has no advantages, 
and since keystrokes are queued until the operation is over, 
it has the disadvantage of preventing operator interaction. 

REPORT-DEVICE-STATUS. Use this command to force the 
terminal to send a device-status report. You can use the 
device-status report to determine whether the terminal rec
ognizes a device. 

HINTS 

When you transfer files to and from the host computer, sev
eral problems can arise: 

• Problem - The data contains the bypass control charac
ter in the data. Since the terminal sends files to the host 
using the report system, if the host echoes the bypass 
control character, it will bring the terminal out of Bypass 
mode and enter the file characters in the terminal input 
queue. This can lead to several potentially disastrous 
situations. 

If the host and terminal are using flagging, the terminal 
will flag the host when the input queue is full. The termi
nal then waits to complete the file transfer, and the host 
waits for a flag to resume sending. In addition, the termi
nal in Prompt mode has the transmission gate closed, 
and it cannot open it until it gets a prompt from the host. 

• Problem - The lines the terminal sends are too long for 
the host's input buffer. 

• Problem - The host can send and receive only 7 -bit 
characters, but the device you want to transfer a file to or 
from uses 8-bit characters. 

4110 SERIES HOST 

FILE SYSTEM 

Many different solutions to these problems exist, but they 
require close attention to the communications environment. 
Some possible solutions are: 

• Do all file transfers in Block mode 

• If possible, disable the remote echo from the host 

• Send files to the host with Prompt mode disabled. Set 
the EOM string to CRLF and set the transmit delay large 
enough to allow the host input system to prepare for the 
input. 

• In Prompt mode, change the bypass control character 
with your host program to a character that is not in the 
data. Send the bypass control character to the terminal 
after the host receives each line of data. 

• Use the SET-REPORT-LiNE-LENGTH command with a 
parameter of 0 if your file has line terminators such as cR 

embedded within the data (such as a text file). If your file 
has infrequent line terminators (such as the result of a 
SAVE command) set the report line length smaller than 
your host's input buffer. 

• To send 8-bit characters to or from a 7 -bit only host you 
can sometimes use DATA parity if you can control and 
read control bit 8 (the parity bit). 

As an example, assume you are sending a text file from the 
terminal to the host with full duplex communications in 
Prompt mode. The host echoes the terminal and the remote 
echo cannot be disabled. You must consider the following: 

• Wait after setting the prompt string for about 1/4 second 
so the terminal can process the command and recognize 
the prompt string. 

• Set the EOM string to the host terminator characters. 
Usually this is cR or CRNU• 

• Set the bypass cancel character to the last character the 
host echoes on each line. This is frequently LF or CR. (If 
the host does not echo, set the bypass control character 
to NU.) 

• With a text file containing embedded host terminator 
characters (CR) set the report max line length to O. 

• Set the transmit delay long enough to allow the host to 
be ready to accept the input. 

10·3 



FILE SYSTEM 

LOCAL DISK STORAGE 

PREVIEW 

• Disks are used to store frequently used data. 

• Disk utility commands permit formatting disks, and re
naming, deleting, and protecting files. 

• The DIRECTORY command lists the names of the files 
on the disk, the amount of used space, and the amount 
of available space. 

• Files are automatically created as needed. 

• Disk drives are available with Options 42, 43, and 45. 

DISK DEVICES AND COMMANDS 

Devices and Device Names 

Option 42. Option 42 gives one flexible disk drive, named 
FO:. 

Option 43. Option 43 gives two flexible disk drives. The 
right drive is FO: and the left drive is F1:. 

Option 45. Option 45 adds devices with names in the format 
Xn:. The first character is a member of the set S, T, U, V, W, 
X, Y. This letter associates the device with a particular con
troller, such as a hard disk or flexible disk controller on the 
Option 45 bus. The address of a controller (usually set by 
hardware straps) determines the letter associated with that 
controller; address ° with letter S, 1 with T, and so forth. The 
second character is a member of the set 0, 1, 2, 3 and speci
fies a particular hardware device associated with that con
troller. 

Although valid Option 45 device names range from SO: 
through Y 4:, the terminal file system will only accept those 
device names that are present. To determine whether an 
Option 45 device is present, use the REPORT-DEVICE
STATUS command for the device in question. 

Disk Commands 

In addition to the general file transfer commands, the termi
nal contains several commands that pertain only to the disk 
options. These commands are: 

FORMAT. Normally used by the operator in SETUP mode, 
the FORMAT command formats a disk for later use. 

NOTE 

Terminals with version 6.0 or later software use a for
mat that is totally incompatible with earlier versions. 
You cannot interchange disks with different formats. 
You must update older format disks with a utility pro
gram in order to preserve older files. 

DELETE-FILE. This command lets you delete a named file 
from a specified device. 

DIRECTORY. This command transfers the directory file of 
an entire disk or of a single file to another device, or to the 
terminal screen if a destination device is not given. 

For example, to send the directory of FO: to the host port, 
use the escape sequence: 

EcJD FO: TO HO: 

10-4 REV, JAN 1984 4110 SERIES HOST 

( 

c 

( 



THREE-PORT PERIPHERAL 
INTERFACE {3PPI} 

PREVIEW 

• The 3PPI adds three port-devices: PO:, P1:, and P2: 

• Each port has an independent set of communications 
parameters. 

• The 3PPI has port-protocol identifiers for Tektronix 
peripherals. 

• Some plotter port-protocol identifiers will change pens on 
a multipen plotter to match a color index. 

• Some plotter port-protocol identifiers take GIN informa
tion from the plotter joystick and passes it to the 
terminal. 

• The printer port-protocol identifier allows the terminal to 
print information on a local printer. 

• A general purpose port-protocol identifier allows the ter
minal file system to communicate with any RS-232C, full
duplex peripheral. 

• The terminal file system allows two-way file transfers be
tween host and peripheral ports or between two periph
eral ports. 

DEVICES AND COMMANDS 

Option 10, the 3PPI, adds three RS-232 ports, PO:, P1:, and 
P2:. to the terminal file system. Each port is independent of 
the other ports. To each port, you can assign its own port
protocol identifier, port baud rate, port EOF string, port EOl 
string, port flagging mode, port parity, and port stop bits. 

The end-of-file mark for the peripheral ports is the port-EOF
string. 

3PPI Commands 

PORT-ASSIGN. This command assigns a port-protocol 
identifier to a port device. The port-protocol identifiers and 
their actions are summarized in the 4110 Series Command 
Reference Manual. All port-protocol identifiers except 
PPORT are output only, so a port with other than PPORT 
as a driver is a destination only device. 

4110 SERIES HOST 

FilE SYSTEM 

MAP-INDEX-TO-PEN. TEKTRONIX 4663 Plotters have two 
pens and 4662 Plotters with Option 31 have eight. This 
command assigns a color index to a pen number. After this 
assignment, the plotter will select the pen you specify when 
plotting in that index. You must repeat this command for 
each color index assignment. 

Be aware that this command does not color sort; the plotter 
changes pens each time the line index changes. Most multi
color plotting can be done much faster by completing a plot 
in each color before moving to the next. 

PLOT. This command saves all currently visible segments 
(in the current view on a raster display terminal) to any valid 
device. 

PORT-COPY. This command allows a bidirectional file 
transfer between two ports when both can be used either as 
source or destination, such as HO: and PO: or P1: and P2:. 

This command is most useful when you want to drive a 
plotter directly. You can issue plotter-format commands and 
receiving plotter-format reports as if the plotter were con
nected directly to the host. The port-protocol identifier must 
be PPORT, since the other port-protocol identifiers are not 
valid sources. 

Either device can send an EOF mark to end the file transfer. 

REPORT-PORT-STATUS. This command returns the cur
rent parameter settings for a particular port device. For de
tails of the syntax of the report, see the 
PORT-STATUS-REPORT message type in the 4110 Series 
Command Reference Manual. 

Commands to Set 3PPI Communications Parameters. 
You can set the various port communications parameters 
with these commands: 

• SET-PORT-BAUD-RATE 

• SET-PORT-EOF-STRING 

• SET-PORT-EOl-STRING _. 

• SET-PORT-FlAGGING-MODE 

• SET-PORT-PARITY 

• SET-PORT-STOP-BITS 

10-5 



FILE SYSTEM 

THE COLOR HARD COPIER 

PREVIEW 

• Option 09 adds two devices: 

o SC:, a pseudo device, is valid only as a source for the 
COPY command. 

o HC:, a physical port device, is valid only as a destina
tion for the COpy and SPOOL commands. 

COMMANDS AND DEVICES 

Option 09 does not add any commands to the terminal file 
system. The only two commands that can be used with this 
option are COpy and SPOOL. 

SC: 

SC: is a pseudo device that translates information from the 
display screen to a color hard copy format file. This file 
causes the color hard copy unit to reproduce the contents of 
the current pixel viewport. You can use SC: only as a 
source device for the COPY command. 

HC: 

HC: is the color hard copy port. A TEKTRONIX 4691 Color 
Hard Copy unit must be connected and functioning for a file 
transfer to occur. 

HC: is a destination-only device and is only valid for the 
commands COPY and SPOOL. You can control how the 
copy will appear by appending a parameter to the HC: de
vice. HC:O will make a copy in which a black screen back
ground will print white and "HC: 1" will make a copy where 
the black screen background will print black. 

You can copy from HO: directly to HC:. HC:, however, re
quires a-bit data in a special format. 

HINTS 

The file transfer from SC: to HC: takes several minutes if 
the pixel viewport is large. To retain use of the terminal, you 
should COpy SC: to a file on a disk, and then SPOOL from 
the disk file to HC:. 

THE DMA INTERFACE 

Option 3A, the DMA Interface, gives the host computer ac
cess to the terminal's internal memory via an extremely 
high-speed transmission route. 

PREVIEW 

• The DMA interface adds no new commands. 

• The DMA interface adds five new devices. 

COMMANDS AND DEVICES 

Option 3A, the DMA (Direct Memory Access) Interface adds 
one physical device and four pseudo devices. 

The four pseudo devices require special data formats. For 
details on these data formats, see the 4115 Option 3A In
struction Manual. 

OM:. DM: is a physical port device, the actual DMA inter
face. DM: is valid as a source and destination for all 
commands. 

OS:. The pseudo device DS: is the vector display list. DS: is 
valid as a destination for the command COpy only. 

SG:. The pseudo device SG: is the retained segment list. 
SG: is both a source and destination device for the COPY 
command. 

PX:. The pseudo device PX: is the current pixel viewport. It 
is both a source and destination device for the COpy 
command. 

eM:. The pseudo device CM: is the color map. It is both a 
source and destination for the COPY command. 

USING DMA FROM THE HOST PROGRAM 

DMA is a very high-speed file transfer between the host and 
the terminal. To use DMA from the host, ready the host and 
give a file transfer command through normal 
communications. 

10-6 REV, NOV 1983 4110 SERIES HOST 

( 

( 

( 



Section 11 

SOFTWARE COMPATIBILITY 

USING 4010 PROGRAMS 
WITH 4110 SERIES TERMINALS 

Most software written for earlier Textronix terminals (4010 
Series) will run with little or no modification on 4110 Series 
terminals. You can connect a 4110 Series terminal, put the 
terminal into Setup mode, set the necessary parameters, 
and run the 4010 Series software. 

You must do the following to run 4110 Series software on a 
4110 Series terminal: 

• Set the communications parameters. 

• Disable the dialog area. 

• Set the window size, if necessary. 

4110 SERIES HOST 

• For the 4115, set the overview window. 

• For GIN, use the command SET-TABLET-HEADER
CHARACTERS. 

• For GIN, use the command SET-TABLET-STATUS
STRAP. 

See the appropriate sections of this manual and the 4110 
Series Command Reference Manual for details. 

A 4110 Series terminal running 4010 software executes 
4010 commands in nearly the same way as a 4010 Series 
terminal does. 4110 Series alphatext sizes are not the same 
as 4010 Series alphatext size; the display will have a differ
ent appearance. 

11-1 



(: 

( 

~~-----~~~- ~ - ---- -



Appendix A 

ASCII CHART 

878685 gig g 1 I g 1 11 1 11 g g g 1 g 1 1 ,II' g g 1 1 .IJ 1 1 

BITS NUMBERS UPPERCASE LOWERCASE 
CONTROL SYMBOLS SYMBOLS SYMBOLS 84838281 

0 
NU 2° 0L 40 

Sp 
60 100 120 140 160 

a g g g 0 @ p , 
P 112 0 NUL o 10 DLE 16 20 32 30 46 40 64 50 8060 96 70 

1 
SH 21 01 

41 61 101 121 141 161 

g gg 1 ! 1 A Q a q 113 1 SOH 1 11 DCl 17 21 33 31 49 41 65 51 81 61 97 71 

2 
Sx 2202 42 62 102 122 142 162 

g g 1 g " 2 B R b r 
2 STX 2 12 DC2 18 22 34 32 50 42 66 52 82 62 98 72 114 

3 
Ex 

23 03 43 63 103 123 143 163 

g g 1 1 # 3 C S c S 
3 ETX 3 13 DC3 19 23 35 33 51 43 67 53 8363 99 73 115 

4 
ET 24 04 

44 64 104 124 144 164 

g 1 ,II' g $ 4 D T d t 
4 EOT 4 14 DC4 20 24 36 34 52 44 68 54 8464 100 74 116 

5 
EQ 25 NK 45 65 105 125 145 165 

,II' 1 a 1 0/0 5 E U e u 
5 ENQ 5 15 NAK 21 25 37 35 53 45 69 55 85 65 101 75 117 

6 
AK 26 Sy 46 66 106 126 146 166 

g 1 1 g & 6 F V f y 
6 ACK 6 16 SYN 22 26 38 36 54 46 70 56 86 66 102 76 118 

7 
BL 27 EB 47 67 107 127 147 167 , 

7 G W 9 103 
W g 1 1 1 

7 BEL 7 17 ETB 23 27 39 37 55 47 71 57 87 67 77 119 

10 30 CN 50 70 110 130 150 170 

1 gag BS ( 8 H X h x 
8 8 18 CAN 24 28 40 38 56 48 72 58 88 68 104 78 120 

11 31 51 71 111 131 151 171 

1 g .IJ 1 HT 919 EM 25 
) 9 I Y i y 121 9 29 41 39 57 49 73 59 89 69 105 79 

12 32
SB 

52 72 112 132 152 172 

A LF 10 
* . J Z j Z 1 g 1 g . 

lASUB 26 2A 42 3A 58 4A 74 SA 90 6A 106 7A 122 

13 
33 EC 53 73 113 133 153 

173 { 
1 g 1 1 VT + ; K [ k 

B 11 lB ESC 27 2B 43 3B 59 4B 75 5B 91 6B 107 7B 123 

14 34 54 74 114 134 154 174 

I ~24 1 1 ,II' g 
C FF 12 lC FS'28 

, < L , I 
2C 44 3C 604C 76 5C 92 6C 108 7C 

15 35 55 75 115 135 155 175 

} 125 
1 1 g 1 

D CR 13 lD GS 29 - - M ] m -2D 45 3D 61 4D 77 5D 93 6D 109 7D 

16 36 56 76 116 136 A 156 176 

1 1 1 g 
E So 14 lE RS • .J 

. > N n "" 2E 46 3E 62 4E 78 5E 4 6E 110 7E 126 

17 37 57 77 UNL 117 137 UNT 157 1770T 
1 1 1 1 SI 15 Us / ? 0 0 DEL - 7FRUBOUT127 F IF 31 2F 47 3F 634F 79 SF 95 6F 111 

*1 
I on some keyboards or systems 

KEY 
octal 25 

N K graphic representation 

hex 15 NAK 21 decimal 
3606-60 

mnemonic 

4110 SERIES HOST A-l 



( 

( 



Appendix B 

[NT PARAMETERS 

Example 1: You can manually convert integers to int parameters by 
either sucessive division or looking values up in a table. The 
4110 Series Command Reference Manual contains a set of 
tables for looking up arbitrary int values. This appendix 
contains a method for calculating int values and a list of 
integers from -4049 through 4049 and their corresponding 
intvalues. 

What int parameter represents + 31416? 

CALCULATING INTVALUES 

An int value consists of from 1 to 6 ASCII characters. The 
rightmost character is called the LoI character and the 
remaining characters (if present) are called HiI characters. 
The Lol character contains the sign value. 

To convert an integer to an int value, calculate the charac
ters from right to left as follows: 

1. Divide the absolute value of the integer by 16, reserving 
the quotient. Use the remainder to find the Lol. 

a. If the integer is positive, add 48 to the remainder. 
This is the ADE (ASCII decimal equivalent) of the 
Lol. 

b. If the integer is negative, add 32 to the remainder. 
This is the ADE (ASCII decimal equivalent) of the 
Lol. 

2. Divide the absolute value of the quotient by 64, reserv
ing the quotient if it is greater than zero. Add 64 to the 
remainder to obtain the ADE of the Hil. 

3. Repeat Step 2 as long as any values remain. 

As each value is calculated, look up the corresponding 
ASCII character and write it down from right to left. 

4110 SERIES HOST 

3146 
16 

(positive integer) 8 + 48 
56 
Lol 

Example 2: 

1963 
64 

43 + 64 
107 
Hil 

30 
64 

30 + 64 
94 
Hil 

31416 

1963 with remainder 8 

56 
ADE of "8" on ASCII chart 
a 

30 with remainder 43 

107 
ADE of "k" 
k 

o with remainder 30 

94 
ADE of "1\" 

1\ 

the int parameter I\ka. 

What int parameter represents -1024? 

1024 64 with remainder 0 
16 

(negative) 0 + 32 32 
32 ADEofsp 
Lol sp 

64 1 with remainder 0 
64 

0+64 64 
64 ADEof"@" 
Hil @ 

1 o with remainder 1 
64 

1 + 64 65 
65 ADE of liN' 
Hil A 

-1024 the int parameter A@sp. 

8-1 



INT PARAMETERS 

C 
Table B-1 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

0 0 -0 sp 50 C2 -50 C" 100 F4 -100 F$ 
0 -1 I 51 C3 -51 C# 101 F5 -101 F% 
2 2 -2 52 C4 -52 C$ 102 F6 -102 F& 
3 3 -3 # 53 C5 -53 C% 103 F7 -103 F' 
4 4 -4 $ 54 C6 -54 C& 104 F8 -104 F{ 
5 5 -5 % 55 C7 -55 C' 105 F9 -105 F) 
6 6 -6 & 56 C8 -56 C{ 106 F: -106 F* 
7 7 -7 57 C9 -57 C) 107 F' , -107 F+ 
8 8 -8 58 C: -58 C* 108 F< -108 F, 
9 9 -9 59 C· , -59 C+ 109 F= -109 F-

10 -10 * 60 C< -60 C, 110 F> -110 F. 
11 -11 + 61 C= -61 C- 111 F? -111 FI 
12 < -12 62 C> -62 C. 112 GO -112 GSp 
13 -13 63 C? -63 CI 113 G1 -113 GI 
14 > -14 64 DO -64 oSp 114 G2 -114 G" 
15 ? -15 I 65 01 -65 O! 115 G3 -115 G# 
16 AO -16 ASp 66 02 -66 0" 116 G4 -116 G$ 
17 A1 -17 A! 67 03 -67 0# 117 G5 -117 G% 
18 A2 -18 A" 68 04 -68 0$ 118 G6 -118 G& 
19 A3 -19 A# 69 05 -69 0% 119 G7 -119 G' 
20 A4 -20 A$ 70 06 -70 0& 120 G8 -120 G( 
21 A5 -21 A% 71 07 -71 0' 121 G9 -121 G) 
22 A6 -22 A& 72 08 -72 O( 122 G: -122 G* ( 23 A7 -23 A' 73 09 -73 D) 123 G; -123 G+ 
24 A8 -24 A{ 74 0: -74 0* 124 G< -124 G, 
25 A9 -25 A) 75 o· , -75 0+ 125 G= -125 G-
26 A: -26 A* 76 0< -76 0, 126 G> -126 G. 
27 A; -27 A+ 77 0= -77 0- 127 G? -127 GI 
28 A< -28 A, 78 0> -78 O. 128 HO -128 HSp 
29 A= -29 A- 79 O? -79 01 129 H1 -129 HI 
30 A> -30 A. 80 EO -80 ESp 130 H2 -130 H" 
31 A? -31 AI 81 E1 -81 EI 131 H3 -131 H# 
32 BO -32 BSp 82 E2 -82 E" 132 H4 -132 H$ 
33 B1 -33 B! 83 E3 -83 E# 133 H5 -133 H% 
34 B2 -34 B" 84 E4 -84 E$ 134 H6 -134 H& 
35 B3 -35 B# 85 E5 -85 E% 135 H7 -135 H' 
36 B4 -36 B$ 86 E6 -86 E& 136 H8 -136 H{ 
37 B5 -37 B% 87 E7 -87 E' 137 H9 -137 H) 
38 B6 -38 B& 88 E8 -88 E{ . 138 H: -138 H* 
39 B7 -39 B' 89 E9 -89 E) 139 H; -139 H+ 
40 B8 -40 B{ 90 E: -90 E* 140 H< -140 H, 
41 B9 -41 B) 91 E; -91 E+ 141 H= -141 H-
42 B: -42 B* 92 E< -92 E, 142 H> -142 H. 
43 B; -43 B+ 93 E= -93 E- 143 H? -143 HI 
44 B< -44 B, 94 E> -94 E. 144 10 -144 ISp 
45 B= -45 B- 95 E? -95 EI 145 11 -145 II 
46 B> -46 B. 96 FO -96 FSp 146 12 -146 I" 
47 B? -47 BI 97 F1 -97 FI 147 13 -147 1# 
48 CO -48 cSp 98 F2 -98 F" 148 14 -148 1$ 
49 C1 -49 CI 99 F3 -99 F# 149 15 -149 1% 

( 

B-2 4110 SERIES HOST 

-- ------------------------



INT PARAMETERS 

Table B-1 (cant) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

150 16 -150 1& 200 L8 -200 L( 250 0: -250 0* 
151 17 -151 I' 201 L9 -201 L) 251 O' , -251 0+ 
152 18 -152 I( 202 L: -202 L* 252 0< -252 0, 
153 19 -153 I) 203 L; -203 L+ 253 0= -253 0-
154 I: -154 1* 204 L< -204 L, 254 0> -254 O. 
155 I' , -155 1+ 205 L= -205 L- 255 O? -255 0/ 
156 I< -156 I, 206 L> -206 L. 256 PO -256 pSp 
157 1= -157 1- 207 L? -207 L/ 257 Pi -257 P! 
158 I> -158 I. 208 MO -208 MSp 258 P2 -258 P" 
159 I? -159 1/ 209 M1 -209 M! 259 P3 -259 P# 
160 JO -160 JSp 210 M2 -210 M" 260 P4 -260 P$ 
161 J1 -161 J! 211 M3 -211 M# 261 P5 -261 P% 
162 J2 -162 J" 212 M4 -212 M$ 262 P6 -262 P& 
163 J3 -163 J# 213 M5 -213 M% 263 P7 -263 P' 
164 J4 -164 J$ 214 M6 -214 M& 264 P8 -264 P( 
165 J5 -165 J% 215 M7 -215 M' 265 P9 -265 P) 
166 J6 -166 J& 216 M8 -216 M( 266 P: -266 P* 
167 J7 -167 J' 217 M9 -217 M) 267 p. , -267 P+ 
168 J8 -168 J( 218 M: -218 M* 268 P< -268 P, 
169 J9 -169 J) 219 M' , -219 M+ 269 P= -269 P-
170 J: -170 J* 220 M< -220 M, 270 P> -270 P. 
171 J' , -171 J+ 221 M= -221 M- 271 P? -271 P/ 
172 J< -172 J, 222 M> -222 M. 272 QO -272 QSp 
173 J= -173 J- 223 M? -223 M/ 273 Q1 -273 Q! 
174 J> -174 J. 224 NO -224 NSp 274 Q2 -274 Q" 
175 J? -175 J/ 225 N1 -225 N! 275 Q3 -275 Q# 
176 KO -176 KSp 226 N2 -226 N" 276 Q4 -276 Q$ 
177 K1 -177 K! 227 N3 -227 N# 277 Q5 -277 Q% 
178 K2 -178 K" 228 N4 -228 N$ 278 Q6 -278 Q& 
179 K3 -179 K# 229 N5 -229 N% 279 Q7 -279 Q' 
180 K4 -180 K$ 230 N6 -230 N& 280 Q8 -280 Q( 
181 K5 -181 K% 231 N7 -231 N' 281 Q9 -281 Q) 
182 K6 -182 K& 232 N8 -232 N( 282 Q: -282 Q* 
183 K7 -183 K' 233 N9 -233 N) 283 Q; -283 Q+ 
184 K8 -184 K( 234 N: -234 N* 284 Q< -284 Q, 
185 K9 -185 K) 235 N' , -235 N+ 285 Q= -285 Q-
186 K: -186 K* 236 N< -236 N, 286 Q> -286 Q. 
187 K' , -187 K+ 237 N= -237 N- 287 Q? -287 Q/ 
188 K< -188 K, 238 N> -238 N. 288 RO -288 RSp 
189 K= -189 K- 239 N? -239 N/ 289 R1 -289 R! 
190 K> -190 K. 240 00 -240 OSp 290 R2 -290 R" 
191 K? -191 K/ 241 01 -241 O! 291 R3 -291 R# 
192 LO -192 LSp 242 02 -242 0" 292 R4 -292 R$ 
193 L1 -193 L! 243 03 -243 0# 293 R5 -293 R% 
194 L2 -194 L" 244 04 -244 0$ 294 R6 -294 R& 
195 L3 -195 L# 245 05 -245 0% 295 R7 -295 R' 
196 L4 -196 L$ 246 06 -246 0& 296 R8 -296 R( 
197 L5 -197 L% 247 07 -247 0' 297 R9 -297 R) 
198 L6 -198 L& 248 08 -248 O( 298 R: -298 R* 
199 L7 -199 L' 249 09 -249 0) 299 R; -299 R+ 

4110 SERIES HOST 8-3 



[NT PARAMETERS 

( 
Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

300 R< -300 R, 350 U> -350 U. 400 YO -400 ySp 
301 R= -301 R- 351 U? -351 UI 401 Y1 -401 YI 
302 R> -302 R. 352 VO -352 VSp 402 Y2 -402 Y" 
303 R? -303 R/ 353 V1 -353 V! 403 Y3 -403 Y# 
304 SO -304 SSp 354 V2 -354 V" 404 Y4 -404 Y$ 
305 S1 -305 S! 355 V3 -355 V# 405 Y5 -405 Y% 
306 S2 -306 S" 356 V4 -356 V$ 406 Y6 -406 Y& 
307 S3 -307 S# 357 V5 -357 V% 407 Y7 -407 Y' 
308 S4 -308 S$ 358 V6 -358 V& 408 Y8 -408 Y( 
309 S5 -309 S% 359 V7 -359 V' 409 Y9 -409 Y) 
310 S6 -310 S& 360 V8 -360 V( 410 Y: -410 y* 
311 S7 -311 S' 361 V9 -361 V) 411 Y; -411 Y+ 
312 S8 -312 S( 362 V: -362 V* 412 Y< -412 Y, 
313 S9 -313 S) 363 V; -363 V+ 413 Y= -413 Y-
314 S: -314 S* 364 V< -364 V, 414 Y> -414 Y. 
315 S· , -315 S+ 365 V= -365 V- 415 Y? -415 YI 
316 S< -316 S, 366 V> -366 V. 416 ZO -416 ZSp 
317 S= -317 S- 367 V1 -367 VI 417 Z1 -417 ZI 
318 S> -318 S. 368 WO -368 WSp 418 Z2 -418 Z" 
319 S1 -319 SI 369 W1 -369 W! 419 Z3 -419 Z# 
320 TO -320 TSp 370 W2 -370 W" 420 Z4 -420 Z$ 
321 T1 -321 TI 371 W3 -371 W# 421 Z5 -421 Z% 
322 T2 -322 T" 372 W4 -372 W$ 422 Z6 -422 Z& 

( 323 T3 -323 T# 373 W5 -373 W% 423 Z7 -423 Z' 
324 T4 -324 T$ 374 W6 -374 W& 424 Z8 -424 Z( 
325 T5 -325 T% 375 W7 -375 W' 425 Z9 -425 Z) 
326 T6 -326 T& 376 W8 -376 W( 426 Z: -426 Z* 
327 T7 -327 T' 377 W9 -377 W) 427 Z; -427 Z+ 
328 T8 -328 T( 378 W: -378 W* 428 Z< -428 Z, 
329 T9 -329 T) 379 W; -379 W+ 429 Z= -429 Z-
330 T: -330 T* 380 W< -380 W, 430 Z> -430 Z. 
331 T· , -331 T+ 381 W= -381 W- 431 Z1 -431 ZI 
332 T< -332 T, 382 W> -382 W. 432 [0 -432 [sp 
333 T= -333 T- 383 W1 -383 WI 433 [1 -433 [\ 
334 T> -334 T. 384 XO -384 XSp 434 [2 -434 [" 
335 T1 -335 TI 385 X1 -385 XI 435 [3 -435 [# 
336 UO -336 USp 386 X2 -386 X" 436 [4 -436 [$ 
337 U1 -337 UI 387 X3 -387 X# 437 [5 -437 [% 
338 U2 -338 U" 388 X4 -388 X$ 438 [6 -438 [& 
339 U3 -339 U# 389 X5 -389 X% 439 [7 -439 [' 
340 U4 -340 U$ 390 X6 -390 X& 440 [8 -440 [( 
341 US -341 U% 391 X7 -391 X' 441 [9 -441 [) 
342 U6 -342 U& 392 X8 -392 X( 442 [: -442 [* 
343 U7 -343 U' 393 X9 -393 X) 443 [; -443 [+ 
344 U8 -344 U( 394 X: -394 X* 444 [< -444 [, 
345 U9 -345 U) 395 X; -395 X+ 445 [= -445 [-
346 U: -346 U* 396 X< -396 X, 446 [> -446 [. 
347 U; -347 U+ 397 X= -397 X- 447 [1 -447 [I 
348 U< -348 U, 398 X> -398 X. 448 \0 -448 \sp 
349 U= -349 U- 399 X? -399 XI 449 \1 -449 \1 

(! 

