Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon

MANUAL PART NO.
070-2056-01

97077

Tektronix

COMMITTED TO EXCELLENCE

4050 SERIES
GRAPHIC SYSTEM

REFERENCE MANUAL

First Printing JAN 1976
This Printing JUN 1979

Copyright © 1976, 1979 by Tektronix, Inc, Beaverton,
Oregon. Printed in the United States of America. All rights
reserved. Contents of this publication may not be reproduced
in any form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one
or more US. or foreign patents or patent applications.
information provided on request by Tektronix, Inc., P.O. Box
500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

PRODUCT _4051, 4052, 4054 Graphic Computing Systems

4051 Serial Nos. BO10101 and up

This manual supports the following versions of this product: 4052 Serial Nos. BO10101 and up

4054 Serial Nos. BO10101 and up

MANUAL REVISION STATUS

REV. DATE DESCRIPTION
@ 1/76 Original Issue
@ 3/79 New pages
A 3/79 Revised
B 3/79 Revised
c 3/79 Revised
D 3/79 Revised
AB,CDE 7/79 Revised

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, JUL 1979

WE KNOW YOU'RE ANXIOUS TO LEARN ALL ABOUT THE GRAPHIC SYSTEM, BUT...

you'll miss valuable information if you don't start at the beginning!
No matter what your objectives are, you should begin by reading the
introduction in the Graphic System Operator's Manual. It presents
an overview of the complete Graphic System documentation
package, and it will help you select the study material you need to
use the Graphic System effectively.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 1

Section 2

Section 3

CONTENTS

PREFACE Page

LANGUAGE ELEMENTS

Introduction to Language Elements.......................... 1-1
Real Numbers and Character Strings 1-1
Numeric Constanis and StringConstants 1-3
Numeric Variables, String Variables, and Array Variables 1-4
Arithmetic, Logical, and Relational Operators. 1-7
Numeric Functions and String Functions..................... 1-13
Numeric EXpressionst 1-14
Numeric Errors. 1-17
The DIM (Dimension) Statement............................. 1-19
The LET Statement i 1-23

ENVIRONMENTAL CONTROL

introduction to Environmental Control 2-1
The “ALPHAROTATE"” Parameter............................ 2-4
The “ALPHASCALE” Parameter 2-5
The BRIGHTNESS Statemento i, 2-6
The CHARSIZE Statement 2-7
The FONT Statement i 2-8
The FUZZ Statement............. i 2-11
The INIT Statement........ 2-14
The Internal Magnetic Tape Status Parameters............... 2-16
The PAGE FULL Parameterccoo i, 2-19
The Processor Status Parameters 2-20
The SET Statement........ i, 2-26

SYSTEM CONTROL

Introduction to System Control 3-1
The CALL Statement. 3-3
The COPY Statement.......... i, 3-5
The HOME Statement. 3-6
The PAGE Statement 3-8

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979

Section 4 MEMORY MANAGEMENT Page

Introduction to Memory Management 4-1
The DELETE Statement............. .t 4-2
The MEMORY Function..........co i 4-4
The SPACE Functiono i e 4-6
Section 5 CONTROLLING PROGRAM FLOW
Introduction. 5-1
The END Statement. i 5-3
The FOR and NEXT Statements 5-4
The GOSUB and RETURN Statements 5-10
The GOTO Statement 5-13
ThelF...THEN...Statement............................... 5-16
The RETURN Statement 5-22
The RUN Statement i, 5-23
The STOP Statement it 5-25
Section 6 HANDLING INTERRUPTS
Introduction to Handling Interrupts 6-1
Interrupt Conditionso 6-3
The OFF Statement............ i i, 6-5
The ON... THEN Statement................ 6-6
The POLL Statement. i i i 6-8
The WAIT Statement. 6-12
The WAITRoutine i i i 6-14
Section 7 INPUT/OUTPUT OPERATIONS
Introduction to Input/Output Operations 7-1
input/Output (I/0) Addressesoiiiiiiinnnn. 7-7
The APPEND Statement. i i i, 7-17
The BAPPENRoutine........... ..ottt 7-21
The BOLD Routine. ...t e 7-23
The BSAVERoutine i i 7-25
The CLOSE Statement...... 7-30
The DASH Statement 7-32
The DATA Statement i i, 7-34
The FIND Statement........ i ... 7-38
The IMAGE Statement i, 7-45
The INPUT Statement. o i 7-75
The KILL Statement i .. 7-94
The LINKRoutine. i 7-96
The MARK Statement.......... i 7-100
The MTPACK Routine i 7-105

REV B, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 7 (cont) Page

The OLD Statement................... . i, 7-106
The PRINT Statement. 7-108
The RBYTE (Read Byte) Statement.......................... 7-136
The READ Statementoo . 7-139
The RESTORE Statement 7-145
The SAVE Statementco i . 7-148
The SECRET Statement............, 7-151
The TLIST (Tape List) Statement 7-153
The TYPFuUNCtion ...t 7-155
The WBYTE (Write Byte) Statement 7-158
The WRITE Statement i ... 7-168
Section 8 MATH OPERATIONS

Introduction to Math Operations............................. 8-1
The ABS (Absolute Value) Function. 8-3
The ACS (Arc Cosine) Functioncoouiii ... 8-4
The ASN (Arc Sine) Function.cooi o il .. 8-6
The ATNFunction 8-8
The COS (Cosine) Functioncovueie e il 8-10
The DEF FN (Define Function) Statement 8-12
The DET Function i, 8-14
The EXP (e to the power) Function. 8-16
TheIDNRoutine.o 8-21
TheINV Function.............. 8-22
The LGT (Logarithm Base 10) Function...................... 8-25
The LOG (Logarithm Base e) Function....................... 8-26
The MPY Function 8-27
ThePl(m) Function...... 8-30
The RND (Random Number) Function........................ 8-31
The SGN (Signum or Sign) Function......................... 8-33
The SIN (Sine) Function i, 8-34
The SQR (Square Root) Function............................ 8-36
The SUM (Sum Matrix) Function. 8-37
The TAN (Tangent) Function ..., 8-38
The TRN (Transpose) Function..............cooui o ... 8-40

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, JUL 1979

Vi

Section 9

Section 10

Section 11

GRAPHICS Page

Introduction to Graphics it i 9-1

The “ALPHAROTATE"” Parameter............... 9-4

The ‘ALPHASCALE” Parameter............ 9-6

The AXIS Statement 9-7

The DRAW Statement. i 9-17
The GIN (Graphic Input) Statement.......................... g-22
The Graphic Display UnitConcept............... 9-25
Inputting the GraphicPage Size............................. g-28
The MOVE Statement. i g9-30
The POINTER Statement. oo, 9-33
The PRINT Statement. i 9-35
The RDRAW (Relative Draw) Statement...................... 9-36
The RMOVE (Relative Move) Statement...................... g9-41
The ROTATE Statement. i i, 9-44
The SCALE Statement o i 9-47
The User DataUnitConcept. oot g9-52
The VIEWPORT Statementot 9-60
The WINDOW Statement. 9-64

CHARACTER STRINGS

Introduction to Character Strings. 10-1
The ASC (ASCH Character) Function 10-3
The CHR (Character) Function ... 10-4
The DIM (Dimension) Statement............................. 10-5
The INPUT Statement. i i 10-7
The LEN (Length) Function.............. ... 10-9
The LET Statement and the Concatenation Operator.......... 10-10
The POS (Position) Functiont 10-12
The READ Statement i 10-14
The REP (Replace String) Function.......................... 10-16
The SEG (Segment) Function 10-18
The STR (String) Function ..., 10-20
The VAL (Value) Function. ...t 10-21

PROGRAM EDITING
Introduction to Program Editing, Debugging,

and Documentation. e 11-1
The DELETE Statement.......... i, 11-2
The LIST Statement i 11-4
The REMARK Statement o i i 11-6
The RENUMBER Statemento it 11-7
The SET Statement........ ..o 11-9
REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 12 LANGUAGE SYNTAX Page

Introduction. 12-1
Syntax and Descriptive Forms Defined....................... 12-1
Syntax Errors 12-2
Delimiters Used for StatementEntry 12-2
Line Numbers e 12-3
KeYWOTrAS . . e 12-3
Optional Entries. ... e 12-4
Optional Entries Within Optional Entries 12-4
It'sa Matterof Choice i, 12-5
/O AdAreSS . . . it e e 12-5
Data ltems e 12-8
Variable List 12-8
Line Number List o i 12-9
Target Variable. i i 12-9
Trailing Dotso e e 12-9
Substituting Elements 12-9
Parenthesis Around Parameters of Functions 12-10
Keywords With Syntax and Descriptive Forms................ 12-10

Appendix A ERROR MESSAGES

Appendix B TABLES

Appendix C INTERFACING INFORMATION
4050 Series System Block Diagram Description.............. C-1
General Purpose InterfaceBus.............................. C-5
GPIB to IEEE Compatability C-11

Appendix D GILOSSARY
INDEX

4050 SERIES GRAPHIC SYSTEMS REFERENCE 1REV A, MAR 1979

PREFACE

About the Language

The Graphic System BASIC language is a version of time-shared BASIC with extensions in the
areas of graphics, file system access, unified handling of input/output operations, matrices,
character string manipulation, high level language interrupt handling, and operating system
facilities.

Although these extensions give the language a power far beyond most BASIC languages, most
of the extensions are exercised through optional entries in each statement. This allows the
Graphic System BASIC language to be compatible with most other BASIC languages by
simply leaving out these optional entries.

While most keywords of the Graphic System BASIC language are available for all members of
the 4050 Series family, a few keywords are available only on the 4054 Graphic System, are not
available onthe 4051 Graphic System, or require a special ROM pack. If anyrestrictions apply
to a particular keyword, they are defined in the description of that keyword.

The Graphic System BASIC language differs from other BASIC languages in that most
keywords and their parameters can be evaluated independently of program control. This
allows the keyboard operator to draw a vector on the display with the DRAW statement, for
example, without placing the system under program control.

Almost all of the statements in the language are executed immediately if the statement is
entered without aline number andthe RETURN key is pressed. If astatement is preceded by a
line number, however, the statement is stored in memory as a program instruction to be
executed at alater time. These statements are executed sequentially when the systemis placed
under program control.

About the Manual

This manual documents every programmable feature of the 4050 Series Graphic System in
detail. The purpose of the manual is not to teach you how to program in BASIC; this manual
does, however, define the characteristics of the language in such a way as to provide a sound
base for programming. The manual’s purposeisto serve as anindepth reference guideforthe
Graphic System BASIC language.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 viii

PREFACE

The manual is divided into twelve sections with four appendices. Each section contains BASIC
statements and functions grouped together according to their primary purpose. For example,
the graphics section contains all of the statements which pertain to graphics. Statements
within a section are arranged in alphabetical order for quick reference use, except for Section
1. The topics in Section 1 are arranged in a logical sequence, beginning with basic definitions
and ending with the more complicated topics like dimensioning variables.

Some statements are repeated in several sections throughout the manual because they are
used in different applications. For example, the INPUT statement can be used in graphic
operations, magnetic tape operations, and character string operations. The explanation of a
statement which is repeated is slanted toward the use of that statement with the other
statements in the section.

Occasionally inthe manual youwill findthe term "Graphic System” abbreviated to simply GS.
The following is a summary of the contents of each section and appendix:

Section 1—Language Elements contains an explanation of the fundamental elements used to
construct BASIC statements.

Section 2—Environmental Control explains how to set the Graphic System’s internal
environmental parameters.

Section 3—System Control contains statements which cause system control functions to be
executed.

Section 4—Memory Management explains how to keep track of the memory space available for
storing BASIC programs and data.

Section 5—Controlling Program Flow contains the statements which are used to control the
flow of a BASIC program as the program executes. The fundamentals of programming like
branching, looping, and executing subroutines are explained here.

Section 6—Handling Interrupts explains how to use the Graphic System’s unique high-level
language interrupt facility to serially poll peripheral devices on the General Purpose Interface
Bus and execute peripheral service routines.

Section 7—Input/Output Operations gives an overview of the system architecture as it pertains
to input and output operations. Explains the I/0O addressing facility. Explains how to transfer

information to and from the GS display, the GS magnetic tape unit, the GS keyboard, and
external peripheral devices on the General Purpose Interface Bus.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

PREFACE

Section 8—Math Operations contains an explanation of all the math functions availabte in the
language.

Section 9—Graphics gives a detailed explanaticn of the statements used to draw graphs on the
GS display screen.

Section 10—Character Strings explains how to input, manipulate, and output character
strings.

Section 11—Program Editing, Debugging, and Documentation explains how to edit, debug,
and document a BASIC program.

Section 12—Language Syntax explains the rules which must be followed when BASIC
statements are entered into memory.

Appendix A—Error Messages. 96 error messages are listed which attempt to pinpoint the
source of an error. The message numbvers match the message numbers printed on the GS

display when an error occurs.

Appendix B—Tables. A list of tables usad throughout the manual are provided here for quick
reference use.

Appendix C—Interfacing Information contains an explanation of the hardware features of the
Graphic System and the General Purpose Interface Bus.

Appendix D—Glossary defines terms which might be unfamiliar to a beginning programmer.

Index—When all else fails and you can't find it, look here.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 X

LANGUAGE ELEMENTS

Introduction to Language Elements................ 1-1
Real Numbers and Character Strings................. 1-1
Numeric Constants and String Constants 1-3
Numeric Variables, String Variables, and Array Variables 1-4
Arithmetic, Logical, and Relational Operators........ 1-7
Numeric Functions and String Functions. 1-13
Numeric Expressions....................... ... 1-14
Numeric Errors.......................... ... " 1-17
The DIM (Dimension) Statement............. 1-19
The LET Statement....................... ... ° 1-23

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 1

LANGUAGE ELEMENTS

INTRODUCTION TO LANGUAGE ELEMENTS

This section defines the fundamental clements and concepts used in the Graphic System
BASIC language. The terms and concepts discussed in this section are used extensively
throughout the rest of this manual.

REAL NUMBERS AND CHARACTER STRINGS

Real Numbers

The Graphic System BASIC interpreter treats every number as areal decimal number; thatis, a
number which can be negative or positive and may or may not have a fractional part. The
numbers 5, 9.86, —0.043, and 65535 are examples of real numbers.

Integers

Integers are a group of numbers within the real number category which do not have a fractional
part. The numbers 1, —2, 3, and 4 are examples of integers.

Standard Notation

Real numbers written in standard notation are written with all digits displayed. For example,
the number 3280000.00 is a real number written in standard notation. Imbedded spaces and
commas are not allowed in the standard notation format.

Scientific Notation (E Format)

When a real number gets too big or too small to manage conveniently with standard notation,
the BASIC interpreter converts the number to scientific notation. Numbers written in scientific
notation have a fractional part called the mantissa and a power of ten part called the exponent.
For example, the number 3.28E+6 is a number written in scientific notation; 3.28 is the
mantissa and E+6 isthe exponent. The number 3.28E+6 is the same number as 3.28x10° which
is the same number as 3280000.00.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

1-1

LANGUAGE ELEMENTS
INTRODUCTION

1-2

Numeric Range for the System

The numeric range for the system extends from —8.988465674E+ 307 to

+ 8.988465674E+ 307. Numbers within the range = 1.0E—64 are treated as though they
are equal to absolute zero unless an environmental parameter is changed. (Refer to the
FUZZ statement in the Environmental Control section for details.)

Numeric Accuracy

All math calculations are computed to 14 digits of accuracy. Numbers expressed in standard
notation are printed with 12 digits of accuracy. Leading and trailing zeros are suppressed
unless the PRINT USING form of the PRINT statement is used. (Refer to the IMAGE statement
in the Input/Output Operations section for details.) Numbers expressed in scientific notation
are printed to 9 digits of accuracy in the decimal part of the mantissa. Up to 11 digits of
accuracy can be displayed in the mantissa if the PRINT USING form of the PRINT statement is
used.

Character Strings

Character strings are any sequence of letters, numbers, and symbols enclosed in quotation
marks. Character strings are some times called string constants, literal strings, literals, or just
plain “strings.” Normally, a character string represents a message to be printed on the GS
display or a piece of written text. Digits entered as part of a character string cannot be used in
math computations; they are treated just like any other symbol. The length of a character string
is limited only by the size of the random access memory.

REV B, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
CONSTANTS

NUMERIC CONSTANTS AND STRING CONSTANTS

Numeric Constants

The term numeric constant refers to any real number entered into the system as numeric data.
Only numeric data can be used in math operations. Numeric constants can be expressed in
either standard notation or scientific notation and must be in the range
+8.988465674E+ 307. The plus (+) or minus (—) sign associated witk the number is
treated as part of the number.

String Constants

The term string constant refers to any character string of fixed length. Every string constant
must be enclosed in quotation marks. The quotation marks are delimiters (separaters) and are
not considered part of the string. For example, "Isn’t this fun?” is a string constant of fifteen
characters. The two spaces and two punctuation marks are counted as characters. The
quotation marks, however, are not considered part of the string.

If quotation marks are to be part of a string constant, they are entered as double quotes inside
the quotation marks usec as delimiters. For example, when "The flagpole sitter suddenly
screamed ""HELP!""" is printed on the GS display, the outside quotation marks are used as
delimiters and are not printed; the doubie quotation marks around the word HELP! are printed
as single quotation marks. The result is:

The flagpole sitter suddenly screamed "HELP!”

String constants can be entered into memory with the LET statement, the INPUT statement, or
the READ statement. (Refer to these statements in the Character Strings section for details.)

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, JUL 1979 1-3

LANGUAGE ELEMENTS
VARIABLES

NUMERIC VARIABLES, STRING VARIABLES, AND ARRAY
VARIABLES

Numeric Variables

Numeric variables are symbols which represent numeric constants. For example, if the
numeric constant 5 is assigned to the numeric variable X, and the BASIC interpreter is called
upon to evaluate a statement containing the variable X, the BASIC interpreter replaces X with
its assigned value (5) before the statement is evaluated. Specially, if X=5 and the BASIC
interpreter evaluates the equation Y=X12, then the variable X is replaced with its assigned value
5; the result (25) is assigned to the numeric variable Y. If X does not have an assigned value
when the equation Y=X12 is evaluated, an undefined variable error occurs.

There are 286 possible symbols which can be used to represent numeric constants. All twenty-
six upper case letters (A-Z) are valid symbols. Also, an upper case letter followed by a digit
from @-9isvalid. Forexample, A, A@, A1, A2, A3, A4, A5, A6, A7, A8, and A9 are all valid symbols.
Eleven combinations for each letter of the alphabet are possible, as shown above with the letter
A, foracombined total of 286. If a lower case letter is entered as a numeric variable, the BASIC
interpreter automatically converts the letter to upper case.

Numeric constants are assigned to numeric variables with the LET statement, the INPUT
statement, and the READ statement. The LET statementis discussed later in the section. Refer
to the Input/Output Operations section for details on the INPUT statement and the READ
statement.

Itis appropriate to mention at this point that numeric functions and numeric expressions can
also be assigned to numeric variables, as long as the function or expression can be reduced to
a numeric constant. In addition, a numeric variable can assume a succession of values over a
period of time, but can represent only one value at any given time.

String Variables

String variables are symbols which represent string constants. For example, if the string
constant "Isn’t this fun?”, is assigned to the string variable A$ and the BASIC interpreter is
called uponto PRINT A$, then the BASIC interpreter prints the string constant represented by
AS$; in this case "Isn’t this fun?” Notice here again, the quotation marks around the string
constant serve only as delimiters and are not considered part of the string.

There are twenty-six symbols that can be used for string variables — upper case letters from A-
Z,followed by adollar sign. Forexample, A$, B$, and Z$ are valid symbols for string variables.
If a lower case letter and a dollar sign are entered as a string variable symbol, the BASIC
interpreter automatically converts the letter to upper case. A string variable can represent a
succession of string constants over a period of time, but can only represent one string constant
at any given time.

1-4 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
VARIABLES

String constants are assigned to string variables with the LET statement, the INPUT statement,
and the READ statement. (Refer to these keywords in the Character String section for details.)

Array Variables

Array variables are variables which represent an array of numbers. An array of numbers can
have either one dimension or two dimensions.

One Dimensional Arrays

The following array is an example of a one dimensional array of numbers:

1 25 14 78 —0.35 1.89E+6

This array contains six elements. An element can be any real number expressed in either
standard notation or scientific notation.

Two Dimensional Arrays

An array can also have two dimensions. For example, the following array is a two dimensional

array:
Columns
1 2 3
\ \ v
1 2 3 |- Row1
4 5 6 |< Row?2
7 8 9 [« Row3

This two dimensional array has three rows and three columns. A two dimensional array is
called a matrix.

Arrays can be assigned to any valid numeric variable symbol, however, the symbol must first be
defined as an array variable in a DIM statement. For example, if the statement DIM F(10) is
executed, the variable F is defined to be a one dimensional array variable with a maximum
working size of ten elements. If the staternent DIM G(3,5) is executed, the variable G is defined
to be a two dimensional array variable with a maximum working size of 15 elements. A DIM
statement can appear anywhereina BASIC program. The DIM statement is discussed in detail
later in this section.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-5

LANGUAGE ELEMENTS
VARIABLES

Oncean array variable is dimensioned, it can be assigned elements viathe LET statement, the
INPUT statement, or the READ statement. Assigning elements to an array is discussed later in
this section.

The BASIC interpreter inputs and outputs two dimensional arrays in row major order. For
example, if the previous matrix is assigned to the array variable B5 and stored on magnetic tape
with a PRINT @33:B5; command, the BASIC interpreter first outputs the elements in row one
(1,2,3), followed by the elements in row two (4,5,6), followed by the elements in row three
(7,8,9). The elements are stored on magnetic tape in a continuous string as follows: CRCR 123
CR456 CR789CRCR. Noticethat a Carriage Return characteris automaticallyinserted as a
delimiter as the end of each row.

Subscripting Array Variables

An entire array is referenced by referring to its assigned array variable, however, if you want to
refer to a particular element in an array, you must use a subscripted array variable. For
example, if the one dimensional array M has 1@ elements, then you specify the sixth elementin
the array as M(6). The (6) is called a subscript.

The same rule applies to two dimensional arrays. If Q is an array variable representinga 3 by 3
matrix, then any reference to the variable Q refers to the entire matrix. If, however, you wantto
refer to the third row, and the second element in that row, you use the subscripted array
variable Q(3,2). The first number in the subscript refers to the row, the second number refers to
the column. For example:

10 20 30
Q = 49 50 60
70 8@ 90

After this matrix is entered into memory, the statement PRINT Q; prints the entire matrix on the
GS display in two dimensional form as shown above. If, however, the statement PRINT Q(2,2)
is executed, the BASIC interpreter prints the number 5@, because 50 is the element located in
the second row, second column. It should be noted that zero and negative numbers are always
invalid (out of range) subscripts.

Since subscripted array variables represent numeric constants, a subscripted array variable
can be substituted for a numeric variable anywhere a numeric variable is specified in a syntax
form; there are exceptions to this rule: the index to a FOR and NEXT statement must be a
numeric variable, the variable used ina DEF FN statementand the target variables specified in
the POLL statement must be numeric variables.

1-6 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
OPERATORS

ARITHMETIC, LOGICAL, AND RELATIONAL OPERATORS

Operators are BASIC language elements which perform an operation on one or two
parameters. A parameter can be specified as a constant, a variable or an expression.
(Expressions are defined later in this section.) For example, the plus (+) operator adds two
parameters together and the division operater (/) divides one parameter by another.

There are basically two types of operatcrs; monadic and dyadic. Monadic operators require
only one parameter. The plus sign (+) and the minus sign (—) in the numbers +5 and —3 are
examples of monadic operators. Dyadic operators require two parameters. For example, the
multiplication operator (x) and the division operator (/) are dyadic operators because two
parameters are required to perform the operation. The operators in the Graphic System BASIC
language are divided into the following categories:

Arithmetic Operators

Logical Operators

Relational Operators

The String Concatenation Operator
Array Cperators

Scalar/Array Operators

Arithmetic Operators

There are seven arithmetic operators in the language which perform an arithmetic operation.
The following table summarizes the results obtained from each arithmetic operator.

Operator Description Example Result
t Exponentiation 312 9
* Multiplication 4%3 12
/ Division 12/4 3
+ Addition 542 7
- Subtraction 6—5 1
MIN Returns the smailer parameter —3 MIN —4 —4
MAX Returns the larger parameter —3 MAX —4 -3

Logical Operators

There are three logical operators in the language: AND, OR, and NOT. Theselogical operators
correspond totheirbooleanalgebraequivalent. Two numbers are required as parameters with
each operator. The operator returns alogical 1 or alogical @ based on a comparison between

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-7

LANGUAGE ELEMENTS
OPERATORS

the two numbers. If the absolute value of a number is less than .5, the number is treated as a
logical @. If the absolute value of a number is equal to or greater than .5, the number is treated as
alogical 1. The following table summarizes the results obtained from each logical operator:

Operator Description Example Result
AND Returns the logical AND of the parameters 1AND @ 0
OR Returns the logical OR of the parameters 10RQ 1
NOT Returns the logical NOT of the parameters NOT 1 0]

Relational Operators

Relational operators compare two parameters and return a logical result. A logical 1 is returned
if the relationship is true. A logical @ is returned if the relationship is false. There are six
relational operators in the language: Equal (=), Not Equal (< >>), Less Than (<), Greater Than
(>), Equal To Or Greater Than (= >) and Equal To Or Less Than (= <). The following table
summarizes the results returned to each relational operator:

Operator Description Example Result
= Returns the logical result 3=4 0
<> Returns the logical resulit 3<>4 1
< Returns the logical result 3<4 1
> Returns the logical result 3>4 0
=> Returns the logical result 3=>4]
=< Returns the logical result 3=<4 1

Reilational operators can also be used to compare two character strings. The two character

strings are compared character by character starting with the left most character in each string
and proceeding to the right. The first difference determines the relationship. The characters
are compared according to the priority established in the ASCII Character Priority Chart in

Appendix B. Upper case letters are considered equal to lower case letters (i.e., BUGGS =

buggs) unless the NOCASE environmental parameter is set. (Refer to the SET statement in the
Environmental Control section for details.)

Ifone string ends before a difference is found, the shorter string is considered smallerin value.

Therelational operators return a logical 1 if the relationship is logically true and a logical @ if the
relationship is logically false. For this reason, a relational comparison between two character

1-8 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
OPERATORS

strings enclosed in parentheses can be specified as part of anumeric expression, because the
relational comparison as a whole is reduced to a numeric constant. (Numeric expressions are
discussed later in this section.)

The following table summarizes the results returned by relational operators when string
constants are specified as parameters:

Operator Description Example Result
= Returns the Icgical result ("Bugs"” = "Bunny") 0
<> Returns the Icgical result ("Bugs” < > "Bunny") 1
< Returns the Icgical result ("Bugs” < "Bunny") 1
> Returns the Icgical result ("Bugs” > "Bunny”)]
=> Returns the Icgical result ("Bugs" = > "Bunny"”)]
=< Returns the Icgical result ("Bugs” = < "Bunny”) 1

Refer to the IF . .. THEN . . . statement in the Controlling Program Flow section for more
information or relational operators.

The String Concatenation Operator

The string concatenation operator (&) performs an operation which concatenates (joins) two
character strings together. For example. if the BASIC interpreter evaluates the statement A$ =
"BAT"” & "MAN", the two string constants "BAT" and "MAN" are joined together to form the
string constant "BATMAN" which is then assigned to the string variable A$. The string
constant resulting from the concatenation process must be assigned to a string variable (A§ in
this case).

Only two string constants can be concatenated in one statement. For example, A3 =B$ & C$ &

D$ is not allowed. Also, the concatenation of two strings can not be specified as part of another
statement. For example, the statement A$ = SEG (B$ & C$, 3, 2) is not allowed.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 19

LANGUAGE ELEMENTS
OPERATORS

Array Operators

The following operations are allowed on numeric arrays. In any operation involving two arrays,
both arrays must have the same dimension and the same number of elements. All variables
shown in the examples below are array variables which have been previously dimensioned in a

DIM statement.

Operator

+

Operator

*

/
t
+

MIN
MAX

Arithmetic (monadic) Operations

Description Example
Changes the sign of all elements. B=-A
No effect B=+A

Arithmetic (dyadic) Operations

Description Example
Eiement by element multiply C=AxB
Element by element divide C=A/B
Element by element exponentiation C=A1tB
Element by element add C=A+8B
Element by element subtract C=A—-8B
Element by element compare C=AMINB
Element by element compare C=AMAXB

In each of the above cases, the operation is performed with an element in array A and its
corresponding elementin array B; the resultis assigned to the corresponding element is array
C. Each of the above operations must be executed as an assignment statement.

Operator

AND
OR
NOT

1-10

Logical Comparisons

Description Example
Returns the logical result C=AANDB
Returns the logical result C=AO0ORB
Changes 1's to @'s and @’'s to 1’s C =NOTA
REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS

OPERATORS
Relational Comparisons
Operator Description Example
= Element by element compare C=(A=8B)
<> Element by element compare C=A<>B
< Element by element compare C=A Element by element compare C=A>B
=> Element by element compare C=A=>8B
=< Element by element compare C=A=<B

In each of the above cases, an element in array A is compared to its corresponding element in
array B; the result (@ or 1) is assigned ‘o the corresponding element in array C.

Scalar/Array Operators

The Graphic System BASIC language allows a scalar (a single number) and an array to be
specified as parameters in a math operation. The following tables summarize the results
obtained when a scalar and an array are specified as parameters to an arithmetic, logical, or
relational operator. Each variable shown in a table represents a numeric array.

Arithmetic Operations

Operator Description Example
* Element by element multiply C = A%x5
/ Element by element divide C=A/M
! Element by element exponentiation C = At3
+ Element by element add C = A+2
- Element by element substract C=A-1
MIN Element by element compare C =0 MIN A
MAX Element by element compare C =0 MAX A

In each of the above cases, the operation is performed with the scalar (numeric constant) and
an element in array A; the result is assigned to the corresponding element in array C.

Logical Comparisons

Operator Description Example
AND Returns the logical result C=1ANDA
OR Returns the logical result C=00RA
NOT Returns the logical result C =NOTA

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979

LANGUAGE ELEMENTS

OPERATORS
Relational Comparisons
Operator Description Example

= Element by element compare C=45=A)
<> Element by element compare C=45<>A

< Element by element compare C=45<A

> Element by element compare C=45>A
=> Element by element compare C=45=>A
=< Element by element compare C=45=<A

In each of the above cases, an elementin array A is compared to the scalar (numeric constant)
and the result (@ or 1) is assigned to the corresponding element in array C.

Comments on Operators

1) Ifyouare multiplyinganumber by an integer, place the integer in the left operand position
(i.e. use 5%3.28 rather than 3.28%5) and the statement execution time will be reduced by a
factor of 3.

2) When dividing by 2, the statement execution time is reduced by a factor of four, if you
express the problem as .5%X rather than X/2.

1-12 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
FUNCTIONS

NUMERIC FUNCTIONS AND STRING FUNCTIONS

Numeric Functions

Numeric functions are special purpose mathematical operations which return a numeric result
based on a parameter. For example, the SIN function requires an angle for a parameter and
returns the sine of the angle. The angle can be specified in radians, degrees, or grads.

In most cases, the parameter of a numeric function can be specified as a numeric expression. If
the parameter is specified as a numeric expression, the expression must be enclosed in
parentheses; otherwise, the parentheses are optional. For example, if the BASIC interpreter
evaluates the statement LET Y = SIN 3-+4, the BASIC interpreter assumes 3 is the function’s
parameter and takes the sine of 3, adds 4, and assigns the result to the numeric variable Y. If
parentheses are notused, as shown, the BASIC interpreter assumes the first element following
a function is the parameter. If, however, the entire expression 3+4 is the parameter of the
function, then the expression must be enclosed in parentheses as in the statement LET Y = SIN
(3+4). When this statement is evaluated, the BASIC interpreter firstadds 3and 4 to get 7, takes
the sine of 7, and assigns the result to the numeric variable Y. When listing a program, the
BASIC interpreter always places parentheses around the parameter to make the listing easier
to read.

If a numeric expression can be specified as a parameter, an array can also be specified as a
parameter. For example:

100 LET B=SIN A

When this statement is executed, the BASIC interpreter computes the sine of each element in
array A and assigns the result to the corresponding element in array B. In this case, the array
variables A and B must be conformable; that is, both array variables must have the same
dimensions.

String Functions

String functions are special purpose functions which manipulate character strings. For
example, the SEG (Segment) function extracts a substring from the main body of a string.
String functions, by definition, produce string constants as a result, just as numeric functions
produce numeric constants; however, some functions listed under string functions, such as
the LEN (Length) function, are actually numeric functions because they return a numeric
result. These functions are listed under string functions, however, because their purpose is to
manipulate character strings. String functions which return a numeric constant can be
specified in a numeric expression. String functions that return a string constant cannot be part
of a numeric expression.

The result of a string function must be assigned to a target variable. For example, when the
BASIC interpreter evaluates the statement A$ = STR (5.2), the numeric constant 5.2 is

converted to astring constant” 5.2" and is assigned to the string variable A$. In this case, A$ is
the target variable.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 1-13

LANGUAGE ELEMENTS
EXPRESSIONS

NUMERIC EXPRESSIONS

A numeric expression is defined as any combination of numeric constants, numeric variables,
array variables, subscripted array variables, numeric functions, or relational comparisons
enclosed in parentheses joined together by arithmetic operators, logical operators, or
relational operators in such a way that the expression as a whole can be reduced to a numeric
constant. In addition, anumeric expression can be comprised of one or more smaller numeric
expressions joined together by arithmetic, logical, or relational operators, as long as the
expression as a whole can be reduced to a numeric constant.

Arithmetic Expressions

An arithmetic expression is an expression which falls under the category of a numeric
expression. An arithmetic expression is defined as any combination of numeric constants,
numeric variables, array variables, subscripted array variables, numeric functions, or relational
comparisons (enclosed in parentheses), joined together by arithmetic operators in such a way
that the expression as a whole can be reduced to a numeric constant. For example:

Xt12+3* X+5

This arithmetic expression contains the variable X and the numeric constants 2,3, and 5 joined
together with the exponentiation operator (1), the addition operator (++), and the multiplication
operator (x). If the variable X is previously assigned the value 5, for example, and this arithmetic
expression is entered in to the system from the GS keyboard and the RETURN key pressed, the
BASIC interpreter replaces X with its assigned value (5) and evaluates the expression. In this
case, the arithmetic expression reduces to the numeric constant 45. If X does not have an
assigned value when the expression is evaluated, an undefined variable error occurs and the
appropriate error message is printed on the GS display.

The BASIC interpreter follows normal math hierarchy when evaluating an arithmetic
expression; exponentiation is performed first, followed by division and multiplication, followed
by addition and subtraction. This execution order can be changed, however, by using
parentheses. Forexample, if the result of the previous arithmetic expression is to be divided by
5, then the appropriate entry is as follows:

(X12+3% X+5)/5
In this case, the BASIC interpreter reduces the arithmetic expression inside the parenthesesto
the numeric constant 45, then divides 45 by 5 to get 9. If the parentheses were not used, the
BASIC interpreter would perform the division (5/5) before adding the terms. The result would
be 41 instead of 9.

Execution priority is discussed in detail later in this section.

1-14 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
EXPRESSIONS

Logical Expressions

Logical expressions are defined as any combination of numeric constants, numeric variables,
subscripted array variables, numeric functions, numeric expressions, or relational
comparisons (enclosed in parentheses) joined together by the logical operators AND, OR and
NOT, in such away that the expression as a whole can be reduced to a numeric constant

(@ or 1). For example:

X OR Y AND NOT A OR B OR ("DOG"="CAT")

When this logical expression is evaluated. the values assigned to the variables X,Y,A,and B are
treated as a logical 1 ora logical @. All values equal to or greater than .5 are treated as a logical 1;
values less than .5 are treated as a logical @. The string relational comparison
("DOG"="CAT") is reduced to alogical {) because the string constants are not equal. In this
case, if X=0, Y=1, A=1, and B=1, then the logical expression as awholeis reducedto alogical
1. This logical 1 can be treated as numeric data which allows this logical expression to be
specified as part of a larger numeric expression.

Relational Expressions

Like arithmetic and logical expressions, relational expressions are considered a subset of the
broad category of numeric expressions.

Relational expressions are defined as a combination of numeric constants, numeric variables,

subscripted array variables, numeric functions, numeric expressions, or logical comparisons
joined together by one or more relational operators in such a way that the expression as a
whole can be reduced to a single numeric value (@ or 1). For example:

("ZIG"<"MARK")< =("JERRY"<< >"TERRY")> =("TAN">"TOQ")

When this relational expression is evaluated, the string relational comparison
("ZIG"<"MARK") is reduced to a logical @, the string relational comparison ("JERRY"<
>"TERRY") is reduced to alogical 1, and the string relational comparison ("TAN">"TOQ") is
reduced to a logical @. These results are then compared as follows:

P<=1>=0

This comparison returns a logical 1. This result can be treated as numeric data which allows
this expression to be specified as part of a larger numeric expression.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 1-15

LANGUAGE ELEMENTS
EXPRESSIONS

Complex Numeric Expressions

Any combination of arithmetic expressions, logical expressions, and relational expressions
can be joined together by arithmetic, logical, and relational operators to form a numeric
expression, as long as, the expression as a whole can be reduced to a numeric constant. And,
any number of numeric expressions can be joined together by arithmetic, logical, and
relational operators as long as the expression as awhole can be reduced to a numeric constant.
Careful use of parentheses is required in most cases to keep the operations straight. For
example, the following numeric expression is a valid numeric expression and can be specified
as a parameterto a keyword, if the syntax form of the keyword states that numeric expressions
are allowed.

45+ (X13+2%SIN(X)—3)10.5+("BEAR"="HARE" OR A$<B$)+50*RND (—2)-+Y12/3

In this case, the variables X, A$, B$, and Y must have assigned values before the numeric
expression is evaluated.

This is an extreme example to be sure, and it doesn’t have much practical value, but it does
emphasize the tremendous degree of freedom one has to build a numeric expression to the
point where it solves very complex and unusual problems.

Execution Priority

The following table lists the execution priority followed by the BASIC interpreter when a
BASIC statement is executed. The operator with the highest priority is labeled number 1.

PRIORITY OPERATOR

1 Left Paren (
2 Functions

3 Monadic operators Plus (+), Minus (=), and NOT
4 Exponentiation operator (1)
5 Arithmetic operators Multiplication (%) and Division (/)
6 Arithmetic operators Addition (+) and Subtraction (—)
7 Arithmetic operators MIN and MAX

8 Relational operators: =, <>, <, > =<, = >
9 The logical operators AND and OR

10 The keyword USING and Comma (,)

11 Right Paren) and semicolon (;)

12 The keywords OF, THEN, STEP, TO, and the symbols

@, #, %, and = (the assignment operator)
13 All other keywords
14 Carriage Return

1-16 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
NUMERIC ERRORS

NUMERIC ERRORS

Fatal Errors

The term "fatal error” refers to any error that causes program execution to terminate.
Normally, math operations with invalid parameters or math operations which produce out of
range numbers generate fatal errors.

Size Errors

A SIZE error occurs when a math operation produces an out of range number. For example,
when the function EXP (710) is evaluated, the BASIC interpreter attempts to raise the base e
(the natural logarithm base) to the power 71@. The result is an out of range number (a number
outside the range +1.0E+308). The BASIC interpreter returns the largest number it can
(8.988465674E+307) and generates a SIZE error message. This error condition is treated as a
fatal error and program execution is terminated, unless an ON SIZE THEN . . . statement has
been previously executed in the BASIC program. (Refer to the Handling Interrupts section for
details.) Normally, the result returned by the BASIC interpreter when a SIZE error occurs can
be predicted. If the result of a math operation exceeds the upper boundary of the numeric
range, the number +8.988465674E+307 is returned; this number is defined to be plus infinity
for the system (+ o). If the result of a math operation exceeds the lower boundary of the
numeric range, the number —8.988465674E+3@7 is returned; this number is defined to be
minus infinity for the system (— 2). If the result of a math operation is a small number which
approaches @ and falls within the range £1.0E—30@8, a SIZE error is not generated. If the result
of a math operation is closer to zero than 1.112536929E—3@8, @ is returned as the resulit.

The following table lists math operatiors which produce predictable out of range numbers. In
some math operations, like the tangent of 99 degrees, the BASIC interpreter treats the SIZE
error as though an error didn’t occur and program exeuction continues on its normai path. In
other cases, the operation produces the results as shown and a SIZE error condition is set. In
these cases, an ON SIZE THEN... statement must bein the BASIC program to handlethe error
condition or the error is treated as a fatal error and program execution is aborted.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 117

LANGUAGE ELEMENTS
NUMERIC ERRORS

Numeric Error Conditions
MATH CAUSE OF NUMBER ERROR
OPERATION ERROR EXAMPLE RETURNED TYPE
1E2¢00*1E20¢ + oo SIZE
Parameter
Addition (+) too Large —1E200*1E200 — oo SIZE
. or too Small
Subtraction (=)
Multiplication (*) 11209 g NO ERROR
Division (/) /8 + oo SIZE
Division by
Zero —a/g — o SIZE
Parameter 1E20¢11E200 + o0 SIZE
too Large
or too Small —1E2¢¢11E20¢ — oo SIZE
Exponentiation (1)
A< and 213 -8 NO ERROR
B not an integer
in the range
g to 255 -21% 6.5 + oo FATAL
Negative _
Square Root parameter SQR(-4) 2 SIZE
. | X'|>4.116E+5
Sine X (radians) SIN (4.2E+5) 1) SIZE
Cosine X I X[=>4.116E+5 COS (4.2E+5) g SIZE
(radians)
| X|>=4.116E+5
Tangent X (radians) TAN (4.2E+5) "] SIZE
SET DEG
_ NO ERROR
TAN 98° Parameter TAN (94) >
Out of Range SET DEG NO ERROR
TAN (-96) T
X Parameter EXP (710) *oe SIZE
e Out of Range
EXP (-714) 0 SIZE
Matrix Determinant Undetermined
Inversion is @ INV X Answer SIZE
Matrix Floating Point Answers
Multiply Overflow AMPY B 3 SIZE

REV B, MAR 1979

4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
DIM

THE DIM STATEMENT

Syntax Form:

string variable { numeric expression)
[I..ine number] DIM array variable (numaric expression [, numeric expression]) }

string variable {r.umeric expression)
array variable (rumeric expression) [, numeric expression])

Descriptive Form:

string variable (maximum number of characters)
[L.ine number] DIM array variable (first dimension [second dimension :l)

| string variable (maximum number of characters)]
, } array variable (first dimension [, second dimension]) §

Purpose

The DIM (Dimension) statement is used to reserve memory space for one or more string
variables and/or one or more array var-ables.

Explanation

Dimensioning String Variables

If a character string is assigned to a string variable without dimensioning the string variable
first, the maximum working size of the string variable is automatically dimensioned to 72
characters by default. String variables are therefore dimensioned with the DIM statement for
two reasons; to make the maximum wcrking size larger than 72 characters, or to make the
maximum working size smaller than 72 characters.

Increasing the Maximum Working Size. If acharacterstring is assigned to a string variable from
the GS keyboard, the default working size of 72 characters is adequate because keyboard
entries are limited to 72 characters by the size of the line buffer. If, however, the string variable
receives the results of a string concatenation operation or is specified as the targetto receive a
character string from a peripheral device, the incoming character string might contain more

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 1-19

LANGUAGE ELEMENTS

DIM

1-20

than 72 characters; if so, the string variable must first be dimensioned to a larger size or an error
occurs. For example:

200 DIM A$(200),B$(500)

When this statement is executed, 200 bytes of memory space are reserved for A$ and 500 bytes
of memory are reserved for B$. This allows up to 200 characters to be assigned to A$ and up to
500 characters to be assigned to B$.

The working size of a string variable can be dimensioned as large as the memory capacity of
the system allows. Remember, however, that memory space reserved in this manner is taken
away from the space used to store the BASIC program; this means that less space is available
to store BASIC statements.

Once a string variable is dimensioned, either by the DIM statement or by default when the
string assignment is made, the working size can-be reduced with another DIM statement, but it
can not be increased unless the variable is first deleted with the DELETE statement. For
example; assume that the working size of A$ is to be reduced by 10@ characters and the
working size of B$ is to be increased by 100 characters. The appropriate statements are as
follows:

210 DELETE B$
220 DIM A$(100),B$(600)

When line 210 is executed, the space reserved for B$ returns to an unreserved status. The 200
bytes reserved for A$ remain reserved. When line 220 is executed, the maximum working size
for A$ is reduced to 100 characters and 600 bytes of memory are reallocated to B$ for aworking
space. Although the working size of A$ is reduced by 180 characters, 200 bytes are still
reserved for A§ because the variable was not deleted first. This means that 100 bytes of memory
are notavailable for assignment. Atalater time, however A$ can be redimensioned back to 200
characters without deleting the variable first. As a general rule, a variable can be
redimensioned to any size less than its original maximum working size, but never greater than
its maximum working size without deleting it first. Once a string variable is dimensioned, a
character string can be assigned to the variable with the LET statement, the INPUT statement,
orthe READ statement. Refer to the LET statementin this section or the INPUT and the READ
statements in the Character String section for details.

Dimensioning Array Variables

Array variables must be dimensioned before they can be assigned a value. Any valid numeric
variable symbol can be used as an array variable symbol as long as the symbol does not have an

REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
DIM

assigned value. (Refer to the topic VARIABLES at the beginning of this section for a list of the
available numeric variable symbols.) Once a numeric variable symbol is dimensioned as an

array variable, it can no longer be used to represent a scalar—a numeric constant, uniess the

array is first deleted from memory. Once deleted, the symbol can be reused to represent a
numeric constant.

The following statement illustrates how an array variable is dimensioned:

100 DIM A(10),B(5,5)

When this statement is executed under program control, the variable A is dimensioned to be a
one-dimensional array with a working size of ten elements. Enough space is reserved in
memory to store one numeric value for each element, in this case approximately 80 bytes (8
bytes per element). This storage space looks like this:

A1) | A(2) | AB) | A(4) | A(B) | AB) | A(T) | ABB) | A9 | A(1D)

Attaching a subscript to the variable symbol produces a symbol which represents an element
in the array. In this case, A(5) refers to "he fifth element in array A. An array variable is like a
string variable; once its working size is established, the variable can be redimensioned to a
smaller working size, but never to a larger working size without deleting it first. In this case, A
can be redimensioned to a five element array, a seven element array, or even a 2x5 two
dimensional array without deleting the variable first.

The second variable in statement 100 is dimensioned to be a two dimensional array (a matrix)
with five rows and five columns. The space reserved in memory looks something like this:

B(1,1) B(1,2) B(1,3) B(1,4) B(1,5)
B(2,1) B(2,2) B(2,3) B(2,4) B(2,5)
B(3,1) B(3,2) B(3,3) B(3,4) B(3,5)
B(4,1) B(4,2) B(4,3) B(4,4) B(4,5)
B(5,1) B(5,2) B(5,3) B(5.4) B(5,5)

Each elementin array B is referred to by attaching a subscript as shown in the illustration. For
example, B(2,2) refers to the element in the second row, second column. Enough space is
reserved in memory to store one numeric value for each element. In this case, space for 25
numeric constants is reserved.

Like a one dimensional array, a two dimensional array can be dimensioned to a smaller size
without deleting the variable first, but never to a larger size. This array variable can be
redimensioned to a 4x5 matrix, a 2x2 mr atrix, and even a 1x25 matrix without deleting the
variable first. But to increase the numbar of elements in the array, the variable B must be
deleted and then redimensioned.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-21

LANGUAGE ELEMENTS
DIM

Notes on Dimensioning Variables

Any number of string variables and array variables can be dimensioned in the same DIM
statement, as long as the statement does not exceed 72 characters or the amount of memory
required does not exceed the available memory space. The working size of a variable can be
specified as a numeric expression as long as the BASIC interpreter can reduce the expression
to anumeric constantand round the constant to an integer within the range 1 through 65530 for
string variables, and the range 1 through 8191 for array variables. Again, the capacity to the
random access memory actually limits the maximum working size of a variable. (Refer to the
Memory Management section for information on how to estimate the memory space taken up
by an array.)

Once an array variable is dimensioned, the variable symbol refers to the entire array; the
variable symbol with a subscript refers to one element in the array. For example:

250 PRINT B
260 PRINT B(2,2)

Ifthe variable B is dimensioned as an array and each elementis assigned a value, then line 250
above causes the BASIC interpreter to printthe entire array on the GS display. Line 26@ causes
the BASIC interpreter to print the element in the second row, second column.

Once an array variable is dimensioned, each element can be assigned a value with the LET
statement, the INPUT statement, or the READ statement. (Refer to the LET statement in this
section and the INPUT and READ statements in the Input/Output Operations section for
details.

1-22 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENGE

LANGUAGE ELEMENTS
LET

THE LET STATEMENT

Syntax Form:

string variable = string expression

array variable = numeric expression }
[Line number] [LET] numeric variable = numeric expression

Descriptive Form: . _ . .
‘ array variable = numeric expression }

] 1 string variable = string expression :
[Line number] [LET] l numeric variable = numeric expression ‘

Purpose

The LET statement is used to assign values to variables as a BASIC program executes.

Explanation

The LET statement requires a variable as a parameter, followed by the assignment operator
(=), followed by an expression which represents the value to be assigned to the variable. For
example:

100 LET Y=X12+2% X4-3

The variable to the left of the assignment operator (=) can be any valid variable symbol; either a
numeric variable, an array variable, a subscripted array variable, or a string variable. Multiple
assignment (i.e. A=B=2) is not allowed.

If the variable to the left of the assignment operator is a numeric variable or a subscripted array
variable, then the assigned value on the right of the equal sign can be a numeric expression, a
numeric function, a numeric variable, or a numeric constant. The assigned value can be aimost
anything as long as the BASIC interpreter can evaluate and reduce the numeric expressiontoa
numeric constant. If variables are included in the numeric expression, the variables must have
assigned values by the time the staternent is executed, or an error occurs.

If the variable to the left of the assignment operator is an array variable, the array variable must
be previously dimensioned with the DIM statement.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-23

LANGUAGE ELEMENTS
LET

Ifthe variable to the left of the assignment operator is a string variable, the assigned value must
be a string constant enclosed in quotation marks, another string variable with an assigned
value, a string function, or two string constants or string variables joined together with the
concatenation operator (&).

The Keyword LET is Optional

The keyword LET is an optional entry which can be left out or it can be included as part of the
statement for clarity and documentation purposes. For example:

110 LET Y=Xt2+2% X+3
120 Y=X12+2% X+3

These two statements are identical as far as the BASIC interpreter is concerned. In a program
listing, however, it’s a little more obvious that line 110 is an assignment statement, at least at
first glance.

Assigning Values to Numeric Variables
A numeric variable is assigned a value in the following way:

LET X=-3.25

When this statement is entered from the GS keyboard and the RETURN key is pressed, the
BASIC interpreter executes the statement immediately, because the statement doesn’t have a
line number. The numeric constant —3.25 is assigned to the variable X. The minus monadic
operator (—) is considered part of the number. Immediate results may not be seen at first, but
pressing the X key followed by pressing the RETURN key causes the BASIC interpreter to print
thevalue of Xonthe GS display. (This technique can be used anytime to examine the contents
of a variable.)

If the assignment statement is preceded by a line number, the BASIC interpreter stores the
statement in memory as part of the current BASIC program. When the RUN statement is
entered from the GS keyboard and the RETURN key is pressed, the assignment is made when
the statement is executed under program control.

The value assigned to a numeric variable can be a numeric constant, a numeric variable, a
numeric function, or a numeric expression as long as the BASIC interpreter can reduce the

1-24 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
LET

entry to a numeric constant when the statement is evaluated. The following statements are
examples of the different kinds of assignments that can be made:

130 LET X=X+3
140 LET Y=SIN(2%PI|* X+5)
150 C=(At2+B12)1.5

Inline 13@, the numeric constant3 is added to the currentvalue of X and the total is reassigned
to X. In line 140, the BASIC interpreter evaluates the numeric expression inside the
parentheses, treats the result as an angle expressed in the current trigonometric units for the
system, and assigns the sine of the anglz to the numeric variable Y. And in line 150 the BASIC
interpreter reduces the numeric expression on the right side of the assignment operator (=) to
anumeric constantand assigns the resultto the numeric variable C. In each case, the variables
on the right side of the assignment operator must have assigned values by the time the
statement is evaluated, or an error occurs and program execution is aborted.

Assigning Character Strings to String Variables
Character strings (string constants) are assigned to string variables in the following manner:

160 LET A$="I'm the Graphic System at Your Service !”

When this statement is executed under program control, the character string on the right side
of the assignment operator (=) is assigned to the string variable A$. The enclosing quotation

marks act as string delimiters to mark the beginning and end of the string. (These quotation
marks are not considered to be a part of the string.)

Any string variable from A$ to Z$ can be selected as the target to receive the character string. If
the string variable already has an assigned value, that value is overwritten by the new character
string when the assignment is made. If the character string on the right side of the assignment
operator is larger than 72 characters, the string variable on the left side of the operator mustbe
dimensioned to a size large enough to accommodate the character string before the
assignmentis made. If the character string is less than or equal to 72 characters, then the string
variable is automatically dimensioned to 72 characters when the assignment is made (unless
the string variable was previously dimensioned to a smaller size with the DIM statement). Refer
to the DIM statement in this section for details.

The assignment statement can be used to assign the results of astring function or the results of
a string concatenation operation to a string variable. For example:

170 LET M$=SEG(A$,X,13)
180 LET W$=MS$&R$

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-25

LANGUAGE ELEMENTS

LET

1-26

When line 170 is executed, a substring in the character string assigned to A$ is assigned to M$.
The number assigned to the variable X specifies the starting location of the substring and the
substring contains 13 character. (Refer to the SEG function in the Character String section for
details on the SEG function.)

When line 180 is executed, the string constant assigned to M$ is concatenated (joined) to the
end of the character string assigned to M$. The result is assigned to the string variable W$.
Care must be taken when executing a concatenation operation that the string variable on the
left of the assignment operator is dimensioned large enough to accommodate the resultant
character string.

Assigning Numeric Values to Array Variables

A numeric array entered into memory must always be represented by an array variable. The
first step in assigning an array to an array variable is to select an undefined (unused) numeric
variable symbol and dimension the variable in a DIM statement. (This procedure is discussed
underthe DIM statement in this section.) After the variable is dimensioned, the elements in the
array are assigned numeric values using subscripts on the array variable. For example, assume
the following array is to be entered into memory:

10 20
30 490

Selecting B as a variable symbol, the first step is to dimension B with the DIM statement as
follows:

DIM B(2,2)

This statement sets the working size of B to two rows and two columns, and enough space is
reserved in memory to store four numeric values; one value for each element.

The next step is to assign a numeric constant to each element. If the assignment statement is
used, each element mustbe assigned a value using subscripts on the array variable as follows:

B(1,1) = 10
B(1,2) = 20
B(2,1) = 3¢
B(2,2) = 40

REV C, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
LET

The above statements can be entered from the GS keyboard as shown for immediate
assignment, or they can be entered with line numbers for assignment under program control.
Either way, the result is as follows:

10 20
30 40

After each element has an assigned value, the entire array can be examined by pressing the B
key and the RETURN key on the GS keyboard. This causes the BASIC interpreter to print the
array on the GS display.

The BASIC interpreter also allows the elements in an array to be assigned the same value in
one assignment statement. For example:

100 DIM A(10),B(2,2)C(5.,5)
110 LETA =0

120 LETB =5

130 LET C = SIN(X)

in line 11@ all of the elements in array A are made equal to zero (@). In line 120, all of the
elementsin array B are made equalto 5. And, in line 13@ all of the elementsin array C are made
equal to the sine of X. (In this case, the variable X must have an assigned value or an error
occurs.)

Arithmetic operations can be performed on arrays as part of an assignment statement. For
example:

100 LET M = SQR N

In this statement, the BASIC interpreter takes the square root of each element in array N and
assigns the result to the corresponding element in array M. Both array M and N must be
conformable; that is they must have tha same dimensions. Specifically,

9 25 3 5
If N = Then M =
16 36 4 6

An array variable can be specified as the parameter to any numeric function. The function

performs the indicated operation on each element in the array and assigns the result to the
specified target array.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-27

LANGUAGE ELEMENTS
LET

Making Assignments with the INPUT and READ statements

Another way to assign values to the elements of an array is to use the INPUT statement as
follows:

INIT
DIM B(2,2)
INPUT B

When these statements are executed from the GS keyboard, the variable B is dimensioned to a
2x2 matrix. The INPUT statement then places a blinking question mark on the GS display and
the BASIC interpreter prepares to assign keyboard entries to the elements of array B. The
elements must be entered in row major order as follows:

? 10,20,30,40

Each entry can be separated by a comma or by pressing the RETURN key. The BASIC
interpreter keeps displaying the blinking question mark until an entry is made for each element
in the array. The last entry must be followed by pressing the RETURN key, then the blinking
question mark goes away.

The READ statement can also be used to assign values to the elements in an array. For
example:

200 INIT
210 DIM B(2,2)

220 DATA 10,20,30,40
239 READ B

When these statements are executed, the numeric constants in the DATA statement (line 220)
are assigned to array B in row major order.

(Refer to the Input/Output Operations section of this manual for complete information on the
READ statement and the INPUT statement.)

1-28 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

LANGUAGE ELEMENTS
LET

A Note about the Equality Relational Operator (=)

If the equality relational operator (=) is used in a BASIC statement, care must be taken not to
confuse it with the assignment operator. For example, the assigned value of the variable A can
be compared to the numeric constant & in two ways:

5=A
or
A=5

In the first statement, the BASIC interpreter compares the numeric constant5 to the value of A
and returns a logical one if they are equal; a logical zero if they are not equal. In the second
statement, the BASIC interpreter assumes an assignment operation is taking place and assigns
the numeric constant 5 to the numeric variable A. If this is not intended, the results can be
undesirable because the original value of A is overwritten with 5.

If it's obvious the statement is a relational comparison, the BASIC interpreter can figure it out.
For example, when the statement IF A=I3 THEN 200 is executed, a relational comparison of A
to B is obvious and the BASIC interpreter knows it should compare A to B rather than assign
the value of B to the variable A.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 1-29

ENVIRONMENTAL CONTROL

Introduction to Environmental Control 2-1
The “ALPHAROTATE"” Parameter.c.c.oouuno ... 2-4
The “ALPHASCALE" Parameterccoooui . 2-5
The BRIGHTNESS Statement 2-6
The CHARSIZE Statement 2-7
The FONT Statement i . 2-8
The FUZZ Statement.............0 . i i . 2-11
The INIT Statement............ ... oo, 2-14
The Internal Magnetic Tape Status Parameters............... 2-16
The PAGE FULL Parameter oo . 2-19
The Processor Status Parameters 2-20
The SET Statement.............. 2-26

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 2

ENVIRONMENTAL CONTROL

INTRODUCTION TO ENVIRONMENTAL CONTROL

The statements SET, INIT, FUZZ, and PRINT provide the facility to change the operating
environment of the system under program control. The programmable environmental
conditions are the DEGREE/RADIAN/GRAD setting, the TRACE/NORMAL setting, the
KEY/NOKEY setting, the CASE/NOCASE setting and the FUZZ standards for comparing a
number with @ or two numbers with each other. In addition, two processor status bytes and one
internal magnetic tape status byte can be accessed via the PRINT statement using special
primary and secondary addresses. This allows one of several courses of action to be specified
on a PAGE FULL condition, alternate delimiters can be specified for PRINT, LIST, SAVE and
INPUT operations, and the internal magnetic tape can be set up to read different magnetic tape
formats. Different alphanumeric fonts can also be selected and alphanumeric scale and
rotation information can be sent to external peripheral devices.

Setting Environmental Parameters

The SET statement allows the following environmental parameters to be set directly from the
GS keyboard or set while the system is operating under program control:

Degree/Radian/Grad

This environmental parameter establishes the trigonometric units of measure for the system.

Trace/Normal

When this environmental parameter is set to TRACE, the BASIC interpreter prints the line
number of each BASIC statement on the GS display before the statement is executed under
program control. This feature allows tke system operator to monitor program flow during
program test and debugging sessions. Setting the parameter to NORMAL returns the systemto
normal operation.

Key/Nokey

Setting this parameter to KEY allows the BASIC interpreter to respond to the user-definable
keys on the GS keyboard while the system is operating under program control. If a user-
definable key is pressed while a BASIC program is executing, the BASIC program halts while
the user-definable functionis executed; the BASIC program then continues normal execution
attheinterruption point. Setting this parameter to NOKEY prevents the BASIC interpreter from
responding to the user-definable keys while the system is operating under program control.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-1

ENVIRONMENTAL CONTROL
INTRODUCTION

Case/Nocase

When this parameter is set to CASE, lower case letters are considered equal to upper case
letters when relational comparisons are made between two character strings (i.e., "A"="a").
When this parameter is set to NOCASE, lower case letters are not considered equal to upper
case letters.

Initializing the System

The INIT statement sets most of the programmable environmental conditions to a predefined
state. The INIT statement provides a quick and easy method to re-establish the system
environment to a known state from an unknown set of conditions.

Fuzzy Comparisions

The FUZZ statement sets the standard the BASIC interpreter uses when itcompares a number
with @ and when it compares two numbers with each other. The concept of a "fuzzy
comparison” is explained fully under the explanation section of the keyword.

The FONT Statement

This environmental parameter selects the character font used by the Graphic System display.
Once this parameter is set, the only way to changeit is to execute another FONT statement, or
turn off the system power. The INIT statement has no effect on this parameter.

The "ALPHAROTATE" Parameter

The "ALPHAROTATE" parameter is used to send alphanumeric rotation information to an
external peripheral device such as an X-Y plotter. A special PRINT statement is used to send
the information.

The "ALPHASCALE" Parameter

The "ALPHASCALE" parameteris used to send alphanumeric scale information to an external
peripheral device such as an X-Y plotter. A special PRINT statement is used to send the
information.

2-2 REV B, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
INTRODUCTION

The "PAGE FULL" Parameter

The "PAGE FULL" parameter allows a course of action to be specified when a page full
condition occurs on the GS display. This environmental parameter can be set to any one of the
following courses of action:

Blinking “F" in upper-left corner

Execute a HOME statement

Execute a PAGE statement

Execute a COPY statement, then a PAGE statement

Large-Screen Display Parameters

For the 4054 Graphic System, character size and display characteristics can be selected with
the CHARSIZE and BRIGHTNESS statzments.

The CHARSIZE Statement

This statement is used to select the size cf characters on the 4054 Graphic System display. The
INIT statement has no effect on this parameter.

The BRIGHTNESS Statement

This statement sets the intensity (BRIGHT/NORMAL) and focus (FOCUSED/DEFOCUSED)
characteristics of the 4054 Graphic System display. The INIT statement has no effect on this
parameter.

Specifying Alternate Delimiters for PRINT and INPUT Operations

Two processor status bytes can be accessed with a special PRINT statement to establish the
delimiters used during PRINT, SAVE, LIST, and INPUT operations. Normally the BASIC
interpreter uses the Carriage Return character to terminate each character string during ASCII

output operations. This delimiter can be changed to Carriage Return/Line Feed with an
environmental setting.

On INPUT operations, the BASIC interpreter treats Carriage Return as the logical record
separatorand hexidecimal FF as the End Of File mark. Any ASCII character can be specified as
an alternate record separator and an alternate EOF character by changing an environmental
parameter. In addition, the BASIC intetpreter can be directed to delete an ASCI| character
each time it is found in the incoming ASCII data string.

The Magnetic Tape Status Parameters

The internal magnetic tape status byte can be accessed by a special PRINT statement and
changed to allow the internal magnetic tape unit to read and write different magnetic tape
formats. Three status parameters allow the internal magnetic tape unit to read and write with a

128 or 256 byte physical records, using the checksum error checking technique or without

using the checksum error checking technique, using a "header” format or without using a
"header” format.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-3

ENVIRONMENTAL CONTROL
“ALPHAROTATE”

2-4

THE "ALPHAROTATE"” PARAMETER

Purpose

The "ALPHAROTATE" parameter sends alphanumeric rotation information to an external
peripheral device on the General Purpose Interface Bus.

Explanation

The Graphic System has the ability to send alphanumeric rotation information to an external
peripheral device on the General Purpose Interface Bus (GPIB). The peripheral device
receiving the information must have the facility to rotate alphanumeric characters accordingly.
The GS display does not have this facility.

Alphanumeric rotation information is sent to an external peripheral device through a special
PRINT statement. For example:

SET DEG
PRINT @16,25:—45

The statement SET DEG sets the trigonometric units for the system to degrees. The special
PRINT statement then sends the alphanumeric rotation information to peripheral device 16 on
the GPIB. The /O address @16,25: is sent first. Primary address 16 tells device 16 to prepare to
take partin an /O operation. Secondary address 25 tells device 16 that the BASIC interpreter is
about to send alphanumeric rotation information in the form of an ASCII character string.

The rotation angle is specified after the colon (:) in the special PRINT statement. The BASIC
interpreter convertsthisinformationintoan ASCII character string and sends the string to the
specified peripheral device, in this case, device 16. It is up to device 16 to receive the ASCII
string and set its internal rotation parameter to —45 degrees. The results are shown below:

Since this is an environmental command, an immediate result may not be seen until
alphanumeric characters are printed by the receiving device. When the characters are printed,
they are printed at a 45° angle to the horizontal as shown in the diagram. All characters
printed by this device are printed at this angle until the "ALPHAROTATE" parameter is
changed.

Actually, anything can be specified after the colon in the PRINT statement; it doesn’t have to be
the sine and cosine of the rotation angle. The key to setting the "ALPHAROTATE" parameter is
the secondary address 25. This address tells the peripheral device to treat the ASCll character
string as alphanumeric rotation information. The specified ASCII character string, whatever it
is, must have meaning to the peripheral device and it is up to the peripheral device to set the
rotation angle accordingly.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
“ALPHASCALE”

THE "ALPHASCALE"” PARAMETER

Purpose

The "ALPHASCALE" parameter sends alphanumeric scale information to an external
peripheral device on the General Purpcse Interface Bus.

Explanation

The Graphic System has the ability to send Alphanumeric scale information to an external
peripheral device on the General Purpcse Interface Bus (GPIB). The peripheral device
receiving the information must have the ability to interpret the information as alphanumeric
scale information and set its internal scale parameters accordingly. The alphanumeric scale
information is sent via a special PRINT statement. For example:

PRINT @16,17:X,Y

When this statement is executed, the I/O address @16,17: is sent over the GPIB. Primary
address 16 tells peripheral device number 16 that it has been selected to take part in an 1/0
operation. Secondary address 17 tells peripheral device 16 that the information it is about to
receive is alphanumeric scale information. The BASIC interpreter then converts the data items
which follow the colon in the PRINT statament into an ASCII character string, and sends the
character string to the specified peripheral device. In this case, the numeric value assigned to
the variable X is sent first, followed by the numeric value assigned to the variable Y. Device 16
receives the ASCII string and interprets the first value as the horizontal scale factor; the second
numeric value is assumed to be the vertical scale factor.