B-4 4110 SERIES HOST 



[NT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

450 \2 -450 \" 500 _4 -500 -$ 550 b6 -550 b& 
451 \3 -451 \# 501 _5 -501 _% 551 b7 -551 b' 
452 \4 -452 \$ 502 _6 -502 _& 552 b8 -552 b( 
453 \5 -453 \% 503 _7 -503 553 b9 -553 b) 
454 \6 -454 \& 504 _8 -504 -( 554 b: -554 b* 
455 \7 -455 \' 505 _9 -505 -) 555 bj -555 b+ 
456 \8 -456 \( 506 -. -506 556 b< -556 b, 
457 \9 -457 \) 507 -, -507 -+ 557 b= -557 b-
458 \: -458 \* 508 -< -508 558 b> -558 b. 
459 \j -459 \+ 509 -509 559 b? -559 bl 
460 \< -460 \, 510 -> -510 560 cO -560 cSp 
461 \= -461 \- 511 -? -511 -I 561 c1 -561 c! 
462 \> -462 \. 512 '0 -512 ,sp 562 c2 -562 c" 
463 \? -463 \I 513 '1 -513 '! 563 c3 -563 c# 
464 ]0 -464 ]sp 514 '2 -514 564 c4 -564 c$ 
465 ]1 -465 ]1 515 '3 -515 '# 565 c5 -565 c% 
466 ]2 -466 ]" 516 '4 -516 '$ 566 c6 -566 c& 
467 ]3 -467 ]# 517 '5 -517 '% 567 c7 -567 c' 
468 ]4 -468 ]$ 518 '6 -518 '& 568 c8 -568 c( 
469 ]5 -469 ]% 519 '7 -519 569 c9 -569 c) 
470 ]6 -470 ]& 520 '8 -520 '( 570 c: -570 c* 
471 ]7 -471 ]' 521 '9 -521 ') 571 Cj -571 c+ 
472 ]8 -472 ]( 522 '. -522 '* 572 c< -572 c, 
473 ]9 -473 ]) 523 ,. -523 '+ 573 c= -573 c-, 
474 ]: -474 ]* 524 '< -524 , 574 c> -574 c. , 
475 ]j -475 ]+ 525 '= -525 575 c? -575 cl 
476 ]< -476 ], 526 '> -526 576 dO -576 dSp 
477 ]= -477 ]- 527 '? -527 'I 577 d1 -577 d! 
478 ]> -478 ]. 528 aO -528 aSp 578 d2 -578 d" 
479 ]? -479 ]1 529 a1 -529 Ii! 579 d3 -579 d# 
480 AO -480 ASp 530 a2 -530 a" 580 d4 -580 d$ 
481 A1 -481 A! 531 a3 -531 a# 581 d5 -581 d% 
482 A2 -482 A" 532 a4 -532 a$ 582 d6 -582 d& 
483 A3 -483 A# 533 as -533 a% 583 d7 -583 d' 
484 A4 -484 A$ 534 a6 -534 a& 584 d8 -584 d( 
485 AS -485 A% 535 a7 -535 a' 585 d9 -585 d) 
486 A6 -486 A& 536 a8 -536 a( 586 d: -586 d* 
487 A7 -487 A' 537 a9 -537 a) 587 dj -587 d+ 
488 A8 -488 A( 538 a: -538 a* 588 d< -588 d, 
489 A9 -489 A) 539 aj -539 a+ 589 d= -589 d-
490 A: -490 A* 540 a< -540 a, 590 d> -590 d. 
491 A' , -491 A+ 541 a= -541 a- 591 d? -591 dl 
492 A< -492 A, 542 a> -542 a. 592 eO -592 eSp 
493 A= -493 A- 543 a? -543 al 593 e1 -593 e! 
494 A> -494 A. 544 bO -544 bSp 594 e2 -594 e" 
495 A? -495 AI 545 b1 -545 b! 595 e3 -595 e# 
496 _0 -496 _Sp 546 b2 -546 b" 596 e4 -596 e$ 
497 _1 -497 _I 547 b3 -547 b# 597 e5 -597 e% 
498 _2 -498 548 b4 -548 b$ 598 e6 -598 e& 
499 _3 -499 -# 549 b5 -549 b% 599 e7 -599 e' 

4110 SERIES HOST 8-5 



[NT PARAMETERS 

( 
Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: _n n int: n -n int: -n 

600 e8 -600 e( 650 h: -650 h* 700 k< -700 k, 
601 e9 -601 e) 651 h' , -651 h+ 701 k= -701 k-
602 e: -602 e* 652 h< -652 h, 702 k> -702 k. 
603 e; -603 e+ 653 h= -653 h- 703 k? -703 kl 
604 e< -604 e, 654 h> -654 h. 704 10 -704 ISp 
605 e= -605 e- 655 h? -655 hI 705 11 -705 II 
606 e> -606 e. 656 10 -656 ISp 706 12 -706 I" 
607 e? -607 el 657 11 -657 i! 707 13 -707 1# 
608 fO -608 fSp 658 12 -658 i" 708 14 -708 1$ 
609 f1 -609 fl 659 13 -659 1# 709 IS -709 1% 
610 f2 -610 f" 660 i4 -660 1$ 710 1& -710 1& 
611 f3 -611 f# 661 is -661 i% 711 17 -711 I' 
612 f4 -612 f$ 662 i& -662 i& 712 IS -712 I( 
613 fS -613 f% 663 17 -663 i' 713 19 -713 I) 
614 f& -614 f& 664 is -664 i( 714 I: -714 1* 
615 f7 -615 f' 665 i9 -665 i) 715 I' , -715 1+ 
616 fS -616 f( 666 I: -666 1* 716 I< -716 I, 
617 f9 -617 f) 667 i; -667 i+ 717 1= -717 1-
618 f: -618 f* 668 i< -668 i, 718 I> -718 I. 
619 f; -619 f+ 669 1= -669 i- 719 I? -719 II 
620 f< -620 f, 670 I> -670 I. 720 mO -720 mSp 
621 f= -621 f- 671 I? -671 II 721 m1 -721 m! 
622 f> -622 f. 672 jO -672 jSp 722 m2 -722 m" ( 623 f? -623 fl 673 j1 -673 j! 723 m3 -723 m# 
624 gO -624 gSp 674 j2 -674 j" 724 m4 -724 m$ 
625 g1 -625 g! 675 j3 -675 j# 725 mS -725 m% 
626 g2 -626 g" 676 j4 -676 j$ 726 m& -726 m& 
627 g3 -627 g# 677 jS -677 j% 727 m7 -727 m' 
628 g4 -628 g$ 678 j& -678 j& 728 m8 -728 m( 
629 gS -629 g% 679 j7 -679 j' 729 m9 -729 m) 
630 g& -630 g& 680 jS -680 j( 730 m: -730 m* 
631 g7 -631 g' 681 j9 -681 j) 731 m; -731 m+ 
632 gS -632 g( 682 j: -682 j* 732 m< -732 m, 
633 g9 -633 g) 683 j; -683 j+ 733 m= -733 m-
634 g: -634 g* 684 j< -684 j, 734 m> -734 m. 
635 g; -635 g+ 685 j= -685 j- 735 m? -735 ml 
636 g< -636 g, 686 j> -686 j. 736 nO -736 nSp 
637 g= -637 g- 687 j? -687 il 737 n1 -737 n! 
638 g> -638 g. 688 kO -688 kSp 738 n2 -738 n" 
639 g? -639 gl 689 k1 -689 k! 739 n3 -739 n# 
640 hO -640 hSp 690 k2 -690 k" 740 n4 -740 n$ 
641 h1 -641 h! 691 k3 -691 k# 741 nS -741 n% 
642 h2 -642 h" 692 k4 -692 k$ 742 n& -742 n& 
643 h3 -643 h# 693 kS -693 k% 743 n7 -743 n' 
644 h4 -644 h$ 694 k& -694 k& 744 nS -744 n( 
645 hS -645 h% 695 k7 -695 k' 745 n9 -745 n) 
646 h& -646 h& 696 kS -696 k( 746 n: -746 n* 
647 h7 -647 h' 697 k9 -697 k) 747 n; -747 n+ 
648 hS -648 h( 698 k: -698 k* 748 n< -748 n, 
649 h9 -649 h) 699 k' , -699 k+ 749 n= -749 n-

( 

8-6 4110 SERIES HOST 

---------------~~--~---------



INT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

750 n> -750 n. 800 rO -800 rSp 850 u2 -850 u" 
751 n? -751 nl 801 r1 -801 r! 851 u3 -851 u# 
752 00 -752 oSp 802 r2 -802 r" 852 u4 -852 u$ 
753 01 -753 o! 803 r3 -803 r# 853 uS -853 u% 
754 02 -754 0" 804 r4 -804 r$ 854 u6 -854 u& 
755 03 -755 0# 805 rS -805 r% 855 u7 -855 u' 
756 04 -756 0$ 806 r6 -806 r& 856 u8 -856 u( 
757 oS -757 0% 807 r7 -807 r' 857 u9 -857 u) 
758 06 -758 0& 808 r8 -808 r( 858 u: -858 u* 
759 07 -759 0' 809 r9 -809 r) 859 u; -859 u+ 
760 08 -760 o( 810 r: -810 r* 860 u< -860 u, 
761 09 -761 0) 811 r; -811 r+ 861 u= -861 u-
762 0: -762 0* 812 r< -812 r, 862 u> -862 u. 
763 0; -763 0+ 813 r= -813 r- 863 u? -863 ul 
764 0< -764 0, 814 r> -814 r. 864 vO -864 vSp 
765 0= -765 0- 815 r? -815 rl 865 v1 -865 v! 
766 0> -766 o. 816 sO -816 ssp 866 v2 -866 v" 
767 o? -767 01 817 s1 -817 s! 867 v3 -867 v# 
768 pO -768 pSp 818 s2 -818 s" 868 v4 -868 v$ 
769 p1 -769 pi 819 s3 -819 s# 869 vS -869 v% 
770 p2 -770 p" 820 s4 -820 s$ 870 v6 -870 v& 
771 p3 -771 p# 821 sS -821 s% 871 v7 -871 v' 
772 p4 -772 p$ 822 s6 -822 s& 872 v8 -872 v( 
773 pS -773 p% 823 s7 -823 s' 873 v9 -873 v) 
774 p6 -774 p& 824 s8 -824 s( 874 v: -874 v* 
775 p7 -775 p' 825 s9 -825 s) 875 v· , -875 v+ 
776 p8 -776 p( 826 s: -826 s* 876 v< -876 v, 
777 p9 -777 p) 827 s; -827 s+ 877 v= -877 v-
778 p: -778 p* 828 s< -828 s, 878 v> -878 v. 
779 p; -779 p+ 829 s= -829 s- 879 v? -879 vI 
780 p< -780 p, 830 s> -830 s. 880 wO -880 wSp 
781 p= -781 p- 831 s? -831 sl 881 w1 -881 w! 
782 p> -782 p. 832 to -832 tSp 882 w2 -882 w" 
783 p? -783 pI 833 t1 -833 t! 883 w3 -883 w# 
784 qO -784 qSp 834 t2 -834 t" 884 w4 -884 w$ 
785 q1 -785 q! 835 t3 -835 t# 885 wS -885 w% 
786 q2 -786 q" 836 t4 -836 t$ 886 w6 -886 w& 
787 q3 -787 q# 837 tS -837 t% 887 w7 -887 w' 
788 q4 -788 q$ 838 t6 -838 t& 888 w8 -888 w( 
789 qS -789 q% 839 t7 -839 t' 889 w9 -889 w) 
790 q6 -790 q& 840 t8 -840 t( 890 w: -890 w* 
791 q7 -791 q' 841 t9 -841 t) 891 w; -891 w+ 
792 q8 -792 q( 842 t: -842 t* 892 w< -892 w, 
793 q9 -793 q) 843 t; -843 t+ 893 w= -893 w-
794 q: -794 q* 844 t< -844 t; 894 w> -894 w. 
795 q; -795 q+ 845 t= -845 t- 895 w? -895 wI 
796 q< -796 q, 846 t> -846 t. 896 xO -896 xSP 
797 q= -797 q- 847 t? -847 tl 897 x1 -897 x! 
798 q> -798 q. 848 uO -848 uSp 898 x2 -898 x" 
799 q? -799 ql 849 u1 -849 u! 899 x3 -899 x# 

4110 SERIES HOST 8-7 



[NT PARAMETERS 

( 
Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

900 x4 -900 x$ 950 {6 -950 {& 1000 NS -1000 N( 
901 xS -901 x% 951 17 -951 {' 1001 N9 -1001 N) 
902 x6 -902 x& 952 IS -952 {( 1002 N: -1002 * 
903 x7 -903 x' 953 {9 -953 {) 1003 N; -1003 N+ 
904 xS -904 x( 954 I: -954 {* 1004 N< -1004 
905 x9 -905 x) 955 I; -955 {+ 1005 -1005 
906 x: -906 x* 956 1< -956 {, 1006 N> -1006 N. 
907 x' , -907 x+ 957 {= -957 {- 1007 N? -1007 NI 
908 x< -908 x, 958 {> -958 {. 1008 010 -1008 D1Sp 
909 x= -909 x- 959 {? -959 II 1009 011 -1009 Dl! 
910 x> -910 x. 960 10 -960 ISp 1010 012 -1010 01" 
911 x? -911 xl 961 h -961 II 1011 013 -1011 01# 
912 yO -912 ySp 962 12 -962 I" 1012 014 -1012 01$ 
913 y1 -913 y! 963 13 -963 1# 1013 015 -1013 01 % 
914 y2 -914 y" 964 14 -964 1$ 1014 016 -1014 01& 
915 y3 -915 y# 965 15 -965 1% 1015 017 -1015 01, 

916 y4 -916 y$ 966 16 -966 1& 1016 D1S -1016 D1( 
917 y5 -917 y% 967 17 -967 I' 1(i17 019 -1017 01) 
918 y6 -918 y& 968 Is -968 ~ 1018 01: -1018 01 * 
919 y7 -919 y' 969 19 -969 I) 1019 01; -1019 01 + 
920 yS -920 y( 970 I: -970 1* 1020 01 < ,-1020 01, 
921 y9 -921 y) 971 I; -971 1+ 1021 01 = -1021 01 -
922 y: -922 y* 972 k -972 I, 1022 01> -1022 01. 

( 923 y; -923 y+ 973 1= -973 1- 1023 Dl? -1023 011 
924 y< -924 y, 974 b -974 I. 1024 A@O -1024 A@sp 
925 y= -925 y- 975 I? -975 II 1025 A@1 -1025 A@I 
926 y> -926 y. 976 }O -976 }sp 1026 A@2 -1026 A@" 
927 y? -927 yl 977 }1 -977 )! 1027 A@3 -1027 A@# 
928 zO -928 zSp 978 }2 -978 }" 1028 A@4 -1028 A@$ 
929 z1 -929 zl 979 }3 -979 }# 1029 A@S -1029 A@% 
930 z2 -930 z" 980 }4 -980 }$ 1030 A@6 -1030 A@& 
931 z3 -931 z# 981 }S -981 }% 1031 A@7 -1031 A@' 
932 z4 -932 z$ 982 }6 -982 }& 1032 A@S -1032 A@( 
933 zS -933 z% 983 }7 -983 }' 1033 A@9 -1033 A@) 
934 z6 -934 z& 984 }S -984 )( 1034 A@: -1034 A@* 
935 z7 -935 z' 985 }9 -985 } ) 1035 A@; -1035 A@+ 
936 zS -936 z( 986 }: -986 }* 1036 A@< -1036 A@, 
937 z9 -937 z) 987 }; -987 }+ 1037 A@= -1037 A@-
938 z: -938 z* 988 }< -988 }, 1038 A@> -1038 A@. 
939 z; -939 z+ 989 }= -989 }- 1039 A@? -1039 A@/ 
940 z< -940 z, 990 }> -990 }. 1040 AAO -1040 AAsp 
941 z= -941 z- 991 }? -991 }I 1041 AA1 -1041 AA! 
942 z> -942 z. 992 NO -992 NSp 1042 AA2 -1042 AA" 
943 z? -943 zl 993 N1 -993 N! 1043 AA3 -1043 AA# 
944 {O -944 {sp 994 N2 -994 " 1044 AA4 -1044 AA$ 
945 {1 -945 {! 995 N3 -995 N# 1045 AAS -1045 AA% 
946 {2 -946 {" 996 N4 -996 N$ 1046 AA6 -1046 AA& 
947 {3 -947 {# 997 NS -997 N 0/0 1047 AA7 -1047 AA' 
948 {4 -948 {$ 998 N6 -998 N& 1048 AAS -1048 AA( 
949 {S -949 {% 999 N7 -999 1049 AA9 -1049 AA) 

( 

B-8 4110 SERIES HOST 



INT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

1050 AA: -1050 AA* 1100 AD< -110() AD, 1150 AG> -1150 AG. 
1051 AA; -1051 AA+ 1101 AD= -1101 AD- 1151 AG? -1151 AG/ 
1052 AA< -1052 AA, 1102 AD> -1102 AD. 1152 AHO -1152 AHsp 
1053 AA= -1053 AA- 1103 AD? -1103 AD/ 1153 AH1 -1153 AH! 
1054 AA> -1054 AA. 1104 AEO -1104 AEsp 1154 AH2 -1154 AH" 
1055 AA? -1055 AA/ 1105 AE1 -1105 AE! 1155 AH3 -1155 AH# 
1056 ABO -1056 ABsp 1106 AE2 -1106 AE" 1156 AH4 -1156 AH$ 
1057 AB1 -1057 AB! 1107 AE3 -1107 AE# 1157 AHS -1157 AH% 
1058 AB2 -1058 AB" 1108 AE4 -1108 AE$ 1158 AH6 -1158 AH& 
1059 AB3 -1059 AB# 1109 AES -1109 AE% 1159 AH7 -1159 AH' 
1060 AB4 -1060 AB$ 1110 AE6 -1110 AE& 1160 AH8 -1160 AH( 
1061 ABS -1061 AB% 1111 AE7 -1111 AE' 1161 AH9 -1161 AH) 
1062 AB6 -1062 AB& 1112 AE8 -1112 AE( 1162 AH: -1162 AH* 
1063 AB7 -1063 AB' 1113 AE9 -1113 AE) 1163 AH; -1163 AH+ 
1064 AB8 -1064 AB( 1114 AE: -1114 AE* 1164 AH< -1164 AH, 
1065 AB9 -1065 AB) 1115 AE; -1115 AE+ 1165 AH= -1165 AH-
1066 AB: -1066 AB* 1116 AE< -1116 AE, 1166 AH> -1166 AH. 
1067 AB; -1067 AB+ 1117 AE= -1117 AE- 1167 AH? -1167 AH/ 
1068 AB< -1068 AB, 1118 AE> -1118 AE. 1168 AIO -1168 Alsp 
1069 AB= -1069 AB- 1119 AE? -1119 AE/ 1169 Ali -1169 AI! 
1070 AB> -1070 AB. 1120 AFO -1120 AFsp 1170 AI2 -1170 AI" 
1071 AB? -1071 AB/ 1121 AFi -1121 AF! 1171 AI3 -1171 AI# 
1072 ACO -1072 ACsp 1122 AF2 -1122 AF" 1172 AI4 -1172 AI$ 
1073 AC1 -1073 AC! 1123 AF3 -1123 AF# 1173 AIS -1173 AI% 
1074 AC2 -1074 AC" 1124 AF4 -1124 AF$ 1174 AI6 -1174 AI& 
1075 AC3 -1075 AC# 1125 AFS -1125 AF% 1175 AI7 -1175 AI' 
1076 AC4 -1076 AC$ 1126 AF6 -1126 AF& 1176 AI8 -1176 AI( 
1077 ACS -1077 AC% 1127 AF7 -1127 AF' 1177 AI9 -1177 AI) 
1078 AC6 -1078 AC& 1128 AF8 -1128 AF( 1178 AI: -1178 AI* 
1079 AC7 -1079 AC' 1129 AF9 -1129 AF) 1179 AI; -1179 AI+ 
1080 AC8 -1080 AC( 1130 AF: -1130 AF* 1180 AI< -1180 AI, 
1081 AC9 -1081 AC) 1131 AF; -1131 AF+ 1181 AI= -1181 AI-
1082 AC: -1082 AC* 1132 AF< -1132 AF, 1182 AI> ~1182 AI. 
1083 AC; -1083 AC+ 1133 AF= -1133 AF- 1183 AI? -1183 AI/ 
1084 AC< -1084 AC, 1134 AF> -1134 AF. 1184 AJO -1184 AJsp 
1085 AC= -1085 AC- 1135 AF? -1135 AF/ 1185 AJi -1185 AJ! 
1086 AC> -1086 AC. 1136 AGO -1136 AGsp 1186 AJ2 -1186 AJ" 
1087 AC? -1087 AC/ 1137 AG1 '-1137 AG! 1187 AJ3 -1187 AJ# 
1088 ADO -1088 ADsp 1138 AG2 -1138 AG" 1188 AJ4 -1188 AJ$ 
1089 AD1 -1089 AD! 1139 AG3 -1139 AG# 1189 AJS -1189 AJ% 
1090 AD2 -1090 AD" 1140 AG4 -1140 AG$ 1190 AJ6 -1190 AJ& 
1091 AD3 -1091 AD# 1141 AGS -1141 AG% 1191 AJ7 -1191 AJ' 
1092 AD4 -1092 AD$ 1142 AG6 -1142 AG& 1192 AJ8 -1192 AJ( 
1093 ADS -1093 AD% 1143 AG7 -1143 AG' 1193 AJ9 -1193 AJ) 
1094 AD6 -1094 AD& 1144 AG8 -1144 AG( 1194 AJ: -1194 AJ* 
1095 AD7 -1095 AD' 1145 AG9 -1145 AG) 1195 AJ; -1195 AJ+ 
1096 AD8 -1096 AD( 1146 AG: -1146 AG* 1196 AJ< -1196 AJ, 
1097 AD9 -1097 AD) 1147 AG; -1147 AG+ 1197 AJ= -1197 AJ-
1098 AD: -1098 AD* 1148 AG< -1148 AG, 1198 AJ> -1198 AJ. 
1099 AD; -1099 AD+ 1149 AG= -1149 AG- 1199 AJ? -1199 AJ/ 

4110 SERIES HOST 8-9 



INT PARAMETERS 

C ; \ I 
Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

1200 AKO -1200 AKsp 1250 AN2 -1250 AN" 1300 AQ4 -1300 AQ$ 
1201 AK1 -1201 AK! 1251 AN3 -1251 AN# 1301 AQS -1301 AQ% 
1202 AK2 -1202 AK" 1252 AN4 -1252 AN$ 1302 AQ6 -1302 AQ& 
1203 AK3 -1203 AK# 1253 ANS -1253 AN% 1303 AQ7 -1303 AQ' 
1204 AK4 -1204 AK$ 1254 AN6 -1254 AN& 1304 AQS -1304 AQ( 
1205 AKS -1205 AK% 1255 AN7 -1255 AN' 1305 AQ9 -1305 AQ) 
1206 AK6 -1206 AK& 1256 ANS -1256 AN( 1306 AQ: -1306 AQ* 
1207 AK7 -1207 AK' 1257 AN9 -1257 AN) 1307 AQ; -1307 AQ+ 
1208 AKS -1208 AK( 1258 AN: -1258 AN* 1308 AQ< -1308 AQ, 
1209 AK9 -1209 AK) 1259 AN; -1259 AN+ 1309 AQ= -1309 AQ-
1210 AK: -1210 AK* 1260 AN< -1260 AN, 1310 AQ> -1310 AQ. 
1211 AK; -1211 AK+ 1261 AN= -1261 AN- 1311 AQ? -1311 AQI 
1212 AK< -1212 AK, 1262 AN> -1262 AN. 1312 ARO -1312 ARsp 
1213 AK= -1213 AK- 1263 AN? -1263 ANI 1313 AR1 -1313 AR! 
1214 AK> -1214 AK. 1264 AOO -1264 AOsp 1314 AR2 -1314 AR" 
1215 AK? -1215 AKI 1265 A01 -1265 AO! 1315 AR3 -1315 AR# 
1216 ALO -1216 ALsp 1266 A02 -1266 AO" 1316 AR4 -1316 AR$ 
1217 AL1 -1217 ALI 1267 A03 -1267 AO# 1317 ARS -1317 AR% 
1218 AL2 -1218 AL" 1268 A04 -1268 AO$ 1318 AR6 -1318 AR& 
1219 AL3 -1219 AL# 1269 AOS -1269 AO% 1319 AR7 -1319 AR' 
1220 AL4 -1220 AL$ 1270 A06 -1270 AO& 1320 ARS -1320 AR( 
1221 ALS -1221 AL% 1271 A07 -1271 AO' 1321 AR9 -1321 AR) 
1222 AL6 -1222 AL& 1272 AOS -1272 AO( 1322 AR: -1322 AR* 

( 1223 AL7 -1223 AL' 1273 A09 -1273 AO) 1323 AR; -1323 AR+ \ 

1224 ALS -1224 AL( 1274 AO: -1274 AO* 1324 AR< -1324 AR, 
1225 AL9 -1225 AL) 1275 AO; -1275 AO+ 1325 AR= -1325 AR-
1226 AL: -1226 AL* 1276 AO< -1276 AO, 1326 AR> -1326 AR. 
1227 AL; -1227 AL+ 1277 AO= -1277 AO- 1327 AR? -1327 ARI 
1228 AL< -1228 AL, 1278 AO> -1278 AO. 1328 ASO -1328 ASsp 
1229 AL= -1229 AL- 1279 AO? -1279 AOI 1329 AS1 -1329 AS! 
1230 AL> -1230 AL. 1280 APO -1280 Apsp 1330 AS2 -1330 AS" 
1231 AL? -1231 ALI 1281 AP1 -1281 AP! 1331 AS3 -1331 AS# 
1232 AMO -1232 AMsp 1282 AP2 -1282 AP" 1332 AS4 -1332 AS$ 
1233 AM1 -1233 AM! 1283 AP3 -1283 AP# 1333 ASS -1333 AS% 
1234 AM2 -1234 AM" 1284 AP4 -1284 AP$ 1334 AS6 -1334 AS& 
1235 AM3 -1235 AM# 1285 APS -1285 AP% 1335 AS7 -1335 AS' 
1236 AM4 -1236 AM$ 1286 AP6 -1286 AP& 1336 ASS -1336 AS( 
1237 AMS -1237 AM% 1287 AP7 -1287 AP' 1337 AS9 -1337 AS) 
1238 AM6 -1238 AM& 1288 APS -1288 AP( 1338 AS: -1338 AS* 
1239 AM7 -12:39 AM' 1289 AP9 -1289 AP) 1339 AS; -1339 AS+ 
1240 AMS -1240 AM( 1290 AP: -1290 AP* 1340 AS< -1340 AS, 
1241 AM9 -1241 AM) 1291 AP; -1291 AP+ 1341 AS= -1341 AS-
1242 AM: -1242 AM* 1292 AP< -1292 AP, 1342 AS> -1342 AS. 
1243 AM; -1243 AM+ 1293 AP= -1293 AP- 1343 AS? -1343 ASI 
1244 AM< -1244 AM, 1294 AP> -1294 AP. 1344 ATO -1344 ATsp 
1245 AM= -1245 AM- 1295 AP? -1295 API 1345 AT1 -1345 AT! 
1246 AM> -1246 AM. 1296 AQO -1296 AQsp 1346 AT2 -1346 AT" 
1247 AM? -1247 AMI 1297 AQ1 -1297 AQ! 1347 AT3 -1347 AT# 
1248 ANO -1248 ANsp 1298 AQ2 -1298 AQ" 1348 AT4 -1348 AT$ 
1249 AN1 -1249 AN! 1299 AQ3 -1299 AQ# 1349 ATS -1349 AT% 

B-10 4110 SERIES HOST 



[NT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

1350 AT6 -1350 AT& 1400 AW8 -1400 AW( 1450 AZ: -1450 AZ" 
1351 AT7 -1351 AT' 1401 AW9 -1401 AW) 1451 AZj -1451 AZ+ 
1352 AT8 -1352 AT( 1402 AW: -1402 AW" 1452 AZ< -1452 AZ, 
1353 AT9 -1353 AT) 1403 AWj -1403 AW+ 1453 AZ= -1453 AZ-
1354 AT: -1354 AT" 1404 AW< -1404 AW, 1454 AZ> -1454 AZ. 
1355 ATj -1355 AT+ 1405 AW= -1405 AW- 1455 AZ? -1455 AZ/ 
1356 AT< -1356 AT, 1406 AW> -1406 AW. 1456 A[O -1456 A[sp 
1357 AT= -1357 AT- 1407 AW? -1407 AW/ 1457 A[1 -1457 A[I 
1358 AT> -1358 AT. 1408 AXO -1408 AXsp 1458 A[2 -1458 A[" 
1359 AT? -1359 AT/ 1409 AX1 -1409 AX! 1459 A[3 -1459 A[# 
1360 AUO -1360 AUsp 1410 AX2 -1410 AX" 1460 A[4 -1460 A[$ 
1361 AU1 -1361 AUI 1411 AX3 -1411 AX# 1461 A[5 -1461 A[% 
1362 AU2 -1362 AU" 1412 AX4 -1412 AX$ 1462 A[6 -1462 A[& 
1363 AU3 -1363 AU# 1413 AX5 -1413 AX% 1463 A[7 -1463 A[' 
1364 AU4 -1364 AU$ 1414 AX6 -1414 AX& 1464 A[8 -1464 A[( 
1365 AU5 -1365 AU% 1415 AX7 -1415 AX' 1465 A[9 -1465 AD 
1366 AU6 -1366 AU& 1416 AX8 -1416 AX( 1466 A[: -1466 A[" 
1367 AU7 -1367 AU' 1417 AX9 -1417 AX) 1467 A[j -1467 A[+ 
1368 AU8 -1368 AU( 1418 AX: -1418 AX" 1468 A[< -1468 A[, 
1369 AU9 -1369 AU) 1419 AXj -1419 AX+ 1469 A[= -1469 A[-
1370 AU: -1370 AU" 1420 AX< -1420 AX, 1470 A[> -1470 A[. 
1371 AUj -1371 AU+ 1421 AX= -1421 AX- 1471 A[? -1471 A[/ 
1372 AU< -1372 AU, 1422 AX> -1422 AX. 1472 A\O -1472 A\sp 
1373 AU= -1373 AU- 1423 AX? -1423 AX/ 1473 A\1 -1473 A\! 
1374 AU> -1374 AU. 1424 AVO -1424 AVsp 1474 A\2 -1474 A\" 
1375 AU? -1375 AU/ 1425 AV1 -1425 AV! 1475 A\3 -1475 A\# 
1376 AVO -1376 AVsp 1426 AV2 -1426 AV" 1476 A\4 -1476 A\$ 
1377 AV1 -1377 AV! 1427 AV3 -1427 AV# 1477 A\5 -1477 A\% 
1378 AV2 -1378 AV" 1428 AV4 -1428 AV$ 1478 A\6 -1478 A\& 
1379 AV3 -1379 AV# 1429 AV5 -1429 AV% 1479 A\7 -1479 A\' 
1380 AV4 -1380 AV$ 1430 AV6 -1430 AV& 1480 A\8 -1480 A\( 
1381 AV5 -1381 AV% 1431 AV7 -1431 AV' 1481 A\9 -1481 A\) 
1382 AV6 -1382 AV& 1432 AV8 -1432 AV( 1482 A\: -1482 A\" 
1383 AV7 -1383 AV' 1433 AV9 -1433 AV) 1483 A\j -1483 A\+ 
1384 AV8 -1384 AV( 1434 AV: -1434 AV" 1484 A\< -1484 A\, 
1385 AV9 -1385 AV) 1435 AVj -1435 AV+ 1485 A\= -1485 A\-
1386 AV: -1386 AV" 1436 AV< -1436 AV, 1486 A\> -1486 A\. 
1387 AVj -1387 AV+ 1437 AV= -1437 AV- 1487 A\? -1487 A\I 
1388 AV< -1388 AV, 1438 AV> -1438 AV. 1488 A]O -1488 A]sp 
1389 AV= -1389 AV- 1439 AV? -1439 AV/ 1489 A]1 -1489 A]! 
1390 AV> -1390 AV. 1440 AZO -1440 AZsp 1490 A]2 -1490 A]" 
1391 AV? -1391 AV/ 1441 AZ1 -1441 AZ! 1491 A]3 -1491 A]# 
1392 AWO -1392 AWsp 1442 AZ2 -1442 AZ" 1492 A]4 -1492 A]$ 
1393 AW1 -1393 AW! 1443 AZ3 -1443 AZ# 1493 A]5 -1493 A]% 
1394 AW2 -1394 AW" 1444 AZ4 -1444 AZ$ 1494 A]6 -1494 A]& 
1395 AW3 -1395 AW# 1445 AZ5 -1445 AZ% 1495 A]7 -1495 A]' 
1396 AW4 -1396 AW$ 1446 AZ6 -1446 AZ& 1496 A]8 -1496 A]( 
1397 AW5 -1397 AW% 1447 AZ7 -1447 AZ' 1497 A]9 -1497 An 
1398 AW6 -1398 AW& 1448 AZ8 -1448 AZ( 1498 A]: -1498 A]" 
1399 AW7 -1399 AW' 1449 AZ9 -1449 AZ) 1499 A]j -1499 A]+ 

4110 SERIES HOST 8-11 



[NT PARAMETERS 

( \ 
) 

Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

1500 A)< -1500 A), 1550 A'> -1550 A'. 1600 AdO -1600 Adsp 
1501 A)= -1501 A)- 1551 A'? -1551 A'! 1601 Ad1 -1601 Ad! 
1502 A» -1502 A). 1552 AaO -1552 Aasp 1602 Ad2 -1602 Ad" 
1503 A)? -1503 A)! 1553 Aa1 -1553 Aa! 1603 Ad3 -1603 Ad# 
1504 A/\O -1504 A/\sp 1554 Aa2 -1554 Aa" 1604 Ad4 -1604 Ad$ 
1505 A/\1 -1505 A/\! 1555 Aa3 -1555 Aa# 1605 Ad5 -1605 Ad% 
1506 A/\2 -1506 A/\" 1556 Aa4 -1556 Aa$ 1606 Ad6 -1606 Ad& 
1507 A/\3 -1507 A/\# 1557 Aa5 -1557 Aa% 1607 Ad7 -1607 Ad' 
1508 A/\4 -1508 A/\$ 1558 Aa6 -1558 Aa& 1608 AdS -1608 Ad( 
1509 A/\5 -1509 A/\ % 1559 Aa7 -1559 Aa' 1609 Ad9 -1609 Ad) 
1510 A/\6 -1510 A/\& 1'560 AaS -1560 Aa( 1610 Ad: -1610 Ad* 
1511 A/\7 -1511 A/\' 1561 Aa9 -1561 Aa) 1611 Ad; -1611 Ad+ 
1512 A/\S -1512 A/\( 1562 Aa: -1562 Aa* 1612 Ad< -1612 Ad, 
1513 A/\9 -1513 A/\) 1563 Aa; -1563 Aa+ 1613 Ad= -'1613 Ad-
1514 A/\: -1514 A/\* 1564 Aa< -1564 Aa, 1614 Ad> -1614 Ad. 
1515 A/\; -1515 A/\+ 1565 Aa= -1565 Aa- 1615 Ad? -1615 Ad! 
1516 A/\< -1516 A/\, 1566 Aa> -1566 Aa. 1616 AeO -1616 Aesp 
1517 A/\= -1517 A/\- 1567 Aa? -1567 Aa! 1617 Ae1 -1617 Ael 
1518 A/\> -1518 A/\. 1568 AbO -1568 Absp 1618 Ae2 -1618 Ae" 
1519 A/\? -1519 A/\! 1569 Ab1 -1569 Ab! 1619 Ae3 -1619 Ae# 
1520 A-O -1520 A-sp 1570 Ab2 -1570 Ab" 1620 Ae4 -1620 Ae$ 
1521 A_1 -1521 A-! 1571 Ab3 -1571 Ab# 1621 Ae5 -1621 Ae% 
1522 A-2 -1522 A-" 1572 Ab4 -1572 Ab$ 1622 Ae6 -1622 Ae& ( 1523 A-3 -1523 A-# 1573 Ab5 -1573 Ab% 1623 Ae7 -1623 Ae' 
1524 A-4 -1524 A-$ 1574 Ab6 -1574 Ab& 1624 AeS -1624 Ae( 
1525 A_5 -1525 A-% 1575 Ab7 -1575 Ab' 1625 Ae9 -1625 Ae) 
1526 A-6 -1526 A-& 1576 AbS -1576 Ab( 1626 Ae: -1626 Ae* 
1527 A-7 -1527 A-' 1577 Ab9 -1577 Ab) 1627 Ae; -1627 Ae+ 
1528 A-S -1528 A-( 1578 Ab: -1578 Ab* 1628 Ae< -1628 Ae, 
1529 A_9 -1529 A-) 1579 Ab; -1579 Ab+ 1629 Ae= -1629 Ae-
1530 A-: -1530 A-* 1580 Ab< -1580 Ab, 1630 Ae> -1630 Ae. 
1531 A_; -1531 A-+ 1581 Ab= -1581 Ab- 1631 Ae? -1631 Aej 
1532 A_< -1532 A_, 1582 Ab> -1582 Ab. 1632 AfO -1632 Afsp 
1533 A_= -1533 A_- 1583 Ab? -1583 Ab! 1633 Af1 -1633 Af! 
1534 A_> -1534 A_. 1584 AcO -1584 Acsp 1634 Af2 -1634 Af" 
1535 A_? -1535 A_! 1585 Ac1 -1585 Ac! 1635 Af3 -1635 Af# 
1536 A'O -1536 A'sp 1586 Ac2 -1586 Ac" 1636 Af4 -1636 Af$ 
1537 A'1 -1537 A'! 1587 Ac3 -1587 Ac# 1637 Af5 -1637 Af% 
1538 A'2 -1538 A'" 1588 Ac4 -1588 Ac$ 1638 Af6 -1638 Af& 
1539 A'3 -1539 A'# 1589 Ac5 -1589 Ac% 1639 Af7 -1639 Af' 
1540 A'4 -1540 A'$ 1590 Ac6 -1590 Ac& 1640 AfS -1640 Af( 
1541 A'5 -1541 A'% 1591 Ac7 -1591 Ac' 1641 Af9 -1641 Af) 
1542 A'6 -1542 A'& 1592 AcS -1592 Ac( 1642 Af: -1642 Af* 
1543 A'7 -1543 A" 1593 Ac9 -1.593 Ac) 1643 Af; -1643 AH 
1544 A'S -1544 A'( 1594 Ac: -1594 Ac* 1644 Af< -1644 At, 
1545 A'9 -1545 A') 1595 Ac; -1595 Ac+ 1645 At= -1645 At-
1546 A': -1546 A'* 1596 Ac< -1596 Ac, 1646 Af> -1646 At. 
1547 A'; -1547 A'+ 1597 Ac= -1597 Ac- 1647 Af? -1647 Af! 
1548 A'< -1548 A', 1598 Ac> -1598 Ac. 1648 AgO -1648 AgSp 
1549 A'= -1549 A'- 1599 Ac? -1599 Ac! 1649 Ag1 -1649 Agi 

(~ 

8-12 4110 SERIES HOST 

- ----_.- - ----.---~ ------_._---------- ----~.~-.-~~~~--~~~~~-



[NT PARAMETERS 

Table B-1 (cent) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

1650 Ag2 -1650 Ag" 1700 Aj4 -1700 Aj$ 1750 Am6 -1750 Am& 
1651 Ag3 -1651 Ag# 1701 AjS -1701 Aj% 1751 Am7 -1751 Am' 
1652 Ag4 -1652 Ag$ 1702 Aj6 -1702 Aj& 1752 Am8 -1752 Am( 
1653 AgS -1653 Ag% 1703 Aj7 -1703 Aj' 1753 Am9 -1753 Am) 
1654 Ag6 -1654 Ag& 1704 Aj8 -1704 Aj( 1754 Am: -1754 Am' 
1655 Ag7 -1655 Ag' 1705 Aj9 -1705 Ai) 1755 Am; -1755 Am+ 
1656 Ag8 -1656 Ag( 1706 Aj: -1706 Aj' 1756 Am< -1756 Am, 
1657 Ag9 -1657 Ag) 1707 Aj; -1707 Aj+ 1757 Am= -1757 Am-
1658 Ag: -1658 Ag' 1708 Aj< -1708 Aj, 1758 Am> -1758 Am. 
1659 Ag; -1659 Ag+ 1709 Aj= -1709 Aj- 1759 Am? -1759 AmI 
1660 Ag< -1660 Ag, 1710 Aj> -1710 Aj. 1760 AnO -1760 Ansp 
1661 Ag= -1661 Ag- 1711 Ai? -1711 Ajl 1761 Ani -1761 An! 
1662 Ag> -1662 Ag. 1712 AkO -1712 Aksp 1762 An2 -1762 An" 
1663 Ag? -1663 AgI 1713 Aki -1713 Ak! 1763 An3 -1763 An# 
1664 AhO -1664 Ahsp 1714 Ak2 -1714 Ak" 1764 An4 -1764 An$ 
1665 Ah1 -1665 Ah! 1715 Ak3 -1715 Ak# 1765 AnS -1765 An% 
1666 Ah2 -1666 Ah" 1716 Ak4 -1716 Ak$ 1766 An6 -1766 An& 
1667 Ah3 -1667 Ah# 1717 AkS -1717 Ak% 1767 An7 -1767 An' 
1668 Ah4 -1668 Ah$ 1718 Ak6 -1718 Ak& 1768 An8 -1768 An( 
1669 AhS -1669 Ah% 1719 Ak7 -1719 Ak' 1769 An9 -1769 An) 
1670 Ah6 -1670 Ah& 1720 Ak8 -1720 Ak( 1770 An: -1770 An' 
1671 Ah7 -1671 Ah' 1721 Ak9 -1721 Ak) 1771 An; -1771 An+ 
1672 Ah8 -1672 Ah( 1722 Ak: -1722 Ak' 1772 An< -1772 An, 
1673 Ah9 -1673 Ah) 1723 Ak; -1723 Ak+ 1773 An= -1773 An-
1674 Ah: -1674 Ah* 1724 Ak< -1724 Ak, 1774 An> -1774 An. 
1675 Ah; -1675 Ah+ 1725 Ak= -1725 Ak- 1775 An? -1775 AnI 
1676 Ah< -1676 Ah, 1726 Ak> -1726 Ak. 1776 AoO -1776 Aosp 
1677 Ah= -1677 Ah- 1727 Ak? -1727 Akl 1777 Aoi -1777 Ao! 
1678 Ah> -1678 Ah. 1728 AIO -1728 Alsp 1778 Ao2 -1778 Ao" 
1679 Ah? -1679 Ahl 1729 Ali -1729 AI! 1779 Ao3 -1779 Ao# 
1680 AiO -1680 Aisp 1730 AI2 -1730 AI" 1780 Ao4 -1780 Ao$ 
1681 Aii -1681 Ai! 1731 AI3 -1731 AI# 1781 AoS -1781 Ao% 
1682 Ai2 -1682 Ai" 1732 AI4 -1732 AI$ 1782 Ao6 -1782 Ao& 
1683 Ai3 -1683 Ai# 1733 AIS -1733 AI% 1783 Ao7 -1783 Ao' 
1684 Ai4 -1684 Ai$ 1734 AI6 -1734 AI& 1784 Ao8 -1784 Ao( 
1685 AiS -1685 Ai% 1735 AI7 -1735 AI' 1785 Ao9 -1785 Ao) 
1686 Ai6 -1686 Ai& 1736 AI8 -1736 AI( 1786 Ao: -1786 Ao' 
1687 Ai7 -1687 Ai' 1737 AI9 -1737 AI) 1787 Ao; -1787 Ao+ 
1688 Ai8 -1688 Ai( 1738 AI: -1738 AI' 1788 Ao< -1788 Ao, 
1689 Ai9 -1689 Ai) 1739 AI; -1739 AI+ 1789 Ao= -1789 Ao-
1690 Ai: -1690 Ai' 1740 AI< -1740 AI, 1790 Ao> -1790 Ao. 
1691 Ai; -1691 Ai+ 1741 AI= -1741 AI- 1791 Ao? -1791 Aol 
1692 Ai< -1692 Ai, 1742 AI> -1742 AI. 1792 ApO -1792 Apsp 
1693 Ai= -1693 Ai- 1743 AI? -1743 All 1793 Api -1793 Ap! 
1694 Ai> -1694 Ai. 1744 AmO -1744 Amsp 1794 Ap2 -1794 Ap" 
1695 Ai? -1695 Ail 1745 Ami -1745 Am! 1795 Ap3 -1795 Ap# 
1696 AjO -1696 AjSp 1746 Am2 -1746 Am" 1796 Ap4 -1796 Ap$ 
1697 Aji -1697 Aj! 1747 Am3 -1747 Am# 1797 ApS -1797 Ap% 
1698 Aj2 -1698 Aj" 1748 Am4 -1748 Am$ 1798 Ap6 -1798 Ap& 
1699 Aj3 -1699 Aj# 1749 AmS -1749 Am% 1799 Ap7 -1799 Ap' 

4110 SERIES HOST 8-13 



[NT PARAMETERS 

( 
Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n .int: -n 

1800 Ap8 -1800 Ap( 1850 As: -1850 As· 1900 Av< -1900 Av, 
1801 Ap9 -1801 Ap) 1851 ASj -1851 As+ 1901 Av= -1901 Av-
1802 Ap: -1802 Ap· 1852 As< -1852 As, 1902 Av> -1902 Av. 
1803 Apj -1803 Ap+ 1853 As= -1853 As- 1903 Av? -1903 Av/ 
1804 Ap< -1804 Ap, 1854 As> -1854 As. 1904 AwO -1904 Awsp 
1805 Ap= -1805 Ap- 1855 As? -1855 As/ 1905 Aw1 -1905 Aw! 
1806 Ap> -1806 Ap. 1856 AID -1856 AtSp 1906 Aw2 -1906 Aw" 
1807 Ap? -1807 Ap/ 1857 At1 -1857 Atl 1907 Aw3 -1907 Aw# 
1808 AqO -1808 Aqsp 1858 At2 -1858 At" 1908 Aw4 -1908 Aw$ 
1809 Aq1 -1809 Aql 1859 At3 -1859 At# 1909 AwS -1909 Aw% 
1810 Aq2 -1810 Aq" 1860 At4 -1860 At$ 1910 AwS -1910 Aw& 
1811 Aq3 -1811 Aq# 1861 AtS -1861 At% 1911 Aw7 -1911 Aw' 
1812 Aq4 -1812 Aq$ 1862 AtS -1862 At& 1912 Aw8 -1912 Aw( 
1813 AqS -1813 Aq% 1863 At7 -1863 At' 1913 Aw9 -1913 Aw) 
1814 AqS -1814 Aq& 1864 At8 -1864 At( 1914 Aw: -1914 Aw· 
1815 Aq7 -1815 Aq' 1865 At9 -1865 At) 1915 AWj -1915 Aw+ 
1816 Aq8 -1816 Aq( 1866 At: -1866 At· 1916 Aw< -1916 Aw, 
1817 Aq9 -1817 Aq) 1867 Atj -1867 At+ 1917 Aw= -1917 Aw-
1818 Aq: -1818 Aq· 1868 At< -1868 At, 1918 Aw> -1918 Aw. 
1819 Aqj -1819 Aq+ 1869 At= -1869 At- 1919 Aw? -1919 Aw/ 
1820 Aq< -1820 Aq, 1870 At> -1870 At. 1920 AxO -1920 Axsp 
1821 Aq= -1821 Aq- 1871 At? -1871 At/ 1921 Ax1 -1921 Ax! 
1822 Aq> -1822 Aq. 1872 AuO -1872 Ausp 1922 Ax2 -1922 Ax" 

( 1823 Aq? -1823 Aq/ 1873 Au1 -1873 Au! 1923 Ax3 -1923 Ax# 
1824 ArO -1824 ArSp 1874 Au2 -1874 Au" 1924 Ax4 -1924 Ax$ 
1825 Ar1 -1825 Ar! 1875 Au3 -1875 Au# 1925 AxS -1925 Ax% 
1826 Ar2 -1826 Ar" 1876 Au4 -1876 Au$ 1926 AxS -1926 Ax& 
1827 Ar3 -1827 Ar# 1877 AuS -1877 Au% 1927 Ax7 -1927 Ax' 
1828 Ar4 -1828 Ar$ 1878 AuS -1878 Au& 1928 Ax8 -1928 Ax( 
1829 ArS -1829 Ar% 1879 Au7 -1879 Au' 1929 Ax9 -1929 Ax) 
1830 ArS -1830 Ar& 1880 Au8 -1880 Au( 1930 Ax: -1930 Ax· 
1831 Ar7 -1831 Ar' 1881 Au9 -1881 Au) 1931 AXj -1931 Ax+ 
1832 Ar8 -1832 Ar( 1882 Au: -1882 Au· 1932 Ax< -1932 Ax, 
1833 Ar9 -1833 Ar) 1883 AUj -1883 Au+ 1933 Ax= -1933 Ax-
1834 Ar: -1834 Ar· 1884 Au< -1884 Au, 1934 Ax> -1934 Ax. 
1835 Arj -1835 Ar+ 1885 Au= -1885 Au- 1935 Ax? -1935 Ax/ 
1836 Ar< -1836 Ar, 1886 Au> -1886 Au. 1936 AyO -1936 Aysp 
1837 Ar= -1837 Ar- 1887 Au? -1887 Au/ 1937 Ay1 -1937 Ay! 
1838 Ar> -1838 Ar. 1888 AvO -1888 Avsp 1938 Ay2 -1938 Ay" 
1839 Ar? -1839 Ar/ 1889 Av1 -1889 Av! 1939 Ay3 -1939 Ay# 
1840 AsO -1840 Assp 1890 Av2 -1890 Av" 1940 Ay4 -1940 Ay$ 
1841 As1 -1841 As! 1891 Av3 -1891 Av# 1941 AyS -1941 Ay% 
1842 As2 -1842 As" 1892 Av4 -1892 Av$ 1942 AyS -1942 Ay& 
1843 As3 -1843 As# 1893 Av5 -1893 Av% 1943 Ay7 -1943 Ay' 
1844 As4 -1844 As$ 1894 AvS -1894 Av& 1944 Ay8 -1944 Ay( 
1845 AsS -1845 As% 1895 Av7 -1895 Av' 1945 Ay9 -1945 Ay) 
1846 AsS -1846 As& 1896 Av8 -1896 Av( 1946 Ay: -1946 Ay· 
1847 As7 -1847 As' 1897 Av9 -1897 Av) 1947 Ayj -1947 Ay+ 
1848 As8 -1848 As( 1898 Av: -1898 Av· 1948 Ay< -1948 Ay, 
1849 As9 -1849 As) 1899 AVj -1899 Av+ 1949 Ay= -1949 Ay-

( 

8-14 4110 SERIES HOST 

------~----



INT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

1950 Ay> -1950 Ay. 2000 A}O -2000 A}sp 2050 B@2 -2050 B@" 
1951 Ay? -1951 Ayl 2001 A}1 -2001 A}! 2051 B@3 -2051 B@# 
1952 AzO -1952 Azsp 2002 A}2 -2002 A}" 2052 B@4 -2052 B@$ 
1953 Az1 -1953 Az! 2003 A}3 -2003 A}# 2053 B@S -2053 B@% 
1954 Az2 -1954 Az" 2004 A}4 -2004 A}$ 2054 B@6 -2054 B@& 
1955 Az3 -1955 Az# 2005 A}S -2005 A}% 2055 B@7 -2055 B@' 
1956 Az4 -1956 Az$ 2006 A}6 -2006 A}& 2056 B@S -2056 B@( 
1957 AzS -1957 Az% 2007 A}7 -2007 A}' 2057 B@9 -2057 B@) 
1958 Az6 -1958 Az& 2008 A}S -2008 A}( 2058 B@: -2058 B@* 
1959 Az7 -1959 Az' 2009 A}9 -2009 All 2059 B@; -2059 B@+ 
1960 AzS -1960 Az( 2010 A}: -2010 A} * 2060 B@< -2060 B@, 
1961 Az9 -1961 Az) 2011 A}; -2011 A}+ 2061 B@= -2061 B@-
1962 Az: -1962 Az* 2012 A}< -2012 A}, 2062 B@> -2062 B@. 
1963 Az; -1963 Az+ 2013 A}= -2013 A}- 2063 B@? -2063 B@I 
1964 Az< -1964 Az, 2014 A}> -2014 A}. 2064 BAO -2064 BAsp 
1965 Az= -1965 Az- 2015 A}? -2015 All 2065 BA1 -2065 BA! 
1966 Az> -1966 Az. 2016 A-O -2016 A_sp 2066 BA2 -2066 BA" 
1967 Az? -1967 AzI 2017 A-1 -2017 A-! 2067 BA3 -2067 BA# 
1968 A{O -1968 A{sp 2018 A-2 -2018 A-" 2068 BA4 -2068 BA$ 
1969 A{1 -1969 A{! 2019 A-3 -2019 A-# 2069 BAS -2069 BA% 
1970 A{2 -1970 A{" 2020 A-4 -2020 A-$ 2070 BA6 -2070 BA& 
1971 A{3 -1971 A{# 2021 A-S -2021 A-$ 2071 BA7 -2071 BA' 
1972 A{4 -1972 A{$ 2022 A-6 -2022 A-& 2072 BAS -2072 BA( 
1973 A{S -1973 A{% 2023 A-7 -2023 A-' 2073 BA9 -2073 BA) 
1974 A{6 -1974 A{& 2024 A-S -2024 A-( 2074 BA: -2074 BA* 
1975 A{7 -1975 AI' 2025 A-9 -2025 A-) 2075 BA; -2075 BA+ 
1976 A{S -1976 A{( 2026 A-: -2026 A-* 2076 BA< -2076 BA, 
1977 A{9 -1977 AD 2027 A-' , -2027 A-+ 2077 BA= -2077 BA-
1978 A{: -1978 A{* 2028 A-< -2028 A-, 2078 BA> -2078 BA. 
1979 A{; -1979 A{+ 2029 A-= -2029 A-- 2079 BA? -2079 BAI 
1980 A{< -1980 A{, 2030 A-> -2030 A-. 2080 BBO -2080 BBsp 
1981 A{= -1981 A{- 2031 A-? -2031 A-I 2081 BB1 -2081 BB! 
1982 A{> -1982 A{. 2032 ADTO -2032 ADTSp 2082 BB2 -2082 BB" 
1983 A{? -1983 AU 2033 ADT1 -2033 ADT! 2083 BB3 -2083 BB# 
1984 Aio -1984 Alsp 2034 ADT2 -2034 ADT" 2084 BB4 -2084 BB$ 
1985 AI1 -1985 AI! 2035 ADT3 -2035 ADT# 2085 BBS -2085 BB% 
1986 AI2 -1986 AI" 2036 ADT4 -2036 ADT$ 2086 BB6 -2086 BB& 
1987 AI3 -1987 AI# 2037 ADTS -2037 ADT% 2087 BB7 -2087 BB' 
1988 AI4 -1988 AI$ 2038 ADT6 -2038 ADT& 2088 BBS -2088 BB( 
1989 Ais -1989 AI% 2039 ADT7 -2039 ADT' 2089 BB9 -2089 BB) 
1990 AI6 -1990 AI& 2040 ADTS -2040 ADT( 2090 BB: -2090 BB* 
1991 AI7 -1991 AI' 2041 ADT9 -2041 ADT) 2091 BB; -2091 BB+ 
1992 Ais -1992 AI( 2042 ADT: -2042 ADT* 2092 BB< -2092 BB, 
1993 AI9 -1993 AI) 2043 ADT; -2043 ADT+ 2093 BB= -2093 BB-
1994 AI: -1994 AI* 2044 ADT< -2044 ADT, 2094 BB> -2094 BB. 
1995 AI; -1995 AI+ 2045 ADT= -2045 ADT- 2095 BB? -2095 BBI 
1996 Ak -1996 AI, 2046 ADT> -2046 ADT. 2096 BCO -2096 BCsp 
1997 AI= -1997 AI- 2047 ADT? -2047 ADTI 2097 BC1 -2097 BC! 
1998 Ai> -1998 AI. 2048 B@O -2048 B@sp 2098 BC2 -2098 BC" 
1999 AI? -1999 All 2049 B@1 -2049 B@! 2099 BC3 -2099 BC# 

4110 SERIES HOST 8-15 



[NT PARAMETERS 

( 
Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

2100 BC4 -2100 BC$ 2150 BF6 -2150 BF& 2200 BI8 -2200 BI( 
2101 BC5 -2101 BC% 2151 BF7 -2151 BF' 2201 BI9 -2201 BI) 
2102 BC6 -2102 BC& 2152 BF8 -2152 BF( 2202 BI: -2202 BI" 
2103 BC7 -2103 BC' 2153 BF9 -2153 BF) 2203 BI; -2203 BI+ 
2104 BC8 -2104 BC( 2154 BF: -2154 BF" 2204 BI< -2204 BI, 
2105 BC9 -2105 BC) 2155 BF; -2155 BF+ 2205 BI= -2205 BI-
2106 BC: -2106 BC" 2156 BF< -2156 BF, 2206 BI> -2206 BI. 
2107 BC; -2107 BC+ 2157 BF= -2157 BF- 2207 BI? -2207 BII 
2108 BC< -2108 BC, 2158 BF> -2158 BF. 2208 BJO -2208 BJsp 
2109 BC= -2109 BC- 2159 BF? -2159 BFI 2209 BJ1 -2209 BJI 
2110 BC> -2110 BC. 2160 BGO -2160 BGsp 2210 BJ2 -2210 BJ" 
2111 BC? -2111 BCI 2161 BG1 -2161 BG! 2211 BJ3 -2211 BJ# 
2112 BOO -2112 BDsp 2162 BG2 -2162 BG" 2212 BJ4 -2212 BJ$ 
2113 BDi -2113 BD! 2163 BG3 -2163 BG# 2213 BJ5 -2213 BJ% 
2114 BD2 -2114 BD" 2164 BG4 -2164 BG$ 2214 BJ6 -2214 BJ& 
2115 BD3 -2115' BD# 2165 BG5 -2165 BG% 2215 BJ7 -2215 BJ' 
2116 BD4 -2116 BD$ 2166 BG6 -2166 BG& 2216 BJ8 -2216 BJ( 
2117 BD5 -2117 BD% 2167 BG7 -2167 BG' 2217 BJ9 -2217 BJ) 
2118 BD6 -2118 BD& 2168 BG8 -2168 BG( 2218 BJ: -2218 BJ" 
2119 BD7 -2119 BD' 2169 BG9 -2169 BG) 2219 BJ; -2219 BJ+ 
2120 BD8 -2120 BD( 2170 BG: -2170 BG· 2220 BJ< -2220 BJ, 
2121 BD9 -2121 BD) 2171 BG; -2171 BG+ 2221 BJ= -2221 BJ-
2122 BD: -2122 BD· 2172 BG< -2172 BG, 2222 BJ> -2222 BJ. 

( 2123 BD; -2123 BD+ 2173 BG= -2173 BG- 2223 BJ? -2223 BJI 
2124 BD< -2124 BD, 2174 BG> -2174 BG. 2224 BKO -2224 BKsp 
2125 BD= -2125 BD- 2175 BG? -2175 BGI 2225 BK1 -2225 BK! 
2126 BD> -2126 BD. 2176 BHO -2176 BHsp 2226 BK2 -2226 BK" 
2127 BD? -2127 BDI 2177 BH1 -2177 BH! 2227 BK3 -2227 BK# 
2128 BEO -2128 BEsp 2178 BH2 -2178 BH" 2228 BK4 -2228 BK$ 
2129 BE1 -2129 BE! 2179 BH3 -2179 BH# 2229 BK5 -2229 BK% 
2130 BE2 -2130 BE" 2180 BH4 -2180 BH$ 2230 BK6 -2230 BK& 
2131 BE3 -2131 BE# 2181 BH5 -2181 BH% 2231 BK7 -2231 BK' 
2132 BE4 -2132 BE$ 2182 BH6 -2182 BH& 2232 BK8 -2232 BK( 
2133 BE5 -2133 BE% 2183 BH7 -2183 BH' 2233 BK9 -2233 BK) 
2134 BE6 -2134 BE& 2184 BH8 -2184 BH( 2234 BK: -2234 BK* 
2135 BE7 -2135 BE' 2185 BH9 -2185 BH) 2235 BK; -2235 BK+ 
2136 BE8 -2136 BE( 2186 BH: -2186 BH* 2236 BK< -2236 BK, 
2137 BE9 -2137 BE) 2187 BH; -2187 BH+ 2237 BK= -2237 BK-
2138 BE: -2138 BE· 2188 BH< -2188 BH, 2238 BK> -2238 BK. 
2139 BE; -2139 BE+ 2189 BH= -2189 BH- 2239 BK? -2239 BKI 
2140 BE< -2140 BE, 2190 BH> -2190 BH. 2240 BlO -2240 Blsp 
2141 BE= -2141 BE- 2191 BH? -2191 BHI 2241 Bl1 -2241 Bl! 
2142 BE> -2142 BE. 2192 BIO -2192 Bisp 2242 Bl2 -2242 Bl" 
2143 BE? -2143 BEl 2193 BI1 -2193 BII 2243 Bl3 -2243 Bl# 
2144 BFO -2144 BFsp 2194 BI2 -2194 BI" 2244 Bl4 -2244 Bl$ 
2145 BF1 -2145 BF! 2195 BI3 -2195 BI# 2245 Bl5 -2245 Bl% 
2146 BF2 -2146 BF" 2196 BI4 -2196 BI$ 2246 Bl6 -2246 Bl& 
2147 BF3 -2147 BF# 2197 BI5 -2197 BI% 2247 Bl7 -2247 Bl' 
2148 BF4 -2148 BF$ 2198 BI6 -2198 BI& 2248 Bl8 -2248 Bl( 
2149 BF5 -2149 BF% 2199 BI7 -2199 BI' 2249 Bl9 -2249 Bl) 

( 

8-16 4110 SERIES HOST 



[NT PARAMETERS 

Table B-1 (cant) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

2250 BL: -2250 BL* 2300 BO< -2300 BO, 2350 BR> -2350 BR. 
2251 BL; -2251 BL+ 2301 BO= -2301 BO- 2351 BR? -2351 BRI 
2252 BL< -2252 BL, 2302 BO> -2302 BO. 2352 BSO -2352 BSsp 
2253 BL= -2253 BL- 2303 BO? -2303 BOI 2353 BSi -2353 BS! 
2254 BL> -2254 BL. 2304 BPO -2304 Bpsp 2354 BS2 -2354 BS" 
2255 BL? -2255 BLI 2305 BPi -2305 BPI 2355 BS3 -2355 BS# 
2256 BMO -2256 BMsp 2306 BP2 -2306 BP" 2356 BS4 -2356 BS$ 
2257 BMi -2257 BM! 2307 BP3 -2307 BP# 2357 BS5 -2357 BS% 
2258 BM2 -2258 BM" 2308 BP4 -2308 BP$ 2358 BS6 -2358 BS& 
2259 BM3 -2259 BM# 2309 BP5 -2309 BP% 2359 BS7 -2359 BS' 
2260 BM4 -2260 BM$ 2310 BP6 -2310 BP& 2360 BS8 -2360 BS( 
2261 BM5 -2261 BM% 2311 BP7 -2311 BP' 2361 BS9 -2361 BS) 
2262 BM6 -2262 BM& 2312 BP8 -2312 BP( 2362 BS: -2362 BS* 
2263 BM7 -2263 BM' 2313 BP9 -2313 BP) 2363 BS; -2363 BS+ 
2264 BM8 -2264 BM( 2314 BP: -2314 BP* 2364 BS< -2364 BS, 
2265 BM9 -2265 BM) 2315 BP; -2315 BP+ 2365 BS= -2365 BS-
2266 BM: -2266 BM* 2316 BP< -2316 BP, 2366 BS> -2366 BS. 
2267 BM; -2267 BM+ 2317 BP= -2317 BP- 2367 BS? -2367 BSI 
2268 BM< -2268 BM, 2318 BP> -2318 BP. 2368 BTO -2368 BTsp 
2269 BM= -2269 BM- 2319 BP? -2319 BPI 2369 BT1 -2369 BT! 
2270 BM> -2270 BM. 2320 BQO -2320 BQsp 2370 BT2 -2370 BT" 
2271 BM? -2271 BMI 2321 BQi -2321 BQI 2371 BT3 -2371 BT# 
2272 BNO -2272 BNsp 2322 BQ2 -2322 BQ" 2372 BT4 -2372 BT$ 
2273 BNi -2273 BN! 2323 BQ3 -2323 BQ# 2373 BT5 -2373 BT% 
2274 BN2 -2274 BN" 2324 BQ4 -2324 BQ$ 2374 BT6 -2374 BT& 
2275 BN3 -2275 BN# 2325 BQ5 -2325 BQ% 2375 BT7 -2375 BT' 
2276 BN4 -2276 BN$ 2326 BQ6 -2326 BQ& 2376 BT8 -2376 BT( 
2277 BN5 -2277 BN% 2327 BQ7 -2327 BQ' 2377 BT9 -2377 BT) 
2278 BN6 -2278 BN& 2328 BQ8 -2328 BQ( 2378 BT: -2378 BT* 
2279 BN7 -2279 BN' 2329 BQ9 -2329 BQ) 2379 BT; -2379 BT+ 
2280 BN8 -2280 BN( 2330 BQ: -2330 BQ* 2380 BT< -2380 BT, 
2281 BN9 -2281 BN) 2331 BQ; -2331 BQ+ 2381 BT= -2381 BT-
2282 BN: -2282 BN* 2332 BQ< -2332 BQ, 2382 BT> -2382 BT. 
2283 BN; -2283 BN+ 2333 BQ= -2333 BQ- 2383 BT? -2383 BTl 
2284 BN< -2284 BN, 2334 BQ> -2334 BQ. 2384 BUD -2384 BUsp 
2285 BN= -2285 BN- 2335 BQ? -2335 BQI 2385 BUi -2385 BU! 
2286 BN> -2286 BN. 2336 BRO -2336 BRsp 2386 BU2 -2386 BU" 
2287 BN? -2287 BNI 2337 BRi -2337 BR! 2387 BU3 -2387 BU# 
2288 BOO -2288 BOsp 2338 BR2 -2338 BR" 2388 BU4 -2388 BU$ 
2289 B01 -2289 BOI 2339 BR3 -2339 BR# 2389 BU5 -2389 BU% 
2290 B02 -2290 BO" 2340 BR4 -2340 BR$ 2390 BU6 -2390 BU& 
2291 B03 -2291 BO# 2341 BR5 -2341 BR% 2391 BU7 -2391 BU' 
2292 B04 -2292 BO$ 2342 BR6 -2342 BR& 2392 BU8 -2392 BU( 
2293 B05 -2293 BO% 2343 BR7 ~2343 BR' 2393 BU9 -2393 BU) 
2294 B06 -2294 BO& 2344 BR8 -2344 BR( 2394 BU: -2394 BU* 
2295 B07 -2295 BO' 2345 BR9 -2345 BR) 2395 BU; -2395 BU+ 
2296 B08 -2296 BO( 2346 BR: -2346 BR* 2396 BU< -2396 BU, 
2297 B09 -2297 BO) 2347 BR; -2347 BR+ 2397 BU= -2397 BU-
2298 BO: -2298 BO* 2348 BR< -2348 BR, 2398 BU> -2398 BU. 
2299 BO; -2299 BO+ 2349 BR= -2349 BR- 2399 BU? -2399 BUI 