Actually, any type of data can be specified after the colon in the PRINT statement as long as the
information can be interpreted by the raceiving peripheral device as alphanumeric scale
information. The key item in this PRINT statement is the secondary address 17. This secondary
address tells the peripheral device to treat the ASCII data as alphanumeric scale information
and to set its internal scale parameters accordingly.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 25

ENVIRONMENTAL CONTROL
BRIGHTNESS

26

THE BRIGHTNESS STATEMENT

Syntax Form:

[Line number] BRI numeric expression

Discriptive Form:

[Line number] BRIGHTNESS display code

NOTE

This command is not available in the 4051 and 4052 Graphic Systems.

Purpose
The BRIGHTNESS statement defines environmental parameters for the display.

Explanation

The BRIGHTNESS statement specifies the intensity and focus parameters for the display. The
display code definitions are as follows:

Display Code Intensity Focus
0 Normal Defocused
1 Normal Focused
2 Bright Defocused
3 Bright Focused

Bright intensity increases the displayed intensity of characters and vectors; defocused lines
appear wider than focused lines.
NOTE

The actual appearance of bright and defocused vectors may depend on internal
adjustments to your Graphic System’s display.

The default setting is 1 (normal, focused). This parameter is not reset by an INIT command.
The default address is PRINT @ 32,30:

REV B, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
CHARSIZE

THE CHARSIZE STATEMENT

Syntax Form:

[Line number] CHA numeric expression

Descriptive Form:

[Line number] CHARSIZE size code

NOTE

This command is not available in the 4051 and 4052 Graphic Systems.

Purpose
The CHARSIZE statement specifies the size of characters on the Graphic System display.

Explanation

Four character sizes are available for the 4054 Graphic System. The sizes and their effect on
screen layout are shown here:

No. of No. of
Size Code Characters/Line Lines/Page
1 132 64
2 119 58
3 79 38
4 72 35

The default size code is 4 (the largest characters).

NOTE

The CHARSIZE command only affects the size of characters on the display. BASIC
statements and line editing are stil! limited to 72 characters (the length of the line

buffer). To alter character size when plotting on a Tektronix 4660 Series Plotter, use

the "ALPHASCALE" parameter.

The default address for the CHARSIZE command is PRINT @ 32,17;

4050 SERIES GRAPHIC SYSTEMS REFERENCE IREV B, JUL 1979 2-7

ENVIRONMENTAL CONTROL

FONT

28

THE FONT STATEMENT

Syntax Form:

[Lme number] FON numeric expression

Descriptive Form:

[Linenumber] FONT font code

Purpose

The "ALPHAFONT" parameter selects one of six character fonts for the Graphic System
display or an external peripheral device on the General Purpose Interface Bus.

Explanation
GS Display

The following character fonts can be selected for character output on the Graphic System
Display:

FONT TYPE FONT CODE

ASCII Font

Scandinavian Font

German Font

General European Font (French, British, Italian)
Spanish Font

Graphic Symbols Font

Business

Danish

© o A ON-—2LQ

The character font is automatically set to U.S. Font on system power up. After system power
up, any one of the other character fonts can be selected by executing the following statement:

FONT font code
When this statement is executed, the font code is converted to an ASCII character string and

sent to the GS dsiplay. The GS display then switches to the character font specified by the
code. The font code can be a constant, a variable, or an expression.

REV B. MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

NOTE

ENVIRONMENTAL CONTROL

The keyword "FONT” is not available on the 4051 Graphic System. The special

PRINT statement.

selects the desired font, as shown in the following table.

PRINT @32,18:font code

4051 Graphic System Fonts

4050 SERIES GRAPHIC SYSTEMS REFERENCE

REV B, JUL 1979

O = e
seandinavion | 4| 5 03 | (w6 E | ervresz e
Graphic ;s 5| pRINT @32, 18:5
ég&{;if\‘fma' 91 | 123 93 | 125| 35 | 36 | 92 | 124 | 64

FONT

29

ENVIRONMENTAL CONTROL

FONT

2-10

The following table shows you the changed symbols for each font on the 4052 and 4054
Graphic Systems.

I“'SHIFT] I:SHIFTH IISHIFTEI
:0 ..0.. “..l:z '.. : ...
ASCII gL R4 | i | B | B | % | FONT 0
e3 % RITH oo .o . e HY :
SWEDISH g | b et LR S e | 8| s | FONT 1
GERMAN .2:‘ ;:::f ?;;5 E:'é E:Ji ; ; EE:EE §=°=§ ; g FONT 2
.... .l.. 8:... . '003’ ..C = 0..
BRITISH IOLRE [R ||| | ronT
SPANISH = IC T B I B O S
XA I B I o B B ' O TR I B
SRAPHIC FRRE BB | W || B | FONT 5
RESERVED Same as FONT 0 FONT 6
RESERVED Same as FONT O FONT 7
.'.. .O... .Q... : 200 . ll!:: .“ : .l.
BUSINESS °§“ § § § 5;: :3 'o.. ig M; § ;.. FONT 8
owis | | | R o s

External Peripheral Devices

Ifan external peripheral has the capability to change character fonts, the alphafontinformation
can be sent to that device over the General Purpose Interface Bus (GPIB). For example:

PRINT @16,18: 5

When this statement is executed, the 1/0 address @16,18: is sent over the GPIB. Primary
address 16 tells peripheral device number 16 that it has been selected to take part in an 1/0
operation. Secondary address 18 telis device 16 that the BASIC interpreter is about to send
alphafontinformation in the form of an ASCII character string. The number 5 is then converted
into an ASClI characterstring and sentto device 16. It is up to device 16 to receive the character
string and interpret the number 5 as a font code. Actually, anything can be specified after the
coloninthe PRINT statementas long asitisavalid numeric value or avalid character string. It
must, however, have meaning to the specified peripheral device.

REV B, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
FUzz

THE FUZZ STATEMENT

Syntax Form:

[Line number] FUZ numeric expression [. numeric expression]

Descriptive Form:

[Line number] FUZZ number of digits for comparisons not involving zero

[, numeric value of closeriess for comparisons with zero]

Purpose

The FUZZ statement sets the standarc used by the BASIC interpreter when two non-zero
numbers are compared with each other or when a number is compared with absolute zero.

Explanation

The Graphic System does not compute mathematical operations with infinite precision;
therefore, it is necessary to provide a “acility which sets the standard for comparing two
numbers which are extremely close to each other. The FUZZ statement provides that facility.

Comparing Two Non-Zero Numbers

Should the BASIC interpreter consider the number 4.0000000001 equal to 4.8 when making a
comparison or shouldn't it? This is an example of a "fuzzy” comparison; both numbers are
extremely close to each other. The deciding factor for this comparison is the first parameter set
by the FUZZ statement.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-11

ENVIRONMENTAL CONTROL
Fuzz

Assume the following statements are executed under program control:

100 INIT

110 FUZZ 10

120 X=4.0000000001
130 Y=4.0

140 IF X=Y THEN 200

When line 100 is executed, the system environmental parameters are reset to their initial state.
Line 110 sets the comparison standard for comparing two non-zero numbers to 10 digits.
Numeric assignments are then made to the variables X and Y in lines 120 and 13@, and the
numbers are compared in line 140. In this case, the comparison standard is set to 1@ digits and
the first 1@ digits of both numbers are identical, so the branch to line 200 occurs.

If line 110 is changed to FUZZ 11 instead of FUZZ 10, then the branch doesn’t occur because
the eleventh digits of the two numbers are not equal.

In this example, the first parameter of the FUZZ statement is specified as a numeric constant
(1@). This parameter can be specified as a numeric expression as long as the BASIC interpreter
can reduce the numeric expression to a numeric constant and round the constant to a positive
integer.

This parameter is automatically setto 12 on system power up and after the execution ofan INIT
statement.

Comparing a Number with Absolute Zero

The following diagram is a graphic representation of the numeric range for the system:

€ ZERO RANGE
| IFB=1E-64

I I
I ’ |

. L]
988465674E-307 +8.988465674E-307 +8.988465674E+307

-8.988465674E+307

2-12 REV B, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
FUuzz

The horizontal line represents the real number world: the line extends in both directions
from absolute zero (d). All positive numbers are located to the right of zero; all negative
numbers are to the left of zero. The shaded portions of the line represent the numeric
range of the system. Due to hardware limitations, the largest positive number allowed is
+8.988465674E+ 3@7 as shown in the diagram on the right; the smallest positive number
is + 8.988465674E—3@7. The largest negative number is —8.988465674E+ 3@7; the
smallest negative number is —-8.988465674E—3¢7. Notice there is a gap between the
smallest positive number and the absolute value of zero, and the smallest negative
number and the absolute value of zero. Are the numbers —8.988465674E—3@7 and

+ 8.988465674E—3@7 equal to zero for all practical purposes, or aren’t they? The
second parmeter specified in the FUZZ statement is the deciding factor.

Assume that the following series of statements are executed:

310 LETA=10

320 LET B = 1E—64
330 FUZZ AB

340 LET X = —1E—200
350 IF X=@ THEN 600

In line 33@, the comparison standard for comparing a number with zero is set to 1TE—64 (the
assigned value of B). This range is shown in the diagram. With the standard set to this value, all
positive numbers equal to or less than +1E—64 are considered equal to zero and all negative
numbers equal to or greater than —1E—64 are considered equal to zero. Therefore, when line
350 is executed, the assigned value of X is considered equal to zero and the branch to line 600
occurs. If the value of X changes to —1E--10 for example, then the branch to line 60@ doesn’t
occur, because —1E—10 isn't within the zero range set by FUZZ.

The standard for comparisons with zerc can be set to any positive numeric value within the
range of the system. For example, if line 320is LET B =1, thenthe BASIC interpreter considers
all positive numbers equal to or lessthan +1to be equal to zero, and all negative numbers equal
to or greater than —1 to be equal to zero. If @ itself is specified as the standard, then only

absolute zero is considered equal to zero.

The standard for comparisons with zero can be specified as a numeric expression as long as

the BASIC interpreter can reduce the entry to a positive numeric constant when the FUZZ
statement is executed.

4050 SERIES GRAPHIC SYSTEMS REFERENCE HEV B, JUL 1979 2-13

ENVIRONMENTAL CONTROL
INIT

THE INIT STATEMENT

Syntax Form:

[Line number] INI

Descriptive Form:

[Line number] INIT

Purpose

The INIT statement returns most of the programmable environmental parameters for the
system to a known state.

Explanation

When an INIT statement is executed, either directly from the GS keyboard or under program
control, the following environmental parameters are set as follows:

1. All variables enter an undefined state.

2. All system interrupt functions previously activated with an ON. .. THEN. ..
statement are inactivated.

3. The IFC (Interface Clear) signal on the General Purpose Interface Bus is
activated to set all interface circuitry to a known quiescent state.

4. All files are closed.

5. The DATA statement pointer is restored to the first data item in the first DATA
statement.

6. All DEF FN functions are returned to an undefined state.

7. The parameters of FUZZ are set to 12 and 1E—64; that is, 12 digits for non-zero
comparisons and 1E—64 for comparisons with @.

8. The trigonometric units selection RADIAN/DEGREE/GRAD is set to RADIAN.

9. The TRACE/NORMAL debugging feature is set to NORMAL.

10. The KEY/NOKEY interrupt facility is set to NOKEY.

2-14 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
INIT

12. The CASE/NOCASE comparison feature is set to CASE (i.e., upper case
letters are equal to lower case letters).
13. The WINDOW parameters are set to 9,130,0,100.
14. The VIEWPORT parameters are set to @,130,0,100.
15. The SCALE parameters are set to 1,1.
16. The ROTATE parameter is set to 9.
17. For the 4054 Graphic System, the dash mask
is set to 0.

These environmental conditions are also established on system power up. Refer to the SET

statement in this section for more inforimation on the environmental parameters
RADIAN/DEGREE/GRAD, TRACE/NORMAL, KEY/NOKEY, and CASE/NOCASE.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-15

ENVIRONMENTAL CONTROL
MAGNETIC TAPE STATUS

THE INTERNAL MAGNETIC TAPE STATUS PARAMETERS

The status byte for the Graphic System internal magnetic tape unit can be changed so that
different magnetic tape formats can be read. The status byte is addressed via a special PRINT
statement as follows:

Statement Meaning
PRINT @33,0:0,0,0 256 byte physical record, checksum, header format
PRINT @33,0:1,1,1 128 byte physical record, no checksum, non-header format

The 1/0 address @33,0: in the PRINT statement selects the internal magnetic tape status byte
as the target to receive the parameter changes. Three numbers are specified as parameters
after the I/0O address. The first parameter specifies the physical record length; @ selects a 256
byte physical length, 1 selects a 128 byte length. The second parameter specifies whether the
magnetic tape unit uses the checksum error checking technique or whether itdoesn’t; @ selects
checksum, 1 selects no checksum. The third parameter specifies whether the magnetic tape
unit uses a file header format or a non-header format; @ selects header format; 1 selectsanon-
header format. Any combination of 1's and @’s can be specified for these three parameters.

Physical Record Length

When files are created on magnetic tape with the MARK statement, each file is divided into a
number of physical records of equal size. The number of bytes in each record is controlled by
the first parameter in the magnetic tape status byte. If the first parameter is setto 9, thenthefile
is created with 256 byte physical records. If thefirst parameteris setto 1, thenthefile is created
with 128 byte physical records. For example:

100 FIND @
119 PRINT @33,0:0.0,0
120 MARK 1,1000

When line 100 is executed, the tape head is positioned to the beginning of the magnetic tape.
Line 110 sets the internal magnetic tape status parameters to 256 byte physical record,
checksum, and header format. Line 12@ then creates one new file on the magnetic tape. In this
case, five physical records are created on tape with 256 bytes of storage space per record. The
first physical record is reserved for the file header because the third status parameteris@. The
next four physical records are reserved for storing data. Enough space is created to hold the
specified number of bytes (108@) while keeping the number of physical records to a whole
number. (This must be done because partial physical records can not be created.)

2-16) REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
MAGNETIC TAPE STATUS

If tine 110 is changed to PRINT @33,0:1,0,0 then the file is created using 128 byte physical
records. In this case, the first physical record is reserved for the file header. Eight physical
records are then created to serve as the file storage area.

With the first magnetic tape parameter set to 1, only a magnetic tape with a 128 byte physical
record format can be read. When the first parameter is set to @, only 256 byte physical records
can be read.

Checksum

Theterm "checksum” refersto an error checking technique used by the Graphic System when
magnetic tapes are recorded and read. When a tape is recorded using checksum, all of the data
bits in a physical record are added up; the total is recorded as the last data byte in the record.
When the tape is read, the data bits are counted. If the total doesn’t match the number recorded
in the last byte in the record, then a rezad error is assumed to have occurred.

The checksum error checking technique is used unless the second parameter of the status
byte is set to 1. Setting this parameter to 1 is necessary to read tapes which have not been
recorded using checksum. When 1 is specified as the second parameter, the number of bytesin
each physical record are counted instead of the number of bits. The total must be 128 or 256,
whichever is specified by the first status byte parameter, or the BASIC interpreter assumes a
read error has occurred.

Header Format

If the third parameter of the magnetic tape status byte is set to 1, the BASIC interpreter
assumes the first physical record of the file marks the beginning of the file storage area. The
BASIC interpreter also assumes the datain the file is stored in ASCII format. Therefore, READ
and WRITE operations to and from a binary data file cannot be performed with the status byte
set to non-header format.

If an ASCII file is marked in header format and the magnetic tape status byte is set to non-
header format, then the information stored in the file header is input as the first logica! record
when an INPUT operation is performed on the file. (Refer to the FIND statement for more
information on accessing a tape file header.)

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 2-17

ENVIRONMENTAL CONTROL
MAGNETIC TAPE STATUS

Magnetic Tape Format Compatibility

Changing the internal magnetic tape status byte gives the Graphic System the ability to read
magnetic tapes recorded on other magnetic tape recording equipment. For example,
executing the statement PRINT @33,8:1,1,1 gives the Graphic System the ability to read and
write in amagnetic tape format which is compatible with the format used by the Tektronix 4923
Digital Cartridge Tape Recorder.

Resetting the Status Byte

The magnetic tape status byte can be reset to its initial state (8,8,8) by pressing the AUTO
LOAD key on the GS keyboard, by executing a PRINT @33,0:0,0,0 statement, or by turning off
the system power.

NOTE
Storing data on the magnetic tape using different status parameters other than those

set when the tape was MARKed may cause the loss of some files. Different tape
formats should not be mixed on the same tape.

2-18 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
PAGE FULL

THE PAGE FULL PARAMETER

One of several courses of action can be specified when a PAGE FULL condition occurs on the
GS display during program execution. A PAGE FULL condition occurs whenever the display
cursor moves off the bottom of the screen. When this happens, the BASIC interpreter takes one
of the following courses of action:

Page Fulli Parameter Setting Action Taken During Program Execution
PRINT @32,26: @ Displays a Blinking "F" in upper-left corner.
PRINT @32,26: 1 Return the Cursor to the HOME Position.
PRINT @32,26: 2 Execute a PAGE command.
PRINT @32,26: 3 Execute a MAKE COPY command then a PAGE
command.
Blinking "F"”

Ifthe statement PRINT @32,26:@ is executed from the GS keyboard or under program control,
a blinking "F" is displayed whenever a PAGE FULL condition occurs. The PAGE FULL
selection is set automatically to the blinking “F” on system power up.

NOTE

When the screen is only echoing input data from the keyboard, the PAGE FULL
parameters have no effect.

HOME

Ifthe statement PRINT @32,26:1 is executed from the GS keyboard or under program control,
a HOME command is automatically executed when a PAGE FULL condition occurs, if the
system is operating under program control.

PAGE

Ifthe statement PRINT @32,26:2is executed from the GS keyboard or under program control,
thena PAGE command is automatically executed when a PAGE FULL condition occurs, if the
system is operating under program control.

MAKE COPY and PAGE

If the statement PRINT @32,26:3 is executed from the GS keyboard or under program control,
aMAKE COPY command, then a PAGE command is automatically executed each time a PAGE
FULL condition occurs, if the system is operating under program control.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-19

ENVIRONMENTAL CONTROL
PROCESSOR STATUS

THE PROCESSOR STATUS PARAMETERS

Four environmental parameters controlling input and output delimiters are set by addressing
two processor status bytes via a special PRINT statement. One status byte controls the input
and output delimiters used during INPUT, OLD, APPEND, PRINT, LIST, and SAVE operations.
This status byte is addressed by specifying I/O address @37,26: in the special PRINT
statement. The second status byte determines the alternate delimiters used on INPUT
operations when a percent sign (%) is specified in the INPUT 1/O address instead of an "at”
sign (@). This status byte is addressed by specifying @37,0: in the special PRINT statement.

Changing the ASCII Input /Output Delimiter from CR to CR/LF

The Graphic System normally uses CR (Carriage Return) as the input and output delimiter for
all data transfers in ASCII code. This delimiter can be changed, however, by executing the
following statement, either directly from the GS keyboard or under program control:

PRINT @37,26:1

When this statement is executed, primary address 37 selects the processor status bytes as the
target to receive the parameter change information. Secondary address 26 selects the status
byte which controls the delimiter for ASCII I/O operations. The 1 following the colon tells the
processor to use CR/LF as an output delimiter instead of CR. The 1 also tells the processor to
delimit every incoming ASCII data string on a LF (Line Feed) character instead of the CR
(Carriage Return) character.

This status byte is returned to its initial power up state by executing the following statement:
PRINT @37,26:0

The @in this statement tells the processor to use CR instead of CR/LF as a delimiter in ASCII
data transfers.

Selecting Alternate Delimiters for INPUT, OLD, and APPEND Operations

If a percent sign (%) is specified in place of the "at” sign (@) in the I/O address for the INPUT,
OLD, or APPEND statement, the BASIC interpreter uses a previously specified ASCII
character for a record separator character and a previously specified ASCII character for an
End Of File mark. This feature gives the Graphic System the ability to adapt its ASCII input
format requirements to the ASCIl output formats used by different peripheral devices. The
ASCII characters to be used as the alternate record separator and End Of File mark are
specified in a special PRINT statement.

2-20 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
PROCESSOR STATUS

The alternate delimiters and character to be deleted are selected by addressing the second
processor status byte as follows:

PRINT @37,0:0—255,0—255,0—255

When this statement is executed (either directly from the GS keyboard or under program
control) the alternate delimiters are established. Primary address 37 tells the processor to
prepare to receive information which represents a change in a processor status byte.
Secondary address @ tells the processor that the parameters to the second status byte areto be
changed. Three numbers separated by commas are then specified after the colon () in the
PRINT statement. These numbers each represent the decimal equivalent of an ASCII
character.

The first number after the colon represents the decimal equivalent of the record separator
character to be used in the INPUT operation and must be in the range 3—255. For example, if 65
is specified, the ASCII letter "A" is used as the record separator instead of CR.

Thesecond number specified after the colon in the PRINT statement represents the End of File
(EOF) character to be used and must be in the range 8—255. For example, if 66 is specified as
the second number, the first "B" found in the incoming ASCII data string is treated as an EOF
mark. When a "B" is found, program execution is terminated and an EOF error message is
printed on the GS display.

The third number specified after the colon indicates which ASCII character is to be deleted

from the incoming ASCII data string. For example, if 67 is specified, the ASCll character"C" is

deleted from the ASCII data string each time it appears. Again this number represents the

decimal equivalent of an ASCII character. If the number specified as the third parameter is
greater than 127, then every character is retained in the incoming data string.

Once these status byte parameters are set, the only way they can be changed is to execute
another PRINT @37,0: statement or turn off the system power.

The decimal equivalents of ASCII characters can be found in Appendix B.

NOTE

Alternate delimiters do not affect the Graphic System keyboard. Input from the
keyboard always uses Carriage Return for the Record Separator.

Specifying an Alternate Record Separaior.

Care must be taken when specifying an alternate record separator delimiter to ensure that
parts of logical records are not lost. This can happen if the ASCII data string contains both
Carriage Return characters and the alternate record separator character. The following
examples illustrate how this happens:

Example 1—Normal Delimiting Act on for INPUT operations.

500 INPUT @20:A$,8$,C$,D$,E$,F$,G$

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 2-21

ENVIRONMENTAL CONTROL

PROCESSOR STATUS
Logical Logical Logical Logical Logical Logical End of file
Record Record Record Record Record Record Mark
1 2 3 4 5 6 +
f M Nt A AN Ny '

alaala|Glb(b[b[blSlc|c[c|ciSld|d|d]d|Rle|e|e|e|&|f|f|f]fI&IF

This example illustrates how normal delimiting action occurs during an input operation. Ifthe
"at” sign (@) is specified, Carraige Return is the only valid record separator character and
hexidecimal FF is the only valid End Of File character. The character strings shown above
represent ASClI character strings received from peripheral device number 20 when statement
500 is executed. Each CR character marks the end of a logical record. The BASIC interpreter
re-addresses peripheral device number 20 after each CR is received to tell it to send the next
logical record. The logical record assignments are made as follows:

A$="aaaa"”

B$="bbbb"
C$%$="cccc”
D$="dddd"
E$="eeee"

F$=""ffff"

G$=End Of File Mark

When an attempt is made to assign the End of File mark (hexidecimal FF) to G$, program
execution stops and the appropriate message is printed on the GS display. This is the same as
executing a STOP statement.

Example 2—Delimiting Action when the Alternate Record Separator is specified.

510 PRINT @37,0:19,255,255
520 INPUT %20:A$,8$,C$,D$,E$ F$,GS,

Logical Logical Logical Logical Logical Logical
Record Record Record Record Record Record
1 2 3 4 5 6

2-22 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
PROCESSOR STATUS

When line 510 is executed, the alternate record separator character is specified as ASCI|
decimal equivalent 19 (the DC3 control character). The End Of File character is specified as
hexidecimal FF (255) and the character to be deleted from the ASCII data string is specified as
255 (no character to be deleted). Notice that when the processor status parameters are set, all
three parameters must be specified, regardless of whether they are changed from their
previous values or not.

Line 520 inputs logical records from peripheral device 2@ on the General Purpose Interface
Bus. Because the percent sign (%) is specified in the I/0 address instead of the "at” sign (@),
the BASIC interpreter considers the DC3 control character (represented by the S symbol)as a
valid record separator. The ASCII data string received from peripheral device 2@ is shown
above. The following assignments are made:

A$="aaaa"

B$="bbbb"
C$="cccc”
D$="dddd"
E$="eeee”

F$="""ffff"

G$=End Of File Mark

Notice that the logical record assignments are the same as the previous example. Each time a
DC3 control character is found, the BASIC interpreter treats the character as the end of a
logical record. The BASIC interpreter re-addresses peripheral device number 20 after each
DC3is found and tells it to send the next logical record. This happens six times until an attempt
is made to input the End of File mark and assign it to G$. In this case, peripheral device number
20 uses the same End Of File character as the normal value (hexidecimal FF). When this
character is received, program execution stops and the appropriate message is printed on the
GS display.

Example 3—Intermixing Carriage Returns and the Alternate Record Separator Character.

530 PRINT @37,0:19,255,255
540 INPUT %20:A$,B$,C$,D$,E$,F$,.G$

Logical Logical Logical End of File
Record Record Record Mark
1 2 3

—_— Pre e N

aaaaégbbb

4050 SERIES GRAPHIC SYSTEMS REFERENCE 3EV A, MAR 1979 2-23

ENVIRONMENTAL CONTROL
PROCESSOR STATUS

This example shows what happens when the Carriage Return character and the alternate
Record Separator character are alternately used between logical records. The same program
lines arere-executed that were used in the last example. This time, however, peripheral device
number 2@ sends the ASCI data strings shown in the illustration. Because the percent sign is
specified in the INPUT statement, the BASIC interpreter assumes that only three records are
sentover the bus, each terminated with the DC3 control characteras shown in the illustration.
The following assignments are made:

A%$="aaaa"
B$="cccc”
C$="eeee"”

D$=End Of File Mark

Because the Graphic System does not have the capability to handle the CR character as part of
a character string coming in via an INPUT statement, the string assignment for each logical
record is terminated at the CR character. in this example, the characters "bbbb"”, "dddd”, and
"ftff" are lost from the ASCII data string.

Specifying an Alternate End of File Character.

The second parameter in the PRINT statement specifies the alternate End Of File character.
This parameter is specified as adecimal number between @ and 255 and represents the decimal
equivalent of an ASCII character. For example:

550 PRINT @37,0:19,4,255
560 INPUT %20:A$,B$,C$,D$,F$,G$

Logical Logical Logical Logical Logical Logical
Record Record Record Record Record Record
1 2 3 4 5 6

AN TN N TN N
5 O I O 5 3 5 O IO I B s{f|f]f|f|E

c{Dic|c|S{d|d|d|d|S

in line 550, the alternate record separator character is specified as decimal 19 (the DC3 control
character) and the alternate End Of File character is specified as decimal 4 (the EOT control
character). In line 560, peripheral device 20 sends the ASCII string shown in the illustration.
The assignments are made as follows:

A$="aaaa"
B$="bbbb"
C$=”CC”

2-24 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
PROCESSOR STATUS

The first two logical records are assigned to A$ and B$, respectively. Notice that the alternate
record separator (S) is used. When an attempt is made to assign the third logical record to C$,
the alternate End Of File character is found. The characters in the third logical record up to the
D character are assigned to C$. An error occurs when an attempt is made to input the D
character, program execution is aborted, and the appropriate end of file error message is
printed on the GS display.

NOTE

To handle an EOF interrupt condition with an ON... THEN... statement, alogical file
number must be specified. An alterriate EOF character will not be detected by an ON
EOF(n) THEN... statement unless the input operation is on logical file number n.

Specifying a Character to be Removec From the ASCII Data String.

The third parameter specified in the PRINT statement tells the BASIC interpreter which
character to remove from the incoming ASCII data string. If the parameter is specified as an
integer from 1 to 127, the BASIC interpreter assumes the integer is the decimal equivalent of an
ASClIcharacterand removes that character each time itappears in the ASCli data string. If this
parameter is specified as an integer greater than 127, but less than 256, then all of the
characters are retained in the incoming ASCII data string.

Specifying the Processor Status Parameters as Numeric Expressions.

Each of the three processor status parameters can be specified as numeric expressions and set
under program control as long as each numeric expression can be reduced to a numeric
constant between @ and 255. Any numeric constant outside this range results in an error,
program execution is aborted, and a system error message is printed on the GS display.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-25

ENVIRONMENTAL CONTROL
SET

THE SET STATEMENT

Syntax Form:

CAS
NOC
DEG
RAD
[Linenumber] SET < GRA >
KEY
NOK
TRA
NOR

Descriptive Form:

[Line number] SET environmental condition

Purpose

The SET statement is used to set the trigonmetric units for the system, the trace debugging
feature, the interrrupt facility for the user-definable keys, and the standard for comparing
upper and lower case letters.

Explanation

Setting the Trigonometric Units

Executing a SET statement for RADIAN, DEGREE, or GRAD establishes the units of measure
for trigonometric operations. For exampile:

100 SET DEGREES
110 X=SIN (45)
120 SET RADIANS
130 Y=SIN(45)

140 SET GRADS
150 Z=SIN(45)

2-26 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
SET

When line 100 is executed, the trigonometric units are set to degrees. Line 110 then assigns the
sine of 45 degrees to the variable X. Line 120 sets the trigonometric units to radians and line 13@
assigns the sine 45 radians to the variable Y. Line 140 is executed next and the trigonometric
units are set to grads (one grad equals 1/10@ of a right angle). Line 150 assigns the sine of 45
grads to the variable Z. It can be seen in this example that even though SIN(45) is assigned to
each variable, the results are different because the trigonometric units are different in each
case. Care must be taken that the trigonometric units are set properly for trigonometric
operations. -

Setting the Trace Debugging Feature

Setting TRACE causes the BASIC interpreter to print the line number of a statement before it is
executed. The line numnber is printed starting at the present position of the cursor; the BASIC
interpreter then executes a carriage return (CR), then executes the statement. Normally, if the
program does not involve graphic statements, the line numbers are printed in a single column
onthe leftside of the GS display. When the screen is full, program execution halts untila PAGE
is executed to erase the screen. After the screen is erased, program execution continues.

The TRACE feature allows you to monitor the execution order of the current program; it is a
valuable aid in finding the source of run-time errors which occur as special conditions are set
up during program execution. Program execution can be monitored by setting TRACE, then
executing RUN; or TRACE can be SET, then the program can be executed one statement at a
time by pressing the STEP PROGRAM key on the GS keyboard.

To disable the TRACE feature, the statement SET NORMAL must be executed from the GS
keyboard or under program control. This feature is automatically set to NORMAL on system
power up and after the execution of an INIT statement.

Activating User-Definable Key Interrupts

Executing the statement SET KEY allows the BASIC interpreter to respond to the user-
definable keys while a BASIC program is executing. If a user-definable key is pressed while a
program is executing, program execution halts after the current instruction is completed; the
BASIC interpreter executes the user-definable function then returns to the interruption point
in the BASIC program and resumes normal program execution. If a user definable key is
pressed while a program is executing a keyboard INPUT statement, the INPUT statement is
terminated, the values that have been entered are assigned to the target variables and the
BASIC interpreter executes the user-definable function. After the user-definable function is
completed the BASIC interpreter returis to the line following the INPUT statement.

Ifthe statement SET NOKEY is executec, this feature is disabled and the BASIC interpreter can
not respond to the user-definable keys while the system is operating under program control.
This feature is set to NOKEY (No Key) cn system power up and after the execution of an INIT
statement.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 2-27

ENVIRONMENTAL CONTROL
SET

User-Definable Key Operation. At this point it might be appropriate to review the operation of
the user-definable keys on the Graphic System keyboard. There are ten user-definable keys on
the GS keyboard as shown in the following diagram:

Loy
".'S*-fg;‘;\?, ;
PR VA N

Each key represents two user-definable functions. For example, if the key in the upper left-
hand corner is pressed, user-definable function number 1 is executed; if the same key is
pressed in combination with the SHIFT key, user-definable function number 11 is executed.

Each user-definable function is actually a program subroutine located in memory. Pressing a
user-definable key is the same as executing a GOSUB (Go to Subroutine) statement; program
control is transferred to the line number which is four times the key number. For example, key
number 1 transfers program control to line number 4; key number 2 transfers program control
to fline number 8; key number 3 transfers program control to line number 12, and so on. The
following diagram shows the line nurmbers associated with each user-definable key. These line
numbers are fixed and cannot be changed.

2-28 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
SET

User Definable Line User Definable Line
Key Number Key Number
— 4 — 44
—_— 8 — 48
- 12 — 52
—_— 16 — 56
— 29 — |e2
— 24 — 64
— 28 — 68
— 32 — 72
— 36 - 76
— a9 - |

If key number 5 is pressed, for example, and the system is operating under program control,
and the statement SET KEY has been executed, then the BASIC interpreter transfers program
control to line number 2@ after the current instruction is executed. If the system is idie when the
key is pressed, the system is placed under program control and line 20 is executed as the first
instruction.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 2-29

ENVIRONMENTAL CONTROL
SET

Afterline 20 is executed, lines 21, 22, and 23 are executed in sequential order; if line 23 is not an
END, STOP, or RETURN statement, then program control is passed on to the next user-
definable function (line 24) and the BASIC interpreter keeps executing statements in
sequential order untilan END, STOP, or RETURN statement is found or until the BREAK key is
pressed.