4110 SERIES HOST B·17 



INT PARAMETERS 

( 
Table B-1 (cant) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

2400 BVO -2400 BVsp 2450 BY2 -2450 BY" 2500 B\4 -2500 B\$ 
2401 BV1 -2401 BV! 2451 BY3 -2451 BY# 2501 B\5 -2501 B\% 
2402 BV2 -2402 BV" 2452 BY4 -2452 BY$ 2502 B\6 -2502 B\& 
2403 BV3 -2403 BV# 2453 BY5 -2453 BY% 2503 B\7 -2503 B\' 
2404 BV4 -2404 BV$ 2454 BY6 -2454 BY& 2504 B\8 -2504 B\( 
2405 BV5 -2405 BV% 2455 BY7 -2455 BY' 2505 B\9 -2505 B\) 
2406 BV6 -2406 BV& 2456 BY8 -2456 BY( 2506 B\: -2506 B\" 
2407 BV7 -2407 BV' 2457 BY9 -2457 BY) 2507 B\; -2507 B\+ 
2408 BV8 -2408 BV( 2458 BY: -2458 BY" 2508 B\< -2508 B\, 
2409 BV9 -2409 BV) 2459 BY; -2459 BY+ 2509 B\= -2509 B\-
2410 BV: -2410 BV" 2460 BY< -2460 BY, 2510 B\> -2510 B\. 
2411 BV; -2411 BV+ 2461 BY= -2461 BY- 2511 B\? -2511 B\I 
2412 BV< -2412 BV, 2462 BY> -2462 BY. 2512 B]O -2512 B]sp 
2413 BV= -2413 BV- 2463 BY? -2463 BYI 2513 B]1 -2513 B]I 
2414 BV> -2414 BV. 2464 BZO -2464 BZsp 2514 B]2 -2514 B]" 
2415 BV? -2415 BVI 2465 BZ1 -2465 BZ! 2515 B]3 -2515 B]# 
2416 BWO -2416 BWsp 2466 BZ2 -2466 BZ" 2516 B]4 -2516 B]$ 
2417 BW1 -2417 BW! 2467 BZ3 -2467 BZ# 2517 B]5 -2517 B]% 
2418 BW2 -2418 BW" 2468 BZ4 -2468 BZ$ 2518 B]6 -2518 B]& 
2419 BW3 -2419 BW# 2469 BZ5 -2469 BZ% 2519 B]7 -2519 B]' 
2420 BW4 -2420 BW$ 2470 BZ6 -2470 BZ& 2520 B]8 -2520 B]( 
2421 BW5 -2421 BW% 2471 BZ7 -2471 BZ' 2521 B]9 -2521 Bn 
2422 BW6 -2422 BW& 2472 BZ8 -2472 BZ( 2522 B]: -2522 B]" ( 2423 BW7 -2423 BW' 2473 BZ9 -2473 BZ) 2523 B]; -2523 B]+ 

., 

2424 BW8 -2424 BW( 2474 BZ: -2474 BZ" 2524 B]< -2524 B], 
2425 BW9 -2425 BW) 2475 BZ; -2475 BZ+ 2525 B]= -2525 B]-
2426 BW: -2426 BW" 2476 BZ< -2476 BZ, 2526 B]> -2526 B]. 
2427 BW; -2427 BW+ 2477 BZ= -2477 BZ- 2527 B]? -2527 B]I 
2428 BW< -2428 BW, 2478 BZ> -2478 BZ. 2528 BAO -2528 BAsp 
2429 BW= -2429 BW- 2479 BZ? -2479 BZI 2529 BA1 -2529 BA! 
2430 BW> -2430 BW. 2480 B[O -2480 B[sp 2530 BA2 -2530 BA" 
2431 BW? -2431 BWI 2481 B[1 -2481 B[I 2531 BA3 -2531 BA# 
2432 BXO -2432 BXsp 2482 B[2 -2482 B[" 2532 BA4 -2532 BA$ 
2433 BX1 -2433 BX! 2483 B[3 -2483 B[# 2533 BA5 -2533 BA% 
2434 BX2 -2434 BX" 2484 B[4 -2484 B[$ 2534 BA6 -2534 BA& 
2435 BX3 -2435 BX# 2485 B[5 -2485 B[% 2535 BA7 -2535 BA' 
2436 BX4 -2436 BX$ 2486 B[6 -2486 B[& 2536 BA8 -2536 BA( 
2437 BX5 -2437 BX% 2487 B[7 -2487 B[' 2537 BA9 -2537 BA) 
2438 BX6 -2438 BX& 2488 B[8 -2488 B[( 2538 BA: -2538 BA" 
2439 BX7 -2439 BX' 2489 B[9 -2489 B[) 2539 BA; -2539 BA+ 
2440 BX8 -2440 BX( 2490 B[: -2490 B[" 2540 BA< -2540 BA, 
2441 BX9 -2441 BX) 2491 B[; -2491 B[+ 2541 BA= -2541 BA-
2442 BX: -2442 BX" 2492 B[< -2492 B[, 2542 BA> -2542 BA. 
2443 BX; -2443 BX+ 2493 B[= -2493 B[- 2543 BA? -2543 BAI 
2444 BX< -2444 BX, 2494 B[> -2494 B[. 2544 B_O -2544 B_sp 
2445 BX= -2445 BX- 2495 B[? -2495 B[I 2545 B_1 -2545 B_! 
2446 BX> -2446 BX. 2496 B\O -2496 B\sp 2546 B_2 -2546 B_" 
2447 BX? -2447 BXI 2497 B\1 -2497 B\! 2547 B_3 -2547 B_# 
2448 BYO -2448 BYsp 2498 B\2 -2498 B\" 2548 B_4 -2548 B_$ 
2449 BY1 -2449 BY! 2499 B\3 -2499 B\# 2549 B_5 -2549 B_% 

( ) 

8-18 4110 SERIES HOST 



[NT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

2550 B_6 -2550 B_& 2600 Bb8 -2600 Bb( 2650 Be: -2650 Be* 
2551 B_7 -2551 B_' 2601 Bb9 -2601 Bb) 2651 Be; -2651 Be+ 
2552 B_8 -2552 B_( 2602 Bb: -2602 Bb* 2652 Be< -2652 Be, 
2553 B_9 -2553 B_) 2603 Bb; -2603 Bb+ 2653 Be= -2653 Be-
2554 B_: -2554 B_* 2604 Bb< -2604 Bb, 2654 Be> -2654 Be. 
2555 B_; -2555 B_+ 2605 Bb= -2605 Bb- 2655 Be? -2655 Bel 
2556 B_< -2556 B_, 2606 Bb> -2606 Bb. 2656 BfO -2656 Bfsp 
2557 B_= -2557 B_- 2607 Bb? -2607 Bbl 2657 Bf1 -2657 Bf! 
2558 B_> -2558 B_. 2608 BcO -2608 Bcsp 2658 Bf2 -2658 Bf" 
2559 B_? -2559 B_1 2609 Bc1 -2609 Bcl 2659 Bf3 -2659 Bf# 
2560 B'O -2560 B'sp 2610 Bc2 -2610 Bc" 2660 Bf4 -2660 Bf$ 
2561 B'1 -2561 B'! 2611 Bc3 -2611 Bc# 2661 Bf5 -2661 Bf% 
2562 B'2 -2562 B'" 2612 Bc4 -2612 Bc$ 2662 Bf6 -2662 Bf& 
2563 B'3 -2563 B'# 2613 Bc5 -2613 Bc% 2663 Bf7 -2663 Bf' 
2564 B'4 -2564 B'$ 2614 Bc6 -2614 Bc& 2664 Bf8 -2664 Bf( 
2565 B'5 -2565 B'% 2615 Bc7 -2615 Bc' 2665 Bf9 -2665 Bf) 
2566 B'6 -2566 B'& 2616 Bc8 -2616 Bc( 2666 Bf: -2666 Bf* 
2567 B'7 -2567 B" 2617 Bc9 -2617 Bc) 2667 Bf; -2667 Bf+ 
2568 B'8 -2568 B'( 2618 Bc: -2618 Bc* 2668 Bf< -2668 Bf, 
2569 B'9 -2569 B') 2619 Bc; -2619 Bc+ 2669 Bf= -2669 Bf-
2570 B': -2570 B'* 2620 Bc< -2620 Bc, 2670 Bf> -2670 Bf. 
2571 B'; -2571 B'+ 2621 Bc= -2621 Bc- 2671 Bf? -2671 Bfl 
2572 B'< -2572 B', 2622 Bc> -2622 Bc. 2672 BgO -2672 Bgsp 
2573 B'= -2573 B'- 2623 Bc? -2623 Bcl 2673 Bg1 -2673 Bg! 
2574 B'> -2574 B'. 2624 BdO -2624 Bdsp 2674 Bg2 -2674 Bg" 
2575 B'? -2575 B'I 2625 Bd1 -2625 Bdl 2675 Bg3 -2675 Bg# 
2576 BaO -2576 Basp 2626 Bd2 -2626 Bd" 2676 Bg4 -2676 Bg$ 
2577 Ba1 -2577 Ba! 2627 Bd3 -2627 Bd# 2677 Bg5 -2677 Bg% 
2578 Ba2 -2578 Ba" 2628 Bd4 -2628 Bd$ 2678 Bg6 -2678 Bg& 
2579 Ba3 -2579 Ba# 2629 Bd5 -2629 Bd% 2679 Bg7 -2679 Bg' 
2580 Ba4 -2580 Ba$ 2630 Bd6 -2630 Bd& 2680 Bg8 -2680 Bg( 
2581 Ba5 -2581 Ba% 2631 Bd7 -2631 Bd' 2681 Bg9 -2681 Bg) 
2582 Ba6 -2582 Ba& 2632 Bd8 -2632 Bd( 2682 Bg: -2682 Bg* 
2583 Ba7 -2583 Ba' 2633 Bd9 -2633 Bd) 2683 Bg; -2683 Bg+ 
2584 Ba8 -2584 Ba( 2634 Bd: -2634 Bd* 2684 Bg< -2684 Bg, 
2585 Ba9 -2585 Ba) 2635 Bd; -2635 Bd+ 2685 Bg= -2685 Bg-
2586 Ba: -2586 Ba* 2636 Bd< -2636 Bd, 2686 Bg> -2686 Bg. 
2587 Ba; -2587 Ba+ 2637 Bd= -2637 Bd- 2687 Bg? -2687 BgI 
2588 Ba< -2588 Ba, 2638 Bd> -2638 Bd. 2688 BhO -2688 Bhsp 
2589 Ba= -2589 Ba- 2639 Bd? -2639 Bdl 2689 Bh1 -2689 Bh! 
2590 Ba> -2590 Ba. 2640 BeO -2640 Besp 2690 Bh2 -2690 Bh" 
2591 Ba? -2591 Bal 2641 Be1 -2641 Be! 2691 Bh3 -2691 Bh# 
2592 BbO -2592 Bbsp 2642 Be2 -2642 Be" 2692 Bh4 -2692 Bh$ 
2593 Bb1 -2593 Bb! 2643 Be3 -2643 Be# 2693 Bh5 -2693 Bh% 
2594 Bb2 -2594 Bb" 2644 Be4 -2644 Be$ 2694 Bh6 -2694 Bh& 
2595 Bb3 -2595 Bb# 2645 Be5 -2645 Be% 2695 Bh7 -2695 Bh' 
2596 Bb4 -2596 Bb$ 2646 Be6 -2646 Be& 2696 Bh8 -2696 Bh( 
2597 Bb5 -2597 Bb% 2647 Be7 -2647 Be' 2697 Bh9 -2697 Bh) 
2598 Bb6 -2598 Bb& 2648 Be8 -2648 Be( 2698 Bh: -2698 Bh* 
2599 Bb7 -2599 Bb' 2649 Be9 -2649 Be) 2699 Bh; -2699 Bh+ 

4110 SERIES HOST 8-19 



INT PARAMETERS 

(~ 
Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n in!: n -n int: -n n int: n -n int: -n n int: n -n in!: -n 

2700 Bh< -2700 Bh, 2750 Bk> -2750 Bk. 2800 BoO -2800 Bosp 
2701 Bh= -2701 Bh- 2751 Bk? -2751 Bkl 2801 B01 -2801 Bo! 
2702 Bh> -2702 Bh. 2752 BIO -2752 Bisp 2802 B02 -2802 Bo" 
2703 Bh? -2703 Bhl 2753 BI1 -2753 BII 2803 B03 -2803 Bo# 
2704 BiO -2704 Bisp 2754 BI2 -2754 BI" 2804 B04 -2804 Bo$ 
2705 Bi1 -2705 Bi! 2755 BI3 -2755 BI# 2805 B05 -2805 Bo% 
2706 Bi2 -2706 Bi" 2756 BI4 -2756 BI$ 2806 B06 -2806 Bo& 
2707 Bi3 -2707 Bi# 2757 BI5 -2757 BI% 2807 B07 -2807 Bo' 
2708 Bi4 -2708 Bi$ 2758 BI6 -2758 BI& 2808 BoS -2808 Bo( 
2709 Bi5 -2709 Bi% 2759 BI7 -2759 BI' 2809 BoS -2809 Bo) 
2710 Bi6 -2710 Bi& 2760 BIS -2760 BI( 2810 Bo: -2810 Bo' 
2711 Bi7 -2711 Bi' 2761 BIS -2761 BI) 2811 Bo; -2811 Bo+ 
2712 BiS -2712 Bi( 2762 BI: -2762 BI" 2812 Bo< -2812 Bo, 
2713 BiS -2713 Bi) 2763 BI; -2763 BI+ 2813 Bo= -2813 Bo-
2714 Bi: -2714 Bi* 2764 BI< -2764 BI, 2814 Bo> -2814 Bo. 
2715 Bi; -2715 BI+ 2765 BI= -2765 BI- 2815 Bo? -2815 Bol 
2716 Bi< -2716 Bi, 2766 BI> -2766 BI. 2816 BpO -2816 Bpsp 
2717 Bi= -2717 Bi- 2767 BI? -2767 BII 2817 Bpi -2817 Bp! 
2718 Bi> -2718 Bi. 2768 BmO -2768 Bmsp 2818 Bp2 -2818 Bp" 
2719 Bi? -2719 Bil 2769 Bmi -2769 Bm! 2819 Bp3 -2819 Bp# 
2720 BjO -2720 BjSp 2770 Bm2 -2770 Bm" 2820 Bp4 -2820 Bp$ 
2721 Bj1 -2721 Bj! 2771 Bm3 -2771 Bm# 2821 Bp5 -2821 Bp% 
2722 Bj2 -2722 Bin 2772 Bm4 -2772 Bm$ 2822 Bp6 -2822 Bp& ( 2723 Bj3 -2723 Bj# 2773 Bm5 -2773 Bm% 2823 Bp7 -2823 Bp' 
2724 Bj4 -2724 Bj$ 2774 Bm6 -2774 Bm& 2824 BpS -2824 Bp( 
2725 Bj5 -2725 Bj% 2775 Bm7 -2775 Bm' 2825 BpS -2825 Bp) 
2726 Bj6 -2726 Bj& 2776 BmS -2776 Bm( 2826 Bp: -2826 Bp* 
2727 Bj7 -2727 Bj' 2777 BmS -2777 Bm) 2827 Bp; -2827 Bp+ 
2728 BjS -2728 Bj( 2778 Bm: -2778 Bm* 2828 Bp< -2828 Bp, 
2729 BjS -2729 Bj) 2779 Bm; -2779 Bm+ 2829 Bp= -2829 Bp-
2730 Bi: -2730 Bj" 2780 Bm< -2780 Bm, 2830 Bp> -2830 Bp. 
2731 Bj; -2731 Bj+ 2781 Bm= -2781 Bm- 2831 Bp? -2831 BpI 
2732 Bi< -2732 Bj, 2782 Bm> -2782 Bm. 2832 BqO -2832 Bqsp 
2733 Bj= -2733 Bj- 2783 Bm? -2783 Bml 2833 Bqi -2833 Bq! 
2734 Bj> -2734 Bj. 2784 BnO -2784 Bnsp 2834 Bq2 -2834 Bq" 
2735 Bj? -2735 Bjl 2785 Bni -2785 Bn! 2835 Bq3 -2835 Bq# 
2736 BkO -2736 Bksp 2786 Bn2 -2786 Bn" 2836 Bq4 -2836 Bq$ 
2737 Bki -2737 Bk! 2787 Bn3 -2787 Bn# 2837 Bq5 -2837 Bq% 
2738 Bk2 -2738 Bk" 2788 Bn4 -2788 Bn$ 2838 Bq6 -2838 Bq& 
2739 Bk3 -2739 Bk# 2789 Bn5 -2789 Bn% 2839 Bq7 -2839 Sq' 
2740 Bk4 -2740 Bk$ 2790 Bn6 -2790 Bn& 2840 BqS -2840 Bq( 
2741 Bk5 -2741 Bk% 2791 Bn7 -2791 Bn' 2841 BqS -2841 Bq) 
2742 Bk6 -2742 Bk& 2792 BnS -2792 Bn( 2842 Bq: -2842 Bq* 
2743 Bk7 -2743 Bk' 2793 Bn9 -2793 Bn) 2843 Bq; -2843 Bq+ 
2744 BkS -2744 Bk( 2794 Bn: -2794 Bn" 2844 Bq< -2844 Bq, 
2745 BkS -2745 Bk) 2795 Bn; -2795 Bn+ 2845 Bq= -2845 Bq-
2746 Bk: -2746 Bk* 2796 Bn< -2796 Bn, 2846 Bq> -2846 Bq. 
2747 Bk; -2747 Bk+ 2797 Bn= -2797 Bn- 2847 Bq? -2847 Bq/ 
2748 Bk< -2748 Bk, 2798 Bn> -2798 Bn. 2848 BrO -2848 B,.sp 
2749 Bk= -2749 Bk- 2799 Bn? -2799 Bn/ 2849 Br1 -2849 Br! 

( 

8-20 4110 SERIES HOST 



INT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

2850 Br2 -2850 Br" 2900 Bu4 -2900 Bu$ 2950 BxS -2950 Bx& 
2851 Br3 -2851 Br# 2901 Bu5 -2901 Bu% 2951 Bx7 -2951 Bx' 
2852 Br4 -2852 Br$ 2902 BuS -2902 Bu& 2952 BxB -2952 Bx( 
2853 Br5 -2853 Br% 2903 Bu7 -2903 Bu' 2953 Bx9 -2953 Bx) 
2854 BrS -2854 Br& 2904 BuB -2904 Bu( 2954 Bx: -2954 Bx* 
2855 Br7 -2855 Br' 2905 Bu9 -2905 Bu) 2955 Bx; -2955 Bx+ 
2856 BrB -2856 Br( 2906 Bu: -2906 Bu* 2956 Bx< -2956 Bx, 
2857 Br9 -2857 Br) 2907 Bu; -2907 Bu+ 2957 Bx= -2957 Bx-
2858 Br: -2858 Br* 2908 Bu< -2908 Bu, 2958 Bx> -2958 Bx. 
2859 Br; -2859 Br+ 2909 Bu= -2909 Bu- 2959 Bx? -2959 Bxl 
2860 Br< -2860 Br, 2910 Bu> -2910 Bu. 2960 ByO -2960 Bysp 
2861 Br= -2861 Br- 2911 Bu? -2911 Bul 2961 By1 -2961 By! 
2862 Br> -2862 Br. 2912 BvO -2912 Bvsp 2962 By2 -2962 By" 
2863 Br? -2863 Brl 2913 Bv1 -2913 Bv! 2963 By3 -2963 By# 
2864 BsO -2864 Bssp 2914 Bv2 -2914 Bv" 2964 By4 -2964 By$ 
2865 Bs1 -2865 Bs! 2915 Bv3 -2915 Bv# 2965 By5 -2965 By% 
2866 Bs2 -2866 Bs" 2916 Bv4 -2916 Bv$ 2966 ByS -2966 By& 
2867 Bs3 -2867 Bs# 2917 Bv5 -2917 Bv% 2967 By7 -2967 By' 
2868 Bs4 -2868 Bs$ 2918 BvS -2918 Bv& 2968 ByB -2968 By( 
2869 Bs5 -2869 Bs% 2919 Bv7 -2919 Bv' 2969 By9 -2969 By) 
2870 BsS -2870 Bs& 2920 Bva -2920 Bv( 2970 By: -2970 By* 
2871 Bs7 -2871 Bs' 2921 Bv9 -2921 Bv) 2971 By; -2971 By+ 
2872 BsB -2872 Bs( 2922 Bv: -2922 Bv* 2972 By< -2972 By, 
2873 Bs9 -2873 Bs) 2923 Bv; -2923 Bv+ 2973 By= -2973 By-
2874 Bs: -2874 Bs* 2924 Bv< -2924 Bv, 2974 By> -2974 By. 
2875 Bs; -2875 Bs+ 2925 Bv= -2925 Bv- 2975 By? -2975 Byl 
2876 Bs< -2876 Bs, 2926 Bv> -2926 Bv. 2976 BzO -2976 Bz<> 
2877 Bs= -2877 Bs- 2927 Bv? -2927 Bvl 2977 Bz1 -2977 Bz! 
2878 Bs> -2878 Bs. 2928 BwO -2928 Bwsp 2978 Bz2 -2978 Bz" 
2879 Bs? -2879 Bsl 2929 Bw1 -2929 Bw! 2979 Bz3 -2979 Bz# 
2880 BtO -2880 BtSp 2930 Bw2 -2930 Bw" 2980 Bz4 -2980 Bz$ 
2881 Bt1 -2881 Bt! 2931 Bw3 -2931 Bw# 2981 Bz5 -2981 Bz% 
2882 Bt2 -2882 Bt" 2932 Bw4 -2932 Bw$ 2982 BzS -2982 Bz& 
2883 Bt3 -2883 Bt# 2933 Bw5 -2933 Bw% 2983 Bz7 -2983 Bz' 
2884 Bt4 -2884 Bt$ 2934 BwS -2934 Bw& 2984 BzB -2984 Bz( 
2885 Bt5 -2885 Bt% 2935 Bw7 -2935 Bw' 2985 Bz9 -2985 Bz) 
2886 BtS -2886 Bt& 2936 BwB -2936 Bw( 2986 Bz: -2986 Bz* 
2887 Bt7 -2887 Bt' 2937 Bw9 -2937 Bw) 2987 Bz; -2987 Bz+ 
2888 BtB -2888 Bt( 2938 Bw: -2938 Bw* 2988 Bz< -2988 Bz, 
2889 Bt9 -2889 Bt) 2939 Bw; -2939 Bw+ 2989 Bz= -2989 Bz-
2890 Bt: -2890 Bt* 2940 Bw< -2940 Bw, 2990 Bz> -2990 Bz. 
2891 Bt; -2891 Bt+ 2941 Bw= -2941 Bw- 2991 Bz? -2991 Bzl 
2892 Bt< -2892 Bt, 2942 Bw> -2942 Bw. 2992 B{O -2992 B{sp 
2893 Bt= -2893 Bt- 2943 Bw? -2943 Bwl 2993 B{1 -2993 B{! 
2894 Bt> -2894 Bt. 2944 BxO -2944 Bxsp 2994 B{2 -2994 B{" 
2895 Bt? -2895 Btl 2945 Bx1 -2945 Bx! 2995 B{3 -2995 B{# 
2896 BuO -2896 Busp 2946 Bx2 -2946 Bx" 2996 B{4 -2996 B{$ 
2897 Bu1 -2897 Bu! 2947 Bx3 -2947 Bx# 2997 B{5 -2997 B{% 
2898 Bu2 -2898 Bu" 2948 Bx4 -2948 Bx$ 2998 B{S -2998 B{& 
2899 Bu3 -2899 Bu# 2949 Bx5 -2949 Bx% 2999 B{7 -2999 B{' 

4110 SERIES HOST 8-21 



INT PARAMETERS 

(I 
Table B-1 (cant) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

3000 B{B -3000 B{( 3050 B-1: -3050 B-1" 3100 CA< -3100 CA, 
3001 B{9 -3001 BO 3051 B-1; -3051 B-1+ 3101 CA= -3101 CA-
3002 B{: -3002 B{" 3052 B-1< -3052 B-1, 3102 CA> -3102 CA. 
3003 B{; -3003 B{+ 3053 B-1= -3053 B-1- 3103 CA? -3103 CAl 
3004 B{< -3004 B{, 3054 B-1> -3054 B-1. 3104 CBO -3104 CBsp 
3005 B{= -3005 B{- 3055 B-1? -3055 B-11 3105 CB1 -3105 CBI 
3006 B{> -3006 B{. 3056 BDTO -3056 BDTSp 3106 CB2 -3106 CB" 
3007 B{? -3007 BU 3057 BDT1 -3057 BDT! 3107 C83 -3107 CB# 
3008 Bio -3008 BiSp 3058 BDT2 -3058 BDT" 3108 CB4 -3108 CBS 
3009 sl1 -3009 sI! 3059 BDT3 -3059 BDT# 3109 CB5 -3109 CB% 
3010 sI2 -3010 sI" 3060 BDT4 -3060 BDT$ 3110 CB6 -3110 CB& 
3011 sI3 -3011 BI# 3061 BDT5 -3061 BDT% 3111 CB7 -3111 CB' 
3012 BI4 -3012 BI$ 3062 BDT6 -3062 BDT& 3112 CBB -3112 CB( 
3013 BI5 -3013 BI% 3063 BDT7 -3063 BDT' 3113 CB9 -3113 CB) 
3014 BI6 -3014 BI& 3064 BDTB -3064 BDT( 3114 CB: -3114 CB" 
3015 BI7 -3015 BI' 3065 BDT9 -3065 BDT) 3115 CB; -3115 CB+ 
3016 Bis -3016 sI( 3066 BDT: -3066 BDT" 3116 CB< -3116 CB, 
3017 sI9 -3017 sI) 3067 BDT; -3067 BDT+ 3117 CB= -3117 CB-
3018 sI: -3018 sI" 3068 BDT< -3068 BDT, 3118 CB> -3118 CB. 
3019 sI; -3019 sI+ 3069 BDT= -3069 BDT- 3119 CB? -3119 CBI 
3020 Bk -3020 BI, 3070 BDT> -3070 BDT. 3120 CCO -3120 Ccsp 
3021 BI= -3021 BI- 3071 BDT? -3071 BDrI 3121 CC1 -3121 CC! 
3022 sI> -3022 sI. 3072 C@O -3072 c@Sp 3122 CC2 -3122 CC" 

( 3023 sI? -3023 sll 3073 C@1 -3073 C@! 3123 CC3 -3123 CC# 
3024 B}O -3024 B}sp 3074 C@2 -3074 C@" 3124 CC4 -3124 CC$ 
3025 B}1 -3025 B}! 3075 C@3 -3075 C@# 3125 CC5 .-3125 CC% 
3026 B}2 -3026 B}" 3076 C@4 -,3076 C@$ 3126 CC6 -'-3126 CC& 
3027 B}3 -3027 B}# 3077 C@5 -3077 C@% 3127 CC7 -3127 CC' 
3028 B}4 -3028 B}$ 3078 C@6 -3078 C@& 3128 CCB -3128 CC( 
3029 B}5 -3029 B}% 3079 C@7 -3079 C@' 3129 CC9 -3129 CC) 
3030 B}6 -3030 B}& 3080 C@B -3080 C@( 3130 CC: -3130 CC" 
3031 B}7 -3031 B}' 3081 C@9 -3081 C@) 3131 CC; -3131 CC+ 
3032 B}B -3032 B}( 3082 C@: -3082 C@" 3132 CC< -3132 CC, 
3033 B}9 -3033 B}) 3083 C@; -3083 C@+ 3133 CC= -3133 CC-
3034 B}: -3034 B}" 3084 C@< -3084 C@, 3134 CC> -3134 CC. 
3035 B}; -3035 B}+ 3085 C@= -3085 C@- 3135 CC? -3135 CCI 
3036 B}< -3036 B}, 3086 C@> -3086 C@. 3136 COO -3136 Cosp 
3037 B}= -3037 B}- 3087 C@? -3087 C@I 3137 C01 -3137 CO! 
3038 B}> -3038 B}. 3088 CAO -3088 CAsp 3138 CO2 -3138 CO" 
3039 B}? -3039 B}I 3089 CA1 -3089 CAl 3139 C03 -3139 CO# 
3040 B-O -3040 B-SP 3090 CA2 -3090 CA" 3140 C04 -3140 CO$ 
3041 B-1 -3041 B-! 3091 CA3 -3091 CA# 3141 C05 -3141 CO% 
3042 B-12 -3042 B-" 3092 CA4 -3092 CAS 3142 C06 -3142 CO& 
3043 B-13 -3043 B-1# 3093 CAS -3093 CA% 3143 C07 -3143 CO' 
3044 B-14 -3044 B-1$ 3094 CA6 -3094 CA& 3144 COB -3144 CO( 
3045 B-15 -3045 B-1% 3095 CA7 -3095 CA' 3145 C09 -3145 CO) 
3046 B-16 -3046 B-1& 3096 CAB -3096 CA( 3146 CO: -3146 CO" 
3047 B-17 -3047 B-1' 3097 CA9 -3097 CA) 3147 CO; -3147 CO+ 
3048 B-1B -3048 B-1( 3098 CA: -3098 CA" 3148 CO< -3148 CD, 
3049 B-19 -3049 B-1) 3099 CA; -3099 CA+ 3149 Co= -3149 CO-

( 

B-22 4110 SERIES HOST 

---.----~----------- -------------- ---------------------- --_._. 