Ifauser-definable function ends in a RETURN statement, program control is transferred back
to the interruption point in the main program, if the system was previously operating under
program control. If the system was in an idle state when the key was pressed, the RETURN
statement returns the system back to an idle condition.

Sometimes more than four statements are required for the subroutine. In this case, a GOSUB
statement can be used to transfer program control to a larger subroutine. For example:

—_ 28] GOsUB 509 198
MAIN
21 RETURN PROGRAM
22
23
INTERRUPT
POINT

588 SUBROUTINE

55¢ RETURN

This diagram illustrates how a user-definable key can be used to transfer program controltoa
large subroutine in memory. When user-definable key number 5 is pressed, program control is
transferred from the main BASIC program to line number 20. Line number 20, in turn, transfers
control to line number 500, the beginning of a larger subroutine. When the subroutine is
finished executing, the RETURN statement at the end of the subroutine transfers control back

2-30 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

ENVIRONMENTAL CONTROL
SET

to the statement following the GOSUB statement, in this case line number 21. Line number 21
is also a RETURN statementand transfers program control back to the interruption pointin the
main program. The main program then continues normal sequencial execution just like
nothing ever happened.

Ifthe system is idle when key number 5 is pressed, the system is placed under program control
and line number 20 is executed as the firstinstruction. Control is passed to line number 500 and
the subroutine is executed. The RETURN statement at the end of the subroutine transfers
control back to line 21 just as it did before. This time however, a different course of action is
taken. Because the system was not operating under program control when the key was
pressed, the RETURN statement in line 21 returns the system back to keyboard control.

Itis good practice to always start numbering the lines in a BASIC program with line number
100. This keeps the main BASIC program out of the area reserved for the user-definable keys. If
a RENUMBER statement is executed, the renumbering operation automatically starts with line
number 100, unless a lower line number is specified as the third parameter.

Upper and Lower Case Letter Comparisons

When the statement SET CASE is executed, the BASIC interpreter considers lower case letters
equal to upper case letters when making relational comparisons between character strings.
For example:

160 SET CASE
179 IF "RABBIT"="rabbit” THEN 200

When line 160 is executed, the BASIC interpreter is instructed to treat lower case letters equal
to upper case letters. A string relational comparison is then made in line 17@. Since the only
difference between the two character strings is the fact that one is upper case and one is lower
case, the strings are considered equal and relationship is true. The branch to line 200 is
executed. If statement 160 is changed to SET NOCASE, then the two character strings would
not be considered equal and the branch wouldn’t occur. The CASE/NOCASE parameter is
automatically set to CASE on system power up and after the execution of an INIT statement.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 2-31

SYSTEM CONTROL
introduction to System Control

.............................. 3-1
The CALL Statement. i i 3-3
The COPY Statement i i 3-5
The HOME Statement. i it 3-6
The PAGE Statement i 3-8

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 3

SYSTEM CONTROL

INTRODUCTION TO SYSTEM CONTROL

The statements discussed in this section causes system control functions to be executed.
These control functions include calling a specialized firmware routine, sending a make copy
command to a Hard Copy Unit, returning the alphanumeric cursor to the home position on the
GS display, and paging the GS display screen.

Calling a Specialized Firmware Routine

Firmware routines are special processor instructions which are permanently fixedin amemory
chip and mounted in a plastic housing called a ROM pack. (ROM stands for Read Only
Memory.) ROM packs are normally plugged into the Graphic System via slots located on the
rear panel of the main chassis.

Typically, the BASIC interpreter "sees” ROM pack instructions as special functions to be
executed. For example, if a ROM pack contains a routine which squares a number, then the
statement — CALL "SQUARE" A — causes the system to follow the instructions in the
"SQUARE" routine; the number assigned to the variable A is squared and the result is
reassigned to A. In each case, the nam= of the special routine, the parameter required in the
CALL statement, and the function the routine performs is predefined.

In some cases, the characteristics of the system actually change while a special routine is
being executed. For example, when ar: optional data communications interface routine is
executed, the system’s ability to execute BASIC is momentarily inhibited while the system
adapts its operating characteristic to the data communications application at hand. After the
operation is complete, the system’s ability to execute BASIC is restored.

Making a Paper Copy of Displayed Information

The COPY statementis adirect command to an attached Hard Copy Unit to make a paper copy
of information stored on the GS display. The COPY statement performs the same function as
the MAKE COPY key on the GS keyboard.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

3-1

SYSTEM CONTROLS
INTRODUCTION

Returning the Alphanumeric Cursor to the Home Position

The HOME statement causes the alphanumeric cursor (or the writing tool of an external
peripheral device) to return to the home position. The HOME statement performs the same
function as the HOME key on the GS keyboard.

Erasing the Screen and Returning the Cursor to the Home Position

The PAGE statement erases the GS display screen and returns the alphanumeric cursor to the
home position (near the upper left-hand corner). The PAGE statement performs the same
function as the PAGE key on the GS keyboard.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

SYSTEM CONTROLS
CALL

THE CALL STATEMENT

Syntax Form:
string constant
{string variable } ; string variable
I:Line number] CAL string constant , numeric expression S
Descriptive Form:

[Line number] CALL routine name [{ } data item to be passed to firmware routine :, ...

Purpose

The CALL statement transfers system control to the specified firmware routine.

Explanation
Firmware Routine Defined

A firmware routine is a special set of instructions which give the Graphic System the ability to
execute special functions. Normally, one or more firmware routines are stored in a memory
chip and packaged in a plastic housing called a ROM (Read Only Memory) Pack. One ROM
pack holds a maximum of 16K bytes of instructions (1K=1024 bytes).

Specifying a Routine Name

Each firmware routine in a ROM pack has a preassigned name of six characters or less. Routine
names are contained in a directory which is permanently fixed in the ROM pack when it is
manufactured. The name of a routine can be specified as a string constant in the CALL
statement or assigned to a string variable and specified as a string variable. For example:

209 CALL "OO0OO0PS”
219 A$ = "O000PS"
220 CALL A%

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 3-3

SYSTEM CONTROLS
CALL

Inline 209, the routine name OOOOPS is specified as a string constant. Notice that the routine
name is enclosed in quotation marks when specified as a string constant. In lines 210 and 220,
the same routine is called again only this time the name is assigned to a string variable in line
210 and specified as a string variable in the CALL statement (line 220).

If the routine name is specified as more than six characters, the BASIC interpreter ignores the
additional characters. For example:

230 CALL "OOOOPS-A-DAISY"

When this statement is executed, the same routine "OOOOPS" is called; in this case, however,
the BASIC interpreter ignores the additional characters "-A-DAISY.”

If the predefined routine name has less than six characters, then only those characters in the
name can be specified; trailing blanks may be omitted.

Transfering System Control

The CALL statement is used to transfer system control to a specialized firmware routine as
follows:

200 CALL "EDITOR"

When this statement is executed, the BASIC interpreter searches through the directory of each
ROM pack for a routine called "EDITOR.” When the routine "EDITOR" is found, system
control is passed to that routine. When "EDITOR" is finished executing, system control is
passed back to the BASIC interpreter and the next statement in the BASIC program is
executed. If "EDITOR"” is not found, an error occurs and program execution is aborted.

Passing Data Items to the Firmware Routine

If data items are specified in the CALL statement, then those data items are passed to the
firmware routine as the routine is executing. For example:

250 CALL "FIX IT",295.5,2%,M6

When this statement is executed, the numeric constant 295.5 is passed first to the routine "FIX
IT" as it is executing. The character string assigned to Z$ is passed next, then the numeric
value assigned to M6. The meaning of these data items is dependent on the definition and
purpose of the routine. Complete instructions for using a routine are provided with each ROM
pack.

34 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

SYSTEM CONTROLS

THE COPY STATEMENT

Syntax Form:

[Line number :l COP

Descriptive Form:

[Line number] COPY

Purpose

The COPY statement causes an attached Hard Copy Unit to make a paper copy of information
on the GS display.

Explanation

The COPY statement performs the same function as the MAKE COPY key on the GS keyboard.
When the COPY statement is executed, 1 MAKE COPY control signal is sent to an option Hard
Copy Unit (if attached). For example:

508 COPY

When this statement is executed under program control, program execution stops while an
attached Hard Copy Unit makes a scan of the GS display screen. The information on the screen
is then reproduced on paper and presented to the Graphic System operator. Processing
continues as soon as the scan is completed.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

COPY

35

SYSTEM CONTROLS
HOME

THE HOME STATEMENT

Syntax Form:

[Line number] HOM [1/0 address]

Descriptive Form:

[Line number] HOME [1/0 address]

Purpose

The HOME statement returns the alphanumeric cursor or the writing tool of an external
peripheral device to the HOME position. The HOME position on the GS display is near the
upper left-hand corner.

Explanation
The GS DISPLAY

The HOME statement performs the same function as the HOME key on the GS keyboard. For
example:

150 HOME

When this statement is executed under program control, the alphanumeric cursor returns to
the HOME position. The display is not erased.

External Peripheral Devices

If an 1/0O address is specified in a HOME statement, then a HOME command is set to the
specified peripheral device over the General Purpose Interface Bus (GPIB). For example:

160 HOME @4:

3-6 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

SYSTEM CONTROLS
HOME

When this statment is executed, the I/0 address @4,23: is issued over the GPIB. Primary
address 4 tells peripheral device number 4 that it has been selected to take partin the upcoming
I/0 operation. Secondary address 23 is issued by default and tells peripheral number 4 to
executeda HOME command. In this case, data is not transfered after the I/0 address is issued,
so the I/O operation is terminated by sending the universal commands UNTALK and
UNLISTEN over the GPIB.

CTRL t Homes the Alphanumeric Cursor on the GS Display

Sending the ASCII control character "CTRL 1" to the GS display also executes a HOME
command. For example:

170 PRINT "14051 GRAPHIC SYSTEM"

When this statement is executed, the CTRL ' character (Record Separator) Homes the
alphanumeric cursor. The character string 4051 GRAPHIC SYSTEM"” is then printed on the
screen starting at the HOME position. The control t character is entered from the GS keyboard
by pressing the CTRL key and at the sarne time pressing the t key. For more information on
sending control characters to the GS display, refer to the PRINT statement in the Input/Output
Operations Section of this manual.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 37

SYSTEM CONTROLS
PAGE

THE PAGE STATEMENT

Syntax Form:

[Line number] PAG I: 1/0 address]

Descriptive Form:

[Line number] PAGE [1/0 address |

Purpose

The PAGE statement erases the GS display and returns the alphanumeric cursor to the HOME
position.

Explanation
The GS Display

The PAGE statement performs the same function as pressing the PAGE key on the GS
keyboard; the screen is erased and the alphanumeric cursor returns to the HOME position. For
example:

260 PAGE

When this statement is executed under program control, the GS display flashes as the screenis
cleared. After the flash, the alphanumeric cursor appears in the upper left-hand corner.

External Peripheral Devices

If an 1/0 address is specified in a PAGE statement, then a PAGE command is sent to the
specified peripheral device over the General Purpose Interface Bus (GPIB). For example:

270 PAGE @15:

When this statement is executed under program control, the I/O address @15,22: is issued over
the GPIB. Primary address 15 tells peripheral device number 15 that it has been selected to take
part in the upcoming I/0 operation. Secondary address 22 is issued by defaultand tells device

3-8 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

SYSTEM CONTROLS
PAGE

15 to execute a PAGE command. In this case, data is not transfered after the I/O address is
issued, so the 1/0 operation is terminated by sending the universal commands UNTALK and
UNLISTEN over the GPIB.

CTRL L Pages the GS Display

Sending the ASCII control character "CTRL L"” to the GS display also executes a PAGE
command. For example:

280 PRINT "L4051 GRAPHIC SYSTEM”

When this statement is executed, the CTRL L character (Form Feed) pages the GS display. The
character string “4051 GRAPHIC SYSTEM" is then printed on the screen. The control L
character is entered from the keyboard by pressing the CTRL key and at the same time
pressing the L key. (For more information on sending control characters to the GS display,
refer to the PRINT statement in the Input/Output Operations Section of this manual.)

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 39

MEMORY MANAGEMENT

Introduction to Memory Management 4-1
The DELETE Statement.................. i ... 4-2
The MEMORY Function. ..., 4-4
The SPACE Function ..., 4-6

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 4

MEMORY MANAGEMENT

INTRODUCTION TO MEMORY MANAGEMENT

The memory management functions in this section enable you to keep track of the memory
bytes used to store the current BASIC program and the number of free memory bytes
remaining in the system.

Deleting Items Stored in Memory

The DELETE statement gives you freedom to remove BASIC statements and variables
stored in the read/write random access memory. Both variables and program lines can be
deleted.

How Much Free Memory is Left?

The MEMORY function returns the number of free memory bytes remaining. As an added
feature, this function performs a memcry compress before it returns the number of free
bytes. During the memory compress, all the fragmented portions of memory are reclaimed
and made available for re-assignment. Because MEMORY is a numeric function
returning a numeric result, it can be specified in a numeric expression.

How Much Memory Space Does the Program Take Up?

The SPACE function returns the maximum number of bytes of memory required to store the
current BASIC program. This information must be obtained before the program is stored on
the external medium such as a magnetic tape. Because SPACE is a numeric function returning
a numeric result, it can be specified in a numeric expression.

The amount of memory requiredto run a program is quite different from the amount required to
storea program. No spaceis required for variables, arrays, or strings until they are assigned or
dimensioned. Also, accessory ROM pack:s or option interfaces require some memory space for
storing data and environmental parameters.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

MEMORY MANAGEMENT

DELETE

4-2

THE DELETE STATEMENT

Syntax Form:

ALL
variable list
[Line number] DEL line number [, line number :l

Descriptive Form:

ALL {entire memory))
) variables to be deleted
[Line number] DELETE line number [starting , line number ending] s

Purpose

The DELETE statement logically removes the specified BASIC statements or the specified
variables from the read/write random access memory. If DELETE ALL is specified, then the
entire random access memory is cleared.

Explanation
Deleting Variables

If the statement DELETE ALL is executed, the BASIC interpreter clears the entire program,
including defined variables, from the read/write random access memory and executes an END
statement. An INIT command is also executed.

If variables are specified as parameters in the DELETE statement, such as...
DELETE A, B, C$, D5, E1

then the assigned values of the specified variables are cleared, and the variables enter an
undefined state.

Deleting Program Statements
If a line number is specified as the parameter in a DELETE statement, such as...
DELETE 500

then the specified statement is cleared from memory; in this example, statement5@@ is deleted
and cannot be recovered.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

MEMORY MANAGEMENT
DELETE

If two line numbers are specified as parameters in a DELETE statement, such as the
statement...

DELETE 500, 1000

then all the statements between the specified statements are logically removed from memory;
in this case, statements 500 through 10@¢ are removed from memory and cannot be recovered.
In addition, the following statement is allowed:

500 DELETE 400, 600

In this case, all statements from 400 through 609 (including the DELETE statement) are cleared
from memory under program control.

A Word of Caution

Once a DELETE statement is executed, 1he deleted information can not be recovered unless it
is first stored on an external media such as magnetic tape. Refer to the Input/Output
Operations section for information on storing programs and data on an external media.

NOTE
The deleted information is not actually removed from memory until the system
needs additional memory space. However, the deleted information is “tagged” as

such and cannot be recovered. This is what is meant by the phrase "logically
removed from memory.”

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 4-3

MEMORY MANAGEMENT
MEMORY

4-4

THE MEMORY FUNCTION

Syntax Form:

MEM

Purpose

The MEMORY function forces the BASIC interpreter to combine the available free memory into
one contiguous block and return the number of free bytes remaining.

Explanation

Immediate Execution

To find out how much free memory remains in the read/write random access memory, type in
the following statement and press the RETURN key on the GS keyboard.

MEM

Program Execution

Because the MEMORY function is a numeric function, it can be specified as part of a numeric
expression and evaluated under program control. For example:

410 LET M = MEM/8

When this statement is executed, the number representing the number of free memory bytes is
divided by 8 and assigned to the variable M.

When the system is first turned on and the memory is empty, MEM + 2000 is approximately the
maximum memory capacity. The first 2K bytes of memory are reserved by the microprocessor
for a working area; the remaining bytes are used for storing BASIC program instructions and
data.

Finding Out How Much Memory Space is Reserved for Data

Oncea BASIC program is loaded into memory, the MEM function tells you how much space is
left for storing data. During the course of program execution, variables may sometimes be

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

MEMORY MANAGEMENT
MEMORY

dimensioned larger than the available memory space and a fatal error occurs. The following
guidelines are provided to help you figure out how much memory is taken up by each dataitem,
soifyougetaMEMORY FULL error condition, you can figure out where to cut corners to make
it all fit. Here are the guidelines:

1. Ingeneral, anyvariable symbol entered into memory space takes up atleast 13
bytes of memory space. If a variablz is deleted from memory, 13 bytes of
memory space are still reserved for the symbol namein atable listing. The only
way to delete the symbol from the table and recover the 13 bytesisto execute a
DELETE ALL statement, an OLD statement, or turn off the system power.

2. Numeric variable symbols plus their assigned scalar values take up 13 bytes of
memory, regardless of the size of the scalar value. You don’t save any memory
space by deleting a numeric variable due to guideline number 1.

3. Each string variable entered into memory takes up the following memory
space:

String Dimension + 18 Bytes
If the default dimension for a string variable (72) is used, then the variable
takes up 99 memory bytes. If a string variable is dimensioned to a maximum of

five characters, for example, the variable takes up 23 memory bytes, and so on.

4. Array variable take up the following memory space:

Number of rows x Number of Columns x 8 + 18

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 4-5

MEMORY MANAGEMENT
SPACE

THE SPACE FUNCTION

Syntax Form:

SPA

Purpose

The SPACE function returns the maximum number of bytes of storage required to store the
current BASIC program in external ASCII format.

Explanation

To find out how much space is required to store the current program, type in the following
statement and press the RETURN key:

SPACE

After SPACE is executed, the number of bytes required to store the current program is
displayed. Once this information is known, a program file can be MARKed on a magnetic tape
cartridge and the program stored on tape with the SAVE statement. (See MARK and SAVE in
the Input/Output Operations section for more information.)

Because the SPACE function returns a numeric result, the function can be specified as partofa
numeric expression. For example:

300 LET B = SPA + 50

When this statement is executed, the space required to store the current BASIC program is
added to 5@ and the result is assigned to the variable B.

The number returned by the SPACE function is only an approximation of the number of
storage bytes required to store the current BASIC program. The BASIC interpreter arrives at
this number by multiplying the number of program lines by 72 (the maximum number of
characters per line plus one for the carriage return delimiter). If each line in the current
program is 36 characters or less, for example, then the actual space required to store the
program is less than one-half the numeric value returned by the SPACE function.

4-6 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW

Introduction. i e e 5-1
The END Statement. i, 5-3
The FOR and NEXT Statements 5-4
The GOSUB and RETURN Statements....................... 5-10
The GOTO Statement i i 5-13
ThelF...THEN ... Statement............................... 5-16
The RETURN Statement i i, 5-22
The RUN Statement 5-23
The STOP Statement 5-25

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 5

CONTROLLING PROGRAM FLOW

INTRODUCTION

A BASIC program can contain any number of statements aslong as the memory capacity of the
system is not exceeded. Each statementis entered on a separate line with a line number. The
BASIC interpreter keeps the statements in correct numeric sequence, even if they are not
entered in sequence. The BASIC interpreter does not recognize a line number unless it is
explicitly entered into memory with a valid BASIC statement. Normally, the statements are
executed sequentially starting with the lowest line number in memory and proceeding to the
highest line number in memory. This pattern can be altered, however, by exercising the
statements described in this section.

Starting a Program

A BASIC program is started by executing the RUN statement directly from the GS keyboard.
If a starting line number is not specified, the program automatically starts with the lowest
number in memory.

Stopping a Program

Program execution is stopped by executing an END statement, a STOP statement, or a
RETURN statement. The STOP and RETURN statements do not disturb the system
environmental conditions. This allows the program to be continued from the stopping point by
executing the RUN statement with the proper statement number following it. Pressing the
BREAK key on the GS keyboard also stops program execution unless the internal magnetic
tape unit is running.

Ending a Program

Program execution is ended and control is returned to the GS keyboard by executing an
END statement. Once an END statement is executed, the program can’t be continued;

in most cases it must be restarted from the beginning. Pressing the BREAK key twice on
the GS keyboard alsc terminates program execution.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

51

CONTROLLING PROGRAM FLOW
INTRODUCTION

Looping

Sometimes it is desirable to have a series of statements executed several times before
continuing with sequential execution. The FOR and NEXT statements work together to control
the number of times the BASIC interpreter executes a series of statements before proceeding
with normal sequential execution.

Unconditional Branching

The GO TO statement unconditionally transfers program control to another point in the
program. Once program control is transferred, normal sequential execution continues
from that point.

Branching to a Subroutine

The GOSUB statement allows program control to be transferred from the main program
toaprogram subroutine. After the subroutine is executed, the RETURN statement transfers
program control back to the interruption point in the main program. Program subroutines
are usually a series of statements which are executed frequently as the main program
progresses through normal sequential execution.

Test and Branch

The lF ... THEN . .. statement causes program control to be transferred to another
pointinthe program, if a specified condition is logically true. The specified condition can
be a relational comparison between two numeric expressions, a relational comparison
between two character strings, or alogical comparison between two numeric expressions.

BREAK

Pressing the BREAK key on the GS keyboard causes program execution to terminate after
the current instruction is finished executing. Pressing the BREAK key twice causes
program execution to terminate immediately.

Interrupts

Interrupts are asynchronous events which cause GOSUB like actions to occur. Refer to the
section on Handling Interrupts for complete information on internal and external interrupt
conditions.

5-2 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
END

THE END STATEMENT

Syntax Form:

[Line number] END

Descriptive Form:

[Line number] END

Purpose

The END statement terminates program execution, closes all open files, and returns control to
the GS keyboard.

Explanation

The END statementis normally the highest numbered linein a program, but doesn’t haveto be.
When the END statement is executed by the BASIC interpreter, program execution is
terminated with no printed indication; the line counter is reset to the lowest line number in
memory, any openfiles are closed, and the internal execution stack is cleared. END statements
may appear anywhereinaprogram. An END statementis automatically executed at the end of
a program, if an END statement is not “ound.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 5-3

CONTROLLING PROGRAM FLOW
FOR/NEXT

5.4

THE FOR AND NEXT STATEMENTS

Syntax Form:

Line number FOR numeric variable = numeric expression TO numeric

expression [STE numeric expression]

Descriptive Form:

Line number FOR index = startingvalue TO ending value [STEP

increment for each loop]

Syntax Form:

Line number NEX numeric variable

Descriptive Form:

Line number NEXT index

Purpose

The FOR and NEXT statements work together to control the number of times a section
of a program is repeatedly executed. This technique is called looping.

Explanation
A Simple FOR/NEXT Loop

The following example illustrates a simple FOR/NEXT loop. The statements in the loop are
executed three times before the program continues with normal sequential execution.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
FOR/NEXT

120 FORI=1TO 3

— 130
Statements tc be
Executed Repeatedly
180
— 190 NEXT |

Line 120 in thisexampleis the first state mentin the loop. This statement controls the number of
times the loop is executed. In line 120, the numeric variable | is specified as the index and is
assigned a starting value of I. The ending value of the | is specified as 3and, because a STEP is
not specified, a STEP of +1 is assumed by default.

After the FOR statement is evaluated in line 120, the BASIC interpreter executes lines 130
through 180 in sequence. During this time the assigned value of | remains at 1, the initial

starting value. When line 190 is executed, the BASIC interpreter adds +1 to the value of | and
compares the new value (2) to the ending value specified in line 12@. in this case, the new value
(2) isnotgreater than the specified ending value (3), so program control is transferred back to

line 130 and lines 13@ through 180 are re-executed. As these statements are executed, the
assigned value of | remains at 2.

At the end of the second pass through the loop, line 190 is re-executed. Again, the increment
+1isaddedto the currentvalue of land compared to the ending value specified in line 12@. This
time the new value (3) is equal to the specified ending value, but not greater than the specified
ending value; therefore, program control is transferred back to line 13@ and the statements in
the loop are executed a third time. During this pass, the assigned value of | remains at 3.

At the end of the third pass, the increment +1 is added to the current value of | and the new
value (4) is found to be greater than the specified ending value (3). Program control is then

transferred to the statement which follows the NEXT | statement and the program continues
executing in sequence.

NOTE

The final value of the index does not equal the ending value of the FOR/NEXT loop.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 5-5

CONTROLLING PROGRAM FLOW
FOR/NEXT

The index in this example is specified as the numeric variable I, however any valid numeric

variable symbol can be used as long as the same symbol is used in both the FOR and the NEXT
statements.

The starting value and ending value of the index can be specified as a numeric expression, if
desired, as long as the variables in the numeric expressions (if any) have assigned values by the
time the FOR statement is executed.

In addition, the number of statements in the loop is not restricted. Any number of statements
can be included in the loop (within the limits of memory).

Specifying a STEP
The following example illustrates a simple FOR/NEXT loop with a specified STEP.

200 FOR | = @ to 1@ STEP 2

— 210
Statements to be Executed Repeatedly
250
— 260 NEXT |

270 PRINT "WE HAVE JUST MADE AN EXIT FROM A LOOP”

When line 200 in this exampie is executed, the numeric variable | is assigned a starting vaiue of
0, the ending value of | is specified as 10, and the STEP is specified as 2. After line 200 is
evaluated, lines 21@ through 250 are executed in sequence. As these statements are executing,
the assigned value of | remains at @, the initial starting value.

NOTE

After the FOR statement is evaluated, at the beginning of the LOOP sequence, the index
starting value, ending value, and step increment are placed in temporary storage and are not
evaluated again.

5-6 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
FOR/NEXT

When line 260 is executed, the specified STEP (2) is added to the assigned value of | and
compared to the specified ending value (18). The new value of | is not greater than the specified
ending value (within the parameters of FUZZ), so program control is transferred back to the
statement following the FOR statement (line 21@ in this case) and lines 21@ through 250 are re-
executed.

Each time the NEXT | statement is encountered, the increment (2) is added to the current value
of | and compared to the specified ending value 10. The first time through the loop 1=0; the
second time through the loop I=2; the th rd time through the loop I=4; the fourth time through
the loop 1=6; the fifth time through the loop I=8; and the sixth time through the loop I=10. At the
end of the sixth pass, the increment 2 is added to 10 (the current value of |) and the result 12 is
assigned to I. The new value of | (12) is compared to the specified ending value (10) and found
to be greater (within the limits specified by the FUZZ statement). Program control is then
transferred to the statement following the NEXT statement (line 270) and the program
continues executing in sequence.

Using a Countdown Technique

The STEP in the FOR statement can be specified as a negative number as well as a positive
number as the following example illustrates:

300 FOR B1 =3 to @ STEP —1
~310

Statements to be
Executed Repeatedly

350
— 360 NEXT B1

4050 SERIES GRAPHIC SYSTEMS REFERENGCE REV A, MAR 1979 5-7

CONTROLLING PROGRAM FLOW
FOR/NEXT

In thisexample, the numeric variable B1is used as the index and is assigned a starting value of
3inline 30@. The ending value of B1 is specified as @ and the STEP is specified as —1. After line
300 is evaluated, lines 310 through 350 are executed in sequential order. During this time, the
assigned value of B1 remains at 3 (the starting value). When NEXT B1 is executed in line
360, the step (—1) is added to the current value of B1 and compared to the ending value (8). If
the newvalue of B1 isless than the specified ending value, then program control is transferred
to the statement following the NEXT B1 statement; in this case it is not, so program control is
transferred back to line 310 and lines 31@ through 350 are re-executed. During the first pass, B1
has an assigned value of 3 (the starting value); during the second pass B1 has an assigned
value of 2; during the third pass, B1 has an assigned value of 1; and during the fourth pass B1
has an assigned value of @. At the end of the fourth pass, —1 is added to @ (the current value of
B1)and the result (—1) is compared to the specified ending value (@). Minus 1 is found to be less
than @, so program control is transferred to the statement following line 360 and the program
continues executing in sequence.

Nesting FOR/NEXT Loops

FOR/NEXT loops can be nested inside each other as shown below:

500 FOR X5 =1TO 10
— 510 FOR Y2 =1TO 20
~ 520

Statements to be
Repeated in the Y2 loop

590
— 600 NEXT Y2
— 610 NEXT X5

5-8 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
FOR/NEXT

In this example, lines 520 through 59@ in the Y2 loop are executed 20 times for each pass
through the X5 loop. After the program makes an exit from the X5 loop, the statements in the Y2

loop will have been executed 200 times.

FOR/NEXT loops cannot "cross.” The following is an illegal operation:

800 FORD =1TO 30 3TEP 5

840 FORE=1TO 190 STEP A

— 870 NEXT D

—— 890 NEXT E

Branching Into and Out of a FOR/NEXT Loop

Branching outofa FOR/NEXT loop usingthe GOTO,GOSUB,or IF..THEN...statement and not
returning to the exit point is a legal practice, and an error doesn’t occur, but information
pertaining to the exit pointaccumulates in memory and isn’t cleared untilan END statement is
executed. Branching randomly into a FOR/NEXT loop from another point in the program is
dangerous programming practice. If a NEXT statement is executed without first executing a
FOR statement, then an error occurs and program execution is aborted.

Branching out of a FOR/NEXT loop is a legal practice; however, it is not recommended. The
execution of a FOR statement dynamically allocates 26 bytes of memory to store loop
information. When the FOR/NEXT loop 's satisfied (i.e., performs a normal exit) the 26 bytes of
dynamically allocated memory is freed.

Branching out of a FOR/NEXT loop with an IF-THEN or a GOTO statement prevents a normal
exit and the 26 bytes of memory is not freed for future use.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979

CONTROLLING PROGRAM FLOW
GOSUB/RETURN

5-10

THE GOSUB AND RETURN STATEMENTS

Syntax Form:

{ line number
[Line number] GOS numeric expression OF fine number [, line number] A

Descriptive Form:

{ line number
[Line number] GOSuUB line number selector OF {ine number list

Syntax Form:

[Line number:l RET

Descriptive Form:

[Line number] RETURN

Purpose

The GOSUB statement transfers program control to the beginning statement of a program
subroutine. The RETURN statement then transfers program control back to the
statement which follows the GOSUB statement. if the GOSUB ... OF . .. form of the
GOSUB statement is used, then program control is transferred to the beginning statement of
asubroutine indicated by a line number selector. The RETURN statement at the end of the
subroutine then transfers program control back to the statement which follows the GOSUB ...
. OF .. . statement.

Explanation

The GOSUB statement allows a frequently used set of program instructions to be
entered as a program subroutine, then allows these instructions to be executed at
different points in the main program whenever the need arises.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
GOSUB/RETURN

The following example illustrates program flow when a GOSUB statement is executed:

MAIN PROGRAM SUBROUTINE
400 READ X
430 PRINT X
440 GOSUB 2000)
450 READ Y \ 1980 STOP
1990 REM COPY and PAGE Subroutine
_) 2000 COPY

) > ! 2010 PAGE
480 PRINT Y Pl 2020 RETURN
490 GosuB 2000 = _ -
500 READ Z o7

In this example, line 4@@ in the main program causes the BASIC interpreter to assign values
to the elements of the previously dimensioned array variable X. These values are
contained in a DATA statement located elsewhere in the program. A short time later, line
43@ is executed and the elements of array X are printed on the GS display. After the elements
are printed, line 44@ transfers program control to line 2¢¢@ — the beginning ofaPAGE and
COPY subroutine. This subroutine causes an attached Hard Copy Unitto make a paper copy
of the information on the display (line 2¢@), then PAGE the cursor to the HOME position
and erase the screen. The RETURN statement in line 2¢2@ transfers program control back

to the main program —- to the statement following the GOSUB statement which originally
transferred control. (The RETURN statement is not to be confused with the RETURN key
on the GS KEYBOARD.)

It can be seen from this example that the COPY and PAGE subroutine can be executed
anywhere in the program just by specifying a GOSUB 20¢@¢ statement.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 5-11

CONTROLLING PROGRAM FLOW
GOSUB/RETURN

Selecting a Subroutine from a List of Subroutines

The GOSUB ... OF.. form of the GOSUB statement provides the option of transferring
program control to one of several subroutines listed in the GOSUB statement. The subroutine
selected depends on the line number selector which follows the keyword GOSUB.

For example:
3@¢¢ GOSUB D OF 5¢¢, 6¢@, 70¢, 8¢¢

In this example, the assigned value of the numeric variable D is the line number selector
which indicates which subroutine in the line number list following the keyword OF is to be
executed. Each line number in the list is the first line number in a subroutine. If the assigned
value of D is 1, for example, then program control is transferred to the subroutine which

starts with the line number 5@@. If the assigned value of D is 2, then program control is
transferred to the subroutine which starts with the line number 60@, and so on. After the
RETURN statement is executed at the end of the subroutine, program control is transferred
back to the statement which immediately follows the GOSUB . . . OF . . . statement which
originally transferred control.

If the assigned value of D in the preceding example is not an integer (3.333 for example)
then the BASIC interpreter rounds the value to an integer before a selection is made. Any
number with a fractional part equal to or greater than .5 is rounded to the next highest
integer. (This rounding is done for selection purposes only; the actual value of D remains
unchanged.)