[NT PARAMETERS 

Table B-1 (cant) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

3150 CD> -3150 CD. 3200 CHO -3200 CHsp 3250 CK2 -3250 CK" 
3151 CD? -3151 COl 3201 CH1 -3201 CHI 3251 CK3 -3251 CK# 
3152 CEO -3152 CEsp 3202 CH2 -3202 CH" 3252 CK4 -3252 CK$ 
3153 CE1 -3153 CE! 3203 CH3 -3203 CH# 3253 CK5 -3253 CK% 
3154 CE2 -3154 CE" 3204 CH4 -3204 CH$ 3254 CK6 -3254 CK& 
3155 CE3 -3155 CE# 3205 CH5 -3205 CH% 3255 CK7 -3255 CK' 
3156 CE4 -3156 CE$ 3206 CH6 -3206 CH& 3256 CK8 -3256 CK( 
3157 CE5 -3157 CE% 3207 CH7 -3207 CH' 3257 CK9 -3257 CK) 
3158 CE6 -3158 CE& 3208 CH8 -3208 CHI 3258 CK: -3258 CK* 
3159 CE7 -3159 CE' 3209 CH9 -3209 CH) 3259 CKj -3259 CK+ 
3160 CE8 -3160 CE( 3210 CH: -3210 CH* 3260 CK< -3260 CK, 
3161 CE9 -3161 CE) 3211 CHj -3211 CH+ 3261 CK= -3261 CK-
3162 CE: -3162 CEO 3212 CH< -3212 CH, 3262 CK> -3262 CK. 
3163 CEj -3163 CE+ 3213 CH= -3213 CH- 3263 CK? -3263 CKI 
3164 CE< -3164 CE, 3214 CH> -3214 CH. 3264 CLO -3264 CLsp 
3165 CE= -3165 CE- 3215 CH? -3215 CHI 3265 CL1 -3265 CLI 
3166 CE> -3166 CEo 3216 CIO -3216 Cisp 3266 CL2 -3266 CL" 
3167 CE? -3167 CEI 3217 CI1 -3217 cn 3267 CL3 -3267 CL# 
3168 CFO -3168 CFsp 3218 CI2 -3218 CI" 3268 CL4 -3268 CL$ 
3169 CF1 -3169 CF! 3219 CI3 -3219 CI# 3269 CL5 -3269 Cl% 
3170 CF2 -3170 CF" 3220 CI4 -3220 CI$ 3270 CL6 -3270 Cl& 
3171 CF3 -3171 CF# 3221 CI5 -3221 CI% 3271 CL7 -3271 Cl' 
3172 CF4 -3172 CF$ 3222 CI6 -3222 CI& 3272 CL8 -3272 Cl( 
3173 CF5 -3173 CF% 3223 CI7 -3223 CI' 3273 CL9 -3273 Cl) 
3174 CF6 -3174 CF& 3224 CI8 -3224 CI( 3274 CL: -3274 Cl* 
3175 CF7 -3175 CF' 3225 CI9 -3225 CI) 3275 CLj -3275 Cl+ 
3176 CF8 -3176 CF( 3226 CI: -3226 CI* 3276 CL< -3276 Cl, 
3177 CF9 -3177 CF) 3227 Clj -3227 CI+ 3277 CL= -3277 CL-
3178 CF: -3178 CF* 3228 CI< -3228 CI, 3278 CL> -3278 CL. 
3179 CFj -3179 CF+ 3229 CI= -3229 CI- 3279 CL? -3279 CLI 
3180 CF< -3180 CF, 3230 CI> -3230 CI. 3280 CMO -3280 CMsp 
3181 CF= -3181 CF- 3231 CI? -3231 CII 3281 CM1 -3281 CM! 
3182 CF> -3182 CF. 3232 CJO -3232 CJsp 3282 CM2 -3282 CM" 
3183 CF? -3183 CFI 3233 CJ1 -3233 CJ! 3283 CM3 -3283 CM# 
3184 CGO -3184 CGsp 3234 CJ2 -3234 CJ" 3284 CM4 -3284 CM$ 
3185 CG1 -3185 CG! 3235 CJ3 -3235 CJ# 3285 CM5 -3285 CM% 
3186 CG2 -3186 CG" 3236 CJ4 -3236 CJ$ 3286 CM6 -3286 CM& 
3187 CG3 -3187 CG# 3237 CJ5 -3237 CJ% 3287 CM7 -3287 CM' 
3188 CG4 -3188 CG$ 3238 CJ6 -3238 CJ& 3288 CM8 -3288 CM( 
3189 CG5 -3189 CG% 3239 CJ7 -3239 CJ' 3289 CM9 -3289 CM) 
3190 CG6 -3190 CG& 3240 CJ8 -3240 CJ( 3290 CM: -3290 CM* 
3191 CG7 -3191 CG' 3241 CJ9 -3241 CJ) 3291 CMj -3291 CM+ 
3192 CG8 -3192 CG( 3242 CJ: -3242 CJ* 3292 CM< -3292 CM, 
3193 CG9 -3193 CG) 3243 CJj -3243 CJ+ 3293 CM= -3293 CM-
3194 CG: -3194 CG* 3244 CJ< -3244 CJ, 3294 CM> -3294 CM. 
3195 CGj -3195 CG+ 3245 CJ= -3245 CJ- 3295 CM? -3295 CMI 
3196 CG< -3196 CG, 3246 CJ> -3246 CJ. 3296 CNO -3296 CNsp 
3197 CG= -3197 CG- 3247 CJ? -3247 CJI 3297 CN1 -3297 CN! 
3198 CG> -3198 CG. 3248 CKO -3248 CKsp 3298 CN2 -3298 CN" 
3199 CG? -3199 CGI 3249 CK1 -3249 CKI 3299 CN3 -3299 CN# 

4110 SERIES HOST 8-23 



[NT PARAMETERS 

( 
Table B-1 (cant) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -J'i int: -n n int: n -n int: -n 

3300 CN4 -3300 CN$ 3350 CQ6 -3350 CQ& 3400 CTa -3400 CT( 
3301 CN5 -3301 CN% 3351 CQ7 -3351 CQ' 3401 CT9 -3401 CT) 
3302 CN6 -3302 CN& 3352 CQa -3352 CQ( 3402 CT: -3402 CP 
3303 CN7 -3303 CN' 3353 CQ9 -3353 CQ) 3403 CT; -3403 CT+ 
3304 CNS -3304 CN( 3354 CQ: -3354 CQ· 3404 CT< -3404 CT, 
3305 CN9 -3305 CN) 3355 CQ; -3355 CQ+ 3405 CT= -3405 CT-
3306 CN: -3306 CN· 3356 CQ< -3356 CQ, 3406 CT> -3406 CT. 
3307 CN; -3307 CN+ 3357 CQ= -3357 CQ- 3407 CT? -3407 CTI 
3308 CN< -3308 CN, 3358 CQ> -3358 CQ. 3408 CUO -3408 CUsp 
3309 CN= -3309 CN- 3359 CQ? -3359 CQI 3409 CU1 -3409 CUI 
3310 CN> -3310 CN. 3360 CRO -3360 CRsp . 3410 CU2 -3410 CU" 
3311 CN? -3311 CNI 3361 CR1 -3361 CR! 3411 CU3 -3411 CU# 
3312 COO -3312 Cosp 3362 CR2 -3362 CR" 3412 CU4 -3412 CU$ 
3313 C01 -3313 CO! 3363 CR3 -3363 CR# 3413 CU5 -3413 CU% 
3314 CO2 -3314 CO" 3364 CR4 -3364 CR$ 3414 CU6 -3414 CU& 
3315 C03 -3315 CO# 3365 CR5 -3365 CR% 3415 CU7 -3415 CU' 
3316 C04 -3316 CO$ 3366 CR6 -3366 CR& 3416 cua -3416 CU( 
3317 C05 -3317 CO% 3367 CR7 -3367 CR' 3417 CU9 -3417 CU) 
3318 C06 -3318 CO& 3368 CRa -3368 CR( 3418 CU: -3418 CU· 
3319 C07 -3319 CO' 3369 CR9 -3369 CR) 3419 CUi -3419 CU+ 
3320 coa -3320 CO( 3370 CR: -3370 CR· 3420 CU< -3420 CU, 
3321 C09 -3321 CO) 3371 CR; -3371 CR+ 3421 CU= -3421 CU-
3322 CO: -3322 CO· 3372 CR< -3372 CR, 3422 CU> -3422 CU. 

( 3323 COj -3323 CO+ 3373 CR= -3373 CR- 3423 CU? -3423 CUI 
3324 CO< -3324 CO, 3374 CR> -3374 CR. 3424 CVO -3424 Cvsp 
3325 CO= -3325 CO- 3375 CR? -3375 CRI 3425 CV1 -3425 CV! 
3326 CO> -3326 CO. 3376 CSO -3376 Cssp 3426 CV2 -3426 CV" 
3327 CO? -3327 COl 3377 CS1 -3377 CS! 3427 CV3 -3427 CV# 
3328 CPO -3328 cpsp 3378 CS2 -3378 CS" 3428 CV4 -3428 CV$ 
3329 CP1 -3329 cpr 3379 CS3 -3379 CS# 3429 CV5 -3429 CV% 
3330 CP2 -3330 CP" 3380 CS4 -3380 CS$ 3430 CV6 -3430 CV& 
3331 CP3 -3331 CP# 3381 CS5 -3381 CS% 3431 CV7 -3431 CV' 
3332 CP4 -3332 CP$ 3382 CS6 -3382 CS& 3432 cva -3432 CV( 
3333 CP5 -3333 CP% 3383 CS7 -3383 CS' 3433 CV9 -3433 CV) 
3334 CP6 -3334 CP& 3384 csa -3384 CS( 3434 CV: -3434 CV· 
3335 CP7 -3335 CP' 3385 CS9 -3385 CS) 3435 CV; -3435 CV+ 
3336 cpa -3336 CP( 3386 CS: -3386 CS· 3436 CV< -3436 CV, 
3337 CP9 -3337 CP) 3387 CS; -3387 CS+ 3437 cv= -3437 cv-
3338 CP: -3338 cpo 3388 CS< -3388 CS, 3.438 CV> -3438 CV. 
3339 CPj -3339 CP+ 3389 CS= -3389 CS- 3439 CV? -3439 CVI 
3340 CP< -3340 CP, 3390 CS> -3390 CS. 3440 CWO -3440 Cwsp 
3341 CP= -3341 CP- 3391 CS? -3391 CSI 3441 CW1 -3441 CW! 
3342 CP> -3342 CPo 3392 CTO -3392 CTsp 3442 CW2 -3442 CW" 
3343 CP? -3343 CPI 3393 cn -3393 CTI 3443 CW3 -3443 CW# 
3344 CQO -3344 CQsp 3394 CT2 -3394 CT" 3444 CW4 -3444 CW$ 
3345 CQ1 -3345 CQI 3395 CT3 -3395 CT# 3445 CW5 -3445 CW% 
3346 CQ2 -3346 CQ" 3396 CT4 -3396 CT$ 3446 CW6 -3446 CW& 
3347 CQ3 -3347 CQ# 3397 CT5 -3397 CT% 3447 CW7 -3447 CW' 
3348 CQ4 -3348 CQ$ 3398 CT6 -3398 CT& 3448 cwa -3448 CW( 
3349 CQ5 -3349 CQ% 3399 CT7 -3399 CT' 3449 CW9 -3449 CW) 

( 

8-24 4110 SERIES HOST 



tNT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

3450 CW: -3450 CW* 3500 CZ< -3500 CZ, 3550 C]> -3550 C]. 
3451 CWj -3451 CW+ 3501 CZ= -3501 CZ- 3551 C]? -3551 C]I 
3452 CW< -3452 CW, 3502 CZ> -3502 CZ. 3552 CAO -3552 CAsp 
3453 CW= -3453 cw- 3503 CZ? -3503 CZI 3553 CA1 -3553 CAl 
3454 CW> -3454 CWo 3504 C[O -3504 C[sp 3554 CA2 -3554 CA" 
3455 CW? -3455 CWI 3505 C[1 -3505 C[I 3555 CA3 -3555 CA# 
3456 CXO -3456 CXsp 3506 C[2 -3506 C[" 3556 CA4 -3556 CA$ 
3457 CX1 -3457 CX! 3507 C[3 -3507 C[# 3557 CA5 -3557 CA% 
3458 CX2 -3458 CX" 3508 C[4 -3508 C[$ 3558 CA6 -3558 CA& 
3459 CX3 -3459 CX# 3509 C[5 -3509 C[% 3559 CA7 -3559 CA' 
3460 CX4 -3460 CX$ 3510 C[6 -3510 C[& 3560 CAS -3560 CA( 
3461 CX5 -3461 CX% 3511 C[7 -3511 C[' 3561 CA9 -3561 CA) 
3462 CX6 -3462 CX& 3512 C[S -3512 C[( 3562 CA: -3562 CA* 
3463 CX7 -3463 CX' 3513 C[9 -3513 cn 3563 CAj -3563 CA+ 
3464 CXS -3464 CX( 3514 C[: -3514 C[* 3564 CA< -3564 CA, 
3465 CX9 -3465 CX) 3515 C[j -3515 C[+ 3565 CA= -3565 CA-
3466 CX: -3466 CX* 3516 C[< -3516 C[, 3566 CA> -3566 CI\. 
3467 CXj -3467 CX+ 3517 C[= -3517 C[- 3567 CA? -3567 CN 
3468 CX< -3468 CX, 3518 C[> -3518 cr· 3568 C_O -3568 c_sp 
3469 CX= -3469 CX- 3519 C[? -3519 C[I 3569 C_1 -3569 C_! 
3470 CX> -3470 CX. 3520 C\O -3520 C\sp 3570 C_2 -3570 C_" 
3471 CX? -3471 CXI 3521 C\1 -3521 C\! 3571 C_3 -3571 C_# 
.3472 CYO -3472 CySp 3522 C\2 -3522 C\" 3572 C_4 -3572 C_$ 
3473 CY1 -3473 CY! 3523 C\3 -3523 C\# 3573 C_5 -3573 C_% 
3474 CY2 -3474 CY" 3524 C\4 -3524 C\$ 3574 C_6 -3574 C_& 
3475 CY3 -3475 CY# 3525 C\5 -3525 C\% 3575 C_7 -3575 C_' 
3476 CY4 -3476 CY$ 3526 C\6 -3526 C\& 3576 C_S -3576 C_( 
3477 CY5 -3477 CY% 3527 C\1 -3527 C\' 3577 C_9 -3577 C_) 
3478 CY6 -3478 CY& 3528 C\S -3528 C\f 3578 c_: -3578 c_* 
3479 CY7 -3479 CY' 3529 C\9 -3529 C\) 3579 C_j -3579 C_+ 
3480 CYS -3480 CY( 3530 C\: -3530 C\* 3580 C_< -3580 C_, 
3481 CY9 -3481 CY) 3531 C\j -3531 C\+ 3581 C_= -3581 C_-
3482 CY: -3482 CY* 3532 C\< -3532 C\, 3582 C_> -3582 C_. 
3483 CYj -3483 CY+ 3533 C\= -3533 C\- 3583 C_? -3583 C_I 
3484 CY< -3484 CY, 3534 C\> -3534 C\. 3584 C'O -3584 C'sp 
3485 CY= -3485 CY- 3535 C\? -3535 C\I 3585 C'1 -3585 C'! 
3486 CY> -3486 CY. 3536 C]O -3536 C]sp 3586 C'2 -3586 C'" 
3487 CY? -3487 CYI 3537 C]1 -3537 C]! 3587 C'3 -3587 C'# 
3488 CZO -3488 CZsp 3538 C]2 -3538 C]" 3588 C'4 -3588 C'$ 
3489 CZ1 -3489 CZ! 3539 C]3 -3539 C]# 3589 C'5 -3589 C'% 
3490 CZ2 -3490 CZ" 3540 C]4 -3540 C]$ 3590 C'6 -3590 C'& 
3491 CZ3 -3491 CZ# 3541 C]5 -3541 C]% 3591 C'7 -3591 C" 
3492 CZ4 -3492 CZ$ 3542 C]6 -3542 C]& 3592 C'S -3592 C'( 
3493 CZ5 -3493 CZ% 3543 C]7 -3543 C]' 3593 C'9 -3593 C') 
3494 CZ6 -3494 CZ& 3544 C]S -3544 C]( 3594 C': -3594 C'* 
3495 CZ7 -3495 CZ' 3545 C]9 -3545 cn 3595 C'j -3595 C'+ 
3496 CZS -3496 CZ( 3546 C]: -3546 C]* 3596 C'< -3596 C', 
3497 CZ9 -3497 CZ) 3547 C]j -3547 C]+ 3597 C'= -3597 C'-
3498 CZ: -3498 CZ* 3548 C]< -3548 C], 3598 C'> -3598 C'. 
3499 CZj -3499 CZ+ 3549 C]= -3549 C]- 3599 C'? -3599 C'I 

4110 SERIES HOST B-25 



INT PARAMETERS 

( 
Table B-1 (cont) 

REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

3600 CaO -3600 Casp 3650 Cd2 -3650 Cd" 3700 Cg4 -3700 Cg$ 
3601 Ca1 -3601 Cal 3651 Cd3 -3651 Cd# 3701 CgS -3701 Cg% 
3602 Ca2 -3602 Ca" 3652 Cd4 -3652 Cd$ 3702 Cg6 -3702 Cg& 
3603 Ca3 -3603 Ca# 3653 CdS -3653 Cd% 3703 Cg7 -3703 Cg' 
3604 Ca4 -3604 Ca$ 3654 Cd6 -3654 Cd& 3704 Cg8 -3704 Cg( 
3605 CaS -3605 Ca% 3655 Cd7 -3655 Cd' 3705 Cg9 -3705 Cg) 
3606 Ca6 -3606 Ca& 3656 Cd8 -3656 Cd( 3706 Cg: -3706 Cg* 
3607 Ca7 -3607 Ca' 3657 Cd9 -3657 Cd) 3707 Cgj -3707 Cg+ 
3608 Ca8 -3608 Ca( 3658 Cd: -3658 Cd* 3708 Cg< -3708 Cg, 
3609 CaS -3609 Ca) 3659 Cdj -3659 Cd+ 3709 Cg= -3709 Cg-
3610 Ca: -3610 Ca* 3660 Cd< -3660 Cd, 3710 Cg> -3710 Cg. 
3611 Caj -3611 Ca+ 3661 Cd= -3661 Cd- 3711 Cg? -3711 Cgl 
3612 Ca< -3612 Ca, 3662 Cd> -3662 Cd. 3712 ChO -3712 Chsp 
3613 Ca= -3613 Ca- 3663 Cd? -3663 Cdl 3713 Ch1 -3713 Chi 
3614 Ca> -3614 Ca. 3664 CeO -3664 Cesp 3714 Ch2 -3714 Ch" 
3615 Ca? -3615 Cal 3665 Ce1 -3665 Ce! 3715 Ch3 -3715 Ch# 
3616 CbO -3616 Cbsp 3666 Ce2 -3666 Ce" 3716 Ch4 -3716 Ch$ 
3617 Cb1 -3617 Cb! 3667 Ce3 -3667 Ce# 3717 ChS -3717 ChO/O 
3618 Cb2 -3618 Cb" 3668 Ce4 -3668 Ce$ 3718 Ch6 -3718 Ch& 
3619 Cb3 -3619 Cb# 3669 CeS -3669 Ce% 3719 Ch7 -3719 Ch' 
3620 Cb4 -3620 Cb$ 3670 Ce6 -3670 Ce& 3720 Ch8 -3720 Ch( 
3621 CbS -3621 Cb% 3671 Ce7 -3671 Ce' 3721 Ch9 -3721 Ch) 
3622 Cb6 -3622 Cb& 3672 Ce8 -3672 Ce( 3722 Ch: -3722 Ch* C 3623 Cb7 -3623 Cb' 3673 Ce9 -3673 Ce) 3723 Chj -3723 Ch+ 

! 

3624 Cb8 -3624 Cb( 3674 Ce: -3674 Ceo 3724 Ch< -3724 Ch, 
3625 Cb9 -3625 Cb) 3675 Cej -3675 Ce+ 3725 Ch= -3725 Ch-
3626 Cb: -3626 Cb* 3676 Ce< -3676 Ce, 3726 Ch> -3726 Ch. 
3627 Cbj -3627 Cb+ 3677 Ce= -3677 Ce- 3727 Ch? -3727 ChI 
3628 Cb< -3628 Cb, 3678 Ce> -3678 Ceo 3728 CiO -3728 Cisp 
3629 Cb= -3629 Cb- 3679 Ce? -3679 Cel 3729 Ci1 -3729 Ci! 
3630 Cb> -3630 Cb. 3680 CfO -3680 Cfsp 3730 Ci2 -3730 Ci" 
3631 Cb? -3631 Cbl 3681 Cf1 -3681 Cf! 3731 Ci3 -3731 Ci# 
3632 CeO -3632 Cesp 3682 Cf2 -3682 Cf" 3732 Ci4 -3732 Ci$ 
3633 Ce1 -3633 Ce! 3683 Cf3 -3683 Cf# 3733 CiS -3733 CiO/O 
3634 Ce2 -3634 Ce" 3684 Cf4 -3684 Cf$ 3734 Ci6 -3734 Ci& 
3635 Ce3 -3635 Ce# 3685 CfS -3685 CfO/O 3735 Ci7 -3735 Ci' 
3636 Ce4 -3636 Ce$ 3686 Cf6 -3686 Cf& 3736 Ci8 -3736 Ci( 
3637 CeS -3637 Ce% 3687 Cf7 -3687 Cf' 3737 Ci9 -3737 Ci) 
3638 Ce6 -3638 Ce& 3688 Cf8 -3688 Cf( 3738 Ci: -3738 Ci* 
3639 Ce7 -3639 Ce' 3689 Cf9 -3689 Cf) 3739 Cij -3739 Ci+ 
3640 Ce8 -3640 Ce( 3690 Cf: -3690 Cf* 3740 Ci< -3740 Ci, 
3641 Ce9 -3641 Ce) 3691 Cfj -3691 CH 3741 Ci= -3741 Ci-
3642 Ce: -3642 Ce* 3692 Cf< -3692 Cf, 3742 Ci> -3742 Ci. 
3643 Cej -3643 Ce+ 3693 Cf= -3693 Cf- 3743 Ci? -3743 Cil 
3644 Ce< -3644 Ce, 3694 Cf> -3694 Cf. 3744 CjO -3744 CjSp 
3645 Ce= -3645 Ce- 3695 Cf? -3695 Cfl 3745 Cj1 -3745 Cj! 
3646 Ce> -3646 Ce. 3696 CgO -3696 cgsp 3746 Cj2 -3746 Cj" 
3647 Ce? -3647 Cel 3697 Cg1 -3697 Cg! 3747 Cj3 -3747 Cj# 
3648 CdO -3648 Cdsp 3698 Cg2 -3698 Cg" 3748 Cj4 -3748 Cj$ 
3649 Cd1 -3649 Cd! 3699 Cg3 -3699 Cg# 3749 CjS -3749 Cj% 

( ) 

B-26 4110 SERIES HOST 



INT PARAMETERS 

Table B-1 (cont) 

REPRESENTING NUMBERS AS INT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

3750 Cj6 -3750 Cj& 3800 CmS -3800 Cm( 3850 Cp: -3850 Cp* 
3751 Cj7 -3751 Cj' 3801 Cm9 -3801 Cm) 3851 Cp; -3851 Cp+ 
3752 CjS -3752 Cj( 3802 Cm: -3802 Cm* 3852 Cp< -3852 Cp, 
3753 Cj9 -3753 cn 3803 Cm; -3803 Cm+ 3853 Cp= -3853 Cp-
3754 Cj: -3754 Cj* 3804 Cm< -3804 Cm, 3854 Cp> -3854 Cpo 
3755 Cj; -3755 Cj+ 3805 Cm= -3805 Cm- 3855 Cp? -3855 Cpt 
3756 Cj< -3756 Cj, 3806 Cm> -3806 Cm. 3856 CqO -3856 cqsp 
3757 Cj= -3757 Cj- 3807 Cm? -3807 Cm/ 3857 Cq1 -3857 Cql 
3758 Cj> -3758 Cj. 3808 CnO -3808 Cnsp 3858 Cq2 -3858 Cq" 
3759 Cj? -3759 Cj/ 3809 Cn1 -3809 Cn! 3859 Cq3 -3859 Cq# 
3760 CkO -3760 Cksp 3810 Cn2 -3810 Cn" 3860 Cq4 -3860 Cq$ 
3761 Ck1 -3761 Ck! 3811 Cn3 -3811 Cn# 3861 Cq5 -3861 Cq% 
3762 Ck2 -3762 Ck" 3812 Cn4 -3812 Cn$ 3862 Cq6 -3862 Cq& 
3763 Ck3 -3763 Ck# 3813 Cn5 -3813 Cn% 3863 Cq7 -3863 Cq' 
3764 Ck4 -3764 Ck$ 3814 Cn6 -3814 Cn& 3864 CqS -3864 Cq( 
3765 Ck5 -3765 CkO/O 3815 Cn7 -3815 Cn' 3865 Cq9 -3865 Cq) 
3766 Ck6 -3766 Ck& 3816 CnS -3816 Cn( 3866 Cq: -3866 Cq* 
3767 Ck7 -3767 Ck' 3817 Cn9 -3817 Cn) 3867 Cq; -3867 Cq+ 
3768 CkS -3768 Ck( 3818 Cn: -3818 Cn* 3868 Cq< -3868 Cq, 
3769 Ck9 -3769 Ck) 3819 Cn; -3819 Cn+ 3869 Cq= -3869 Cq-
3770 Ck: -3770 Ck* 3820 Cn< -3820 Cn, 3870 Cq> -3870 Cq. 
3771 Ck; -3771 Ck+ 3821 Cn= -3821 Cn- 3871 Cq? -3871 Cq/ 
3772 Ck< -3772 Ck, 3822 Cn> -3822 Cn. 3872 crO -3872 crSp 
3773 Ck= -3773 Ck- 3823 Cn? -3823 Cn/ 3873 Cr1 -3873 Cr! 
3774 Ck> -3774 Ck. 3824 CoO -3824 Cosp 3874 Cr2 -3874 Cr" 
3775 Ck? -3775 Ck/ 3825 Co1 -3825 Co! 3875 Cr3 -3875 Cr# 
3776 CIO -3776 Cisp 3826 Co2 -3826 Co" 3876 Cr4 -3876 Cr$ 
3777 CI1 -3777 CII 3827 Co3 -3827 Co# 3877 Cr5 -3877 Cr% 
3778 CI2 -3778 CI" 3828 Co4 -3828 Co$ 3878 Cr6 -3878 Cr& 
3779 CI3 -3779 CI# 3829 Co5 -3829 Co% 3879 Cr7 -3879 Cr' 
3780 CI4 -3780 CI$ 3830 Co6 -3830 Co& 3880 CrS -3880 Cr( 
3781 CI5 -3781 CI% 3831 Co7 -3831 Co' 3881 Cr9 -3881 Cr) 
3782 CI6 -3782 CI& 3832 CoS -3832 Co( 3882 Cr: -3882 Cr* 
3783 CI7 -3783 CI' 3833 Co9 -3833 Co) 3883 Cr; -3883 Cr+ 
3784 CIS -3784 CI( 3834 Co: -3834 Co* 3884 Cr< -3884 Cr, 
3785 CI9 -3785 CI) 3835 Co; -3835 Co+ 3885 Cr= -3885 Cr-
3786 CI: -3786 CI* 3836 Co< -3836 Co, 3886 Cr> -3886 Cr. 
3787 CI; -3787 CI+ 3837 Co= -3837 Co- 3887 Cr? -3887 Crt 
3788 CI< -3788 CI, 3838 Co> -3838 Co. 3888 CsO -3888 Cssp 
3789 CI= -3789 CI- 3839 Co? -3839 Col 3889 Cs1 -3889 Cs! 
3790 CI> -3790 CI. 3840 CpO -3840 Cpsp 3890 Cs2 -3890 Cs" 
3791 CI? -3791 CI/ 3841 Cp1 -3841 Cp! 3891 Cs3 -3891 Cs# 
3792 CmO -3792 Cmsp 3842 Cp2 -3842 Cp" 3892 Cs4 -3892 Cs$ 
3793 Cm1 -3793 Cm! 3843 Cp3 -3843 Cp# 3893 Cs5 -3893 Cs% 
3794 Cm2 -3794 Cm" 3844 Cp4 -3844 Cp$ 3894 Cs6 -3894 Cs& 
3795 Cm3 -3795 Cm# 3845 Cp5 -3845 Cp% 3895 Cs7 -3895 Cs' 
3796 Cm4 -3796 Cm$ 3846 Cp6 -3846 Cp& 3896 CsS -3896 Cs( 
3797 Cm5 -3797 Cm% 3847 Cp7 -3847 Cp' 3897 Cs9 -3897 Cs) 
3798 Cm6 -3798 Cm& 3848 CpS -3848 Cp( 3898 Cs: -3898 Cs* 
3799 Cm7 -3799 Cm' 3849 Cp9 -3849 Cp) 3899 Cs; -3899 Cs+ 

4110 SERIES HOST B-27 



INT PARAMETERS 

Table B-1 (cont) 

(-
REPRESENTING NUMBERS AS [NT PARAMETERS 

n int: n -n int: -n n int: n -n int: -n n int: n -n int: -n 

3900 Cs< -3900 Cs, 3950 Cv> -3950 Cv. 4000 CzO -4000 Czsp 
3901 Cs= -3901 Cs- 3951 Cv? -3951 Cvl 4001 Czi -4001 Czl 
3902 Cs> -3902 Cs. 3952 CwO -3952 Cwsp 4002 Cz2 -4002 Cz" 
3903 Cs? -3903 CsI 3953 Cw1 -3953 Cw! 4003 Cz3 -4003 Cz# 
3904 CtO -3904 CtSp 3954 Cw2 -3954 Cw" 4004 Cz4 -4004 Ci$ 
3905 cn -3905 Ct! 3955 Cw3 -3955 Cw# 4005 Cz5 -4005 Cz% 
3906 Ct2 -3906 Ct" 3956 Cw4 -3956 Cw$ 4006 Cz6 -4006 Cz& 
3907 Ct3 -3907 Ct# 3957 Cw5 -3957 Cw% 4007 Cz7 -4007 Cz' 
3908 Ct4 -3908 Ct$ 3958 Cw6 -3958 Cw& 4008 Czs -4008 Cz( 
3909 Ct5 -3909 Ct% 3959 Cw7 -3959 Cw' 4009 Cz9 -4009 Cz) 
3910 Ct6 -3910 Ct& 3960 Cws -3960 Cw( 4010 Cz: -4010 Cz* 
3911 Ct7 -3911 Ct' 3961 Cw9 -3961 Cw) 4011 Cz; -.4011 Cz+ 
3912 CtS -3912 Ct( 3962 Cw: -3962 Cw* 4012 Cz< -4012 Cz, 
3913 Ct9 -3913 Ct) 3963 Cw; -3963 Cw+ 4013 Cz= -4013 Cz-
3914 Ct: -3914 Ct* 3964 Cw< -3964 Cw, 4014 Cz> ~4014 Cz. 
3915 Ct; -3915 Ct+ 3965 Cw= -3965 Cw- 4015 Cz? -4015 Czl 
3916 Ct< -3916 Ct, 3966 Cw> -3966 Cwo 4016 C{O -4016 C{sp 
3917 Ct= -3917 ci- 3967 Cw? -3967 Cwl 4017 C{i -4017 C{! 
3918 Ct> -3918 ct. 3968 CxO -3968 Cxsp 4018 C{2 -4018 C{" 
3919 Ct? -3919 Ctl 3969 Cxi -3969 Cx! 4019 C{3 -4019 C{# 
3920 CuO -3920 Cusp 3970 Cx2 -3970 Cx" 4020 C{4 -4020 C{$ 
3921 Cui -3921 cur 3971 Cx3 -3971 Cx# 4021 C{5 -4021 C{% 
3922 Cu2 -3922 Cu" 3972 Cx4 -3972 Cx$ 4022 C{6 -4022 C{& 

( 3923 Cu3 -3923 Cu# 3973 Cx5 -3973 Cx% 4023 C{7 -4023 C{' 
3924 Cu4 -3924 Cu$ 3974 Cx6 -3974 Cx& 4024 C{S -4024 C{( 
3925 Cu5 -3925 Cu% 3975 Cx7 -3975 Cx' 4025 C{9 -4025 C{) 
3926 Cu6 -3926 Cu& 3976 CxS -3976 Cx( 4026 C{: -4026 C{* 
3927 Cu7 -3927 Cu' 3977 Cx9 -3977 Cx) 4027 C{; -4027 C{+ 
3928 Cus -3928 Cu( 3978 Cx: -3978 Cx* 4028 C{< -4028 C{, 
3929 Cu9 -3929 Cu) 3979 Cx; -3979 Cx+ 4029 C{= -4029 C{-
3930 Cu: -3930 Cu* 3980 Cx< -3980 Cx, 4030 C{> -4030 Ct· 
3931 CUi -3931 Cu+ 3981 Cx= -3981 Cx- 4031 C{? -4031 ClI 
3932 Cu< -3932 Cu, 3982 Cx> -3982 Cx. 4032 cIo -4032 clSp 
3933 CU= -3933 Cu-,- 3983 Cx? -3983 Cxl 4033 ch -4033 cil 
3934 Cu> -3934 Cu. 3984 CyO -3984 cySp 4034 cl2 -4034 cI" 
3935 Cu? -3935 CuI 3985 Cy1 -3985 Cy! 4035 cl3 -4035 cI# 
3936 CvO -3936 CvSp 3986 Cy2 -3986 Cy" 4036 cI4 -4036 cis 
3937 Cvi -3937 Cv! 3987 Cy3 -3987 Cy# 4037 cis -4037 cI% 
3938 Cv2 -3938 Cv" 3988 Cy4 -3988 Cy$ 4038 cis -4038 cI& 
3939 Cv3 -3939 Cv# 3989 Cy5 -3989 Cy% 4039 cI7 -4039 cI' 
3940 Cv4 -3940 Cv$ 3990 Cy6 -3990 Cy& 4040 cis -4040 cI( 
3941 Cv5 -3941 Cv% 3991 Cy7 -3991 Cy' 4041 cI9 -4041 cI) 
3942 Cv6 -3942 Cv& 3992 CyS -3992 Cy( 4042 cI: -4042 cI* 
3943 Cv7 -3943 Cv' 3993 Cy9 -3993 Cy) 4043 cl; -4043 cI+ 
3944 CvS -3944 Cv( 3994 Cy: -3994 Cy* 4044 ck -4044 cI, 
3945 Cv9 -3945 Cv) 3995 Cy; -3995 Cy+ 4045 cl= -4045 cI-
3946 Cv: -3946 Cv* 3996 Cy< -3996 Cy, 4046 cI> -4046 ci. 
3947 CV; -3947 Cv+ 3997 Cy= -3997 Cy- 4047 cI? -4047 cil 
3948 Cv< -3948 Cv, 3998 Cy> -3998 Cy. 4048 ClO -4048 ClSp 
3949 CV= -3949 Cv- 3999 Cy? -3999 Cyl 4049 Cli -4049 Cl! 