If the line number selector rounds to an integer which is less than 1 or greater than the
number of line numbers in the list, then the branch does not occur and program control is
transferred to the next statement following the GOSUB . . . OF . . . statement.

Internal Considerations

Each time a GOSUB statement is executed, 6 bytes of memory are dynamically allocated to
store the return address. This information is used by the RETURN to branch back to main
program and the 6 bytes of memory are then freed for future use.

Use of GOTO and IF-THEN statements which branch to line numbers within the scope of a
subroutine is legal and acceptable practice. It is also acceptable to have several RETURN
statements in a subroutine when required by the application’s logic.

However, branching out of a subroutine back to the main program or another part of the main
program with a GOTO or IF-THEN statement is not recommended. This practice will
eventually generate a MEMORY FULL condition since the six bytes of memory are not freed by
the execution of a RETURN statement.

The execution of an END statement will also free all the dynamically allocated memory.

5-12 REV-B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW

THE GO TO STATEMENT

Syntax Form:

{GO TO } {Hne number
[Line number :l GOTO numeric expression OF line number [, line number] ..

Descriptive Form:

GO TO } { line numbel }
[Line number] GOTO line numbe- selector OF line number list

Purpose

The GO TO statement unconditionally transfers program contro! to the specified line
number. If the keyword OF is specified, then program control is transferred to a line number
located in a line number list.

Explanation

Transferring Program Control

The GO TO statement unconditionally transfers program control to the specified line
number. After program control is transferred, normal sequential execution continues from
that point. If the specified line number doesn’t exist, an error occurs and program execution
is aborted. The keyword GO TO can also be specified as GOTO.

The following example is a program which solves the Pythagorean Theorem after the
values of A and B are input from the GS keyboard. The GO TO statement in line 16@ places
the program into a continuous loop. This allows the theorem to be solved again and again
without restarting the program each time. The only way to exit this loop is to press the
BREAK key on the GS keyboard.

100 PRINT "Let’s Solve the Pythagorean Theorem”
110 PRINT "C = SQR (At2 + Bt2)

120 PRINT "Enter a Value for A and B”

130 INPUT AB

140 PRINT "C is Equal to "; SQR (At2 + B12)

150 PRINT

160 GO TO 130

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

GO TO

5-13

CONTROLLING PROGRAM FLOW
GO TO

Selecting the Transfer Destination Point from a List
TheGOTO...OF...formofthe GO TO statement allows the transfer destination point to
be selected from a list of line numbers. For example, the statement . . .

250 GO TO 2 OF 9¢@, 545, 25, 365

causes program control to be transferred to line 545, the second statement in the list. If this
statement were . . .

250 GO TO 4 OF 9¢@, 545, 25, 365
then program control would be transferred to line 365, the fourth statement in the list.

The line number selector which follows the keyword GO TO is usually specified as a
numeric expression (the selector can also be numeric variable, a numeric function, a
subscripted array variable, etc.) The only requirement is that all variables in the numeric
expression must have assigned values by the time the statement is executed.

If the line number selector is specified as avariable, and the assigned value of the variable is
not an integer, then the BASIC interpreter rounds the value to an integer before selecting
the line number. For example:

375 GO TO R3 OF 1¢5, 215, 530, 135

Assume the value of R3in this statement is dependent on the result of a previously executed
mathematical equation. If the assigned value of R3 turns out to be 3.67, for example, the
BASIC interpreter transfers program control to statement 135, the fourth statement in the
list. Any number with a fractional part equal to or greater than .5 is rounded to the next
highest integer. The rounding of the line number selector is done for selection purposes
only; this process does not alter the original value assigned to the variable.

If the line number selector rounds to an integer which is less than 1 or greater than the
number of line numbers in the list, the branch does not occur and program control is

transferred to the statement which follows the GO TO statement.

GO TO should not be used to enter FOR/NEXT loops; doing so may produce
unpredictable results or fatal errors.

A good example on how the GO TO ... OF ... statement is used is found under the POLL
statement explanation in the Handling Interrupts section.

5-14 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
GO TO

Using the GO TO Statement and the STEP PROGRAM Key

When a GO TO statement is entered directly from the GS keyboard and the RETURN key is
pressed, the program line counter is set to the specified line number. For example:

GO TO 5¢9

This statement sets the program line counter to line 5@@. Line 500 can now be executed by
pressing the STEP PROGRAM key on the GS keyboard. Pressing the STEP PROGRAM

key repeatedly causes the program to be executed sequentially one statement at a time
from the point where the program line counter is set. This technique is useful in trying to find
abug in a program. For example, the GO TO statement can be used to place the program
line counter in the area of the program to be debugged. The execution of the program

can then be examined one statement at a time as the STEP PROGRAM key is pressed
again and again. See the Program Editing section for more information on debugging a
program.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 5-15

CONTROLLING PROGRAM FLOW
IF..THEN..

THE IF ... THEN ... STATEMENT

Syntax Form:

[Line number] IF numeric expression THE line number

Descriptive Form:

[Line number] IF numeric expression THEN line number

Purpose

ThelF ... THEN . .. statement transfers program control to the specified line number if the
specified numeric expression is logically true; if the numeric expression is not logically true,
then the program continues executing in sequence.

Explanation

The IF ... THEN statementis a conditional transfer statement which "tests” to see if a specified
numeric expression is true. Typically, the numeric expression is a comparison between two
numeric expressions or acomparison between two character strings. IF the specified numeric
expression is logically true, THEN the program branches to the specified line number and
continues executing in sequence. IF the specified numeric expression is not logically true,
THEN the branch does not occur and the program continues to the next statement.

A Simple Numeric Expression

The simplest form of the IF . .. THEN . . . statement involves a numeric expression without
logical or relational operators. For example:

300 IF A THEN 500

In this example, the assigned value of A is evaluated to seeif itis alogical one oralogical zero.
IF the absolute value of A is equal to or greater than .5, then itis considered to be a logical one

and program control is transferred to line number 500. IF the absolute value of Ais less than .5,
then it is considered to be a logical zero and program control continues to the statement
following the IF . . . THEN . . . statement.

5-16 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
IF.. THEN..

The numeric expression following the keyword IF can contain any number of numeric
constants, numeric variables, numeric functions, and subscripted array variables joined
together by arithmetic, logical, and relational operators. The only requirement is that the
numeric expression must be in a form such that the BASIC interpreter can reduce the
expression to a numeric constant. The BASIC interpreter treats the numeric constant as a
logical one or a logical zero.

Comparing the Relationship Between Two Numeric Expressions

The numeric expression following the keyword IF can contain two numeric expressions
separated by a relational operator. Th s type of numeric expression takes the form:

numeric expression relational operator numeric expression

Of course, the numeric expression on either side of the relational operator can be a
combination of numeric functions, numeric variables, subscripted array variables, and
numeric constants. All numeric comparisons are made within the parameters of FUZZ.
The relational operator can be one of the following:

RELATIONAL
OPERATOR MEANING
<> "is not equal to”
< "is less than”
<= "is less than or equal to”
> "is greater than”
> = "is greater than or equal to”

The following examples illustrate how the BASIC interpreter interprets a conditional transfer

statement:

STATEMENT MEANING

4500 IF M=R THEN 600 IF the current value of M is equal to the current
value of R, THEN go to line 6@0; if not, proceed
io the next statement.

455 |F M<< >R THEN 700 IF the current value of M is not equal to the cur-
rent value of R, THEN go to line 700; if it is,
proceed to the next statement.

460 IF X<MEM THEN 809 IF the current value of X is less than the current

value of the MEMORY function, THEN go to line 80@;
if not, proceed to the next statement.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A MAR 1979 5-17

CONTROLLING PROGRAM FLOW

IF.. THEN..
STATEMENT MEANING
465 IF D3< = X12+3 THEN 900 IF the current value of D3 is less than or equal
to the current value of the expression Xt2+3,
THEN go to line 90@; if not, proceed to the next
statement.
470 IF Q9—45>0 THEN 1000 IF the current value of the expression Q9—45 is

greater than @, THEN go to line 1000; if not,
proceed to the next statement.

Logical Comparisons

Logical comparisons can also be used as a basis for conditional transfers. The logical comparisons
are specified as follows:

numeric expression logical operator numeric expression

Any number of numeric expressions and logical operators can be specified. The rules of
Boolean algebra must be followed. Each numeric expression is treated as a logical one or a
logical zero. All numbers whose absolute value is equal to or greater than .5 are considered to
be alogical one; all numbers whose absolute value is less than .5 are considered to be a lagical
zero.

The logical operators are specified as AND, OR, or NOT and correspond to their Boolean
algebra equivalent. The following examples illustrate conditional transfers based on logical
comparisons:

STATEMENT MEANING

250 IF A AND B THEN 6090 IF the assigned value of A is a logical one AND
the assigned value of B is a logical one, THEN go
to line 600; if not, proceed to the next state-
ment.

260 IF B OR C THEN 700 IF the assigned value of B is a logical one OR the

assigned value of C is a logical one, THEN go to
line 700; if not, proceed to the next statement.

5-18 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
IF.. THEN..

STATEMENT MEANING

270 IF A AND B OR NOT C THEN 8@@ IF the assigned value of A is a logical one AND
the assigned value of B is a logical one OR the
assigned value of C is NOT a logical one, THEN go
to line 80@; if not, then proceed to the next
statement.

Execution Priority

The following list specifies the execution priority the BASIC interpreter follows when
executing a BASIC statement. The highest priority is 1, the lowest priority is 14.

Priority Operators
1. Left Paren (
2. Functions
3. Monadic Operators +, —, and NOT
4, Exponentiations Operators 1
5. Dyadic Operators # and /
6. Dyadic Operators +- and —
7. The Arithmetic Operators MIN and MAX
8. Relational Operators =, < >, <> < =, and > =
9. The Logical Operators AND and OR
10. The Keyword USING and comma (,)
11. Right Paren) and semicolon (;)
12. The Keywords OF, THEN, STEP, TO, and the symbols @ # % =
13. All Other Keywords
14, Carriage Return

Comparing Siring Constants

The relationship between two string constants can also be used as the basis for a conditional
transfer. A string comparison is allowed because the entry, as a whole, is reduced to a logical
one or a logical zero. A string relationship is specified as follows:

{string constant }

string variable

{string constant }
relational operator

string variable

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

CONTROLLING PROGRAM FLOW
IF..THEN..

The string constant on either side or the relational operator can be specified as a string
constant in quotation marks or represented by a string variable. The relational operators are
the same as those used with numeric expressions.

The two string constants are compared one character ata time from left to right and evaluated
according to the priority established in the ASCII Character Priority for String Inequalities
Chart in Appendix B; the first difference determines the relationship. For example:

“Bugs” = "Bunny”

When this expression is evaluated, the BASIC interpreter first compares B and B and finds no
difference. The second character in each string is then compared (u and u) and again no
difference is found. The third characters are compared (g and n) and a difference is found.
Since the letter n is considered greater (higher priority) than the letter g, the string constant
"Bunny" is considered greater than the string constant "Bugs”. The relationship as stated is
therefore not true. If the comparison were . . .

”BUgS" < ”BUHHY”

then the relationship would be true.

When two string constants are compared, upper and lower case alphabetics are considered
equal unless the statement SET NOCASE is executed. For example, madness = MADNESS
unless NOCASE is set.

If two string constants are identical in every way except that one is longer than the other, then
the longer string is considered the greater string.

As an example, the comparison "Rabbits” > "Rabbit" is true, because the string constant
"Rabbits” has an additional letter (s).

The following examples illustrate ways in which string relationships can be used to control
conditional transfers:

STATEMENT MEANING

800 IF A$ = "Record” THEN 1200 IF the string constant assigned to A$ is equal to
the string constant "Record”, THEN go to line 1200;
if not, proceed to the next statement.

810 IF A$ < > "Menu” THEN 1400 IF the string constant assigned to A$ is not equal

to the string constant "Menu”, THEN go to line
1400; if not, proceed to the next statement.

5-20 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

STATEMENT

820 IF X$<Y$ THEN 3000

830 IF "Rick” <= Q$ THEN 100

840 IF Z$> "Payroll” THEN 5005

850 IF RS> =E$ THEN 999

4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
IF.. THEN..

MEANING

IF the string constant assigned to X$ is less than
the string constant assigned to Y$, THEN go to
line 3000; if not, proceed to the next state-
ment.

IF the string constant "Rick” is less than or equal
to the string constant assigned to Q$, THEN go to
line 100; if not, proceed to the next statement.

IF the string constant assigned to Z$ is greater
than the string constant "Payroll”, THEN go to
line 50@5; if not, proceed to the next statement.

IF the string constant assigned to R$ is greater
than or equal to the string constant assigned ES$,
THEN go to line 999; if not, proceed to the next
statement.

REV A, MAR 1979 5-21

CONTROLLING PROGRAM FLOW

RETURN

5-22

THE RETURN STATEMENT

Syntax Form:

[Line number] RET

Descriptive Form:

[Line number] RETURN

Purpose

If used alone, the RETURN statement returns the system to keyboard control (see description

under the GOSUB statement).

Explanation

IfaRETURN statementisencounteredin a program and the BASIC interpreter is not currently
executing a subroutine statement (GOSUB or GOSUB . . . OF), then program execution is
terminated and control is returned to the GS keyboard. This is the same as executing an END

statement.

REV A, MAR 1979

4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
RUN

THE RUN STATEMENT

Syntax Form:

[Line number] RUN [line number]

Descriptive Form:

[Line number] RUN |: starting line number]

Purpose

The RUN statement places the system under program control.

Explanation

When RUN is executed directly from the GS keyboard, the BASIC interpreterexecutes a
RESTORE, sets NOKEY, and clears all return vectors for GOSUB statementsand FOR . ..
NEXT loops. The BASIC interpreter then enters the program RUN mode and executes the
lowest numbered statement as the first instruction.

If a line number is specified as a parameter, such as RUN 5@@, then the BASIC
interpreter starts executing the program at the specified line number; in this case, the BASIC
interpreter starts executing the program at line number 5@@. Variables defined in the
statements which are skipped are considered to be undefined or retain their previous values,
if values have been assigned to them.

The RUN statement in Graphic System EASIC language is different from the RUN command
in most other BASIC languages in that it can be issued under program control. Forexample:

550 RUN

When this statement is executed, most system parameters are set to their default values (as
specifiedinthe INIT statement) and program control is transferred to the lowest line number
in memory.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 5-23

CONTROLLING PROGRAM FLOW
RUN

If the statement . . .
560 RUN 3¢¢

is executed under program control, then the system parameters stay in their present state
and program control is transferred to line 3@@. This statement is the same as executing a
GOTO 3¢d statement.

A running program can be stopped by pressing the BREAK key on the GS keyboard. After
the current statement is finished executing, the message

PROGRAM INTERRUPTED PRIOR TO LINE . ..
or

PROGRAM INTERRUPTED

is printed on the GS display and control is returned to the GS keyboard. The program can be
continued from the interruption point by executing a RUN statement. For example, if the
BREAK key is pressed and the message . . .

PROGRAM INTERRUPTED PRIOR TO LINE 35@

is printed on the screen, then a RUN 350 statement can be executed from the GS keyboard
to continue the program at line 35@. The program environmental conditions remain
unchanged.

If the BREAK key is pressed twice in succession before the current statement is finished
executing, the message

PROGRAM ABORTED IN LINE . ..

is printed on the screen and program execution is ended. (Unless the internal magnetic
tape unitis running). This is the same as executing an END statement.

5-24 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

CONTROLLING PROGRAM FLOW
STOP

THE STOP STATEMENT

Syntax Form:

[Line number] STO

Descriptive Form:

[Line number] STOP

Purpose

The STOP statement halts program execution and returns control of the system to the GS
keyboard.

Explanation

Ifa STOP statement is executed under program control, the BASIC interpreter halts program
execution and returns control to the GS keyboard. For example:

430 STOP

When this statement is executed, the program halts at line 430 and the message
STOP EXECUTED IN LINE 430 PRIOR TO LINE 440

is printed onthe screen. This messageirdicates the present position of the line counter and the
position of the next statement in the program. If there are no more statements in the program,
the message "STOP EXECUTED IN LINE 43@" is printed on the screen.

The STOP statement does not disturb the current values assigned to variables or the current
environmental conditions; therefore in this example, the program can be continued by
entering a RUN 440 statement directly from the GS keyboard and pressing the RETURN key.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 5-25

HANDLING INTERRUPTS

Introduction to Handling Interrupts 6-1
Interrupt Conditions i 6-3
The OFF Statement. ... i 6-5
The ON...THEN Statement............ ..., 6-6
The POLL Statement. 6-8
The WAIT Statement. i 6-12
The WAIT ROUtINEot e e 6-14

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 6

HANDLING INTERRUPTS

INTRODUCTION TO HANDLING INTERRUPTS

General

The current BASIC program must be designed to handle peripheral service requests and SIZE
error conditions if they occur. This means that service routines must be included in the
program to service the needs of each peripheral on the General Purpose Interface Bus; in
addition, the executing program must be responsive to error conditions when they occur, or
program execution is terminated immediately. The statements in this section provide an
interrupt handling facility which enables program control to be transferred to a specified line
number when an interrupt condition occurs, and then returned to the interruption point in the
main program after the interrupt condition is serviced.

Interrupt Conditions

There are fourinterrupt conditions which a BASIC program can respond to. These conditions
are listed under the heading Interrupt Conditions following this introduction.

When an Interrupt Occurs

The action taken when an interrupt condition occurs is specified in the ON...THEN...
statement. An ON..THEN... statement must be executed for each interrupt condition.

Whenan ON... THEN... statement s evaluated during program execution, no immediate action
may occur at that time; however, the ON... THEN... statement arms the system to respond to the
specified interrupt condition. Program execution continues normally until the specified
interruptoccurs; when itdoes, the BASIC interpreter finishes executing the current statement,
then transfers program control to the ON...THEN statement. The ON...THEN... statement
transfers control to a service subroutine. When the subroutine is finished executing, program
control is transferred back to the interruption point in the main program — to the statement
which would have been executed next if the interrupt hadn’t occurred.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

6-1

HANDLING INTERRUPTS
INTRODUCTION

6-2

Polling External Peripheral Devices

External devices get the attention of the processor by pulling down on an SRQ (Service
Request) signal line on the General Purpose Interface Bus. There is only one SRQ line on the
General Purpose Interface Bus (GPIB), so each device must be polled to determine which
device is requesting service.

Normally, the ON SRQ THEN... statement transfers program control to a POLL statementin the
BASIC program. The POLL statement causes the BASIC interpreter to serially poll a list of
devices on the GPIB. The order in which the devices are polled is specified in the POLL
statement. Once the device which is requesting service is found, program control is transferred
to a service routine for that device via a GOTO...OF... statement which generally follows the
POLL statement.

When the service routine is finished executing, program control is returned to the interruption
point in the main program.

Turning OFF a Program Response to an Interrupt Condition

In some phases of program execution, it is desirable to disable a program’s response to an
interrupt condition. This is done by executing an OFF statement for that interrupt condition. A
program’s response to the interrupt condition is re-enabled by re-executing an ON... THEN...
statement.

Waiting for an Interrupt

Sometimes it is desirable to delay program execution and WAIT for an interrupt such as SRQ.
The WAIT statement causes a program to wait for an interrupt (any interrupt). When an
interrupt does occur, program execution resumes. Program control is then transferred
immediately to an ON...THEN... statement, then to a POLL statement, and then to a service
routine in the BASIC program. Program control eventually finds its way back to the statement
following the WAIT statement and continues sequential execution from that point.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRUPTS
INTERRUPT CONDITIONS

INTERRUPT CONDITIONS

There are four interrupt conditions which a BASIC program can respond to. One of these

conditions is caused by the occurrence of anumeric SIZE error during program execution. The
four interrupt conditions are as follows:

SRQ (Service Request)

This condition occurs when a peripheral device onthe General Purpose Interface Bus requests
service by activating the SRQ signal line. Normally, a peripheral does not release the SRQ
signalline untilitis polled by the processor; if it doesn't get serviced, then it never releases SRQ
and the system aborts further operaticons.

If an SRQ is generated by a peripheral device, refer to that device’s Operator’'s manual for
instructions.

NOTE

According tothe |[EEE GPIB Standard: If several devices are connectedtothe GPIB
bus, one more than 50% of the devices must be turned on (regardless of whether they
are actually used), or the GPIB may be loaded down by the turned-off devices,
causing a spurious SRQ signal on the bus.

EOI (End Or Identify)

This condition signals the end of a data transfer over the General Purpose Interface Bus and is
activated by the source of the transmission as the last byte of data is placed on the bus. The
meaning of the EOI signal can be redefined in different applications.

EOF (End Of File)

An End Of File condition occurs when the logical end of a tape file is reached on the internal
tape drive. The logical unit number @ must be specified along with the keyword EOF. For
example, the statement ON EOF (@) THIZN 500 transfers program control to the line 500 when

the logical end of the current magnetic tape file is reached. The End Of File condition is
specified as EOF (9).

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 6-3

HANDLING INTERRUPTS
INTERRUPT CONDITIONS

SIZE Errors

A SIZE interrupt condition (sometimes called a software interrupt) is generated by numeric
overflow conditions as a program executes. In general, SIZE errors are caused by math
computations which produce out of range numbers. The numeric range of the system is
—1.0E+308 to 1.0E+308. (This range is graphically illustrated in the explanation of the FUZZ
statement in the Environmental Control section.)

The SIZE interrupt feature allows a BASIC program to take different courses of action when a
SIZE erroroccurs. Ifthe ON SIZE THEN... statementis not part of a BASIC program, then SIZE
errors are considered fatal errors; fatal errors cause program execution to terminate and the
appropriate error message to be printed on the GS display.

6-4 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRUPTS
OFF

THE OFF STATEMENT

Syntax Form:

EOF (numeric constant)
EOI
SIZE

[Line number] OFF SRQ

Descriptive Form:

[Line number] OFF [interrupt condition]

Purpose

The OFF statement prevents the current program from responding to the specified interrupt
condition after the condition is activated by an ON statement. If an interrupt is not specified as

a parameter in the OFF statement, then the program’s response to all interrupt conditions is
disabled.

Explanation

Insome phases of program execution, it is desirable to disable a program’s response to one or
more interrupt conditions. This is done by executing an OFF statement for those particular
conditions. For example, the statement OFF SIZE disables the program’s response to SIZE
errors; this might be desirable in some cases when it is known that the result of an operation is
going to be anoutofrange numberand sto be treated as a fatal error. The program’s response
to SIZE errors can then be re-enabled 2y executing an ON SIZE THEN... statement at a later
point in the program.

If an OFF SRQ statement is executed, it is essential that a SRQ interrupt not occur until the
statement ON SRQ is re-executed; otherwise a fatal error occurs and program execution is
aborted.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 6-5

HANDLING INTERRUPTS
ON..THEN...

THE ON ... THEN ... STATEMENT

Syntax Form:
‘ EOF (numeric constant)
EOI

SIZE
Line number ON SRQ

Descriptive Form:

Line number ON interrupt condition THEN line number

‘ THE line number

Purpose

The ON.. THEN... Statement transfers program control to the specified line number in

response to the specified interrupt condition.

Explanation

The ON...THEN... statementis normally placed atthe beginning of a program, butdoesn’'t have
to be. When the ON...THEN... statement is evaluated, apparent action may not be evident;
however, the statement enables the BASIC interpreter to respond to the specified interrupt
condition when it occurs. The program normally continues executing in sequence after an
ON...THEN... statement is executed, but as soon as the specified interrupt condition occurs,
the BASIC interpreter finishes the current statement, then transfers program control back to
the ON...THEN... statement. From there program control is transferred to the statement
number sgecified inthe ON... THEN... statement. The execution of the first RETURN statement
transfers program control back to the main program, to the statement foilowing the point

where the main program was interrupted.

The following statements form a typical interrupt service routine:

109 ON EOF(9)THEN 140
110 FIND 5

120 INPUT @33: Q$

130 GOTO 129

149 PRINT @33: A,B,C$,D
150 END

6-6 REV A, MAR 1979

4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRUPTS
ON..THEN...

This program finds the logical end of magnetic tape file 5, then adds one logical record to the
end of the file. The program starts by activating the EOF interrupt facility for the internal
magnetic tape unit. This tells the BASIC interpreter to be on the lookout for an End of File
condition during magnetic tape operations. Line 110 positions the magnetic tape read/write
head to the beginning of file 5. Line 120} then inputs the first logical record and assigns the
record to Q$. Program control is then transferred to line 139 which transfers control back to
line 12@. Line 120 inputs the second logical record in the file and assigns it to Q$.

Lines 120 and 130 form an endless loop and are in the program specifically to advance the
read/write head through the sequential read data file. Each time a logical record is assigned to
Q$, the previous record is overwritten. It doesn’t matter though, because the purpose of these
two statements is not to read the records; only to advance the tape head to the end of the file.

When the EOF character is reached at the end of the last logical record, program control is
transferred toline 109, then to line 140. Line 140 sends the data items assigned to the variables
A,B,C$,and D to the magnetic tape as one logical record. This record is added to the end of file
5. The old EOF mark is overwritten by the new record and a new EOF mark is recorded just after
the new data. Line 15 closes the file and terminates the program.

This program shows how to add data to a half full data file. For complete information on
internal magnetic tape operations, refer to the section titled Input/Output Operations.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 6-7

HANDLING INTERRUPTS
POLL

THE POLL STATEMENT

Syntax Form:

[Line number] POL numeric variable , numeric variable ; primary address [secondary
address] |: ; primary address [, secondary address] :I

Descriptive Form:

[Line number] POLL target variable for device identifier , target variable for return

status information ; address list

Purpose

The POLL statement causes the BASIC interpreter to serially poll each peripheral device on the
General Purpose Interface Bus (GPIB) and determine which device is requesting service.
When the device is found, the device sends its status byte to the BASIC interpreter over the
GPIB.

Explanation

The POLL statementis normally executed in response to a service request from a peripheral
device on the GPIB. Two numeric variables are specified as parameters in the POLL statement
followed by a series of I/0 addresses. The BASIC interpreter polis the first I/O address in the
list, then the second I/O address, then the third, and so on, until the device requesting service is
found. It is imperative that the 1/O address of the device requesting service is in the list, or
program execution is halted.

After the peripheral device requesting service is found, the device’s position in the list is
assigned to the first variable specified in the POLL statement. The status word of the device is
then sent over the GPIB and assigned to the second variable specified in the POLL statement.
After this is accomplished, the program line counter is advanced to the next statement,
normally a GOTO...OF... statement, which transfers program contro! to the service routine for
the device requesting service.

6-8 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRUPTS
POLL

The following program is an example of a typical interrupt handling routine:

1190 ON SRQ THEN 197

MAIN PROGRAM

1970 POLL M,W;5;12;8,4:3
1980 GOTO M OF 2000, 3008, 4000, 5000

2000 REM Service Routine for Device Number 5

29990 RETURN
3000 REM Service Routine for Device Number 12

3999 RETURN
4000 REM Service Routine for Device Number 8

4990 RETURN
5000 REM Service Routine for Device Number 3

5990 RETURN

7000 END

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 6-9

HANDLING INTERRUPTS

POLL

6-10

Inthe beginning of the program, line 11@ enables the BASIC interpreter to respond to the SRQ
(Service Request) interrupt condition; the program then executes in normal sequencial
order. If a peripheral signals SRQ while the main program is executing, the BASIC interpreter
finishes the present statement and then transfers program control back to line 119 — the ON
SQR THEN 197@ statement. This statement then transfers control to the POLL statementin line
1970.

The POLL statement in this program contains the numeric variables M and W as parameters
followed by I/0 addresses 5;12;8,4; and 3. As the BASIC interpreter executes this statement, it
first addresses device number 5 to see if it is requesting service; if not, it goes on to device 12,
then to device 8, and then to device 3. In this case, secondary address 4 is specified after
primary address 8 and is issued immediately after primary address 8. This secondary address
might, forexample, be used to address a submodule within the mainframe of device 8. If neither
ofthese devices is requesting service, an error occurs. This means another device on the GPIB
is requesting service and should have it's I/0 address included in the I/0 address list.

Assume in this case that device number 12 is requesting service. When the BASIC interpreter
polls device 12 and finds itis requesting service, the BASIC interpreter assigns the number 2to
thevariable M; a2 is assigned because device 12 isthe second device in the list. If device 3 were
requestingservice then a4 would be assigned the the variable M because device 3 is the fourth

device in the list.

Aftera 2 is assigned to the variable M, the BASIC interpreter assigns the status word of device
12 to the variable W — the second variable specified in the POLL statement. This information
can bedisplayed, if desired, by executing a PRINT M,W statement after the POLL statementis
executed. The meaning of the status word is device dependent and is defined in the manual for
the peripheral device.

After the two variables in the POLL statement have assigned values, the program advances to
the next line; in this case, to a GOTO M OF... statement. As explained in the Controlling
Program Flow section, this statement transfers program control to one of the line numbers in
the line number list. The line number receiving control is specified by the assigned value of M.
In this case, M has an assigned value of 2, so program control is transferred to line number 3000
— the beginning of the service routine for device number 12.

When the service routine for device 12 is finished executing, the RETURN statement returns
program control back to the main body of the program at the point where the interruption first
occurred.

REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRUPTS
POLL

What Happens When Two Devices Request Service at the Same Time?

If two peripheral devices request service at the same time, the first device in the I/0 address list
getsserviced first. Forexample, assume that device 12 and device 8 request service at the same
time. The BASIC interpreter takes a poil and addresses device 5 followed by device 12. The
number 2 is then assigned to the variable M, and program control is transferred to the service
routine of device 12 via the GOTO statement in line 1980. While this routine is executing, the
BASIC interpreter is inhibited from responding to any other SRQ interrupts. Eventually,
program control is transferred back to the interruption point in the main program and the
BASIC interpreter’s response to SRQ is re-enabled. At that time, the program branches back to
the POLL statement and executes another serial poll. If devices 5 and 12 are not requesting
service, then device 8 is serviced. If, however, device 5 or device 12 requests service in the
meantime, they are serviced again. Eventually, when devices 5 and 12 are satisfied, the
BASIC interpreter reaches device 8 in the serial poll and the service routine for device 8 is
executed.

NOTE

According tothe IEEE GPIB Standard: If several devices are connected to the GPIB
bus, one more than 50% of the devicias must be turned on (regardless of whether they
are actually used), or the GPIB may be loaded down by the turned-off devices,
causing a spurious SRQ signal on the bus.

Interrupt Service Routines Cannot Be Interrupted

While the BASIC interpreter is responding to a Service Request, it cannot be interrupted to

respond to another Service Request. Other peripheral devices may request service, but they
can'tbe serviced until the BASIC interpreter finishes executing the current service routine and
branches back to the main program.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 6-11

HANDLING INTERRUPTS
WAIT

THE WAIT STATEMENT

Syntax Form:

[Line number] WAI

Descriptive Form:

[Line number] WAIT

Purpose

The WAIT statement causes program execution to haltand wait for an interrupt condition. This
statement ensures that the time taken to begin the interrupt service routine is minimized.

Explanation

The program below is designed specifically to service three external peripheral devices on the
General Purpose Interface Bus (GPIB). The WAIT statement causes the BASIC interpreter to
wait for one of the peripheral devices to request service.

118 ON SRQ THEN 140

120 WAIT
139 GOTO 120

140 POLL A,B; 5;10; 15
150 GOSUB A OF 200, 300, 400

160 RETURN

200 PRINT "Device 5 is now being serviced"

290 RETURN

300 PRINT "Device 10 is now being serviced”

390 RETURN

400 PRINT "Device 15 is now being serviced”

490 RETURN
500 END

6-12

REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRUPTS
WAIT

When line 110 is executed, the BASIC interpreter is armed to respond to an SRQ interrupt
condition; line 120 then causes the BASIC interpreter to wait for an interrupt condition to occur
before going to the next statement. If an interrupt condition other than SRQ occurs, the
program line counter advances to line 13@ where it is promptly returned to line 120.

When a peripheral device on the General Purpose Interface Bus activates SRQ, program
control is immediately transferred from the WAIT statement in line 120 to the ON SRQ
statementin line 11@and then to line 14@ where the BASIC interpreter serially polls each device
to see which device is requesting service. Once the device is found, its identifying number is
assigned to the variable A. (This sequence was justdescribed in the POLL statement). Theline
counteris then incremented to line 150 where the GOSUB statement transfers program control
to the device’s service routine.

Afterthe serviceroutine is finished executing, the RETURN statement atthe end of the routine
transfers program control back to line 16@, which in turn transfers control back to the
interruption pointin the main program; in this case, to line 13@ which returns control to line 12,
the WAIT statement. The program then waits for another service request from a peripheral
device.

The advantage of the WAIT statement is that it reduces the time it takes the BASIC interpreter
to respond to a service request. This time period is called the interrupt latency period.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 6-13

HANDLING INTERRUPTS
THE WAIT ROUTINE

THE WAIT ROUTINE

Syntax Form:

“WAIT"

CALL
[Lme number] l string variable

] [.numeric variable]

Descriptive Form:

[Line number] CALL routine name [number of seconds]

NOTE

Thisroutineis not availableinthe 4051 Graphic System. The delay produced by the
WAIT routine is accurate to £+10%.

Purpose

The WAIT routine halts program execution for a specified number of seconds, or until an
interrupt condition occurs.

Explanation

The WAIT routine produces a pause in program execution. The number of seconds can be
expressed as a constant, variable or expression. If an interrupt condition occurs while a WAIT
routineis being processed, theinterruptis handledimmediately and no further waitingis done.
Interrupt conditions are SRQ, EOI, EOF, and SIZE.

If the numeric expression is non-positive, a zero is assumed (that is, the system pauses for @
seconds).

If no numeric expression is entered, the routine operates like the WAIT statement.

6-14 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

HANDLING INTERRRUPTS
THE WAIT ROUTINE

The following example illustrates how the WAIT routine can be used:

680-840 (output subroutine to display information)
850 CALL "WAIT", 10

860 PAGE

870 RETURN

Lines 680 through 840 are PRINT, MOVE, and DRAW statements to place a graph or table on

the display. Line 850 pauses for about 1) seconds to let you view the display or decide to make
ahard copy. Line 86@then erases the scrreen and line 87@ returns control to the main program.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 6-15

INPUT/OUTPUT OPERATIONS

Introduction to Input/Qutput Operations 7-1
Input/Output (I/O) Addressescccviiiiieiinnnennn.. 7-7
The APPEND Statement............. .. i, 7-17
The BAPPENRoutine....... ... i i 7-21
The BOLD Routine. ... e 7-23
The BSAVE ROULINGot e e 7-25
The CLOSE Statement........... i, 7-30
The DASH Statement o i 7-32
The DATA Statement i i 7-34
The FIND Statement i 7-38
The IMAGE Statement i i 7-45
The INPUT Statement.......... i 7-75
The KILL Statement i 7-94
The LINKRoutine. ... i e e 7-96
The MARK Statement............. i i 7-100
The MTPACK Statement i, 7-105
The OLD Statement.......... i i 7-106
The PRINT Statement. i 7-108
The RBYTE (Read Byte) Statement 7-136
The READ Statement i i e 7-139
The RESTORE Statement i, 7-145
The SAVE Statement i i 7-148
The SECRET Statement.o i 7-151
The TLIST (Tape List) Statement 7-153
The TYPFunction ..ot e e et 7-155
The WBYTE (Write Byte) Statement 7-158
The WRITE Statement i 7-168

4050 SERIES GRAPHIC SYSTEMS REFERENCE

Section 7

INPUT/OUTPUT OPERATIONS

INTRODUCTION TO INPUT/OUTPUT OPERATIONS

System Architecture

The central controller for the Graphic System is supported by the Random Access Memory and
the Read Only Memory. All other modules are considered peripheral devices. This includes
internal peripheral devices likethe GS keyboard and the GS display as well as external devices

like a hard copy unit, a Joystick, or an X-Y plotter connected to the General Purpose Interface
Bus.

I/0 Addressing Facility

The Graphic System has a unique I/0 addressing facility which allows each peripheral device
inthe system to be treated on an equal basis. This includes internal peripheral devices, as well
as external peripheral devices.

Each peripheral device in the system is given a peripheral device number called a primary
address. Specifyinga primary address in a BASIC statement selects a peripheral device for an
I/O operation. For example, the statement PRINT @32: selects the GS display as the output
device for the PRINT operation; the statement PRINT @33: selects the internal magnetic tape
unit as the output device for the print operation; and the statement PRINT @16: selects
peripheral device number 16 on the General Purpose Interface Bus as the output device for the
print operation. :

Each primary address carries with itasecond part called asecondary address. The secondary
address tells the peripheral device what the 1/0O operation is all about. For example, the
secondary address 12 is issued with each PRINT statement. This secondary address tells the
selected peripheral device that the BASIC interpreter is executing a PRINT statement and to
prepare to receive information in ASCIl code format. The I/O address is issued first before the
datatransfer begins. After the I/O address is issued, the data transfer takes place. In this case,
the selected peripheral device receives “he information in ASCIl code format, then prints the
information on its recording media.

In most cases, the I/0 address entry in & BASIC statement is optional. If an I/0 address is not
specified, the BASIC interpreter automatically issues an 1/0 address appropriate for the
keyword.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979

7-1

INPUT/OUTPUT OPERATIONS
INTRODUCTION

7-2

Graphic System Keyboard

The Graphic System keyboard is the primary input device for the system. While the system is
idle, entries from the keyboard are either evaluated immediately or placed in memory for later
use. While the system is operating under program control, the INPUT statement is used to
make keyboard entries. The INPUT statement allows numeric data, array elements, and
character strings to be inputinto memory from the GS keyboard while the system is operating
under program control. When an INPUT statement is executed, program execution halts and a
blinking question mark appears on the GS display. After a keyboard entry is made and the
RETURN key is pressed, program execution continues in normal sequential order. Normally, a
PRINT statement is executed prior to an INPUT statement to print a message on the GS
display. The message tells the keyboard operator what to enter .

Graphic System Display
Printing Data Items

The Graphic System display is the primary output device. Each keyboard entry is printed on
the GS display. Data items specified in PRINT statements are also printed on the GS display.

The PRINT statement also sends numeric data, array elements, and character strings to the GS
display for viewing while the system is operating under program control. The information is
printed according to the guidelines specified in a default print format, unless a different print

format is specified via a PRINT USING statement. The system offers virtually an unlimited

choice of print formats. Each print format is specified in an IMAGE statement.

Listing a BASIC Program

The BASIC program currently in memory is listed on the GS display by executing a LIST
statement. One line in the program can be listed, a small portion of the program can be listed, or
the entire program can be listed. If an 1/0 address is specified in a list statement, the program
listing is sent to the specified peripheral device in ASCII code format.

An Internal Data File

The DATA statementina BASIC program acts like an internal data file for storing numeric data
and character strings. The data items in the DATA statement are assigned to variables with the
READ statement as the program executes.

Magnetic Tape Operations
Creating Files On Magnetic Tape

Before information can be stored on magnetic tape, empty files must first be created. New files
are created on the magnetic tape with the MARK statement. Each file can be any given length.
Onceafileis created, the file can be used to store aBASIC program in ASClI format, ordatain
either ASCII format or binary format.

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INTRODUCTION

Finding Files on Magnetic Tape

The magnetic tape head is positioned to the beginning of a tape file by executing a FIND
statement. The FIND statement not only finds the file, but it opens the file for access. This is
analogous to opening a disc file for access.

Saving a BASIC Program on Magnetic Tape

The BASIC program currently in memory can be saved on magnetic tape by executing a FIND
statement to open afile, then executinga SAVE or CALL "BSAVE" statement. The file must be
large enough to hold the BASIC program. The SPACE function is normally used to find out
how large a BASIC program is before the program is sent to the magnetic tape. The BASIC
program is stored in ASCII code format with the SAVE command, and in binary format with the
"BSAVE" routine.

Saving a BASIC Program in Secret Format

The current BASIC program can be saved on magnetic tape in a secret format by executing a
FIND statement, a SECRET statement, then a SAVE statement. The program is still stored in
ASCII code, but the format is scrambled and only the Graphic System has the ability to
unscamble the format when the program is brought back into memory.

Recovering a BASIC Program from Magnetic Tape

A BASIC program stored on magnetic tape is brought back into memory by executing a FIND
statement, then an OLD, CALL "BOLD ", or CALL "LINK" statement. These statements clear
the entire contents of the Random Access Memory before the BASIC program is brought in
from the magnetic tape except that all variable dimensions and assignments are retained by the
"LINK" routine. If the BASIC program is marked SECRET, the program can only be executed;
the program can never be listed, saved or output from the machine. Secret programs are
removed from memory be executing a DELETE, OLD, CALL "BOLD", or CALL "LINK"
statement, or by turning off the system power. ASCI| programs are broughtintomemory by the
OLD statement; binary programs by the "BOLD" routine.

Appending Programs from Magnetic Tape

Program lines stored on magnetic tape can be added to the BASIC program currently in
memory by executing an APPEND or CALL "BAPPEN" statement. A dummy statement in the
current BASIC program acts as a target for the incoming program lines. If the dummy
statementis specified at the end of the current BASIC program, then the program lines coming
inare addedtothe end of the program. If the dummy statement is specified in the middle of the
current BASIC program, the incoming program lines are inserted into the middle of the

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-3

INPUT/OUTPUT OPERATIONS
INTRODUCTION

program at the specified point. The program lines beyond that point are moved down to make
room for the new lines coming in. The newly appended program lines and the lines that are
moved down are automatically renumbered with a specified line number increment. ASCII
programs are appended to memory with the APPEND command; binary programs with the
"BAPPEN" routine.

Storing DATA in ASCII code format on Magnetic Tape

Numeric data and character strings are stored in a magnetic tape file by executing a FIND
statement, then a PRINT @33: statement. Primary address 33 specifies that the data is to be
sent to the internal magnetic tape.

All of the data items specified in a PRINT statement are treated as a single unit called a logical
record. When the data is brought back into memory with the INPUT statement, one logical
record is brought back in at a time. If an ASCII data file is partially filled, more data can be
added to the file. The magnetic tape head must first be positioned to the EOF (End Of File) mark
in the file. This is done by executing an INPUT statement for each logical record in the file;
when the EOF mark is found, more data items can be added until the physical end of the file is
reached.

Recovering ASCII Data from Magnetic Tape

The INPUT statement is used to recover ASCII data items from the magnetic tape. The FIND
statement must be executed firstto open thefile for access. The INPUT statementis then used
to bring in the ASCII data, one logical record at a time.

Storing Data in Binary Format on Magnetic Tape

Numeric data and character strings are stored in machine dependent binary code by executing
aFIND statement, then a WRITE statement. Theterm "machine dependent binary code” refers
totheinternal format used by the Graphic System to store datainthe Random Access Memory.
Binary data transfers are normally faster and require less storage space, because the
conversion back and forth to ASCII code is eliminated.

Recovering Binary Data from Magnetic Tape

Data stored in binary formatis brought back into memory by executing a FIND statement, then
a READ @33: statement. The variables specified in the READ statement must match the data
item type in the binary file; that is, a numeric variable must be specified if a numeric data itemis
the next item in the file; likewise, a string variable must be specified if the next data item is a
character string. If the data item type is unknown, the TYP function can be executed to
determine the data item type before a READ statement is executed.

74 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INTRODUCTION

Closing a Magnetic Tape File

Closing a magnetic tape file is an important step after a PRINT, or WRITE operation. A
magnetic tape file can be closed by executing a FIND statement, a CLOSE statement, or an
END statement. Closing a file makes sure that the last pieces of information remaining in the
magnetic tape memory buffer are forced onto the magnetic tape before the system power is
turned off. Closing a magnetic tape file after an OLD, INPUT, or READ operation is not
necessary although it is good programming practice to do so.

Killing a Magnetic Tape File

Anold magnetictape file can bereused to store new information if the fileis first killed with the
KILL statement. When a KILL statement is executed, a fast search for the file is initiated. When
the file is found, the file header is markad NEW and the old information in the fite cannot be
recovered unless the magnetic tape status is changed to non-header format. The file can then
be used to store either a new BASIC program, or data in either ASCII or binary format.
Although the information in a program file and an ASCII data file can be overwritten with new
ASCII data without killing the first file, it is good practice to kill the file first. Likewise,
informationin abinary data file can be overwritten with new binary data without killing the file
first, but again, itis good practice to kill the file first. This is the only way to change a file tape
from ASCII to binary and vice versa.

Listing a Magnetic Tape Directory on the GS Display

If the contents of a magnetic tape file are unknown, a TLIST statement can be executed to list
the contents of the tape cartridge on the GS display. Executing TLIST rewinds the current
magnetic tape to the beginning. The information stored in each file header is then printed on
the GS display. This information includes the file number, the file type (program or data), the
data storage format (ASCII or binary), the program storage format (secret or non-secret), and
the maximum storage capacity of the file in bytes. If an I/0O address is specified in the TLIST
statement, the tape directory is sent to the specified external peripheral device.

External Peripheral Devices on the GPIB

Ifthe appropriate primary address is specified in the statements just mentioned, 1/0 operations
can be carried on with any peripheral deviceinthe system over the General Purpose Interface
Bus. The SAVE or CALL "BSAVE" statement sends a copy of the current BASIC program to the
specified peripheral device over the GPIE3. The OLD, CALL "BOLD" or CALL “LINK" statement
brings in a BASIC program back from the specified peripheral device over the GPIB and places
the program in memory. Data transfers are carried on with an external peripheral device just
like they are with the internal magnetic tape unit. The PRINT statement sends data to the
specified peripheral devicein ASCII code format. The INPUT statement receives datain ASCII
code format.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-5

INPUT/OUTPUT OPERATIONS
INTRODUCTION

Likewise, the WRITE statement sends data to a specified peripheral device in machine
dependent binary code. The READ statement is used to bring the data back and place it in
memory. The only difference in data transfers to and from the internal magnetic tape and data
transfers to and from an external peripheral device is the primary address specified after the
keyword.

Direct Access to the General Purpose Interface Bus

Quite often it is desirable to connect a peripheral device to the General Purpose Interface Bus
which doesn’t have the ability to talk in ASCIl code format or the machine dependent binary
format used by the Graphic System. In cases like this, the WBYTE (Write Byte) and RBYTE
(Read Byte) statements can be used to communicate with the peripheral device. These two
statements give directaccess to the General Purpose Interface Bus providing the capability to
transmit and receive any eight bit binary pattern over the bus. This includes primary talk
addresses, primary listen addresses, and universal controller commands, as well as data bytes.
Although this method of interfacing is slow and primitive, it provides the Graphic System with
an almost unlimited capability to interface to the outside world.

7-6 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (1/0) ADDRESSES

INPUT/OUTPUT (1/0) ADDRESSES

Syntax Form:

%}
{@ numeric expression [numeric expression] :

Descriptive Form:

of
{@ primary address [, secondary address] :

Purpose

The I/0 address in a BASIC statement specifies which peripheral device is to take part in the
I/0 operation. The I/0 address also tells the peripheral device what the 1/0 operation is all
about.

Explanation
The Graphic System Input/Output Facility—An Overview on How It Works

When a data transfer takes place within the Graphic System, information is either transferred
from a peripheral devicetothe Random Access Memory, or from the Random Access Memory
to a peripheral device. For example, the PRINT statement takes information stored in the
Random Access Memory and sends the information to a peripheral device in ASCII code
format. The PRINT statement counterpart, INPUT, receives information from a peripheral
device in ASCII code format and stores the information in the Random Access Memory. In
every 1/0O statement (except WBYTE and RBYTE) the data transfer occurs between only one
peripheral device and the Random Access Memory. Data transfers between two peripheral
devices on the General Purpose Interface Bus are set up with the WBYTE (Write Byte)
statement.

The Modular Design of Each I/0 Statement

Each 1/O statement in the Graphic System BASIC language can be subdivided into four parts
as shown below:

Line Number KEYWORD /O address parameters

Each part plays a specific role in the execution of the statement. The purpose of each part is
described as follows.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979

7-7

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (I/0) ADDRESSES

Line Number. The line number determines when the statement is executed. If a line number is
present, the statement is executed when the system is placed under program control. If the line
number is not present, the statement is executed as soon as the statement is entered into the
line buffer and the RETURN key is pressed.

KEYWORD. The KEYWORD is an alphabetical code which tells the BASIC interpreter what
function to perform. This code represents a set of instructions for the BASIC interpreter only
and is never seen by the peripheral device involved in the transfer. A list of the instructions the
BASIC interpreter follows for each keyword can be found in Appendix B.

I/0 Address. The I/O address is a two-part numeric code which represents instructions to the
periphera! device. The 1/0 address is sent to the peripheral device before the data transfer
begins.

The /0 address follows the keyword in the statement and is specified as an "at” sign (@) or a
percent sign (%), followed by a primary address, followed by a comma, followed by a
secondary address, and terminated with a colon (:).

The "at” sign (@) or the percent sign (%) specifies which delimiters are to be used during the
I/0 operation. (Refer to the topic Processor Status in the Environmental Control section for
details.)

The primary address is specified as a peripheral device number between 1 and 255. When the
statement is executed, the peripheral device number is converted to a primary talk address or a
primary listen address, whichever is appropriate for the keyword, and issued to the specified
peripheral device. The primary address tells the peripheral device that it has been selected to
either send data to or receive data from the random access memory. Peripheral device
numbers for the system are divided into categories as follows:

Device Number Peripheral Device
External peripheral devices on the
1-3¢ General Purpose Interface Bus

Internal peripheral devices on the

31-8¢ General Purpose Interface Bus

81-255 Reserved for future use

7-8 REV D, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (1/0) ADDRESSES

Internal peripheral devices are preassigned the following peripheral device numbers:

Device Number Peripheral Device

31 GS keyboard

32 GS display

33 Magnetic Tape Unit

34 DATA Statement
35-36 Unassigned

37 Processor Status
38-40 Unassigned

41 Left-most ROM slot
42-50 Unassigned

51 2nd-from-left ROM slot
52-60 Unassigned

61 3rd-from-left ROM slot
62-70 Unassigned

71 4th-from-left ROM slot
72-80 Unassigned

NOTE

When referring to the left-most, 2nd-from-Ileft, etc., ROM slot in the
preceding table, “left” is from the user’s point of view; that is, in front of
the keyboard and facing the display.

’

Peripheral device numbers can be specified as a numeric expression in astatementas long as
the BASIC interpreter can reduce the expression to a numeric constantand round the constant
toaninteger within the range 1 to 255. This means that the primary address can be specified as
anumeric variable; by changing the value assigned to the variable, different peripheral devices
can be selected as the input source or sutput destination without changing the BASIC
statement itself.

The secondary address in an 1/0 address is issued immediately after the primary address and
tells the peripheral device what the data transfer is all about. Since the peripheral device never
sees the keyword in the statement, the secondary address provides the only way to tell the
peripheral device what function is being performed by the BASIC interpreter. A secondary
address is specified as a number from @ through 32. Each number has a predefined meaning.
For example, secondary address 12 means that the BASIC interpreter is executing a PRINT
statement; secondary address 13 means that the BASIC interpreter is executing an INPUT
statement, and secondary address @ means that the BASIC interpreter is sending status
information. The following table lists the secondary address assignments for each I/0 function
performed by the BASIC interpreter. A list of the instructions a peripheral device should follow
when it receives a particular secondary address is given in Appendix B.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, JUL 1979

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (i/0) ADDRESSES

GPIB Secondary Addresses
Decimal Data Bus
Secondary Address Predefined Meaning Value

8|7|6|51413]| 2|1
] “STATUS” 96 0J1]1j0]0j0[0]j0
1 SAVE 97 0j1/1(0|0j0|0O]1
2 CLOSE 98 0|1{1|0]0{0[1]|O0
3 OPEN 99 0|1/110]0|0]|1]1
4 OLD/APPEND 100 oj|1{1]ojoj1|0]0
5 CREATE 191 o|1|/1|0|0|1]|0|1
6 TYPE 102 0|1{1{0]0|1|1|0O
7 KILL 183 o|1{1{0f0j1| 1|1
8 UNIT 184 o|1(1|(0]1]0}0|0
9 DIRECTORY 195 0{1(1{0|1]0{0|1
16 COPY 106 o|1]|1|o]|1[0| 1|0
11 RELABEL 107 o|1(1|(0]|1]0f 1|1
12 PRINT 108 of(1)1|0{1|[1]0]0
13 INPUT 109 o1 1(0|1]|1]0]|1
14 READ 119 o1/ 1]0f{1{1|1]0
15 WRITE 111 o(111)0f1{1}11}1
16 ASSIGN 112 o(1/1|1|0j0|0]|0
17 "ALPHASCALE" 113 of1)1|1{ofo|0f1
18 FONT 114 0{1{1{1]|0|0}1{0
19 LIST/TLIST 115 o{1}1|1{0{0| 1} 1
2¢ DRAW/RDRAW 116 0{1)1|1{0{1]0]0
21 MOVE/RMOVE 117 o{1]1|1]0{1|0{1
22 PAGE 118 o{1) 110|110
23 HOME 119 of1)1]1{0[1| 1)1
24 GIN 120 o|1]111|1(0j0{0
25 "ALPHAROTATE" 121 o1 1]1({1]|0{0|1
26 COMMAND 122 o|1] 11 1j1{0| 10
27 FIND 123 0|1 1| 1|1]0] 11
28 MARK 124 0|1/ 1]1|1[1(0]0
29 SECRET 125 of111{1]1]1110] 1
3¢ “"ERROR"” 126 o|1f 141]111{ 110
31 undefined 127 oj1 {111 11

7-10 REV C, JUL 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (1/0) ADDRESSES

A secondary address can be specified as a humeric expression as long as the numeric
expression can be reduced to a numeric constantand rounded to an integer within the range @
to 32. 1f 32 is specified as a secondary address, the BASIC interpreter is inhibited from issuing a
secondary address.

The colon (:) specified after the secondary address acts as the 1/0 address delimiter.

Parameters. The parameters of a BASIC statement are specified after the colon in the 1/0O
address. The parameters of a statement represent the information to be transferred. For

example, in the statement FIND @33,27:5, the tape file number 5 is the data transferred from
the random access memory to the specified peripheral device after the I/0 address is issued.

Statement Execution

When the statement FIND @33,27:5 is executed, the 1/0 address @33,27: is issued to the
internal magnetic tape unit. Peripheral device number 33 is converted to the primary listen
address for the internal magnetic tape and tells the tape unit to prepare to receive an ASCI|
character string. Secondary address 27 tells the magnetic tape unit that the ASCII character
string represents a tape file number to be found. The number 5 is then converted to an ASCII
character string and sent to the internal magnetic tape. The magnetic unit reads the number 5
and executes a fast search to the beginning of file 5.

It is interesting to note here that the internal magnetic tape is totally dependent on the
secondary address for the meaning of the 1/0 transfer. For example, if the statement FIND
@33,7:5is executed, the parameter 5 is still sent to the internal magnetic tape unitas an ASCII
character string; this time, however, the secondary address 7 tells the internal tape that the
parameter 5 represents a tape file to be killed rather than a tape file to be found. This statement
is the same as executing a KILL @33,7:5 statement. As another example, the statement FIND
@33,12:5 causes the internal magnetic tape to record the parameter 5 in ASCII code format
starting at the present position of the read/write head, because the secondary address 12
makes the tape unit think that the BASIC interpreter is executing a PRINT statement. This
statement produces the same result as executing a PRINT @33,12:5 statement.

Itis apparent from the above discussion that all a keyword does is tell the BASIC interpreterto
convert the specified parameters into an ASCII character string, issue the specified 1/0
address, then issue the ASCII character string. The BASIC interpreter really never knows (or
cares) where the ASCII character string goes or how it is interpreted. From the peripheral’s
point of view, it never sees the keyword in a statement or what the BASIC interpreter is doing.
All it can assume is that the BASIC interpreter is executing the function described by the
secondary address and interpret the ASCII data string as the parameters of that function.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-11

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (I/0) ADDRESSES

Default 1/0 Address

In most cases, specifying an I/0 address in a BASIC statement is optional. If an 1/0O address is
not specified, the BASIC interpreter inserts an /O address appropriate for the keyword. This
I/0 address is called the default I/0O address for the keyword. For example:

FIND 5

When this statement is executed, the BASIC interpreter automatically inserts the I/0O address
@33,27: into the statement. The result is shown below:

FIND @33,27:5

This default I/0 address selects the internal magnetic tape as the peripheral device to receive
the FIND information. The following table lists the default I/O address for each keyword in the

language.

DEFAULT I/0 ADDRESSES

APPEND @ 33,4:

BRIGHTNESS @ 32,30:
CHARSIZE @32,17:
CLOSE @33,2:

COPY @32,10:
DASH @32,31:
DRAW @ 32,20:
FIND @33,27:
FONT @32,18:
GIN @ 32,24:
HOME @ 32,23:
INPUT @ 31,13:
KILL @ 33,7:

LIST @ 32,19:
MARK @ 33,28:
MOVE @ 32,21:
OoLD @ 33,4:

PAGE @ 32,22:
PRINT @3212:
RDRAW @ 32,20:
READ @ 34,14:
RMOVE @ 32,21:
SAVE @ 33,1:

SECRET @ 37,29:
TLIST @32,19:
WRITE @ 33,15:

REV A, MAR 1979

4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (I/0) ADDRESSES

Ifa primary address and/or secondary zddress is specified in an I/0 statement, the specified
address is issued instead of the default address. For example:

FIND @22:5

When this statement is executed, the BASIC interpreter issues the primary listen address for
device 22 instead of the default primary listen address for device 33. This primary address
selects peripheral device number 22 on the General Purpose Interface Bus to receive the FIND
information. Because a secondary address is not specified in this case, the BASIC interpreter
automatically issues 27 as a default secondary address. The parameter 5 is then converted to
an ASCII character string and sent to device 22 over the GPIB.

Itis up to device 22 to interpret the secondary address 27 as meaning the BASIC interpreter is
sending the parameter of a FIND statement and then find the specified file.

If a secondary address is specified as well as a primary address, then the specified secondary
address is issued instead of the default secondary address. For example:

FIND @22,12:5

When this statement is executed, the prirary listen address for device 22 is issued, followed by
the secondary address 12, followed by the parameter 5. In this case, it is up to device 22 to
interpretthe secondary address 12 as meaning the BASIC interpreter is sending the parameter
to a FIND statement.

Care must be taken when specifying a different secondary address fora keyword. In this case,
if peripheral device 22 is built to conform to the predefined meanings of the Graphic System
secondary addresses, device 22 will PRINT the parameter 5 instead of FIND file 5 because the
secondary address 12 is the default secondary address for the PRINT statement.

Duplicating Output Statements with the PRINT statement

Duetothe modular design of the I/O addressing facility, virtually every |/O statementinvolving
ASCII data output can be duplicated with the PRINT statement. This includes magnetic tape
statements like FIND, MARK, and SAVE as well as display statements like MOVE and DRAW.
In most cases, all a peripheral device neads is the proper primary and secondary address and
an ASCII data string specifying the parameters to be used in the operation. For example:

FIND 5

When this statement is executed, the BASIC interpreter inserts the I/0 address @33,27: into
the statement, converts the number 5to an ASCIi character string, issues the I/0 address, then
issues the character string.

4050 SERIES GRAPHIC SYSTEMS REFERENCE IEV A, MAR 1979 7-13

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (I/0) ADDRESSES

The important thing to keep in mind here is that the peripheral device never sees the keyword in
the statement—only the 1/0 address and the parameters. The primary function the keyword
FIND has is to insert the proper default I/O address if one is not specified and make sure the
statement is syntactically correct; that is, the keyword FIND in this case makes sure that only
one number is specified as a tape file number and that number falls in the range @ through 255.

Since the peripheral device never sees the keyword in a statement, the PRINT statement can be
used to duplicate the FIND statement. For example:

PRINT @33,27:5

When this statement is executed, the internal magnetic tape receives the same information as it
did with the FIND statement. The BASIC interpreter issues the primary listen address for
device 33, followed by the secondary address 27, followed by the parameter 5 in the form of an
ASCII character string terminated by a Carriage Return. The internal magnetic tape responds
by positioning the tape head to the beginning of a file 5.

NOTE

Intermixing different keywords and secondary addresses in magnetic tape
statements on early production units may cause an error message to be printed on
the GS display even though there is no error.

Using the PRINT statement to execute a FIND allows a little more freedom in parameter
specification. For example, assume that peripheral device 14 is connected to the General
Purpose Interface Bus (GPIB) and is designed so that it requires two parameters to execute a
FIND function, one for the tape file number and one which specifies the data item in the file to
be found. The FIND statement cannot be used in this case because the keyword FIND is limited
to one parameter between @ and 255. The PRINT statement, however, can be used to execute
the FIND function for device 14. For example:

PRINT @14,27:5,4
When this statement is executed, the primary listen address for device 14 is issued over the
GPIB, followed by secondary address 27, followed by the parameters 5 and 4 in the form of an
ASCII character string. In this case, secondary address 27 tells device number 14 to execute a
FIND function with the parameters 5 and 4. The first parameter 5 could mean to find file 5 and
the second parameter 4 could mean to position the tape head to the fourth data iteminthefile.
When a PRINT statement is used to execute a FIND function, practically anything can be
specified as parameters after the 1/0 address. This allows the Graphic System to issue
parameters which conform to the requirements of practically any peripheral device, whatever
they may be.

7-14 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (I/0) ADDRESSES

Executing a PRINT with the Keyword FIND

Just as a FIND statement can be duplicated with a PRINT statement, a PRINT statement
(limited to one parameter) can be duplicated with a FIND statement. For example:

FIND @32,12:5

When this statement is executed, the primary listen address for device 32 (the GS display) is
issued, followed by the secondary address 12, followed by the parameter 5 in the form of an
ASCII character string terminated by a Carriage Return. Since the secondary address 12 is
predefined to mean that the BASIC interpreter is executing a PRINT statement, the GS display
prints the 5, then executes a Carriage Return. Although this statement has little practical value,
it does illustrate how different primary and secondary address can be combined to execute
functions which are totally unrelated to the keyword in the statement. A practical use for this
facility is described in the following topic.

Specifying DRAW Coordinates in GDU s Using the PRINT statement

The coordinates of a DRAW statement can be specified directly in GDUs and sent to the GS
display or an external peripheral device via the PRINT statement. A DRAW of this type is fast
because the transformation from user data units to graphic display units is eliminated. The
draw is executed as follows:

PRINT @32,20:80,80

When this statement is executed, the BASIC interpreter issues the primary address 32 and the
secondary address 2@. This tells the GS display to execute a DRAW after itreceives the Xand Y
coordinates of agraphic data point. Afterthe I/0 address is issued, the parameters (80,80) are
converted to an ASCII character string using the default PRINT format and are sent to the GS
display. As far as the BASIC interpreter is concerned, the parameters are being sent to the GS
display for printing. The GS display, however, interprets the information as the X and Y
coordinates of a data point in the GDUs because it received the secondary address 20. Once
the information is received, the GS display draws a vector from the present position of the
cursortothe coordinates (80,80). The WINDOW and VIEWPORT parameters have no effecton
this kind of DRAW.

More than one vector can be drawn in this fashion by specifying more than one pair of
coordinate values. For example:

PRINT @32,20:80,80,50,30

When this statement is executed, the GS display draws two vectors. The first vector is drawn
from the present position of the alphanumeric cursor to the coordinates (80,89). The second
vector is drawn from the coordinates (89,80) to the coordinates (50,30). Remember, these
values are in GDUs.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-15

INPUT/OUTPUT OPERATIONS
INPUT/OUTPUT (1/0) ADDRESSES

If an array is specified in the PRINT statement, then the elements in the array are paired off in
row major order and used as X-Y coordinates. For example:

PRINT @32,20:A

When this statement is executed, array A is sent to the GS display as a series of X-Y
coordinates. If A has one dimension, then the elements A(1) and A(2) are used as the first X-Y
coordinates; the elements A(3) and A(4) are used for the second X-Y coordinates, and so on. If
array A has two dimensions, two rows and four columns for example, then the elements A(1,1)
and A(1,2) are used as the coordinates for the first vector, the elements A(1,3) and A(1,4) as the
coordinates for the second vector, the elements A(2,1) and A(2,2) for the third vector, and so
on. Notice that this method of using arrays to draw vectors is different than the method used in
the DRAW statement.

7-16 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE APPEND STATEMENT

THE APPEND STATEMENT

Syntax Form:

[_ Line number] APP [1/0 address] line number [, numeric expression]

Descriptive Form:
[Line number] APPEND [1/0 address] target line number in current program

[, increment between line numbers]

Purpose

The APPEND statement inputs BASIC statements in ASCII format from a specified peripheral
device and adds the statements to the BASIC program currently in memory.

Explanation

Before an APPEND statement is executed, the read head of the specified peripheral device is
normally positioned at the beginning of a program file (the file containing the statements to be
appended). If a peripheral device is not specified, then the internal magnetic tape unit is
selected as the peripheral device by default. Next, astatementinthe current BASIC program is
selected as a target to mark the entry point for the new statements. This target statement is
overwritten by the first statement coming in from the peripheral, so it is normally a dummy
statement (such as a REMARK statement) created specifically to act as a target for the
APPEND operation.

The following figure illustrates a simple APPEND operation. The statements in program file 4
on the internal magnetic tape unit are appended (added) to the end of the BASIC program
currently in the Random Access Memory. The following statements are executed to
accomplish the task:

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 7-17

INPUT/OUTPUT OPERATIONS
THE APPEND STATEMENT

660 REM
FIND 4
APPEND 660

198

659 |
66@ REM (Target Statement)

2900

}} A A

2200

Line 660 is adummy REMARK statement created as a target for the incoming statements from
file 4. The last statement in the main program can be used as the target statement in this case,
but it must be remembered that the target statement is overwritten by the first statement
comingin from the magnetic tape; itcan not be recovered, soif all the statements in the current
program are valid, then a dummy target statement must be created first.

The second statement (FIND 4) positions the internal magnetic tape read/write head to the
beginning of file 4. This file must contain valid BASIC statements, or an error occurs when the
APPEND statement is executed.

The third statement (APPEND 660) starts the APPEND operation. Ali of the statements in file 4
are brought into memory. The first statement brought in is given the line number 660 and
overwrites the target statement. The remaining statements are renumbered, if necessary, from
line number 660 on, with an increment of 10 (the default value). If the APPEND statement
specifiesanincrement (APPEND 660,5 for example) then the BASIC interpreter renumbers the
newly appended statements with the specified increment; starting with line number 66@ in this
case, the BASIC interpreter gives the next line the number 665, the next line 67@, and so on.

Inserting Statements into a Program

The APPEND statement can also be used to insert statements into the middle of a BASIC
program. The operation is the same as adding statements to the end. A dummy statement
marks the entry point. When the APPEND statement is executed, all the statements beyond the

7-18 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE APPEND STATEMENT

dummy statementare moved down to meake room for the new statements comingin. Attheend
of the operation, the newly appended statements and the statements beyond them are
renumbered according to the specified increment. If an increment is not specified, then the
default increment (10) is used.