( 

B-28 4110 SERIES HOST 



AppendixC 

CODE EXAMPLES 

This appendix contains a set of FORTRAN subroutines that 
were extracted from a system used to test the 4110 Series 
terminals. These routines are intended as an example of 
one way to send commands, parse reports, switch implicit 
modes, and communicate in block mode. 

These routines are not software that is supported by Tek
tronix Inc. and anyone trying to implement them does so at 
his own risk. 

Copyright 1983 by Tektronix Inc. 

C 
C----------SUBROUTINE--ADEIN----
C 

SUBROUTINE ADEIN (ILEN,IRAY) 

While these routines are known to work in the environment 
where they were developed, they may not work in any other 
environment. For example, some common variables are set 
and used by routines not included in this appendix and sev
eral routines have been modified to not call other routines 
not included here. 

C * THIS VERSION OF ADEIN CALLS A SINGLE CHAR INPUT MACRO-10 ROUTINE 
DIMENSION IRAY(1) 
ILEN=O 

10 CALL ICHIN (JCHAR) 
IF (JCHAR.EQ.13) RETURN 
ILEN=ILEN+1 
IRAY(ILEN)=JCHAR 
GO TO 10 
END 

C 
C----------SUBROUTINE--ADEOUT---
C 

SUBROUTINE ADEOUT (ILEN,IRAY) 
C * THIS VERSION OF ADEOUT CALLS A SINGLE CHAR OUTPUT MACRO-10 ROUTINE 

DIMENSION IRAY(1) 
IF (ILEN.LE.O) RETURN 
DO 10 J=1,ILEN 
CALL ICHOUT (IRAY(J» 

10 CONTINUE 

C 

4110 SERIES HOST 

RETURN 
END 

c-, 



CODE EXAMPLES 

C-2 

C----------SUBROUTINE--ADERAY---
C 

SUBROUTINE ADERAY (ILEN,IRAY) 
C * ADERAY SENDS A PACKED ADE ARRAY 
C * ARGUMENTS: 
C * ILEN - LENGTH OF ARRAY 
C * IRAY, - ADE ARRAY TO BE SENT 

DIMENSION IRAY(1) 
CALL INTOUT (ILEN) 
CALL STOUT (ILEN,IRAY) 
RETURN 
END 

C 
C----------SUBROUTINE--ALFMOD---
C 

SUBROUTINE ALFMOD 
C * ALFMOD SENDS A (US) TO THE TERMINAL 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

CALL CHOUT (31) 
KMODE=1 
RETURN 
END 

C 
C----------SUBROUTINE--BLKEND---
C 

SUBROUTINE BLKEND (lACK) 
C * BLKEND ENDS THE BLOCK MODE PROTOCOL AND DISARMS BLOCK MODE 
C * ARGUMENTS: 
C * lACK - ACKNOWLEDGE FLAG: 2 YES, 3 NO, DISARM BLOCK MODE 
C * -2 YES, -3 NO, LEAVE BLOCK MODE ARMED 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, 
& KHEADH(10),KHLENT,KHEADT(10),KCONTH,KCONTT,KENDH,KENDT,KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

C * IF NOT IN BLOCK MODE, EXIT 
IF (KBMODE.EQ.O) RETURN 

C * TURN OFF TERMINAL (IF IT SHOULD NOT BE ON NORMALLY) 
CALL CMDOUT (75,69) 
CALL INTOUT (0) 

C * SET THE CONTROL BITS TO END THE BLOCK PROTOCOL 
KBLOKH=O 
KEOPH=MINO(3,MAXO(2,IABS(IACK») 

C * DUMP THE BUFFER AND TURN OFF SOFTWARE BLOCK MODE 
CALL DUMP 
KBMODE=O 

4110 SERIES HOST 

( 

( 

- ----- ----------------------------------



CODE EXAMPLES 

C * RESTORE OUTPUT BUFFER SIZE 
KBUFSZ=KBFLIM 

C * DISARM BLOCK MODE 
IF (IACK.EQ.O) RETURN 
CALL CMDOUT (79,66) 
CALL INTOUT (0) 
RETURN 
END 

C 
C-------~--SUBROUTINE--BLKIN----
C 

SUBROUTINE BLKIN (INACK) 
C * BLKIN GETS A BLOCK FROM THE TERMINAL 
C * ARGUMENTS: 
C * INACK - 0 (THE BLOCK WAS GOOD), 1 (THE BLOCK WAS BAD) 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512) ,KINEND,KINPT,KINBUF(512) ,KEOMC1,KEOMC2,KIGD EL, 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,KPA CKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT, KEOFT 

COMMON /BLKLIN/ KLINE(256) 
C * INITIALIZE MASTER CHARACTER FOUND FLAG 

JMASTR=O 
C * INITIALIZE BLOCKING VARIABLES 

IF (KINPT.GE.KINEND) KINEND=O 
JINEND=KINEND 
JREGSR=O 
JRPOWR=1 
JOFSET=O 
IF (KPACKT.EQ.64) JOFSET=32 

C * GET A LINE OF INPUT FROM THE TERMINAL 
C * SIMULATE PROMPT MODE IF TURNED ON 
10 IF (KPRMOD.GT.O) CALL ADEOUT (KPRLEN,KPSTRG) 

CALL ADEIN (JLEN,KLINE) 
C * SCAN FOR HEADER 

JLINPT=O 
20 JLINPT=JLINPT+1 
C * IF THE HEADER IS INCORRECT, GET NEXT LINE 

IF (JLINPT.GE.JLEN) GO TO 10 
IF (KLINE(JLINPT).NE.KHEADT(JLINPT» GO TO 10 
IF (JLINPT.LT.KHLENT) GO TO 20 

C * UNPACK CHARACTERS; TRANSLATE MASTER CHAR PAIRS 
30 JLINPT=JLINPT+1 

4110 SERIES HOST 

JCHAR=KLINE(JLINPT) 
IF (JCHAR.EQ.KENDT) GO TO 80 
IF (JCHAR.EQ.KCONTT) GO TO 10 
IF (JLINPT.GE.JLEN) GO TO 100 
IF (JMASTR.EQ.1) GO TO 40 
IF (JCHAR.NE.KMASTT) GO TO 50 
JMASTR=1 

C-3 



CODE EXAMPLES 

C-4 

GO TO 30 
C * MASTER CHARACTER SUBSTITUTION 
40 JCHAR=KNXMTT(JCHAR-64) 

JMASTR=O 
C * CHARACTER UNPACKING 
50 IF (KBYTET.EQ.KPACKT) GO TO 70 

JREGSR=JREGSR*KPACKT+JCHAR-JOFSET 
JRPOWR=JRPOWR*KPACKT 

C * NEED MORE DATA 
IF (JRPOWR.LT.KBYTET) GO TO 30 

60 JRPOWR=JRPOWR/KBYTET 
JINEND=JINEND+l 
KINBUF(JINEND)=JREGSR/JRPOWR 
JREGSR=MOD(JREGSR,JRPOWR) 
IF (JRPOWR.GT.KBYTET) GO TO 60 
GO TO 30 

C * STRAIGHT TO THE BUFFER 
70 JINEND=JINEND+l 

KINBUF(JINEND)=JCHAR 
GO TO 30 

C * CHECK THE BLOCK COUNT BIT 
80 JBYTE1=KINBUF(JINEND-3) 

IF (MOD(JBYTE1,4).NE.KBLOKH+KEOPH) GO TO 100 
C * DO CHECKSUM TEST 

JMAXBT=KBYTET -1 
CALL CHKSUM (JINEND-KINEND,KINBUF(KINEND+1),JMAXBT,JCHK1,JCHK2) 
IF (JCHK1.NE.JMAXBT .OR. JCHK1.NE.JMAXBT) GO TO 100 

C * STRIP CONTROL BYTES 
KINEND=JINEND-4 

C * STRIP EOM CHARACTER IF APPROPRIATE 
IF (KINEND.LE.O) GO TO 90 
IF (KSTRIP.EQ.l .AND. (KINBUF(KINEND) .EQ.KEOMCl .OR. 

& KINBUF(KINEND).EQ.KEOMC2» KINEND=KINEND-l 
C * POSITIVE ACKNOWLEDGE 
90 INACK=O 

KEOMT=JBYTE1/64 
KEOFT=MOD(JBYTE1/32,2) 
RETURN 

C * NEGATIVE ACKNOWLEDGE 
100 INACK=l 

RETURN 
END 

C 

4110 SERIES HOST 

( 

( 

( 



CODE EXAMPLES 

C----------SUBROUTINE--BLKINT---
C 

SUBROUTINE BLKINT (IPARM) 
C * BLKINT INITIALIZES ALL BLOCK MODE PARAMETERS 

COMMON /VALIO/ KBAUDH,KBAUDT.KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN.KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 
& KHEADH(10),KHLENT,KHEADT(10),KCONTH,KCONTT,KENDH,KENDT,KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

C * HEADERS 
KHLENT=5 
KHEADT(1)=72 
KHEADT(2)=69 
KHEADT(3)=65 
KHEADT(4)=68 
KHEADT(5)=84 
KHLENH=5 
KHEADH(1)=72 
KHEADH(2)=69 
KHEADH(3)=65 
KHEADH(4)=68 
KHEADH(5)=72 

C * MASTER CHARACTERS 
KMASTT=35 
KMASTH=35 

C * END CHARACTERS 
KENDT=36 
KENDH=36 

C * CONTINUE CHARACTERS 
KCONTT=38 
KCONTH=38 

C * BLOCK LENGTH 
KBLENT=512 
KBLENH=512 

C * LINE LENGTH 
KBLINE=256 

C * NON-XMT-CHARS 
KNXNOT=3 
KNXMTT(1 )=35 
KNXMTT(2)=36 
KNXMTT(3)=38 
KNXNOH=5 
KNXMTH(1 )=17 
KNXMTH(2)=19 
KNXMTH (3) =35 
KNXMTH (4) =36 
KNXMTH (5) =38 

4110 SERIES HOST C-5 



CODE EXAMPLES 

C * PACKING 
KBYTET=7 
KPACKT=6 
KBYTEH=7 
KPACKH=7 

C * STRIP EOMIS 
KSTRIP=1 
RETURN 
END 

C 
C----------SUBROUTINE--BLKOUT---
C 

SUBROUTINE BLKOUT 
C * BLKOUT SENDS A BLOCK TO THE TERMINAL 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512) ,KINEND,KINPT,KINBUF(512) ,KEOMC1,KEOMC2,KIGD EL, 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH.KMASTT,KBYTEH,KBYTET,K PACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

COMMON /BLKLIN/ KLINE(256) 
C * ADD UP CONTROL BYTE BITS 

KOUTBF(KOUTPT+1)=KBLOKH+KEOPH+KEOFH*32+KEOMH*64 
KOUTBF(KOUTPT+2)=0 

C * COMPUTE CHECKSUM ON KOUTBF AND THE FIRST TWO CONTROL BYTES 
JMAXBT=2**KBYTEH-1 
CALL CHKSUM (KOUTPT+2,KOUTBF,JMAXBT,JCHK1,JCHK2) 
JCHAR=JMAXBT-JCHK1-JCHK2 
IF (JCHAR.LE.O) JCHAR=JCHAR+JMAXBT 
KOUTBF(KOUTPT+3)=JCHAR 
KOUTBF(KOUTPT+4)=JCHK2 

C * INITIALIZE VARIABLES 
JBUFLN=KOUTPT+4 
JRPOWR=1 
JREGSR=O 
JBUFPT=O 
JOFSET=O 
IF (KPACKH.EQ.6) JOFSET=32 

C * PUT BLOCK HEADER IN OUTPUT LINE 
DO 10 I=1,KHLENH 
KLINE(I)=KHEADH(I) 

10 CONTINUE 
C * BUILD AND SEND LINES TO THE TERMINAL 
20 JLINPT=KHLENH 
C * GET ANOTHER CHARACTER FOR OUTPUT 
30 IF (KBYTEH.EQ.KPACKH) GO TO 60 
C * GET PACKED CHARACTER 
C * SEE IF REGISTER ALREADY HAS ENOUGH BITS 

IF (JRPOWR.GE.2**KPACKH) GO TO 50 

C-6 4110 SERIES HOST 

(I 

( 

( 



C * GET NEXT CHAR FROM BUFFER 
JBUFPT=JBUFPT + 1 

C * IF NONE LEFT, PAD REGISTER 
IF (JBUFPT.LE.JBUFLN) GO TO 40 
IF (JRPOWR.EQ.1) GO TO 120 
JCHAR=JREGSR*2**KPACKH/JRPOWR+JOFSET 
JRPOWR=1 
GO TO 70 

C * PUT NEW CHAR INTO SHIFT REGISTER 
40 JREGSR=JREGSR*2**KBYTEH+KOUTBF(JBUFPT) 

JRPOWR=JRPOWR*2**KBYTEH 
IF (JRPOWR.LT.2**KPACKH) GO TO 30 

C .* GET PACKED CHAR FROM SHIFT REGISTER • 50 JRPOWR=JRPOWR/2**KPACKH 
JCHAR=JREGSR/JRPOWR 
JREGSR=JREGSR-JCHAR*JRPOWR 
JCHAR=JCHAR+JOFSET 
GO TO 70 

C * GET NEXT CHARACTER STRAIGHT FROM BUFFER 
60 JBUFPT=JBUFPT+1 

IF (JBUFPT.GT.JBUFLN) GO TO 120 
JCHAR=KOUTBF(JBUFPT) 

C * SUBSTITUTE NON-TRANSMITTABLE CHARACTERS IF NEEDED 
70 JCNTR=O 
80 JCNTR=JCNTR+1 

IF (JCNTR.GT.KNXNOH) GO TO 90 
IF (JCHAR.NE.KNXMTH(JCNTR» GO TO 80 
JLINPT =JLINPT + 1 
KLINE (JLINPT)=KMASTH 
JLINPT=JLINPT+ 1 
KLINE (JLINPT)=64+JCNTR 
GO TO 100 

90 JLINPT=JLINPT+1 
KLINE(JLINPT)=JCHAR 

C * TEST FOR END OF LINE 
100 IF (JLINPT.GE.KBLINE-2) GO TO 110 

GO TO 30 
C * PUT IN CONTINUE CHAR AND SEND LINE TO TERMINAL 
110 JLINPT=JLINPT+1 

KLINE (JLINPT)=KCONTH 
CALL ADEOUT (JLINPT,KLINE) 
GO TO 20 

C * PUT IN END CHAR AND SEND LINE TO TERMINAL 
120 JLINPT=JLINPT+1 

C 

4110 SERIES HOST 

KLINE (JLINPT)=KENDH 
CALL ADEOUT (JLINPT,KLINE) 
RETURN 
END 

CODE EXAMPLES 

C-7 



CODE EXAMPLES 

C----------SUBROUTINE--BLOKGO---
C 

SUBROUTINE BLOKGO 
C * BLOKGO STARTS BLOCK MODE IN OPERATION 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,KP ACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

C * IF ALREADY IN BLOCK MODE, EXIT 
IF (KBMODE.EQ.1) RETURN 

C * ARM BLOCK MODE 
CALL CMDOUT (79,66) 
CALL INTOUT (1) 

C * WAIT FOR ARMING TO BE DONE 
CALL CMDOUT (73,81) 
CALL CHOUT (79) 
CALL CHOUT (66) 
CALL CHIN (JCHAR) 
CALL CHIN (JCHAR) 
CALL INTIN (JBARM) 

( 

IF (JBARM.EQ.O) RETURN ( 
C * SET CONTROL BYTE BITS 

KBLOKH=1 

c-s 

KEOPH=O 
KEOFH=O 
KEOMH=O 

C * PUT SOFTWARE INTO BLOCK PROTOCOL 
KBMODE=1 

C * CHANGE OUTPUT BUFFER SIZE TO BLOCK SIZE 
KB UFSZ =KBLENH-4 

C * TURN TERMINAL ECHO ON 
CALL CMDOUT (75,69) 
CALL INTOUT (1) 
RETURN 
END 

C 
C----------SUBROUTINE--BLOKIO---
C 

SUBROUTINE BLOKIO 
C * BLOKIO CALLS BLKOUT AND BLKIN TO PERFORM ONE BLOCK 'EXCHANGE' 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, 
& KHEADH(10),KHLENT,KHEADT(10),KCONTH,KCONTT,KENDH,KENDT,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,KP ACKH, 
& KPACKT.KBLENH.KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH.KEOMH,KEOFH, 
& KEOMT,KEOFT 

4110 SERIES HOST 



C * INITIALIZE REPETITION COUNTER AND ACKNOWLEDGE FLAG 
JREPET=O 
JBLOKH=KBLOKH 
JNACK=O 

C * OUTPUT BLOCK TO TERMINAL 
10 CALL BLKOUT 

JREPET=JREPET+ 1 
C * GET BLOCK FROM TERMINAL UNLESS NO-ACK END OF PROTOCOL 

IF (KEOPH.NE.3) CALL BLKIN (JNACK) 
IF (JNACK.EQ.O) GO TO 20 

C * IF SECOND REPETITION, GIVE UP 
IF (JREPET.EQ.2) GO TO 30 
GO TO 10 

C * FLIP BLOCK COUNT, ZERO OUTPUT BUFFER 
20 KBLOKH=1-KBLOKH 

KOUTPT=O 
RETURN 

C * TRY OTHER BLOCK NUMBER 
30 KBLOKH=1-KBLOKH 

JREPET=O 
IF (KBLOKH.NE.JBLOKH) GO TO 10 

C * DUMP UNBLOCKABLE BLOCK 
CALL ADEOUT (KOUTPT,KOUTBF) 
KOUTPT=O 
IF (KEOMH.GT.O) KINEND=O 
RETURN 
END 

C 
C----------SUBROUTINE--CHIN------
C 

SUBROUTINE CHIN (ICHAR) 
C * CHIN CALLS STIN TO INPUT ONE ADE CHARACTER 

DIMENSION JRAY(1) 
CALL STIN (1,JREC,JRAY) 
ICHAR=JRAY( 1) 
RETURN 
END 

C 
C----------SUBROUTINE--CHKSUM---
C 

SUBROUTINE CHKSUM (ILEN,IARRAY,IBYTE,ICHK1,ICHK2) 
C * CHKSUM COMPUTES THE BLOCK CHECKSUM 
C * ARGUMENTS: 
C * ILEN - LENGTH OF IARRAY 
C * IARRAY - ARRAY CONTAINING THE BLOCK 
C * IBYTE - 2**BITS PER BYTE-1 
C * ICHK1 - CHECKSUM 1 

4110 SERIES HOST 

CODE EXAMPLES 

C-9 



CODE EXAMPLES 

C-10 

C * ICHK2 - CHECKSUM 2 
DIMENSION IARRAY(l) 
ICHK1=IBYTE 
ICHK2=IBYTE 
DO 10 I=1,ILEN 
ICHK1=ICHK1+IARRAY(I) 
ICHK2=ICHK2+ICHKl 

10 CONTINUE 
ICHK1=ICHK1-(ICHK1-1)/IBYTE*IBYTE 
ICHK2=ICHK2-(ICHK2-1)/IBYTE*IBYTE 
RETURN 
END 

C 
C----------SUBROUTINE--CHOUT-----
C 

SUBROUTINE CHOUT (ICHAR) 
C * CHOUT SENDS ONE ADE CHARACTER 

DIMENSION JRAY(1) 
JRAY(1)=ICHAR 

C 

CALL STOUT (1.JRAY) 
RETURN 
END 

C----------SUBROUTINE--CMDOUT---
C 

SUBROUTINE CMDOUT (ICHAR1.ICHAR2) 
C * CMDOUT SENDS THE THREE CHARACTER TEK ESCAPE 
C * ARGUMENTS: 
C * ICHAR1 - FIRST COMMAND CHARACTER 
C * ICHAR2 - SECOND COMMAND CHARACTER 

DIMENSION JRAY(3) 
DATA JRAY(1)/271 
JRAY(2)=ICHARl 
JRAY (3) =ICHAR2 
CALL STOUT (3,JRAY) 
RETURN 
END 

C 
C----------SUBROUTINE--CORMOD---
C 

SUBROUTINE CORMOD (ICOORD,IREP) 
C * CORMOD SENDS A SET-COORDINATE-MODE COMMAND 
C * ARGUMENTS: 
C * ICOORD - COORDINATE MODE 

( 

( 
SEQUENCE 

( 

4110 SERIES HOST 



CODE EXAMPLES 

C * IREP - REPORT-MODE 
COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 

& KLASTY,KCOORD,KREPLN,KRELAB 
CALL CMDOUT (85,88) 
CALL INTOUT (ICOORD) 
CALL INTOUT (IREP) 
KCOORD=ICOORD 
IF (IREP.NE.O) KREPLN=IREP 
RETURN 
END 

C 
C----------SUBROUTINE--DRAW-----
C 

SUBROUTINE DRAW (IX,IY) 
C * DRAW SENDS A DRAW COMMAND TO THE TERMINAL 
C * ARGUMENTS: 
C * IX,IY - POINT TO DRAW TO 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

IF (KGFMAT.EQ.1) GO TO 20 
C * (GS) STYLE 

KRELAB=1 
IF (KMODE.EQ.2) GO TO 10 
CALL VECMOD 
CALL CHOUT (7) 

10 CALL XYOUT (IX,IY) 
KRELAB=O 
KLASTX=IX 
KLASTY=IY 
RETURN 

C * (ESC) STYLE 
20 CALL CMDOUT (76,71) 

CALL XYOUT (IX,IY) 
RETURN 
END 

C 
C----------SUBROUTINE--DUMP-----
C 

SUBROUTINE DUMP 
C * DUMP DUMPS THE OUTPUT BUFFER 

DIMENSION IDUMMY(l) 

C 

4110 SERIES HOST 

CALL STOUT (O,IDUMMY) 
RETURN 
END 

c-" 



CODE EXAMPLES 

C-12 

C----------SUBROUTINE--EMPTIN---
C 

SUBROUTINE EMPTIN 
C * EMPTIN ZEROES THE INPUT BUFFER 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD, KPRLEN. KPSTRG (10) ,KEOFLN, KEOFST (10) ,KBMODE ,KBMSAV, KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,KPAC KH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP, KBLOKH,KEOPH ,KEOMH,K EOFH, 
& KEOMT,KEOFT 

KINEND=O 
KINPT=O 
RETURN 
END 

C 
C----------SUBROUTINE--FILIN----
C 

SUBROUTINE FILIN (IREQST,IRECVD,ISTRNG,IEOF) 
C * FILIN INPUTS LINES FROM A TERMINAL FILE, SCANNING FOR EOF 
C * ARGUMENTS: 
C * IREQST - NUMBER OF CHARS REQUESTED 
C * IRECVD - NUMBER OF CHARS RECEIVED 
C * ISTRNG - CALLERS INPUT ARRAY 
C * IEOF - 1 IF EOF DETECTED, 0 IF NOT 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

DIMENSION ISTRNG(1) 
C * GET INPUT FROM GENERAL INPUT ROUTINE 

CALL STIN (IREQST,IRECVD,ISTRNG) 
C * SET END-OF-FILE ONLY WHEN NO MORE CHARS IN BUFFER 

IEOF=O 

C 

IF (KEOFT.EQ.1 .AND. KINPT.GE.KINEND) IEOF=1 
RETURN 
END 

- - ----.-----~-------- ------------.---~~ 

4110 SERIES HOST 

( 

( 



CODE EXAMPLES 

C----------SUBROUTINE--INIT-----
C 

SUBROUTINE INIT 
C * INIT INITIALIZES THE COMMON AREAS 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512) ,KINEND,KINPT,KINBUF(512) ,KEOMC1,KEOMC2,KIG DEL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, 
& KHEADH(10),KHLENT,KHEADT(10) ,KCONTH, KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

KCOORD=O 
KREPLN=3 
KRELAB=O 
KMODE=1 
KGFMAT=O 
KRESLU=12 
KIGDEL=O 
KMCDEF=O 
DO 30 J=1, 4 
KCHARS(J)=O 

30 CONTINUE 
C * SET I/O BUFFER POINTERS AND SIZE 

KOUTPT=O 
KINPT=O 
KINEND=O 
KBFLIM=256 
KB UF SZ =KBFLIM 

C * TURN PROMPT MODE ON 
CALL CMDOUT (78,83) 
CALL INTOUT (63) 
KPSTRG(1)=63 
CALL CMDOUT (78,77) 
CALL INTOUT (1) 
KPRMOD=1 

C * GET TERMINAL TYPE 
CALL CMDOUT (73,81) 
CALL CMDOUT (63,84) 
CALL CHIN (JCHAR) 
CALL CHIN (JCHAR) 
CALL INTIN (KTERM) 
RETURN 
END 

C 

4110 SERIES HOST C-13 



CODE EXAMPLES 

C-14 

C----------SUBROUTINE--INTCIN---
C 

SUBROUTINE INTCIN (INT) 
C * INTCIN INPUTS AND UNPACKS A 4100 FORMAT INTC-REPORT 
C * ARGUMENTS: 
C * INT - RETURNED INTEGER 

COMMON /VALSYS/ KTERM,KMODE.KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

DIMENSION JRAY(6) ,JPOW2(5) 
C * POWERS OF 2 

DATA JPOW2/16,1024,65536,4194304,268435456/ 
CALL STIN (KREPLN,JREC,JRAY) 
INT=MOD(JRAY(KREPLN) ,16) 
JEND=KREPLN-1 
DO 10 J=1,JEND 
INT=INT+(JRAY(KREPLN-J)-32)*JPOW2(J) 

10 CONTINUE 
IF (JRAY(KREPLN).LT.48) INT=-INT 
RETURN 
END 

C 
C----------SUBROUTINE--INTIN----
C 

SUBROUTINE INTIN (INT) 
C * INTIN INPUTS AND UNPACKS A 4100 FORMAT INT-REPORT 
C * ARGUMENTS: 
C * INT - RETURNED INTEGER 

DIMENSION JRAY(3) 
CALL STIN (3,JREC,JRAY) 
INT=(JRAY(1)-32)*1024+(JRAY(2)-32)*16+MOD(JRAY(3),16) 
IF (JRAY(3).LT.48) INT=-INT 
RETURN 
END 

C 
C----------SUBROUTINE--INTOUT---
C 

SUBROUTINE INTOUT (INT) 
C * INTOUT TRANSLATES AN INTEGER INTO 4100 FORMAT AND SENDS IT 
C * ARGUMENTS: 
C * INT - INTEGER TO BE PACKED AND SENT 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, 
& KHEADH(10),KHLENT,KHEADT(10) ,KCONTH, KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

4110 SERIES HOST 

( 

.( 

( 



DIMENSION JCHARS(13) 
C * SAVE LOI DATA 

JINT=IABS(INT) 
JCHARS(13)=MOD(JINT,16)+48 
IF (INT.LT.O) JCHARS(13)=JCHARS(13)-16 
JSTART=13 
JINT=JINT/16 

C * COMPUTE HIl'S 
10 IF (JINT.EQ.O) GO TO 20 

JSTART=JSTART -1 
JCHARSeJSTART)=MOD(JINT,64)+64 
JINT=JINT/64 

C * CHECK FOR (DEL) WHEN IGNORE-DEL IS ON 
IF (KIGDEL.EQ.O) GO TO 10 
IF (JCHARS(JSTART).NE.127) GO TO 10 
JCHARS(JSTART)=63 
JSTART=JSTART-l 
JCHARS(JSTART)=27 
GO TO 10 

C * SEND PACKED STRING 
20 CALL STOUT (14-JSTART,JCHARS(JSTART» 

RETURN 
END 

C 
C----------SUBROUTINE--INTRAY---
C 

SUBROUTINE INTRAY (ILEN,INTS) 
C * INTRAY SENDS A PACKED INTEGER ARRAY 
C * ARGUMENTS: 
C * ILEN - LENGTH OF ARRAY 
C * INTS - INTEGER ARRAY TO BE SENT 

DIMENSION INTS(l) 
CALL INTOUT (ILEN) 
JCOUNT=O 

10 JCOUNT=JCOUNT+l 

C 

IF (JCOUNT.GT.ILEN) RETURN 
CALL INTOUT (INTS(JCOUNT» 
GO TO 10 
RETURN 
END 

C----------SUBROUTINE--IOEND-----
C 

SUBROUTINE IOEND 
C * IOEND SHUTS DOWN THE I/O SYSTEM 

CODE EXAMPLES 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512) ,KINEND,KINPT,KINBUF(512) ,KEOMC1,KEOMC2,KIG DEL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH, KCONTT,KENDH ,KENDT ,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,K PACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT, KEOFT 

4110 SERIES HOST C-15 



CODE EXAMPLES 

C * TURN OFF BLOCK MODE 
CALL BLKEND (2) 

C * TURN OFF PROMPT MODE IF IT WAS ON 
IF (KPRMOD.EQ.O) GO TO 10 
CALL CMDOUT (78,77) 
CALL INTOUT (0) 