The following figure illustrates an insertion operation:

260 REM
FIND 7
APPEND 260,100

100

First Part
of

250 L
269 REM (Target Statement)

1509

AAA

1706

270

a7e b

Inthisfigure, the BASIC program statements stored infile 7 are inserted into the main program
starting atline 260. Todo this, adummy target statementis createdinline 260 to mark the entry
point. A statement currently in the program can be selected as the target, but this is usually
undesirable because the target statementis overwritten and can’t be recovered. Theread head
of the internal magnetic tape unit is then positioned at the beginning of file 7 with a FIND 7

statement; the APPEND statement is executed next to start the operation.

In this example, all of the statements in file 7 are brought into the memory. The statements
beyond line 260 in the main program are moved down to make room for the new statements
coming in. The newly appended statements and the statements which were moved down are
then renumbered starting with line number 260 and increase with an increment of 100.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979

7-19

INPUT/OUTPUT OPERATIONS
THE APPEND STATEMENT

Appending Statements from an External Peripheral Device

Program statements stored in an external peripheral device can be appended to the current
program in the same manner as statements stored on the internal magnetic tape. The only
difference in the APPEND statement is the addition of an 1/0 address. For example:

APPEND @15:550,20

In this statement, device number 15 on the General Purpose Interface Bus (GPIB) is specified
as the source of the statements to be appended. Line number 550 is specified as the target
statement in the current program and the number 20 is specified as the renumber increment.
The readhead on peripheral 15 must be positioned to the beginning of the desired program file
before this APPEND statement is executed; if not an error occurs.

When the APPEND statement is executed, primary address 15 is sent over the GPIB to tell
device number 15 that it has been selected for the upcoming data transfer. The secondary
address 4 is then issued by default; this tells device 15 to send the contents of the program file
presently positioned under its readhead.

After peripheral 15 sends the new program statements to the BASIC interpreter over the GPIB,
the BASIC interpreter assigns the first statement to line 55@. This overwrites the target
statement. The rest of the statements which follow are inserted and renumbered with an
increment of 20. This includes any statements in the original BASIC program which were
moved down to make room for the appended statements.

WARNING I

Iftwo BASIC statements are brought into memory with the APPEND statement, and
both statements have the same line number, then unpredictable results will occur
when the program is run.

NOTE

Any file APPENDed to a program which is SECRET will be treated as if it were
SECRET.

7-20 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE BAPPEN ROUTINE

THE BAPPEN ROUTINE

Syntax Form:

[Line number] CALL “4BAPPEN," [l/C‘ address;] line number [increment]
string variable,

Descriptive Form:

[Line number] CALL routine name, [I/O address;] target line number | line number
in current program | , increment

Purpose

The BAPPEN (Binary APPEND) routine inputs BASIC statements stored in binary format on
the specified peripheral device and attaches those statements to the program currently in
memory.

Explanation

The BAPPEN routine follows the same procedure as the APPEND statement. First, the
read/write head of the input device must ke positioned to the beginning of a binary program file
by using the FIND command. Then, when the BAPPEN routine is executed, the given target
statement is overwritten by the first statament coming from the peripheral device.

Theinternal magnetictape unitis selected by defaultif a peripheral device is not specified. The
newly appended statements and any stataments that originally followed the target statement
are renumbered, starting with the target iine number. The line numbers are incremented by
either the given increment, or by the default of 10 if an increment is not specified.

For example:

200 REM APPEND STATEMENTS FROM FILE 2 HERE
FIND 2
CALL "BAPPEN",20¢

4050 SERIES GRAPHIC SYSTEMS REFERENCE FEV A, MAR 1979 7-21

INPUT/OUTPUT OPERATIONS
THE BAPPEN ROUTINE

When these statements are executed, the FIND statement positions the read/write head at the
beginning of file 2. File 2 must be a binary program file. (Error message number 55is printed if
file 2is not binary.) The BAPPEN routine replaces line 200 with the first statementinfile 2. The
remaining statements in file 2 are then appended with line numbers incremented by 10.

if the program you want to append is stored as a SECRET BINARY program, after executing
the BAPPEN routine, the entire contents of memory becomes secret. Thisincludes all original
statements and the statements appended.

Specifying A Peripheral Input Device

Any peripheral tape drive storing a binary program can be specified as the input device. The
device is specified like this:

FIND @ 15:3
CALL "BAPPEN",15;650,50

This statement selects file number 3 on device number 15 on the General Purpose Interface
Bus as theinput device. Line number 65@ is the target statement in the current program stored
in memory. The renumber increment is 50.

7-22 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE BOLD ROUTINE

THE BOLD ROUTINE

Syntax Form:
string variable

[Linenumber] CALL l “BOLD" } [,I/Oaddress]

Descriptive Form:

[Line number :I CALL routine name [1710 address]

Purpose

The BOLD (Binary OLD) routine copies the program stored in binary format into the memory
from the specified input source.

Explanation
Any program that is in binary format can be loaded into memory by using the BOLD routine.
If an input source is not specified, the internal magnetic tape unit is chosen by default.

To retrieve a binary program from the internal magnetic tape drive, the read/write head of the
output device must first be positioned at the beginning of a binary program file. For example,
the statements:

FIND 1
CALL "BOLD"

load the binary program from file 1into memory. The FIND statement locates the beginning of
file 1. The BOLD routine erases everything currently in memory, then transfers the binary file
into memory. The loaded program is ready to be executed by a RUN statement or edited. Like
the OLD command, if the BOLD routineis executed under program control, a RUN statement is
automatically executed after the program is loaded into memory.

Specifying A Peripheral Device

Any peripheral tape drive holding a binary program can be specified as the input source for the
BOLD routine by designating the appropriate /0 address. The following statement specifies
file number 6 on device number 2 on the General Purpose Interface Bus.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 7-23

INPUT/QUTPUT OPERATIONS

THE BOLD ROUTINE

290 FIND @ 2:6
300 CALL "BOLD",2

USING AUTO LOAD WITH BINARY FILES

The AUTO LOAD key finds the first ASCII program file on the magnetic tape and then executes
an OLD command automatically. The OLD command loads and executes the program. If you
wanttoload thefirst file withthe AUTO LOAD key, the first file must contain an ASCII program.

By storing an ASCII program in file 1 that finds and loads a binary program, you can use the
AUTO LOAD key to automatically find and load a binary program. The following example
shows how this can be done.

Using a TLIST command, you can see the programs stored on the magnetic tape.

GS Display Output

N

(//>TLIST

ASCII PKOG
BINARY PROG
LAST

768
1792
768

~

File 1, an ASCII program file, contains this program:

100 FIND 2
110 CALL "BOLD"

When the AUTO LOAD key is pressed, the program in file 1 is loaded and executed. This
program in turn finds and loads the desired binary program in file 2. Since the CALL "BOLD"
statement is executed under program control, the binary program in file 2 is executed after

being loaded.

7-24

REV B, MAR 1979

4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE BSAVE ROUTINE

THE BSAVE ROUTINE

Syntax Form:

Line number | CALL "BSAVE" 170 s
[ine numbe] ‘string variable [addre<s]

Descriptive Form:

[Line number] CALL routine name [170 address]

Purpose

The BSAVE (Binary SAVE) routine storas the current BASIC program on the specified output
device in binary format.

Explanation

The BSAVE routine sends a copy of the current program to the output device in binary code.
Like the SAVE statement, BSAVE does not alter assigned values of variables or system
environmental conditions. The CALL "BSAVE” statement can be a step in the program being
stored, or it can be executed directly from the Graphic System keyboard.

If an output device is not specified, the internal magnetic tape unit is chosen by default.

Toexecutethe BSAVE routine, the read/write head of the output device must be positioned at
the beginning of a file marked BINARY PROG or NEW. The MARK statement must allocate
enough space to store the entire program.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 7-25

INPUT/OUTPUT OPERATIONS
THE BSAVE ROUTINE

Binary programs use more space on magnetic tape than ASCII programs. The amount
depends on the size of the file. Because the SPACE function allocates the approximate space
for an ASCII program, the SPACE function may or may not allocate enough space to hold the
entire program in binary. If you try to execute the BSAVE routine and the selected file is not
large enough to hold the current program, error message number 48 is displayed on the
screen. To make sure enough spaceis allocated to hold the current program, use the following

method:

Allocate all of the space the program uses in memory. For example, if
your Graphic System has 32K bytes of memory space, enter:

MARK 1,32000—MEM

The MEM function returns the number of bytes still available in
memory. By subtracting this amountfromthe total storage capacity of
memory, the remainder is the amount of space the current program
occupies in memory. This remainder is also the amount of space
needed to store the program on tape.

NOTE

Of the actual storage capacity of Graphic System memory some space isreserved by
the processor for awork area. The MEM function only considers the remaining bytes
as free. Therefore, the MEM value will be a little less than the actual size of memory.

Using the internal magnetic tape unit by default, the following example stores the current
BASIC program in binary format.

FIND O

MARK 1,1000
FIND 1

CALL "BSAVE"

Since this is the first file on the tape, the read/write head is positioned at the beginning of the
tape by the FIND 0 statement. The MARK statement allocates space on the tape to hold 1000
bytes. The read/write head is then positioned to the start of the allocated space by the FIND 1
statement. The CALL "BSAVE” statement thentransfers a binary copy of the current program

to file 1.

7-26 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE BSAVE ROUTINE

If younow execute a TLLIST statement, you can verify the action performed. Note the header of
the internal tape for file 1 is marked BINARY PROGRAM.

-)

TLIST
1 BINARY PROG 1024
2 LAST 768

N Y,

Using SECRET with Binary Programs
The current BASIC program can be marked SECRET and also be stored in binary format. The

rules for using SECRET are the same as with any ASCII file. For example:

SECRET
FIND 1
CALL "BSAVE"

These statements store the current program as a secret programin binary formatinfile 1. From
a TLIST command, you can see that the file header is marked BINARY PROG SECRET.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-27

INPUT/OUTPUT OPERATIONS
THE BSAVE ROUTINE

GS Display Output

(TLIST
1

BINARY PROG SECRET 1024
2 LAST 768

N Y,

To mark the header BINARY PROG SECRET when using an external tape drive, such as the
TEKTRONIX 4924 Digital Tape Drive, you must specify the 1/0O address of the tape drive in a
SECRET command. This allows the external device to recognize the program as secret and
mark the header accordingly.

For example, if the 4924 Tape Drive is assigned to device number 2 on the General Purpose
Interface Bus, the following program stores the current program as secret in binary format.

SECRET @ 2:
SECRET
FIND @ 2:1
CALL "BSAVE",2

7-28 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE BSAVE ROUTINE

Specifying A Peripheral Device

The current program can be stored in binary format on any peripheral tape drive inthe system
by specifying the desired primary address in the CALL "BSAVE" statement. For example:

290 FIND @ 19:5
300 CALL "BSAVE",19

This statement sends the current program in binary format to file number 5 on device 19 on the
General Purpose Interface Bus.

Unless theinternal tapefile is closed when executing a BSAVE to an external device,
datamay be inadvertently written or the internal magnetic tape. Ensure the internal
tape file is closed before executing BSAVE to an external device.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-29

INPUT/OUTPUT OPERATIONS
THE CLOSE STATEMENT

THE CLOSE STATEMENT

Syntax Form:

[Line number] CLO

Descriptive Form:

[Line number] CLOSE

Purpose

The CLOSE statement closes the current file on the internal magnetic tape unit.

Explanation

The CLOSE statement is used to terminate a PRINT or WRITE operation to the internal
magnetic tape. This ensures that any remaining information in the magnetic tape memory
bufferis “forced out” or "dumped” from the buffer onto the tape. The CLOSE statementis not
needed to terminate a READ, INPUT, or OLD operation.

The Magnetic Tape Memory Buffer

When programs and data are transferred to and from the system memory to the internal
magnetic tape unit, the information passes through a 256 byte memory buffer. This memory
buffer is shown below.

Random
Access o™ Magnetic Tape Memory Buffer

Memory (256 Byte Capacity)
(RAM)

X Magnetic Tape

S

7-30 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE CLOSE STATEMENT

During PRINT, WRITE, and SAVE operations, information is loaded into the memory buffer
until the buffer is full; the buffer is then “"dumped” onto the magnetic tape. The buffer is filled
and dumped repeatedly until the transfer is complete. (This accounts for the short bursts of
tape movement during read/write operations to and from the internal magnetic tape.)

The Need for a CLOSE Statement

Normally, the magnetic tape memory buffer is not dumped onto the magnetic tape until the
buffer is full. Quite often, the last few bytes of information only partially fill the buffer. This
information remains in the buffer until it is forced out with a CLOSE statement, a FIND
statement, or an END statement. If power is removed from the system before executing a
CLOSE, FIND, or END statement, then the information in the buffer is lost and cannot be
recovered. Pressing BREAK twice also closes the file.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-31

INPUT/OUTPUT OPERATIONS
THE DASH STATEMENT

THE DASH STATEMENT

Syntax Form:

[Line number] DAS numeric expression

Descriptive Form:

[Line number] DASH dash pattern

NOTE

This command is not available in the 4051 and 4052 Graphic Systems.

Purpose

The DASH statement specifies how DRAW and RDRAW vectors are displayed: as continuous
lines, dashed lines, or dark lines.

Explanation

The dash mask is an integer between @ and 255 which defines the dash pattern for all DRAW
and RDRAW commands on the 4054 Graphic System. To understand how the dash mask
works, convert the dash mask number to its binary equivalent. Since the number is between @
and 255, its binary equivalent will be eight bits (binary digits) long.

7-32 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE DASH STATEMENT

Suppose the dash maskis 116 (=@1110100in binary), and a vector is drawn from 80,5010 40,50.
The vector is drawn as follows:

DASH MASK =116

. / J/
DRAWN ’ I ~ - ~
VECTOR
000 11 1010007111010 0
(40,50) (80,50)

DIRECTION OF VECTOR

¢

If abitis @ in the dash mask, the corresponding segment is drawn:; if a bit is 1, that segment is
not drawn. The pattern is repeated as many times as needed to draw the vector, and is not reset
the beginning of the pattern after each DRAW or RDRAW.

Ifthe dash mask is @ (= 00P@P0BA), the patternis asolid line. Ifthe mask is 3 (= 0PP0PA1 1), the

pattern is a short space followed by along line. Some more exam ples follow (remember that
the mask is read from right to left):

DASH MASK BINARY PATTERN
NUMEER EQUIVALENT
3 00000011

170 10101010 _ — = =

85 01010101 _ - = =

15 00001111 N

25¢ 1111111 (no vector is drawn)

200 11001000 -

If the mask is greater than 255, 256 is subtracted from the mask until it is between @ and 255
(256 = 00PVOB0Y, 257 = PPPPPBA1, and so on). If the mask is less than @, 256 is added until it is
between @ and 255 (—1 = 11111111, —40 = 11011000, —255 = 000P0OP1).

The default value for the dash mask is 0. This is reset to 0 by the INIT command. The
default address is PRINT @ 32,31:

4050 SERIES GRAPHIC SYSTEMS REFERENCE REVE, JUL 1979 7-33

INPUT/OUTPUT OPERATIONS
THE DATA STATEMENT

7-34

THE DATA STATEMENT

Syntax Form:

{ string constant } {string constant }
[Line number] DAT numeric constant , {numeric constant

Descriptive Form:

[Line number] DATA dataitem [, data item :, S

Purpose

The DATA statement stores data items within the BASIC program. These data items can be
character strings and/or numeric data and are normally assigned to variables with the READ
statement when the program is executed.

Explanation
An Internal Data File

The DATA statement can be thought of as a sequential read data file which is internal to the
BASIC program. Data items are "stored” in one or more DATA statements and are assigned to
variables using the READ statement. If there is more than one DATA statement in a program,
then the DATA statements are linked together in a continuous chain. The DATA statement with
the lowest line number is considered the beginning of the internal data fite. The end of the first
DATA statement is linked to the beginning of the DATA statement with the next highest line
number, and so on. The last data item in the highest numbered DATA statement marks the end
of the internal data file.

Data Item Pointer

An internal pointer is associated with the DATA statement to indicate which data item is to be
read next. The pointer is set to the first data item in the first DATA statement on system power
up, after the execution of an INIT statement, a RESTORE statement, or a RUN statement when
aline number is not specified as a parameter. After a dataitem is read withthe READ statement,
the pointer moves to the next data item to the right.

REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/QUTPUT OPERATIONS
THE DATA STATEMENT

When the lastdataitemina DATA statementis read, the pointer moves to the firstdataitemin
the next DATA statement, and so on. When the last data item in the last DATA statement is read,
the pointer points out into space and must be reset before another READ operation is
attempted. The pointer is reset to the beginning of a particular DATA statement with the
RESTORE statement, or to the beginning of the lowest line numbered DATA statement with the
INIT statement or RESTORE statement

Reading Data Items in a DATA Statement

The following program illustrates how data items can be arranged in a DATA statement and
how those items are assigned to variab es with the READ statement:

100 INIT

110 DATA "Sally”,5,"13@5 S.W. Henry St.”

120 DATA 6.95, "Billy”,€,"1501 S.E. Morrison”,5.87

130 FOR I=1 TO 2

140 READ A$,B,C$,D

150 PRINT USING 180: A$,B

160 PRINT USING 190: Z$,D

170 NEXT |

180 IMAGE "STUDENT NAME:" 2X,10A,/,"AGE:",2X,FD
190 IMAGE "ADDRESS: ',2X,30A,/,”"ART SUPPLIES:",2X,$+FD.FD,3/
200 END

When line 100 in this prcgram is executec, the system parameters are set to their default values
and the DATA statement pointer is set to the first data item in the first DATA statement; in this
case, the pointer is set to the string corstant "Sally” in line 110.

Lines 13@ through 170 read two logical records from the DATA statementand print the records
onthe GSdisplay. The operation is executed as follows. The first time line 140 is executed, the
string constant "Sally” is assigned to the variable A$ and the DATA statement pointer moves to
the next data item (5). The 5 is assigned to the variable B and the DATA statement pointer
moves to the string constant 1385 S.W. Henry St.”. This string constant is assigned to the
variable C$. Because the end of this DATA statement is reached here, the DATA statement
pointer automatically moves to the next CATA statement and points to the first data item in that
statement; in this case, the pointer moves to numeric constant 6.95. This value is assigned to
the variable D and the DATA statement pointer moves to the string constant "Billy.” Since the
variable D is the last variable specified in the READ statement, the read operation is finished,
and the DATA statement pointer remairs pointing to "Billy”; this, of course, indicates that
"Billy” is the next data item to be read.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-35

INPUT/QUTPUT OPERATIONS
THE DATA STATEMENT

7-36

When lines 15@ and 160 are executed, the data items assigned to the variables A$,B,C$, and D
are printed on the GS display according to the print format specified in lines 188 and 190.
(Refer to the IMAGE statement in this section for details on print formats.)

Line 17@returns program control to line 140, the READ statement, and the read operation is re-
executed. This time the DATA statement pointer is pointing to the string constant "Billy”, so
"Billy” is assigned to A$. (This, of course, overwrites the previous value of A$ which was
"Sally”.) The numeric constant 6 is assigned to the variable B, the string constant "15@1 S.E.
Morrison” is assigned to the variable C$, the numeric constant 5.87 is assigned to the variable
D. This ends the second READ operation and the DATA statement pointer is left pointing out
into space. This happens because the numeric constant 5.87 is the last data item in the last
DATA statement. At this point, the DATA statement pointer must be reset with a RESTORE
statement or an INIT statement before another READ operation is executed. If not, a read error
occurs and program execution is aborted. In this program, however, a RESTORE statement is
not necessary, because the data items just read are printed in lines 150 and 160 and program
execution is terminated in line 20@. The results are shown below:

GS Display Output

STUDENT NAME: Sally
AGE: 35

ADDRESS: 1385 S.W. Henry St.
ART SUPPLIES: $+6.95

STUDENT NAME: Billy
AGE: 6

ADDRESS: 1501 S.E. Morrison
ART SUPPLIES: $+5.87

REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE DATA STATEMENT

Primary Address 34 Specifies the DATA Statement as the Input Source

The DATA statementis specified as the input source foran I/0 operation by specifying primary
address 34. Normally, primary address 34 is selected by default for READ operations, but if the
primary address is specified as a variable in a READ statement, then the variable must be
assigned the value 34 to select the DATA statement as the input source. For example:

265 READ @A:X,Y,Z$

When line 265 is executed under progtam control, the numeric constant assigned to A
specifies the input source. If A equals 24, then the DATA statement is selected as the input
source. If Achanges to 33, then the current file on the internal magnetic tape unit is selected as
the input source. And, if A changes to 15, for example, device number 15 on the General
Purpose Interface Bus (GPIB) is selected as the input source.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-37

INPUT/OUTPUT OPERATIONS
THE FIND STATEMENT

THE FIND STATEMENT

Syntax Form:

[Line number] FIN [1/0 address] numeric expression

Descriptive Form:

[Line number] FIND [1/0 address] tape file number

Purpose

The FIND statement positions the magnetic tape head on a peripheral device to the beginning
of the specified file. If an 1/0 address is not specified in a FIND statement, the Graphic System
internal magnetic tape unit is selected as the peripheral device by default.

Explanation

Tape File Numbers

Each file on the internal magnetic tape is referenced by a tape file number. The first file on the
tape is number 1, the second file is number 2, and so on up to 256. File number @ refers to the
load point at the beginning of the tape. The load point is positioned approximately one inch
before the beginning of the first file.

Finding the Beginning of the Tape

The magnetic tape read/write head is positioned to the load point (the beginning of the tape) by
entering the statement FIND @ and pressing the RETURN key or by executing a FIND 0
statement under program control. (The same results can also be obtained by pressing the
REWIND key on the GS keyboard.) The following illustration shows the magnetic tape
read/write head positioned at the load point after a FIND @ statement is executed.

7-38 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE FIND STATEMENT

OPTICAL LOAD POINT SENSOR

NEW TAPE

LOAD POINT

FIND @

Finding a Tape File

The magnetic tape head is positioned to the beginning of a tape file by specifying the
appropriatefile number after the keyword FIND. This method is used to find new (empty) files,
ASCII programfiles, ASCII datafiles, binary program files, and binary datafiles. The tape head
is always positioned to the beginning of the storage area which is located just past the file
header. (This is true unless the magnetic tape status parameter is set to “no header” format.
Refer to Magnetic Tape Statusinthe Environmental Control section for details.) The following
illustration shows the position of the tape head after a FIND 1 statement is executed. (This
assumes the magnetic tape status pararneters are set totheir normal values.) File number 1 on
the tape must be created with the MARK statement before this FIND 1 statement is executed.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-39

INPUT/OUTPUT OPERATIONS
THE FIND STATEMENT

_ - ™ (RWHEAD

STORAGE
AREA

After the specified fileisfound, informationin memory can be storedin thefileif thefileis new
(just created with the MARK statement), or if the file is an old file just killed with the KILL
statement. The BASIC program currently in memory is transferred to the file with the SAVE or
CALL "BSAVE" statement or data is transferred to the file in ASCII format with the PRINT
statement or binary format with the WRITE statement. (Refer to each of these keywords in this
section for details.)

Ifthe file already containsinformation, thenthe FIND statement opens thefile for access. This
is analogous to opening a disc file on a mass storage device. If the file contains a BASIC
program, executing an OLD, APPEND, CALL "BOLD"”, CALL "BAPPEN", or CALL "LINK"
statement brings the BASIC program into memory. If the file contains ASCII data, then data
items are brought into memory with the INPUT statement. If the file contains binary data, the
datais broughtinto memory withthe READ statement. (Refer to each of these keywords in this
section for details.)

740 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE FIND STATEMENT

Finding the Last (Dummy) File

The magnetictape headis positionedtothe last (dummy) file by specifying the appropriate file
number. The tape head is automatically positioned to the beginning of the file header in
preparation for creating new files on the tape with the MARK statement. If the |ast file numberis
notknown, a TLIST statement can be executedto find it. When a MARK statement is executed
after finding the last file, the dummy file is overwritten with new files as they are created, and a
new dummy fileis created ontape asthelast file. The followingillustration shows the position
of the tape head when the last file is specified in a FIND statement.

Reading the Tape File Header

If amagnetic tape status parameter is changed, the FIND statement positions the tape head to
the beginning of the specified file header instead of to the beginning of the storage area. This
allows directaccess to the file header. Information in the header can be changed or deleted, or
new information can be added. For example:

100 INIT

1190 PRINT @33.0:0,0,1
120 FIND 1

130 INPUT @33:A$
140 PRINT A$

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 741

INPUT/OUTPUT OPERATIONS

THE FIND STATEMENT

When this program is executed, the file header for file number 1 is input into memory and
printed on the GS display. Line 100 initializes the system. Line 11@ changes the internal
magnetic tape status parameters to "no header” format. This causes the magnetic tape to
position the read/write head to the beginning of the header on file number 1 (line 120). (The
magnetic tape unit assumes that the file header is the first logical record in the storage area
because a’’no header format” is specified.) Inline 130, the file headeris inputinto memory and
assigned to the string variable A$. In line 148, the header information is printed on the GS
display for viewing.

Changing a Tape File Header

Atapefile header can be changed as long as numeric digits are not added to the header and as
long as the header meets the following minimum format requirements:

1. Character positions 2 through 4 must be a decimal number from 1 to 256. This
number represents the file number.

2. Character position 9 must be an A, B, N, or L.

A = ASCII File
B = Binary File
N = New File
L = Last File

3. Character position 17 must be a P or D.

»

Character position 27 must be an S if a secret program is stored in the file.

5. Character positions 35 through 39 must hold a decimal number from 1 through
65535. This number indicates the number of physical records in the file.

6. Character position 43 must be a Carriage Return (CR) and character position 44
must be a DC3 control character or a blank. The CR/DC3 combination acts as the
delimiter to the ASCII character string representing the file header.

The following program illustrates how to add information to a file header. This program adds
the label MATH to the file header where the word SECRET normally resides. This helps identify
the content of the program when the file headers are listed in the TLIST statement.

100
110
120
130
140

7-42

INIT

PAGE

PRINT @33,0:0,0,1
FIND 2

INPUT @33:A$

REV A, MAR 1979

150
160
170
180
190
200

A$=REP("MATH" 28,4)
FIND 2

PRINT @33:A$

PRINT @33:"S"

PRINT @33,0:0,0,0
TLIST

4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE FIND STATEMENT

Whenline 10@is executed, the system environmental parameters are initialized; line 110 clears
the display; and line 120 sets the internal magnetic tape status to "non-header" format. (Refer
to Magnetic Tape Status in the Environmental section for details on setting the internal
magnetic tape status parameters.) Whenline 130 is executed, the tape head is positioned tothe
beginning of the header in file number 2. Line 140 then inputs the tape file header information
as a character string and assigns the strings to AS.

The best way to changethetapefile headeristo doastring replace operation as showninline
150. Inline 150, the REP functionis usedtoinsertthe substring "MATH" into the header string
starting at character position 28. Four characters are deleted before the insertion is made. With
the header string modified, the beginning of file 2is foundinline 16@ and the modified header is
transferred back to the filein line 17@. Line 180 prints a DC3 control character CTRL S (S) on
the tape right after the CR (Carriage Return) from the last statement and line 190 returns the
tape statustoits normal state. A TLIST operation displays the results of the program onthe GS
display (shown below) and the program is automatically ended.

GS Display Output

/r-TLIST ‘w

1 ASCIT PROG 1924
2 ASCIT PROG MA"H 1024
3 ASCII PROG 1824
4 ASCI1 PROG 1024
S ASCII PROG 1624
6 ASCI1 PROG 1024
? ASCI1 PROG 1024
8 ASCIT PROG 1024
9 ASCII PROG 1824
10 ASCII PROG 5120
11 ASCI1 PROG 15104
12 ASCII PROG 8192
13 ASCII PROG 1824
14 ASCII PROG 71€8
15 ASCII DATA 2048
16 ASCIT PROG 1824
1?7 BINARY DATA 49192
18 ASCIT DATA 2048
19 LA3ST 768

N)

Any characters except digits #-9 can be added to the tape file header as long as the information
doesn’tinterfere with the information in columns 2 through 4, column 9, column 27, columns 35
through 39, column 43 and column 44

4050 SERIES GRAPHIC SYS1EMS REFERENCE REV A, MAR 1979 743

INPUT/OUTPUT OPERATIONS
THE FIND STATEMENT

Finding a File on an External Magnetic Tape Unit

The FIND statement can also be used to find a tape file on an external magnetic tape unit
connected to the General Purpose Interface Bus. For example:

FIND @17:25

When this statement is executed, the I/0 address @17,27: is issued over the GPIB. Primary
address 17 tells peripheral device number 17 that it has been selected to take part in the
upcoming data transfer. Secondary address 27 is issued by default and tells device 17 that the
information to be transferred represents the tape file number for a file to be found. The number
25 is then converted to an ASCII character string and sent to device number 17, most
significant digit first. Once the ASCII string is received, it is up to device 17 to read the ASCII
data string and position its read/write head to the beginning of the specified file.

7-44 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

THE IMAGE STATEMENT

Syntax Form:

[Line number] IMA any characters except CR

Descriptive Form:

[Line number] IMAGE format string for the print using statement

Purpose

The IMAGE statement specifies the print format to be used in a PRINT USING statement. The
print format is specified as a “format string.”

Explanation
Format String Defined

A format string is a special group of characters which guide the BASIC interpreter when it
outputs ASCIl data via the PRINT USING form of the PRINT statement. Each character in the
format string has special meaning. For example, the letter A means "an alphanumeric
character must be printed here,” the letier D means "a numeric value must be printed here,”
and the letter Xmeans "add a space character to the ASCI| data string at this point.” The order
in which data items are specified in the PRINT USING statement must closely match the format
string which is used as a guide. For example:

100 PRINT USING 110: "Base Price:”, 6995
110 IMAGE 11A,6D

In this example, the print format is specified in the IMAGE statement in line 110. The format
string 11A,6D defines two “print fields” or "print zones.” The first printfield (11A) specifies that
the first data item in the PRINT USING statement must be a character string of not more than
eleven charactersin length. The second print field (6D) means that the second data item in the
PRINT USING statement must be a numeric constant (or numeric expression) of not morethan
six digits to the left of the decimal point. (The decimal part of the number, if any, is rounded off
in this case.)

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-45

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

When line 100 is executed, the alphanumeric string “Base Price:” and the numeric constant
"6995" are sent to a specified peripheral device in the format specified in line 110, the IMAGE
statement. The default print format normally used for ASClI outputis suppressed. In this case,
an /0 address is not specified, so the ASCII information is sent to the GS display by default.

The results are shown below:

GS Display Output

Starting Position of Cursor

o 11A — o |--s——6D]
|
|
|
|

I I
I I
I I
I I

Blals|e Plrlilcle]: 619/91|5

|
| . »
| Ending Position of Cursor

I
j—t— Left Margin

Notice that each print field specified in the format string has an accompanying data item
specified in the PRINT USING statement. The data items are also of the correct type; a
character string for the A field and a numeric value for the D field. If the data items were
reversed in line 100, a data mismatch would occur, and program execution would abort. If one
of the data items did not fit into the field (i.e., if the character string were 12 characters instead
of 11 characters), then a field overflow error would occur, and program execution would abort.
And, if too many data items were specified in line 108 (three data items, for example instead of
two), then a fatal error would occur, and program execution would again abort. So, it is
important that the type of data items specified in a PRINT USING statement, and the order in
which they are specified, closely match the specifications of the format string.

7-46 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

Field Operators

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Field operators are special characters in the format string that define a print field or a special
function. For example, the field operator "A” defines an alphanumeric print field for character
strings and the field operator "D"” defires a numeric print field for numeric values. Only
character strings can be printed in A fields and numeric data in D fields. The table below

summarizes the purpose of each field operator.

FIELD
OPERATOR NAME
A Character String
D Numeric
E Scientific Notation
L Line Feed
P PAGE

4050 SERIES GRAPHIC SYSTEMS REFERENCE

DESCRIPTION

Defines a print field for alpha-
numeric character strings. Specified
in the form nA where n represents
an integer from 1 through 255.

Defines a print field for numeric
data written in standard notation.
Specified in the form nD where n
represents an integer from 1
through 255.

Defines a print field for numeric
data written in scientific notation.
Specified in the form nE where n
represents an integer from 1
through 11.

Specifies the insertion of a Line
Feed character (CTRL J) into the
ASCII data string at the specified
point. Specified in the form nL
where n represents an integer from
1 through 255.

Specifies the insertion of a PAGE
command (CTRL L) into the ASCII
data string at a specified point.
Specified in the form nP where n
represents an integer from 1
through 255.

REV A, MAR 1979 7-47

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

FIELD
OPERATOR NAME
S Suppress CR
T Tab
X Space
" Literal String
/ Carriage Return

7-48

REV A, MAR 1979

DESCRIPTION

Specifies the suppression of the
Carriage Return character at the
end of the ASCII data string. This
operator can only appear at the
end of the format string.

Specifies a move to a character
position in the ASCII data string.
Enough spaces are added to the
string so that the next printed
character appears in the specified
column. Specified in the form nT
where n represents an integer
from 1 through 255.

Specifies that space characters be
inserted into the ASCII data string
at the specified point. Specified in
the form nX where n represents an
integer from 1 through 255.

Defines an alphanumeric string to
be inserted into the ASCII data
string. Specified in the form n” "
where n represents an integer from
1 through 255. The characters in-
side the quotes are "literally”
placed in to the ASCII data string.