C * CLEAR THE OUTPUT BUFFER 
10 CALL DUMP 

RETURN 
END 

C 
C----------SUBROUTINE--IRAYIN----
C 

SUBROUTINE IRAYIN (ILEN,INTRAY) 
C *IRAYIN INPUTS AN INTEGER ARRAY IN 4100 REPORT FORMAT 
C * ARGUMENTS: 
C * ILEN - RETURNED ARRAY LENGTH 
C * INTRAY - RETURNED ARRAY 

DIMENSION INTRAY(1) 
CALL INTIN (ILEN) 
IF (ILEN.LE.O) RETURN 
DO 10 J=1,ILEN 
CALL INTIN (INTRAY(J» 

10 CONTINUE 
RETURN 
END 

C 
C----------SUBROUTINE--KBCHIN----
C 

SUBROUTINE KBCHIN (ICHAR) 
C * KBCHIN CALLS KYBDIN TO INPUT ONE ADE CHARACTER 

DIMENSION JRAY(1) 
CALL KYBDIN (1,JREC,JRAY) 
ICHAR=JRAY( 1) 
RETURN 
END 

C 
C----------SUBROUTINE--KYBDIN---
C 

SUBROUTINE KYBDIN (IREQ,IREC,ISTRNG) 
C * KYBDIN GETS KEYBOARD INPUT, EXITING AND REENTERING BLOCK MODE 
C * ARGUMENTS: 
C * IREQ - NUMBER OF CHARACTERS REQUESTED 
C * IREC - NUMBER OF CHARACTERS RECEIVED <= IREQ 
C * ISTRNG - STRING FOR ADE CHARACTERS 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT. 
& KOUTBF(512) ,KINEND,KINPT,KINBUF(512) ,KEOMC1,KEOMC2,KIG DEL. 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 

( 

( 

& KHEADH ( 10) ,KHLENT ,KHEADT (10) ,KCONTH, KCONTT • KENDH. KENDT ,KNXNOH. ( .. 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,KP ACKH, 

C-16 4110 SERIES HOST 



CODE EXAMPLES 

& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

DIMENSION ISTRNG(l) 
JBMODE =KBMODE 
CALL BLKEND (2) 
CALL STIN (IREQ,IREC,ISTRNG) 
IF (JBMODE.EQ.1) CALL BLOKGO 
RETURN 
END 

C 
C----------SUBROUTINE--MARKER---
C 

SUBROUTINE MARKER (IX,IY) 
C * MARKER SENDS DRAW-MARKER COMMAND TO TERMINAL 
C * ARGUMENTS: 
C * IX,IY - COORDINATES TO PLACE MARKER AT 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

IF (KGFMAT.EQ.1) GO TO 10 
C * (FS) FORMAT 

KRELAB=1 
IF (KMODE.NE.O) CALL MRKMOD 
CALL XYOUT (IX,IY) 
KLASTX=IX 
KLASTY=IY 
KRELAB=O 
RETURN 

C * (ESC) FORMAT 
10 CALL CMDOUT (76,72) 

CALL XYOUT (IX,IY) 
RETURN 
END 

C 
C----------SUBROUTINE--MOVE-----
C 

SUBROUTINE MOVE (IX,IY) 
C * MOVE SENDS A MOVE COMMAND TO THE TERMINAL 
C * ARGUMENTS: 
C * IX,IY - POINT TO MOVE TO 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

IF (KGFMAT.EQ.1) GO TO 10 
C * (GS) STYLE 

CALL VECMOD 
CALL XYOUT (IX,IY) 
RETURN 

C * (ESC) STYLE 
10 CALL CMDOUT (76,70) 

CALL XYOUT (IX,IY) 
RETURN 
END 

C 

4110 SERIES HOST C-17 



CODE EXAMPLES 

C----------SUBR OUT INE--MRKMOD---
C 

SUBROUTINE MRKMOD 
C * MRKMOD SENDS A (FS) TO THE TERMINAL 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 

C-18 

& KLASTY,KCOORD,KREPLN,KRELAB 
CALL CHOUT WITH (28) 
KMODE=O 
KRELAB=O 
RETURN 
END 

C 
C----------SUBROUTINE--REALIN---
C 

SUBROUTINE REAL IN (RNUM) 
C * REALIN INPUTS AND TRANSLATES A REAL-REPORT 

CALL INTIN (JMANT) 
CALL INTIN (JEXP) 
RNUM=FLOAT(JMANT)*2.**FLOAT(JEXP) 
RETURN 
END 

C 
C----------SUBROUTINE--RELOUT---
C 

SUBROUTINE RELOUT (RNUM) 
C * RELPAK SENDS A PACKED REAL 
C * ARGUMENTS: 
C * RNUM - REAL NUMBER TO BE OUTPUT 

JEXP=O 
SMANT=ABS(RNUM) 

C * CHECK MANTISSA FOR SIZE, INTEGRALNESS 
10 JMANT=IFIX(SMANT+.5) 

IF (JMANT.GT.16384) GO TO 20 
IF (ABS(SMANT-FLOAT(JMANT».LT •• 0000305175) GO TO 20 
SMANT=SMANT*2. 
JEXP=JEXP-1 
GO TO 10 

C * USE INTEGER ROUTINE TO SEND PACKED INTEGERS 
20 IF (RNUM.LT.O) JMANT=-JMANT 

CALL INTOUT (JMANT) 
CALL INTOUT (JEXP) 
RETURN 
END 

C 

4110 SERIES HOST 

( 

( 

( 



C----------SUBROUTINE--STIN-----
C 

SUBROUTINE STIN (IREQST,IRECVD,ISTRNG) 
C * STIN INPUTS CHARACTERS FROM A TERMINAL, SCANNING FOR EOF 
C * ARGUMENTS: 
C * IREQST - NUMBER OF CHARS REQUESTED 
C * IRECVD - NUMBER OF CHARS RECEIVED 
C * ISTRNG - CALLERS INPUT ARRAY 

CODE EXAMPLES 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512),KINEND,KINPT,KINBUF(512),KEOMC1,KEOMC2,KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, 
& KHEADH(10),KHLENT,KHEADT(10),KCONTH,KCONTT,KENDH,KENDT,KNXNOH, 
& KNXMTH(20) ,KNXNOT,KNXMTT(20) ,KMASTH,KMASTT,KBYTEH,KBYTET,KPAC KH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT, KEOFT 

DIMENSION ISTRNG(l) 
C * ZERO THE RETURN LENGTH 

IRECVD=O 
C * BRANCH IF BUFFER HAS CHARACTERS IN IT 

IF (KINEND.GT.KINPT) GO TO 40 
C * BRANCH TO GET MORE INPUT VIA BLOCK MODE 

IF (KBMODE.EQ.1) GO TO 30 
C * DUMP THE OUTPUT BUFFER TO BE SURE COMMANDS ARE SENT 

CALL DUMP 
C * SIMULATE PROMPT FOR NON-PROMPTING SYSTEMS 
C * REMOVE THIS LINE FOR PROMPTING SYSTEMS 

IF (KPRMOD.GT.O) CALL ADEOUT (KPRLEN, KPSTRG) 
C * GET LINE OF INPUT FROM TERMINAL 

CALL ADEIN (KINEND,KINBUF) 
KINPT=O 
KEOFT=O 
IF (KIN;ND.EQ.O) GO TO 60 

C * SCAN FOR EOF STRING 
IF (KEOFLN.NE.KINEND) GO TO 40 
JINPT=O 

10 IF (JINPT.GE.KEOFLN) GO TO 20 
JINPT=JINPT+ 1 
IF (JINPT.GT.KINEND) GO TO 40 
IF (KINBUF(JINPT).NE.KEOFST(JINPT» GO TO 40 
GO TO 10 

20 KEOFT=l 
KINEND=O 
GO TO 60 

C * GET INPUT VIA BLOCK MODE (MAY SET KEOFT) 
30 KEOMH=1 

CALL BLOKIO 
KEOMH=O 
KINPT=O 

4110 SERIES HOST C-19 



CODE EXAMPLES 

C-20 

C * MOVE CHARACTERS FROM INPUT BUFFER TO USER ARRAY 
40 JTOMOV=MINO(IREQST,KINEND-KINPT) 
50 IF (IRECVD.GE.JTOMOV) GO TO 60 

IRECVD=IR-ECVD+ 1 
KINPT=KINPT+1 
ISTRNG(IRECVD)=KINBUF(KINPT) 
GO TO 50 

C * PAD WITH BLANKS IF NEEDED 
60 IF (KEOFT.EQ.1) RETURN' 

JRECVD=IRECVD 
70 IF (JRECVD.GE.IREQST) RETURN 

JRECVD=JRECVD+ 1 
ISTRNG(JRECVD)=32 
GO TO 70 
END 

C 
C----------SUBROUTINE--STOUT----
C 

SUBROUTINE STOUT (ILEN,ISTRNG) 
C * STOUT IS THE GENERAL OUTPUT ROUTINE 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512) ,KINEND,KINPT,KINBUF(512) ,KEOMC1,KEOMC2,KIGD EL, 
& KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),KBMODE,KBMSAV,KHLENH, ( 
& KHEADH(10),KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH ,KENDT , KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

DIMENSION ISTRNG(l) 
C * SET NUMBER ALREADY SENT TO ZERO 

JSENT=O 
C * DUMP BUFFER IF ILEN IS NOT POSITIVE 

IF (ILEN.LE.O) GO TO 20 
C * ADD CHARS TO BUFFER UNTIL FULL OR DONE 
10 IF (KOUTPT.GE.KBUFSZ) GO TO 20 

JSENT=JSENT+l 
KOUTPT=KOUTPT+ 1 
KOUTBF(KOUTPT)=ISTRNG(JSENT) 
IF (JSENT.GE.ILEN) RETURN 
GO TO 10 

C * DUMP THE BUFFER 
20 IF (KBMODE.EQ.l) GO TO 30 

CALL ADEOUT (KOUTPT,KOUTBF) 
GO TO 40 

C * DO BLOCK EXCHANGE 
30 CALL BLOKIO 
C * BUFFER EMPTY NOW 
40 KOUTPT=O 
C * DO REST OF STRING IF THERE IS SOME LEFT 

IF (JSENT.LT.ILEN) GO TO 10 ( 
RETURN 
END 

C 

4110 SERIES HOST 



CODE EXAMPLES 

C----------SUBROUTINE--VECMOD---
C 

SUBROUTINE VECMOD 
C * VECMOD SENDS A (GS) TO THE TERMINAL 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

IF (KMODE.EQ.O) CALL CHOUT (31) 
CALL CHOUT (29) 
KMODE=2 
KRELAB=O 
RETURN 
END 

C 
C----------SUBROUTINE--XYIN-----
C 

SUBROUTINE XYIN (IFORMT,IX,IY) 
C * XYIN INPUTS AND UNPACKS TERMINAL-TO-HOST X-Y COORDINATE 
C * ARGUMENTS: 
C * IFORMT - INPUT FORMAT 
C * 1 - 4100 OR 4953 12-BIT FORMAT 
C * 2 - 4010 FORMAT 
C * 3 - 4953 10-BIT FORMAT 
C * IX,IY - RETURNED COORDINATES 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

DIMENSION JRAY(5) 
IF (KCOORD.EQ.1) GO TO 20 
IF (IFORMT.GT.1) GO TO 10 

C * 4100 AND 4953/12-BIT FORMAT 
CALL REPIN (5,JREC,JRAY) 
IX=(JRAY(4)-32)*128+(JRAY(5)-32)*4+JRAY(2)-JRAY(2)/4*4 
IY=(JRAY(1)-32)*128+(JRAY(3)-32)*4+(JRAY(2)-32)/4 
RETURN 

C * 4010 FORMAT 
10 CALL REPIN (4,JREC,JRAY) 

IX=«JRAY(1)-32)*32+JRAY(2)-32)*4 
IY=«JRAY(3)-32)*32+JRAY(4)-32)*4 
IF (IFORMT.EQ.2) RETURN 

C * 4953/10-BIT FORMAT 
JTEMP=IX 
IX=IY 
IY=JTEMP 
RETURN 

C * 32-BIT FORMAT 
20 CALL INTCIN (IX) 

CALL INTCIN (IY) 
RETURN 
END 

C 

4110 SERIES HOST C-21 



CODE EXAMPLES 

C-22 

C----------SUBROUTINE--XYOUT----
C 

SUBROUTINE XYOUT (IX,IY) 
C * XYOUT SENDS OPTIMIZED X-Y COORDINATE STRING 
C * ARGUMENTS: 
C * IX,IY - X,Y COORDINATES TO BE TRANSLATED 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 
& KLASTY,KCOORD,KREPLN,KRELAB 

COMMON /VALIO/ KBAUDH,KBAUDT,KMCDEF,KBUFSZ,KBFLIM,KOUTPT, 
& KOUTBF(512) ,KINEND, KINPT "KINBUF (512) ,KEOMC 1, KEOMC2, KIGDEL, 
& KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10) ,KBMODE,KBMS AV,KHLENH, 
& KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,KCONTT,KENDH,KENDT ,KNXNOH, 
& KNXMTH(20),KNXNOT,KNXMTT(20),KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, 
& KPACKT,KBLENH,KBLENT,KBLINE,KSTRIP,KBLOKH,KEOPH,KEOMH,KEOFH, 
& KEOMT,KEOFT 

DIMENSION JCHARS(1) 
C * BRANCH FOR 32 BIT COORDINATES 

IF (KCOORD.EQ.1) GO TO 60 
C * FIRST BRING COORDINATES INTO VALID RANGE 

JX=MINO(4095.MAXO(0.IX» 
JY=MINO(4095,MAXO(0,IY» 

C * CALCULATE 10-BIT RESOLUTION CHARACTERS 
JTEMP1=JY/128+32 

(1 

JTEMP3=JY/4-JY/128*32+96 C-
JTEMP4=JX/128+32 
JTEMP5=JX/4-JX/128*32+64 

C * INITIALIZE ARRAY LENGTH 
JLEN=O 

C * SEE IF HI-Y NEEDED 
IF (JTEMP1.EQ.KCHARS(1» GO TO 10 

C * INSERT HI-Y 
JLEN=1 
JCHARS(1)=JTEMP1 
KCHARS(1)=JTEMP1 

C * SEE IF 12-BIT RESOLUTION 
10 IF (KRESLU.NE.12) GO TO 20 
C * COMPUTE EXTRA-LO-Y 

JTEMP2=(JY-JY/4*4)*4+(JX-JX/4*4)+112 
C * SEE IF EXTRA-LO-Y NEEDED 

IF (JTEMP2.EQ.KCHARS(2» GO TO 20 
C * INSERT EXTRA-LO-Y 

JLEN=JLEN+1 
JCHARS(JLEN)=JTEMP2 
KCHARS(2)=JTEMP2 

C * EXPAND EXTRA-LO-Y TO (ESC)(?) IF NECESSARY 
IF (JTEMP2.NE.121 .OR. KIGDEL.EQ.O) GO TO 30 
JCHARS(JLEN)=21 
JLEN =JLEN+ 1 
JCHARS(JLEN)=63 ( 
GO TO 30 

4110 SERIES HOST 



C * SEE IF LO-Y NEEDED 
20 IF (JTEMP3.NE.KCHARS(3» GO TO 30 

IF (JTEMP4.EQ.KCHARS(4» GO TO 50 
C * INSERT LO-Y 
30 JLEN=JLEN+1 

JCHARS(JLEN)=JTEMP3 
KCHARS(3)=JTEMP3 

C * EXPAND LO-Y TO (ESC)(?) IF NECESSARY 
IF (JTEMP3.NE.127 .OR. KIGDEL.EQ.O) GO TO 40 
JCHARS(JLEN)=27 
JLEN=JLEN+1 
JCHARS(JLEN)=63 

C * SEE IF HI-X NEEDED 
40 IF (JTEMP4.EQ.KCHARS(4» GO TO 50 

JLEN=JLEN+1 
JCHARS(JLEN)=JTEMP4 
KCHARS(4)=JTEMP4 

C * ALWAYS INCLUDE LO-X 
50 JLEN=JLEN+1 

JCHARS(JLEN)=JTEMP5 
C * SEND THE STRING 

CALL STOUT (JLEN,JCHARS) 
RETURN 

C * 32-BIT COORDINATES 
60 IF (KRELAB.EQ.1) GO TO 70 

CALL INTOUT (IX) 
CALL INTOUT (IY) 
RETURN 

C * RELATIVE XY'S 
70 CALL INTOUT (IX-KLASTX) 

CALL INTOUT (IY-KLASTY) 
RETURN 
END 

C 

4110 SERIES HOST 

CODE EXAMPLES 

C-23 



CODE EXAMPLES 

C----------SUBROUTINE--XYRAY----
C 

SUBROUTINE XYRAY (ILEN,IX,IY) 
C * XYRAY SENDS AN ARRAY OF <XY) COORDINATES TO THE TERMINAL 
C * ARGUMENTS: 
C * ILEN - LENGTH OF ARRAY TO BE SENT 
C * IX - X-ARRAY 
C * IY - Y-ARRAY 

COMMON /VALSYS/ KTERM,KMODE,KGFMAT,KRESLU,KCHARS(4),KLASTX, 

C-24 

& KLASTY,KCOORD,KREPLN,KRELAB 
DIMENSION IX(l),IY(l) 
CALL INTOUT (ILEN) 
JLASTX=KLASTX 
JLASTY =KLASTY 
JCOUNT=O 

10 JCOUNT=JCOUNT+l 
IF (JCOUNT.GT.ILEN) GO TO 20 
CALL XYOUT (IX(JCOUNT),IY(JCQUNT» 
KLASTX=IX(ICOUNT) 
KLASTY=IY(JCOUNT) 
KRELAB=l 
GO TO 10 

20 KRELAB=O 
KLASTX=JLASTX 
KLASTY=JLASTY 
RETURN 
END 

----------------

4110 SERIES HOST 

( 

( 

c 



Appendix D 

COLOR COORDINATE SYSTEMS 

COLOR 

The visual sensation of color is a complex response to many 
subtle visual stimuli. Color perception involves the physio
logical response of the eye to differing wavelengths of light 
and the psychological response of the human mind to the 
patterns that it perceives. 

Color and its study have been a preoccupation of artists for 
many centuries. By combining colored pigments and seeing 
the changes in color, artists evolved an empirical color sys
tem that enabled them to consistently achieve predictable 
results. Artists found that they could produce a wide range 
of colors by mixing three "pure" colors: red, yellow, and 
blue. These colors, since they seemed to be the funda
mental colors, came to be called primarys. 

The discovery that white light from the sun, passed through 
a glass prism, contained many different colors, added new 
complications. Here were colors in their purest form, colors 
that were not made from mixtures of the primaries. These 
prismatic colors, colors of the rainbow, we now recognize 
as the response of the eye to different wavelengths of light. 

4110 SERIES HOST 

Experimenters found that different mixtures of colored light 
would evoke sensations of color not present in either of the 
colors used to form the mixture. Thus another color system 
evolved. Three colors, red, green, and blue were found to be 
most useful and were called the light primaries. 

Analysis of the light reflected from the artist's primaries re
vealed that each primary reflected light mostly within a nar
row range of wavelengths. When these primaries were 
mixed, less light was reflected and the colors appeared 
darker. Thus, the artist's system of primary colors became 
known as the subtractive color system, while the physicist's 
system of adding colored light became known as the addi
tive color system. 

The synthesis of artificial pigments, with colors much more 
pure than the natural pigments, changed the subtractive 
color system slightly. The artist's blue became cyan, the 
artist's red became magenta, and yellow remained un
changed. The subtractive color primaries are now cyan, ma
genta, and yellow. 

D-1 



COLOR 

THE HLS COLOR CONE 

One of the first attempts to summarize color knowledge 
was the color wheel. Artists found that by arranging the 
three primaries at 120 0 intervals around the periphery of a 

YELLOW 

GREEN 

circle, intermediate shades fit between the primaries. A color 
can be specified as a rotation from a point on the color 
wheel. The hue of a color comes from the rotation of the 
color from the color wheel. Figure D-1 shows how colors are 
arranged around the color wheel. 

MAGENTA 

BLUE 

CYAN 

4664·32 

Figure 0-1. Colors Arranged in a Wheel. 

0-2 4110 SERIES HOST 

( 

( 

( 



In addition to the basic color sensation, colors have satura
tion, or intensity. Two colors may have the same hue, but 
one may appear more vibrant and the other more muted. 
For example, two blues may have the same hue, but one 
can be very intense, while the other is nearly gray. By speci
fying saturation as the distance from the center of the color 
wheel, we obtain another specifier of a particular color. Fig
ure D-2 shows a color wheel when we add saturation. 

While hue and saturation specify a great deal about a color, 
two limiting cases are left out. Nowhere on the color circle is 
there a place for black and white. In addition, two colors 
may have the same hue and intensity, but one is darker than 
the other. The third specifier we need for color is lightness. 

COLOR 

If we extend a line perpendicular to the plane of the color 
wheel, through the center of the circle, we can place white 
at one extreme and black at the other. Pairs of colors that 
share the same hue and saturation then go above and be
low the plane of the color wheel. This third dimension of 
color allows us to specify any color in a three-dimensional 
cone. Figure D-3 shows how the axis of this space becomes 
a gray scale. 

A moment or two of reflection should convince you that the 
volume specified by all colors is a double ended cone. This 
color cone is the primary tool for visualizing the HLS color 
system. Figure D-4 shows the HLS color cone. 

E 

4664·33 

Figure 0·2. A Color Wheel With Saturation. 

4110 SERIES HOST D·3 



COLOR 

c 

, .... f-----WHITE 

1..----25% GRAY 

..----50% GRAY 
( 

~---75% GRAY 

~---BLACK 

4664-34 ( 
Figure D-3. Adding a Gray Scale to the Color Wheel. 

0-4 4110 SERIES HOST 



In the HLS color coordinate system, 
the color space is represented as a 
double-ended cone. 

The HUE coordinate runs 
counterclockwise around the 
cone. (0 to 360 degrees.) 

The LIGHTNESS coordinate runs 
vertically up the cone. (0% to 100%.) 

The SATURATION coordinate runs 
radially outward from the axis of 
the cone. The SATURATION coordinate 
is a percentage of the maximum 
possible saturation at a particular 
LIGHTNESS level. (0% to 100%.) 

180" 

HUE 

NOTE: For clarity, this figure shows the 
cone divided into only 64 colors, as in the 
TEKTRONIX 4027 terminal. The 4113 and 
4115 terminals have a wider range of color 
mixtures. 

Figure 0·4. The HLS Color Cone. 

4110 SERIES HOST 

100% 

180" 

0° Blue 

0% 

COLOR 

tJ) 
tJ) 
W 
Z 
l
%: 

" :::; 

0-5 



COLOR 

TEKTRONIX 
COLOR 
STANDARD 

Overview: 

The world of color is filled with ambiguous 
terminology, i.e. intensity, purity, value, etc. 
Many color users feel that "color theory" is a 
prerequisite to operating color systems; TV., 
Videotaping, Photography, Computer Graph
ics. 

In order to end this confusion, Tektronix has 
developed a color language and function 
based on human engineering, rather than 
machine engineering. Below is a description 
of this system, which will provide a clear 
and concise means for understanding how 
color is defined and how our syntax was 
derived. 

Color Concepts: 

Color selection is specified by hue, light
ness and saturation which is the HLS 
method. The definitions are as follows: 

Hue: 

Lightness: 

0·6 

The characteristic associ
ated with a color name 
such as red, yellow, green, 
blue, etc. Hue is a grada
tion of color advanced by 
degrees, thus represented 
as an angle from 0 to 360. 

The characteristic that al
lows the color to be 
ranked on a scale from 
dark to light. Lightness is 
expressed as a parameter 
ranging from 0 to 100% 
with black being 0 (bot
tom of cone) and white 
being 100% (top of cone). 

I 

Saturation: . The characteristic which 
describes the extent to 
which a color differs from 
a gray of the same light
ness. Saturation is ex
pressed as percentage, 
ranging from 0% (maxi
mum white content at that 
lightness level) to 100% 
(full saturated). 

Geometrically, colors can be described in 
terms of a double cone. 
Variations in lightness are represented 
along the axis, with white at the apex of 
the cone and black at the opposite apex. 
Variations in saturation are represented by 
radial distances from the lightness axis, in 
constant lightness planes. Hue is repre
sented as an angular quantity from a known 
reference point. 

Copyright © 1982 by Tektronix, Inc., Beaverton, Oregon. 
Printed in the United States of America. All rights reserved. 
Contents of this publication may not be reproduced in any form 
without permission of Tektronix, Inc. U.S.A. and foreign TEK
TRONIX products covered by U.S. and foreign patents and/or 
patents pending. 

TEKTRONIX is a registered trademark for Tektronix, Inc. 

4110 SERIES HOST 



In the HLS system, color is a vector quantity. Hue is the 
angle formed by rotating the vector around the axis of the 
double ended cone, while blue is the reference. A hue of 0° 
(or 360°) corresponds to blue, 120° to red and 240° to 
green, while intermediate shades correspond to intermedi
ate rotations. 

Lightness is the position of a vector along the axis of the 
cone. A lightness of 0% is black and a lightness of 100% is 
white. (At lightness 0% or 100%, saturation and hue are 
irrelevant.) 

Saturation is the length of the vector from the cone axis. A 
saturation of 0% is a shade of gray, while a saturation of 
100% gives the most intense possible color having that hue 
and brightness. 

4110 SERIES HOST 

COLOR 

The HLS system is easy to use and gives a readily acessible 
feel for color. If your application demands color matching, it 
is easiest to change hue to approximate the color, adjust 
the saturation to approximate it, and move lightness close. 
This gives a good starting point from which to fine tune. 

While the HLS system gives a good intuitive "feel" for a 
programmer or operator when attempting to specify colors, 
it suffers some limitations in specifying colors, particularly 
with colors of 50% lightness and 100% saturation. Although 
you might reasonably expect these colors (which lie on the 
equator of the color cone) to emit identical amounts of light 
when measured on the screen, their actual light emission 
will vary. For example, cyan (300,50,100) is twice as bright 
as green (240,50,100) or blue (0,50,100), although each is at 
50% brightness and 100% saturation. There is no simple 
relationship between HLS and the colors available on the 
terminal. HLS allows you to specify approximately 
3,600,000 colors, while the 4113 can display only 4096 and 
the 4115 can address over 16 million. 

D-7 



COLOR 

RGB AND CMY - THE COLOR CUBE 

RGB and CMY stand for the additive color system and the 
subtractive color system respectively. RGB is formed from 
the initials of the three light primaries: red, green, and blue. 
CMY is formed from the initials of the three pigment prima
ries: cyan, magenta, and yellow. 

The RGB and CMY systems treat color more as something 
derived from a recipe rather than a collection of qualities 
such as hue, lightness, and saturation. Both systems spec
ify colors as a mixture of three primaries, with a particular 
color specified as a particular mix. 

In either color system, if we assign each primary to a Carte
sian axis, we define a volume of possible color mixes. If 
each axis includes a" possible values of that primary, the 
solid formed by the three axes is a cube containing a" possi-

ble mixes of these colors. Figure D-5 shows how the RGB 
and CMY systems form color cubes. 

In the RGB system, the origin of the coordinate space, Point 
(0,0,0) is black. In the CMY system, the origin, Point (0,0,0) 
is white. 

The two systems interlock in a very interesting manner. 
Each of the primaries in the CMY system is the result of 
adding two primaries in the RGB system and vice versa. 
Adding 100% of the three RGB primaries together produces 
white, which is equivalent to 0% each of the three CMY 
primaries. Adding 100% of the three CMY primaries to
gether produces black, which is equivalent to 0% each of 
the RGB primaries. 

The combined color cube for the RGB and CMY systems is 
shown in Figure D-6. 

Figure 0-6. The Combined RGB and CMY Color Cube. 

D-8 4110 SERIES HOST 

( 

( 

( 



CYAN 
(0,100,100) 

_----r'--, 
BLUE --- I' 

(0,0,100)=," , 

4110 SERIES HOST 

" I ......... ";;? WHITE 

, '7_---'1"1(100,100,100) 

" -- I , -- I 
MAGENTA~ 1 
(100,0,100) 1 I 

I _ .. -l~1 1 

I~ 1 GREEN 1 
1 ~O,100,0) 1 

I~" 1 
I ',I 
I ',I 
1 ~ YELLOW 

_ _ (100,100,0) 

1 _---

L---
RED 

(100,0,0) 

RED 
(0,100,100) 

----~, 
YELLOW -- I '-
(0,0,100)::( , 

, I """ , ~ ~~ 

, '7---~'(100'100'100) 
, -- 1 , --I 

GREEN -y-- 1 
(100,0,100)1 I 

I/S(j~'J:' I I 
o.~~ I I I I MAGENTA 

1 ~,(0,100,0) I 

1---'-', 1 
1 ',I 
1 ',I 
1 :::J BLUE 

_ (100,100,0) 

1 ----L---
CYAN 

(100,0,0) 

Figure 0-5. The RGB and CMY Color Coordinates. 

COLOR 

0-9 



COLOR 

Every color a 4100 Series terminal is capable of producing is 
contained within the volume of the color cube. All 4100 Se
ries terminals specify colors as percentages of from 0% 
through 100% of the RGB or CMY primaries. In addition, 
the 4115 Machine RGB mode allows you to specify RGB 
values from 0 through 255 where 255 is equivalent to 100%. 

The gray scale for RGB and CMY runs through the center of 
the color cube from black through white. Each shade of gray 
is formed from equal portions of the three primaries of either 
the RGB or CMY system. Figure D-7 shows the gray scale 
in a cutaway color cube. 

The CMY and RGB systems are corrected so that equal 
increments show approximately equal color changes. This 
means that changing an area colored red by 25% seems to 
give the same amount of color change as changing an area 
colored yellow by 25%. 

Since the response of the human eye to color is extremely 
nonlinear, the changes of color level do not bear a linear 
relationship with the intesity of the color guns. The only 
color system where this is extremely significant is in ma
chine RGB in the 4115. The machine RGB levels translate 
directly into gun levels, so you are working with uncorrected 
color data. Each gun is controlled by a single 8-bit byte, 
giving 256 possible gun levels. Three guns, each with 256 
possible levels, address over 16 million points in color 
space. These points, however, in the less sensitive 
wavelengths, are indistiguishable to the eye. Although the 
terminal can address over 16 million colors, your eye can 
distinguish less. 

Figure 0·7. Gray Scale in a Cutaway Color Cube. 

0·10 4110 SERIES HOST 

(> 

(i 

(j 



Appendix E 

CHARACTER INTERPRETATION 
BY TEK AND ANSI PARSERS 

The following table summarizes how the TEK and ANSI parsers interpret incoming characters. Entries are abbreviated in many 
cases, and a key to abbreviations follows the table. 

Table E-1 
CHARACTER INTERPRETATION BY TEK AND ANSI PARSERS 

CHAR TEK Parser ANSI Parser 

Alpha Vector Marker LCE-T 20C int xy char alpha LCE-A CSI 

NU EC 

SH no-op 

Sx no-op 

EX no-op 

ET no-op 

EO CMD-1 

AK no-op 

BL BL BL 1 BL BL BL BL BL 

BL BL BL BL BL BL 

HT HT HT HT HT HT 

LF LF EC LF LF LF 

VT VT VT VF VT VT 

FF PAGE FF FF FF 

c R c R CR 2 CR 2 EC CR CR CR 

So CMD-2 INV-G1 INV-G1 INV-G1 

SI CMD-3 INV-GO INV-GO INV-GO 

DL no-op 

D1 no-op 

D2 no-op 

D3 no-op 

D4 no-op 

NK no-op 

Sy no-op 

EB CMD-4 

CN CMD-5 halt halt 

EM no-op 

SB CMD-6 halt halt 

4110 SERIES HOST 'E-' 



CHARACTER INTERPRETATION 

( 
Table E-1 (cont) 

CHARACTER INTERPRETATION BY TEK AND ANSI PARSERS 

CHAR TEK Parser ANSI Parser 

Alpha Vector Marker LCE-T 20C int xy char alpha LCE-A CSI 

EC EC EC EC EC EC EC 3 EC 3 EC 3 EC 3 EC EC 

FS FS FS FS FS FS FS 3 FS 3 FS 3 FS 3 

Gs Gs Gs Gs Gs 3 Gs 3 Gs 3 Gs 3 

RS no-op 

Us Us Us Us Us 3 Us 3 Us 3 Us 3 

sp sp HiX/Y HiX/Y no-op error Lol- HiX/Y sp sp no-op error 

! ! HiX/Y HiX/Y CMD-7 error4 Lol- HiX/Y ! ! no-op4 error 

, 
" HiX/Y HiX/Y no-op error Lol- HiX/Y " " no-op error 

# # HiX/Y HiX/Y no-op error Lol- HiX/Y # # no-op error 

$ $ HiX/Y HiX/Y no-op error Lol- HiX/Y $ $ no-op error 

% 0/0 HiX/Y HiX/Y CMD-8 error Lol- HiX/Y % % CMD-8 error 

& & HiX/Y HiX/Y no-op error Lol- HiX/Y & & no-op error 

HiX/Y HiX/Y no-op error Lol- HiX/Y 
, 

no-op error 

( ( HiX/Y HiX/Y no-op error Lol- HiX/Y ( ( SCS error ( 
) ) HiX/Y HiX/Y no-op error Lol- HiX/Y ) ) SCS error 

* * HiX/Y HiX/Y no-op error Lol- HiX/Y * * no-op error 

+ + HiX/Y HiX/Y no-op error Lol- HiX/Y + + no-op error 

, HiX/Y HiX/Y no-op error Lol- HiX/Y , no-op error 

- - HiX/Y HiX/Y no-op error Lol- HiX/Y - - no-op error 

HiX/Y HiX/Y no-op error Lol- HiX/Y no-op error 

/ / HiX/Y HiX/Y no-op error Lol- HiX/Y / / no-op error 

0 0 HiX/Y HiX/Y no-op error Lol+ HiX/Y 0 0 no-op 0 

1 1 HiX/Y HiX/Y no-op error Lol+ HiX/Y 1 1 no-op 1 

2 2 HiX/Y HiX/Y no-op error Lol+ HiX/Y 2 2 no-op 2 

3 3 HiX/Y HiX/Y no-op error Lol+ HiX/Y 3 3 no-op 3 

4 4 HiX/Y HiX/Y no-op error Lol+ HiX/Y 4 4 no-op 4 

5 5 HiX/Y HiX/Y no-op error Lol+ HiX/Y 5 5 no-op 5 

6 6 HiX/Y HiX/Y no-op error Lol+ HiX/Y 6 6 no-op 6 

7 7 HiX/Y HiX/Y no-op error Lol+ HiX/Y 7 7 TEKSC 7 

8 8 HiX/Y HiX/Y CMD-9 error Lol+ HiX/Y 8 8 TEKRC 8 

9 9 HiX/Y HiX/Y CMD-9 error Lol+ HiX/Y 9 9 no-op 9 

HiX/Y HiX/Y CMD-9 error Lol+ HiX/Y : no-op error 

, , HiX/Y HiX/Y CMD-9 error Lol+ HiX/Y , , no-op , ( 

E-2 4110 SERIES HOST 



CHARACTER INTERPRETATION 

Table E-1 (cont) 
CHARACTER INTERPRETATION BY TEK AND ANSI PARSERS 

CHAR TEK Parser ANSI Parser 

Alpha Vector Marker LCE·T 20C int xy char alpha LCE·A CSI 

< < HiX/Y HiX/Y no-op error Lol+ HiX/Y < < no-op < 

= = HiX/Y HiX/Y no-op error Lol+ HiX/Y = = no-op = 

> > HiX/Y HiX/Y no-op error Lol+ HiX/Y > > no-op > 

? ? HiX/Y HiX/Y DT error Lol+ HiX/Y ? ? no-op ? 

@ @ LoX LoX no-op error Hi! LoX @ @ no-op ICH 

A A LoX LoX no-op CMD-11 Hi! LoX A A no-op CUU 

B B LoX LoX no-op CMD-11 Hi! LoX B B no-op CUD 

C C LoX LoX no-op CMD-11 Hil LoX C C no-op CUF 

D D LoX LoX no-op CMD-11 Hi! LoX D D IND CUB 

E E LoX LoX no-op CMD-11 Hi! LoX E E NEL error 

F F LoX LoX no-op CMD-11 Hil LoX F F no-op 

G G LoX LoX no-op CMD-11 Hil LoX G G no-op error 

H H LoX LoX no-op CMD-11 Hil LoX H H HTS CUP 

I I LoX LoX 20C CMD-11 Hi! LoX I I no-op CHT 

J J LoX LoX 20C CMD-11 Hil LoX J J no-op ED 

K K LoX LoX 20C CMD-11 Hil LoX K K no-op EL 

L L LoX LoX 20C CMD-11 Hi! LoX L L no-op IL 

M M LoX LoX 20C CMD-11 Hi! LoX M M RI DL 

N N LoX LoX 20C CMD-11 Hil LoX N N no-op error 

0 0 LoX LoX 20C CMD-11 Hi! LoX 0 0 no-op error 

P P LoX LoX 20C CMD-11 Hi! LoX P P no-op DCH 

Q Q LoX LoX 20C CMD-11 Hi! LoX Q Q no-op error 

R R LoX LoX 20C CMD-11 Hi! LoX R R no-op error 

S S LoX LoX 20C CMD-11 Hi! LoX S S no-op SU 

T T LoX LoX 20C CMD-11 Hil LoX T T no-op SD 

U U LoX LoX 20C CMD-11 Hil LoX U U no-op error 

V V LoX LoX 20C CMD-11 Hil LoX V V no-op error 

W W LoX LoX 20C CMD-11 Hil LoX W W no-op error 

X X LoX LoX 20C CMD-11 Hi! LoX X X no-op ECH 

Y Y LoX LoX 20C CMD-11 Hi! LoX Y Y no-op error 

Z Z LoX LoX 20C CMD-11 Hi! LoX Z Z no-op CBT 

[ [ LoX LoX no-op error Hi! LoX [ [ CSI error 

LoX LoX no-op error Hi! LoX no-op error 

4110 SERIES HOST E-3 



CHARACTER INTERPRETATION 

( 
Table E-1 (cont) 

CHARACTER INTERPRETATION BY TEK AND ANSI PARSERS 

CHAR TEK Parser ANSI Parser 

Alpha Vector Marker LCE-T 20C int xy char alpha LCE-A CSI 

1 1 LoX LoX no-op error Hil LoX 1 1 no-op error 

1\ 1\ LoX LoX no-op error Hil LoX 1\ 1\ no-op error 

- - LoX LoX no-op error Hil LoX - - no-op error 
, 

LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex 
, 

DMI error 

a a LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex a a no-op error 

b b LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex b b EMI error 

c c LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex c c RIS error 

d d LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex d d no-op error 

e e LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex e e no-op error 

f f LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex f f no-op HVP 

9 9 LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex 9 9 no-op TBC 

h h LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex h h no-op SM 

i i LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex i i no-op error 

j j LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex j j no-op error ( 
k k LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex k k no-op error 

I I LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex I I no-op RM 

m m LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex m m no-op SGR 

n n LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex n n no-op DSR 

a 0 LoY/Ex LoY/Ex CMD-10 error Hil LoY/Ex 0 0 no-op error 

p p LoY/Ex LoY/Ex no-op error Hil LoY/Ex p p no-op error 

q q LoY/Ex LoY/Ex no-op error Hil LoY/Ex q q no-op error 

r r LoY/Ex LoY/Ex no-op error Hil LoY/Ex r r no-op error 

s s LoY/Ex LoY/Ex no-op error Hil LoY/Ex s s no-op error 

t t LoY/Ex LoY/Ex no-op error Hil LoY/Ex t t no-op error 

u u LoY/Ex LoY/Ex no-op error Hil LoY/Ex u u no-op error 

v v LoY/Ex LoY/Ex no-op error Hil LoY/Ex v v no-op error 

( 

E·4 4110 SERIES HOST 



CHARACTER INTERPRETATION 

Table E-1 (cont) 
CHARACTER INTERPRETATION BY TEK AND ANSI PARSERS 

CHAR TEK Parser ANSI Parser 

Alpha Vector Marker LCE-T 20C int xy char alpha LCE-A 

w w LoY/Ex LoY/Ex no-op error Hil LoY/Ex w w no-op 

x x LoY/Ex LoY/Ex no-op error Hil LoY/Ex x x no-op 

y y LoY/Ex LoY/Ex no-op error Hil LoY/Ex y y no-op 

z z LoY/Ex LoY/Ex no-op error Hil LoY/Ex z z no-op 

{ { LoY/Ex LoY/Ex no-op error Hil LoY/Ex { { no-op 

I I LoY/Ex LoY/Ex no-op error Hil LoY/Ex I I no-op 

} } LoY/Ex LoY/Ex no-op error Hil LoY/Ex } } no-op 

N N LoY/Ex LoY/Ex no-op error Hil LoY/Ex no-op 

Dr> LoY/Ex LoY/Ex EC Hil LoY/Ex 

Comments Command Names Too Big to Fit in Table 

LCE-T means last-character-escape-TEK. 

LCE-A means last-character-escape-ANSI. 

CSI means Command Sequence Introduction mode; the ter
minal is waiting to complete a command. 

No-op means a recognized command that does nothing. 

Halt means stops parsing and ignore command up to here. 

Notes 

1. BL also sets move/draw flag to move in Vector mode 

2. cR is ignored if dialog area enabled 

1. REPORT-4010-STATUS 

2. SET-ALPHA-FONT 

3. SET-ALPHA-FONT 

4. 4010-HARDCOPY 

5. ENTER-BYPASS-MODE 

6. ENABLE-4010-GIN 

7. ENABLE-4953-GIN 

8. SELECT-CODE 

9. SET-4014-ALPHATEXT-SIZE 

10. SET-4014-L1NESTYLE 

CSI 

error 

error 

error 

error 

error 

error 

error 

error 

3. These also terminate any command in process (except 
when TEK mode EC is followed by (?)) 11. Potential 4100 command - may be not recognized 

4. Unless in SELECT-CODE command 

4110 SERIES HOST E-5 



( 

( 



INDEX 

12-bit coordinate mode, 4-12 
12-bit space, 8-19, 8-20 
20C state, 4-11 
32-Bit Coordinate mode, 4-12 
32-bit space, 8-19, 8-20 
32-bitxy parameters, 4-3, 4-4, 4-12 
3PPI, 10-1, 10-5 
401 O-HARD-COPY, 4-1 
4010-HARDCOPY, 5-5 
4110 Series Command Reference Manual, 1-1,1-2,1-3,1-4 
4110 Series Reference Guide, 1-2 
4110 Series Terminal Architecture, 2-1 
4112,2-3 
4113,2-3 
4114,2-3 
4115,2-3 
4116,2-3 
4662 or 4663 plotter, 9-1 , 9-2 
7-bit character set, 3-6, 3-9 
8-bit character set, 3-6, 3-7, 3-9 
addition array, 7-8, 7-9 
additive color mixing, 8-10, 8-13, 8-15 
address space, 2-3 
all segments, 7-2, 7-10 
Alpha mode, 4-1,4-7,4-10,6-1,6-3,6-4 
alphatext, 6-1,6-2,6-4,6-5 
alphatext attributes, 6-4 
ALU modes, 8-16, 8-18 
AND mode, 7-3 
ANSI Alpha mode, 4-12 
ANSI mode, 5-1,5-2 
ANSI Parser, 4-1,4-7,4-12 
ARM-FOR-BLOCK-MODE,3-7 
ARRAY PARAMETERS, 1-4, 4-4 
ASCII keyboard, 2-1 
available surfaces, 8-6, 8-9 
background color, 8-10,8-16 
BEGIN-FILL-PATTERN, 8-17, 8-18 
BEGIN-GRAPHTEXT-CHARACTER,6-6 
BEGIN-HIGHER-SEGMENT, 7-5, 7-6 
BEGIN-LOWER-SEGMENT, 7-5, 7-6 
BEGIN-NEW-SEGMENT, 7-5, 7-6 
BEGIN-PANEL-BOUNDARY, 6-7 
BEGIN-PIXEL-OPERATIONS, 8-16, 8-17 
BEGIN-SEGMENT, 7-5, 7-6 
bit planes, 8-3, 8-6,8-9,8-10 

4110 SERIES HOST 

bits-per-pixel value, 8-16, 8-17, 8-18 
block count, 3-8 
block data, 3-6, 3-7, 3-8 
block format, 3-7 
block header, 3-7 
block length, 3-7 
block lines, 3-6 
Block mode algorithms, 3-13 - 3-15 
Block mode parameters, 3-7 
block packing, 3-7 
block timeout, 3-7 
block transactions, 3-6 
block-continue character, 3-7, 3-8 
block-control bytes, 3-7, 3-8, 3-9 
block-control characters, 3-7, 3-8, 3-9 
block-end character, 3-7,3-8 
block-master characters, 3-7, 3-8 
border index, 8-20 
border visibility, 8-20 
break signal duration, 3-3 
Bypass mode, 3-3, 3-4 
bypass-cancel character, 3-4 
Byte macros, 4-6 
char-array, 4-4 
character flagging, 3-3, 3-5, 3-8 
char parameters, 4-3 
checksum, 3-6, 3-9 
CLEAR-DIALOG-SCROLL, 5-1 
CMY, 8-10, 8-14, 8-15, App. D 
code examples, 1-1,1-3 
color cone, 8-12, App. D 
color coordinate systems, 8-10, App. D 
Color Copier interface, 10-1, 10-6 
Color Cube, 8-13, 8-14, App. D 
color display, 8-1 ,8-2 
color index, 8-5, 8-6, 8-9, 8-10,8-17,8-18,8-20 
color map, 8-3, 8-4, 8-10, 8-11, 8-15 
command keys, 2-1 
command names, 1-4 
command parameters, 1-2,1-4 
command parsing states, 4-10 
command syntax, 1-2,1-4 
communications parameters, 11-1 
communications subsystems, 2-1 
controlling report length, 3-4 
COPY, 10-1, 10-2, 10-6 

1-1 



INDEX 

critical communications parameters, 3-3 
crosshair cursor, 7-2 
CSI state, 4-12 
current matching class, 7-8 
data packing, 1-4 
DEFINE-MACRO, 4-6 
defining graphtext, 6-6 
DELETE-FILE,10-4 
DELETE-GRAPHTEXT-CHARACTER, 6-5 
delimiters in setup mode, 1-4 
detectability, 7-3, 7-5 
device name parameters, 10-1 
device names, 10-1,10-2,10-4 
device-function-code, 9-1,9-2,9-5,9-6 
dialog area, 5-1 , 5-2, 5-3, 11-1 
dialog area parameters, 5-2 
dialog scroll buffer, 4-5 
differences in subsystems, 2-1 
direct memory access, 2-1 ,10-6 
DIRECTORY, 10-4 
DISABLE-4953-TABLET-GIN,9-6 
DISABLE-GIN, 9-5, 9-6 
disk commands, 10-4 
disk. interfaces, 2-1 
dis~,storage, 10-4 
displ\~y priority, 7-3, 7-4 
display subsystems, 2-1 
distan~ filter, 9-1,9-2,9-6 
DMA int'erface, 10-1, 10-6 
DRAW, 4-10, 6-1, 6-2, 6-3 
DRAW-MARKER, 4-10,6-3,6-4 
DRAW-RECTANGLE, 6-8 
DTR/CTS, 3-3, 3-5, 3-8 
DVST,2-3 
editing commands, 5-4 
ENABLE-401 O-GIN, 4-1 
ENABLE-401 O-GIN, 6-3 
ENABLE-401 O-GIN, 9-5 
ENABLE-4953-GIN,6-3 
ENABLE-4953-TABLET-GIN,9-5 
ENABLE-DIALOG-AREA,5-1 
ENABLE-GIN, 9-2, 9-5, 9-6 
enabling flagging, 3-5 
END-FILL-PATTERN, 8-18, 8-19 
END-GRAPHTEXT-CHARACTER, 6-6 
END-PANEL,6-7 
END-SEGMENT, 7-5, 7-7 
ENTER-ALPHA-MODE, 4-1,4-10 
ENTER-ALPHA-MODE, 6-6 
ENTER-BYPASS-MODE, 3-4 
ENTER-MARKER-MODE, 4-1,4-10 
ENTER-MARKER-MODE, 6-4 

1-2 

ENTER-VECTOR-MODE, 4-1,4-10 
ENTER-VECTOR-MODE, 6-3 
EOF-string, 3-3, 4-5 
EOL-string, 3-3 
EOM indicator, 9-5 
EOM-characters, 3-1,3-4,3-9 
EOM-frequency, 4-5 
erase index, 8-10, 8-16 
error detection 6,3-7 
exclusion array, 7-8, 7-10 
exclusion class register, 7-8, 7-9 
EXPAND-MACRO, 4-6 
explicit commands, 6-1 
extended terminal space, 8-19, 8-20 
file name parameters, 10-1 
fill patterns, 8-10, 8-16, 8-18, 8-19 
filters, 9-2, 9-5, 9-6 
fixup level, 7-7, 8-19, 8-23 
flagging, 3-3, 3-5, 3-8 
FORMAT, 10-4 
frame buffer, 8-5 
Full- and Half-Duplex, 3-1,3-3,3-5,3-7 
Full-Duplex, 3-1,3-3,3-5,3-7 
function keys, 2-1 
future segments, 7-2 
future-segment attributes, 7-2 
GIN areas, 9-4, 9-6 
GIN cursor, 7-4, 9-1,9-2,9-5,9-6 
GIN event, 9-1,9-2,9-5 
GIN function reports, 9-1,9-5 
GIN location, 9-1,9-2,9-5,9-6 
GIN Pick function, 7-3, 7-4 
GIN space, 8-19, 8-20, 9-2, 9-3, 9-6 
GIN windows, 9-3 
GRAPHIC-TEXT, 6-5 
Graphics Area Writing mode, 6-4 
graphics beam position, 6-1,7-6 
graphics input cursor, 7-4 
graphics primitive attributes, 6-1 . 
graphics primitives, 7-1 
graphics tablet, 9-1,9-2,9-6 
Graphtext, 6-5 
Graphtext character definition, 6-5 
Graphtext fonts, 6-5 
Graphtext precision, 6-5 
Graphtext rotation, 6-5 
Graphtext size, 6-5 
Graphtext slant, 6-5 
gridding,.9-1,9-6 
Half-Duplex, 3-1,3-3,3-5,3-7 
handshaking, 3-3, 3-5, 3-8 
hard copy units, 2-1 

( 

(, 

( 

4110 SERIES HOST 



HARDCOPY, 5-5 
highlighting, 7-3 
HLS, 8-10, 8-12, 8-13, App. D 
Home position, 8-23 
Host Macros, 4-6 
Hil,4-3 
Ignore Deletes mode, 4-12 
implicit command modes, 4-7, 4-8, 4-10, 4-12, 6-1 
implicit commands, 6-1 
implicit mode flag, 4-7 
INCLUDE-COPY-OF-SEGMENT,7-6 
inclusion array, 7-8, 7-9, 7-10 
inclusion class register, 7-8 
inking, 9-1,9-6 
input queue, 2-1,3-1,3-3,3-4,3-5,4-5,4-6 
inside of panels, 6-7 
in t-array , 4-4, 4-5 
int parameters, 4-4 
invisible surface, 8-6, 8-7 
Key macros, 4-6 
key-character, 9-5 
keyboard thumbwheels, 9-1,9-2,9-6 
LCE-A state, 4-1 2 
LCE-T state, 4-10,4-11 
line attributes, 6-2 
line index, 6-2 
line style, 6-2 
line width, 6-2 
LOAD,10-3 
Local mode, 1-4 
local peripherals, 2-1 
LOCK-VIEWING-KEYS, 8-23 
machine RGB, 8-10, 8-14, App. D 
macro expansion, 4-6 
macros, 4-1,4-6 
MAP-INDEX-TO-PEN,10-5 
Marker mode, 4-7, 4-8, 4-10, 6-3 
marker types, 6-3 
markers, 6-3 
matching classes, 7-7 
matching operation, 7-8 
message flagging, 3-3, 3-5 
MOVE, 4-10, 6-2, 6-3 
non retained segments, 7-1 
non-transmittable characters, 3-6, 3-7, 3-8 
nonvolatile memory, 3-1,3-3,3-7 
normalized screen space, 8-19, 8-20, 8-22, 8-23 
one-op-code commands, 4-1 
opaque, 8-10, 8-14, 8-15 
Option 01,3-1,3-3,3-5,3-6 
Option 02, 3-1 
Option 09, 10-6 

4110 SERIES HOST 

Option 10, 10-5 
Option 42, 10-4 
Option 43, 10-4 
Option 45, 10-4 
OR mode, 7-3 
output gate, 3-4, 3-5 
overview, 8-23 
overview window, 8-23, 11-1 
packed data, 3-6, 3-7, 3-8 
packing parameters, 4-3, 4-4 
packing int parameters, 4-3 
packing xy parameters, 4-3 
PAGE, 4-1,4-10,6-3 
PAN, 8-20, 8-23 
panel boundary, 6-7, 6-8 
panel definition, 6-7 
panels, 6-7 
parameter parsing states, 4-11 
parity, 3-1 , 3-3 
parsing an intc report, 4-5 
parsing an int report, 4-5 
parsing an xy report, 4-5 
parsing array reports, 4-5 
parsing GIN function reports, 9-5 
partialview window, 8-23 
physical devices, 10-2 
Pick aperture, 9-2, 9-6 
Pick ID, 9-2, 9-5 
Picking and Dragging, 9-6 
Pivot Point, 7-2 
Pixel Beam Position, 8-16, 8-17 
Pixel Operations, 2-3, 4-5, 8-16 
pixel space, 8-6, 8-19, 8-20, 8-22 
pixel viewport, 8-16 
PIXEL-COPY, 8-18 
PLOT,10-5 
PORT-ASSIGN,10-5 
PORT-COPY, 10-5 
PORT-EOF-STRING, 10-5 
PORT-PROTOCOL IDENTIFIERS, 10-5 
position, 7-2 
programming function keys, 5-5 
prompt, 3-1,3-3,3-4,3-5 
Prompt mode, 3-1,3-3,3-4,3-5,3-7 
prompt string, 3-1,3-3,3-4,3-5 
pseudo devices, 10-2 
pseudocode, 1-3 
pseudocode algorithms, 1-3 
pseudocode syntax, 1-3 
queue, 2-1 
raster, 2-3 
raster display, 2-3 

INDEX 

1-3 



INDEX 

raster memory, 8-3, 8-4, 8-6, 8-10, 8-16, 8-18 
RASTER-WRITE, 8-16,8-17,8-18,8-19 
real parameters, 4-4, 4-11 
RECTANGLE-FILL,8-18 
refresh graphics, 2-3 
refreshed information, 2-3 
removal array, 7-8, 7-10 
RENEW-VIEW, 5-5, 8-23 
REPORT-4010-STATUS, 3-5,4-1 
REPORT-COLORHARDCOPY-STATUS, 4-1 
REPORT-DEVICE-STATUS, 4-1, 10-1,10-3 
REPORT-ERRORS, 4-1,5-6 
REPORT-GIN-POINT, 4-1,9-1,9-6 
REPORT-paRT-STATUS, 4-1, 10-5 
REPORT-SEGMENT-STATUS, 4-1 
REPORT-TERMINAL-SETTINGS, 4-1 
REPORT-TERMINAL-STATUS, 3-5 
reports, 4-1,4-4,4-5 
RESET,6-3 
RGB, 8-10, 8-13,8-15, App D 
rotation, 7-3 
RS-232C, 3-1,3-3,3-5 
rubberbanding, 9-1,9-6 
runcode,8-17 
RUNLENGTH-WRITE, 8-16, 8-17, 8-18 
SAVE, 10-1, 10-3 
scaling, 7-3 
Segment-1,7-2 
Segment -2,7-2 
Segment -3,7-2 
Segment 0,7-2 
segment attributes, 7-2, 7-3 
segment ciass, 7-7 
segment class field, 7-7 
segment class subfields, 7-9 
segment classes, 7-7 
segment definition, 7-6 
segment detectability, 7-3, 7-5 
segment highlighting, 7-3, 7-5 
segment numbers, 7-2 
segment origin, 7-2, 7-3 
segment storage, 7-2 
segment-writing mode, 4-5 
segments, 2-3, 6-1 
SELECT-CODE, 4-7, 5-2 
SELECT-FILL-PATTERN, 6-6, 6-8 
SELECT-VIEW, 8-23 
Set mode, 7-3 
SET-4014-ALPHATEXT-SIZE, 5-2, 6-4 
SET-4014-lINE-STYLE,4-1 
SET-ALPHATEXT-FONT, 4-1,6-4 
SET-ALPHATEXT-SIZE, 5-2, 6-4 

SET-ALPHATEXT-SIZE-GROUP,6-4 
SET-BACKGROUND-COLOR,8-16 
SET-BACKGROUND-GRAY-LEVEL,8-16 
SET-BACKGROUND-INDICES, 6-2, 8-16 
SET-BAUD-RATES, 3-3 
SET-BLOCK-CONTINUE-CHARS, 3-7, 3-8 
SET-BLOCK-END-CHARS, 3-7, 3-8 
SET-BLaCK-HEADERS, 3-7 
SET-BLaCK-LENGTH, 3-7 
SET-BLOCK-MASTER-CHARS,3-7 
SET-BLOCK-NON-XMT-CHARS, 3-7, 3-8 
SET-BLaCK-PACKING, 3-7, 3-8 
SET-BLaCK-TIMEOUT, 3-7 
SET-BREAK-TIME,3-3 
SET-BYPASS-CANCEL-CHARACTER,3-4 
SET-CaLOR-MODE, 8-10, 8-14, 8-16 
SET-COORDiNATE-MODE,4-12 
SET-CURRENT-MATCHING-CLASS, 7-8 
SET-DIALOG-AREA-BUFFER-SIZE,5-2 
SET-DIALOG-AREA-CHARS,5-2 
SET-DIALOG-AREA-INDEX, 5-2 
SET-DIALOG-AREA-lINES,5-2 
SET-DiALOG-AREA-POSITION, 5-2 
SET-DIALOG-AREA-SURFACE,5-2 
SET-DIALOG-AREA-VISIBllITY,5-1 
SET-DIALOG-AREA-WRiTING-MODE,5-2 
SET-DRAW-BOUNDARY-MODE,6-8 
SET-DUPLEX-MODE,3-5 
SET-ECHO, 5-6 
SET-EOF-STRING,3-3 
SET-EOL-STRING,3-3 
SET-ERROR-THRESHOLD,5-6 
SET-FLAGG lNG-MODE, 3-5 
SET-GIN-AREA, 9-4, 9-6 
SET-GIN-CURSOR,9-6 
SET-G I N-DISP LAY-START-POI NT, 9-6 
SET-GIN-GRIDDING,9-6 
SET-GiN-INKING,9-6 
SET-GIN-RUBBERBANDING,9-6 
SET-GIN-STROKE-FILTERING,9-6 
SET-GIN-WINDOW, 9-4, 9-6 
SET-GRAPHICS-AREA-WRITING-MODE,6-4 
SET-GRAPHTEXT-FONT,6-5 
SET-GRAPHTEXT-FONT-GRID,6-5 
SET-GRAPHTEXT-PRECiSION,6-5 
SET-GRAPHTEXT-ROTATION,6-5 
SET-GRAPHTEXT-SIZE, 6-5 
SET-GRAPHTEXT-SLANT,6-5 
SET-liNE-INDEX, 6-2 
SET-LINE-STYLE, 6-2 
SET-LINE-WIDTH, 6-2 
SET-MARGINS, 5-5 

1-4 4110 SERIES HOST 

( 

( 

( 



SET-MARKER-TYPE,6-3 
SET-OVERVI EW-WIN DOW, 8-23 
SET-PAGE-FULL-ACTION,5-6 
SET-PANEL-FILLING-MODE, 6-8 
SET-PARITY, 3-3 
SET-PICK-APERTURE,9-6 
SET-PIVOT-POINT, 6-5, 7-5 
SET-PIXEL-BEAM-POSITION, 8-16 
SET-PIXEL-WRITING-FACTORS, 8-17 
SET-PORT-BAUD-RATE,10-5 
SET-PORT-EOF-STRING, 10-5 
SET-PORT-EOL-STRING,10-5 
SET-PORT-FLAGGING-MODE, 10-5 
SET-PORT-PARITY, 10-5 
SET-PORT-STOP-BITS, 10-5 
SET-PROMPT-STRING,3-5 
SET-QUEUE-SIZE,3-4 
SET-REPORT-MAX-L1NE-LENGTH,3-4 
SET-SEGMENT-CLASS, 7-5, 7-9 
SET-SEGMENT-DETECTABILlTY, 7-5 
SET-SEGMENT-DISPLAY-PRIORITY, 7-3, 7-5 
SET-SEGMENT-HIGHLIGHTING,7-5 
SET-SEGMENT-IMAGE-TRANSFORM, 7-3, 7-5 
SET-SEGMENT-POSITION, 7-3, 7-5 
SET-SEGMENT-VISIBILlTY, 7-3, 7-5 
SET-SEGMENT-WRITING-MODE, 7-3, 7-5 
SET-SNOOPY-MODE,4-7 
SET-STOP-BITS, 3-3 
SET-SURFACE-COLOR-MAp, 8-10, 8-16 
SET-SURFACE-DEFINITIONS, 8-6 
SET-SURFACE-GRAY-LEVELS, 8-10 
SET-SURFACE-PRIORITY, 8-8 
SET-SURFACE-VISIBILlTY, 8-6 
SET-TABLET-HEADER-CHARACTERS, 11-1 
SET-TABLET-STATUS-STRAp, 11-1 
SET-TEXT-INDEX, 6-5 
SET-TRANSMIT-RATE-L1MIT,3-3 
SET-VIEW-ATTRIBUTES, 8-23 
SET-VIEW-DISPLAY-CLUSTER,8-23 
SET-VIEWPORT, 8-22, 8-23 
SET-WINDOW, 8-20, 8-23 
Setup mode, 1-4 
signal flagging, 3-3, 3-5, 3-8 
signature characters, 9-1 

4110 SERIES HOST 

single character commands, 4-1 
Snoopy mode, 4-7 
SPOOL, 10-1, 10-2 
stop bits, 3-3 
STOP-SPOOLING, 10-1,10-3 
stored information, 2-3 
string precision graphtext, 6-5 
strin£parameters, 4-4, 4-11 
stroke precision graphtext, 6-5 
subsystems, 2-1 
subtractive color mixing, 8-10, 8-14, 8-15 
super surface, 8-6, 8-9, 8-16 
surface priority, 8-8 
tabulation commands, 5-3 
TEK parser, 4-7 
terminal commands, 4-1 
terminal file system, 2-1 
terminal report commands, 4-4 
terminal space, 8-1,8-6,8-19,8-23 
terminal viewing keys, 8-23 
terminator characters, 4-10,4-12 
text in the graphics area, 6-4, 6-5 
the key-execute character, 4-6 
the keyboard, 5-5 
thumbwheels, 2-1 
transmit delay, 3-4, 3-5 
transmit rate limit, 3-3 
troubleshooting, 4-5 
two-op-code commands, 4-1 
user-defined fill pattern, 8-18, 8-19 
Vector mode, 4-1,4-7,4-8,4-9,4-10,6-2 
view display cluster, 8-23 
view number, 8-20 
view surface, 8-20 
viewport, 8-20, 8-22, 8-23 
window, 8-20, 8-22, 8-23 
window size, 11-1 
window-viewport transform, 8-22 
wipe index, 8-20 
XOR mode, 7-3 
xy-array, 4-4 
.xy parameters, 3-4, 4-4 
ZOOM, 8-20, 8-23 

INDEX 

1-5 



( 

( 

( 

-~------- -~ -