Specifies the insertion of a
Carriage Return character at the
specified point in the ASCII data
string. Specified in the form n/
where n represents an integer from
1 through 255.

4050 SERIES GRAPHIC SYSTEMS REFERENCE

FIELD
OPERATOR NAME
(Begin Repeat
) End Repeat

, No Operation

Field Modifiers

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

DESCRIPTION

Specifies the beginning point for
repeat instructions on field format.
Specified in the form n(where n
represents an integer from 1
through 255.

Specifies the ending point for
repeat instructions on field format.

Although not required, commas may
be inserted between field operators
in a format string to increase
readability in a program listing.
Commas in the format string have
no effect on the final output format.

Field modifiers are special symbols used in combination with field operators to define the

length of the field and to enhance the field.

Forexample, the n field modifier specifies the number of character positions in the printfield. n
must be an integer from 1 through 255. Another example of a modifier is the dollar sign field
modifier ($). This modifier specifies that a dollar sign be placed in front of the numeric value in

a D field.

4050 SERIES GRAPHIC SYSTEMS REFERENCE

REV A, MAR 1979 7-49

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

The following table describes the purpose of each field modifier.

FIELD
MODIFIER PURPOSE

n Specifies the number of character positions in a print field
or specifies the number of times a field operator is repeated.
For example, 3D specifies a three position numeric field, and
10X specifies the insertion of 1@ space characters into
the ASCII data string. n must be an integer from 1 through
255, except when used with the E field operator. When used
with the E field operator, n must be an integer from 1 through11.

F Specifies a print field large enough to accommodate the data
item associated with the field. For example, FD creates a 1
digit numeric field if the associated data item has 1 digit,

a 6 digit field if the associated data item has 6 digits, and
a 10 digit field if the associated data item has 1@ digits.

-+ Specifies that a plus sign (+) be placed in front of the
numeric value in the print field if the number is positive,
and a minus sign (—) if the number is negative. Used with
D field operators only.

— Specifies that a space be placed in front of a numeric value
if the number is positive, and a minus sign if the number is
negative. Used with D field operators only.

Specifies that a decimal point character be placed at a
specified location in the ASCII data string. This modifier
"links” the D field operator for the integer part of a number
to the D field operator that specifies the decimal part of
the number. Used with D field operators only.

$ Specifies that a dollar sign ($) be placed in front of the
numeric value in the print field. If a plus or minus field
modifier is used with the D operator, then the dollar sign
is placed to the left of the plus or minus sign. Used with D
field operators only.

C Specifies that commas be inserted into a numeric print field to
the left of the decimal point to break the integer part into
thousands, millions, etc. Each comma takes up one character
position in the field. Used with D field operators only.

7-50 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

Format String Length

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

The illustrations used in the following examples represent the ASCII data string after it is
converted to conform to the print format specified in the associated format string. The first
character on the left of each illustraticn represents the first character sent to the specified
peripheral device. This character occupies "pasition 1.” The character positions to the right
are "position 2,"” "position 3,” and soon The examples are limited to 32 character positions for
ease of illustration. Remember, however, that the line actually extends to an almost infinite

number of character positions.

Creating Format Strings

The following examples illustrate how to combine field operators and field modifiers into

format strings. All combinations are not covered; however, enough examples are provided to
give an understanding of the rules governing format string construction. Most of the programs
in these examples send the ASCII data string to the GS display because an I/O address is not
specified in the PRINT USING statement. However, by specifying the appropriate primary
address in the PRINT USING statement, the ASCIlI data string can easily be sent to the internal
magnetic tape unitor to an external peripheral device over the General Purpose Interface Bus.

The Character String Field Operator (A)

The A field operator defines a print field for alphanumeric character strings. The operator is
specified in the form nA where n represents an integer from 1 through 255. If n isn't specified,

then 1 is assumed to be the value of n by default.

Example 1—Creating an Alphanumeric Print Field
120 IMAGE 20A

130 PRINT USING 120. "Student Name:”

- 20A

b

b

b

b

$CII Data String

In line 120 above, the format string 20A defines an alphanumeric print field with 20 character
positions. In line 130, the string constant“Student Name:" is printed in this field. Notice that the
character string is left justified in the field; this means the first character in the string is printed

4050 SERIES GRAPHIC SYSTEMS REFERENCE

REV A, MAR 1979

7-51

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

in the left-most position in the field, the next character in the position immediately to the right,
and so on. The character string "Student Name:"” only fills 13 character positions; the
remaining positions are filled with space characters (represented by the b symbol). Character
strings smaller than the specified field length can be printed in the field, but a character string
larger than the specified field length cannot be. If an attempt is made to print a string with 21
characters in this field, for example, then a FIELD OVERFLOW ERROR occurs and program
execution is aborted.

Another point of interest in this example is the Carriage Return character added to the end of
the ASCII data string. This is always done unless otherwise specified. The Carriage Return
character acts as astring delimiter, and if sent to the GS display, it is converted into a Carriage
Return/Line Feed combination. This of course returns the display cursor to the left margin and
moves the cursor down one line.

Example 2—Two Alphanumeric Fields Side by Side
140 A$="Student Name:"
150 B$="Mickey Mouse"
160 IMAGE 13A,13A
170 PRINT USING 160:A%,B$

Format String

13A , 13A

N\ N\
Mlijclkle|y]|B|Mlo|u|s]elb

%)
-+
[
o
(1°]
=
-+
o
2
Q
3
<

IO

ASCII Data String

This example brings out the fact that the end of one print field marks the beginning of the next
print field. Also, there must be a data item specified in the PRINT USING statement for each
print field defined in the format string; A$ for the first field (13A) and B$ for the second field
(13A).

7-52 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/QUTPUT OPERATIONS
THE IMAGE STATEMENT

The Repeat Field Operators ()

The repeat field operators specify that the portion of the format string inside the parenthesis is
to be repeated n number of times. Tre operators are specified in the form n() where n
represents an integer from 1 through 255. If n isn't specified, then 1 is assumed to be the value
of n by default. The field operators and modifiers to be repeated are placed inside the
parenthesis.

Example 3—Using Repeat Field Operators
180 A$="Student Name:"
190 C$="Donald Duck”
200 IMAGE 2(13A)
210 PRINT USING 200:A$,C$

Format String

2(13A)

4 Y4
S|t|u|ld]e|{n|t]|b|{N|la|lm|e]:|D|o|nlall|d|b|Dlulclk]|b

ov
D0

ASCII Data String

This example produces the same results as example 2. The only difference is the addition of
repeat field operatorsinthe format string. If afield is repeated two or more times in succession,
then using repeat field operators provides a good method for shortening the length of the
format string. There must be a data item specified in the PRINT USING statement for every
repetition of the field. In this case, a *3 character field is specified twice, so there are two
character strings (A$ and C$) specified inthe PRINT USING statement (line 210). If theformat
string were 3(13A), then three character strings would have to be specified in the PRINT
USING statement.

The repeat field operators can be nested up to four deep; that is, parenthesis can be placed
inside parenthesis up to four deep. For example, 280 IMAGE 2(2(2(2(6A)))).

4050 SERIES GRAPHIC SYSTEMS REFERENGE REV A, MAR 1979 7-53

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

The Space Field Operator (X) and the PAGE Field Operator (P)

The space field operator specifies that one or more space characters be inserted into the ASCII
data string at the specified point. The space operator is specified in the form nX where n
represents an integer from 1 through 255. If n isn’t specified, then 1 is assumed to be the value
of n by default.

The PAGE field operator specifies that one or more Form Feed characters be inserted into the
ASCII data string at a specified point. The Form Feed character erases the GS display and
returns the cursor to the "HOME" position. On an external peripheral device such as a line
printer, the Form Feed character usually causes the printer to advance to the next page of
paper. The PAGE operator is specified in the form nP where n represents an integer from 1
through 255. If n isn't specified, then 1 is assumed to be the value of n by default.

Example 4—Turning the Page and Adding Spaces between Print Fields
220 A$="Student Name:"
230 D$="Piuto”
240 IMAGE P,13A,5X,6A
250 PRINT USING 240:A$,.D$

Format String

P, 13A, 5X , 6A

/an NV

.U
o
~—*
o
o\
pelo)

b|b|b|b|b

-
[72]
-
c
a
o
B
"
o
2
)
3
o

ASCII Data String

In this example, the field operator P is specified first in the format string. This places a Form
Feed control character (CTRL L) in the first character position of the ASCIlI data string. When
the ASCII data string is sent to the GS display, a PAGE command is executed before the
characters are printed.

This example also shows how to separate two print fields with spaces. The X field operator
places 5 space characters between the two A fields as shown in the illustration. Notice that the

7-54 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

commas in the format string have no effect on the final print format. All they do is increase the
readability of the format string in a program listing. The format string can also be specified as
P13A5X6A, or P 13A 5X 6A.

The Line Feed Field Operator (L)

The line feed field operator specifies the insertion of one or more line feed characters into the
ASCII data string at the specified point. The operator is specified in the form nL where n
represents an integer from 1 through 255.

Example 5—Inserting Line Feed Characters into the ASCII Data String
260 E$="Papa Bear"
270 F$="Mama Bear"
28¢ G$="Baby Bear"
290 IMAGE 9AL,9AL,9A
300 FIND @
310 MARK 1,1000
320 FIND 1
330 PRINT @33:USING 290:E$,F$,G$
340 FIND 1
350 INPUT @33:J$
360 PRINT "L";J$

Format String

0

BearlL:Babbeear

o
o
©
o
o
vs)
®
o
-
mr-
=
®
3
o
o)

ASCII| Data String

This example illustrates two important ‘ormatting technigues. First, how to insert Line Feed
characters into the ASCll data string; and second, how to send the formatted ASCII data string
to a peripheral device such as the internal magnetic tape unit.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-55

INPUT/QUTPUT OPERATIONS
THE IMAGE STATEMENT

Line Feed characters are inserted into the ASCII data string by specifying the L field operatorin
the format string. This is done in line 290 and the results are shown in format illustration.

The program in example 5 also illustrates how to find the beginning of a new tape (line 300),
create a 1000 byte file (line 31@), find the beginning of the new file (line 32@), and send three
student names to the file for storage (line 33@). The program continues by closing the file and
positioning the tape head at the beginning of the file (line 340), then inputs the three student
names back into memory (line 35@) and sends the names to the GS display. The results are
shown below:

GS Display Output

Starting Position of Cursor

| T»
|
| Ending Position of Cursor

j==—Left Margin

7-56 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

The thing to notice is that the Line Feed characters are indeed inserted into the ASCII data
string. The problem with this method of transfer, however, is that the the student names are
transferred to the magnetic tape as three separate data items (E$, F$, and G$) and recovered
fromthe tape as one data item (J$). The reason for this is the three data items are transmitted as
a single ASCII character string with a Carriage Return on the end. When the information is
input back into memory (line 350), all of the characters up to the first Carriage Return are
assigned to the first string variable (J$). To getaround this problem without having to use three
separate PRINT statements, Carriage Feturn characters can be inserted between each data
item when the information is sent to the tape. This leads into the next topic.

The Carriage Return Field Operator (/)

The Carriage Return field operator specifies the insertion of one or more Carriage Return
characters into the ASCII data string at the specified point. This operator is specified in the
form n/where nrepresents aninteger from 1 through 255. If n isn’t specified, then 1 is assumed
to be the value of n by default.

Example 6—Inserting Carriage Returns Between Print Fields
370 K$="Bad Wolf"
380 L$:="Little Red”
390 M$="Granny"
400 ON EOF(P) THEN 440
410 FIND 1
420 INPUT J$
430 GOTO 42¢
449 PRINT @33:USING 450:K$,L$.M$
450 IMAGE 8A,/,10A /,6A

Format String

, BA
-

8A , /, 18A ,
t| 1

; /
N .
Bla[d|b|W|o]|I]|f

g
Clolilt e|b|Rle|d|G|G|r|a|n|n|y
R R

o

ASCII Data String

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-57

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

This example locates the logical end of the ASCII data file created in the last example, and

sends three more student names to the file for storage. This time, however, a Carriage Return
character is inserted between each character string so the student names can be recovered
individually rather than as a group.

In lines 370, 389, and 390, the three student names are assigned to string variables. In line 400,
an EOF (End Of File) ON unit is activated to alert the BASIC interpreter when the End Of File
mark is reached on the tape. Line 410 positions the magnetic tape read/write head at the
beginning of file 1. Lines 420 and 430 then input ASCII data items in a repetitive loop and
assigns them to J$ until an attempt is made to input the End Of File mark. The only reason these

two lines are in the program is to read through the sequential access data file to get to the EOF
mark.

When the EOF mark is found, program control is transferred to line 490, then to line 44@ where
the three student names are added to the logical end of the file. The ASCII data string is
formatted according to the format guide specified in line 450. Notice that the / field operator is
used to insert a CR between each data item.

The Literal String Field Operator (") and the S Field Operator

The literal string field operator specifies thatan alphanumeric character string is to be inserted
into the ASCI| data string at the specified point. The literal field operator is specified in the form
n"” "when n represents an integer from 1 through 255. If n isn’t specified, then 1 is assumed to be
the value of n by default. The characters inside the quotation marks are "literally” placed into
the ASCII data string at the specified point.

Example 7—Inserting a Literal String and Suppressing the Carriage Return
460 F$="Porky Pig"
470 PRINT USING 480:F$
480 IMAGE "Student Name:",5X,13A,S

Format String

“Student Name:” ,

ASCII Data String

7-58 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

In most of the examples up to now the first character string specified has been “Student
Name:". In cases like this, it is easier to place the character string in the format string. This way
itdoesn’t have to be specified as a PRINT parameter every time. Example 7 shows how to place
a character string into a format string. The character string must be enclosed in quotation
marks. The string is called a literal string because the characters are literally transferred from
the format string and placed into the ASCII data string as shown in the illustration.

This example also shows how to suppress the Carriage Return character at the end of the
ASCII data string. This happens when the S field operator is specified at the end of the format
string. Itis importantto remember that the S field operator can only be placed atthe end of the
format string—never in the beginning or in the middle.

Notice here also that the IMAGE statement does not have to precede the PRINT USING
statement in program execution order. The IMAGE statement can be placed anywhere in the
program. In addition, several PRINT USING statements can use the same IMAGE statement as
a format guide.

The Tab Field Operator (T)

The tab field operator specifies a move to a specific character position in the printed output.
For example, if the ASCII data string is printed on the GS display, then the specification 30T
puts enough spaces in the ASClII data string so that the next printable characteris displayed in
character position 3@. The number of spaces inserted into the ASClli data string depends on the
number of Carriage Return characters and the number of control characters which precede the
T operatorinthe formatstring. The T operator is specified in the form nT where n represents an
integer from 1 through 255. If n isn’t specified, then a 1 is assumed to be the value of n by
default.

Example 8—Tabbing over to a Character Position on the GS Display
500 O$="Goofy"
510 IMAGE "Student Name:",19T,13A
520 PRINT USING 510 O$

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-59

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Format String

“Student Name:”" , 19T , 13A

L J

Y 7

LStudenthame:’bbbbbGoofybbbbbbb

T\Position 1 T\Position 19

ASCII Data String

o
O

The ASCll data string produced in this example is similar to the ASCI| data string in example 7;
however, the format string uses the T operator instead of the X operator. In this example, the
tab field operator (T) positions the start of the second alphanumeric field to column 19. Notice
that enough spaces are added to the ASCII data string so the student name "Goofy” starts in
character position 19 on the GS display.

NOTE

The nmodifier to T does not specify the number of character positions to the right of
the last print field like the n modifier to X. It is important to remember that a tab
cannot be executed to a character position to the left of the present position of the
display cursor or the writing tool of the external peripheral device. For example, if
the format string in line 519 is "Student Name:",3T,13A instead of “Student
Name:”,19T,13A, then a fatal error occurs and program execution is aborted. This
happens because the cursor or the writing tool of the external peripheral deviceis in
the 13th character position from the left margin and attempts to cross back over the
alphanumeric field to get to the 3rd position from the left margin. This is not allowed.

The Advantage of Using the T Operator Over the X Operator

The advantage of using the T field operator over the X field operator is that visual fidelity is
always maintained in the printout when the T field operator is used; visual fidelity may not be
maintained if the X operator is used. For example, the format strings 16A,3X,10A and
16A,19T,10A produce the same output (visually) if the character string in the first A field does
not contain control characters. If the first field does contain control characters, such as CTRL
G (Bell), then the second A field is shifted to the left if the X operator is used instead of the T
operator. This happens because the display cursor doesn’t move when CTRL G is "printed”.
(The bell rings instead.) The 19T specification in the second format string makes up for this

7-60 REV B, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

shortcoming. When the tab position is computed by the BASIC interpreter, additional spaces

INPUT/OUTPUT OPERATIONS

are inserted into the ASClII string to make up for the non-movement of the cursor when control
characters are printed. This ensures that the second print field begins at the 19th character

position (from the left margin). The following example illustrates how nonprintable control
characters in the ASCII data string can make a difference in the appearance of the printout.

Example 9—Visual Fidelity is Maintained When the T Operator is Used
530 P$="Today's Dunce:GG"

540 Q$="Daffy Duck”
550 IMAGE 16A,3X,10A
560 IMAGE 16A,19T,10A

570 PRINT USING 550:P$,Q$
580 PRINT USING 560:P$,Q$

In this example, the character strings "Today’s Dunce:GG" and "Daffy Duck"” are printed

twice; once using the format specified in line 550 and once using the format specified in line

560. Notice that there are two CTRL G characters in P$. These characters make a difference in
the visual appearance of the printout when lines 570 and 580 are executed.

First Format String

16A , 3X , 16A
) ‘\
—_— ,—2\ 7

Tlojd|a|y| |s|b[Dlu|n|cl|e

D|a

f

f

y

b

N0

ASCII Data String

Second Format String

19T

16A ,

/ng\/g

’

|
Tlo|d|aly szunce‘

G

b

a

Yy

b

D

:UO

ASCII Data String

4050 SERIES GRAPHIC SYSTEMS REFERENCE

REV A, MAR 1979

THE IMAGE STATEMENT

7-61

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

When the ASCII data string is constructed using the format specified in line 550, a character
field is created and filled by P$, then three spaces are added as specified by 3X. A 1@ character
field is created next and filled by Q$; after that, a Carriage Return is added onto the end.

When the ASCII data string is constructed again using the format specified in line 560, a 16
character field is created and filled by P$, just as before. This time, however, five spaces are
added to the string instead of three. The two control characters in P$ are taken into account
when the tab position is computed; the two additional space characters are added to make up
for the non-movement of the cursor when the CTRL G characters are "printed”. The second A
field is created next and filled by Q$; a Carriage Return is added onto the end.

GS Display Output

I
|
: Starting Position of Cursor
' (

I

Tlo|d|a]y s Dju|njc|e]: Dla|f|f|y D{u|ck

T|o|d|a|y| [s| [D|u|n]|c|el: D|a|f|f|y| |D|u|c|k

T-Column 19

Ending Position of Cursor

|~-=——Left Margin

The printed results on the GS display are shown above. Notice that "Daffy Duck” starts in the
18th character position instead of the 19th position in the first line. This happens because the
formatstring in line 55@ is used and the control characters in the ASCll data string are not taken
into account. In the second line, however, "Daffy Duck” starts in position 19, the specified tab
position.

7-62 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Keeping Track of the Display Cursor Fosition

The Graphic System has an internal counter which keeps track of the display cursor position.
This counteris used as the basis for computing the tab position in a format string. The counter
operates under the following rules:

1) The character position counter starts at 1 and increments to 255. A count of
1 means that the display cursor is at the left margin (position 1).

2) Each printable charecter in the ASCII data string increments the counter by
one count as the character is sent out.

3) Control characters (decimal equivalent @ through 31) in the ASCII data
string are not considered printable characters and have no effect on the
counter. (Refer the PRINT statement in this section for information on
printing control characters.)

4) Every Carriage Return in the ASCII data string resets the counter to 1 (left-
hand margin).

5) The counter is reset at the beginning of every new PRINT statement and
PRINT USING statement.

The last two rules are of particular importance when specifying the tab position in a format
string. Here’s why.

Special Case Number 1:

590 IMAGE 15A,/,20T,10A
600 PRINT USING 590:A%,B$

When these two statements are executad, a 15 position character field is created for A$; a
Carriage Return is inserted into the ASCII data string next. If the Carriage Return character
were not specified, then the T field operator would add 5 space characters to tab over to

position 20 (assuming, of course, thatthere aren’tany control characters in the A field). In this
case, however, the Carriage Return resets the counter to 1. The BASIC interpreter thinks the
cursor is on the left margin and adds 20 space characters to the ASCII data string to tab to
position 2@.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV B, MAR 1979 7-63

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

This example emphasizes the point that if a Carriage Return character is in the format string
and aT operator follows, then the T operator assumes the display cursor (or the writing tool of
the external peripheral device) is located on the left margin and the tab position is computed on
that basis.

Special Case Number 2:

610 IMAGE 20A,S

620 IMAGE 25T,20A

630 PRINT USING 610:A$
640 PRINT USING 620:B$

When line 630 is executed in the program above, the character string assigned to A$ is printed
according to the format specified in line 610. A 20 character field is printed on the disptay and
the cursorremains in position 21 because the Carriage Return is suppressed. When line 640 is
executed (using line 620 as a format guide) the tab to position 25 is computed. The display
cursor is sitting in position 21; however, the character counter is reset to 1 because a new
PRINT statement is being executed. As a result, the BASIC interpreter thinks the cursorisin
the number 1 position and adds 25 spaces to ASCIl data string. As a result, the cursor moves to
position 45 instead of position 25 and B$ is printed.

This example emphasizes the point that the character position counter is reset at the beginning
of each new PRINT statement and this fact must be considered when specifying the tab
position. In this case, the tab specification in line 620 should be 5T to tab to position 25 or the
program should be rewritten as follows:

650 IMAGE 20A,25T,20A
660 PRINT USING 650:A%,B$

The Numeric Field Operator (D)

The D field operator defines a print field for numeric data written in standard notation. The
operator is specified in the form nD where nrepresents an integer from 1 through 255. If nisn’t
specified, then 1 is assumed to be the value of n by default.

Example 10—Print Fields for Integer Values
670 J=159.95
680 IMAGE "Lab Breakage Fee:",10D
690 PRINT USING 680:J

7-64 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Format String

“’Lab Ereakage Fee:” , 10D

-

ASCII Data String

This example illustrates how to specify a printfield foran integer value. In line 670, the numeric
value 159.85 is assigned to the variable J. In line 690, the value of J is printed according to the
format specified in line 680, the IMAGE satement. The results are shown in the illustration.
Notice that the specification 10D defines a ten digitprintzone for the numeric value assigned to
J. Because the print field is restricted to ‘nteger values, the value of J is rounded to an integer
before itis placed in the field; in this case, 159.95 is rounded to 160. Notice that the integer is
right justified in the field and unused character positions are filled with blanks.

Ifthe integervalue s larger than the defined print zone, an error occurs and program execution
is aborted. In this case, if the assigned value of J increases to more than 10 digits to the left of
the decimal point (or 9 digits for negative values), then an error occurs.

Using the F Modifier With a D Field Operator

Ifan F modifier is used with a D field operator, thenaprintzone is created just large enough to
accommodate the specified data item.

Example 11—Using an F Modifier with a D Field Operator
700 A—159.95
710 PRINT USING 720:A
720 IMAGE "Lab Breakage Fee:",FD

4050 SERIES GRAPHIC SYSTEMS REFERENGE REV A, MAR 1979 7-65

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Format String

’Lab Breakage Fee:”” , FD

L —J L]

0

ASCII Data String

In line 710, the value of B is printed on the GS display according to the format specified in line
720. Notice this time thatan FD print field is specified. Because the value of B has three digits, a
numeric print field is created with three character positions; just enough to accommodate the
number. If the assigned value of B changes to 12345, for example, then a print field with five

character positions is created.

The Decimal Point Field Operator (.)

The decimal point field operator defines the location of the decimal point for numeric output.
The decimal point operator must follow a D operator with no space or comma in between.

Example 12—Specifying the Location of the Decimal Point
730 B=06994.95
749 IMAGE "Base Price:",10D.
750 PRINT USING 740:B

Format String

l“Base Price:” , 14D .
J]

0

ASCII Data String

7-66 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

In line 730, the numeric value #6994 .95 is assigned to the numeric variable B. In line 75@, the
value assigned to B is printed according to format specified in line 740. This format string
includes the decimal point field operator, and the results are shown in the illustration. In this
case, only an integer field is specified, so the value of B is rounded to the nearest integer.
Notice also that the leading zero is suppressed and not placed in the ASCII data string.

Specifying an Integer Print Field and a Decimal Print Field

Example 13—Specifying a Decimal Print Field with an Integer Print Field
760 B=6994.95
770 IMAGE "Base Price:",10D.4D
780 PRINT USING 770:B

Format String

Blalsl|elb|P|rl|ilclel:|b|b|b|b|b|b|6[(9|9]|4].]|9(5|d|0

O

ASCII Data String

The ASCII data string is formatted the same as example 12 except for the addition of the
decimal field specified by 4D. In this case, a four digit numeric field is created to the right of the
decimal point. Notice that if the numeric value does not have enough digits to fill the defined
decimal field, the empty positions are filled with zeros. In addition, if the numeric value has a
decimal part greater than the number of positions defined in the decimal print field, then the
decimal part is rounded off to fit the field.

I1f the F modifier is used with the D field operator, just enough positions are created in the field

to accommodate the decimal portion of the number. In this case, the format string “Base
Price:”,10D.FD creates a two digit decirnal field because 6994.95 has a two digit decimal part.

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-67

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Using the Plus Sign Modifier (+) with the D Field Operator

The plus sign (+) modifier causes the BASIC interpreter to place a plus sign in front of a
numeric value, if the value is positive, and a minus sign (—) in front of a value, if the value is
negative. Another character position is generated in the integer field to accommodate the sign.

Example 14—Using the Plus Sign Modifier
790 K==1222.52
803 PRINT USING 810:K
810 IMAGE "Income Tax Due:”,+6D.3D

Format String

“Income Tax Due:” , + 6D . 3D
]

L)

N

0

ASCII Data String

Line 800 in this example outputs the value of K using the format specified in line 819. Because
the + modifieris specified in the format string, a plus sign is placed in the integer field to the left
ofthe most significant digitin the field. If the value of Kis changed to a negative number, then a
minus sign is placed in the field instead of a plus sign. It is important to note here that an
additional character position is added to accommodate the plus sign in the integer field.

Using the Minus Sign Modifier with the D Field Operator

The minus sign modifier (—) causes the BASIC interpreter to place a blank (or space) in front of
a numeric value, if the value is positive; and a minus sign in front of the value, if the value is
negative.

Example 15—Using the Minus Sign Modifier
820 K= —1.98
830 PRINT USING 840:K
840 IMAGE "Tax Refund:”,—6D.3D

7-68 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Format String

“Tax Refund:’”” , — 6D 3D

0

ASCII Data String

This example shows how to specify the minus sign modifier in an integer print field. The only
difference between the minus signal modifier and the plus sign modifier is that: the minus sign
modifier leaves a blank in front of the most significant digit for positive numbers, and the plus
sign modifier, of course, places a plus sign in front of the positive numbers. Notice that in all
cases, the plus and minus sign modifiers are placed immediately to the left of the n modifier in
the format string (if a C modifier is not specified).

Using a Dollar Sign Mcdifier ($) and Comma Modifier (C) with the D Field Operator

The dollar sign modifier ($) causes the BASIC interpreter to place a dollar sign in a numeric
field to the left of the mostsignificant digit. The doliar sign modifier is always placed to the left
of plus sign modifier, a minus sign modifier, or a comma modifier in a format string.

The C modifier causes the BASIC interpreter to place commas in the integer D field to divide

the integer part into thousands, millions, etc. Each comma takes up one character position in
the D field. Care must be taken when the n modifier is specified to make sure that enough
character positions are created to make room for the commas.

Example 16—Using a $ and C Modifier with a D Field Operator
850 M=1222.52
860 PRINT USING 870:M
870 IMAGE "Income Tax Due:",$+CFD.FD

4050 SERIES GRAPHIC SYSTEMS REFERENCE IREV A, MAR 1979 7-69

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Format String

“Income TaxDue:” , $ + CFD . FD

— ///K\X

Iln|clo|lm|jel|b|T|a|x|b|D|jule]:|S|+]1]|.[2]2]|2

o

ASCII Data String

This example shows how the dollar sign modifier causes the BASIC interpreter to place a dollar
sign in front of the integer part of the number. Notice also in this example, that the F modifiers
to the D field operators give the most flexibility to the format. Field overflow errors never occur
if F modifiers are used and the exponent range of the number is within £127.

The Scientific Notation Field Operation (E)

The E field operator specifies a print field for numeric output in scientific notation. The E field
operator can be modified with the n modifier or F modifier, and the + modifier. The n modifier
must be an integer from 1 through 11 and specifies the number of digits to the right of the
decimal point in the mantissa. If the F modifier is used in place of the n modifier, up to nine
digits are output to the right of the decimal point in the mantissa depending on the number of
significant digits in the specified value. For example, if the number to be printed has five digits
to theright of the decimal point, then five digits are printed; if the number has seven digits, then
seven digits are printed; trailing zeros are suppressed. When the plus sign modifier is used, a
plussignis placed in front of the mantissa, if the mantissa is positive; if the mantissa is negative,
a minus sign is placed in front .

There is no control over the exponent format. The exponent is always printed with an E
followed by a plus or minus sign followed by three digits. Zeros are added to exponents with
less than three digits to give the exponent a uniform output appearance.

Example 17—Specifying an E Field Operator Without a Modifier
880 LET R = 1.123456789E--6
890 IMAGE "Distance:",E,X,”"Mi"
900 PRINT USING 898:R

7-70 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Format String

“Distance:’’ , "M

— /\I

Dlilsltlalnlclel:|®{1]|.]1|E|+|0]|9]|6

IO

ASCII Data String

In this example, the field operator E defines the format to be used to print the value of R.
Because an n modifier is not specified, a 1 is assumed to be the value of n by default. Thisisthe
same as specifying 1E. The E specification directs the BASIC interpreter to round off the
decimal part of the mantissa to one digit. The results are shown in the illustration. Notice that
only one digitis outputto the right of the decimal point. Also notice that two zeros are added to
the one digit exponent to give the output a uniform appearance.

In this case, a + modifier is not used, so a space is placed in front of the mantissa. If the
mantissa were negative, then a minus sign would have been placed in front of the mantissa.

Example 18—Using a + Modifier and a n Modifier with an E Field Operator
910 LET W=2/3
92¢ IMAGE "Distance:", +11E.X,"Mi"
930 PRINT USING 920:W

Format String

“Distance:”’ ,+11E, X , “Mi"

SR

ASCII Data String

4050 SERIES GRAPHIC SYSTEMS REFERENCE REV A, MAR 1979 7-71

INPUT/QUTPUT OPERATIONS
THE IMAGE STATEMENT

This example shows how to generate the maximum E field length of 19 character positions. The
nmodifierto E is specified as 11, the largestintegerallowed. This causes the BASIC interpreter
to printthe 11 digits to the right of the decimal point. Notice that the last digit is rounded to the
next highest integer.

This example also shows the results of the 4 modifier in the format string. The 4 modifier
places aplussign in front of the mantissa for positive numbers and a minus sign in front of the
mantissa for negative numbers.

Example 19—Using the F Modifier with the E Field Operator
940 G == 6.2841E-6

950 IMAGE "Distance:” FE,X,"Mi"
960 PRINT USING 950: G

Format String

“Distance:”” , FE , X , “Mi"”

o

Dlifs|t]a|n|cle|:|b|6|.|2(8|a|1]E|~|a]|d|6|b|Mmli

O

ASCII Data String

Inthis example, the F modifier is used instead of the n modifier. Notice thatall of the significant
digits to the right of the decimal point in the mantissa are printed. When the F modifier is used,
up to nine digits can be output to the right of the decimal point.

Upper Case Letters versus Lower Case Letters in Format Strings

Field Operators and Field modifiers can be specified as either an upper case letter or a lower
case letter; itdoesn’t matter. Forexample, the format string $-+cfd.fd is interpreted the same as
$+CFD.FD.

7-72 REV A, MAR 1979 4050 SERIES GRAPHIC SYSTEMS REFERENCE

INPUT/OUTPUT OPERATIONS
THE IMAGE STATEMENT

Three Ways to Specify a Format String

There are three ways to specify a format string in a PRINT USING statement. One way is to
place the formatstring in an IMAGE statement and then specify the line number of the IMAGE
statement. This method has been used exclusively up to now. Another way is to assign the
formatstring toastring variable like A$, then specify A$ as the format to be used in the PRINT
USING statement. A third way is to place the format string directly into the PRINT USING
statement. Here are two examples which show how to implement these last two methods.

Example 20—Using a String Variable to Specify a Format String
970 LET A$="P,""SIMON SAYS"""""" A5 "/
980 LET B$="Touch Your Toes"
990 PRINT USING A$:B$

Format String

P ey SIMON SAYS rrrrresrsrsy 15A A4400080000800080004
r 4 ’

—/' ;//_']

-
S

r~ Y N\

Lis|t|m|o|n|b[s[a|v|s|”[T|o|ulc|n|b|Y]o]|u]r[b]|T|o|e|s][§

ASCII Data String

This example uses a string variable (A$) to specify the format string instead of an IMAGE
statement. The format string is assigned to A$ in line 97@. Notice that the format string must be
enclosed in quotation marks and that all quotation marks within the format string are doubled,

including the literal string field operator. In line 998,